Sample records for international nuclear energy

  1. International Framework for Nuclear Energy Cooperation (IFNEC...

    Energy Savers [EERE]

    International Framework for Nuclear Energy Cooperation (IFNEC) Expert meetings in Romania International Framework for Nuclear Energy Cooperation (IFNEC) Expert meetings in Romania...

  2. International Framework for Nuclear Energy Cooperation to Hold...

    Energy Savers [EERE]

    International Framework for Nuclear Energy Cooperation to Hold Ministerial-Level Meeting Sept. 29 in Warsaw, Poland International Framework for Nuclear Energy Cooperation to Hold...

  3. United States-Republic of Korea (ROK) International Nuclear Energy...

    Office of Environmental Management (EM)

    United States-Republic of Korea (ROK) International Nuclear Energy Research Initiative (INERI) Annual Steering Committee Meeting United States-Republic of Korea (ROK) International...

  4. JET Papers Presented at International Atomic Energy Agency 10th International Conference on Plasma Physics and Controlled Nuclear Research

    E-Print Network [OSTI]

    JET Papers Presented at International Atomic Energy Agency 10th International Conference on Plasma Physics and Controlled Nuclear Research

  5. International Nuclear Energy Policy and Cooperation | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,39732on ArmedManufacturing |Time-Based International Nuclear Energy

  6. ICENES '91:Sixth international conference on emerging nuclear energy systems

    SciTech Connect (OSTI)

    Not Available

    1991-01-01T23:59:59.000Z

    This document contains the program and abstracts of the sessions at the Sixth International Conference on Emerging Nuclear Energy Systems held June 16--21, 1991 at Monterey, California. These sessions included: The plenary session, fission session, fission and nonelectric session, poster session 1P; (space propulsion, space nuclear power, electrostatic confined fusion, fusion miscellaneous, inertial confinement fusion, [mu]-catalyzed fusion, and cold fusion); Advanced fusion session, space nuclear session, poster session 2P, (nuclear reactions/data, isotope separation, direct energy conversion and exotic concepts, fusion-fission hybrids, nuclear desalting, accelerator waste-transmutation, and fusion-based chemical recycling); energy policy session, poster session 3P (energy policy, magnetic fusion reactors, fission reactors, magnetically insulated inertial fusion, and nuclear explosives for power generation); exotic energy storage and conversion session; and exotic energy storage and conversion; review and closing session.

  7. International Nuclear Energy Research Initiative, Fiscal Year...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hyun Chul Lee, Korea Atomic Energy Research Institute Collaborators: Seoul National University Program Area: Reactor Concepts RD&D Project Start Date: October 2008 Project...

  8. International Nuclear Services Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtelInterias Solar Energy Jump to:IES Jump to:

  9. Assuaging Nuclear Energy Risks: The Angarsk International Uranium Enrichment Center

    SciTech Connect (OSTI)

    Myers, Astasia [Stanford University, Stanford, CA 94305, USA and MonAme Scientific Research Center, Ulaanbaatar (Mongolia)

    2011-06-28T23:59:59.000Z

    The recent nuclear renaissance has motivated many countries, especially developing nations, to plan and build nuclear power reactors. However, domestic low enriched uranium demands may trigger nations to construct indigenous enrichment facilities, which could be redirected to fabricate high enriched uranium for nuclear weapons. The potential advantages of establishing multinational uranium enrichment sites are numerous including increased low enrichment uranium access with decreased nuclear proliferation risks. While multinational nuclear initiatives have been discussed, Russia is the first nation to actualize this concept with their Angarsk International Uranium Enrichment Center (IUEC). This paper provides an overview of the historical and modern context of the multinational nuclear fuel cycle as well as the evolution of Russia's IUEC, which exemplifies how international fuel cycle cooperation is an alternative to domestic facilities.

  10. Safety Reports Series No. 11, Developing Safety Culture in Nuclear Activities: Practical Suggestions to Assist Progress, International Atomic Energy Agency

    Broader source: Energy.gov [DOE]

    Safety Reports Series No. 11, Developing Safety Culture in Nuclear Activities: Practical Suggestions to Assist Progress, International Atomic Energy Agency

  11. Safety Series No. 75-INSAG-4, Safety Culture: A report by the International Nuclear Safety Advisory Group, International Atomic Energy Agency

    Broader source: Energy.gov [DOE]

    Safety Series No. 75-INSAG-4, Safety Culture: A report by the International Nuclear Safety Advisory Group, International Atomic Energy Agency, IAEA, 1991

  12. World nuclear fuel market: proceedings of the international conference on nuclear energy

    SciTech Connect (OSTI)

    Not Available

    1982-01-01T23:59:59.000Z

    Thirteen papers, along with discussion and comments, are divided into four conference sessions covering: the prospect for primary markets for enriched uranium; secondary trading markets for enriched uranium; the management of irradiatied fuel and economics of reprocessing; and an evaluation of plutonium recycling in thermal reactors. The speakers address technical, economic, and political issues relating to both front-end and back-end management of the fuel cycle. The papers were presented at the 9th International Conference on Nuclear Energy in Nice, France during October, 1982. A separate abstract was prepared for each of the 13 papers selected for the Energy Data Base (EDB), Energy Research Abstracts (ERA), and Energy Abstracts for Policy Analysis (EAPA). (DCK)

  13. ICENES `91:Sixth international conference on emerging nuclear energy systems. Program and abstracts

    SciTech Connect (OSTI)

    Not Available

    1991-12-31T23:59:59.000Z

    This document contains the program and abstracts of the sessions at the Sixth International Conference on Emerging Nuclear Energy Systems held June 16--21, 1991 at Monterey, California. These sessions included: The plenary session, fission session, fission and nonelectric session, poster session 1P; (space propulsion, space nuclear power, electrostatic confined fusion, fusion miscellaneous, inertial confinement fusion, {mu}-catalyzed fusion, and cold fusion); Advanced fusion session, space nuclear session, poster session 2P, (nuclear reactions/data, isotope separation, direct energy conversion and exotic concepts, fusion-fission hybrids, nuclear desalting, accelerator waste-transmutation, and fusion-based chemical recycling); energy policy session, poster session 3P (energy policy, magnetic fusion reactors, fission reactors, magnetically insulated inertial fusion, and nuclear explosives for power generation); exotic energy storage and conversion session; and exotic energy storage and conversion; review and closing session.

  14. International Nuclear Energy Research Initiative (I-NERI) Annual Reports |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOil & Gas » Methane Hydrate » InternationalEnergyDepartment of

  15. International Nuclear Energy Research Initiative: 2012 Annual Report |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOil & Gas » Methane Hydrate » InternationalEnergyDepartment

  16. Proceedings of GLOBAL 2013: International Nuclear Fuel Cycle Conference - Nuclear Energy at a Crossroads

    SciTech Connect (OSTI)

    NONE

    2013-07-01T23:59:59.000Z

    The Global conference is a forum for the discussion of the scientific, technical, social and regulatory aspects of the nuclear fuel cycle. Relevant topics include global utilization of nuclear energy, current fuel cycle technologies, advanced reactors, advanced fuel cycles, nuclear nonproliferation and public acceptance.

