Powered by Deep Web Technologies
Note: This page contains sample records for the topic "international nuclear model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

NUCLEAR ISLANDS International Leasing  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ISLANDS ISLANDS International Leasing of Nuclear Fuel Cycle Sites to Provide Enduring Assurance of Peaceful Use Christopher E. Paine and Thomas B. Cochran Current International Atomic Energy Agency safeguards do not provide adequate protection against the diversion to military use of materials or technology from certain types of sensitive nuclear fuel cycle facilities. In view of highly enriched uranium's relatively greater ease of use as a nuclear explosive material than plutonium and the significant diseconomies of commercial spent fuel reprocessing, this article focuses on the need for improved international controls over uranium enrichment facilities as the proximate justification for creation of an International Nuclear Fuel Cycle Association (INFCA). In principle, the proposal is equally applicable to alleviating the proliferation concerns provoked by nuclear fuel

2

International Nuclear Security  

SciTech Connect

This presentation discusses: (1) Definitions of international nuclear security; (2) What degree of security do we have now; (3) Limitations of a nuclear security strategy focused on national lock-downs of fissile materials and weapons; (4) What do current trends say about the future; and (5) How can nuclear security be strengthened? Nuclear security can be strengthened by: (1) More accurate baseline inventories; (2) Better physical protection, control and accounting; (3) Effective personnel reliability programs; (4) Minimize weapons-usable materials and consolidate to fewer locations; (5) Consider local threat environment when siting facilities; (6) Implement pledges made in the NSS process; and (7) More robust interdiction, emergency response and special operations capabilities. International cooperation is desirable, but not always possible.

Doyle, James E. [Los Alamos National Laboratory

2012-08-14T23:59:59.000Z

3

International | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

International | National Nuclear Security Administration International | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog International Home > About Us > Our Programs > Nuclear Security > Nuclear Materials Management & Safeguards System > International International U.S. Department of Energy / U.S. Nuclear Regulatory Commission

4

International Nuclear Energy Research Initiative: Annual Report...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

sitesallmodulescontribredisredis.autoload.inc). You are here Home International Nuclear Energy Research Initiative: Annual Report 2005 International Nuclear Energy...

5

International Safety Projects - Nuclear Engineering Division...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

6

International Cooperation on Safety of Nuclear Plants - Nuclear...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

7

International Nuclear Services Ltd | Open Energy Information  

Open Energy Info (EERE)

Sign Up Search Page Edit with form History Facebook icon Twitter icon International Nuclear Services Ltd Jump to: navigation, search Name International Nuclear Services Ltd...

8

The Nuclear Revolution, Relative Gains, and International Nuclear Assistance  

E-Print Network (OSTI)

of nuclear proliferation: a quantitative test. Journal ofINTERNATIONAL NUCLEAR ASSISTANCE DATA To test this strategictheory of nuclear proliferation faces a difficult test in

Kroenig, Matthew

2006-01-01T23:59:59.000Z

9

Nuclear Models  

SciTech Connect

The atomic nucleus is a typical example of a many-body problem. On the one hand, the number of nucleons (protons and neutrons) that constitute the nucleus is too large to allow for exact calculations. On the other hand, the number of constituent particles is too small for the individual nuclear excitation states to be explained by statistical methods. Another problem, particular for the atomic nucleus, is that the nucleon-nucleon (n-n) interaction is not one of the fundamental forces of Nature, and is hard to put in a single closed equation. The nucleon-nucleon interaction also behaves differently between two free nucleons (bare interaction) and between two nucleons in the nuclear medium (dressed interaction).Because of the above reasons, specific nuclear many-body models have been devised of which each one sheds light on some selected aspects of nuclear structure. Only combining the viewpoints of different models, a global insight of the atomic nucleus can be gained. In this chapter, we revise the the Nuclear Shell Model as an example of the microscopic approach, and the Collective Model as an example of the geometric approach. Finally, we study the statistical properties of nuclear spectra, basing on symmetry principles, to find out whether there is quantum chaos in the atomic nucleus. All three major approaches have been rewarded with the Nobel Prize of Physics. In the text, we will stress how each approach introduces its own series of approximations to reduce the prohibitingly large number of degrees of freedom of the full many-body problem to a smaller manageable number of effective degrees of freedom.

Fossion, Ruben [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Apartado Postal 70-543, Mexico D. F., C.P. 04510 (Mexico)

2010-09-10T23:59:59.000Z

10

International Standards & Policy Development | National Nuclear...  

National Nuclear Security Administration (NNSA)

and Nuclear Facilities off site link to better reflect the threat environment. NNSA also led the international effort to revise the International Atomic Energy Agency's off site...

11

Nonproliferation & International Security | National Nuclear Security  

NLE Websites -- All DOE Office Websites (Extended Search)

Nonproliferation & International Security | National Nuclear Security Nonproliferation & International Security | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Nonproliferation & International Security Home > About Us > Our Programs > Nonproliferation > Nonproliferation & International Security Nonproliferation & International Security

12

Nonproliferation & International Security | National Nuclear Security  

National Nuclear Security Administration (NNSA)

Nonproliferation & International Security | National Nuclear Security Nonproliferation & International Security | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Nonproliferation & International Security Home > About Us > Our Programs > Nonproliferation > Nonproliferation & International Security Nonproliferation & International Security

13

International Programs | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Programs | National Nuclear Security Administration Programs | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog The National Nuclear Security Administration International Programs Home > About Us > Our Programs > Emergency Response > International Programs International Programs NNSA prepares for nuclear and radiological emergencies across the globe.

14

International | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

15

International Exercises | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Exercises | National Nuclear Security Administration Exercises | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog International Exercises Home > About Us > Our Programs > Emergency Response > International Programs > International Exercises International Exercises First responders test plans and procedures during a radiation exercise in Murman

16

International Workshop on Nuclear Forensics Strengthens Global...  

National Nuclear Security Administration (NNSA)

Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > International Workshop on Nuclear Forensics Strengthens Global Security...

17

International Materials Protection and Cooperation | National Nuclear  

National Nuclear Security Administration (NNSA)

Materials Protection and Cooperation | National Nuclear Materials Protection and Cooperation | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog International Materials Protection and Cooperation Home > About Us > Our Programs > Nonproliferation > International Materials Protection and Cooperation International Materials Protection and Cooperation

18

Nuclear Fuels - Modeling  

Science Conference Proceedings (OSTI)

Mar 12, 2012... for the Current and Advanced Nuclear Reactors: Nuclear Fuels - Modeling .... Using density functional theory (DFT), we have predicted that...

19

International Energy Outlook 2001 - Nuclear  

Gasoline and Diesel Fuel Update (EIA)

Nuclear Power Nuclear Power picture of a printer Printer Friendly Version (PDF) Nuclear power is projected to represent a growing share of the developing world’s electricity consumption from 1999 through 2020. New plant construction and license extensions for existing plants are expected to produce a net increase in world nuclear capacity. Nuclear power plants generated electricity in 29 countries in 1999. A total of 433 nuclear power reactors were in operation (Figure 61), including 104 in the United States, 59 in France, and 53 in Japan. The largest national share of electricity from nuclear power was in France, at 75 percent (Figure 62). Belgium, Bulgaria, France, Lithuania, Slovenia, Slovakia, Sweden, Ukraine, and South Korea depended on nuclear power for at least 40

20

Argonne's role in DOE/NNSA International Nuclear Safeguards and...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

Note: This page contains sample records for the topic "international nuclear model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Nuclear Systems Modeling, Simulation & Validation | Nuclear Science...  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Areas Fuel Cycle Science & Technology Fusion Nuclear Science Isotope Development and Production Nuclear Security Science & Technology Nuclear Systems Modeling, Simulation...

22

PIA - 10th International Nuclear Graphite Specialists Meeting...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

10th International Nuclear Graphite Specialists Meeting registration web site PIA - 10th International Nuclear Graphite Specialists Meeting registration web site PIA - 10th...

23

NNSA interns visit Sandia National Laboratories | National Nuclear...  

National Nuclear Security Administration (NNSA)

interns visit Sandia National Laboratories | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy...

24

International perceptions of US nuclear policy.  

SciTech Connect

The report presents a summary of international perceptions and beliefs about US nuclear policy, focusing on four countries--China, Iran, Pakistan and Germany--chosen because they span the spectrum of states with which the United States has relationships. A paradox is pointed out: that although the goal of US nuclear policy is to make the United States and its allies safer through a policy of deterrence, international perceptions of US nuclear policy may actually be making the US less safe by eroding its soft power and global leadership position. Broadly held perceptions include a pattern of US hypocrisy and double standards--one set for the US and its allies, and another set for all others. Importantly, the US nuclear posture is not seen in a vacuum, but as one piece of the United States behavior on the world stage. Because of this, the potential direct side effects of any negative international perceptions of US nuclear policy can be somewhat mitigated, dependent on other US policies and actions. The more indirect and long term relation of US nuclear policy to US international reputation and soft power, however, matters immensely to successful multilateral and proactive engagement on other pressing global issues.

Stanley, Elizabeth A. (Georgetown Universtiy, Washington, DC)

2006-02-01T23:59:59.000Z

25

International nuclear waste management fact book  

Science Conference Proceedings (OSTI)

The International Nuclear Waste Management Fact Book has been compiled to provide current data on fuel cycle and waste management facilities, R and D programs, and key personnel in 24 countries, including the US; four multinational agencies; and 20 nuclear societies. This document, which is in its second year of publication supersedes the previously issued International Nuclear Fuel Cycle Fact Book (PNL-3594), which appeared annually for 12 years. The content has been updated to reflect current information. The Fact Book is organized as follows: National summaries--a section for each country that summarizes nuclear policy, describes organizational relationships, and provides addresses and names of key personnel and information on facilities. International agencies--a section for each of the international agencies that has significant fuel cycle involvement and a list of nuclear societies. Glossary--a list of abbreviations/acronyms of organizations, facilities, and technical and other terms. The national summaries, in addition to the data described above, feature a small map for each country and some general information that is presented from the perspective of the Fact Book user in the US.

Abrahms, C W; Patridge, M D; Widrig, J E

1995-11-01T23:59:59.000Z

26

International Nuclear Fuel Cycle Fact Book  

Science Conference Proceedings (OSTI)

As the US Department of Energy (DOE) and DOE contractors have become increasingly involved with other nations in nuclear fuel cycle and waste management cooperative activities, a need has developed for a ready source of information concerning foreign fuel cycle programs, facilities, and personnel. This Fact Book was compiled to meet that need. The information contained in the International Nuclear Fuel Cycle Fact Book has been obtained from many unclassified sources: nuclear trade journals and newsletters; reports of foreign visits and visitors; CEC, IAEA, and OECN/NEA activities reports; not reflect any one single source but frequently represent a consolidation/combination of information.

Leigh, I.W.; Patridge, M.D.

1991-05-01T23:59:59.000Z

27

International safeguards: Accounting for nuclear materials  

SciTech Connect

Nuclear safeguards applied by the International Atomic Energy Agency (IAEA) are one element of the non-proliferation regime'', the collection of measures whose aim is to forestall the spread of nuclear weapons to countries that do not already possess them. Safeguards verifications provide evidence that nuclear materials in peaceful use for nuclear-power production are properly accounted for. Though carried out in cooperation with nuclear facility operators, the verifications can provide assurance because they are designed with the capability to detect diversion, should it occur. Traditional safeguards verification measures conducted by inspectors of the IAEA include book auditing; counting and identifying containers of nuclear material; measuring nuclear material; photographic and video surveillance; and sealing. Novel approaches to achieve greater efficiency and effectiveness in safeguards verifications are under investigation as the number and complexity of nuclear facilities grow. These include the zone approach, which entails carrying out verifications for groups of facilities collectively, and randomization approach, which entails carrying out entire inspection visits some fraction of the time on a random basis. Both approaches show promise in particular situations, but, like traditional measures, must be tested to ensure their practical utility. These approaches are covered on this report. 15 refs., 16 figs., 3 tabs.

Fishbone, L.G.

1988-09-28T23:59:59.000Z

28

International Framework for Nuclear Energy Cooperation to Hold...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Framework for Nuclear Energy Cooperation to Hold Ministerial-Level Meeting Sept. 29 in Warsaw, Poland International Framework for Nuclear Energy Cooperation to Hold...

29

NNSA summer interns tour Sandia | National Nuclear Security Administra...  

NLE Websites -- All DOE Office Websites (Extended Search)

summer interns tour Sandia | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response...

30

International Nuclear Energy Research Initiative (I-NERI) Annual Reports |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

International Nuclear Energy Policy and Cooperation International Nuclear Energy Policy and Cooperation » Bilateral Cooperation » International Nuclear Energy Research Initiative (I-NERI) Annual Reports International Nuclear Energy Research Initiative (I-NERI) Annual Reports August 13, 2013 International Nuclear Energy Research Initiative: 2012 Annual Report Nuclear energy represents the single largest carbon-free baseload source of energy in the United States, accounting for nearly 20 percent of the electricity generated and over 60 percent of our low-carbon production. Worldwide, nuclear power generates 14 percent of global electricity. Continually increasing demand for clean energy both domestically and across the globe, combined with research designed to make nuclear power ever-safer and more cost-effective, will keep nuclear in the energy mix for the

31

International Nuclear Energy Policy and Cooperation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

International Nuclear Energy Policy and Cooperation International Nuclear Energy Policy and Cooperation International Nuclear Energy Policy and Cooperation International Nuclear Energy Policy and Cooperation The Office of International Nuclear Energy Policy and Cooperation (INEPC) collaborates with international partners to support the safe, secure, and peaceful use of nuclear energy. It works both bilaterally and multilaterally to accomplish this work. Today, nuclear energy represents the single largest source of, carbon-free baseload energy, accounting for nearly 20% of the electricity generated in the United States and 70% of our low-carbon production, avoiding over 600 million metric tons of carbon emissions. With approximately 440 commercial reactors operating in 30 countries-and 300 more valued at $1.6 trillion

32

International Working Group Meeting Focuses on Nuclear Power Infrastructure  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

International Working Group Meeting Focuses on Nuclear Power International Working Group Meeting Focuses on Nuclear Power Infrastructure Development and Financing of New Nuclear Projects International Working Group Meeting Focuses on Nuclear Power Infrastructure Development and Financing of New Nuclear Projects December 15, 2009 - 1:09pm Addthis VIENNA, AUSTRIA - The multi-nation Infrastructure Development Working Group (IDWG) held its fifth meeting and also a workshop on the financing of international nuclear power projects in Vienna, Austria, on December 9-10, 2009. An official from the U.S. Department of Energy (DOE) led the working group meeting. "As a key component of the international Global Nuclear Energy Partnership (GNEP) program, the Infrastructure Development Working Group supports the safe, secure and responsible use of nuclear energy," said

33

International Nuclear Energy Research Initiative: 2007 Annual Report |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

International Nuclear Energy Research Initiative: 2007 Annual International Nuclear Energy Research Initiative: 2007 Annual Report International Nuclear Energy Research Initiative: 2007 Annual Report The International Nuclear Energy Research Initiative (I-NERI) supports the National Energy Policy by pursuing international collaborations to conduct research that will advance the state of nuclear science and technology in the United States. I-NERI promotes bilateral and multilateral scientific and engineering research and development (R&D) with other nations. Innovative research performed under the I-NERI umbrella addresses key issues affecting the future of nuclear energy and its global deployment by improving cost performance, enhancing safety, and increasing proliferation resistance of future nuclear energy systems. Information on the program

34

International Export Control Cooperation | National Nuclear Security...  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

35

International Exercises | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

36

International Engagement | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

37

International Partners | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

38

International School focused on peaceful uses of nuclear energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

International School focused on peaceful uses of nuclear energy About Director's Welcome Organization Achievements Highlights Fact Sheets, Brochures & Other Documents Multimedia...

39

The Nuclear Revolution, Relative Gains, and International Nuclear Assistance  

E-Print Network (OSTI)

2004. The nuclear fuel cycle: A challenge forhave mastered parts of the nuclear fuel cycle, but have notprovision of fuel-cycle services, in which nuclear capable

Kroenig, Matthew

2006-01-01T23:59:59.000Z

40

The Nuclear Revolution, Relative Gains, and International Nuclear Assistance  

E-Print Network (OSTI)

nature of the nuclear recipients security environment. ThisKeywords: Nuclear weapons proliferation; security; securitynature of the nuclear recipients security environment. This

Kroenig, Matthew

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "international nuclear model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

The Nuclear Revolution, Relative Gains, and International Nuclear Assistance  

E-Print Network (OSTI)

coupled and complex systems like nuclear weapons arsenals.The complex technology required to build nuclear weapons is

Kroenig, Matthew

2006-01-01T23:59:59.000Z

42

NNSA Hosts International Nuclear Forensics Workshop with Participants from  

NLE Websites -- All DOE Office Websites (Extended Search)

Hosts International Nuclear Forensics Workshop with Participants from Hosts International Nuclear Forensics Workshop with Participants from Ten Countries | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > Media Room > Press Releases > NNSA Hosts International Nuclear Forensics Workshop with ... Press Release NNSA Hosts International Nuclear Forensics Workshop with Participants from

43

International Working Group Meeting Focuses on Nuclear Power Infrastructure  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Financing of New Nuclear Projects Financing of New Nuclear Projects International Working Group Meeting Focuses on Nuclear Power Infrastructure Development and Financing of New Nuclear Projects December 15, 2009 - 1:09pm Addthis VIENNA, AUSTRIA - The multi-nation Infrastructure Development Working Group (IDWG) held its fifth meeting and also a workshop on the financing of international nuclear power projects in Vienna, Austria, on December 9-10, 2009. An official from the U.S. Department of Energy (DOE) led the working group meeting. "As a key component of the international Global Nuclear Energy Partnership (GNEP) program, the Infrastructure Development Working Group supports the safe, secure and responsible use of nuclear energy," said Assistant Secretary for Nuclear Energy Warren F. Miller, Jr. "The group

44

International Nuclear Energy Research Initiative: 2012 Annual Report |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

International Nuclear Energy Research Initiative: 2012 Annual International Nuclear Energy Research Initiative: 2012 Annual Report International Nuclear Energy Research Initiative: 2012 Annual Report Nuclear energy represents the single largest carbon-free baseload source of energy in the United States, accounting for nearly 20 percent of the electricity generated and over 60 percent of our low-carbon production. Worldwide, nuclear power generates 14 percent of global electricity. Continually increasing demand for clean energy both domestically and across the globe, combined with research designed to make nuclear power ever-safer and more cost-effective, will keep nuclear in the energy mix for the foreseeable future. U.S. researchers are collaborating with nuclear scientists and engineers around the world to develop new technologies that will lower costs,

45

Other International Nuclear Energy Learning Resources for Home and School -  

NLE Websites -- All DOE Office Websites (Extended Search)

Other International Resources > Part 2 Other International Resources > Part 2 Search Go Home Postdocs Students Student Outreach Resources for Schools U.S.-based International (English) International (Other) Events IGED 2013 Science Careers in Search of Women Girls, choose a career in Nuclear Science and Technology! Argonne Nuclear Engineers tell why they chose a Nuclear Career Resources Contact Us Recent Events Science Careers in Search of Women, Apr. 18, 2013 Junior Girl Scout Workshop 'Atomic Fission Fun with the American Nuclear Society', Jan. 26, 2013 Getting to know nuclear energy: the past, the present & the future - free public lecture (Nov. 15, 2012, Argonne National Laboratory) On January 26, 2013, Argonne staff members participated in the Junior Girl Scout Workshop 'Atomic Fission Fun with the American Nuclear Society'

46

Deputy Secretary Poneman to Attend International Framework for Nuclear  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to Attend International Framework for to Attend International Framework for Nuclear Energy Cooperation Meeting in Jordan Deputy Secretary Poneman to Attend International Framework for Nuclear Energy Cooperation Meeting in Jordan November 3, 2010 - 12:00am Addthis Washington, D.C. - U.S. Deputy Secretary of Energy Daniel Poneman will represent the United States at the International Framework for Nuclear Energy Cooperation (IFNEC) Executive Committee Meeting in Jordan on Thursday, November 4, 2010. The conference aims to advance cooperation among participating states to promote the peaceful use of nuclear energy in a manner that meets high standards of safety, security and nonproliferation. IFNEC developed out of the Global Nuclear Energy Partnership. Last June, the Global Nuclear Energy Partnership Steering Group agreed to transform to

47

International Nuclear Energy Learning Resources for Home and School -  

NLE Websites -- All DOE Office Websites (Extended Search)

Other International Resources Other International Resources Search Go Home Postdocs Students Student Outreach Resources for Schools U.S.-based International (English) International (Other) Events IGED 2013 Science Careers in Search of Women Girls, choose a career in Nuclear Science and Technology! Argonne Nuclear Engineers tell why they chose a Nuclear Career Resources Contact Us Recent Events Science Careers in Search of Women, Apr. 18, 2013 Junior Girl Scout Workshop 'Atomic Fission Fun with the American Nuclear Society', Jan. 26, 2013 Getting to know nuclear energy: the past, the present & the future - free public lecture (Nov. 15, 2012, Argonne National Laboratory) On January 26, 2013, Argonne staff members participated in the Junior Girl Scout Workshop 'Atomic Fission Fun with the American Nuclear Society'

48

The Nuclear Revolution, Relative Gains, and International Nuclear Assistance  

E-Print Network (OSTI)

India and Pakistans unstable peace: Why nuclear South Asiaincludes nuclear powers such as France, Pakistan, and theChina, and Pakistan, may suffer relative losses when nuclear

Kroenig, Matthew

2006-01-01T23:59:59.000Z

49

The Nuclear Revolution, Relative Gains, and International Nuclear Assistance  

E-Print Network (OSTI)

ambitions: The spread of nuclear weapons 1989-1990. Boulder:Determinants of nuclear weapons proliferation. UnpublishedWhy nations forgo nuclear weapons. Montreal: McGill-Queens

Kroenig, Matthew

2006-01-01T23:59:59.000Z

50

The Nuclear Revolution, Relative Gains, and International Nuclear Assistance  

E-Print Network (OSTI)

204. Bhatia, Shyam. 1988. Nuclear rivals in the Middle East.of the merits of selective nuclear proliferation. Journal ofThe Case for a Ukranian nuclear deterrent. Foreign Affairs.

Kroenig, Matthew

2006-01-01T23:59:59.000Z

51

EU signs ITER deal Negotiations on the ITER international nuclear  

E-Print Network (OSTI)

Korea and the US, the agreement aims to develop a project that will test the feasibility of nuclearEU signs ITER deal Negotiations on the ITER international nuclear fusion project have been parties will contribute up to ten per cent. European Greens, fiercely opposed to nuclear energy, have

52

The Nuclear Revolution, Relative Gains, and International Nuclear Assistance  

E-Print Network (OSTI)

nuclear trade and nonproliferation. Lexington, MA: LexingtonA challenge for nonproliferation. Disarmament Diplomacy. (Nuclear Suppliers Group. Nonproliferation Review 1(1):110.

Kroenig, Matthew

2006-01-01T23:59:59.000Z

53

Nuclear physics with internal targets in electron storage rings  

Science Conference Proceedings (OSTI)

Two key experiments in nuclear physics will be discussed in order to illustrate the advantages of the internal target method and demonstrate the power of polarization techniques in electron scattering studies. The progress of internal target experiments will be discussed and the technology of internal polarized target development will be reviewed.

Roy J. Holt

1987-01-01T23:59:59.000Z

54

International Energy Outlook 1999 - Nuclear Power  

Gasoline and Diesel Fuel Update (EIA)

nuclear.jpg (5137 bytes) nuclear.jpg (5137 bytes) Nuclear electricity generation remains flat in the IEO99 reference case, representing a declining share of the world’s total electricity consumption. Net reductions in nuclear capacity are projected for most industrialized nations. In 1997, a total of 2,276 billion kilowatthours of electricity was generated from nuclear power worldwide, providing 17 percent of the world’s electricity generation. Among the countries with operating nuclear power plants, national dependence on nuclear power for electricity varies greatly (Figure 53). Ten countries met at least 40 percent of their total electricity demand with generation from nuclear reactors. The prospects for nuclear power to maintain a significant share of worldwide electricity generation are uncertain, despite projected growth of

55

International Nuclear Energy Research Initiative: 2010 Annual Report |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

10 Annual 10 Annual Report International Nuclear Energy Research Initiative: 2010 Annual Report The International Nuclear Energy Research Initiative (I-NERI) is a research-oriented collaborative program that supports the advancement of nuclear science and technology in the United States and the world. Innovative research performed under the I-NERI umbrella addresses key issues affecting the future use of nuclear energy and its global deployment. The 2010 Nuclear Energy Research and Development Roadmap issued by the U.S. Department of Energy, Office of Nuclear Energy (DOE-NE), identifies these issues as high capital costs, safety, high-level nuclear waste management, and non-proliferation. Projects under the I-NERI program investigate ways to address these challenges and support future nuclear

56

International Framework for Nuclear Energy Cooperation to Hold  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

International Framework for Nuclear Energy Cooperation to Hold International Framework for Nuclear Energy Cooperation to Hold Ministerial-Level Meeting Sept. 29 in Warsaw, Poland International Framework for Nuclear Energy Cooperation to Hold Ministerial-Level Meeting Sept. 29 in Warsaw, Poland September 6, 2011 - 3:23pm Addthis Washington, D.C. - The U.S. Department of Energy today announced that Deputy Secretary of Energy Daniel Poneman will lead the U.S. delegation to the International Framework for Nuclear Energy Cooperation (IFNEC) Executive Committee Meeting on Sept. 29 in Warsaw, Poland. The ministerial-level conference aims to advance cooperation among participating states to support the peaceful use of nuclear energy in a manner that meets high standards of safety, security and nonproliferation. The meeting will also feature video remarks by Microsoft founder Bill

57

Sandia Weapon Intern Program visits KCP | National Nuclear Security  

National Nuclear Security Administration (NNSA)

Weapon Intern Program visits KCP | National Nuclear Security Weapon Intern Program visits KCP | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > Sandia Weapon Intern Program visits KCP Sandia Weapon Intern Program visits KCP Posted By Office of Public Affairs Participants in Sandia's Weapon Intern Program recently visited and

58

International Nuclear Energy Research Initiative: 2009 Annual Report |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9 Annual 9 Annual Report International Nuclear Energy Research Initiative: 2009 Annual Report The International Nuclear Energy Research Initiative (I-NERI) is an international, research-oriented collaboration that supports advancement of nuclear science and technology in the United States and the world. I-NERI promotes bilateral scientific and engineering research and development (R&D) with other nations. Innovative research performed under the I-NERI umbrella addresses key issues affecting the future use of nuclear energy and its global deployment by improving cost performance, enhancing safety, and increasing proliferation resistance of future nuclear energy systems. A link to the program can be found at the U.S. Department of Energy Office of Nuclear Energy website.

59

International Working Group Meeting Focuses on Nuclear Power Infrastructure  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Needs Needs International Working Group Meeting Focuses on Nuclear Power Infrastructure Development and Needs June 2, 2010 - 12:02pm Addthis VIENNA, Austria - The multi-nation Infrastructure Development Working Group (IDWG) of the Global Nuclear Energy Partnership (GNEP) held its sixth meeting on May 26-27, 2010, in Vienna, Austria. The two-day event included workshops on nuclear energy regulatory agency engagement and the infrastructure needs for international nuclear fuel service frameworks. Officials from the U.S. Department of Energy (DOE) and the U.K. Nuclear Decommissioning Authority co-chaired the working group meeting. "As a key component of the international Global Nuclear Energy Partnership program, the Infrastructure Development Working Group focuses

60

International Nuclear Energy Research Initiative: 2008 Annual Report |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8 Annual 8 Annual Report International Nuclear Energy Research Initiative: 2008 Annual Report The International Nuclear Energy Research Initiative (I-NERI) is an international, research-oriented initiative that supports the advancement of nuclear science and technology in the United States and the world. I-NERI promotes bilateral scientific and engineering research and development (R&D) with other nations. Innovative research performed under the I-NERI umbrella addresses key issues affecting the future use of nuclear energy and its global deployment by improving cost performance, enhancing safety, and increasing proliferation resistance of future nuclear energy systems. A link to the program can be found at the U.S. Department of Energy, Office of Nuclear Energy (DOE-NE) website:

Note: This page contains sample records for the topic "international nuclear model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Savannah River Remediation Intern Sees Nuclear Industry as Job Opportunity  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Savannah River Remediation Intern Sees Nuclear Industry as Job Savannah River Remediation Intern Sees Nuclear Industry as Job Opportunity Savannah River Remediation Intern Sees Nuclear Industry as Job Opportunity July 9, 2012 - 10:00am Addthis Spencer Isom, second year engineering intern for Savannah River Remediation (SRR) and fourth summer at Savannah River Site (SRS), performs a standard equipment check at Saltstone Production Facility. | Photo courtesy of Savannah River Site Spencer Isom, second year engineering intern for Savannah River Remediation (SRR) and fourth summer at Savannah River Site (SRS), performs a standard equipment check at Saltstone Production Facility. | Photo courtesy of Savannah River Site Maddie M. Blair Public Affairs Intern, Savannah River Remediation Why does she keep coming back? "There are so many fascinating processes, people, and work

62

Savannah River Remediation Intern Sees Nuclear Industry as Job Opportunity  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Savannah River Remediation Intern Sees Nuclear Industry as Job Savannah River Remediation Intern Sees Nuclear Industry as Job Opportunity Savannah River Remediation Intern Sees Nuclear Industry as Job Opportunity July 9, 2012 - 10:00am Addthis Spencer Isom, second year engineering intern for Savannah River Remediation (SRR) and fourth summer at Savannah River Site (SRS), performs a standard equipment check at Saltstone Production Facility. | Photo courtesy of Savannah River Site Spencer Isom, second year engineering intern for Savannah River Remediation (SRR) and fourth summer at Savannah River Site (SRS), performs a standard equipment check at Saltstone Production Facility. | Photo courtesy of Savannah River Site Maddie M. Blair Public Affairs Intern, Savannah River Remediation Why does she keep coming back? "There are so many fascinating processes, people, and work

63

International Nuclear Energy Learning Resources for Home and School (part  

NLE Websites -- All DOE Office Websites (Extended Search)

3 3 Search Go Home Postdocs Students Student Outreach Resources for Schools U.S.-based International (English) International (Other) Events IGED 2013 Science Careers in Search of Women Girls, choose a career in Nuclear Science and Technology! Argonne Nuclear Engineers tell why they chose a Nuclear Career Resources Contact Us Recent Events Science Careers in Search of Women, Apr. 18, 2013 Junior Girl Scout Workshop 'Atomic Fission Fun with the American Nuclear Society', Jan. 26, 2013 Getting to know nuclear energy: the past, the present & the future - free public lecture (Nov. 15, 2012, Argonne National Laboratory) On January 26, 2013, Argonne staff members participated in the Junior Girl Scout Workshop 'Atomic Fission Fun with the American Nuclear Society' organized by the Chicago Section of the American Nuclear Society. Read the

64

International Nuclear Energy Learning Resources for Home and School (part  

NLE Websites -- All DOE Office Websites (Extended Search)

2 2 Search Go Home Postdocs Students Student Outreach Resources for Schools U.S.-based International (English) International (Other) Events IGED 2013 Science Careers in Search of Women Girls, choose a career in Nuclear Science and Technology! Argonne Nuclear Engineers tell why they chose a Nuclear Career Resources Contact Us Recent Events Science Careers in Search of Women, Apr. 18, 2013 Junior Girl Scout Workshop 'Atomic Fission Fun with the American Nuclear Society', Jan. 26, 2013 Getting to know nuclear energy: the past, the present & the future - free public lecture (Nov. 15, 2012, Argonne National Laboratory) On January 26, 2013, Argonne staff members participated in the Junior Girl Scout Workshop 'Atomic Fission Fun with the American Nuclear Society' organized by the Chicago Section of the American Nuclear Society. Read the

65

International Energy Outlook 2000 - Nuclear Power  

Gasoline and Diesel Fuel Update (EIA)

In the IEO2000 reference case, nuclear power represents a declining share of the world’s total electricity consumption from 1997 through 2020. Plant retirements are expected to produce net reductions in nuclear capacity in most of the industrialized nations. In the IEO2000 reference case, nuclear power represents a declining share of the world’s total electricity consumption from 1997 through 2020. Plant retirements are expected to produce net reductions in nuclear capacity in most of the industrialized nations. In 1998, a total of 2,291 billion kilowatthours of electricity was generated by nuclear power worldwide, providing 16 percent of the world’s total generation[1]. Among the countries with operating nuclear power plants, national dependence on nuclear energy for electricity varies greatly. Nine countries met at least 40 percent of total electricity demand with generation from nuclear reactors. Figure 68. Nuclear Shares of National Electricity Generation, 1998 [Sources] The prospects for nuclear power to maintain a significant share of

66

International Nuclear Energy Policy and Cooperation | Department...  

NLE Websites -- All DOE Office Websites (Extended Search)

this work. Today, nuclear energy represents the single largest source of, carbon-free baseload energy, accounting for nearly 20% of the electricity generated in the United...

67

Statement to the IAEA International Conference on Nuclear Security |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to the IAEA International Conference on Nuclear Security to the IAEA International Conference on Nuclear Security Statement to the IAEA International Conference on Nuclear Security July 1, 2013 - 2:19pm Addthis NEWS MEDIA CONTACT (202) 586-4940 AS PREPARED FOR DELIVERY Secretary of Energy Ernest Moniz U.S. Statement to the IAEA International Conference on Nuclear Security Vienna, Austria Monday, July 1, 2013 I want to acknowledge Director General Amano and the President of the Conference, Foreign Minister Martonyi, for their dedicated efforts in organizing this important conference. I also want to express my gratitude to my fellow ministers for their commitment to the issue at hand and for taking the time to engage personally in this serious discussion. In the past two weeks, President Obama has given major speeches on two of

68

Statement to the IAEA International Conference on Nuclear Security |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Statement to the IAEA International Conference on Nuclear Security Statement to the IAEA International Conference on Nuclear Security Statement to the IAEA International Conference on Nuclear Security July 1, 2013 - 2:19pm Addthis NEWS MEDIA CONTACT (202) 586-4940 AS PREPARED FOR DELIVERY Secretary of Energy Ernest Moniz U.S. Statement to the IAEA International Conference on Nuclear Security Vienna, Austria Monday, July 1, 2013 I want to acknowledge Director General Amano and the President of the Conference, Foreign Minister Martonyi, for their dedicated efforts in organizing this important conference. I also want to express my gratitude to my fellow ministers for their commitment to the issue at hand and for taking the time to engage personally in this serious discussion. In the past two weeks, President Obama has given major speeches on two of

69

International Nuclear Energy Research Initiative: 2011 Annual Report |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1 Annual 1 Annual Report International Nuclear Energy Research Initiative: 2011 Annual Report Fiscal year (FY) 2011 marks the ten-year anniversary of the founding of the International Nuclear Energy Research Initiative, or I-NERI. Designed to foster international partnerships that address key issues affecting the future global use of nuclear energy, I-NERI is perhaps even more relevant today than at its establishment. In the face of increasing energy demands coupled with clean energy imperatives, we must clear the hurdles to expanding the role of nuclear power in our energy portfolio. And in an increasingly global society, the importance of international cooperation in these efforts has escalated. For ten years, I-NERI has been a vehicle for establishing bilateral

70

International Nuclear Energy Research Initiative: 2010 Annual...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

I-NERI promotes bilateral scientific and engineering research and development (R&D) with other nations. U.S. researchers partner with international organizations,...

71

International nuclear fuel cycle fact book. Revision 6  

SciTech Connect

The International Fuel Cycle Fact Book has been compiled in an effort to provide (1) an overview of worldwide nuclear power and fuel cycle programs and (2) current data concerning fuel cycle and waste management facilities, R and D programs and key personnel. Additional information on each country's program is available in the International Source Book: Nuclear Fuel Cycle Research and Development, PNL-2478, Rev. 2.

Harmon, K.M.; Lakey, L.T.; Leigh, I.W.; Jeffs, A.G.

1986-01-01T23:59:59.000Z

72

Assuaging Nuclear Energy Risks: The Angarsk International Uranium Enrichment Center  

Science Conference Proceedings (OSTI)

The recent nuclear renaissance has motivated many countries, especially developing nations, to plan and build nuclear power reactors. However, domestic low enriched uranium demands may trigger nations to construct indigenous enrichment facilities, which could be redirected to fabricate high enriched uranium for nuclear weapons. The potential advantages of establishing multinational uranium enrichment sites are numerous including increased low enrichment uranium access with decreased nuclear proliferation risks. While multinational nuclear initiatives have been discussed, Russia is the first nation to actualize this concept with their Angarsk International Uranium Enrichment Center (IUEC). This paper provides an overview of the historical and modern context of the multinational nuclear fuel cycle as well as the evolution of Russia's IUEC, which exemplifies how international fuel cycle cooperation is an alternative to domestic facilities.

Myers, Astasia [Stanford University, Stanford, CA 94305, USA and MonAme Scientific Research Center, Ulaanbaatar (Mongolia)

2011-06-28T23:59:59.000Z

73

International Nuclear Energy Research Initiative 2010 Annual Report  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2010 I-NERI Annual Report 2010 I-NERI Annual Report  | i Foreword The U.S. Department of Energy, Office of Nuclear Energy (DOE-NE), established the International Nuclear Energy Research Initiative (I-NERI) in fiscal year (FY) 2001 to conduct advanced nuclear energy systems research in collaboration with international partners. This annual report provides an update on research and development (R&D) accomplishments which the I-NERI program achieved during FY 2010. I-NERI supports bilateral scientific and engineering collaboration in advanced reactor systems and the nuclear fuel cycle and is linked to two of DOE-NE's primary research programs: Reactor Concepts Research, Development and Demonstration and the Fuel Cycle Research and Development program. I-NERI is designed to foster international partnerships to address key issues

74

International nuclear fuel cycle fact book  

Science Conference Proceedings (OSTI)

As the US Department of Energy (DOE) and DOE contractors have become increasingly involved with other nations in nuclear fuel cycle and waste management cooperative activities, a need has developed for a ready source or information concerning foreign fuel cycle programs, facilities, and personnel. This Fact Book was compiled to meet that need. The information contained has been obtained from nuclear trade journals and newsletters; reports of foreign visits and visitors; CEC, IAEA, and OECD/NEA activities reports; proceedings of conferences and workshops; and so forth. Sources do not agree completely with each other, and the data listed herein does not reflect any one single source but frequently is consolidation/combination of information. Lack of space as well as the intent and purpose of the Fact Book limit the given information to that pertaining to the Nuclear Fuel Cycle and to data considered of primary interest or most helpful to the majority of users.

Leigh, I.W.

1988-01-01T23:59:59.000Z

75

International Framework for Nuclear Energy Cooperation to Hold  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Framework for Nuclear Energy Cooperation to Hold Framework for Nuclear Energy Cooperation to Hold Ministerial-Level Meeting Sept. 29 in Warsaw, Poland International Framework for Nuclear Energy Cooperation to Hold Ministerial-Level Meeting Sept. 29 in Warsaw, Poland September 6, 2011 - 3:10pm Addthis Washington, D.C. - The U.S. Department of Energy today announced that Deputy Secretary of Energy Daniel Poneman will lead the U.S. delegation to the International Framework for Nuclear Energy Cooperation (IFNEC) Executive Committee Meeting on Sept. 29 in Warsaw, Poland. The ministerial-level conference aims to advance cooperation among participating states to support the peaceful use of nuclear energy in a manner that meets high standards of safety, security and nonproliferation. The meeting will also feature video remarks by Microsoft founder Bill

76

International Nuclear Energy Research Initiative: Annual Report 2005 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5 5 International Nuclear Energy Research Initiative: Annual Report 2005 The International Nuclear Energy Research Initiative (I-NERI) supports the National Energy Policy by conducting research to advance the state of nuclear science and technology in the United States. I-NERI sponsors innovative scientific and engineering research and development (R&D) in cooperation with participating countries. The research performed under the I-NERI umbrella addresses the key issues affecting the future of nuclear energy and its global deployment. I-NERI research is directed towards improving cost performance, increasing proliferation resistance, enhancing safety, and improving the waste management of future nuclear energy systems. This I-NERI 2005 Annual Report serves to inform interested parties about

77

International Nuclear Fuel Cycle Fact Book. Revision 5  

SciTech Connect

This Fact Book has been compiled in an effort to provide: (1) an overview of worldwide nuclear power and fuel cycle programs; and (2) current data concerning fuel cycle and waste management facilities, R and D programs, and key personnel in countries other than the United States. Additional information on each country's program is available in the International Source Book: Nuclear Fuel Cycle Research and Development, PNL-2478, Rev. 2. The Fact Book is organized as follows: (1) Overview section - summary tables which indicate national involvement in nuclear reactor, fuel cycle, and waste management development activities; (2) national summaries - a section for each country which summarizes nuclear policy, describes organizational relationships and provides addresses, names of key personnel, and facilities information; (3) international agencies - a section for each of the international agencies which has significant fuel cycle involvement; (4) energy supply and demand - summary tables, including nuclear power projections; (5) fuel cycle - summary tables; and (6) travel aids international dialing instructions, international standard time chart, passport and visa requirements, and currency exchange rate.

