National Library of Energy BETA

Sample records for international solid waste

  1. International Solid Waste Association (ISWA) | Open Energy Information

    Open Energy Info (EERE)

    Solid Waste Association (ISWA) Jump to: navigation, search Name: International Solid Waste Association (ISWA) Address: ISWA - International Solid Waste Association General...

  2. Solid waste handling

    SciTech Connect (OSTI)

    Parazin, R.J.

    1995-05-31

    This study presents estimates of the solid radioactive waste quantities that will be generated in the Separations, Low-Level Waste Vitrification and High-Level Waste Vitrification facilities, collectively called the Tank Waste Remediation System Treatment Complex, over the life of these facilities. This study then considers previous estimates from other 200 Area generators and compares alternative methods of handling (segregation, packaging, assaying, shipping, etc.).

  3. Municipal Solid Waste:

    U.S. Energy Information Administration (EIA) Indexed Site

    Methodology for Allocating Municipal Solid Waste to Biogenic and Non-Biogenic Energy May 2007 Energy Information Administration Office of Coal, Nuclear, Electric and Alternate Fuels U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the U.S. Department of Energy. The information contained herein should be attributed to the Energy Information Administration and should not be

  4. Solid Waste Management Plan. Revision 4

    SciTech Connect (OSTI)

    1995-04-26

    The waste types discussed in this Solid Waste Management Plan are Municipal Solid Waste, Hazardous Waste, Low-Level Mixed Waste, Low-Level Radioactive Waste, and Transuranic Waste. The plan describes for each type of solid waste, the existing waste management facilities, the issues, and the assumptions used to develop the current management plan.

  5. BT16 Municipal Solid Waste Resources

    Broader source: Energy.gov (indexed) [DOE]

    Municipal Solid Waste Resources Municipal solid waste (MSW) is a source of biomass ... trimmings, paper and paperboard, plastics, rubber, leather, textiles, and food wastes. ...

  6. Solid Waste Management Program Plan

    SciTech Connect (OSTI)

    Duncan, D.R.

    1990-08-01

    The objective of the Solid Waste Management Program Plan (SWMPP) is to provide a summary level comprehensive approach for the storage, treatment, and disposal of current and future solid waste received at the Hanford Site (from onsite and offsite generators) in a manner compliant with current and evolving regulations and orders (federal, state, and Westinghouse Hanford Company (Westinghouse Hanford)). The Plan also presents activities required for disposal of selected wastes currently in retrievable storage. The SWMPP provides a central focus for the description and control of cost, scope, and schedule of Hanford Site solid waste activities, and provides a vehicle for ready communication of the scope of those activities to onsite and offsite organizations. This Plan represents the most complete description available of Hanford Site Solid Waste Management (SWM) activities and the interfaces between those activities. It will be updated annually to reflect changes in plans due to evolving regulatory requirements and/or the SWM mission. 8 refs., 9 figs., 4 tabs.

  7. Municipal Solid Waste | Open Energy Information

    Open Energy Info (EERE)

    Municipal Solid Waste Jump to: navigation, search TODO: Add description List of Municipal Solid Waste Incentives Retrieved from "http:en.openei.orgwindex.php?titleMunicipalSo...

  8. Scalable, Efficient Solid Waste Burner System - Energy Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A system that effectively burns solid human waste where traditional waste management ... is a semi-gasifier, burner device to process solid waste, particularly solid human waste. ...

  9. Regional solid waste management study

    SciTech Connect (OSTI)

    Not Available

    1992-09-01

    In 1990, the Lower Savannah Council of Governments (LSCOG) began dialogue with the United States Department of Energy (DOE) regarding possibilities for cooperation and coordination of solid waste management practices among the local governments and the Savannah River Site. The Department of Energy eventually awarded a grant to the Lower Savannah Council of Governments for the development of a study, which was initiated on March 5, 1992. After careful analysis of the region`s solid waste needs, this study indicates a network approach to solid waste management to be the most viable. The network involves the following major components: (1) Rural Collection Centers, designed to provide convenience to rural citizens, while allowing some degree of participation in recycling; (2) Rural Drop-Off Centers, designed to give a greater level of education and recycling activity; (3) Inert landfills and composting centers, designed to reduce volumes going into municipal (Subtitle D) landfills and produce useable products from yard waste; (4) Transfer Stations, ultimate landfill disposal; (5) Materials Recovery Facilities, designed to separate recyclables into useable and sellable units, and (6) Subtitle D landfill for burial of all solid waste not treated through previous means.

  10. Solid Waste Program Website | Open Energy Information

    Open Energy Info (EERE)

    Waste Program Website Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Solid Waste Program Website Author Alaska Division of Environmental Health...

  11. Wastes Hazardous or Solid | Open Energy Information

    Open Energy Info (EERE)

    or Solid Jump to: navigation, search Retrieved from "http:en.openei.orgwindex.php?titleWastesHazardousorSolid&oldid612186" Feedback Contact needs updating Image...

  12. Idaho Solid Waste Webpage | Open Energy Information

    Open Energy Info (EERE)

    Solid Waste Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Idaho Solid Waste Webpage Abstract This webpage provides an overview of regulation...

  13. Energy and solid/hazardous waste

    SciTech Connect (OSTI)

    1981-12-01

    This report addresses the past and potential future solid and hazardous waste impacts from energy development, and summarizes the major environmental, legislation applicable to solid and hazardous waste generation and disposal. A glossary of terms and acronyms used to describe and measure solid waste impacts of energy development is included. (PSB)

  14. Managing America`s solid waste

    SciTech Connect (OSTI)

    Not Available

    1998-03-02

    This report presents an historical overview of the federal role in municipal solid waste management from 1965 to approximately 1995. Attention is focuses on the federal role in safeguarding public health, protecting the environment, and wisely using material and energy resources. It is hoped that this report will provide important background for future municipal solid waste research and development initiatives.

  15. Solid-waste contracting: Questions and answers

    SciTech Connect (OSTI)

    Not Available

    1992-05-01

    The increasing complexity of local government responsibilities is nowhere better illustrated than in solid waste management. In the past, when the adverse effects of waste disposal were less recognized, garbage was simply taken to local public dumps, or burned in backyard barrels or apartment building incinerators. Local governments must modernize their solid waste programs and operate within growing federal and state regulations. The changing regulatory environment of solid waste management presents a golden opportunity to contract with the private sector if interest of the community can be protected.

  16. Solid waste burial grounds interim safety analysis

    SciTech Connect (OSTI)

    Saito, G.H.

    1994-10-01

    This Interim Safety Analysis document supports the authorization basis for the interim operation and restrictions on interim operations for the near-surface land disposal of solid waste in the Solid Waste Burial Grounds. The Solid Waste Burial Grounds Interim Safety Basis supports the upgrade progress for the safety analysis report and the technical safety requirements for the operations in the Solid Waste Burial Grounds. Accident safety analysis scenarios have been analyzed based on the significant events identified in the preliminary hazards analysis. The interim safety analysis provides an evaluation of the operations in the Solid Waste Burial Grounds to determine if the radiological and hazardous material exposures will be acceptable from an overall health and safety standpoint to the worker, the onsite personnel, the public, and the environment.

  17. Solid waste 30-year volume summary

    SciTech Connect (OSTI)

    Valero, O.J.; Armacost, L.L.; DeForest, T.J.; Templeton, K.J.; Williams, N.C.

    1994-06-01

    A 30-year forecast of the solid waste volumes to be generated or received at the US Department of Energy Hanford Site is described in this report. The volumes described are low-level mixed waste (LLMW) and transuranic/transuranic mixed (TRU/TRUM) waste that will require treatment, storage, and disposal at Hanford`s Solid Waste Operations Complex (SWOC) during the 30-year period from FY 1994 through FY 2023. The data used to complete this document were collected from onsite and offsite waste generators who currently, or are planning to, ship solid wastes to the Hanford Site. An analysis of the data suggests that over 300,000 m{sup 3} of LLMW and TRU/TRUM waste will be managed at Hanford`s SWOC over the next 30 years. An extensive effort was made this year to collect this information. The 1993 solid waste forecast was used as a starting point, which identified approximately 100,000 m{sup 3} of LLMW and TRU/TRUM waste to be sent to the SWOC. After analyzing the forecast waste volume, it was determined that additional waste was expected from the tank waste remediation system (TWRS), onsite decontamination and decommissioning (D&D) activities, and onsite remedial action (RA) activities. Data presented in this report establish a starting point for solid waste management planning. It is recognized that forecast estimates will vary (typically increasing) as facility planning and missions continue to change and become better defined, but the information presented still provides useful insight into Hanford`s future solid waste management requirements.

  18. 1994 Solid waste forecast container volume summary

    SciTech Connect (OSTI)

    Templeton, K.J.; Clary, J.L.

    1994-09-01

    This report describes a 30-year forecast of the solid waste volumes by container type. The volumes described are low-level mixed waste (LLMW) and transuranic/transuranic mixed (TRU/TRUM) waste. These volumes and their associated container types will be generated or received at the US Department of Energy Hanford Site for storage, treatment, and disposal at Westinghouse Hanford Company`s Solid Waste Operations Complex (SWOC) during a 30-year period from FY 1994 through FY 2023. The forecast data for the 30-year period indicates that approximately 307,150 m{sup 3} of LLMW and TRU/TRUM waste will be managed by the SWOC. The main container type for this waste is 55-gallon drums, which will be used to ship 36% of the LLMW and TRU/TRUM waste. The main waste generator forecasting the use of 55-gallon drums is Past Practice Remediation. This waste will be generated by the Environmental Restoration Program during remediation of Hanford`s past practice sites. Although Past Practice Remediation is the primary generator of 55-gallon drums, most waste generators are planning to ship some percentage of their waste in 55-gallon drums. Long-length equipment containers (LECs) are forecasted to contain 32% of the LLMW and TRU/TRUM waste. The main waste generator forecasting the use of LECs is the Long-Length Equipment waste generator, which is responsible for retrieving contaminated long-length equipment from the tank farms. Boxes are forecasted to contain 21% of the waste. These containers are primarily forecasted for use by the Environmental Restoration Operations--D&D of Surplus Facilities waste generator. This waste generator is responsible for the solid waste generated during decontamination and decommissioning (D&D) of the facilities currently on the Surplus Facilities Program Plan. The remaining LLMW and TRU/TRUM waste volume is planned to be shipped in casks and other miscellaneous containers.

  19. Hawaii Permit Application for Solid Waste Management Facility...

    Open Energy Info (EERE)

    Permit Application for Solid Waste Management Facility Jump to: navigation, search OpenEI Reference LibraryAdd to library Form: Hawaii Permit Application for Solid Waste Management...

  20. Energy Secretary Bodman Statement on Hanford Solid Waste Settlement...

    Office of Environmental Management (EM)

    Statement on Hanford Solid Waste Settlement Agreement Energy Secretary Bodman Statement on Hanford Solid Waste Settlement Agreement January 9, 2006 - 9:43am Addthis Richland, WA - ...

  1. Report of the Review of the Hanford Solid Waste Environmental...

    Office of Environmental Management (EM)

    Report of the Review of the Hanford Solid Waste Environmental Impact Statement (EIS) Data Quality, Control and Management Issues January 2006 Hanford Solid Waste Environment Impact ...

  2. Municipal Solid Waste (MSW) to Liquid Fuels Synthesis, Volume...

    Office of Environmental Management (EM)

    Municipal Solid Waste (MSW) to Liquid Fuels Synthesis, Volume 1: Availability of Feedstock and Technology Municipal solid waste (MSW) is a domestic energy resource with the ...

  3. Nevada Industrial Solid Waste Disposal Site Permit Application...

    Open Energy Info (EERE)

    Nevada Industrial Solid Waste Disposal Site Permit Application Jump to: navigation, search OpenEI Reference LibraryAdd to library Form: Nevada Industrial Solid Waste Disposal Site...

  4. Solid Waste Assurance Program Implementation Plan

    SciTech Connect (OSTI)

    Irons, L.G.

    1995-06-19

    On June 6, 1995, a waiver to Hanford Site Solid Waste Acceptance Criteria, was approved by the US Department of Energy Richland Operations Office (RL) to replace the low-level, mixed, and transuranic (TRU) generator assessment programs with the Solid Waste Assurance Program (SWAP). This is associated with a waiver that was approved on March 16, 1995 to replace the Storage/Disposal Approval Record (SDAR) requirements with the Waste Specification System (WSS). This implementation plan and the SWAP applies to Solid Waste Disposal (SWD) functions, facilities, and personnel who perform waste acceptance, verification, receipt, and management functions of dangerous, radioactive, and mixed waste from on- and off-site generators who ship to or within the Hanford Site for treatment, storage, and/or disposal (TSD) at SWD TSD facilities.

  5. Hanford Site Solid Waste Acceptance Criteria

    SciTech Connect (OSTI)

    Not Available

    1993-11-17

    This manual defines the Hanford Site radioactive, hazardous, and sanitary solid waste acceptance criteria. Criteria in the manual represent a guide for meeting state and federal regulations; DOE Orders; Hanford Site requirements; and other rules, regulations, guidelines, and standards as they apply to acceptance of radioactive and hazardous solid waste at the Hanford Site. It is not the intent of this manual to be all inclusive of the regulations; rather, it is intended that the manual provide the waste generator with only the requirements that waste must meet in order to be accepted at Hanford Site TSD facilities.

  6. H. R. 3737: A Bill to amend the Internal Revenue Code of 1986 to impose an excise tax on certain uses of virgin materials and to establish a trust fund for recycling assistance and solid waste management planning. Introduced in the House of Representatives, One Hundredth First Congress, First Session, November 19, 1989

    SciTech Connect (OSTI)

    Not Available

    1989-01-01

    H.R. 3737 is a bill to amend the Internal Revenue Code of 1986 to impose an excise tax on certain uses of virgin materials and to establish a trust fund for recycling assistance and solid waste management planning.

  7. Eco solids International Ltd | Open Energy Information

    Open Energy Info (EERE)

    United Kingdom Zip: BH25 6DX Product: Eco-solids focusses on improvement of waste-water and sewage sludge treatment using anaerobic digestion. Coordinates: 35.59652,...

  8. Phase 2, Solid waste retrieval strategy

    SciTech Connect (OSTI)

    Johnson, D.M.

    1994-09-29

    Solid TRU retrieval, Phase 1 is scheduled to commence operation in 1998 at 218W-4C-T01 and complete recovery of the waste containers in 2001. Phase 2 Retrieval will recover the remaining buried TRU waste to be retrieved and provide the preliminary characterization by non-destructive means to allow interim storage until processing for disposal. This document reports on researching the characterization documents to determine the types of wastes to be retrieved and where located, waste configurations, conditions, and required methods for retrieval. Also included are discussions of wastes encompassed by Phase 2 for which there are valid reasons to not retrieve.

  9. International waste management fact book

    SciTech Connect (OSTI)

    Amaya, J P; LaMarche, M N; Upton, J F

    1997-10-01

    Many countries around the world are faced with nuclear and environmental management problems similar to those being addressed by the US Department of Energy. The purpose of this Fact Book is to provide the latest information on US and international organizations, programs, activities and key personnel to promote mutual cooperation to solve these problems. Areas addressed include all aspects of closing the commercial and nuclear fuel cycle and managing the wastes and sites from defense-related, nuclear materials production programs.

  10. Energy aspects of solid waste management: Proceedings

    SciTech Connect (OSTI)

    Not Available

    1990-12-31

    The Eighteenth Annual Illinois Energy Conference entitled ``Energy Aspects of Solid Waste Management`` was held in Chicago, Illinois on October 29--30, 1990. The conference program was developed by a planning committee that drew upon Illinois energy and environmental specialists from the major sectors including energy industries, environmental organizations, research universities, utility companies, federal, state and local government agencies, and public interest groups. Within this framework, the committee identified a number of key topic areas surrounding solid waste management in Illinois which were the focus of the conference. These issues included: review of the main components of the solid waste cycle in the Midwest and what the relative impact of waste reduction, recycling, incineration and land disposal might be on Illinois` and the Midwest`s solid waste management program. Investigation of special programs in the Midwest dealing with sewage sludge, combustion residuals and medical/infectious wastes. Review of the status of existing landfills in Illinois and the Midwest and an examination of the current plans for siting of new land disposal systems. Review of the status of incinerators and waste-to-energy systems in Illinois and the Midwest, as well as an update on activities to maximize methane production from landfills in the Midwest.

  11. Energy aspects of solid waste management: Proceedings

    SciTech Connect (OSTI)

    Not Available

    1990-01-01

    The Eighteenth Annual Illinois Energy Conference entitled Energy Aspects of Solid Waste Management'' was held in Chicago, Illinois on October 29--30, 1990. The conference program was developed by a planning committee that drew upon Illinois energy and environmental specialists from the major sectors including energy industries, environmental organizations, research universities, utility companies, federal, state and local government agencies, and public interest groups. Within this framework, the committee identified a number of key topic areas surrounding solid waste management in Illinois which were the focus of the conference. These issues included: review of the main components of the solid waste cycle in the Midwest and what the relative impact of waste reduction, recycling, incineration and land disposal might be on Illinois' and the Midwest's solid waste management program. Investigation of special programs in the Midwest dealing with sewage sludge, combustion residuals and medical/infectious wastes. Review of the status of existing landfills in Illinois and the Midwest and an examination of the current plans for siting of new land disposal systems. Review of the status of incinerators and waste-to-energy systems in Illinois and the Midwest, as well as an update on activities to maximize methane production from landfills in the Midwest.

  12. Solid waste recycling programs at Rocky Flats

    SciTech Connect (OSTI)

    Millette, R.L.; Blackman, T.E.; Shepard, M.D.

    1994-12-31

    The Rocky Flats (RFP) recycling programs for solid waste materials have been in place for over ten years. Within the last three years, the programs were centralized under the direction of the Rocky Flats Waste Minimization department, with the assistance of various plant organizations (e.g., Trucking, Building Services, Regulated Waste Operations, property Utilization and Disposal and Security). Waste Minimization designs collection and transportation systems for recyclable materials and evaluates recycling markets for opportunities to add new commodities to the existing programs. The Waste Minimization department also promotes employee participation in the Rocky Flats Recycling Programs, and collects all recycling data for publication. A description of the program status as of January 1994 is given.

  13. Hawaii Department of Health Solid and Hazardous Waste Branch...

    Open Energy Info (EERE)

    and Hazardous Waste Branch Jump to: navigation, search Name: Hawaii Department of Health Solid and Hazardous Waste Branch Address: 919 Ala Moana Boulevard 212 Place: Honolulu,...

  14. EIS-0286: Hanford Solid (Radioactive and Hazardous) Waste Program

    Broader source: Energy.gov [DOE]

    The Hanford Site Solid (Radioactive and Hazardous) Waste Program Environmental Impact Statement (HSW EIS) analyzes the proposed waste management practices at the Hanford Site.

  15. Solid Waste Program technical baseline description

    SciTech Connect (OSTI)

    Carlson, A.B.

    1994-07-01

    The system engineering approach has been taken to describe the technical baseline under which the Solid Waste Program is currently operating. The document contains a mission analysis, function analysis, system definition, documentation requirements, facility and project bases, and uncertainties facing the program.

  16. Geothermal Power Plants — Minimizing Solid Waste and Recovering Minerals

    Broader source: Energy.gov [DOE]

    Although many geothermal power plants generate no appreciable solid waste, the unique characteristics of some geothermal fluids require special attention to handle entrained solid byproducts.

  17. Municipal solid-waste management in Istanbul

    SciTech Connect (OSTI)

    Kanat, Gurdal

    2010-08-15

    Istanbul, with a population of around 13 million people, is located between Europe and Asia and is the biggest city in Turkey. Metropolitan Istanbul produces about 14,000 tons of solid waste per day. The aim of this study was to assess the situation of municipal solid-waste (MSW) management in Istanbul. This was achieved by reviewing the quantity and composition of waste produced in Istanbul. Current requirements and challenges in relation to the optimization of Istanbul's MSW collection and management system are also discussed, and several suggestions for solving the problems identified are presented. The recovery of solid waste from the landfills, as well as the amounts of landfill-generated biogas and electricity, were evaluated. In recent years, MSW management in Istanbul has improved because of strong governance and institutional involvement. However, efforts directed toward applied research are still required to enable better waste management. These efforts will greatly support decision making on the part of municipal authorities. There remains a great need to reduce the volume of MSW in Istanbul.

  18. The anaerobic digestion of organic solid wastes

    SciTech Connect (OSTI)

    Hartung, H.A.

    1996-09-01

    Anaerobic digestion offers many advantages in the processing of organic solid wastes, using a closed system to convert the waste to combustible gas and a stabilized organic residue.Odors are contained while digestion removes their source and gas is collected for energy recovery as heat or electricity. The stabilized residue is less than the starting waste by the mass of gas produced, and it can be disposed of by land application, land filling, incineration or composting. The stimulation of digesters and the phenomenon of co-digestion are two ways the performance of anaerobic digesters can be enhanced. Data from farm digesters and municipal wastewater treatment plants illustrate the present venue of the process; laboratory studies of the anaerobic digestion of a variety of solid wastes show that the process can be applied to these materials as well. About two thirds of municipal solid waste is shown to be amenable to anaerobic digestion in a substrate from an active municipal sewage plant digester.

  19. Integrated solid waste management of Minneapolis, Minnesota

    SciTech Connect (OSTI)

    1995-11-01

    The subject document reports the results of an in-depth investigation of the fiscal year 1992 cost of the City of Minneapolis, Minnesota (Hennepin County) integrated municipal solid waste management (IMSWM) system, the energy consumed to operate the system, and the environmental performance requirements for each of the system`s waste-processing and disposal facilities. Actual data from records kept by participants is reported in this document. Every effort was made to minimize the use of assumptions, and no attempt is made to interpret the data reported. Analytical approaches are documented so that interested analysts may perform manipulation or further analysis of the data. As such, the report is a reference document for municipal solid waste (MSW) management professionals who are interested in the actual costs and energy consumption for a one-year period, of an operating IMSWM system.

  20. Solid International ASIA Pte Ltd | Open Energy Information

    Open Energy Info (EERE)

    Solid International ASIA Pte Ltd Jump to: navigation, search Name: Solid International ASIA Pte Ltd Place: Singapore, Singapore Zip: 349564 Sector: Solar Product: Singapore-based...

  1. Nevada Solid Waste Forms and Guidance Documents Webpage | Open...

    Open Energy Info (EERE)

    Solid Waste Forms and Guidance Documents Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Nevada Solid Waste Forms and Guidance Documents...

  2. Nevada Washoe County Solid Waste Management Webpage | Open Energy...

    Open Energy Info (EERE)

    Washoe County Solid Waste Management Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Nevada Washoe County Solid Waste Management Webpage Author...

  3. Hawaii DOH Solid Waste Section Webpage | Open Energy Information

    Open Energy Info (EERE)

    Solid Waste Section Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Hawaii DOH Solid Waste Section Webpage Abstract This webpage provides an...

  4. Municipal Solid Waste (MSW) to Liquid Fuels Synthesis, Volume...

    Office of Environmental Management (EM)

    Municipal Solid Waste (MSW) to Liquid Fuels Synthesis, Volume 2: A Techno-economic ... Municipal solid waste (MSW) on the other hand is readily available in large quantities in ...

  5. COMPILATION OF DISPOSABLE SOLID WASTE CASK EVALUATIONS

    SciTech Connect (OSTI)

    THIELGES, J.R.; CHASTAIN, S.A.

    2007-06-21

    The Disposable Solid Waste Cask (DSWC) is a shielded cask capable of transporting, storing, and disposing of six non-fuel core components or approximately 27 cubic feet of radioactive solid waste. Five existing DSWCs are candidates for use in storing and disposing of non-fuel core components and radioactive solid waste from the Interim Examination and Maintenance Cell, ultimately shipping them to the 200 West Area disposal site for burial. A series of inspections, studies, analyses, and modifications were performed to ensure that these casks can be used to safely ship solid waste. These inspections, studies, analyses, and modifications are summarized and attached in this report. Visual inspection of the casks interiors provided information with respect to condition of the casks inner liners. Because water was allowed to enter the casks for varying lengths of time, condition of the cask liner pipe to bottom plate weld was of concern. Based on the visual inspection and a corrosion study, it was concluded that four of the five casks can be used from a corrosion standpoint. Only DSWC S/N-004 would need additional inspection and analysis to determine its usefulness. The five remaining DSWCs underwent some modification to prepare them for use. The existing cask lifting inserts were found to be corroded and deemed unusable. New lifting anchor bolts were installed to replace the existing anchors. Alternate lift lugs were fabricated for use with the new lifting anchor bolts. The cask tiedown frame was modified to facilitate adjustment of the cask tiedowns. As a result of the above mentioned inspections, studies, analysis, and modifications, four of the five existing casks can be used to store and transport waste from the Interim Examination and Maintenance Cell to the disposal site for burial. The fifth cask, DSWC S/N-004, would require further inspections before it could be used.

  6. System for chemically digesting low level radioactive, solid waste material

    DOE Patents [OSTI]

    Cowan, Richard G.; Blasewitz, Albert G.

    1982-01-01

    An improved method and system for chemically digesting low level radioactive, solid waste material having a high through-put. The solid waste material is added to an annular vessel (10) substantially filled with concentrated sulfuric acid. Concentrated nitric acid or nitrogen dioxide is added to the sulfuric acid within the annular vessel while the sulfuric acid is reacting with the solid waste. The solid waste is mixed within the sulfuric acid so that the solid waste is substantilly fully immersed during the reaction. The off gas from the reaction and the products slurry residue is removed from the vessel during the reaction.

  7. Interface control document between PUREX Plant Transition and Solid Waste Disposal Division

    SciTech Connect (OSTI)

    Carlson, A.B.

    1995-09-01

    The interfacing responsibilities regarding solid waste management are described for the Solid Waste Disposal Division and the PUREX Transition Organization.

  8. Systems approaches to integrated solid waste management in developing countries

    SciTech Connect (OSTI)

    Marshall, Rachael E.; Farahbakhsh, Khosrow

    2013-04-15

    Highlights: ? Five drivers led developed countries to current solid waste management paradigm. ? Many unique factors challenge developing country solid waste management. ? Limited transferability of developed country approaches to developing countries. ? High uncertainties and decision stakes call for post-normal approaches. ? Systems thinking needed for multi-scale, self-organizing eco-social waste systems. - Abstract: Solid waste management (SWM) has become an issue of increasing global concern as urban populations continue to rise and consumption patterns change. The health and environmental implications associated with SWM are mounting in urgency, particularly in the context of developing countries. While systems analyses largely targeting well-defined, engineered systems have been used to help SWM agencies in industrialized countries since the 1960s, collection and removal dominate the SWM sector in developing countries. This review contrasts the history and current paradigms of SWM practices and policies in industrialized countries with the current challenges and complexities faced in developing country SWM. In industrialized countries, public health, environment, resource scarcity, climate change, and public awareness and participation have acted as SWM drivers towards the current paradigm of integrated SWM. However, urbanization, inequality, and economic growth; cultural and socio-economic aspects; policy, governance, and institutional issues; and international influences have complicated SWM in developing countries. This has limited the applicability of approaches that were successful along the SWM development trajectories of industrialized countries. This review demonstrates the importance of founding new SWM approaches for developing country contexts in post-normal science and complex, adaptive systems thinking.

  9. LOW ACTIVITY WASTE FEED SOLIDS CARACTERIZATION AND FILTERABILITY TESTS

    SciTech Connect (OSTI)

    McCabe, D.; Crawford, C.; Duignan, M.; Williams, M.; Burket, P.

    2014-04-03

    The primary treatment of the tank waste at the DOE Hanford site will be done in the Waste Treatment and Immobilization Plant (WTP) that is currently under construction. The baseline plan for the WTP Pretreatment facility is to treat the waste, splitting it into High Level Waste (HLW) feed and Low Activity Waste (LAW) feed. Both waste streams are then separately vitrified as glass and sealed in canisters. The LAW glass will be disposed onsite in the Integrated Disposal Facility (IDF). There are currently no plans to treat the waste to remove technetium in the WTP Pretreatment facility, so its disposition path is the LAW glass. Options are being explored to immobilize the LAW portion of the tank waste, i.e., the LAW feed from the WTP Pretreatment facility. Removal of {sup 99}Tc from the LAW Feed, followed by off-site disposal of the {sup 99}Tc, would eliminate a key risk contributor for the IDF Performance Assessment (PA) for supplemental waste forms, and has potential to reduce treatment and disposal costs. Washington River Protection Solutions (WRPS) is developing some conceptual flow sheets for LAW treatment and disposal that could benefit from technetium removal. One of these flowsheets will specifically examine removing {sup 99}Tc from the LAW feed stream to supplemental immobilization. The conceptual flow sheet of the {sup 99}Tc removal process includes a filter to remove insoluble solids prior to processing the stream in an ion exchange column, but the characteristics and behavior of the liquid and solid phases has not previously been investigated. This report contains results of testing of a simulant that represents the projected composition of the feed to the Supplemental LAW process. This feed composition is not identical to the aqueous tank waste fed to the Waste Treatment Plant because it has been processed through WTP Pretreatment facility and therefore contains internal changes and recycle streams that will be generated within the WTP process. Although

  10. Municipal Solid Waste (MSW) to Liquid Fuels Synthesis, Volume 1:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Availability of Feedstock and Technology | Department of Energy 1: Availability of Feedstock and Technology Municipal Solid Waste (MSW) to Liquid Fuels Synthesis, Volume 1: Availability of Feedstock and Technology Municipal solid waste (MSW) is a domestic energy resource with the potential to provide a significant amount of energy to meet US liquid fuel requirements. MSW is defined as household waste, commercial solid waste, nonhazardous sludge, conditionally exempt, small quantity hazardous

  11. Possible global environmental impacts of solid waste practices

    SciTech Connect (OSTI)

    Davis, M.M.; Holter, G.M.; DeForest, T.J.; Stapp, D.C.; Dibari, J.C.

    1994-09-01

    Pollutants resulting from the management of solid waste have been shown to affect the air, land, oceans, and waterways. In addition, solid wastes have other, more indirect impacts such as reduction in feedstocks of natural resources, because useful materials are disposed of rather than recycled. The objective of this study is to evaluate solid waste management practices that have negative implications on the global environment and develop recommendations for reducing such impacts. Recommendations identifying needed changes are identified that will reduce global impacts of solid waste practices in the future. The scope of this study includes the range of non-hazardous solid wastes produced within our society, including municipal solid waste (MSW) and industrial solid waste (ISW), as well as industry-specific wastes from activities such as construction, demolition, and landclearing. Most solid waste management decisions continue to be made and implemented at very local levels, predominantly with a short-term focus to respond to relatively immediate pressures of landfill shortages, funding problems, political considerations, and the like. In this rush to address immediate local problems, little consideration is being given to potential impacts, either short- or long-term, at the national or global level resulting from solid waste management practices. More and more, the cumulative impacts from local decisions concerning solid waste management are beginning to manifest themselves in broader, longer-term impacts than are being addressed by the decision-makers or, at the very least, are presenting a greater and greater potential for such impacts.

  12. Municipal solid waste effective stress analysis

    SciTech Connect (OSTI)

    Shariatmadari, Nader; Machado, Sandro Lemos; Noorzad, Ali; Karimpour-Fard, Mehran

    2009-12-15

    The mechanical behavior of municipal solid waste (MSW) has attracted the attention of many researchers in the field of geo-environmental engineering in recent years and several aspects of waste mechanical response under loading have been elucidated. However, the mechanical response of MSW materials under undrained conditions has not been described in detail to date. The knowledge of this aspect of the MSW mechanical response is very important in cases involving MSW with high water contents, seismic ground motion and in regions where landfills are built with poor operation conditions. This paper presents the results obtained from 26 large triaxial tests performed both in drained and undrained conditions. The results were analyzed taking into account the waste particles compressibility and the deformation anisotropy of the waste samples. The waste particles compressibility was used to modify the Terzaghi effective stress equation, using the Skempton (1961) proposition. It is shown that the use of the modified effective stress equation led to much more compatible shear strength values when comparing Consolidated-Drained (CD) and Consolidated-Undrained (CU), results, explaining the high shear strength values obtained in CU triaxial tests, even when the pore pressure is almost equal to the confining stress.

  13. Integrated solid waste management of Scottsdale, Arizona

    SciTech Connect (OSTI)

    1995-11-01

    The subject document reports the results of an in-depth investigation of the fiscal year 1992 cost of the city of Scottsdale, Arizona, integrated municipal solid waste management (IMSWM) system, the energy consumed to operate the system, and the environmental performance requirements for each of the system`s waste-processing and disposal facilities. The document reports actual data from records kept by participants. Every effort was made to minimize the use of assumptions, and no attempt is made to interpret the data reported. Analytical approaches are documented so that interested analysts may per-form manipulation or further analysis of the data. As such, the report is a reference document for municipal solid waste (MSW) management professionals who are interested in the actual costs and energy consumption, for a 1-year period, of an operating IMSWM system. The report is organized into two main parts. The first part is the executive summary and case study portion of the report. The executive summary provides a basic description of the study area and selected economic and energy information. Within the case study are detailed descriptions of each component operating during the study period; the quantities of solid waste collected, processed, and marketed within the study boundaries; the cost of MSW in Scottsdale; an energy usage analysis; a review of federal, state, and local environmental requirement compliance; a reference section; and a glossary of terms. The second part of the report focuses on a more detailed discourse on the above topics. In addition, the methodology used to determine the economic costs and energy consumption of the system components is found in the second portion of this report. The methodology created for this project will be helpful for those professionals who wish to break out the costs of their own integrated systems.

  14. Integrated solid waste management of Sevierville, Tennessee

    SciTech Connect (OSTI)

    1995-11-01

    The subject document reports the results of an in-depth investigation of the fiscal year 1992 cost of the City of Sevierville, Tennessee integrated municipal solid waste management (IMSWM) system, the energy consumed to operate the system, and the environmental performance requirements for each of the system`s waste-processing and disposal facilities. Actual data from records kept by participants is reported in this document. Every effort was made to minimize the use of assumptions, and no attempt is made to interpret the data reported. Analytical approaches are documented so that interested analysts may perform manipulation or further analysis of the data. As such, the report is a reference document for MSW management professionals who are interested in the actual costs and energy consumption for a one-year period, of an operating IMSWM systems.

  15. Solid waste disposal facility criteria. Technical manual

    SciTech Connect (OSTI)

    Not Available

    1993-11-01

    The technical manual has been developed to assist municipal solid waste landfill (MSWLF) owners and operators in achieving compliance with the revised MSWLF Criteria, promulgated on October 9, 1991 in Title 40, Part 258, of the Code of Federal Regulations (CFR). The manual is not a regulatory document, and does not provide mandatory technical guidance, but does provide assistance for coming into compliance with the technical aspects of the revised landfill Criteria. The document is intended for use by landfill owners/operators and their consultants and contractors who provide advice on demonstrating compliance with the Part 258 standards.

  16. Microsoft Word - Solid Waste at Hanford

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    U.S. Department of Energy Office of Inspector General Office of Audits and Inspections Audit Report Use of American Recovery and Reinvestment Act of 2009 Funds on Solid Waste Project Activities at the Department of Energy's Hanford Site OAS-RA-L-11-08 May 2011 DOE F 1325.8 (08-93) United States Government Department of Energy Memorandum DATE: May19, 2011 Audit Report Number: OAS-RA-L-11-08 REPLY TO ATTN OF: IG-34 (A10RA041) SUBJECT: Report on "Use of American Recovery and Reinvestment Act

  17. International Best Practices for Pre-Processing and Co-Processing Municipal Solid Waste and Sewage Sludge in the Cement Industry

    SciTech Connect (OSTI)

    Hasanbeigi, Ali; Lu, Hongyou; Williams, Christopher; Price, Lynn

    2012-07-01

    The purpose of this report is to describe international best practices for pre-processing and coprocessing of MSW and sewage sludge in cement plants, for the benefit of countries that wish to develop co-processing capacity. The report is divided into three main sections. Section 2 describes the fundamentals of co-processing, Section 3 describes exemplary international regulatory and institutional frameworks for co-processing, and Section 4 describes international best practices related to the technological aspects of co-processing.

  18. Energy Secretary Bodman Statement on Hanford Solid Waste Settlement

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Agreement | Department of Energy Statement on Hanford Solid Waste Settlement Agreement Energy Secretary Bodman Statement on Hanford Solid Waste Settlement Agreement January 9, 2006 - 9:43am Addthis Richland, WA - U.S. Secretary of Energy Samuel Bodman today announced that the Department of Energy (DOE) and the State of Washington have entered into a settlement agreement that will lead to a final order and the dismissal of the challenge to Hanford's Solid Waste Environmental Impact Statement

  19. IGES GHG Calculator For Solid Waste | Open Energy Information

    Open Energy Info (EERE)

    Assessment to Protect the Environment (GRAPE) Electricity Markets Analysis (EMA) Model Gold Standard Program Model ... further results The GHG Calculator for Solid Waste is a...

  20. Municipal solid waste management in Malaysia: Practices and challenges

    SciTech Connect (OSTI)

    Manaf, Latifah Abd Samah, Mohd Armi Abu; Zukki, Nur Ilyana Mohd

    2009-11-15

    Rapid economic development and population growth, inadequate infrastructure and expertise, and land scarcity make the management of municipal solid waste become one of Malaysia's most critical environmental issues. The study is aimed at evaluating the generation, characteristics, and management of solid waste in Malaysia based on published information. In general, the per capita generation rate is about 0.5-0.8 kg/person/day in which domestic waste is the primary source. Currently, solid waste is managed by the Ministry of Housing and Local Government, with the participation of the private sector. A new institutional and legislation framework has been structured with the objectives to establish a holistic, integrated, and cost-effective solid waste management system, with an emphasis on environmental protection and public health. Therefore, the hierarchy of solid waste management has given the highest priority to source reduction through 3R, intermediate treatment and final disposal.

  1. Hydrogen production from municipal solid waste

    SciTech Connect (OSTI)

    Wallman, P.H.; Richardson, J.H.; Thorsness, C.B.

    1996-06-28

    We have modified a Municipal Solid Waste (MSW) hydrothermal pretreatment pilot plant for batch operation and blowdown of the treated batch to low pressure. We have also assembled a slurry shearing pilot plant for particle size reduction. Waste paper and a mixture of waste paper/polyethylene plastic have been run in the pilot plant with a treatment temperature of 275{degrees}C. The pilot-plant products have been used for laboratory studies at LLNL. The hydrothermal/shearing pilot plants have produced acceptable slurries for gasification tests from a waste paper feedstock. Work is currently underway with combined paper/plastic feedstocks. When the assembly of the Research Gasification Unit at Texaco (feed capacity approximately 3/4-ton/day) is complete (4th quarter of FY96), gasification test runs will commence. Laboratory work on slurry samples during FY96 has provided correlations between slurry viscosity and hydrothermal treatment temperature, degree of shearing, and the presence of surfactants and admixed plastics. To date, pumpable slurries obtained from an MSW surrogate mixture of treated paper and plastic have shown heating values in the range 13-15 MJ/kg. Our process modeling has quantified the relationship between slurry heating value and hydrogen yield. LLNL has also performed a preliminary cost analysis of the process with the slurry heating value and the MSW tipping fee as parameters. This analysis has shown that the overall process with a 15 MJ/kg slurry gasifier feed can compete with coal-derived hydrogen with the assumption that the tipping fee is of the order $50/ton.

  2. Producing usable fuel from municipal solid waste

    SciTech Connect (OSTI)

    Ohlsson, O.O.

    1995-03-01

    Refuse disposal is a matter of increasing concern for municipalities and state governments. As existing land-fills become filled to capacity, and new landfills become more costly to site, it has become critical to develop alternative disposal methods. Some of the refuse that is presently being landfilled has the potential to provide considerable quantities of energy and thereby replace conventional fossil fuels. Another environmental concern is the problem of the emissions associated with combustion of traditional fossil fuels. The Clean Air Act Amendments of 1990 significantly restrict the level of sulfur dioxide (SO{sub 2}) and nitrogen oxides (NO{sub x}) emissions permissible as effluent from combustion facilities. To address both of these concerns, Argonne National Laboratory, under sponsorship of the U.S. Department of Energy (DOE), has developed a means of producing fuel from municipal solid waste that can be co-fired with coal to supplement coal supplies and reduce problematic emissions.

  3. Municipal solid waste (garbage): problems and benefits

    SciTech Connect (OSTI)

    Stillman, G.I.

    1983-05-01

    The average person in the USA generates from 3 1/2 to 7 lb of garbage/day. The combustible portion of garbage consists primarily of paper products, plastics, textiles, and wood. Problems connected with energy production from municipal solid waste (garbage), and the social, economic, and environmental factors associated with this technology are discussed. The methods for using garbage as a fuel for a combustion process are discussed. One method processes the garbage to produce a fuel that is superior to raw garbage, the other method of using garbage as a fuel is to burn it directly - the mass burning approach. The involvement of the Power Authority of the State of New York in garbage-to-energy technology is discussed.

  4. Process and material that encapsulates solid hazardous waste

    DOE Patents [OSTI]

    O'Brien, Michael H.; Erickson, Arnold W.

    1999-01-01

    A method of encapsulating mixed waste in which a thermoplastic polymer having a melting temperature less than about 150.degree. C. and sulfur and mixed waste are mixed at an elevated temperature not greater than about 200.degree. C. and mixed for a time sufficient to intimately mix the constituents, and then cooled to a solid. The resulting solid is also disclosed.

  5. Delivery system for molten salt oxidation of solid waste

    DOE Patents [OSTI]

    Brummond, William A. (Livermore, CA); Squire, Dwight V. (Livermore, CA); Robinson, Jeffrey A. (Manteca, CA); House, Palmer A. (Walnut Creek, CA)

    2002-01-01

    The present invention is a delivery system for safety injecting solid waste particles, including mixed wastes, into a molten salt bath for destruction by the process of molten salt oxidation. The delivery system includes a feeder system and an injector that allow the solid waste stream to be accurately metered, evenly dispersed in the oxidant gas, and maintained at a temperature below incineration temperature while entering the molten salt reactor.

  6. Optimization of municipal solid waste collection and transportation routes

    SciTech Connect (OSTI)

    Das, Swapan Bhattacharyya, Bidyut Kr.

    2015-09-15

    Graphical abstract: Display Omitted - Highlights: • Profitable integrated solid waste management system. • Optimal municipal waste collection scheme between the sources and waste collection centres. • Optimal path calculation between waste collection centres and transfer stations. • Optimal waste routing between the transfer stations and processing plants. - Abstract: Optimization of municipal solid waste (MSW) collection and transportation through source separation becomes one of the major concerns in the MSW management system design, due to the fact that the existing MSW management systems suffer by the high collection and transportation cost. Generally, in a city different waste sources scatter throughout the city in heterogeneous way that increase waste collection and transportation cost in the waste management system. Therefore, a shortest waste collection and transportation strategy can effectively reduce waste collection and transportation cost. In this paper, we propose an optimal MSW collection and transportation scheme that focus on the problem of minimizing the length of each waste collection and transportation route. We first formulize the MSW collection and transportation problem into a mixed integer program. Moreover, we propose a heuristic solution for the waste collection and transportation problem that can provide an optimal way for waste collection and transportation. Extensive simulations and real testbed results show that the proposed solution can significantly improve the MSW performance. Results show that the proposed scheme is able to reduce more than 30% of the total waste collection path length.

  7. EA-1707: Closure of Nonradioactive Dangerous Waste Landfill and Solid Waste Landfill, Hanford Site, Richland, Washington

    Broader source: Energy.gov [DOE]

    This EA evaluates the potential environmental impacts of closing the Nonradioactive Dangerous Waste Landfill and the Solid Waste Landfill. The Washington State Department of Ecology is a cooperating agency in preparing this EA.

  8. Conversion of municipal solid waste to hydrogen

    SciTech Connect (OSTI)

    Richardson, J.H.; Rogers, R.S.; Thorsness, C.B.

    1995-09-01

    LLNL and Texaco are cooperatively developing a physical and chemical treatment method for the conversion of municipal solid waste (MSW) to hydrogen via the steps of hydrothermal pretreatment, gasification and purification. LLNL`s focus has been on hydrothermal pretreatment of MSW in order to prepare a slurry of suitable viscosity and heating value to allow efficient and economical gasification and hydrogen production. The project has evolved along 3 parallel paths: laboratory scale experiments, pilot scale processing, and process modeling. Initial laboratory-scale MSW treatment results (e.g., viscosity, slurry solids content) over a range of temperatures and times with newspaper and plastics will be presented. Viscosity measurements have been correlated with results obtained at MRL. A hydrothermal treatment pilot facility has been rented from Texaco and is being reconfigured at LLNL; the status of that facility and plans for initial runs will be described. Several different operational scenarios have been modeled. Steady state processes have been modeled with ASPEN PLUS; consideration of steam injection in a batch mode was handled using continuous process modules. A transient model derived from a general purpose packed bed model is being developed which can examine the aspects of steam heating inside the hydrothermal reactor vessel. These models have been applied to pilot and commercial scale scenarios as a function of MSW input parameters and have been used to outline initial overall economic trends. Part of the modeling, an overview of the MSW gasification process and the modeling of the MSW as a process material, was completed by a DOE SERS (Science and Engineering Research Semester) student. The ultimate programmatic goal is the technical demonstration of the gasification of MSW to hydrogen at the laboratory and pilot scale and the economic analysis of the commercial feasibility of such a process.

  9. Problems associated with solid wastes from energy systems

    SciTech Connect (OSTI)

    Chiu, S.Y.; Fradkin, L.; Barisas, S.; Surles, T.; Morris, S.; Crowther, A.; DeCarlo, V.

    1980-09-01

    Waste streams from many energy-related technologies including coal, oil shale, tar sands, geothermal, oil and gas extraction, and nuclear power generation are reviewed with an emphasis on waste streams from coal and oil shale technologies. This study has two objectives. The first objective is to outline the available information on energy-related solid wastes. Data on chemical composition and hazardous biological characteristics are included, supplemented by regulatory reviews and data on legally designated hazardous waste streams. The second objective is to provide disposal and utilization options. Solid waste disposal and recovery requirements specified under the RCRA are emphasized. Information presented herein should be useful for policy, environmental control, and research and development decision making regarding solid and hazardous wastes from energy production.

  10. A legislator`s guide to municipal solid waste management

    SciTech Connect (OSTI)

    Starkey, D.; Hill, K.

    1996-08-01

    The purpose of this guide is to allow individual state legislators to gain a better understanding of municipal solid waste (MSW) management issues in general, and examine the applicability of these concerns to their state. This guide incorporates a discussion of MSW management issues and a comprehensive overview of the components of an integrated solid waste management system. Major MSW topics discussed include current management issues affecting states, federal activities, and state laws and local activities. Solid waste characteristics and management approaches are also detailed.

  11. Final Hazard Classification for the FFTF Solid Waste Cask

    SciTech Connect (OSTI)

    HIMES, D.A.

    2002-07-03

    The Solid Waste Cask (SWC) (a major component of the Fast Flux Test Facility (FFTF) spent fuel offload system) is a shielded, bottom-loading cask containing an internal hoist system used to transfer irradiated fuel or non-fuel components from the Interim Examination and Maintenance Cell (IEM Cell) to the Cask Loading Station (CLS). The SWC is assumed to be loaded with 7 irradiated fuel assemblies in a Core Component Container (CCC) having maximum average burn-ups of 150,000 MWd/MTHM. Results show that the fuel handling activities with the SWC loaded with 7 irradiated fuel assemblies in a CCC should be classified as a Category 3 hazard. This conclusion is consistent with the relative simplicity of the system and passive nature of the barriers for purposes of determining the graded approach specified in DOE-STD-1027-92 (DOE 1992).

  12. An overview of municipal solid waste management in China

    SciTech Connect (OSTI)

    Chen Xudong; Geng Yong; Fujita, Tsuyoshi

    2010-04-15

    Municipal solid waste management (MSWM) in China warrants particular attention as China has become the largest MSW generator in the world and the total amount of MSW it produces continues to increase. In recent years, central and local governments have made great efforts to improve MSWM in China. New regulations and policies have been issued, urban infrastructure has been improved, and commercialization and international cooperation have been encouraged. Considering these developments, an overview is necessary to analyze the current state as well as new opportunities and challenges regarding MSWM in China. This paper shows that since the late 1990s, the amount of MSW collected has been largely decoupled from economic growth and incineration has become an increasingly widespread treatment method for MSW. We identify and discuss four major challenges and barriers related to China's MSWM, and propose an integrated management framework to improve the overall eco-efficiency of MSWM.

  13. Domestic and international nuclear waste management

    SciTech Connect (OSTI)

    Jones, J.

    1994-12-31

    Passage of the Nuclear Waste Policy Act in 1982, and subsequent 1987 amendments, allowed Congress to establish the plan to manage the nation`s spent nuclear fuel and other high-level radioactive waste. The principal elements in the waste management system include waste acceptance, storage, disposal, and transportation. Interim storage of spent fuel is proposed to be in a Monitored Retrievable Storage facility. The Department has been relying on a voluntary siting processes for the temporary storage of spent fuel. A potential repository site is located at Yucca Mountain, Nevada. Site characterizations are currently being conducted. Underground construction has started for the Exploratory Studies Facility; surface based activities, including drilling and trenching, are currently under way to acquire additional data. The United States is involved in cooperative studies with other countries. Most of these studies emphasize assessment of long-term performance. By participating in international activities, the United States has been involved in transfer of technological developments and information exchange. There are currently over 400 nuclear power reactors operating in 25 countries. Most countries producing electricity with nuclear power plan to dispose of the spent fuel within their own countries. This paper will provide the status of the US program in the storage and disposal of its nuclear waste.

  14. Hanford Site solid waste acceptance criteria

    SciTech Connect (OSTI)

    Ellefson, M.D.

    1998-07-01

    Order 5820.2A requires that each treatment, storage, and/or disposal facility (referred to in this document as TSD unit) that manages low-level or transuranic waste (including mixed waste and TSCA PCB waste) maintain waste acceptance criteria. These criteria must address the various requirements to operate the TSD unit in compliance with applicable safety and environmental requirements. This document sets forth the baseline criteria for acceptance of radioactive waste at TSD units operated by WMH. The criteria for each TSD unit have been established to ensure that waste accepted can be managed in a manner that is within the operating requirements of the unit, including environmental regulations, DOE Orders, permits, technical safety requirements, waste analysis plans, performance assessments, and other applicable requirements. Acceptance criteria apply to the following TSD units: the Low-Level Burial Grounds (LLBG) including both the nonregulated portions of the LLBG and trenches 31 and 34 of the 218-W-5 Burial Ground for mixed waste disposal; Central Waste Complex (CWC); Waste Receiving and Processing Facility (WRAP); and T Plant Complex. Waste from all generators, both from the Hanford Site and from offsite facilities, must comply with these criteria. Exceptions can be granted as provided in Section 1.6. Specific waste streams could have additional requirements based on the 1901 identified TSD pathway. These requirements are communicated in the Waste Specification Records (WSRds). The Hanford Site manages nonradioactive waste through direct shipments to offsite contractors. The waste acceptance requirements of the offsite TSD facility must be met for these nonradioactive wastes. This document does not address the acceptance requirements of these offsite facilities.

  15. Title 18 Alaska Administrative Code Chapter 60 Solid Waste Management...

    Open Energy Info (EERE)

    60 Solid Waste Management Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: Title 18 Alaska Administrative Code Chapter 60...

  16. ITEP Developing Tribal Integrated Solid Waste Management Plans

    Broader source: Energy.gov [DOE]

    The Institute for Tribal Environmental Professionals (ITEP) is offering a two-day training course providing the tools tribes needs to develop and implement a successful tribal integrated solid waste management plan.

  17. Geothermal Direct-Use — Minimizing Solid Waste

    Broader source: Energy.gov [DOE]

    Aquaculture and horticulture businesses, and other industries that use geothermal direct-use systems typically don't generate any more solid waste than those that use other energy resources.

  18. Chemical digestion of low level nuclear solid waste material

    DOE Patents [OSTI]

    Cooley, Carl R.; Lerch, Ronald E.

    1976-01-01

    A chemical digestion for treatment of low level combustible nuclear solid waste material is provided and comprises reacting the solid waste material with concentrated sulfuric acid at a temperature within the range of 230.degree.-300.degree.C and simultaneously and/or thereafter contacting the reacting mixture with concentrated nitric acid or nitrogen dioxide. In a special embodiment spent ion exchange resins are converted by this chemical digestion to noncombustible gases and a low volume noncombustible residue.

  19. Mercury emissions from municipal solid waste combustors

    SciTech Connect (OSTI)

    Not Available

    1993-05-01

    This report examines emissions of mercury (Hg) from municipal solid waste (MSW) combustion in the United States (US). It is projected that total annual nationwide MSW combustor emissions of mercury could decrease from about 97 tonnes (1989 baseline uncontrolled emissions) to less than about 4 tonnes in the year 2000. This represents approximately a 95 percent reduction in the amount of mercury emitted from combusted MSW compared to the 1989 mercury emissions baseline. The likelihood that routinely achievable mercury emissions removal efficiencies of about 80 percent or more can be assured; it is estimated that MSW combustors in the US could prove to be a comparatively minor source of mercury emissions after about 1995. This forecast assumes that diligent measures to control mercury emissions, such as via use of supplemental control technologies (e.g., carbon adsorption), are generally employed at that time. However, no present consensus was found that such emissions control measures can be implemented industry-wide in the US within this time frame. Although the availability of technology is apparently not a limiting factor, practical implementation of necessary control technology may be limited by administrative constraints and other considerations (e.g., planning, budgeting, regulatory compliance requirements, etc.). These projections assume that: (a) about 80 percent mercury emissions reduction control efficiency is achieved with air pollution control equipment likely to be employed by that time; (b) most cylinder-shaped mercury-zinc (CSMZ) batteries used in hospital applications can be prevented from being disposed into the MSW stream or are replaced with alternative batteries that do not contain mercury; and (c) either the amount of mercury used in fluorescent lamps is decreased to an industry-wide average of about 27 milligrams of mercury per lamp or extensive diversion from the MSW stream of fluorescent lamps that contain mercury is accomplished.

  20. International nuclear waste management fact book

    SciTech Connect (OSTI)

    Abrahms, C W; Patridge, M D; Widrig, J E

    1995-11-01

    The International Nuclear Waste Management Fact Book has been compiled to provide current data on fuel cycle and waste management facilities, R and D programs, and key personnel in 24 countries, including the US; four multinational agencies; and 20 nuclear societies. This document, which is in its second year of publication supersedes the previously issued International Nuclear Fuel Cycle Fact Book (PNL-3594), which appeared annually for 12 years. The content has been updated to reflect current information. The Fact Book is organized as follows: National summaries--a section for each country that summarizes nuclear policy, describes organizational relationships, and provides addresses and names of key personnel and information on facilities. International agencies--a section for each of the international agencies that has significant fuel cycle involvement and a list of nuclear societies. Glossary--a list of abbreviations/acronyms of organizations, facilities, and technical and other terms. The national summaries, in addition to the data described above, feature a small map for each country and some general information that is presented from the perspective of the Fact Book user in the US.

  1. Municipal solid waste management in Rasht City, Iran

    SciTech Connect (OSTI)

    Alavi Moghadam, M.R. Mokhtarani, N. Mokhtarani, B.

    2009-01-15

    Pollution and health risks generated by improper solid waste management are important issues concerning environmental management in developing countries. In most cities, the use of open dumps is common for the disposal of wastes, resulting in soil and water resource contamination by leachate in addition to odors and fires. Solid waste management infrastructure and services in developing countries are far from achieving basic standards in terms of hygiene and efficient collection and disposal. This paper presents an overview of current municipal solid waste management in Rasht city, Gilan Province, Iran, and provides recommendations for system improvement. The collected data of different MSW functional elements were based on data from questionnaires, visual observations of the authors, available reports and several interviews and meetings with responsible persons. Due to an increase in population and changes in lifestyle, the quantity and quality of MSW in Rasht city has changed. Lack of resources, infrastructure, suitable planning, leadership, and public awareness are the main challenges of MSW management of Rasht city. However, the present situation of solid waste management in this city, which generates more than 400 tons/d, has been improved since the establishment of an organization responsible only for solid waste management. Source separation of wastes and construction of a composting plant are the two main activities of the Rasht Municipality in recent years.

  2. Fire hazards analysis for solid waste burial grounds

    SciTech Connect (OSTI)

    McDonald, K.M.

    1995-09-28

    This document comprises the fire hazards analysis for the solid waste burial grounds, including TRU trenches, low-level burial grounds, radioactive mixed waste trenches, etc. It analyzes fire potential, and fire damage potential for these facilities. Fire scenarios may be utilized in future safety analysis work, or for increasing the understanding of where hazards may exist in the present operation.

  3. Bases for solid waste volume estimates for tank waste remediation system

    SciTech Connect (OSTI)

    Reddick, G.W., Westinghouse Hanford

    1996-08-01

    This document presents the background and basis for the Tank Waste Remediation System forecast for solid waste submitted in June 1996. The forecast was generated for single-shell tank and double-shell tank activities including operations through retrieval and disposal of chemical tank waste.

  4. Solid waste integrated cost analysis model: 1991 project year report

    SciTech Connect (OSTI)

    Not Available

    1991-01-01

    The purpose of the City of Houston's 1991 Solid Waste Integrated Cost Analysis Model (SWICAM) project was to continue the development of a computerized cost analysis model. This model is to provide solid waste managers with tool to evaluate the dollar cost of real or hypothetical solid waste management choices. Those choices have become complicated by the implementation of Subtitle D of the Resources Conservation and Recovery Act (RCRA) and the EPA's Integrated Approach to managing municipal solid waste;. that is, minimize generation, maximize recycling, reduce volume (incinerate), and then bury (landfill) only the remainder. Implementation of an integrated solid waste management system involving all or some of the options of recycling, waste to energy, composting, and landfilling is extremely complicated. Factors such as hauling distances, markets, and prices for recyclable, costs and benefits of transfer stations, and material recovery facilities must all be considered. A jurisdiction must determine the cost impacts of implementing a number of various possibilities for managing, handling, processing, and disposing of waste. SWICAM employs a single Lotus 123 spreadsheet to enable a jurisdiction to predict or assess the costs of its waste management system. It allows the user to select his own process flow for waste material and to manipulate the model to include as few or as many options as he or she chooses. The model will calculate the estimated cost for those choices selected. The user can then change the model to include or exclude waste stream components, until the mix of choices suits the user. Graphs can be produced as a visual communication aid in presenting the results of the cost analysis. SWICAM also allows future cost projections to be made.

  5. Composting: Dirty riches. [Composting organic wastes from the municiple solid waste stream

    SciTech Connect (OSTI)

    Sachs, A.

    1993-08-01

    Up to three-quarters of municiple solid waste (MSW) is organic, readily biodegradable material, such as food, leaves, and paper. If this waste were allowed to root properly, the solid waste crisis would be less serious. However, rotting isn't easy in a tightly packed mountain of garbage at a typical landfill. The last few years have at least established composing as a rising green industry, especially in the most populous regions of the developed world. However, the variety of composting programs is too inefficient to divert any more than a tiny fraction of the compostable waste stream away from landfills and incinerators. This article discusses the problems of mixed municiple solid wastes and composting organic wastes, and possible solutions.

  6. Sustainable recycling of municipal solid waste in developing countries

    SciTech Connect (OSTI)

    Troschinetz, Alexis M. Mihelcic, James R.

    2009-02-15

    This research focuses on recycling in developing countries as one form of sustainable municipal solid waste management (MSWM). Twenty-three case studies provided municipal solid waste (MSW) generation and recovery rates and composition for compilation and assessment. The average MSW generation rate was 0.77 kg/person/day, with recovery rates from 5-40%. The waste streams of 19 of these case studies consisted of 0-70% recyclables and 17-80% organics. Qualitative analysis of all 23 case studies identified barriers or incentives to recycling, which resulted in the development of factors influencing recycling of MSW in developing countries. The factors are government policy, government finances, waste characterization, waste collection and segregation, household education, household economics, MSWM (municipal solid waste management) administration, MSWM personnel education, MSWM plan, local recycled-material market, technological and human resources, and land availability. Necessary and beneficial relationships drawn among these factors revealed the collaborative nature of sustainable MSWM. The functionality of the factor relationships greatly influenced the success of sustainable MSWM. A correlation existed between stakeholder involvement and the three dimensions of sustainability: environment, society, and economy. The only factors driven by all three dimensions (waste collection and segregation, MSWM plan, and local recycled-material market) were those requiring the greatest collaboration with other factors.

  7. 1995 solid waste 30-year characteristics volume summary

    SciTech Connect (OSTI)

    Templeton, K.J.; DeForest, T.J.; Rice, G.I.; Valero, O.J.

    1995-10-01

    The Hanford Site has been designated by the US Department of Energy (DOE) to store, treat, and dispose of solid waste received from both onsite and offsite generators. This waste is currently or planned to be generated from ongoing operations, maintenance and deactivation activities, decontamination and decommissioning (D&D) of facilities, and environmental restoration (ER) activities. This document, prepared by Pacific Northwest Laboratory (PNL) under the direction of Westinghouse Hanford Company (WHC), describes the characteristics of the waste to be shipped to Hanford`s SWOC. The physical waste forms and hazardous constituents are described for the low-level mixed waste (LLMW) and the transuranic - transuranic mixed waste (TW{underscore}TRUM).

  8. EXPERIMENTAL METHODS TO ESTIMATE ACCUMULATED SOLIDS IN NUCLEAR WASTE TANKS

    SciTech Connect (OSTI)

    Duignan, M.; Steeper, T.; Steimke, J.

    2012-12-10

    The Department of Energy has a large number of nuclear waste tanks. It is important to know if fissionable materials can concentrate when waste is transferred from staging tanks prior to feeding waste treatment plants. Specifically, there is a concern that large, dense particles, e.g., plutonium containing, could accumulate in poorly mixed regions of a blend tank heel for tanks that employ mixing jet pumps. At the request of the DOE Hanford Tank Operations Contractor, Washington River Protection Solutions, the Engineering Development Laboratory of the Savannah River National Laboratory performed a scouting study in a 1/22-scale model of a waste tank to investigate this concern and to develop measurement techniques that could be applied in a more extensive study at a larger scale. Simulated waste tank solids and supernatant were charged to the test tank and rotating liquid jets were used to remove most of the solids. Then the volume and shape of the residual solids and the spatial concentration profiles for the surrogate for plutonium were measured. This paper discusses the overall test results, which indicated heavy solids only accumulate during the first few transfer cycles, along with the techniques and equipment designed and employed in the test. Those techniques include: Magnetic particle separator to remove stainless steel solids, the plutonium surrogate from a flowing stream; Magnetic wand used to manually remove stainless steel solids from samples and the tank heel; Photographs were used to determine the volume and shape of the solids mounds by developing a composite of topographical areas; Laser rangefinders to determine the volume and shape of the solids mounds; Core sampler to determine the stainless steel solids distribution within the solids mounds; Computer driven positioner that placed the laser rangefinders and the core sampler over solids mounds that accumulated on the bottom of a scaled staging tank in locations where jet velocities were low. These

  9. Scenario of solid waste reuse in Khulna city of Bangladesh

    SciTech Connect (OSTI)

    Bari, Quazi H.; Mahbub Hassan, K.; Haque, R.

    2012-12-15

    The reuse and recycling of waste materials are now sincerely considered to be an integral part of solid waste management in many parts of the world. In this context, a vast number of options ranging from small scale decentralized to larger scale centralized plants have been adopted. This study aimed at investigating the waste reuse schemes in Khulna city located in the southern part of Bangladesh and ranked third largest city in the country. The shops for reusable material (SRM) were mostly situated around railway, waterway, and truck station markets which provided easy transportation to further locations. For the reuses of waste materials and products, a chain system was found to collect reusable wastes under a total number of 310 identified SRM with 859 persons directly or indirectly involved in the scheme. This was a decentralized waste management system with self sufficient (autonomous) management. According to mass balance, about 38.52 tons d{sup -1} solid wastes were reused in Khulna city area, accounting for 7.65% of the total generated wastes. This study revealed that apparently a silent, systematic, smooth, and clean reuse chain has been established in Khulna city area under private initiatives, whose sustainability was confirmed over the years in the country without any official or formal funds. However, proper adjustment between the higher and lower chain in the materials flow path, as well as personal hygiene training for the workers, would further improve the achievements of the established reuse scheme.

  10. Mathematical modeling to predict residential solid waste generation

    SciTech Connect (OSTI)

    Ojeda Benitez, Sara; Vega, Carolina Armijo de

    2008-07-01

    One of the challenges faced by waste management authorities is determining the amount of waste generated by households in order to establish waste management systems, as well as trying to charge rates compatible with the principle applied worldwide, and design a fair payment system for households according to the amount of residential solid waste (RSW) they generate. The goal of this research work was to establish mathematical models that correlate the generation of RSW per capita to the following variables: education, income per household, and number of residents. This work was based on data from a study on generation, quantification and composition of residential waste in a Mexican city in three stages. In order to define prediction models, five variables were identified and included in the model. For each waste sampling stage a different mathematical model was developed, in order to find the model that showed the best linear relation to predict residential solid waste generation. Later on, models to explore the combination of included variables and select those which showed a higher R{sup 2} were established. The tests applied were normality, multicolinearity and heteroskedasticity. Another model, formulated with four variables, was generated and the Durban-Watson test was applied to it. Finally, a general mathematical model is proposed to predict residential waste generation, which accounts for 51% of the total.

  11. EM International Program Presentation for Waste Management 2015...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EM Associate Principal Deputy Assistant Secretary Monica Regalbuto gave a presentation on EM's International Program at the Waste Management Conference in March 2015 in Phoenix. EM ...

  12. Method of encapsulating solid radioactive waste material for storage

    DOE Patents [OSTI]

    Bunnell, Lee Roy; Bates, J. Lambert

    1976-01-01

    High-level radioactive wastes are encapsulated in vitreous carbon for long-term storage by mixing the wastes as finely divided solids with a suitable resin, formed into an appropriate shape and cured. The cured resin is carbonized by heating under a vacuum to form vitreous carbon. The vitreous carbon shapes may be further protected for storage by encasement in a canister containing a low melting temperature matrix material such as aluminum to increase impact resistance and improve heat dissipation.

  13. Solid waste management in Kolkata, India: Practices and challenges

    SciTech Connect (OSTI)

    Hazra, Tumpa; Goel, Sudha

    2009-01-15

    This paper presents an overview of current solid waste management (SWM) practices in Kolkata, India and suggests solutions to some of the major problems. More than 2920 ton/d of solid waste are generated in the Kolkata Municipal Corporation (KMC) area and the budget allocation for 2007-2008 was Rs. 1590 million (US$40 million), which amounts to Rs. 265/cap-y (US$6.7/cap-d) on SWM. This expenditure is insufficient to provide adequate SWM services. Major deficiencies were found in all elements of SWM. Despite 70% of the SWM budget being allocated for collection, collection efficiency is around 60-70% for the registered residents and less than 20% for unregistered residents (slum dwellers). The collection process is deficient in terms of manpower and vehicle availability. Bin capacity provided is adequate but locations were found to be inappropriate, thus contributing to the inefficiency of the system. At this time, no treatment is provided to the waste and waste is dumped on open land at Dhapa after collection. Lack of suitable facilities (equipment and infrastructure) and underestimates of waste generation rates, inadequate management and technical skills, improper bin collection, and route planning are responsible for poor collection and transportation of municipal solid wastes.

  14. RCRA, superfund and EPCRA hotline training module. Introduction to: Solid waste programs updated July 1996

    SciTech Connect (OSTI)

    1996-07-01

    The module focuses on EPA`s efforts in two areas: municipal and industrial solid waste. The garbage that is managed by the local governments is known as municipal solid waste (MSW). Garbage excluded from hazardous waste regulation but not typically collected by local governments is commonly known as industrial solid waste. This category includes domestic sewage and other wastewater treatment sludge, demolition and construction wastes, agricultural and mining residues, combustion ash, and industrial process wastes.

  15. Solid waste drum array fire performance

    SciTech Connect (OSTI)

    Louie, R.L.; Haecker, C.F.; Beitel, J.J.; Gottuck, D.T.; Rhodes, B.T.; Bayier, C.L.