  17. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY Accepted June 2008 HYDROGEN STORAGE FOR MIXED WIND-NUCLEAR POWER PLANTS IN

    E-Print Network [OSTI]

    Caizares, Claudio A.

    evaluation of hydrogen production and storage for a mixed wind-nuclear power plant considering some new : nuclear power plant production (MW) GP : total wind-nuclear power plant production (MW) EP : electrolyzerINTERNATIONAL JOURNAL OF HYDROGEN ENERGY Accepted June 2008 1 HYDROGEN STORAGE FOR MIXED WIND-NUCLEAR

  18. International Framework for Nuclear Energy Cooperation to Hold

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOil & Gas » Methane Hydrate » International

  19. International Nuclear Energy Research Initiative: 2007 Annual Report |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment of EnergyIndustry15Among StatesforDepartment of Energy 7

  20. International Nuclear Energy Research Initiative: 2008 Annual Report |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment of EnergyIndustry15Among StatesforDepartment of Energy

  1. International Framework for Nuclear Energy Cooperation (IFNEC) Expert

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment of EnergyIndustry15Among Statesfor a Smart1.2.1.5

  2. International Framework for Nuclear Energy Cooperation to Hold

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment of EnergyIndustry15Among Statesfor a

  3. International Nuclear Energy Research Initiative: 2009 Annual Report |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment of EnergyIndustry15Among StatesforDepartment of

  4. International Nuclear Energy Research Initiative: 2010 Annual Report |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment of EnergyIndustry15Among StatesforDepartment ofDepartment of

  5. International Nuclear Energy Research Initiative: 2011 Annual Report |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment of EnergyIndustry15Among StatesforDepartment ofDepartment

  6. International Nuclear Energy Research Initiative: Annual Report 2005 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment of EnergyIndustry15Among StatesforDepartment

  7. International Nuclear Energy Research Initiative: Annual Report 2006 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment of EnergyIndustry15Among StatesforDepartmentDepartment of

  8. International Nuclear Energy Research Initiative: 2013 Annual Report |

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked Questions for DOEtheInspection15 IntellectualInterimDepartment of Energy

  9. Sandia Energy - Recent Sandia International Used Nuclear Fuel Management

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757Kelley RuehlReportPeter H. KobosRandall T. Cygan

  10. Nuclear nonproliferation and safety: Challenges facing the International Atomic Energy Agency

    SciTech Connect (OSTI)

    Not Available

    1993-09-01T23:59:59.000Z

    The Chairman of the Senate Committee on Govermental Affairs asked the United States General Accounting Office (GAO) to review the safeguards and nuclear power plant safety programs of the International Atomic Energy Agency (IAEA). This report examines (1) the effectiveness of IAEA`s safeguards program and the adequacy of program funding, (2) the management of U.S. technical assistance to the IAEA`s safeguards program, and (3) the effectiveness of IAEA`s program for advising United Nations (UN) member states about nuclear power plant safety and the adequacy of program funding. Under its statute and the Treaty on the Non-Proliferation of Nuclear Weapons, IAEA is mandated to administer safeguards to detect diversions of significant quantities of nuclear material from peaceful uses. Because of limits on budget growth and unpaid contributions, IAEA has had difficulty funding the safeguards program. IAEA also conducts inspections of facilities or locations containing declared nuclear material, and manages a program for reviewing the operational safety of designated nuclear power plants. The U.S. technical assistance program for IAEA safeguards, overseen by an interagency coordinating committee, has enhanced the agency`s inspection capabilities, however, some weaknesses still exist. Despite financial limitations, IAEA is meeting its basic safety advisory responsibilities for advising UN member states on nuclear safety and providing requested safety services. However, IAEA`s program for reviewing the operational safety of nuclear power plants has not been fully effective because the program is voluntary and UN member states have not requested IAEA`s review of all nuclear reactors with serious problems. GAO believes that IAEA should have more discretion in selecting reactors for review.

  11. Proceedings of the Fourth International Workshop on Software Engineering and Artificial Intelligence for High Energy and Nuclear Physics, eds. B. Denby and D. PerretGallix, International Journal of Modern

    E-Print Network [OSTI]

    Peterson, Carsten

    Intelligence for High Energy and Nuclear Physics, eds. B. Denby and D. Perret­Gallix, International Journal on Software Engineering and Artificial Intelligence for High Energy and Nuclear Physics, Pisa, Italy, April 3

  12. International Nuclear Security

    SciTech Connect (OSTI)

    Doyle, James E. [Los Alamos National Laboratory

    2012-08-14T23:59:59.000Z

    This presentation discusses: (1) Definitions of international nuclear security; (2) What degree of security do we have now; (3) Limitations of a nuclear security strategy focused on national lock-downs of fissile materials and weapons; (4) What do current trends say about the future; and (5) How can nuclear security be strengthened? Nuclear security can be strengthened by: (1) More accurate baseline inventories; (2) Better physical protection, control and accounting; (3) Effective personnel reliability programs; (4) Minimize weapons-usable materials and consolidate to fewer locations; (5) Consider local threat environment when siting facilities; (6) Implement pledges made in the NSS process; and (7) More robust interdiction, emergency response and special operations capabilities. International cooperation is desirable, but not always possible.

  13. International energy outlook 1996

    SciTech Connect (OSTI)

    NONE

    1996-05-01T23:59:59.000Z

    This International Energy Outlook presents historical data from 1970 to 1993 and EIA`s projections of energy consumption and carbon emissions through 2015 for 6 country groups. Prospects for individual fuels are discussed. Summary tables of the IEO96 world energy consumption, oil production, and carbon emissions projections are provided in Appendix A. The reference case projections of total foreign energy consumption and of natural gas, coal, and renewable energy were prepared using EIA`s World Energy Projection System (WEPS) model. Reference case projections of foreign oil production and consumption were prepared using the International Energy Module of the National Energy Modeling System (NEMS). Nuclear consumption projections were derived from the International Nuclear Model, PC Version (PC-INM). Alternatively, nuclear capacity projections were developed using two methods: the lower reference case projections were based on analysts` knowledge of the nuclear programs in different countries; the upper reference case was generated by the World Integrated Nuclear Evaluation System (WINES)--a demand-driven model. In addition, the NEMS Coal Export Submodule (CES) was used to derive flows in international coal trade. As noted above, foreign projections of electricity demand are now projected as part of the WEPS. 64 figs., 62 tabs.

  14. NUCLEAR ENERGY

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked QuestionsDepartment of Energyof Energy NREL:Education &NTSF NUCLEAR

  15. and INTERNATIONAL ATOMIC ENERGY AGENCYIOP PUBLISHING NUCLEAR FUSION Nucl. Fusion 48 (2008) 024016 (13pp) doi:10.1088/0029-5515/48/2/024016

    E-Print Network [OSTI]

    Solna, Knut

    2008-01-01T23:59:59.000Z

    and INTERNATIONAL ATOMIC ENERGY AGENCYIOP PUBLISHING NUCLEAR FUSION Nucl. Fusion 48 (2008) 024016 Vinca, Belgrade, Serbia 2 National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292, Gifu

  16. Nuclear Energy!

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparencyDOE Project TapsDOE Directives,838Nuclear Detectionmore

  17. | International Atomic Energy Agency Nuclear Fusion Nucl. Fusion 54 (2014) 043016 (8pp) doi:10.1088/0029-5515/54/4/043016

    E-Print Network [OSTI]

    Harilal, S. S.

    . Hassanein Center for Materials under Extreme Environment, School of Nuclear Engineering, Purdue University| International Atomic Energy Agency Nuclear Fusion Nucl. Fusion 54 (2014) 043016 (8pp) doi:10 becomes well coupled to the melt motion. Under the plasma impact with high velocity of 5000 m s-1 , the W

  18. | International Atomic Energy Agency Nuclear Fusion Nucl. Fusion 54 (2014) 033008 (8pp) doi:10.1088/0029-5515/54/3/033008

    E-Print Network [OSTI]

    Harilal, S. S.

    . Miloshevsky and A. Hassanein Center for Materials under Extreme Environment, School of Nuclear Engineering| International Atomic Energy Agency Nuclear Fusion Nucl. Fusion 54 (2014) 033008 (8pp) doi:10 is observed on the melt surface in the absence of plasma impact. The magnetic field of 5 T that is parallel

  19. IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 50 (2010) 014002 (10pp) doi:10.1088/0029-5515/50/1/014002

    E-Print Network [OSTI]

    2010-01-01T23:59:59.000Z

    Harnessing the energy of thermonuclear fusion reactions is one of the greatest challenges of our time. FusionIOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 50 (2010) 014002 (10pp) doi:10.1088/0029-5515/50/1/014002 ITER on the road to fusion energy Kaname Ikeda Director

  20. INSTITUTE OF PHYSICS PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 43 (2003) 16931709 PII: S0029-5515(03)67272-8

    E-Print Network [OSTI]

    Ghoniem, Nasr M.