Harmon, K.M.; Lakey, L.T.; Leigh, I.W.; Jeffs, A.G.

1985-01-01T23:59:59.000Z

78

International nuclear fuel cycle fact book. Revision 4  

SciTech Connect

This Fact Book has been compiled in an effort to provide (1) an overview of worldwide nuclear power and fuel cycle programs and (2) current data concerning fuel cycle and waste management facilities, R and D programs, and key personnel in countries other than the United States. Additional information on each country's program is available in the International Source Book: Nuclear Fuel Cycle Research and Development, PNL-2478, Rev. 2. The Fact Book is organized as follows: (1) Overview section - summary tables which indicate national involvement in nuclear reactor, fuel cycle, and waste management development activities; (2) national summaries - a section for each country which summarizes nuclear policy, describes organizational relationships and provides addresses, names of key personnel, and facilities information; (3) international agencies - a section for each of the international agencies which has significant fuel cycle involvement; (4) energy supply and demand - summary tables, including nuclear power projections; (5) fuel cycle - summary tables; and (6) travel aids - international dialing instructions, international standard time chart, passport and visa requirements, and currency exchange rate.

Harmon, K.M.; Lakey, L.T.; Leigh, I.W.

1984-03-01T23:59:59.000Z

79

International Nuclear Energy Research Initiative: 2012 Annual Report |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2 Annual 2 Annual Report International Nuclear Energy Research Initiative: 2012 Annual Report Nuclear energy represents the single largest carbon-free baseload source of energy in the United States, accounting for nearly 20 percent of the electricity generated and over 60 percent of our low-carbon production. Worldwide, nuclear power generates 14 percent of global electricity. Continually increasing demand for clean energy both domestically and across the globe, combined with research designed to make nuclear power ever-safer and more cost-effective, will keep nuclear in the energy mix for the foreseeable future. U.S. researchers are collaborating with nuclear scientists and engineers around the world to develop new technologies that will lower costs, maximize safety, minimize proliferation risk, and handle used fuel and

80

ICENES '91:Sixth international conference on emerging nuclear energy systems  

DOE Green Energy (OSTI)

This document contains the program and abstracts of the sessions at the Sixth International Conference on Emerging Nuclear Energy Systems held June 16--21, 1991 at Monterey, California. These sessions included: The plenary session, fission session, fission and nonelectric session, poster session 1P; (space propulsion, space nuclear power, electrostatic confined fusion, fusion miscellaneous, inertial confinement fusion, [mu]-catalyzed fusion, and cold fusion); Advanced fusion session, space nuclear session, poster session 2P, (nuclear reactions/data, isotope separation, direct energy conversion and exotic concepts, fusion-fission hybrids, nuclear desalting, accelerator waste-transmutation, and fusion-based chemical recycling); energy policy session, poster session 3P (energy policy, magnetic fusion reactors, fission reactors, magnetically insulated inertial fusion, and nuclear explosives for power generation); exotic energy storage and conversion session; and exotic energy storage and conversion; review and closing session.

Not Available

1991-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "international nuclear model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

International nuclear fuel cycle fact book: Revision 9  

Science Conference Proceedings (OSTI)

The International Nuclear Fuel Cycle Fact Book has been compiled in an effort to provide current data concerning fuel cycle and waste management facilities, R and D programs and key personnel. The Fact Book contains: national summaries in which a section for each country which summarizes nuclear policy, describes organizational relationships and provides addresses, names of key personnel, and facilities information; and international agencies in which a section for each of the international agencies which has significant fuel cycle involvement, and a listing of nuclear societies. The national summaries, in addition to the data described above, feature a small map for each country as well as some general information. The latter is presented from the perspective of the Fact Book user in the United States.

Leigh, I.W.

1989-01-01T23:59:59.000Z

82

Nuclear models on a lattice  

E-Print Network (OSTI)

We present the first results of a quantum field approach to nuclear models obtained by lattice techniques. Renormalization effects for fermion mass and coupling constant in case of scalar and pseudoscalar interaction lagrangian densities are discussed.

F. De Soto; J. Carbonell; C. Roiesnel; Ph. Boucaud; J. P. Leroy; O. Pene

2005-11-04T23:59:59.000Z

83

International Nuclear Energy Research Initiative: Annual Report 2006 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6 6 International Nuclear Energy Research Initiative: Annual Report 2006 The International Nuclear Energy Research Initiative (I-NERI) supports the National Energy Policy by conducting research to advance the state of nuclear science and technology in the United States. I-NERI sponsors innovative scientific and engineering research and development (R&D) in cooperation with participating countries. The research performed under the I-NERI umbrella addresses key issues affecting the future of nuclear energy and its global deployment. A link to the program can be found at the NE website. This I-NERI 2006 Annual Report serves to inform interested parties about the program's organization, progress of collaborative research projects undertaken since FY 2003, and future plans for the program. Following is an

84

Waste Form Performance Modeling [Nuclear Waste Management using...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

85

Unit Process Modeling [Nuclear Waste Management using Electrometallurg...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

86

Status and Value of International Standards for Nuclear Criticality Safety  

SciTech Connect

This presentation provides an update to the author's standards report provided at the ICNC-2007 meeting. It includes a discussion about the difference between, and the value of participating in, the development of international 'consensus' standards as opposed to nonconsensus standards. Standards are developed for a myriad of reasons. Generally, standards represent an agreed upon, repeatable way of doing something as defined by an individual or group of people. They come in various types. Examples include personal, family, business, industrial, commercial, and regulatory such as military, community, state, federal, and international standards. Typically, national and international 'consensus' standards are developed by individuals and organizations of diverse backgrounds representing the subject matter users and developers of a service or product and other interested parties or organizations. Within the International Organization for Standardization (ISO), Technical Committee 85 (TC85) on nuclear energy, Subcommittee 5 (SC5) on nuclear fuel technology, there is a Working Group 8 (WG8) on standardization of calculations, procedures, and practices related to criticality safety. WG8 has developed, and is developing, ISO standards within the category of nuclear criticality safety of fissionable materials outside of reactors (i.e., nonreactor fissionable material nuclear fuel cycle facilities). Since the presentation of the ICNC-2007 report, WG8 has issued three new finalized international standards and is developing two more new standards. Nearly all elements of the published WG8 ISO standards have been incorporated into IAEA nonconsensus guides and standards. The progression of consensus standards development among international partners in a collegial environment establishes a synergy of different concepts that broadens the perspectives of the members. This breadth of perspectives benefits the working group members in their considerations of consensus standards developments in their own countries. A testament to the value of the international standards efforts is that nearly all elements of the published WG8 ISO standards have been incorporated into IAEA nonconsensus guides and standards and are mainly consistent with international ISO member domestic standards.

Hopper, Calvin Mitchell [ORNL

2011-01-01T23:59:59.000Z

87

Applicability of High-Density Polyethylene in Nuclear Piping Systems with Internal Radionuclides  

Science Conference Proceedings (OSTI)

This report serves as a preliminary evaluation on the long-term impact of radiation on high-density polyethylene (HDPE) piping for nuclear power plant applications. A short literature review is provided on the impact of radiation on HDPE material, followed by a Monte Carlo N-Particle (MCNP) model of internal radiation exposure from radionuclides commonly encountered at nuclear power facilities. Ultimately, this work seeks to provide guidance on the applicability of HDPE piping in radioactive ...

2013-05-16T23:59:59.000Z

88

Fuzzy techniques and internal models for sensors  

Science Conference Proceedings (OSTI)

The paper proposes a new architecture for a sensor with data fusion and internal model estimators. Fuzzy logic is used as an effective tool for data processing. The fusion process of information conducts to the improvement of the measurements accuracy. ... Keywords: fuzzy logic, fuzzy-interpolative, information fusion, internal model, smart sensor, uncertainty

Valentina E. Balas

2009-03-01T23:59:59.000Z

89

INTERNATIONAL CO-OPERATION IN NUCLEAR DATA EVALUATION  

SciTech Connect

The OECD Nuclear Energy Agency (NEA) is organising a co-operation between the major nuclear data evaluation projects in the world. The co-operation involves the ENDF, JEFF, and JENDL projects, and, owing to the collaboration with the International Atomic Energy Agency (IAEA), also the Russian RUSFOND and the Chinese CENDL projects. The Working Party on international nuclear data Evaluation Cooperation (WPEC), comprised of about 20 core members, manages this co-operation and meets annually to discuss progress in each evaluation project and also related experimental activities. The WPEC assesses common needs for nuclear data improvements and these needs are then addressed by initiating joint evaluation efforts. The work is performed in specially established subgroups, consisting of experts from the participating evaluation projects. The outcome of these subgroups is published in reports, issued by the NEA. Current WPEC activities comprise for example a number of studies related to nuclear data uncertainties, including a review of methods for the combined use of integral experiments and covariance data, as well as evaluations of some of the major actinides, such as {sup 235}U and {sup 239}Pu. This paper gives an overview of current and planned activities within the WPEC.

Herman, M.; Katakura,J.; Koning,A.; Nordborg,C.

2010-04-30T23:59:59.000Z

90

Preparation of nuclear fuel spheres by flotation-internal gelation  

DOE Patents (OSTI)

A simplified internal gelation process for the preparation of gel spheres of nuclear fuels. The process utilizes perchloroethylene as a gelation medium. Gelation is accomplished by directing droplets of a nuclear fuel broth into a moving volume of hot perchloroethylene (about 85.degree. C.) in a trough. Gelation takes place as the droplets float on the surface of the perchloroethylene and the resultant gel spheres are carried directly into an ager column which is attached to the trough. The aged spheres are disengaged from the perchloroethylene on a moving screen and are deposited in an aqueous wash column.

Haas, Paul A. (Knoxville, TN); Fowler, Victor L. (Oak Ridge, TN); Lloyd, Milton H. (Oak Ridge, TN)

1987-01-01T23:59:59.000Z

91

Preparation of nuclear fuel spheres by flotation-internal gelation  

DOE Patents (OSTI)

A simplified internal gelation process is claimed for the preparation of gel spheres of nuclear fuels. The process utilizes perchloroethylene as a gelation medium. Gelation is accomplished by directing droplets of a nuclear fuel broth into a moving volume of hot perchloroethylene (about 85/sup 0/C) in a trough. Gelation takes place as the droplets float on the surface of the perchloroethylene and the resultant gel spheres are carried directly into an ager column which is attached to the trough. The aged spheres are disengaged from the perchloroethylene on a moving screen and are deposited in an aqueous wash column. 3 figs.

Haas, P.A.; Fowler, V.L.; Lloyd, M.H.

1984-12-21T23:59:59.000Z

92

Status and Value of International Standards for Nuclear Criticality Safety  

SciTech Connect

This presentation provides an update to the author's standards report provided at the ICNC-2007 meeting. It includes a discussion about the difference between, and the value of participating in, the development of international 'consensus' standards as opposed to nonconsensus standards. Standards are developed for a myriad of reasons. Generally, standards represent an agreed upon, repeatable way of doing something as defined by an individual or group of people. They come in various types. Examples include personal, family, business, industrial, commercial, and regulatory such as military, community, state, federal, and international standards. Typically, national and international 'consensus' standards are developed by individuals and organizations of diverse backgrounds representing the subject matter users and developers of a service or product and other interested parties or organizations. Within the International Organization for Standardization (ISO), Technical Committee 85 (TC85) on nuclear energy, Subcommittee 5 (SC5) on nuclear fuel technology, there is a Working Group 8 (WG8) on standardization of calculations, procedures, and practices related to criticality safety. WG8 has developed, and is developing, ISO standards within the category of nuclear criticality safety of fissionable materials outside of reactors (i.e., nonreactor fissionable material nuclear fuel cycle facilities). Since the presentation of the ICNC-2007 report, WG8 has issued three new finalized international standards and is developing two more new standards. Nearly all elements of the published WG8 ISO standards have been incorporated into IAEA nonconsensus guides and standards. The progression of consensus standards development among international partners in a collegial environment establishes a synergy of different concepts that broadens the perspectives of the members. This breadth of perspectives benefits the working group members in their considerations of consensus standards developments in their own countries. A testament to the value of the international standards efforts is that nearly all elements of the published WG8 ISO standards have been incorporated into IAEA nonconsensus guides and standards and are mainly consistent with international ISO member domestic standards.

Hopper, Calvin Mitchell [ORNL

2011-01-01T23:59:59.000Z

93

Modeling International Relationships in Applied General Equilibrium  

Open Energy Info (EERE)

Modeling International Relationships in Applied General Equilibrium Modeling International Relationships in Applied General Equilibrium (MIRAGE) Jump to: navigation, search LEDSGP green logo.png FIND MORE DIA TOOLS This tool is part of the Development Impacts Assessment (DIA) Toolkit from the LEDS Global Partnership. Tool Summary LAUNCH TOOL Name: Modeling International Relationships in Applied General Equilibrium (MIRAGE) Agency/Company /Organization: International Food Policy Research Institute, Centre d'Etudes Prospectives et d'Informations Internationales (CEPII) Focus Area: Economic Development Topics: Co-benefits assessment, - Macroeconomic Resource Type: Software/modeling tools User Interface: Desktop Application Complexity/Ease of Use: Moderate Website: www.ifpri.org/book-5076/ourwork/program/mirage-model RelatedTo: Global Trade Analysis Project (GTAP) Data Base

94

Trojan Nuclear Power Plant Reactor Vessel and Internals Removal: Trojan Nuclear Plant Decommissioning Experience  

Science Conference Proceedings (OSTI)

One goal of the EPRI Decommissioning Technology Program is to capture the growing utility experience in nuclear plant decommissioning activities for the benefit of other utilities facing similar challenges in the future. This report provides historical information on the background, scope, organization, schedule, cost, contracts, and support activities associated with the Trojan Nuclear Plant Reactor Vessel and Internals Removal (RVAIR) Project. Also discussed are problems, successes, and lessons learned...

2000-10-16T23:59:59.000Z

95

Nuclear safety research collaborations between the U.S. and Russian Federation International Nuclear Safety Centers  

SciTech Connect

The Russian Federation Ministry for Atomic Energy (MINATOM) and the US Department of Energy (USDOE) have formed International Nuclear Safety Centers to collaborate on nuclear safety research. USDOE established the US Center (ISINSC) at Argonne National Laboratory (ANL) in October 1995. MINATOM established the Russian Center (RINSC) at the Research and Development Institute of Power Engineering (RDIPE) in Moscow in July 1996. In April 1998 the Russian center became a semi-independent, autonomous organization under MINATOM. The goals of the center are to: Cooperate in the development of technologies associated with nuclear safety in nuclear power engineering; Be international centers for the collection of information important for safety and technical improvements in nuclear power engineering; and Maintain a base for fundamental knowledge needed to design nuclear reactors. The strategic approach is being used to accomplish these goals is for the two centers to work together to use the resources and the talents of the scientists associated with the US Center and the Russian Center to do collaborative research to improve the safety of Russian-designed nuclear reactors. The two centers started conducting joint research and development projects in January 1997. Since that time the following ten joint projects have been initiated: INSC databases--web server and computing center; Coupled codes--Neutronic and thermal-hydraulic; Severe accident management for Soviet-designed reactors; Transient management and advanced control; Survey of relevant nuclear safety research facilities in the Russian Federation; Computer code validation for transient analysis of VVER and RBMK reactors; Advanced structural analysis; Development of a nuclear safety research and development plan for MINATOM; Properties and applications of heavy liquid metal coolants; and Material properties measurement and assessment. Currently, there is activity in eight of these projects. Details on each of these joint projects are given.

Hill, D. J.; Braun, J. C.; Klickman, A. E.; Bougaenko, S. E.; Kabonov, L. P.; Kraev, A. G.

2000-05-05T23:59:59.000Z

96

Joint nuclear safety research projects between the US and Russian Federation International Nuclear Safety Centers  

SciTech Connect

The Russian Federation Ministry for Atomic Energy (MINATOM) and the US Department of Energy (USDOE) formed international Nuclear Safety Centers in October 1995 and July 1996, respectively, to collaborate on nuclear safety research. Since January 1997, the two centers have initiated the following nine joint research projects: (1) INSC web servers and databases; (2) Material properties measurement and assessment; (3) Coupled codes: Neutronic, thermal-hydraulic, mechanical and other; (4) Severe accident management for Soviet-designed reactors; (5) Transient management and advanced control; (6) Survey of relevant nuclear safety research facilities in the Russian Federation; (8) Advanced structural analysis; and (9) Development of a nuclear safety research and development plan for MINATOM. The joint projects were selected on the basis of recommendations from two groups of experts convened by NEA and from evaluations of safety impact, cost, and deployment potential. The paper summarizes the projects, including the long-term goals, the implementing strategy and some recent accomplishments for each project.

Bougaenko, S.E.; Kraev, A.E. [International Nuclear Safety Center of the Russian MINATOM, Moscow (Russian Federation); Hill, D.L.; Braun, J.C.; Klickman, A.E. [Argonne National Lab., IL (United States). International Nuclear Safety Center

1998-08-01T23:59:59.000Z

97

Nuclear Systems Modeling and Design Analysis - Nuclear Engineering Division  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Systems Nuclear Systems Modeling and Design Analysis CAPABILITIES Overview Nuclear Systems Modeling and Design Analysis Nuclear Systems Technologies Risk and Safety Assessments Nonproliferation and National Security Materials Testing Engineering Computation & Design Engineering Experimentation Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Celebrating the 70th Anniversary of Chicago Pile 1 (CP-1) Argonne OutLoud on Nuclear Energy Argonne Energy Showcase 2012 Capabilities Nuclear Systems Modeling and Design Analysis Bookmark and Share Reactor Physics and Fuel Cycle Analysis Reactor Physics and Fuel Cycle Analysis We have played a major role in the design and analysis of most existing and past reactor types and of many

98

The international nuclear non-proliferation system: Challenges and choices  

SciTech Connect

When a topic has been under discussion for almost 40 years there is a danger that the literature will become excessively esoteric and that, as Philip Grummett suggests, '...a new scholasticism will arise' (p.79). Originating in a November l982 seminar co-sponsored by the British International Studies Association and the Foreign and Commonwealth Office, this volume is a refreshing, well conceived, and well written antidote to that trend. It is also well timed for the 1985 NPT Review Conference. The eight chapters of the volume are divided into three sections. Following an introduction by Anthony McGrew that touches on all the major themes of the volume, the first section deals with the existing non-proliferation system. In three chapters the historical, institutional and policy-making elements of the present system are outlined. There is a vignette on the Nuclear Suppliers Group in Wilmshurst's chapter one (pp. 28-33). Fischer's informative chapter on the IAEA is followed by Gummett's examination of policy options, including, for example, the linking of conventional weapons transfer to non-proliferation policies. The second section, also of three chapters, examines current issues: the state of the international nuclear industry, and the non-proliferation policies of the United States and Britain. Walker's chapter focuses chiefly on change in the industry-from monopoly to pluralism in suppliers, the effect of the economic recession, and the combined effect of these two factors on international politics. Devine's American non-proliferation chapter is a statement of the State Department view, whilst Keohane's chapter on Britain attempts to put the Trident procurement into a proliferation context. The British chapter is present because of ethnocentric considerations.

Simpson, J.; McGrew, A.G.

1984-01-01T23:59:59.000Z

99

PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUCLEAR PHYSICS  

E-Print Network (OSTI)

Phys. A278 (1977) 387. NUCLEAR FISSION INDUCED BY ATOMICand J.R. Huizenga, in Nuclear Fission (Academic Press, Newvery soft nuclei, nuclear fission and heavy ion reactions.

Saxon, D.S.

2010-01-01T23:59:59.000Z

100

A logical model of private international law  

Science Conference Proceedings (OSTI)

We provide a logical analysis of private international law, the body of law establishing when courts of a country should decide a case (jurisdiction) and what legal system they should apply to this purpose (choice of law). A formal model of the resulting ...

Phan Minh Dung; Giovanni Sartor

2010-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "international nuclear model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Ira Helfand, MD International Physicians for the Prevention of Nuclear War  

E-Print Network (OSTI)

of studies have shown that a limited, regional nuclear war between India and Pakistan would cause significantIra Helfand, MD International Physicians for the Prevention of Nuclear War Physicians for Social Responsibility NUCLEAR FAMINE: A BILLION PEOPLE AT RISK Global Impacts of Limited Nuclear War on Agriculture

Robock, Alan

102

Redundancy of Supply in the International Nuclear Fuel Fabrication Market: Are Fabrication Services Assured?  

SciTech Connect

For several years, Pacific Northwest National Laboratory (PNNL) has been assessing the reliability of nuclear fuel supply in support of the U.S. Department of Energy/National Nuclear Security Administration. Three international low enriched uranium reserves, which are intended back up the existing and well-functioning nuclear fuel market, are currently moving toward implementation. These backup reserves are intended to provide countries credible assurance that of the uninterrupted supply of nuclear fuel to operate their nuclear power reactors in the event that their primary fuel supply is disrupted, whether for political or other reasons. The efficacy of these backup reserves, however, may be constrained without redundant fabrication services. This report presents the findings of a recent PNNL study that simulated outages of varying durations at specific nuclear fuel fabrication plants. The modeling specifically enabled prediction and visualization of the reactors affected and the degree of fuel delivery delay. The results thus provide insight on the extent of vulnerability to nuclear fuel supply disruption at the level of individual fabrication plants, reactors, and countries. The simulation studies demonstrate that, when a reasonable set of qualification criteria are applied, existing fabrication plants are technically qualified to provide backup fabrication services to the majority of the world's power reactors. The report concludes with an assessment of the redundancy of fuel supply in the nuclear fuel market, and a description of potential extra-market mechanisms to enhance the security of fuel supply in cases where it may be warranted. This report is an assessment of the ability of the existing market to respond to supply disruptions that occur for technical reasons. A forthcoming report will address political disruption scenarios.

Seward, Amy M.; Toomey, Christopher; Ford, Benjamin E.; Wood, Thomas W.; Perkins, Casey J.

2011-11-14T23:59:59.000Z

103

International Nuclear Energy Learning Resources for Home and...  

NLE Websites -- All DOE Office Websites (Extended Search)

'Atomic Fission Fun with the American Nuclear Society', Jan. 26, 2013 Getting to know nuclear energy: the past, the present & the future - free public lecture (Nov. 15, 2012,...

104

Application of nuclear models to neutron nuclear cross section calculations  

Science Conference Proceedings (OSTI)

Nuclear theory is used increasingly to supplement and extend the nuclear data base that is available for applied studies. Areas where theoretical calculations are most important include the determination of neutron cross sections for unstable fission products and transactinide nuclei in fission reactor or nuclear waste calculations and for meeting the extensive dosimetry, activation, and neutronic data needs associated with fusion reactor development, especially for neutron energies above 14 MeV. Considerable progress has been made in the use of nuclear models for data evaluation and, particularly, in the methods used to derive physically meaningful parameters for model calculations. Theoretical studies frequently involve use of spherical and deformed optical models, Hauser-Feshbach statistical theory, preequilibrium theory, direct-reaction theory, and often make use of gamma-ray strength function models and phenomenological (or microscopic) level density prescriptions. The development, application, and limitations of nuclear models for data evaluation are discussed, with emphasis on the 0.1 to 50 MeV energy range. (91 references).

Young, P.G.

1982-01-01T23:59:59.000Z

105

Nuclear talks in Austria International representatives will meet in Vienna on Saturday to discuss a  

E-Print Network (OSTI)

Nuclear talks in Austria International representatives will meet in Vienna on Saturday to discuss a controversial nuclear fusion plan. The technical meeting of experts is intended to pave the way of nuclear fusion say it provides an attractive long-term energy option, because the basic materials needed

106

Modeling Nuclear Fuels with a Combined Potts-Phase Field Model  

Science Conference Proceedings (OSTI)

Symposium, Materials Science Challenges for Nuclear Applications. Presentation Title, Modeling Nuclear Fuels with a Combined Potts-Phase Field Model.

107

Internal shocks model for microquasar jets  

E-Print Network (OSTI)

We present an internal shocks model to investigate particle acceleration and radiation production in microquasar jets. The jet is modelled with discrete ejecta at various time intervals. These ejecta (or 'shells') may have different properties including the bulk velocity. Faster shells can catch up and collide with the slower ones, thus giving rise to shocks. The particles are accelerated inside the shocked plasma. Each collision results in a new shell, which may take part in any subsequent collisions as well as radiate due to synchrotron radiation. Almost continuous energy dissipation along the jet can be obtained with a large number of shell collisions. We investigate the spectral energy distribution of such jets as well as the physical significance of various parameters (e.g. the time interval between ejections and the shell size).

Omar Jamil; Rob Fender; Christian Kaiser

2008-11-20T23:59:59.000Z

108

PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUCLEAR PHYSICS  

E-Print Network (OSTI)

Energy Academla Slniea, Beijing, China We use nuclear field theory (nuclear theories ) and are of interest in connection with the understanding of Coulomb displacement energies.theory that accounts f o r the known bulk properties of nuclear matter, i t s saturation energy

Saxon, D.S.

2010-01-01T23:59:59.000Z

109

International Energy Module of the National Energy Modeling System ...  

U.S. Energy Information Administration (EIA)

International Energy Module of the National Energy Modeling System Model Documentation 2012 November 2012 . Independent Statistics & Analysis . www.eia.gov

110

Safeguards Guidance Document for Designers of Commercial Nuclear Facilities: International Nuclear Safeguards Requirements and Practices For Uranium Enrichment Plants  

Science Conference Proceedings (OSTI)

This report is the second in a series of guidelines on international safeguards requirements and practices, prepared expressly for the designers of nuclear facilities. The first document in this series is the description of generic international nuclear safeguards requirements pertaining to all types of facilities. These requirements should be understood and considered at the earliest stages of facility design as part of a new process called Safeguards-by-Design. This will help eliminate the costly retrofit of facilities that has occurred in the past to accommodate nuclear safeguards verification activities. The following summarizes the requirements for international nuclear safeguards implementation at enrichment plants, prepared under the Safeguards by Design project, and funded by the U.S. Department of Energy (DOE) National Nuclear Security Administration (NNSA), Office of NA-243. The purpose of this is to provide designers of nuclear facilities around the world with a simplified set of design requirements and the most common practices for meeting them. The foundation for these requirements is the international safeguards agreement between the country and the International Atomic Energy Agency (IAEA), pursuant to the Treaty on the Non-proliferation of Nuclear Weapons (NPT). Relevant safeguards requirements are also cited from the Safeguards Criteria for inspecting enrichment plants, found in the IAEA Safeguards Manual, Part SMC-8. IAEA definitions and terms are based on the IAEA Safeguards Glossary, published in 2002. The most current specification for safeguards measurement accuracy is found in the IAEA document STR-327, International Target Values 2000 for Measurement Uncertainties in Safeguarding Nuclear Materials, published in 2001. For this guide to be easier for the designer to use, the requirements have been restated in plainer language per expert interpretation using the source documents noted. The safeguards agreement is fundamentally a legal document. As such, it is written in a legalese that is understood by specialists in international law and treaties, but not by most outside of this field, including designers of nuclear facilities. For this reason, many of the requirements have been simplified and restated. However, in all cases, the relevant source document and passage is noted so that readers may trace the requirement to the source. This is a helpful living guide, since some of these requirements are subject to revision over time. More importantly, the practices by which the requirements are met are continuously modernized by the IAEA and nuclear facility operators to improve not only the effectiveness of international nuclear safeguards, but also the efficiency. As these improvements are made, the following guidelines should be updated and revised accordingly.

Robert Bean; Casey Durst

2009-10-01T23:59:59.000Z

111

The 11th International Topical Meeting on Nuclear Thermal-Hydraulics (NURETH-11) Popes' Palace Conference Center, Avignon, France, October 2-6, 2005  

E-Print Network (OSTI)

in the simulation of the coolant flow in a nuclear reactor. In order to better understand their role in the genericThe 11th International Topical Meeting on Nuclear Thermal-Hydraulics (NURETH-11) Popes' Palace. This is the case, for instance, for the modelling of the coolant flow in a Pressurized Water Reactor. In the frame

Chalons, Christophe

112

NUCLEAR ENERGY SYSTEM COST MODELING  

Science Conference Proceedings (OSTI)

The U.S. Department of Energys Fuel Cycle Technologies (FCT) Program is preparing to perform an evaluation of the full range of possible Nuclear Energy Systems (NES) in 2013. These include all practical combinations of fuels and transmuters (reactors and sub-critical systems) in single and multi-tier combinations of burners and breeders with no, partial, and full recycle. As part of this evaluation, Levelized Cost of Electricity at Equilibrium (LCAE) ranges for each representative system will be calculated. To facilitate the cost analyses, the 2009 Advanced Fuel Cycle Cost Basis Report is being amended to provide up-to-date cost data for each step in the fuel cycle, and a new analysis tool, NE-COST, has been developed. This paper explains the innovative Island approach used by NE-COST to streamline and simplify the economic analysis effort and provides examples of LCAE costs generated. The Island approach treats each transmuter (or target burner) and the associated fuel cycle facilities as a separate analysis module, allowing reuse of modules that appear frequently in the NES options list. For example, a number of options to be screened will include a once-through uranium oxide (UOX) fueled light water reactor (LWR). The UOX LWR may be standalone, or may be the first stage in a multi-stage system. Using the Island approach, the UOX LWR only needs to be modeled once and the module can then be reused on subsequent fuel cycles. NE-COST models the unit operations and life cycle costs associated with each step of the fuel cycle on each island. This includes three front-end options for supplying feedstock to fuel fabrication (mining/enrichment, reprocessing of used fuel from another island, and/or reprocessing of this islands used fuel), along with the transmuter and back-end storage/disposal. Results of each island are combined based on the fractional energy generated by each islands in an equilibrium system. The cost analyses use the probability distributions of key parameters and employs Monte Carlo sampling to arrive at an islands cost probability density function (PDF). When comparing two NES to determine delta cost, strongly correlated parameters can be cancelled out so that only the differences in the systems contribute to the relative cost PDFs. For example, one comparative analysis presented in the paper is a single stage LWR-UOX system versus a two-stage LWR-UOX to LWR-MOX system. In this case, the first stage of both systems is the same (but with different fractional energy generation), while the second stage of the UOX to MOX system uses the same type transmuter but the fuel type and feedstock sources are different. In this case, the cost difference between systems is driven by only the fuel cycle differences of the MOX stage.

Francesco Ganda; Brent Dixon

2012-09-01T23:59:59.000Z

113

Adjusting Internal Model Errors through Ocean State Estimation  

Science Conference Proceedings (OSTI)

Oceanic state estimation is a powerful tool to estimate internal model parameters simultaneously with the models initial conditions and surface forcing field that jointly would bring a model into consistency with time-varying large-scale ocean ...

Detlef Stammer

2005-06-01T23:59:59.000Z

114

Developments in Nuclear Waste Forms: University/International ...  

Science Conference Proceedings (OSTI)

Symposium, Materials for Nuclear Waste Disposal and Environmental Cleanup ... to proceed albeit with even greater care over security and safety aspects.

115

PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUCLEAR PHYSICS  

E-Print Network (OSTI)

ture in nuclear reactions induced by deuteron. Ve tried tonuclear matter la practically impossible for a simple p wave coupling. But If ve

Saxon, D.S.

2010-01-01T23:59:59.000Z

116

Heat Transfer Modeling of Dry Spent Nuclear Fuel Storage Facilities  

Science Conference Proceedings (OSTI)

The present work was undertaken to provide heat transfer model that accurately predicts the thermal performance of dry spent nuclear fuel storage facilities. One of the storage configurations being considered for DOE Aluminum-clad Spent Nuclear Fuel (Al-SNF), such as the Material and Testing Reactor (MTR) fuel, is in a dry storage facility. To support design studies of storage options a computational and experimental program has been conducted at the Savannah River Site (SRS). The main objective is to develop heat transfer models including natural convection effects internal to an interim dry storage canister and to geological codisposal Waste Package (WP). Calculated temperatures will be used to demonstrate engineering viability of a dry storage option in enclosed interim storage and geological repository WP and to assess the chemical and physical behaviors of the Al-SNF in the dry storage facilities. The current paper describes the modeling approaches and presents the computational results along with the experimental data.

Lee, S.Y.

1999-01-13T23:59:59.000Z

117

Sandia Weapon Intern Program visits KCP | National Nuclear Security...  

NLE Websites -- All DOE Office Websites (Extended Search)

Participants in Sandia's Weapon Intern Program recently visited and toured NNSA's Kansas City Plant. The program, established in 1998, was created to meet Sandia's changing mission...

118

Office of Used Nuclear Fuel Disposition International Program...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1000 Independence Avenue, S.W. Washington, D.C. 20585 UFD INTERNATIONAL PROGRAM STRATEGIC PLAN Foreword Message from the Deputy Assistant Secretary for Fuel Cycle...

119

16th nuclear engineering education conference on international nuclear engineering: development and planning  

SciTech Connect

Separate abstracts were prepared for the ten summaries, dealing with various energy and nuclear topics. (DLC)

1977-01-01T23:59:59.000Z

120

The Nuclear Thomas-Fermi Model  

DOE R&D Accomplishments (OSTI)

The statistical Thomas-Fermi model is applied to a comprehensive survey of macroscopic nuclear properties. The model uses a Seyler-Blanchard effective nucleon-nucleon interaction, generalized by the addition of one momentum-dependent and one density-dependent term. The adjustable parameters of the interaction were fitted to shell-corrected masses of 1654 nuclei, to the diffuseness of the nuclear surface and to the measured depths of the optical model potential. With these parameters nuclear sizes are well reproduced, and only relatively minor deviations between measured and calculated fission barriers of 36 nuclei are found. The model determines the principal bulk and surface properties of nuclear matter and provides estimates for the more subtle, Droplet Model, properties. The predicted energy vs density relation for neutron matter is in striking correspondence with the 1981 theoretical estimate of Friedman and Pandharipande. Other extreme situations to which the model is applied are a study of Sn isotopes from {sup 82}Sn to {sup 170}Sn, and the rupture into a bubble configuration of a nucleus (constrained to spherical symmetry) which takes place when Z{sup 2}/A exceeds about 100.

Myers, W. D.; Swiatecki, W. J.

1994-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "international nuclear model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Status report of the US Department of Energy`s International Nuclear Safety Program  

SciTech Connect

The US Department of Energy (DOE) implements the US Government`s International Nuclear Safety Program to improve the level of safety at Soviet-designed nuclear power plants in Central and Eastern Europe, Russia, and Unkraine. The program is conducted consistent with guidance and policies established by the US Department of State (DOS) and the Agency for International Development and in close collaboration with the Nuclear Regulatory Commission. Some of the program elements were initiated in 1990 under a bilateral agreement with the former Soviet Union; however, most activities began after the Lisbon Nuclear Safety Initiative was announced by the DOS in 1992. Within DOE, the program is managed by the International Division of the Office of Nuclear Energy. The overall objective of the International Nuclear Safety Program is to make comprehensive improvements in the physical conditions of the power plants, plant operations, infrastructures, and safety cultures of countries operating Soviet-designed reactors. This status report summarizes the Internatioal Nuclear Safety Program`s activities that have been completed as of September 1994 and discusses those activities currently in progress.

NONE

1994-12-01T23:59:59.000Z

122

International nuclear fuel cycle fact book. [Contains glossary  

SciTech Connect

As the US Department of Energy (DOE) and DOE contractors have become increasingly involved with other nations in nuclear fuel cycle and waste management cooperative activities, a need has developed for a ready source of information concerning foreign fuel cycle programs, facilities, and personnel. This Fact Book was compiled to meet that need. The information contained has been obtained from nuclear trade journals and newsletters; reports of foreign visits and visitors; CEC, IAEA, and OECD/NEA activities reports; proceedings of conferences and workshops; and so forth. Sources do not agree completely with each other, and the data listed herein does not reflect any one single source but frequently is a consolidation/combination of information. Lack of space as well as the intent and purpose of the Fact Book limit the given information to that pertaining to the Nuclear Fuel Cycle and to data considered of primary interest or most helpful to the majority of users.

Leigh, I.W.; Lakey, L.T.; Schneider, K.J.; Silviera, D.J.

1987-01-01T23:59:59.000Z

123

Nuclear Decay Data in the MIRD (Medical Internal Radiation Dose) Format  

DOE Data Explorer (OSTI)

MIRD is a database of evaluated nuclear decay data for over 2,100 radioactive nuclei. Data are extracted from ENSDF, processed by the program RadList, and used for medical internal radiation dose calculations. When using the MIRD interface, tables of nuclear and atomic radiations from nuclear decay and decay scheme drawings will be produced in the MIRD format from the Evaluated Nuclear Structure Data File (ENSDF) for the specified nuclide. Output may be either HTML-formatted tables and JPEG drawings, PostScript tables and drawings, or PDF tables and drawings.

124

Nuclear Maintenance Application Center: Characterizing International Maintenance Practices  

Science Conference Proceedings (OSTI)

In 1987, the Electric Power Research Institute (EPRI) published report NP-5185-SR, Maintenance of European Nuclear Power Plants. The project comprised visits to six plant sites in six European countries over a two-week period and reported on the state of the various maintenance processes and programs in use at each location.

2012-08-07T23:59:59.000Z

125

PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUCLEAR PHYSICS  

E-Print Network (OSTI)

Nuclear Physics Laboratory, " New Brunswick, New J e r s e yNew Brunswick, New Jersey University of California, Los Angeles, California Los Alamos Scientific Laboratory,New Brunswick, NJ University of California at Los Angeles, Los Angeles, CA ^Los Alamos Scientific Laboratory,

Saxon, D.S.

2010-01-01T23:59:59.000Z

126

Linear Spectral Numerical Model for Internal Gravity Wave Propagation  

Science Conference Proceedings (OSTI)

A three-dimensional linear spectral numerical model is proposed to simulate the propagation of internal gravity wave fluctuations in a stably stratified atmosphere. The model is developed to get first-order estimations of gravity wave ...

J. Marty; F. Dalaudier

2010-05-01T23:59:59.000Z

127

Nuclear winter revisited with a modern climate model and current nuclear arsenals: Still catastrophic consequences  

E-Print Network (OSTI)

Nuclear winter revisited with a modern climate model and current nuclear arsenals: Still of climate model simulations of the response to smoke and dust from a massive nuclear exchange between the superpowers could be summarized as ``nuclear winter,'' with rapid temperature, precipitation, and insolation

Robock, Alan

128

ICENES `91:Sixth international conference on emerging nuclear energy systems. Program and abstracts  

DOE Green Energy (OSTI)

This document contains the program and abstracts of the sessions at the Sixth International Conference on Emerging Nuclear Energy Systems held June 16--21, 1991 at Monterey, California. These sessions included: The plenary session, fission session, fission and nonelectric session, poster session 1P; (space propulsion, space nuclear power, electrostatic confined fusion, fusion miscellaneous, inertial confinement fusion, {mu}-catalyzed fusion, and cold fusion); Advanced fusion session, space nuclear session, poster session 2P, (nuclear reactions/data, isotope separation, direct energy conversion and exotic concepts, fusion-fission hybrids, nuclear desalting, accelerator waste-transmutation, and fusion-based chemical recycling); energy policy session, poster session 3P (energy policy, magnetic fusion reactors, fission reactors, magnetically insulated inertial fusion, and nuclear explosives for power generation); exotic energy storage and conversion session; and exotic energy storage and conversion; review and closing session.

Not Available

1991-12-31T23:59:59.000Z

129

Safeguards Guidance for Designers of Commercial Nuclear Facilities International Safeguards Requirements for Uranium Enrichment Plants  

SciTech Connect

For the past two years, the United States National Nuclear Security Administration, Office of International Regimes and Agreements (NA-243), has sponsored the Safeguards-by-Design Project, through which it is hoped new nuclear facilities will be designed and constructed worldwide more amenable to nuclear safeguards. In the course of this project it was recognized that commercial designer/builders of nuclear facilities are not always aware of, or understand, the relevant domestic and international safeguards requirements, especially the latter as implemented by the International Atomic Energy Agency (IAEA). To help commercial designer/builders better understand these requirements, a report was prepared by the Safeguards-by-Design Project Team that articulated and interpreted the international nuclear safeguards requirements for the initial case of uranium enrichment plants. The following paper summarizes the subject report, the specific requirements, where they originate, and the implications for design and construction. It also briefly summarizes the established best design and operating practices that designer/builder/operators have implemented for currently meeting these requirements. In preparing the subject report, it is recognized that the best practices are continually evolving as the designer/builder/operators and IAEA consider even more effective and efficient means for meeting the safeguards requirements and objectives.