    1995-09-01

    Fire hazards associated with drum storage of radioactively contaminated waste are a major concern in DOE waste storage facilities. This report is the second of two reports on fire testing designed to provide data relative to the propagation of a fire among storage drum arrays. The first report covers testing of individual drums subjected to an initiating fire and the development of the analytical methodology to predict fire propagation among storage drum arrays. This report is the second report, which documents the results of drum array fire tests. The purpose of the array tests was to confirm the analytical methodology developed by Phase I fire testing. These tests provide conclusive evidence that fire will not propagate from drum to drum unless an continuous fuel source other than drum contents is provided.

  16. Thermal Treatment of Solid Wastes Using the Electric Arc Furnace

    SciTech Connect (OSTI)

    O'Connor, W.K.; Turner, P.C.

    1999-09-01

    A thermal waste treatment facility has been developed at the Albany Research Center (ARC) over the past seven years to process a wide range of heterogeneous mixed wastes, on a scale of 227 to 907 kg/h (500 to 2,000 lb/h). The current system includes a continuous feed system, a 3-phase AC, 0.8 MW graphite electrode arc furnace, and a dedicated air pollution control system (APCS) which includes a close-coupled thermal oxidizer, spray cooler, baghouse, and wet scrubber. The versatility of the complete system has been demonstrated during 5 continuous melting campaigns, ranging from 11 to 25 mt (12 to 28 st) of treated wastes per campaign, which were conducted on waste materials such as (a) municipal incinerator ash, (b) simulated low-level radioactive, high combustible-bearing mixed wastes, (c) simulated low-level radioactive liquid tank wastes, (d) heavy metal contaminated soils, and (e) organic-contaminated dredging spoils. In all cases, the glass or slag products readily passed the U.S. Environmental Protection Agency (EPA) Toxicity Characteristic Leachability Program (TCLP) test. Additional studies are currently under way on electric utility wastes, steel and aluminum industry wastes, as well as zinc smelter residues. Thermal treatment of these solid waste streams is intended to produce a metallic product along with nonhazardous glass or slag products.

  17. Data summary of municipal solid waste management alternatives

    SciTech Connect (OSTI)

    Not Available

    1992-10-01

    This appendix contains background information, technical descriptions, economic data, mass and energy balances, and information on environmental releases for the refuse derived fuels (RDF) option in municipal solid waste management alternatives. Demonstration programs at St. Louis, Missouri; Franklin, Ohio; and Delaware are discussed. Information on pellet production and cofiring with coal is also presented.

  18. Data summary of municipal solid waste management alternatives

    SciTech Connect (OSTI)

    Not Available

    1992-10-01

    This appendix contains the numerically indexed bibliography for the complete group of reports on municipal solid waste management alternatives. The list references information on the following topics: mass burn technologies, RDF technologies, fluidized bed combustion, pyrolysis and gasification of MSW, materials recovery- recycling technologies, sanitary landfills, composting and anaerobic digestion of MSW.

  19. Solid waste management challenges for cities in developing countries

    SciTech Connect (OSTI)

    Abarca Guerrero, Lilliana; Maas, Ger; Hogland, William

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer Stakeholders. Black-Right-Pointing-Pointer Factors affecting performance waste management systems. Black-Right-Pointing-Pointer Questionnaire as Annex for waste management baseline assessment. - Abstract: Solid waste management is a challenge for the cities' authorities in developing countries mainly due to the increasing generation of waste, the burden posed on the municipal budget as a result of the high costs associated to its management, the lack of understanding over a diversity of factors that affect the different stages of waste management and linkages necessary to enable the entire handling system functioning. An analysis of literature on the work done and reported mainly in publications from 2005 to 2011, related to waste management in developing countries, showed that few articles give quantitative information. The analysis was conducted in two of the major scientific journals, Waste Management Journal and Waste Management and Research. The objective of this research was to determine the stakeholders' action/behavior that have a role in the waste management process and to analyze influential factors on the system, in more than thirty urban areas in 22 developing countries in 4 continents. A combination of methods was used in this study in order to assess the stakeholders and the factors influencing the performance of waste management in the cities. Data was collected from scientific literature, existing data bases, observations made during visits to urban areas, structured interviews with relevant professionals, exercises provided to participants in workshops and a questionnaire applied to stakeholders. Descriptive and inferential statistic methods were used to draw conclusions. The outcomes of the research are a comprehensive list of stakeholders that are relevant in the waste management systems and a set of factors that reveal the most important causes for the systems' failure. The information provided is very

  20. Co-firing coal and municipal solid waste

    SciTech Connect (OSTI)

    Demirbas, A.

    2008-07-01

    The aim of this study was to experimentally investigate how different the organic fraction of municipal solid waste (OFMSW) or municipal solid waste (MSW) utilizing strategies affects the gas emission in simple fluidized bed combustion (FBC) of biomass. In this study, ground OFMSW and pulverized coal (PC) were used for co-firing tests. The tests were carried out in a bench-scale bubbling FBC. Coal and bio-waste fuels are quite different in composition. Ash composition of the bio-waste fuels is fundamentally different from ash composition of the coal. Chlorine (Cl) in the MSW may affect operation by corrosion. Ash deposits reduce heat transfer and also may result in severe corrosion at high temperatures. Nitrogen (N) and carbon ) assessments can play an important role in a strategy to control carbon dioxide (CO{sub 2}) and nitrogen oxide (NOx) emissions while raising revenue. Regulations such as subsidies for oil, liquid petroleum gas (LPG) for natural gas powered vehicles, and renewables, especially biomass lines, to reduce emissions may be more cost-effective than assessments. Research and development (RD) resources are driven by energy policy goals and can change the competitiveness of renewables, especially solid waste. The future supply of co-firing depends on energy prices and technical progress, both of which are driven by energy policy priorities.

  1. Method for storage of solid waste

    DOE Patents [OSTI]

    Mecham, William J.

    1976-01-01

    Metal canisters for long-term storage of calcined highlevel radioactive wastes can be made self-sealing against a breach in the canister wall by the addition of powdered cement to the canister with the calcine before it is sealed for storage. Any breach in the canister wall will permit entry of water which will mix with the cement and harden to form a concrete patch, thus sealing the opening in the wall of the canister and preventing the release of radioactive material to the cooling water or atmosphere.

  2. Solid Waste Information and Tracking System (SWITS) Software Requirements Specification

    SciTech Connect (OSTI)

    MAY, D.L.

    2000-03-22

    This document is the primary document establishing requirements for the Solid Waste Information and Tracking System (SWITS) as it is converted to a client-server architecture. The purpose is to provide the customer and the performing organizations with the requirements for the SWITS in the new environment. This Software Requirement Specification (SRS) describes the system requirements for the SWITS Project, and follows the PHMC Engineering Requirements, HNF-PRO-1819, and Computer Software Qualify Assurance Requirements, HNF-PRO-309, policies. This SRS includes sections on general description, specific requirements, references, appendices, and index. The SWITS system defined in this document stores information about the solid waste inventory on the Hanford site. Waste is tracked as it is generated, analyzed, shipped, stored, and treated. In addition to inventory reports a number of reports for regulatory agencies are produced.

  3. Solid waste energy recovery for brackish water desalination

    SciTech Connect (OSTI)

    Bailie, R.E.

    1982-07-01

    Introduced is the concept of combining solid-waste energy recovery with brackish water desalination for water supply improvement. The history of such plants is briefly detailed, and performance and operating cost data of several existing desalination plants is given. It is concluded that the combination of solid waste energy recovery utilizing modular combustion units and brackish water desalination using the reverse osmosis process can cancel out the energy-related negative aspects of both technologies. Furthermore, with innovative planning and adequate political, financial and technical leadership, communities that meet criteria outlined in the report can convert a waste disposal problem into a resource for the betterment of the community and its surrounding neighbors.

  4. International low level waste disposal practices and facilities

    SciTech Connect (OSTI)

    Nutt, W.M.

    2011-12-19

    The safe management of nuclear waste arising from nuclear activities is an issue of great importance for the protection of human health and the environment now and in the future. The primary goal of this report is to identify the current situation and practices being utilized across the globe to manage and store low and intermediate level radioactive waste. The countries included in this report were selected based on their nuclear power capabilities and involvement in the nuclear fuel cycle. This report highlights the nuclear waste management laws and regulations, current disposal practices, and future plans for facilities of the selected international nuclear countries. For each country presented, background information and the history of nuclear facilities are also summarized to frame the country's nuclear activities and set stage for the management practices employed. The production of nuclear energy, including all the steps in the nuclear fuel cycle, results in the generation of radioactive waste. However, radioactive waste may also be generated by other activities such as medical, laboratory, research institution, or industrial use of radioisotopes and sealed radiation sources, defense and weapons programs, and processing (mostly large scale) of mineral ores or other materials containing naturally occurring radionuclides. Radioactive waste also arises from intervention activities, which are necessary after accidents or to remediate areas affected by past practices. The radioactive waste generated arises in a wide range of physical, chemical, and radiological forms. It may be solid, liquid, or gaseous. Levels of activity concentration can vary from extremely high, such as levels associated with spent fuel and residues from fuel reprocessing, to very low, for instance those associated with radioisotope applications. Equally broad is the spectrum of half-lives of the radionuclides contained in the waste. These differences result in an equally wide variety of

  5. IDAPA 58.01.06 - Solid Waste Management Rules and Standards ...

    Open Energy Info (EERE)

    6 - Solid Waste Management Rules and Standards Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: IDAPA 58.01.06 - Solid Waste...

  6. 42 U.S.C. 6901 - Solid Waste Disposal Act | Open Energy Information

    Open Energy Info (EERE)

    6901 - Solid Waste Disposal Act Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: 42 U.S.C. 6901 - Solid Waste Disposal ActLegal...

  7. Data summary of municipal solid waste management alternatives

    SciTech Connect (OSTI)

    Not Available

    1992-10-01

    This appendix on Mass Burn Technologies is the first in a series designed to identify, describe and assess the suitability of several currently or potentially available generic technologies for the management of municipal solid waste (MSW). These appendices, which cover eight core thermoconversion, bioconversion and recycling technologies, reflect public domain information gathered from many sources. Representative sources include: professional journal articles, conference proceedings, selected municipality solid waste management plans and subscription technology data bases. The information presented is intended to serve as background information that will facilitate the preparation of the technoeconomic and life cycle mass, energy and environmental analyses that are being developed for each of the technologies. Mass burn has been and continues to be the predominant technology in Europe for the management of MSW. In the United States, the majority of the existing waste-to-energy projects utilize this technology and nearly 90 percent of all currently planned facilities have selected mass burn systems. Mass burning generally refers to the direct feeding and combustion of municipal solid waste in a furnace without any significant waste preprocessing. The only materials typically removed from the waste stream prior to combustion are large bulky objects and potentially hazardous or undesirable wastes. The technology has evolved over the last 100 or so years from simple incineration to the most highly developed and commercially proven process available for both reducing the volume of MSW and for recovering energy in the forms of steam and electricity. In general, mass burn plants are considered to operate reliably with high availability.

  8. Method of draining water through a solid waste site without leaching

    DOE Patents [OSTI]

    Treat, R.L.; Gee, G.W.; Whyatt, G.A.

    1993-02-02

    The present invention is a method of preventing water from leaching solid waste sites by preventing atmospheric precipitation from contacting waste as the water flows through a solid waste site. The method comprises placing at least one drain hole through the solid waste site. The drain hole is seated to prevent waste material from entering the drain hole, and the solid waste site cover material is layered and graded to direct water to flow toward the drain hole and to soil beneath the waste site.

  9. Method of draining water through a solid waste site without leaching

    DOE Patents [OSTI]

    Treat, Russell L.; Gee, Glendon W.; Whyatt, Greg A.

    1993-01-01

    The present invention is a method of preventing water from leaching solid waste sites by preventing atmospheric precipitation from contacting waste as the water flows through a solid waste site. The method comprises placing at least one drain hole through the solid waste site. The drain hole is seated to prevent waste material from entering the drain hole, and the solid waste site cover material is layered and graded to direct water to flow toward the drain hole and to soil beneath the waste site.

  10. Tank farms solid waste characterization guide with sampling and analysis plan attachment

    SciTech Connect (OSTI)

    Quigley, J.T.

    1997-04-02

    This document describes methods used, including sampling and analysis, to characterize hazardous chemical constituent in Tank Farms containerized solid waste.

  11. Municipal solid waste generation in municipalities: Quantifying impacts of household structure, commercial waste and domestic fuel

    SciTech Connect (OSTI)

    Lebersorger, S.; Beigl, P.

    2011-09-15

    Waste management planning requires reliable data concerning waste generation, influencing factors on waste generation and forecasts of waste quantities based on facts. This paper aims at identifying and quantifying differences between different municipalities' municipal solid waste (MSW) collection quantities based on data from waste management and on socio-economic indicators. A large set of 116 indicators from 542 municipalities in the Province of Styria was investigated. The resulting regression model included municipal tax revenue per capita, household size and the percentage of buildings with solid fuel heating systems. The model explains 74.3% of the MSW variation and the model assumptions are met. Other factors such as tourism, home composting or age distribution of the population did not significantly improve the model. According to the model, 21% of MSW collected in Styria was commercial waste and 18% of the generated MSW was burned in domestic heating systems. While the percentage of commercial waste is consistent with literature data, practically no literature data are available for the quantity of MSW burned, which seems to be overestimated by the model. The resulting regression model was used as basis for a waste prognosis model (Beigl and Lebersorger, in preparation).

  12. Pennsylvania to require statewide recycling of solid wastes

    SciTech Connect (OSTI)

    Not Available

    1988-11-01

    The new law, requiring trash recycling in 407 communities affecting 7.8 million Pennsylvanians, is a key component of the Casey administration's comprehensive environmental clean up plant. The new recycling law requires municipalities with more than 10,000 residents to start curb-side recycling programs within two years. Communities with 5000 to 10,000 residents must start recycling in three years. The goal is to reduce the state's volume of solid waste by 25 percent by 1997. Nine million tons of trash are generated each year in Pennsylvania, with 95 percent of it landfilled and only one percent recycled. Much of the state's solid waste must be transported over increasing distances at increasing costs to be disposed of. Average trash disposal costs have increased 150 percent in the past three years. The new law requires communities to recycle three of eight materials, including glass, colored glass, aluminum, steel and bimetallic cans, high-grade office paper, newsprint, corrugated paper and plastics. All communities must recycle leaf waste. The legislation shifts responsibility for planning solid waste disposal from municipalities to counties, reimbursing counties 80 percent of the cost of developing comprehensive recycling plans and 50 percent of the cost of hiring a recycling coordinator. The program will be self-supporting through a $2-per-ton fee on all garbage going to landfills and resource recovery.

  13. Privatization of solid waste collection services: Lessons from Gaborone

    SciTech Connect (OSTI)

    Bolaane, Benjamin Isaac, Emmanuel

    2015-06-15

    Highlights: • We compared efficiency and effectiveness of waste collection by the public and private sector. • Public sector performs better than private sector in some areas and vice versa. • Outsourcing waste collection in developing countries is hindered by limited capacity on contractual issues. • Outsourcing collection in developing countries is hampered by inadequate waste information. • There is need to build capacity in the public sector of developing countries to support outsourcing. - Abstract: Formal privatization of solid waste collection activities has often been flagged as a suitable intervention for some of the challenges of solid waste management experienced by developing countries. Proponents of outsourcing collection to the private sector argue that in contrast to the public sector, it is more effective and efficient in delivering services. This essay is a comparative case study of efficiency and effectiveness attributes between the public and the formal private sector, in relation to the collection of commercial waste in Gaborone. The paper is based on analysis of secondary data and key informant interviews. It was found that while, the private sector performed comparatively well in most of the chosen indicators of efficiency and effectiveness, the public sector also had areas where it had a competitive advantage. For instance, the private sector used the collection crew more efficiently, while the public sector was found to have a more reliable workforce. The study recommends that, while formal private sector participation in waste collection has some positive effects in terms of quality of service rendered, in most developing countries, it has to be enhanced by building sufficient capacity within the public sector on information about services contracted out and evaluation of performance criteria within the contracting process.

  14. Continuous high-solids anaerobic co-digestion of organic solid wastes under mesophilic conditions

    SciTech Connect (OSTI)

    Kim, Dong-Hoon; Oh, Sae-Eun

    2011-09-15

    Highlights: > High-solids (dry) anaerobic digestion is attracting a lot of attention these days. > One reactor was fed with food waste (FW) and paper waste. > Maximum biogas production rate of 5.0 m{sup 3}/m{sup 3}/d was achieved at HRT 40 d and 40% TS. > The other reactor was fed with FW and livestock waste (LW). > Until a 40% LW content increase, the reactor exhibited a stable performance. - Abstract: With increasing concerns over the limited capacity of landfills, conservation of resources, and reduction of CO{sub 2} emissions, high-solids (dry) anaerobic digestion of organic solid waste (OSW) is attracting a great deal of attention these days. In the present work, two dry anaerobic co-digestion systems fed with different mixtures of OSW were continuously operated under mesophilic conditions. Dewatered sludge cake was used as a main seeding source. In reactor (I), which was fed with food waste (FW) and paper waste (PW), hydraulic retention time (HRT) and solid content were controlled to find the maximum treatability. At a fixed solid content of 30% total solids (TS), stable performance was maintained up to an HRT decrease to 40 d. However, the stable performance was not sustained at 30 d HRT, and hence, HRT was increased to 40 d again. In further operation, instead of decreasing HRT, solid content was increased to 40% TS, which was found to be a better option to increase the treatability. The biogas production rate (BPR), CH{sub 4} production yield (MPY) and VS reduction achieved in this condition were 5.0 m{sup 3}/m{sup 3}/d, 0.25 m{sup 3} CH{sub 4}/g COD{sub added}, and 80%, respectively. Reactor (II) was fed with FW and livestock waste (LW), and LW content was increased during the operation. Until a 40% LW content increase, reactor (II) exhibited a stable performance. A BPR of 1.7 m{sup 3}/m{sup 3}/d, MPY of 0.26 m{sup 3} CH{sub 4}/g COD{sub added}, and VS reduction of 72% was achieved at 40% LW content. However, when the LW content was increased to 60

  15. An economic evaluation of waste flow control policies in municipal solid waste management

    SciTech Connect (OSTI)

    Greco, J.

    1995-12-01

    The transport of municipal solid waste through legal means is commonly known as waste flow control. Flow control ordinances prohibit the export of locally generated solid waste to disposal sites outside of a jurisdiction, requiring delivery to a locally designated facility for disposal or processing. Local governments use flow control to support public facilities and to comply with federal and state mandates. A decision by Supreme Court in May, 1994 invalidated the use of flow control by local governments raising important policy questions concerning balances between providing low-cost service to rate-payers, the value of conserving disposal capacity be developing expensive waste management programs, and the protection of the environment from the dangers of poor solid waste management. Since Congress is currently considering passage of federal legislation which would restore flow control authority to local government, there is a need to evaluate waste flow control from economic, environmental, political and social perspectives. This analysis attempts to evaluate flow control policies within an interdisciplinary framework. It examines not only the economic consequences of flow control policies, but also the social and environmental objectives that local governments claim are achieved via use of flow control. The analysis reveals that flow control introduces economic distortions into a highly competitive market for solid waste services, a market which consistently produces lower costs than flow-controlled, publicly-sponsored facilities. Important questions are raised concerning the allocation of risk in capital investments made by municipalities that use flow control to insulate investors and themselves from financial liability. Controlling waste flow helps local governments fulfill regulatory responsibilities that may not be met by reliance on competitive market forces.

  16. Soil stabilization using oil-shale solid waste

    SciTech Connect (OSTI)

    Turner, J.P. (Univ. of Wyoming, Laramie, WY (United States). Dept. of Civil and Archeological Engineering)

    1994-04-01

    Oil-shale solid wastes are evaluated for use as soil stabilizers. A laboratory study consisted of the following tests on compacted samples of soil treated with water and spent oil shale: unconfined compressive strength, moisture-density relationships, wet-dry and freeze-thaw durability, and resilient modulus. Significant increases in strength, durability, and resilient modulus were obtained by treating a silty sand with combusted western oil shale. Moderate increases in durability and resilient modulus were obtained by treating a highly plastic clay with combusted western oil shale. Solid waste from eastern oil shale appears to be feasible for soil stabilization only if limestone is added during combustion. Testing methods, results, and recommendations for mix design of spent shale-stabilized pavement subgrades are presented and the mechanisms of spent-shale cementation are discussed.

  17. Pollution prevention opportunity assessment for Building 922 solid office waste

    SciTech Connect (OSTI)

    Phillips, N.M.

    1995-01-01

    Building 922 houses all of SNL/California`s ES and H Departments: Health Protection, Environmental Protection, Safety, and Environmental Operations. It covers approximately 10,000 square feet and houses about 80 people. The office personnel generate nonhazardous solid office wastes in their daily activities. To determine the types and amounts of waste generated, a special PPOA sorting team sorted all of the trash collected from the building for a period of one-week (including paper and aluminum cans in the recycling bins). The team sorted the trash into major categories: paper, plastic, metals, glass, wet garbage, rest room waste, and miscellaneous materials. They then sorted it into subcategories within each major category. Rest room waste was collected but not sorted. The waste in each category was weighed separately. The total amount of trash collected during the week was approximately 168.8 kg (371.4 lbs). The results of this PPOA indicate that SNL/California is minimizing most nonhazardous office waste and reductions planned for the near future will add significantly to the minimization efforts.

  18. Supplemental design requirements document solid waste operations complex

    SciTech Connect (OSTI)

    Ocampo, V.P.; Boothe, G.F.; Broz, D.R.; Eaton, H.E.; Greager, T.M.; Huckfeldt, R.A.; Kooiker, S.L.; Lamberd, D.L.; Lang, L.L.; Myers, J.B.

    1994-11-01

    This document provides additional and supplemental information to the WHC-SD-W112-FDC-001, WHC-SD-W113-FDC-001, and WHC-SD-W100-FDC-001. It provides additional requirements for the design and summarizes Westinghouse Hanford Company key design guidance and establishes the technical baseline agreements to be used for definitive design common to the Solid Waste Operations Complex (SWOC) Facilities (Project W-112, Project W-113, and WRAP 2A).

  19. Radiation and transmutation effects relevant to solid nuclear waste forms

    SciTech Connect (OSTI)

    Vance, E.R.; Roy, R.; Pillay, K.K.S.

    1981-03-15

    Radiation effects in insulating solids are discussed in a general way as an introduction to the quite sparse published work on radiation effects in candidate nuclear waste forms other than glasses. Likely effects of transmutation in crystals and the chemical mitigation strategy are discussed. It seems probable that radiation effects in solidified HLW will not be serious if the actinides can be wholly incorporated in such radiation-resistant phases as monazite or uraninite.

  20. Energy implications of integrated solid waste management systems. Final report

    SciTech Connect (OSTI)

    Little, R.E.; McClain, G.; Becker, M.; Ligon, P.; Shapiro, K.

    1994-07-01

    This study develops estimates of energy use and recovery from managing municipal solid waste (MSW) under various collection, processing, and disposal scenarios. We estimate use and recovery -- or energy balance -- resulting from MSW management activities such as waste collection, transport, processing, and disposal, as well as indirect use and recovery linked to secondary materials manufacturing using recycled materials. In our analysis, secondary materials manufacturing displaces virgin materials manufacturing for 13 representative products. Energy implications are expressed as coefficients that measure the net energy saving (or use) of displacing products made from virgin versus recycled materials. Using data developed for the 1992 New York City Master Plan as a starting point, we apply our method to an analysis of various collection systems and 30 types of facilities to illustrate bow energy balances shift as management systems are modified. In sum, all four scenarios show a positive energy balance indicating the energy and advantage of integrated systems versus reliance on one or few technology options. That is, energy produced or saved exceeds the energy used to operate the solid waste system. The largest energy use impacts are attributable to processing, including materials separation and composting. Collection and transportation energy are relatively minor contributors. The largest two contributors to net energy savings are waste combustion and energy saved by processing recycled versus virgin materials. An accompanying spatial analysis methodology allocates energy use and recovery to New York City, New York State outside the city, the U.S., and outside the U.S. Our analytical approach is embodied in a spreadsheet model that can be used by energy and solid waste analysts to estimate impacts of management scenarios at the state and substate level.

  1. Method for producing synthetic fuels from solid waste

    DOE Patents [OSTI]

    Antal, Jr., Michael J.

    1976-11-23

    Organic solid wastes represented by the general chemical formula C.sub.X H.sub.Y O.sub.Z are reacted with steam at elevated temperatures to produce H.sub.2 and CO.sub.2. The overall process is represented by the reaction C.sub.X H.sub.Y O.sub.Z + 2(X-Z/2)H.sub.2 O.fwdarw..sup..delta.XCO.sub.2 + [(Y/2) + 2(X-Z/2)] H.sub.2 . (1) reaction (1) is endothermic and requires heat. This heat is supplied by a tower top solar furnace; alternatively, some of the solid wastes can be burned to supply heat for the reaction. The hydrogen produced by reaction (1) can be used as a fuel or a chemical feedstock. Alternatively, methanol can be produced by the commercial process CO.sub.2 + 3H.sub.2 .fwdarw. CH.sub.3 OH + H.sub.2 O . (2) since reaction (1) is endothermic, the system represents a method for storing heat energy from an external source in a chemical fuel produced from solid wastes.

  2. Medium term municipal solid waste generation prediction by autoregressive integrated moving average

    SciTech Connect (OSTI)

    Younes, Mohammad K.; Nopiah, Z. M.; Basri, Noor Ezlin A.; Basri, Hassan

    2014-09-12

    Generally, solid waste handling and management are performed by municipality or local authority. In most of developing countries, local authorities suffer from serious solid waste management (SWM) problems and insufficient data and strategic planning. Thus it is important to develop robust solid waste generation forecasting model. It helps to proper manage the generated solid waste and to develop future plan based on relatively accurate figures. In Malaysia, solid waste generation rate increases rapidly due to the population growth and new consumption trends that characterize the modern life style. This paper aims to develop monthly solid waste forecasting model using Autoregressive Integrated Moving Average (ARIMA), such model is applicable even though there is lack of data and will help the municipality properly establish the annual service plan. The results show that ARIMA (6,1,0) model predicts monthly municipal solid waste generation with root mean square error equals to 0.0952 and the model forecast residuals are within accepted 95% confident interval.

  3. Optimal planning for the sustainable utilization of municipal solid waste

    SciTech Connect (OSTI)

    Santibañez-Aguilar, José Ezequiel; Ponce-Ortega, José María; Betzabe González-Campos, J.; Serna-González, Medardo; El-Halwagi, Mahmoud M.

    2013-12-15

    Highlights: • An optimization approach for the sustainable management of municipal solid waste is proposed. • The proposed model optimizes the entire supply chain network of a distributed system. • A case study for the sustainable waste management in the central-west part of Mexico is presented. • Results shows different interesting solutions for the case study presented. - Abstract: The increasing generation of municipal solid waste (MSW) is a major problem particularly for large urban areas with insufficient landfill capacities and inefficient waste management systems. Several options associated to the supply chain for implementing a MSW management system are available, however to determine the optimal solution several technical, economic, environmental and social aspects must be considered. Therefore, this paper proposes a mathematical programming model for the optimal planning of the supply chain associated to the MSW management system to maximize the economic benefit while accounting for technical and environmental issues. The optimization model simultaneously selects the processing technologies and their location, the distribution of wastes from cities as well as the distribution of products to markets. The problem was formulated as a multi-objective mixed-integer linear programing problem to maximize the profit of the supply chain and the amount of recycled wastes, where the results are showed through Pareto curves that tradeoff economic and environmental aspects. The proposed approach is applied to a case study for the west-central part of Mexico to consider the integration of MSW from several cities to yield useful products. The results show that an integrated utilization of MSW can provide economic, environmental and social benefits.

  4. Determinants of sustainability in solid waste management - The Gianyar Waste Recovery Project in Indonesia

    SciTech Connect (OSTI)

    Zurbruegg, Christian; Gfrerer, Margareth; Ashadi, Henki; Brenner, Werner; Kueper, David

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer Our assessment tool helps evaluate success factors in solid waste projects. Black-Right-Pointing-Pointer Success of the composting plant in Indonesia is linked to its community integration. Black-Right-Pointing-Pointer Appropriate technology is not a main determining success factor for sustainability. Black-Right-Pointing-Pointer Structured assessment of 'best practices' can enhance replication in other cities. - Abstract: According to most experts, integrated and sustainable solid waste management should not only be given top priority, but must go beyond technical aspects to include various key elements of sustainability to ensure success of any solid waste project. Aside from project sustainable impacts, the overall enabling environment is the key feature determining performance and success of an integrated and affordable solid waste system. This paper describes a project-specific approach to assess typical success or failure factors. A questionnaire-based assessment method covers issues of: (i) social mobilisation and acceptance (social element), (ii) stakeholder, legal and institutional arrangements comprising roles, responsibilities and management functions (institutional element); (iii) financial and operational requirements, as well as cost recovery mechanisms (economic element). The Gianyar Waste Recovery Project in Bali, Indonesia was analysed using this integrated assessment method. The results clearly identified chief characteristics, key factors to consider when planning country wide replication but also major barriers and obstacles which must be overcome to ensure project sustainability. The Gianyar project consists of a composting unit processing 60 tons of municipal waste per day from 500,000 inhabitants, including manual waste segregation and subsequent composting of the biodegradable organic fraction.

  5. Processing of solid mixed waste containing radioactive and hazardous materials

    DOE Patents [OSTI]

    Gotovchikov, Vitaly T.; Ivanov, Alexander V.; Filippov, Eugene A.

    1998-05-12

    Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination of a plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter.

  6. Processing of solid mixed waste containing radioactive and hazardous materials

    DOE Patents [OSTI]

    Gotovchikov, V.T.; Ivanov, A.V.; Filippov, E.A.

    1998-05-12

    Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination of a plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter. 6 figs.

  7. Maximization of revenues for power sales from a solid waste resources recovery facility

    SciTech Connect (OSTI)

    Not Available

    1991-12-01

    The report discusses the actual implementation of the best alternative in selling electrical power generated by an existing waste-to-energy facility, the Metro-Dade County Resources Recovery Plant. After the plant processes and extracts various products out of the municipal solid waste, it burns it to produce electrical power. The price for buying power to satisfy the internal needs of our Resources Recovery Facility (RRF) is substantially higher than the power price for selling electricity to any other entity. Therefore, without any further analysis, it was decided to first satisfy those internal needs and then export the excess power. Various alternatives were thoroughly explored as to what to do with the excess power. Selling power to the power utilities or utilizing the power in other facilities were the primary options.

  8. Field study of disposed solid wastes from advanced coal processes

    SciTech Connect (OSTI)

    Not Available

    1992-01-01

    Radian Corporation and the North Dakota Energy and Environmental Research Center (EERC) are funded to develop information to be used by private industry and government agencies for managing solid wastes produced by advanced coal combustion processes. This information will be developed by conducting several field studies on disposed wastes from these processes. Data will be collected to characterize these wastes and their interactions with the environments in which they are disposed. Three sites were selected for the field studies: Colorado Ute's fluidized bed combustion (FBC) unit in Nucla, Colorado; Ohio Edison's limestone injection multistage burner (LIMB) retrofit in Lorain, Ohio; and Freeman United's mine site in central Illinois with wastes supplied by the nearby Midwest Grain FBC unit. During the past year, field monitoring and sampling of the four landfill test cases constructed in 1989 and 1991 has continued. Option 1 of the contract was approved last year to add financing for the fifth test case at the Freeman United site. The construction of the Test Case 5 cells is scheduled to begin in November, 1992. Work during this past year has focused on obtaining data on the physical and chemical properties of the landfilled wastes, and on developing a conceptual framework for interpreting this information. Results to date indicate that hydration reactions within the landfilled wastes have had a major impact on the physical and chemical properties of the materials but these reactions largely ceased after the first year, and physical properties have changed little since then. Conditions in Colorado remained dry and no porewater samples were collected. In Ohio, hydration reactions and increases in the moisture content of the waste tied up much of the water initially infiltrating the test cells.

  9. Effect of alkaline pretreatment on anaerobic digestion of solid wastes

    SciTech Connect (OSTI)

    Lopez Torres, M. Espinosa Llorens, Ma. del C.

    2008-11-15

    The introduction of the anaerobic digestion for the treatment of the organic fraction of municipal solid waste (OFMSW) is currently of special interest. The main difficulty in the treatment of this waste fraction is its biotransformation, due to the complexity of organic material. Therefore, the first step must be its physical, chemical and biological pretreatment for breaking complex molecules into simple monomers, to increase solubilization of organic material and improve the efficiency of the anaerobic treatment in the second step. This paper describes chemical pretreatment based on lime addition (Ca(OH){sub 2}), in order to enhance chemical oxygen demand (COD) solubilization, followed by anaerobic digestion of the OFMSW. Laboratory-scale experiments were carried out in completely mixed reactors, 1 L capacity. Optimal conditions for COD solubilization in the first step of pretreatment were 62.0 mEq Ca(OH){sub 2}/L for 6.0 h. Under these conditions, 11.5% of the COD was solubilized. The anaerobic digestion efficiency of the OFMSW, with and without pretreatment, was evaluated. The highest methane yield under anaerobic digestion of the pretreated waste was 0.15 m{sup 3} CH{sub 4}/kg volatile solids (VS), 172.0% of the control. Under that condition the soluble COD and VS removal were 93.0% and 94.0%, respectively. The results have shown that chemical pretreatment with lime, followed by anaerobic digestion, provides the best results for stabilizing the OFMSW.

  10. Regulatory Approaches for Solid Radioactive Waste Storage in Russia

    SciTech Connect (OSTI)

    Griffith, A.; Testov, S.; Diaschev, A.; Nazarian, A.; Ustyuzhanin, A.

    2003-02-26

    The Russian Navy under the Arctic Military Environmental Cooperation (AMEC) Program has designated the Polyarninsky Shipyard as the regional recipient for solid radioactive waste (SRW) pretreatment and storage facilities. Waste storage technologies include containers and lightweight modular storage buildings. The prime focus of this paper is solid radioactive waste storage options based on the AMEC mission and Russian regulatory standards. The storage capability at the Polyarninsky Shipyard in support of Mobile Pretreatment Facility (MPF) operations under the AMEC Program will allow the Russian Navy to accumulate/stage the SRW after treatment at the MPF. It is anticipated that the MPF will operate for 20 years. This paper presents the results of a regulatory analysis performed to support an AMEC program decision on the type of facility to be used for storage of SRW. The objectives the study were to: analyze whether a modular storage building (MSB), referred in the standards as a lightweight building, would comply with the Russian SRW storage building standard, OST 95 10517-95; analyze the Russian SRW storage pad standard OST 95 10516-95; and compare the two standards, OST 95 10517-95 for storage buildings and OST 95 10516-95 for storage pads.

  11. Data summary of municipal solid waste management alternatives

    SciTech Connect (OSTI)

    Not Available

    1992-10-01

    While municipal solid waste (MSW) thermoconversion and recycling technologies have been described in Appendices A through E, this appendix addresses the role of bioconversion technologies in handling the organic fraction in MSW and sewage sludge. Much of the organic matter in MSW, consisting mainly of paper, food waste, and yard waste, has potential for conversion, along with sewage sludge, through biochemical processes to methane and carbon dioxide providing a measurable, renewable energy resource potential. The gas produced may be treated for removal of carbon dioxide and water, leaving pipeline quality gas. The process also has the potential for producing a stabilized solid product that may be suitable as a fuel for combustion or used as a compost fertilizer. Anaerobic digestion can occur naturally in an uncontrolled environment such as a landfill, or it can occur in a controlled environment such as a confined vessel. Landfill gas production is discussed in Appendix F. This appendix provides information on the anaerobic digestion process as it has been applied to produce methane from the organic fraction of MSW in enclosed, controlled reactors.

  12. Solid Waste Program Fiscal Year 1996 Multi-Year Program Plan WBS 1.2.1, Revision 1

    SciTech Connect (OSTI)

    1995-09-01

    This document contains the Fiscal Year 1996 Multi-Year Program Plan for the Solid Waste Program at the Hanford Reservation in Richland, Washington. The Solid Waste Program treats, stores, and disposes of a wide variety of solid wastes consisting of radioactive, nonradioactive and hazardous material types. Solid waste types are typically classified as transuranic waste, low-level radioactive waste, low-level mixed waste, and non-radioactive hazardous waste. This report describes the mission, goals and program strategies for the Solid Waste Program for fiscal year 1996 and beyond.

  13. Data summary of municipal solid waste management alternatives

    SciTech Connect (OSTI)

    Not Available

    1992-10-01

    Composting of municipal solid waste (MSW) is experiencing a dramatic resurgence in the US. Several factors are driving this interest in composting including landfill closures, resistance to siting of new landfills and combustion facilities, public support for recycling, and, in general, the overall costs of waste disposal. Starting with only one demonstration project operating in 1980, the total number of projects in the US has increased to sixteen by July 1991. There are approximately 100 projects in some form of planning or development. One reason some communities are sekniing composting as a waste management option is that sewage sludge and MSW can be co-composted thereby recycling a major portion of the overall municipal waste stream. In 1991, five of the operating facilities have incorporated sludge, with a number of new plants also developing systems with this capability. Generic composting technologies are described followed by a comprehensive discussion of operating facilities. Information is presented on the type of processing system, capital and operating costs, and the status of compost markets. A discussion is also included on the operational problems and challenges faced by composting facility developers and operators. Also presented are facility energy usage and a discussion of the energy implications from the use of compost as a soil and fertilizer replacement. A discussion of cost sensitivity shows how facility costs are impacted by waste handling procedures, regulations, reject disposal, and finance charges. The status of, and potential for, integrating composting into the overall waste management strategy is also discussed, including composting's contribution to municipal recycling goals, and the status of public acceptance of the technology. Finally information and research needs are summarized.

  14. PRODUCTION OF NEW BIOMASS/WASTE-CONTAINING SOLID FUELS

    SciTech Connect (OSTI)

    David J. Akers; Glenn A. Shirey; Zalman Zitron; Charles Q. Maney

    2001-04-20

    CQ Inc. and its team members (ALSTOM Power Inc., Bliss Industries, McFadden Machine Company, and industry advisors from coal-burning utilities, equipment manufacturers, and the pellet fuels industry) addressed the objectives of the Department of Energy and industry to produce economical, new solid fuels from coal, biomass, and waste materials that reduce emissions from coal-fired boilers. This project builds on the team's commercial experience in composite fuels for energy production. The electric utility industry is interested in the use of biomass and wastes as fuel to reduce both emissions and fuel costs. In addition to these benefits, utilities also recognize the business advantage of consuming the waste byproducts of customers both to retain customers and to improve the public image of the industry. Unfortunately, biomass and waste byproducts can be troublesome fuels because of low bulk density, high moisture content, variable composition, handling and feeding problems, and inadequate information about combustion and emissions characteristics. Current methods of co-firing biomass and wastes either use a separate fuel receiving, storage, and boiler feed system, or mass burn the biomass by simply mixing it with coal on the storage pile. For biomass or biomass-containing composite fuels to be extensively used in the U.S., especially in the steam market, a lower cost method of producing these fuels must be developed that includes both moisture reduction and pelletization or agglomeration for necessary fuel density and ease of handling. Further, this method of fuel production must be applicable to a variety of combinations of biomass, wastes, and coal; economically competitive with current fuels; and provide environmental benefits compared with coal. Notable accomplishments from the work performed in Phase I of this project include the development of three standard fuel formulations from mixtures of coal fines, biomass, and waste materials that can be used in

  15. Mechanical properties of Municipal Solid Waste by SDMT

    SciTech Connect (OSTI)

    Castelli, Francesco; Maugeri, Michele

    2014-02-15

    Highlights: • The adoption of the SDMT for the measurements of MSW properties is proposed. • A comparison between SDMT results and laboratory tests was carried out. • A good reliability has been found in deriving waste properties by SDMT. • Results seems to be promising for the friction angle and Young’s modulus evaluation. - Abstract: In the paper the results of a geotechnical investigation carried on Municipal Solid Waste (MSW) materials retrieved from the “Cozzo Vuturo” landfill in the Enna area (Sicily, Italy) are reported and analyzed. Mechanical properties were determined both by in situ and laboratory large-scale one dimensional compression tests. While among in situ tests, Dilatomer Marchetti Tests (DMT) is used widely in measuring soil properties, the adoption of the DMT for the measurements of MSW properties has not often been documented in literature. To validate its applicability for the estimation of MSW properties, a comparison between the seismic dilatometer (SDMT) results and the waste properties evaluated by laboratory tests was carried out. Parameters for “fresh” and “degraded waste” have been evaluated. These preliminary results seems to be promising as concerns the assessment of the friction angle of waste and the evaluation of the S-wave in terms of shear wave velocity. Further studies are certainly required to obtain more representative values of the elastic parameters according to the SDMT measurements.

  16. Risk mitigation methodology for solid waste landfills. Doctoral thesis

    SciTech Connect (OSTI)

    Nixon, W.B.

    1995-05-01

    Several recent models have attempted to simulate or assess the probability and consequences of the leakage of aqueous contaminant leakage from solid waste landfills. These models incorporate common factors, including climatological and geological characteristics. Each model, however, employs a unique approach to the problem, assigns different relative weights to factors, and relies upon extrapolated small-scale experimental data and/or subjective judgment in predicting the full-scale landfill failure mechanisms leading to contaminant migration. As a result, no two models are likely to equally assess a given landfill, and no one model has been validated as a predictor of long-term performance. The United States Air Force maintains a database for characterization of potential hazardous waste sites. Records include more than 500 landfills, providing such information as waste, soil, aquifer, monitoring location data, and the results of sample testing. Through analysis of this information, nearly 300 landfills were assessed to have sufficiently, partially, or inadequately contained hazardous constituents of the wastes placed within them.

  17. Integrated solid waste management of Palm Beach County, Florida

    SciTech Connect (OSTI)

    1995-11-01

    The subject document reports the results of an in-depth investigation of the fiscal year 1992 cost of the Palm Beach County, Florida integrated municipal solid waste management system (IMSWMS), the energy consumed to operate the system, and the environmental performance requirements for each of the system`s waste-processing and disposal facilities. Actual data from records kept by participants is reported in this document. Every effort was made to minimize the use of assumptions, and no attempt is made to interpret the data reported. Analytical approaches are documented so that interested analysts may perform manipulation or further analysis of the data. As such, the report is a reference document for MSW management professionals who are interested in the actual costs and energy consumption for a one-year period, of an operating IMSWMS.

  18. Recovery of essential nutrients from municipal solid waste – Impact of waste management infrastructure and governance aspects

    SciTech Connect (OSTI)

    Zabaleta, Imanol; Rodic, Ljiljana

    2015-10-15

    Every year 120–140 million tonnes of bio-waste are generated in Europe, most of which is landfilled, incinerated or stabilized and used as covering material in landfill operation. None of these practices enables the recovery of essential nutrients such as phosphorus (P) and nitrogen (N), which are in great demand for agricultural production. Recovery of these nutrients is a matter of international concern considering the non-renewable nature of P sources and the energy intensive production process required for the synthesis of N fertilizers. The objective of this research is to understand the relation between the municipal solid waste management (MSWM) system, both its the physical components and governance aspects, and the recovery of nutrients in Vitoria-Gasteiz (Basque Country) as a benchmark for European medium-size cities. The analysis shows that the existing physical infrastructure and facilities for bio-waste have high potential for nutrient recovery, 49% for N and 83% for P contained in bio-waste. However, governance aspects of the MSWM system such as legislation and user inclusivity play an important role and decrease the actual nutrient recovery to 3.4% and 7.4% for N and P respectively.

  19. WIPP Facility Work Plan for Solid Waste Management Units

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2001-02-25

    This 2001 Facility Work Plan (FWP) has been prepared as required by Module VII, Section VII.M.1 of the Waste Isolation Pilot Plant (WIPP) Hazardous Waste Facility Permit, NM4890139088-TSDF (the Permit); (NMED, 1999a), and incorporates comments from the New Mexico Environment Department (NMED) received on December 6, 2000 (NMED, 2000a). This February 2001 FWP describes the programmatic facility-wide approach to future investigations at Solid Waste Management Units (SWMUs) and Areas of Concern (AOCs) specified in the Permit. The permittees are evaluating data from previous investigations of the SWMUs and AOCs against the newest guidance proposed by the NMED. Based on these data, the permittees expect that no further sampling will be required and that a request for No Further Action (NFA) at the SWMUs and AOCs will be submitted to the NMED. This FWP addresses the current Permit requirements. It uses the results of previous investigations performed at WIPP and expands the investigations as required by the Permit. As an alternative to the Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI) specified in Module VII of the Permit, current NMED guidance identifies an Accelerated Corrective Action Approach (ACAA) that may be used for any SWMU or AOC (NMED, 1998). This accelerated approach is used to replace the standard RFI Work Plan and Report sequence with a more flexible decision-making approach. The ACAA process allows a Facility to exit the schedule of compliance contained in the Facilitys Hazardous and Solid Waste Amendments (HSWA) permit module and proceed on an accelerated time frame. Thus, the ACAA process can be entered either before or after an RFI Work Plan. According to the NMED's guidance, a facility can prepare an RFI Work Plan or Sampling and Analysis Plan (SAP) for any SWMU or AOC (NMED, 1998). Based on this guidance, a SAP constitutes an acceptable alternative to the RFI Work Plan specified in the Permit.

  20. Solid Waste Integrated Forecast Technical (SWIFT) Report FY2001 to FY2046 Volume 1

    SciTech Connect (OSTI)

    BARCOT, R.A.

    2000-08-31

    This report provides up-to-date life cycle information about the radioactive solid waste expected to be managed by Hanford's Waste Management (WM) Project from onsite and offsite generators. It includes: an overview of Hanford-wide solid waste to be managed by the WM Project; program-level and waste class-specific estimates; background information on waste sources; and comparisons to previous forecasts and other national data sources. This report does not include: waste to be managed by the Environmental Restoration (EM-40) contractor (i.e., waste that will be disposed of at the Environmental Restoration Disposal Facility (ERDF)); waste that has been received by the WM Project to date (i.e., inventory waste); mixed low-level waste that will be processed and disposed by the River Protection Program; and liquid waste (current or future generation). Although this report currently does not include liquid wastes, they may be added as information becomes available.

  1. Data summary of municipal solid waste management alternatives. Executive summary

    SciTech Connect (OSTI)

    1992-08-01

    This study was initiated to compile publicly available data on the five major options commonly used for municipal solid waste MSW management today: Landfilling, mass burning for energy recovery, production and combustion of refuse-derived fuel (RDF), and composting. The report also provides some data on energy, environmental releases, and economics for the following less commonly used options: Anaerobic digestion, coining of RDF with coal, gasification/pyrolysis. Because no commercial anaerobic digestion and gasification/pyrolysis facilities have operated in the United States, the data for these options are based on pilot plant results.

  2. Thermo-gasification of steam classified municipal solid waste

    SciTech Connect (OSTI)

    Eley, M.H.; Sebghati, J.M.

    1996-12-31

    Municipal solid waste (MSW) has been processed using a procedure called steam classification. This material has been examined for use as a combustion fuel, feedstock for composting, and cellulytic enzyme hydrolysis. An initial study has been conducted using a prototype plasma arc pyrolysis system to transform the steam classified MSW into a pyrolysis gas and vitrified material. With 136 kg (300 lbs) of the steam classified MSW pyrolysized at a feed rate of 22.7 kg/hour (50 lbs/hour), samples of the gas and grasslike material were captured for analysis. A presentation of the emission data and details on the system used will be presented.

  3. USEPA's hierarchy for municipal solid waste management: Theory vs. practice

    SciTech Connect (OSTI)

    Matar, G. )

    1993-01-01

    This paper will address USEPA's hierarchy for municipal solid waste management (MSWM), which places source reduction and recycling above combustion and landfilling. Many have read this to mean that combustion and landfilling should only be considered after all recycling and reduction efforts have been explored. This mentality has not only left many communities in a MSWM capacity crisis, but also created planning problems for many others. Contrary to commonly held beliefs, it will be shown that the last two methods on the hierarchy should be considered from the beginning when planning for MSWM. It will also be shown that these methods are not antithetical to the first two methods, but are actually complimentary.

  4. Municipal solid waste management in India: From waste disposal to recovery of resources?

    SciTech Connect (OSTI)

    Narayana, Tapan

    2009-03-15

    Unlike that of western countries, the solid waste of Asian cities is often comprised of 70-80% organic matter, dirt and dust. Composting is considered to be the best option to deal with the waste generated. Composting helps reduce the waste transported to and disposed of in landfills. During the course of the research, the author learned that several developing countries established large-scale composting plants that eventually failed for various reasons. The main flaw that led to the unsuccessful establishment of the plants was the lack of application of simple scientific methods to select the material to be composted. Landfills have also been widely unsuccessful in countries like India because the landfill sites have a very limited time frame of usage. The population of the developing countries is another factor that detrimentally impacts the function of landfill sites. As the population keeps increasing, the garbage quantity also increases, which, in turn, exhausts the landfill sites. Landfills are also becoming increasingly expensive because of the rising costs of construction and operation. Incineration, which can greatly reduce the amount of incoming municipal solid waste, is the second most common method for disposal in developed countries. However, incinerator ash may contain hazardous materials including heavy metals and organic compounds such as dioxins, etc. Recycling plays a large role in solid waste management, especially in cities in developing countries. None of the three methods mentioned here are free from problems. The aim of this study is thus to compare the three methods, keeping in mind the costs that would be incurred by the respective governments, and identify the most economical and best option possible to combat the waste disposal problem.

  5. Developing a master plan for hospital solid waste management: A case study

    SciTech Connect (OSTI)

    Karamouz, Mohammad Zahraie, Banafsheh Kerachian, Reza Jaafarzadeh, Nemat Mahjouri, Najmeh

    2007-07-01

    Disposal of about 1750 tons of solid wastes per day is the result of a rapid population growth in the province of Khuzestan in the south west of Iran. Most of these wastes, especially hospital solid wastes which have contributed to the pollution of the environment in the study area, are not properly managed considering environmental standards and regulations. In this paper, the framework of a master plan for managing hospital solid wastes is proposed considering different criteria which are usually used for evaluating the pollution of hospital solid waste loads. The effectiveness of the management schemes is also evaluated. In order to rank the hospitals and determine the share of each hospital in the total hospital solid waste pollution load, a multiple criteria decision making technique, namely analytical hierarchy process (AHP), is used. A set of projects are proposed for solid waste pollution control and reduction in the proposed framework. It is partially applied for hospital solid waste management in the province of Khuzestan, Iran. The results have shown that the hospitals located near the capital city of the province, Ahvaz, produce more than 43% of the total hospital solid waste pollution load of the province. The results have also shown the importance of improving management techniques rather than building new facilities. The proposed methodology is used to formulate a master plan for hospital solid waste management.

  6. Processing and properties of a solid energy fuel from municipal solid waste (MSW) and recycled plastics

    SciTech Connect (OSTI)

    Gug, JeongIn Cacciola, David Sobkowicz, Margaret J.

    2015-01-15

    Highlights: • Briquetting was used to produce solid fuels from municipal solid waste and recycled plastics. • Optimal drying, processing temperature and pressure were found to produce stable briquettes. • Addition of waste plastics yielded heating values comparable with typical coal feedstocks. • This processing method improves utilization of paper and plastic diverted from landfills. - Abstract: Diversion of waste streams such as plastics, woods, papers and other solid trash from municipal landfills and extraction of useful materials from landfills is an area of increasing interest especially in densely populated areas. One promising technology for recycling municipal solid waste (MSW) is to burn the high-energy-content components in standard coal power plant. This research aims to reform wastes into briquettes that are compatible with typical coal combustion processes. In order to comply with the standards of coal-fired power plants, the feedstock must be mechanically robust, free of hazardous contaminants, and moisture resistant, while retaining high fuel value. This study aims to investigate the effects of processing conditions and added recyclable plastics on the properties of MSW solid fuels. A well-sorted waste stream high in paper and fiber content was combined with controlled levels of recyclable plastics PE, PP, PET and PS and formed into briquettes using a compression molding technique. The effect of added plastics and moisture content on binding attraction and energy efficiency were investigated. The stability of the briquettes to moisture exposure, the fuel composition by proximate analysis, briquette mechanical strength, and burning efficiency were evaluated. It was found that high processing temperature ensures better properties of the product addition of milled mixed plastic waste leads to better encapsulation as well as to greater calorific value. Also some moisture removal (but not complete) improves the compacting process and results in

  7. Methodology for Allocating Municipal Solid Waste to Biogenic and Non-Biogenic Energy

    Reports and Publications (EIA)

    2007-01-01

    This report summarizes the methodology used to split the heat content of municipal solid waste (MSW) into its biogenic and non-biogenic shares.

  8. Construction and operation of an industrial solid waste landfill at Portsmouth Gaseous Diffusion Plant, Piketon, Ohio

    SciTech Connect (OSTI)

    1995-10-01

    The US Department of Energy (DOE), Office of Waste Management, proposes to construct and operate a solid waste landfill within the boundary of the Portsmouth Gaseous Diffusion Plant (PORTS), Piketon, Ohio. The purpose of the proposed action is to provide PORTS with additional landfill capacity for non-hazardous and asbestos wastes. The proposed action is needed to support continued operation of PORTS, which generates non-hazardous wastes on a daily basis and asbestos wastes intermittently. Three alternatives are evaluated in this environmental assessment (EA): the proposed action (construction and operation of the X-737 landfill), no-action, and offsite shipment of industrial solid wastes for disposal.

  9. WIPP Facility Work Plan for Solid Waste Management Units

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2002-02-14

    This 2002 Facility Work Plan (FWP) has been prepared as required by Module VII, Permit Condition VII.U.3 of the Waste Isolation Pilot Plant (WIPP) Hazardous Waste Facility Permit, NM4890139088-TSDF (the Permit) (New Mexico Environment Department [NMED], 1999a), and incorporates comments from the NMED received on December 6, 2000 (NMED, 2000a). This February 2002 FWP describes the programmatic facility-wide approach to future investigations at Solid Waste Management Units (SWMU) and Areas of Concern (AOC) specified in the Permit. The Permittees are evaluating data from previous investigations of the SWMUs and AOCs against the most recent guidance proposed by the NMED. Based on these data, and completion of the August 2001 sampling requested by the NMED, the Permittees expect that no further sampling will be required and that a request for No Further Action (NFA) at the SWMUs and AOCs will be submitted to the NMED. This FWP addresses the current Permit requirements. It uses the results of previous investigations performed at WIPP and expands the investigations as required by the Permit. As an alternative to the Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI) specified in Module VII of the Permit, current NMED guidance identifies an Accelerated Corrective Action Approach (ACAA) that may be used for any SWMU or AOC (NMED, 1998). This accelerated approach is used to replace the standard RFI Work Plan and Report sequence with a more flexible decision-making approach. The ACAA process allows a facility to exit the schedule of compliance contained in the facility's Hazardous and Solid Waste Amendments (HSWA) permit module and proceed on an accelerated time frame. Thus, the ACAA processcan be entered either before or after an RFI Work Plan. According to the NMED's guidance, a facility can prepare an RFI Work Plan or Sampling and Analysis Plan (SAP) for any SWMU or AOC (NMED, 1998). Based on this guidance, a SAP constitutes an acceptable

  10. Solid Waste Processing Center Primary Opening Cells Systems, Equipment and Tools

    SciTech Connect (OSTI)

    Bailey, Sharon A.; Baker, Carl P.; Mullen, O Dennis; Valdez, Patrick LJ

    2006-04-17

    This document addresses the remote systems and design integration aspects of the development of the Solid Waste Processing Center (SWPC), a facility to remotely open, sort, size reduce, and repackage mixed low-level waste (MLLW) and transuranic (TRU)/TRU mixed waste that is either contact-handled (CH) waste in large containers or remote-handled (RH) waste in various-sized packages.

  11. Solid waste disposal economics. (Latest citations from the NTISs Bibliographic database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1994-11-01

    The bibliography contains citations concerning economic aspects of solid waste disposal. Topics include feasibility studies of specific waste-to-energy programs, materials recovery and recycling, and the use of fuel gases from landfills. Waste materials sources include industrial and municipal wastes, dredged materials, and waste derived from agricultural and mining operations. Considerable attention is given to Superfund records of decision at specific sites. (Contains 250 citations and includes a subject term index and title list.)

  12. Solid waste disposal economics. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1994-04-01

    The bibliography contains citations concerning economic aspects of solid waste disposal. Topics include feasibility studies of specific waste-to-energy programs, materials recovery and recycling, and the use of fuel gases from landfills. Waste materials sources include industrial and municipal wastes, dredged materials, and waste derived from agricultural and mining operations. Considerable attention is given to Superfund records of decision at specific sites. (Contains 250 citations and includes a subject term index and title list.)

  13. Characterization of 618-11 solid waste burial ground, disposed waste, and description of the waste generating facilities

    SciTech Connect (OSTI)

    Hladek, K.L.

    1997-10-07

    The 618-11 (Wye or 318-11) burial ground received transuranic (TRTJ) and mixed fission solid waste from March 9, 1962, through October 2, 1962. It was then closed for 11 months so additional burial facilities could be added. The burial ground was reopened on September 16, 1963, and continued operating until it was closed permanently on December 31, 1967. The burial ground received wastes from all of the 300 Area radioactive material handling facilities. The purpose of this document is to characterize the 618-11 solid waste burial ground by describing the site, burial practices, the disposed wastes, and the waste generating facilities. This document provides information showing that kilogram quantities of plutonium were disposed to the drum storage units and caissons, making them transuranic (TRU). Also, kilogram quantities of plutonium and other TRU wastes were disposed to the three trenches, which were previously thought to contain non-TRU wastes. The site burial facilities (trenches, caissons, and drum storage units) should be classified as TRU and the site plutonium inventory maintained at five kilograms. Other fissile wastes were also disposed to the site. Additionally, thousands of curies of mixed fission products were also disposed to the trenches, caissons, and drum storage units. Most of the fission products have decayed over several half-lives, and are at more tolerable levels. Of greater concern, because of their release potential, are TRU radionuclides, Pu-238, Pu-240, and Np-237. TRU radionuclides also included slightly enriched 0.95 and 1.25% U-231 from N-Reactor fuel, which add to the fissile content. The 618-11 burial ground is located approximately 100 meters due west of Washington Nuclear Plant No. 2. The burial ground consists of three trenches, approximately 900 feet long, 25 feet deep, and 50 feet wide, running east-west. The trenches constitute 75% of the site area. There are 50 drum storage units (five 55-gallon steel drums welded together

  14. Russian Containers for Transportation of Solid Radioactive Waste

    SciTech Connect (OSTI)

    Petrushenko, V. G.; Baal, E. P.; Tsvetkov, D. Y.; Korb, V. R.; Nikitin, V. S.; Mikheev, A. A.; Griffith, A.; Schwab, P.; Nazarian, A.

    2002-02-28

    The Russian Shipyard ''Zvyozdochka'' has designed a new container for transportation and storage of solid radioactive wastes. The PST1A-6 container is cylindrical shaped and it can hold seven standard 200-liter (55-gallon) drums. The steel wall thickness is 6 mm, which is much greater than standard U.S. containers. These containers are fully certified to the Russian GOST requirements, which are basically identical to U.S. and IAEA standards for Type A containers. They can be transported by truck, rail, barge, ship, or aircraft and they can be stacked in 6 layers in storage facilities. The first user of the PST1A-6 containers is the Northern Fleet of the Russian Navy, under a program sponsored jointly by the U.S. DoD and DOE. This paper will describe the container design and show how the first 400 containers were fabricated and certified.

  15. Solid waste information and tracking system server conversion project management plan

    SciTech Connect (OSTI)

    MAY, D.L.

    1999-04-12

    The Project Management Plan governing the conversion of Solid Waste Information and Tracking System (SWITS) to a client-server architecture. The Solid Waste Information and Tracking System Project Management Plan (PMP) describes the background, planning and management of the SWITS conversion. Requirements and specification documentation needed for the SWITS conversion will be released as supporting documents.

  16. Emission of volatile sulfur compounds during composting of municipal solid waste (MSW)

    SciTech Connect (OSTI)

    Zhang, Hongyu; Schuchardt, Frank; Li, Guoxue; Yang, Jinbing; Yang, Qingyuan

    2013-04-15

    Highlights: ► We compare the volatile sulfur compounds (VSCs) emissions during three types of municipal solid wastes (MSWs) composting. ► The VSCs released from the kitchen waste composting was significantly higher than that from 15–80 mm fraction of MSW. ► Among the five VSCs, H{sub 2}S was the most abundant compound with 39.0–43.0% of total VSCs released. ► Addition of 20% cornstalks could significantly reduce the VSCs emissions during kitchen waste composting. - Abstract: Volatile sulfur compounds (VSCs) are the main source for malodor from composting plants. In this study, the VSCs generated from composting of 15–80 mm municipal solid waste (T0), kitchen waste (T1) and kitchen waste mixed dry cornstalks (T2) were measured in 60 L reactors with forced aeration for a period of 30 days. The VSCs detected in all treatments were hydrogen sulfide (H{sub 2}S), methyl mercaptan (MM), dimethyl sulfide (DMS), carbon bisulfide (CS{sub 2}) and dimethyl disulfide (DMDS). Over 90% of the VSCs emissions occurred during the first 15 days, and reached their peak values at days 4–7. The emission profiles of five VSCs species were significantly correlated with internal materials temperature and outlet O{sub 2} concentration (p < 0.05). Total emissions of the VSCs were 216.1, 379.3 and 126.0 mg kg{sup −1} (dry matter) for T0, T1 and T2, respectively. Among the five VSCs, H{sub 2}S was the most abundant compound with 39.0–43.0% of total VSCs released. Composting of kitchen waste from separate collection posed a negative influence on the VSC and leachate production because of its high moisture content. An addition of dry cornstalks at a mixing ratio of 4:1 (wet weight) could significantly reduce the VSCs emissions and avoid leachate. Compared to pure kitchen waste, VSCs were reduced 66.8%.

  17. Thirty-Year Solid Waste Generation Maximum and Minimum Forecast for SRS

    SciTech Connect (OSTI)

    Thomas, L.C.

    1994-10-01

    This report is the third phase (Phase III) of the Thirty-Year Solid Waste Generation Forecast for Facilities at the Savannah River Site (SRS). Phase I of the forecast, Thirty-Year Solid Waste Generation Forecast for Facilities at SRS, forecasts the yearly quantities of low-level waste (LLW), hazardous waste, mixed waste, and transuranic (TRU) wastes generated over the next 30 years by operations, decontamination and decommissioning and environmental restoration (ER) activities at the Savannah River Site. The Phase II report, Thirty-Year Solid Waste Generation Forecast by Treatability Group (U), provides a 30-year forecast by waste treatability group for operations, decontamination and decommissioning, and ER activities. In addition, a 30-year forecast by waste stream has been provided for operations in Appendix A of the Phase II report. The solid wastes stored or generated at SRS must be treated and disposed of in accordance with federal, state, and local laws and regulations. To evaluate, select, and justify the use of promising treatment technologies and to evaluate the potential impact to the environment, the generic waste categories described in the Phase I report were divided into smaller classifications with similar physical, chemical, and radiological characteristics. These smaller classifications, defined within the Phase II report as treatability groups, can then be used in the Waste Management Environmental Impact Statement process to evaluate treatment options. The waste generation forecasts in the Phase II report includes existing waste inventories. Existing waste inventories, which include waste streams from continuing operations and stored wastes from discontinued operations, were not included in the Phase I report. Maximum and minimum forecasts serve as upper and lower boundaries for waste generation. This report provides the maximum and minimum forecast by waste treatability group for operation, decontamination and decommissioning, and ER activities.

  18. Investigation of fluid-bed combustion of municipal solid waste

    SciTech Connect (OSTI)

    Eustis, R.H.; Wilson, K.B.; Preuit, L.C.; Marasigan, M.M.

    1985-08-01

    An experimental study was undertaken to burn processed municipal solid waste in a fluid-bed combustor containing water-cooled tubes in the bed. The 300-hour test was performed without incident and terminated on schedule. The combustor and ducting were clean on inspection after the test, and bed agglomeration did not occur. A corrosion tube placed in the free-board showed considerable metal wastage for carbon and low-alloy steels and some wastage for stainless steels. Low-temperature carbon steel water tubes in the bed showed negligible wastage. It was concluded that heat-exchanger tubes in the freeboard require protection from the high-velocity elutriated solids. Combustion efficiency was greater than 99%, and pollutants were measured as follows: SO/sub 2/ = 58 ppm, NOx = 178 ppm, CO = 242 ppm, hydrocarbons = 5.4 ppm. A system study was conducted for a cogeneration, 800-tons/day power plant to be located on the Stanford U. campus to supply all of the process steam requirement and as much of the electrical power as possible.

  19. Report of the Review of the Hanford Solid Waste Environmental Impact

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Statement regarding Data Quality Control and Management Issues | Department of Energy of the Review of the Hanford Solid Waste Environmental Impact Statement regarding Data Quality Control and Management Issues Report of the Review of the Hanford Solid Waste Environmental Impact Statement regarding Data Quality Control and Management Issues As part of the litigation involving receipt of offsite waste and the HSW EIS, the Court allowed the State of Washington a limited amount of discovery

  20. E-Alerts: Environmental pollution and control (solid waste pollution and control). E-mail newsletter

    SciTech Connect (OSTI)

    1999-04-01

    The paper discusses pollution by solid wastes including garbage, scrap, junked automobiles, spoil, sludge, containers; Disposal methods such as composts or land application, injection wells, incineration, sanitary landfills; Mining wastes; Processing for separation and materials recovery; Solid waste utilization; Recycling; Biological and ecological effects; Superfund (Records of Decision, etc.); SITE technology; Laws, legislation, and regulations; Public administration; Economics; Land use. The discussion includes disposal of concentrated or pure liquids such as brines, oils, chemicals, and hazardous materials.

  1. Backyard waste management - problems and benefits of individuals managing their solid waste at home

    SciTech Connect (OSTI)

    Whalen, M.

    1995-05-01

    The problems and benefits of individuals managing their solid wastes at home are surveyed. The survey indicates that as the population rises people tend to burn only the combustible portions of their waste. Some communities have limited ordinances that ban the burning of raw garbage, but other municipalities allow residents to burn all of their wastestream, even though some materials are not combustible and cannot be burned. Potential environmental effects involve both the ash residue and the air emissions. While selected burning can reduce some of the environmental hazards these would probably only be marginally less than the impacts of burning it all. The study clearly indicates that the environmental problems of burn barrels are not insignificant. However, the attitudes and motivations of those who burn waste will have to be addressed by the communities that attempt or should attempt to control this problem. These include: avoidance of waste collection costs; availability of trash cartage services; and habit. Habit is probably as strong a motivation as cost avoidance and ease of collection combined. Residents have often burned trash for several generations and regard the practice as a {open_quotes}god-given right.{close_quotes}

  2. Municipal solid waste composition: Sampling methodology, statistical analyses, and case study evaluation

    SciTech Connect (OSTI)

    Edjabou, Maklawe Essonanawe; Jensen, Morten Bang; Götze, Ramona; Pivnenko, Kostyantyn; Petersen, Claus; Scheutz, Charlotte; Astrup, Thomas Fruergaard

    2015-02-15

    Highlights: • Tiered approach to waste sorting ensures flexibility and facilitates comparison of solid waste composition data. • Food and miscellaneous wastes are the main fractions contributing to the residual household waste. • Separation of food packaging from food leftovers during sorting is not critical for determination of the solid waste composition. - Abstract: Sound waste management and optimisation of resource recovery require reliable data on solid waste generation and composition. In the absence of standardised and commonly accepted waste characterisation methodologies, various approaches have been reported in literature. This limits both comparability and applicability of the results. In this study, a waste sampling and sorting methodology for efficient and statistically robust characterisation of solid waste was introduced. The methodology was applied to residual waste collected from 1442 households distributed among 10 individual sub-areas in three Danish municipalities (both single and multi-family house areas). In total 17 tonnes of waste were sorted into 10–50 waste fractions, organised according to a three-level (tiered approach) facilitating comparison of the waste data between individual sub-areas with different fractionation (waste from one municipality was sorted at “Level III”, e.g. detailed, while the two others were sorted only at “Level I”). The results showed that residual household waste mainly contained food waste (42 ± 5%, mass per wet basis) and miscellaneous combustibles (18 ± 3%, mass per wet basis). The residual household waste generation rate in the study areas was 3–4 kg per person per week. Statistical analyses revealed that the waste composition was independent of variations in the waste generation rate. Both, waste composition and waste generation rates were statistically similar for each of the three municipalities. While the waste generation rates were similar for each of the two housing types (single

  3. Characterization of past and present solid waste streams from 231-Z

    SciTech Connect (OSTI)

    Pottmeyer, J.A.; DeLorenzo, D.S.; Weyns-Rollosson, M.I.; Berkwitz, D.E.; Vejvoda, E.J.; Duncan, D.R.