    2003-01-01T23:59:59.000Z

    INSTITUTE OF PHYSICS PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 43 (2003) 16931709 PII: S0029-5515(03)67272-8 Fusion energy with lasers, direct drive targets.iop.org/NF/43/1693 Abstract A coordinated, focused effort is underway to develop Laser Inertial Fusion Energy

  1. IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 50 (2010) 014004 (14pp) doi:10.1088/0029-5515/50/1/014004

    E-Print Network [OSTI]

    2010-01-01T23:59:59.000Z

    IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 50 (2010) 014004.iop.org/NF/50/014004 Abstract Fusion energy research began in the early 1950s as scientists worked to harness at demonstrating fusion energy producing plasmas. PACS numbers: 52.55.-s, 52.57.-z, 28.52.-s, 89.30.Jj (Some

  2. International energy outlook 1998

    SciTech Connect (OSTI)

    NONE

    1998-04-01T23:59:59.000Z

    The International Energy Outlook 1998 (IEO98) presents an assessment by the Energy Information Administration (EIA) of the outlook for international energy markets through 2020. Projections in IEO98 are displaced according to six basic country groupings. The industrialized region includes projections for four individual countries -- the United States, Canada, Mexico, and Japan -- along with the subgroups Western Europe and Australasia (defined as Australia, New Zealand, and the US Territories). The developing countries are represented by four separate regional subgroups: developing Asia, Africa, Middle East, and Central and South America. China and India are represented in developing Asia. New to this year`s report, country-level projections are provided for Brazil -- which is represented in Central and South America. Eastern Europe and the former Soviet Union (EE/FSU) are considered as a separate country grouping. The report begins with a review of world trends in energy demand. Regional consumption projections for oil, natural gas, coal, nuclear power, and renewable energy (hydroelectricity, geothermal, wind, solar, and other renewables) are presented in five fuel chapters, with a review of the current status of each fuel on a worldwide basis. Summary tables of the IEO98 projections for world energy consumption, carbon emissions, oil production, and nuclear power generating capacity are provided in Appendix A. 88 figs., 77 tabs.

  3. IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 50 (2010) 014006 (6pp) doi:10.1088/0029-5515/50/1/014006

    E-Print Network [OSTI]

    .57.-z, 89.30.Ji 1. Laser and laser fusion from past and present to future In 1917, Albert EinsteinIOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 50 (2010) 014006 energized implosion could be utilized for energy generation. Today, there are many facilities worldwide

  4. IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 47 (2007) S608S621 doi:10.1088/0029-5515/47/10/S10

    E-Print Network [OSTI]

    Martn-Sols, Jos Ramn

    2007-01-01T23:59:59.000Z

    IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 47 (2007) S608S, EURATOM Association, 01-497, Warsaw, Poland E-mail: pericoli@frascati.enea.it Received 30 January 2007 of turbulence suppression and energy transport. At the highest densities the ion thermal conductivity remains

  5. IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 50 (2010) 095005 (15pp) doi:10.1088/0029-5515/50/9/095005

    E-Print Network [OSTI]

    Vlad, Gregorio

    2010-01-01T23:59:59.000Z

    IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 50 (2010) 095005, Warsaw, Poland E-mail: Pizzuto@frascati.enea.it Received 5 January 2009, accepted for publication 15 June) in the energy range 0.51 MeV. The total power input will be in the 3040 MW range under different plasma

  6. Monitoring international nuclear activity

    SciTech Connect (OSTI)

    Firestone, R.B.

    2006-05-19T23:59:59.000Z

    The LBNL Table of Isotopes website provides primary nuclearinformation to>150,000 different users annually. We have developedthe covert technology to identify users by IP address and country todetermine the kinds of nuclear information they are retrieving. Wepropose to develop pattern recognition software to provide an earlywarning system to identify Unusual nuclear activity by country or regionSpecific nuclear/radioactive material interests We have monitored nuclearinformation for over two years and provide this information to the FBIand LLNL. Intelligence is gleaned from the website log files. Thisproposal would expand our reporting capabilities.

  7. International Nuclear Energy Research Initiative Development of Computational Models for Pyrochemical Electrorefiners of Nuclear Waste Transmutation Systems

    SciTech Connect (OSTI)

    M.F. Simpson; K.-R. Kim

    2010-12-01T23:59:59.000Z

    In support of closing the nuclear fuel cycle using non-aqueous separations technology, this project aims to develop computational models of electrorefiners based on fundamental chemical and physical processes. Spent driver fuel from Experimental Breeder Reactor-II (EBR-II) is currently being electrorefined in the Fuel Conditioning Facility (FCF) at Idaho National Laboratory (INL). And Korea Atomic Energy Research Institute (KAERI) is developing electrorefining technology for future application to spent fuel treatment and management in the Republic of Korea (ROK). Electrorefining is a critical component of pyroprocessing, a non-aqueous chemical process which separates spent fuel into four streams: (1) uranium metal, (2) U/TRU metal, (3) metallic high-level waste containing cladding hulls and noble metal fission products, and (4) ceramic high-level waste containing sodium and active metal fission products. Having rigorous yet flexible electrorefiner models will facilitate process optimization and assist in trouble-shooting as necessary. To attain such models, INL/UI has focused on approaches to develop a computationally-light and portable two-dimensional (2D) model, while KAERI/SNU has investigated approaches to develop a computationally intensive three-dimensional (3D) model for detailed and fine-tuned simulation.

  8. International energy outlook 1999

    SciTech Connect (OSTI)

    NONE

    1999-03-01T23:59:59.000Z

    This report presents international energy projections through 2020, prepared by the Energy Information Administration. The outlooks for major energy fuels are discussed, along with electricity, transportation, and environmental issues. The report begins with a review of world trends in energy demand. The historical time frame begins with data from 1970 and extends to 1996, providing readers with a 26-year historical view of energy demand. The IEO99 projections covers a 24-year period. The next part of the report is organized by energy source. Regional consumption projections for oil, natural gas, coal, nuclear power, and renewable energy (hydroelectricity, geothermal, wind, solar, and other renewables) are presented in the five fuel chapters, along with a review of the current status of each fuel on a worldwide basis. The third part of the report looks at energy consumption in the end-use sectors, beginning with a chapter on energy use for electricity generation. New to this year`s outlook are chapters on energy use in the transportation sector and on environmental issues related to energy consumption. 104 figs., 87 tabs.

  9. International Nuclear Fuel Cycle Fact Book

    SciTech Connect (OSTI)

    Leigh, I.W.; Patridge, M.D.

    1991-05-01T23:59:59.000Z

    As the US Department of Energy (DOE) and DOE contractors have become increasingly involved with other nations in nuclear fuel cycle and waste management cooperative activities, a need has developed for a ready source of information concerning foreign fuel cycle programs, facilities, and personnel. This Fact Book was compiled to meet that need. The information contained in the International Nuclear Fuel Cycle Fact Book has been obtained from many unclassified sources: nuclear trade journals and newsletters; reports of foreign visits and visitors; CEC, IAEA, and OECN/NEA activities reports; not reflect any one single source but frequently represent a consolidation/combination of information.

  10. IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 52 (2012) 013005 (11pp) doi:10.1088/0029-5515/52/1/013005

    E-Print Network [OSTI]

    Farge, Marie

    #12;IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 52 (2012-vaguelette decomposition. After validation of the new method using an academic test case and numerical data obtained, but the associated vessel erosion also impairs the awaited viability of long lasting discharges. It is thus

  11. IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 50 (2010) 034007 (8pp) doi:10.1088/0029-5515/50/3/034007

    E-Print Network [OSTI]

    Morrison, Philip J.,

    2010-01-01T23:59:59.000Z

    -dimensional (2D), two-field version of this model has been intensively investigated in [46] and a 3D extensionIOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 50 (2010) 034007 for obtaining 0029-5515/10/034007+08$30.00 1 2010 IAEA, Vienna Printed in the UK #12;Nucl. Fusion 50 (2010

  12. IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 49 (2009) 104010 (12pp) doi:10.1088/0029-5515/49/10/104010

    E-Print Network [OSTI]

    cole Normale Suprieure

    2009-01-01T23:59:59.000Z

    IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 49 (2009) 104010. Zwingmann CEA, IRFM, F-13108 St Paul-lez-Durance, France 1 Associazione EURATOM-ENEA sulla Fusione, C;Nucl. Fusion 49 (2009) 104010 G. Giruzzi et al 9 LJAD, U.M.R. C.N.R.S. No 6621, Universite de Nice

  13. IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 48 (2008) 084001 (13pp) doi:10.1088/0029-5515/48/8/084001

    E-Print Network [OSTI]

    Heidbrink, William W.