Philip Casey Durst; Scott DeMuth; Brent McGinnis; Michael Whitaker; James Morgan

2010-04-01T23:59:59.000Z

130

Materials Reliability Program: San Onofre Nuclear Generating Station Reactor Vessel Internals Management Engineering Program (MRP-303)  

Science Conference Proceedings (OSTI)

All operating pressurized water reactors must have a reactor vessel internals aging management document in place by December 2011 according to the mandatory requirement under Nuclear Energy Institute (NEI) 03-08. This program should be developed to meet the guidance provided by Materials Reliability Program (MRP) -227, Rev. 0, Pressurized Water Reactor Internals Inspection and Evaluation Guidelines. For non-license renewal plants, the requirements are valid within the current license period, and the Elec...

2011-02-28T23:59:59.000Z

131

Covert plant detection - Excerpt from Nuclear Engineering International (Nov. 2007)  

NLE Websites -- All DOE Office Websites (Extended Search)

NOVEMBER 2007 NOVEMBER 2007 I N T E R N A T I O N A L 6 www.neimagazine.com [ .ol52 No 640 November 2007 CONTENTS b . . - . 4 First full COL application; Scotland rejects new build; EPR state aid ruling; GNEP swells; U S risk ' urance conditional agreement - . - - - - -- - -- - - s I N T E R N A T I O N A L I COMPANY NEWS 6 The latest company news and contract results Editor: COMMENT > . 12 Developing nations must take the lead on new Editorial Assistants: Tracey Honney Elaine Sneath nuclear build 14 AECL has optimised instrumentation for its ACR-1000 reactor I Group Advertisement Mana Scott Calvin European Sales Executive: Journal Secretary: ' - I . i RADIATION MONITORING & ALARA . % * - 17 lonising radiation for medical diagnosis contributes 90% of the total exposure of the UK population to

132

Numerical Modeling of Internal Tide Generation along the Hawaiian Ridge  

Science Conference Proceedings (OSTI)

Internal M2 tides near Hawaii are investigated with a two-dimensional, two-layer numerical model. It is seen that along the Hawaiian Ridge barotropic tidal energy is transformed into baroclinic internal tides that propagate in both northeast and ...

S. K. Kang; M. G. G. Foreman; W. R. Crawford; J. Y. Cherniawsky

2000-05-01T23:59:59.000Z

133

Advanced international training course on state systems of accounting for and control of nuclear materials  

Science Conference Proceedings (OSTI)

This report incorporates all lectures and presentations at the Advanced International Training Course on State Systems of Accounting for and Control of Nuclear Material held April 27 through May 12, 1981 at Santa Fe and Los Alamos, New Mexico, and Richland, Washington, USA. Authorized by the US Nuclear Non-Proliferation Act and sponsored by the US Department of Energy in cooperation with the International Atomic Energy Agency, the course was developed to provide practical training in the design, implementation, and operation of a state system of nuclear materials accountability and control that satisfies both national and international safeguards. Major emphasis for the 1981 course was placed on safeguards methods used at bulk-handling facilities, particularly low-enriched uranium conversion and fuel fabrication plants. The course was conducted by the University of California's Los Alamos National Laboratory, the Battelle Pacific Northwest Laboratory, and Exxon Nuclear Company, Inc. Tours and demonstrations were arranged at both the Los Alamos National Laboratory, Los Alamos, New Mexico, and the Exxon Nuclear fuel fabrication plant, Richland, Washington.

Not Available

1981-10-01T23:59:59.000Z

134

Modeling Semidiurnal Internal Tide Variability in the Southern California Bight  

Science Conference Proceedings (OSTI)

The Regional Oceanic Modeling System (ROMS) is applied in a nested configuration with realistic forcing to the Southern California Bight (SCB) to analyze the variability in semidiurnal internal wave generation and propagation. The SCB has a ...

M. C. Buijsman; Y. Uchiyama; J. C. McWilliams; C. R. Hill-Lindsay

2012-01-01T23:59:59.000Z

135

Fast Flexible Modeling of RNA Structure Using Internal Coordinates  

Science Conference Proceedings (OSTI)

Modeling the structure and dynamics of large macromolecules remains a critical challenge. Molecular dynamics (MD) simulations are expensive because they model every atom independently, and are difficult to combine with experimentally derived knowledge. ... Keywords: Internal coordinate mechanics, molecular, structure, dynamics, RNA, modeling, prediction, linear, scaling.

Samuel Coulbourn Flores; Michael Sherman; Christopher M. Bruns; Peter Eastman; Russ B. Altman

2011-09-01T23:59:59.000Z

136

2002 EIA Models Directory  

U.S. Energy Information Administration (EIA)

The Personal Computer International Nuclear Model (PCINM) is a deterministic model used by the Energy Information Administration (EIA) to project ...

137

Ground motion data for International Collider models  

SciTech Connect

The proposed location for the International Linear Collider (ILC) in the Americas region is Fermilab in Batavia Illinois. If built at this location the tunnels would be located in the Galena Platteville shale at a depth of 100 or more meters below the surface. Studies using hydro static water levels and seismometers have been conducted in the MINOS hall and the LaFrange Mine in North Aurora Illinois to determine the level of ground motion. Both these locations are in the Galena Platteville shale and indicate the typical ground motion to be expected for the ILC. The data contains both natural and cultural noise. Coefficients for the ALT law are determined. Seismic measurements at the surface and 100 meters below the surface are presented.

Volk, J.T.; LeBrun, P.; Shiltsev, V.; Singatulin, S.; /Fermilab

2007-11-01T23:59:59.000Z

138

Low-temperature Swelling in LWR Internal Components: Current Data and Modeling Assessment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

LTR-2012/390 LTR-2012/390 Low-temperature Swelling in LWR Internal Components: Current Data and Modeling Assessment R. E. Stoller, A. V. Barashev, and S. I. Golubov Materials Science and Technology Division Oak Ridge National Laboratory Prepared for: Light Water Reactor Sustainability Program Office of Nuclear Energy, Science and Technology U.S. Department of Energy September 2012 ORNL/LTR-2012/390 1 Low-temperature Swelling in LWR Internal Components: Current Data and Modeling Assessment Abstract Recent experimental observations have made it clear that cavity formation can occur in light-water reactor internal components fabricated from austenitic stainless during the course of their service life. In order to assess the potential for cavity swelling

139

A model for international border management systems.  

SciTech Connect

To effectively manage the security or control of its borders, a country must understand its border management activities as a system. Using its systems engineering and security foundations as a Department of Energy National Security Laboratory, Sandia National Laboratories has developed such an approach to modeling and analyzing border management systems. This paper describes the basic model and its elements developed under Laboratory Directed Research and Development project 08-684.

Duggan, Ruth Ann

2008-09-01T23:59:59.000Z

140

A knowledge representation model for the nuclear power generation domain  

Science Conference Proceedings (OSTI)

A knowledge representation model for the nuclear power field is proposed. The model is a generalized production rule function inspired by a neural network approach that enables the representation of physical systems of nuclear power plants. The article ... Keywords: Knowledge representation, Nuclear power plant, Physical systems, Production rules

Thiago Tinoco Pires

2007-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "international nuclear model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Integrated Computational Modeling of Materials for Nuclear Energy  

Science Conference Proceedings (OSTI)

Nuclear fuel and primary cooling system structural components are exposed to elevated ... models for safety and performance evaluation of nuclear reactors but also for the ... Continuum Theory of Defects and Materials Response to Irradiation

142

Nuclear Asset Management (NAM) Process Model  

Science Conference Proceedings (OSTI)

Nuclear asset management (NAM) is the process of making operational, resource allocation, and risk management decisions at all levels of a nuclear generation business to maximize nuclear power plant value to stakeholders, while maintaining safety to the public and the plant staff. To support nuclear utilities in achieving these goals, the Nuclear Energy Institute (NEI) issued NEI AP 940, Nuclear Asset Management Process Description and Guideline, in May 2005. This document provides high-level guidance. H...

2007-12-20T23:59:59.000Z

143

Nuclear Power Plant Fire-Modeling Applications Guide  

Science Conference Proceedings (OSTI)

This report replaces EPRI 1002981, Fire Modeling Guide for Nuclear Power Plant Applications, August 2002, as guidance for fire-modeling practitioners in nuclear power plants (NPPs). The report has benefited from insights gained since 2002 on the predictive capability of selected fire models to improve confidence in the use of fire modeling in NPP decision-making.

2009-12-22T23:59:59.000Z

144

NEAMS: The Nuclear Energy Advanced Modeling and Simulation Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NEAMS: The Nuclear Energy Advanced NEAMS: The Nuclear Energy Advanced Modeling and Simulation Program The Nuclear Energy Advanced Modeling and Simulation (NEAMS) Program is developing a simulation tool kit using leading-edge computational methods that will accelerate the development and deployment of nuclear power technologies that employ enhanced safety and security features, produce power more cost-effectively, and utilize natural resources more efficiently. The NEAMS ToolKit

145

Comparison of nuclear mass models at nuclearmasses.org  

Science Conference Proceedings (OSTI)

Nuclear masses are crucial in many astrophysics studies, as well as other areas of basic and applied nuclear science. There are now many different global theoretical models of nuclear masses - but choosing the best model for a given application can be challenging. The suite of codes online at nuclearmasses.org greatly facilitates the comparison of nuclear models with evaluated masses as well as the intercomparison of theoretical models. We demonstrate the utility of this suite by comparing the RMS deviations of 13 different theoretical mass models from the AME2003 evaluated masses over mass ranges appropriate for astrophysics.

Smith, Michael S.; Nesaraja, Caroline D.; Lingerfelt, Eric J.; Koura, Hiroyuki; Kondev, Filip G. [Physics Division, Oak Ridge National Lab, Oak Ridge, Tennessee, 37831-6354 (United States); Computer Science and Mathematics Division, Oak Ridge National Lab, Oak Ridge, Tennessee, 37831-6354 (United States) and Physics Division, Oak Ridge National Lab, Oak Ridge, Tennessee, 37831-6354 (United States); Japan Atomic Energy Agency, Tokai, Naka-gun, Ibaraki, 319-1195 (Japan); Nuclear Engineering Division, Argonne National Laboratory, Argonne, Illinois, 60439 (United States)

2012-11-12T23:59:59.000Z

146

Nuclear nonproliferation and safety: Challenges facing the International Atomic Energy Agency  

SciTech Connect

The Chairman of the Senate Committee on Govermental Affairs asked the United States General Accounting Office (GAO) to review the safeguards and nuclear power plant safety programs of the International Atomic Energy Agency (IAEA). This report examines (1) the effectiveness of IAEA`s safeguards program and the adequacy of program funding, (2) the management of U.S. technical assistance to the IAEA`s safeguards program, and (3) the effectiveness of IAEA`s program for advising United Nations (UN) member states about nuclear power plant safety and the adequacy of program funding. Under its statute and the Treaty on the Non-Proliferation of Nuclear Weapons, IAEA is mandated to administer safeguards to detect diversions of significant quantities of nuclear material from peaceful uses. Because of limits on budget growth and unpaid contributions, IAEA has had difficulty funding the safeguards program. IAEA also conducts inspections of facilities or locations containing declared nuclear material, and manages a program for reviewing the operational safety of designated nuclear power plants. The U.S. technical assistance program for IAEA safeguards, overseen by an interagency coordinating committee, has enhanced the agency`s inspection capabilities, however, some weaknesses still exist. Despite financial limitations, IAEA is meeting its basic safety advisory responsibilities for advising UN member states on nuclear safety and providing requested safety services. However, IAEA`s program for reviewing the operational safety of nuclear power plants has not been fully effective because the program is voluntary and UN member states have not requested IAEA`s review of all nuclear reactors with serious problems. GAO believes that IAEA should have more discretion in selecting reactors for review.

Not Available

1993-09-01T23:59:59.000Z

147

Argonne National Laboratory contributions to the International Symposium on Fusion Nuclear Technology (ISFNT)  

Science Conference Proceedings (OSTI)

A total of sixteen papers with authors from Argonne National Laboratory were presented at the First International Symposium on Fusion Nuclear Technology (ISFNT), held in Tokyo, Japan, in April 1988. The papers cover the results of recent investigations in blanket design and analysis, fusion neutronics, materials experiments in liquid metal corrosion and solid breeders, tritium recovery analysis, experiments and analysis for liquid metal MHD, reactor safety and economic analysis, and transient electromagnetic analysis.

Not Available

1988-10-01T23:59:59.000Z

148

LIMITED POWER BURSTS IN DISTRIBUTED MODELS OF NUCLEAR REACTORS  

E-Print Network (OSTI)

of a nuclear reactor with feedback," in: Applied Problems in the Theory of Oscillations [in RussianLIMITED POWER BURSTS IN DISTRIBUTED MODELS OF NUCLEAR REACTORS M. V. Bazhenov and E. F. Sabaev UDC of Nuclear Reactors [in Russian], l~nergoatomizdat, Moscow (1990). F. R. Gantmakher and V. A. Yakubovich

Bazhenov, Maxim

149

Nuclear Energy Advanced Modeling and Simulation (NEAMS) Software...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and Simulation (NEAMS) Software Verification and Validation (V&V) Plan Requirements Nuclear Energy Advanced Modeling and Simulation (NEAMS) Software Verification and...

150

Multi-Scale Modeling of Irradiation Effects on Nuclear Fuel ...  

Science Conference Proceedings (OSTI)

Ab Initio-Based Rate Theory Modeling of Radiation Induced Segregation in ... Benchmarking of Structural Materials Pre-Selected for Advanced Nuclear Reactors.

151

Validation of Models and Simulations of Nuclear Fuels  

Science Conference Proceedings (OSTI)

Symposium, Characterization of Nuclear Reactor Materials and Components with ... Multi-scale theoretical models and computer simulations are often used to...

152

A New Analytical Model for Internal Solitons in the Ocean  

Science Conference Proceedings (OSTI)

A new model for tidally generated internal solitons in the ocean is advanced, based on a little-known asymptotic analytical solution to the weakly nonlinear Kortewegde Vries equation. The solution has many of the properties observed in oceanic ...

John R. Apel

2003-11-01T23:59:59.000Z

153

The Lifecycle of Bayesian Network Models Developed for Multi-Source Signature Assessment of Nuclear Programs  

Science Conference Proceedings (OSTI)

The Multi-Source Signatures for Nuclear Programs project, part of Pacific Northwest National Laboratorys (PNNL) Signature Discovery Initiative, seeks to computationally capture expert assessment of multi-type information such as text, sensor output, imagery, or audio/video files, to assess nuclear activities through a series of Bayesian network (BN) models. These models incorporate knowledge from a diverse range of information sources in order to help assess a countrys nuclear activities. The models span engineering topic areas, state-level indicators, and facility-specific characteristics. To illustrate the development, calibration, and use of BN models for multi-source assessment, we present a model that predicts a countrys likelihood to participate in the international nuclear nonproliferation regime. We validate this model by examining the extent to which the model assists non-experts arrive at conclusions similar to those provided by nuclear proliferation experts. We also describe the PNNL-developed software used throughout the lifecycle of the Bayesian network model development.

Gastelum, Zoe N.; White, Amanda M.; Whitney, Paul D.; Gosink, Luke J.; Sego, Landon H.

2013-06-04T23:59:59.000Z

154

Who Did It? Using International Forensics to Detect and Deter Nuclear Terrorism  

SciTech Connect

On February 2, the ''New York Times'' reported that the Pentagon has formed a nuclear forensics team tasked with identifying the terrorist attackers should the United States be hit with a nuclear bomb. Adapting nuclear technology to the forensics of exploded nuclear weapons is an old but rapidly evolving field. It dates back to at least 1949, when analysis of airborne debris, retrieved at high altitude off the coast of China, convinced President Harry Truman that the Soviet Union had exploded a nuclear device on the steppes of central Asia. The technology is neither new nor has it been particularly secret, but the formation of a national nuclear forensics team was newsworthy and a useful development. An international team, however, would be even better. Although Washington has naturally focused on preventing a nuclear terrorism attack in the United States, a U.S. city is not necessarily the most likely target for nuclear terrorists. It is doubtful that a terrorist organization would be able to acquire a U.S. nuclear device and even more doubtful that it would acquire one on U.S. soil. Accordingly, if a terrorist organization does get its hands on a fission device, it is likely that it will do so on foreign territory. At that point, the terrorists will have an enormously valuable political weapon in their hands and will be loath to risk losing that asset. Given the risks associated with getting the device into the United States, the rational choice would be to deploy the device abroad against much softer targets. For Islamist terrorists, a major ''Christian'' capital such as London, Rome, or Moscow might offer a more suitable target. Among these, Moscow perhaps presents the most compelling case for international cooperation on post-detonation nuclear forensics. Russia has the largest stockpile of poorly secured nuclear devices in the world. It also has porous borders and poor internal security, and it continues to be a potential source of contraband nuclear material and weapons, despite the best efforts of the Cooperative Threat Reduction (CTR) program. If terrorists obtained the nuclear material in Russia and set Moscow as their target, they would not have to risk transporting the weapon, stolen or makeshift, across international borders. Attacks by Chechen terrorists in Beslan and the Dubrovka Theater in Moscow offer ample proof that a willingness to commit mass murder for fanatical reasons rests within Russian borders, and a foreign source of operatives, particularly from the neighboring Islamic states to the south, is by no means inconceivable. Moscow is also a predominantly Christian city where local authorities routinely discriminate against Muslim minorities. Furthermore, extremists might conclude that a nuclear blast in Moscow could inflict damage well beyond those directly stemming from the attack. The Soviet generation that came to power during the Cold War retained a memory of the United States as an ally in the Great Patriotic War. The present Russian generation has no such remembrance but seems to have retained the animosities and suspicions that were a part of the nuclear standoff. Hence, nuclear terrorists may well believe that they could cause another East-West cold war or even encourage Russia to retaliate against the United States. After all, the sinking of the Kursk was believed by some influential Russians to be the result of American action. How much more likely would be such a view if the Kremlin were destroyed? As long as the world is filled with suspicion and conflict, such reactions are to be expected and, more importantly, anticipated. One has only to remember the early reactions and suspicions in the United States following the 1996 TWA Flight 800 airline disaster. Because the United States is the technological leader in nuclear forensics, its capability will certainly be offered and probably demanded no matter what foreign city is subjected to the devastation of a nuclear explosion. The entire world, not just Americans, will live in fear of a second or third nuclear explosion, and forensics cou

Dunlop, W H; Smith, H P

2006-08-28T23:59:59.000Z

155

Safety and Nonsafety Communications and Interactions in International Nuclear Power Plants  

Science Conference Proceedings (OSTI)

Current industry and NRC guidance documents such as IEEE 7-4.3.2, Reg. Guide 1.152, and IEEE 603 do not sufficiently define a level of detail for evaluating interdivisional communications independence. The NRC seeks to establish criteria for safety systems communications that can be uniformly applied in evaluation of a variety of safety system designs. This report focuses strictly on communication issues related to data sent between safety systems and between safety and nonsafety systems. Further, the report does not provide design guidance for communication systems nor present detailed failure modes and effects analysis (FMEA) results for existing designs. This letter report describes communications between safety and nonsafety systems in nuclear power plants outside the United States. A limited study of international nuclear power plants was conducted to ascertain important communication implementations that might have bearing on systems proposed for licensing in the United States. This report provides that following information: 1.communications types and structures used in a representative set of international nuclear power reactors, and 2.communications issues derived from standards and other source documents relevant to safety and nonsafety communications. Topics that are discussed include the following: communication among redundant safety divisions, communications between safety divisions and nonsafety systems, control of safety equipment from a nonsafety workstation, and connection of nonsafety programming, maintenance, and test equipment to redundant safety divisions during operation. Information for this report was obtained through publicly available sources such as published papers and presentations. No proprietary information is represented.

Kisner, Roger A [ORNL; Mullens, James Allen [ORNL; Wilson, Thomas L [ORNL; Wood, Richard Thomas [ORNL; Korsah, Kofi [ORNL; Qualls, A L [ORNL; Muhlheim, Michael David [ORNL; Holcomb, David Eugene [ORNL; Loebl, Andy [ORNL

2007-08-01T23:59:59.000Z

156

BFS, a Legacy to the International Reactor Physics, Criticality Safety, and Nuclear Data Communities  

Science Conference Proceedings (OSTI)

Interest in high-quality integral benchmark data is increasing as efforts to quantify and reduce calculational uncertainties accelerate to meet the demands of next generation reactor and advanced fuel cycle concepts. Two Organization for Economic Cooperation and Development (OECD) Nuclear Energy Agency (NEA) activities, the International Criticality Safety Benchmark Evaluation Project (ICSBEP), initiated in 1992, and the International Reactor Physics Experiment Evaluation Project (IRPhEP), initiated in 2003, have been identifying existing integral experiment data, evaluating those data, and providing integral benchmark specifications for methods and data validation for nearly two decades. Thus far, 14 countries have contributed to the IRPhEP, and 20 have contributed to the ICSBEP. Data provided by these two projects will be of use to the international reactor physics, criticality safety, and nuclear data communities for future decades The Russian Federation has been a major contributor to both projects with the Institute of Physics and Power Engineering (IPPE) as the major contributor from the Russian Federation. Included in the benchmark specifications from the BFS facilities are 34 critical configurations from BFS-49, 61, 62, 73, 79, 81, 97, 99, and 101; spectral characteristics measurements from BFS-31, 42, 57, 59, 61, 62, 73, 97, 99, and 101; reactivity effects measurements from BFS-62-3A; reactivity coefficients and kinetics measurements from BFS-73; and reaction rate measurements from BFS-42, 61, 62, 73, 97, 99, and 101.

J. Blair Briggs; Anatoly Tsibulya; Yevgeniy Rozhikhin

2012-03-01T23:59:59.000Z

157

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY Accepted June 2008 HYDROGEN STORAGE FOR MIXED WIND-NUCLEAR POWER PLANTS IN  

E-Print Network (OSTI)

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY Accepted June 2008 1 HYDROGEN STORAGE FOR MIXED WIND evaluation of hydrogen production and storage for a mixed wind-nuclear power plant considering some new of a combined nuclear-wind-hydrogen system is discussed first, where the selling and buying of electricity

Cañizares, Claudio A.

158

Modeling and Simulation for Nuclear Reactors Hub | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Modeling and Simulation for Nuclear Reactors Hub Modeling and Simulation for Nuclear Reactors Hub Modeling and Simulation for Nuclear Reactors Hub August 1, 2010 - 4:20pm Addthis Scientists and engineers are working to help the nuclear industry make reactors more efficient through computer modeling and simulation. Scientists and engineers are working to help the nuclear industry make reactors more efficient through computer modeling and simulation. The Department's Energy Innovation Hubs are helping to advance promising areas of energy science and engineering from the earliest stages of research to the point of commercialization where technologies can move to the private sector by bringing together leadings scientists to collaborate on critical energy challenges. The Energy Innovation Hubs aim to develop innovation through a unique

159

A Dynamical Systems Model for Nuclear Power Plant Risk Management  

Science Conference Proceedings (OSTI)

This report provides a mathematical dynamical systems model of the effect of plant processes and programs on nuclear plant safety. That is, it models the safety risk management process. Responses of this model to postulated changes in performance and coupling parameters were verified to be in accordance with experience from years of commercial nuclear power plant operation. A preliminary analysis of the model was performed using the techniques of dynamical systems theory to determine regions of operation...

2003-10-31T23:59:59.000Z

160

Modeling and simulation in analyzing geological repositories for high level nuclear waste  

Science Conference Proceedings (OSTI)

Nuclear energy is very often used to generate electricity. But first the energy must be released from atoms which can be done in two ways: nuclear fusion and nuclear fission. Nuclear power plants use nuclear fission to produce electrical energy. Electrical ... Keywords: modeling, nuclear energy, nuclear waste, nuclear waste storage, simulation

Dietmar P. F. Mller

2007-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "international nuclear model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Nuclear Systems Modeling, Simulation & Validation | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

from single processors to the world's largest supercomputers. The DOE Nuclear Energy Hub (CASL, the Consortium for Advanced Simulation of Light Water Reactors) is a prominent...

162

Nuclear Systems Modeling & Simulation | More Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

from single processors to the world's largest supercomputers. The DOE Nuclear Energy Hub (CASL, the Consortium for Advanced Simulation of Light Water Reactors) is a prominent...

163

EVALUATING INTERNAL STAKEHOLDER PERSPECTIVES ON RISK-INFORMED REGULATORY PRACTICES FOR THE NUCLEAR REGULATORY COMMISSION  

SciTech Connect

The U.S. Nuclear Regulatory Commission's (NRC) Office of Nuclear Reactor Regulation has begun a program to create a risk-informed environment within the reactor program. The first step of the process is to evaluate the existing environment and internal NRC stakeholder perceptions of risk-informed regulatory practices. This paper reports on the results of the first phase of this evaluation: assessing the current environment, including the level of acceptance of risk-informed approaches throughout the reactor program, the level of integration, areas of success, and areas of difficulty. The other two phases of the evaluation will identify barriers to the integration of risk into NRC activities and gather input on how to move to a risk-informed environment.

Peterson, L.K.; Wight, E.H.; Caruso, M.A.

2003-02-27T23:59:59.000Z

164

International Legal Framework for Denuclearization and Nuclear Disarmament Present Situation and Prospects  

Science Conference Proceedings (OSTI)

This thesis is the culminating project for my participation in the OECD NEA International School of Nuclear Law. This paper will begin by providing a historical background to current disarmament and denuclearization treaties. This paper will discuss the current legal framework based on current and historical activities related to denuclearization and nuclear disarmament. Then, it will propose paths forward for the future efforts, and describe the necessary legal considerations. Each treaty or agreement will be examined in respect to its requirements for: 1) limitations and implementation; 2) and verification and monitoring. Then, lessons learned in each of the two areas (limitations and verification) will be used to construct a proposed path forward at the end of this paper.

Gastelum, Zoe N.

2012-12-16T23:59:59.000Z

165

Model-Based Calculations of the Probability of a Country's Nuclear Proliferation Decisions  

Science Conference Proceedings (OSTI)

The first nuclear weapon was detonated in August 1945 over Japan to end World War II. During the past six decades, the majority of the world's countries have abstained from acquiring nuclear weapons. However, a number of countries have explored the nuclear weapons option, 23 in all. Among them, 14 countries have dropped their interest in nuclear weapons after initiating some efforts. And nine of them today possess nuclear weapons. These countries include the five nuclear weapons states - U.S., Russia, U.K., France, and China - and the four non- NPT member states - Israel, India, Pakistan, and North Korea. Many of these countries initially used civilian nuclear power technology development as a basis or cover for their military program. Recent proliferation incidents in Iraq, Iran, and North Korea brought the world together to pay much attention to nuclear nonproliferation. With the expected surge in the use of nuclear energy for power generation by developing countries, the world's nuclear nonproliferation regime needs to be better prepared for potential future challenges. For the world's nuclear nonproliferation regime to effectively cope with any future proliferation attempts, early detection of potentially proliferation-related activities is highly desirable. Early detection allows the international community to respond and take necessary actions - ideally using political and diplomatic influences without resorting to harsh measures such as sanctions or military actions. In this regard, a capability to quantitatively predict the chance of a country's nuclear proliferation intent or activities is of significant interest. There have been various efforts in the research community to understand the determinants of nuclear proliferation and develop quantitative tools to predict nuclear proliferation events. These efforts have shown that information about the political issues surrounding a country's security along with economic development data can be useful to explain the occurrences of proliferation decisions. However, predicting major historical proliferation events using model-based predictions has been unreliable. Nuclear proliferation decisions by a country is affected by three main factors: (1) technology; (2) finance; and (3) political motivation [1]. Technological capability is important as nuclear weapons development needs special materials, detonation mechanism, delivery capability, and the supporting human resources and knowledge base. Financial capability is likewise important as the development of the technological capabilities requires a serious financial commitment. It would be difficult for any state with a gross national product (GNP) significantly less than that of about $100 billion to devote enough annual governmental funding to a nuclear weapon program to actually achieve positive results within a reasonable time frame (i.e., 10 years). At the same time, nuclear proliferation is not a matter determined by a mastery of technical details or overcoming financial constraints. Technology or finance is a necessary condition but not a sufficient condition for nuclear proliferation. At the most fundamental level, the proliferation decision by a state is controlled by its political motivation. To effectively address the issue of predicting proliferation events, all three of the factors must be included in the model. To the knowledge of the authors, none of the exiting models considered the 'technology' variable as part of the modeling. This paper presents an attempt to develop a methodology for statistical modeling and predicting a country's nuclear proliferation decisions. The approach is based on the combined use of data on a country's nuclear technical capability profiles economic development status, security environment factors and internal political and cultural factors. All of the information utilized in the study was from open source literature. (authors)

Li, Jun; Yim, Man-Sung; McNelis, David N. [Department of Nuclear Engineering North Carolina State University (United States)

2007-07-01T23:59:59.000Z

166

Proceedings of the Third International Workshop on the implementation of ALARA at nuclear power plants  

SciTech Connect

This report contains the papers presented and the discussions that took place at the Third International Workshop on ALARA Implementation at Nuclear Power Plants, held in Hauppauge, Long Island, New York from May 8--11, 1994. The purpose of the workshop was to bring together scientists, engineers, health physicists, regulators, managers and other persons who are involved with occupational dose control and ALARA issues. The countries represented were: Canada, Finland, France, Germany, Japan, Korea, Mexico, the Netherlands, Spain, Sweden, the United Kingdom and the United States. The workshop was organized into twelve sessions and three panel discussions. Individual papers have been cataloged separately.

Khan, T.A. [comp.] [Brookhaven National Lab., Upton, NY (United States); Roecklein, A.K. [Nuclear Regulatory Commission, Washington, DC (United States). Div. of Regulatory Applications

1995-03-01T23:59:59.000Z

167

Model of a Generic Natural Uranium Conversion Plant ? Suggested Measures to Strengthen International Safeguards  

SciTech Connect

This is the final report that closed a joint collaboration effort between DOE and the National Nuclear Energy Commission of Brazil (CNEN). In 2005, DOE and CNEN started a collaborative effort to evaluate measures that can strengthen the effectiveness of international safeguards at a natural uranium conversion plant (NUCP). The work was performed by DOE s Oak Ridge National Laboratory and CNEN. A generic model of a NUCP was developed and typical processing steps were defined. Advanced instrumentation and techniques for verification purposes were identified and investigated. The scope of the work was triggered by the International Atomic Energy Agency s 2003 revised policy concerning the starting point of safeguards at uranium conversion facilities. Prior to this policy only the final products of the uranium conversion plant were considered to be of composition and purity suitable for use in the nuclear fuel cycle and therefore, subject to the IAEA safeguards control. DOE and CNEN have explored options for implementing the IAEA policy, although Brazil understands that the new policy established by the IAEA is beyond the framework of the Quadripartite Agreement of which it is one of the parties, together with Argentina, the Brazilian-Argentine Agency for Accounting and Control of Nuclear Materials (ABACC) and the IAEA. Two technical papers on this subject were published at the 2005 and 2008 INMM Annual Meetings.

Raffo-Caiado, Ana Claudia [ORNL; Begovich, John M [ORNL; Ferrada, Juan J [ORNL

2009-11-01T23:59:59.000Z

168

Concluding remarks. International Conference on Nuclear Physics, Berkeley, California, August 1980  

SciTech Connect

Not a conference summary, these concluding remarks consider five major themes that were illuminated during the conference and the problems within them that need to be resolved in the future. The five topics considered and the following: new degrees of freedom (single-particle motion, giant resonances, nuclear molecular resonances, nuclear matter, kaon-produced hypernuclei, implications of the bag model and quantum chromodynamics), new forms of matter, new reaction mechanisms (direct vs compound-nucleus reactions, heavy-ion reactions), new aspects of the weak interactions in nuclei (weak neutral currents, P invariance), and new symmetries. 4 figures. (RWR)

Feshbach, H.

1980-10-01T23:59:59.000Z

169

White paper on VU for Modeling Nuclear Energy Systems  

SciTech Connect

The purpose of this whitepaper is to provide a framework for understanding the role that Verification and Validation (V&V), Uncertainty Quantification (UQ) and Risk Quantification, collectively referred to as VU, is expected to play in modeling nuclear energy systems. We first provide background for the modeling of nuclear energy based systems. We then provide a brief discussion that emphasizes the critical elements of V&V as applied to nuclear energy systems but is general enough to cover a broad spectrum of scientific and engineering disciplines that include but are not limited to astrophysics, chemistry, physics, geology, hydrology, chemical engineering, mechanical engineering, civil engineering, electrical engineering, nu nuclear engineering material clear science science, etc. Finally, we discuss the critical issues and challenges that must be faced in the development of a viable and sustainable VU program in support of modeling nuclear energy systems.

Klein, R; Turinsky, P

2009-05-07T23:59:59.000Z

170

Parity Dependent Shell Model Level Densities for Nuclear Astrophysics  

E-Print Network (OSTI)

Recently, we developed a methodology [1-4] of calculating the spin and parity dependent shell model nuclear level density, which is a very useful ingredient in the Huaser-Feshbach theory for calculating reaction rates for nuclear astrophysics[5]. We developed new techniques based on nuclear statistical spectroscopy [6] to calculate the spin and parity projected moments of the nuclear shell model Hamiltonian, that can be further used to obtain an accurate description of the nuclear level density up to about 15 MeV excitation energy. These techniques were fully tested for the sd-shell nuclei and some light f p-shell nuclei, by comparing with the level density obtained from exact shell model diagonalization. Here we present for the first time comparisons with the exact shell model diagonalization for nuclei heavier than 56 Ni, in a model space spanned by the f 5/2, p 3/2, p 1/2 and g 9/2 orbits. The ratio of nuclear level densities of opposite parities is also discussed. This analysis was possible due to a new and very efficient nuclear shell model code [7] that can provide a large number of states of given spin and parity. PoS(NIC X)132

Mike Scott; Mihai Horoi; Mike Scott

2008-01-01T23:59:59.000Z

171

Proceedings of the 2006 international congress on advances in nuclear power plants - ICAPP'06  

SciTech Connect

Following the highly successful ICAPP'05 meeting held in Seoul Korea, the 2006 International Congress on Advances in Nuclear Power Plants brought together international experts of the nuclear industry involved in the operation, development, building, regulation and research related to Nuclear Power Plants. The program covers the full spectrum of Nuclear Power Plant issues from design, deployment and construction of plants to research and development of future designs and advanced systems. The program covers lessons learned from power, research and demonstration reactors from over 50 years of experience with operation and maintenance, structures, materials, technical specifications, human factors, system design and reliability. The program by technical track deals with: - 1. Water-Cooled Reactor Programs and Issues Evolutionary designs, innovative, passive, light and heavy water cooled reactors; issues related to meeting medium term utility needs; design and regulatory issues; business, political and economic challenges; infrastructure limitations and improved construction techniques including modularization. - 2. High Temperature Gas Cooled Reactors Design and development issues, components and materials, safety, reliability, economics, demonstration plants and environmental issues, fuel design and reliability, power conversion technology, hydrogen production and other industrial uses; advanced thermal and fast reactors. - 3. Long Term Reactor Programs and Strategies Reactor technology with enhanced fuel cycle features for improved resource utilization, waste characteristics, and power conversion capabilities. Potential reactor designs with longer development times such as, super critical water reactors, liquid metal reactors, gaseous and liquid fuel reactors, Gen IV, INPRO, EUR and other programs. - 4. Operation, Performance and Reliability Management Training, O and M costs, life cycle management, risk based maintenance, operational experiences, performance and reliability improvements, outage optimization, human factors, plant staffing, outage reduction features, major component reliability, repair and replacement, in-service inspection, and codes and standards. - 5. Plant Safety Assessment and Regulatory Issues Transient and accident performance including LOCA and non-LOCA, severe accident analysis, impact of risk informed changes, accident management, assessment and management of aging, degradation and damage, life extension lessons from plant operations, probabilistic safety assessment, plant safety analysis, reliability engineering, operating and future plants. - 6. Thermal Hydraulic Analysis and Testing Phenomena identification and ranking, computer code scaling applicability and uncertainty, containment thermal hydraulics, component and integral system tests, improved code development and qualification, single and two phase flow; advanced computational thermal hydraulic methods. - 7. Core and Fuel Cycle Concepts and Experiments Core physics, advances in computational reactor analysis, in-core fuel management, mixed-oxide fuel, thorium fuel cycle, low moderation cores, high conversion reactor designs, particle and pebble bed fuel design, testing and reliability; fuel cycle waste minimization, recycle, storage and disposal. - 8. Materials and Structural Issues Fuel, core, RPV and internals structures, advanced materials issues and fracture mechanics, concrete and steel containments, space structures, analysis, design and monitoring for seismic, dynamic and extreme accidents; irradiation issues and materials for new plants. - 9. Nuclear Energy and Sustainability including Hydrogen, Desalination and Other Applications Environmental impact of nuclear and alternative systems, spent fuel dispositions and transmutation systems, fully integrated fuel cycle and symbiotic nuclear power systems, application of advanced designs to non-power applications such as the production of hydrogen, sea water desalination, heating and other co-generation applications. - 10. Near Term Issues (New) Applies to plants that have a significa

NONE

2006-07-01T23:59:59.000Z

172

Fire models for assessment of nuclear power plant fires  

SciTech Connect

This paper reviews the state-of-the-art in available fire models for the assessment of nuclear power plants fires. The advantages and disadvantages of three basic types of fire models (zone, field, and control volume) and Sandia's experience with these models will be discussed. It is shown that the type of fire model selected to solve a particular problem should be based on the information that is required. Areas of concern which relate to all nuclear power plant fire models are identified. 17 refs., 6 figs.

Nicolette, V.F.; Nowlen, S.P.

1989-01-01T23:59:59.000Z

173

LANL researchers use computer modeling to study HIV | National Nuclear  

National Nuclear Security Administration (NNSA)

researchers use computer modeling to study HIV | National Nuclear researchers use computer modeling to study HIV | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > LANL researchers use computer modeling to study HIV LANL researchers use computer modeling to study HIV Posted By Office of Public Affairs Los Alamos National Laboratory researchers are investigating the complex

174

A Global Model for the Diapycnal Diffusivity Induced by Internal Gravity Waves  

Science Conference Proceedings (OSTI)

An energetically consistent model for the diapycnal diffusivity induced by breaking of internal gravity waves is proposed and tested in local and global settings. The model [Internal Wave Dissipation, Energy and Mixing (IDEMIX)] is based on the ...

Dirk Olbers; Carsten Eden

2013-08-01T23:59:59.000Z

175

Modeling and simulation of Ran-mediated nuclear import  

E-Print Network (OSTI)

We present here a detailed description of the model of ran-driven nuclear transduction in living cells to be published elswere. The mathematical model presented is the first to account for the active transport of molecules along the cytoplasmic microtubules. All parameters entering the models are thoroughly discussed. The simulations reproduce the behavior observed experimentally.

A. Cangiani

2009-07-06T23:59:59.000Z

176

First Gogny-Hartree-Fock-Bogoliubov Nuclear Mass Model  

Science Conference Proceedings (OSTI)

We present the first Gogny-Hartree-Fock-Bogoliubov (HFB) model which reproduces nuclear masses with an accuracy comparable with the best mass formulas. In contrast with the Skyrme-HFB nuclear-mass models, an explicit and self-consistent account of all the quadrupole correlation energies are included within the 5D collective Hamiltonian approach. The final rms deviation with respect to the 2149 measured masses is 798 keV. In addition, the new Gogny force is shown to predict nuclear and neutron matter properties in agreement with microscopic calculations based on realistic two- and three-body forces.

Goriely, S.; Hilaire, S.; Girod, M.; Peru, S. [Institut d'Astronomie et d'Astrophysique, CP-226, Universite Libre de Bruxelles, 1050 Brussels (Belgium); CEA, DAM, DIF, F-91297, Arpajon (France)

2009-06-19T23:59:59.000Z

177

Proceedings: Fourth International Conference on Cold Fusion: Volume 3: Nuclear Measurements Paper  

Science Conference Proceedings (OSTI)

The Fourth International Conference on Cold Fusion was held December 6-9, 1993 in Lahaina, Hawaii with the presentation of 125 papers appearing in these proceedings. A number of new experimental approaches were presented (e.g., the use of ceramic proton conductors at high temperature, and the use of ultrasonic cavitation in heavy water to load palladium and titanium foils with deutronium). The wide range of theoretical models and speculations shows that the field remains in an exploratory phase.