    1993-06-01

    During the next two decades the transuranic (TRU) wastes now stored in the burial trenches and storage facilities at the Hanford Site are to be retrieved, processed at the Waste Receiving and Processing Facility, and shipped to the Waste Isolation Pilot Plant near Carlsbad, New Mexico for final disposal. Over 8% of the TRU waste to be retrieved for shipment to the Waste Isolation Pilot Plant has been generated at the Plutonium Metallurgy Laboratory (231-Z) Facility. The purpose of this report is to characterize the radioactive solid wastes generated by 231-Z using process knowledge, existing records and oral history interviews. Since 1944 research and development programs utilizing plutonium have been conducted at 231-Z in the fields of physical metallurgy, property determination, alloy development, and process development. The following are sources of solid waste generation at the 231-Z Facility: (1) General Weapons Development Program, (2) process waste from gloveboxes, (3) numerous classified research and development programs, (4) advanced decontamination and decommissioning technologies, including sectioning, vibratory finishing, electropolishing, solution process, and small bench-scale work, (5) general laboratory procedures, (6) foundry area, (7) housekeeping activities, and (8) four cleanout campaigns. All solid wastes originating at 231-Z were packaged for onsite-offsite storage or disposal. Waste packaging and reporting requirements have undergone significant changes throughout the history of 231-Z. Current and historical procedures are provided in Section 4.0. Information on the radioactive wastes generated at 231-Z can be found in a number of documents and databases, most importantly the Solid Waste Information and Tracking System database and Solid Waste Burial Records. Facility personnel also provide excellent information about past waste generation and the procedures used to handle that waste. Section 5.0 was compiled using these sources.

  4. Reprint of: Pyrolysis technologies for municipal solid waste: A review

    SciTech Connect (OSTI)

    Chen, Dezhen; Yin, Lijie; Wang, Huan; He, Pinjing

    2015-03-15

    Highlights: • MSW pyrolysis reactors, products and environmental impacts are reviewed. • MSW pyrolysis still has to deal with flue gas emissions and products’ contamination. • Definition of standardized products is suggested to formalize MSW pyrolysis technology. • Syngas is recommended to be the target product for single MSW pyrolysis technology. - Abstract: Pyrolysis has been examined as an attractive alternative to incineration for municipal solid waste (MSW) disposal that allows energy and resource recovery; however, it has seldom been applied independently with the output of pyrolysis products as end products. This review addresses the state-of-the-art of MSW pyrolysis in regards to its technologies and reactors, products and environmental impacts. In this review, first, the influence of important operating parameters such as final temperature, heating rate (HR) and residence time in the reaction zone on the pyrolysis behaviours and products is reviewed; then the pyrolysis technologies and reactors adopted in literatures and scale-up plants are evaluated. Third, the yields and main properties of the pyrolytic products from individual MSW components, refuse-derived fuel (RDF) made from MSW, and MSW are summarised. In the fourth section, in addition to emissions from pyrolysis processes, such as HCl, SO{sub 2} and NH{sub 3}, contaminants in the products, including PCDD/F and heavy metals, are also reviewed, and available measures for improving the environmental impacts of pyrolysis are surveyed. It can be concluded that the single pyrolysis process is an effective waste-to-energy convertor but is not a guaranteed clean solution for MSW disposal. Based on this information, the prospects of applying pyrolysis technologies to dealing with MSW are evaluated and suggested.

  5. Pyrolysis technologies for municipal solid waste: A review

    SciTech Connect (OSTI)

    Chen, Dezhen; Yin, Lijie; Wang, Huan; He, Pinjing

    2014-12-15

    Highlights: • MSW pyrolysis reactors, products and environmental impacts are reviewed. • MSW pyrolysis still has to deal with flue gas emissions and products’ contamination. • Definition of standardized products is suggested to formalize MSW pyrolysis technology. • Syngas is recommended to be the target product for single MSW pyrolysis technology. - Abstract: Pyrolysis has been examined as an attractive alternative to incineration for municipal solid waste (MSW) disposal that allows energy and resource recovery; however, it has seldom been applied independently with the output of pyrolysis products as end products. This review addresses the state-of-the-art of MSW pyrolysis in regards to its technologies and reactors, products and environmental impacts. In this review, first, the influence of important operating parameters such as final temperature, heating rate (HR) and residence time in the reaction zone on the pyrolysis behaviours and products is reviewed; then the pyrolysis technologies and reactors adopted in literatures and scale-up plants are evaluated. Third, the yields and main properties of the pyrolytic products from individual MSW components, refuse-derived fuel (RDF) made from MSW, and MSW are summarised. In the fourth section, in addition to emissions from pyrolysis processes, such as HCl, SO{sub 2} and NH{sub 3}, contaminants in the products, including PCDD/F and heavy metals, are also reviewed, and available measures for improving the environmental impacts of pyrolysis are surveyed. It can be concluded that the single pyrolysis process is an effective waste-to-energy convertor but is not a guaranteed clean solution for MSW disposal. Based on this information, the prospects of applying pyrolysis technologies to dealing with MSW are evaluated and suggested.

  6. FY 1996 solid waste integrated life-cycle forecast characteristics summary. Volumes 1 and 2

    SciTech Connect (OSTI)

    Templeton, K.J.

    1996-05-23

    For the past six years, a waste volume forecast has been collected annually from onsite and offsite generators that currently ship or are planning to ship solid waste to the Westinghouse Hanford Company`s Central Waste Complex (CWC). This document provides a description of the physical waste forms, hazardous waste constituents, and radionuclides of the waste expected to be shipped to the CWC from 1996 through the remaining life cycle of the Hanford Site (assumed to extend to 2070). In previous years, forecast data has been reported for a 30-year time period; however, the life-cycle approach was adopted this year to maintain consistency with FY 1996 Multi-Year Program Plans. This document is a companion report to two previous reports: the more detailed report on waste volumes, WHC-EP-0900, FY1996 Solid Waste Integrated Life-Cycle Forecast Volume Summary and the report on expected containers, WHC-EP-0903, FY1996 Solid Waste Integrated Life-Cycle Forecast Container Summary. All three documents are based on data gathered during the FY 1995 data call and verified as of January, 1996. These documents are intended to be used in conjunction with other solid waste planning documents as references for short and long-term planning of the WHC Solid Waste Disposal Division`s treatment, storage, and disposal activities over the next several decades. This document focuses on two main characteristics: the physical waste forms and hazardous waste constituents of low-level mixed waste (LLMW) and transuranic waste (both non-mixed and mixed) (TRU(M)). The major generators for each waste category and waste characteristic are also discussed. The characteristics of low-level waste (LLW) are described in Appendix A. In addition, information on radionuclides present in the waste is provided in Appendix B. The FY 1996 forecast data indicate that about 100,900 cubic meters of LLMW and TRU(M) waste is expected to be received at the CWC over the remaining life cycle of the site. Based on

  7. Solid waste integrated forecast technical (SWIFT) report: FY1997 to FY 2070, Revision 1

    SciTech Connect (OSTI)

    Valero, O.J.; Templeton, K.J.; Morgan, J.

    1997-01-07

    This web site provides an up-to-date report on the radioactive solid waste expected to be managed by Hanford's Waste Management (WM) Project from onsite and offsite generators. It includes: an overview of Hanford-wide solid waste to be managed by the WM Project; program-level and waste class-specific estimates; background information on waste sources; and comparisons with previous forecasts and with other national data sources. This web site does not include: liquid waste (current or future generation); waste to be managed by the Environmental Restoration (EM-40) contractor (i.e., waste that will be disposed of at the Environmental Restoration Disposal Facility (ERDF)); or waste that has been received by the WM Project to date (i.e., inventory waste). The focus of this web site is on low-level mixed waste (LLMW), and transuranic waste (both non-mixed and mixed) (TRU(M)). Some details on low-level waste and hazardous waste are also provided. Currently, this web site is reporting data th at was requested on 10/14/96 and submitted on 10/25/96. The data represent a life cycle forecast covering all reported activities from FY97 through the end of each program's life cycle. Therefore, these data represent revisions from the previous FY97.0 Data Version, due primarily to revised estimates from PNNL. There is some useful information about the structure of this report in the SWIFT Report Web Site Overview.

  8. Composite analysis for solid waste storage area 6

    SciTech Connect (OSTI)

    Lee, D.W.

    1997-09-01

    The composite analysis (CA) provides an estimate of the potential cumulative impacts to a hypothetical future member of the public from the Solid Waste Storage Area 6 (SWSA 6) disposal operations and all of the other sources of radioactive material in the ground on the ORR that may interact with contamination originating in SWSA 6.The projected annual dose to hypothetical future member of the public from all contributing sources is compared to the primary dose limit of 100 mrem per year and a dose constraint of 30 mrem per year. Consistent with the CA guidance, dose estimates for the first 1000 years after disposal are emphasized for comparison with the primary dose limit and dose constraint.The current land use plan for the ORR is being revised, and may include a reduction in the land currently controlled by DOE on the ORR. The possibility of changes in the land use boundary is considered in the CA as part of the sensitivity and uncertainty analysis of the results, the interpretation of results, and the conclusions.

  9. An environmentally sustainable decision model for urban solid waste management

    SciTech Connect (OSTI)

    Costi, P.; Minciardi, R.; Robba, M.; Rovatti, M.; Sacile, R

    2004-07-01

    The aim of this work is to present the structure and the application of a decision support system (DSS) designed to help decision makers of a municipality in the development of incineration, disposal, treatment and recycling integrated programs. Specifically, within a MSW management system, several treatment plants and facilities can generally be found: separators, plants for production of refuse derived fuel (RDF), incinerators with energy recovery, plants for treatment of organic material, and sanitary landfills. The main goal of the DSS is to plan the MSW management, defining the refuse flows that have to be sent to recycling or to different treatment or disposal plants, and suggesting the optimal number, the kinds, and the localization of the plants that have to be active. The DSS is based on a decision model that requires the solution of a constrained non-linear optimization problem, where some decision variables are binary and other ones are continuous. The objective function takes into account all possible economic costs, whereas constraints arise from technical, normative, and environmental issues. Specifically, pollution and impacts, induced by the overall solid waste management system, are considered through the formalization of constraints on incineration emissions and on negative effects produced by disposal or other particular treatments.

  10. WIPP Doubles Solid Waste Reduction Rate in Fiscal Year 2013 | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Doubles Solid Waste Reduction Rate in Fiscal Year 2013 WIPP Doubles Solid Waste Reduction Rate in Fiscal Year 2013 December 5, 2013 - 12:00pm Addthis WIPP environmental and operations personnel gather next to pallets that will be provided to the local community as part of WIPP’s wood waste diversion program. WIPP environmental and operations personnel gather next to pallets that will be provided to the local community as part of WIPP's wood waste diversion program. CARLSBAD, N.M.

  11. Production of New Biomass/Waste-Containing Solid Fuels

    SciTech Connect (OSTI)

    Glenn A. Shirey; David J. Akers

    2005-09-23

    CQ Inc. and its industry partners--PBS Coals, Inc. (Friedens, Pennsylvania), American Fiber Resources (Fairmont, West Virginia), Allegheny Energy Supply (Williamsport, Maryland), and the Heritage Research Group (Indianapolis, Indiana)--addressed the objectives of the Department of Energy and industry to produce economical, new solid fuels from coal, biomass, and waste materials that reduce emissions from coal-fired boilers. This project builds on the team's commercial experience in composite fuels for energy production. The electric utility industry is interested in the use of biomass and wastes as fuel to reduce both emissions and fuel costs. In addition to these benefits, utilities also recognize the business advantage of consuming the waste byproducts of customers both to retain customers and to improve the public image of the industry. Unfortunately, biomass and waste byproducts can be troublesome fuels because of low bulk density, high moisture content, variable composition, handling and feeding problems, and inadequate information about combustion and emissions characteristics. Current methods of co-firing biomass and wastes either use a separate fuel receiving, storage, and boiler feed system, or mass burn the biomass by simply mixing it with coal on the storage pile. For biomass or biomass-containing composite fuels to be extensively used in the U.S., especially in the steam market, a lower cost method of producing these fuels must be developed that is applicable to a variety of combinations of biomass, wastes, and coal; economically competitive with current fuels; and provides environmental benefits compared with coal. During Phase I of this project (January 1999 to July 2000), several biomass/waste materials were evaluated for potential use in a composite fuel. As a result of that work and the team's commercial experience in composite fuels for energy production, paper mill sludge and coal were selected for further evaluation and demonstration in Phase II

  12. Evaluation of gasification and novel thermal processes for the treatment of municipal solid waste

    SciTech Connect (OSTI)

    Niessen, W.R.; Marks, C.H.; Sommerlad, R.E.

    1996-08-01

    This report identifies seven developers whose gasification technologies can be used to treat the organic constituents of municipal solid waste: Energy Products of Idaho; TPS Termiska Processor AB; Proler International Corporation; Thermoselect Inc.; Battelle; Pedco Incorporated; and ThermoChem, Incorporated. Their processes recover heat directly, produce a fuel product, or produce a feedstock for chemical processes. The technologies are on the brink of commercial availability. This report evaluates, for each technology, several kinds of issues. Technical considerations were material balance, energy balance, plant thermal efficiency, and effect of feedstock contaminants. Environmental considerations were the regulatory context, and such things as composition, mass rate, and treatability of pollutants. Business issues were related to likelihood of commercialization. Finally, cost and economic issues such as capital and operating costs, and the refuse-derived fuel preparation and energy conversion costs, were considered. The final section of the report reviews and summarizes the information gathered during the study.

  13. Recovery of solid fuel from municipal solid waste by hydrothermal treatment using subcritical water

    SciTech Connect (OSTI)

    Hwang, In-Hee; Aoyama, Hiroya; Matsuto, Toshihiko; Nakagishi, Tatsuhiro; Matsuo, Takayuki

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer Hydrothermal treatment using subcritical water was studied to recover solid fuel from MSW. Black-Right-Pointing-Pointer More than 75% of carbon in MSW was recovered as char. Black-Right-Pointing-Pointer Heating value of char was comparable to that of brown coal and lignite. Black-Right-Pointing-Pointer Polyvinyl chloride was decomposed at 295 Degree-Sign C and 8 MPa and was removed by washing. - Abstract: Hydrothermal treatments using subcritical water (HTSW) such as that at 234 Degree-Sign C and 3 MPa (LT condition) and 295 Degree-Sign C and 8 MPa (HT condition) were investigated to recover solid fuel from municipal solid waste (MSW). Printing paper, dog food (DF), wooden chopsticks, and mixed plastic film and sheets of polyethylene, polypropylene, and polystyrene were prepared as model MSW components, in which polyvinylchloride (PVC) powder and sodium chloride were used to simulate Cl sources. While more than 75% of carbon in paper, DF, and wood was recovered as char under both LT and HT conditions, plastics did not degrade under either LT or HT conditions. The heating value (HV) of obtained char was 13,886-27,544 kJ/kg and was comparable to that of brown coal and lignite. Higher formation of fixed carbon and greater oxygen dissociation during HTSW were thought to improve the HV of char. Cl atoms added as PVC powder and sodium chloride to raw material remained in char after HTSW. However, most Cl originating from PVC was found to converse into soluble Cl compounds during HTSW under the HT condition and could be removed by washing. From these results, the merit of HTSW as a method of recovering solid fuel from MSW is considered to produce char with minimal carbon loss without a drying process prior to HTSW. In addition, Cl originating from PVC decomposes into soluble Cl compound under the HT condition. The combination of HTSW under the HT condition and char washing might improve the quality of char as alternative fuel.

  14. U.A.C. R315: Environmental Quality, Solid and Hazardous Waste...

    Open Energy Info (EERE)

    : Environmental Quality, Solid and Hazardous Waste Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: U.A.C. R315:...

  15. NAC 444.731 - Class III Solid Waste Management Systems | Open...

    Open Energy Info (EERE)

    .731 - Class III Solid Waste Management Systems Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: NAC 444.731 - Class III...

  16. EA-1097: Solid waste Disposal- Nevada Test Site, Nye County, Nevada

    Office of Energy Efficiency and Renewable Energy (EERE)

    This EA evaluates the environmental impacts of the proposal to continue the on-site disposal of solid waste at the Area 9 and Area 23 landfills at the U.S. Department of Energy Nevada Test Site...

  17. Review of LCA studies of solid waste management systems – Part I: Lessons learned and perspectives

    SciTech Connect (OSTI)

    Laurent, Alexis; Bakas, Ioannis; Clavreul, Julie; Bernstad, Anna; Niero, Monia; Gentil, Emmanuel; Hauschild, Michael Z.; Christensen, Thomas H.

    2014-03-01

    Highlights: • We perform a critical review of 222 LCA studies of solid waste management systems. • Studies mainly concentrated in Europe with little application in developing countries. • Assessments of relevant waste types apart from household waste have been overlooked. • Local specificities of systems prevent a meaningful generalisation of the LCA results. • LCA should support recommendations representative of the local conditions. - Abstract: The continuously increasing solid waste generation worldwide calls for management strategies that integrate concerns for environmental sustainability. By quantifying environmental impacts of systems, life cycle assessment (LCA) is a tool, which can contribute to answer that call. But how, where and to which extent has it been applied to solid waste management systems (SWMSs) until now, and which lessons can be learnt from the findings of these LCA applications? To address these questions, we performed a critical review of 222 published LCA studies of SWMS. We first analysed the geographic distribution and found that the published studies have primarily been concentrated in Europe with little application in developing countries. In terms of technological coverage, they have largely overlooked application of LCA to waste prevention activities and to relevant waste types apart from household waste, e.g. construction and demolition waste. Waste management practitioners are thus encouraged to abridge these gaps in future applications of LCA. In addition to this contextual analysis, we also evaluated the findings of selected studies of good quality and found that there is little agreement in the conclusions among them. The strong dependence of each SWMS on local conditions, such as waste composition or energy system, prevents a meaningful generalisation of the LCA results as we find it in the waste hierarchy. We therefore recommend stakeholders in solid waste management to regard LCA as a tool, which, by its ability of

  18. Seasonal characterization of municipal solid waste (MSW) in the city of Chihuahua, Mexico

    SciTech Connect (OSTI)

    Gomez, Guadalupe; Meneses, Montserrat; Ballinas, Lourdes; Castells, Francesc

    2009-07-15

    Management of municipal solid waste (MSW) has become a significant environmental problem, especially in fast-growing cities. The amount of waste generated increases each year and this makes it difficult to create solutions which due to the increase in waste generation year after year and having to identify a solution that will have minimum impact on the environment. To determine the most sustainable waste management strategy for Chihuahua, it is first necessary to identify the nature and composition of the city's urban waste. The MSW composition varied considerably depending on many factors, the time of year is one of them. Therefore, as part of our attempt to implement an integral waste management system in the city of Chihuahua, we conducted a study of the characteristics of MSW composition for the different seasons. This paper analyzes and compares the findings of the study of the characterization and the generation of solid waste from households at three different socio-economic levels in the city over three periods (April and August, 2006 and January, 2007). The average weight of waste generated in Chihuahua, taking into account all three seasons, was 0.592 kg capita{sup -1} day{sup -1}. Our results show that the lowest income groups generated the least amount of waste. We also found that less waste was generated during the winter season. The breakdown for the composition of the waste shows that organic waste accounts for the largest proportion (45%), followed by paper (17%) and others (16%)

  19. Ground-water monitoring compliance plan for the Hanford Site Solid Waste Landfill

    SciTech Connect (OSTI)

    Fruland, R.M.

    1986-10-01

    Washington state regulations required that solid waste landfill facilities have ground-water monitoring programs in place by May 27, 1987. This document describes the well locations, installation, characterization studies and sampling and analysis plan to be followed in implementing the ground-water monitoring program at the Hanford Site Solid Waste Landfill (SWL). It is based on Washington Administrative Code WAC 173-304-490. 11 refs., 19 figs., 4 tabs.

  20. Fire protection guide for solid waste metal drum storage

    SciTech Connect (OSTI)

    Bucci, H.M.

    1996-09-16

    This guide provides a method to assess potential fire development in drum storage facilities. The mechanism of fire propagation/spread through stored drum arrays is a complex process. It involves flame heat transfer, transient conduction,convection, and radiation between drums (stored in an array configuration). There are several phenomena which may occur when drums are exposed to fire. The most dramatic is violent lid failure which results in total lid removal. When a drum loses its lid due to fire exposure, some or all of the contents may be ejected from the drum, and both the ejected combustible material and the combustible contents remaining within the container will burn. The scope of this guide is limited to storage arrays of steel drums containing combustible (primarily Class A) and noncombustible contents. Class B combustibles may be included in small amounts as free liquid within the solid waste contents.Storage arrays, which are anticipated in this guide, include single or multi-tier palletized (steel or wood pallets) drums,high rack storage of drums, and stacked arrays of drums where plywood sheets are used between tiers. The purpose of this guide is to describe a simple methodology that estimates the consequences of a fire in drum storage arrays. The extent of fire development and the resulting heat release rates can be estimated. Release fractions applicable to this type of storage are not addressed, and the transport of contaminants away from the source is not addressed. However, such assessments require the amount of combustible material consumed and the surface area of this burning material. The methods included in this guide do provide this information.

  1. Review of Potential Candidate Stabilization Technologies for Liquid and Solid Secondary Waste Streams

    SciTech Connect (OSTI)

    Pierce, Eric M.; Mattigod, Shas V.; Westsik, Joseph H.; Serne, R. Jeffrey; Icenhower, Jonathan P.; Scheele, Randall D.; Um, Wooyong; Qafoku, Nikolla

    2010-01-30

    Pacific Northwest National Laboratory has initiated a waste form testing program to support the long-term durability evaluation of a waste form for secondary wastes generated from the treatment and immobilization of Hanford radioactive tank wastes. The purpose of the work discussed in this report is to identify candidate stabilization technologies and getters that have the potential to successfully treat the secondary waste stream liquid effluent, mainly from off-gas scrubbers and spent solids, produced by the Hanford Tank Waste Treatment and Immobilization Plant (WTP). Down-selection to the most promising stabilization processes/waste forms is needed to support the design of a solidification treatment unit (STU) to be added to the Effluent Treatment Facility (ETF). To support key decision processes, an initial screening of the secondary liquid waste forms must be completed by February 2010.

  2. An overview of the sustainability of solid waste management at military installations

    SciTech Connect (OSTI)

    Borglin, S.; Shore, J.; Worden, H.; Jain, R.

    2009-08-15

    Sustainable municipal solid waste management at military solutions necessitates a combined approach that includes waste reduction, alternative disposal techniques, and increased recycling. Military installations are unique because they often represent large employers in the region in which they are located, thereby making any practices they employ impact overall waste management strategies of the region. Solutions for waste sustainability will be dependent on operational directives and base location, availability of resources such as water and energy, and size of population. Presented in this paper are descriptions of available waste strategies that can be used to support sustainable waste management. Results presented indicate source reduction and recycling to be the most sustainable solutions. However, new waste-to-energy plants and composting have potential to improve on these well proven techniques and allow military installations to achieve sustainable waste management.

  3. H. R. 2670: A bill to amend the Solid Waste Disposal Act to regulate ash from municipal solid waste incinerators as a hazardous waste, introduced in the US House of Representatives, One Hundred Second Congress, First Session, June 18, 1991

    SciTech Connect (OSTI)

    Not Available

    1991-01-01

    This bill was introduced into the US House of Representatives on June 18, 1991 to amend the Solid Waste disposal Act to regulate ash from municipal solid waste incinerators as a hazardous waste. When garbage is burned, toxic materials are concentrated in the ash. If the ash is disposed of in a landfill, these toxic materials can contaminate the ground water or surface water by leaching toxic materials from the ash. In addition, disposing of contaminated ash improperly can pose a health hazard. New authority is provided for regulating incinerator ash as a hazardous waste.

  4. The composition, heating value and renewable share of the energy content of mixed municipal solid waste in Finland

    SciTech Connect (OSTI)

    Horttanainen, M. Teirasvuo, N.; Kapustina, V.; Hupponen, M.; Luoranen, M.

    2013-12-15

    Highlights: • New experimental data of mixed MSW properties in a Finnish case region. • The share of renewable energy of mixed MSW. • The results were compared with earlier international studies. • The average share of renewable energy was 30% and the average LHVar 19 MJ/kg. • Well operating source separation decreases the renewable energy content of MSW. - Abstract: For the estimation of greenhouse gas emissions from waste incineration it is essential to know the share of the renewable energy content of the combusted waste. The composition and heating value information is generally available, but the renewable energy share or heating values of different fractions of waste have rarely been determined. In this study, data from Finnish studies concerning the composition and energy content of mixed MSW were collected, new experimental data on the compositions, heating values and renewable share of energy were presented and the results were compared to the estimations concluded from earlier international studies. In the town of Lappeenranta in south-eastern Finland, the share of renewable energy ranged between 25% and 34% in the energy content tests implemented for two sample trucks. The heating values of the waste and fractions of plastic waste were high in the samples compared to the earlier studies in Finland. These high values were caused by good source separation and led to a low share of renewable energy content in the waste. The results showed that in mixed municipal solid waste the renewable share of the energy content can be significantly lower than the general assumptions (50–60%) when the source separation of organic waste, paper and cardboard is carried out successfully. The number of samples was however small for making extensive conclusions on the results concerning the heating values and renewable share of energy and additional research is needed for this purpose.

  5. Analytical and experimental evaluation of solid waste drum fire performance volumes I and II

    SciTech Connect (OSTI)

    Hecker, C.F.,; Rhodes, B.T.; Beitel, J.J.; Gottuk, D.T.; Beyler, C.L.; Rosenbaum, E.R.,

    1995-04-28

    Fire hazards associated with drum storage of radioactively contaminated wastes are a major concern in DOE facilities design for long term storage of solid wastes in drums. These facilities include drums stored in pallet arrays and in rack storage systems. This report details testing in this area

  6. Haul trash or haul ash: Local government decision-making for municipal solid waste disposal

    SciTech Connect (OSTI)

    Keeler, A.G.; Renkow, M. )

    1992-12-01

    A model of local government choice of solid waste disposal strategies is developed. The conditions under which incineration is an optimal strategy is derived. The effects of mandatory recycling legislation and extra-local policies that reduce the cost of recycling and the size of the waste stream are investigated.

  7. Application for a Permit to Operate a Class III Solid Waste Disposal Site at the Nevada Test Site Area 5 Asbestiform Low-Level Solid Waste Disposal Site

    SciTech Connect (OSTI)

    NSTec Environmental Programs

    2010-09-14

    The NTS solid waste disposal sites must be permitted by the state of Nevada Solid Waste Management Authority (SWMA). The SWMA for the NTS is the Nevada Division of Environmental Protection, Bureau of Federal Facilities (NDEP/BFF). The U.S. Department of Energy's National Nuclear Security Administration Nevada Site Office (NNSA/NSO) as land manager (owner), and National Security Technologies (NSTec), as operator, will store, collect, process, and dispose all solid waste by means that do not create a health hazard, a public nuisance, or cause impairment of the environment. NTS disposal sites will not be included in the Nye County Solid Waste Management Plan. The NTS is located approximately 105 kilometers (km) (65 miles [mi]) northwest of Las Vegas, Nevada (Figure 1). The U.S. Department of Energy (DOE) is the federal lands management authority for the NTS, and NSTec is the Management and Operations contractor. Access on and off the NTS is tightly controlled, restricted, and guarded on a 24-hour basis. The NTS has signs posted along its entire perimeter. NSTec is the operator of all solid waste disposal sites on the NTS. The Area 5 RWMS is the location of the permitted facility for the Solid Waste Disposal Site (SWDS). The Area 5 RWMS is located near the eastern edge of the NTS (Figure 2), approximately 26 km (16 mi) north of Mercury, Nevada. The Area 5 RWMS is used for the disposal of low-level waste (LLW) and mixed low-level waste. Many areas surrounding the RWMS have been used in conducting nuclear tests. A Notice of Intent to operate the disposal site as a Class III site was submitted to the state of Nevada on January 28, 1994, and was acknowledged as being received in a letter to the NNSA/NSO on August 30, 1994. Interim approval to operate a Class III SWDS for regulated asbestiform low-level waste (ALLW) was authorized on August 12, 1996 (in letter from Paul Liebendorfer to Runore Wycoff), with operations to be conducted in accordance with the ''Management Plan

  8. Characterization of the solid low level mixed waste inventory for the solid waste thermal treatment activity - III

    SciTech Connect (OSTI)

    Place, B.G., Westinghouse Hanford

    1996-09-24

    The existing thermally treatable, radioactive mixed waste inventory is characterized to support implementation of the commercial, 1214 thermal treatment contract. The existing thermally treatable waste inventory has been identified using a decision matrix developed by Josephson et al. (1996). Similar to earlier waste characterization reports (Place 1993 and 1994), hazardous materials, radionuclides, physical properties, and waste container data are statistically analyzed. In addition, the waste inventory data is analyzed to correlate waste constituent data that are important to the implementation of the commercial thermal treatment contract for obtaining permits and for process design. The specific waste parameters, which were analyzed, include the following: ``dose equivalent`` curie content, polychlorinated biphenyl (PCB) content, identification of containers with PA-related mobile radionuclides (14C, 12 79Se, 99Tc, and U isotopes), tritium content, debris and non-debris content, container free liquid content, fissile isotope content, identification of dangerous waste codes, asbestos containers, high mercury containers, beryllium dust containers, lead containers, overall waste quantities, analysis of container types, and an estimate of the waste compositional split based on the thermal treatment contractor`s proposed process. A qualitative description of the thermally treatable mixed waste inventory is also provided.

  9. Solid waste integrated cost analysis model: 1991 project year report. Part 2

    SciTech Connect (OSTI)

    Not Available

    1991-12-31

    The purpose of the City of Houston`s 1991 Solid Waste Integrated Cost Analysis Model (SWICAM) project was to continue the development of a computerized cost analysis model. This model is to provide solid waste managers with tool to evaluate the dollar cost of real or hypothetical solid waste management choices. Those choices have become complicated by the implementation of Subtitle D of the Resources Conservation and Recovery Act (RCRA) and the EPA`s Integrated Approach to managing municipal solid waste;. that is, minimize generation, maximize recycling, reduce volume (incinerate), and then bury (landfill) only the remainder. Implementation of an integrated solid waste management system involving all or some of the options of recycling, waste to energy, composting, and landfilling is extremely complicated. Factors such as hauling distances, markets, and prices for recyclable, costs and benefits of transfer stations, and material recovery facilities must all be considered. A jurisdiction must determine the cost impacts of implementing a number of various possibilities for managing, handling, processing, and disposing of waste. SWICAM employs a single Lotus 123 spreadsheet to enable a jurisdiction to predict or assess the costs of its waste management system. It allows the user to select his own process flow for waste material and to manipulate the model to include as few or as many options as he or she chooses. The model will calculate the estimated cost for those choices selected. The user can then change the model to include or exclude waste stream components, until the mix of choices suits the user. Graphs can be produced as a visual communication aid in presenting the results of the cost analysis. SWICAM also allows future cost projections to be made.

  10. Westinghouse Cementation Facility of Solid Waste Treatment System - 13503

    SciTech Connect (OSTI)

    Jacobs, Torsten; Aign, Joerg

    2013-07-01

    During NPP operation, several waste streams are generated, caused by different technical and physical processes. Besides others, liquid waste represents one of the major types of waste. Depending on national regulation for storage and disposal of radioactive waste, solidification can be one specific requirement. To accommodate the global request for waste treatment systems Westinghouse developed several specific treatment processes for the different types of waste. In the period of 2006 to 2008 Westinghouse awarded several contracts for the design and delivery of waste treatment systems related to the latest CPR-1000 nuclear power plants. One of these contracts contains the delivery of four Cementation Facilities for waste treatment, s.c. 'Follow on Cementations' dedicated to three locations, HongYanHe, NingDe and YangJiang, of new CPR-1000 nuclear power stations in the People's Republic of China. Previously, Westinghouse delivered a similar cementation facility to the CPR-1000 plant LingAo II, in Daya Bay, PR China. This plant already passed the hot functioning tests successfully in June 2012 and is now ready and released for regular operation. The 'Follow on plants' are designed to package three 'typical' kind of radioactive waste: evaporator concentrates, spent resins and filter cartridges. The purpose of this paper is to provide an overview on the Westinghouse experience to design and execution of cementation facilities. (authors)

  11. List of Municipal Solid Waste Incentives | Open Energy Information

    Open Energy Info (EERE)

    Waste Photovoltaics Solar Thermal Electric Coal with CCS Energy Storage Nuclear Wind Natural Gas Yes Alternative Energy Portfolio Standard (Pennsylvania) Renewables Portfolio...

  12. Hanford Site Solid Waste Acceptance Program - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    units complies with all environmental, safety, and operational requirements. This web site describes the Hanford Site program for acceptance of radioactive waste....

  13. Reducing the environmental impact on solid wastes from a fluidized...

    Office of Scientific and Technical Information (OSTI)

    Subject: 01 COAL, LIGNITE, AND PEAT; COAL; FLUIDIZED-BED COMBUSTION; WASTE MANAGEMENT; AIR POLLUTION ABATEMENT; ALUMINIUM OXIDES; CALCIUM OXIDES; CHEMICAL ACTIVATION; COMPARATIVE ...

  14. NEW SOLID FUELS FROM COAL AND BIOMASS WASTE

    SciTech Connect (OSTI)

    Hamid Farzan

    2001-09-24

    Under DOE sponsorship, McDermott Technology, Inc. (MTI), Babcock and Wilcox Company (B and W), and Minergy Corporation developed and evaluated a sludge derived fuel (SDF) made from sewage sludge. Our approach is to dry and agglomerate the sludge, combine it with a fluxing agent, if necessary, and co-fire the resulting fuel with coal in a cyclone boiler to recover the energy and to vitrify mineral matter into a non-leachable product. This product can then be used in the construction industry. A literature search showed that there is significant variability of the sludge fuel properties from a given wastewater plant (seasonal and/or day-to-day changes) or from different wastewater plants. A large sewage sludge sample (30 tons) from a municipal wastewater treatment facility was collected, dried, pelletized and successfully co-fired with coal in a cyclone-equipped pilot. Several sludge particle size distributions were tested. Finer sludge particle size distributions, similar to the standard B and W size distribution for sub-bituminous coal, showed the best combustion and slagging performance. Up to 74.6% and 78.9% sludge was successfully co-fired with pulverized coal and with natural gas, respectively. An economic evaluation on a 25-MW power plant showed the viability of co-firing the optimum SDF in a power generation application. The return on equity was 22 to 31%, adequate to attract investors and allow a full-scale project to proceed. Additional market research and engineering will be required to verify the economic assumptions. Areas to focus on are: plant detail design and detail capital cost estimates, market research into possible project locations, sludge availability at the proposed project locations, market research into electric energy sales and renewable energy sales opportunities at the proposed project location. As a result of this program, wastes that are currently not being used and considered an environmental problem will be processed into a renewable

  15. Waste management health risk assessment: A case study of a solid waste landfill in South Italy

    SciTech Connect (OSTI)

    Davoli, E.; Fattore, E.; Paiano, V.; Colombo, A.; Palmiotto, M.; Rossi, A.N.; Il Grande, M.; Fanelli, R.

    2010-08-15

    An integrated risk assessment study has been performed in an area within 5 km from a landfill that accepts non hazardous waste. The risk assessment was based on measured emissions and maximum chronic population exposure, for both children and adults, to contaminated air, some foods and soil. The toxic effects assessed were limited to the main known carcinogenic compounds emitted from landfills coming both from landfill gas torch combustion (e.g., dioxins, furans and polycyclic aromatic hydrocarbons, PAHs) and from diffusive emissions (vinyl chloride monomer, VCM). Risk assessment has been performed both for carcinogenic and non-carcinogenic effects. Results indicate that cancer and non-cancer effects risk (hazard index, HI) are largely below the values accepted from the main international agencies (e.g., WHO, US EPA) and national legislation ( and ).

  16. Decision support models for solid waste management: Review and game-theoretic approaches

    SciTech Connect (OSTI)

    Karmperis, Athanasios C.; Aravossis, Konstantinos; Tatsiopoulos, Ilias P.; Sotirchos, Anastasios

    2013-05-15

    Highlights: ? The mainly used decision support frameworks for solid waste management are reviewed. ? The LCA, CBA and MCDM models are presented and their strengths, weaknesses, similarities and possible combinations are analyzed. ? The game-theoretic approach in a solid waste management context is presented. ? The waste management bargaining game is introduced as a specific decision support framework. ? Cooperative and non-cooperative game-theoretic approaches to decision support for solid waste management are discussed. - Abstract: This paper surveys decision support models that are commonly used in the solid waste management area. Most models are mainly developed within three decision support frameworks, which are the life-cycle assessment, the costbenefit analysis and the multi-criteria decision-making. These frameworks are reviewed and their strengths and weaknesses as well as their critical issues are analyzed, while their possible combinations and extensions are also discussed. Furthermore, the paper presents how cooperative and non-cooperative game-theoretic approaches can be used for the purpose of modeling and analyzing decision-making in situations with multiple stakeholders. Specifically, since a waste management model is sustainable when considering not only environmental and economic but also social aspects, the waste management bargaining game is introduced as a specific decision support framework in which future models can be developed.

  17. Operating limit study for the proposed solid waste landfill at Paducah Gaseous Diffusion Plant

    SciTech Connect (OSTI)

    Lee, D.W.; Wang, J.C.; Kocher, D.C.

    1995-06-01

    A proposed solid waste landfill at Paducah Gaseous Diffusion Plant (PGDP) would accept wastes generated during normal operations that are identified as non-radioactive. These wastes may include small amounts of radioactive material from incidental contamination during plant operations. A site-specific analysis of the new solid waste landfill is presented to determine a proposed operating limit that will allow for waste disposal operations to occur such that protection of public health and the environment from the presence of incidentally contaminated waste materials can be assured. Performance objectives for disposal were defined from existing regulatory guidance to establish reasonable dose limits for protection of public health and the environment. Waste concentration limits were determined consistent with these performance objectives for the protection of off-site individuals and inadvertent intruders who might be directly exposed to disposed wastes. Exposures of off-site individuals were estimated using a conservative, site-specific model of the groundwater transport of contamination from the wastes. Direct intrusion was analyzed using an agricultural homesteader scenario. The most limiting concentrations from direct intrusion or groundwater transport were used to establish the concentration limits for radionuclides likely to be present in PGDP wastes.

  18. A multi-echelon supply chain model for municipal solid waste management system

    SciTech Connect (OSTI)

    Zhang, Yimei; Huang, Guo He; He, Li

    2014-02-15

    In this paper, a multi-echelon multi-period solid waste management system (MSWM) was developed by inoculating with multi-echelon supply chain. Waste managers, suppliers, industries and distributors could be engaged in joint strategic planning and operational execution. The principal of MSWM system is interactive planning of transportation and inventory for each organization in waste collection, delivery and disposal. An efficient inventory management plan for MSWM would lead to optimized productivity levels under available capacities (e.g., transportation and operational capacities). The applicability of the proposed system was illustrated by a case with three cities, one distribution and two waste disposal facilities. Solutions of the decision variable values under different significant levels indicate a consistent trend. With an increased significant level, the total generated waste would be decreased, and the total transported waste through distribution center to waste to energy and landfill would be decreased as well.

  19. Forecasting municipal solid waste generation in a fast-growing urban region with system dynamics modeling

    SciTech Connect (OSTI)

    Dyson, Brian; Chang, N.-B. . E-mail: nchang@even.tamuk.edu

    2005-07-01

    Both planning and design of municipal solid waste management systems require accurate prediction of solid waste generation. Yet achieving the anticipated prediction accuracy with regard to the generation trends facing many fast-growing regions is quite challenging. The lack of complete historical records of solid waste quantity and quality due to insufficient budget and unavailable management capacity has resulted in a situation that makes the long-term system planning and/or short-term expansion programs intangible. To effectively handle these problems based on limited data samples, a new analytical approach capable of addressing socioeconomic and environmental situations must be developed and applied for fulfilling the prediction analysis of solid waste generation with reasonable accuracy. This study presents a new approach - system dynamics modeling - for the prediction of solid waste generation in a fast-growing urban area based on a set of limited samples. To address the impact on sustainable development city wide, the practical implementation was assessed by a case study in the city of San Antonio, Texas (USA). This area is becoming one of the fastest-growing regions in North America due to the economic impact of the North American Free Trade Agreement (NAFTA). The analysis presents various trends of solid waste generation associated with five different solid waste generation models using a system dynamics simulation tool - Stella[reg]. Research findings clearly indicate that such a new forecasting approach may cover a variety of possible causative models and track inevitable uncertainties down when traditional statistical least-squares regression methods are unable to handle such issues.

  20. Solid waste landfills under the Resource Conservation and Recovery Act Subtitle D

    SciTech Connect (OSTI)

    1995-11-01

    This document provides guidance for meeting: (1) Guidelines for the Land Disposal of Solid Waste (40 CFR 241); (2) Criteria for Classification of Solid Waste Disposal Facilities and Practices (40 CFR 257); and (3) Criteria for Municipal Solid Waste Landfills (MSWLFs) (40 CFR Part 258). Revisions to 40 CFR 257 and a new Part 258 were published in the Federal Register (56 FR 50978, 10/9/91). The Guidelines for the Land Disposal of Solid Waste set requirements and recommended procedures to ensure that the design, construction, and operation of land disposal sites is done in a manner that will protect human health and the environment. These regulations are applicable to MSWLFs and non-MSWLFs (e.g., landfills used only for the disposal of demolition debris, commercial waste, and/or industrial waste). These guidelines are not applicable to the, land disposal of hazardous, agricultural, and/or mining wastes. These criteria are to be used under the Resource Conservation and Recovery Act (RCRA) in determining which solid waste disposal facilities pose a reasonable possibility of adversely affecting human health or the environment. Facilities failing to satisfy these criteria will be considered to be open dumps which are prohibited under Section 4005 of RCRA. The Criteria for MSWLFs are applicable only to MSWLFs, including those MSWLFs in which sewage sludge is co-disposed with household waste. Based on specific criteria, certain MSWLFs are exempt from some, or all, of the regulations of 40 CFR 258. MSWLFs that fail to satisfy the criteria specified in 40 CFR 258 are also considered open dumps for the purposes of Section 4005 of RCRA. Through the use of a series of interrelated flow diagrams, this guidance document directs the reader to each design, operation, maintenance, and closure activity that must be performed for MSWLFs and non-MSWLFs.

  1. Abundance of {sup 14}C in biomass fractions of wastes and solid recovered fuels

    SciTech Connect (OSTI)

    Fellner, Johann Rechberger, Helmut

    2009-05-15

    In recent years thermal utilization of mixed wastes and solid recovered fuels has become of increasing importance in European waste management. Since wastes or solid recovered fuels are generally composed of fossil and biogenic materials, only part of the CO{sub 2} emissions is accounted for in greenhouse gas inventories or emission trading schemes. A promising approach for determining this fraction is the so-called radiocarbon method. It is based on different ratios of the carbon isotopes {sup 14}C and {sup 12}C in fossil and biogenic fuels. Fossil fuels have zero radiocarbon, whereas biogenic materials are enriched in {sup 14}C and reflect the {sup 14}CO{sub 2} abundance of the ambient atmosphere. Due to nuclear weapons tests in the past century, the radiocarbon content in the atmosphere has not been constant, which has resulted in a varying {sup 14}C content of biogenic matter, depending on the period of growth. In the present paper {sup 14}C contents of different biogenic waste fractions (e.g., kitchen waste, paper, wood), as well as mixtures of different wastes (household, bulky waste, and commercial waste), and solid recovered fuels are determined. The calculated {sup 14}C content of the materials investigated ranges between 98 and 135 pMC.

  2. Municipal solid waste combustion: Fuel testing and characterization

    SciTech Connect (OSTI)

    Bushnell, D.J.; Canova, J.H.; Dadkhah-Nikoo, A.

    1990-10-01

    The objective of this study is to screen and characterize potential biomass fuels from waste streams. This will be accomplished by determining the types of pollutants produced while burning selected municipal waste, i.e., commercial mixed waste paper residential (curbside) mixed waste paper, and refuse derived fuel. These materials will be fired alone and in combination with wood, equal parts by weight. The data from these experiments could be utilized to size pollution control equipment required to meet emission standards. This document provides detailed descriptions of the testing methods and evaluation procedures used in the combustion testing and characterization project. The fuel samples will be examined thoroughly from the raw form to the exhaust emissions produced during the combustion test of a densified sample.

  3. Utilization of ash from municipal solid waste combustion

    SciTech Connect (OSTI)

    Jones, C.; Hahn, J.; Magee, B.; Yuen, N.; Sandefur, K.; Tom, J.; Yap, C.

    1999-09-01

    This ash study investigated the beneficial use of municipal waste combustion combined ash from the H-POWER facility in Oahu. These uses were grouped into intermediate cover for final closure of the Waipahu landfill, daily cover at the Waimanalo Gulch Landfill, and partial replacement for aggregate in asphalt for road paving. All proposed uses examine combined fly and bottom ash from a modern waste-to-energy facility that meets requirements of the Clean Air Act Amendments for Maximum Achievable Control Technology.

  4. Nuclear Solid Waste Processing Design at the Idaho Spent Fuels Facility

    SciTech Connect (OSTI)

    Dippre, M. A.

    2003-02-25

    A spent nuclear fuels (SNF) repackaging and storage facility was designed for the Idaho National Engineering and Environmental Laboratory (INEEL), with nuclear solid waste processing capability. Nuclear solid waste included contaminated or potentially contaminated spent fuel containers, associated hardware, machinery parts, light bulbs, tools, PPE, rags, swabs, tarps, weld rod, and HEPA filters. Design of the nuclear solid waste processing facilities included consideration of contractual, regulatory, ALARA (as low as reasonably achievable) exposure, economic, logistical, and space availability requirements. The design also included non-attended transfer methods between the fuel packaging area (FPA) (hot cell) and the waste processing area. A monitoring system was designed for use within the FPA of the facility, to pre-screen the most potentially contaminated fuel canister waste materials, according to contact- or non-contact-handled capability. Fuel canister waste materials which are not able to be contact-handled after attempted decontamination will be processed remotely and packaged within the FPA. Noncontact- handled materials processing includes size-reduction, as required to fit into INEEL permitted containers which will provide sufficient additional shielding to allow contact handling within the waste areas of the facility. The current design, which satisfied all of the requirements, employs mostly simple equipment and requires minimal use of customized components. The waste processing operation also minimizes operator exposure and operator attendance for equipment maintenance. Recently, discussions with the INEEL indicate that large canister waste materials can possibly be shipped to the burial facility without size-reduction. New waste containers would have to be designed to meet the drop tests required for transportation packages. The SNF waste processing facilities could then be highly simplified, resulting in capital equipment cost savings, operational

  5. Process and technological aspects of municipal solid waste gasification. A review

    SciTech Connect (OSTI)

    Arena, Umberto

    2012-04-15

    Highlights: Black-Right-Pointing-Pointer Critical assessment of the main commercially available MSW gasifiers. Black-Right-Pointing-Pointer Detailed discussion of the basic features of gasification process. Black-Right-Pointing-Pointer Description of configurations of gasification-based waste-to-energy units. Black-Right-Pointing-Pointer Environmental performance analysis, on the basis of independent sources data. - Abstract: The paper proposes a critical assessment of municipal solid waste gasification today, starting from basic aspects of the process (process types and steps, operating and performance parameters) and arriving to a comparative analysis of the reactors (fixed bed, fluidized bed, entrained bed, vertical shaft, moving grate furnace, rotary kiln, plasma reactor) as well as of the possible plant configurations (heat gasifier and power gasifier) and the environmental performances of the main commercially available gasifiers for municipal solid wastes. The analysis indicates that gasification is a technically viable option for the solid waste conversion, including residual waste from separate collection of municipal solid waste. It is able to meet existing emission limits and can have a remarkable effect on reduction of landfill disposal option.

  6. Environmental performance evaluation of large-scale municipal solid waste incinerators using data envelopment analysis

    SciTech Connect (OSTI)

    Chen, H.-W.; Chang, N.-B.; Chen, J.-C.; Tsai, S.-J.

    2010-07-15

    Limited to insufficient land resources, incinerators are considered in many countries such as Japan and Germany as the major technology for a waste management scheme capable of dealing with the increasing demand for municipal and industrial solid waste treatment in urban regions. The evaluation of these municipal incinerators in terms of secondary pollution potential, cost-effectiveness, and operational efficiency has become a new focus in the highly interdisciplinary area of production economics, systems analysis, and waste management. This paper aims to demonstrate the application of data envelopment analysis (DEA) - a production economics tool - to evaluate performance-based efficiencies of 19 large-scale municipal incinerators in Taiwan with different operational conditions. A 4-year operational data set from 2002 to 2005 was collected in support of DEA modeling using Monte Carlo simulation to outline the possibility distributions of operational efficiency of these incinerators. Uncertainty analysis using the Monte Carlo simulation provides a balance between simplifications of our analysis and the soundness of capturing the essential random features that complicate solid waste management systems. To cope with future challenges, efforts in the DEA modeling, systems analysis, and prediction of the performance of large-scale municipal solid waste incinerators under normal operation and special conditions were directed toward generating a compromised assessment procedure. Our research findings will eventually lead to the identification of the optimal management strategies for promoting the quality of solid waste incineration, not only in Taiwan, but also elsewhere in the world.

  7. A study of tritium in municipal solid waste leachate and gas

    SciTech Connect (OSTI)

    Mutch Jr, R. D.; Mahony, J. D.

    2008-07-15

    It has become increasingly clear in the last few years that the vast majority of municipal solid waste landfills produce leachate that contains elevated levels of tritium. The authors recently conducted a study of landfills in New York and New Jersey and found that the mean concentration of tritium in the leachate from ten municipal solid waste (MSW) landfills was 33,800 pCi/L with a peak value of 192,000 pCi/L. A 2003 study in California reported a mean tritium concentration of 99,000 pCi/L with a peak value of 304,000 pCi/L. Studies in Pennsylvania and the UK produced similar results. The USEPA MCL for tritium is 20,000 pCi/L. Tritium is also manifesting itself as landfill gas and landfill gas condensate. Landfill gas condensate samples from landfills in the UK and California were found to have tritium concentrations as high as 54,400 and 513,000 pCi/L, respectively. The tritium found in MSW leachate is believed to derive principally from gaseous tritium lighting devices used in some emergency exit signs, compasses, watches, and even novelty items, such as 'glow stick' key chains. This study reports the findings of recent surveys of leachate from a number of municipal solid waste landfills, both open and closed, from throughout the United States and Europe. The study evaluates the human health and ecological risks posed by elevated tritium levels in municipal solid waste leachate and landfill gas and the implications to their safe management. We also assess the potential risks posed to solid waste management facility workers exposed to tritium-containing waste materials in transfer stations and other solid waste management facilities. (authors)

  8. FY 1996 solid waste integrated life-cycle forecast container summary volume 1 and 2

    SciTech Connect (OSTI)

    Valero, O.J.

    1996-04-23

    For the past six years, a waste volume forecast has been collected annually from onsite and offsite generators that currently ship or are planning to ship solid waste to the Westinghouse Hanford Company`s Central Waste Complex (CWC). This document provides a description of the containers expected to be used for these waste shipments from 1996 through the remaining life cycle of the Hanford Site. In previous years, forecast data have been reported for a 30-year time period; however, the life-cycle approach was adopted this year to maintain consistency with FY 1996 Multi-Year Program Plans. This document is a companion report to the more detailed report on waste volumes: WHC-EP0900, FY 1996 Solid Waste Integrated Life-Cycle Forecast Volume Summary. Both of these documents are based on data gathered during the FY 1995 data call and verified as of January, 1996. These documents are intended to be used in conjunction with other solid waste planning documents as references for short and long-term planning of the WHC Solid Waste Disposal Division`s treatment, storage, and disposal activities over the next several decades. This document focuses on the types of containers that will be used for packaging low-level mixed waste (LLMW) and transuranic waste (both non-mixed and mixed) (TRU(M)). The major waste generators for each waste category and container type are also discussed. Containers used for low-level waste (LLW) are described in Appendix A, since LLW requires minimal treatment and storage prior to onsite disposal in the LLW burial grounds. The FY 1996 forecast data indicate that about 100,900 cubic meters of LLMW and TRU(M) waste are expected to be received at the CWC over the remaining life cycle of the site. Based on ranges provided by the waste generators, this baseline volume could fluctuate between a minimum of about 59,720 cubic meters and a maximum of about 152,170 cubic meters.

  9. Solid waste bin detection and classification using Dynamic Time Warping and MLP classifier

    SciTech Connect (OSTI)

    Islam, Md. Shafiqul; Hannan, M.A.; Basri, Hassan; Hussain, Aini; Arebey, Maher

    2014-02-15

    Highlights: • Solid waste bin level detection using Dynamic Time Warping (DTW). • Gabor wavelet filter is used to extract the solid waste image features. • Multi-Layer Perceptron classifier network is used for bin image classification. • The classification performance evaluated by ROC curve analysis. - Abstract: The increasing requirement for Solid Waste Management (SWM) has become a significant challenge for municipal authorities. A number of integrated systems and methods have introduced to overcome this challenge. Many researchers have aimed to develop an ideal SWM system, including approaches involving software-based routing, Geographic Information Systems (GIS), Radio-frequency Identification (RFID), or sensor intelligent bins. Image processing solutions for the Solid Waste (SW) collection have also been developed; however, during capturing the bin image, it is challenging to position the camera for getting a bin area centralized image. As yet, there is no ideal system which can correctly estimate the amount of SW. This paper briefly discusses an efficient image processing solution to overcome these problems. Dynamic Time Warping (DTW) was used for detecting and cropping the bin area and Gabor wavelet (GW) was introduced for feature extraction of the waste bin image. Image features were used to train the classifier. A Multi-Layer Perceptron (MLP) classifier was used to classify the waste bin level and estimate the amount of waste inside the bin. The area under the Receiver Operating Characteristic (ROC) curves was used to statistically evaluate classifier performance. The results of this developed system are comparable to previous image processing based system. The system demonstration using DTW with GW for feature extraction and an MLP classifier led to promising results with respect to the accuracy of waste level estimation (98.50%). The application can be used to optimize the routing of waste collection based on the estimated bin level.

  10. Constructed wetlands for municipal solid waste landfill leachate treatment. Final report

    SciTech Connect (OSTI)

    Peverly, J.; Sanford, W.E.; Steenhuis, T.S.

    1993-11-01

    In 1989, the US Geological Survey and Cornell University, in cooperation with the New York State Energy Research and Development Authority and the Tompkins County Solid Waste Department, began a three-year study at a municipal solid-waste landfill near Ithaca, New York, to test the effectiveness of leachate treatment with constructed wetlands and to examine the associated treatment processes. Specific objectives of the study were to examine: treatment efficiency as function of substrate composition and grain size, degree of plant growth, and seasonal changes in evapotranspiration rates and microbial activity; effects of leachate and plant growth on the hydraulic characteristics of the substrate; and chemical, biological, and physical processes by which nutrients, metals, and organic compounds are removed from leachate as it flows through the substrate. A parallel study at a municipal solid-waste landfill near Fenton, New York was conducted by researchers at Cornell University, Ithaca College, and Hawk Engineering (Trautmann and others, 1989). Results are described.

  11. Survey of carbonization facilities for municipal solid waste treatment in Japan

    SciTech Connect (OSTI)

    Hwang, In-Hee; Kawamoto, Katsuya

    2010-07-15

    The operations of carbonization facilities for municipal solid waste treatment in Japan were examined. Input waste, system processes, material flows, quality of char and its utilization, fuel and chemical consumption, control of facility emissions, and trouble areas in facility operation were investigated and analyzed. Although carbonization is a technically available thermochemical conversion method for municipal solid waste treatment, problems of energy efficiency and char utilization must be solved for carbonization to be competitive. Possible solutions include (1) optimizing the composition of input waste, treatment scale, organization of unit processes, operational methods, and quality and yield of char on the basis of analysis and feedback of long-term operating data of present operating facilities and (2) securing stable char demands by linking with local industries such as thermal electric power companies, iron manufacturing plants, and cement production plants.

  12. Technology Evaluation for Conditioning of Hanford Tank Waste Using Solids Segregation and Size Reduction

    SciTech Connect (OSTI)

    Restivo, Michael L.; Stone, M. E.; Herman, D. T.; Lambert, Daniel P.; Duignan, Mark R.; Smith, Gary L.; Wells, Beric E.; Lumetta, Gregg J.; Enderlin, Carl W.; Adkins, Harold E.

    2014-04-24

    The Savannah River National Laboratory and the Pacific Northwest National Laboratory team performed a literature search on current and proposed technologies for solids segregation and size reduction of particles in the slurry feed from the Hanford Tank Farm. The team also investigated technology research performed on waste tank slurries, both real and simulated, and reviewed academic theory applicable to solids segregation and size reduction. This review included text book applications and theory, commercial applications suitable for a nuclear environment, research of commercial technologies suitable for a nuclear environment, and those technologies installed in a nuclear environment, including technologies implemented at Department of Energy facilities. Information on each technology is provided in this report along with the advantages and disadvantages of the technologies for this application. Any technology selected would require testing to verify the ability to meet the High-Level Waste Feed Waste Acceptance Criteria to the Hanford Tank Waste Treatment and Immobilization Plant Pretreatment Facility.

  13. Reverse logistics network for municipal solid waste management: The inclusion of waste pickers as a Brazilian legal requirement

    SciTech Connect (OSTI)

    Ferri, Giovane Lopes; Diniz Chaves, Gisele de Lorena; Ribeiro, Glaydston Mattos

    2015-06-15

    Highlights: • We propose a reverse logistics network for MSW involving waste pickers. • A generic facility location mathematical model was validated in a Brazilian city. • The results enable to predict the capacity for screening and storage centres (SSC). • We minimise the costs for transporting MSW with screening and storage centres. • The use of SSC can be a potential source of revenue and a better use of MSW. - Abstract: This study proposes a reverse logistics network involved in the management of municipal solid waste (MSW) to solve the challenge of economically managing these wastes considering the recent legal requirements of the Brazilian Waste Management Policy. The feasibility of the allocation of MSW material recovery facilities (MRF) as intermediate points between the generators of these wastes and the options for reuse and disposal was evaluated, as well as the participation of associations and cooperatives of waste pickers. This network was mathematically modelled and validated through a scenario analysis of the municipality of São Mateus, which makes the location model more complete and applicable in practice. The mathematical model allows the determination of the number of facilities required for the reverse logistics network, their location, capacities, and product flows between these facilities. The fixed costs of installation and operation of the proposed MRF were balanced with the reduction of transport costs, allowing the inclusion of waste pickers to the reverse logistics network. The main contribution of this study lies in the proposition of a reverse logistics network for MSW simultaneously involving legal, environmental, economic and social criteria, which is a very complex goal. This study can guide practices in other countries that have realities similar to those in Brazil of accelerated urbanisation without adequate planning for solid waste management, added to the strong presence of waste pickers that, through the

  14. Master Safety Analysis Report (SAR) approach for solid waste treatment, storage, and disposal facilities

    SciTech Connect (OSTI)

    Bonner, A.L.; Estrellado, J.P. Jr.

    1993-06-01

    In 1989, the Hanford Site took on a new mission of waste remediation and environmental cleanup. The Hanford Site vision is to become the leader in environmental cleanup technology while bringing the site back to its environmental pristine condition. This technology drive to launch the Hanford site as the flagship of environmental restoration has been divided into several mission areas. This paper focuses on the solid waste management (SWM) mission.

  15. Performance assessment for continuing and future operations at solid waste storage area 6

    SciTech Connect (OSTI)

    1997-09-01

    This revised performance assessment (PA) for the continued disposal operations at Solid Waste Storage Area (SWSA) 6 on the Oak Ridge Reservation (ORR) has been prepared to demonstrate compliance with the performance objectives for low-level radioactive waste (LLW) disposal contained in the US Department of Energy (DOE) Order 5820.2A. This revised PA considers disposal operations conducted from September 26, 1988, through the projects lifetime of the disposal facility.

  16. Data summary of municipal solid waste management alternatives

    SciTech Connect (OSTI)

    Not Available

    1992-10-01

    This appendix contains the alphabetically indexed bibliography for the complete group of reports on municipal waste management alternatives. The references are listed for each of the following topics: mass burn technologies, RDF technologies, fluidized-bed combustion, pyrolysis and gasification of MSW, materials recovery- recycling technologies, sanitary landfills, composting, and anaerobic digestion of MSW.

  17. Solid waste sampling and distribution project: Sampling report {number_sign}5

    SciTech Connect (OSTI)

    Not Available

    1993-10-01

    The US DOE has established a key goal of the Waste Management Program (WMP) to be to ensure that waste management issues do not become obstacles to the commercialization of advanced coal utilization technologies. To achieve this goal, the WMP identifies various emerging coal utilization technologies and performs comprehensive characterizations of the waste streams and products. DOE is now extending their characterization program to include a number of new facilities, particularly larger pilot- and commercial-scale units. Several advanced coal utilization technologies have been tentatively selected for comprehensive waste characterization. One of these technologies is the LOW NO{sub x} process being demonstrated by Southern Company Services, Inc. at Site F. On July 29, 1993 samples were collected to characterize solid waste streams. This document provides background information on the site and describes the sampling activities performed at this facility.

  18. Characterization of past and present solid waste streams from the plutonium finishing plant

    SciTech Connect (OSTI)

    Duncan, D.R.; Mayancsik, B.A.; Pottmeyer, J.A.; Vejvoda, E.J.; Reddick, J.A.; Sheldon, K.M.; Weyns, M.I.

    1993-02-01

    During the next two decades the transuranic (TRU) wastes now stored in the burial trenches and storage facilities at the Hanford Site are to be retrieved, processed at the Waste Receiving and Processing (WRAP) Facility, and shipped to the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico for final disposal. Over 50% of the TRU waste to be retrieved for shipment to the WIPP has been generated at the Plutonium Finishing Plant (PFP), also known as the Plutonium Processing and Storage Facility and Z Plant. The purpose of this report is to characterize the radioactive solid wastes generated by the PFP since its construction in 1947 using process knowledge, existing records, and history-obtained from interviews. The PFP is currently operated by Westinghouse Hanford Company (WHC) for the US Department of Energy (DOE).

  19. Environmental impact assessment of solid waste management in Beijing City, China

    SciTech Connect (OSTI)

    Zhao Yan; Christensen, Thomas H.; Lu Wenjing; Wu Huayong; Wang Hongtao

    2011-04-15

    The environmental impacts of municipal solid waste management in Beijing City were evaluated using a life-cycle-based model, EASEWASTE, to take into account waste generation, collection, transportation, treatment/disposal technologies, and savings obtained by energy and material recovery. The current system, mainly involving the use of landfills, has manifested significant adverse environmental impacts caused by methane emissions from landfills and many other emissions from transfer stations. A short-term future scenario, where some of the landfills (which soon will reach their capacity because of rising amount of waste in Beijing City) are substituted by incinerators with energy recovery, would not result in significant environmental improvement. This is primarily because of the low calorific value of mixed waste, and it is likely that the incinerators would require significant amounts of auxiliary fuels to support combustion of wet waste. As for the long-term future scenario, efficient source separation of food waste could result in significant environmental improvements, primarily because of increase in calorific value of remaining waste incinerated with energy recovery. Sensitivity analysis emphasized the importance of efficient source separation of food waste, as well as the electricity recovery in incinerators, in order to obtain an environmentally friendly waste management system in Beijing City.

  20. Thermal conversion of municipal solid waste via hydrothermal carbonization: Comparison of carbonization products to products from current waste management techniques

    SciTech Connect (OSTI)

    Lu Xiaowei; Jordan, Beth; Berge, Nicole D.

    2012-07-15

    Highlights: Black-Right-Pointing-Pointer Hydrothermal carbonization (HTC) is a novel thermal conversion process. Black-Right-Pointing-Pointer HTC converts wastes into value-added resources. Black-Right-Pointing-Pointer Carbonization integrates majority of carbon into solid-phase. Black-Right-Pointing-Pointer Carbonization results in a hydrochar with high energy density. Black-Right-Pointing-Pointer Using hydrochar as an energy source may be beneficial. - Abstract: Hydrothermal carbonization (HTC) is a novel thermal conversion process that may be a viable means for managing solid waste streams while minimizing greenhouse gas production and producing residual material with intrinsic value. HTC is a wet, relatively low temperature (180-350 Degree-Sign C) thermal conversion process that has been shown to convert biomass to a carbonaceous residue referred to as hydrochar. Results from batch experiments indicate HTC of representative waste materials is feasible, and results in the majority of carbon (45-75% of the initially present carbon) remaining within the hydrochar. Gas production during the batch experiments suggests that longer reaction periods may be desirable to maximize the production of energy-favorable products. If using the hydrochar for applications in which the carbon will remain stored, results suggest that the gaseous products from HTC result in fewer g CO{sub 2}-equivalent emissions than the gases associated with landfilling, composting, and incineration. When considering the use of hydrochar as a solid fuel, more energy can be derived from the hydrochar than from the gases resulting from waste degradation during landfilling and anaerobic digestion, and from incineration of food waste. Carbon emissions resulting from the use of the hydrochar as a fuel source are smaller than those associated with incineration, suggesting HTC may serve as an environmentally beneficial alternative to incineration. The type and extent of environmental benefits derived from

  1. Data summary of municipal solid waste management alternatives. Volume 4, Appendix B: RDF technologies

    SciTech Connect (OSTI)

    1992-10-01

    This appendix contains background information, technical descriptions, economic data, mass and energy balances, and information on environmental releases for the refuse derived fuels (RDF) option in municipal solid waste management alternatives. Demonstration programs at St. Louis, Missouri; Franklin, Ohio; and Delaware are discussed. Information on pellet production and cofiring with coal is also presented.

  2. Performance assessment for continuing and future operations at solid waste storage area 6. Appendices

    SciTech Connect (OSTI)

    1997-09-01

    This appendix provides the radionuclide inventory data used for the Solid Waste Storage Area (SWSA) 6 Performance Assessment (PA). The uncertainties in the radionuclide inventory data are also provided, along with the descriptions of the methods used to estimate the uncertainties.

  3. Geologic Descriptions for the Solid-Waste Low Level Burial Grounds

    SciTech Connect (OSTI)

    Bjornstad, Bruce N.; Lanigan, David C.

    2007-09-23

    This document provides the stratigraphic framework and six hydrogeologic cross sections and interpretations for the solid-waste Low Level Burial Grounds on the Hanford Site. Four of the new cross sections are located in the 200 West Area while the other two are located within the 200 East Area. The cross sections display sediments of the vadose zone and uppermost unconfined aquifer.

  4. Data summary of municipal solid waste management alternatives. Volume 12, Numerically indexed bibliography

    SciTech Connect (OSTI)

    1992-10-01

    This appendix contains the numerically indexed bibliography for the complete group of reports on municipal solid waste management alternatives. The list references information on the following topics: mass burn technologies, RDF technologies, fluidized bed combustion, pyrolysis and gasification of MSW, materials recovery- recycling technologies, sanitary landfills, composting and anaerobic digestion of MSW.

  5. Cost estimation for solid waste management in industrialising regions - Precedents, problems and prospects

    SciTech Connect (OSTI)

    Parthan, Shantha R.; Milke, Mark W.; Wilson, David C.; Cocks, John H.