    2008-01-01T23:59:59.000Z

    IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 48 (2008) 084001] and created a vacuum leak in the tokamak fusion test reactor (TFTR) [4]. The damage was explained comparisons between theory and experiment [57], wave amplitudes an order of magnitude larger than

  14. IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 52 (2012) 013001 (13pp) doi:10.1088/0029-5515/52/1/013001

    E-Print Network [OSTI]

    Budny, Robert

    2012-01-01T23:59:59.000Z

    IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 52 (2012) 013001 using the PTRANSP code. The baseline toroidal field (5.3 T), plasma current ramped to 15 MA and a flat are predicted assuming GLF23 and boundary parameters. Conservatively low temperatures ( 0.6 keV) and v 400 rad s

  15. NUCLEAR DEFORMATION ENERGIES

    E-Print Network [OSTI]

    Blocki, J.

    2009-01-01T23:59:59.000Z

    J.R. Nix, Theory of Nuclear Fission and Superheavy Nuclei,energy maps relevant for nuclear fission and nucleus-nucleusin connection with nuclear fission. The need for a better

  16. Nuclear Energy

    SciTech Connect (OSTI)

    Godfrey, Anderw

    2014-04-10T23:59:59.000Z

    Andrew Godfrey describes CASL -- the Consortium for Advanced Simulation of Light Water Reactors--a multi-institutional effort led by the Department of Energy that's using high-performance

  17. Nuclear Energy

    ScienceCinema (OSTI)

    Godfrey, Anderw

    2014-05-23T23:59:59.000Z

    Andrew Godfrey describes CASL -- the Consortium for Advanced Simulation of Light Water Reactors--a multi-institutional effort led by the Department of Energy that's using high-performance

  18. International Nuclear Safeguards | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes | National NuclearInterlibrary LoanSafeguards | National Nuclear

  19. Is Nuclear Energy the Solution?

    E-Print Network [OSTI]

    Saier, Milton H.; Trevors, Jack T.

    2010-01-01T23:59:59.000Z

    009-0270-y Is Nuclear Energy the Solution? Milton H. Saier &in the last 50 years, nuclear energy subsidies have totaledadministration, the Global Nuclear Energy Partnership (GNEP)

  20. International scientists on nuclear winter

    SciTech Connect (OSTI)

    Malone, T.F.

    1985-12-01T23:59:59.000Z

    A report by the International Council of Scientific Unions (ICSU) leads new support to the warning of extreme climatic disruptions that would follow a nuclear war. The two-volume report does not deal explicitly with public policy questions, but focuses on scientific knowledge of physical effects and biological responses. The author reviews studies made since the warning of a nuclear winter began in 1982, and evaluates the new report. He finds the message of the report to be a clear warning that a major nuclear war would threaten the entire world. He hopes it will be a catalyst to world opinion in the same way that the public responded to the incident of radioactive fallout striking a Japanese fishing vessel in 1954.

  1. International safeguards: Accounting for nuclear materials

    SciTech Connect (OSTI)

    Fishbone, L.G.

    1988-09-28T23:59:59.000Z

    Nuclear safeguards applied by the International Atomic Energy Agency (IAEA) are one element of the non-proliferation regime'', the collection of measures whose aim is to forestall the spread of nuclear weapons to countries that do not already possess them. Safeguards verifications provide evidence that nuclear materials in peaceful use for nuclear-power production are properly accounted for. Though carried out in cooperation with nuclear facility operators, the verifications can provide assurance because they are designed with the capability to detect diversion, should it occur. Traditional safeguards verification measures conducted by inspectors of the IAEA include book auditing; counting and identifying containers of nuclear material; measuring nuclear material; photographic and video surveillance; and sealing. Novel approaches to achieve greater efficiency and effectiveness in safeguards verifications are under investigation as the number and complexity of nuclear facilities grow. These include the zone approach, which entails carrying out verifications for groups of facilities collectively, and randomization approach, which entails carrying out entire inspection visits some fraction of the time on a random basis. Both approaches show promise in particular situations, but, like traditional measures, must be tested to ensure their practical utility. These approaches are covered on this report. 15 refs., 16 figs., 3 tabs.

  2. United States-Republic of Korea (ROK) International Nuclear Energy Research

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO Overview OCHCOSystems Analysis Success|Sustainable EnergyMotorUncleStates-Japan

  3. Annual report of the international nuclear energy research initiative OSMOSE project (FY06).

    SciTech Connect (OSTI)

    Klann, R. T.; Hudelot, J. P.; Drin, N.; Zhong, Z.; Nuclear Engineering Division; Commissariat a l Energie Atomique

    2007-08-29T23:59:59.000Z

    The goal of the OSMOSE program is to measure the reactivity effect of minor actinides in known neutron spectra of interest to the Generation-IV reactor program and other programs and to create a database of these results for use as an international benchmark for the minor actinides. The results are then compared to calculation models to verify and validate integral absorption cross-sections for the minor actinides. The OSMOSE program includes all aspects of the experimental program--including the fabrication of fuel pellets and samples, the oscillation of the samples in the MINERVE reactor for the measurement of the reactivity effect, reactor physics modeling of the MINERVE reactor, and the data analysis and interpretation of the experimental results.

  4. International energy annual 1996

    SciTech Connect (OSTI)

    NONE

    1998-02-01T23:59:59.000Z

    The International Energy Annual presents an overview of key international energy trends for production, consumption, imports, and exports of primary energy commodities in over 220 countries, dependencies, and areas of special sovereignty. Also included are population and gross domestic product data, as well as prices for crude oil and petroleum products in selected countries. Renewable energy reported in the International Energy Annual includes hydroelectric power, geothermal, solar, and wind electric power, biofuels energy for the US, and biofuels electric power for Brazil. New in the 1996 edition are estimates of carbon dioxide emissions from the consumption of petroleum and coal, and the consumption and flaring of natural gas. 72 tabs.

  5. International Nuclear Security | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes | National NuclearInterlibrary LoanSafeguards | National

  6. Nuclear reactor internals alignment configuration

    DOE Patents [OSTI]

    Gilmore, Charles B. (Greensburg, PA); Singleton, Norman R. (Murrysville, PA)

    2009-11-10T23:59:59.000Z

    An alignment system that employs jacking block assemblies and alignment posts around the periphery of the top plate of a nuclear reactor lower internals core shroud to align an upper core plate with the lower internals and the core shroud with the core barrel. The distal ends of the alignment posts are chamfered and are closely received within notches machined in the upper core plate at spaced locations around the outer circumference of the upper core plate. The jacking block assemblies are used to center the core shroud in the core barrel and the alignment posts assure the proper orientation of the upper core plate. The alignment posts may alternately be formed in the upper core plate and the notches may be formed in top plate.

  7. International Nuclear Fuel Cycle Fact Book

    SciTech Connect (OSTI)

    Leigh, I W; Mitchell, S J

    1990-01-01T23:59:59.000Z

    As the US Department of Energy (DOE) and DOE contractors have become increasingly involved with other nations in nuclear fuel cycle and waste management cooperative activities, a need has developed for a ready source of information concerning foreign fuel cycle programs, facilities, and personnel. This Fact Book was compiled to meet that need. The information contained in the International Nuclear Fuel Cycle Fact Book has been obtained from many unclassified sources: nuclear trade journals and newsletters; reports of foreign visits and visitors; CEC, IAEA, and OECD/NEA activities reports; proceedings of conferences and workshops, etc. The data listed do not reflect any one single source but frequently represent a consolidation/combination of information.

  8. International Nuclear Fuel Cycle Fact Book

    SciTech Connect (OSTI)

    Leigh, I.W.