1994-07-28T23:59:59.000Z

178

Lessons Learned from the Decommissioning of Nuclear Facilities and the Safe Termination of Nuclear Activities. Outcomes of the International Conference, 11-15 December 2006, Athens, Greece  

Science Conference Proceedings (OSTI)

Full text of publication follows: decommissioning activities are increasing worldwide covering wide range of facilities - from nuclear power plant, through fuel cycle facilities to small laboratories. The importance of these activities is growing with the recognition of the need for ensuring safe termination of practices and reuse of sites for various purposes, including the development of new nuclear facilities. Decommissioning has been undertaken for more than forty years and significant knowledge has been accumulated and lessons have been learned. However the number of countries encountering decommissioning for the first time is increasing with the end of the lifetime of the facilities around the world, in particular in countries with small nuclear programmes (e.g. one research reactor) and limited human and financial resources. In order to facilitate the exchange of lessons learned and good practices between all Member States and to facilitate and improve safety of the planned, ongoing and future decommissioning projects, the IAEA in cooperation with the Nuclear Energy Agency to OECD, European Commission and World Nuclear Association organised the international conference on Lessons Learned from the Decommissioning of Nuclear Facilities and the Safe Termination of Nuclear Activities, held in Athens, Greece. The conference also highlighted areas where future cooperation at national and international level is required in order to improve decommissioning planning and safety during decommissioning and to facilitate decommissioning by selecting appropriate strategies and technologies for decontamination, dismantling and management of waste. These and other aspects discussed at the conference are presented in this paper, together with the planned IAEA measures for amendment and implementation of the International Action Plan on Decommissioning of Nuclear Facilities and its future programme on decommissioning.

Batandjieva, B.; Laraia, M. [International Atomic Energy Agency, Vienna (Austria)

2008-01-15T23:59:59.000Z

179

Materials Modeling and Simulation for Nuclear Fuels (MMSNF) Workshops  

NLE Websites -- All DOE Office Websites (Extended Search)

Aerial photo of Argonne National Laboratory Argonne National Laboratory University of Chicago Chicago Photography courtesy Thomas F Ewing Privacy and Security Notice The MMSNF Workshops The goal of the Materials Modeling and Simulation for Nuclear Fuels (MMSNF) workshops is to stimulate research and discussions on modeling and simulations of nuclear fuels, to assist the design of improved fuels and the evaluation of fuel performance. In addition to research focused on existing or improved types of LWR reactors, recent modeling programs, networks, and links have been created to develop innovative nuclear fuels and materials for future generations of nuclear reactors. Examples can be found in Europe (e.g. F-BRIDGE project and ACTINET network and SAMANTHA cooperative network), in the USA (e.g. CASL, NEAMS, CESAR and CMSN network

180

Comparison of Different Internal Dosimetry Systems for Selected Radionuclides Important to Nuclear Power Production  

Science Conference Proceedings (OSTI)

This report compares three different radiation dosimetry systems currently applied by various U.S. Federal agencies and dose estimates based on these three dosimetry systems for a set of radionuclides often identified in power reactor effluents. These dosimetry systems were developed and applied by the International Commission on Radiological Protection at different times over the past six decades. Two primary modes of intake of radionuclides are addressed: ingestion in drinking water and inhalation. Estimated doses to individual organs and to the whole body based on each dosimetry system are compared for each of four age groups: infant, child, teenager, and adult. Substantial differences between dosimetry systems in estimated dose per unit intake are found for some individual radionuclides, but differences in estimated dose per unit intake generally are modest for mixtures of radionuclides typically found in nuclear power plant effluents.

Leggett, Richard Wayne [ORNL; Eckerman, Keith F [ORNL; Manger, Ryan P [ORNL

2013-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "international nuclear model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

ELSEVIER Journal of Nuclear Materials 244 (1997) 85-100 RACLETTE: a model for evaluating the thermal response of plasma  

E-Print Network (OSTI)

ELSEVIER Journal of Nuclear Materials 244 (1997) 85-100 RACLETTE: a model for evaluating the thermal response of plasma facing components to slow high power plasma transients. Part I: Theory, in the current engineering design phase of the International Ther- monuclear Experimental Reactor (ITER

Raffray, A. René

182

International training course on implementation of state systems of accounting for and control of nuclear materials: proceedings  

SciTech Connect

This report incorporates all lectures and presentations at the International Training Course on Implementation of State Systems of Accounting for and Control of Nuclear Materials held October 17 through November 4, 1983, at Santa Fe and Los Alamos, New Mexico and Richland, Washington, USA. Authorized by the US Nuclear Non-Proliferation Act and sponsored by the US Department of Energy in cooperation with the International Atomic Energy Agency, the course was developed to provide practical training in the design, implementation, and operation of a State system of nuclear materials accountability and control that satisfies both national and international safeguards requirements. Major emphasis for the 1983 course was placed on safeguards methods used at bulk-handling facilities, particularly low-enriched uranium conversion and fuel fabrication plants. The course was conducted by the University of California's Los Alamos National Laboratory and Exxon Nuclear Company, Inc. Tours and demonstrations were arranged at the Los Alamos National Laboratory, Los Alamos, New Mexico, and the Exxon Nuclear fuel fabrication plant, the Battelle Pacific Northwest Laboratory, Westinghouse Fast Flux Test Facility Visitor Center, and Washington Public Power System nuclear reactor facilities in Richland, Washington. Individual presentations were indexed for inclusion in the Energy Data Base.

Not Available

1984-06-01T23:59:59.000Z

183

Nuclear Energy Advanced Modeling and Simulation (NEAMS) Software  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Modeling and Simulation (NEAMS) Software Advanced Modeling and Simulation (NEAMS) Software Verification and Validation (V&V) Plan Requirements Nuclear Energy Advanced Modeling and Simulation (NEAMS) Software Verification and Validation (V&V) Plan Requirements The purpose of the NEAMS Software V&V Plan is to define what the NEAMS program expects in terms of V&V for the computational models that are developed under NEAMS. NEAMS Software Verification and Validation Plan Requirements Version 0.pdf More Documents & Publications NEAMS Quarterly Report for January-March 2013 Nuclear Energy Advanced Modeling and Simulation (NEAMS) Program Plan CRAD, Assessment Criteria and Guidelines for Determining the Adequacy of Software Used in the Safety Analysis and Design of Defense Nuclear Facilities

184

Review of the international conference on nuclear criticality-issues, discussions, and challenges  

SciTech Connect

The Fifth International Conference on Nuclear Criticality Safety (ICNC`95) was held September 17-22, 1995, in Albuquerque, New Mexico, USA. Organization and support for the conference was provided by the Sandia National Laboratories (SNL), Los Alamos National Laboratory (LANL), the University of New Mexico, and the Organization for Economic Cooperation and Development (OECD). This conference traces its history back to 1981 when a group of select criticality safety specialists (mostly experimentalists) from France, Germany, Japan, the United Kingdom, and the United States participated in a small conference at LANL in the United States. The motivation for the conference had been provided by Dr. J. C. Manaranche of France who had asked D. Smith and G. E. Whitesides of the United States if it would be possible for the French experimentalists to be able to visit the experimental facilities at LANL. This first conference was followed by a similar conference held in Dijon, France, in 1993. Then in 1987 the conference was hosted by the Japanese and opened to much wider participation by criticality safety specialists involved in experiments, methods development and analysis, and operations. With the 1987 conference in Japan and the fourth conference (ICNC`91) held in the United Kingdom, the interest and international participation by the criticality safety community has grown rapidly. With this background, the occasion of ICNC`95 was one of much expectation.

Parks, C.V.; Whitesides, G.E.

1995-12-31T23:59:59.000Z

185

National Nuclear Data Center  

NLE Websites -- All DOE Office Websites (Extended Search)

Internal Radiation Dose Evaluated Nuclear (reaction) Data File Experimental nuclear reaction data Sigma Retrieval & Plotting Nuclear structure & decay Data Nuclear Science References Experimental Unevaluated Nuclear Data List Evaluated Nuclear Structure Data File NNDC databases Ground and isomeric states properties Nuclear structure & decay data journal Nuclear reaction model code Tools and Publications US Nuclear Data Program Cross Section Evaluation Working Group Nuclear data networks Basic properties of atomic nuclei Parameters & thermal values Basic properties of atomic nuclei Internal Radiation Dose Evaluated Nuclear (reaction) Data File Experimental nuclear reaction data Sigma Retrieval & Plotting Nuclear structure & decay Data Nuclear Science References Experimental Unevaluated Nuclear Data List Evaluated Nuclear Structure Data File NNDC databases Ground and isomeric states properties Nuclear structure & decay data journal Nuclear reaction model code Tools and Publications US Nuclear Data Program Cross Section Evaluation Working Group Nuclear data networks Basic properties of atomic nuclei Parameters & thermal values Basic properties of atomic nuclei Homepage BNL Home Site Index - Go USDNP and CSEWG November 18-22! USNDP CSEWG Agenda Thanks for attending! EXFOR 20,000 Milestone EXFOR Milestone 20,000 experimental works are now in the EXFOR database!

186

Correlations Tests in Nuclear Mass Model Development  

E-Print Network (OSTI)

Correlation testing provides a quick method of discriminating amongst potential terms to include in a nuclear mass formula or functional; however a firm mathematical foundation of the method has not been previously set forth. Here, the necessary justification for correlation testing is developed and more detail of the motivation behind its use is given. We provide a quantitative demonstration of the method's performance and short-comings, highlighting also potential issues a user may encounter. In concluding we suggestion some possible future developments to improve the limitations of the method.

Bertolli, M G

2012-01-01T23:59:59.000Z

187

Nuclear Mass Datasets and Models at nuclearmasses.org  

DOE Data Explorer (OSTI)

This online repository for nuclear mass information allows nuclear researchers to upload their own mass values, store then, share them with colleagues, and, in turn, visualize and analyze the work of others. The Resources link provides access to published information or tools on other websites. The Contributions page is where users will find software, documents, experimental mass data sets, and theoretical mass models that have been uploaded for sharing with the scientific community.

188

1993 International conference on nuclear waste management and environmental remediation, Prague, Czech Republic, September 5--11, 1993. Combined foreign trip report  

SciTech Connect

The purpose of the trip was to attend the 1993 International Conference on Nuclear Waste Management and Environmental Remediation. The principal objective of this conference was to facilitate a truly international exchange of information on the management of nuclear wastes as well as contaminated facilities and sites emanating from nuclear operations. The conference was sponsored by the American Society of Mechanical Engineers, the Czech and Slovak Mechanical Engineering Societies, and the Czech and Slovak Nuclear Societies in cooperation with the Commission of the European Communities, the International Atomic Energy Agency, and the OECD Nuclear Agency. The conference was cosponsored by the American Nuclear Society, the Atomic Energy Society of Japan, the Canadian Nuclear Society, the (former USSR) Nuclear Society, and the Japan Society of Mechanical Engineers. This was the fourth in a series of biennial conferences, which started in Hong Kong, in 1987. This report summarizes shared aspects of the trip; however, each traveler`s observations and recommendations are reported separately.

Slate, S.C. [comp.; Allen, R.E. [ed.

1993-12-01T23:59:59.000Z

189

International training course on implementation of state systems of accounting for and control of nuclear materials: proceedings  

SciTech Connect

This report incorporates all lectures and presentations at the International Training Course on Implementation of State Systems of Accounting for and Control of Nuclear Materials held June 3 through June 21, 1985, at Santa Fe and Los Alamos, New Mexico, and San Clemente, California. Authorized by the US Nuclear Non-Proliferation Act and sponsored by the US Department of Energy in cooperation with the International Atomic Energy Agency, the Course was developed to provide practical training in the design, implementation, and operation of a state system of nuclear materials accountability and control that satisfies both national and international safeguards requirements. Major emphasis for the 1985 course was placed on safeguards methods used at item-control facilities, particularly nuclear power generating stations and test reactors. An introduction to safeguards methods used at bulk handling facilities, particularly low-enriched uranium conversion and fuel fabrication plants, was also included. The course was conducted by the University of California's Los Alamos National Laboratory and the Southern California Edison Company. Tours and demonstrations were arranged at the Los Alamos National Laboratory, Los Alamos, New Mexico, and the San Onofre Nuclear Generating Station, San Clemente, California.

Not Available

1986-06-01T23:59:59.000Z

190

International training course on implementation of state systems of accounting for and control of nuclear materials: proceedings  

SciTech Connect

This report incorporates all lectures and presentations at the International Training Course on Implementation of State Systems of Accounting for and Control of Nuclear Materials held June 3 through June 21, 1985, at Santa Fe and Los Alamos, New Mexico, and San Clemente, California. Authorized by the US Nuclear Non-Proliferation Act and sponsored by the US Department of Energy in cooperation with the International Atomic Energy Agency, the Course was developed to provide practical training in the design, implementation, and operation of a state system of nuclear materials accountability and control that satisfies both national and international safeguards requirements. Major emphasis for the 1985 course was placed on safeguards methods used at item-control facilities, particularly nuclear power generating stations and test reactors. An introduction to safeguards methods used at bulk handling facilities, particularly low-enriched uranium conversion and fuel fabrication plants, was also included. The course was conducted by the University of California's Los Alamos National Laboratory and the Southern California Edison Company. Tours and demonstrations were arranged at the Los Alamos National Laboratory, Los Alamos, New Mexico, and the San Onofre Nuclear Generating Station, San Clemente, California.

1986-06-01T23:59:59.000Z

191

Relativistic models in nuclear and particle physics  

SciTech Connect

A comparative overview is presented of different approaches to the construction of phenomenological dynamical models that respect basic principles of quantum theory and relativity. Wave functions defined as matrix elements of products of field operators on one hand and wave functions that are defined as representatives of state vectors in model Hilbert spaces are related differently to observables and dynamical models for these wave functions have each distinct advantages and disadvantages 34 refs.

Coester, F.

1988-01-01T23:59:59.000Z

192

Towards a detailed soot model for internal combustion engines  

Science Conference Proceedings (OSTI)

In this work, we present a detailed model for the formation of soot in internal combustion engines describing not only bulk quantities such as soot mass, number density, volume fraction, and surface area but also the morphology and chemical composition of soot aggregates. The new model is based on the Stochastic Reactor Model (SRM) engine code, which uses detailed chemistry and takes into account convective heat transfer and turbulent mixing, and the soot formation is accounted for by SWEEP, a population balance solver based on a Monte Carlo method. In order to couple the gas-phase to the particulate phase, a detailed chemical kinetic mechanism describing the combustion of Primary Reference Fuels (PRFs) is extended to include small Polycyclic Aromatic Hydrocarbons (PAHs) such as pyrene, which function as soot precursor species for particle inception in the soot model. Apart from providing averaged quantities as functions of crank angle like soot mass, volume fraction, aggregate diameter, and the number of primary particles per aggregate for example, the integrated model also gives detailed information such as aggregate and primary particle size distribution functions. In addition, specifics about aggregate structure and composition, including C/H ratio and PAH ring count distributions, and images similar to those produced with Transmission Electron Microscopes (TEMs), can be obtained. The new model is applied to simulate an n-heptane fuelled Homogeneous Charge Compression Ignition (HCCI) engine which is operated at an equivalence ratio of 1.93. In-cylinder pressure and heat release predictions show satisfactory agreement with measurements. Furthermore, simulated aggregate size distributions as well as their time evolution are found to qualitatively agree with those obtained experimentally through snatch sampling. It is also observed both in the experiment as well as in the simulation that aggregates in the trapped residual gases play a vital role in the soot formation process. (author)

Mosbach, Sebastian; Celnik, Matthew S.; Raj, Abhijeet; Kraft, Markus [Department of Chemical Engineering and Biotechnology, University of Cambridge, Pembroke Street, Cambridge CB2 3RA (United Kingdom); Zhang, Hongzhi R. [Department of Chemical Engineering, University of Utah, 1495 East 100 South, Kennecott Research Building, Salt Lake City, UT 84112 (United States); Kubo, Shuichi [Frontier Research Center, Toyota Central R and D Labs., Inc., Nagakute, Aichi 480-1192 (Japan); Kim, Kyoung-Oh [Higashifuji Technical Center, Toyota Motor Corporation, Mishuku 1200, Susono, Shizuoka 480-1193 (Japan)

2009-06-15T23:59:59.000Z

193

Report of a workshop on nuclear forces and nonproliferation Woodrow Wilson international center for scholars, Washington, DC October 28, 2010  

Science Conference Proceedings (OSTI)

A workshop sponsored by the Los Alamos National Laboratory in cooperation with the Woodrow Wilson International Center for Scholars was held at the Wilson Center in Washington, DC, on October 28, 2010. The workshop addressed evolving nuclear forces and their impacts on nonproliferation in the context of the new strategic environment, the Obama Administration's Nuclear Posture Review and the 2010 NPT Review Conference. The discussions reflected the importance of the NPR for defining the role of US nuclear forces in dealing with 21st century threats and providing guidance for National Nuclear Security Administration (NNSA) and Department of Defense (DoD) programs and, for many but not all participants, highlighted its role in the successful outcome of the NPT RevCon. There was widespread support for the NPR and its role in developing the foundations for a sustainable nuclear-weapon program that addresses nuclear weapons, infrastructure and expertise in the broader nonproliferation, disarmament and international security contexts. However, some participants raised concerns about its implementation and its long-term effectiveness and sustainability.

Pilat, Joseph F [Los Alamos National Laboratory

2010-12-08T23:59:59.000Z

194

Nuclear Asset Management (NAM) Model - Update for Project Prioritization  

Science Conference Proceedings (OSTI)

This report provides an update of the Nuclear Asset Management (NAM) Process Model developed in 2007 and published in EPRI report 1015091. It incorporates results from modeling project prioritization guidance developed as part of EPRI's participation in the Equipment Reliability Working Group (ERWG). This update presents additional detail on the model described in report 1015091 and provides a reflection of current industry best practices for project prioritization.

2009-07-17T23:59:59.000Z

195

Specific aspects of internal corrosion of nuclear clad made of Zircaloy J.B. Minne1a  

E-Print Network (OSTI)

simulation, weather and climate modelling, and nuclear reactor safety calculations. In particular · Efficient.B. Giles, Oxford, in collaboration with the UK Nuclear Decomissioning Authority and Serco Assur- ances of Spectral Theory, in press, 2011. 3. P. Bastian, M. Blatt and R. Scheichl, Algebraic multigrid

196

Mesoscale to plant-scale models of nuclear waste reprocessing.  

Science Conference Proceedings (OSTI)

Imported oil exacerabates our trade deficit and funds anti-American regimes. Nuclear Energy (NE) is a demonstrated technology with high efficiency. NE's two biggest political detriments are possible accidents and nuclear waste disposal. For NE policy, proliferation is the biggest obstacle. Nuclear waste can be reduced through reprocessing, where fuel rods are separated into various streams, some of which can be reused in reactors. Current process developed in the 1950s is dirty and expensive, U/Pu separation is the most critical. Fuel rods are sheared and dissolved in acid to extract fissile material in a centrifugal contactor. Plants have many contacts in series with other separations. We have taken a science and simulation-based approach to develop a modern reprocessing plant. Models of reprocessing plants are needed to support nuclear materials accountancy, nonproliferation, plant design, and plant scale-up.

Noble, David Frederick; O'Hern, Timothy John; Moffat, Harry K.; Nemer, Martin B.; Domino, Stefan Paul; Rao, Rekha Ranjana; Cipiti, Benjamin B.; Brotherton, Christopher M.; Jove-Colon, Carlos F.; Pawlowski, Roger Patrick

2010-09-01T23:59:59.000Z

197

World knowledge for sensors and estimators by models and internal models  

Science Conference Proceedings (OSTI)

A necessary strategy to improve our technologies is to provide them with useful pieces of deterministic previous knowledge about the processes and the equipment. Our attention was previously focused on the industrial control systems, implemented with ... Keywords: Internal model, fuzzy-interpolative system, sensor fusion

V. E. Balas; L. C. Jain

2010-04-01T23:59:59.000Z

198

International Conference on Mathematics and Computational Methods Applied to Nuclear Science & Engineering (M&C 2013) Sun Valley, Idaho, USA, May 5-9, 2013, on CD-ROM, American Nuclear Society, LaGrange Park, IL (2013)  

E-Print Network (OSTI)

and Simulation of Nuclear Reactors under U.S. Department of Energy Contract No. DE-AC05-00OR22725, National for Solving k-Eigenvalue Problems in Neutron Diffusion Theory," Nuclear Science and Engineering, 167, pp. 141International Conference on Mathematics and Computational Methods Applied to Nuclear Science

Kelley, C. T. "Tim"

199

Nuclear binding energies from a BPS Skyrme model  

E-Print Network (OSTI)

Recently, within the space of generalized Skyrme models, a BPS submodel was identified which reproduces some bulk properties of nuclear matter already on a classical level and, as such, constitutes a promising field theory candidate for the detailed and reliable description of nuclei and hadrons. Here we extend and further develop these investigations by applying the model to the calculation of nuclear binding energies. Concretely, we calculate these binding energies by including the classical soliton energies, the excitation energies from the collective coordinate quantization of spin and isospin, the electrostatic Coulomb energies and a small explicit isospin symmetry breaking, which accounts for the mass difference between proton and neutron. The integrability properties of the BPS Skyrme model allow, in fact, for an analytical calculation of all contributions, which may then be compared with the semi-empirical mass formula. We find that for heavier nuclei, where the model is expected to be more accurate o...

Adam, C; Sanchez-Guillen, J; Wereszczynski, A

2013-01-01T23:59:59.000Z

200

Assessment of RELAP5/MOD2 against a natural circulation experiment in Nuclear Power Plant Borssele. International Agreement Report  

Science Conference Proceedings (OSTI)

As part of the ICAP (International Code Assessment and Applications Program) agreement between ECN (Netherlands Energy Research Foundation) and USNRC, ECN has performed a number of assessment calculations for the thermohydraulic system analysis code RELAP5/MOD2/36.05. This document describes the assessment of this computer program versus a natural circulation experiment as conducted at the Borssele Nuclear Power Plant. The results of this comparison show that the code RELAP5/MOD2 predicts well the natural circulation behaviour of Nuclear Power Plant Borssele.

Winters, L. [Netherlands Energy Research Foundation (ECN), Petten (Netherlands)

1993-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "international nuclear model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Thermohydraulic modeling of nuclear thermal rockets: The KLAXON code  

DOE Green Energy (OSTI)

The hydrogen flow from the storage tanks, through the reactor core, and out the nozzle of a Nuclear Thermal Rocket is an integral design consideration. To provide an analysis and design tool for this phenomenon, the KLAXON code is being developed. A shock-capturing numerical methodology is used to model the gas flow (the Harten, Lax, and van Leer method, as implemented by Einfeldt). Preliminary results of modeling the flow through the reactor core and nozzle are given in this paper.

Hall, M.L.; Rider, W.J.; Cappiello, M.W.

1992-07-01T23:59:59.000Z

202

288 Int. J. Nuclear Energy Science and Technology, Vol. 7, No. 4, 2013 Multi-physics modelling of nuclear reactors  

E-Print Network (OSTI)

288 Int. J. Nuclear Energy Science and Technology, Vol. 7, No. 4, 2013 Multi-physics modelling of nuclear reactors: current practices in a nutshell Christophe Demazière Department of Applied Physics, Division of Nuclear Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden Email

Demazière, Christophe

203

Relativistic mean-field models and nuclear matter constraints  

SciTech Connect

This work presents a preliminary study of 147 relativistic mean-field (RMF) hadronic models used in the literature, regarding their behavior in the nuclear matter regime. We analyze here different kinds of such models, namely: (i) linear models, (ii) nonlinear {sigma}{sup 3}+{sigma}{sup 4} models, (iii) {sigma}{sup 3}+{sigma}{sup 4}+{omega}{sup 4} models, (iv) models containing mixing terms in the fields {sigma} and {omega}, (v) density dependent models, and (vi) point-coupling ones. In the finite range models, the attractive (repulsive) interaction is described in the Lagrangian density by the {sigma} ({omega}) field. The isospin dependence of the interaction is modeled by the {rho} meson field. We submit these sets of RMF models to eleven macroscopic (experimental and empirical) constraints, used in a recent study in which 240 Skyrme parametrizations were analyzed. Such constraints cover a wide range of properties related to symmetric nuclear matter (SNM), pure neutron matter (PNM), and both SNM and PNM.

Dutra, M.; Lourenco, O.; Carlson, B. V. [Departamento de Fisica, Instituto Tecnologico de Aeronautica-CTA, 12228-900, Sao Jose dos Campos, SP (Brazil); Delfino, A. [Instituto de Fisica, Universidade Federal Fluminense, 24210-150, Boa Viagem, Niteroi, RJ (Brazil); Menezes, D. P.; Avancini, S. S. [Departamento de Fisica, CFM, Universidade Federal de Santa Catarina, CP. 476, CEP 88.040-900, Florianopolis, SC (Brazil); Stone, J. R. [Oxford Physics, University of Oxford, OX1 3PU Oxford (United Kingdom) and Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996 (United States); Providencia, C. [Centro de Fisica Computacional, Department of Physics, University of Coimbra, P-3004-516 Coimbra (Portugal); Typel, S. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Theorie, Planckstrasse 1,D-64291 Darmstadt (Germany)

2013-05-06T23:59:59.000Z

204

Integration of Facility Modeling Capabilities for Nuclear Nonproliferation Analysis  

Science Conference Proceedings (OSTI)

Developing automated methods for data collection and analysis that can facilitate nuclear nonproliferation assessment is an important research area with significant consequences for the effective global deployment of nuclear energy. Facility modeling that can integrate and interpret observations collected from monitored facilities in order to ascertain their functional details will be a critical element of these methods. Although improvements are continually sought, existing facility modeling tools can characterize all aspects of reactor operations and the majority of nuclear fuel cycle processing steps, and include algorithms for data processing and interpretation. Assessing nonproliferation status is challenging because observations can come from many sources, including local and remote sensors that monitor facility operations, as well as open sources that provide specific business information about the monitored facilities, and can be of many different types. Although many current facility models are capable of analyzing large amounts of information, they have not been integrated in an analyst-friendly manner. This paper addresses some of these facility modeling capabilities and illustrates how they could be integrated and utilized for nonproliferation analysis. The inverse problem of inferring facility conditions based on collected observations is described, along with a proposed architecture and computer framework for utilizing facility modeling tools. After considering a representative sampling of key facility modeling capabilities, the proposed integration framework is illustrated with several examples.

Humberto E. Garcia

2012-01-01T23:59:59.000Z

205

INTEGRATION OF FACILITY MODELING CAPABILITIES FOR NUCLEAR NONPROLIFERATION ANALYSIS  

SciTech Connect

Developing automated methods for data collection and analysis that can facilitate nuclear nonproliferation assessment is an important research area with significant consequences for the effective global deployment of nuclear energy. Facility modeling that can integrate and interpret observations collected from monitored facilities in order to ascertain their functional details will be a critical element of these methods. Although improvements are continually sought, existing facility modeling tools can characterize all aspects of reactor operations and the majority of nuclear fuel cycle processing steps, and include algorithms for data processing and interpretation. Assessing nonproliferation status is challenging because observations can come from many sources, including local and remote sensors that monitor facility operations, as well as open sources that provide specific business information about the monitored facilities, and can be of many different types. Although many current facility models are capable of analyzing large amounts of information, they have not been integrated in an analyst-friendly manner. This paper addresses some of these facility modeling capabilities and illustrates how they could be integrated and utilized for nonproliferation analysis. The inverse problem of inferring facility conditions based on collected observations is described, along with a proposed architecture and computer framework for utilizing facility modeling tools. After considering a representative sampling of key facility modeling capabilities, the proposed integration framework is illustrated with several examples.

Gorensek, M.; Hamm, L.; Garcia, H.; Burr, T.; Coles, G.; Edmunds, T.; Garrett, A.; Krebs, J.; Kress, R.; Lamberti, V.; Schoenwald, D.; Tzanos, C.; Ward, R.

2011-07-18T23:59:59.000Z

206

Integration of facility modeling capabilities for nuclear nonproliferation analysis  

SciTech Connect

Developing automated methods for data collection and analysis that can facilitate nuclear nonproliferation assessment is an important research area with significant consequences for the effective global deployment of nuclear energy. Facility modeling that can integrate and interpret observations collected from monitored facilities in order to ascertain their functional details will be a critical element of these methods. Although improvements are continually sought, existing facility modeling tools can characterize all aspects of reactor operations and the majority of nuclear fuel cycle processing steps, and include algorithms for data processing and interpretation. Assessing nonproliferation status is challenging because observations can come from many sources, including local and remote sensors that monitor facility operations, as well as open sources that provide specific business information about the monitored facilities, and can be of many different types. Although many current facility models are capable of analyzing large amounts of information, they have not been integrated in an analyst-friendly manner. This paper addresses some of these facility modeling capabilities and illustrates how they could be integrated and utilized for nonproliferation analysis. The inverse problem of inferring facility conditions based on collected observations is described, along with a proposed architecture and computer framework for utilizing facility modeling tools. After considering a representative sampling of key facility modeling capabilities, the proposed integration framework is illustrated with several examples.

Garcia, Humberto [Idaho National Laboratory (INL); Burr, Tom [Los Alamos National Laboratory (LANL); Coles, Garill A [ORNL; Edmunds, Thomas A. [Lawrence Livermore National Laboratory (LLNL); Garrett, Alfred [Savannah River National Laboratory (SRNL); Gorensek, Maximilian [Savannah River National Laboratory (SRNL); Hamm, Luther [Savannah River National Laboratory (SRNL); Krebs, John [Argonne National Laboratory (ANL); Kress, Reid L [ORNL; Lamberti, Vincent [Y-12 National Security Complex; Schoenwald, David [ORNL; Tzanos, Constantine P [ORNL; Ward, Richard C [ORNL

2012-01-01T23:59:59.000Z

207

Modeling Deep Burn TRISO Particle Nuclear Fuel  

Science Conference Proceedings (OSTI)

Under the DOE Deep Burn program TRISO fuel is being investigated as a fuel form for consuming plutonium and minor actinides, and for greater efficiency in uranium utilization. The result will thus be to drive TRISO particulate fuel to very high burn-ups. In the current effort the various phenomena in the TRISO particle are being modeled using a variety of techniques. The chemical behavior is being treated utilizing thermochemical analysis to identify phase formation/transformation and chemical activities in the particle, including kernel migration. First principles calculations are being used to investigate the critical issue of fission product palladium attack on the SiC coating layer. Density functional theory is being used to understand fission product diffusion within the plutonia oxide kernel. Kinetic Monte Carlo techniques are shedding light on transport of fission products, most notably silver, through the carbon and SiC coating layers. The diffusion of fission products through an alternative coating layer, ZrC, is being assessed via DFT methods. Finally, a multiscale approach is being used to understand thermal transport, including the effect of radiation damage induced defects, in a model SiC material.

Besmann, Theodore M [ORNL; Stoller, Roger E [ORNL; Samolyuk, German D [ORNL; Schuck, Paul C [ORNL; Rudin, Sven [Los Alamos National Laboratory (LANL); Wills, John [Los Alamos National Laboratory (LANL); Wirth, Brian D. [University of California, Berkeley; Kim, Sungtae [University of Wisconsin, Madison; Morgan, Dane [University of Wisconsin, Madison; Szlufarska, Izabela [University of Wisconsin, Madison

2012-01-01T23:59:59.000Z

208

Lithium-Ion Battery Safety Study Using Multi-Physics Internal Short-Circuit Model (Presentation)  

DOE Green Energy (OSTI)

This presentation outlines NREL's multi-physics simulation study to characterize an internal short by linking and integrating electrochemical cell, electro-thermal, and abuse reaction kinetics models.

Kim, G-.H.; Smith, K.; Pesaran, A.

2009-06-01T23:59:59.000Z

209

On selection and operation of an international interim storage facility for spent nuclear fuel  

E-Print Network (OSTI)

Disposal of post-irradiation fuel from nuclear reactors has been an issue for the nuclear industry for many years. Most countries currently have no long-term disposal strategy in place. Therefore, the concept of an ...

Burns, Joe, 1966-

2004-01-01T23:59:59.000Z

210

Phase structure in a chiral model of nuclear matter  

Science Conference Proceedings (OSTI)

The phase structure of symmetric nuclear matter in the extended Nambu-Jona-Lasinio (ENJL) model is studied by means of the effective potential in the one-loop approximation. It is found that chiral symmetry gets restored at high nuclear density and a typical first-order phase transition of the liquid-gas transition occurs at zero temperature, T=0, which weakens as T grows and eventually ends up with a second-order critical point at T=20 MeV. This phase transition scenario is confirmed by investigating the evolution of the effective potential versus the effective nucleon mass and the equation of state.

Phat, Tran Huu [Vietnam Atomic Energy Commission, 59 Ly Thuong Kiet, Hanoi (Viet Nam); Dong Do University, 8 Nguyen Cong Hoan, Hanoi (Viet Nam); Anh, Nguyen Tuan [Electric Power University, 235 Hoang Quoc Viet, Hanoi (Viet Nam); Tam, Dinh Thanh [University of Taybac, Sonla (Viet Nam); Vietnam Atomic Energy Commission, 59 Ly Thuong Kiet, Hanoi (Viet Nam)

2011-08-15T23:59:59.000Z

211

TAMCN: a tool for aggregate modeling of civil nuclear materials  

E-Print Network (OSTI)

There has been some concern in recent years about the buildup of separated civil plutonium in the world. In order to address issues related to these concerns, it is useful to have models that provide quantitative predictions of this buildup, under various scenarios. Our goal was to develop a publicly available model that would allow users to specify scenarios of their own, not simply the scenarios we envisioned. We believe this approach will provide a more complete understanding of the processes involved in the creation, storage, and utilization of potentially destructive nuclear material. Western Europe and Japan, namely France, Belgium, the United Kingdom, Germany, Switzerland, and Japan, were chosen as a starting point because the issues present in these countries, we believe, represent the pressing issues in all nuclear countries and may fully address the current problems in the buildup of reactor grade plutonium in the world today. In addition, these countries have contributed a substantial quantity of material to the amount of civil separated plutonium present today, so we thought it wise to begin here. We have developed a model of the nuclear fuel cycle in Western Europe and Japan using STELLA. Our model uses the simple "stock and flow" structure of STELLA to describe the discharge, storage, and reprocessing of spent nuclear fuel from commercial power reactors, and the creation, storage, and utilization of reactor-grade civil separated plutonium in these regions. This provides an interface that is user-friendly and can be run on any computing platform that can operate the STELLA software. In addition, detailed changes can be easily made to the model, if the user desires. We will describe features of the model from the perspective of a user, give the results of a few scenarios, and delineate plausibility tests of the model.

Watson, Aaron Michael

2002-01-01T23:59:59.000Z

212

Use of MCNP for characterization of reactor vessel internals waste from decommissioned nuclear reactors  

SciTech Connect

This study describes the use of the Monte Carlo Neutron-Photon (MCNP) code for determining activation levels of irradiated reactor vessel internals hardware. The purpose of the analysis is to produce data for the Department of Energy`s Greater-Than-Class C Low-Level Radioactive Waste Program. An MCNP model was developed to analyze the Yankee Rowe reactor facility. The model incorporates reactor geometry, material compositions, and operating history data acquired from Yankee Atomic Electric Company. In addition to the base activation analysis, parametric studies were performed to determine the sensitivity of activation to specific parameters. A component sampling plan was also developed to validate the model results, although the plan was not implemented. The calculations for the Yankee Rowe reactor predict that only the core baffle and the core support plates will be activated to levels above the Class C limits. The parametric calculations show, however, that the large uncertainties in the material compositions could cause errors in the estimates that could also increase the estimated activation level of the core barrel to above the Class C limits. Extrapolation of the results to other reactor facilities indicates that in addition to the baffle and support plates, core barrels may also be activated to above Class C limits; however the classification will depend on the specific operating conditions of the reactor and the specific material compositions of the metal, as well as the use of allowable concentration averaging practices in packaging and classifying the waste.

Love, E.F.; Pauley, K.A.; Reid, B.D.

1995-09-01T23:59:59.000Z

213

20th International Training Course (ITC-20) on the physical protection of nuclear facilities and materials evaluation report.  

SciTech Connect

The goal of this evaluation report is to provide the information necessary to improve the effectiveness of the ITC provided to the International Atomic Energy Agency Member States. This report examines ITC-20 training content, delivery methods, scheduling, and logistics. Ultimately, this report evaluates whether the course provides the knowledge and skills necessary to meet the participants needs in the protection of nuclear materials and facilities.

Ramirez, Amanda Ann

2008-09-01T23:59:59.000Z

214

Japanese suppliers in transition from domestic nuclear reactor vendors to international suppliers  

SciTech Connect

Japan is emerging as a major leader and exporter of nuclear power technology. In the 1990s, Japan has the largest and strongest nuclear power supply industry worldwide as a result of the largest domestic nuclear power plant construction program. The Japanese nuclear power supply industry has moved from dependence on foreign technology to developing, design, building, and operating its own power plants. This report describes the Japanese nuclear power supply industry and examines one supplier--the Mitsubishi group--to develop an understanding of the supply industry and its relationship to the utilities, government, and other organizations.

Forsberg, C.W.; Reich, W.J.; Rowan, W.J.

1994-06-27T23:59:59.000Z

215

Nuclear EMC effect in non-extensive statistical model  

SciTech Connect

In the present work, we attempt to describe the nuclear EMC effect by using the proton structure functions obtained from the non-extensive statistical quark model. We record that such model has three fundamental variables, the temperature T, the radius, and the Tsallis parameter q. By combining different small changes, a good agreement with the experimental data may be obtained. Another interesting point of the model is to allow phenomenological interpretation, for instance, with q constant and changing the radius and the temperature or changing the radius and q and keeping the temperature.

Trevisan, Luis A. [Departamento de Matematica e Estatistica, Universidade Estadual de Ponta Grossa, 84010-790, Ponta Grossa, PR (Brazil); Mirez, Carlos [ICET, Universidade Federal dos Vales do Jequitinhonha e Mucuri - UFVJM, Campus do Mucuri, Rua do Cruzeiro 01, Jardim Sao Paulo, 39803-371, Teofilo Otoni, MG (Brazil)

2013-05-06T23:59:59.000Z

216

Nuclear proliferation and civilian nuclear power. Report of the Nonproliferation Alternative Systems Assessment Program. Volume VII. International perspectives  

SciTech Connect

The purpose of this volume is to assess the proliferation vulnerabilities of the present deployment of civilian nuclear-power systems within the current nonproliferation regime and, in light of their prospective deployment, to consider technical and institutional measures and alternatives which may contribute to an improved regime in which nuclear power could play a significant part. An assessment of these measures must include consideration of their nonproliferation effectiveness as well as their bearing upon energy security, and their operational, economic, and political implications. The nature of these considerations can provide some measure of their likely acceptability to various nations.

Not Available

1980-06-01T23:59:59.000Z

217

Related Resources - Nuclear Data Program, Nuclear Engineering...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

218

Publications: Other Resources - Nuclear Data Program - Nuclear...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

219

Publications 2005 - Nuclear Data Program - Nuclear Engineering...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

220

Publications 2003 - Nuclear Data Program - Nuclear Engineering...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

Note: This page contains sample records for the topic "international nuclear model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Contacts - Nuclear Data Program, Nuclear Engineering Division...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

222

Publications 2001 - Nuclear Data Program - Nuclear Engineering...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

223

Publications 2004 - Nuclear Data Program - Nuclear Engineering...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

224

Publications 2009 - Nuclear Data Program - Nuclear Engineering...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

225

Nuclear Criticality Safety: Current Activities - Nuclear Engineering...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

226

Nuclear Criticality Safety - Nuclear Engineering Division (Argonne...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

227

Nuclear Systems Analysis - Nuclear Engineering Division (Argonne...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

228

Publications 2011 - Nuclear Data Program - Nuclear Engineering...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

229

International Fuel Services and Commercial Engagement | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

International Fuel Services and Commercial Engagement Nuclear Reactor Technologies Fuel Cycle Technologies International Nuclear Energy Policy and Cooperation Bilateral...

230

A Model for Vortex-Trapped Internal Waves  

Science Conference Proceedings (OSTI)

Regions of negative vorticity are observed to trap and amplify near-inertial internal waves, which are sources of turbulent mixing 10100 times higher than typically found in the stratified ocean interior. Because these regions are of finite ...

Eric Kunze; Emmanuel Boss

1998-10-01T23:59:59.000Z

231

Modeling piston skirt lubrication in internal combustion engines  

E-Print Network (OSTI)

Ever-increasing demand for reduction of the undesirable emissions from the internal combustion engines propels broader effort in auto industry to design more fuel efficient engines. One of the major focuses is the reduction ...

Bai, Dongfang, Ph. D. Massachusetts Institute of Technology

2012-01-01T23:59:59.000Z

232

Modulation of Internal Gravity Waves in a Multiscale Model for Deep Convection on Mesoscales  

Science Conference Proceedings (OSTI)

Starting from the conservation laws for mass, momentum, and energy together with a three-species bulk microphysics model, a model for the interaction of internal gravity waves and deep convective hot towers is derived using multiscale asymptotic ...