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer We review cost estimation approaches for solid waste management. Black-Right-Pointing-Pointer Unit cost method and benchmarking techniques used in industrialising regions (IR). Black-Right-Pointing-Pointer Variety in scope, quality and stakeholders makes cost estimation challenging in IR. Black-Right-Pointing-Pointer Integrate waste flow and cost models using cost functions to improve cost planning. - Abstract: The importance of cost planning for solid waste management (SWM) in industrialising regions (IR) is not well recognised. The approaches used to estimate costs of SWM can broadly be classified into three categories - the unit cost method, benchmarking techniques and developing cost models using sub-approaches such as cost and production function analysis. These methods have been developed into computer programmes with varying functionality and utility. IR mostly use the unit cost and benchmarking approach to estimate their SWM costs. The models for cost estimation, on the other hand, are used at times in industrialised countries, but not in IR. Taken together, these approaches could be viewed as precedents that can be modified appropriately to suit waste management systems in IR. The main challenges (or problems) one might face while attempting to do so are a lack of cost data, and a lack of quality for what data do exist. There are practical benefits to planners in IR where solid waste problems are critical and budgets are limited.

  6. Municipal solid waste energy conversion study on Guam and American Samoa

    SciTech Connect (OSTI)

    Not Available

    1984-03-31

    In the Pacific Islands of Guam and Tutuila in American Samoa, conversion of municipal solid waste to useable energy forms - principally electricity but possibly steam - may hold promise for reducing economic dependence on imported petroleum. A secondary benefit may be derived from reduction of solid waste landfill requirements. At the preliminary planning stage, waste-to-energy facilities producing electricity appear technically and environmentally feasible. Economically, the projects appear marginal but could be viable under specific conditions related to capital costs, revenue from garbage collection and revenue from the sale of the energy generated. Grant funding for the projects would considerably enhance the economic viability of the proposed facilities. The projects appear sufficiently viable to proceed to the detailed planning stage. Such projects are not viable for the islands now emerging from the US Trust Territory of the Pacific Islands.

  7. Soil stabilization using oil shale solid wastes: Laboratory evaluation of engineering properties

    SciTech Connect (OSTI)

    Turner, J.P.

    1991-01-01

    Oil shale solid wastes were evaluated for possible use as soil stabilizers. A laboratory study was conducted and consisted of the following tests on compacted samples of soil treated with water and spent oil shale: unconfined compressive strength, moisture-density relationships, wet-dry and freeze-thaw durability, and resilient modulus. Significant increases in strength, durability, and resilient modulus were obtained by treating a silty sand with combusted western oil shale. Moderate increases in strength, durability, and resilient modulus were obtained by treating a highly plastic clay with combusted western oil shale. Solid waste from eastern shale can be used for soil stabilization if limestone is added during combustion. Without limestone, eastern oil shale waste exhibits little or no cementation. The testing methods, results, and recommendations for mix design of spent shale-stabilized pavement subgrades are presented. 11 refs., 3 figs., 10 tabs.

  8. Nonisothermal particle modeling of municipal solid waste combustion with heavy metal vaporization

    SciTech Connect (OSTI)

    Mazza, G.; Falcoz, Q.; Gauthier, D.; Flamant, G.; Soria, J.

    2010-12-15

    A particulate model was developed for municipal solid-waste incineration in a fluidized bed combining solid-waste-particle combustion and heavy metal vaporization from the burning particles. Based on a simpler, isothermal version presented previously, this model combines an asymptotic-combustion model for carbonaceous-solid combustion and a shrinking-core model to describe the heavy metal vaporization phenomenon, in which the particle is now considered nonisothermal. A parametric study is presented that shows the influence of temperature on the global metal-vaporization process. The simulation results are compared to experimental data obtained with a lab-scale fluid bed incinerator and to the results of the simpler isothermal model. It is shown that conduction in the particle strongly affects the variation of the vaporization rate with time and that the present version of the model well fits both the shape of the plots and the maximum heavy metal vaporization rates for all bed temperatures. (author)

  9. Low tipping at the gate: Solid waste management in St. Louis

    SciTech Connect (OSTI)

    Sager, K.A.

    1997-10-01

    With the largest solid waste management district in the state of Missouri, St. Louis offers low tipping fees and plenty of capacity for waste and recyclables at virtually no cost to the city`s nearly 400,000 residents. The city of St. Louis has its own refuse collection and is doing curbside pickup on a pilot basis for about 3,500 homes, says Lee Fox, president of the Missouri Recycling Association (St. Louis). Also for waste management, there is blue-bag drop-off and a series of drop-off sites at different fire stations throughout the city. The central-west side has once-a-week curbside service. There are 92 separate municipalities and 35% of the area is unincorporated. It really depends on where one lives and the service. St. Louis has twice-a-week trash service, with a once-a-week curbside and yard waste pickup. The city collects all residential trash, which is financed by the city`s general revenue fund, with no direct user fees to residents. Solid waste is shipped to an Illinois landfill owned by Allied Waste Industries, Inc. (Scottsdale, Ariz.). With no current citywide curbside recycling program, private recyclers provide collection to a small percentage of homes throughout the metropolitan area.

  10. Data summary of municipal solid waste management alternatives. Volume 3, Appendix A: Mass burn technologies

    SciTech Connect (OSTI)

    1992-10-01

    This appendix on Mass Burn Technologies is the first in a series designed to identify, describe and assess the suitability of several currently or potentially available generic technologies for the management of municipal solid waste (MSW). These appendices, which cover eight core thermoconversion, bioconversion and recycling technologies, reflect public domain information gathered from many sources. Representative sources include: professional journal articles, conference proceedings, selected municipality solid waste management plans and subscription technology data bases. The information presented is intended to serve as background information that will facilitate the preparation of the technoeconomic and life cycle mass, energy and environmental analyses that are being developed for each of the technologies. Mass burn has been and continues to be the predominant technology in Europe for the management of MSW. In the United States, the majority of the existing waste-to-energy projects utilize this technology and nearly 90 percent of all currently planned facilities have selected mass burn systems. Mass burning generally refers to the direct feeding and combustion of municipal solid waste in a furnace without any significant waste preprocessing. The only materials typically removed from the waste stream prior to combustion are large bulky objects and potentially hazardous or undesirable wastes. The technology has evolved over the last 100 or so years from simple incineration to the most highly developed and commercially proven process available for both reducing the volume of MSW and for recovering energy in the forms of steam and electricity. In general, mass burn plants are considered to operate reliably with high availability.

  11. New source performance standards for industrial boilers. Volume 5. Analysis of solid waste impacts

    SciTech Connect (OSTI)

    Boldt, K.; Davis, H.; Delaney, B.; Grundahl, N.; Hyde, R.; Malloch, R.; Tusa, W.

    1980-09-01

    This study provides an analysis of the impacts of emission controls on disposal of solid wastes from coal-fired industrial boilers. Examination is made of boiler systems, coal types, emission control alternatives, waste streams, waste disposal and utilization alternatives, and pertinent Federal regulations. Twenty-four representative model case scenarios are studied in detail. Expected disposal/utilization alternatives and disposal costs are developed. Comparison of the systems studied indicates that the most cost-effective SO/sub 2/ control technologies from the perspective of waste disposal cost per unit SO/sub 2/ control are, in decreasing order: physically cleaned coal/double alkali combination; double alkali; lime/limestone; spray drying; fluidized-bed combustion; and sodium throwaway.

  12. Characterization of past and present solid waste streams from the Plutonium-Uranium Extraction Plant

    SciTech Connect (OSTI)

    Pottmeyer, J.A.; Weyns, M.I.; Lorenzo, D.S.; Vejvoda, E.J.; Duncan, D.R.

    1993-04-01

    During the next two decades the transuranic wastes, now stored in the burial trenches and storage facilities at the Hanford Site, are to be retrieved, processed at the Waste Receiving and Processing Facility, and shipped to the Waste Isolation Pilot Plant near Carlsbad, New Mexico for final disposal. Over 7% of the transuranic waste to be retrieved for shipment to the Waste Isolation Pilot Plant has been generated at the Plutonium-Uranium Extraction (PUREX) Plant. The purpose of this report is to characterize the radioactive solid wastes generated by PUREX using process knowledge, existing records, and oral history interviews. The PUREX Plant is currently operated by the Westinghouse Hanford Company for the US Department of Energy and is now in standby status while being prepared for permanent shutdown. The PUREX Plant is a collection of facilities that has been used primarily to separate plutonium for nuclear weapons from spent fuel that had been irradiated in the Hanford Site`s defense reactors. Originally designed to reprocess aluminum-clad uranium fuel, the plant was modified to reprocess zirconium alloy clad fuel elements from the Hanford Site`s N Reactor. PUREX has provided plutonium for research reactor development, safety programs, and defense. In addition, the PUREX was used to recover slightly enriched uranium for recycling into fuel for use in reactors that generate electricity and plutonium. Section 2.0 provides further details of the PUREX`s physical plant and its operations. The PUREX Plant functions that generate solid waste are as follows: processing operations, laboratory analyses and supporting activities. The types and estimated quantities of waste resulting from these activities are discussed in detail.

  13. Bio-processing of solid wastes and secondary resources for metal extraction - A review

    SciTech Connect (OSTI)

    Lee, Jae-chun; Pandey, Banshi Dhar

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer Review focuses on bio-extraction of metals from solid wastes of industries and consumer goods. Black-Right-Pointing-Pointer Bio-processing of certain effluents/wastewaters with metals is also included in brief. Black-Right-Pointing-Pointer Quantity/composition of wastes are assessed, and microbes used and leaching conditions included. Black-Right-Pointing-Pointer Bio-recovery using bacteria, fungi and archaea is highlighted for resource recycling. Black-Right-Pointing-Pointer Process methodology/mechanism, R and D direction and scope of large scale use are briefly included. - Abstract: Metal containing wastes/byproducts of various industries, used consumer goods, and municipal waste are potential pollutants, if not treated properly. They may also be important secondary resources if processed in eco-friendly manner for secured supply of contained metals/materials. Bio-extraction of metals from such resources with microbes such as bacteria, fungi and archaea is being increasingly explored to meet the twin objectives of resource recycling and pollution mitigation. This review focuses on the bio-processing of solid wastes/byproducts of metallurgical and manufacturing industries, chemical/petrochemical plants, electroplating and tanning units, besides sewage sludge and fly ash of municipal incinerators, electronic wastes (e-wastes/PCBs), used batteries, etc. An assessment has been made to quantify the wastes generated and its compositions, microbes used, metal leaching efficiency etc. Processing of certain effluents and wastewaters comprising of metals is also included in brief. Future directions of research are highlighted.

  14. Sumner County Solid-Waste Energy Recovery Facility. Volume 2. Performance and environmental evaluation. Final report

    SciTech Connect (OSTI)

    Not Available

    1985-09-01

    This report summarizes the operation of the Sumner County Solid Waste Energy Recovery Facility for a 2-year period, beginning with initial operation of the plant in December 1981. The 200-ton/day facility is located at Gallatin, Tennessee, and converts municipal solid waste into steam and eletricity. The report addresses physical and chemical properties of process and waste streams, other operating factors including thermal efficiency and availability, and the initial operating expenses and revenues. Two series of tests were carried out approximately one year apart. An environmental analysis was performed to determine the potential solids, liquid, and gaseous emissions from the plant. The results of the testing will be of interest to others who may be considering a resource recovery facility for the production of energy. The principal conclusions of the report are: The initial operation of the facility has been satisfactory. The ash drag system and air pollution control device must be extensively modified. Waste quantities and steam sales have been less than predicted causing some economic difficulties. Cadmium and lead concentrations in the ash have been high (especially fly ash). The long-range outlook for the facility continues to be optimistic. 10 refs., 6 figs., 34 tabs.

  15. Study of the operational conditions for anaerobic digestion of urban solid wastes

    SciTech Connect (OSTI)

    Castillo M, Edgar Fernando . E-mail: efcastil@uis.edu.co; Cristancho, Diego Edison; Victor Arellano, A.

    2006-07-01

    This paper describes an experimental evaluation of anaerobic digestion technology as an option for the management of organic solid waste in developing countries. As raw material, a real and heterogeneous organic waste from urban solid wastes was used. In the first experimental phase, seed selection was achieved through an evaluation of three different anaerobic sludges coming from wastewater treatment plants. The methanization potential of these sludges was assessed in three different batch digesters of 500 mL, at two temperature levels. The results showed that by increasing the temperature to 15 deg. C above room temperature, the methane production increases to three times. So, the best results were obtained in the digester fed with a mixed sludge, working at mesophilic conditions (38-40 deg. C). Then, this selected seed was used at the next experimental phase, testing at different digestion times (DT) of 25, 20 and 18 days in a bigger batch digester of 20 L with a reaction volume of 13 L. The conversion rates were registered at the lowest DT (18 days), reaching 44.9 L/kg{sup -1} of wet waste day{sup -1}. Moreover, DT also has a strong influence over COD removal, because there is a direct relationship between solids removal inside the reactor and DT.

  16. Resolving Radiological Classification and Release Issues for Many DOE Solid Wastes and Salvageable Materials

    SciTech Connect (OSTI)

    Hochel, R.C.

    1999-06-14

    The cost effective radiological classification and disposal of solid materials with potential volume contamination, in accordance with applicable U.S. Department of Energy (DOE) Orders, suffers from an inability to unambiguously distinguish among transuranic waste, low-level waste, and unconditional-release materials. Depending on the classification, disposal costs can vary by a hundred-fold. But in many cases, the issues can be easily resolved by a combination of process information, some simple measurements, and calculational predictions from a computer model for radiation shielding.The proper classification and disposal of many solid wastes requires a measurement regime that is able to show compliance with a variety of institutional and regulatory contamination limits. Although this is not possible for all solid wastes, there are many that do lend themselves to such measures. Several examples are discussed which demonstrate the possibilities, including one which was successfully applied to bulk contamination.The only barriers to such broader uses are the slow-to-change institutional perceptions and procedures. For many issues and materials, the measurement tools are available; they need only be applied.

  17. Progress and Status of the Ignalina Nuclear Power Plant's New Solid Waste Management and Storage Facilities

    SciTech Connect (OSTI)

    Rausch, J.; Henderson, R.W.; Penkov, V.

    2008-07-01

    A considerable amount of dry radioactive waste from former NPP operation has accumulated up to date and is presently stored at the Ignalina NPP site, Lithuania. Current storage capacities are nearly exhausted and more waste is to come from future decommissioning of the two RMBKtype reactors. Additionally, the existing storage facilities does not comply to the state-of-the-art technology for handling and storage of radioactive waste. In 2005, INPP faced this situation of a need for waste processing and subsequent interim storage of these wastes by contracting NUKEM with the design, construction, installation and commissioning of new waste management and storage facilities. The subject of this paper is to describe the scope and the status of the new solid waste management and storage facilities at the Ignalina Nuclear Power Plant. In summary: The turnkey contract for the design, supply and commission of the SWMSF was awarded in December 2005. The realisation of the project was initially planned within 48 month. The basic design was finished in August 2007 and the Technical Design Documentation and Preliminary Safety Analyses Report was provided to Authorities in October 2007. The construction license is expected in July 2008. The procurement phase was started in August 2007, start of onsite activities is expected in November 2007. The start of operation of the SWMSF is scheduled for end of 2009. (authors)

  18. Evaluation of Flygt Propeller Xixers for Double Shell Tank (DST) High Level Waste Auxiliary Solids Mobilization

    SciTech Connect (OSTI)

    PACQUET, E.A.

    2000-07-20

    The River Protection Project (RPP) is planning to retrieve radioactive waste from the single-shell tanks (SST) and double-shell tanks (DST) underground at the Hanford Site. This waste will then be transferred to a waste treatment plant to be immobilized (vitrified) in a stable glass form. Over the years, the waste solids in many of the tanks have settled to form a layer of sludge at the bottom. The thickness of the sludge layer varies from tank to tank, from no sludge or a few inches of sludge to about 15 ft of sludge. The purpose of this technology and engineering case study is to evaluate the Flygt{trademark} submersible propeller mixer as a potential technology for auxiliary mobilization of DST HLW solids. Considering the usage and development to date by other sites in the development of this technology, this study also has the objective of expanding the knowledge base of the Flygt{trademark} mixer concept with the broader perspective of Hanford Site tank waste retrieval. More specifically, the objectives of this study delineated from the work plan are described.

  19. Solid Phase Characterization of Tank 241-C-108 Residual Waste Solids Samples

    SciTech Connect (OSTI)

    Cooke, Gary A.; Pestovich, John A.; Huber, Heinz J.

    2013-05-29

    This report presents the results for solid phase characterization (SPC) of solid samples removed from tank 241-C-108 (C-108) on August 12-13,2012, using the off-riser sampler. Samples were received at the 222-S Laboratory on August 13 and were described and photographed. The SPC analyses that were performed include scanning electron microscopy (SEM) using the ASPEX(R)l scanning electron microscope, X-ray diffraction (XRD) using the Rigaku(R) 2 MiniFlex X-ray diffractometer, and polarized light microscopy (PLM) using the Nikon(R) 3 Eclipse Pol optical microscope. The SEM is equipped with an energy dispersive X-ray spectrometer (EDS) to provide chemical information. Gary A. Cooke conducted the SEM analysis, John A. Pestovich performed the XRD analysis, and Dr. Heinz J. Huber performed the PLM examination. The results of these analyses are presented here.

  20. Closure plan for Solid Waste Storage Area 6: Volume 1, Closure plan

    SciTech Connect (OSTI)

    Not Available

    1988-09-01

    This Closure Plan for Solid Waste Storage Area 6 (SWSA 6) a disposal area for low-level radioactive wastes and hazardous materials, of the US Department of Energy (DOE) Oak Ridge National Laboratory (ORNL) describes how portions of SWSA 6 will be closed under Resource Conservation and Recovery Act (RCRA) Interim Status per 40 CFR 265 Subpart G (TN Rule 1200-1-11-.05(7)). An overview is provided of activities necessary for final closure and corrective measures for all of SWSA 6. Results of surface waters and groundwater sampling are provided.

  1. Municipal solid waste fueled power generation in China: a case study of waste-to-energy in Changchun city

    SciTech Connect (OSTI)

    Hefa Cheng; Yanguo Zhang; Aihong Meng; Qinghai Li

    2007-11-01

    With rapid economic growth and massive urbanization in China, many cities face the problem of municipal solid waste (MSW) disposal. With the lack of space for new landfills, waste-to-energy incineration is playing an increasingly important role in waste management. Incineration of MSW from Chinese cities presents some unique challenges because of its low calorific value (3000-6700 kJ/kg) and high water content (about 50%). This study reports a novel waste-to-energy incineration technology based on co-firing of MSW with coal in a grate-circulating fluidized bed (CFB) incinerator, which was implemented in the Changchun MSW power plant. In 2006, two 260 ton/day incinerators incinerated 137,325 tons, or approximately one/sixth of the MSW generated in Changchun, saving more than 0.2 million m{sup 3} landfill space. A total of 46.2 million kWh electricity was generated (38,473 tons lignite was also burned as supplementary fuel), with an overall fuel-to-electricity efficiency of 14.6%. Emission of air pollutants including particulate matters, acidic gases, heavy metals, and dioxins was low and met the emission standards for incinerators. As compared to imported incineration systems, this new technology has much lower capital and operating costs and is expected to play a role in meeting China's demands for MSW disposal and alternative energy. 34 refs., 1 fig., 4 tabs.

  2. Solid Waste Operations Complex W-113, Detail Design Report (Title II). Volume 2: Solid waste retrieval facilities -- Phase 1, detail design drawings

    SciTech Connect (OSTI)

    1995-09-01

    The Solid Waste Retrieval Facility--Phase 1 (Project W113) will provide the infrastructure and the facility required to retrieve from Trench 04, Burial ground 4C, contact handled (CH) drums and boxes at a rate that supports all retrieved TRU waste batching, treatment, storage, and disposal plans. This includes (1) operations related equipment and facilities, viz., a weather enclosure for the trench, retrieval equipment, weighing, venting, obtaining gas samples, overpacking, NDE, NDA, shipment of waste and (2) operations support related facilities, viz., a general office building, a retrieval staff change facility, and infrastructure upgrades such as supply and routing of water, sewer, electrical power, fire protection, roads, and telecommunication. Title I design for the operations related equipment and facilities was performed by Raytheon/BNFL, and that for the operations support related facilities including infrastructure upgrade was performed by KEH. These two scopes were combined into an integrated W113 Title II scope that was performed by Raytheon/BNFL. Volume 2 provides the complete set of the Detail Design drawings along with a listing of the drawings. Once approved by WHC, these drawings will be issued and baselined for the Title 3 construction effort.

  3. Integration of the informal sector into municipal solid waste management in the Philippines - What does it need?

    SciTech Connect (OSTI)

    Paul, Johannes G.

    2012-11-15

    The integration of the informal sector into municipal solid waste management is a challenge many developing countries face. In Iloilo City, Philippines around 220 tons of municipal solid waste are collected every day and disposed at a 10 ha large dumpsite. In order to improve the local waste management system the Local Government decided to develop a new Waste Management Center with integrated landfill. However, the proposed area is adjacent to the presently used dumpsite where more than 300 waste pickers dwell and depend on waste picking as their source of livelihood. The Local Government recognized the hidden threat imposed by the waste picker's presence for this development project and proposed various measures to integrate the informal sector into the municipal solid waste management (MSWM) program. As a key intervention a Waste Workers Association, called USWAG Calahunan Livelihood Association Inc. (UCLA) was initiated and registered as a formal business enterprise in May 2009. Up to date, UCLA counts 240 members who commit to follow certain rules and to work within a team that jointly recovers wasted materials. As a cooperative they are empowered to explore new livelihood options such as the recovery of Alternative Fuels for commercial (cement industry) and household use, production of compost and making of handicrafts out of used packages. These activities do not only provide alternative livelihood for them but also lessen the generation of leachate and Greenhouse Gases (GHG) emissions from waste disposal, whereby the life time of the proposed new sanitary landfill can be extended likewise.

  4. Groundwater quality assessment report for Solid Waste Storage Area 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee -- 1997

    SciTech Connect (OSTI)

    1998-02-01

    Solid Waste Storage Area (SWSA) 6, located at the US Department of Energy (DOE) Oak Ridge National Laboratory (ORNL) facility, is a shallow land burial site for low-level radioactive waste (LLW) and other waste types. Wastes were disposed of in unlined trenches and auger holes from 1969 until May 1986, when it was determined that Resource Conservation and Recovery Act (RCRA) regulated wastes were being disposed of there. DOE closed SWSA 6 until changes in operating procedures prevented the disposal of RCRA wastes at SWSA 6. The site, which reopened for waste disposal activities in July 1986, is the only currently operating disposal area for low-level radioactive waste at ORNL. In addition to SWSA 6, it was determined that hazardous wastes were treated at the Explosives Detonation Trench (EDT). Explosives and shock-sensitive chemicals such as picric acid, phosphorus, and ammonium nitrate were detonated; debris from the explosions was backfilled into the trench.

  5. Municipal Solid Waste (MSW) to Liquid Fuels Synthesis, Volume 1: Availability of Feedstock and Technology

    SciTech Connect (OSTI)

    Valkenburt, Corinne; Walton, Christie W.; Thompson, Becky L.; Gerber, Mark A.; Jones, Susanne B.; Stevens, Don J.

    2008-12-01

    This report investigated the potential of using municipal solid waste (MSW) to make synthesis gas (syngas) suitable for production of liquid fuels. Issues examined include: • MSW physical and chemical properties affecting its suitability as a gasifier feedstock and for liquid fuels synthesis • expected process scale required for favorable economics • the availability of MSW in quantities sufficient to meet process scale requirements • the state-of-the-art of MSW gasification technology.

  6. Simplified method to characterize municipal solid waste properties under seismic conditions

    SciTech Connect (OSTI)

    Choudhury, Deepankar Savoikar, Purnanand

    2009-02-15

    The response of municipal solid waste landfills during earthquakes is gaining worldwide attention due to the devastating nature of earthquakes on landfills. Safety code provisions and regulations of various countries require the incorporation of safety measures against seismic hazards in the design of new landfills, as well as for extensions of existing landfills in seismic zones. Determination of dynamic properties is the first step for the analysis of municipal solid waste materials under seismic conditions. Landfill composition and properties, like unit weight, shear wave velocity, shear strength, normalized shear modulus, and material damping, are the most important dynamic properties that have direct impact on the seismic behaviour of landfills, and need to be evaluated carefully. In the present study, based on the extensive data provided by various researchers, the dynamic properties of landfill materials are analyzed using curve-fitting techniques, and simple mathematical equations are proposed. The resulting profiles are compared with laboratory and field data wherever possible. These properties are difficult to generalize and may vary from landfill to landfill. Hence, the proposed simple mathematical models for these landfill properties can be used to design municipal solid waste landfills in the absence of landfill-specific field data under seismic conditions.

  7. Treatability studies with low-temperature thermal desorption on low-level mixed-waste solids

    SciTech Connect (OSTI)

    Bloom, R.; Stelmach, J.

    1995-12-31

    Under a program sponsored by the U.S. Department of Energy Albuquerque 0perations Office (DOE-AL), the DOE Grand Junction Projects Office, (GJPO) conducted treatability studies with a low-temperature, vacuum-assisted thermal desorption unit on low-level mixed-waste solids generated at Los Alamos National Laboratory, Kansas City Plant, Sandia National Laboratories/New Mexico and GJPO. The process extracts the volatile compounds from the matrix and condenses them into a treatable nonmixed waste liquid stream yielding a treated matrix that may be managed as a radioactive waste. The feed streams consisted of soils, sludge, and organic debris with various amount of moisture and organic compounds. The treatability test results indicate that Land Disposal Restriction standards for Resource Conservation and Recovery Act-listed compounds were met. These results are being used to design 3 mobile treatment unit for use at DOE-AL sites.

  8. Municipal solid waste management: A bibliography of US Department of Energy contractor report through 1994

    SciTech Connect (OSTI)

    1995-09-01

    U.S. Department of Energy contractors continue to conduct research targeting the productive and responsible use of the more than 516,000 metric tons (567,000 tons) of municipal solid waste (MSW) that is generated each day in the United States. It is becoming more and more prudent to improve current methods of MSW management and to continue to search for additional cost-effective, energy-efficient means to manage our MSW resource. This bibliography provides information about technical reports on energy from municipal waste that were prepared under grants or contracts from the US DOE. The reports listed focus on energy from municipal waste technologies and energy conservation in wastewater treatment.

  9. Data summary of municipal solid waste management alternatives. Volume 2, Exhibits

    SciTech Connect (OSTI)

    1992-10-01

    The overall objective of the study in this report was to gather data on waste management technologies to allow comparison of various alternatives for managing municipal solid waste (MSW). The specific objectives of the study were to: 1. Compile detailed data for existing waste management technologies on costs, environmental releases, energy requirements and production, and coproducts such as recycled materials and compost. Identify missing information necessary to make energy, economic, and environmental comparisons of various MSW management technologies, and define needed research that could enhance the usefulness of the technology. 3. Develop a data base that can be used to identify the technology that best meets specific criteria defined by a user of the data base. Volume I contains the report text. Volume II contains supporting exhibits. Volumes III through X are appendices, each addressing a specific MSW management technology. Volumes XI and XII contain project bibliographies.

  10. Micro-scale anaerobic digestion of point source components of organic fraction of municipal solid waste

    SciTech Connect (OSTI)

    Chanakya, H.N. Sharma, Isha; Ramachandra, T.V.

    2009-04-15

    The fermentation characteristics of six specific types of the organic fraction of municipal solid waste (OFMSW) were examined, with an emphasis on properties that are needed when designing plug-flow type anaerobic bioreactors. More specifically, the decomposition patterns of a vegetable (cabbage), fruits (banana and citrus peels), fresh leaf litter of bamboo and teak leaves, and paper (newsprint) waste streams as feedstocks were studied. Individual OFMSW components were placed into nylon mesh bags and subjected to various fermentation periods (solids retention time, SRT) within the inlet of a functioning plug-flow biogas fermentor. These were removed at periodic intervals, and their composition was analyzed to monitor decomposition rates and changes in chemical composition. Components like cabbage waste, banana peels, and orange peels fermented rapidly both in a plug-flow biogas reactor (PFBR) as well as under a biological methane potential (BMP) assay, while other OFMSW components (leaf litter from bamboo and teak leaves and newsprint) fermented slowly with poor process stability and moderate biodegradation. For fruit and vegetable wastes (FVW), a rapid and efficient removal of pectins is the main cause of rapid disintegration of these feedstocks, which left behind very little compost forming residues (2-5%). Teak and bamboo leaves and newsprint decomposed only to 25-50% in 30 d. These results confirm the potential for volatile fatty acids accumulation in a PFBR's inlet and suggest a modification of the inlet zone or operation of a PFBR with the above feedstocks.

  11. WIPP Sampling and Analysis Plan for Solid Waste Management Units and Areas of Concern.

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2000-05-23

    This Sampling and Analysis Plan (SAP) has been prepared to fulfill requirements of Module VII, Section VII.M.2 and Table VII.1, requirement 4 of the Waste Isolation Pilot Plant (WIPP) Hazardous Waste Permit, NM4890139088-TSDF (the Permit); (NMED [New Mexico Environment Department], 1999a). This SAP describes the approach for investigation of the Solid Waste Management Units (SWMU) and Areas of Concern (AOC) specified in the Permit. This SAP addresses the current Permit requirements for a RCRA Facility Investigation(RFI) investigation of SWMUs and AOCs. It uses the results of previous investigations performed at WIPP and expands the investigations as required by the Permit. As an alternative to the RFI specified in Module VII of the Permit, current NMED guidance identifies an Accelerated Corrective Action Approach (ACAA) that may be used for any SWMU or AOC (NMED, 1998). This accelerated approach is used to replace the standard RFI work plan and report sequence with a more flexible decision-making approach. The ACAA process allows a facility to exit the schedule of compliance contained in the facility's Hazardous and Solid Waste Amendments (HSWA) permit module and proceed on an accelerated time frame. Thus, the ACAA process can beentered either before or after a RFI work plan. According to NMED's guidance, a facility can prepare a RFI work plan or SAP for any SWMU or AOC (NMED, 1998).

  12. Digestion of frozen/thawed food waste in the hybrid anaerobic solid-liquid system

    SciTech Connect (OSTI)

    Stabnikova, O. Liu, X.Y.; Wang, J.Y.

    2008-07-01

    The hybrid anaerobic solid-liquid (HASL) system, which is a modified two-phase anaerobic digester, is to be used in an industrial scale operation to minimize disposal of food waste at incineration plants in Singapore. The aim of the present research was to evaluate freezing/thawing of food waste as a pre-treatment for its anaerobic digestion in the HASL system. The hydrolytic and fermentation processes in the acidogenic reactor were enhanced when food waste was frozen for 24 h at -20 deg. C and then thawed for 12 h at 25 deg. C (experiment) in comparison with fresh food waste (control). The highest dissolved COD concentrations in the leachate from the acidogenic reactors were 16.9 g/l on day 3 in the control and 18.9 g/l on day 1 in the experiment. The highest VFA concentrations in the leachate from the acidogenic reactors were 11.7 g/l on day 3 in the control and 17.0 g/l on day 1 in the experiment. The same volume of methane was produced during 12 days in the control and 7 days in the experiment. It gave the opportunity to diminish operational time of batch process by 42%. The effect of freezing/thawing of food waste as pre-treatment for its anaerobic digestion in the HASL system was comparable with that of thermal pre-treatment of food waste at 150 deg. C for 1 h. However, estimation of energy required either to heat the suspended food waste to 150 deg. C or to freeze the same quantity of food waste to -20 deg. C showed that freezing pre-treatment consumes about 3 times less energy than thermal pre-treatment.

  13. Proposal of an environmental performance index to assess solid waste treatment technologies

    SciTech Connect (OSTI)

    Goulart Coelho, Hosmanny Mauro; Lange, Lisete Celina; Coelho, Lineker Max Goulart

    2012-07-15

    Highlights: Black-Right-Pointing-Pointer Proposal of a new concept in waste management: Cleaner Treatment. Black-Right-Pointing-Pointer Development of an index to assess quantitatively waste treatment technologies. Black-Right-Pointing-Pointer Delphi Method was carried out so as to define environmental indicators. Black-Right-Pointing-Pointer Environmental performance evaluation of waste-to-energy plants. - Abstract: Although the concern with sustainable development and environment protection has considerably grown in the last years it is noted that the majority of decision making models and tools are still either excessively tied to economic aspects or geared to the production process. Moreover, existing models focus on the priority steps of solid waste management, beyond waste energy recovery and disposal. So, in order to help the lack of models and tools aiming at the waste treatment and final disposal, a new concept is proposed: the Cleaner Treatment, which is based on the Cleaner Production principles. This paper focuses on the development and validation of the Cleaner Treatment Index (CTI), to assess environmental performance of waste treatment technologies based on the Cleaner Treatment concept. The index is formed by aggregation (summation or product) of several indicators that consists in operational parameters. The weights of the indicator were established by Delphi Method and Brazilian Environmental Laws. In addition, sensitivity analyses were carried out comparing both aggregation methods. Finally, index validation was carried out by applying the CTI to 10 waste-to-energy plants data. From sensitivity analysis and validation results it is possible to infer that summation model is the most suitable aggregation method. For summation method, CTI results were superior to 0.5 (in a scale from 0 to 1) for most facilities evaluated. So, this study demonstrates that CTI is a simple and robust tool to assess and compare the environmental performance of different

  14. EA-0767: Construction and Experiment of an Industrial Solid Waste Landfill at Portsmouth Gaseous Diffusion Plant, Piketon, Ohio

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal to construct and operate a solid waste landfill within the boundary at the U.S. Department of Energy's Portsmouth Gaseous Diffusion plant...

  15. Waste-to-Energy (Municipal Solid Waste) - Energy Explained, Your Guide To

    U.S. Energy Information Administration (EIA) Indexed Site

    Understanding Energy - Energy Information Administration Waste-to-Energy (MSW) Energy Explained - Home What Is Energy? Forms of Energy Sources of Energy Laws of Energy Units and Calculators Energy Conversion Calculators British Thermal Units (Btu) Degree-Days U.S. Energy Facts State and U.S. Territory Data Use of Energy In Industry For Transportation In Homes In Commercial Buildings Efficiency and Conservation Energy and the Environment Greenhouse Gases Effect on the Climate Where Greenhouse

  16. Summary of non-US national and international radioactive waste management programs 1980

    SciTech Connect (OSTI)

    Harmon, K.M.; Kelman, J.A.; Stout, L.A.; Hsieh, K.A.

    1980-03-01

    Many nations and international agencies are working to develop improved technology and industrial capability for nuclear fuel cycle and waste management operations. The effort in some countries is limited to research in university laboratories on treating low-level waste from reactor plant operations. In other countries, national nuclear research institutes are engaged in major programs in all phases of the fuel cycle and waste management, and there is a national effort to commercialize fuel cycle operations. Since late 1976, staff members of Pacific Northwest Laboratory have been working under US Department of Energy sponsorship to assemble and consolidate openly available information on foreign and international nuclear waste management programs and technology. This report summarizes the information collected on the status of fuel cycle and waste management programs in selected countries making major efforts in these fields as of the end of January 1980.

  17. Summary of non-US national and international radioactive waste management programs 1981

    SciTech Connect (OSTI)

    Harmon, K.M.; Kelman, J.A.

    1981-06-01

    Many nations and international agencies are working to develop improved technology and industrial capability for neuclear fuel cycle and waste management operations. The effort in some countries is limited to research in university laboratories on treating low-level waste from reactor plant operations. In other countries, national nuclear research institutes are engaged in major programs in all phases of the fuel cycle and waste management, and there is a national effort to commercialize fuel cycle operations. Since late 1976, staff members of Pacific Northwest Laboratory have been working under US Department of Energy sponsorship to assemble and consolidate openly available information on foreign and international nuclear waste management programs and technology. This report summarizes the information collected on the status of fuel cycle and waste management programs in selected countries making major efforts in these fields as of the end of May 1981.

  18. Bridging legal and economic perspectives on interstate municipal solid waste disposal in the US

    SciTech Connect (OSTI)

    Longo, Christine; Wagner, Jeffrey

    2011-01-15

    Research highlights: {yields} Legal and economic opinions of free interstate trade of MSW in the US are reviewed. {yields} Economic theory of landfill space as the article of commerce can align opinions. {yields} Waste management policies implied by this economic theory are compared/contrasted. - Abstract: Managing municipal solid waste (MSW) within and across regions is a complex public policy problem. One challenge regards conceptualizing precisely what commodity is to be managed across space and time. The US Supreme Court view is that waste disposal is the article of commerce per se. Some justices, however, have argued that while waste disposal is the article of commerce, its interstate flow could be impeded by states on the grounds that they have the authority to regulate natural resource quality within their boundaries. The argument in this paper is that adopting the economic theory view of the article of commerce as landfill space brings the majority and dissenting US Supreme Court views-and the resulting sides of the public policy dispute-into closer alignment. We discuss waste management policy tools that emerge from this closer alignment that are more likely to both withstand judicial scrutiny and achieve economic efficiency.

  19. Apparatus for the processing of solid mixed waste containing radioactive and hazardous materials

    DOE Patents [OSTI]

    Gotovchikov, Vitaly T.; Ivanov, Alexander V.; Filippov, Eugene A.

    1999-03-16

    Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination oaf plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter.

  20. Apparatus for the processing of solid mixed waste containing radioactive and hazardous materials

    DOE Patents [OSTI]

    Gotovchikov, V.T.; Ivanov, A.V.; Filippov, E.A.

    1999-03-16

    Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination of a plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter. 6 figs.

  1. Data summary of municipal solid waste management alternatives. Volume 1, Report text

    SciTech Connect (OSTI)

    1992-10-01

    This report provides data for use in evaluating the proven technologies and combinations of technologies that might be considered for managing municipal solid waste (MSW). It covers five major methods for MSW management in common use today: Landfilling; Mass combustion for energy recovery; Production of refuse-derived fuel (RDF); Collection/separation of recyclables; and Composting. It also provides information on three MSW management technologies that are not widely used at present: Anaerobic digestion; Cofiring of MSW with coal; and Gasification/pyrolysis. To the extent possible with available reliable data, the report presents information for each proven MSW technology on: Net energy balances; Environmental releases; and Economics. In addition to data about individual operations, the report presents net energy balances and inventories of environmental releases from selected combined MSW management strategies that use two or more separate operations. The scope of the report extends from the waste`s origin (defined as the point at which the waste is set out for collection), through transportation and processing operations, to its final disposition (e.g., recycling and remanufacturing, combustion, or landfilling operations). Data for all operations are presented on a consistent basis: one (1) ton of municipal (i.e., residential, commercial, and institutional) waste at the collection point. Selection of an MSW management plan may be influenced by many factors, in addition to the technical performance and economics of each option.

  2. A comparison of municipal solid waste management in Berlin and Singapore

    SciTech Connect (OSTI)

    Zhang Dongqing; Keat, Tan Soon; Gersberg, Richard M.

    2010-05-15

    A comparative analysis of municipal solid waste management (MSWM) in Singapore and Berlin was carried out in order to identify its current status, and highlight the prevailing conditions of MSWM. An overview of the various aspects of MSWM in these two cities is provided, with emphasis on comparing the legal, technical, and managerial aspects of MSW. Collection systems and recycling practiced with respect to the involvement of the government and the private sector, are also presented. Over last two decades, the city of Berlin has made impressive progress with respect to its waste management. The amounts of waste have declined significantly, and at the same time the proportion that could be recovered and recycled has increased. In contrast, although Singapore's recycling rate has been increasing over the past few years, rapid economic and population growth as well as change in consumption patterns in this city-state has caused waste generation to continue to increase. Landfilling of MSW plays minor role in both cities, one due to geography (Singapore) and the other due to legislative prohibition (Berlin). Consequently, both in Singapore and Berlin, waste is increasingly being used as a valuable resource and great efforts have been made for the development of incineration technology and energy recovery, as well as climate protection.

  3. Shear strength characteristics of mechanically biologically treated municipal solid waste (MBT-MSW) from Bangalore

    SciTech Connect (OSTI)

    Sivakumar Babu, G.L.; Lakshmikanthan, P.; Santhosh, L.G.

    2015-05-15

    Highlights: • Shear strength properties of mechanically biologically treated municipal solid waste. • Effect of unit weight and particle size on the shear strength of waste. • Effect of particle size on the strength properties. • Stiffness ratio and the strength ratio of MSW. - Abstract: Strength and stiffness properties of municipal solid waste (MSW) are important in landfill design. This paper presents the results of comprehensive testing of shear strength properties of mechanically biologically treated municipal solid waste (MBT-MSW) in laboratory. Changes in shear strength of MSW as a function of unit weight and particle size were investigated by performing laboratory studies on the MSW collected from Mavallipura landfill site in Bangalore. Direct shear tests, small scale and large scale consolidated undrained and drained triaxial tests were conducted on reconstituted compost reject MSW samples. The triaxial test results showed that the MSW samples exhibited a strain-hardening behaviour and the strength of MSW increased with increase in unit weight. Consolidated drained tests showed that the mobilized shear strength of the MSW increased by 40% for a unit weight increase from 7.3 kN/m{sup 3} to 10.3 kN/m{sup 3} at 20% strain levels. The mobilized cohesion and friction angle ranged from 5 to 9 kPa and 8° to 33° corresponding to a strain level of 20%. The consolidated undrained tests exhibited reduced friction angle values compared to the consolidated drained tests. The friction angle increased with increase in the unit weight from 8° to 55° in the consolidated undrained tests. Minor variations were found in the cohesion values. Relationships for strength and stiffness of MSW in terms of strength and stiffness ratios are developed and discussed. The stiffness ratio and the strength ratio of MSW were found to be 10 and 0.43.

  4. Microbial diversity and dynamics during methane production from municipal solid waste

    SciTech Connect (OSTI)

    Bareither, Christopher A.; Wolfe, Georgia L.; McMahon, Katherine D.; Benson, Craig H.

    2013-10-15

    Highlights: ► Similar bacterial communities developed following different start-up operation. ► Total methanogens in leachate during the decelerated methane phase reflected overall methane yield. ► Created correlations between methanogens, methane yield, and available substrate. ► Predominant bacteria identified with syntrophic polysaccharide degraders. ► Hydrogenotrophic methanogens were dominant in the methane generation process. - Abstract: The objectives of this study were to characterize development of bacterial and archaeal populations during biodegradation of municipal solid waste (MSW) and to link specific methanogens to methane generation. Experiments were conducted in three 0.61-m-diameter by 0.90-m-tall laboratory reactors to simulate MSW bioreactor landfills. Pyrosequencing of 16S rRNA genes was used to characterize microbial communities in both leachate and solid waste. Microbial assemblages in effluent leachate were similar between reactors during peak methane generation. Specific groups within the Bacteroidetes and Thermatogae phyla were present in all samples and were particularly abundant during peak methane generation. Microbial communities were not similar in leachate and solid fractions assayed at the end of reactor operation; solid waste contained a more abundant bacterial community of cellulose-degrading organisms (e.g., Firmicutes). Specific methanogen populations were assessed using quantitative polymerase chain reaction. Methanomicrobiales, Methanosarcinaceae, and Methanobacteriales were the predominant methanogens in all reactors, with Methanomicrobiales consistently the most abundant. Methanogen growth phases coincided with accelerated methane production, and cumulative methane yield increased with increasing total methanogen abundance. The difference in methanogen populations and corresponding methane yield is attributed to different initial cellulose and hemicellulose contents of the MSW. Higher initial cellulose and

  5. Determining the release of radionuclides from tank waste residual solids. FY2015 report

    SciTech Connect (OSTI)

    King, William D.; Hobbs, David T.

    2015-09-11

    Methodology development for pore water leaching studies has been continued to support Savannah River Site High Level Waste tank closure efforts. For FY2015, the primary goal of this testing was the achievement of target pH and Eh values for pore water solutions representative of local groundwater in the presence of grout or grout-representative (CaCO3 or FeS) solids as well as waste surrogate solids representative of residual solids expected to be present in a closed tank. For oxidizing conditions representative of a closed tank after aging, a focus was placed on using solid phases believed to be controlling pH and Eh at equilibrium conditions. For three pore water conditions (shown below), the target pH values were achieved to within 0.5 pH units. Tank 18 residual surrogate solids leaching studies were conducted over an Eh range of approximately 630 mV. Significantly higher Eh values were achieved for the oxidizing conditions (ORII and ORIII) than were previously observed. For the ORII condition, the target Eh value was nearly achieved (within 50 mV). However, Eh values observed for the ORIII condition were approximately 160 mV less positive than the target. Eh values observed for the RRII condition were approximately 370 mV less negative than the target. Achievement of more positive and more negative Eh values is believed to require the addition of non-representative oxidants and reductants, respectively. Plutonium and uranium concentrations measured during Tank 18 residual surrogate solids leaching studies under these conditions (shown below) followed the general trends predicted for plutonium and uranium oxide phases, assuming equilibrium with dissolved oxygen. The highest plutonium and uranium concentrations were observed for the ORIII condition and the lowest concentrations were observed for the RRII condition. Based on these results, it is recommended that these test methodologies be used to

  6. Municipal solid waste management in Africa: Strategies and livelihoods in Yaounde, Cameroon

    SciTech Connect (OSTI)

    Parrot, Laurent Sotamenou, Joel; Dia, Bernadette Kamgnia

    2009-02-15

    This paper provides an overview of the state of municipal solid waste (MSW) management in the capital of Cameroon, Yaounde, and suggests some possible solutions for its improvement. The institutional, financial, and physical aspects of MSW management, as well as the livelihoods of the population, were analyzed. Our study revealed that distances and lack of infrastructure have a major impact on waste collection. Garbage bins are systematically mentioned as the primary infrastructure needed by the population in all quarters, whether it be a high or low standard community. The construction of transfer stations and the installation of garbage bins are suggested as a solution to reduce distances between households and garbage bins, thus improving waste collection vehicle accessibility. Transfer stations and garbage bins would enable the official waste collection company to expand its range of services and significantly improve waste collection rates. Several transfer stations have already been set up by non-governmental organizations (NGOs) and community-based organizations (CBOs), but they require technical, institutional and funding support. Research is needed on the quality and safety of community-made compost, as well as on soil fertility in urban and peri-urban areas. Most of the stakeholders, municipalities, the official waste collection company and households acknowledge the need for better monitoring and regulation of MSW management. The urban community of Yaounde also needs to maintain its support of MSW management and promote the sustainability of NGOs and CBOs operating in underserved areas not yet covered by adequate infrastructures. A major opportunity for implementation of such waste policy is the heavily indebted poor countries (HIPC) program dedicated to urban planning and good governance.

  7. Performance and kinetic study of semi-dry thermophilic anaerobic digestion of organic fraction of municipal solid waste

    SciTech Connect (OSTI)

    Sajeena Beevi, B.; Madhu, G.; Sahoo, Deepak Kumar

    2015-02-15

    Highlights: • Performance of the reactor was evaluated by the degradation of volatile solids. • Biogas yield at the end of the digestion was 52.9 L/kg VS. • Value of reaction rate constant, k, obtained was 0.0249 day{sup −1}. • During the digestion 66.7% of the volatile solid degradation was obtained. - Abstract: Anaerobic digestion (AD) of the organic fraction of municipal solid waste (OFMSW) is promoted as an energy source and waste disposal. In this study semi dry anaerobic digestion of organic solid wastes was conducted for 45 days in a lab-scale batch experiment for total solid concentration of 100 g/L for investigating the start-up performances under thermophilic condition (50 °C). The performance of the reactor was evaluated by measuring the daily biogas production and calculating the degradation of total solids and the total volatile solids. The biogas yield at the end of the digestion was 52.9 L/kg VS (volatile solid) for the total solid (TS) concentration of 100 g/L. About 66.7% of the volatile solid degradation was obtained during the digestion. A first order model based on the availability of substrate as the limiting factor was used to perform the kinetic studies of batch anaerobic digestion system. The value of reaction rate constant, k, obtained was 0.0249 day{sup −1}.

  8. Impacts of policy and market incentives for solid waste recycling in Dhaka, Bangladesh

    SciTech Connect (OSTI)

    Matter, Anne; Ahsan, Mehedi; Zurbrügg, Christian

    2015-05-15

    Highlights: • Bangladesh’s industry and population are growing rapidly, producing more urban waste. • Recycling reduces the solid waste management burden of Municipalities. • A wide array of informal and formal actors is involved in collection and recycling. • Demand for recycled materials and renewable energy creates market incentives. • Policy incentives exist, but they only reach the formal industry. - Abstract: Solid waste mismanagement in Dhaka, Bangladesh, illustrates a well-known market failure which can be summarized as: waste is a resource in the wrong place. Inorganic materials such as plastic or paper can be used to feed the demand for recycled materials in the industrial sector. Organic materials can be converted and used in the nutrient-starved agricultural sector which is currently heavily depending on chemical fertilizers. They are also a feedstock to generate renewable energy in the form of biogas for this energy-starved country relying on diminishing natural gas reserves and increasing import of coal. Reality however does not capitalize on this potential; instead the waste is a burden for municipal authorities who spend large portions of their budgets attempting to transport it out of the city for discharge into landfills. The major part of these materials still remains uncollected in the residential areas and is discarded indiscriminately in open spaces, polluting the residents’ living environment including water, soil and air resources, in the city and beyond. Bangladeshi authorities have, to some extent, recognized this market failure and have developed policies to encourage the development of waste recycling activities. It is also important to note that this market failure is only partial: a large, mostly informal recycling sector has developed in Bangladesh, focusing on inorganic recyclables of market value. The fact that this sector remains largely informal means that these actors perceive significant barriers to formalization

  9. Dry-thermophilic anaerobic digestion of organic fraction of municipal solid waste: Methane production modeling

    SciTech Connect (OSTI)

    Fdez-Gueelfo, L.A.; Alvarez-Gallego, C.; Sales, D.; Romero Garcia, L.I.

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer Methane generation may be modeled by means of modified product generation model of Romero Garcia (1991). Black-Right-Pointing-Pointer Organic matter content and particle size influence the kinetic parameters. Black-Right-Pointing-Pointer Higher organic matter content and lower particle size enhance the biomethanization. - Abstract: The influence of particle size and organic matter content of organic fraction of municipal solid waste (OFMSW) in the overall kinetics of dry (30% total solids) thermophilic (55 Degree-Sign C) anaerobic digestion have been studied in a semi-continuous stirred tank reactor (SSTR). Two types of wastes were used: synthetic OFMSW (average particle size of 1 mm; 0.71 g Volatile Solids/g waste), and OFMSW coming from a composting full scale plant (average particle size of 30 mm; 0.16 g Volatile Solids/g waste). A modification of a widely-validated product-generation kinetic model has been proposed. Results obtained from the modified-model parameterization at steady-state (that include new kinetic parameters as K, Y{sub pMAX} and {theta}{sub MIN}) indicate that the features of the feedstock strongly influence the kinetics of the process. The overall specific growth rate of microorganisms ({mu}{sub max}) with synthetic OFMSW is 43% higher compared to OFMSW coming from a composting full scale plant: 0.238 d{sup -1} (K = 1.391 d{sup -1}; Y{sub pMAX} = 1.167 L CH{sub 4}/gDOC{sub c}; {theta}{sub MIN} = 7.924 days) vs. 0.135 d{sup -1} (K = 1.282 d{sup -1}; Y{sub pMAX} = 1.150 L CH{sub 4}/gDOC{sub c}; {theta}{sub MIN} = 9.997 days) respectively. Finally, it could be emphasized that the validation of proposed modified-model has been performed successfully by means of the simulation of non-steady state data for the different SRTs tested with each waste.

  10. Municipal solid waste source-separated collection in China: A comparative analysis

    SciTech Connect (OSTI)

    Tai Jun; Zhang Weiqian; Che Yue; Feng Di

    2011-08-15

    A pilot program focusing on municipal solid waste (MSW) source-separated collection was launched in eight major cities throughout China in 2000. Detailed investigations were carried out and a comprehensive system was constructed to evaluate the effects of the eight-year implementation in those cities. This paper provides an overview of different methods of collection, transportation, and treatment of MSW in the eight cities; as well as making a comparative analysis of MSW source-separated collection in China. Information about the quantity and composition of MSW shows that the characteristics of MSW are similar, which are low calorific value, high moisture content and high proportion of organisms. Differences which exist among the eight cities in municipal solid waste management (MSWM) are presented in this paper. Only Beijing and Shanghai demonstrated a relatively effective result in the implementation of MSW source-separated collection. While the six remaining cities result in poor performance. Considering the current status of MSWM, source-separated collection should be a key priority. Thus, a wider range of cities should participate in this program instead of merely the eight pilot cities. It is evident that an integrated MSWM system is urgently needed. Kitchen waste and recyclables are encouraged to be separated at the source. Stakeholders involved play an important role in MSWM, thus their responsibilities should be clearly identified. Improvement in legislation, coordination mechanisms and public education are problematic issues that need to be addressed.

  11. Data summary of municipal solid waste management alternatives. Volume 10, Appendix H: Anaerobic digestion of MSW

    SciTech Connect (OSTI)

    1992-10-01

    While municipal solid waste (MSW) thermoconversion and recycling technologies have been described in Appendices A through E, this appendix addresses the role of bioconversion technologies in handling the organic fraction in MSW and sewage sludge. Much of the organic matter in MSW, consisting mainly of paper, food waste, and yard waste, has potential for conversion, along with sewage sludge, through biochemical processes to methane and carbon dioxide providing a measurable, renewable energy resource potential. The gas produced may be treated for removal of carbon dioxide and water, leaving pipeline quality gas. The process also has the potential for producing a stabilized solid product that may be suitable as a fuel for combustion or used as a compost fertilizer. Anaerobic digestion can occur naturally in an uncontrolled environment such as a landfill, or it can occur in a controlled environment such as a confined vessel. Landfill gas production is discussed in Appendix F. This appendix provides information on the anaerobic digestion process as it has been applied to produce methane from the organic fraction of MSW in enclosed, controlled reactors.

  12. Fuzzy multicriteria disposal method and site selection for municipal solid waste

    SciTech Connect (OSTI)

    Ekmekcioglu, Mehmet; Kaya, Tolga; Kahraman, Cengiz

    2010-08-15

    The use of fuzzy multiple criteria analysis (MCA) in solid waste management has the advantage of rendering subjective and implicit decision making more objective and analytical, with its ability to accommodate both quantitative and qualitative data. In this paper a modified fuzzy TOPSIS methodology is proposed for the selection of appropriate disposal method and site for municipal solid waste (MSW). Our method is superior to existing methods since it has capability of representing vague qualitative data and presenting all possible results with different degrees of membership. In the first stage of the proposed methodology, a set of criteria of cost, reliability, feasibility, pollution and emission levels, waste and energy recovery is optimized to determine the best MSW disposal method. Landfilling, composting, conventional incineration, and refuse-derived fuel (RDF) combustion are the alternatives considered. The weights of the selection criteria are determined by fuzzy pairwise comparison matrices of Analytic Hierarchy Process (AHP). It is found that RDF combustion is the best disposal method alternative for Istanbul. In the second stage, the same methodology is used to determine the optimum RDF combustion plant location using adjacent land use, climate, road access and cost as the criteria. The results of this study illustrate the importance of the weights on the various factors in deciding the optimized location, with the best site located in Catalca. A sensitivity analysis is also conducted to monitor how sensitive our model is to changes in the various criteria weights.

  13. Case study of a solid-waste-scavenger community with respect to health and environment

    SciTech Connect (OSTI)

    Kungskulniti, Nipapun.

    1991-01-01

    This study was an investigation of a solid waste scavenger community at the On-Nooch Dump Site in Bangkok, Thailand. The purpose was to identify the dimensions of the public health conditions of solid waste scavengers and their community. Cross-sectional field surveys and measurements were undertaken to characterize the distribution and magnitude of health-related problems and environmental conditions. Scavengers were found to be exposed to hazardous conditions due to the waste materials at the dump site. Cuts and punctures from sharp materials were the most common complaints among scavengers. Health symptoms like headache, diarrhea, respiratory illness, skin diseases and back pain were also reported. There was a high prevalence of childhood respiratory illness especially among those children of households where cigarette smoking was present. Children had poor nutritional status and were commonly infected by intestinal protozoa and helminths. An appreciable proportion of adult respondents was below the normal range for lung function performance. Seroprevalence of HBV infection was found to be high among male respondents in addition to six respondents that had possible HIV infections. The quality of the community water supply was low. Air pollution measurements showed acceptable ambient air levels except for particulate levels (TSP and RSP). Levels of indoor, outdoor, and personal exposure NO{sub 2} were found to be similar. Data for an inner-city project apartment community named Din-Dang were also collected for comparison. A priority rating index and recommendations for public health condition improvements were presented.

  14. Networks of recyclable material waste-pickers cooperatives: An alternative for the solid waste management in the city of Rio de Janeiro

    SciTech Connect (OSTI)

    Tirado-Soto, Magda Martina; Zamberlan, Fabio Luiz

    2013-04-15

    Highlights: ? In the marketing of recyclable materials, the waste-pickers are the least wins. ? It is proposed creating a network of recycling cooperatives to achieve viability. ? The waste-pickers contribute to waste management to the city. - Abstract: The objective of this study is to discuss the role of networks formed of waste-picker cooperatives in ameliorating problems of final disposal of solid waste in the city of Rio de Janeiro, since the citys main landfill will soon have to close because of exhausted capacity. However, it is estimated that in the city of Rio de Janeiro there are around five thousand waste-pickers working in poor conditions, with lack of physical infrastructure and training, but contributing significantly by diverting solid waste from landfills. According to the Sustainable Development Indicators (IBGE, 2010a,b) in Brazil, recycling rates hover between 45% and 55%. In the municipality of Rio de Janeiro, only 1% of the waste produced is collected selectively by the government (COMLURB, 2010), demonstrating that recycling is mainly performed by waste-pickers. Furthermore, since the recycling market is an oligopsony that requires economies of scale to negotiate directly with industries, the idea of working in networks of cooperatives meets the demands for joint marketing of recyclable materials. Thus, this work presents a method for creating and structuring a network of recycling cooperatives, with prior training for working in networks, so that the expected synergies and joint efforts can lead to concrete results. We intend to demonstrate that it is first essential to strengthen the waste-pickers cooperatives in terms of infrastructure, governance and training so that solid waste management can be environmentally, socially and economically sustainable in the city of Rio de Janeiro.

  15. Final Hanford Site Solid (Radioactive and Hazardous) Waste Program Environmental Impact Statement Richland, Washington

    SciTech Connect (OSTI)

    N /A

    2004-02-13

    This Hanford Site Solid (Radioactive and Hazardous) Waste Program Environmental Impact Statement (HSW EIS) provides environmental and technical information concerning U.S. Department of Energy (DOE) ongoing and proposed waste management practices at the Hanford Site in Washington State. The HSW EIS updates some analyses of environmental consequences from previous documents and provides evaluations for activities that may be implemented consistent with the Waste Management Programmatic Environmental Impact Statement (WM PEIS; DOE 1997c) Records of Decision (RODs). The draft HSW EIS was initially issued in April 2002 for public comment (DOE 2002b). A revised draft HSW EIS was issued in March 2003 to address new waste management alternatives that had been proposed since the initial draft HSW EIS was prepared, and to address comments received during the public review period for the first draft (DOE 2003d). The revised draft HSW EIS also incorporated alternatives for disposal of immobilized low-activity waste (ILAW) from treatment of Hanford Site tank waste in the waste treatment plant (WTP) currently under construction, an activity that was not included in the first draft (68 FR 7110). This final HSW EIS describes the DOE preferred alternative, and in response to public comments received on the March 2003 revised draft, provides additional analyses for some environmental consequences associated with the preferred alternative, with other alternatives, and with cumulative impacts. Public comments on the revised draft HSW EIS are addressed in the comment response document (Volume III of this final EIS). This HSW EIS describes the environmental consequences of alternatives for constructing, modifying, and operating facilities to store, treat, and/or dispose of low-level (radioactive) waste (LLW), transuranic (TRU) waste, ILAW, and mixed low-level waste (MLLW) including WTP melters at Hanford. In addition, the potential long-term consequences of LLW, MLLW, and ILAW disposal

  16. Geotechnical properties of municipal solid waste at different phases of biodegradation

    SciTech Connect (OSTI)

    Reddy, Krishna R.; Hettiarachchi, Hiroshan; Gangathulasi, Janardhanan; Bogner, Jean E.

    2011-11-15

    Highlights: > Degraded synthetic municipal solid waste (MSW) anaerobically in controlled bench-scale reactors. > Performed laboratory tests to determine geotechnical properties of MSW at different phases of degradation. > Hydraulic conductivity decreased by two orders of magnitude due to degradation. > Compression ratio reduced from 0.34 for initial fresh waste to 0.15 for the mostly degraded waste. > Friction angle reduced, but cohesion increased with degradation. - Abstract: This paper presents the results of laboratory investigation conducted to determine the variation of geotechnical properties of synthetic municipal solid waste (MSW) at different phases of degradation. Synthetic MSW samples were prepared based on the composition of MSW generated in the United States and were degraded in bioreactors with leachate recirculation. Degradation of the synthetic MSW was quantified based on the gas composition and organic content, and the samples exhumed from the bioreactor cells at different phases of degradation were tested for the geotechnical properties. Hydraulic conductivity, compressibility and shear strength of initial and degraded synthetic MSW were all determined at constant initial moisture content of 50% on wet weight basis. Hydraulic conductivity of synthetic MSW was reduced by two orders of magnitude due to degradation. Compression ratio was reduced from 0.34 for initial fresh waste to 0.15 for the mostly degraded waste. Direct shear tests showed that the fresh and degraded synthetic MSW exhibited continuous strength gain with increase in horizontal deformation, with the cohesion increased from 1 kPa for fresh MSW to 16-40 kPa for degraded MSW and the friction angle decreased from 35{sup o} for fresh MSW to 28{sup o} for degraded MSW. During the triaxial tests under CU condition, the total strength parameters, cohesion and friction angle, were found to vary from 21 to 57 kPa and 1{sup o} to 9{sup o}, respectively, while the effective strength parameters

  17. Characterization of solids in residual wastes from single-shell tanks at the Hanford site, Washington, USA.

    SciTech Connect (OSTI)

    Krupka, K. M.; Cantrell, K. J.; Todd Schaef, H.; Arey, B. W.; Heald, S. M.; Deutsch, W. J.; Lindberg, M. J.

    2010-03-01

    Solid phase physical and chemical characterization methods have been used in an ongoing study of residual wastes from several single-shell underground waste tanks at the U.S. Department of Energy's Hanford Site in southeastern Washington State. Because these wastes are highly-radioactive dispersible powders and are chemically-complex assemblages of crystalline and amorphous solids that contain contaminants as discrete phases and/or co-precipitated within oxide phases, their detailed characterization offers an extraordinary technical challenge. X-ray diffraction (XRD) and scanning electron microscopy/energy dispersive x-ray spectroscopy (SEM/EDS) are the two principal methods used, along with a limited series of analyses by synchrotron-based methods, to characterize solid phases and their contaminant associations in these wastes.

  18. Integrated Treatment and Storage Solutions for Solid Radioactive Waste at the Russian Shipyard Near Polyarny

    SciTech Connect (OSTI)

    Griffith, A.; Engoy, T.; Endregard, M.; Busmundrud, O.; Schwab, P.; Nazarian, A.; Krumrine, P.; Backe, S.; Gorin, S.; Evans, B.

    2002-02-27

    Russian Navy Yard No. 10 (Shkval), near the city of Murmansk, has been designated as the recipient for Solid Radioactive Waste (SRW) pretreatment and storage facilities under the Arctic Military Environmental Cooperation (AMEC) Program. This shipyard serves the Northern Fleet by servicing, repairing, and dismantling naval vessels. Specifically, seven nuclear submarines of the first and second generation and Victor class are laid up at this shipyard, awaiting defueling and dismantlement. One first generation nuclear submarine has already been dismantled there, but recently progress on dismantlement has slowed because all the available storage space is full. SRW has been placed in metal storage containers, which have been moved outside of the actual storage site, which increases the environmental risks. AMEC is a cooperative effort between the Russian Federation, Kingdom of Norway and the United States. AMEC Projects 1.3 and 1.4 specifically address waste treatment and storage issues. Various waste treatment options have been assessed, technologies selected, and now integrated facilities are being designed and constructed to address these problems. Treatment technologies that are being designed and constructed include a mobile pretreatment facility comprising waste assay, segregation, size reduction, compaction and repackaging operations. Waste storage technologies include metal and concrete containers, and lightweight modular storage buildings. This paper focuses on the problems and challenges that are and will be faced at the Polyarninsky Shipyard. Specifically, discussion of the waste quantities, types, and conditions and various site considerations versus the various technologies that are to be employed will be provided. A systems approach at the site is being proposed by the Russian partners, therefore integration with other ongoing and planned operations at the site will also be discussed.

  19. Public perception of hazardousness caused by current trends of municipal solid waste management

    SciTech Connect (OSTI)

    Al-Khatib, Issam A.; Kontogianni, Stamatia; Abu Nabaa, Hendya; Alshami, Ni’meh; Al-Sari’, Majed I.

    2015-02-15

    Highlights: • Contribution to the scientific literature by examining the relationship between concern for the environment and waste disposal in the frame of household waste treatment mechanism specifically in developing countries. • The awareness of the citizens satisfaction level and the local existing capacities in developing countries significantly contribute to decision making on MSW management sustainability in Palestine and other developing countries when applied. • Identification of the differences and similarities among DC resulting to failures or success in WM field. - Abstract: Municipal solid waste (MSW) piling up is becoming a serious problem in all developing countries (DC) as a result of inequitable waste collection and treatment. Citizens’ collaboration is partly based on understanding their views and their active involvement in MSW planning; on the other hand the assessment of the perception of hazardousness related with MSW is considered rather important as well since the identification of the weak points of the applied MWM strategy is eased and the level of required training is determined. Researchers implemented a case study in the West Bank (WB) and Gaza Strip (GS) regions of Palestine, taking into consideration previous researches in other developing countries. They reached to safe and useful conclusions regarding the parameters which mean the greatest in the waste management field as far as DC are concerned. Lack of skilled manpower, irregular collection services, inadequate equipment used for waste collection, inadequate legal provisions, and resource constraints are additional factors that are confirmed to be challenging the waste management scenarios in all DCs today. The research takes those factors under consideration but focuses on the educational gap and the results revealed interesting trends a significant relationship between respondent’s educational attainment and their awareness of hazardous waste (hazard perception); the

  20. A historical perspective of Global Warming Potential from Municipal Solid Waste Management

    SciTech Connect (OSTI)

    Habib, Komal; Schmidt, Jannick H.; Christensen, Per

    2013-09-15

    Highlights: • Five scenarios are compared based on different waste management systems from 1970 to 2010. • Technology development for incineration and vehicular exhaust system throughout the time period is considered. • Compared scenarios show continuous improvement regarding environmental performance of waste management system. • Energy and material recovery from waste account for significant savings of Global Warming Potential (GWP) today. • Technology development for incineration has played key role in lowering the GWP during past five decades. - Abstract: The Municipal Solid Waste Management (MSWM) sector has developed considerably during the past century, paving the way for maximum resource (materials and energy) recovery and minimising environmental impacts such as global warming associated with it. The current study is assessing the historical development of MSWM in the municipality of Aalborg, Denmark throughout the period of 1970 to 2010, and its implications regarding Global Warming Potential (GWP{sub 100}), using the Life Cycle Assessment (LCA) approach. Historical data regarding MSW composition, and different treatment technologies such as incineration, recycling and composting has been used in order to perform the analysis. The LCA results show a continuous improvement in environmental performance of MSWM from 1970 to 2010 mainly due to the changes in treatment options, improved efficiency of various treatment technologies and increasing focus on recycling, resulting in a shift from net emission of 618 kg CO{sub 2}-eq. tonne{sup −1} to net saving of 670 kg CO{sub 2}-eq. tonne{sup −1} of MSWM.