    1992-05-01T23:59:59.000Z

    As the US Department of Energy (DOE) and DOE contractors have become increasingly involved with other nations in nuclear fuel cycle and waste management cooperative activities, a need exists costs for a ready source of information concerning foreign fuel cycle programs, facilities, and personnel. This Fact Book has been compiled to meet that need. The information contained in the International Nuclear Fuel Cycle Fact Book has been obtained from many unclassified sources: nuclear trade journals and newsletters; reports of foreign visits and visitors; CEC, IAEA, and OECD/NMEA activities reports; and proceedings of conferences and workshops. The data listed typically do not reflect any single source but frequently represent a consolidation/combination of information.

  9. International Energy: Subject Thesaurus. Revision 1

    SciTech Connect (OSTI)

    Not Available

    1993-11-01T23:59:59.000Z

    The International Energy Agency: Subject Thesaurus contains the standard vocabulary of indexing terms (descriptors) developed and structured to build and maintain energy information databases. Involved in this cooperative task are (1) the technical staff of the USDOE Office of Scientific and Technical Information (OSTI) in cooperation with the member countries of the International Energy Agency`s Energy Technology Data Exchange (ETDE) and (2) the International Atomic Energy Agency`s International Nuclear Information System (INIS) staff representing the more than 100 countries and organizations that record and index information for the international nuclear information community. ETDE member countries are also members of INIS. Nuclear information prepared for INIS by ETDE member countries is included in the ETDE Energy Database, which contains the online equivalent of the printed INIS Atomindex. Indexing terminology is therefore cooperatively standardized for use in both information systems. This structured vocabulary reflects thscope of international energy research, development, and technological programs. The terminology of this thesaurus aids in subject searching on commercial systems, such as ``Energy Science & Technology`` by DIALOG Information Services, ``Energy`` by STN International and the ``ETDE Energy Database`` by SilverPlatter. It is also the thesaurus for the Integrated Technical Information System (ITIS) online databases of the US Department of Energy.

  10. Nuclear Energy Research Brookhaven National

    E-Print Network [OSTI]

    Ohta, Shigemi

    Nuclear Energy Research Brookhaven National Laboratory William C. Horak, Chair Nuclear Science and Technology Department #12;BNL Nuclear Energy Research Brookhaven Graphite Research Reactor - 1948 National Nuclear Data Center - 1952* High Flux Beam Reactor - 1964 Technical Support for NRC - 1974

  11. International energy annual 1997

    SciTech Connect (OSTI)

    NONE

    1999-04-01T23:59:59.000Z

    The International Energy Annual presents an overview of key international energy trends for production, consumption, imports, and exports of primary energy commodities in over 220 countries, dependencies, and areas of special sovereignty. Also included are population and gross domestic product data, as well as prices for crude oil and petroleum products in selected countries. Renewable energy reported in the International Energy Annual includes hydroelectric power and geothermal, solar, and wind electric power. Also included are biomass electric power for Brazil and the US, and biomass, geothermal, and solar energy produced in the US and not used for electricity generation. This report is published to keep the public and other interested parties fully informed of primary energy supplies on a global basis. The data presented have been largely derived from published sources. The data have been converted to units of measurement and thermal values (Appendices E and F) familiar to the American public. 93 tabs.

  12. International energy outlook 2006

    SciTech Connect (OSTI)

    NONE

    2006-06-15T23:59:59.000Z

    This report presents international energy projections through 2030, prepared by the Energy Information Administration. After a chapter entitled 'Highlights', the report begins with a review of world energy and economic outlook, followed by energy consumption by end-use sector. The next chapter is on world oil markets. Natural gas, world coal market and electricity consumption and supply are then discussed. The final chapter covers energy-related carbon dioxide emissions.

  13. NUCLEAR ENERGY PERGAMON Annals of Nuclear Energy 27 (2000) 138551398

    E-Print Network [OSTI]

    Pázsit, Imre

    annafs of NUCLEAR ENERGY PERGAMON Annals of Nuclear Energy 27 (2000) 138551398 www-4549(00)00033-5 #12;1386 I. Phi!, V. Arzhanov. /Annals qf Nuclear Energy 27 (2000) 1385-1398 subcritical systems (ADS

  14. ITER: The International Thermonuclear Experimental Reactor and the Nuclear Weapons Proliferation Implications of Thermonuclear-Fusion Energy Systems

    E-Print Network [OSTI]

    Andr Gsponer; Jean-pierre Hurni

    2004-01-01T23:59:59.000Z

    This paper contains two parts: (I) A list of points highlighting the strategic-political and militarytechnical reasons and implications of the very probable siting of ITER (the International Thermonuclear Experimental Reactor) in Japan, which should be confirmed sometimes in early 2004. (II) A technical analysis of the nuclear weapons proliferation implications of inertial- and magnetic-confinement fusion systems substantiating the technical points highlighted in the first part, and showing that while full access to the physics of thermonuclear weapons is the main implication of ICF, full access to large-scale tritium technology is the main proliferation impact of MCF. The conclusion of the paper is that siting ITER in a country such as Japan, which already has a large separated-plutonium stockpile, and an ambitious laser-driven ICF program (comparable in size and quality to those of the United States or France) will considerably increase its latent (or virtual) nuclear weapons proliferation status, and foster further nuclear proliferation throughout the world. The safety and environmental problems related to the operation of largescale fusion facilities such as ITER (which contain massive amounts of hazardous and/or radioactive materials such as tritium, lithium, and beryllium, as well as neutron-activated structural materials) are not addressed in this paper.

  15. Nuclear Fusion Energy Research Ghassan Antar

    E-Print Network [OSTI]

    Shihadeh, Alan

    to address these issues. In particular there has been consistent emphasis on nuclear reactor accidents since the Chernobyl accident by the International Atomic Energy Agency (IAEA) and the World Meteorological

  16. International Energy Agency

    Broader source: Energy.gov [DOE]

    DOE's market transformation efforts have reached to European and other countries who are part of the international distributed and decentralized energy community. Through its partnership with DOE, the combined heat and power (CHP) program of the International Energy Agency (IEA) conducts research and analysis of CHP markets and deployment efforts around the world and has used lessons learned from U.S. research, development, and deployment efforts to recommend market transformation activities and policies that will lead to new CHP installations worldwide.

  17. Nuclear | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear Astrophysics One of the greatNuclearNuclear Nuclear An error

  18. International energy outlook 1994

    SciTech Connect (OSTI)

    Not Available

    1994-07-01T23:59:59.000Z

    The International Energy Outlook 1994 (IEO94) presents an assessment by the Energy Information Administration (EIA) of the outlook for international energy markets between 1990 and 2010. The report is provided as a statistical service to assist energy managers and analysts, both in government and in the private sector. These forecasts are used by international agencies, Federal and State governments, trade associations, and other planners and decisionmakers. They are published pursuant to the Depart. of Energy Organization Act of 1977 (Public Law 95-91), Section 205(c). The IEO94 projections are based on US and foreign government policies in effect on October 1, 1993-which means that provisions of the Climate Change Action Plan unveiled by the Administration in mid-October are not reflected by the US projections.

  19. International energy strategies

    SciTech Connect (OSTI)

    Dunkerley, J. (ed.)

    1980-01-01T23:59:59.000Z

    The sharp rise in oil prices and the embargo of 1973 to 1974 stimulated a growing interest in international energy questions. One indicator of this interest was the decision in late 1977 to establish an International Association of Energy Economists (IAEE). In 1979 the officers of the IAEE proposed to hold not only an initial annual meeting of the association, but also a two-day Conference on International Energy Issues. Resources for the Future, a Washington-based independent research institute, was asked to cosponsor the two-day conference. These two meetings were held in Washington, DC, on June 4, 5, and 6, 1979. This volume contains the 34 papers of the proceedings, and a separate abstract was prepared for each paper for Energy Abstracts for Policy Analysis (EAPA); 13 papers were selected for Energy Research Abstracts (ERA).

  20. International Atomic Energy Agency specialists meeting on experience in ageing, maintenance, and modernization of instrumentation and control systems for improving nuclear power plant availability

    SciTech Connect (OSTI)

    Not Available

    1993-10-01T23:59:59.000Z

    This report presents the proceedings of the Specialist`s Meeting on Experience in Aging, Maintenance and Modernization of Instrumentation and Control Systems for Improving Nuclear Power Plant Availability that was held at the Ramada Inn in Rockville, Maryland on May 5--7, 1993. The Meeting was presented in cooperation with the Electric Power Research Institute, Oak Ridge National Laboratory and the International Atomic Energy Agency. There were approximately 65 participants from 13 countries at the Meeting. Individual reports have been cataloged separately.