Daniel Ruprecht; Rupert Klein; Andrew J. Majda

2010-08-01T23:59:59.000Z

233

Modeling and experimental validation of internal faults in salient pole synchronous machines including space harmonics  

Science Conference Proceedings (OSTI)

Considering the space harmonics caused by the faulted windings, a simulation model of internal faults in salient pole synchronous machines is proposed in this paper. The model is based on the winding function approach, which makes no assumption for sinusoidal ... Keywords: Internal faults, Space harmonics, Synchronous machines, Winding function

X. Tu; L. -A. Dessaint; M. El Kahel; A. Barry

2006-06-01T23:59:59.000Z

234

Tidally Forced Internal Wave Mixing in a k? Model Framework Applied to Fjord Basins  

Science Conference Proceedings (OSTI)

A simple method for including tidally forced internal wave mixing in a two-equation turbulence closure framework, the k? model, is presented. The purpose is to model the vertical mixing in the basin waters of stagnant sill fjords. An internal ...

Olof Liungman

2000-02-01T23:59:59.000Z

235

Modelling international wind energy diffusion: Are the patterns of induced diffusion `S'  

E-Print Network (OSTI)

Modelling international wind energy diffusion: Are the patterns of induced diffusion `S' shaped datasets, the paper explores the patterns of international wind energy diffusion in OECD countries. The model employed in the paper predicted that wind energy, as a complex and expensive innovation, would

Feigon, Brooke

236

Azimuthal Anisotropies as Stringent Test for Nuclear Transport Models  

E-Print Network (OSTI)

Azimuthal distributions of charged particles and intermediate mass fragments emitted in Au+Au collisions at 600AMeV have been measured using the FOPI facility at GSI-Darmstadt. Data show a strong increase of the in-plane azimuthal anisotropy ratio with the charge of the detected fragment. Intermediate mass fragments are found to exhibit a strong momentum-space alignment with respect of the reaction plane. The experimental results are presented as a function of the polar center-of-mass angle and over a broad range of impact parameters. They are compared to the predictions of the Isospin Quantum Molecular Dynamics model using three different parametrisations of the equation of state. We show that such highly accurate data provide stringent test for microscopic transport models and can potentially constrain separately the stiffness of the nuclear equation of state and the momentum dependence of the nuclear interaction.

P. Crochet; F. Rami; R. Dona; the FOPI Collaboration

1997-09-15T23:59:59.000Z

237

Role and use of nuclear theories and models in practical evaluation of neutron nuclear data needed for fission and fusion reactor design and other nuclear applications  

SciTech Connect

A review of the various nuclear models used in the evaluation of neutron nuclear data for fission and fusion reactors is presented. Computer codes embodying the principles of the relevant nuclear models are compared with each other and with experimental data. The regions of validity and limitations of the conceptual formalisms are also included, along with the effects of the numerical procedures used in the codes themselves. Conclusions and recommendations for future demands are outlined.15 tables, 15 figures, 90 references. (auth)

Prince, A.

1975-01-01T23:59:59.000Z

238

Nuclear Data | More Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Computer Science Computer Science Theory, Modeling and Simulation Cyber Security Bioinformatics Climate & Environment Systems Biology Neutron Data Analysis and Visualization Nuclear Data Nuclear Systems Modeling and Simulation Supercomputing and Computation More Science Home | Science & Discovery | More Science | Computer Science | Nuclear Data SHARE Nuclear Data Nuclear Data ORNL is a recognized, international leader in nuclear data research and development (R&D) to support nuclear applications analyses. For more than 40 years, ORNL has provided neutron resonance region nuclear data evaluations to the US Evaluated Nuclear Data File (ENDF/B) database, and many of the key ORNL resonance evaluations have also been adopted by international nuclear databases in Europe, Japan, China, and Russia. ORNL

239

3D CFD ELECTROCHEMICAL AND HEAT TRANSFER MODEL OF AN INTERNALLY MANIFOLDED SOLID OXIDE ELECTROLYSIS CELL  

DOE Green Energy (OSTI)

A three-dimensional computational fluid dynamics (CFD) electrochemical model has been created to model high-temperature electrolysis cell performance and steam electrolysis in an internally manifolded planar solid oxide electrolysis cell (SOEC) stack. This design is being evaluated at the Idaho National Laboratory for hydrogen production from nuclear power and process heat. Mass, momentum, energy, and species conservation and transport are provided via the core features of the commercial CFD code FLUENT. A solid-oxide fuel cell (SOFC) model adds the electrochemical reactions and loss mechanisms and computation of the electric field throughout the cell. The FLUENT SOFC user-defined subroutine was modified for this work to allow for operation in the SOEC mode. Model results provide detailed profiles of temperature, operating potential, steam-electrode gas composition, oxygen-electrode gas composition, current density and hydrogen production over a range of stack operating conditions. Single-cell and five-cell results will be presented. Flow distribution through both models is discussed. Flow enters from the bottom, distributes through the inlet plenum, flows across the cells, gathers in the outlet plenum and flows downward making an upside-down ''U'' shaped flow pattern. Flow and concentration variations exist downstream of the inlet holes. Predicted mean outlet hydrogen and steam concentrations vary linearly with current density, as expected. Effects of variations in operating temperature, gas flow rate, oxygen-electrode and steam-electrode current density, and contact resistance from the base case are presented. Contour plots of local electrolyte temperature, current density, and Nernst potential indicate the effects of heat transfer, reaction cooling/heating, and change in local gas composition. Results are discussed for using this design in the electrolysis mode. Discussion of thermal neutral voltage, enthalpy of reaction, hydrogen production, cell thermal efficiency, cell electrical efficiency, and Gibbs free energy are discussed and reported herein.

Grant L. Hawkes; James E. O'Brien; Greg Tao

2011-11-01T23:59:59.000Z

240

3-Dimensional, High-Resolution Modeling of Nuclear Fuel ...  

Science Conference Proceedings (OSTI)

Evaluation of Silicon Carbide Joining for Nuclear and Fusion Applications ... Light Water Reactor Materials for Commercial Nuclear Power Applications.

Note: This page contains sample records for the topic "international nuclear model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Nuclear Hybrid Energy System Modeling: RELAP5 Dynamic Coupling Capabilities  

SciTech Connect

The nuclear hybrid energy systems (NHES) research team is currently developing a dynamic simulation of an integrated hybrid energy system. A detailed simulation of proposed NHES architectures will allow initial computational demonstration of a tightly coupled NHES to identify key reactor subsystem requirements, identify candidate reactor technologies for a hybrid system, and identify key challenges to operation of the coupled system. This work will provide a baseline for later coupling of design-specific reactor models through industry collaboration. The modeling capability addressed in this report focuses on the reactor subsystem simulation.

Piyush Sabharwall; Nolan Anderson; Haihua Zhao; Shannon Bragg-Sitton; George Mesina

2012-09-01T23:59:59.000Z

242

The Changing Landscape for Management of Spent Nuclear Fuel: International Perspectives from the OECD/NEA  

E-Print Network (OSTI)

important evolutions in the nuclear energy and waste management arenas. As we prepare to explore these topics in the coming days, it is useful to remind ourselves of the fundamental issues we face, and to consider the conclusions in 2006 and the major changes in context and perspectives since that time. Why are we concerned about spent nuclear fuel? The importance of safe and sustainable management of spent nuclear fuel is evident. While it comprises only a small amount by volume of the waste from nuclear power plants, it contains most of the radioactivity in national waste inventories. Its properties mean that special management is needed both in the near term as well as far into the future. The challenges are growing as greater volumes of SNF are foreseen to be stored for longer periods of time. Furthermore, SNF is at the heart of debates over nuclear power. At the last conference, nuclear power appeared poised to make a resurgence world-wide in response to, among other factors, desires for greater energy security and concerns over global warming. These factors have become even more prominent over the intervening years. Nuclear power is being expanded and extended in countries where it already exists. In addition, newcomer states seeking sustainable and secure energy solutions are pursuing nuclear power.

Uichiro Yoshimura

2010-01-01T23:59:59.000Z

243

Major Programs - Nuclear Engineering Division (Argonne)  

NLE Websites -- All DOE Office Websites (Extended Search)

Assistance Program International Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form...

244

Nuclear Energy Enabling Technologies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Enabling Technologies Nuclear Energy Enabling Technologies Nuclear Reactor Technologies Fuel Cycle Technologies International Nuclear Energy Policy and Cooperation Nuclear...

245

Sixth American Nuclear Society International Topical Meeting on Nuclear Plant Instrumentation, Control, and Human-Machine Interface Technologies NPIC&HMIT 2009, Knoxville, Tennessee, April 5-9, 2009, on CD-ROM, American Nuclear Society, LaGrange Park, IL  

E-Print Network (OSTI)

Sixth American Nuclear Society International Topical Meeting on Nuclear Plant Instrumentation, on CD-ROM, American Nuclear Society, LaGrange Park, IL (2009) FUELASSEMBLY SELF SHIELDING Polytechnic Institute Department of Mechanical, Aerospace and Nuclear Engineering Romanc2@rpi.edu; Danony

Danon, Yaron

246

Nuclear interactions of 160 MeV protons stopping in copper: A test of Monte Carlo nuclear models  

Science Conference Proceedings (OSTI)

To estimate the influence of nuclear interactions on dose or biological effect one uses Monte Carlo programs which include nuclear models. We introduce an experimental method to check these models at proton therapy energies. We have measured the distribution of charge deposited by 160 MeV protons stopping in a stack of insulated copper plates. A buildup region ahead of the main peak contains ?20% of the total charge and is entirely due to charged secondaries from inelastic nuclear interactions. The acceptance for charged secondaries is 100%. Therefore the data are a good benchmark for nuclear models. We have simulated the stack using GEANT with two nuclear models.FLUKA agrees fairly well with the measurement but GHEISHA

Bernard Gottschalk; Rachel Platais; Harald Paganetti

1999-01-01T23:59:59.000Z

247

Distinguishing Propagating Waves and Standing Modes: An Internal Wave Model  

Science Conference Proceedings (OSTI)

This paper examines high-frequency (0.1-0.5 cph) internal waves, waves previously characterized by the Garrett and Munk spectral fits (GM72, GM75, GM79) as being vertically symmetric propagating waves (or equivalently smeared standing modes...

M. Benno Blumenthal; Melbourne G. Briscoe

1995-06-01T23:59:59.000Z

248

International energy outlook 1996  

SciTech Connect

This International Energy Outlook presents historical data from 1970 to 1993 and EIA`s projections of energy consumption and carbon emissions through 2015 for 6 country groups. Prospects for individual fuels are discussed. Summary tables of the IEO96 world energy consumption, oil production, and carbon emissions projections are provided in Appendix A. The reference case projections of total foreign energy consumption and of natural gas, coal, and renewable energy were prepared using EIA`s World Energy Projection System (WEPS) model. Reference case projections of foreign oil production and consumption were prepared using the International Energy Module of the National Energy Modeling System (NEMS). Nuclear consumption projections were derived from the International Nuclear Model, PC Version (PC-INM). Alternatively, nuclear capacity projections were developed using two methods: the lower reference case projections were based on analysts` knowledge of the nuclear programs in different countries; the upper reference case was generated by the World Integrated Nuclear Evaluation System (WINES)--a demand-driven model. In addition, the NEMS Coal Export Submodule (CES) was used to derive flows in international coal trade. As noted above, foreign projections of electricity demand are now projected as part of the WEPS. 64 figs., 62 tabs.

NONE

1996-05-01T23:59:59.000Z

249

Improvements to Nuclear Data and Its Uncertainties by Theoretical Modeling  

Science Conference Proceedings (OSTI)

This project addresses three important gaps in existing evaluated nuclear data libraries that represent a significant hindrance against highly advanced modeling and simulation capabilities for the Advanced Fuel Cycle Initiative (AFCI). This project will: Develop advanced theoretical tools to compute prompt fission neutrons and gamma-ray characteristics well beyond average spectra and multiplicity, and produce new evaluated files of U and Pu isotopes, along with some minor actinides; Perform state-of-the-art fission cross-section modeling and calculations using global and microscopic model input parameters, leading to truly predictive fission cross-sections capabilities. Consistent calculations for a suite of Pu isotopes will be performed; Implement innovative data assimilation tools, which will reflect the nuclear data evaluation process much more accurately, and lead to a new generation of uncertainty quantification files. New covariance matrices will be obtained for Pu isotopes and compared to existing ones. The deployment of a fleet of safe and efficient advanced reactors that minimize radiotoxic waste and are proliferation-resistant is a clear and ambitious goal of AFCI. While in the past the design, construction and operation of a reactor were supported through empirical trials, this new phase in nuclear energy production is expected to rely heavily on advanced modeling and simulation capabilities. To be truly successful, a program for advanced simulations of innovative reactors will have to develop advanced multi-physics capabilities, to be run on massively parallel super- computers, and to incorporate adequate and precise underlying physics. And all these areas have to be developed simultaneously to achieve those ambitious goals. Of particular interest are reliable fission cross-section uncertainty estimates (including important correlations) and evaluations of prompt fission neutrons and gamma-ray spectra and uncertainties.

Danon, Yaron; Nazarewicz, Witold; Talou, Patrick

2013-02-18T23:59:59.000Z

250

ITER: The International Thermonuclear Experimental Reactor and the nuclear weapons proliferation implications of thermonuclear-fusion energy  

E-Print Network (OSTI)

This paper contains two parts: (I) A list of "points" highlighting the strategic-political and military-technical reasons and implications of the very probable siting of ITER (the International Thermonuclear Experimental Reactor) in Japan, which should be confirmed sometimes in early 2004. (II) A technical analysis of the nuclear weapons proliferation implications of inertial- and magnetic-confinement fusion systems substantiating the technical points highlighted in the first part, and showing that while full access to the physics of thermonuclear weapons is the main implication of ICF, full access to large-scale tritium technology is the main proliferation impact of MCF. The conclusion of the paper is that siting ITER in a country such as Japan, which already has a large separated-plutonium stockpile, and an ambitious laser-driven ICF program (comparable in size and quality to those of the United States or France) will considerably increase its latent (or virtual) nuclear weapons proliferation status, and fo...

Gsponer, A; Gsponer, Andre; Hurni, Jean-Pierre

2004-01-01T23:59:59.000Z

251

International Conference on Mathematics and Computational Methods Applied to Nuclear Science & Engineering (M&C 2013) Sun Valley, Idaho, USA, May 5-9, 2013, on CD-ROM, American Nuclear Society, LaGrange Park, IL (2013)  

E-Print Network (OSTI)

Monte Carlo simulation to model nuclear reactor dynamics. These Monte Carlo methods can be extremely://www.energy.gov/hubs) for Modeling and Simulation of Nuclear Reactors under U.S. Department of Energy Contract No. DE-AC05-00OR22725 for Solving k-Eigenvalue Problems in Neutron Diffusion Theory," Nuclear Science and Engineering, 167, pp. 141

Kelley, C. T. "Tim"

252

Overview of the International R&D Recycling Activities of the Nuclear Fuel Cycle  

SciTech Connect

Nuclear power has demonstrated over the last 30 years its capacity to produce base-load electricity at a low, predictable and stable cost due to the very low economic dependence on the price of uranium. However the management of used nuclear fuel remains the Achilles Heel of this energy source since the storage of used nuclear fuel is increasing as evidenced by the following number with 2,000 tons of UNF produced each year by the 104 US nuclear reactor units which equates to a total of 62,000 spent fuel assemblies stored in dry cask and 88,000 stored in pools. Two options adopted by several countries will be presented. The first one adopted by Europe, Japan and Russia consists of recycling the used nuclear fuel after irradiation in a nuclear reactor. Ninety six percent of uranium and plutonium contained in the spent fuel could be reused to produce electricity and are worth recycling. The separation of uranium and plutonium from the wastes is realized through the industrial PUREX process so that they can be recycled for re-use in a nuclear reactor as a mixed oxide (MOX) fuel. The second option undertaken by Finland, Sweden and the United States implies the direct disposal of used nuclear fuel into a geologic formation. One has to remind that only 30% of the worldwide used nuclear fuel are currently recycled, the larger part being stored (90% in pool) waiting for scientific or political decisions. A third option is emerging with a closed fuel cycle which will improve the global sustainability of nuclear energy. This option will not only decrease the volume amount of nuclear waste but also the long-term radiotoxicity of the final waste, as well as improving the long-term safety and the heat-loading of the final repository. At the present time, numerous countries are focusing on the R&D recycling activities of the ultimate waste composed of fission products and minor actinides (americium and curium). Several new chemical extraction processes, such as TRUSPEAK, EXAM, or LUCA processes are pursued worldwide and their approaches will be highlighted.

Patricia Paviet-Hartmann

2012-10-01T23:59:59.000Z

253

Nuclear mass systematics by complementing the Finite Range Droplet Model with neural networks  

E-Print Network (OSTI)

A neural-network model is developed to reproduce the differences between experimental nuclear mass-excess values and the theoretical values given by the Finite Range Droplet Model. The results point to the existence of subtle regularities of nuclear structure not yet contained in the best microscopic/phenomenological models of atomic masses. Combining the FRDM and the neural-network model, we create a hybrid model with improved predictive performance on nuclear-mass systematics and related quantities.

S. Athanassopoulos; E. Mavrommatis; K. A. Gernoth; J. W. Clark

2005-11-30T23:59:59.000Z

254

Nondestructive Evaluation: 5th International Conference on NDE in Relation to Structural Integrity for Nuclear and Pressurized Compo nents  

Science Conference Proceedings (OSTI)

The 5th International Conference on NDE in Relation to Structural Integrity for Nuclear and Pressurized Components was held May 1012, 2006, in San Diego, California. The conference was co-organized by the EPRI NDE Center and the European Commissions Joint Research Centre, Institute for Energy (EC-JRC/IE). The theme of this conference series is to provide a link between the information originated by NDE and the use made of this information in assessing structural integrity. In this context, there is often...

2006-12-13T23:59:59.000Z

255

Recommendations in International Commission on Radiological Protection-103 and its Potential Impacts to the Nuclear Industry Workfor ce  

Science Conference Proceedings (OSTI)

The nuclear power industry has significantly reduced collective exposures in the past two decades, but with the adoption of the International Council of Radiation Protection (ICRP) Publication 103, management of individual dose will become more challenging as the regulatory limit may decrease from 5 rem/year to 2 rem/year. It is anticipated that plant administrative limits will be reduced to 1-1.5 rem to ensure compliance. It is estimated that these changes could affect approximately 1,000 workers, many ...

2010-12-14T23:59:59.000Z

256

EMPIRE: Nuclear Reaction Model Code System for Data Evaluation  

SciTech Connect

EMPIRE is a modular system of nuclear reaction codes, comprising various nuclear models, and designed for calculations over a broad range of energies and incident particles. A projectile can be a neutron, proton, any ion (including heavy-ions) or a photon. The energy range extends from the beginning of the unresolved resonance region for neutron-induced reactions ({approx} keV) and goes up to several hundred MeV for heavy-ion induced reactions. The code accounts for the major nuclear reaction mechanisms, including direct, pre-equilibrium and compound nucleus ones. Direct reactions are described by a generalized optical model (ECIS03) or by the simplified coupled-channels approach (CCFUS). The pre-equilibrium mechanism can be treated by a deformation dependent multi-step direct (ORION + TRISTAN) model, by a NVWY multi-step compound one or by either a pre-equilibrium exciton model with cluster emission (PCROSS) or by another with full angular momentum coupling (DEGAS). Finally, the compound nucleus decay is described by the full featured Hauser-Feshbach model with {gamma}-cascade and width-fluctuations. Advanced treatment of the fission channel takes into account transmission through a multiple-humped fission barrier with absorption in the wells. The fission probability is derived in the WKB approximation within the optical model of fission. Several options for nuclear level densities include the EMPIRE-specific approach, which accounts for the effects of the dynamic deformation of a fast rotating nucleus, the classical Gilbert-Cameron approach and pre-calculated tables obtained with a microscopic model based on HFB single-particle level schemes with collective enhancement. A comprehensive library of input parameters covers nuclear masses, optical model parameters, ground state deformations, discrete levels and decay schemes, level densities, fission barriers, moments of inertia and {gamma}-ray strength functions. The results can be converted into ENDF-6 formatted files using the accompanying code EMPEND and completed with neutron resonances extracted from the existing evaluations. The package contains the full EXFOR (CSISRS) library of experimental reaction data that are automatically retrieved during the calculations. Publication quality graphs can be obtained using the powerful and flexible plotting package ZVView. The graphic user interface, written in Tcl/Tk, provides for easy operation of the system. This paper describes the capabilities of the code, outlines physical models and indicates parameter libraries used by EMPIRE to predict reaction cross sections and spectra, mainly for nucleon-induced reactions. Selected applications of EMPIRE are discussed, the most important being an extensive use of the code in evaluations of neutron reactions for the new US library ENDF/B-VII.0. Future extensions of the system are outlined, including neutron resonance module as well as capabilities of generating covariances, using both KALMAN and Monte-Carlo methods, that are still being advanced and refined.

Herman, M. [National Nuclear Data Center, Brookhaven National Laboratory, Upton, NY 11973-5000 (United States)], E-mail: mwherman@bnl.gov; Capote, R. [Nuclear Data Section, International Atomic Energy Agency, Wagramer Strasse, A-1400 Vienna (Austria); Carlson, B.V. [Departamento de Fisica, Instituto Tecnologico de Aeronautica, 12228-900, SP, Sao Jose dos Campos (Brazil); Oblozinsky, P. [National Nuclear Data Center, Brookhaven National Laboratory, Upton, NY 11973-5000 (United States); Sin, M. [Nuclear Physics Department, Bucharest University, P.O. Box MG-11, Bucharest-Magurele (Romania); Trkov, A. [Jozef Stefan Institute, Reactor Physics Division R-1, Jamova 39, 1000 Ljubljana (Slovenia); Wienke, H. [Belgonucleaire, Dessel, B2480 (Belgium); Zerkin, V. [Nuclear Data Section, International Atomic Energy Agency, Wagramer Strasse, A-1400 Vienna (Austria)

2007-12-15T23:59:59.000Z

257

Fusion Nuclear Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Systems Modeling, Simulation & Validation Nuclear Systems Technology Reactor Technology Nuclear Science Home | Science & Discovery | Nuclear Science | Research...

258

The National Energy Modeling System: An Overview 2000 - International  

Gasoline and Diesel Fuel Update (EIA)

international energy module (IEM) consists of four submodules (Figure 4) that perform the following functions: international energy module (IEM) consists of four submodules (Figure 4) that perform the following functions: world oil market submodule—calculates the average annual world oil price (imported refiner acquisition cost) that is consistent with worldwide petroleum demand and supply availability crude oil supply submodule—provides im- ported crude oil supply curves for five crude oil quality classes petroleum products supply submodule—pro- vides imported refined product supply curves for eleven types of refined products oxygenates supply submodule—provides imported oxygenates supply curves for methyl tertiary butyl ether (MTBE) and methanol. Figure 4. International Energy Module Structure The world oil price that is generated by the world oil market submodule is used by all the modules of NEMS as well as the other submodules of IEM. The import supply curves for crude oils, refined products, and oxygenates are used by the petroleum market module.

259

Model-predicted distribution of wind-induced internal wave energy in the world's oceans  

E-Print Network (OSTI)

Model-predicted distribution of wind-induced internal wave energy in the world's oceans Naoki 9 July 2008; published 30 September 2008. [1] The distribution of wind-induced internal wave energy-scaled kinetic energy are all consistent with the available observations in the regions of significant wind

Miami, University of

260

Risk analysis of nuclear safeguards regulations. [Aggregated Systems Model (ASM)  

Science Conference Proceedings (OSTI)

The Aggregated Systems Model (ASM), a probabilisitic risk analysis tool for nuclear safeguards, was applied to determine benefits and costs of proposed amendments to NRC regulations governing nuclear material control and accounting systems. The objective of the amendments was to improve the ability to detect insiders attempting to steal large quantities of special nuclear material (SNM). Insider threats range from likely events with minor consequences to unlikely events with catastrophic consequences. Moreover, establishing safeguards regulations is complicated by uncertainties in threats, safeguards performance, and consequences, and by the subjective judgments and difficult trade-offs between risks and safeguards costs. The ASM systematically incorporates these factors in a comprehensive, analytical framework. The ASM was used to evaluate the effectiveness of current safeguards and to quantify the risk of SNM theft. Various modifications designed to meet the objectives of the proposed amendments to reduce that risk were analyzed. Safeguards effectiveness was judged in terms of the probability of detecting and preventing theft, the expected time to detection, and the expected quantity of SNM diverted in a year. Data were gathered in tours and interviews at NRC-licensed facilities. The assessment at each facility was begun by carefully selecting scenarios representing the range of potential insider threats. A team of analysts and facility managers assigned probabilities for detection and prevention events in each scenario. Using the ASM we computed the measures of system effectiveness and identified cost-effective safeguards modifications that met the objectives of the proposed amendments.

Al-Ayat, R.A.; Altman, W.D.; Judd, B.R.

1982-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "international nuclear model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Voltage sag ride through using Improved Adaptive Internal Model Controller for doubly fed induction generator wind farms  

Science Conference Proceedings (OSTI)

This paper presents the effect of a single pulse dither signal injection in adaptive internal model controller for a doubly fed induction generator (DFIG)-based wind farm. Rotor current controller using adaptive internal model controller is designed ...

N. Amuthan, P. Subburaj, P. Melba Mary

2013-02-01T23:59:59.000Z

262

Modeling Nuclear Pasta and the Transition to Uniform Nuclear Matter with the 3D-Skyrme-Hartree-Fock Method  

E-Print Network (OSTI)

The first results of a new three-dimensional, finite temperature Skyrme-Hartree-Fock+BCS study of the properties of inhomogeneous nuclear matter at densities and temperatures leading to the transition to uniform nuclear matter are presented. A constraint is placed on the two independent components of the quadrupole moment in order to self-consistently explore the shape phase space of nuclear configurations. The scheme employed naturally allows effects such as (i) neutron drip, which results in an external neutron gas, (ii) the variety of exotic nuclear shapes expected for extremely neutron heavy nuclei, and (iii) the subsequent dissolution of these nuclei into nuclear matter. In this way, the equation of state can be calculated across phase transitions from lower densities (where one dimensional Hartree-Fock suffices) through to uniform nuclear matter without recourse to interpolation techniques between density regimes described by different physical models.

W. G. Newton

2009-03-08T23:59:59.000Z

263

Modeling Nuclear Pasta and the Transition to Uniform Nuclear Matter with the 3D-Skyrme-Hartree-Fock Method  

E-Print Network (OSTI)

The first results of a new three-dimensional, finite temperature Skyrme-Hartree-Fock+BCS study of the properties of inhomogeneous nuclear matter at densities and temperatures leading to the transition to uniform nuclear matter are presented. A constraint is placed on the two independent components of the quadrupole moment in order to self-consistently explore the shape phase space of nuclear configurations. The scheme employed naturally allows effects such as (i) neutron drip, which results in an external neutron gas, (ii) the variety of exotic nuclear shapes expected for extremely neutron heavy nuclei, and (iii) the subsequent dissolution of these nuclei into nuclear matter. In this way, the equation of state can be calculated across phase transitions from lower densities (where one dimensional Hartree-Fock suffices) through to uniform nuclear matter without recourse to interpolation techniques between density regimes described by different physical models.

Newton, W G

2009-01-01T23:59:59.000Z

264

Geomechanical/Geochemical Modeling Studies Conducted within the International DECOVALEX Project  

E-Print Network (OSTI)

Scale Heater Test at Yucca Mountain, International JournalA is a simplified model of the Yucca Mountain site, a deepthe Drift Scale Test at Yucca Mountain (a setting similar to

2005-01-01T23:59:59.000Z

265

A Numerical Model of Internal Tides with Application to the Australian North West Shelf  

Science Conference Proceedings (OSTI)

A nonlinear, primitive equation, finite-difference numerical model is applied to the problem of the generation, propagation, and dissipation of internal tides over a cross section of the continental slope and shelf topography of a region on the ...

Peter E. Holloway

1996-01-01T23:59:59.000Z

266

Revolutionizing Climate Modeling with Project Athena: A Multi-Institutional, International Collaboration  

Science Conference Proceedings (OSTI)

The importance of using dedicated high-end computing resources to enable high spatial resolution in global climate models and advance knowledge of the climate system has been evaluated in an international collaboration called Project Athena. Inspired by ...

J. L. Kinter; III; B. Cash; D. Achuthavarier; J. Adams; E. Altshuler; P. Dirmeyer; B. Doty; B. Huang; E. K. Jin; L. Marx; J. Manganello; C. Stan; T. Wakefield; T. Palmer; M. Hamrud; T. Jung; M. Miller; P. Towers; N. Wedi; M. Satoh; H. Tomita; C. Kodama; T. Nasuno; K. Oouchi; Y. Yamada; H. Taniguchi; P. Andrews; T. Baer; M. Ezell; C. Halloy; D. John; B. Loftis; R. Mohr; K. Wong

2013-02-01T23:59:59.000Z

267

Internal Frontogenesis: A Two-Dimensional Model in Isentropic, Semi-Geostrophic Coordinates  

Science Conference Proceedings (OSTI)

A two-dimensional semi-geostrophic model in isentropic coordinates is applied to the study of internal frontogenesis induced by a geostrophic deformation field. A continuous potential vorticity distribution is considered and the upper and lower ...

Andrea Buzzi; Anna Trevisan; Giovanna Salustri

1981-05-01T23:59:59.000Z

268

An Upper Boundary Condition Permitting Internal Gravity Wave Radiation in Numerical Mesoscale Models  

Science Conference Proceedings (OSTI)

A radiative upper boundary condition is proposed for numerical mesoscale models which allows vertically propagating internal gravity waves to pass out of the computational domain with minimal reflection. In this formulation, the pressure along ...

Joseph B. Klemp; Dale R. Durran

1983-03-01T23:59:59.000Z

269

Co-ordination of the International Network of Nuclear Structure and Decay Data Evaluators; Summary Report of an IAEA Technical Meeting  

SciTech Connect

The IAEA Nuclear Data Section convened the 18th meeting of the International Network of Nuclear Structure and Decay Data Evaluators at the IAEA Headquarters, Vienna, 23 to 27 March 2009. This meeting was attended by 22 scientists from 14 Member States, plus IAEA staff, concerned with the compilation, evaluation and dissemination of nuclear structure and decay data. A summary of the meeting, recommendations/conclusions, data centre reports, and various proposals considered, modified and agreed by the participants are contained within this document. The International Network of Nuclear Structure and Decay Data (NSDD) Evaluators holds biennial meetings under the auspices of the IAEA, and consists of evaluation groups and data service centres in several countries. This network has the objective of providing up-to-date nuclear structure and decay data for all known nuclides by evaluating all existing experimental data. Data resulting from this international evaluation collaboration is included in the Evaluated Nuclear Structure Data File (ENSDF) and published in the journals Nuclear Physics A and Nuclear Data Sheets (NDS).

Abriola, D.; Tuli, J.

2009-03-23T23:59:59.000Z

270

Koizumi says Japan still hoping to host international nuclear fusion ... http://asia.news.yahoo.com/050614/ap/d8an68i81.html 1 of 2 6/14/05 7:48 AM  

E-Print Network (OSTI)

still hoping to host international nuclear fusion reactor Contentious negotiations between Japan and France to locate a multibillion dollar nuclear fusion reactor will likely go down to the wire, JapanKoizumi says Japan still hoping to host international nuclear fusion ... http

271

Modeled Salt Density for Nuclear Material Estimation in the Treatment of Spent Nuclear Fuel  

SciTech Connect

Spent metallic nuclear fuel is being treated in a pyrometallurgical process that includes electrorefining the uranium metal in molten eutectic LiCl-KCl as the supporting electrolyte. We report a model for determining the density of the molten salt. Inventory operations account for the net mass of salt and for the mass of actinides present. It was necessary to know the molten salt density but difficult to measure, and it was decided to model the salt density for the initial treatment operations. The model assumes that volumes are additive for the ideal molten salt solution as a starting point; subsequently a correction factor for the lanthanides and actinides was developed. After applying the correction factor, the percent difference between the net salt mass in the electrorefiner and the resulting modeled salt mass decreased from more than 4.0% to approximately 0.1%. As a result, there is no need to measure the salt density at 500 C for inventory operations; the model for the salt density is found to be accurate.

DeeEarl Vaden; Robert. D. Mariani

2010-09-01T23:59:59.000Z

272

Harmonizing the International Electrotechnical Commission Common Information Model (CIM) and 61850  

Science Conference Proceedings (OSTI)

The Electric Power Research Institute (EPRI) has sponsored the development of a number of international standards that provide the basis for information exchange to support power system management. One of the most important standards is the International Electrotechnical Commission (IEC) Common Information Model (CIM), which is rapidly gaining acceptance throughout the world as a common semantic model to unify and integrate the data from numerous systems involved in the support of real-time electric util...

2010-05-07T23:59:59.000Z

273

New Seismic Model Will Refine Hazard Analysis at U.S. Nuclear Plants |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Seismic Model Will Refine Hazard Analysis at U.S. Nuclear New Seismic Model Will Refine Hazard Analysis at U.S. Nuclear Plants New Seismic Model Will Refine Hazard Analysis at U.S. Nuclear Plants January 31, 2012 - 2:09pm Addthis The Electric Power Research Institute (EPRI), the U.S. Department of Energy (DOE), and the U.S. Nuclear Regulatory Commission (NRC) released a new seismic study today that will help U.S. nuclear facilities in the central and eastern United States reassess seismic hazards. The Central and Eastern United States Seismic Source Characterization for Nuclear Facilities model and report is the culmination of a four-year effort among the participating organizations and replaces previous seismic source models used by industry and government since the late 1980s. The NRC is requesting U.S. nuclear power plants to reevaluate seismic

274

New Seismic Model Will Refine Hazard Analysis at U.S. Nuclear Plants |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Seismic Model Will Refine Hazard Analysis at U.S. Nuclear New Seismic Model Will Refine Hazard Analysis at U.S. Nuclear Plants New Seismic Model Will Refine Hazard Analysis at U.S. Nuclear Plants January 31, 2012 - 2:09pm Addthis The Electric Power Research Institute (EPRI), the U.S. Department of Energy (DOE), and the U.S. Nuclear Regulatory Commission (NRC) released a new seismic study today that will help U.S. nuclear facilities in the central and eastern United States reassess seismic hazards. The Central and Eastern United States Seismic Source Characterization for Nuclear Facilities model and report is the culmination of a four-year effort among the participating organizations and replaces previous seismic source models used by industry and government since the late 1980s. The NRC is requesting U.S. nuclear power plants to reevaluate seismic

275

ITER: The International Thermonuclear Experimental Reactor and the Nuclear Weapons Proliferation Implications of Thermonuclear-Fusion Energy Systems  

E-Print Network (OSTI)

This paper contains two parts: (I) A list of points highlighting the strategic-political and militarytechnical reasons and implications of the very probable siting of ITER (the International Thermonuclear Experimental Reactor) in Japan, which should be confirmed sometimes in early 2004. (II) A technical analysis of the nuclear weapons proliferation implications of inertial- and magnetic-confinement fusion systems substantiating the technical points highlighted in the first part, and showing that while full access to the physics of thermonuclear weapons is the main implication of ICF, full access to large-scale tritium technology is the main proliferation impact of MCF. The conclusion of the paper is that siting ITER in a country such as Japan, which already has a large separated-plutonium stockpile, and an ambitious laser-driven ICF program (comparable in size and quality to those of the United States or France) will considerably increase its latent (or virtual) nuclear weapons proliferation status, and foster further nuclear proliferation throughout the world. The safety and environmental problems related to the operation of largescale fusion facilities such as ITER (which contain massive amounts of hazardous and/or radioactive materials such as tritium, lithium, and beryllium, as well as neutron-activated structural materials) are not addressed in this paper.

Andr Gsponer; Jean-pierre Hurni

2004-01-01T23:59:59.000Z

276

MODELING ATMOSPHERIC RELEASES OF TRITIUM FROM NUCLEAR INSTALLATIONS  

DOE Green Energy (OSTI)

Tritium source term analysis and the subsequent dispersion and consequence analyses supporting the safety documentation of Department of Energy nuclear facilities are especially sensitive to the applied software analysis methodology, input data and user assumptions. Three sequential areas in tritium accident analysis are examined in this study to illustrate where the analyst should exercise caution. Included are: (1) the development of a tritium oxide source term; (2) use of a full tritium dispersion model based on site-specific information to determine an appropriate deposition scaling factor for use in more simplified, broader modeling, and (3) derivation of a special tritium compound (STC) dose conversion factor for consequence analysis, consistent with the nature of the originating source material. It is recommended that unless supporting, defensible evidence is available to the contrary, the tritium release analyses should assume tritium oxide as the species released (or chemically transformed under accident's environment). Important exceptions include STC situations and laboratory-scale releases of hydrogen gas. In the modeling of the environmental transport, a full phenomenology model suggests that a deposition velocity of 0.5 cm/s is an appropriate value for environmental features of the Savannah River Site. This value is bounding for certain situations but non-conservative compared to the full model in others. Care should be exercised in choosing other factors such as the exposure time and the resuspension factor.

Okula, K

2007-01-17T23:59:59.000Z

277

A Model for the Alboran Sea Internal Solitary Waves  

Science Conference Proceedings (OSTI)

The propagation into the Alboran Sea of the interface depression generated at the Strait of Gibraltar by the interaction of the semidiurnal tidal current with the main (Camarinal) sill is studied numerically by using a unidirectional model with ...

Stefano Pierini

1989-06-01T23:59:59.000Z

278

Geopolitics, History, and International Relations  

E-Print Network (OSTI)

of Redundancy Problem: Why More Nuclear Security Forces MayProduce Less Nuclear Security", Risk Analysis 24(4): 935and international security, eco- nomic development, nuclear

Robinson, William I.

2009-01-01T23:59:59.000Z

279

Proceedings of the International Conference on Water Chemistry of Nuclear Reactor Systems: San Francisco, October 2004  

Science Conference Proceedings (OSTI)

The theme of this conference was recent advances in water chemistry to mitigate materials, radiation fields, and fuel performance issues. Presenters illustrated the changing role of water chemistry in the current operation of nuclear power plants. Recent moves to increase plant output and extend plant life result in a new set of challenges, placing renewed emphasis on the need to optimize water chemistry between the often conflicting requirements of materials and fuel, while maintaining the trend towards...

2005-04-01T23:59:59.000Z

280

Thermionic nuclear reactor with internal heat distribution and multiple duct cooling  

DOE Patents (OSTI)

A Thermionic Nuclear Reactor is described having multiple ribbon-like coolant ducts passing through the core, intertwined among the thermionic fuel elements to provide independent cooling paths. Heat pipes are disposed in the core between and adjacent to the thermionic fuel elements and the ribbon ducting, for the purpose of more uniformly distributing the heat of fission among the thermionic fuel elements and the ducts.

Fisher, C.R.; Perry, L.W. Jr.

1975-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "international nuclear model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Integration of facility modeling capabilities for nuclear nonproliferation analysis  

Science Conference Proceedings (OSTI)

Developing automated methods for data collection and analysis that can facilitate nuclearnonproliferation assessment is an important research area with significant consequences for the effective global deployment of nuclear energy. Facilitymodeling that can integrate and interpret observations collected from monitored facilities in order to ascertain their functional details will be a critical element of these methods. Although improvements are continually sought, existing facilitymodeling tools can characterize all aspects of reactor operations and the majority of nuclear fuel cycle processing steps, and include algorithms for data processing and interpretation. Assessing nonproliferation status is challenging because observations can come from many sources, including local and remote sensors that monitor facility operations, as well as open sources that provide specific business information about the monitored facilities, and can be of many different types. Although many current facility models are capable of analyzing large amounts of information, they have not been integrated in an analyst-friendly manner. This paper addresses some of these facilitymodelingcapabilities and illustrates how they could be integrated and utilized for nonproliferationanalysis. The inverse problem of inferring facility conditions based on collected observations is described, along with a proposed architecture and computer framework for utilizing facilitymodeling tools. After considering a representative sampling of key facilitymodelingcapabilities, the proposed integration framework is illustrated with several examples.

Burr, Tom [Los Alamos National Laboratory (LANL); Gorensek, M. B. [Savannah River National Laboratory (SRNL); Krebs, John [Argonne National Laboratory (ANL); Kress, Reid L [ORNL; Lamberti, Vincent [Y-12 National Security Complex; Schoenwald, David [ORNL; Ward, Richard C [ORNL

2012-01-01T23:59:59.000Z

282

Numerical modeling of hydrogen-fueled internal combustion engines  

DOE Green Energy (OSTI)

The planned use of hydrogen as the energy carrier of the future introduces new challenges and opportunities, especially to the engine design community. Hydrogen is a bio-friendly fuel that can be produced from renewable resources and has no carbon dioxide combustion products; and in a properly designed ICE, almost zero NO{sub x} and hydrocarbon emissions can be achieved. Because of the unique properties of hydrogen combustion - in particular the highly wrinkled nature of the laminar flame front due to the preferential diffusion instability - modeling approaches for hydrocarbon gaseous fuels are not generally applicable to hydrogen combustion. This paper reports on the current progress to develop a engine design capability based on KIVA family of codes for hydrogen-fueled, spark-ignited engines in support of the National Hydrogen Program. A turbulent combustion model, based on a modified eddy-turnover model in conjunction with an intake flow valve model, is found to describe well the efficiency and NO{sub x} emissions of this engine satisfy the Equivalent Zero Emission Vehicle (EZEV) standard established by the California Resource Board. 26 refs., 10 figs., 1 tab.