  1. Data summary of municipal solid waste management alternatives. Volume I: report text

    SciTech Connect (OSTI)

    1992-10-01

    This report provides data for use in evaluating the proven technologies and combinations of technologies that might be considered for managing municipal solid waste (MSW). It covers five major methods for MSW management in common use today: Landfilling; Mass combustion for energy recovery; Production of refuse-derived fuel (RDF); Collection/separation of recyclables; and Composting. It also provides information on three MSW management technologies that are not widely used at present: Anaerobic digestion; Cofiring of MSW with coal; and Gasification/pyrolysis. To the extent possible with available reliable data, the report presents information for each proven MSW technology on: Net energy balances; Environmental releases; and Economics. In addition to data about individual operations, the report presents net energy balances and inventories of environmental releases from selected combined MSW management strategies that use two or more separate operations. The scope of the report extends from the waste's origin (defined as the point at which the waste is set out for collection), through transportation and processing operations, to its final disposition (e.g., recycling and remanufacturing, combustion, or landfilling operations). Data for all operations are presented on a consistent basis: one (1) ton of municipal (i.e., residential, commercial, and institutional) waste at the collection point. Selection of an MSW management plan may be influenced by many factors, in addition to the technical performance and economics of each option.

  2. Municipal solid waste management: A bibliography of US Department of Energy contractor reports through 1993

    SciTech Connect (OSTI)

    Shepherd, P

    1994-07-01

    US Department of Energy contractors continue to conduct research targeting the productive and responsible use of the more than 536,000 tons of municipal solid waste (MSW) that is generated each day in the United States. It is becoming more and more prudent to improve current methods of MSW management and to continue to search for additional cost-effective, energy-efficient means to manage our MSW resource. This bibliography is an updated version of Municipal Waste to Energy: An Annotated Bibliography of US Department of Energy Contractor Reports, by Caroline Brooks, published in 1987. Like its predecessor, this bibliography provides information about technical reports on energy from municipal waste that were prepared under grants or contracts from the US Department of Energy. The reports listed focus on energy from municipal waste technologies and energy conservation in wastewater treatment. The bibliography contains three indexes -- an author index, a subject index, and a title index. The reports are listed alphabetically in the subject areas and may appear under more than one subject. All of the reports cited in the original MSW bibliography are also included in this update. The number of copies of each report originally published varied according to anticipated public demand. However, all reports are available in either microfiche or hard copy form and may be ordered from the National Technical Information Service (NTIS), US Department of Commerce, Springfield, VA 22161. Explicit information on ordering reports is included in Appendix A.

  3. Performance assessment for continuing and future operations at Solid Waste Storage Area 6

    SciTech Connect (OSTI)

    Not Available

    1994-02-01

    This radiological performance assessment for the continued disposal operations at Solid Waste Storage Area 6 (SWSA 6) on the Oak Ridge Reservation (ORR) has been prepared to demonstrate compliance with the requirements of the US DOE. The analysis of SWSA 6 required the use of assumptions to supplement the available site data when the available data were incomplete for the purpose of analysis. Results indicate that SWSA 6 does not presently meet the performance objectives of DOE Order 5820.2A. Changes in operations and continued work on the performance assessment are expected to demonstrate compliance with the performance objectives for continuing operations at the Interim Waste Management Facility (IWMF). All other disposal operations in SWSA 6 are to be discontinued as of January 1, 1994. The disposal units at which disposal operations are discontinued will be subject to CERCLA remediation, which will result in acceptable protection of the public health and safety.

  4. Utilization of solid wastes from the gasification of coal-water slurries

    SciTech Connect (OSTI)

    M.Y. Shpirt; N.P. Goryunova

    2009-07-01

    It was found that only fly and bottom ashes are the solid wastes of water-coal slurry gasification in a direct-flow gasifier. The yields and chemical compositions of fly and bottom ashes obtained after the gasification of water-coal slurries prepared using brown (B) and long-flame (D) coals from the Berezovskii and Mokhovskii strip mines (Kansk-Achinsk and Kuznetsk Basins, respectively) were characterized. Based on an analysis of currently available information, the areas of utilization of fly and bottom ashes after water-coal slurry gasification with dry ash removal were summarized. The use of these wastes in the construction of high-ways and earthwork structures (for the parent coals of B and D grades) and in the manufacture of ash concrete (for the parent coal of D grade) is most promising.

  5. Recovery and utilization of cellulosic feedstock from steam classified municipal solid wastes

    SciTech Connect (OSTI)

    Eley, M.H.; Guinn, G.R.; Bagchi, J.

    1994-12-31

    Steam classification is a process for treatment of commingled municipal solid wastes that transforms the pulp and paper materials and most food and soft yard wastes into a fairly uniform product. After processing and partial drying, most of the transformed cellulosic material can be easily separated from the non-biomass materials by conventional screening and air classification to yield a biomass feedstock. The focus of this report is the enzymatic hydrolysis of the cellulosic component of this feedstock to produce glucose for fermentation to ethanol. Several commercially available cellulases were tested on the feedstock, and optimum conditions were found for glucose production, including enzyme loading, feedstock concentration, hydrolysis rate, conversion efficiency, and glucose yield.

  6. Data summary of municipal solid waste management alternatives. Volume 8, Appendix F, Landfills

    SciTech Connect (OSTI)

    1992-10-01

    While the preceding appendices have focused on the thermochemical approaches to managing municipal solid waste (MSW), this appendix and those that follow on composting and anaerobic digestion address more of the bioconversion process technologies. Landfilling is the historical baseline MSW management option central to every community`s solid waste management plan. It generally encompasses shredfills, balefills, landfill gas recovery, and landfill mining. While landfilling is virtually universal in use, it continues to undergo intense scrutiny by the public and regulators alike. Most recently, the US Environmental Protection Agency (EPA) issued its final rule on criteria for designing, operating, monitoring, and closing municipal solid waste landfills. While the Federal government has established nationwide standards and will assist the States in planning and developing their own practices, the States and local governments will carry out the actual planning and direct implementation. The States will also be authorized to devise programs to deal with their specific conditions and needs. While the main body of this appendix and corresponding research was originally prepared in July of 1991, references to the new RCRA Subtitle D, Part 258 EPA regulations have been included in this resubmission (908). By virtue of timing, this appendix is, necessarily, a ``transition`` document, combining basic landfill design and operation information as well as reference to new regulatory requirements. Given the speed with which landfill practices are and will be changing, the reader is encouraged to refer to Part 258 for additional details. As States set additional requirements and schedules and owners and operators of MSW landfills seek to comply, additional guidance and technical information, including case studies, will likely become available in the literature.

  7. Data Summary of Municipal Solid Waste Management Alternatives. Volume VIII: Appendix F - Landfills

    SciTech Connect (OSTI)

    1992-10-01

    While the preceding appendices have focused on the thermochemical approaches to managing municipal solid waste (MSW), this appendix and those that follow on composting and anaerobic digestion address more of the bioconversion process technologies. Landfilling is the historical baseline MSW management option central to every community's solid waste management plan. It generally encompasses shredfills, balefills, landfill gas recovery, and landfill mining. While landfilling is virtually universal in use, it continues to undergo intense scrutiny by the public and regulators alike. Most recently, the US Environmental Protection Agency (EPA) issued its final rule on criteria for designing, operating, monitoring, and closing municipal solid waste landfills. While the Federal government has established nationwide standards and will assist the States in planning and developing their own practices, the States and local governments will carry out the actual planning and direct implementation. The States will also be authorized to devise programs to deal with their specific conditions and needs. While the main body of this appendix and corresponding research was originally prepared in July of 1991, references to the new RCRA Subtitle D, Part 258 EPA regulations have been included in this resubmission (908). By virtue of timing, this appendix is, necessarily, a transition'' document, combining basic landfill design and operation information as well as reference to new regulatory requirements. Given the speed with which landfill practices are and will be changing, the reader is encouraged to refer to Part 258 for additional details. As States set additional requirements and schedules and owners and operators of MSW landfills seek to comply, additional guidance and technical information, including case studies, will likely become available in the literature.

  8. Application of thermogravimetric analysis to study the thermal degradation of solid and liquid organic wastes

    SciTech Connect (OSTI)

    E.S. Lygina; A.F. Dmitruk; S.B. Lyubchik; V.F. Tret'yakov

    2009-07-01

    In this work, the thermolysis of composite binary mixtures of refinery or coal-processing waste with waste biomass and D-grade (long-flame) coal was analyzed in order to increase the efficiency of the cothermolysis of chemically different organic wastes mainly because of the synergism of the thermolysis of mixture components and, correspondingly, the selectivity of formation of high-quality by-products (solid, gaseous, or liquid). A new approach to the analysis of thermogravimetric data was proposed and developed as applied to complex binary mixtures of carbon-containing materials. This approach was based on (1) the preliminary separation of the thermal degradation of individual carbon-containing mixture components into individual structural constituents and (2) the monitoring of the conversion of each particular structure fragment as a constituent of the mixtures in the course of the cothermolysis of the mixtures of starting components. Based on the approach developed, data on the main synergism effects in the course of cothermolysis in the binary test systems were obtained: the temperature regions of the appearance of these effects were distinguished, the main conclusions were made with respect to particular structure fragments in complex organic wastes responsible for the interaction of components in composite systems, and the directions (positive or negative) of changes in the yields of solid by-products and the degrees of effects (difference between the yields of cothermolysis by-products in each particular region of the appearance of synergistic effects in the systems) were determined. Additionally, the influence of alkali metal carbonate additives on synergistic effects in the interaction between binary system components under the process conditions of cothermolysis was analyzed.

  9. Assessment of municipal solid waste for energy production in the western United States

    SciTech Connect (OSTI)

    Goodman, B.J.; Texeira, R.H.

    1990-08-01

    Municipal solid waste (MSW) represents both a significant problem and an abundant resource for the production of energy. The residential, institutional, and industrial sectors of this country generate about 250 million tons of MSW each year. In this report, the authors have compiled data on the status of MSW in the 13-state western region, including economic and environmental issues. The report is designed to assist the members of the Western Regional Biomass Energy Program Ad Hoc Resource Committee in determining the potential for using MSW to produce energy in the region. 51 refs., 7 figs., 18 tabs.

  10. Radioactive Solid Waste Storage and Disposal at Oak Ridge National Laboratory, Description and Safety Analysis

    SciTech Connect (OSTI)

    Bates, L.D.

    2001-01-30

    Oak Ridge National Laboratory (ORNL) is a principle Department of Energy (DOE) Research Institution operated by the Union Carbide Corporation - Nuclear Division (UCC-ND) under direction of the DOE Oak Ridge Operations Office (DOE-ORO). The Laboratory was established in east Tennessee, near what is now the city of Oak Ridge, in the mid 1940s as a part of the World War II effort to develop a nuclear weapon. Since its inception, disposal of radioactively contaminated materials, both solid and liquid, has been an integral part of Laboratory operations. The purpose of this document is to provide a detailed description of the ORNL Solid Waste Storage Areas, to describe the practice and procedure of their operation, and to address the health and safety impacts and concerns of that operation.

  11. TECHNOLOGY EVALUATION FOR CONDITIONING OF HANFORD TANK WASTE USING SOLIDS SEGREGATION AND SIZE REDUCTION

    SciTech Connect (OSTI)

    Restivo, M.; Stone, M.; Herman, D.; Lambert, D.; Duignan, M.; SMITH, G.; WELLS, B.; LUMETTA, G.; ENDRELIN, C.; ADKINS, H.

    2014-04-15

    The Savannah River National Laboratory (SRNL) and the Pacific Northwest National Laboratory (PNNL) team performed a literature search on current and proposed technologies for solids segregation and size reduction of particles in the slurry feed from the Hanford Tank Farm (HTF). The team also investigated technology research performed on waste tank slurries, both real and simulated, and reviewed academic theory applicable to solids segregation and size reduction. This review included text book applications and theory, commercial applications suitable for a nuclear environment, research of commercial technologies suitable for a nuclear environment, and those technologies installed in a nuclear environment, including technologies implemented at Department of Energy (DOE) facilities. Information on each technology is provided in this report along with the advantages and disadvantages of the technologies for this application.

  12. Feasibility study for thermal treatment of solid tire wastes in Bangladesh by using pyrolysis technology

    SciTech Connect (OSTI)

    Islam, M.R.; Joardder, M.U.H.; Hasan, S.M.; Takai, K.; Haniu, H.

    2011-09-15

    In this study on the basis of lab data and available resources in Bangladesh, feasibility study has been carried out for pyrolysis process converting solid tire wastes into pyrolysis oils, solid char and gases. The process considered for detailed analysis was fixed-bed fire-tube heating pyrolysis reactor system. The comparative techno-economic assessment was carried out in US$ for three different sizes plants: medium commercial scale (144 tons/day), small commercial scale (36 tons/day), pilot scale (3.6 tons/day). The assessment showed that medium commercial scale plant was economically feasible, with the lowest unit production cost than small commercial and pilot scale plants for the production of crude pyrolysis oil that could be used as boiler fuel oil and for the production of upgraded liquid-products.

  13. Process for converting sodium nitrate-containing, caustic liquid radioactive wastes to solid insoluble products

    DOE Patents [OSTI]

    Barney, Gary S.; Brownell, Lloyd E.

    1977-01-01

    A method for converting sodium nitrate-containing, caustic, radioactive wastes to a solid, relatively insoluble, thermally stable form is provided and comprises the steps of reacting powdered aluminum silicate clay, e.g., kaolin, bentonite, dickite, halloysite, pyrophyllite, etc., with the sodium nitrate-containing radioactive wastes which have a caustic concentration of about 3 to 7 M at a temperature of 30.degree. C to 100.degree. C to thereby entrap the dissolved radioactive salts in the aluminosilicate matrix. In one embodiment the sodium nitrate-containing, caustic, radioactive liquid waste, such as neutralized Purex-type waste, or salts or oxide produced by evaporation or calcination of these liquid wastes (e.g., anhydrous salt cake) is converted at a temperature within the range of 30.degree. C to 100.degree. C to the solid mineral form-cancrinite having an approximate chemical formula 2(NaAlSiO.sub.4) .sup.. xSalt.sup.. y H.sub.2 O with x = 0.52 and y = 0.68 when the entrapped salt is NaNO.sub.3. In another embodiment the sodium nitrate-containing, caustic, radioactive liquid is reacted with the powdered aluminum silicate clay at a temperature within the range of 30.degree. C to 100.degree. C, the resulting reaction product is air dried eitheras loose powder or molded shapes (e.g., bricks) and then fired at a temperature of at least 600.degree. C to form the solid mineral form-nepheline which has the approximate chemical formula of NaAlSiO.sub.4. The leach rate of the entrapped radioactive salts with distilled water is reduced essentially to that of the aluminosilicate lattice which is very low, e.g., in the range of 10.sup.-.sup.2 to 10.sup.-.sup.4 g/cm.sup.2 -- day for cancrinite and 10.sup.-.sup.3 to 10.sup.-.sup.5 g/cm.sup.2 -- day for nepheline.

  14. GeoMelt{sup R} ICV{sup TM} Treatment of Sellafield Pond Solids Waste - 13414

    SciTech Connect (OSTI)

    Witwer, Keith; Woosley, Steve; Campbell, Brett; Wong, Martin; Hill, Joanne

    2013-07-01

    Kurion, Inc., in partnership with AMEC Ltd., is demonstrating its GeoMelt{sup R} In-Container Vitrification (ICV){sup TM} Technology to Sellafield Ltd. (SL). SL is evaluating the proposition of directly converting a container (skip/box/drum) of raw solid ILW into an immobilized waste form using thermal treatment, such that the resulting product is suitable for interim storage at Sellafield and subsequent disposal at a future Geological Disposal Facility. Potential SL feed streams include sludges, ion-exchange media, sand, plutonium contaminated material, concrete, uranium, fuel cladding, soils, metals, and decommissioning wastes. The solid wastes have significant proportions of metallic constituents in the form of containers, plant equipment, structural material and swarf arising from the nuclear operations at Sellafield. GeoMelt's proprietary ICV process was selected for demonstration, with the focus being high and reactive metal wastes arising from solid ILW material. A composite surrogate recipe was used to demonstrate the technology towards treating waste forms of diverse types and shapes, as well as those considered difficult to process; all the while requiring few (if any) pre-treatment activities. Key strategic objectives, along with their success criterion, were established by SL for this testing, namely: 1. Passivate and stabilize the raw waste simulant, as demonstrated by the entire quantity of material being vitrified, 2. Immobilize the radiological and chemo-toxic species, as demonstrated via indicative mass balance using elemental analyses from an array of samples, 3. Production of an inert and durable product as evidenced by transformation of reactive metals to their inert oxide forms and satisfactory leachability results using PCT testing. Two tests were performed using the GeoMelt Demonstration Unit located at AMEC's Birchwood Park Facilities in the UK. Post-melt examination of the first test indicated some of the waste simulant had not fully

  15. Methodology to design a municipal solid waste generation and composition map: A case study

    SciTech Connect (OSTI)

    Gallardo, A. Carlos, M. Peris, M. Colomer, F.J.

    2014-11-15

    Highlights: • To draw a waste generation and composition map of a town a lot of factors must be taken into account. • The methodology proposed offers two different depending on the available data combined with geographical information systems. • The methodology has been applied to a Spanish city with success. • The methodology will be a useful tool to organize the municipal solid waste management. - Abstract: The municipal solid waste (MSW) management is an important task that local governments as well as private companies must take into account to protect human health, the environment and to preserve natural resources. To design an adequate MSW management plan the first step consist in defining the waste generation and composition patterns of the town. As these patterns depend on several socio-economic factors it is advisable to organize them previously. Moreover, the waste generation and composition patterns may vary around the town and over the time. Generally, the data are not homogeneous around the city as the number of inhabitants is not constant nor it is the economic activity. Therefore, if all the information is showed in thematic maps, the final waste management decisions can be made more efficiently. The main aim of this paper is to present a structured methodology that allows local authorities or private companies who deal with MSW to design its own MSW management plan depending on the available data. According to these data, this paper proposes two ways of action: a direct way when detailed data are available and an indirect way when there is a lack of data and it is necessary to take into account bibliographic data. In any case, the amount of information needed is considerable. This paper combines the planning methodology with the Geographic Information Systems to present the final results in thematic maps that make easier to interpret them. The proposed methodology is a previous useful tool to organize the MSW collection routes including the

  16. Combined Municipal Solid Waste and biomass system optimization for district energy applications

    SciTech Connect (OSTI)

    Rentizelas, Athanasios A. Tolis, Athanasios I. Tatsiopoulos, Ilias P.

    2014-01-15

    Highlights: • Combined energy conversion of MSW and agricultural residue biomass is examined. • The model optimizes the financial yield of the investment. • Several system specifications are optimally defined by the optimization model. • The application to a case study in Greece shows positive financial yield. • The investment is mostly sensitive on the interest rate, the investment cost and the heating oil price. - Abstract: Municipal Solid Waste (MSW) disposal has been a controversial issue in many countries over the past years, due to disagreement among the various stakeholders on the waste management policies and technologies to be adopted. One of the ways of treating/disposing MSW is energy recovery, as waste is considered to contain a considerable amount of bio-waste and therefore can lead to renewable energy production. The overall efficiency can be very high in the cases of co-generation or tri-generation. In this paper a model is presented, aiming to support decision makers in issues relating to Municipal Solid Waste energy recovery. The idea of using more fuel sources, including MSW and agricultural residue biomass that may exist in a rural area, is explored. The model aims at optimizing the system specifications, such as the capacity of the base-load Waste-to-Energy facility, the capacity of the peak-load biomass boiler and the location of the facility. Furthermore, it defines the quantity of each potential fuel source that should be used annually, in order to maximize the financial yield of the investment. The results of an energy tri-generation case study application at a rural area of Greece, using mixed MSW and biomass, indicate positive financial yield of investment. In addition, a sensitivity analysis is performed on the effect of the most important parameters of the model on the optimum solution, pinpointing the parameters of interest rate, investment cost and heating oil price, as those requiring the attention of the decision makers

  17. SOLID WASTE INTEGRATED FORECAST TECHNICAL (SWIFT) REPORT FY2005 THRU FY2035 2005.0 VOLUME 2

    SciTech Connect (OSTI)

    BARCOT, R.A.

    2005-08-17

    This report provides up-to-date life cycle information about the radioactive solid waste expected to be managed by Hanford's Waste Management (WM) Project from onsite and offsite generators. It includes: (1) an overview of Hanford-wide solid waste to be managed by the WM Project; (2) multi-level and waste class-specific estimates; (3) background information on waste sources; and (4) comparisons to previous forecasts and other national data sources. The focus of this report is low-level waste (LLW), mixed low-level waste (MLLW), and transuranic waste, both non-mixed and mixed (TRU(M)). Some details on hazardous waste are also provided, however, this information is not considered comprehensive. This report includes data requested in December, 2004 with updates through March 31,2005. The data represent a life cycle forecast covering all reported activities from FY2005 through the end of each program's life cycle and are an update of the previous FY2004.1 data version.

  18. Investigating the effect of compression on solute transport through degrading municipal solid waste

    SciTech Connect (OSTI)

    Woodman, N.D. Rees-White, T.C.; Stringfellow, A.M.; Beaven, R.P.; Hudson, A.P.

    2014-11-15

    Highlights: • The influence of compression on MSW flushing was evaluated using 13 tracer tests. • Compression has little effect on solute diffusion times in MSW. • Lithium tracer was conservative in non-degrading waste but not in degrading waste. • Bromide tracer was conservative, but deuterium was not. - Abstract: The effect of applied compression on the nature of liquid flow and hence the movement of contaminants within municipal solid waste was examined by means of thirteen tracer tests conducted on five separate waste samples. The conservative nature of bromide, lithium and deuterium tracers was evaluated and linked to the presence of degradation in the sample. Lithium and deuterium tracers were non-conservative in the presence of degradation, whereas the bromide remained effectively conservative under all conditions. Solute diffusion times into and out of less mobile blocks of waste were compared for each test under the assumption of dominantly dual-porosity flow. Despite the fact that hydraulic conductivity changed strongly with applied stress, the block diffusion times were found to be much less sensitive to compression. A simple conceptual model, whereby flow is dominated by sub-parallel low permeability obstructions which define predominantly horizontally aligned less mobile zones, is able to explain this result. Compression tends to narrow the gap between the obstructions, but not significantly alter the horizontal length scale. Irrespective of knowledge of the true flow pattern, these results show that simple models of solute flushing from landfill which do not include depth dependent changes in solute transport parameters are justified.

  19. Two-phase anaerobic digestion within a solid waste/wastewater integrated management system

    SciTech Connect (OSTI)

    De Gioannis, G.; Diaz, L.F.; Muntoni, A. Pisanu, A.

    2008-07-01

    A two-phase, wet anaerobic digestion process was tested at laboratory scale using mechanically pre-treated municipal solid waste (MSW) as the substrate. The proposed process scheme differs from others due to the integration of the MSW and wastewater treatment cycles, which makes it possible to avoid the recirculation of process effluent. The results obtained show that the supplying of facultative biomass, drawn from the wastewater aeration tank, to the solid waste acidogenic reactor allows an improvement of the performance of the first phase of the process which is positively reflected on the second one. The proposed process performed successfully, adopting mesophilic conditions and a relatively short hydraulic retention time in the methanogenic reactor, as well as high values of organic loading rate. Significant VS removal efficiency and biogas production were achieved. Moreover, the methanogenic reactor quickly reached optimal conditions for a stable methanogenic phase. Studies conducted elsewhere also confirm the feasibility of integrating the treatment of the organic fraction of MSW with that of wastewater.

  20. Summary of non-US national and international fuel cycle and radioactive waste management programs 1982

    SciTech Connect (OSTI)

    Harmon, K.M.; Kelman, J.A.

    1982-08-01

    Brief program overviews of fuel cycle, spent fuel, and waste management activities in the following countries are provided: Argentina, Australia, Austria, Belgium, Brazil, Canada, China, Denmark, Finland, France, German Federal Republic, India, Italy, Japan, Republic of Korea, Mexico, Netherlands, Pakistan, South Africa, Spain, Sweden, Switzerland, Taiwan, USSR, and the United Kingdom. International nonproliferation activities, multilateral agreements and projects, and the international agencies specifically involved in the nuclear fuel cycle are also described.

  1. Solid waste integrated forecast technical (SWEFT) report: FY1997 to FY 2070 - Document number changed to HNF-0918 at revision 1 - 1/7/97

    SciTech Connect (OSTI)

    Valero, O.J.

    1996-10-03

    This web site provides an up-to-date report on the radioactive solid waste expected to be managed at Hanford`s Solid Waste (SW) Program from onsite and offsite generators. It includes: an overview of Hanford-wide solid waste to be managed by the SW Program; program- level and waste class-specific estimates; background information on waste sources; and Li comparisons with previous forecasts and with other national data sources. The focus of this web site is on low- level mixed waste (LLMW), and transuranic waste (both non-mixed and mixed) (TRU(M)). Some details on low-level waste and hazardous waste are also provided. Currently, this site is reporting data current as of 9/96. The data represent a life cycle forecast covering all reported activities from FY97 through the end of each program`s life cycle.

  2. International technology exchange in support of the Defense Waste Processing Facility wasteform production

    SciTech Connect (OSTI)

    Kitchen, B.G.

    1989-08-23

    The nearly completed Defense Waste Processing Facility (DWPF) is a Department of Energy (DOE) facility at the Savannah River Site that is designed to immobilize defense high level radioactive waste (HLW) by vitrification in borosilicate glass and containment in stainless steel canisters suitable for storage in the future DOE HLW repository. The DWPF is expected to start cold operation later this year (1990), and will be the first full scale vitrification facility operating in the United States, and the largest in the world. The DOE has been coordinating technology transfer and exchange on issues relating to HLW treatment and disposal through bi-lateral agreements with several nations. For the nearly fifteen years of the vitrification program at Savannah River Laboratory, over two hundred exchanges have been conducted with a dozen international agencies involving about five-hundred foreign national specialists. These international exchanges have been beneficial to the DOE`s waste management efforts through confirmation of the choice of the waste form, enhanced understanding of melter operating phenomena, support for paths forward in political/regulatory arenas, confirmation of costs for waste form compliance programs, and establishing the need for enhancements of melter facility designs. This paper will compare designs and schedules of the international vitrification programs, and will discuss technical areas where the exchanges have provided data that have confirmed and aided US research and development efforts, impacted the design of the DWPF and guided the planning for regulatory interaction and product acceptance.

  3. International technology exchange in support of the Defense Waste Processing Facility wasteform production

    SciTech Connect (OSTI)

    Kitchen, B.G.

    1989-08-23

    The nearly completed Defense Waste Processing Facility (DWPF) is a Department of Energy (DOE) facility at the Savannah River Site that is designed to immobilize defense high level radioactive waste (HLW) by vitrification in borosilicate glass and containment in stainless steel canisters suitable for storage in the future DOE HLW repository. The DWPF is expected to start cold operation later this year (1990), and will be the first full scale vitrification facility operating in the United States, and the largest in the world. The DOE has been coordinating technology transfer and exchange on issues relating to HLW treatment and disposal through bi-lateral agreements with several nations. For the nearly fifteen years of the vitrification program at Savannah River Laboratory, over two hundred exchanges have been conducted with a dozen international agencies involving about five-hundred foreign national specialists. These international exchanges have been beneficial to the DOE's waste management efforts through confirmation of the choice of the waste form, enhanced understanding of melter operating phenomena, support for paths forward in political/regulatory arenas, confirmation of costs for waste form compliance programs, and establishing the need for enhancements of melter facility designs. This paper will compare designs and schedules of the international vitrification programs, and will discuss technical areas where the exchanges have provided data that have confirmed and aided US research and development efforts, impacted the design of the DWPF and guided the planning for regulatory interaction and product acceptance.

  4. Solid Waste Operations Complex W-113, Detail Design Report (Title II). Volume 4: Project cost estimate

    SciTech Connect (OSTI)

    1995-09-01

    The Solid Waste Retrieval Facility--Phase 1 (Project W113) will provide the infrastructure and the facility required to retrieve from Trench 04, Burial ground 4C, contact handled (CH) drums and boxes at a rate that supports all retrieved TRU waste batching, treatment, storage, and disposal plans. This includes (1) operations related equipment and facilities, viz., a weather enclosure for the trench, retrieval equipment, weighing, venting, obtaining gas samples, overpacking, NDE, NDA, shipment of waste and (2) operations support related facilities, viz., a general office building, a retrieval staff change facility, and infrastructure upgrades such as supply and routing of water, sewer, electrical power, fire protection, roads, and telecommunication. Title I design for the operations related equipment and facilities was performed by Raytheon/BNFL, and that for the operations support related facilities including infrastructure upgrade was performed by KEH. These two scopes were combined into an integrated W113 Title II scope that was performed by Raytheon/BNFL. This volume represents the total estimated costs for the W113 facility. Operating Contractor Management costs have been incorporated as received from WHC. The W113 Facility TEC is $19.7 million. This includes an overall project contingency of 14.4% and escalation of 17.4%. A January 2001 construction contract procurement start date is assumed.

  5. Solid Waste Operations Complex W-113, Detail Design Report (Title II). Volume 3: Specifications

    SciTech Connect (OSTI)

    1995-09-01

    The Solid Waste Retrieval Facility--Phase 1 (Project W113) will provide the infrastructure and the facility required to retrieve from Trench 04, Burial ground 4C, contact handled (CH) drums and boxes at a rate that supports all retrieved TRU waste batching, treatment, storage, and disposal plans. This includes (1) operations related equipment and facilities, viz., a weather enclosure for the trench, retrieval equipment, weighing, venting, obtaining gas samples, overpacking, NDE, NDA, shipment of waste and (2) operations support related facilities, viz., a general office building, a retrieval staff change facility, and infrastructure upgrades such as supply and routing of water, sewer, electrical power, fire protection, roads, and telecommunication. Title I design for the operations related equipment and facilities was performed by Raytheon/BNFL, and that for the operations support related facilities including infrastructure upgrade was performed by KEH. These two scopes were combined into an integrated W113 Title II scope that was performed by Raytheon/BNFL. Volume 3 is a compilation of the construction specifications that will constitute the Title II materials and performance specifications. This volume contains CSI specifications for non-equipment related construction material type items, performance type items, and facility mechanical equipment items. Data sheets are provided, as necessary, which specify the equipment overall design parameters.

  6. Data summary of municipal solid waste management alternatives. Volume 5, Appendix C, Fluidized-bed combustion

    SciTech Connect (OSTI)

    1992-10-01

    This appendix provides information on fluidized-bed combustion (FBC) technology as it has been applied to municipal waste combustion (MWC). A review of the literature was conducted to determine: (1) to what extent FBC technology has been applied to MWC, in terms of number and size of units was well as technology configuration; (2) the operating history of facilities employing FBC technology; and (3) the cost of these facilities as compared to conventional MSW installations. Where available in the literature, data on operating and performance characteristics are presented. Tabular comparisons of facility operating/cost data and emissions data have been complied and are presented. The literature review shows that FBC technology shows considerable promise in terms of providing improvements over conventional technology in areas such as NOx and acid gas control, and ash leachability. In addition, the most likely configuration to be applied to the first large scale FBC dedicated to municipal solid waste (MSW) will employ circulating bed (CFB) technology. Projected capital costs for the Robbins, Illinois 1600 ton per day CFB-based waste-to-energy facility are competitive with conventional systems, in the range of $125,000 per ton per day of MSW receiving capacity.

  7. Thermal and hydrometallurgical recovery methods of heavy metals from municipal solid waste fly ash

    SciTech Connect (OSTI)

    Kuboňová, L.

    2013-11-15

    Highlights: • MSW fly ash was thermally and hydrometallurgically treated to remove heavy metals. • More than 90% of easy volatile heavy metals (Cd and Pb) were removed thermally. • More than 90% of Cd, Cr, Cu an Zn were removed by alkaline – acid leaching. • The best results were obtained for the solution of 3 M NaOH and 2 M H{sub 2}SO{sub 4}. - Abstract: Heavy metals in fly ash from municipal solid waste incinerators are present in high concentrations. Therefore fly ash must be treated as a hazardous material. On the other hand, it may be a potential source of heavy metals. Zinc, lead, cadmium, and copper can be relatively easily removed during the thermal treatment of fly ash, e.g. in the form of chlorides. In return, wet extraction methods could provide promising results for these elements including chromium and nickel. The aim of this study was to investigate and compare thermal and hydrometallurgical treatment of municipal solid waste fly ash. Thermal treatment of fly ash was performed in a rotary reactor at temperatures between 950 and 1050 °C and in a muffle oven at temperatures from 500 to 1200 °C. The removal more than 90% was reached by easy volatile heavy metals such as cadmium and lead and also by copper, however at higher temperature in the muffle oven. The alkaline (sodium hydroxide) and acid (sulphuric acid) leaching of the fly ash was carried out while the influence of temperature, time, concentration, and liquid/solid ratio were investigated. The combination of alkaline-acidic leaching enhanced the removal of, namely, zinc, chromium and nickel.

  8. Financial sustainability in municipal solid waste management – Costs and revenues in Bahir Dar, Ethiopia

    SciTech Connect (OSTI)

    Lohri, Christian Riuji Camenzind, Ephraim Joseph Zurbrügg, Christian

    2014-02-15

    Highlights: • Cost-revenue analysis over 2 years revealed insufficient cost-recovery. • Expenses for motorized secondary collection increased by 82% over two years. • Low fee collection rate and reliance on only one revenue stream are problematic. • Different options for cost reduction and enhanced revenue streams are recommended. • Good public–private alliance is crucial to plan and implement improvement measures. - Abstract: Providing good solid waste management (SWM) services while also ensuring financial sustainability of the system continues to be a major challenge in cities of developing countries. Bahir Dar in northwestern Ethiopia outsourced municipal waste services to a private waste company in 2008. While this institutional change has led to substantial improvement in the cleanliness of the city, its financial sustainability remains unclear. Is the private company able to generate sufficient revenues from their activities to offset the costs and generate some profit? This paper presents a cost-revenue analysis, based on data from July 2009 to June 2011. The analysis reveals that overall costs in Bahir Dar’s SWM system increased significantly during this period, mainly due to rising costs related to waste transportation. On the other hand, there is only one major revenue stream in place: the waste collection fee from households, commercial enterprises and institutions. As the efficiency of fee collection from households is only around 50%, the total amount of revenues are not sufficient to cover the running costs. This results in a substantial yearly deficit. The results of the research therefore show that a more detailed cost structure and cost-revenue analysis of this waste management service is important with appropriate measures, either by the privates sector itself or with the support of the local authorities, in order to enhance cost efficiency and balance the cost-revenues towards cost recovery. Delays in mitigating the evident

  9. Methodology to design a municipal solid waste pre-collection system. A case study

    SciTech Connect (OSTI)

    Gallardo, A. Carlos, M. Peris, M. Colomer, F.J.

    2015-02-15

    Highlights: • MSW recovery starts at homes; therefore it is important to facilitate it to people. • Additionally, to optimize MSW collection a previous pre-collection must be planned. • A methodology to organize pre-collection considering several factors is presented. • The methodology has been verified applying it to a Spanish middle town. - Abstract: The municipal solid waste (MSW) management is an important task that local governments as well as private companies must take into account to protect human health, the environment and to preserve natural resources. To design an adequate MSW management plan the first step consists in defining the waste generation and composition patterns of the town. As these patterns depend on several socio-economic factors it is advisable to organize them previously. Moreover, the waste generation and composition patterns may vary around the town and over the time. Generally, the data are not homogeneous around the city as the number of inhabitants is not constant nor it is the economic activity. Therefore, if all the information is showed in thematic maps, the final waste management decisions can be made more efficiently. The main aim of this paper is to present a structured methodology that allows local authorities or private companies who deal with MSW to design its own MSW management plan depending on the available data. According to these data, this paper proposes two ways of action: a direct way when detailed data are available and an indirect way when there is a lack of data and it is necessary to take into account bibliographic data. In any case, the amount of information needed is considerable. This paper combines the planning methodology with the Geographic Information Systems to present the final results in thematic maps that make easier to interpret them. The proposed methodology is a previous useful tool to organize the MSW collection routes including the selective collection. To verify the methodology it has

  10. RD & D priorities for energy production and resource conservation from municipal solid waste

    SciTech Connect (OSTI)

    Not Available

    1992-08-01

    This report identifies research, development, and demonstration (RD&D) needs and priorities associated with municipal solid waste (MSW) management technologies that conserve or produce energy or resources. The changing character of MSW waste management and the public`s heightened awareness of its real and perceived benefits and costs creates opportunities for RD&D in MSW technologies. Increased recycling, for example, creates new opportunities for energy, chemicals, and materials recovery. New technologies to control and monitor emissions from MSW combustion facilities are available for further improvement or application. Furthermore, emerging waste-to-energy technologies may offer environmental, economic, and other advantages. Given these developments, DOE identified a need to assess the RD&D needs and pdodties and carefully target RD&D efforts to help solve the carbon`s waste management problem and further the National Energy Strategy. This report presents such an assessment. It identifies and Documents RD&D needs and priorities in the broad area of MSW resource . recovery, focusing on efforts to make MSW management technologies commercially viable or to improve their commercial deployment over a 5 to l0 year period. Panels of technical experts identifies 279 RD&D needs in 12 technology areas, ranking about one-fifth of these needs as priorities. A ``Peer Review Group`` identified mass-burn combustion, ``systems studies,`` landfill gas, and ash utilization and disposal as high priority areas for RD&D based on cost and the impacts of further RD&D. The results of this assessment are intended to provide guidance to DOE concerning possible future RD&D projects.

  11. Integrated municipal solid waste management: Six case studies of system cost and energy use. A summary report

    SciTech Connect (OSTI)

    1995-11-01

    Report documents an evaluation of the environmental, economic, and energy impacts of integrated municipal solid waste management systems in six cities: Minneapolis, NW; Springfield, MA; Seattle, WA; Scottsdale, AZ; Palm Beach County, CA; and Sevierville, TN. The primary objective of these case studies was to develop and present consistent cost, resource use (especially energy), and environmental regulator information on each operating IMSWM system. The process is defined as using two or more alternative waste management techniques. Detailed reports on each system are available.

  12. One size fits all? An assessment tool for solid waste management at local and national levels

    SciTech Connect (OSTI)

    Broitman, Dani; Ayalon, Ofira; Kan, Iddo

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Waste management schemes are generally implemented at national or regional level. Black-Right-Pointing-Pointer Local conditions characteristics and constraints are often neglected. Black-Right-Pointing-Pointer We developed an economic model able to compare multi-level waste management options. Black-Right-Pointing-Pointer A detailed test case with real economic data and a best-fit scenario is described. Black-Right-Pointing-Pointer Most efficient schemes combine clear National directives with local level flexibility. - Abstract: As environmental awareness rises, integrated solid waste management (WM) schemes are increasingly being implemented all over the world. The different WM schemes usually address issues such as landfilling restrictions (mainly due to methane emissions and competing land use), packaging directives and compulsory recycling goals. These schemes are, in general, designed at a national or regional level, whereas local conditions and constraints are sometimes neglected. When national WM top-down policies, in addition to setting goals, also dictate the methods by which they are to be achieved, local authorities lose their freedom to optimize their operational WM schemes according to their specific characteristics. There are a myriad of implementation options at the local level, and by carrying out a bottom-up approach the overall national WM system will be optimal on economic and environmental scales. This paper presents a model for optimizing waste strategies at a local level and evaluates this effect at a national level. This is achieved by using a waste assessment model which enables us to compare both the economic viability of several WM options at the local (single municipal authority) level, and aggregated results for regional or national levels. A test case based on various WM approaches in Israel (several implementations of mixed and separated waste) shows that local characteristics significantly

  13. Thermal and mechanical stabilization process of the organic fraction of the municipal solid waste

    SciTech Connect (OSTI)

    Giudicianni, Paola; Bozza, Pio; Sorrentino, Giancarlo; Ragucci, Raffaele

    2015-10-15

    Graphical abstract: Display Omitted - Highlights: • A domestic scale prototype for the pre-treatment of OFMSW has been tested. • Two grinding techniques are compared and thermopress is used for the drying stage. • Increasing temperature up to 170 °C reduces energy consumption of the drying stage. • In the range 5–10 bar a reduction of 97% of the initial volume is obtained. • In most cases energy recovery from the dried waste matches energy consumption. - Abstract: In the present study a thermo-mechanical treatment for the disposal of the Organic Fraction of Municipal Solid Waste (OFMSW) at apartment or condominium scale is proposed. The process presents several advantages allowing to perform a significant volume and moisture reduction of the produced waste at domestic scale thus producing a material with an increased storability and improved characteristics (e.g. calorific value) that make it available for further alternative uses. The assessment of the applicability of the proposed waste pretreatment in a new scheme of waste management system requires several research steps involving different competences and application scales. In this context, a preliminary study is needed targeting to the evaluation and minimization of the energy consumption associated to the process. To this aim, in the present paper, two configurations of a domestic appliance prototype have been presented and the effect of some operating variables has been investigated in order to select the proper configuration and the best set of operating conditions capable to minimize the duration and the energy consumption of the process. The performances of the prototype have been also tested on three model mixtures representing a possible daily domestic waste and compared with an existing commercially available appliance. The results obtained show that a daily application of the process is feasible given the short treatment time required and the energy consumption comparable to the one of

  14. Application for a Permit to Operate a Class III Solid Waste Disposal Site at the Nevada National Security Site Area 5 Asbestiform Low-Level Solid Waste Disposal Site

    SciTech Connect (OSTI)

    NSTec Environmental Programs

    2010-10-04

    The Nevada National Security Site (NNSS) is located approximately 105 km (65 mi) northwest of Las Vegas, Nevada. The U.S. Department of Energy National Nuclear Security Administration Nevada Site Office (NNSA/NSO) is the federal lands management authority for the NNSS and National Security Technologies, LLC (NSTec) is the Management and Operations contractor. Access on and off the NNSS is tightly controlled, restricted, and guarded on a 24-hour basis. The NNSS is posted with signs along its entire perimeter. NSTec is the operator of all solid waste disposal sites on the NNSS. The Area 5 Radioactive Waste Management Site (RWMS) is the location of the permitted facility for the Solid Waste Disposal Site (SWDS). The Area 5 RWMS is located near the eastern edge of the NNSS (Figure 1), approximately 26 km (16 mi) north of Mercury, Nevada. The Area 5 RWMS is used for the disposal of low-level waste (LLW) and mixed low-level waste. Many areas surrounding the RWMS have been used in conducting nuclear tests. The site will be used for the disposal of regulated Asbestiform Low-Level Waste (ALLW), small quantities of low-level radioactive hydrocarbon-burdened (LLHB) media and debris, LLW, LLW that contains Polychlorinated Biphenyl (PCB) Bulk Product Waste greater than 50 ppm that leaches at a rate of less than 10 micrograms of PCB per liter of water, and small quantities of LLHB demolition and construction waste (hereafter called permissible waste). Waste containing free liquids, or waste that is regulated as hazardous waste under the Resource Conservation and Recovery Act (RCRA) or state-of-generation hazardous waste regulations, will not be accepted for disposal at the site. Waste regulated under the Toxic Substances Control Act (TSCA) that will be accepted at the disposal site is regulated asbestos-containing materials (RACM) and PCB Bulk Product Waste greater than 50 ppm that leaches at a rate of less than 10 micrograms of PCB per liter of water. The term asbestiform is

  15. Quantification of the resource recovery potential of municipal solid waste incineration bottom ashes

    SciTech Connect (OSTI)

    Allegrini, Elisa; Maresca, Alberto; Olsson, Mikael Emil; Holtze, Maria Sommer; Boldrin, Alessio; Astrup, Thomas Fruergaard

    2014-09-15

    Highlights: • Ferrous and non-ferrous metals were quantified in MSWI bottom ashes. • Metal recovery system efficiencies for bottom ashes were estimated. • Total content of critical elements was determined in bottom ash samples. • Post-incineration recovery is not viable for most critical elements. - Abstract: Municipal solid waste incineration (MSWI) plays an important role in many European waste management systems. However, increasing focus on resource criticality has raised concern regarding the possible loss of critical resources through MSWI. The primary form of solid output from waste incinerators is bottom ashes (BAs), which also have important resource potential. Based on a full-scale Danish recovery facility, detailed material and substance flow analyses (MFA and SFA) were carried out, in order to characterise the resource recovery potential of Danish BA: (i) based on historical and experimental data, all individual flows (representing different grain size fractions) within the recovery facility were quantified, (ii) the resource potential of ferrous (Fe) and non-ferrous (NFe) metals as well as rare earth elements (REE) was determined, (iii) recovery efficiencies were quantified for scrap metal and (iv) resource potential variability and recovery efficiencies were quantified based on a range of ashes from different incinerators. Recovery efficiencies for Fe and NFe reached 85% and 61%, respectively, with the resource potential of metals in BA before recovery being 7.2%ww for Fe and 2.2%ww for NFe. Considerable non-recovered resource potential was found in fine fraction (below 2 mm), where approximately 12% of the total NFe potential in the BA were left. REEs were detected in the ashes, but the levels were two or three orders of magnitude lower than typical ore concentrations. The lack of REE enrichment in BAs indicated that the post-incineration recovery of these resources may not be a likely option with current technology. Based on these results

  16. WIPP Facility Work Plan for Solid Waste Management Units and Areas of Concern

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2002-03-05

    This 2002 Facility Work Plan (FWP) has been prepared as required by Module VII, Permit Condition VII.U.3 of the Waste Isolation Pilot Plant (WIPP) Hazardous Waste Facility Permit, NM4890139088-TSDF (the Permit) (New Mexico Environment Department [NMED], 1999a), and incorporates comments from the NMED received on December 6, 2000 (NMED, 2000a). This February 2002 FWP describes the programmatic facility-wide approach to future investigations at Solid Waste Management Units (SWMU) and Areas of Concern (AOC) specified in the Permit. The Permittees are evaluating data from previous investigations of the SWMUs and AOCs against the most recent guidance proposed by the NMED. Based on these data, and completion of the August 2001 sampling requested by the NMED, the Permittees expect that no further sampling will be required and that a request for No Further Action (NFA) at the SWMUs and AOCs will be submitted to the NMED. This FWP addresses the current Permit requirements. It uses the results of previous investigations performed at WIPP and expands the investigations as required by the Permit. As an alternative to the Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI) specified in Module VII of the Permit, current NMED guidance identifies an Accelerated Corrective Action Approach (ACAA) that may be used for any SWMU or AOC (NMED, 1998). This accelerated approach is used to replace the standard RFI Work Plan and Report sequence with a more flexible decision-making approach. The ACAA process allows a facility to exit the schedule of compliance contained in the facility's Hazardous and Solid Waste Amendments (HSWA) permit module and proceed on an accelerated time frame. Thus, the ACAA processcan be entered either before or after an RFI Work Plan. According to the NMED's guidance, a facility can prepare an RFI Work Plan or Sampling and Analysis Plan (SAP) for any SWMU or AOC (NMED, 1998). Based on this guidance, a SAP constitutes an acceptable

  17. WIPP Facility Work Plan for Solid Waste Management Units and Areas of Concern

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2002-03-05

    his 2002 Facility Work Plan (FWP) has been prepared as required by Module VII,Permit Condition VII.U.3 of the Waste Isolation Pilot Plant (WIPP) Hazardous Waste Facility Permit, NM4890139088-TSDF (the Permit) (New Mexico Environment Department [NMED], 1999a), and incorporates comments from the NMED received onDecember 6, 2000 (NMED, 2000a). This February 2002 FWP describes the program-matic facility-wide approach to future investigations at Solid Waste Management Units (SWMU) and Areas of Concern (AOC) specified in the Permit. The Permittees are evaluating data from previous investigations of the SWMUs and AOCs against the mostrecent guidance proposed by the NMED. Based on these data, and completion of the August 2001 sampling requested by the NMED, the Permittees expect that no further sampling will be required and that a request for No Further Action (NFA) at the SWMUs and AOCs will be submitted to the NMED. This FWP addresses the current Permit requirements. It uses the results of previous investigations performed at WIPP and expands the investigations as required by the Permit. As an alternative to the Resource Conservation and Recovery Act (RCRA)Facility Investigation (RFI) specified in Module VII of the Permit, current NMED guidance identifies an Accelerated Corrective Action Approach (ACAA) that may beused for any SWMU or AOC (NMED, 1998). This accelerated approach is used toreplace the standard RFI Work Plan and Report sequence with a more flexible decision-making approach. The ACAA process allows a facility to exit the schedule of compliance contained in the facility's Hazardous and Solid Waste Amendments (HSWA) permit module and proceed on an accelerated time frame. Thus, the ACAA process can be entered either before or after an RFI Work Plan. According to the NMED's guidance, a facility can prepare an RFI Work Plan or Sampling and Analysis Plan (SAP) for any SWMU or AOC (NMED, 1998). Based on this guidance, a SAP constitutes an acceptable alternative to

  18. Stable isotope signatures for characterising the biological stability of landfilled municipal solid waste

    SciTech Connect (OSTI)

    Wimmer, Bernhard; Hrad, Marlies; Huber-Humer, Marion; Watzinger, Andrea; Wyhlidal, Stefan; Reichenauer, Thomas G.

    2013-10-15

    Highlights: ► The isotopic signature of δ{sup 13}C-DIC of leachates is linked to the reactivity of MSW. ► Isotopic signatures of leachates depend on aerobic/anaerobic conditions in landfills. ► In situ aeration of landfills can be monitored by isotope analysis in leachate. ► The isotopic analysis of leachates can be used for assessing the stability of MSW. ► δ{sup 13}C-DIC of leachates helps to define the duration of landfill aftercare. - Abstract: Stable isotopic signatures of landfill leachates are influenced by processes within municipal solid waste (MSW) landfills mainly depending on the aerobic/anaerobic phase of the landfill. We investigated the isotopic signatures of δ{sup 13}C, δ{sup 2}H and δ{sup 18}O of different leachates from lab-scale experiments, lysimeter experiments and a landfill under in situ aeration. In the laboratory, columns filled with MSW of different age and reactivity were percolated under aerobic and anaerobic conditions. In landfill simulation reactors, waste of a 25 year old landfill was kept under aerobic and anaerobic conditions. The lysimeter facility was filled with mechanically shredded fresh waste. After starting of the methane production the waste in the lysimeter containments was aerated in situ. Leachate and gas composition were monitored continuously. In addition the seepage water of an old landfill was collected and analysed periodically before and during an in situ aeration. We found significant differences in the δ{sup 13}C-value of the dissolved inorganic carbon (δ{sup 13}C-DIC) of the leachate between aerobic and anaerobic waste material. During aerobic degradation, the signature of δ{sup 13}C-DIC was mainly dependent on the isotopic composition of the organic matter in the waste, resulting in a δ{sup 13}C-DIC of −20‰ to −25‰. The production of methane under anaerobic conditions caused an increase in δ{sup 13}C-DIC up to values of +10‰ and higher depending on the actual reactivity of the MSW

  19. Comparing urban solid waste recycling from the viewpoint of urban metabolism based on physical input-output model: A case of Suzhou in China

    SciTech Connect (OSTI)

    Liang Sai; Zhang Tianzhu

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer Impacts of solid waste recycling on Suzhou's urban metabolism in 2015 are analyzed. Black-Right-Pointing-Pointer Sludge recycling for biogas is regarded as an accepted method. Black-Right-Pointing-Pointer Technical levels of reusing scrap tires and food wastes should be improved. Black-Right-Pointing-Pointer Other fly ash utilization methods should be exploited. Black-Right-Pointing-Pointer Secondary wastes from reusing food wastes and sludge should be concerned. - Abstract: Investigating impacts of urban solid waste recycling on urban metabolism contributes to sustainable urban solid waste management and urban sustainability. Using a physical input-output model and scenario analysis, urban metabolism of Suzhou in 2015 is predicted and impacts of four categories of solid waste recycling on urban metabolism are illustrated: scrap tire recycling, food waste recycling, fly ash recycling and sludge recycling. Sludge recycling has positive effects on reducing all material flows. Thus, sludge recycling for biogas is regarded as an accepted method. Moreover, technical levels of scrap tire recycling and food waste recycling should be improved to produce positive effects on reducing more material flows. Fly ash recycling for cement production has negative effects on reducing all material flows except solid wastes. Thus, other fly ash utilization methods should be exploited. In addition, the utilization and treatment of secondary wastes from food waste recycling and sludge recycling should be concerned.

  20. International fuel cycle and waste management technology exchange activities sponsored by the United States Department of Energy: FY 1982 evaluation report

    SciTech Connect (OSTI)

    Lakey, L.T.; Harmon, K.M.

    1983-02-01

    In FY 1982, DOE and DOE contractor personnel attended 40 international symposia and conferences on fuel reprocessing and waste management subjects. The treatment of high-level waste was the topic most often covered in the visits, with geologic disposal and general waste management also being covered in numerous visits. Topics discussed less frequently inlcude TRU/LLW treatment, airborne waste treatment, D and D, spent fuel handling, and transportation. The benefits accuring to the US from technology exchange activities with other countries are both tangible, e.g., design of equipment, and intangible, e.g., improved foreign relations. New concepts initiated in other countries, particularly those with sizable nuclear programs, are beginning to appear in US efforts in growing numbers. The spent fuel dry storage concept originating in the FRG is being considered at numerous sites. Similarly, the German handling and draining concepts for the joule-heated ceramic melter used to vitrify wastes are being incorporated in US designs. Other foreigh technologies applicable in the US include the slagging incinerator (Belgium), the SYNROC waste form (Australia), the decontamination experience gained in decommissioning the Eurochemic reprocessing plant (Belgium), the engineered surface storage of low- and intermediate-level waste (Belgium, FRG, France), the air-cooled storage of vitrified high-level waste (France, UK), waste packaging (Canada, FRG, Sweden), disposal in salt (FRG), disposal in granite (Canada, Sweden), and sea dumping (UK, Belgium, The Netherlands, Switzerland). These technologies did not necessarily originated or have been tried in the US but for various reasons are now being applied and extended in other countries. This growing nuclear technological base in other countires reduces the number of technology avenues the US need follow to develop a solid nuclear power program.

  1. A system dynamic modeling approach for evaluating municipal solid waste generation, landfill capacity and related cost management issues

    SciTech Connect (OSTI)

    Kollikkathara, Naushad; Feng Huan; Yu Danlin

    2010-11-15

    As planning for sustainable municipal solid waste management has to address several inter-connected issues such as landfill capacity, environmental impacts and financial expenditure, it becomes increasingly necessary to understand the dynamic nature of their interactions. A system dynamics approach designed here attempts to address some of these issues by fitting a model framework for Newark urban region in the US, and running a forecast simulation. The dynamic system developed in this study incorporates the complexity of the waste generation and management process to some extent which is achieved through a combination of simpler sub-processes that are linked together to form a whole. The impact of decision options on the generation of waste in the city, on the remaining landfill capacity of the state, and on the economic cost or benefit actualized by different waste processing options are explored through this approach, providing valuable insights into the urban waste-management process.

  2. Proceedings: 1989 conference on municipal solid waste as a utility fuel

    SciTech Connect (OSTI)

    Not Available

    1991-02-01

    This volume contains papers presented at the 1989 Electric Power Research Institute (EPRI) Conference on Municipal Solid Waste as a Utility Fuel. The subject areas included are: Utility cofiring experience, refuse-derived fuel production, firing 100% refuse-derived fuel, mass burn technology, fluidized bed combustion, research reports, environmental control technology, and papers on permitting, environmental risk assessment, and the impact of recycling. The conference was held on October 10--12, 1989, and was proceeded by similar conferences held 11/85 (EPRI publication CS-4900-SR, 1986); 1/82 (EPRI publication CS-2723, 1982) and 1/80 (EPRI Publication WS-79-225, 1980). Individual projects are processed separately for on the databases. (MHB)

  3. Solid waste information and tracking system client-server conversion project management plan

    SciTech Connect (OSTI)

    May, D.L.

    1998-04-15

    This Project Management Plan is the lead planning document governing the proposed conversion of the Solid Waste Information and Tracking System (SWITS) to a client-server architecture. This plan presents the content specified by American National Standards Institute (ANSI)/Institute of Electrical and Electronics Engineers (IEEE) standards for software development, with additional information categories deemed to be necessary to describe the conversion fully. This plan is a living document that will be reviewed on a periodic basis and revised when necessary to reflect changes in baseline design concepts and schedules. This PMP describes the background, planning and management of the SWITS conversion. It does not constitute a statement of product requirements. Requirements and specification documentation needed for the SWITS conversion will be released as supporting documents.

  4. Pyrolysis of Municipal Solid Waste for Syngas Production by Microwave Irradiation

    SciTech Connect (OSTI)

    Gedam, Vidyadhar V.; Regupathi, Iyyaswami

    2012-03-15

    In the present study, we discuss the application of microwave-irradiated pyrolysis of municipal solid waste (MSW) for total recovery of useful gases and energy. The MSW pyrolysis under microwave irradiation highly depends on the process parameters, like microwave power, microwave absorbers, and time of irradiation. The thoroughness of pyrolysis and product recovery were studied by changing the abovesaid variables. Pyrolysis of MSW occurs in the power rating range of 450-850 W-outside this power rating range, pyrolysis is not possible. Experiments were carried out using various microwave absorbers (i.e., graphite, charcoal, and iron) to enhance the pyrolysis even at lower power rating. The results show that the pyrolysis of MSW was possible even at low power ratings. The major composition of the pyrolysis gaseous product were analyzed with GC-MS which includes CO{sub 2}, CO, CH{sub 4}, etc.

  5. On-line early fault detection and diagnosis of municipal solid waste incinerators

    SciTech Connect (OSTI)

    Zhao Jinsong [College of Information Science and Technology, Beijing University of Chemical Technology, Beijing 100029 (China)], E-mail: jinsongzhao@mail.tsinghua.edu.cn; Huang Jianchao [College of Information Science and Technology, Beijing Institute of Technology, Beijing 10086 (China); Sun Wei [College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029 (China)

    2008-11-15

    A fault detection and diagnosis framework is proposed in this paper for early fault detection and diagnosis (FDD) of municipal solid waste incinerators (MSWIs) in order to improve the safety and continuity of production. In this framework, principal component analysis (PCA), one of the multivariate statistical technologies, is used for detecting abnormal events, while rule-based reasoning performs the fault diagnosis and consequence prediction, and also generates recommendations for fault mitigation once an abnormal event is detected. A software package, SWIFT, is developed based on the proposed framework, and has been applied in an actual industrial MSWI. The application shows that automated real-time abnormal situation management (ASM) of the MSWI can be achieved by using SWIFT, resulting in an industrially acceptable low rate of wrong diagnosis, which has resulted in improved process continuity and environmental performance of the MSWI.

  6. SEISMIC DESIGN REQUIREMENTS SELECTION METHODOLOGY FOR THE SLUDGE TREATMENT & M-91 SOLID WASTE PROCESSING FACILITIES PROJECTS

    SciTech Connect (OSTI)

    RYAN GW

    2008-04-25

    In complying with direction from the U.S. Department of Energy (DOE), Richland Operations Office (RL) (07-KBC-0055, 'Direction Associated with Implementation of DOE-STD-1189 for the Sludge Treatment Project,' and 08-SED-0063, 'RL Action on the Safety Design Strategy (SDS) for Obtaining Additional Solid Waste Processing Capabilities (M-91 Project) and Use of Draft DOE-STD-I 189-YR'), it has been determined that the seismic design requirements currently in the Project Hanford Management Contract (PHMC) will be modified by DOE-STD-1189, Integration of Safety into the Design Process (March 2007 draft), for these two key PHMC projects. Seismic design requirements for other PHMC facilities and projects will remain unchanged. Considering the current early Critical Decision (CD) phases of both the Sludge Treatment Project (STP) and the Solid Waste Processing Facilities (M-91) Project and a strong intent to avoid potentially costly re-work of both engineering and nuclear safety analyses, this document describes how Fluor Hanford, Inc. (FH) will maintain compliance with the PHMC by considering both the current seismic standards referenced by DOE 0 420.1 B, Facility Safety, and draft DOE-STD-1189 (i.e., ASCE/SEI 43-05, Seismic Design Criteria for Structures, Systems, and Components in Nuclear Facilities, and ANSI!ANS 2.26-2004, Categorization of Nuclear Facility Structures, Systems and Components for Seismic Design, as modified by draft DOE-STD-1189) to choose the criteria that will result in the most conservative seismic design categorization and engineering design. Following the process described in this document will result in a conservative seismic design categorization and design products. This approach is expected to resolve discrepancies between the existing and new requirements and reduce the risk that project designs and analyses will require revision when the draft DOE-STD-1189 is finalized.

  7. Anaerobic digestion of pressed off leachate from the organic fraction of municipal solid waste

    SciTech Connect (OSTI)

    Nayono, Satoto E.; Winter, Josef; Gallert, Claudia

    2010-10-15

    A highly polluted liquid ('press water') was obtained from the pressing facility for the organic fraction of municipal solid waste in a composting plant. Methane productivity of the squeezed-off leachate was investigated in batch assays. To assess the technical feasibility of 'press water' as a substrate for anaerobic digestion, a laboratory-scale glass column reactor was operated semi-continuously at 37 {sup o}C. A high methane productivity of 270 m{sup -3} CH{sub 4} ton{sup -1} COD{sub added} or 490 m{sup -3} CH{sub 4} ton{sup -1} VS{sub added} was achieved in the batch experiment. The semi-continuously run laboratory-scale reactor was initially operated at an organic loading rate of 10.7 kg COD m{sup -3} d{sup -1}. The loading was increased to finally 27.7 kg COD m{sup -3} d{sup -1}, corresponding to a reduction of the hydraulic retention time from initially 20 to finally 7.7 days. During the digestion, a stable elimination of organic material (measured as COD elimination) of approximately 60% was achieved. Linearly with the increment of the OLR, the volumetric methane production of the reactor increased from 2.6 m{sup 3} m{sub reactor}{sup -3} d{sup -1} to 7.1 m{sup 3} m{sub reactor}{sup -3} d{sup -1}. The results indicated that 'press water' from the organic fraction of municipal solid waste was a suitable substrate for anaerobic digestion which gave a high biogas yield even at very high loading rates.

  8. Design and operation of a passive neutron monitor for assaying the TRU content of solid wastes

    SciTech Connect (OSTI)

    Brodzinski, R.L.; Brown, D.P.; Rieck, H.G. Jr.; Rogers, L.A.

    1984-02-01

    A passive neutron monitor has been designed and built for determining the residual transuranic (TRU) and plutonium content of chopped leached fuel hulls and other solid wastes from spent Fast Flux Test Facility (FFTF) fuel. The system was designed to measure as little as 8 g of plutonium or 88 mg of TRU in a waste package as large as a 208-l drum which could be emitting up to 220,000 R/hr of gamma radiation. For practical purposes, maximum assay times were chosen to be 10,000 sec. The monitor consists of 96 /sup 10/BF/sub 3/ neutron sensitive proportional counting tubes each 5.08 cm in diameter and 183 cm in active length. Tables of neutron emission rates from both spontaneous fission and (..cap alpha..,n) reactions on oxygen are given for all contributing isotopes expected to be present in spent FFTF fuel. Tables of neutron yeilds from isotopic compositions predicted for various exposures and cooling times are also given. Methods of data reduction and sources, magnitude, and control of errors are discussed. Backgrounds and efficiencies have been measured and are reported. A section describing step-by-step operational procedures is included. Guidelines and procedures for quality control and troubleshooting are also given. 13 references, 15 figures, 4 tables.

  9. Numerical study of radiation effect on the municipal solid waste combustion characteristics inside an incinerator

    SciTech Connect (OSTI)

    Wang, Jingfu Xue, Yanqing; Zhang, Xinxin; Shu, Xinran

    2015-10-15

    Highlights: • A 3-D model for the MSW incinerator with preheated air was developed. • Gas radiative properties were obtained from a statistical narrow-band model. • Non-gray body radiation model can provide more accurate simulation results. - Abstract: Due to its advantages of high degree volume reduction, relatively stable residue, and energy reclamation, incineration becomes one of the best choices for Municipal Solid Waste (MSW) disposal. However, detailed measurements of temperature and gas species inside a furnace are difficulty by conventional experimental techniques. Therefore, numerical simulation of MSW incineration in the packed bed and gas flow field was applied. In this work, a three dimensional (3-D) model of incinerator system, including flow, heat transfer, detailed chemical mechanisms, and non-gray gas models, was developed. Radiation from the furnace wall and the flame formed above the bed is of importance for drying and igniting the waste. The preheated air with high temperature is used for the MSW combustion. Under the conditions of high temperature and high pressure, MSW combustion produces a variety of radiating gases. The wavelength-depend radiative properties of flame adopted in non-gray radiation model were obtained from a statistical narrow-band model. The influence of radiative heat transfer on temperature, flow field is researched by adiabatic model (without considering radiation), gray radiation model, and non-gray radiation model. The simulation results show that taking into account the non-gray radiation is essential.

  10. Electric-resistance furnace for melting ash from municipal solid waste incinerator

    SciTech Connect (OSTI)

    Nakao, Tsuyoshi; Nakahara, Keisuke; Akashi, Tetsuo

    1997-12-31

    Existing landfill capacity is dwindling in Japan and it is difficult to find new landfill sites because of strong opposition from residents. Under the Waste Disposal and Public Cleaning Law in 1991 in Japan, fly ashes from municipal solid waste (MSW) incinerator have to be treated by one of the four methods: (1) vitrification, (2) solidification by cement, (3) stabilization using chemical agents, or (4) extraction with acid or other solvent. In these four technologies, the vitrification technology has some advantages: decreasing ash volume which can solve the landfill problem, de-taxiing ash, and utilization of its products from residues. NKK has developed an electric resistance furnace for melting MSW incineration residues and built a demonstration plant (24t/d). The performance test results showed as follows; (1) Si, Al, and Ca tended to become the molten slag. Cu, P, and Fe tended to become the molten metal. Pb, Zn, and Cd tended to become the molten fly ash. (2) HCl from the slag resistance electric furnace was 60 ppm and very low compared with other melting systems. (3) Decomposition rate of dioxins was 99 % in the melting furnace. (4) Concentration of heavy metals in the molten slag was low and leaching of heavy metals was below Japanese regulation.

  11. MERCURY REMOVAL FROM DOE SOLID MIXED WASTE USING THE GEMEP(sm) TECHNOLOGY

    SciTech Connect (OSTI)

    1999-03-01

    Under the sponsorship of the Federal Energy Technology Center (FETC), Metcalf and Eddy (M and E), in association with General Electric Corporate Research and Development Center (GE-CRD), Colorado Minerals Research Institute (CMRI), and Oak Ridge National Laboratory (ORNL), conducted laboratory-scale and bench-scale tests of the General Electric Mercury Extraction Process technology on two mercury-contaminated mixed solid wastes from U. S. Department of Energy sites: sediment from the East Fork of Poplar Creek, Oak Ridge (samples supplied by Oak Ridge National Laboratory), and drummed soils from Idaho National Environmental and Engineering Laboratory (INEEL). Fluorescent lamps provided by GE-CRD were also studied. The GEMEP technology, invented and patented by the General Electric Company, uses an extraction solution composed of aqueous potassium iodide plus iodine to remove mercury from soils and other wastes. The extraction solution is regenerated by chemical oxidation and reused, after the solubilized mercury is removed from solution by reducing it to the metallic state. The results of the laboratory- and bench-scale testing conducted for this project included: (1) GEMEP extraction tests to optimize extraction conditions and determine the extent of co-extraction of radionuclides; (2) pre-screening (pre-segregation) tests to determine if initial separation steps could be used effectively to reduce the volume of material needing GEMEP extraction; and (3) demonstration of the complete extraction, mercury recovery, and iodine recovery and regeneration process (known as locked-cycle testing).

  12. Production of energy and high-value chemicals from municipal solid waste

    SciTech Connect (OSTI)

    Colucci-Raeos, J.A.; Saliceti-Piazza, L.; Herncndez, A.