  1. PIA - 10th International Nuclear Graphite Specialists Meeting...

    Broader source: Energy.gov (indexed) [DOE]

    10th International Nuclear Graphite Specialists Meeting registration web site PIA - 10th International Nuclear Graphite Specialists Meeting registration web site More Documents &...

  2. Sandia Energy - Nuclear Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757Kelley RuehlReport Posted North American

  3. International energy outlook 2005

    SciTech Connect (OSTI)

    NONE

    2005-07-01T23:59:59.000Z

    This report presents international energy projections through 2025, prepared by the Energy Information Administration. The outlooks for major energy fuels are discussed, along with electricity, transportation, and environmental issues. After a chapter entitled 'Highlights', the report begins with a review of world energy and an economic outlook. The IEO2005 projections cover a 24 year period. The next chapter is on world oil markets. Natural gas and coal reserves and resources, consumption and trade discussed. The chapter on electricity deals with primary fuel use for electricity generation, and regional developments. The final section is entitled 'Energy-related greenhouse gas emissions'.

  4. Sandia Energy - Nuclear Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757Kelley RuehlReport Posted North AmericanStudy Could

  5. Role of small lead-cooled fast reactors for international deployment in worldwide sustainable nuclear energy supply.

    SciTech Connect (OSTI)

    Sienicki, J. J.; Wade, D. C.; Moisseytsev, A.; Nuclear Engineering Division

    2008-01-01T23:59:59.000Z

    Most recently, the global nuclear energy partnership (GNEP) has identified, as one of its key objectives, the development and demonstration of concepts for small and medium-sized reactors (SMRs) that can be globally deployed while assuring a high level of proliferation resistance. Lead-cooled systems offer several key advantages in meeting these goals. The small lead-cooled fast reactor concept known as the small secure transportable autonomous reactor (SSTAR) has been under ongoing development as part of the US advanced nuclear energy systems programs. Meeting future worldwide projected energy demands during this century (e.g., 1000 to 2000 GWe by 2050) in a sustainable manner while maintaining CO2 emissions at or below today's level will require massive deployments of nuclear reactors in non-fuel cycle states as well as fuel cycle states. The projected energy demands of non-fuel cycle states will not be met solely through the deployment of Light Water Reactors (LWRs) in those states without using up the world's resources of fissile material (e.g., known plus speculative virgin uranium resources = 15 million tonnes). The present U.S. policy is focused upon domestic deployment of large-scale LWRs and sodium-cooled fast spectrum Advanced Burner Reactors (ABRs) working in a symbiotic relationship that burns existing fissile material while destroying the actinides which are generated. Other major nuclear nations are carrying out the development and deployment of SFR breeders as witness the planning for SFR breeder deployments in France, Japan, China, India, and Russia. Small (less that 300 MWe) and medium (300 to 700 MWe) size reactors are better suited to the growing economies and infrastructures of many non-fuel cycle states and developing nations. For those deployments, fast reactor converters which are fissile self-sufficient by creating as much fissile material as they consume are preferred to breeders that create more fissile material than they consume. Thus, there is a need for small and medium size fast reactors in non-fuel cycle states operating in a converter mode as well as large sodium-cooled fast breeders in fuel cycle states. Desired attributes for exportable small fast reactors include: proliferation resistance features such as restricted access to fuel; long core life further restricting access by reducing or eliminating the need for refueling; restricted potential to be misused in a breeding mode; fuel form that is unattractive in the safeguards sense; and a conversion ratio of unity to self-generate as much fissile material as is consumed. Desired attributes for exportable small reactor deployments in developing nations and remote sites also include: a small power level to match the smaller demand of towns or sites that are off-grid or on immature local grids; low enough cost to be economically competitive with alternative energy sources available to developing nation customers (e.g. diesel generators in remote locations); readily transported and assembled from transportable modules; simple to operate and highly reliable reducing plant operating staff requirements; as well as high reliability and passive safety reducing the number of accident initiators and need for safety systems as well as reducing the size of the exclusion and emergency planning zones. The Lead-Cooled Fast Reactor (LFR) has the desired attributes. An example of a small exportable LFR concept is the 20 MWe (45 MWt) Small Secure Transportable Autonomous Reactor (SSTAR) incorporating proliferation resistance, fissile selfsufficiency, autonomous load following, a high degree of passive safety, and supercritical carbon dioxide Brayton cycle energy conversion for high plant efficiency and improved economic competitiveness.

  6. International Team | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,39732on ArmedManufacturing |Time-Based International NuclearTeam

  7. International Energy Statistics - EIA

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The Energy Materials Center at CornellOfvia aEnergyInternational

  8. Sandia Energy - Nuclear Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol Home Distribution Grid Integration PermalinkClimate ChangeLicense

  9. International training course on nuclear materials accountability for safeguards purposes

    SciTech Connect (OSTI)

    Not Available

    1980-12-01T23:59:59.000Z

    The two volumes of this report incorporate all lectures and presentations at the International Training Course on Nuclear Materials Accountability and Control for Safeguards Purposes, held May 27-June 6, 1980, at the Bishop's Lodge near Santa Fe, New Mexico. The course, authorized by the US Nuclear Non-Proliferation Act and sponsored by the US Department of Energy in cooperation with the International Atomic Energy Agency, was developed to provide practical training in the design, implementation, and operation of a National system of nuclear materials accountability and control that satisfies both National and IAEA International safeguards objectives. Volume I, covering the first week of the course, presents the background, requirements, and general features of material accounting and control in modern safeguard systems. Volume II, covering the second week of the course, provides more detailed information on measurement methods and instruments, practical experience at power reactor and research reactor facilities, and examples of operating state systems of accountability and control.

  10. International energy annual, 1993

    SciTech Connect (OSTI)

    NONE

    1995-05-08T23:59:59.000Z

    This document presents an overview of key international energy trends for production, consumption, imports, and exports of primary energy commodities in over 200 countries, dependencies, and areas of special sovereignty. Also included are population and gross domestic product data, as well as prices for crude oil and petroleum products in selected countries. Renewable energy includes hydroelectric, geothermal, solar and wind electric power and alcohol for fuel. The data were largely derived from published sources and reports from US Embassy personnel in foreign posts. EIA also used data from reputable secondary sources, industry reports, etc.

  11. International Energy Outlook 2014

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes | National NuclearInterlibrary Loan Interlibrary LoanNet energy

  12. International Energy Outlook 2014

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes | National NuclearInterlibrary Loan Interlibrary LoanNet energyU.S.

  13. International Energy Outlook 2014

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes | National NuclearInterlibrary Loan Interlibrary LoanNet energyU.S.

  14. International Clean Energy Coalition

    SciTech Connect (OSTI)

    Erin Skootsky; Matt Gardner; Bevan Flansburgh

    2010-09-28T23:59:59.000Z

    In 2003, the National Association of Regulatory Utility Commissioners (NARUC) and National Energy Technology Laboratories (NETL) collaboratively established the International Clean Energy Coalition (ICEC). The coalition consisting of energy policy-makers, technologists, and financial institutions was designed to assist developing countries in forming and supporting local approaches to greenhouse gas mitigation within the energy sector. ICEC's work focused on capacity building and clean energy deployment in countries that rely heavily on fossil-based electric generation. Under ICEC, the coalition formed a steering committee consisting of NARUC members and held a series of meetings to develop and manage the workplan and define successful outcomes for the projects. ICEC identified India as a target country for their work and completed a country assessment that helped ICEC build a framework for discussion with Indian energy decisionmakers including two follow-on in-country workshops. As of the conclusion of the project in 2010, ICEC had also conducted outreach activities conducted during United Nations Framework Convention on Climate Change (UNFCCC) Ninth Conference of Parties (COP 9) and COP 10. The broad goal of this project was to develop a coalition of decision-makers, technologists, and financial institutions to assist developing countries in implementing affordable, effective and resource appropriate technology and policy strategies to mitigate greenhouse gas emissions. Project goals were met through international forums, a country assessment, and in-country workshops. This project focused on countries that rely heavily on fossil-based electric generation.