Johnson, N.L.; Amsden, A.A.

1996-12-31T23:59:59.000Z

283

Modeling and analysis of a heat transport transient test facility for space nuclear systems.  

E-Print Network (OSTI)

??The purpose of this thesis is to design a robust test facility for a small space nuclear power system and model its physical behavior under (more)

[No author

2013-01-01T23:59:59.000Z

284

Use of international data sets to evaluate and validate pathway assessment models applicable to exposure and dose reconstruction at DOE facilities. Progress report, March--May 1994  

Science Conference Proceedings (OSTI)

The project described in this report was the result of a Memorandum of Cooperation between the US and the former-USSR following the accident at the Chernobyl Nuclear Power Plant Unit 4. A joint program was established to improve the safety of nuclear power plants and to understand the implications of environmental releases. The task of Working Group 7 was ``to develop jointly methods to project rapidly the health effects of any future nuclear reactor accident.`` The current objective of this project is to evaluate and validate pathway-assessment models applicable to exposure and dose reconstruction at DOE facilities through use of international data sets. This project incorporates data used for the prediction of radionuclide transfer through agricultural and aquatic systems to humans. It also includes participation in two multinational studies, BIOMOVS (Biospheric Model Validation Study) with the Swedish National Institute for Radiation Protection and VAMP (Validation of Model Predictions) with the International Atomic Energy Agency, that address testing the performance of models of radionuclide transport through foodchains. In the future, this project will be considered separately from the Chernobyl Studies Project and the essential activities of former Task 7.1D will be folded within the broader umbrella of the BIOMOVS and VAMP projects. The Working Group Leader of Task 7.1D will continue to provide oversight for this project.

Anspaugh, L.R.; Hendrickson, S.M. [eds.] [Lawrence Livermore National Lab., CA (United States); Hoffman, F.O. [Senes Oak Ridge, Inc., TN (United States). Center for Risk Analysis

1994-06-01T23:59:59.000Z

285

Summary of "Materials Modeling and Simulations for Nuclear Fuels"  

NLE Websites -- All DOE Office Websites (Extended Search)

Summary of "Materials Modeling and Simulations for Nuclear Fuels" Summary of "Materials Modeling and Simulations for Nuclear Fuels" (MMSNF 2013) workshop Director's Welcome Organization Achievements Highlights Fact Sheets, Brochures & Other Documents Multimedia Library About Nuclear Energy Nuclear Reactors Designed by Argonne Argonne's Nuclear Science and Technology Legacy Opportunities within NE Division Visit Argonne Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Celebrating the 70th Anniversary of Chicago Pile 1 (CP-1) Argonne OutLoud on Nuclear Energy Argonne Energy Showcase 2012 Highlights Bookmark and Share "Materials Modeling and Simulations for Nuclear Fuels" (MMSNF 2013) workshop Workshop Summary Presentation during MMSNF Workshop in Chicago

286

Multiscale Modeling of Defect Mechanics in Nuclear Materials  

Science Conference Proceedings (OSTI)

Abstract Scope, The key to developing advanced materials for nuclear applications is ... Physics-Based Homogenization of Random Continuum Microstructures.

287

Physics and Engineering Models | National Nuclear Security Administrat...  

National Nuclear Security Administration (NNSA)

Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering...

288

Nuclear Data | More Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Data SHARE Nuclear Data Nuclear Data ORNL is a recognized, international leader in nuclear data research and development (R&D) to support nuclear applications analyses. For more...

289

The Nuclear-Matter Response in the Quark String-flip Model  

E-Print Network (OSTI)

Nuclear matter is modeled directly in terms of its constituent quarks. A many-body string-flip potential is used that confines quarks within hadrons, enables the hadrons to separate without generating van der Waals forces, and is symmetric in all quark coordinates. We present variational Monte Carlo results for the ground-state properties of large, three-dimensional systems. A phase transition from nuclear to quark matter is observed which is characterized by a dramatic rearrangement of strings. We report on exact calculations of the dynamic response of many-quark systems in one spatial dimension. At low density and small momentum transfers the response is substantially larger than that of a free Fermi gas of quarks; this suggests that there is a coherent response from all the quarks inside the hadron. This coherence, however, is incomplete, as the response is suppressed relative to that of a free Fermi gas of nucleons due to the internal quark substructure of the hadron.

Jorge Piekarewicz

1996-09-16T23:59:59.000Z

290

International Environmental Modelling and Software Society (iEMSs) 2010 International Congress on Environmental Modelling and Software  

E-Print Network (OSTI)

to install micro-hydro schemes; enthusiasts of natural history aspire to restore the river to a more natural displays the predicted states for indicator nodes in the Netica model and outputs one result of the micro-hydro of river by the weir for canoeists, and the number of people the electricity generated by a micro-hydro

Romano, Daniela

291

Proposal For Internationally Standardized Cost Item Definitions For The Decommissioning Of Nuclear Installations  

E-Print Network (OSTI)

Various international decommissioning projects have shown that there are substantial variations in cost estimates for individual installations. Studies to understand the reasons for these differences have been somewhat hampered by the fact that different types of cost estimation methods are used, having different data requirements. Although some uncertainty is inevitable in any costing method, an understanding of the costing methods used in particular projects is useful to avoid key uncertainties. Difficulties of understanding can be encountered and invalid conclusions drawn in making cost comparisons without regard to the context in which the various cost estimates were made. The above-mentioned difficulties are partly due to the lack of a standardized or generally agreed-upon costing method that includes well-structured and defined cost items and an established estimation method. Such a structure and method would be useful not only for project cost comparisons but would also be a t...

Lucien Teunckens Belgoprocess; Kurt Pflugrad; Lucien Teunckens; Candace Chan-sands; Ted Lazo

2000-01-01T23:59:59.000Z

292

Fire Events Database and Generic Ignition Frequency Model for U.S. Nuclear Power Plants  

Science Conference Proceedings (OSTI)

This report contains a revision of the EPRI Fire Events Database for U.S. Nuclear Power Plants last published in EPRI Report 1000894 in October 2000. This report also contains a revision of the generic fire ignition frequency models that were published in NSAC-178L, "Fire Events Database of U.S. Nuclear Power Plants" (January 1993) and EPRI TR-105929, "Fire Ignition Frequency Model at Shutdown for U.S. Nuclear Power Plants" (December 1995).

2001-11-09T23:59:59.000Z

293

Mathematical model of steam generator feed system at power unit of nuclear plant  

Science Conference Proceedings (OSTI)

A mathematical model of a steam generator feed system at a power unit of a nuclear plant with variable values of transfer function coefficients is presented. The model is realized in the MATLAB/Simulink/Stateflow event-driven simulation.

E. M. Raskin; L. A. Denisova; V. P. Sinitsyn; Yu. V. Nesterov

2011-05-01T23:59:59.000Z

294

Sensitivity of economic performance of the nuclear fuel cycle to simulation modeling assumptions  

E-Print Network (OSTI)

Comparing different nuclear fuel cycles and assessing their implications require a fuel cycle simulation model as complete and realistic as possible. In this thesis, methodological implications of modeling choices are ...

Bonnet, Nicphore

2007-01-01T23:59:59.000Z

295

An improved structural mechanics model for the FRAPCON nuclear fuel performance code  

E-Print Network (OSTI)

In order to provide improved predictions of Pellet Cladding Mechanical Interaction (PCMI) for the FRAPCON nuclear fuel performance code, a new model, the FRAPCON Radial-Axial Soft Pellet (FRASP) model, was developed. This ...

Mieloszyk, Alexander James

2012-01-01T23:59:59.000Z

296

IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 50 (2010) 014003 (8pp) doi:10.1088/0029-5515/50/1/014003  

E-Print Network (OSTI)

creation. References [1] Tamm I.E. 1959 Theory of the magnetic thermonuclear reactor, part I Plasma Physics.D. Theory of magnetic thermonuclear reactor, part 2 Plasma Physics and the Problem of ControlledIOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 50 (2010) 014003

297

IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 48 (2008) 084001 (13pp) doi:10.1088/0029-5515/48/8/084001  

E-Print Network (OSTI)

IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 48 (2008) 084001] and created a vacuum leak in the tokamak fusion test reactor (TFTR) [4]. The damage was explained comparisons between theory and experiment [5­7], wave amplitudes an order of magnitude larger than

Heidbrink, William W.

298

INSTITUTE OF PHYSICS PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 45 (2005) 271275 doi:10.1088/0029-5515/45/4/008  

E-Print Network (OSTI)

INSTITUTE OF PHYSICS PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion, 52.55.H 1. Introduction An economically viable fusion reactor must sustain high- pressure, stable discrepancy between theory and experiment is that slight variations in the boundary geometry can sufficiently

Hudson, Stuart

299

Current R&D Activities in Nuclear Criticality Safety - Nuclear...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

300

NUCLEAR DATA AND MEASUREMENTS REPORTS 161-180 - Nuclear Data...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

Note: This page contains sample records for the topic "international nuclear model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Analysis Tools for Nuclear Criticality Safety - Nuclear Engineering...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

302

IAEA THE INTERNATIONAL NUCLEAR INFORMATION SYSTEM (INIS) The First Forty Years  

E-Print Network (OSTI)

The driving force behind the realization of the project that led to the writing of the present report was Anatoli Tolstenkov, who, at the time when the project was started, was Head of the INIS Unit within the INIS and Knowledge Management Section at the International Atomic Energy Agency. I wish to express my appreciation to Anatoli for the enthusiasm and unflinching support he provided during that time until the date when he left the services of the Agency. Continuing support and encouragement was then provided by Seyda Rieder, staff member of the INIS Unit, until the date when she retired from the Agency. To Anatoli, Seyda, Alexander Nevyjel, currently on the staff of the INIS Unit and to Dobrica Savi?, current Head of the INIS Unit, I am grateful for providing me with information on INIS activities and statistics, particularly for the few most recent years. I also wish to acknowledge the debt I owe to Yves Turgeon, former staff member of the INIS Section, who, in the early preparatory stages of the project that produced the report, did substantial

Claudio Todeschini; Claudio Todeschini

2010-01-01T23:59:59.000Z

303

Modeling, analysis and experiments for fusion nuclear technology: FNT progress report: Modeling and FINESSE  

Science Conference Proceedings (OSTI)

This document is a progress report on two technical studies carried out during 1986, both of which relate to the implementation phase of FNT. The first, which is a follow-up to FINESSE, focuses on specific key questions for: (1) very near-term (0 to 3 years) non-fusion experiments and facilities, and (2) FNT testing in a fusion facility. The second is the initial stage of a detailed effort to develop theory, models and computer codes for predicting the performance of nuclear components. Chapters are presented on (1) introduction and chapter summaries, (2) non-fusion experiments and facilities, (3) fusion testing issues, and (4) theory and modeling. Chapter 2 is an assessment of the relative advantages of many solid breeders, neutron multipliers and configurations. Various issues affecting design and cost of the blanket are examined in Chapter 3. Chapter 4 reports on the progress of the initial stage of an effort to develop theory and analytical and numerical models for nuclear components. A major part of the effort has focused on modeling of MHD effects for liquid metal blankets. Progress has also been made on modeling tritium transport and inventory in solid breeder blankets and the thermomechanical behavior of liquid-metal-cooled limiters. (MOW)

Abdou, M.A.; Tillack, M.S.; Raffray, A.R.; Hadid, A.H.; Bartlit, J.R.; Bell, C.E.C.; Gierszewski, P.J.; Gordon, J.D.; Iizuka, T.; Kim, C.N.

1987-01-01T23:59:59.000Z

304

Organization - Nuclear Engineering Division (Argonne)  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

305

Achievements: Nuclear Engineering Division (Argonne)  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

306

Helium Behavior in Oxide Nuclear Fuels: First Principles Modeling  

Science Conference Proceedings (OSTI)

UO2 and (U, Pu)O2 solid solutions (the so-called MOX) nowadays are used as commercial nuclear fuels in many countries. One of the safety issues during the storage of these fuels is related to their self-irradiation that produces and accumulates point defects and helium therein. We present density functional theory (DFT) calculations for UO2, PuO2 and MOX containing He atoms in octahedral interstitial positions. In particular, we calculated basic MOX properties and He incorporation energies as functions of Pu concentration within the spin-polarized, generalized gradient approximation (GGA) DFT calculations. We also included the on-site electron correlation corrections using the Hubbard model (in the framework of the so-called DFT + U approach). We found that PuO2 remains semiconducting with He in the octahedral position while UO2 requires a specific lattice distortion. Both materials reveal a positive energy for He incorporation, which, therefore, is an exothermic process. The He incorporation energy increases with the Pu concentration in the MOX fuel.

Gryaznov, D.; Rashkeev, Sergey N.; Kotomin, E. A.; Heifets, Eugene; Zhukovskii, Yuri F.

2010-10-01T23:59:59.000Z

307

Utility of Social Modeling in Assessment of a States Propensity for Nuclear Proliferation  

Science Conference Proceedings (OSTI)

This report is the third and final report out of a set of three reports documenting research for the U.S. Department of Energy (DOE) National Security Administration (NASA) Office of Nonproliferation Research and Development NA-22 Simulations, Algorithms, and Modeling program that investigates how social modeling can be used to improve proliferation assessment for informing nuclear security, policy, safeguards, design of nuclear systems and research decisions. Social modeling has not to have been used to any significant extent in a proliferation studies. This report focuses on the utility of social modeling as applied to the assessment of a State's propensity to develop a nuclear weapons program.

Coles, Garill A.; Brothers, Alan J.; Whitney, Paul D.; Dalton, Angela C.; Olson, Jarrod; White, Amanda M.; Cooley, Scott K.; Youchak, Paul M.; Stafford, Samuel V.

2011-06-01T23:59:59.000Z

308

Modeling engine oil vaporization and transport of the oil vapor in the piston ring pack on internal combustion engines.  

E-Print Network (OSTI)

??A model was developed to study engine oil vaporization and oil vapor transport in the piston ring pack of internal combustion engines. With the assumption (more)

Cho, Yeunwoo, 1973-

2004-01-01T23:59:59.000Z

309

An International Initiative on Long-Term Behavior of High-Level Nuclear Waste Glass  

Science Conference Proceedings (OSTI)

Nations using borosilicate glass as an immobilization material for radioactive waste have reinforced the importance of scientific collaboration to obtain a consensus on the mechanisms controlling the longterm dissolution rate of glass. This goal is deemed to be crucial for the development of reliable performance assessment models for geological disposal. The collaborating laboratories all conduct fundamental and/or applied research using modern materials science techniques. This paper briefly reviews the radioactive waste vitrification programs of the six participant nations and summarizes the current state of glass corrosion science, emphasizing the common scientific needs and justifications for on-going initiatives.

Gin, Stephane [French Atomic Energy Commission (CEA); Abdelouas, Abdesselam [SUBATECH Laboratory (France); Criscenti, Louise J [Sandia National Laboratory (SNL); Ebert, William L [Argonne National Laboratory (ANL); Ferrand, K [Belgian Nuclear Research Centre, SCK-CEN; Geisler, T [Rheinische Friedrich-Wilhelms-Universitt Bonn, Bonn, Germany; Harrison, Michael T [National Nuclear Laboratory (NNL); Inagaki, Y [Kyushu University, Japan; Mitsui, S [Japan Atomic Energy Agency (JAEA); Mueller, K T [Pacific Northwest National Laboratory (PNNL); Marra, James C [Savannah River National Laboratory (SRNL), Aiken, S.C.; Pantano, Carlo G [Pennsylvania State University, State College, PA; Pierce, Eric M [ORNL; Ryan, Joseph V [Pacific Northwest National Laboratory (PNNL); Schofield, J M [AMEC, Harwell Oxford Didcot Oxfordshire, United Kingdom; Steefel, Carl I [Lawrence Berkeley National Laboratory (LBNL); Vienna, John D. [Pacific Northwest National Laboratory (PNNL)

2013-01-01T23:59:59.000Z

310

Health effects models for nuclear power plant accident consequence analysis: Modifications of models resulting from recent reports on health effects of ionizing radiation  

Science Conference Proceedings (OSTI)

The Nuclear Regulatory Commission has sponsored several studies to identify and quantify the potential health effects of accidental releases of radionuclides from nuclear power plants. The most recent health effects models resulting from these efforts were published in two reports, NUREG/CR-4214, Rev. 1, Part 1 (1990) and Part 2 (1989). Several major health effects reports have been published recently that may impact the health effects models presented in these reports. This addendum to the Part 2 (1989) report, provides a review of the 1986 and 1988 reports by the United Nations Scientific Committee on the Effects of Atomic Radiation, the National Academy of Sciences/National Research Council BEAR 5 Committee report and Publication 60 of the International Commission on Radiological Protection as they relate to this report. The three main sections of this addendum discuss early occurring and continuing effects, late somatic effects, and genetic effects. The major changes to the NUREG/CR-4214 health effects models recommended in this addendum are for late somatic effects. These changes reflect recent changes in cancer risk factors that have come from longer followup and revised dosimetry in major studies like that on the Japanese A-bomb survivors. The results presented in this addendum should be used with the basic NUREG/CR-4214 reports listed above to obtain the most recent views on the potential health effects of radionuclides released accidentally from nuclear power plants. 48 refs., 4 figs., 24 tabs.

Abrahamson, S. (Wisconsin Univ., Madison, WI (United States)); Bender, M.A. (Brookhaven National Lab., Upton, NY (United States)); Boecker, B.B.; Scott, B.R. (Lovelace Biomedical and Environmental Research Inst., Albuquerque, NM (United States). Inhalation Toxicology Research Inst.); Gilbert, E.S. (Pacific Northwest Lab., Richland, WA (United States))

1991-08-01T23:59:59.000Z

311

A comparison of the additional protocols of the five nuclear weapon states and the ensuing safeguards benefits to international nonproliferation efforts  

Science Conference Proceedings (OSTI)

With the 6 January 2009 entry into force of the Additional Protocol by the United States of America, all five declared Nuclear Weapon States that are part of the Nonproliferation Treaty have signed, ratified, and put into force the Additional Protocol. This paper makes a comparison of the strengths and weaknesses of the five Additional Protocols in force by the five Nuclear Weapon States with respect to the benefits to international nonproliferation aims. This paper also documents the added safeguards burden to the five declared Nuclear Weapon States that these Additional Protocols put on the states with respect to access to their civilian nuclear programs and the hosting of complementary access activities as part of the Additional Protocol.

Uribe, Eva C [Los Alamos National Laboratory; Sandoval, M Analisa [Los Alamos National Laboratory; Sandoval, Marisa N [Los Alamos National Laboratory; Boyer, Brian D [Los Alamos National Laboratory; Leitch, Rosalyn M [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

312

International Model for Policy Analysis of Agricultural Commodities and Trade (IMPACT): Model description  

E-Print Network (OSTI)

THE MODEL.................................................................................................................................7 I. Basic Methodology on Food............................................................................................. 7

Mark W. Rosegrant; Claudia Ringler; Siwa Msangi; Timothy B. Sulser; Tingju Zhu; Sarah A. Cline

2002-01-01T23:59:59.000Z

313

A methodology for experimentally verifying simulation models for distribution transformer internal faults  

E-Print Network (OSTI)

Internal winding faults comprise 70-80% of modem transformer breakdown. In this era of deregulation, this phenomenon is likely to increase since loading transformers to their optimum capacity is becoming normal practice. These internal faults result from degradation of the transformer winding insulation, which tends to cause a breakdown in the dielectric strength. This breakdown either causes adjacent windings to short or a winding to be shorted to a grounded part of the transformer. Such faults can be very catastrophic and hence expensive. Utilities therefore welcome inexpensive methods employed to detect such faults in the incipient stage. The long-term objective of this research is the development of an inexpensive technique for the detection of transformer incipient winding faults. As part of this research, the thesis presents: 1. Internal winding models of single-phase, distribution transformers. These models are adapted from an earlier work of modeling internal winding faults of three-phase power transformers. They are compatible with the Alternative Transients Program and enable the transformer winding terminal parameters to be monitored. They allow the simulation of faults between any turn and the earth or between any two turns of the transformer windings. 2. Simulation of various internal winding faults of a single-phase distribution transformer using the models. 3. A general methodology to experimentally verify simulation models for distribution transformer internal winding faults including details of the design and layout of a field experimental setup containing a 25kVA, 7200V/240V/120V single-phase, custom-built transformer and a 25kW resistor load bank. 4. A comparison of the simulation and corresponding field experiment results. Although the simulation models neglected factors such as saturation and consequently transformer nonlinearities, the simulation and field results were very similar. As a contribution, the experimental setup presented in this work could generally be used for simulation model verification by following the proposed methodology with appropriate modifications. The validated models can be utilized to generate fault data for all kinds of scenarios including those that would be impossible to stage experimentally due to high levels of fault currents. These data can be used as a basis for a single-phase transformer incipient fault detection system.

Palmer-Buckle, Peter

1999-01-01T23:59:59.000Z

314

On nuclear scars, renewables, and an acid rain model  

SciTech Connect

The author argues that the extreme precautions observed at a nuclear power plant and throughout the nuclear industry create an interesting conflict in imagery. First, the safety measures far exceed the normal acceptable lengths taken to protect workers and the public at large in any other circumstance. Second, those very extremes in precaution contribute to public fear. Naturally, anti-nuclear radicals use this to great advantage by constantly trying to force more extreme measures on the industry. According to the author it happens even though some of these groups seem to realize that fighting the most environmentally benign source of power makes no sense.

Rittenhouse, R.C

1989-11-01T23:59:59.000Z

315

Caloric curve for nuclear liquid-gas phase transition in relativistic mean-field hadronic model  

E-Print Network (OSTI)

The main thermodynamical properties of the nuclear liquid-gas phase transition were explored in the framework of the relativistic mean-field hadronic model in three statistical ensembles: canonical, grand canonical and isobaric. We have found that the liquid-gas phase transition, i.e., the first order phase transition which is defined by the plateau in the isotherms, cannot contain the plateau in the caloric curves in the canonical and microcanonical ensembles. The plateau in the isotherms is incompatible with the plateau in the caloric curves at fixed baryon density. Moreover, for the nuclear liquid-gas phase transition the caloric curve has a plateau only at fixed pressure or chemical potential. The results of the statistical multifragmentation models for the nuclear liquid-gas phase transition were reanalyzed. It was revealed that one class of statistical multifragmentation models do indeed predict the nuclear liquid-gas phase transition for the nuclear multifragmentation. However, there is another class o...

Parvan, A S

2011-01-01T23:59:59.000Z

316

Isospin Lattice-Gas Model and Liquid-Gas Phase Transition in Asymmetric Nuclear Matter  

E-Print Network (OSTI)

An isospin lattice-gas model, which is a spin-1 Ising model, is employed to investigate the liquid-gas phase transition in asymmetric nuclear matter. We consider nuclear matter as a lattice where each lattice site can be either empty or occupied by a proton or a neutron, with a nearest-neighbor interaction among the nucleons. With the Bragg-Williams mean field approximation, we calculate various thermodynamic properties of nuclear matter for different densities and different proton-neutron asymmetry parameter s. Our model exhibits liquidgas phase transition below a critical temperature Tc, and predicts a monotonic decreasing of Tc as the magnitude of s is increased. The dependence of the nuclear matter isotherms on the asymmetry parameter s is discussed. Ray, Shamanna and Kuo / Liquid-gas phase transition in Nuclear matter 2 1.

S. Ray; J. Shamanna; T. T. S. Kuo

2008-01-01T23:59:59.000Z

317

Characterization and Modeling of Disolcation Structures in Nuclear ...  

Science Conference Proceedings (OSTI)

Mar 13, 2012... Greg Oberson, United States Nuclear Regulatory Commission; Matthew ... Session Chair: Elaine West, Knolls Atomic Power Laboratory; Osman ... Sung Soo Kim1; Dae Whan Kim1; 1Korea Atomic Energy Research Institute

318

Spatial multi-taper spectrum estimation for nuclear reactor modelling  

Science Conference Proceedings (OSTI)

Multi-taper univariate and cross-spectral analysis is used to investigate the structure of spatial variation in the temperatures measured across the surface of a nuclear reactor. The construction of the spatial tapers over the approximate circular reactor ...

C. J. Scarrott; G. Tunnicliffe Wilson

2009-10-01T23:59:59.000Z

319

Nuclear Power Plant Fire Modeling Application Guide (NPP FIRE MAG)  

Science Conference Proceedings (OSTI)

There is a movement to introduce risk-informed and performance-based (RI/PB) analyses into fire protection engineering practice, both domestically and worldwide. This movement exists in both the general fire protection and the nuclear power plant (NPP) fire protection communities. The U.S. Nuclear Regulatory Commission (NRC) has used risk-informed insights as a part of its regulatory decision making since the 1990s.In 2001, the National Fire Protection Association (NFPA) ...

2012-11-30T23:59:59.000Z

320

NNSA Conducts International Radiological Response Training in...  

National Nuclear Security Administration (NNSA)

International Radiological Response Training in Vienna | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear...

Note: This page contains sample records for the topic "international nuclear model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Building International Emergency Management Systems | National...  

NLE Websites -- All DOE Office Websites (Extended Search)

Building International Emergency Management Systems | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy...

322

Robust nuclear signal reconstruction by a novel ensemble model aggregation procedure P. Baraldi1  

E-Print Network (OSTI)

of a nuclear boiling water reactor and 215 signals measured at a pressurized water reactor. The advantagesRobust nuclear signal reconstruction by a novel ensemble model aggregation procedure P. Baraldi1 Reactor Project, 1751, Halden, Norway Abstract Monitoring of sensor operation is important for detecting

323

Modelling of the Uncertainty of Nuclear Fuel Thermal Behaviour Using the URANIE Framework  

Science Conference Proceedings (OSTI)

In the global framework of nuclear fuel behaviour simulation, the response of the models describing the physical phenomena occurring during the irradiation in reactor is mainly conditioned by the confidence in the calculated temperature of the fuel. ... Keywords: uncertainty, thermal behaviour, nuclear fuel, URANIE

Antoine Boulore; Christine Struzik; Fabrice Gaudier

2009-09-01T23:59:59.000Z

324

Molecular Models to Emulate Confinement Effects on the Internal Dynamics of Organophosphorous Hydrolase  

SciTech Connect

The confinement of the metalloenzyme organophosphorous hydrolase in functionalized mesoporous silica (FMS) enhances the stability and increases catalytic specific activity by 200% compared to the enzyme in solution. The mechanism by which these processes take place is not well understood. We have developed two coarse-grain models of confinement to provide insights into how the nanocage environment steers enzyme conformational dynamics towards enhanced stability and enzymatic activity. The structural dynamics of organophosphorous hydrolase under the two confinement models are very distinct from each other. Comparisons of the present simulations show that only one model leads to an accurate depiction of the internal dynamics of the enzyme.

Gomes, Diego Enry B.; Lins, Roberto D.; Pascutti, Pedro G.; Straatsma, TP; Soares, Thereza A.

2008-09-28T23:59:59.000Z

325

Modelling of the internal dynamics and density in a tens of joules plasma focus device  

Science Conference Proceedings (OSTI)

Using MHD theory, coupled differential equations were generated using a lumped parameter model to describe the internal behaviour of the pinch compression phase in plasma focus discharges. In order to provide these equations with appropriate initial conditions, the modelling of previous phases was included by describing the plasma sheath as planar shockwaves. The equations were solved numerically, and the results were contrasted against experimental measurements performed on the device PF-50J. The model is able to predict satisfactorily the timing and the radial electron density profile at the maximum compression.

Marquez, Ariel [CNEA and Instituto Balseiro, 8402 Bariloche (Argentina); Gonzalez, Jose [INVAP-CONICET and Instituto Balseiro, 8402 Bariloche, Argentina. (Argentina); Tarifeno-Saldivia, Ariel; Pavez, Cristian; Soto, Leopoldo [CCHEN, Comision Chilena de Energia Nuclear, Casilla 188-D, Santiago (Chile); Center for Research and Applications in Plasma Physics and Pulsed Power, P4 (Chile); Clausse, Alejandro [CNEA-CONICET and Universidad Nacional del Centro, 7000 Tandil (Argentina)

2012-01-15T23:59:59.000Z

326

Modeling engine oil vaporization and transport of the oil vapor in the piston ring pack on internal combustion engines  

E-Print Network (OSTI)

A model was developed to study engine oil vaporization and oil vapor transport in the piston ring pack of internal combustion engines. With the assumption that the multi-grade oil can be modeled as a compound of several ...

Cho, Yeunwoo, 1973-

2004-01-01T23:59:59.000Z

327

Original article: Estimation of spatially varying open boundary conditions for a numerical internal tidal model with adjoint method  

Science Conference Proceedings (OSTI)

The adjoint data assimilation technique is applied to the estimation of the spatially varying open boundary conditions (OBCs) for a numerical internal tidal model. The spatial variation of the OBCs is realized by the so-called 'independent point scheme' ... Keywords: Adjoint method, Internal tidal model, Open boundary conditions, Parameter estimation, Spatial variation

Haibo Chen, Anzhou Cao, Jicai Zhang, Chunbao Miao, Xianqing Lv

2014-03-01T23:59:59.000Z

328

High energy nuclear quasielastic reactions: Decisive tests of nuclear binding/pion models of the EMC effect  

SciTech Connect

The light-cone nucleon momentum distributions obtained from non- relativistic spectral functions or given by nuclear binding/pion models are often used to analyze high Q{sup 2} quasi-elastic and deep-inelastic (e,e{prime}) reactions. We demonstrate that in such models the presence of non-nucleonic components causes the scattering from forward and backward moving target protons to be significantly different. Other models do not have this property. The sensitivity of current (e,e{prime}p) and (p,pp) color transparency experiments is sufficient to observe these differences.

Frankfurt, L; Strikman, M [Washington Univ., Seattle, WA (United States). Inst. for Nuclear Theory AN SSSR, Leningrad (USSR). Inst. Yadernoj Fiziki; Miller, G A [Washington Univ., Seattle, WA (United States). Inst. for Nuclear Theory

1991-01-01T23:59:59.000Z

329

Modeling Solute Thermokinetics in LiCI-KCI Molten Salt for Nuclear Waste Separation  

SciTech Connect

Recovery of actinides is an integral part of a closed nuclear fuel cycle. Pyrometallurgical nuclear fuel recycling processes have been developed in the past for recovering actinides from spent metallic and nitride fuels. The process is essentially to dissolve the spent fuel in a molten salt and then extract just the actinides for reuse in a reactor. Extraction is typically done through electrorefining, which involves electrochemical reduction of the dissolved actinides and plating onto a cathode. Knowledge of a number of basic thermokinetic properties of salts and salt-fuel mixtures is necessary for optimizing present and developing new approaches for pyrometallurgical waste processing. The properties of salt-fuel mixtures are presently being studied, but there are so many solutes and varying concentrations that direct experimental investigation is prohibitively time consuming and expensive (particularly for radioactive elements like Pu). Therefore, there is a need to reduce the number of required experiments through modeling of salt and salt-fuel mixture properties. This project will develop first-principles-based molecular modeling and simulation approaches to predict fundamental thermokinetic properties of dissolved actinides and fission products in molten salts. The focus of the proposed work is on property changes with higher concentrations (up to 5 mol%) of dissolved fuel components, where there is still very limited experimental data. The properties predicted with the modeling will be density, which is used to assess the amount of dissolved material in the salt; diffusion coefficients, which can control rates of material transport during separation; and solute activity, which determines total solubility and reduction potentials used during electrorefining. The work will focus on La, Sr, and U, which are chosen to include the important distinct categories of lanthanides, alkali earths, and actinides, respectively. Studies will be performed using LiCl-KCl salt at the eutectic composition (58 mol% LiCl, 42 mol% KCl), which is used for treating spent EBR-II fuel. The same process being used for EBRII fuel is currently being studied for widespread international implementation. The methods will focus on first-principles and first- principles derived interatomic potential based simulations, primarily using molecular dynamics. Results will be validated against existing literature and parallel ongoing experimental efforts. The simulation results will be of value for interpreting experimental results, validating analytical models, and for optimizing waste separation by potentially developing new salt configurations and operating conditions.

Morgan, Dane; Eapen, Jacob

2013-10-01T23:59:59.000Z

330

Report of a workshop on nuclear power growth and nonproliferation held at the Woodrow Wilson international center for scholars, Washington, DC, April 21, 2010  

SciTech Connect

The workshop addressed the future of nuclear power and nonproliferation in light of global nuclear energy developments, changing US policy and growing concerns about nuclear proliferation and terrorism. The discussion reflected wide agreement on the need for nuclear power, the necessity of mitigating any proliferation and terrorism risks and support for international cooperation on solutions. There were considerable differences on the nature and extent of the risks of differing fuel cycle choices. There was some skepticism about the prospects for a global nuclear energy renaissance, but there was a recognition that nuclear power would expand somewhat in the decades ahead with some states expanding capacity dramatically (e.g., China) and at least a few new states developing nuclear power programs. It was also argued by some participants that under the right conditions, a genuine renaissance could occur some decades from now. The prospects for a dramatic growth in nuclear power will depend on the ability of governments and industry to address these concerns, including the effectiveness of, and the resources devoted to, plans to develop and implement technologies and approaches that strengthen nonproliferation, nuclear materials accountability and nuclear security Several participants noted that the United States will not be able to continue to lead global nonproliferation efforts and to shape the growth of nuclear power as well as the global environment and energy debates without a robust US nuclear energy program. Some participants argued that fully integrating nuclear energy growth and nonproliferation, proliferation resistance and physical protection objectives was possible. The growing consensus on these objectives and the growing concern about the potential impact of further proliferation on the industry was one reason for optimism. The Blue Ribbon commission led by Scowcroft and Hamilton was seen as going far beyond the need to find an alternative to Yucca Mountain, and the preeminent forum in the next years to address the back end of the fuel cycle and other issues. Some argued that addressing these issues is the critical missing element, or the final piece of the puzzle to ensure the benefits of nuclear power and to promote nonproliferation. In this context, many argued that R&D on closed as well as open fuel cycle options in order to ensure a suite of long-term options was essential.

Pilat, Joseph F [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

331

A Model of Nuclear Recoil Scintillation Efficiency in Noble Liquids  

E-Print Network (OSTI)

Scintillation efficiency of low-energy nuclear recoils in noble liquids plays a crucial role in interpreting results from some direct searches for Weakly Interacting Massive Particle (WIMP) dark matter. However, the cause of a reduced scintillation efficiency relative to electronic recoils in noble liquids remains unclear at the moment. We attribute such a reduction of scintillation efficiency to two major mechanisms: 1) energy loss and 2) scintillation quenching. The former is commonly described by Lindhard's theory and the latter by Birk's saturation law. We propose to combine these two to explain the observed reduction of scintillation yield for nuclear recoils in noble liquids. Birk's constants $kB$ for argon, neon and xenon determined from existing data are used to predict noble liquid scintillator's response to low-energy nuclear recoils and low-energy electrons. We find that energy loss due to nuclear stopping power that contributes little to ionization and excitation is the dominant reduction mechanism in scintillation efficiency for nuclear recoils, but that significant additional quenching results from the nonlinear response of scintillation to the ionization density.

D. -M. Mei; Z. -B. Yin; L. C. Stonehill; A. Hime

2007-12-14T23:59:59.000Z

332

Modeling of Sulfate Double-salts in Nuclear Wastes  

Science Conference Proceedings (OSTI)

Due to limited tank space at Hanford and Savannah River, the liquid nuclear wastes or supernatants have been concentrated in evaporators to remove excess water prior to the hot solutions being transferred to underground storage tanks. As the waste solutions cooled, the salts in the waste exceeded the associated solubility limits and precipitated in the form of saltcakes. The initial step in the remediation of these saltcakes is a rehydration process called saltcake dissolution. At Hanford, dissolution experiments have been conducted on small saltcake samples from five tanks. Modeling of these experimental results, using the Environmental Simulation Program (ESP), are being performed at the Diagnostic Instrumentation and Analysis Laboratory (DIAL) at Mississippi State University. The River Protection Project (RPP) at Hanford will use these experimental and theoretical results to determine the amount of water that will be needed for its dissolution and retrieval operations. A comprehensive effort by the RPP and the Tank Focus Area continues to validate and improve the ESP and its databases for this application. The initial effort focused on the sodium, fluoride, and phosphate system due to its role in the formation of pipeline plugs. In FY 1999, an evaluation of the ESP predictions for sodium fluoride, trisodium phosphate dodecahydrate, and natrophosphate clearly indicated that improvements to the Public database of the ESP were needed. One of the improvements identified was double salts. The inability of any equilibrium thermodynamic model to properly account for double salts in the system can result in errors in the predicted solid-liquid equilibria (SLE) of species in the system. The ESP code is evaluated by comparison with experimental data where possible. However, data does not cover the range of component concentrations and temperatures found in many tank wastes. Therefore, comparison of ESP with another code is desirable, and may illuminate problems with both. For this purpose, the SOLGASMIX code was used in conjunction with a small private database developed at ORNL. This code calculates thermodynamic equilibria through minimization of Gibbs Energy, and utilizes the Pitzer model for activity coefficients. The sodium nitrate-sulfate double salt and the sodium fluoride-sulfate double salt were selected for the FY 2000 validation study of ESP. Even though ESP does not include the sulfate-nitrate double salt, this study found that this omission does not appear to be a major consequence. In this case, the solubility predictions with and without the sulfate-nitrate double salt are comparable. In contrast, even though the sulfate-fluoride double salt is included within the ESP databank, comparison to previous experimental results indicates that ESP underestimates solubility. Thus, the prediction for the sulfate-fluoride system needs to be improved. A main consequence of the inability to accurately predict the SLE of double salts is its impact on the predicted ionic strength of the solution. The ionic strength has been observed to be an important factor in the formation of pipeline plugs. To improve the ESP prediction, solubility tests on the sulfate-fluoride system are underway at DIAL, and these experimental results will be incorporated into the Public database by OLI System, Inc. Preliminary ESP simulations also indicated difficulties with the SLE prediction for anhydrous sodium sulfate. The Public database for the ESP does not include fundamental parameters for this solid in mixed solutions below 32.4 C. The limitation, in the range of anhydrous sodium sulfate, leads to convergence problems in ESP and to inaccurate predictions of solubility near the invariant point when sodium sulfate decahydrate and other salts, such as sodium nitrate, were present. These difficulties were partially corrected through the use of an additional database. In conclusion, these results indicate the need for experimental data at temperatures above 25 C and in solutions containing both nitrate and hydroxide. Furthermore, the validation and do

Toghiani, B.

2000-10-30T23:59:59.000Z

333

Role of criticality models in ANSI standards for nuclear criticality safety  

SciTech Connect

Two methods used in nuclear criticality safety evaluations in the area of neutron interaction among subcritical components of fissile materials are the solid angle and surface density techniques. The accuracy and use of these models are briefly discussed. (TFD)

Thomas, J.T.

1976-01-01T23:59:59.000Z

334

Optimization Online - Augmented L1 and Nuclear-Norm Models with ...  

E-Print Network (OSTI)

Jan 22, 2012 ... Augmented L1 and Nuclear-Norm Models with a Globally Linearly Convergent Algorithm. Ming-Jun Lai (mjlai ***at*** math.uga.edu) Wotao Yin...

335

Verification and Validation of Selected Fire Models for Nuclear Power Plant Applications  

Science Conference Proceedings (OSTI)

This report documents the verification and validation (VV) of five selected fire models commonly used in support of risk-informed and performance-based (RI/PB) fire protection at nuclear power plants (NPPs).

2007-05-30T23:59:59.000Z

336

Environmental Aspects of Advanced Nuclear Fuel Cycles: Parametric Modeling and Preliminary Analysis  

E-Print Network (OSTI)

Nuclear power has the potential to help reduce rising carbon emissions, but to be considered sustainable, it must also demonstrate the availability of an indefinite fuel supply as well as not produce any significant negative environmental effects. The objective of this research was to evaluate the sustainability of nuclear power and to explore the nuclear fuel cycles that best meet this goal. First, the study quantified current and promising nuclear fuel cycles to be further evaluated and developed a set of objective metrics to describe the environmental effects of each cycle. The metrics included such factors as the amount of waste generated and the isotopic composition of the waste. Next, the evaluation used the International Atomic Energy Agency's Nuclear Fuel Cycle Simulation System to compute nuclide compositions at various stages of the fuel cycles. Finally, the study looked at the radioactivity of the waste generated and used this and other characteristics to determine which fuel cycle meets the objectives of sustainability. Results confirm that incorporating recycling into the fuel cycle would help reduce the volume of waste needing to be stored long-term. Also, calculations made with data from the Nuclear Fuel Cycle Simulation System predicted that the waste from fuel cycles using recycling would be slightly more radiotoxic than the open fuel cycle?s waste. However, the small increase in radiotoxicity is a manageable issue and would not detract from the benefits of recycling. Therefore, recycling and reprocessing spent fuel must be incorporated into the nuclear fuel cycle to achieve sustainability.