    1996-12-31

    Landfills have been used for decades in Puerto Rico as the only alternative for the disposal of municipal solid waste (MSW). In the present, 7,300 metric tons (8,000 tons) of MSW are generated on a daily basis, of which about 43% are generated in the San Juan Metropolitan Area. Garbage dumps in the Metropolitan Area have an estimated useful life of two years from now. Furthermore, Puerto Rico`s average daily per capita generation exceeds that of US and is almost as twice as that of Europe. A novel alternative for the disposal of MSW needs to be implemented. The University of Puerto Rico (Department of Chemical Engineering), in a collaborative effort with the Sandia National Laboratory, the National Renewable Energy Laboratory, Puerto Rico`s Energy Affairs Administration, and the Institute of Chemical Engineers of Puerto Rico, have conceptualized a research program that would address the utilization of MSW and other agricultural residues for the generation of energy and/or high-value chemical products. The concept, {open_quotes}biorefinery{close_quotes} would consist of the collection of MSW and other agricultural wastes, separation of materials for recycling (glass, ceramics, metals), and use of gasification and/or hydrolysis of the screened material to produce energy and/or chemicals (such as alcohols and oxyaromatics).

  13. The Solid Waste Authority: {open_quotes}This place is for the birds{close_quotes}

    SciTech Connect (OSTI)

    Mihalik, M.B.

    1995-12-01

    The Solid Waste Authority of Palm Beach County (SWA) manages a waste-to-energy facility and landfill adjacent to a site which, during the 1985 Florida drought, served as the largest communal Snail Kite (Rostrhamus sociabilis plumbeus) roost documented in the United States. Listed as an endangered species, the Snail Kite initiated a Section 7 consulation process as a USCOAE Dredge & Fill permit was sought for construction in 1987. In response to environmental permit requirements, SWA developed and implemented a Wildlife Conservation & Management Program which evaluated the roost`s response to activities associated with site development. Specifically, a seven-year bird monitoring program was conducted on kite usage of this roost from 1987-1993. Impact assessment was expanded to include monitoring the mixed-species wading bird colony which inhabits the same roosting area. Monitoring at the community level serves as a better environmental indicator because Snail Kites are nomadic and respond to regional water level changes. This paper gives an overview of the environmental concerns and approach taken to monitor the roost, describes the different components of the bird monitoring program, and summarizes the findings of the 7-year data collection. An evaluation of the SWA project with regards to impacts on Snail Kite and wading bird usage of the area is also discussed.

  14. A process for treatment of APC residues from municipal solid waste incinerators: Preliminary results

    SciTech Connect (OSTI)

    Hjelmar, O.; Birch, H.

    1997-12-01

    The problem of environmentally safe management of the residues from air pollution control (APC) systems at municipal solid waste (MSW) incinerators, particularly the residues from the semidry/dry acid gas cleaning processes (dry scrubber residues), has not yet been solved in a satisfactory and sustainable manner. These residues are in many cases simply stored indefinitely in big bags or they are landfilled under conditions that in the long term may not be able to prevent potentially harmful constituents from leaching and leaking into the environment. The APC residues, including fly ash, are in many countries classified as hazardous or special waste due to their high contents of soluble salts (particularly calcium chloride) and trace elements/heavy metals. The semidry/dry APC residues are strongly alkaline due to a content of excess lime, and the high pH favours the leaching of several contaminants, particularly lead. This paper presents preliminary results of a study of a process for treatment of semidry/dry APC residues and fly ash from MSW incinerators. In the process the contaminants are partly removed, partly immobilized thus improving the above mentioned situation and allowing for subsequent safe management (i.e. utilization or landfilling) of the treated residues.

  15. Modeling and comparative assessment of municipal solid waste gasification for energy production

    SciTech Connect (OSTI)

    Arafat, Hassan A. Jijakli, Kenan

    2013-08-15

    Highlights: • Study developed a methodology for the evaluation of gasification for MSW treatment. • Study was conducted comparatively for USA, UAE, and Thailand. • Study applies a thermodynamic model (Gibbs free energy minimization) using the Gasify software. • The energy efficiency of the process and the compatibility with different waste streams was studied. - Abstract: Gasification is the thermochemical conversion of organic feedstocks mainly into combustible syngas (CO and H{sub 2}) along with other constituents. It has been widely used to convert coal into gaseous energy carriers but only has been recently looked at as a process for producing energy from biomass. This study explores the potential of gasification for energy production and treatment of municipal solid waste (MSW). It relies on adapting the theory governing the chemistry and kinetics of the gasification process to the use of MSW as a feedstock to the process. It also relies on an equilibrium kinetics and thermodynamics solver tool (Gasify®) in the process of modeling gasification of MSW. The effect of process temperature variation on gasifying MSW was explored and the results were compared to incineration as an alternative to gasification of MSW. Also, the assessment was performed comparatively for gasification of MSW in the United Arab Emirates, USA, and Thailand, presenting a spectrum of socioeconomic settings with varying MSW compositions in order to explore the effect of MSW composition variance on the products of gasification. All in all, this study provides an insight into the potential of gasification for the treatment of MSW and as a waste to energy alternative to incineration.

  16. Forecasting of municipal solid waste quantity in a developing country using multivariate grey models

    SciTech Connect (OSTI)

    Intharathirat, Rotchana; Abdul Salam, P.; Kumar, S.; Untong, Akarapong

    2015-05-15

    Highlights: • Grey model can be used to forecast MSW quantity accurately with the limited data. • Prediction interval overcomes the uncertainty of MSW forecast effectively. • A multivariate model gives accuracy associated with factors affecting MSW quantity. • Population, urbanization, employment and household size play role for MSW quantity. - Abstract: In order to plan, manage and use municipal solid waste (MSW) in a sustainable way, accurate forecasting of MSW generation and composition plays a key role. It is difficult to carry out the reliable estimates using the existing models due to the limited data available in the developing countries. This study aims to forecast MSW collected in Thailand with prediction interval in long term period by using the optimized multivariate grey model which is the mathematical approach. For multivariate models, the representative factors of residential and commercial sectors affecting waste collected are identified, classified and quantified based on statistics and mathematics of grey system theory. Results show that GMC (1, 5), the grey model with convolution integral, is the most accurate with the least error of 1.16% MAPE. MSW collected would increase 1.40% per year from 43,435–44,994 tonnes per day in 2013 to 55,177–56,735 tonnes per day in 2030. This model also illustrates that population density is the most important factor affecting MSW collected, followed by urbanization, proportion employment and household size, respectively. These mean that the representative factors of commercial sector may affect more MSW collected than that of residential sector. Results can help decision makers to develop the measures and policies of waste management in long term period.

  17. Remaining Sites Verification Package for the 100-B-1 Surface Chemical and Solid Waste Dumping Area, Waste Site Reclassification Form 2006-003

    SciTech Connect (OSTI)

    R. A. Carlson

    2006-04-24

    The 100-B-1 waste site was a dumping site that was divided into two areas. One area was used as a laydown area for construction materials, and the other area was used as a chemical dumping area. The 100-B-1 Surface Chemical and Solid Waste Dumping Area site meets the remedial action objectives specified in the Remaining Sites ROD. The results demonstrate that residual contaminant concentrations support future unrestricted land uses that can be represented by a rural-residential scenario. The results also demonstrate that residual contaminant concentrations are protective of groundwater and the Columbia River.

  18. Internal curing with lightweight aggregate produced from biomass-derived waste

    SciTech Connect (OSTI)

    Lura, Pietro; Wyrzykowski, Mateusz; Tang, Clarence; Lehmann, Eberhard

    2014-05-01

    Shrinkage of concrete may lead to cracking and ultimately to a reduction of the service life of concrete structures. Among known methods for shrinkage mitigation, internal curing with porous aggregates was successfully utilized in the last couple of decades for decreasing autogenous and drying shrinkage. In this paper, the internal curing performance of pre-saturated lightweight aggregates produced from biomass-derived waste (bio-LWA) was studied. In the first part of this paper, the microstructure of the bio-LWA is investigated, with special focus on their pore structure and on their water absorption and desorption behavior. The bio-LWA has large porosity and coarse pore structure, which allows them to release the entrained water at early age and counteract self-desiccation and autogenous shrinkage. In the second part, the efficiency of internal curing in mortars incorporating the bio-LWA is examined by neutron tomography, internal relative humidity and autogenous deformation measurements.

  19. Groundwater quality assessment report for Solid Waste Storage Area 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    1998-12-31

    Solid Waste Storage Area (SWSA) 6, located at the US Department of Energy (DOE) Oak Ridge National Laboratory (ORNL) facility, is a shallow land burial site for low-level radioactive waste (LLW) and other waste types. Wastes were disposed of in unlined trenches and auger holes from 1969 until May 1986, when it was determined that Resource Conservation and Recovery Act (RCRA) regulated wastes were being disposed of there. DOE closed SWSA 6 until changes in operating procedures prevented the disposal of RCRA wastes at SWSA 6. The site, which reopened for waste disposal activities in July 1986, is the only currently operated disposal area for low-level radioactive waste at ORNL. This report provides the results of the 1998 RCRA groundwater assessment monitoring. The monitoring was performed in accordance with the proposed routine monitoring plan recommended in the 1996 EMP. Section 2 provides pertinent background on SWSA 6. Section 3 presents the 1998 monitoring results and discusses the results in terms of any significant changes from previous monitoring efforts. Section 4 provides recommendations for changes in monitoring based on the 1998 results. References are provided in Section 5. Appendix A provides the 1998 RCRA Sampling Data and Appendix B provides a summary of 1998 Quality Assurance results.

  20. Cost avoidance techniques through the Fernald controlled area trash segregation program and the RIMIA solid waste reduction program

    SciTech Connect (OSTI)

    Menche, C.E.

    1997-05-14

    The Fernald Environmental Management Project is a Department of Energy owned facility that produced high quality uranium metals for military defense. The Fernald mission has changed from one of production to remediation. Remediation is intended to clean up legacy (primary) waste from past practices. Little opportunity is available to reduce the amount of primary waste. However, there is an opportunity to reduce secondary waste generation, primarily through segregation. Two programs which accomplish this are the Controlled Area Trash Segregation Program and the RIMIA Solid Waste Reduction Program. With these two programs now in place at the FEMP, it has been estimated that a 60% reduction has been achieved in unnecessary clean waste being disposed as Low Level Waste at the Nevada Test Site. The cost savings associated with these programs (currently 79,000 cubic feet, $428,000) could easily run into the millions of dollars based on the upcoming restoration activities to be undertaken. The segregation of non-radiological waste in the radiologically Controlled Area not only establishes a firm commitment to send only low-level radioactive waste to the Nevada Test Site, but also results in substantial cost avoidance.

  1. Static internal pressure capacity of Hanford Single-Shell Waste Tanks

    SciTech Connect (OSTI)

    Julyk, L.J.

    1994-07-19

    Underground single-shell waste storage tanks located at the Hanford Site in Richland, Washington, generate gaseous mixtures that could be ignited, challenging the structural integrity of the tanks. The structural capacity of the single-shell tanks to internal pressure is estimated through nonlinear finite-element structural analyses of the reinforced concrete tank. To determine their internal pressure capacity, designs for both the million-gallon and the half-million-gallon tank are evaluated on the basis of gross structural instability.

  2. Effects of total solids concentrations of poultry, cattle, and piggery waste slurries on biogas yield

    SciTech Connect (OSTI)

    Itodo, I.N.; Awulu, J.O.

    1999-12-01

    The effects of total solids concentrations of poultry, cattle and piggery waste slurries on biogas yield was investigated. Twelve laboratory-size anaerobic batch digesters with 25 L volume were constructed and used for the experiments. Three replicates of 5%, 10%, 15%, and 20% TS concentrations of poultry, cattle, and piggery waste slurries were anaerobically digested for a 30-day detention period and gas yield was measured by the method of water displacement. Temperature variation within the digesters was measured with a maximum and minimum thermometer. Anaerobic digestion of the slurries was undertaken in the mesophilic temperature range (20--40 C). The carbon:nitrogen ratio of each of the slurries digested was determined. The carbon content was determined using the wackley-Black method, and nitrogen content was determined by the regular kjeldhal method. The pH was measured weekly during the period of digestion from a digital pH meter. Gas quality (% methane fraction) was also measured weekly from an analyzer. Coefficient of variation was computed to ascertain the status of the digestion process. Analysis of variance was used to determine the significant difference in gas yield at p < 0.05. Duncan's New Multiple Range Test at p < 0.05 was used to analyze the difference in gas yield among the various TS concentrations of the slurries investigated. The results indicate that biogas yield is of the order: 5% TS > 10% TS > 15% TS > 20% TS. This result shows that gas yield increases with decreasing TS concentration of the slurries. The ANOVA showed that the gas yield from the various TS % was significantly different (p < 0.05). DNMRT showed that there was significant difference in gas yield from the slurries and wastetypes investigated. Poultry waste slurries had the greatest gas yield (L CH4/kg TS) as the gas yield from the waste types was of the order: Poultry > Piggery > Cattle. The pH of the slurries was of the range 5.5 to 6.8 (weakly acidic). The C:N of the

  3. Study of the VOC emissions from a municipal solid waste storage pilot-scale cell: Comparison with biogases from municipal waste landfill site

    SciTech Connect (OSTI)

    Chiriac, R.; De Araujos Morais, J.; Carre, J.; Bayard, R.; Chovelon, J.M.; Gourdon, R.

    2011-11-15

    Highlights: > Follow-up of the emission of VOCs in a municipal waste pilot-scale cell during the acidogenesis and acetogenesis phases. > Study from the very start of waste storage leading to a better understanding of the decomposition/degradation of waste. > Comparison of the results obtained on the pilot-scale cell with those from 3 biogases coming from the same landfill site. > A methodology of characterization for the progression of the stabilization/maturation of waste is finally proposed. - Abstract: The emission of volatile organic compounds (VOCs) from municipal solid waste stored in a pilot-scale cell containing 6.4 tonnes of waste (storage facility which is left open during the first period (40 days) and then closed with recirculation of leachates during a second period (100 days)) was followed by dynamic sampling on activated carbon and analysed by GC-MS after solvent extraction. This was done in order to know the VOC emissions before the installation of a methanogenesis process for the entire waste mass. The results, expressed in reference to toluene, were exploited during the whole study on all the analyzable VOCs: alcohols, ketones and esters, alkanes, benzenic and cyclic compounds, chlorinated compounds, terpene, and organic sulphides. The results of this study on the pilot-scale cell are then compared with those concerning three biogases from a municipal waste landfill: biogas (1) coming from waste cells being filled or recently closed, biogas (2) from all the waste storage cells on site, and biogas (3) which is a residual gas from old storage cells without aspiration of the gas. The analysis of the results obtained revealed: (i) a high emission of VOCs, principally alcohols, ketones and esters during the acidogenesis; (ii) a decrease in the alkane content and an increase in the terpene content were observed in the VOCs emitted during the production of methane; (iii) the production of heavier alkanes and an increase in the average number of carbon

  4. H. R. 1272: A Bill to amend the Internal Revenue Code of 1954 to provide a refundable income tax credit for the recycling of hazardous wastes, introduced in the House of Representatives, One Hundred Second Congress, First Session, March 5, 1991

    SciTech Connect (OSTI)

    Not Available

    1991-01-01

    This bill was introduced into the US House of Representatives on March 7, 1991 to amend the Internal Revenue Code of 1954 to provide a refundable income tax credit for the recycling of hazardous wastes. A credit of 2 cents is allowed for each pound of qualified hazardous waste recycled during the taxable year. To qualify as hazardous the waste must be listed by the EPA under section 3001 of the Solid Waste Act and is a waste product generated by the taxpayer in a trade or business.

  5. Co-gasification of municipal solid waste and material recovery in a large-scale gasification and melting system

    SciTech Connect (OSTI)

    Tanigaki, Nobuhiro; Manako, Kazutaka; Osada, Morihiro

    2012-04-15

    Highlights: Black-Right-Pointing-Pointer This study evaluates the effects of co-gasification of MSW with MSW bottom ash. Black-Right-Pointing-Pointer No significant difference between MSW treatment with and without MSW bottom ash. Black-Right-Pointing-Pointer PCDD/DFs yields are significantly low because of the high carbon conversion ratio. Black-Right-Pointing-Pointer Slag quality is significantly stable and slag contains few hazardous heavy metals. Black-Right-Pointing-Pointer The final landfill amount is reduced and materials are recovered by DMS process. - Abstract: This study evaluates the effects of co-gasification of municipal solid waste with and without the municipal solid waste bottom ash using two large-scale commercial operation plants. From the viewpoint of operation data, there is no significant difference between municipal solid waste treatment with and without the bottom ash. The carbon conversion ratios are as high as 91.7% and 95.3%, respectively and this leads to significantly low PCDD/DFs yields via complete syngas combustion. The gross power generation efficiencies are 18.9% with the bottom ash and 23.0% without municipal solid waste bottom ash, respectively. The effects of the equivalence ratio are also evaluated. With the equivalence ratio increasing, carbon monoxide concentration is decreased, and carbon dioxide and the syngas temperature (top gas temperature) are increased. The carbon conversion ratio is also increased. These tendencies are seen in both modes. Co-gasification using the gasification and melting system (Direct Melting System) has a possibility to recover materials effectively. More than 90% of chlorine is distributed in fly ash. Low-boiling-point heavy metals, such as lead and zinc, are distributed in fly ash at rates of 95.2% and 92.0%, respectively. Most of high-boiling-point heavy metals, such as iron and copper, are distributed in metal. It is also clarified that slag is stable and contains few harmful heavy metals such

  6. Municipal solid waste management: A bibliography of U.S. Department of Energy contractor reports through 1995

    SciTech Connect (OSTI)

    1997-09-01

    This bibliography is an updated version of Municipal Solid Waste Management: A Bibliography of US Department of Energy Contractor Reports Through 1994 (NREL/TP-430-7886). The original bibliography, entitled Municipal Waste to Energy: An Annotated Bibliography of US Department of Energy Contractor Reports, by Caroline Brooks, was published in 1987. Like its predecessor, this bibliography provides information about technical reports on energy from municipal waste that were prepared under grants or contracts from the US Department of Energy. The reports listed focus on energy from municipal waste technologies and energy conservation in wastewater treatment. The bibliography contains three indexes--an author index, a subject index, and a title index. The reports are listed alphabetically in the subject areas and may appear under more than one subject. All of the reports cited in the original MSW bibliography are also included in this update.

  7. Planar solid oxide fuel cell with staged indirect-internal air and fuel preheating and reformation

    DOE Patents [OSTI]

    2003-10-21

    A solid oxide fuel cell arrangement and method of use that provides internal preheating of both fuel and air in order to maintain the optimum operating temperature for the production of energy. The internal preheat passes are created by the addition of two plates, one on either side of the bipolar plate, such that these plates create additional passes through the fuel cell. This internal preheat fuel cell configuration and method reduce the requirements for external heat exchanger units and air compressors. Air or fuel may be added to the fuel cell as required to maintain the optimum operating temperature through a cathode control valve or an anode control valve, respectively. A control loop comprises a temperature sensing means within the preheat air and fuel passes, a means to compare the measured temperature to a set point temperature and a determination based on the comparison as to whether the control valves should allow additional air or fuel into the preheat or bypass manifolds of the fuel cell.

  8. Municipal solid waste combustion: Waste-to-energy technologies, regulations, and modern facilities in USEPA Region V

    SciTech Connect (OSTI)

    Sullivan, P.M.; Hallenbeck, W.H.; Brenniman, G.R.

    1993-08-01

    Table of Contents: Incinerator operations (Waste preprocessing, combustion, emissions characterization and emission control, process monitoring, heat recovery, and residual ash management); Waste-to-energy regulations (Permitting requirements and operating regulations on both state and Federal levels); Case studies of EPA Region V waste-to-energy facilities (Polk County, Minnesota; Jackson County, Michigan; La Crosse, Wisconsin; Kent County, Michigan; Elk River, Minnesota; Indianapolis, Indiana); Evaluation; and Conclusions.

  9. The role of non-destructive assay in support of the exemption of solid waste from nuclear licensed sites

    SciTech Connect (OSTI)

    Fisher, Alan; Adsley, Ian; Green, Tommy

    2007-07-01

    Available in abstract form only. Full text of publication follows: Nuclear Site License Holders within the United Kingdom are increasingly re-examining the options available for disposal of solid waste produced during routine operations and decommissioning activities. The incentives to do so include: 'Compliance with the requirement to minimise radioactive waste, as stipulated in Disposal Authorisations issued by the Environment Agency' Reducing the burden on the UK Low Level Waste Repository (LLWR)' Achieving cost savings on waste management, by avoiding expensive conditioning, transport and disposal costs for certain wastes. Wastes may be exempted from regulation under the Radioactive Substances Act, 1993 (RSA 93) provided they comply with the conditions laid out in the relevant Exemption Orders. In effect, they may be legally disposed as if they were non-radioactive waste. A national Code of Practice on Clearance and Exemption Principles, Processes and Practices was introduced in 2005 to clarify the requirements of these Exemption Orders and provide guidance on their practical application. In order to demonstrate compliance with these Exemption Orders, it is essential to have good knowledge of the items' history and their potential for contamination. Monitoring is frequently used as definitive evidence that the radioactivity content of waste items does not exceed limits proscribed in the relevant Exemption Orders. The practicalities of monitoring require careful consideration in order to achieve meaningful results and be capable of achieving the low specific activity limits quoted in the Exemption Orders. The Cross Industry Assay Working Group is a national collection of non-destructive assay specialists from a range of companies, which meets regularly to discuss challenges relating to the assay of all categories of waste. In this paper, the Group presents examples of how NDA techniques are being used to support the exemption of waste items. (authors)

  10. Toxicity mitigation and solidification of municipal solid waste incinerator fly ash using alkaline activated coal ash

    SciTech Connect (OSTI)

    Ivan Diaz-Loya, E.; Allouche, Erez N.; Eklund, Sven; Joshi, Anupam R.; Kupwade-Patil, Kunal

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer Incinerator fly ash (IFA) is added to an alkali activated coal fly ash (CFA) matrix. Black-Right-Pointing-Pointer Means of stabilizing the incinerator ash for use in construction applications. Black-Right-Pointing-Pointer Concrete made from IFA, CFA and IFA-CFA mixes was chemically characterized. Black-Right-Pointing-Pointer Environmentally friendly solution to IFA disposal by reducing its toxicity levels. - Abstract: Municipal solid waste (MSW) incineration is a common and effective practice to reduce the volume of solid waste in urban areas. However, the byproduct of this process is a fly ash (IFA), which contains large quantities of toxic contaminants. The purpose of this research study was to analyze the chemical, physical and mechanical behaviors resulting from the gradual introduction of IFA to an alkaline activated coal fly ash (CFA) matrix, as a mean of stabilizing the incinerator ash for use in industrial construction applications, where human exposure potential is limited. IFA and CFA were analyzed via X-ray fluorescence (XRF), X-ray diffraction (XRD) and Inductive coupled plasma (ICP) to obtain a full chemical analysis of the samples, its crystallographic characteristics and a detailed count of the eight heavy metals contemplated in US Title 40 of the Code of Federal Regulations (40 CFR). The particle size distribution of IFA and CFA was also recorded. EPA's Toxicity Characteristic Leaching Procedure (TCLP) was followed to monitor the leachability of the contaminants before and after the activation. Also images obtained via Scanning Electron Microscopy (SEM), before and after the activation, are presented. Concrete made from IFA, CFA and IFA-CFA mixes was subjected to a full mechanical characterization; tests include compressive strength, flexural strength, elastic modulus, Poisson's ratio and setting time. The leachable heavy metal contents (except for Se) were below the maximum allowable limits and in many cases

  11. Microbiological characterization and specific methanogenic activity of anaerobe sludges used in urban solid waste treatment

    SciTech Connect (OSTI)

    Sandoval Lozano, Claudia Johanna Vergara Mendoza, Marisol; Carreno de Arango, Mariela; Castillo Monroy, Edgar Fernando

    2009-02-15

    This study presents the microbiological characterization of the anaerobic sludge used in a two-stage anaerobic reactor for the treatment of organic fraction of urban solid waste (OFUSW). This treatment is one alternative for reducing solid waste in landfills at the same time producing a biogas (CH{sub 4} and CO{sub 2}) and an effluent that can be used as biofertilizer. The system was inoculated with sludge from a wastewater treatment plant (WWTP) (Rio Frio Plant in Bucaramanga-Colombia) and a methanogenic anaerobic digester for the treatment of pig manure (Mesa de los Santos in Santander). Bacterial populations were evaluated by counting groups related to oxygen sensitivity, while metabolic groups were determined by most probable number (MPN) technique. Specific methanogenic activity (SMA) for acetate, formate, methanol and ethanol substrates was also determined. In the acidogenic reactor (R1), volatile fatty acids (VFA) reached values of 25,000 mg L{sup -1} and a concentration of CO{sub 2} of 90%. In this reactor, the fermentative population was predominant (10{sup 5}-10{sup 6} MPN mL{sup -1}). The acetogenic population was (10{sup 5} MPN mL{sup -1}) and the sulphate-reducing population was (10{sup 4}-10{sup 5} MPN mL{sup -1}). In the methanogenic reactor (R2), levels of CH{sub 4} (70%) were higher than CO{sub 2} (25%), whereas the VFA values were lower than 4000 mg L{sup -1}. Substrate competition between sulphate-reducing (10{sup 4}-10{sup 5} MPN mL{sup -1}) and methanogenic bacteria (10{sup 5} MPN mL{sup -1}) was not detected. From the SMA results obtained, acetoclastic (2.39 g COD-CH{sub 4} g{sup -1} VSS{sup -1} day{sup -1}) and hydrogenophilic (0.94 g COD-CH{sub 4} g{sup -1} VSS{sup -1} day{sup -1}) transformations as possible metabolic pathways used by methanogenic bacteria is suggested from the SMA results obtained. Methanotrix sp., Methanosarcina sp., Methanoccocus sp. and Methanobacterium sp. were identified.

  12. SOLID RADIOACTIVE WASTE STORAGE TECHNOLOGIES: PERFORMANCE OF A POLYMER SEALANT COATING IN AN ARCTIC MARINE ENVIRONMENT

    SciTech Connect (OSTI)

    COWGILL,M.G.; MOSKOWITZ,P.D.; CHERNAENKO,L.M.; NAZARIAN,A.; GRIFFITH,A.; DIASHEV,A.; ENGOY,T.

    2000-06-14

    This first project, under the auspices of the Arctic Military Environmental Cooperation (AMEC) forum, Project 1.4-1 Solid Radioactive Waste Storage Technologies, successfully demonstrated the feasibility of using a polymer-based coating to seal concrete and steel surfaces from permanent radioactive contamination in an Arctic marine environment. A mobile, self-sufficient spraying device, was developed to specifications provided by the Russian Ministry of Defence Northern Navy and was deployed at the RTP Atomflot site, Murmansk, Russia. Demonstration coatings of Polibrid 705 were applied to concrete surfaces exposed to conditions ranging from indoor pedestrian usage to heavy vehicle passage and container handling in a loading bay. A large steel container was also coated with the polymer, filled with solid radwaste, sealed, and left out of doors and exposed to the full 12 month Arctic weather cycle. The field tests were accompanied by a series of laboratory qualification tests carried out at the research laboratory of ICC Nuclide in St. Petersburg. During the 12-month field tests, the sealant coating showed little sign of degradation except for a few chips and gouge marks on the loading bay surface that were readily repaired. Contamination resulting from radwaste handling was easily removed and the surface was not degraded by contact with the decontamination agents. In the laboratory testing, Polibrid 705 met all the Russian qualification requirements with the exception of flammability. In this last instance, it was decided to restrict application of the coating to land-based facilities. The Russian technical experts from the Ministry of Defence quickly familiarized themselves with the equipment and were able to identify several areas of potential improvement as deployment of the equipment progressed. The prime among these was the desirability of extending the range of the equipment through enlarged gasoline tanks (to permit extended operational times) and longer

  13. Evaluating the efficiency of municipalities in collecting and processing municipal solid waste: A shared input DEA-model

    SciTech Connect (OSTI)

    Rogge, Nicky; De Jaeger, Simon

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Complexity in local waste management calls for more in depth efficiency analysis. Black-Right-Pointing-Pointer Shared-input Data Envelopment Analysis can provide solution. Black-Right-Pointing-Pointer Considerable room for the Flemish municipalities to improve their cost efficiency. - Abstract: This paper proposed an adjusted 'shared-input' version of the popular efficiency measurement technique Data Envelopment Analysis (DEA) that enables evaluating municipality waste collection and processing performances in settings in which one input (waste costs) is shared among treatment efforts of multiple municipal solid waste fractions. The main advantage of this version of DEA is that it not only provides an estimate of the municipalities overall cost efficiency but also estimates of the municipalities' cost efficiency in the treatment of the different fractions of municipal solid waste (MSW). To illustrate the practical usefulness of the shared input DEA-model, we apply the model to data on 293 municipalities in Flanders, Belgium, for the year 2008.

  14. Data summary of municipal solid waste management alternatives. Volume 7, Appendix E -- Material recovery/material recycling technologies

    SciTech Connect (OSTI)

    1992-10-01

    The enthusiasm for and commitment to recycling of municipal solid wastes is based on several intuitive benefits: Conservation of landfill capacity; Conservation of non-renewable natural resources and energy sources; Minimization of the perceived potential environmental impacts of MSW combustion and landfilling; Minimization of disposal costs, both directly and through material resale credits. In this discussion, ``recycling`` refers to materials recovered from the waste stream. It excludes scrap materials that are recovered and reused during industrial manufacturing processes and prompt industrial scrap. Materials recycling is an integral part of several solid waste management options. For example, in the preparation of refuse-derived fuel (RDF), ferrous metals are typically removed from the waste stream both before and after shredding. Similarly, composting facilities, often include processes for recovering inert recyclable materials such as ferrous and nonferrous metals, glass, Plastics, and paper. While these two technologies have as their primary objectives the production of RDF and compost, respectively, the demonstrated recovery of recyclables emphasizes the inherent compatibility of recycling with these MSW management strategies. This appendix discusses several technology options with regard to separating recyclables at the source of generation, the methods available for collecting and transporting these materials to a MRF, the market requirements for post-consumer recycled materials, and the process unit operations. Mixed waste MRFs associated with mass bum plants are also presented.

  15. HWMA/RCRA Closure Plan for the CPP-648 Radioactive Solid and Liquid Waste Storage Tank System (VES-SFE-106)

    SciTech Connect (OSTI)

    S. K. Evans

    2006-08-15

    This Hazardous Waste Management Act/Resource Conservation and Recovery Act closure plan for the Radioactive Solid and Liquid Waste Storage Tank System located in the adjacent to the Sludge Tank Control House (CPP-648), Idaho Nuclear Technology and Engineering Center, Idaho National Laboratory, was developed to meet the interim status closure requirements for a tank system. The system to be closed includes a tank and associated ancillary equipment that were determined to have managed hazardous waste. The CPP-648 Radioactive Solid and Liquid Waste Storage Tank System will be "cleaned closed" in accordance with the requirements of the Hazardous Waste Management Act/Resource Conservation and Recovery Act as implemented by the Idaho Administrative Procedures Act and 40 Code of Federal Regulations 265. This closure plan presents the closure performance standards and methods of acheiving those standards for the CPP-648 Radioactive Solid and Liquid Waste Storage Tank System.

  16. The Management of the Radioactive Waste Generated by Cernavoda NPP, Romania, an Example of International Cooperation - 13449

    SciTech Connect (OSTI)

    Barariu, Gheorghe

    2013-07-01

    The design criteria and constraints for the development of the management strategy for radioactive waste generated from operating and decommissioning of CANDU Nuclear Units from Cernavoda NPP in Romania, present many specific aspects. The main characteristics of CANDU type waste are its high concentrations of tritium and radiocarbon. Also, the existing management strategy for radioactive waste at Cernavoda NPP provides no treatment or conditioning for radioactive waste disposal. These characteristics embodied a challenging effort, in order to select a proper strategy for radioactive waste management at present, when Romania is an EU member and a signatory country of the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management. The helping of advanced countries in radioactive waste management, directly or into the frame of the international organizations, like IAEA, become solve the aforementioned challenges at adequate level. (authors)

  17. Closure plan for Solid Waste Storage Area 6: Volume 1, Closure plan. Remedial investigation/feasibility study

    SciTech Connect (OSTI)

    Not Available

    1988-09-01

    This Closure Plan for Solid Waste Storage Area 6 (SWSA 6) a disposal area for low-level radioactive wastes and hazardous materials, of the US Department of Energy (DOE) Oak Ridge National Laboratory (ORNL) describes how portions of SWSA 6 will be closed under Resource Conservation and Recovery Act (RCRA) Interim Status per 40 CFR 265 Subpart G [TN Rule 1200-1-11-.05(7)]. An overview is provided of activities necessary for final closure and corrective measures for all of SWSA 6. Results of surface waters and groundwater sampling are provided.

  18. Polycyclic aromatic hydrocarbons (PAH) formation from the pyrolysis of different municipal solid waste fractions

    SciTech Connect (OSTI)

    Zhou, Hui; Wu, Chunfei; Onwudili, Jude A.; Meng, Aihong; Zhang, Yanguo; Williams, Paul T.

    2015-02-15

    Highlights: • PAH from pyrolysis of 9 MSW fractions was investigated. • Pyrolysis of plastics released more PAH than that of biomass. • Naphthalene was the most abundant PAH in the tar. • The mechanism of PAH release from biomass and plastics was proposed. - Abstract: The formation of 2–4 ring polycyclic aromatic hydrocarbons (PAH) from the pyrolysis of nine different municipal solid waste fractions (xylan, cellulose, lignin, pectin, starch, polyethylene (PE), polystyrene (PS), polyvinyl chloride (PVC), and polyethylene terephthalate (PET)) were investigated in a fixed bed furnace at 800 °C. The mass distribution of pyrolysis was also reported. The results showed that PS generated the most total PAH, followed by PVC, PET, and lignin. More PAH were detected from the pyrolysis of plastics than the pyrolysis of biomass. In the biomass group, lignin generated more PAH than others. Naphthalene was the most abundant PAH, and the amount of 1-methynaphthalene and 2-methynaphthalene was also notable. Phenanthrene and fluorene were the most abundant 3-ring PAH, while benzo[a]anthracene and chrysene were notable in the tar of PS, PVC, and PET. 2-ring PAH dominated all tar samples, and varied from 40 wt.% to 70 wt.%. For PS, PET and lignin, PAH may be generated directly from the aromatic structure of the feedstock.

  19. Clean energy from municipal solid waste. ERIP technical progress report {number_sign}6

    SciTech Connect (OSTI)

    1996-10-08

    The ground carbonized RDF slurry from the grinding trials at IKA Works at approximately 50 wt.% solids was sealed in drums and shipped to the Energy and Environmental Research Corporation (EER) for the dioxin/furan and trace heavy metal combustion tests. In addition, a fuel characterization and trace component analysis was completed for this final carbonized RDF slurry fuel. This final fuel was a blend of several fuels from the pilot scale slurry carbonization experiments. As can be seen from the data, the final carbonized RDF has an exceptional heating value and volatile matter content. In addition, trace components are significantly lower than the raw RDF pellets. The report summarizes results from combustion tests and air pollution monitoring of these tests. For the upcoming time period 10/96--01/97, it is anticipated that the analysis of the dioxin/furan and trace heavy metal combustion test will be completed. This analysis includes rheology and particle size distribution analysis of the carbonized RDF slurry fuel, carbon content and TCLP of the combustion ash, trace heavy metal balances around combustor, and dioxin/furan emissions. Finally, the slurry carbonization computer model and computer simulations will be completed in the next reporting period (including the waste water treatment subsystem). Based upon this computer model, initial economic estimates and optimizations of the slurry carbonization process will be completed in the next reporting period.

  20. Blending municipal solid waste with corn stover for sugar production using ionic liquid process

    SciTech Connect (OSTI)

    Sun, Ning; Xu, Feng; Sathitsuksanoh, Noppadon; Thompson, Vicki S.; Cafferty, Kara; Li, Chenlin; Tanjore, Deepti; Narani, Akash; Pray, Todd R.; Simmons, Blake A.; Singh, Seema

    2015-06-01

    Municipal solid waste (MSW) represents an attractive cellulosic resource for sustainable fuel production because of its abundance and its low or perhaps negative cost. However, the significant heterogeneity and toxic contaminants are barriers to efficient conversion to ethanol and other products. In this study, we generated MSW paper mix, blended with corn stover (CS), and have shown that both MSW paper mix alone and MSW/CS blends can be efficiently pretreated in certain ionic liquids (ILs) with high yields of fermentable sugars. After pretreatment in 1-ethyl-3-methylimidazolium acetate ([C2C1Im][OAc]), over 80% glucose has been released with enzymatic saccharification. We have also applied an enzyme free process by adding mineral acid and water directly into the IL/biomass slurry to induce hydrolysis. With the acidolysis process in the IL 1-ethyl-3-methylimidazolium chloride ([C2C1Im]Cl), up to 80% glucose and 90% xylose are released for MSW. The results indicate the feasibility of incorporating MSW as a robust blending agent for biorefineries.

  1. Life cycle assessment of four municipal solid waste management scenarios in China

    SciTech Connect (OSTI)

    Hong Jinglan; Li Xiangzhi; Zhaojie Cui

    2010-11-15

    A life cycle assessment was carried out to estimate the environmental impact of municipal solid waste. Four scenarios mostly used in China were compared to assess the influence of various technologies on environment: (1) landfill, (2) incineration, (3) composting plus landfill, and (4) composting plus incineration. In all scenarios, the technologies significantly contribute to global warming and increase the adverse impact of non-carcinogens on the environment. The technologies played only a small role in the impact of carcinogens, respiratory inorganics, terrestrial ecotoxicity, and non-renewable energy. Similarly, the influence of the technologies on the way other elements affect the environment was ignorable. Specifically, the direct emissions from the operation processes involved played an important role in most scenarios except for incineration, while potential impact generated from transport, infrastructure and energy consumption were quite small. In addition, in the global warming category, highest potential impact was observed in landfill because of the direct methane gas emissions. Electricity recovery from methane gas was the key factor for reducing the potential impact of global warming. Therefore, increasing the use of methane gas to recover electricity is highly recommended to reduce the adverse impact of landfills on the environment.

  2. 6. annual waste-to-energy conference. Proceedings

    SciTech Connect (OSTI)

    1998-12-31

    This conference proceedings offers professionals a single resource from which to learn the latest developments in the field of waste-to-energy. The Sixth Annual North American Waste-To-Energy Conference (NAWTEC VI) joined together previously separate waste-to-energy conferences including the International Conference of Municipal Waste Combustion, the US Conference on Waste-To-Energy, SWANA`s Waste-to-Energy Symposium, the ASME SWPD Biennial Meeting and Exhibit, and the A and WMA/EPA Solid Waste Management, Thermal Treatment, and Waste-to-Energy Technology Conference. NAWTEC VI provided information on all facets of solid waste combustion including pollution control and environmental impacts of municipal solid waste combustion systems, residue disposal, energy generation, social and technical issues, and regulatory directions. The proceedings is valuable to those concerned with planning, permitting, design, construction, operation, and evaluation of waste-to-energy and research and development.

  3. CRITICAL ASSUMPTIONS IN THE F-TANK FARM CLOSURE OPERATIONAL DOCUMENTATION REGARDING WASTE TANK INTERNAL CONFIGURATIONS

    SciTech Connect (OSTI)

    Hommel, S.; Fountain, D.

    2012-03-28

    The intent of this document is to provide clarification of critical assumptions regarding the internal configurations of liquid waste tanks at operational closure, with respect to F-Tank Farm (FTF) closure documentation. For the purposes of this document, FTF closure documentation includes: (1) Performance Assessment for the F-Tank Farm at the Savannah River Site (hereafter referred to as the FTF PA) (SRS-REG-2007-00002), (2) Basis for Section 3116 Determination for Closure of F-Tank Farm at the Savannah River Site (DOE/SRS-WD-2012-001), (3) Tier 1 Closure Plan for the F-Area Waste Tank Systems at the Savannah River Site (SRR-CWDA-2010-00147), (4) F-Tank Farm Tanks 18 and 19 DOE Manual 435.1-1 Tier 2 Closure Plan Savannah River Site (SRR-CWDA-2011-00015), (5) Industrial Wastewater Closure Module for the Liquid Waste Tanks 18 and 19 (SRRCWDA-2010-00003), and (6) Tank 18/Tank 19 Special Analysis for the Performance Assessment for the F-Tank Farm at the Savannah River Site (hereafter referred to as the Tank 18/Tank 19 Special Analysis) (SRR-CWDA-2010-00124). Note that the first three FTF closure documents listed apply to the entire FTF, whereas the last three FTF closure documents listed are specific to Tanks 18 and 19. These two waste tanks are expected to be the first two tanks to be grouted and operationally closed under the current suite of FTF closure documents and many of the assumptions and approaches that apply to these two tanks are also applicable to the other FTF waste tanks and operational closure processes.

  4. INFX GUIDE: DEPARTMENT OF ENERGY BILATERAL AGREEMENTS FOR COOPERATION IN THE FIELD OF RADIOACTIVE WASTE MANAGEMENT (INFX: INTERNATIONAL INFORMATION EXCHANGE)

    SciTech Connect (OSTI)

    Harman, K. M.; Lakey, L. T.; Leigh, I. W.; Jeffs, A. G.

    1985-07-01

    As the U. S. Department of Energy (DOE) and DOE contractors have increased the magnitude and scope of their cooperative activities with other nations in the nuclear fuel cycle and waste management field, a need has developed for ready sources of information concerning foreign waste management programs, DOE technology exchange policies, bilateral fuel cycle and waste management agreements and plans and activities to implement those agreements. The INFX (International InLormation E~change) Guide is one of a series of documents that have been prepared to provide that information. The INFX Guide has been compiled under the charter of PNL's International Support Office (IPSO) to maintain for DOE a center to collect, organize, evaluate and disseminate information on foreign and international radioactive waste management programs. Because the information in this document is constantly subject to change, the document is assembled in loose-leaf form to accommodate frequent updates.

  5. Assessment of landfill reclamation and the effects of age on the combustion of recovered municipal solid waste

    SciTech Connect (OSTI)

    Forster, G A

    1995-01-01

    This report summarized the Lancaster county Solid Waste Management Authorities`s (LCSWMA)landfill reclamation activities, ongoing since 1991. All aspects have been analyzed from the manpower and equipment requirements at the landfill to the operational impacts felt at the LCSWMA Resource Recovery Facility (RRF) where the material is delivered for processing. Characteristics of the reclaimed refuse and soil recovered from trommeling operations are discussed as are results of air monitoring performed at the landfill excavation site and the RRF. The report also discusses the energy value of the reclaimed material and compares this value with those obtained for significantly older reclaimed waste streams. The effects of waste age on the air emissions and ash residue quality at the RRF are also provided. The report concludes by summarizing the project benefits and provides recommendations for other landfill reclamation operations and areas requiring further research.

  6. Life-cycle assessment of municipal solid waste management alternatives with consideration of uncertainty: SIWMS development and application

    SciTech Connect (OSTI)

    El Hanandeh, Ali; El-Zein, Abbas

    2010-05-15

    This paper describes the development and application of the Stochastic Integrated Waste Management Simulator (SIWMS) model. SIWMS provides a detailed view of the environmental impacts and associated costs of municipal solid waste (MSW) management alternatives under conditions of uncertainty. The model follows a life-cycle inventory approach extended with compensatory systems to provide more equitable bases for comparing different alternatives. Economic performance is measured by the net present value. The model is verified against four publicly available models under deterministic conditions and then used to study the impact of uncertainty on Sydney's MSW management 'best practices'. Uncertainty has a significant effect on all impact categories. The greatest effect is observed in the global warming category where a reversal of impact direction is predicted. The reliability of the system is most sensitive to uncertainties in the waste processing and disposal. The results highlight the importance of incorporating uncertainty at all stages to better understand the behaviour of the MSW system.

  7. Solid waste management of coal conversion residuals from a commercial-size facility: environmental engineering aspects. Final report

    SciTech Connect (OSTI)

    Bern, J.; Neufeld, R. D.; Shapiro, M. A.

    1980-11-30

    Major residuals generated by the conversion process and its auxiliary operations include: (a) coal preparation wastes; (b) gasifier ash; (c) liquefaction solids-char; (d) tail gas or flue gas desulfurization sludge; (e) boiler flyash and bottom ash; (f) raw water treatment sludge, and; (g) biosludges from process wastewater treatment. Recovered sulfur may also require disposal management. Potential environmental and health impacts from each of the residues are described on the basis of characterization of the waste in the perspective of water quality degradation. Coal gasification and liquefaction systems are described in great detail with respect to their associated residuals. Management options are listed with the conclusion that land disposal of the major residual streams is the only viable choice. On-site versus off-site disposal is analyzed with the selection of on-site operations to reduce political, social and institutional pressures, and to optimize the costs of the system. Mechanisms for prevention of leachate generation are described, and various disposal site designs are outlined. It is concluded that co-disposal feasibility of some waste streams must be established in order to make the most preferred solid waste management system feasible. Capacity requirements for the disposal operation were calculated for a 50,000 bbl/day coal liquefaction plant or 250 million SCF/day gasification operation.

  8. Review of LCA studies of solid waste management systems – Part II: Methodological guidance for a better practice

    SciTech Connect (OSTI)

    Laurent, Alexis; Clavreul, Julie; Bernstad, Anna; Bakas, Ioannis; Niero, Monia; Gentil, Emmanuel; Christensen, Thomas H.; Hauschild, Michael Z.

    2014-03-01

    Highlights: • We perform a critical review of 222 LCA studies of solid waste management systems. • We analyse the past LCA practice against the ISO standard and ILCD Handbook guidance. • Malpractices exist in many methodological aspects with large variations among studies. • Many of these aspects are important for the reliability of the results. • We provide detailed recommendations to practitioners of waste management LCAs. - Abstract: Life cycle assessment (LCA) is increasingly used in waste management to identify strategies that prevent or minimise negative impacts on ecosystems, human health or natural resources. However, the quality of the provided support to decision- and policy-makers is strongly dependent on a proper conduct of the LCA. How has LCA been applied until now? Are there any inconsistencies in the past practice? To answer these questions, we draw on a critical review of 222 published LCA studies of solid waste management systems. We analyse the past practice against the ISO standard requirements and the ILCD Handbook guidelines for each major step within the goal definition, scope definition, inventory analysis, impact assessment, and interpretation phases of the methodology. Results show that malpractices exist in several aspects of the LCA with large differences across studies. Examples are a frequent neglect of the goal definition, a frequent lack of transparency and precision in the definition of the scope of the study, e.g. an unclear delimitation of the system boundaries, a truncated impact coverage, difficulties in capturing influential local specificities such as representative waste compositions into the inventory, and a frequent lack of essential sensitivity and uncertainty analyses. Many of these aspects are important for the reliability of the results. For each of them, we therefore provide detailed recommendations to practitioners of waste management LCAs.

  9. SOLID WASTE INTEGRATED FORECAST TECHNICAL (SWIFT) REPORT FY2003 THRU FY2046 VERSION 2003.1 VOLUME 2 [SEC 1 & 2

    SciTech Connect (OSTI)

    BARCOT, R.A.

    2003-12-01

    This report includes data requested on September 10, 2002 and includes radioactive solid waste forecasting updates through December 31, 2002. The FY2003.0 request is the primary forecast for fiscal year FY 2003.

  10. 3D CFD ELECTROCHEMICAL AND HEAT TRANSFER MODEL OF AN INTERNALLY MANIFOLDED SOLID OXIDE ELECTROLYSIS CELL

    SciTech Connect (OSTI)

    Grant L. Hawkes; James E. O'Brien; Greg Tao

    2011-11-01

    A three-dimensional computational fluid dynamics (CFD) electrochemical model has been created to model high-temperature electrolysis cell performance and steam electrolysis in an internally manifolded planar solid oxide electrolysis cell (SOEC) stack. This design is being evaluated at the Idaho National Laboratory for hydrogen production from nuclear power and process heat. Mass, momentum, energy, and species conservation and transport are provided via the core features of the commercial CFD code FLUENT. A solid-oxide fuel cell (SOFC) model adds the electrochemical reactions and loss mechanisms and computation of the electric field throughout the cell. The FLUENT SOFC user-defined subroutine was modified for this work to allow for operation in the SOEC mode. Model results provide detailed profiles of temperature, operating potential, steam-electrode gas composition, oxygen-electrode gas composition, current density and hydrogen production over a range of stack operating conditions. Single-cell and five-cell results will be presented. Flow distribution through both models is discussed. Flow enters from the bottom, distributes through the inlet plenum, flows across the cells, gathers in the outlet plenum and flows downward making an upside-down ''U'' shaped flow pattern. Flow and concentration variations exist downstream of the inlet holes. Predicted mean outlet hydrogen and steam concentrations vary linearly with current density, as expected. Effects of variations in operating temperature, gas flow rate, oxygen-electrode and steam-electrode current density, and contact resistance from the base case are presented. Contour plots of local electrolyte temperature, current density, and Nernst potential indicate the effects of heat transfer, reaction cooling/heating, and change in local gas composition. Results are discussed for using this design in the electrolysis mode. Discussion of thermal neutral voltage, enthalpy of reaction, hydrogen production, cell thermal

  11. Assessing the credibility of the calorific value of municipal solid waste

    SciTech Connect (OSTI)

    Churney, K.L.; Domalski, E.S.; Ledford, A.E.; Colbert, J.C.; Bruce, S.S.; Buckley, T.J.; Paule, R.C.; Reilly, M.L.

    1984-02-01

    A study has been made at the National Bureau of Standards to establish the limits of reliability of the calorific value of municipal solid waste (MSW) determined by the bomb calorimetric procedure currently used in commercial test laboratories. This procedure involves using gram-size samples derived from MSW that has been processed down to a particle size of 2 mm or less. Critics of the procedure argue that gram-size samples are too small to be representative of such a large quantity of so heterogeneous a material, and that processing MSW may also alter its composition. To test the bomb calorimetric procedure, a 2.5 kg capacity combustion flow calorimeter was designed and constructed for the determination of the enthalpies of combustion of kilogram-size samples of MSW in flowing oxygen near atmospheric pressure. Calorimetric data on processed MSW were obtained using both the kilogram-size flow and a gram-size bomb calorimeter. Intercomparison of results shows that the calorific value (on a dry basis) of gram-size test samples agrees, within the uncertainty of our experiments, with the corresponding values for their kilogram-size parent samples provided that the sample division technique used to obtain the gram-size samples is that described in this work. The average difference of the parent minus gram-size sample values (on a dry basis) is -0.1% with an imprecision (95% confidence interval) of +-1.1% of the mean calorific value. The effects of processing on sample composition were determined by intercomparison of flow calorimetric results on kilogram-size samples of processed and minimally processed MSW (150 mm or less particle size) that are nominally identical. The average difference of the unprocessed minus processed values (on a dry basis) is -0.5% with an imprecision (95% confidence interval) of +-2.9% of the mean calorific value. 7 references, 4 figures, 10 tables.

  12. Utilization of municipal solid waste incineration fly ash for sulfoaluminate cement clinker production

    SciTech Connect (OSTI)

    Wu Kai; Shi Huisheng; Guo Xiaolu

    2011-09-15

    Highlights: > The replacement can be taken up to 30% of MSWI fly ash in the raw mix. > The novelty compositional parameters were defined, their optimum values were determined. > Expansive property of SAC is strongly depended on gypsum content. > Three leaching test methods are used to assess the environmental impact. - Abstract: The feasibility of partially substituting raw materials with municipal solid waste incineration (MSWI) fly ash in sulfoaluminate cement (SAC) clinker production was investigated by X-ray diffraction (XRD), compressive strength and free expansion ratio testing. Three different leaching tests were used to assess the environmental impact of the produced material. Experimental results show that the replacement of MSWI fly ash could be taken up to 30% in the raw mixes. The good quality SAC clinkers are obtained by controlling the compositional parameters at alkalinity modulus (C{sub m}) around 1.05, alumina-sulfur ratio (P) around 2.5, alumina-silica ratio (N) around 2.0{approx}3.0 and firing the raw mixes at 1250 deg. C for 2 h. The compressive strengths of SAC are high in early age while that develop slowly in later age. Results also show that the expansive properties of SAC are strongly depended on the gypsum content. Leaching studies of toxic elements in the hydrated SAC-based system reveal that all the investigated elements are well bounded in the clinker minerals or immobilized by the hydration products. Although some limited positive results indicate that the SAC prepared from MSWI fly ash would present no immediate thread to the environment, the long-term toxicity leaching behavior needs to be further studied.

  13. Design considerations for the cross jet air mixing in the municipal solid waste incinerators

    SciTech Connect (OSTI)

    Ryu, C.K.; Choi, S.

    1995-12-31

    In the mass-burning municipal solid waste incinerators, overfire air injection plays a key role in the improvement of mixing and reaction between oxygen and incomplete combustion products and/or pollutants. However, design parameters of overfire air nozzles are not well understood and sometimes confusing. In this paper, major design parameters of the cross jet air nozzles are discussed along with flow simulation results for the simplified furnace geometry. The overall performance of the jet air mixing and the effects of design parameters are quantitatively evaluated. The flow simulation results are interpreted in terms of the penetration depth of the jet into the main flow, the size of the recirculation zone and the ratio of the unmixed portion of the gas flow. The momentum flux ratio(J) of the jet to the cross flow strongly affects the penetration depth of the jet and the mixing of two flow streams. As the inter-nozzle distance (S in non-dimensional form) decreases, the penetration depth decreases but the size of recirculation zone increases and the resultant mixing deteriorates. The degree of mixing of the jet with the cross gas stream is evaluated in terms of the mass-averaged probability distribution of the relative concentration. Fresh air disperses more efficiently into the gas stream as J and S increase. The momentum flux ratio and the inter-nozzle distance are considered as important design parameters, and optimum values of these variables can be chosen for the given furnace conditions. This numerical evaluation also provides the basis of the similarity consideration for the cold flow model tests and the validity of the 2-dimensional idealization.

  14. Using a contingent valuation approach for improved solid waste management facility: Evidence from Kuala Lumpur, Malaysia

    SciTech Connect (OSTI)

    Afroz, Rafia; Masud, Muhammad Mehedi

    2011-04-15

    This study employed contingent valuation method to estimate the willingness to pay (WTP) of the households to improve the waste collection system in Kuala Lumpur, Malaysia. The objective of this study is to evaluate how household WTP changes when recycling and waste separation at source is made mandatory. The methodology consisted of asking people directly about their WTP for an additional waste collection service charge to cover the costs of a new waste management project. The new waste management project consisted of two versions: version A (recycling and waste separation is mandatory) and version B (recycling and waste separation is not mandatory). The households declined their WTP for version A when they were asked to separate the waste at source although all the facilities would be given to them for waste separation. The result of this study indicates that the households were not conscious about the benefits of recycling and waste separation. Concerted efforts should be taken to raise environmental consciousness of the households through education and more publicity regarding waste separation, reducing and recycling.

  15. The estimation of N{sub 2}O emissions from municipal solid waste incineration facilities: The Korea case

    SciTech Connect (OSTI)

    Park, Sangwon; Choi, Jun-Ho; Park, Jinwon

    2011-08-15

    The greenhouse gases (GHGs) generated in municipal solid waste (MSW) incineration are carbon dioxide (CO{sub 2}), methane (CH{sub 4}), and nitrous oxide (N{sub 2}O). In South Korea case, the total of GHGs from the waste incineration facilities has been increasing at an annual rate 10%. In these view, waste incineration facilities should consider to reduce GHG emissions. This study is designed to estimate the N{sub 2}O emission factors from MSW incineration plants, and calculate the N{sub 2}O emissions based on these factors. The three MSW incinerators examined in this study were either stoker or both stoker and rotary kiln facilities. The N{sub 2}O concentrations from the MSW incinerators were measured using gas chromatography-electron capture detection (GC-ECD) equipment. The average of the N{sub 2}O emission factors for the M01 plant, M02 plant, and M03 plant are 71, 75, and 153 g-N{sub 2}O/ton-waste, respectively. These results showed a significant difference from the default values of the intergovernmental panel on climate change (IPCC), while approaching those values derived in Japan and Germany. Furthermore, comparing the results of this study to the Korea Energy Economics Institute (KEEI) (2007) data on waste incineration, N{sub 2}O emissions from MSW incineration comprised 19% of the total N{sub 2}O emissions.

  16. Field study of disposed solid wastes from advanced coal processes. Annual technical progress report, October 1991--September 1992

    SciTech Connect (OSTI)

    Not Available

    1992-12-31

    Radian Corporation and the North Dakota Energy and Environmental Research Center (EERC) are funded to develop information to be used by private industry and government agencies for managing solid wastes produced by advanced coal combustion processes. This information will be developed by conducting several field studies on disposed wastes from these processes. Data will be collected to characterize these wastes and their interactions with the environments in which they are disposed. Three sites were selected for the field studies: Colorado Ute`s fluidized bed combustion (FBC) unit in Nucla, Colorado; Ohio Edison`s limestone injection multistage burner (LIMB) retrofit in Lorain, Ohio; and Freeman United`s mine site in central Illinois with wastes supplied by the nearby Midwest Grain FBC unit. During the past year, field monitoring and sampling of the four landfill test cases constructed in 1989 and 1991 has continued. Option 1 of the contract was approved last year to add financing for the fifth test case at the Freeman United site. The construction of the Test Case 5 cells is scheduled to begin in November, 1992. Work during this past year has focused on obtaining data on the physical and chemical properties of the landfilled wastes, and on developing a conceptual framework for interpreting this information. Results to date indicate that hydration reactions within the landfilled wastes have had a major impact on the physical and chemical properties of the materials but these reactions largely ceased after the first year, and physical properties have changed little since then. Conditions in Colorado remained dry and no porewater samples were collected. In Ohio, hydration reactions and increases in the moisture content of the waste tied up much of the water initially infiltrating the test cells.

  17. Environmental impacts of residual Municipal Solid Waste incineration: A comparison of 110 French incinerators using a life cycle approach

    SciTech Connect (OSTI)

    Beylot, Antoine Villeneuve, Jacques

    2013-12-15

    Highlights: • 110 French incinerators are compared with LCA based on plant-specific data. • Environmental impacts vary as a function of plants energy recovery and NO{sub x} emissions. • E.g. climate change impact ranges from −58 to 408 kg CO{sub 2}-eq/tonne of residual MSW. • Implications for LCA of waste management in a decision-making process are detailed. - Abstract: Incineration is the main option for residual Municipal Solid Waste treatment in France. This study compares the environmental performances of 110 French incinerators (i.e. 85% of the total number of plants currently in activity in France) in a Life Cycle Assessment perspective, considering 5 non-toxic impact categories: climate change, photochemical oxidant formation, particulate matter formation, terrestrial acidification and marine eutrophication. Mean, median and lower/upper impact potentials are determined considering the incineration of 1 tonne of French residual Municipal Solid Waste. The results highlight the relatively large variability of the impact potentials as a function of the plant technical performances. In particular, the climate change impact potential of the incineration of 1 tonne of waste ranges from a benefit of −58 kg CO{sub 2}-eq to a relatively large burden of 408 kg CO{sub 2}-eq, with 294 kg CO{sub 2}-eq as the average impact. Two main plant-specific parameters drive the impact potentials regarding the 5 non-toxic impact categories under study: the energy recovery and delivery rate and the NO{sub x} process-specific emissions. The variability of the impact potentials as a function of incinerator characteristics therefore calls for the use of site-specific data when required by the LCA goal and scope definition phase, in particular when the study focuses on a specific incinerator or on a local waste management plan, and when these data are available.

  18. Web-GIS oriented systems viability for municipal solid waste selective collection optimization in developed and transient economies

    SciTech Connect (OSTI)

    Rada, E.C.; Ragazzi, M.; Fedrizzi, P.

    2013-04-15

    Highlights: ► As an appropriate solution for MSW management in developed and transient countries. ► As an option to increase the efficiency of MSW selective collection. ► As an opportunity to integrate MSW management needs and services inventories. ► As a tool to develop Urban Mining actions. - Abstract: Municipal solid waste management is a multidisciplinary activity that includes generation, source separation, storage, collection, transfer and transport, processing and recovery, and, last but not least, disposal. The optimization of waste collection, through source separation, is compulsory where a landfill based management must be overcome. In this paper, a few aspects related to the implementation of a Web-GIS based system are analyzed. This approach is critically analyzed referring to the experience of two Italian case studies and two additional extra-European case studies. The first case is one of the best examples of selective collection optimization in Italy. The obtained efficiency is very high: 80% of waste is source separated for recycling purposes. In the second reference case, the local administration is going to be faced with the optimization of waste collection through Web-GIS oriented technologies for the first time. The starting scenario is far from an optimized management of municipal solid waste. The last two case studies concern pilot experiences in China and Malaysia. Each step of the Web-GIS oriented strategy is comparatively discussed referring to typical scenarios of developed and transient economies. The main result is that transient economies are ready to move toward Web oriented tools for MSW management, but this opportunity is not yet well exploited in the sector.

  19. WIPP WASTE MINIMIZATION PROGRAM DESCRIPTION

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... NMSW - New Mexico Special Waste MSW - Municipal Solid Waste C&D - Construction and ... Proposed waste streams that could generate hazardous wastes are reviewed regularly to ...

  20. Legacy Waste | Department of Energy

    Office of Environmental Management (EM)

    Services Legacy Waste Legacy Waste Legacy Waste The Environmental Management Los Alamos Field Office's (EM-LA) Solid Waste Stabilization and Disposition Project Team is ...

  1. Evaluation of solid-based separation materials for the pretreatment of radioactive wastes

    SciTech Connect (OSTI)

    Lumetta, G.J.; Wagner, M.J.; Wester, D.W.; Morrey, J.R.

    1993-05-01

    Separation science will play an important role in pretreating nuclear wastes stored at various US Department of Energy Sites. The application of separation processes offers potential economic and environmental benefits with regards to remediating these sites. For example, at the Hanford Site, the sizeable volume of radioactive wastes stored in underground tanks could be partitioned into a small volume of high-level waste (HLW) and a relatively large volume of low-level waste (LLW). After waste separation, only the smaller volume of HLW would require costly vitrification and geologic disposal. Furthermore, the quality of the remaining LLW form (e.g., grout) would be improved due to the lower inventory of radionuclides present in the LLW stream. This report investigates extraction chromatography as a possible separation process for Hanford wastes.

  2. Municipal solid waste management: Identification and analysis of engineering indexes representing demand and costs generated in virtuous Italian communities

    SciTech Connect (OSTI)

    Gamberini, R. Del Buono, D.; Lolli, F.; Rimini, B.

    2013-11-15

    Highlights: • Collection and analysis of real life data in the field of Municipal Solid Waste (MSW) generation and costs for management. • Study of 92 virtuous Italian communities. • Elaboration of trends of engineering indexes useful during design and evaluation of MSWM systems. - Abstract: The definition and utilisation of engineering indexes in the field of Municipal Solid Waste Management (MSWM) is an issue of interest for technicians and scientists, which is widely discussed in literature. Specifically, the availability of consolidated engineering indexes is useful when new waste collection services are designed, along with when their performance is evaluated after a warm-up period. However, most published works in the field of MSWM complete their study with an analysis of isolated case studies. Conversely, decision makers require tools for information collection and exchange in order to trace the trends of these engineering indexes in large experiments. In this paper, common engineering indexes are presented and their values analysed in virtuous Italian communities, with the aim of contributing to the creation of a useful database whose data could be used during experiments, by indicating examples of MSWM demand profiles and the costs required to manage them.

  3. Measurement of uranium and plutonium in solid waste by passive photon or neutron counting and isotopic neutron source interrogation

    SciTech Connect (OSTI)

    Crane, T.W.

    1980-03-01

    A summary of the status and applicability of nondestructive assay (NDA) techniques for the measurement of uranium and plutonium in 55-gal barrels of solid waste is reported. The NDA techniques reviewed include passive gamma-ray and x-ray counting with scintillator, solid state, and proportional gas photon detectors, passive neutron counting, and active neutron interrogation with neutron and gamma-ray counting. The active neutron interrogation methods are limited to those employing isotopic neutron sources. Three generic neutron sources (alpha-n, photoneutron, and /sup 252/Cf) are considered. The neutron detectors reviewed for both prompt and delayed fission neutron detection with the above sources include thermal (/sup 3/He, /sup 10/BF/sub 3/) and recoil (/sup 4/He, CH/sub 4/) proportional gas detectors and liquid and plastic scintillator detectors. The instrument found to be best suited for low-level measurements (< 10 nCi/g) is the /sup 252/Cf Shuffler. The measurement technique consists of passive neutron counting followed by cyclic activation using a /sup 252/Cf source and delayed neutron counting with the source withdrawn. It is recommended that a waste assay station composed of a /sup 252/Cf Shuffler, a gamma-ray scanner, and a screening station be tested and evaluated at a nuclear waste site. 34 figures, 15 tables.

  4. Status report on energy recovery from municipal solid waste: technologies, lessons and issues. Information bulletin of the energy task force of the urban consortium

    SciTech Connect (OSTI)

    1980-01-01

    A review is presented of the lessons learned and issues raised regarding the recovery of energy from solid wastes. The review focuses on technologies and issues significant to currently operating energy recovery systems in the US - waterwall incineration, modular incineration, refuse derived fuels systems, landfill gas recovery systems. Chapters are: Energy Recovery and Solid Waste Disposal; Energy Recovery Systems; Lessons in Energy Recovery; Issues in Energy Recovery. Some basic conclusions are presented concerning the state of the art of energy from waste. Plants in shakedown or under construction, along with technologies in the development stages, are briefly described. Sources of additional information and a bibliography are included. (MCW)

  5. Application for Permit to Operate a Class II Solid Waste Disposal Site at the Nevada Test Site - U10c Disposal Site

    SciTech Connect (OSTI)

    NSTec Environmental Programs

    2010-03-31

    The Nevada Test Site (NTS) is located approximately 105 km (65 mi) northwest of Las Vegas, Nevada. National Nuclear Security Administration Nevada Site Office (NNSA/NSO) is the federal lands management authority for the NTS and National Security Technologies LLC (NSTec) is the Management and Operations contractor. Access on and off the NTS is tightly controlled, restricted, and guarded on a 24-hour basis. The NTS is posted with signs along its entire perimeter. NSTec is the operator of all solid waste disposal sites on the NTS. The site will be used for the disposal of refuse, rubbish, garbage, sewage sludge, pathological waste, Asbestos-Containing Material (ACM), industrial solid waste, hydrocarbon-burdened soil, hydrocarbon-burdened demolition and construction waste, and other inert waste (hereafter called permissible waste). Waste containing free liquids or regulated under Subtitle C of the Resource Conservation and Recovery Act (RCRA) will not be accepted for disposal at the site. Waste regulated under the Toxic Substance Control Act (TSCA), excluding Polychlorinated Biphenyl [PCB], Bulk Product Waste (see Section 6.2.5) and ACM (see Section 6.2.2.2) will not be accepted for disposal at the site. The disposal site will be used as the sole depository of permissible waste which is: (1) Generated by entities covered under the U.S. Environmental Protection Agency (EPA) Hazardous Waste Generator Identification Number for the NTS; (2) Generated at sites identified in the Federal Facilities Agreement and Consent Order (FFACO); (3) Sensitive records and media, including documents, vugraphs, computer disks, typewriter ribbons, magnetic tapes, etc., generated by NNSA/NSO or its contractors; (4) ACM generated by NNSA/NSO or its contractors according to Section 6.2.2.2, as necessary; (5) Hydrocarbon-burdened soil and solid waste from areas covered under the EPA Hazardous Waste Generator Identification Number for the NTS; (6) Other waste on a case-by-case concurrence by

  6. Data summary of municipal solid waste management alternatives. Volume 6, Appendix D, Pyrolysis and gasification of MSW

    SciTech Connect (OSTI)

    1992-10-01

    This Appendix summarizes information available in the open literature describing the technology and operating experierice of pyrolysis technology as applied to the management of municipal solid waste (MSW). The literature search, which emphasized the time frame of greatest activity in MSW pyrolysis (i.e., the mid-1960s to the mid-1980s), focused on the scale of application, material feedstock, technical limitations and economic considerations. Smaller scale facilities, either laboratory/research scale (< I TPD) or process development/pilot scale plants (1-20 TPD) for municipal waste and related materials (agricultural, forest residues, industrial wastes, etc.), are mentioned in the literature (275, 495). However, such data are sparse, dated, and often have limited applicability to MSW in general, and for design scale-up in particular. Therefore, greatest emphasis was placed on identifying demonstration scale (20--150 TPD) will commercial seals (> 150 TPD) studies which could be expected to provide economic, environmental, and energy data that can be scaled with possibly less risk. While the promise of pyrolysis of MSW lies in its ability to transform municipal waste into gaseous and liquid chemicals and fuel products, the major limitation is the unproven technical and economic feasibility of a large scale facility.