  15. International perceptions of US nuclear policy.

    SciTech Connect (OSTI)

    Stanley, Elizabeth A. (Georgetown Universtiy, Washington, DC)

    2006-02-01T23:59:59.000Z

    The report presents a summary of international perceptions and beliefs about US nuclear policy, focusing on four countries--China, Iran, Pakistan and Germany--chosen because they span the spectrum of states with which the United States has relationships. A paradox is pointed out: that although the goal of US nuclear policy is to make the United States and its allies safer through a policy of deterrence, international perceptions of US nuclear policy may actually be making the US less safe by eroding its soft power and global leadership position. Broadly held perceptions include a pattern of US hypocrisy and double standards--one set for the US and its allies, and another set for all others. Importantly, the US nuclear posture is not seen in a vacuum, but as one piece of the United States behavior on the world stage. Because of this, the potential direct side effects of any negative international perceptions of US nuclear policy can be somewhat mitigated, dependent on other US policies and actions. The more indirect and long term relation of US nuclear policy to US international reputation and soft power, however, matters immensely to successful multilateral and proactive engagement on other pressing global issues.

  16. International energy indicators. [International and US statistics

    SciTech Connect (OSTI)

    Bauer, E.K. (ed.)

    1980-03-01T23:59:59.000Z

    For the international sector, a table of data is first presented followed by corresponding graph of the data for the following: (1) Iran: crude oil capacity, production, and shut-in, 1974 to February 1980; (2) Saudi Arabia (same as Iran); (3) OPEC (ex-Iran and Saudi Arabia); capacity, production, and shut-in, 1974 to January 1980; (4) non-OPEC Free World and US production of crude oil, 1973 to January 1980; (5) oil stocks: Free World, US, Japan, and Europe (landed), 1973 to 1979; (6) petroleum consumption by industrial countries, 1973 to October 1979; (7) USSR crude oil production, 1974 to February 1980; (8) Free World and US nuclear generation capacity, 1973 to January 1980. For the United States, the same data format is used for the following: (a) US imports of crude oil and products 1973 to January 1980; (b) landed cost of Saudi Arabia crude oil in current and 1974 dollars, 1974 to October 1979; (c) US trade in coal, 1973 to 1979; (d) summary of US merchandise trade, 1976 to January 1980; and (e) US energy/GNP ratio (in 1972 dollars), 1947 to 1979.

  17. NUCLEAR ENERGY Annals of Nuclear Energy 32 (2005) 812842

    E-Print Network [OSTI]

    Demazière, Christophe

    annals of NUCLEAR ENERGY Annals of Nuclear Energy 32 (2005) 812­842 www.elsevier.com/locate/anucene Identification and localization of absorbers of variable strength in nuclear reactors C. Demazie`re a,*, G evenly distrib- uted throughout the core of a commercial nuclear reactor. The novelty

  18. Is Nuclear Energy the Solution?

    E-Print Network [OSTI]

    Saier, Milton H.; Trevors, Jack T.

    2010-01-01T23:59:59.000Z

    10.1007/s11270-009-0270-y Is Nuclear Energy the Solution?MHS) attended a lecture on Nuclear Responsibility on theof the Alliance for Nuclear Responsibility. The information

  19. International energy annual 1995

    SciTech Connect (OSTI)

    NONE

    1996-12-01T23:59:59.000Z

    The International Energy Annual presents information and trends on world energy production and consumption for petroleum, natural gas, coal, and electricity. Production and consumption data are reported in standard units as well as British thermal units (Btu). Trade and reserves are shown for petroleum, natural gas, and coal. Data are provided on crude oil refining capacity and electricity installed capacity by type. Prices are included for selected crude oils and for refined petroleum products in selected countries. Population and Gross Domestic Product data are also provided.

  20. International Nuclear Fuel Cycle Fact Book. Revision 5

    SciTech Connect (OSTI)

    Harmon, K.M.; Lakey, L.T.; Leigh, I.W.; Jeffs, A.G.

    1985-01-01T23:59:59.000Z

    This Fact Book has been compiled in an effort to provide: (1) an overview of worldwide nuclear power and fuel cycle programs; and (2) current data concerning fuel cycle and waste management facilities, R and D programs, and key personnel in countries other than the United States. Additional information on each country's program is available in the International Source Book: Nuclear Fuel Cycle Research and Development, PNL-2478, Rev. 2. The Fact Book is organized as follows: (1) Overview section - summary tables which indicate national involvement in nuclear reactor, fuel cycle, and waste management development activities; (2) national summaries - a section for each country which summarizes nuclear policy, describes organizational relationships and provides addresses, names of key personnel, and facilities information; (3) international agencies - a section for each of the international agencies which has significant fuel cycle involvement; (4) energy supply and demand - summary tables, including nuclear power projections; (5) fuel cycle - summary tables; and (6) travel aids international dialing instructions, international standard time chart, passport and visa requirements, and currency exchange rate.

  1. International nuclear fuel cycle fact book. Revision 4

    SciTech Connect (OSTI)

    Harmon, K.M.; Lakey, L.T.; Leigh, I.W.

    1984-03-01T23:59:59.000Z

    This Fact Book has been compiled in an effort to provide (1) an overview of worldwide nuclear power and fuel cycle programs and (2) current data concerning fuel cycle and waste management facilities, R and D programs, and key personnel in countries other than the United States. Additional information on each country's program is available in the International Source Book: Nuclear Fuel Cycle Research and Development, PNL-2478, Rev. 2. The Fact Book is organized as follows: (1) Overview section - summary tables which indicate national involvement in nuclear reactor, fuel cycle, and waste management development activities; (2) national summaries - a section for each country which summarizes nuclear policy, describes organizational relationships and provides addresses, names of key personnel, and facilities information; (3) international agencies - a section for each of the international agencies which has significant fuel cycle involvement; (4) energy supply and demand - summary tables, including nuclear power projections; (5) fuel cycle - summary tables; and (6) travel aids - international dialing instructions, international standard time chart, passport and visa requirements, and currency exchange rate.

  2. Working Party on International Nuclear Data Evaluation Cooperation (WPEC)

    SciTech Connect (OSTI)

    Giuseppe Palmiotti

    2014-06-01T23:59:59.000Z

    The OECD Nuclear Energy Agency (NEA) is organizing the cooperation between the major nuclear data evaluation projects in the world. The NEA Working Party on International Nuclear Data Evaluation Cooperation (WPEC) was established to promote the exchange of information on nuclear data evaluation, measurement, nuclear model calculation, validation, and related topics, and to provide a framework for cooperative activities between the participating projects. The working party assesses nuclear data improvement needs and addresses these needs by initiating joint activities in the framework of dedicated WPEC subgroups. Studies recently completed comprise a number of works related to nuclear data covariance and associated processing issues, as well as more specific studies related to the resonance parameter representation in the unresolved resonance region, the gamma production from fission-product capture reactions, the U-235 capture cross-section, the EXFOR database, and the improvement of nuclear data for advanced reactor systems. Ongoing activities focus on the evaluation of Pu-239 in the resonance region, scattering angular distribution in the fast energy range, and reporting/usage of experimental data for evaluation in the resolved resonance region. New activities include two new subgroups on improved fission product yield evaluation methodologies and on modern nuclear database structures. Future activities under discussion include a pilot project of a Collaborative International Evaluated Library (CIELO) and methods to provide feedback from nuclear and covariance data adjustment for improvement of nuclear data. In addition to the above mentioned short-term, task-oriented subgroups, the WPEC also hosts a longer-term subgroup charged with reviewing and compiling the most important nuclear data requirements in a high priority request list (HPRL).