Yancey, Kristina D.

2010-05-01T23:59:59.000Z

337

Virtual enterprise model for the electronic components business in the Nuclear Weapons Complex  

Science Conference Proceedings (OSTI)

The electronic components business within the Nuclear Weapons Complex spans organizational and Department of Energy contractor boundaries. An assessment of the current processes indicates a need for fundamentally changing the way electronic components are developed, procured, and manufactured. A model is provided based on a virtual enterprise that recognizes distinctive competencies within the Nuclear Weapons Complex and at the vendors. The model incorporates changes that reduce component delivery cycle time and improve cost effectiveness while delivering components of the appropriate quality.

Ferguson, T.J.; Long, K.S.; Sayre, J.A. [Sandia National Labs., Albuquerque, NM (United States); Hull, A.L. [Sandia National Labs., Livermore, CA (United States); Carey, D.A.; Sim, J.R.; Smith, M.G. [Allied-Signal Aerospace Co., Kansas City, MO (United States). Kansas City Div.

1994-08-01T23:59:59.000Z

338

Understanding Mercury Chemistry via the Reaction Engineering International (REI) ProMerc(tm) Model  

Science Conference Proceedings (OSTI)

Mercury chemistry in a coal-fired boiler remains poorly understood. As a result, power company engineers cannot predict with confidence the level of mercury emissions they would experience at a given site if they change coals, add/enhance criteria pollutant controls, or implement mercury controls. Similarly, they cannot predict with confidence how mercury control test results at one site extrapolate to other sites. This report documents a modeling study conducted by Reaction Engineering International (RE...

2008-03-04T23:59:59.000Z

339

International Disaster Medical Sciences Fellowship: Model Curriculum and Key Considerations for Establishment of an Innovative International Educational Program  

E-Print Network (OSTI)

Sciences Fellowship: Model Curriculum and Key Considerationsand a model core curriculum based on current evidence-basedand a model core curriculum. The same Disaster Medical

Koenig, Kristi L; Bey, Tareg; Schultz, Carl H

2009-01-01T23:59:59.000Z

340

A Model-Based Signal Processing Approach to Nuclear Explosion Monitoring  

Science Conference Proceedings (OSTI)

This report describes research performed under Laboratory Research and Development Project 05-ERD-019, entitled ''A New Capability for Regional High-Frequency Seismic Wave Simulation in Realistic Three-Dimensional Earth Models to Improve Nuclear Explosion Monitoring''. A more appropriate title for this project is ''A Model-Based Signal Processing Approach to Nuclear Explosion Monitoring''. This project supported research for a radically new approach to nuclear explosion monitoring as well as allowed the development new capabilities in computational seismology that can contribute to NNSA/NA-22 Programs.

Rodgers, A; Harris, D; Pasyanos, M

2007-03-14T23:59:59.000Z

Note: This page contains sample records for the topic "international nuclear model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Development of hydrogeological modelling approaches for assessment of consequences of hazardous accidents at nuclear power plants  

SciTech Connect

This paper introduces some modeling approaches for predicting the influence of hazardous accidents at nuclear reactors on groundwater quality. Possible pathways for radioactive releases from nuclear power plants were considered to conceptualize boundary conditions for solving the subsurface radionuclides transport problems. Some approaches to incorporate physical-and-chemical interactions into transport simulators have been developed. The hydrogeological forecasts were based on numerical and semi-analytical scale-dependent models. They have been applied to assess the possible impact of the nuclear power plants designed in Russia on groundwater reservoirs.

Rumynin, V.G.; Mironenko, V.A.; Konosavsky, P.K.; Pereverzeva, S.A. [St. Petersburg Mining Inst. (Russian Federation)

1994-07-01T23:59:59.000Z

342

Isospin Lattice-Gas Model and Liquid-Gas Phase Transition in Asymmetric Nuclear Matter  

E-Print Network (OSTI)

An isospin lattice-gas model, which is a spin-1 Ising model, is employed to investigate the liquid-gas phase transition in asymmetric nuclear matter. We consider nuclear matter as a lattice where each lattice site can be either empty or occupied by a proton or a neutron, with a nearest-neighbor interaction among the nucleons. With the Bragg-Williams mean field approximation, we calculate various thermodynamic properties of nuclear matter for different densities and different proton-neutron asymmetry parameter $s$. Our model exhibits liquid-gas phase transition below a critical temperature $T_c$, and predicts a monotonic decreasing of $T_c$ as the magnitude of $s$ is increased. The dependence of the nuclear matter isotherms on the asymmetry parameter $s$ is discussed.

S. Ray; J. Shamanna; T. T. S. Kuo

1996-08-13T23:59:59.000Z

343

EIA - International Energy Outlook 2008-Appendix J. Models Used To Generate  

Gasoline and Diesel Fuel Update (EIA)

J. Models Used To Generate the IEO2008 Projections J. Models Used To Generate the IEO2008 Projections International Energy Outlook 2008 Appendix J. Models Used To Generate the IEO2008 Projections World Energy Projections Plus (WEPS+) The IEO2008 projections of world energy consumption and supply were generated from EIA’s World Energy Projections Plus (WEPS+) model. WEPS+ is a system of sectoral energy models that provide a loosely linked, integrated equilibrium modeling system. It is used primarily to provide alternative energy projections based on different assumptions for GDP growth and fossil fuel prices. The WEPS+ common platform allows the models to communicate with each other and provides a comprehensive, central series of output reports for analysis. For IEO2008, WEPS+ incorporates a separate transportation sector model with an extensive level of detail for modes and vehicle types. WEPS+ also incorporates some additional detail on industrial energy use in China and India, additional detail on end-use electricity consumption, and an interface to the System for the Analysis of Global Energy Markets/Global Electricity Module (see below) for generation, capacity, and fuel consumption in the electricity sector.

344

Revised rail-stop exposure model for incident-free transport of nuclear waste  

SciTech Connect

This report documents a model for estimating railstop doses that occur during incident-free transport of nuclear waste by rail. The model, which has been incorporated into the RADTRAN III risk assessment code, can be applied to general freight and dedicated train shipments of waste.

Ostmeyer, R.M.

1986-02-01T23:59:59.000Z

345

Characterization and Dose Modeling of Soil, Sediment and Bedrock During Nuclear Power Plant Decommissioning  

Science Conference Proceedings (OSTI)

A decommissioning nuclear power plant must confirm that the radionuclides present in the soils, sediments, and bedrock left on site at the time of license termination will meet the appropriate dose limits for site release. This process involves the characterization, dose modeling, and if required, remediation, of these media. At some decommissioning nuclear power plants, the management of contaminated soil, sediments, and bedrocks was a major project that led to generation of remediation projects and rad...

2009-11-20T23:59:59.000Z

346

Progress toward bridging from atomistic to continuum modeling to predict nuclear waste glass dissolution.  

SciTech Connect

This report summarizes research performed for the Nuclear Energy Advanced Modeling and Simulation (NEAMS) Subcontinuum and Upscaling Task. The work conducted focused on developing a roadmap to include molecular scale, mechanistic information in continuum-scale models of nuclear waste glass dissolution. This information is derived from molecular-scale modeling efforts that are validated through comparison with experimental data. In addition to developing a master plan to incorporate a subcontinuum mechanistic understanding of glass dissolution into continuum models, methods were developed to generate constitutive dissolution rate expressions from quantum calculations, force field models were selected to generate multicomponent glass structures and gel layers, classical molecular modeling was used to study diffusion through nanopores analogous to those in the interfacial gel layer, and a micro-continuum model (K{mu}C) was developed to study coupled diffusion and reaction at the glass-gel-solution interface.

Zapol, Peter (Argonne National Laboratory, Argonne, IL); Bourg, Ian (Lawrence Berkeley National Laboratories, Berkeley, CA); Criscenti, Louise Jacqueline; Steefel, Carl I. (Lawrence Berkeley National Laboratories, Berkeley, CA); Schultz, Peter Andrew

2011-10-01T23:59:59.000Z

347

Use of the nuclear model code GNASH to calculate cross section data at energies up to 100 MeV  

Science Conference Proceedings (OSTI)

The nuclear theory code GNASH has been used to calculate nuclear data for incident neutrons, protons, and deuterons at energies up to 100 MeV. Several nuclear models and theories are important in the 10--100 MeV energy range, including Hauser-Feshbach statistical theory, spherical and deformed optical model, preequilibrium theory, nuclear level densities, fission theory, and direct reaction theory. In this paper we summarize general features of the models in GNASH and describe the methodology utilized to determine relevant model parameters. We illustrate the significance of several of the models and include comparisons with experimental data for certain target materials that are important in applications.

Young, P.G.; Chadwick, M.B.; Bosoian, M.

1992-12-01T23:59:59.000Z

348

Use of the nuclear model code GNASH to calculate cross section data at energies up to 100 MeV  

Science Conference Proceedings (OSTI)

The nuclear theory code GNASH has been used to calculate nuclear data for incident neutrons, protons, and deuterons at energies up to 100 MeV. Several nuclear models and theories are important in the 10--100 MeV energy range, including Hauser-Feshbach statistical theory, spherical and deformed optical model, preequilibrium theory, nuclear level densities, fission theory, and direct reaction theory. In this paper we summarize general features of the models in GNASH and describe the methodology utilized to determine relevant model parameters. We illustrate the significance of several of the models and include comparisons with experimental data for certain target materials that are important in applications.

Young, P.G.; Chadwick, M.B.; Bosoian, M.

1992-01-01T23:59:59.000Z

349

The Albedo Field and Cloud Radiative Forcing Produced by a General Circulation Model with Internally Generated Cloud Optics  

Science Conference Proceedings (OSTI)

A spectral general circulation model (GCM) is run for perpetual January with fixed sea surface temperature conditions. It has internally generated, variable cloud optical properties as well as variable cloud arm and heights. The cloud optics are ...

Thomas P. Charlock; V. Ramanathan

1985-07-01T23:59:59.000Z

350

Effects of Remote Generation Sites on Model Estimates of M2 Internal Tides in the Philippine Sea  

Science Conference Proceedings (OSTI)

This study investigates the impact of remotely generated internal tides on model estimates of barotropic to baroclinic tidal conversion for two generation sites bounding the Philippine Sea: the Luzon Strait and the Mariana Island Arc. A primitive ...

Colette G. Kerry; Brian S. Powell; Glenn S. Carter

2013-01-01T23:59:59.000Z

351

Executive Bios: Christopher Grandy - Nuclear Engineering Division...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

352

Nuclear Engineering Division of Argonne National Laboratory:...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

353

Fuel Cycle Technologies Program - Nuclear Engineering Division...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

354

The Dawn of the Nuclear Age  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

355

Facility Safety Assessment - Nuclear Engineering Division (Argonne...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

356

Computer Facilities - Nuclear Engineering Division (Argonne)  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

357

Advanced Computation & Visualization - Nuclear Engineering Division...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

358

Steam Generator Tube Integrity Facilities - Nuclear Engineering...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

359

Safety - Vulnerability Assessment Team - Nuclear Engineering...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

360

Physics and Engineering Models | National Nuclear Security Administrat...  

National Nuclear Security Administration (NNSA)

initiatives such as academic alliances and Russian programs are included here. Thermal & Fluid Response This area develops and delivers predictive science-based models that...

Note: This page contains sample records for the topic "international nuclear model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

The statistical multifragmentation model for liquid-gas phase transition with a compressible nuclear liquid  

E-Print Network (OSTI)

We propose a new formulation of the statistical multifragmentation model based on the analysis of the virial expansion for a system of the nuclear fragments of all sizes. The developed model not only enables us to account for short-range repulsion, but also to calculate the surface free energy which is induced by the interaction between the fragments. We propose a new parameterization for the liquid phase pressure which allows us to introduce a compressible nuclear liquid into the statistical multifragmentation model. The resulting model is exactly solvable and has no irregular behavior of the isotherms in the mixed phase region that is typical for mean-field models. The general conditions for the 1-st and 2-nd (or higher) order phase transitions are formulated. It is shown that all endpoints of the present model phase diagram are the tricritical points, if the Fisher exponent $\\tau$ is in the range $\\{3}{2} \\le \\tau \\le 2$. The treatment of nuclear liquid compressibility allows us to reduce the tricritical endpoint density of the statistical multifragmentation model to one third of the normal nuclear density. A specific attention is paid to of the fragment size distributions in the region of a negative surface tension at supercritical temperatures.

V. V. Sagun; A. I. Ivanytskyi; K. A. Bugaev; I. N. Mishustin

2013-06-10T23:59:59.000Z

362

Gas reactor international cooperative program interim report: United States/Federal Republic of Germany nuclear licensing comparison  

SciTech Connect

In order to compare US and FRG Nuclear Licensing, a summary description of United States Nuclear Licensing is provided as a basis. This is followed by detailed information on the participants in the Nuclear Licensing process in the Federal Republic of Germany (FRG). FRG licensing procedures are described and the rules and regulations imposed are summarized. The status of gas reactor licensing in both the U.S. and the FRG is outlined and overall conclusions are drawn as to the major licensing differences. An appendix describes the most important technical differences between US and FRG criteria.

1978-09-01T23:59:59.000Z

363

International Conference on Mathematics, Computational Methods & Reactor Physics (M&C 2009) Saratoga Springs, New York, May 3-7, 2009, on CD-ROM, American Nuclear Society, LaGrange Park, IL (2009)  

E-Print Network (OSTI)

International Conference on Mathematics, Computational Methods & Reactor Physics (M&C 2009) Saratoga Springs, New York, May 3-7, 2009, on CD-ROM, American Nuclear Society, LaGrange Park, IL (2009 International Conference on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs

Benzi, Michele

364

New Olodels COnfirOl nuclear winter Everything from purely mathematical models to forest fire studies shows that  

E-Print Network (OSTI)

-scale nuclear war. Smoke- es- pecially black, sooty smoke from cities and industrial plants The basic theoryNew Olodels COnfirOl nuclear winter Everything from purely mathematical models to forest fire studies shows that even a small nuclear war would devastate the earth. But the Pentagon's only policy

Robock, Alan

365

Power system simulation and optimization models for planning nuclear refueling cycles  

SciTech Connect

From Operation Research Society of America; San Diego, California, USA (12 Nov 1973). The mid-range system being modeled may include a mix of fossil, nuclear, hydro, pumped-storage, and peaking units. For any predetermined nuclear refueling schedule, the program (ORSIM) determines an approximately optical plan of operation for the system. This includes the determination of a maintenance schedule for the non-nuclear units and a schedule of energy delivery for each plant in the system. The criterion of optimality is the minimization of the total discounted operating cost of the system over the specified study period. Over this period, the model computes the expected station load factors, the loss of load probability and unserved energy for the system, and the production costs of operating so as to meet the forecasted loads on the system. The code takes account of variations and growth in demand over the planning horizon, occurrence of unit forced outages, planned shutdowns for nuclear refuelings, maintenance scheduling, allocations of fixed hydro and nuclear energies, and interactions between nuclear unit reloadings and fuel costs. 13 references. (auth)

Turnage, J.C.; Bennett, L.L.; Joy, D.S.; Prince, B.E.

1973-10-01T23:59:59.000Z

366

EIA - International Energy Outlook 2009-Appendix J. Models Used To Generate  

Gasoline and Diesel Fuel Update (EIA)

J. Models Used To Generate the IEO2009 Projections J. Models Used To Generate the IEO2009 Projections International Energy Outlook 2009 Appendix J. Models Used To Generate the IEO2009 Projections The IEO2009 projections of world energy consumption and supply were generated from EIA’s World Energy Projections Plus (WEPS+) model. WEPS+ consists of a system of individual sectoral energy models, using an integrated iterative solution process that allows for convergence of consumption and prices to an equilibrium solution. It is used primarily to provide alternative energy projections based on different assumptions for GDP growth and fossil fuel prices and can also be used to perform other analyses. WEPS+ produces projections for 16 regions or countries of the world, including North America (United States, Canada, and Mexico), OECD Europe, OECD Asia (Japan, South Korea, and Australia/New Zealand), Russia, other non-OECD Europe and Eurasia, China, India, other non-OECD Asia, Brazil, and other Central and South America. Currently, the projections extend to 2030.

367

International Atomic Energy Agency specialists meeting on experience in ageing, maintenance, and modernization of instrumentation and control systems for improving nuclear power plant availability  

Science Conference Proceedings (OSTI)

This report presents the proceedings of the Specialist`s Meeting on Experience in Aging, Maintenance and Modernization of Instrumentation and Control Systems for Improving Nuclear Power Plant Availability that was held at the Ramada Inn in Rockville, Maryland on May 5--7, 1993. The Meeting was presented in cooperation with the Electric Power Research Institute, Oak Ridge National Laboratory and the International Atomic Energy Agency. There were approximately 65 participants from 13 countries at the Meeting. Individual reports have been cataloged separately.

Not Available

1993-10-01T23:59:59.000Z

368

Applications of Virtual Reality to Nuclear Safeguards  

SciTech Connect

This paper explores two potential applications of Virtual Reality (VR) to international nuclear safeguards: training and information organization and navigation. The applications are represented by two existing prototype systems, one for training nuclear weapons dismantlement and one utilizing a VR model to facilitate intuitive access to related sets of information.

Stansfield, S.

1998-11-03T23:59:59.000Z

369

Strategic Plan for Nuclear Energy -- Knowledge Base for Advanced Modeling and Simulation (NE-KAMS)  

SciTech Connect

The Nuclear Energy Computational Fluid Dynamics Advanced Modeling and Simulation (NE-CAMS) system is being developed at the Idaho National Laboratory (INL) in collaboration with Bettis Laboratory, Sandia National Laboratory (SNL), Argonne National Laboratory (ANL), Utah State University (USU), and other interested parties with the objective of developing and implementing a comprehensive and readily accessible data and information management system for computational fluid dynamics (CFD) verification and validation (V&V) in support of nuclear energy systems design and safety analysis. The two key objectives of the NE-CAMS effort are to identify, collect, assess, store and maintain high resolution and high quality experimental data and related expert knowledge (metadata) for use in CFD V&V assessments specific to the nuclear energy field and to establish a working relationship with the U.S. Nuclear Regulatory Commission (NRC) to develop a CFD V&V database, including benchmark cases, that addresses and supports the associated NRC regulations and policies on the use of CFD analysis. In particular, the NE-CAMS system will support the Department of Energy Office of Nuclear Energy Advanced Modeling and Simulation (NEAMS) Program, which aims to develop and deploy advanced modeling and simulation methods and computational tools for reliable numerical simulation of nuclear reactor systems for design and safety analysis. Primary NE-CAMS Elements There are four primary elements of the NE-CAMS knowledge base designed to support computer modeling and simulation in the nuclear energy arena as listed below. Element 1. The database will contain experimental data that can be used for CFD validation that is relevant to nuclear reactor and plant processes, particularly those important to the nuclear industry and the NRC. Element 2. Qualification standards for data evaluation and classification will be incorporated and applied such that validation data sets will result in well-defined, well-characterized data. Element 3. Standards will be established for the design and operation of experiments for the generation of new validation data sets that are to be submitted to NE-CAMS that addresses the completeness and characterization of the dataset. Element 4. Standards will be developed for performing verification and validation (V&V) to establish confidence levels in CFD analyses of nuclear reactor processes; such processes will be acceptable and recognized by both CFD experts and the NRC.

Kimberlyn C. Mousseau

2011-10-01T23:59:59.000Z

370

Capabilities - Nuclear Engineering Division (Argonne)  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Waste Form and Repository Performance Modeling Nuclear Systems Technologies Nuclear Criticality Safety Research Reactor Analysis System Process Monitoring,...

371

Internal cycle modeling and environmental assessment of multiple cycle consumer products  

Science Conference Proceedings (OSTI)

Highlights: Black-Right-Pointing-Pointer Dynamic flow models are presented for remanufactured, reused or recycled products. Black-Right-Pointing-Pointer Early loss and stochastic return are included for fast and slow cycling products. Black-Right-Pointing-Pointer The reuse-to-input flow ratio (Internal Cycle Factor, ICF) is determined. Black-Right-Pointing-Pointer The cycle rate, which is increasing with the ICF, monitors eco-performance. Black-Right-Pointing-Pointer Early internal cycle losses diminish the ICF, the cycle rate and performance. - Abstract: Dynamic annual flow models incorporating consumer discard and usage loss and featuring deterministic and stochastic end-of-cycle (EOC) return by the consumer are developed for reused or remanufactured products (multiple cycle products, MCPs), including fast and slow cycling, short and long-lived products. It is shown that internal flows (reuse and overall consumption) increase proportionally to the dimensionless internal cycle factor (ICF) which is related to environmental impact reduction factors. The combined reuse/recycle (or cycle) rate is shown capable for shortcut, albeit effective, monitoring of environmental performance in terms of waste production, virgin material extraction and manufacturing impacts of all MCPs, a task, which physical variables (lifetime, cycling frequency, mean or total number of return trips) and conventional rates, via which environmental policy has been officially implemented (e.g. recycling rate) cannot accomplish. The cycle rate is shown to be an increasing (hyperbolic) function of ICF. The impact of the stochastic EOC return characteristics on total reuse and consumption flows, as well as on eco-performance, is assessed: symmetric EOC return has a small, positive effect on performance compared to deterministic, while early shifted EOC return is more beneficial. In order to be efficient, environmental policy should set higher minimum reuse targets for higher trippage MCPs. The results may serve for monitoring, flow accounting and comparative eco-assessment of MCPs. They may be useful in identifying reachable and efficient reuse/recycle targets for consumer products and in planning return via appropriate labelling and digital coding for enhancing environmental performance, while satisfying consumer demand.

Tsiliyannis, C.A., E-mail: anion@otenet.gr [ANION Environmental Ltd., 26 Lykoudi Str., Athens 11141 (Greece)

2012-01-15T23:59:59.000Z

372

Nuclear criticality safety modeling of an LEU deposit  

DOE Green Energy (OSTI)

The construction of the Oak Ridge Gaseous Diffusion Plant (now known as the K-25 Site) began during World War H and eventually consisted of five major process buildings: K-25, K-27, K-29, K-31, and K-33. The plant took natural (0.711% {sup 231}U) uranium as feed and processed it into both low-enriched uranium (LEU) and high-enriched uranium (HEU) with concentrations up to {approximately}93% {sup 231}U. The K-25 and K-27 buildings were shut down in 1964, but the rest of the plant produced LEU until 1985. During operation, inleakage of humid air into process piping and equipment caused reactions with gaseous uranium hexafluoride (UF{sub 6}) that produced nonvolatile uranyl fluoride (UO{sub 2}F{sub 2}) deposits. As part of shutdown, most of the uranium was evacuated as volatile UF{sub 6}. The UO{sub 2}F{sub 2} deposits remained. The U.S. Department of Energy has mitiated a program to unprove nuclear criticality safety by removing the larger enriched uranium deposits.

Haire, M.J.; Elam, K.R.; Jordan, W.C.; Dahl, T.L.

1996-11-01T23:59:59.000Z

373

NUCLEAR DATA AND MEASUREMENTS REPORTS 61-80 - Nuclear Data Program...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

374

NUCLEAR DATA AND MEASUREMENTS REPORTS 81-100 - Nuclear Data Program...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

375

Color symmetrical superconductivity in a schematic nuclear quark model  

E-Print Network (OSTI)

In this note, a novel BCS-type formalism is constructed in the framework of a schematic QCD inspired quark model, having in mind the description of color symmetrical superconducting states. The physical properties of the BCS vacuum (average numbers of quarks of different colors) remain unchanged under an arbitrary color rotation. In the usual approach to color superconductivity, the pairing correlations affect only the quasi-particle states of two colors, the single particle states of the third color remaining unaffected by the pairing correlations. In the theory of color symmetrical superconductivity here proposed, the pairing correlations affect symmetrically the quasi-particle states of the three colors and vanishing net color-charge is automatically insured. It is found that the groundstate energy of the color symmetrical sector of the Bonn model is well approximated by the average energy of the color symmetrical superconducting state proposed here.

Henrik Bohr; Joo da Providncia

2009-09-14T23:59:59.000Z

376

Quantum chaos in the nuclear collective model: II. Peres lattices  

E-Print Network (OSTI)

This is a continuation of our preceding paper devoted to signatures of quantum chaos in the geometric collective model of atomic nuclei. We apply the method by Peres to study ordered and disordered patterns in quantum spectra drawn as lattices in the plane of energy vs. average of a chosen observable. A good qualitative agreement with standard measures of chaos is manifested. The method provides an efficient tool for studying structural changes of eigenstates across quantum spectra of general systems.

Pavel Stransky; Petr Hruska; Pavel Cejnar

2009-02-23T23:59:59.000Z

377

Augmented l1 and Nuclear-Norm Models with a Globally Linearly ...  

E-Print Network (OSTI)

and X? and XF are the nuclear and Frobenius norms of X, respectively. We show that they let .... the total energy x0. 2 is roughly ..... Some expert readers may know that in theory, given matrix A, whether or not model (1) can exactly recover x0...

378

Modeling Human Behavior in the Aftermath of a Hypothetical Improvised Nuclear Detonation  

E-Print Network (OSTI)

Modeling Human Behavior in the Aftermath of a Hypothetical Improvised Nuclear Detonation Nidhi, human-initiated crisis in the center of Washington D.C. Prior studies of this scenario have focused on the agent design and multiagent interaction, and present initial results on how rapid restoration

Swarup, Samarth

379

Evolution of a Visual Impact Model to Evaluate Nuclear Plant Siting and Design Option1  

E-Print Network (OSTI)

for Analysis and Management of the Visual Resource, Incline Village, Nevada, April 23-25, 1979. 2 / AssociatesEvolution of a Visual Impact Model to Evaluate Nuclear Plant Siting and Design Option1 2/ Brian A/ The method can be used to train evaluators to use explicit criteria (vividness, intactness and unity

Standiford, Richard B.

380

Designing a component-based architecture for the modeling and simulation of nuclear fuels and reactors  

Science Conference Proceedings (OSTI)

Concerns over the environment and energy security have recently prompted renewed interest in the U. S. in nuclear energy. Recognizing this, the U. S. Dept. of Energy has launched an initiative to revamp and modernize the role that modeling and simulation ...

Jay J. Billings; Wael R. Elwasif; Lee M. Hively; David E. Bernholdt; John M. Hetrick, III; Tim Bohn

2009-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "international nuclear model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Modeling and simulation of the thermal and psychrometric transient response of all electric ships, internal compartments and cabinets  

Science Conference Proceedings (OSTI)

This paper introduces a general computational model for all electric ships and internal compartments (open and closed domains) that contain heat sources and sinks. A simplified physical model, which combines principles of classical thermodynamics and ... Keywords: relative humidity distribution, temperature distribution, thermal management

J. V. C. Vargas; J. C. Ordonez; R. Hovsapian

2007-07-01T23:59:59.000Z

382

Modeling and Simulation of the Thermal and Psychrometric Transient Response of All-Electric Ships, Internal Compartments and Cabinets  

Science Conference Proceedings (OSTI)

We introduce a general computational model for all-electric ships and internal compartments (open and closed domains) that contain heat sources and sinks. A simplified physical model, which combines principles of classical thermodynamics and heat transfer, ... Keywords: Thermal management, relative humidity distribution, temperature distribution

J.C. Ordonez; J.V.C. Vargas; R. Hovsapian

2008-08-01T23:59:59.000Z

383

Abstracts and program proceedings of the 1994 meeting of the International Society for Ecological Modelling North American Chapter  

Science Conference Proceedings (OSTI)

This document contains information about the 1994 meeting of the International Society for Ecological Modelling North American Chapter. The topics discussed include: extinction risk assessment modelling, ecological risk analysis of uranium mining, impacts of pesticides, demography, habitats, atmospheric deposition, and climate change.

Kercher, J.R.

1994-06-01T23:59:59.000Z

384

Nuclear Reactor/Hydrogen Process Interface Including the HyPEP Model  

DOE Green Energy (OSTI)

The Nuclear Reactor/Hydrogen Plant interface is the intermediate heat transport loop that will connect a very high temperature gas-cooled nuclear reactor (VHTR) to a thermochemical, high-temperature electrolysis, or hybrid hydrogen production plant. A prototype plant called the Next Generation Nuclear Plant (NGNP) is planned for construction and operation at the Idaho National Laboratory in the 2018-2021 timeframe, and will involve a VHTR, a high-temperature interface, and a hydrogen production plant. The interface is responsible for transporting high-temperature thermal energy from the nuclear reactor to the hydrogen production plant while protecting the nuclear plant from operational disturbances at the hydrogen plant. Development of the interface is occurring under the DOE Nuclear Hydrogen Initiative (NHI) and involves the study, design, and development of high-temperature heat exchangers, heat transport systems, materials, safety, and integrated system models. Research and development work on the system interface began in 2004 and is expected to continue at least until the start of construction of an engineering-scale demonstration plant.

Steven R. Sherman

2007-05-01T23:59:59.000Z

385

BIOPROTA: an international forum for environmental modelling in support of long-term radioactive waste management  

Science Conference Proceedings (OSTI)

An international Forum, BIOPROTA, has been set up and maintained which allows common long-term environmental radiological assessment problems, such as post-closure modelling studies to be identified and then addressed. The focus of the Forum is to address key uncertainties in environmental modelling and related dose assessment with special reference to evaluation of the long-term impact of contaminant releases associated with radioactive waste management. The application of shared resources results in effective resource management and the development of common solutions to common problems. The Forum began in 2002 and has benefited from the knowledge and experience of organisations from Belgium (SCK.CEN), Czech Republic (NRI), Canada (OPG), Finland (Posiva), France (ANDRA, EdF), Japan (NUMO), Korea (KAERI), Norway (NRPA), Spain (ENRESA, CIEMAT), Sweden (SKB, SSI), Switzerland (Nagra), UK (Nirex, Nexia, UKAEA) and the USA (EPRI). These organisations include a mixture of operators, regulators and research institutes, and hence, including the participation of their technical support organizations, constitutes a very broad-based Forum. Enviros has acted as the technical secretariat to the Forum since its formation. Initially the Forum focused on three themes aimed at advancing knowledge and improving model predictions relating to performance and safety assessments: Theme 1 Development of a database to meet the key biosphere assessment information deficiencies. Theme 2 Implementation of a series of tasks to address key modelling issues, including uncertainties and inconsistencies in the modelling of inhalation, irrigation and soil contamination dose pathways; and approaches to the modelling the transfer of radionuclides across the geosphere-biosphere interface zone (GBIZ). Theme 3 Provision of guidance on site characterisation and experimental and monitoring protocols relevant to improving confidence in the biosphere component of the overall performance assessment. Substantial work under Themes 2 and 3 was completed in 2005/06 resulting in the publication of a variety of reports and guidance documents. Results of the model comparisons conducted under Theme 2 suggest that we can be confident in model structures and we have gained knowledge of the sensitive assumptions. Population of the database produced under Theme 1 is ongoing after release of an initial version which focused on data for Cl-36, Se-79, Tc-99, I-129, Np-237 and U-series radionuclides. In 2006, BIOPROTA received further international interest. The 2006 annual workshop identified a series of current issues for which proposals for tasks aimed at addressing these issues are under development. This includes exchange of information on models and processes of relevance to Cl-36 behaviour, as well as modelling the disequilibrium in the U-238 decay chain in environmental systems; more precise understanding of released C-14 distribution within various environmental carbon pools; and studies of the GBIZ under environmental change. A special workshop was held on Cl-36 behaviour and the workshop report published. An overview of the current state of play in biosphere modeling and dose assessment programmes relating to radioactive waste management will be presented based on national presentations by Forum members at the 2007 workshop and the key research outputs developed through the Forum will be described. (authors)

Smith, K.L.; Smith, G. [Enviros Consulting Ltd, D5 Culham Science Centre, Abingdon, OX (United Kingdom); Laciok, A. [Nuclear Research Institute, CZ-25068 REZ (Costa Rica)

2007-07-01T23:59:59.000Z

386

Strategic Plan for Nuclear Energy -- Knowledge Base for Advanced Modeling and Simulation (NE-KAMS)  

SciTech Connect

NE-KAMS knowledge base will assist computational analysts, physics model developers, experimentalists, nuclear reactor designers, and federal regulators by: (1) Establishing accepted standards, requirements and best practices for V&V and UQ of computational models and simulations, (2) Establishing accepted standards and procedures for qualifying and classifying experimental and numerical benchmark data, (3) Providing readily accessible databases for nuclear energy related experimental and numerical benchmark data that can be used in V&V assessments and computational methods development, (4) Providing a searchable knowledge base of information, documents and data on V&V and UQ, and (5) Providing web-enabled applications, tools and utilities for V&V and UQ activities, data assessment and processing, and information and data searches. From its inception, NE-KAMS will directly support nuclear energy research, development and demonstration programs within the U.S. Department of Energy (DOE), including the Consortium for Advanced Simulation of Light Water Reactors (CASL), the Nuclear Energy Advanced Modeling and Simulation (NEAMS), the Light Water Reactor Sustainability (LWRS), the Small Modular Reactors (SMR), and the Next Generation Nuclear Power Plant (NGNP) programs. These programs all involve computational modeling and simulation (M&S) of nuclear reactor systems, components and processes, and it is envisioned that NE-KAMS will help to coordinate and facilitate collaboration and sharing of resources and expertise for V&V and UQ across these programs. In addition, from the outset, NE-KAMS will support the use of computational M&S in the nuclear industry by developing guidelines and recommended practices aimed at quantifying the uncertainty and assessing the applicability of existing analysis models and methods. The NE-KAMS effort will initially focus on supporting the use of computational fluid dynamics (CFD) and thermal hydraulics (T/H) analysis for M&S of nuclear reactor systems, components and processes, and will later expand to include materials, fuel system performance and other areas of M&S as time and funding allow.

Rich Johnson; Kimberlyn C. Mousseau; Hyung Lee

2011-09-01T23:59:59.000Z

387

BWRVIP-228: BWR Vessel and Internals Project, A Computational Modeling Tool for Welding Repair of Irradiated Materials  

Science Conference Proceedings (OSTI)

Repair welding on highly irradiated stainless steel BWR internals can lead to cracking in the heat-affected zone (HAZ) of the weld region. EPRI and participating Boiling Water Reactor Vessel and Internals Project (BWRVIP) members have sponsored development of a computational modeling tool to assist in determining appropriate welding process conditions (heat input and process selection) to produce crack-free welds on irradiated materials. This tool integrates a finite-element-based welding temperature and...

2009-11-30T23:59:59.000Z

388

A Statistical Model for Generating a Population of Unclassified Objects and Radiation Signatures Spanning Nuclear Threats  

Science Conference Proceedings (OSTI)

This report describes an approach for generating a simulated population of plausible nuclear threat radiation signatures spanning a range of variability that could be encountered by radiation detection systems. In this approach, we develop a statistical model for generating random instances of smuggled nuclear material. The model is based on physics principles and bounding cases rather than on intelligence information or actual threat device designs. For this initial stage of work, we focus on random models using fissile material and do not address scenarios using non-fissile materials. The model has several uses. It may be used as a component in a radiation detection system performance simulation to generate threat samples for injection studies. It may also be used to generate a threat population to be used for training classification algorithms. In addition, we intend to use this model to generate an unclassified 'benchmark' threat population that can be openly shared with other organizations, including vendors, for use in radiation detection systems performance studies and algorithm development and evaluation activities. We assume that a quantity of fissile material is being smuggled into the country for final assembly and that shielding may have been placed around the fissile material. In terms of radiation signature, a nuclear weapon is basically a quantity of fissile material surrounded by various layers of shielding. Thus, our model of smuggled material is expected to span the space of potential nuclear weapon signatures as well. For computational efficiency, we use a generic 1-dimensional spherical model consisting of a fissile material core surrounded by various layers of shielding. The shielding layers and their configuration are defined such that the model can represent the potential range of attenuation and scattering that might occur. The materials in each layer and the associated parameters are selected from probability distributions that span the range of possibilities. Once an object is generated, its radiation signature is calculated using a 1-dimensional deterministic transport code. Objects that do not make sense based on physics principles or other constraints are rejected. Thus, the model can be used to generate a population of spectral signatures that spans a large space, including smuggled nuclear material and nuclear weapons.

Nelson, K; Sokkappa, P

2008-10-29T23:59:59.000Z

389

Workshop materials from the 2nd international training course on physical protection of nuclear facilities and materials, Module 13  

Science Conference Proceedings (OSTI)

This course is intended for representatives of countries where nuclear power is being developed and whose responsibilities include the preparation of regulation and the design and evaluation of physical protection systems. This is the second of two volumes; the first volume is SAND-79-1090. (DLC)

Martin, F. P. [ed.

1980-04-01T23:59:59.000Z

390

Microsoft PowerPoint - International Projects1.pptm.ppt  

NLE Websites -- All DOE Office Websites (Extended Search)

International Program International Program Modeling Activities Boris Faybishenko Lawrence Berkeley National Laboratory Berkeley, CA DOE-EM Project Managers- Kurt Gerdes and Skip Chamberlain Performance Assessment Community of Practice Technical Exchange April 13-14, 2010, Richland, WA Outline * Review of projects formerly supported by DOE-EM * Potential International Projects and Analogue Case Studies for ASCEM - Chernobyl Cooling Pond, Ukraine - Nonclassical transport modeling-project with the Nuclear Safety Institute of RAS, Russia - Uranium Mine and Mills Tailing's Covers * Central Asia--Kazakhstan, Tajikistan, Kyrgyzstan, and Uzbekistan - Cementitious Materials for Long-Term Storage and Disposal * Conclusions and Recommendations Overall Objectives of DOE-EM International Program Modeling Activities

391

Deputy Secretary Poneman to Attend International Framework for...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to Attend International Framework for Nuclear Energy Cooperation Meeting in Jordan Deputy Secretary Poneman to Attend International Framework for Nuclear Energy Cooperation Meeting...

392

Nuclear Science & Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Science & Technology Nuclear Science & Technology Nuclear Science & Technology1354608000000Nuclear Science & TechnologySome of these resources are LANL-only and will require Remote Access. /No/ Nuclear Science & Technology Some of these resources are LANL-only and will require Remote Access. Key Resources Databases Organizations Journals Key Resources International Atomic Energy Agency IAEA scientific and technical publications cover areas of nuclear power, radiation therapy, nuclear security, nuclear law, and emergency repose. Search under Publications/Books and Reports for scientific books, standards, technical guides and reports National Nuclear Data Center Nuclear physics data for basic nuclear research and for applied nuclear technologies, operated by Brookhaven.

393

Journal of Nuclear Materials, Volumes 367-370, 2007, 1586-1589 Designing Optimised Experiments for the International Fusion  

E-Print Network (OSTI)

for the International Fusion Materials Irradiation Facility R. Kemp1 G.A. Cottrell2 and H.K.D.H. Bhadesia1 1 Department EURATOM/UKAEA Fusion Association, Culham Science Centre, Abingdon, Oxon., OX14 3DB, UK Abstract The development of fusion power requires a facility for assessing the behaviour of materials subjected to damage

Cambridge, University of

394

Multi-Dimensional Modeling of Nova with Realistic Nuclear Physics  

DOE Green Energy (OSTI)

This contract covered the period from 03/09/2010 to 09/30/2010. Over this period, we adapted the low Mach number hydrodynamics code MAESTRO to perform simulations of novae. A nova is the thermonuclear runaway of an accreted hydrogen layer on the surface of a white dwarf. As the accreted layer grows in mass, the temperature and density at the base increase to the point where hydrogen fusion can begin by the CNO cycle - a burning process that uses carbon, nitrogen, and oxygen to complete the fusion of four hydrogen nuclei into one helium-4 nucleus. At this point, we are running initial models of nova, exploring the details of the convection. In the follow-on contract to this one, we will continue this investigation.