  7. The impact of an efficient collection sites location on the zoning phase in municipal solid waste management

    SciTech Connect (OSTI)

    Ghiani, Gianpaolo Manni, Andrea Manni, Emanuele Toraldo, Massimiliano

    2014-11-15

    Highlights: • We study the problems of locating collection areas and zoning the service territory in a municipal waste management system. • We investigate the impact that an efficient collection sites location has on the subsequent zoning phase. • On a real-world test case, we show that the proposed approach could allow achieving significant monetary savings. - Abstract: In this paper, we study two decisional problems arising when planning the collection of solid waste, namely the location of collection sites (together with bin allocation) and the zoning of the service territory, and we assess the potential impact that an efficient location has on the subsequent zoning phase. We first propose both an exact and a heuristic approach to locate the unsorted waste collection bins in a residential town, and to decide the capacities and characteristics of the bins to be located at each collection site. A peculiar aspect we consider is that of taking into account the compatibility between the different types of bins when allocating them to collection areas. Moreover, we propose a fast and effective heuristic approach to identify homogeneous zones that can be served by a single collection vehicle. Computational results on data related to a real-life instance show that an efficient location is fundamental in achieving consistent monetary savings, as well as a reduced environmental impact. These reductions are the result of one vehicle less needed to perform the waste collection operations, and an overall traveled distance reduced by about 25% on the average.

  8. Design of a large-scale anaerobic digestion facility for the recovery of energy from municipal solid waste

    SciTech Connect (OSTI)

    Kayhanian, M.; Jones, D.

    1996-12-31

    The California Prison Industry Authority, in conjunction with the City of Folsom, operates a 100 ton/d municipal solid waste (MSW) recovery facility using inmate labor. Through manual sorting, all useful organic and inorganic materials are recycled for marketing. The remaining organic material will be further processed to remove hazardous and inert material and prepared as a feedstock for an anaerobic digestion process. The clean organic waste (approximately 78 ton/d) will then be shredded and completely mixed with sewage water prior feeding to the digester. Off gas from the digester will be collected as a fuel for the steam boiler or combusted in a waste gas burner. Steam will be injected directly into the digester for heating. The anaerobically digested material will be moved to compost area where it will be mixed with wood faction of yard waste and processed aerobically for the production of compost material as a soil amendment. Anaerobic digesters will be constructed in two phases. The first phase consists of the construction of one 26 ton/d digester to confirm the suitability of feeding and mixing equipment. Modifications will be made to the second and third digesters, in the second phase, based on operating experience of the first digester. This paper discusses important design features of the anaerobic digestion facility.

  9. Decision support model for municipal solid waste recycling at United States Air Force Installations. Master`s thesis

    SciTech Connect (OSTI)

    Williams, G.A.

    1996-12-01

    The United States Air Force requires each installation to operate a municipal solid waste recycling program. Two inherently conflicting objectives, waste material diversion and financial result, have been established for the program. Reducing landfill disposal is the primary objective, but the incentive for profit is strong because each installation can retain profits from the program. Installations can be divided into two distinct areas, commercial and residential, based on the waste stream composition and funding. Structuring of the recycling program is often done in an ad-hoc manner. A decision support model was developed to evaluate four methods for each area. The model combines available Air Force data and information from research literature to determine the results of sixteen strategy combinations. The important variables affecting the results are determined through sensitivity analysis. The results are used to establish an efficient frontier of preferred strategies. The frontier illustrates the trade-offs of each strategy. The frontier can be also be used to inform decision makers prior to final strategy selection and determine preference values which would favor a given strategy. The value free analysis provides an objective foundation for presentation to a decision maker with unknown or changing preference values. The model provides valuable insight into the performance of recycling strategies as part of an overall waste management plan.

  10. Methodology for modeling the devolatilization of refuse-derived fuel from thermogravimetric analysis of municipal solid waste components

    SciTech Connect (OSTI)

    Fritsky, K.J.; Miller, D.L.; Cernansky, N.P.

    1994-09-01

    A methodology was introduced for modeling the devolatilization characteristics of refuse-derived fuel (RFD) in terms of temperature-dependent weight loss. The basic premise of the methodology is that RDF is modeled as a combination of select municipal solid waste (MSW) components. Kinetic parameters are derived for each component from thermogravimetric analyzer (TGA) data measured at a specific set of conditions. These experimentally derived parameters, along with user-derived parameters, are inputted to model equations for the purpose of calculating thermograms for the components. The component thermograms are summed to create a composite thermogram that is an estimate of the devolatilization for the as-modeled RFD. The methodology has several attractive features as a thermal analysis tool for waste fuels. 7 refs., 10 figs., 3 tabs.

  11. EA-0981: Solid Waste Retrieval Complex, Enhanced Radioactive and Mixed Waste Storage Facility, Infrastructure Upgrades, and Central Waste Support Complex, Hanford Site, Richland, Washington

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of the proposal to retrieve transuranic waste (TRU), provide storage capacity for retrieved and newly generated TRU, Greater-than-Category 3, and mixed...

  12. Combustion of municipal solid wastes with oil shale in a circulating fluidized bed. Quarterly report, quarter ending December 31, 1995

    SciTech Connect (OSTI)

    NONE

    1996-01-01

    The objective of this project is to demonstrate that cocombustion of municipal solid waste and oil shale can reduce emissions of gaseous pollutants (SO{sub 2} and HCl) to acceptable levels. Tests in 6- and 15-inch units showed that the oil shale absorbs acid gas pollutants and produces an ash which could be, at the least, disposed of in a normal landfill. Further analysis of the results are underway to estimate scale-up to commercial size. Additional work will be done to evaluate the cementitious properties of oil shale ash.

  13. Final Hanford Site Solid (Radioactive and Hazardous) Waste Program Environmental Impact Statement Richland, Washington

    Office of Environmental Management (EM)

    HSW EIS January 2004 1.6 Figure 1.2. States with Radioactive Waste Disposal Activities Final HSW EIS January 2004 1.12 Figure 1.3. Relationship of the HSW EIS to Other Hanford Cleanup Operations, Material Management Activities, and Key Environmental Reviews 2.17 Final HSW EIS January 2004 Figure 2.6. Waste Receiving and Processing Facility Figure 2.7. X-Ray Image of Transuranic Waste Drum Contents M0212-0286.11 HSW EIS 12-10-02 M0212-0286.12 HSW EIS 12-10-02 2.17 Final HSW EIS January 2004

  14. INTERNATIONAL STUDIES OF ENHANCED WASTE LOADING AND IMPROVED MELT RATE FOR HIGH ALUMINA CONCENTRATION NUCLEAR WASTE GLASSES

    SciTech Connect (OSTI)

    Fox, K; David Peeler, D; James Marra, J

    2008-09-11

    The goal of this study was to determine the impacts of glass compositions with high aluminum concentrations on melter performance, crystallization and chemical durability for Savannah River Site (SRS) and Hanford waste streams. Glass compositions for Hanford targeted both high aluminum concentrations in waste sludge and a high waste loading in the glass. Compositions for SRS targeted Sludge Batch 5, the next sludge batch to be processed in the Defense Waste Processing Facility (DWPF), which also has a relatively high aluminum concentration. Three frits were selected for combination with the SRS waste to evaluate their impact on melt rate. The glasses were melted in two small-scale test melters at the V. G. Khlopin Radium Institute. The results showed varying degrees of spinel formation in each of the glasses. Some improvements in melt rate were made by tailoring the frit composition for the SRS feeds. All of the Hanford and SRS compositions had acceptable chemical durability.

  15. Occupational hygiene in terms of volatile organic compounds (VOCs) and bioaerosols at two solid waste management plants in Finland

    SciTech Connect (OSTI)

    Lehtinen, Jenni; Tolvanen, Outi; Nivukoski, Ulla; Veijanen, Anja; Hnninen, Kari

    2013-04-15

    Highlights: ? Odorous VOCs: acetic acid, 2,3-butanedione, ethyl acetate, alpha-pinene and limonene. ? VOC concentrations did not exceed occupational exposure limit concentrations. ? 2,3-Butanedione as the health effecting compound is discussed. ? Endotoxin concentrations may cause health problems in waste treatment. - Abstract: Factors affecting occupational hygiene were measured at the solid waste transferring plant at Hyvink and at the optic separation plant in Hmeenlinna. Measurements consisted of volatile organic compounds (VOCs) and bioaerosols including microbes, dust and endotoxins. The most abundant compounds in both of the plants were aliphatic and aromatic hydrocarbons, esters of carboxylic acids, ketones and terpenes. In terms of odour generation, the most important emissions were acetic acid, 2,3-butanedione, ethyl acetate, alpha-pinene and limonene due to their low threshold odour concentrations. At the optic waste separation plant, limonene occurred at the highest concentration of all single compounds of identified VOCs. The concentration of any single volatile organic compound did not exceed the occupational exposure limit (OEL) concentration. However, 2,3-butanedione as a health risk compound is discussed based on recent scientific findings linking it to lung disease. Microbe and dust concentrations were low at the waste transferring plant. Only endotoxin concentrations may cause health problems; the average concentration inside the plant was 425 EU/m{sup 3} which clearly exceeded the threshold value of 90 EU/m{sup 3}. In the wheel loader cabin the endotoxin concentrations were below 1 EU/m{sup 3}. High microbial and endotoxin concentrations were measured in the processing hall at the optic waste separation plant. The average concentration of endotoxins was found to be 10,980 EU/m{sup 3}, a concentration which may cause health risks. Concentrations of viable fungi were quite high in few measurements in the control room. The most problematic

  16. Revised Arrangements for the Management of Solid and Non-Aqueous Radioactive Waste - 12452

    SciTech Connect (OSTI)

    Fullbrook, Michael; Walker, Johann; Macnab, Alec

    2012-07-01

    In 2010, Atomic Weapons Establishment (AWE) identified a requirement to implement revised management arrangements for the generation, storage and disposal of radioactive waste. A thorough review of the current arrangements/processes was undertaken which included both legal compliance requirements and the identification of business improvement opportunities. On completion of this review a suitable project team was established and in 2011 an integrated Radioactive Waste Management process was implemented throughout the business. Initial results have shown measurable improvements within Radioactive Waste management compliance, operator understanding and increased business efficiency. Through the development and implementation of the revised working arrangements AWE has been able to continue to demonstrate both legal compliance to its regulators along with business efficiency and effectiveness improvements. Simple to follow process maps have improved employees understanding of Radioactive Waste management requirements, provided them with easily accessible information and ensured the business operates in a single coherent manner. The implementation of a modern electronic data management system has ensured all waste related information is easily retrievable and appropriately maintained. The additional functions that have been built into the system have reduced the potential for human error and increased the overall efficiency of the Waste Management department through the use of the automated report generation functionality. (authors)

  17. A review on technologies and their usage in solid waste monitoring and management systems: Issues and challenges

    SciTech Connect (OSTI)

    Hannan, M.A.; Abdulla Al Mamun, Md.; Hussain, Aini; Basri, Hassan; Begum, R.A.

    2015-09-15

    Highlights: • Classification of available technologies for SWM system in four core category. • Organization of technology based SWM systems in three main groups. • Summary of SWM systems with target application, methodology and functional domain. • Issues and challenges are highlighted for further design of a sustainable system. - Abstract: In the backdrop of prompt advancement, information and communication technology (ICT) has become an inevitable part to plan and design of modern solid waste management (SWM) systems. This study presents a critical review of the existing ICTs and their usage in SWM systems to unfold the issues and challenges towards using integrated technologies based system. To plan, monitor, collect and manage solid waste, the ICTs are divided into four categories such as spatial technologies, identification technologies, data acquisition technologies and data communication technologies. The ICT based SWM systems classified in this paper are based on the first three technologies while the forth one is employed by almost every systems. This review may guide the reader about the basics of available ICTs and their application in SWM to facilitate the search for planning and design of a sustainable new system.

  18. INTERNATIONAL PROGRAM: SUMMARY REPORT ON THE PROPERTIES OF CEMENTITIOUS WASTE FORMS

    SciTech Connect (OSTI)

    Harbour, J

    2007-03-02

    This report provides a summary of the results on the properties of cementitious waste forms obtained as part of the International Program. In particular, this report focuses on the results of Task 4 of the Program that was initially entitled ''Improved Retention of Key Contaminants of Concern in Low Temperature Immobilized Waste Forms''. Task 4 was a joint program between Khlopin Radium Institute and the Savannah River National Laboratory. The task evolved during this period into a study of cementitious waste forms with an expanded scope that included heat of hydration and fate and transport modeling. This report provides the results for Task 4 of the International Program as of the end of FY06 at which time funding for Task 4 was discontinued due to the needs of higher priority tasks within the International Program. Consequently, some of the subtasks were only partially completed, but it was considered important to capture the results up to this point in time. Therefore, this report serves as the closeout report for Task 4. The degree of immobilization of Tc-99 within the Saltstone waste form was measured through monolithic and crushed grout leaching tests. An effective diffusion coefficient of 4.8 x 10{sup -12} (Leach Index of 11.4) was measured using the ANSI/ANS-16.1 protocol which is comparable with values obtained for tank closure grouts using a dilute salt solution. The leaching results show that, in the presence of concentrated salt solutions such as those that will be processed at the Saltstone Production Facility, blast furnace slag can effectively reduce pertechnetate to the immobile +4 oxidation state. Leaching tests were also initiated to determine the degree of immobilization of selenium in the Saltstone waste form. Results were obtained for the upper bound of projected selenium concentration ({approx}5 x 10{sup -3} M) in the salt solution that will be treated at Saltstone. The ANSI/ANS 16.1 leaching tests provided a value for the effective

  19. Attitude towards the incorporation of the selective collection of biowaste in a municipal solid waste management system. A case study

    SciTech Connect (OSTI)

    Bernad-Beltrán, D.

    2014-12-15

    Highlights: • Attitude towards incorporating biowaste selective collection is analysed. • Willingness to participate and to pay in biowaste selective collection is obtained. • Socioeconomic aspects affecting WtParticipate and WtPay are identified. - Abstract: European waste legislation has been encouraging for years the incorporation of selective collection systems for the biowaste fraction. European countries are therefore incorporating it into their current municipal solid waste management (MSWM) systems. However, this incorporation involves changes in the current waste management habits of households. In this paper, the attitude of the public towards the incorporation of selective collection of biowaste into an existing MSWM system in a Spanish municipality is analysed. A semi-structured telephone interview was used to obtain information regarding aspects such as: level of participation in current waste collection systems, willingness to participate in selective collection of biowaste, reasons and barriers that affect participation, willingness to pay for the incorporation of the selective collection of biowaste and the socioeconomic characteristics of citizens who are willing to participate and pay for selective collection of biowaste. The results showed that approximately 81% of the respondents were willing to participate in selective collection of biowaste. This percentage would increase until 89% if the Town Council provided specific waste bins and bags, since the main barrier to participate in the new selective collection system is the need to use specific waste bin and bags for the separation of biowaste. A logit response model was applied to estimate the average willingness to pay, obtaining an estimated mean of 7.5% on top of the current waste management annual tax. The relationship of willingness to participate and willingness to pay for the implementation of this new selective collection with the socioeconomic variables (age, gender, size of the

  20. Multiple stakeholders in multi-criteria decision-making in the context of Municipal Solid Waste Management: A review

    SciTech Connect (OSTI)

    Soltani, Atousa; Hewage, Kasun; Reza, Bahareh; Sadiq, Rehan

    2015-01-15

    Highlights: • We review Municipal Solid Waste Management studies with focus on multiple stakeholders. • We focus on studies with multi-criteria decision analysis methods and discover their trends. • Most studies do not offer solutions for situations where stakeholders compete for more benefits or have unequal voting powers. • Governments and experts are the most participated stakeholders and AHP is the most dominant method. - Abstract: Municipal Solid Waste Management (MSWM) is a complicated process that involves multiple environmental and socio-economic criteria. Decision-makers look for decision support frameworks that can guide in defining alternatives, relevant criteria and their weights, and finding a suitable solution. In addition, decision-making in MSWM problems such as finding proper waste treatment locations or strategies often requires multiple stakeholders such as government, municipalities, industries, experts, and/or general public to get involved. Multi-criteria Decision Analysis (MCDA) is the most popular framework employed in previous studies on MSWM; MCDA methods help multiple stakeholders evaluate the often conflicting criteria, communicate their different preferences, and rank or prioritize MSWM strategies to finally agree on some elements of these strategies and make an applicable decision. This paper reviews and brings together research on the application of MCDA for solving MSWM problems with more focus on the studies that have considered multiple stakeholders and offers solutions for such problems. Results of this study show that AHP is the most common approach in consideration of multiple stakeholders and experts and governments/municipalities are the most common participants in these studies.

  1. Accelerated carbonation using municipal solid waste incinerator bottom ash and cold-rolling wastewater: Performance evaluation and reaction kinetics

    SciTech Connect (OSTI)

    Chang, E-E; Pan, Shu-Yuan; Yang, Liuhanzi; Chen, Yi-Hung; Kim, Hyunook; Chiang, Pen-Chi

    2015-09-15

    Highlights: • Carbonation was performed using CO{sub 2}, wastewater and bottom ash in a slurry reactor. • A maximum capture capacity of 102 g CO{sub 2} per kg BA was achieved at mild conditions. • A maximum carbonation conversion of MSWI-BA was predicted to be 95% by RSM. • The CO{sub 2} emission from Bali incinerator could be expected to reduce by 6480 ton/y. • The process energy consumption per ton CO{sub 2} captured was estimated to be 180 kW h. - Abstract: Accelerated carbonation of alkaline wastes including municipal solid waste incinerator bottom ash (MSWI-BA) and the cold-rolling wastewater (CRW) was investigated for carbon dioxide (CO{sub 2}) fixation under different operating conditions, i.e., reaction time, CO{sub 2} concentration, liquid-to-solid ratio, particle size, and CO{sub 2} flow rate. The MSWI-BA before and after carbonation process were analyzed by the thermogravimetry and differential scanning calorimetry, X-ray diffraction, and scanning electron microscopy equipped with energy dispersive X-ray spectroscopy. The MSWI-BA exhibits a high carbonation conversion of 90.7%, corresponding to a CO{sub 2} fixation capacity of 102 g per kg of ash. Meanwhile, the carbonation kinetics was evaluated by the shrinking core model. In addition, the effect of different operating parameters on carbonation conversion of MSWI-BA was statistically evaluated by response surface methodology (RSM) using experimental data to predict the maximum carbonation conversion. Furthermore, the amount of CO{sub 2} reduction and energy consumption for operating the proposed process in refuse incinerator were estimated. Capsule abstract: CO{sub 2} fixation process by alkaline wastes including bottom ash and cold-rolling wastewater was developed, which should be a viable method due to high conversion.

  2. Precious metals and rare earth elements in municipal solid waste – Sources and fate in a Swiss incineration plant

    SciTech Connect (OSTI)

    Morf, Leo S.; Gloor, Rolf; Haag, Olaf; Haupt, Melanie; Skutan, Stefan; Lorenzo, Fabian Di; Böni, Daniel

    2013-03-15

    Highlights: ► We carefully addressed all the very valuable comments and suggestions of the reviewers. ► We also have shortened the size of the paper and tried simplify it substantially, as requested by the reviewers (introduction 25% reduced!). ► We have decided to take the chance and have replaced the data for the “additional” elements (Cu, Cd, Zn, Pb, Sn, Cr, Ni, Fe, Al) of the earlier MFA (Morf, 2011) with data that belong to the samples of this study. ► We are convinced that with the revision the paper has significantly improved in quality and attractiveness. - Abstract: In Switzerland many kinds of waste, e.g. paper, metals, electrical and electronic equipment are separately collected and recycled to a large extent. The residual amount of municipal solid waste (MSW) has to be thermally treated before final disposal. Efforts to recover valuable metals from incineration residues have recently increased. However, the resource potential of critical elements in the waste input (sources) and their partitioning into recyclable fractions and residues (fate) is unknown. Therefore, a substance flow analysis (SFA) for 31 elements including precious metals (Au, Ag), platinum metal group elements (Pt, Rh) and rare earth elements (La, Ce, etc.) has been conducted in a solid waste incinerator (SWI) with a state-of-the-art bottom ash treatment according to the Thermo-Re® concept. The SFA allowed the determination of the element partitioning in the SWI, as well as the elemental composition of the MSW by indirect analysis. The results show that the waste-input contains substantial quantities of precious metals, such as 0.4 ± 0.2 mg/kg Au and 5.3 ± 0.7 mg/kg Ag. Many of the valuable substances, such as Au and Ag are enriched in specific outputs (e.g. non-ferrous metal fractions) and are therefore recoverable. As the precious metal content in MSW is expected to rise due to its increasing application in complex consumer products, the results of this study are

  3. Determination of total chlorine and bromine in solid wastes by sintering and inductively coupled plasma-sector field mass spectrometry

    SciTech Connect (OSTI)

    Osterlund, Helene Rodushkin, Ilia; Ylinenjaervi, Karin; Baxter, Douglas C.

    2009-04-15

    A sample preparation method based on sintering, followed by analysis by inductively coupled plasma-sector field mass spectrometry (ICP-SFMS) for the simultaneous determination of chloride and bromide in diverse and mixed solid wastes, has been evaluated. Samples and reference materials of known composition were mixed with a sintering agent containing Na{sub 2}CO{sub 3} and ZnO and placed in an oven at 560 deg. C for 1 h. After cooling, the residues were leached with water prior to a cation-exchange assisted clean-up. Alternatively, a simple microwave-assisted digestion using only nitric acid was applied for comparison. Thereafter the samples were prepared for quantitative analysis by ICP-SFMS. The sintering method was evaluated by analysis of certified reference materials (CRMs) and by comparison with US EPA Method 5050 and ion chromatography with good agreement. Median RSDs for the sintering method were determined to 10% for both chlorine and bromine, and median recovery to 96% and 97%, respectively. Limits of detection (LODs) were 200 mg/kg for chlorine and 20 mg/kg for bromine. It was concluded that the sintering method is suitable for chlorine and bromine determination in several matrices like sewage sludge, plastics, and edible waste, as well as for waste mixtures. The sintering method was also applied for determination of other elements present in anionic forms, such as sulfur, arsenic, selenium and iodine.

  4. Solid Waste Operations Complex W-113, Detail Design Report (Title II). Volume 1: Title II design report

    SciTech Connect (OSTI)

    1995-09-01

    The Solid Waste Retrieval Facility--Phase 1 (Project W113) will provide the infrastructure and the facility required to retrieve from Trench 04, Burial ground 4C, contact handled (CH) drums and boxes at a rate that supports all retrieved TRU waste batching, treatment, storage, and disposal plans. This includes (1) operations related equipment and facilities, viz., a weather enclosure for the trench, retrieval equipment, weighing, venting, obtaining gas samples, overpacking, NDE, NDA, shipment of waste and (2) operations support related facilities, viz., a general office building, a retrieval staff change facility, and infrastructure upgrades such as supply and routing of water, sewer, electrical power, fire protection, roads, and telecommunication. Title I design for the operations related equipment and facilities was performed by Raytheon/BNFL, and that for the operations support related facilities including infrastructure upgrade was performed by KEH. These two scopes were combined into an integrated W113 Title II scope that was performed by Raytheon/BNFL. Volume 1 provides a comprehensive narrative description of the proposed facility and systems, the basis for each of the systems design, and the engineering assessments that were performed to support the technical basis of the Title II design. The intent of the system description presented is to provide WHC an understanding of the facilities and equipment provided and the A/E`s perspective on how these systems will operate.

  5. Application of spatial and non-spatial data analysis in determination of the factors that impact municipal solid waste generation rates in Turkey

    SciTech Connect (OSTI)

    Keser, Saniye; Duzgun, Sebnem; Aksoy, Aysegul

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer Spatial autocorrelation exists in municipal solid waste generation rates for different provinces in Turkey. Black-Right-Pointing-Pointer Traditional non-spatial regression models may not provide sufficient information for better solid waste management. Black-Right-Pointing-Pointer Unemployment rate is a global variable that significantly impacts the waste generation rates in Turkey. Black-Right-Pointing-Pointer Significances of global parameters may diminish at local scale for some provinces. Black-Right-Pointing-Pointer GWR model can be used to create clusters of cities for solid waste management. - Abstract: In studies focusing on the factors that impact solid waste generation habits and rates, the potential spatial dependency in solid waste generation data is not considered in relating the waste generation rates to its determinants. In this study, spatial dependency is taken into account in determination of the significant socio-economic and climatic factors that may be of importance for the municipal solid waste (MSW) generation rates in different provinces of Turkey. Simultaneous spatial autoregression (SAR) and geographically weighted regression (GWR) models are used for the spatial data analyses. Similar to ordinary least squares regression (OLSR), regression coefficients are global in SAR model. In other words, the effect of a given independent variable on a dependent variable is valid for the whole country. Unlike OLSR or SAR, GWR reveals the local impact of a given factor (or independent variable) on the waste generation rates of different provinces. Results show that provinces within closer neighborhoods have similar MSW generation rates. On the other hand, this spatial autocorrelation is not very high for the exploratory variables considered in the study. OLSR and SAR models have similar regression coefficients. GWR is useful to indicate the local determinants of MSW generation rates. GWR model can be utilized to

  6. Advanced conceptual design report solid waste retrieval facility, phase I, project W-113

    SciTech Connect (OSTI)

    Smith, K.E.

    1994-03-21

    Project W-113 will provide the equipment and facilities necessary to retrieve suspect transuranic (TRU) waste from Trench 04 of the 218W-4C burial ground. As part of the retrieval process, waste drums will be assayed, overpacked, vented, head-gas sampled, and x-rayed prior to shipment to the Phase V storage facility in preparation for receipt at the Waste Receiving and Processing Facility (WRAP). Advanced Conceptual Design (ACD) studies focused on project items warranting further definition prior to Title I design and areas where the potential for cost savings existed. This ACD Report documents the studies performed during FY93 to optimize the equipment and facilities provided in relation to other SWOC facilities and to provide additional design information for Definitive Design.

  7. Municipal solid waste to electricity recommendations for project in Bangkok, Thailand

    SciTech Connect (OSTI)

    Not Available

    1985-09-01

    Bangkok Metropolitan Administration (BMA) is charged with the responsibility of public cleansing and waste disposal in the metropolitan area. BMA operates 600 trucks which collect the waste twice a day and dump it at its three sites located in the Huai Kwong, Bangkok Noi and Rataburana districts. Presently these trucks collect 3,000 metric tons of garbage per day. At the waste dump sites, which are rapidly overflowing, BMA presently operates four compost plants, three with input capacity of 320 tons per day each and a fourth which uses about 160 tons of garbage per day--thus utilizing about 1,120 tons of garbage per day. Creation of new sites would require going even farther away from the city, resulting in excessive transportation costs.

  8. Translational and internal energy distributions of methyl and hydroxyl radicals produced by 157 nm photodissociation of amorphous solid methanol

    SciTech Connect (OSTI)

    Hama, Tetsuya; Yokoyama, Masaaki; Yabushita, Akihiro; Kawasaki, Masahiro; Wickramasinghe, Piyumie; Guo Wei; Loock, Hans-Peter; Ashfold, Michael N. R.; Western, Colin M.

    2009-12-14

    Methanol is typically observed within water-rich interstellar ices and is a source of interstellar organic species. Following the 157 nm photoexcitation of solid methanol at 90 K, desorbed CH{sub 3}(v=0) and OH(v=0,1) radicals have been observed in situ, near the solid surface, using resonance-enhanced multiphoton ionization (REMPI) detection methods. Time-of-flight and rotationally resolved REMPI spectra of the desorbed species were measured, and the respective fragment internal energy and kinetic energy distributions were obtained. Photoproduction mechanisms for CH{sub 3} and OH radicals from solid methanol are discussed. The formation of O({sup 1}D and {sup 3}P) atoms and H{sub 2}O was investigated, but the yield of these species was found to be negligible. CH{sub 3} products arising following the photoexcitation of water-methanol mixed ice showed similar kinetic and internal energy distributions to those from neat methanol ice.

  9. Application for Permit to Operate a Class III Solid Waste Disposal Site at the Nevada Test Site - U10c Disposal Site

    SciTech Connect (OSTI)

    NSTec Environmental Programs

    2010-08-05

    The NTS is located approximately 105 km (65 mi) northwest of Las Vegas, Nevada. NNSA/NSO is the federal lands management authority for the NTS and NSTec is the Management & Operations contractor. Access on and off the NTS is tightly controlled, restricted, and guarded on a 24-hour basis. The NTS is posted with signs along its entire perimeter. NSTec is the operator of all solid waste disposal sites on the NTS. The U10C Disposal Site is located in the northwest corner of Area 9 at the NTS (Figure 1) and is located in a subsidence crater created by two underground nuclear events, one in October 1962 and another in April 1964. The disposal site opened in 1971 for the disposal of rubbish, refuse, pathological waste, asbestos-containing material, and industrial solid waste. A Notice of Intent form to operate the disposal site as a Class II site was submitted to the state of Nevada on January 26, 1994, and was acknowledged in a letter to the DOE on February 8, 1994. It operated as a state of Nevada Class II Solid Waste Disposal Site (SWDS) until it closed on October 5, 1995, for retrofit as a Class III SWDS. The retrofit consisted of the installation of a minimum four-foot compacted soil layer to segregate the different waste types and function as a liner to inhibit leachate and water flow into the lower waste zone. Five neutron monitoring tubes were installed in this layer to monitor possible leachate production and water activity. Upon acceptance of the installed barrier and approval of an Operating Plan by NDEP/BFF, the site reopened in January 1996 as a Class III SWDS for the disposal of industrial solid waste and other inert waste.

  10. Data summary of municipal solid waste management alternatives. Volume 11, Alphabetically indexed bibliography

    SciTech Connect (OSTI)

    1992-10-01

    This appendix contains the alphabetically indexed bibliography for the complete group of reports on municipal waste management alternatives. The references are listed for each of the following topics: mass burn technologies, RDF technologies, fluidized-bed combustion, pyrolysis and gasification of MSW, materials recovery- recycling technologies, sanitary landfills, composting, and anaerobic digestion of MSW.

  11. Analysis of potential for reducing emissions of greenhouse gases in municipal solid waste in Brazil, in the state and city of Rio de Janeiro

    SciTech Connect (OSTI)

    Loureiro, S.M.; Rovere, E.L.L.; Mahler, C.F.

    2013-05-15

    Highlights: ? We constructed future scenarios of emissions of greenhouse gases in waste. ? Was used the IPCC methodology for calculating emission inventories. ? We calculated the costs of abatement for emissions reduction in landfill waste. ? The results were compared to Brazil, state and city of Rio de Janeiro. ? The higher the environmental passive, the greater the possibility of use of biogas. - Abstract: This paper examines potential changes in solid waste policies for the reduction in GHG for the country of Brazil and one of its major states and cities, Rio de Janeiro, from 2005 to 2030. To examine these policy options, trends in solid waste quantities and associated GHG emissions are derived. Three alternative policy scenarios are evaluated in terms of effectiveness, technology, and economics and conclusions posited regarding optimal strategies for Brazil to implement. These scenarios are been building on the guidelines for national inventories of GHG emissions (IPCC, 2006) and adapted to Brazilian states and municipalities boundaries. Based on the results, it is possible to say that the potential revenue from products of solid waste management is more than sufficient to transform the current scenario in this country into one of financial and environmental gains, where the negative impacts of climate change have created a huge opportunity to expand infrastructure for waste management.

  12. UNREVIEWED DISPOSAL QUESTION EVALUATION: IMPACT OF NEW INFORMATION SINCE 2008 PA ON CURRENT LOW-LEVEL SOLID WASTE OPERATIONS

    SciTech Connect (OSTI)

    Flach, G.; Smith, F.; Hamm, L.; Butcher, T.

    2014-10-06

    Solid low-level waste disposal operations are controlled in part by an E-Area Low-Level Waste Facility (ELLWF) Performance Assessment (PA) that was completed by the Savannah River National Laboratory (SRNL) in 2008 (WSRC 2008). Since this baseline analysis, new information pertinent to disposal operations has been identified as a natural outcome of ongoing PA maintenance activities and continuous improvement in model simulation techniques (Flach 2013). An Unreviewed Disposal Question (UDQ) Screening (Attachment 1) has been initiated regarding the continued ability of the ELLWF to meet Department of Energy (DOE) Order 435.1 performance objectives in light of new PA items and data identified since completion of the original UDQ Evaluation (UDQE). The present UDQE assesses the ability of Solid Waste (SW) to meet performance objectives by estimating the influence of new information items on a recent sum-of-fractions (SOF) snapshot for each currently active E-Area low-level waste disposal unit. A final SOF, as impacted by this new information, is projected based on the assumptions that the current disposal limits, Waste Information Tracking System (WITS) administrative controls, and waste stream composition remain unchanged through disposal unit operational closure (Year 2025). Revision 1 of this UDQE addresses the following new PA items and data identified since completion of the original UDQE report in 2013:  New K{sub d} values for iodine, radium and uranium  Elimination of cellulose degradation product (CDP) factors  Updated radionuclide data  Changes in transport behavior of mobile radionuclides  Potential delay in interim closure beyond 2025  Component-in-grout (CIG) plume interaction correction Consideration of new information relative to the 2008 PA baseline generally indicates greater confidence that PA performance objectives will be met than indicated by current SOF metrics. For SLIT9, the previous prohibition of non-crushable containers in

  13. Determining the optimum strategy of techniques from the municipal solid waste management hierarchy to maximize social value. Master`s thesis

    SciTech Connect (OSTI)

    Still, C.M.

    1996-12-01

    The primary waste management alternatives are source reduction, recycling, composting, incineration, and landfilling. Often waste management policies are based entirely on technical considerations and ignore that actual disposal practices depend on individuals` attitudes and behaviors. This research formulated a decision analysis model that incorporates social value measures to determine the waste management strategy that maximizes the individuals` willingness to participate. The social values that are important and that were considered in the decision support model to assist with making decisions about solid waste management were convenience, feeling good about reducing waste, feeling good about leaving a good environment for future generations, and the value of recreation programs that can be provided with profit from a recycling program.

  14. Multiple-tracer tests for contaminant transport process identification in saturated municipal solid waste

    SciTech Connect (OSTI)

    Woodman, N.D. Rees-White, T.C.; Stringfellow, A.M.; Beaven, R.P.; Hudson, A.P.

    2015-04-15

    Highlights: • Multiple tracers were applied to saturated MSW to test dual-porosity properties. • Lithium demonstrated to be non-conservative as a tracer. • 260 mm diameter column too small to test transport properties of MSW. • The classical advection-dispersion mode was rejected due to high dispersivity. • Characteristic diffusion times did not vary with the tracer. - Abstract: Two column tests were performed in conditions emulating vertical flow beneath the leachate table in a biologically active landfill to determine dominant transport mechanisms occurring in landfills. An improved understanding of contaminant transport process in wastes is required for developing better predictions about potential length of the long term aftercare of landfills, currently measured in timescales of centuries. Three tracers (lithium, bromide and deuterium) were used. Lithium did not behave conservatively. Given that lithium has been used extensively for tracing in landfill wastes, the tracer itself and the findings of previous tests which assume that it has behaved conservatively may need revisiting. The smaller column test could not be fitted with continuum models, probably because the volume of waste was below a representative elemental volume. Modelling compared advection-dispersion (AD), dual porosity (DP) and hybrid AD–DP models. Of these models, the DP model was found to be the most suitable. Although there is good evidence to suggest that diffusion is an important transport mechanism, the breakthrough curves of the different tracers did not differ from each other as would be predicted based on the free-water diffusion coefficients. This suggested that solute diffusion in wastes requires further study.

  15. Combustion of municipal solid wastes with oil shale in a circulating fluidized bed. Quarterly report, quarter ending 31 December 1994

    SciTech Connect (OSTI)

    Not Available

    1995-01-01

    The test plan is designed to demonstrate that oil shale co-combusted with municipal solid waste (MSW) can reduce gaseous pollutants (SO{sub 2}, CO) to acceptable levels (90%+ reduction) and produce a cementitious ash which will, at a minimum, be acceptable in normal land fills. The small-scale combustion testing will be accomplished in a 6-in. circulating fluid bed combustor (CFBC) at Hazen Research Laboratories. This work will be patterned after the study the authors conducted in 1988 when coal and oil shale were co-combusted in a program sponsored by the Electric Power Research Institute. The specific purpose of the test program will be to: determine the required ratio of oil shale to MSW by determining the ratio of absorbent to pollutant (A/P); determine the effect of temperature and resident time in the reactor; and determine if kinetic model developed for coal/oil shale mixture is applicable.

  16. Final Hazard Categorization for the Remediation of Six 300-FF-2 Operable Unit Solid Waste Burial Grounds

    SciTech Connect (OSTI)

    J. D. Ludowise

    2006-12-12

    This report provides the final hazard categorization (FHC) for the remediation of six solid waste disposal sites (referred to as burial grounds) located in the 300-FF-2 Operable Unit (OU) on the Hanford Site. These six sites (618-1, 618-2, 618-3, 618-7, 618-8, and 618-13 Burial Grounds) were determined to have a total radionuclide inventory (WCH 2005a, WCH 2005d, WCH 2005e and WCH 2006b) that exceeds the DOE-STD-1027 Category 3 threshold quantity (DOE 1997) and are the subject of this analysis. This FHC document examines the hazards, identifies appropriate controls to manage the hazards, and documents the FHC and commitments for the 300-FF-2 Burial Grounds Remediation Project.

  17. Interim site characterization report and ground-water monitoring program for the Hanford site solid waste landfill

    SciTech Connect (OSTI)

    Fruland, R.M.; Hagan, R.A.; Cline, C.S.; Bates, D.J.; Evans, J.C.; Aaberg, R.L.

    1989-07-01

    Federal and state regulations governing the operation of landfills require utilization of ground-water monitoring systems to determine whether or not landfill operations impact ground water at the point of compliance (ground water beneath the perimeter of the facility). A detection-level ground-water monitoring system was designed, installed, and initiated at the Hanford Site Solid Waste Landfill (SWL). Chlorinated hydrocarbons were detected at the beginning of the ground-water monitoring program and continue to be detected more than 1 year later. The most probable source of the chlorinated hydrocarbons is washwater discharged to the SWL between 1985 and 1987. This is an interim report and includes data from the characterization work that was performed during well installation in 1987, such as field observations, sediment studies, and geophysical logging results, and data from analyses of ground-water samples collected in 1987 and 1988, such as field parameter measurements and chemical analyses. 38 refs., 27 figs., 8 tabs.

  18. Solid waste management of temple floral offerings by vermicomposting using Eisenia fetida

    SciTech Connect (OSTI)

    Singh, Akanksha; Jain, Akansha; Sarma, Birinchi K.; Abhilash, P.C.; Singh, Harikesh B.

    2013-05-15

    Highlights: ► Effective management of temple floral offerings using E. fetida. ► Physico-chemical properties in TW VC were better especially EC, C/N, C/P and TK. ► TW VC as plant growth promoter at much lower application rates than KW and FYW VC. - Abstract: Recycling of temple waste (TW) mainly comprising of floral offerings was done through vermitechnology using Eisenia fetida and its impact on seed germination and plant growth parameters was studied by comparing with kitchen waste (KW) and farmyard waste (FYW) vermicompost (VC). The worm biomass was found to be maximum in TW VC compared to KW and FYW VCs at both 40 and 120 days old VCs. Physico-chemical analysis of worm-worked substrates showed better results in TW VC especially in terms of electrical conductivity, C/N, C/P and TK. 10% TW VC–water extract (VCE) showed stimulatory effect on germination percentage of chickpea seeds while KW and FYW VCE proved effective at higher concentration. Variation in growth parameters was also observed with change in the VC–soil ratio and TW VC showed enhanced shoot length, root length, number of secondary roots and total biomass at 12.5% VC compared to KW and FYW VC.

  19. Fluid bed gasification – Plasma converter process generating energy from solid waste: Experimental assessment of sulphur species

    SciTech Connect (OSTI)

    Morrin, Shane; Lettieri, Paola; Chapman, Chris; Taylor, Richard

    2014-01-15

    Highlights: • We investigate gaseous sulphur species whilst gasifying sulphur-enriched wood pellets. • Experiments performed using a two stage fluid bed gasifier – plasma converter process. • Notable SO{sub 2} and relatively low COS levels were identified. • Oxygen-rich regions of the bed are believed to facilitate SO{sub 2}, with a delayed release. • Gas phase reducing regions above the bed would facilitate more prompt COS generation. - Abstract: Often perceived as a Cinderella material, there is growing appreciation for solid waste as a renewable content thermal process feed. Nonetheless, research on solid waste gasification and sulphur mechanisms in particular is lacking. This paper presents results from two related experiments on a novel two stage gasification process, at demonstration scale, using a sulphur-enriched wood pellet feed. Notable SO{sub 2} and relatively low COS levels (before gas cleaning) were interesting features of the trials, and not normally expected under reducing gasification conditions. Analysis suggests that localised oxygen rich regions within the fluid bed played a role in SO{sub 2}’s generation. The response of COS to sulphur in the feed was quite prompt, whereas SO{sub 2} was more delayed. It is proposed that the bed material sequestered sulphur from the feed, later aiding SO{sub 2} generation. The more reducing gas phase regions above the bed would have facilitated COS – hence its faster response. These results provide a useful insight, with further analysis on a suite of performed experiments underway, along with thermodynamic modelling.

  20. The effects of different mixing intensities during anaerobic digestion of the organic fraction of municipal solid waste

    SciTech Connect (OSTI)

    Lindmark, Johan Eriksson, Per; Thorin, Eva

    2014-08-15

    Highlights: • Effects of mixing on the anaerobic digestion of municipal solid waste. • Digestion of fresh substrate and post-digestion at three mixing intensities were evaluated. • Mixing performed at 150 RPM, 25 RPM and minimally intermittently. • Increased biogas production rates and yields at lower mixing intensities. - Abstract: Mixing inside an anaerobic digester is often continuous and is not actively controlled. The selected mixing regime can however affect both gas production and the energy efficiency of the biogas plant. This study aims to evaluate these effects and compare three different mixing regimes, 150 RPM and 25 RPM continuous mixing and minimally intermittent mixing for both digestion of fresh substrate and post-digestion of the organic fraction of municipal solid waste. The results show that a lower mixing intensity leads to a higher biogas production rate and higher total biogas production in both cases. 25 RPM continuous mixing and minimally intermittent mixing resulted in similar biogas production after process stabilization, while 150 RPM continuous mixing resulted in lower production throughout the experiment. The lower gas production at 150 RPM could not be explained by the inhibition of volatile fatty acids. Cumulative biogas production until day 31 was 295 ± 2.9, 317 ± 1.9 and 304 ± 2.8 N ml/g VS added during digestion of fresh feed and 113 ± 1.3, 134 ± 1.1 and 130 ± 2.3 N ml/g VS added during post digestion for the 150 RPM, 25 RPM and minimally mixed intensities respectively. As well as increasing gas production, optimal mixing can improve the energy efficiency of the anaerobic digestion process.

  1. Anaerobic co-digestion of the organic fraction of municipal solid waste with FOG waste from a sewage treatment plant: Recovering a wasted methane potential and enhancing the biogas yield

    SciTech Connect (OSTI)

    Martin-Gonzalez, L.; Colturato, L.F.; Font, X.; Vicent, T.

    2010-10-15

    Anaerobic digestion is applied widely to treat the source collected organic fraction of municipal solid wastes (SC-OFMSW). Lipid-rich wastes are a valuable substrate for anaerobic digestion due to their high theoretical methane potential. Nevertheless, although fat, oil and grease waste from sewage treatment plants (STP-FOGW) are commonly disposed of in landfill, European legislation is aimed at encouraging more effective forms of treatment. Co-digestion of the above wastes may enhance valorisation of STP-FOGW and lead to a higher biogas yield throughout the anaerobic digestion process. In the present study, STP-FOGW was evaluated as a co-substrate in wet anaerobic digestion of SC-OFMSW under mesophilic conditions (37 {sup o}C). Batch experiments carried out at different co-digestion ratios showed an improvement in methane production related to STP-FOGW addition. A 1:7 (VS/VS) STP-FOGW:SC-OFMSW feed ratio was selected for use in performing further lab-scale studies in a 5 L continuous reactor. Biogas yield increased from 0.38 {+-} 0.02 L g VS{sub feed}{sup -1} to 0.55 {+-} 0.05 L g VS{sub feed}{sup -1} as a result of adding STP-FOGW to reactor feed. Both VS reduction values and biogas methane content were maintained and inhibition produced by long chain fatty acid (LCFA) accumulation was not observed. Recovery of a currently wasted methane potential from STP-FOGW was achieved in a co-digestion process with SC-OFMSW.

  2. Coupling scales for modelling heavy metal vaporization from municipal solid waste incineration in a fluid bed by CFD

    SciTech Connect (OSTI)

    Soria, José; Gauthier, Daniel; Flamant, Gilles; Rodriguez, Rosa; Mazza, Germán

    2015-09-15

    Highlights: • A CFD two-scale model is formulated to simulate heavy metal vaporization from waste incineration in fluidized beds. • MSW particle is modelled with the macroscopic particle model. • Influence of bed dynamics on HM vaporization is included. • CFD predicted results agree well with experimental data reported in literature. • This approach may be helpful for fluidized bed reactor modelling purposes. - Abstract: Municipal Solid Waste Incineration (MSWI) in fluidized bed is a very interesting technology mainly due to high combustion efficiency, great flexibility for treating several types of waste fuels and reduction in pollutants emitted with the flue gas. However, there is a great concern with respect to the fate of heavy metals (HM) contained in MSW and their environmental impact. In this study, a coupled two-scale CFD model was developed for MSWI in a bubbling fluidized bed. It presents an original scheme that combines a single particle model and a global fluidized bed model in order to represent the HM vaporization during MSW combustion. Two of the most representative HM (Cd and Pb) with bed temperatures ranging between 923 and 1073 K have been considered. This new approach uses ANSYS FLUENT 14.0 as the modelling platform for the simulations along with a complete set of self-developed user-defined functions (UDFs). The simulation results are compared to the experimental data obtained previously by the research group in a lab-scale fluid bed incinerator. The comparison indicates that the proposed CFD model predicts well the evolution of the HM release for the bed temperatures analyzed. It shows that both bed temperature and bed dynamics have influence on the HM vaporization rate. It can be concluded that CFD is a rigorous tool that provides valuable information about HM vaporization and that the original two-scale simulation scheme adopted allows to better represent the actual particle behavior in a fluid bed incinerator.

  3. Eco-efficiency for greenhouse gas emissions mitigation of municipal solid waste management: A case study of Tianjin, China

    SciTech Connect (OSTI)

    Zhao Wei; Huppes, Gjalt; Voet, Ester van der

    2011-06-15

    The issue of municipal solid waste (MSW) management has been highlighted in China due to the continually increasing MSW volumes being generated and the limited capacity of waste treatment facilities. This article presents a quantitative eco-efficiency (E/E) analysis on MSW management in terms of greenhouse gas (GHG) mitigation. A methodology for E/E analysis has been proposed, with an emphasis on the consistent integration of life cycle assessment (LCA) and life cycle costing (LCC). The environmental and economic impacts derived from LCA and LCC have been normalized and defined as a quantitative E/E indicator. The proposed method was applied in a case study of Tianjin, China. The study assessed the current MSW management system, as well as a set of alternative scenarios, to investigate trade-offs between economy and GHG emissions mitigation. Additionally, contribution analysis was conducted on both LCA and LCC to identify key issues driving environmental and economic impacts. The results show that the current Tianjin's MSW management system emits the highest GHG and costs the least, whereas the situation reverses in the integrated scenario. The key issues identified by the contribution analysis show no linear relationship between the global warming impact and the cost impact in MSW management system. The landfill gas utilization scenario is indicated as a potential optimum scenario by the proposed E/E analysis, given the characteristics of MSW, technology levels, and chosen methodologies. The E/E analysis provides an attractive direction towards sustainable waste management, though some questions with respect to uncertainty need to be discussed further.

  4. Environmental impact of APC residues from municipal solid waste incineration: Reuse assessment based on soil and surface water protection criteria

    SciTech Connect (OSTI)

    Quina, Margarida J.; Bordado, Joao C.M.; Quinta-Ferreira, Rosa M.

    2011-09-15

    Highlights: > The Dutch Building Material Decree (BMD) was used to APC residues from MSWI. > BMD is a straightforward tool to calculate expectable loads to the environment of common pollutants. > Chloride load to the environment lead to classification of building material not allowed. > At least a pre-treatment (e.g. washing) is required in order to remove soluble salts. > The stabilization with phosphates or silicates eliminate the problem of heavy metals. - Abstract: Waste management and environmental protection are mandatory requirements of modern society. In our study, air pollution control (APC) residues from municipal solid waste incinerators (MSWI) were considered as a mixture of fly ash and fine particulate solids collected in scrubbers and fabric filters. These are hazardous wastes and require treatment before landfill. Although there are a number of treatment options, it is highly recommended to find practical applications rather than just dump them in landfill sites. In general, for using a construction material, beyond technical specifications also soil and surface water criteria may be used to ensure environmental protection. The Dutch Building Materials Decree (BMD) is a valuable tool in this respect and it was used to investigate which properties do not meet the threshold criteria so that APC residues can be further used as secondary building material. To this end, some scenarios were evaluated by considering release of inorganic species from unmoulded and moulded applications. The main conclusion is that the high amount of soluble salts makes the APC residues a building material prohibited in any of the conditions tested. In case of moulding materials, the limits of heavy metals are complied, and their use in Category 1 would be allowed. However, also in this case, the soluble salts lead to the classification of 'building material not allowed'. The treatments with phosphates or silicates are able to solve the problem of heavy metals, but

  5. Trace element partitioning in ashes from boilers firing pure wood or mixtures of solid waste with respect to fuel composition, chlorine content and temperature

    SciTech Connect (OSTI)

    Saqib, Naeem Bäckström, Mattias

    2014-12-15

    Highlights: • Different solids waste incineration is discussed in grate fired and fluidized bed boilers. • We explained waste composition, temperature and chlorine effects on metal partitioning. • Excessive chlorine content can change oxide to chloride equilibrium partitioning the trace elements in fly ash. • Volatility increases with temperature due to increase in vapor pressure of metals and compounds. • In Fluidized bed boiler, most metals find themselves in fly ash, especially for wood incineration. - Abstract: Trace element partitioning in solid waste (household waste, industrial waste, waste wood chips and waste mixtures) incineration residues was investigated. Samples of fly ash and bottom ash were collected from six incineration facilities across Sweden including two grate fired and four fluidized bed incinerators, to have a variation in the input fuel composition (from pure biofuel to mixture of waste) and different temperature boiler conditions. As trace element concentrations in the input waste at the same facilities have already been analyzed, the present study focuses on the concentration of trace elements in the waste fuel, their distribution in the incineration residues with respect to chlorine content of waste and combustion temperature. Results indicate that Zn, Cu and Pb are dominating trace elements in the waste fuel. Highly volatile elements mercury and cadmium are mainly found in fly ash in all cases; 2/3 of lead also end up in fly ash while Zn, As and Sb show a large variation in distribution with most of them residing in the fly ash. Lithophilic elements such as copper and chromium are mainly found in bottom ash from grate fired facilities while partition mostly into fly ash from fluidized bed incinerators, especially for plants fuelled by waste wood or ordinary wood chips. There is no specific correlation between input concentration of an element in the waste fuel and fraction partitioned to fly ash. Temperature and chlorine

  6. Utilization of ash from municipal solid waste combustion. Final report, Phase I

    SciTech Connect (OSTI)

    Jones, C.M.; Hartman, R.M.; Kort, D.; Rapues, N.

    1994-09-01

    This ash study investigates several aspects of Municipal Waste Combustion (MWC) ash utilization to develop an alternative to the present disposal practice of landfilling in a lined monofill. Ash was investigated as a daily or final cover for municipal waste in the landfill to prevent erosion and as a road construction aggregate. Samples of eight mixtures of ash and other materials, and one sample of soil were analyzed for chemical constituents. Biological tests on these mixters were conducted, along with erosion tests and sieve analyses. A chemical analysis of each sieve size was conducted. Geotechnical properties of the most promising materials were made. Findings to this point include: all ash samples take have passed the EPA TCLP testing; chemical analysis of bottom and combined ash samples indicate less than expected variability; selected ash mixtures exhibited very low coefficients of hydraulic conductivity; all but one of the ash mixtures exhibited greater erosion resistance than the currently used landfill cover material; MWC combined analysis indicates this is a viable alternative for landfill cover; MWC ash size reactions and chemical analysis show bottom and combined ash to be a viable alternative for road construction.

  7. COMMISSIONING AND START-UP TESTS OF ALPHA-CONTAMINATED SOLID WASTE SORTING, CEMENTING, AND INTERIM STORAGE FACILITIES AT BELGOPROCESS (BELGIUM)

    SciTech Connect (OSTI)

    GLIBERT, R.C.; NUYT, G.; LAMOTTE, G.; RENARD, CL.; DE GOEYSE, A.; GOETSCHALCKX, R.; GHYS, B.

    2003-02-27

    The alpha-contaminated solid waste generated in Belgium results from past activities in the fuel cycle (R & D +Reprocessing and MOX fabrication pilot plants) and present operation of BELGONUCLEAIRE's MOX fuel fabrication plant. After the main steps in the management of alpha-contaminated solid waste were established, BELGONUCLEAIRE, with the backing of BELGOPROCESS and ONDRAF/NIRAS, started the design and construction of the T & C and interim-storage facilities for this alpha waste. The accumulated solid alpha radwaste containing a mixture of combustible and non-combustible material will be sorted. After sorting, both the accumulated and recently-generated non-combustible alpha waste will be embedded in a cement matrix. The erection of the sorting and cementing units which include glove-boxes and the interim storage building for conditioned packages was completed at BELGOPROCESS, at the beginning of year 2002. Start-up operations for both facilities have been performed. Operating tests of the sorting and cementing units were completed in July 2002 and inactive operation campaigns were started in August 2002. The results of the tests and inactive campaigns are given. Overall testing of the storage building supervised by the Safety Authorities was successfully performed at the end of 202 after completion of the operating tests on the equipment. The present paper summarizes the main information collected during the tests and campaigns, some of which has led to modifications of the equipment originally installed.

  8. Improved energy recovery from municipal solid wastes in sanitary landfills by two-phase digestion of biomass

    SciTech Connect (OSTI)

    Onu, Chukwu.

    1990-01-01

    The concept under investigaton was the separation of the acidogenic and the methanogenic phases of anaerobic fermentation, converting the sanitary landfill into an acid reactor and using a separate upflow fixed-film anaerobic reactor for methanogenesis. Acidic leachate from the landfill simulator was used as the influent substrate to the anaerobic reactor. The goal of the study was to improve both methane yield and concentration through nutrient addition and two-phase digestion of MSW. Sewage sludge was utilized to provide moisture, buffering capacity, nutrients, and an adequate microbial population. Single-phase systems with other enhancement techniques were also compared to the two-phase with sludge addition. Data from this study indicated that gas produced in the anaerobic reactor had methane concentration as high as 80 Mole % at the fixed-bed reactor (FBR) hydraulic retention time (HRT) of 7 days. The system reached a cumulative methane production rate of 78.6 {ell}/kg dry waste at an estimated cumulative production rate of approximately 270 {ell}/kg/yr. This performance was better than that reported in the literature for a similar type of feed. This study has also indicated that sewage sludge addition appears to be a successful enhancement technique for methane gas production from municipal solid waste. The addition of mineral nutrients and buffer solutions appears to have influenced the development of a dominant population of methanogenic bacteria in the FBR as indicated by the COD removal efficiency of 90% and 100% conversion of all influent organic acids. In terms of the overall system performance, the two-phase system was superior to the one-phase technique currently in use for methane generation.

  9. SUMMARY OF 2010 DOE EM INTERNATIONAL PROGRAM STUDIES OF WASTE GLASS MELT RATE ENHANCEMENT

    SciTech Connect (OSTI)

    Fox, K.; Marra, J.

    2011-01-19

    A collaborative study has been established under the U.S. Department of Energy (DOE) Office of Environmental Management International Program between the Savannah River National Laboratory (SRNL) and the V. G. Khlopin Radium Institute (KRI) in St. Petersburg, Russia, to investigate potential improvements in melt rate via chemical additions to the glass frit. Researchers at KRI suggested a methodology for selecting frit additives based on empirical coefficients for optimization of glass melting available in the Russian literature. Using these coefficients, KRI identified B{sub 2}O{sub 3}, CuO, and MnO as frit additives that were likely to improve melt rate without having adverse effects on crystallization of the glass or its chemical durability. The results of the melt rate testing in the SMK melter showed that the slurry feed rate (used as a gauge of melt rate) could be significantly increased when MnO or CuO were added to Frit 550 with the SMR-2 sludge. The feed rates increased by about 27% when MnO was added to the frit and by about 26% when CuO was added to the frit, as compared to earlier results for Frit 550 alone. The impact of adding additional B{sub 2}O{sub 3} to the frit was minor when added with CuO. The additional B{sub 2}O{sub 3} showed a more significant, 39% improvement in melt rate when added with MnO. The additional B{sub 2}O{sub 3} also reduced the viscosity of the glasses during pouring. Samples of the glasses from the melt rate testing characterized at SRNL showed that there were no significant impacts on crystallization of the glasses. All of the glasses had very good chemical durability. Chemical composition measurements showed that the frit additives were present in concentrations below the targeted values in some of the glasses. Therefore, it is possible that higher concentrations of these additives may further improve melt rate, although the impacts of higher concentrations of these components on crystallization and durability would need to

  10. Control strategies for an expert system at a municipal solid waste incinerator

    SciTech Connect (OSTI)

    Dockrill, P.; Zheng, L.; Clements, B.; Ram, K.; Boatwright, K.

    1997-12-31

    Optimal burning of municipal waste is challenging due to the unknown variability of the garbage and the strict limits on the emission streams. Proper operation relies upon procedures that are, to a certain extent, based upon previous experience. Therefore this is an excellent application for an expert system since they are designed to initiate operator actions before actual operator intervention is necessary. This paper briefly discusses the rationale for developing an expert system at the Burnaby Incinerator, Burnaby, British Columbia and how it was implemented. The Burnaby Incinerator, owned by the Greater Vancouver Regional District and operated by Montenay, Inc., was a test location for an expert system jointly funded by Environment Canada and the Panel for Energy Research and Development and developed by the CANMET Energy Technology Centre. The expert system was designed to perform a number of functions: identification of boiler upsets due to fuel variations, prediction of stack emissions and control of lime injection for SO{sub 2} emissions. These particular functions were chosen to smooth the boiler operation and reduce the cost of plant operation. The expert system is a PC based system using both commercial and developed software. It incorporates rule based and model based techniques and neural network technology. The results of the expert system project are presented.

  11. Alteration of municipal solid waste incineration bottom ash focusing on the evolution of iron-rich constituents

    SciTech Connect (OSTI)

    Wei Yunmei; Shimaoka, Takayuki; Saffarzadeh, Amirhomayoun; Takahashi, Fumitake

    2011-09-15

    Municipal solid waste incineration (MSWI) bottom ash contains a considerable amount of Fe-rich constituents. The behaviors of these constituents, such as dissolution and precipitation, are quite important as they regulate the distribution of a series of ions between the liquid (percolated fluid) and solid (ash deposit) phases. This paper studied both fresh and weathered MSWI bottom ash from the mineralogical and geochemical viewpoint by utilizing optical microscopy, scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/EDX), and powder X-ray diffraction. The analysis results revealed that for the fresh bottom ash, iron preferentially existed in the chemical forms of spinel group (mainly Fe{sub 3}O{sub 4}, and a series of Al- or Ti- substituted varieties), metallic inclusions (including Fe-P, Fe-S, Fe-Cu-Pb), hematite (Fe{sub 2}O{sub 3}) and unburned iron pieces. In the 1-20 years weathered bottom ash collected from a landfill site, interconversions among these Fe-rich constituents were identified. Consequently, numerous secondary products were developed, including goethite ({alpha}-FeOOH), lepidocrocite ({gamma}-FeOOH), hematite, magnetite, wustite (FeO), Fe-Si-rich gel phase. Of all these transformation products, hydrous iron oxides were the most common secondary minerals. Quantitative chemical analysis of these secondary products by SEM/EDX disclosed a strong association between the newly formed hydrous iron oxides and heavy metals (e.g. Pb, Zn, Ni, and Cu). The results of this study suggest that the processes of natural weathering and secondary mineralization contribute to reduction of the potential risks of heavy metals to the surrounding environments.

  12. Summary of national and international fuel cycle and radioactive waste management programs, 1984

    SciTech Connect (OSTI)

    Harmon, K.M.; Lakey, L.T.; Leigh, I.W.

    1984-07-01

    Worldwide activities related to nuclear fuel cycle and radioactive waste management programs are summarized. Several trends have developed in waste management strategy: All countries having to dispose of reprocessing wastes plan on conversion of the high-level waste (HLW) stream to a borosilicate glass and eventual emplacement of the glass logs, suitably packaged, in a deep geologic repository. Countries that must deal with plutonium-contaminated waste emphasize pluonium recovery, volume reduction and fixation in cement or bitumen in their treatment plans and expect to use deep geologic repositories for final disposal. Commercially available, classical engineering processing are being used worldwide to treat and immobilize low- and intermediate-level wastes (LLW, ILW); disposal to surface structures, shallow-land burial and deep-underground repositories, such as played-out mines, is being done widely with no obvious technical problems. Many countries have established extensive programs to prepare for construction and operation of geologic repositories. Geologic media being studied fall into three main classes: argillites (clay or shale); crystalline rock (granite, basalt, gneiss or gabbro); and evaporates (salt formations). Most nations plan to allow 30 years or longer between discharge of fuel from the reactor and emplacement of HLW or spent fuel is a repository to permit thermal and radioactive decay. Most repository designs are based on the mined-gallery concept, placing waste or spent fuel packages into shallow holes in the floor of the gallery. Many countries have established extensive and costly programs of site evaluation, repository development and safety assessment. Two other waste management problems are the subject of major R and D programs in several countries: stabilization of uranium mill tailing piles; and immobilization or disposal of contaminated nuclear facilities, namely reactors, fuel cycle plants and R and D laboratories.

  13. Biomass Support for the China Renewable Energy Law: Feasibility Report -- Agricultural and Forestry Solid Wastes Power Generation Demonstration, December 2005

    SciTech Connect (OSTI)

    Not Available

    2006-10-01

    Subcontractor report on feasibility of using agricultural and forestry wastes for power generation in China

  14. Methane generation from waste materials

    SciTech Connect (OSTI)

    Samani, Zohrab A.; Hanson, Adrian T.; Macias-Corral, Maritza

    2010-03-23

    An organic solid waste digester for producing methane from solid waste, the digester comprising a reactor vessel for holding solid waste, a sprinkler system for distributing water, bacteria, and nutrients over and through the solid waste, and a drainage system for capturing leachate that is then recirculated through the sprinkler system.

  15. A hybrid method for quasi-three-dimensional slope stability analysis in a municipal solid waste landfill

    SciTech Connect (OSTI)

    Yu, L.; Batlle, F.

    2011-12-15

    Highlights: > A quasi-three-dimensional slope stability analysis method was proposed. > The proposed method is a good engineering tool for 3D slope stability analysis. > Factor of safety from 3D analysis is higher than from 2D analysis. > 3D analysis results are more sensitive to cohesion than 2D analysis. - Abstract: Limited space for accommodating the ever increasing mounds of municipal solid waste (MSW) demands the capacity of MSW landfill be maximized by building landfills to greater heights with steeper slopes. This situation has raised concerns regarding the stability of high MSW landfills. A hybrid method for quasi-three-dimensional slope stability analysis based on the finite element stress analysis was applied in a case study at a MSW landfill in north-east Spain. Potential slides can be assumed to be located within the waste mass due to the lack of weak foundation soils and geosynthetic membranes at the landfill base. The only triggering factor of deep-seated slope failure is the higher leachate level and the relatively high and steep slope in the front. The valley-shaped geometry and layered construction procedure at the site make three-dimensional slope stability analyses necessary for this landfill. In the finite element stress analysis, variations of leachate level during construction and continuous settlement of the landfill were taken into account. The 'equivalent' three-dimensional factor of safety (FoS) was computed from the individual result of the two-dimensional analysis for a series of evenly spaced cross sections within the potential sliding body. Results indicate that the hybrid method for quasi-three-dimensional slope stability analysis adopted in this paper is capable of locating roughly the spatial position of the potential sliding mass. This easy to manipulate method can serve as an engineering tool in the preliminary estimate of the FoS as well as the approximate position and extent of the potential sliding mass. The result that Fo

  16. Synthesis of mesoporous silica materials from municipal solid waste incinerator bottom ash

    SciTech Connect (OSTI)

    Liu, Zhen-Shu Li, Wen-Kai; Huang, Chun-Yi

    2014-05-01

    Highlights: The optimal alkaline agent for the extraction of silica from bottom ash was Na{sub 2}CO{sub 3}. The pore sizes for the mesoporous silica synthesized from bottom ash were 23.8 nm. The synthesized materials exhibited a hexagonal pore structure with a smaller order. The materials have potential for the removal of heavy metals from aqueous solutions. - Abstract: Incinerator bottom ash contains a large amount of silica and can hence be used as a silica source for the synthesis of mesoporous silica materials. In this study, the conditions for alkaline fusion to extract silica from incinerator bottom ash were investigated, and the resulting supernatant solution was used as the silica source for synthesizing mesoporous silica materials. The physical and chemical characteristics of the mesoporous silica materials were analyzed using BET, XRD, FTIR, SEM, and solid-state NMR. The results indicated that the BET surface area and pore size distribution of the synthesized silica materials were 992 m{sup 2}/g and 23.8 nm, respectively. The XRD patterns showed that the synthesized materials exhibited a hexagonal pore structure with a smaller order. The NMR spectra of the synthesized materials exhibited three peaks, corresponding to Q{sup 2} [Si(OSi){sub 2}(OH){sub 2}], Q{sup 3} [Si(OSi){sub 3}(OH)], and Q{sup 4} [Si(OSi){sub 4}]. The FTIR spectra confirmed the existence of a surface hydroxyl group and the occurrence of symmetric SiO stretching. Thus, mesoporous silica was successfully synthesized from incinerator bottom ash. Finally, the effectiveness of the synthesized silica in removing heavy metals (Pb{sup 2+}, Cu{sup 2+}, Cd{sup 2+}, and Cr{sup 2+}) from aqueous solutions was also determined. The results showed that the silica materials synthesized from incinerator bottom ash have potential for use as an adsorbent for the removal of heavy metals from aqueous solutions.

  17. Energy recovery from the effluent of plants anaerobically digesting cellulosic urban solid waste. Final technical report, September 1978-September 1980

    SciTech Connect (OSTI)

    Doerr-Bullock, L.; Higgins, G.M.; Long, K.; Smith, R.B.; Swartzbaugh, J.T.

    1981-06-03

    The program objective was to study the parameters of concentration, time, temperature, and pH to find optimum conditions for enzymatically converting unreacted cellulose in the effluent of an anaerobic digester to glucose for ultimate conversion to methane, and then to project the economics to a 100 tons per day (TPD) plant. The data presented illustrate the amount of cellulose hydrolysis (in percent solubilized mass) for enzyme concentrations from 5 to 1000 C/sub 1/U/gram of substrate using either filter paper or anaerobically digested municipal solid waste (MSW) reacted over periods of time of from 0 to 72 hours. With an active bacterial culture present, the optimum temperature for the hydrolysis reaction was found to be 40/sup 0/C. The feasibility of recycling enzymes by ultrafilter capture was studied and shows that the recovered enzyme is not denatured by any of several possible enzyme loss mechanisms, either chemical, physical, or biological. Although rather stable enzyme-substrate complexes seem to be formed, various techniques permit a 55% enzyme recovery. Posttreatment of digested MSW by cellulase enzymes produces nearly a three-fold increase in biomethanation. However, the value of the additional methane produced in the process as studied is not sufficient to support the cost of enzymes. The feasibility of enzymatic hydrolysis as a biomethanation process step requires further process optimization or an entirely different process concept.

  18. Evolution of heavy metals in municipal solid waste during bio-drying and implications of their subsequent transfer during combustion

    SciTech Connect (OSTI)

    Zhang Dongqing; Zhang Hua; Wu Changlin; Shao Liming; He Pinjing

    2011-08-15

    Bio-drying has been applied to improve the heating value of municipal solid waste (MSW) prior to combustion. In the present study, evolution of heavy metals in MSW during bio-drying and subsequent combustion was studied using one aerobic and two combined hydrolytic-aerobic scenarios. Heavy metals were concentrated during bio-drying and transformed between different metal fractions, namely the exchangeable, carbonate-bound, iron- and manganese-oxides-bound, organic-matter-bound and residual fractions. The amounts of heavy metals per kg of bio-dried MSW transferred into combustion flue gas increased with bio-drying time, primarily due to metals enrichment from organics degradation. Because of their volatility, the partitioning ratios of As and Hg in flue gas remained stable so that bio-drying and heavy metal speciation had little effect on their transfer and partitioning during combustion. In contrast, the partitioning ratios of Pb, Zn and Cu tended to increase after bio-drying, which likely enhanced their release potential during combustion.

  19. Reductive Capacity Measurement of Waste Forms for Secondary Radioactive Wastes

    SciTech Connect (OSTI)

    Um, Wooyong; Yang, Jungseok; Serne, R. Jeffrey; Westsik, Joseph H.

    2015-09-28

    The reductive capacities of dry ingredients and final solid waste forms were measured using both the Cr(VI) and Ce(IV) methods and the results were compared. Blast furnace slag (BFS), sodium sulfide, SnF2, and SnCl2 used as dry ingredients to make various waste forms showed significantly higher reductive capacities compared to other ingredients regardless of which method was used. Although the BFS exhibits appreciable reductive capacity, it requires greater amounts of time to fully react. In almost all cases, the Ce(IV) method yielded larger reductive capacity values than those from the Cr(VI) method and can be used as an upper bound for the reductive capacity of the dry ingredients and waste forms, because the Ce(IV) method subjects the solids to a strong acid (low pH) condition that dissolves much more of the solids. Because the Cr(VI) method relies on a neutral pH condition, the Cr(VI) method can be used to estimate primarily the waste form surface-related and readily dissolvable reductive capacity. However, the Cr(VI) method does not measure the total reductive capacity of the waste form, the long-term reductive capacity afforded by very slowly dissolving solids, or the reductive capacity present in the interior pores and internal locations of the solids.

  20. Waste Shipment Approval - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    About Us Hanford Site Wide Programs Hanford Site Solid Waste Acceptance Program Acceptance Process Waste Shipment Approval About Us Hanford Site Solid Waste Acceptance Program What's New Acceptance Criteria Acceptance Process Becoming a new Hanford Customer Annual Waste Forecast and Funding Arrangements Waste Stream Approval Waste Shipment Approval Waste Receipt Quality Assurance Program Waste Specification Records Tools Points of Contact Waste Shipment Approval Email Email Page | Print Print

  1. Anaerobic digestion of organic fraction of municipal solid waste combining two pretreatment modalities, high temperature microwave and hydrogen peroxide

    SciTech Connect (OSTI)

    Shahriari, Haleh; Warith, Mostafa; Hamoda, Mohamed; Kennedy, Kevin J.

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer Microwave and H{sub 2}O{sub 2} pretreatment were studied to enhance anaerobic digestion of organic waste. Black-Right-Pointing-Pointer The whole waste pretreated at 115 Degree-Sign C or 145 Degree-Sign C had the highest biogas production. Black-Right-Pointing-Pointer Biogas production of the whole waste decreased at 175 Degree-Sign C due to formation of refractory compounds. Black-Right-Pointing-Pointer Pretreatment to 145 Degree-Sign C and 175 Degree-Sign C were the best when considering only the free liquid fraction. Black-Right-Pointing-Pointer H{sub 2}O{sub 2} pretreatment had a lag phase and the biogas production was not higher than MW pretreated samples. - Abstract: In order to enhance anaerobic digestion (AD) of the organic fraction of municipal solid waste (OFMSW), pretreatment combining two modalities, microwave (MW) heating in presence or absence of hydrogen peroxide (H{sub 2}O{sub 2}) were investigated. The main pretreatment variables affecting the characteristics of the OFMSW were temperature (T) via MW irradiation and supplemental water additions of 20% and 30% (SWA20 and SW30). Subsequently, the focus of this study was to evaluate mesophilic batch AD performance in terms of biogas production, as well as changes in the characteristics of the OFMSW post digestion. A high MW induced temperature range (115-175 Degree-Sign C) was applied, using sealed vessels and a bench scale MW unit equipped with temperature and pressure controls. Biochemical methane potential (BMP) tests were conducted on the whole OFMSW as well as the liquid fractions. The whole OFMSW pretreated at 115 Degree-Sign C and 145 Degree-Sign C showed 4-7% improvement in biogas production over untreated OFMSW (control). When pretreated at 175 Degree-Sign C, biogas production decreased due to formation of refractory compounds, inhibiting the digestion. For the liquid fraction of OFMSW, the effect of pretreatment on the cumulative biogas production (CBP

  2. International trends in solid-state lighting : analyses of the article and patent literature.

    SciTech Connect (OSTI)

    Tsao, Jeffrey Yeenien; Huey, Mark C.; Boyack, Kevin W.; Miksovic, Ann E.

    2008-07-01

    We present an analysis of the literature of solid-state lighting, based on a comprehensive dataset of 35,851 English-language articles and 12,420 U.S. patents published or issued during the years 1977-2004 in the foundational knowledge domain of electroluminescent materials and phenomena. The dataset was created using a complex, iteratively developed search string. The records in the dataset were then partitioned according to: whether they are articles or patents, their publication or issue date, their national or continental origin, whether the active electroluminescent material was inorganic or organic, and which of a number of emergent knowledge sub-domains they aggregate into on the basis of bibliographic coupling. From these partitionings, we performed a number of analyses, including: identification of knowledge sub-domains of historical and recent importance, and trends over time of the contributions of various nations and continents to the knowledge domain and its sub-domains. Among the key results: (1) The knowledge domain as a whole has been growing quickly: the average growth rates of the inorganic and organic knowledge sub-domains have been 8%/yr and 25%/yr, respectively, compared to average growth rates less than 5%/yr for English-language articles and U.S. patents in other knowledge domains. The growth rate of the organic knowledge sub-domain is so high that its historical dominance by the inorganic knowledge sub-domain will, at current trajectories, be reversed in the coming decade. (2) Amongst nations, the U.S. is the largest contributor to the overall knowledge domain, but Japan is on a trajectory to become the largest contributor within the coming half-decade. Amongst continents, Asia became the largest contributor during the past half-decade, overwhelmingly so for the organic knowledge sub-domain. (3) The relative contributions to the article and patent datasets differ for the major continents: North America contributing relatively more patents

  3. Hazard Evaluation for Storage of Spent Nuclear Fuel (SNF) Sludge at the Solid Waste Treatment Facility

    SciTech Connect (OSTI)

    SCHULTZ, M.V.

    2000-08-22

    As part of the Spent Nuclear Fuel (SNF) storage basin clean-up project, sludge that has accumulated in the K Basins due to corrosion of damaged irradiated N Reactor will be loaded into containers and placed in interim storage. The Hanford Site Treatment Complex (T Plant) has been identified as the location where the sludge will be stored until final disposition of the material occurs. Long term storage of sludge from the K Basin fuel storage facilities requires identification and analysis of potential accidents involving sludge storage in T Plant. This report is prepared as the initial step in the safety assurance process described in DOE Order 5480.23, Nuclear Safety Analysis Reports and HNF-PRO-704, Hazards and Accident Analysis Process. This report documents the evaluation of potential hazards and off-normal events associated with sludge storage activities. This information will be used in subsequent safety analyses, design, and operations procedure development to ensure safe storage. The hazards evaluation for the storage of SNF sludge in T-Plant used the Hazards and Operability Analysis (HazOp) method. The hazard evaluation identified 42 potential hazardous conditions. No hazardous conditions involving hazardous/toxic chemical concerns were identified. Of the 42 items identified in the HazOp study, eight were determined to have potential for onsite worker consequences. No items with potential offsite consequences were identified in the HazOp study. Hazardous conditions with potential onsite worker or offsite consequences are candidates for quantitative consequence analysis. The hazardous conditions with potential onsite worker consequences were grouped into two event categories, Container failure due to overpressure - internal to T Plant, and Spill of multiple containers. The two event categories will be developed into accident scenarios that will be quantitatively analyzed to determine release consequences. A third category, Container failure due to

  4. Upgraded biogas from municipal solid waste for natural gas substitution and CO{sub 2} reduction – A case study of Austria, Italy, and Spain

    SciTech Connect (OSTI)

    Starr, Katherine; Villalba, Gara; Gabarrell, Xavier

    2015-04-15

    Highlights: • Biogas can be upgraded to create biomethane, a substitute to natural gas. • Biogas upgrading was applied to landfills and anaerobic digestors in 3 countries. • Up to 0.6% of a country’s consumption of natural gas could be replaced by biomethane. • Italy could save 46% of the national CO{sub 2} emissions attributed to the waste sector. • Scenarios were created to increase biomethane production. - Abstract: Biogas is rich in methane and can be further purified through biogas upgrading technologies, presenting a viable alternative to natural gas. Landfills and anaerobic digestors treating municipal solid waste are a large source of such biogas. They therefore offer an attractive opportunity to tap into this potential source of natural gas while at the same time minimizing the global warming impact resulting from methane emissions in waste management schemes (WMS) and fossil fuel consumption reduction. This study looks at the current municipal solid waste flows of Spain, Italy, and Austria over one year (2009), in order to determine how much biogas is generated. Then it examines how much natural gas could be substituted by using four different biogas upgrading technologies. Based on current waste generation rates, exploratory but realistic WMS were created for each country in order to maximize biogas production and potential for natural gas substitution. It was found that the potential substitution of natural gas by biogas resulting from the current WMS seems rather insignificant: 0.2% for Austria, 0.6% for Italy and 0.3% for Spain. However, if the WMS is redesigned to maximize biogas production, these figures can increase to 0.7% for Austria, 1% for Italy and 2% for Spain. Furthermore, the potential CO{sub 2} reduction as a consequence of capturing the biogas and replacing fossil fuel can result in up to a 93% reduction of the annual national waste greenhouse gas emissions of Spain and Italy.

  5. Waste2Energy Holdings | Open Energy Information

    Open Energy Info (EERE)

    is a supplier of proprietary gasification technology designed to convert municipal solid waste, biomass and other solid waste streams traditionally destined for landfill into...

  6. Tank waste remediation system retrieval and disposal mission readiness-to-proceed responses to internal independent assessment

    SciTech Connect (OSTI)

    Schaus, P.S.

    1998-01-06

    The US Department of Energy (DOE) is planning to make critical decisions during fiscal year (FY) 1998 regarding privatization contracts for the treatment of Hanford tank waste. Specifically, DOE, Richland Operations Office (RL), will make decisions related to proceeding with Phase 1 Privatization. In support of these decisions, the management and integration (M+I) contractor must be able to meet the requirements to support the Phase 1 privatization contractors. As part of the assessment of the Tank Waste Retrieval (TWR) Readiness-To-Proceed (RTP), an independent review of their process and products was required by the RL letter of August 8, 1997. The Independent Review Team reviewed the adequacy of the planning that has been done by the M+I contractor to validate that, if the plans are carried out, there is reasonable assurance of success. Overall, the RTP Independent Review Team concluded that, if the planning by the M+I contractor team is carried out with adequate funding, there is reasonable assurance that the M+I contractor will be able to deliver waste to the privatization contractor for the duration of Phase 1. This conclusion was based on addressing the recommendations contained in the Independent Review Team`s Final Report and in the individual Criteria and Review Approach (CRA) forms completed during the assessment. The purpose of this report is to formally document the independent assessment and the RTP team responses to the Independent Review Team recommendations. It also provides closure logics for selected recommendations from a Lockheed Martin Hanford Corporation (LMHC) internal assessment of the Technical Basis Review (TBR) packages. This report contains the RTP recommendation closure process (Section 2.0); the closure tables (Section 3.0) which provide traceability between each review team recommendation and its corresponding Project Hanford Management Contract closure logic; and two attachments that formally document the Independent Review Team

  7. International Perspective on the Application of Non-Destructive Assay Technology Platforms for Sentencing and Disposal of Radioactive Waste - 12113

    SciTech Connect (OSTI)

    Simpson, A.P.; Clapham, M.J.

    2012-07-01

    Over the past decade, major technology improvements have been introduced in the field of Non-Destructive Assay (NDA) for the management and disposal of radioactive waste in compliance with an evolving regulatory structure. For example in the United States, various NDA technologies have been successfully developed to meet the stringent characterization requirements of the Department of Energy. The use of this instrumentation, combined with the compliant operational processes and expertise levels that have emerged in parallel, have enabled over 75,000 m{sup 3} (or in excess of 145,000 containers) of contact and remote handled transuranic (TRU) waste to be sentenced to date to the Waste Isolation Pilot Plant from 10 different consignor sites. Many of these techniques have applicability that transcends national borders and can be used for common characterization challenges in waste sentencing and disposal on an international basis. Applicable waste streams could include LLW, ILW, TRU and HLW. There are specific design aspects of assay equipment that must be tailored to meet the applicable regulatory requirements for detection and quantification of a set of nuclides of interest to a prescribed limit of detection and measurement uncertainty. Each host nation will have specific challenges in the form of matrix types and processes, availability of historical information, needs for portable versus fixed instruments and the requirement to measure all containers versus assay of a representative sample. Furthermore, the practice of load management (combining smaller packages into a larger package designed to meet the overall waste acceptance criteria for the bulk container) may not have universal acceptability. An evaluation has been performed on a sample of the most successful technologies that have recently emerged to understand their applicability in other countries. Two types of instrumentation 'suite' are considered for measurements on drums and larger boxes / crates: (i

  8. Effects of chemical composition of fly ash on efficiency of metal separation in ash-melting of municipal solid waste

    SciTech Connect (OSTI)

    Okada, Takashi; Tomikawa, Hiroki

    2013-03-15

    Highlights: ► Separation of Pb and Zn from Fe and Cu in ash-melting of municipal solid waste. ► Molar ratio of Cl to Na and K in fly ash affected the metal-separation efficiency. ► The low molar ratio and a non-oxidative atmosphere were better for the separation. - Abstract: In the process of metal separation by ash-melting, Fe and Cu in the incineration residue remain in the melting furnace as molten metal, whereas Pb and Zn in the residue are volatilized. This study investigated the effects of the chemical composition of incineration fly ash on the metal-separation efficiency of the ash-melting process. Incineration fly ash with different chemical compositions was melted with bottom ash in a lab-scale reactor, and the efficiency with which Pb and Zn were volatilized preventing the volatilization of Fe and Cu was evaluated. In addition, the behavior of these metals was simulated by thermodynamic equilibrium calculations. Depending on the exhaust gas treatment system used in the incinerator, the relationships among Na, K, and Cl concentrations in the incineration fly ash differed, which affected the efficiency of the metal separation. The amounts of Fe and Cu volatilized decreased by the decrease in the molar ratio of Cl to Na and K in the ash, promoting metal separation. The thermodynamic simulation predicted that the chlorination volatilization of Fe and Cu was prevented by the decrease in the molar ratio, as mentioned before. By melting incineration fly ash with the low molar ratio in a non-oxidative atmosphere, most of the Pb and Zn in the ash were volatilized leaving behind Fe and Cu.

  9. Numerical and experimental studies on effects of moisture content on combustion characteristics of simulated municipal solid wastes in a fixed bed

    SciTech Connect (OSTI)

    Sun, Rui; Ismail, Tamer M.; Ren, Xiaohan; Abd El-Salam, M.

    2015-05-15

    Highlights: • The effects of moisture content on the burning process of MSW are investigated. • A two-dimensional mathematical model was built to simulate the combustion process. • Temperature distributions, process rates, gas species were measured and simulated. • The The conversion ratio of C/CO and N/NO in MSW are inverse to moisture content. - Abstract: In order to reveal the features of the combustion process in the porous bed of a waste incinerator, a two-dimensional unsteady state model and experimental study were employed to investigate the combustion process in a fixed bed of municipal solid waste (MSW) on the combustion process in a fixed bed reactor. Conservation equations of the waste bed were implemented to describe the incineration process. The gas phase turbulence was modeled using the k–ε turbulent model and the particle phase was modeled using the kinetic theory of granular flow. The rate of moisture evaporation, devolatilization rate, and char burnout was calculated according to the waste property characters. The simulation results were then compared with experimental data for different moisture content of MSW, which shows that the incineration process of waste in the fixed bed is reasonably simulated. The simulation results of solid temperature, gas species and process rate in the bed are accordant with experimental data. Due to the high moisture content of fuel, moisture evaporation consumes a vast amount of heat, and the evaporation takes up most of the combustion time (about 2/3 of the whole combustion process). The whole bed combustion process reduces greatly as MSW moisture content increases. The experimental and simulation results provide direction for design and optimization of the fixed bed of MSW.

  10. Significance analysis of the leachate level in a solid waste landfill in a coastal zone using total water balance and slope stability alternatives

    SciTech Connect (OSTI)

    Koo, Ja-Kong; Do, Nam-Young

    1996-12-31

    The K site near Seoul began landfilling in 1992. The landfilled wastes include municipal solid waste (66.4%), construction residues (20.4%), water and wastewater sludges (trace levels), and hazardous waste (trace levels). The water content of the municipal solid waste is very high (47.3%); as a result, the leachate level (average E.L.) of the landfill, the design value of which is 7.0 m, was measured at 10.3 m in January 1995 and is increasing. The increase of leachate level in the landfill site causes a problem with slope stability. The leachate level at each disposal stage divided by the intermediate cover layer was calculated with the HELP (Hydrologic Evaluation of Landfill Performance) model and calibrated with the data measured from February 1993 to June 1995. Also, the hydraulic conductivities of the waste layer and the intermediate cover layer in each stage were calibrated continuously with HELP model analysis. To verify these results, the total water balance in the landfill site was calculated using the infiltration rate calculated from HELP modeling. The leachate level was E.L. 10.0 m, which was close to the measured leachate level. To estimate the change of the leachate level in the future, the total water balances with different leachate discharge rates of 3,000, 3,500, and 5,000 m{sup 3}/day were analyzed. When the leachate discharge rate was 5,000 ton/day and the initial water content was decreased below 25%, the average leachate level was 10.8 m. This result satisfies the safety factor requirements (=1.3) for landfill slope stability. 4 refs., 8 figs., 1 tab.

  11. Comparison of low-level waste disposal programs of DOE and selected international countries

    SciTech Connect (OSTI)

    Meagher, B.G. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States); Cole, L.T. [Cole and Associates (United States)

    1996-06-01

    The purpose of this report is to examine and compare the approaches and practices of selected countries for disposal of low-level radioactive waste (LLW) with those of the US Department of Energy (DOE). The report addresses the programs for disposing of wastes into engineered LLW disposal facilities and is not intended to address in-situ options and practices associated with environmental restoration activities or the management of mill tailings and mixed LLW. The countries chosen for comparison are France, Sweden, Canada, and the United Kingdom. The countries were selected as typical examples of the LLW programs which have evolved under differing technical constraints, regulatory requirements, and political/social systems. France was the first country to demonstrate use of engineered structure-type disposal facilities. The UK has been actively disposing of LLW since 1959. Sweden has been disposing of LLW since 1983 in an intermediate-depth disposal facility rather than a near-surface disposal facility. To date, Canada has been storing its LLW but will soon begin operation of Canada`s first demonstration LLW disposal facility.

  12. International technology catalogue: Foreign technologies to support the environmental restoration and waste management needs of the DOE complex

    SciTech Connect (OSTI)

    Matalucci, R.V.; Jimenez, R.D.; Esparza-Baca, C.

    1995-07-01

    This document represents a summary of 27 foreign-based environmental restoration and waste management technologies that have been screened and technically evaluated for application to the cleanup problems of the Department of Energy (DOE) nuclear weapons complex. The evaluation of these technologies was initiated in 1992 and completed in 1995 under the DOE`s International Technology Coordination Program of the Office of Technology Development. A methodology was developed for conducting a country-by-country survey of several regions of the world where specific environmental technology capabilities and market potential were investigated. The countries that were selected from a rank-ordering process for the survey included: then West Germany, the Netherlands, France, Japan, Taiwan, the Czech and Slovak Republics, and the Former Soviet Union. The notably innovative foreign technologies included in this document were screened initially from a list of several hundred, and then evaluated based on criteria that examined for level of maturity, suitability to the DOE needs, and for potential cost effective application at a DOE site. Each of the selected foreign technologies that were evaluated in this effort for DOE application were subsequently matched with site-specific environmental problem units across the DOE complex using the Technology Needs Assessment CROSSWALK Report. For ease of tracking these technologies to site problem units, and to facilitate their input into the DOE EnviroTRADE Information System, they were categorized into the following three areas: (1) characterization, monitoring and sensors, (2) waste treatment and separations, and (3) waste containment. Technical data profiles regarding these technologies include title and description, performance information, development status, key regulatory considerations, intellectual property rights, institute and contact personnel, and references.

  13. Evaluation of Internal Criticality of the Plutonium Dispostion MOX SNF Waste Form

    SciTech Connect (OSTI)

    A.A. Alsaed

    1999-09-28

    The purpose of this calculation is to perform a parametric study to determine the effects of fission product leaching, assembly collapse, and iron oxide loss ({Delta}Fe{sub 2}O{sub 3}) on the reactivity of a waste package (WP) containing mixed oxide (MOX) spent nuclear fuel (SNF). Previous calculations (CRWMS M&O 1998a) have shown that the criticality control features of the WP are adequate to prevent criticality of a flooded WP for all the enrichment/burnup pairs expected for the MOX SNF. Therefore, the objective of this calculation is to determine the increase in reactivity that might result from possible degradation of the WP criticality control features. Specifically, this calculation tests the sensitivity of effective neutron multiplication factor (k{sub eff}) to loss (from the WP) of the following: (1) fission product neutron absorbers, or (2) moderator displacement material (principally, the iron oxide that results from the corrosion of carbon steel).

  14. Application of multi-criteria decision-making on strategic municipal solid waste management in Dalmatia, Croatia

    SciTech Connect (OSTI)

    Vego, Goran Kucar-Dragicevic, Savka Koprivanac, Natalija

    2008-11-15

    The efficiency of providing a waste management system in the coastal part of Croatia consisting of four Dalmatian counties has been modelled. Two multi-criteria decision-making (MCDM) methods, PROMETHEE and GAIA, were applied to assist with the systematic analysis and evaluation of the alternatives. The analysis covered two levels; first, the potential number of waste management centres resulting from possible inter-county cooperation; and second, the relative merits of siting of waste management centres in the coastal or hinterland zone was evaluated. The problem was analysed according to several criteria; and ecological, economic, social and functional criteria sets were identified as relevant to the decision-making process. The PROMETHEE and GAIA methods were shown to be efficient tools for analysing the problem considered. Such an approach provided new insights to waste management planning at the strategic level, and gave a reason for rethinking some of the existing strategic waste management documents in Croatia.

  15. Idaho National Engineering Laboratory response to the December 13, 1991, Congressional inquiry on offsite release of hazardous and solid waste containing radioactive materials from Department of Energy facilities

    SciTech Connect (OSTI)

    Shapiro, C.; Garcia, K.M.; McMurtrey, C.D.; Williams, K.L.; Jordan, P.J.

    1992-05-01

    This report is a response to the December 13, 1991, Congressional inquiry that requested information on all hazardous and solid waste containing radioactive materials sent from Department of Energy facilities to offsite facilities for treatment or disposal since January 1, 1981. This response is for the Idaho National Engineering Laboratory. Other Department of Energy laboratories are preparing responses for their respective operations. The request includes ten questions, which the report divides into three parts, each responding to a related group of questions. Part 1 answers Questions 5, 6, and 7, which call for a description of Department of Energy and contractor documentation governing the release of waste containing radioactive materials to offsite facilities. Offsite'' is defined as non-Department of Energy and non-Department of Defense facilities, such as commercial facilities. Also requested is a description of the review process for relevant release criteria and a list of afl Department of Energy and contractor documents concerning release criteria as of January 1, 1981. Part 2 answers Questions 4, 8, and 9, which call for information about actual releases of waste containing radioactive materials to offsite facilities from 1981 to the present, including radiation levels and pertinent documentation. Part 3 answers Question 10, which requests a description of the process for selecting offsite facilities for treatment or disposal of waste from Department of Energy facilities. In accordance with instructions from the Department of Energy, the report does not address Questions 1, 2, and 3.

  16. Thermodynamic estimation of minor element distribution between immiscible liquids in Fe-Cu-based metal phase generated in melting treatment of municipal solid wastes

    SciTech Connect (OSTI)

    Lu, X.; Nakajima, K.; Sakanakura, H.; Matsubae, K.; Bai, H.; Nagasaka, T.

    2012-06-15

    Graphical abstract: Display Omitted Highlights: Black-Right-Pointing-Pointer Two liquids separation of metal occurs in the melting of municipal solid waste. Black-Right-Pointing-Pointer The distribution of PGMs etc. between two liquid metal phases is studied. Black-Right-Pointing-Pointer Quite simple thermodynamic model is applied to predict the distribution ratio. Black-Right-Pointing-Pointer Au and Ag originated from WEEE are found to be concentrated into Cu-rich phase. - Abstract: Waste electrical and electronic equipment (WEEE) has become an important target in managing material cycles from the viewpoint of not only waste management and control of environmental pollution but also resource conservation. This study investigated the distribution tendency of trace elements in municipal solid waste (MSW) or incinerator ash, including valuable non-ferrous metals (Ni, Co, Cr, Mn, Mo, Ti, V, W, Zr), precious group metals (PGMs) originated from WEEE (Ag, Au, Pd, Pt), and others (Al, B, Pb, Si), between Fe-rich and Cu-rich metal phases by means of simple thermodynamic calculations. Most of the typical alloying elements for steel (Co, Cr, Mo, Nb, Ni, Si, Ti, V, and W) and Rh were preferentially distributed into the Fe-rich phase. PGMs, such as Au, Ag, and Pd, were enriched in the Cu-rich phase, whereas Pt was almost equally distributed into both phases. Since the primary metallurgical processing of Cu is followed by an electrolysis for refining, and since PGMs in crude copper have been industrially recovered from the resulting anode slime, our results indicated that Ag, Au, and Pd could be effectively recovered from MSW if the Cu-rich phase could be selectively collected.

  17. Municipal Solid Waste (MSW) to Liquid Fuels Synthesis, Volume 2: A Techno-economic Evaluation of the Production of Mixed Alcohols

    Office of Energy Efficiency and Renewable Energy (EERE)

    Biomass is a renewable energy resource that can be converted into liquid fuel suitable for transportation applications and thus help meet the Energy Independence and Security Act renewable energy goals (U.S. Congress 2007). However, biomass is not always available in sufficient quantity at a price compatible with fuels production. Municipal solid waste (MSW) on the other hand is readily available in large quantities in some communities and is considered a partially renewable feedstock. Furthermore, MSW may be available for little or no cost.

  18. Assessment of solid-waste characteristics and control technology for oil-shale retorting. Final report for September 1983-February 1985

    SciTech Connect (OSTI)

    Agarwal, A.K.

    1986-05-01

    The report presents information on oil-shale deposits in the eastern and western parts of the United States, their geological subdivisions, locations, tonnage, and physical and chemical characteristics. Characteristics of solid and liquid wastes produced from various oil-shale-processing technologies and control methods are presented. Also included are results from an experimental study to construct liners and covers for disposal of spent shale. A compilation of available data on the auto-ignition potential of raw and spent shales indicates a similarity between raw-shale fines and bituminous coals.

  19. Comparison of SW-846 method 3051 and SW-846 method 7471A for the preparation of solid waste samples for mercury determination

    SciTech Connect (OSTI)

    Giaquinto, J.M.; Essling, A.M.; Keller, J.M.

    1996-08-01

    This report describes experimental studies to evaluate the use of EPA SW-846 method 3051 for preparation and dissolution of solid samples for Hg analysis. The study showed that the method is effective in dissolution of four sample types without significant loss of Hg. Based on results of this study, method 3051 was used for analysis of high radioactive waste samples to obtain results for a number of RCRA regulated metals without the need to utilize a separate sample preparation method (EPA SW-846 method 7471A) specific only for Hg.

  20. Waste management units - Savannah River Site

    SciTech Connect (OSTI)

    Not Available

    1989-10-01

    This report is a compilation of worksheets from the waste management units of Savannah River Plant. Information is presented on the following: Solid Waste Management Units having received hazardous waste or hazardous constituents with a known release to the environment; Solid Waste Management Units having received hazardous waste or hazardous constituents with no known release to the environment; Solid Waste Management Units having received no hazardous waste or hazardous constituents; Waste Management Units having received source; and special nuclear, or byproduct material only.

  1. Waste Specification Records - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Specification Records About Us Hanford Site Solid Waste Acceptance Program What's New Acceptance Criteria Acceptance Process Becoming a new Hanford Customer Annual Waste Forecast...

  2. Air pollution control technology for municipal solid waste-to-energy conversion facilities: capabilities and research needs

    SciTech Connect (OSTI)

    Lynch, J F; Young, J C

    1980-09-01

    Three major categories of waste-to-energy conversion processes in full-scale operation or advanced demonstration stages in the US are co-combustion, mass incineration, and pyrolysis. These methods are described and some information on US conversion facilities is tabulated. Conclusions and recommendations dealing with the operation, performance, and research needs for these facilities are given. Section II identifies research needs concerning air pollution aspects of the waste-to-energy processes and reviews significant operating and research findings for the co-combustion, mass incinceration, and pyrolysis waste-to-energy systems.

  3. How should greenhouse gas emissions be taken into account in the decision making of municipal solid waste management procurements? A case study of the South Karelia region, Finland

    SciTech Connect (OSTI)

    Hupponen, M. Grönman, K.; Horttanainen, M.

    2015-08-15

    Highlights: • Environmental criteria for the MSW incineration location procurements are needed. • Focus should be placed on annual energy efficiency and on substitute fuels. • In SRF combustion it is crucial to know the share and the treatment of rejects. • The GWP of transportation is a small part of the total emissions. - Abstract: The ongoing trend in the public sector is to make more sustainable procurements by taking into account the impacts throughout the entire life cycle of the procurement. Despite the trend, the only deciding factor can still be the total costs. This article answers the question of how greenhouse gas (GHG) emissions should be taken into account in municipal solid waste (MSW) management when selecting an incineration plant for source separated mixed MSW. The aim is to guide the decision making of MSW management towards more environmentally friendly procurements. The study was carried out by calculating the global warming potentials (GWPs) and costs of mixed MSW management by using the waste composition from a case area in Finland. Scenarios of landfilling and combustion in three actual waste incineration plants were used to recognise the main processes that affect the results. GWP results show that the combustion of mixed MSW is a better alternative than landfilling the waste. The GHG results from combustion are greatly affected by emissions from the combustion and substituted energy production. The significance of collection and transportation is higher from the costs’ perspective than from the point of view of GHG emissions. The main costs, in addition to collection and transportation costs, result from the energy utilization or landfilling of mixed MSW. When tenders are invited for the incineration location of mixed MSW, the main focus should be: What are the annual electricity and heat recovery efficiencies and which are the substituted fuels in the area? In addition, in the case of a fluidized bed combustor it is crucial to

  4. August 18, 2015 Webinar- Probabilistic Analysis of Inadvertent Intrusion and the International Atomic Energy Agency Human Intrusion in the Context of Disposal of Radioactive Waste (HIDRA) Project

    Broader source: Energy.gov [DOE]

    P&RA CoP Webinar - August 18, 2015 - Probabilistic Analysis of Inadvertent Intrusion and the International Atomic Energy Agency Human Intrusion in the Context of Disposal of Radioactive Waste (HIDRA) Project, by Dr. Paul Black (Neptune) and Mr. Roger Seitz (Savannah River National Laboratory), August 18, 2015, 1:30 – 3:00 pm Eastern Daylight Time.

  5. Municipal Solid Waste Combustion : Fuel Testing and Characterization : Task 1 Report, May 30, 1990-October 1, 1990.

    SciTech Connect (OSTI)

    Bushnell, Dwight J.; Canova, Joseph H.; Dadkhah-Nikoo, Abbas.

    1990-10-01

    The objective of this study is to screen and characterize potential biomass fuels from waste streams. This will be accomplished by determining the types of pollutants produced while burning selected municipal waste, i.e., commercial mixed waste paper residential (curbside) mixed waste paper, and refuse derived fuel. These materials will be fired alone and in combination with wood, equal parts by weight. The data from these experiments could be utilized to size pollution control equipment required to meet emission standards. This document provides detailed descriptions of the testing methods and evaluation procedures used in the combustion testing and characterization project. The fuel samples will be examined thoroughly from the raw form to the exhaust emissions produced during the combustion test of a densified sample.

  6. 1993 International conference on nuclear waste management and environmental remediation, Prague, Czech Republic, September 5--11, 1993. Combined foreign trip report

    SciTech Connect (OSTI)

    Slate, S.C.; Allen, R.E.

    1993-12-01

    The purpose of the trip was to attend the 1993 International Conference on Nuclear Waste Management and Environmental Remediation. The principal objective of this conference was to facilitate a truly international exchange of information on the management of nuclear wastes as well as contaminated facilities and sites emanating from nuclear operations. The conference was sponsored by the American Society of Mechanical Engineers, the Czech and Slovak Mechanical Engineering Societies, and the Czech and Slovak Nuclear Societies in cooperation with the Commission of the European Communities, the International Atomic Energy Agency, and the OECD Nuclear Agency. The conference was cosponsored by the American Nuclear Society, the Atomic Energy Society of Japan, the Canadian Nuclear Society, the (former USSR) Nuclear Society, and the Japan Society of Mechanical Engineers. This was the fourth in a series of biennial conferences, which started in Hong Kong, in 1987. This report summarizes shared aspects of the trip; however, each traveler`s observations and recommendations are reported separately.

  7. Examining the effectiveness of municipal solid waste management systems: An integrated cost-benefit analysis perspective with a financial cost modeling in Taiwan

    SciTech Connect (OSTI)

    Weng, Yu-Chi; Fujiwara, Takeshi

    2011-06-15

    In order to develop a sound material-cycle society, cost-effective municipal solid waste (MSW) management systems are required for the municipalities in the context of the integrated accounting system for MSW management. Firstly, this paper attempts to establish an integrated cost-benefit analysis (CBA) framework for evaluating the effectiveness of MSW management systems. In this paper, detailed cost/benefit items due to waste problems are particularly clarified. The stakeholders of MSW management systems, including the decision-makers of the municipalities and the citizens, are expected to reconsider the waste problems in depth and thus take wise actions with the aid of the proposed CBA framework. Secondly, focusing on the financial cost, this study develops a generalized methodology to evaluate the financial cost-effectiveness of MSW management systems, simultaneously considering the treatment technological levels and policy effects. The impacts of the influencing factors on the annual total and average financial MSW operation and maintenance (O and M) costs are analyzed in the Taiwanese case study with a demonstrative short-term future projection of the financial costs under scenario analysis. The established methodology would contribute to the evaluation of the current policy measures and to the modification of the policy design for the municipalities.

  8. Waste management units - Savannah River Site. Volume 1, Waste management unit worksheets

    SciTech Connect (OSTI)

    Not Available

    1989-10-01

    This report is a compilation of worksheets from the waste management units of Savannah River Plant. Information is presented on the following: Solid Waste Management Units having received hazardous waste or hazardous constituents with a known release to the environment; Solid Waste Management Units having received hazardous waste or hazardous constituents with no known release to the environment; Solid Waste Management Units having received no hazardous waste or hazardous constituents; Waste Management Units having received source; and special nuclear, or byproduct material only.

  9. Two stage fluid bed-plasma gasification process for solid waste valorisation: Technical review and preliminary thermodynamic modelling of sulphur emissions

    SciTech Connect (OSTI)

    Morrin, Shane; Lettieri, Paola; Chapman, Chris; Mazzei, Luca

    2012-04-15

    Highlights: Black-Right-Pointing-Pointer We investigate sulphur during MSW gasification within a fluid bed-plasma process. Black-Right-Pointing-Pointer We review the literature on the feed, sulphur and process principles therein. Black-Right-Pointing-Pointer The need for research in this area was identified. Black-Right-Pointing-Pointer We perform thermodynamic modelling of the fluid bed stage. Black-Right-Pointing-Pointer Initial findings indicate the prominence of solid phase sulphur. - Abstract: Gasification of solid waste for energy has significant potential given an abundant feed supply and strong policy drivers. Nonetheless, significant ambiguities in the knowledge base are apparent. Consequently this study investigates sulphur mechanisms within a novel two stage fluid bed-plasma gasification process. This paper includes a detailed review of gasification and plasma fundamentals in relation to the specific process, along with insight on MSW based feedstock properties and sulphur pollutant therein. As a first step to understanding sulphur partitioning and speciation within the process, thermodynamic modelling of the fluid bed stage has been performed. Preliminary findings, supported by plant experience, indicate the prominence of solid phase sulphur species (as opposed to H{sub 2}S) - Na and K based species in particular. Work is underway to further investigate and validate this.

  10. An evaluation of hydrologic, geotechnical, and chemical behavior of processed oil shale solid waste 2; The use of time domain reflectometry (TDR) for monitoring in-situ volumetric water content in processed oil shale

    SciTech Connect (OSTI)

    Reeves, T.L.; Elgezawi, S.M. (Wyoming Univ., Laramie, WY (USA). Dept. of Civil Engineering); Kaser, T.G. (GIGO Computer and Electronic, Laramie, WY (US))

    1989-01-01

    This paper describes the use of time domain reflectometry (TDR) for monitoring volumetric water contents in processed oil shale solid waste. TDR measures soil water content via a correlation between the dielectric constant (K) of the 3 phase (soil-water-air) system and the volumetric water content ({theta}{sub v}). An extensive bench top research program has been conducted to evaluate and verify the use of this technique in processed oil shale solid waste. This study utilizes columns of processed oil shale packed to known densities and varying water contents and compares the columetric water content measured via TDR and the volumetric water content measured through gravimetric determination.

  11. Oxygen demand for the stabilization of the organic fraction of municipal solid waste in passively aerated bioreactors

    SciTech Connect (OSTI)

    Kasinski, Slawomir Wojnowska-Baryla, Irena

    2014-02-15

    Highlights: • The use of an passively aerated reactor enables effective stabilization of OFMSW. • Convective air flow does not inhibit the aerobic stabilization of waste. • The use of an passively aerated reactor reduces the heat loss due to convection. • The volume of supplied air exceeds 1.7–2.88 times the microorganisms demand. - Abstract: Conventional aerobic waste treatment technologies require the use of aeration devices that actively transport air through the stabilized waste mass, which greatly increases operating costs. In addition, improperly operated active aeration systems, may have the adverse effect of cooling the stabilized biomass. Because active aeration can be a limiting factor for the stabilization process, passive aeration can be equally effective and less expensive. Unfortunately, there are few reports documenting the use of passive aeration systems in municipal waste stabilization. There have been doubts raised as to whether a passive aeration system provides enough oxygen to the organic matter mineralization processes. In this paper, the effectiveness of aeration during aerobic stabilization of four different organic fractions of municipal waste in a reactor with an integrated passive ventilation system and leachate recirculation was analyzed. For the study, four fractions separated by a rotary screen were chosen. Despite the high temperatures in the reactor, the air flow rate was below 0.016 m{sup 3}/h. Using Darcy’s equation, theoretical values of the air flow rate were estimated, depending on the intensity of microbial metabolism and the amount of oxygen required for the oxidation of organic compounds. Calculations showed that the volume of supplied air exceeded the microorganisms demand for oxidation and endogenous activity by 1.7–2.88-fold.

  12. Waste Treatment Plant - 12508

    SciTech Connect (OSTI)

    Harp, Benton; Olds, Erik

    2012-07-01

    The Waste Treatment Plant (WTP) will immobilize millions of gallons of Hanford's tank waste into solid glass using a proven technology called vitrification. The vitrification process will turn the waste into a stable glass form that is safe for long-term storage. Our discussion of the WTP will include a description of the ongoing design and construction of this large, complex, first-of-a-kind project. The concept for the operation of the WTP is to separate high-level and low-activity waste fractions, and immobilize those fractions in glass using vitrification. The WTP includes four major nuclear facilities and various support facilities. Waste from the Tank Farms is first pumped to the Pretreatment Facility at the WTP through an underground pipe-in-pipe system. When construction is complete, the Pretreatment Facility will be 12 stories high, 540 feet long and 215 feet wide, making it the largest of the four major nuclear facilities that compose the WTP. The total size of this facility will be more than 490,000 square feet. More than 8.2 million craft hours are required to construct this facility. Currently, the Pretreatment Facility is 51 percent complete. At the Pretreatment Facility the waste is pumped to the interior waste feed receipt vessels. Each of these four vessels is 55-feet tall and has a 375,000 gallon capacity, which makes them the largest vessels inside the Pretreatment Facility. These vessels contain a series of internal pulse-jet mixers to keep incoming waste properly mixed. The vessels are inside the black-cell areas, completely enclosed behind thick steel-laced, high strength concrete walls. The black cells are designed to be maintenance free with no moving parts. Once hot operations commence the black-cell area will be inaccessible. Surrounded by black cells, is the 'hot cell canyon'. The hot cell contains all the moving and replaceable components to remove solids and extract liquids. In this area, there is ultrafiltration equipment, cesium

  13. Waste Specification Records - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Specification Records About Us Hanford Site Solid Waste Acceptance Program What's New Acceptance Criteria Acceptance Process Becoming a new Hanford Customer Annual Waste Forecast and Funding Arrangements Waste Stream Approval Waste Shipment Approval Waste Receipt Quality Assurance Program Waste Specification Records Tools Points of Contact Waste Specification Records Email Email Page | Print Print Page | Text Increase Font Size Decrease Font Size Waste Specification Records (WSRds) are the tool

  14. Reducing volatilization of heavy metals in phosphate-pretreated municipal solid waste incineration fly ash by forming pyromorphite-like minerals

    SciTech Connect (OSTI)

    Sun Ying; Zheng Jianchang; Zou Luquan; Liu Qiang; Zhu Ping; Qian Guangren

    2011-02-15

    This research investigated the feasibility of reducing volatilization of heavy metals (lead, zinc and cadmium) in municipal solid waste incineration (MSWI) fly ash by forming pyromorphite-like minerals via phosphate pre-treatment. To evaluate the evaporation characteristics of three heavy metals from phosphate-pretreated MSWI fly ash, volatilization tests have been performed by means of a dedicated apparatus in the 100-1000 deg. C range. The toxicity characteristic leaching procedure (TCLP) test and BCR sequential extraction procedure were applied to assess phosphate stabilization process. The results showed that the volatilization behavior in phosphate-pretreated MSWI fly ash could be reduced effectively. Pyromorphite-like minerals formed in phosphate-pretreated MSWI fly ash were mainly responsible for the volatilization reduction of heavy metals in MSWI fly ash at higher temperature, due to their chemical fixation and thermal stabilization for heavy metals. The stabilization effects were encouraging for the potential reuse of MSWI fly ash.

  15. Using DRASTIC'' to improve the accuracy of a geographical information system used for solid waste disposal facility siting: A case study

    SciTech Connect (OSTI)

    Padgett, D.A. . Dept. of Geography)

    1993-01-01

    Beginning in 1989, the citizens and commissioners of Alachua County, Florida began to develop a siting plan for a new solid waste disposal facility (SWDF). Through a cooperative effort with a private consulting firm, several evaluative criteria were selected and then translated into parameters for a geographical information system (GIS). Despite efforts to avoid vulnerable hydrogeology, the preferred site selected was in close proximity to the well field supplying Gainesville, Florida, home to approximately 75 percent of the county's population. The results brought forth a wave of protests from local residents claiming that leachate from the proposed SWDF would contaminate their drinking water. In this study, DRASTIC'' was applied in order to improve the accuracy and defensibility of the aquifer protection-based GIS parameters. DRASTIC'', a method for evaluating ground water contamination potential, is an acronym which stands for Depth to Water, Net Recharge, Aquifer Media, Soil Media, Topography, Impact of Vadose Zone Media, and Conductivity (Hydraulic)''.

  16. Thermal behaviour of chrome shavings and of sludges recovered after digestion of tanned solid wastes with calcium hydroxide

    SciTech Connect (OSTI)

    Tahiri, S. . E-mail: t_soufiane@yahoo.fr; Albizane, A.; Messaoudi, A.; Azzi, M.; Bennazha, J.; Younssi, S. Alami; Bouhria, M.

    2007-07-01

    The thermal behaviour of chrome shavings and of sludges recovered after digestion of tanned wastes with Ca(OH){sub 2} was studied. Ashes obtained after incineration of wastes at various temperatures were analysed by X-ray diffraction and EDX method. The main crystallized phases present in the ash obtained at 600 deg. C are Cr{sub 2}O{sub 3} and NaCl. The diffractograms revealed an increase in the intensities of the chromium oxide peaks and a very notable decrease of the amount of sodium chloride at 1100 deg. C. EDX analysis revealed a total disappearance of the chlorine peak at this temperature. Scanning electron micrographs show that the waste lost its fibrous aspect when the temperature increases. Formation of aggregates was noted after 550 deg. C. Combustion of organic matters and decarbonation phenomenon are the main stages observed on GTA and DTA curves of sludges. These phenomena are, respectively, exothermic and endothermic. The diffractogram of sludges recorded at 550 deg. C, in the presence of a constant oxygen surplus, revealed the presence of CaCrO{sub 4} and CaCO{sub 3}.

  17. Biogas Upgrading and Waste-to-Energy | Bioenergy | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Waste Feedstocks We inventory WTE feedstocks-waste fat, oil, and greases; municipal solid wastes; biosolids (from wastewater treatment facilities); biorefinery residues and ...

  18. Regional Waste Systems Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Waste Systems Biomass Facility Jump to: navigation, search Name Regional Waste Systems Biomass Facility Facility Regional Waste Systems Sector Biomass Facility Type Municipal Solid...

  19. EA-1707: Closure of Nonradioactive Dangerous Waste Landfill and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    07: Closure of Nonradioactive Dangerous Waste Landfill and Solid Waste Landfill, Hanford Site, Richland, Washington EA-1707: Closure of Nonradioactive Dangerous Waste Landfill and...

  20. Municipal Solid Waste (MSW) to Liquid Fuels Synthesis, Volume 2: A Techno-economic Evaluation of the Production of Mixed Alcohols

    SciTech Connect (OSTI)

    Jones, Susanne B.; Zhu, Yunhua; Valkenburt, Corinne

    2009-05-01

    Biomass is a renewable energy resource that can be converted into liquid fuel suitable for transportation applications and thus help meet the Energy Independence and Security Act renewable energy goals (U.S. Congress 2007). However, biomass is not always available in sufficient quantity at a price compatible with fuels production. Municipal solid waste (MSW) on the other hand is readily available in large quantities in some communities and is considered a partially renewable feedstock. Furthermore, MSW may be available for little or no cost. This report provides a techno-economic analysis of the production of mixed alcohols from MSW and compares it to the costs for a wood based plant. In this analysis, MSW is processed into refuse derived fuel (RDF) and then gasified in a plant co-located with a landfill. The resulting syngas is then catalytically converted to mixed alcohols. At a scale of 2000 metric tons per day of RDF, and using current technology, the minimum ethanol selling price at a 10% rate of return is approximately $1.85/gallon ethanol (early 2008 $). However, favorable economics are dependent upon the toxicity characteristics of the waste streams and that a market exists for the by-product scrap metal recovered from the RDF process.

  1. Converting the organic fraction of solid waste from the city of Abu Dhabi to valuable products via dark fermentation – Economic and energy assessment

    SciTech Connect (OSTI)

    Bonk, Fabian Bastidas-Oyanedel, Juan-Rodrigo Schmidt, Jens Ejbye

    2015-06-15

    Graphical abstract: Display Omitted - Highlights: • The cost and energy demand for dark fermentation using OFMSW were established. • Dark fermentation using OFMSW can produce a carbon source for bioprocesses of about 330 USD/t{sub COD}. • A maximum purification cost of VFAs from dark fermentation using OFMSW was established to 15 USD/m{sup 3}. • Replacing fossil fuel based products by dark fermentation will probably lead to net energy savings. - Abstract: Landfilling the organic fraction of municipal solid waste (OFMSW) leads to greenhouse gas emissions and loss of valuable resources. Sustainable and cost efficient solutions need to be developed to solve this problem. This study evaluates the feasibility of using dark fermentation (DF) to convert the OFMSW to volatile fatty acids (VFAs), fertilizer and H{sub 2}. The VFAs in the DF effluent can be used directly as substrate for subsequent bioprocesses or purified from the effluent for industrial use. DF of the OFMSW in Abu Dhabi will be economically sustainable once VFA purification can be accomplished on large scale for less than 15 USD/m{sup 3}{sub effluent}. With a VFA minimum selling price of 330 USD/t{sub COD}, DF provides a competitive carbon source to sugar. Furthermore, DF is likely to use less energy than conventional processes that produce VFAs, fertilizer and H{sub 2}. This makes DF of OFMSW a promising waste treatment technology and biorefinery platform.

  2. Natural gas applications in waste management

    SciTech Connect (OSTI)

    Tarman, P.B.

    1991-01-01

    The Institute of Gas Technology (IGT) is engaged in several projects related to the use of natural gas for waste management. These projects can be classified into four categories: cyclonic incineration of gaseous, liquid, and solid wastes; fluidized-bed reclamation of solid wastes; two-stage incineration of liquid and solid wastes; natural gas injection for emissions control. 5 refs., 8 figs.

  3. Cultural Resources Review for Closure of the nonradioactive Dangerous Waste Landfill and Solid Waste Landfill in the 600 Area, Hanford Site, Benton County, Washington, HCRC# 2010-600-018R

    SciTech Connect (OSTI)

    Gutzeit, Jennifer L.; Kennedy, Ellen P.; Bjornstad, Bruce N.; Sackschewsky, Michael R.; Sharpe, James J.; DeMaris, Ranae; Venno, M.; Christensen, James R.

    2011-02-02

    The U.S. Department of Energy Richland Operations Office is proposing to close the Nonradioactive Dangerous Waste Landfill (NRDWL) and Solid Waste Landfill (SWL) located in the 600 Area of the Hanford Site. The closure of the NRDWL/SWL entails the construction of an evapotranspiration cover over the landfill. This cover would consist of a 3-foot (1-meter) engineered layer of fine-grained soil, modified with 15 percent by weight pea gravel to form an erosion-resistant topsoil that will sustain native vegetation. The area targeted for silt-loam borrow soil sits in Area C, located in the northern central portion of the Fitzner/Eberhardt Arid Lands Ecology (ALE) Reserve Unit. The pea gravel used for the mixture will be obtained from both off-site commercial sources and an active gravel pit (Pit #6) located just west of the 300 Area of the Hanford Site. Materials for the cover will be transported along Army Loop Road, which runs from Beloit Avenue (near the Rattlesnake Barricade) east-northeast to the NRDWL/SWL, ending at State Route 4. Upgrades to Army Loop Road are necessary to facilitate safe bidirectional hauling traffic. This report documents a cultural resources review of the proposed activity, conducted according to Section 106 of the National Historic Preservation Act of 1966.

  4. Synergistic Utilization of Coal Fines and Municipal Solid Waste in Coal-Fired Boilers. Phase I Final Report

    SciTech Connect (OSTI)

    V. Zamansky; P. Maly; M. Klosky

    1998-06-12

    A feasibility study was performed on a novel concept: to synergistically utilize a blend of waste coal fines with so-called E-fuel for cofiring and reburning in utility and industrial boilers. The E-fuel is produced from MSW by the patented EnerTech's slurry carbonization process. The slurry carbonization technology economically converts MSW to a uniform, low-ash, low-sulfur, and essentially chlorine-free fuel with energy content of about 14,800 Btu/lb.

  5. Parameters affecting the stability of the digestate from a two-stage anaerobic process treating the organic fraction of municipal solid waste

    SciTech Connect (OSTI)

    Trzcinski, Antoine P.; Stuckey, David C.

    2011-07-15

    This paper focused on the factors affecting the respiration rate of the digestate taken from a continuous anaerobic two-stage process treating the organic fraction of municipal solid waste (OFMSW). The process involved a hydrolytic reactor (HR) that produced a leachate fed to a submerged anaerobic membrane bioreactor (SAMBR). It was found that a volatile solids (VS) removal in the range 40-75% and an operating temperature in the HR between 21 and 35 {sup o}C resulted in digestates with similar respiration rates, with all digestates requiring 17 days of aeration before satisfying the British Standard Institution stability threshold of 16 mg CO{sub 2} g VS{sup -1} day{sup -1}. Sanitization of the digestate at 65 {sup o}C for 7 days allowed a mature digestate to be obtained. At 4 g VS L{sup -1} d{sup -1} and Solid Retention Times (SRT) greater than 70 days, all the digestates emitted CO{sub 2} at a rate lower than 25 mg CO{sub 2} g VS{sup -1} d{sup -1} after 3 days of aeration, while at SRT lower than 20 days all the digestates displayed a respiration rate greater than 25 mg CO{sub 2} g VS{sup -1} d{sup -1}. The compliance criteria for Class I digestate set by the European Commission (EC) and British Standard Institution (BSI) could not be met because of nickel and chromium contamination, which was probably due to attrition of the stainless steel stirrer in the HR.

  6. Development of an integrated strategy for the disposal of solid low level waste at BNFL`s Drigg site

    SciTech Connect (OSTI)

    Higson, S.G.

    1989-11-01

    During the past 12 months, the first phase of a major upgrading of disposal operations at Drigg has been completed. This has involved the introduction of waste containerization and orderly emplacement in open concrete vaults. A further phase over the next few years will involve the introduction of compaction of all suitable waste. While the current upgrade has clearly resulted in a major improvement in the visual impact and management control of the site, the desire to implement such an improvement on a timescale consistent with the short term need for new facilities at Drigg has not allowed sufficient time for a detailed assessment of the full implications of the proposed system. This paper describes the development of the strategy for upgrading the Drigg site, highlights improvements that have been implemented as the project has progressed and outlines major outstanding concerns, particularly in relation to long term site management, that may eventually lead to a requirement for further optimization of the overall strategy. Progress under the Drigg Technical Development Programme is reviewed with specific emphasis on the preliminary results of engineering studies aimed at defining an integrated strategy that will meet the requirements of both acceptable visual impact and long term site stability and safety.

  7. Reconstituted polymeric materials derived from post-consumer waste, industrial scrap and virgin resins made by solid state pulverization

    DOE Patents [OSTI]

    Khait, K.

    1998-09-29

    A method of making polymeric particulates is described wherein polymeric scrap material, virgin polymeric material and mixtures thereof are supplied to intermeshing extruder screws which are rotated to transport the polymeric material along their length and subject the polymeric material to solid state shear pulverization and in-situ polymer compatibilization, if two or more incompatible polymers are present. Uniform pulverized particulates are produced without addition of a compatible agent. The pulverized particulates are directly melt processable (as powder feedstock) and surprisingly yield a substantially homogeneous light color product. 29 figs.

  8. Reconstituted Polymeric Materials Derived From Post-Consumer Waste, Industrial Scrap And Virgin Resins Made By Solid State Shear Pulverizat

    DOE Patents [OSTI]

    Khait, Klementina

    2005-02-01

    A method of making polymeric particulates wherein polymeric scrap material, virgin polymeric material and mixtures thereof are supplied to intermeshing extruder screws which are rotated to transport the polymeric material along their length and subject the polymeric material to solid state shear pulverization and in-situ polymer compatibilization, if two or more incompatible polymers are present. Uniform pulverized particulates are produced without addition of a compatibilizing agent. The pulverized particulates are directly melt processable (as powder feedstock) and surprisingly yield a substantially homogeneous light color product.

  9. Reconstituted polymeric materials derived from post-consumer waste, industrial scrap and virgin resins made by solid state pulverization

    DOE Patents [OSTI]

    Khait, Klementina

    1998-09-29

    A method of making polymeric particulates wherein polymeric scrap material, virgin polymeric material and mixtures thereof are supplied to intermeshing extruder screws which are rotated to transport the polymeric material along their length and subject the polymeric material to solid state shear pulverization and in-situ polymer compatibilization, if two or more incompatible polymers are present. Uniform pulverized particulates are produced without addition of a compatibilizing agent. The pulverized particulates are directly melt processable (as powder feedstock) and surprisingly yield a substantially homogeneous light color product.

  10. Reconstituted polymeric materials derived from post-consumer waste, industrial scrap and virgin resins made by solid state shear pulverization

    DOE Patents [OSTI]

    Khait, Klementina

    2001-01-30

    A method of making polymeric particulates wherein polymeric scrap material, virgin polymeric material and mixtures thereof are supplied to intermeshing extruder screws which are rotated to transport the polymeric material along their length and subject the polymeric material to solid state shear pulverization and in-situ polymer compatibilization, if two or more incompatible polymers are present. Uniform pulverized particulates are produced without addition of a compatibilizing agent. The pulverized particulates are directly melt processable (as powder feedstock) and surprisingly yield a substantially homogeneous light color product.

  11. Remediation of Highland Drive Landfill: Technical Challenges of Segregating Co-Mingled LLRW and Municipal Solid Waste in an Urbanized Area - 13319

    SciTech Connect (OSTI)

    Daniel, Jeff; Lawrence, Dave; Case, Glenn; Fergusson Jones, Andrea

    2013-07-01

    Highland Drive Landfill is an inactive Municipal Solid Waste (MSW) Landfill which received waste from the 1940's until its closure in 1991. During a portion of its active life, the Landfill received low-level radioactive waste (LLRW) which currently exists both in a defined layer and co-mingled with MSW. Remediation of this site to remove the LLRW to meet established cleanup criteria, forms part of the Port Hope Project being undertaken by Atomic Energy Canada Limited (AECL) and Public Works and Government Services Canada (PWGSC) as part of the Port Hope Area Initiative (PHAI). The total volume of LLRW and co-mingled LLRW/MSW estimated to require removal from the Highland Drive Landfill is approximately 51,900 cubic metres (m{sup 3}). The segregation and removal of LLRW at the Highland Drive Landfill presents a number of unique technical challenges due to the co-mingled waste and location of the Landfill in an urbanized area. Key challenges addressed as part of the design process included: delineation of the extent of LLRW, development of cut lines, and estimation of the quantity of co-mingled LLRW in a heterogeneous matrix; protection of adjacent receptors in a manner which would not impact the use of adjacent facilities which include residences, a recreational facility, and a school; coordination and phasing of the work to allow management of six separate material streams including clean soil, MSW, co-mingled LLRW/MSW, LLRW, un-impacted water, and impacted water/leachate within a confined environment; and development of a multi-tiered and adaptive program of monitoring and control measures for odour, dust, and water including assessment of risk of exceedance of monitoring criteria. In addition to ensuring public safety and protection of the environment during remedy implementation, significant effort in the design process was paid to balancing the advantages of increased certainty, including higher production rates, against the costs of attaining increased

  12. Waste Stream Approval - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stream Approval About Us Hanford Site Solid Waste Acceptance Program What's New Acceptance Criteria Acceptance Process Becoming a new Hanford Customer Annual Waste Forecast and Funding Arrangements Waste Stream Approval Waste Shipment Approval Waste Receipt Quality Assurance Program Waste Specification Records Tools Points of Contact Waste Stream Approval Email Email Page | Print Print Page | Text Increase Font Size Decrease Font Size After funding approval is in place, the next step is to

  13. A criticism of applications with multi-criteria decision analysis that are used for the site selection for the disposal of municipal solid wastes

    SciTech Connect (OSTI)

    Kemal Korucu, M.; Erdagi, Bora

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer The existing structure of the multi-criteria decision analysis for site selection is criticized. Black-Right-Pointing-Pointer Fundamental problematic points based on the critics are defined. Black-Right-Pointing-Pointer Some modifications are suggested in order to provide solutions to these problematical points. Black-Right-Pointing-Pointer A new structure for the decision making mechanism is proposed. Black-Right-Pointing-Pointer The feasibility of the new method is subjected to an evaluation process. - Abstract: The main aim of this study is to criticize the process of selecting the most appropriate site for the disposal of municipal solid wastes which is one of the problematic issues of waste management operations. These kinds of problems are pathological symptoms of existing problematical human-nature relationship which is related to the syndrome called ecological crisis. In this regard, solving the site selection problem, which is just a small part of a larger entity, for the good of ecological rationality and social justice is only possible by founding a new and extensive type of human-nature relationship. In this study, as a problematic point regarding the discussions on ecological problems, the existing structure of the applications using multi-criteria decision analysis in the process of site selection with three main criteria is criticized. Based on this critique, fundamental problematic points (to which applications are insufficient to find solutions) will be defined. Later, some modifications will be suggested in order to provide solutions to these problematical points. Finally, the criticism addressed to the structure of the method with three main criteria and the feasibility of the new method with four main criteria is subjected to an evaluation process. As a result, it is emphasized that the new structure with four main criteria may be effective in solution of the fundamental problematic points.

  14. Development and pilot test of an intensive municipal solid waste recycling system for the Town of East Hampton

    SciTech Connect (OSTI)

    Commoner, B.; Frisch, M.; Pitot, H.A.; Quigley, J.; Stege, A.; Wallace, D.; Webster, T.

    1990-02-01

    This report presents the results of a project to design and test a new type of trash disposal system for the Town of East Hampton, Long Island: the Intensive Recycling System. The system is intended to serve as the Town's primary means of regular trash disposal. The Intensive Recycling System is based on separation of regular trash, by household and commercial establishments, into four fractions: (1) food garbage and soiled paper; (2) paper/cardboard; (3) metal cans/glass bottles; (4) non-recyclables. Fraction 1, together with yard waste, is processed at a compost facility, yielding marketable compost. Fractions 2 and 3 are processed by a materials recovery facility (MRF) into marketable products: several grades of paper and cardboard; aluminum cans; tin cans; scrap metal; and color-sorted crushed glass (cullet). The non-recyclable components (fraction 4) and misclassified components rejected during processing are consigned to a landfill. This document is Volume 2 of two volumes and contains the appendix for Volume 1.

  15. Development and pilot test of an intensive municipal solid waste recycling system for the Town of East Hampton

    SciTech Connect (OSTI)

    Commoner, B.; Frisch, M.; Pitot, H.A.; Quigley, J.; Stege, A.; Wallace, D.; Webster, T.

    1990-02-01

    This report presents the results of a project to design and test a new type of trash disposal system for the Town of East Hampton, Long Island: the Intensive Recycling System. The system is intended to serve as the Town's primary means of regular trash disposal. The Intensive Recycling System is based on separation of regular trash, by households and commercial establishments, into four fractions: (1) food garbage and soiled paper; (2) paper/cardboard; (3) metal cans/glass bottles; (4) non-recyclables. Fraction 1, together with yard waste, is processed at a compost facility, yielding marketable compost. Fractions 2 and 3 are processed by a materials recovery facility (MRF) into marketable products: several grades of paper and cardboard; aluminum cans; tin cans; scrap metal; and color-sorted crushed glass (cullet). The non-recyclable components (fraction 4) and misclassified components rejected during processing are consigned to a landfill. This document is Volume 1 of two volumes. 75 refs., 24 figs., 81 tabs.

  16. Direct Internal Reformation and Mass Transport in the Solid Oxide Fuel Cell Anode: A Pore-Scale Lattice Boltzmann Study with Detailed Reaction Kinetics

    SciTech Connect (OSTI)

    Grew, Kyle N.; Joshi, Abhijit S.; Chiu, W. K. S.

    2010-11-30

    The solid oxide fuel cell (SOFC) allows the conversion of chemical energy that is stored in a given fuel, including light hydrocarbons, to electrical power. Hydrocarbon fuels, such as methane, are logistically favourable and provide high energy densities. However, the use of these fuels often results in a decreased efficiency and life. An improved understanding of the reactive flow in the SOFC anode can help address these issues. In this study, the transport and heterogeneous internal reformation of a methane based fuel is addressed. The effect of the SOFC anode's complex structure on transport and reactions is shown to exhibit a complicated interplay between the local molar concentrations and the anode structure. Strong coupling between the phenomenological microstructures and local reformation reaction rates are recognised in this study, suggesting the extension to actual microstructures may provide new insights into the reformation processes.

  17. Radioactive waste disposal package

    DOE Patents [OSTI]

    Lampe, Robert F.

    1986-11-04

    A radioactive waste disposal package comprising a canister for containing vitrified radioactive waste material and a sealed outer shell encapsulating the canister. A solid block of filler material is supported in said shell and convertible into a liquid state for flow into the space between the canister and outer shell and subsequently hardened to form a solid, impervious layer occupying such space.

  18. Radioactive waste disposal package

    DOE Patents [OSTI]

    Lampe, Robert F. (Bethel Park, PA)

    1986-01-01

    A radioactive waste disposal package comprising a canister for containing vitrified radioactive waste material and a sealed outer shell encapsulating the canister. A solid block of filler material is supported in said shell and convertible into a liquid state for flow into the space between the canister and outer shell and subsequently hardened to form a solid, impervious layer occupying such space.

  19. Solids fluidizer-injector

    DOE Patents [OSTI]

    Bulicz, Tytus R. (Hickory Hills, IL)

    1990-01-01

    An apparatus and process for fluidizing solid particles by causing rotary motion of the solid particles in a fluidizing chamber by a plurality of rotating projections extending from a rotatable cylinder end wall interacting with a plurality of fixed projections extending from an opposite fixed end wall and passing the solid particles through a radial feed orifice open to the solids fluidizing chamber on one side and a solid particle utilization device on the other side. The apparatus and process are particularly suited for obtaining intermittent feeding with continual solids supply to the fluidizing chamber. The apparatus and process are suitable for injecting solid particles, such as coal, to an internal combustion engine.

  20. Development of a sintering process for recycling oil shale fly ash and municipal solid waste incineration bottom ash into glass ceramic composite

    SciTech Connect (OSTI)

    Zhang, Zhikun; Zhang, Lei; Li, Aimin

    2015-04-15

    Highlights: • Glass ceramic composite is prepared from oil shale fly ash and MSWI bottom ash. • A novel method for the production of glass ceramic composite is presented. • It provides simple route and lower energy consumption in terms of recycling waste. • The vitrified slag can promote the sintering densification process of glass ceramic. • The performances of products decrease with the increase of oil shale fly ash content. - Abstract: Oil shale fly ash and municipal solid waste incineration bottom ash are industrial and municipal by-products that require further treatment before disposal to avoid polluting the environment. In the study, they were mixed and vitrified into the slag by the melt-quench process. The obtained vitrified slag was then mixed with various percentages of oil shale fly ash and converted into glass ceramic composites by the subsequent sintering process. Differential thermal analysis was used to study the thermal characteristics and determine the sintering temperatures. X-ray diffraction analysis was used to analyze the crystalline phase compositions. Sintering shrinkage, weight loss on ignition, density and compressive strength were tested to determine the optimum preparation condition and study the co-sintering mechanism of vitrified amorphous slag and oil shale fly ash. The results showed the product performances increased with the increase of sintering temperatures and the proportion of vitrified slag to oil shale fly ash. Glass ceramic composite (vitrified slag content of 80%, oil shale fly ash content of 20%, sintering temperature of 1000 °C and sintering time of 2 h) showed the properties of density of 1.92 ± 0.05 g/cm{sup 3}, weight loss on ignition of 6.14 ± 0.18%, sintering shrinkage of 22.06 ± 0.6% and compressive strength of 67 ± 14 MPa. The results indicated that it was a comparable waste-based material compared to previous researches. In particular, the energy consumption in the production process was reduced