Zingale, M; Hoffman, R D

2011-01-27T23:59:59.000Z

395

Full-scale hot cell test of an acoustic sensor dedicated to measurement of the internal gas pressure and composition of a LWR nuclear fuel rod  

SciTech Connect

A full-scale hot cell test of the internal gas pressure and composition measurement by an acoustic sensor was carried on successfully between 2008 and 2010 on irradiated fuel rods in the LECA-STAR facility at Cadarache Centre. The acoustic sensor has been specially designed in order to provide a nondestructive technique to easily carry out the measurement of the internal gas pressure and gas composition of a LWR nuclear fuel rod. This sensor has been achieved in 2007 and is now covered by an international patent. The first positive result, concerning the device behaviour, is that the sensor-operating characteristics have not been altered by a two-year exposure in the hot cell ambient. We performed the gas characterisation contained in irradiated fuel rods. The acoustic method accuracy is now {+-}5 bars on the pressure measurement result and {+-}0.3% on the evaluated gas composition. The results of the acoustic method were compared to puncture results. Another significant conclusion is that the efficiency of the acoustic method is not altered by the irradiation time, and possible modification of the cladding properties. These results make it possible to demonstrate the feasibility of the technique on irradiated fuel rods. The transducer and the associated methodology are now operational. (authors)

Ferrandis, J. Y.; Rosenkrantz, E.; Leveque, G. [CNRS - Univ. Montpellier 2, Southern Electronic Inst., UMR 5214, F-34095 Montpellier (France); Baron, D. [EDF, R and D, F-77250 Moret sur Loing (France); Segura, J. C. [EDF, SEPTEN, F-69628 Villeurbanne (France); Cecilia, G.; Provitina, O. [CEA - Nuclear Energy Direction DEN - Fuel Studies Dept. - Cadarache, F-13108 Saint-Paul-Lez-Durance (France)

2011-07-01T23:59:59.000Z

396

THE INTERNAL-COLLISION-INDUCED MAGNETIC RECONNECTION AND TURBULENCE (ICMART) MODEL OF GAMMA-RAY BURSTS  

Science Conference Proceedings (OSTI)

The recent Fermi observation of GRB 080916C shows that the bright photosphere emission associated with a putative fireball is missing, which suggests that the central engine likely launches a Poynting-flux-dominated (PFD) outflow. We propose a model of gamma-ray burst (GRB) prompt emission in the PFD regime, namely, the Internal-Collision-induced MAgnetic Reconnection and Turbulence (ICMART) model. It is envisaged that the GRB central engine launches an intermittent, magnetically dominated wind, and that in the GRB emission region, the ejecta is still moderately magnetized (e.g., 1 {approx}lines entrained in the ejecta. At a certain point, the distortion of magnetic field configuration reaches the critical condition to allow fast reconnection seeds to occur, which induce relativistic MHD turbulence in the interaction regions. The turbulence further distorts field lines easing additional magnetic reconnections, resulting in a runway release of the stored magnetic field energy (an ICMART event). Particles are accelerated either directly in the reconnection zone, or stochastically in the turbulent regions, which radiate synchrotron photons that power the observed gamma rays. Each ICMART event corresponds to a broad pulse in the GRB light curve, and a GRB is composed of multiple ICMART events. This model retains the merits of IS and other models, but may overcome several difficulties/issues faced by the IS model (e.g., low efficiency, fast cooling, electron number excess, Amati/Yonetoku relation inconsistency, and missing bright photosphere). Within this model, the observed GRB variability timescales could have two components, one slow component associated with the central engine time history, and another fast component associated with relativistic magnetic turbulence in the emission region. The model predicts a decrease of gamma-ray polarization degree and E{sub p} in each ICMART event (broad pulse) during the prompt GRB phase, as well as a moderately magnetized external reverse shock. The model may be applied to the GRBs that have time-resolved, featureless Band-function spectra, such as GRB 080916C and most GRBs detected by Fermi LAT.

Zhang Bing [Department of Physics and Astronomy, University of Nevada Las Vegas, Las Vegas, NV 89154 (United States); Yan Huirong [Kavli Institute of Astronomy and Astrophysics, Peking University, Beijing 100871 (China)

2011-01-10T23:59:59.000Z

397

Nuclear spirals in galaxies: gas response to asymmetric potential. II. Hydrodynamical models  

E-Print Network (OSTI)

Nuclear spirals naturally form as a gas response to non-axisymmetry in the galactic potential, even if the degree of this asymmetry is very small. Linear wave theory well describes weak nuclear spirals, but spirals induced by stronger asymmetries in the potential are clearly beyond the linear regime. Hydrodynamical models indicate spiral shocks in this latter case that, depending on how the spiral intersects the x2 orbits, either get damped, leading to the formation of the nuclear ring, or get strengthened, and propagate towards the galaxy centre. Central massive black hole of sufficient mass can allow the spiral shocks to extend all the way to its immediate vicinity, and to generate gas inflow up to 0.03 M_sun/yr, which coincides with the accretion rates needed to power luminous local Active Galactic Nuclei.

Maciejewski, Witold

2004-01-01T23:59:59.000Z

398

Nuclear spirals in galaxies: gas response to asymmetric potential. II. Hydrodynamical models  

E-Print Network (OSTI)

Nuclear spirals naturally form as a gas response to non-axisymmetry in the galactic potential, even if the degree of this asymmetry is very small. Linear wave theory well describes weak nuclear spirals, but spirals induced by stronger asymmetries in the potential are clearly beyond the linear regime. Hydrodynamical models indicate spiral shocks in this latter case that, depending on how the spiral intersects the x2 orbits, either get damped, leading to the formation of the nuclear ring, or get strengthened, and propagate towards the galaxy centre. Central massive black hole of sufficient mass can allow the spiral shocks to extend all the way to its immediate vicinity, and to generate gas inflow up to 0.03 M_sun/yr, which coincides with the accretion rates needed to power luminous local Active Galactic Nuclei.

Witold Maciejewski

2004-08-05T23:59:59.000Z

399

Proceedings of the 2. MIT international conference on the next generation of nuclear power technology. Final report  

SciTech Connect

The goal of the conference was to try to attract a variety of points of view from well-informed people to debate issues concerning nuclear power. Hopefully from that process a better understanding of what one should be doing will emerge. In organizing the conference lessons learned from the previous one were applied. A continuous effort was made to see to it that the arguments for the alternatives to nuclear power were given abundant time for presentation. This is ultimately because nuclear power is going to have to compete with all of the energy technologies. Thus, in discussing energy strategy all of the alternatives must be considered in a reasonable fashion. The structure the conference used has seven sessions. The first six led up to the final session which was concerned with what the future nuclear power strategy should be. Each session focused upon a question concerning the future. None of these questions has a unique correct answer. Rather, topics are addressed where reasonable people can disagree. In order to state some of the important arguments for each session`s question, the combination of a keynote paper followed by a respondent was used. The respondent`s paper is not necessarily included to be a rebuttal to the keynote; but rather, it was recognized that two people will look at a complex question with different shadings. Through those two papers the intention was to get out the most important arguments affecting the question for the session. The purpose of the papers was to set the stage for about an hour of discussion. The real product of this conference was that discussion.

NONE

1993-12-31T23:59:59.000Z

400

Study of Higgs self couplings of a supersymmetric $E_6$ model at the International Linear Collider  

E-Print Network (OSTI)

We study the Higgs self couplings of a supersymmetric $E_6$ model that has two Higgs doublets and two Higgs singlets. The lightest scalar Higgs boson in the model may be heavier than 112 GeV, at the one-loop level, where the negative results for the Higgs search at the LEP2 experiments are taken into account. The contributions from the top and scalar top quark loops are included in the radiative corrections to the one-loop mass of the lightest scalar Higgs boson, in the effective potential approximation. The effect of the Higgs self couplings may be observed in the production of the lightest scalar Higgs bosons in $e^+e^-$ collisions at the International Linear Collider (ILC) via double Higgs-strahlung process. For the center of mass energy of 500 GeV with the integrated luminosity of 500 fb$^{-1}$ and the efficiency of 20 %, we expect that at least 5 events of the lightest scalar Higgs boson may be produced at the ILC via double Higgs-strahlung process.

S. W. Ham; Kideok Han; Jungil Lee; S. K. Oh

2009-11-30T23:59:59.000Z

Note: This page contains sample records for the topic "international nuclear model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Modeling to Support Groundwater Contaminant Boundaries for the Shoal Underground Nuclear Test  

SciTech Connect

The purpose of this work is to characterize groundwater flow and contaminant transport at the Shoal underground nuclear test through numerical modeling using site-specific hydrologic data. The ultimate objective is the development of a contaminant boundary, a model-predicted perimeter defining the extent of radionuclide-contaminated groundwater from the underground test throughout 1,000 years at a prescribed level of confidence. This boundary will be developed using the numerical models described here, after they are approved for that purpose by DOE and NDEP.

K. Pohlmann; G. Pohll; J. Chapman; A. Hassan; R. Carroll; C. Shirley

2004-03-01T23:59:59.000Z

402

Modeling to Support Groundwater Contaminant Boundaries for the Shoal Underground Nuclear Test  

Science Conference Proceedings (OSTI)

Groundwater flow and radionuclide transport at the Shoal underground nuclear test are characterized using three-dimensional numerical models, based on site-specific hydrologic data. The objective of this modeling is to provide the flow and transport models needed to develop a contaminant boundary defining the extent of radionuclide-contaminated groundwater at the site throughout 1,000 years at a prescribed level of confidence. This boundary will then be used to manage the Project Shoal Area for the protection of the public and the environment.

K. Pohlmann; G. Pohll; J. Chapman; A. Hassan; R. Carroll; C. Shirley

2004-03-01T23:59:59.000Z

403

Nuclear data online at the NNDC. Revision  

SciTech Connect

The National Nuclear Data Center provides information on nuclear reactions, nuclear structure, and decay data, and is a part of the Nuclear Data Center Network, established to coordinate the compilation and dissemination of nuclear data on an international scale.

McLane, V.

1998-08-01T23:59:59.000Z

404

Civilian Nuclear Programs  

NLE Websites -- All DOE Office Websites (Extended Search)

Civilian Nuclear Programs Civilian Nuclear Programs Civilian Nuclear Programs Los Alamos is committed to using its advanced nuclear expertise and unique facilities to meet the civilian nuclear national security demands of the future. CONTACT US Program Director Bruce Robinson (505) 667-1910 Email Los Alamos partners extensively with other laboratories, universities, industry, and the international nuclear community to address real-world technical challenges The Civilian Nuclear Programs Office is the focal point for nuclear energy research and development and next-generation repository science at Los Alamos National Laboratory. The Civilian Nuclear Programs Office manages projects funded by the Department of Energy's offices of Nuclear Energy Environmental Management Nuclear Regulatory Commission

405

$?$-mass Modification in $He^3$ - a Signal of Restoration of Chiral Symmetry or Test for Nuclear Matter Models ?  

E-Print Network (OSTI)

Two recent experiments have demonstrated that the effective $\\rho$-mass in nuclear medium, as extracted from the $^3He(\\gamma, \\pi^+ \\pi^-)$ reaction, is substantially reduced. This has been advocated as an indication of partial restoration of chiral symmetry in nuclear matter. We show that even in the absence of chiral symmetry, effective mean field nuclear matter models can explain these findings quantitatively.

Abhijit Bhattacharyya; Sanjay K. Ghosh; Sibaji Raha

1999-02-23T23:59:59.000Z

406

The Office of Nuclear Verification | National Nuclear Security...  

NLE Websites -- All DOE Office Websites (Extended Search)

at NNSA Blog The Office of Nuclear Verification Home > About Us > Our Programs > Nonproliferation > Nonproliferation & International Security > The Office of Nuclear Verification...

407

World nuclear fuel cycle requirements 1991  

Science Conference Proceedings (OSTI)

The nuclear fuel cycle consists of mining and milling uranium ore, processing the uranium into a form suitable for generating electricity, burning'' the fuel in nuclear reactors, and managing the resulting spent nuclear fuel. This report presents projections of domestic and foreign requirements for natural uranium and enrichment services as well as projections of discharges of spent nuclear fuel. These fuel cycle requirements are based on the forecasts of future commercial nuclear power capacity and generation published in a recent Energy Information Administration (EIA) report. Also included in this report are projections of the amount of spent fuel discharged at the end of each fuel cycle for each nuclear generating unit in the United States. The International Nuclear Model is used for calculating the projected nuclear fuel cycle requirements. 14 figs., 38 tabs.

Not Available

1991-10-10T23:59:59.000Z

408

Nuclear liquid-gas phase transition within the lattice gas model  

E-Print Network (OSTI)

We study the nuclear liquid-gas phase transition on the basis of a two-component lattice gas model. A Metropolis type of sampling method is used to generate microscopic states in the canonical ensemble. The effective equation of state and fragment mass distributions are evaluated in a wide range of temperatures and densities. A definition of the phase coexistence region appropriate for mesoscopic systems is proposed. The caloric curve resulting from different types of freeze-out conditions are presented.

J. Borg; I. N. Mishustin; J. P. Bondorf

1998-09-25T23:59:59.000Z

409

Comparison of Decommissioning Dose Modeling Codes for Nuclear Power Plant Use: RESRAD and DandD  

Science Conference Proceedings (OSTI)

A number of power plants are currently in the decommissioning phase. As the plants seek to terminate their operating license, they need to successfully conduct definite dose assessments. To assist these utilities in selecting an analysis code and appropriate input data, EPRI conducted a code comparison. However, this report was done as the industry's input to the NRC on their evolving review and improvement of decommissioning modeling. In early 2000, EPRI will publish a report for the commercial nuclear ...

1999-10-29T23:59:59.000Z

410

Proceedings of the 15th ACM international conference on Modeling, analysis and simulation of wireless and mobile systems  

Science Conference Proceedings (OSTI)

On behalf of the Organizing Committee, it is our great pleasure to welcome you to the 15th ACM International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems (MSWiM), held in 2012 in Paphos, Cyprus Island. MSWiM has a long ...

Albert Zomaya; Bjorn Landfeldt; Ravi Prakash

2012-10-01T23:59:59.000Z

411

Modeling Nuclear Pasta and the Transition to Uniform Nuclear Matter with the 3D Skyrme-Hartree-Fock Method at Finite Temperature I: Core-Collapse Supernovae  

E-Print Network (OSTI)

The first results of a new three-dimensional, finite temperature Skyrme-Hartree-Fock+BCS study of the properties of inhomogeneous nuclear matter at densities and temperatures leading to the transition to uniform nuclear matter are presented. Calculations are carried out in a cubic box representing a unit cell of the locally periodic structure of the matter. A constraint is placed on the two independent components of the quadrupole moment of the neutron density in order to investigate the dependence of the total energy-density of matter on the geometry of the nuclear structure in the unit cell. This approach allows self-consistent modeling of effects such as (i) neutron drip, resulting in a neutron gas external to the nuclear structure, (ii) shell effects of bound and unbound nucleons, (iii) the variety of exotic nuclear shapes that emerge, collectively termed `nuclear pasta' and (iv) the dissolution of these structures into uniform nuclear matter as density and/or temperature increase. In part I of this work ...

Stone, W G Newton J R

2009-01-01T23:59:59.000Z

412

Benchmarking GEANT4 nuclear models for carbon-therapy at 95 MeV/A  

E-Print Network (OSTI)

In carbon-therapy, the interaction of the incoming beam with human tissues may lead to the production of a large amount of nuclear fragments and secondary light particles. An accurate estimation of the biological dose deposited into the tumor and the surrounding healthy tissues thus requires sophisticated simulation tools based on nuclear reaction models. The validity of such models requires intensive comparisons with as many sets of experimental data as possible. Up to now, a rather limited set of double di erential carbon fragmentation cross sections have been measured in the energy range used in hadrontherapy (up to 400 MeV/A). However, new data have been recently obtained at intermediate energy (95 MeV/A). The aim of this work is to compare the reaction models embedded in the GEANT4 Monte Carlo toolkit with these new data. The strengths and weaknesses of each tested model, i.e. G4BinaryLightIonReaction, G4QMDReaction and INCL++, coupled to two di fferent de-excitation models, i.e. the generalized evaporation model and the Fermi break-up are discussed.

J. Dudouet; D. Cussol; D. Durand; M. Labalme

2013-09-06T23:59:59.000Z

413

NARAC Modeling During the Response to the Fukushima Dai-ichi Nuclear Power Plant Emergency  

SciTech Connect

This paper summarizes the activities of the National Atmospheric Release Advisory Center (NARAC) during the Fukushima Dai-ichi nuclear power plant crisis. NARAC provided a wide range of products and analyses as part of its support including: (1) Daily Japanese weather forecasts and hypothetical release (generic source term) dispersion predictions to provide situational awareness and inform planning for U.S. measurement data collection and field operations; (2) Estimates of potential dose in Japan for hypothetical scenarios developed by the Nuclear Regulatory Commission (NRC) to inform federal government considerations of possible actions that might be needed to protect U.S. citizens in Japan; (3) Estimates of possible plume arrival times and dose for U.S. locations; and (4) Plume model refinement and source estimation based on meteorological analyses and available field data. The Department of Energy/National Nuclear Security Administration (DOE/NNSA) deployed personnel to Japan and stood up 'home team' assets across the DOE complex to aid in assessing the consequences of the releases from the Fukushima Dai-ichi Nuclear Power Plant. The DOE Nuclear Incident Team (NIT) coordinated response activities, while DOE personnel provided predictive modeling, air and ground monitoring, sample collection, laboratory analysis, and data assessment and interpretation. DOE deployed the Aerial Measuring System (AMS), Radiological Assistance Program (RAP) personnel, and the Consequence Management Response Team (CMRT) to Japan. DOE/NNSA home team assets included the Consequence Management Home Team (CMHT); National Atmospheric Release Advisory Center (NARAC); Radiation Emergency Assistance Center/Training Site (REAC/TS); and Radiological Triage. NARAC was activated by the DOE/NNSA on March 11, shortly after the Tohoku earthquake and tsunami occurred. The center remained on active operations through late May when DOE ended its deployment to Japan. Over 32 NARAC staff members, supplemented by other LLNL scientists, invested over 5000 person-hours of time and generated over 300 analyses and predictions.

Sugiyama, G; Nasstrom, J S; Probanz, B; Foster, K T; Simpson, M; Vogt, P; Aluzzi, F; Dillon, M; Homann, S

2012-02-14T23:59:59.000Z

414

SOCIAL MODELING IN ASSESSEMENT OF A STATES PROPENSITY FOR NUCLEAR PROLIFERATION  

SciTech Connect

This paper presents approach for assessing a States propensity for nuclear weapons proliferation using social modeling. We supported this modeling by first reviewing primarily literature by social scientists on factors related to the propensity of a State to proliferation and by leveraging existing relevant data compiled by social scientists. We performed a number of validation tests on our model including one that incorporates use of benchmark data defining the proliferation status of countries in the years between 1945 and 2000. We exercise the BN model against a number of country cases representing different perceived levels of proliferation risk. We also describe how the BN model could be further refined to be a proliferation assessment tool for decision making.

Dalton, Angela C.; Whitney, Paul D.; Coles, Garill A.; Brothers, Alan J.

2011-07-17T23:59:59.000Z

415

Proceedings of the Numerical Modeling for Underground Nuclear Test Monitoring Symposium  

SciTech Connect

The purpose of the meeting was to discuss the state-of-the-art in numerical simulations of nuclear explosion phenomenology with applications to test ban monitoring. We focused on the uniqueness of model fits to data, the measurement and characterization of material response models, advanced modeling techniques, and applications of modeling to monitoring problems. The second goal of the symposium was to establish a dialogue between seismologists and explosion-source code calculators. The meeting was divided into five main sessions: explosion source phenomenology, material response modeling, numerical simulations, the seismic source, and phenomenology from near source to far field. We feel the symposium reached many of its goals. Individual papers submitted at the conference are indexed separately on the data base.

Taylor, S.R.; Kamm, J.R. [eds.

1993-11-01T23:59:59.000Z

416

Critical Infrastructure Interdependency Modeling: A Survey of U.S. and International Research  

Science Conference Proceedings (OSTI)

The Nations health, wealth, and security rely on the production and distribution of certain goods and services. The array of physical assets, processes, and organizations across which these goods and services move are called "critical infrastructures".1 This statement is as true in the U.S. as in any country in the world. Recent world events such as the 9-11 terrorist attacks, London bombings, and gulf coast hurricanes have highlighted the importance of stable electric, gas and oil, water, transportation, banking and finance, and control and communication infrastructure systems. Be it through direct connectivity, policies and procedures, or geospatial proximity, most critical infrastructure systems interact. These interactions often create complex relationships, dependencies, and interdependencies that cross infrastructure boundaries. The modeling and analysis of interdependencies between critical infrastructure elements is a relatively new and very important field of study. The U.S. Technical Support Working Group (TSWG) has sponsored this survey to identify and describe this current area of research including the current activities in this field being conducted both in the U.S. and internationally. The main objective of this study is to develop a single source reference of critical infrastructure interdependency modeling tools (CIIMT) that could be applied to allow users to objectively assess the capabilities of CIIMT. This information will provide guidance for directing research and development to address the gaps in development. The results will inform researchers of the TSWG Infrastructure Protection Subgroup of research and development efforts and allow a more focused approach to addressing the needs of CIIMT end-user needs. This report first presents the field of infrastructure interdependency analysis, describes the survey methodology, and presents the leading research efforts in both a cumulative table and through individual datasheets. Data was collected from open source material and when possible through direct contact with the individuals leading the research.

Not Available

2006-08-01T23:59:59.000Z

417

The ITER Project: International Collaboration to Demonstrate...  

NLE Websites -- All DOE Office Websites (Extended Search)

ITER Project: International Collaboration to Demonstrate Nuclear Fusion American Fusion News Category: U.S. ITER Link: The ITER Project: International Collaboration to Demonstrate...

418

Collaborating Organizations - Nuclear Data Program, Nuclear Engineering  

NLE Websites -- All DOE Office Websites (Extended Search)

Collaborating Organizations Collaborating Organizations Nuclear Data Program Overview Current Projects & Recent Activities Collaborating Organizations Publications Nuclear Data Measurements (NDM) Reports Experimental Nuclear Data Resources Contact ND Program Related Resources Other Major Programs Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE Division on Flickr Nuclear Data Program Collaborating Organizations Bookmark and Share National Nuclear Data Center, Brookhaven National Laboratory, Upton, New York. International Nuclear Structure and Decay Data Network, coordinated by IAEA, Vienna, Austria Heavy-Ion Nuclear Physics Group, Physics Division, Argonne National Laboratory, Argonne, Illinois. Nuclear Spectroscopy Group, Department of Nuclear Physics,

419

Embedding Emerging Nuclear Systems in Sustainable Development: The Shadow of Nuclear Past and a Potential Dark Side of Nuclear Future  

Science Conference Proceedings (OSTI)

Education, Economics, and Sustainability / Proceedings of the Fifteenth International Conference on Emerging Nuclear Energy Systems

Vladimir M. Novikov

420

Large scale nuclear sensor monitoring and diagnostics by means of an ensemble of regression models based on Evolving Clustering Methods  

E-Print Network (OSTI)

signals measured at a nuclear Boiling Water Reactor (BWR) located in Oskarshamn, Sweden. A total number NLarge scale nuclear sensor monitoring and diagnostics by means of an ensemble of regression models the validation and reconstruction of 792 signals measured at the Swedish boiling water reactor located

Note: This page contains sample records for the topic "international nuclear model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

The Development of Simulation Model for D2O Supply System in Heavy Water Nuclear Power Plant  

Science Conference Proceedings (OSTI)

The main purpose of this research is improvement of performance in control system for heavy water supply system of nuclear fuel change machine. Before started design of control system, the model of target system is needed because it is hard to test and ... Keywords: simulation, nuclear, heavy-water, D2O, MATLAB

Sung-Won Choi; Seong-Geun Kwak; Ji-Hyoung Ryu; Kil-To Chong; Chang-Goo Lee

2012-05-01T23:59:59.000Z

422

Validity of pair truncation of the nuclear shell model in {sup 46}Ca  

SciTech Connect

We study the validity of pair truncation of the nuclear shell model by using the semimagic nucleus {sup 46}Ca. We present low-lying states and their E2 transition rates based on both nucleon pair approximation (NPA) and exact shell-model (SM) calculations. We also calculate overlaps between wave functions of low-lying states calculated by using the NPA and those calculated by using the SM. Our calculated results show a remarkable agreement between the NPA results and the SM results, although the NPA is a drastic truncation of the SM.

Lei, Y.; Xu, Z. Y. [Department of Physics, Shanghai Jiao Tong University, Shanghai 200240 (China); Zhao, Y. M. [Department of Physics, Shanghai Jiao Tong University, Shanghai 200240 (China); Center of Theoretical Nuclear Physics, National Laboratory of Heavy Ion Accelerator, Lanzhou 730000 (China); CCAST, World Laboratory, Post Office Box 8730, Beijing 100080 (China); Arima, A. [Department of Physics, Shanghai Jiao Tong University, Shanghai 200240 (China); Science Museum, Japan Science Foundation, 2-1 Kitanomaru-koen, Chiyoda-ku, Tokyo 102-0091 (Japan)

2009-12-15T23:59:59.000Z

423

Nuclear Energy -- Knowledge Base for Advanced Modeling and Simulation (NE-KAMS) Code Verification and Validation Data Standards and Requirements: Fluid Dynamics Version 1.0  

SciTech Connect

V&V and UQ are the primary means to assess the accuracy and reliability of M&S and, hence, to establish confidence in M&S. Though other industries are establishing standards and requirements for the performance of V&V and UQ, at present, the nuclear industry has not established such standards or requirements. However, the nuclear industry is beginning to recognize that such standards are needed and that the resources needed to support V&V and UQ will be very significant. In fact, no single organization has sufficient resources or expertise required to organize, conduct and maintain a comprehensive V&V and UQ program. What is needed is a systematic and standardized approach to establish and provide V&V and UQ resources at a national or even international level, with a consortium of partners from government, academia and industry. Specifically, what is needed is a structured and cost-effective knowledge base that collects, evaluates and stores verification and validation data, and shows how it can be used to perform V&V and UQ, leveraging collaboration and sharing of resources to support existing engineering and licensing procedures as well as science-based V&V and UQ processes. The Nuclear Energy Knowledge base for Advanced Modeling and Simulation (NE-KAMS) is being developed at the Idaho National Laboratory in conjunction with Bettis Laboratory, Sandia National Laboratories, Argonne National Laboratory, Utah State University and others with the objective of establishing a comprehensive and web-accessible knowledge base to provide V&V and UQ resources for M&S for nuclear reactor design, analysis and licensing. The knowledge base will serve as an important resource for technical exchange and collaboration that will enable credible and reliable computational models and simulations for application to nuclear power. NE-KAMS will serve as a valuable resource for the nuclear industry, academia, the national laboratories, the U.S. Nuclear Regulatory Commission (NRC) and the public and will help ensure the safe, economical and reliable operation of existing and future nuclear reactors.

Greg Weirs; Hyung Lee

2011-09-01T23:59:59.000Z

424

Use of International Criticality Safety Benchmark Evaluation Project Data for Validation of the Nuclear Data Library BAS  

SciTech Connect

Effective neutron multiplication factors for 66 critical systems were calculated in order to test the neutron data library BAS. The class of systems chosen for the k{sub eff} calculations includes unreflected metal uranium and plutonium systems and systems that were reflected by {sup 238}U, Fe, Al, Ti, Pb, Be, C, CH{sub 2}, and H{sub 2}O. Configurations and materials used in these critical systems were taken from the 'International Handbook of Evaluated Criticality Safety Benchmark Experiments'. The calculations with BAS were performed using the codes PRIZMA-D and MCNP.4a. For comparison, the calculations were repeated using MCNP.4a with ENDF/B5 and ENDF/B6 cross-section data. A comparison of all results is provided.

Shmakov, V.M.; Lyutov, V.D.; Bekhterev, V.A. [Russian Federal Nuclear Center (Russian Federation)

2003-10-15T23:59:59.000Z

425

Modeling Nuclear Pasta and the Transition to Uniform Nuclear Matter with the 3D Skyrme-Hartree-Fock Method at Finite Temperature I: Core-Collapse Supernovae  

E-Print Network (OSTI)

The first results of a new three-dimensional, finite temperature Skyrme-Hartree-Fock+BCS study of the properties of inhomogeneous nuclear matter at densities and temperatures leading to the transition to uniform nuclear matter are presented. Calculations are carried out in a cubic box representing a unit cell of the locally periodic structure of the matter. A constraint is placed on the two independent components of the quadrupole moment of the neutron density in order to investigate the dependence of the total energy-density of matter on the geometry of the nuclear structure in the unit cell. This approach allows self-consistent modeling of effects such as (i) neutron drip, resulting in a neutron gas external to the nuclear structure, (ii) shell effects of bound and unbound nucleons, (iii) the variety of exotic nuclear shapes that emerge, collectively termed `nuclear pasta' and (iv) the dissolution of these structures into uniform nuclear matter as density and/or temperature increase. In part I of this work the calculation of the properties of inhomogeneous nuclear matter in the core collapse of massive stars is reported. Calculations are performed at baryon number densities of $n_{\\rm b}$ = 0.04 - 0.12 fm$^{\\rm -3}$, a proton fraction of $y_{\\rm p}=0.3$ and temperatures in the range 0 - 7.5 MeV. A wide variety of nuclear shapes are shown to emerge. It is suggested that thermodynamical properties change smoothly in the pasta regime up to the transition to uniform matter; at that transition, thermodynamic properties of the matter vary discontinuously.

W. G. Newton J. R. Stone

2009-04-30T23:59:59.000Z

426

LANL | Nuclear Design and Risk Analysis, D-5 | Home Page  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Design and Risk Analysis, D-5 Nuclear Design and Risk Analysis, D-5 Home About Us CAPABILITIES Computational Fluid Dynamics International Nuclear Risk Analysis Nuclear Facility Safety Nuclear Reactor Safety/ Risk Analysis Nuclear Weapons Safety Programmatic Risk Analysis Radiation Transport Modeling (MCNPX) Risk Based Decision Support Seismic Risk Analysis Small Reactor Design CONTACTS Group Leader Pratap Sadasivan (505) 665-5853 Deputy Group Leader Jay Elson Office Administrator Amanda Braithwaite Innovative design and analysis of nuclear systems The Nuclear Design and Risk Analysis Group (D-5) is a multidisciplinary team of scientists and engineers. We provide modeling and analysis capabilities to design and evaluate the potential risks of complex systems, with a focus on nuclear systems. D-5 goes beyond just providing an answer: we provide answers in the context of the overall decision process. We ensure that decision makers have all of the knowledge available to make an informed regulatory, design, or risk decision.

427

REACTOR PHYSICS MODELING OF SPENT RESEARCH REACTOR FUEL FOR TECHNICAL NUCLEAR FORENSICS  

SciTech Connect

Technical nuclear forensics (TNF) refers to the collection, analysis and evaluation of pre- and post-detonation radiological or nuclear materials, devices, and/or debris. TNF is an integral component, complementing traditional forensics and investigative work, to help enable the attribution of discovered radiological or nuclear material. Research is needed to improve the capabilities of TNF. One research area of interest is determining the isotopic signatures of research reactors. Research reactors are a potential source of both radiological and nuclear material. Research reactors are often the least safeguarded type of reactor; they vary greatly in size, fuel type, enrichment, power, and burn-up. Many research reactors are fueled with highly-enriched uranium (HEU), up to {approx}93% {sup 235}U, which could potentially be used as weapons material. All of them have significant amounts of radiological material with which a radioactive dispersal device (RDD) could be built. Therefore, the ability to attribute if material originated from or was produced in a specific research reactor is an important tool in providing for the security of the United States. Currently there are approximately 237 operating research reactors worldwide, another 12 are in temporary shutdown and 224 research reactors are reported as shut down. Little is currently known about the isotopic signatures of spent research reactor fuel. An effort is underway at Savannah River National Laboratory (SRNL) to analyze spent research reactor fuel to determine these signatures. Computer models, using reactor physics codes, are being compared to the measured analytes in the spent fuel. This allows for improving the reactor physics codes in modeling research reactors for the purpose of nuclear forensics. Currently the Oak Ridge Research reactor (ORR) is being modeled and fuel samples are being analyzed for comparison. Samples of an ORR spent fuel assembly were taken by SRNL for analytical and radiochemical analysis. The fuel assembly was modeled using MONTEBURNS(MCNP5/ ORIGEN2.2) and MCNPX/CINDER90. The results from the models have been compared to each other and to the measured data.

Nichols, T.; Beals, D.; Sternat, M.

2011-07-18T23:59:59.000Z

428

Nuclear and Radiological Material Security | National Nuclear...  

National Nuclear Security Administration (NNSA)

to intensive site security efforts, NNSA is also working to build international standards and criteria for nuclear and radiological security. This includes NNSA's work to...

429

Nuclear / Radiological Advisory Team | National Nuclear Security...  

National Nuclear Security Administration (NNSA)

advice for both domestic and international nuclear or radiological incidents. It is led by a Senior Energy Official who runs the NNSA field operation and who coordinates NNSA...

430

Executive Bios: Dr. Robert N. Hill - Nuclear Engineering Division...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

431

Related Sites, Experimental Resources for Nuclear Data Studies...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

432

Executive Bios: Dr. David C. Wade - Nuclear Engineering Division...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

433

ANS President interviewed at the Argonne Booth during the Nuclear...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

434

Executive Bios: Jerome L. Gaston - Nuclear Engineering Division...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

435

Executive Bios: A. C. (Paul) Raptis - Nuclear Engineering Division...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

436

Executive Bios: Dr. Hussein S. Khalil - Nuclear Engineering Division...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

437

Argonne staff members elected to American Nuclear Society governance...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

438

Reactor Safety Testing and Analysis - Nuclear Engineering Division...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

439

Executive Bios: Dr. Temitope Taiwo - Nuclear Engineering Division...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

440

Sloshing response of module-type worm tank - Nuclear Engineering...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

Note: This page contains sample records for the topic "international nuclear model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Executive Bios: Dr. Thomas F. Ewing - Nuclear Engineering Division...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

442

Executive Bios: Dr. John G. Stevens - Nuclear Engineering Division...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

443

Vulnerability Assessment Team (VAT) in the News - Nuclear Engineering...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

444

Executive Bios: Dr. Pete Heine - Nuclear Engineering Division...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

445

Executive Bios: Dr. Tanju Sofu - Nuclear Engineering Division...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

446

Risk and Safety Assessments - Nuclear Engineering Division (Argonne...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

447

Executive Bios: Dr. Ken Natesan - Nuclear Engineering Division...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

448

Fluctuations in the Gravitational, Strong and Weak Nuclear Fields through an Effective Harmonic Oscillator Model  

E-Print Network (OSTI)

We propose an effective harmonic oscillator model in order to treat the fluctuations of the gravitational, strong and weak nuclear fields. With respect to the gravitational field, first we use the model to estimate its fluctuating strength, necessary to decohere the wavefunction of a cubic centimeter of air at the standard temperature and pressure conditions. Second, the fluctuation of a point mass through a distance equal to the Planck length leads to the self-gravitational interaction of a particle, which can be related to its de Broglie frequency. Third, by making the equality of the fluctuating field strength with the gravitational field of a mass M at half of its Schwarzschild radius, we obtain an estimate of the mass of the Universe. We also consider the fluctuations of the strong nuclear field, as a means to estimate the separation in energy between the ground state and the centroid of the excitated states of the nucleon. Finally, taking into account the neutron-proton mass difference, we use the fluctuations of the weak nuclear field in order to evaluate the weak coupling constant.

P. R. Silva

2001-12-10T23:59:59.000Z

449

Joint International Conference on Supercomputing in Nuclear Applications and Monte Carlo 2013 (SNA + MC 2013) La Cit des Sciences et de l'Industrie, Paris, France, October 27-31, 2013  

E-Print Network (OSTI)

Joint International Conference on Supercomputing in Nuclear Applications and Monte Carlo 2013 (SNA-Cr alloys are investigated using Density Functional Theory (DFT) formalism, in the form of constrained non temperature, represent the key unknown entities critical to the development of viable fusion reactor design

450

International Conference on Fully 3D Reconstruction in Radiology and Nuclear Medicine, Linau, Germany, July 9-13, 2007 Abstract--Four-dimensional computed tomography (4D-CT)  

E-Print Network (OSTI)

of a breathing cycle. Thus the radiation exposure during the data acquisition is at least 10 times higher than. This will result in unacceptable radiation to the patient. Lower the radiation exposure will sacrifice the imageInternational Conference on Fully 3D Reconstruction in Radiology and Nuclear Medicine, Linau

451

Speaker Dr. Richard Olsen will be discussing the role of the International Atomic Energy Agency in verifying the peaceful uses of nuclear energy where he worked for 21 years  

E-Print Network (OSTI)

such as the NPT (Treaty on Non Proliferation of NuclearWeapons) and its review process. 2. These are therefore climate of mainstream activity on these international security issues ('non-proliferation' and disarmament back-tracking from that forthright position on the disarmament-non- proliferation link (and pleading

Olsen, Stephen L.

452

International Conference on Mathematics, Computational Methods & Reactor Physics (M&C 2009) Saratoga Springs, New York, May 3-7, 2009, on CD-ROM, American Nuclear Society, LaGrange Park, IL (2009)  

E-Print Network (OSTI)

. For these reasons, GEANT4 was chosen over MCNPX for this work. 2.1.1. Simulation Physics In GEANT4 the neutron regarding alpha particle emitting neutron reactive films", Nuclear Instruments and Methods in PhysicsInternational Conference on Mathematics, Computational Methods & Reactor Physics (M&C 2009

Danon, Yaron

453

Recent developments of the cascade-exciton model of nuclear reactions  

Science Conference Proceedings (OSTI)

Recent developments of the Cascade-Exciton Model (CEM) of nuclear reactions are described. The improved cascade-exciton model as implemented in the code CEM97 differs from the CEM95 version by incorporating new approximations for the elementary cross sections used in the cascade, using more precise values for nuclear masses and pairing energies, using corrected systematics for the level-density parameters, and several other refinements. We have improved algorithms used in many subroutines, decreasing the computing time by up to a factor of 6 for heavy targets. We describe a number of further improvements and changes to CEM97, motivated by new data on isotope production measured at GSI. This leads us to CEM2k, a new version of the CEM code. CEM2k has a longer cascade stage, less preequilibrium emission, and evaporation from more highly excited compound nuclei compared to earlier versions. CEM2k also has other improvements and allows us to better model neutron, radionuclide, and gas production in ATW spallation targets. The increased accuracy and predictive power of the code CEM2k are shown by several examples. Further necessary work is outlined. KEYWORDS: Intranuclear cascade, preequilibrium, evaporation, and fission reactions, Monte Carlo simulations, cascade-exciton model, particle spectra, spallation and fission cross sections, GSI data

Mashnik, S. G. (Stepan G.); Sierk, A. J. (Arnold J.)

2001-01-01T23:59:59.000Z

454

Geochemical modeling of the nuclear-waste repository system. A status report  

Science Conference Proceedings (OSTI)

The primary objective of the geochemical modeling task is to develop an understanding of the waste-repository geochemical system and provide a valuable tool for estimating future states of that system. There currently exists a variety of computer codes which can be used in geochemical modeling studies. Some available codes contain the framework for simulating a natural chemical system and estimating, within limits, the response of that system to environmental changes. By data-base enhancement and code development, this modeling technique can be even more usefully applied to a nuclear-waste repository. In particular, thermodynamic data on elements not presently in the data base but identified as being of particular hazard in the waste-repository system, need to be incorporated into the code to estimate the near-field as well as the far-field reactions during a hypothetical breach. A reaction-path-simulation code, which estimates the products of specific rock/water reactions, has been tested using basalt and ground water. Results show that the mass-transfer capabilities of the code will be useful in chemical-evolution studies and scenario analyses. The purpose of this report is to explain the status of geochemical modeling as it currently applies to the chemical system of a hypothetical nuclear-waste repository in basalt and to present the plan proposed for further developmet and application.

Deutsch, W.J.

1980-12-01T23:59:59.000Z

455

Internal Versus SST-Forced Atmospheric Variability as Simulated by an Atmospheric General Circulation Model  

Science Conference Proceedings (OSTI)

The variability of atmospheric flow is analyzed by separating it into an internal part due to atmospheric dynamics only and an external (or forced) part due to the variability of sea surface temperature forcing. The two modes of variability are ...

Ali Harzallah; Robert Sadourny

1995-03-01T23:59:59.000Z

456

Internal Gravity Wave Emission into the Middle Atmosphere from a Model Tropospheric Jet  

Science Conference Proceedings (OSTI)

A mechanism is investigated whereby large amplitude internal gravity waves (IGWs) may be excited by the tropospheric jet stream when this is driven to parallel shear instability following a rapid external forcing of the mean flow a circumstance ...

B. R. Sutherland; W. R. Peltier

1995-09-01T23:59:59.000Z

457

The Internal Barotropic Instability of Surface-Intensified Eddies. Part II: Modeling of the Tourbillon Site  

Science Conference Proceedings (OSTI)

Data from the Tourbillon Experiment Intensive Period in the northeast Atlantic presented evidence of a vertical phase shift with time of the main eddy, interpreted as an occurrence of internal barotropic instability. In order to justify this: (i) ...

Bach Lien Hua

1988-01-01T23:59:59.000Z

458

Analysing and modelling international trade patterns of the Australian wine industry in the world wine market.  

E-Print Network (OSTI)

??Since the mid-1980s, trade liberalisation has encouraged the growth of Australias international trade. The Australian wine industry has been successful in the world wine market, (more)

Boriraj, Jumpoth

2008-01-01T23:59:59.000Z