  3. International nuclear waste management fact book

    SciTech Connect (OSTI)

    Abrahms, C W; Patridge, M D; Widrig, J E

    1995-11-01T23:59:59.000Z

    The International Nuclear Waste Management Fact Book has been compiled to provide current data on fuel cycle and waste management facilities, R and D programs, and key personnel in 24 countries, including the US; four multinational agencies; and 20 nuclear societies. This document, which is in its second year of publication supersedes the previously issued International Nuclear Fuel Cycle Fact Book (PNL-3594), which appeared annually for 12 years. The content has been updated to reflect current information. The Fact Book is organized as follows: National summaries--a section for each country that summarizes nuclear policy, describes organizational relationships, and provides addresses and names of key personnel and information on facilities. International agencies--a section for each of the international agencies that has significant fuel cycle involvement and a list of nuclear societies. Glossary--a list of abbreviations/acronyms of organizations, facilities, and technical and other terms. The national summaries, in addition to the data described above, feature a small map for each country and some general information that is presented from the perspective of the Fact Book user in the US.

  4. International Energy Outlook 2014

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes | National NuclearInterlibrary Loan Interlibrary LoanNet

  5. International District Energy Association

    Broader source: Energy.gov [DOE]

    Since its formation in 1909, the International District Energy Association (IDEA) has served as a principal industry advocate and management resource for owners, operators, developers, and suppliers of district heating and cooling systems in cities, campuses, bases, and healthcare facilities. Today, with over 1,400 members in 26 countries, IDEA continues to organize high-quality technical conferences that inform, connect, and advance the industry toward higher energy efficiency and lower carbon emissions through innovation and investment in scalable sustainable solutions. With the support of DOE, IDEA performs industry research and market analysis to foster high impact projects and help transform the U.S. energy industry. IDEA was an active participant in the original Vision and Roadmap process and has continued to partner with DOE on combined heat and power (CHP) efforts across the country.

  6. Sandia Energy - Advanced Nuclear Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear Press ReleasesIn theTreatmentSRSSafetyAdvanced

  7. A Career in Nuclear Energy

    SciTech Connect (OSTI)

    Lambregts, Marsha

    2009-01-01T23:59:59.000Z

    Nuclear chemist Dr. Marsha Lambregts talks about the Center for Advanced Energy Studies and the benefits of a nuclear energy career. For more information about careers at INL, visit http://www.facebook.com/idahonationallaboratory.

  8. A Career in Nuclear Energy

    ScienceCinema (OSTI)

    Lambregts, Marsha

    2013-05-28T23:59:59.000Z

    Nuclear chemist Dr. Marsha Lambregts talks about the Center for Advanced Energy Studies and the benefits of a nuclear energy career. For more information about careers at INL, visit http://www.facebook.com/idahonationallaboratory.

  9. Nuclear Energy Advisory Committee

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaeferAprilOverview |November 2013 NewsNuclear Energy Advisory Committee December

  10. Nuclear Energy University Programs

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaeferAprilOverview |November 2013 NewsNuclear EnergyResearch and Development

  11. Sandia Energy - International Leadership

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand RequirementsCoatingsUltra-High-VoltagePower Company'sInAsInternational Leadership Home

  12. Sandia National Laboratories: Nuclear Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy, News, News & Events, Nuclear Energy, Systems Analysis Jeff Cardoni (in the Severe Accident Analysis Dept.) presented the paper "MELCOR Simulations of the Severe Accident at...

  13. Internal dose following a major nuclear war

    SciTech Connect (OSTI)

    Peterson, K.R.; Shapiro, C.S. (Lawrence Livermore National Laboratory, Livermore, CA (Unites States))

    1992-01-01T23:59:59.000Z

    The PATHWAY model results were used, in conjunction with a hypothetical major nuclear attack on the U.S., to arrive at the ratio of internal to external dose for humans from early (48 h) fallout. Considered were the four nuclides (137Cs, 89Sr, 90Sr, 131I) that account for most of the reconstructed whole-body committed equivalent dose from internal radiation in people who lived downwind of the Nevada Test Site during atmospheric tests. Effects of climate perturbations (the 'nuclear winter' effect) on food crops were considered. These could increase internal dose estimates, depending on the severity of the climate perturbations. Internal and external doses to humans for 10 locations within the U.S. have been calculated, with varying local conditions and varying assumption about their shelters. The estimated 50-y internal dose commitment ranged from 0.0-0.17 Sv, the 48-h external dose from 0.15-4.6 Sv. The resultant ratios of internal to external committed dose received in the first months (until food transport was restored) varied from less than 0.01 to about 0.2. In all cases examined, the total dose from early fallout was found to be dominated by the external dose.

  14. Draft Advanced Nuclear Energy Projects Solicitation | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Federal loan guarantee solicitation announcement -- Advanced Nuclear Energy Projects. Draft Advanced Nuclear Energy Projects Solicitation More Documents & Publications Draft...

  15. Status and Value of International Standards for Nuclear Criticality Safety

    SciTech Connect (OSTI)

    Hopper, Calvin Mitchell [ORNL] [ORNL

    2011-01-01T23:59:59.000Z

    This presentation provides an update to the author's standards report provided at the ICNC-2007 meeting. It includes a discussion about the difference between, and the value of participating in, the development of international 'consensus' standards as opposed to nonconsensus standards. Standards are developed for a myriad of reasons. Generally, standards represent an agreed upon, repeatable way of doing something as defined by an individual or group of people. They come in various types. Examples include personal, family, business, industrial, commercial, and regulatory such as military, community, state, federal, and international standards. Typically, national and international 'consensus' standards are developed by individuals and organizations of diverse backgrounds representing the subject matter users and developers of a service or product and other interested parties or organizations. Within the International Organization for Standardization (ISO), Technical Committee 85 (TC85) on nuclear energy, Subcommittee 5 (SC5) on nuclear fuel technology, there is a Working Group 8 (WG8) on standardization of calculations, procedures, and practices related to criticality safety. WG8 has developed, and is developing, ISO standards within the category of nuclear criticality safety of fissionable materials outside of reactors (i.e., nonreactor fissionable material nuclear fuel cycle facilities). Since the presentation of the ICNC-2007 report, WG8 has issued three new finalized international standards and is developing two more new standards. Nearly all elements of the published WG8 ISO standards have been incorporated into IAEA nonconsensus guides and standards. The progression of consensus standards development among international partners in a collegial environment establishes a synergy of different concepts that broadens the perspectives of the members. This breadth of perspectives benefits the working group members in their considerations of consensus standards developments in their own countries. A testament to the value of the international standards efforts is that nearly all elements of the published WG8 ISO standards have been incorporated into IAEA nonconsensus guides and standards and are mainly consistent with international ISO member domestic standards.

  16. International energy indicators

    SciTech Connect (OSTI)

    Bauer, E.K. (ed.)

    1980-09-01T23:59:59.000Z

    Data are compiled and graphs are presented for Iran: Crude Oil Capacity, Production and Shut-in, 1974-1980; Saudi Arabia: Crude Oil Capacity, Production and Shut-in, 1974-1980; OPEC (Ex-Iran and Saudi Arabia): Capacity, Production and Shut-in, 1974-1980; Non-OPEC Free World and US Production of Crude Oil, 1973-1980; Oil Stocks: Free World, US, Japan and Europe (landed), 1973-1980; Petroleum Consumption by Industrial Countries, 1973-1980; USSR Crude Oil Production, 1974-1980; Free World and US Nuclear Generation Capacity, 1973-1980; US Imports of Crude Oil and Products, 1973-1980; Landed Cost of Saudi Crude in Current and 1974 Dollars; US Trade in Bituminous Coal, 1973-1980; Summary of US Merchandise Trade, 1976-1980; and Energy/GNP Ratio.

  17. International | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTubahq.na.gov Office ofDepartmentAdministrationto SubmitIND| National

  18. international | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. HirschOccurrencei-rapter | National| National

  19. Sandia National Laboratories: Nuclear Energy Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Publications Nuclear Energy Publications Nuclear Energy Safety Fact Sheets Assuring Safe Transportation of Nuclear and Hazardous Materials Human Reliability Assessment (HRA)...

  20. Office of Nuclear Energy | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    May 19-20, 2015, in conjunction with the International Conference on Nuclear Engineering (ICONE-23), at Makuhari Messe in Chiba, Japan. March 24, 2015 Moving Forward to Address...

  1. Low Energy Nuclear Reactions?

    E-Print Network [OSTI]

    CERN. Geneva; Faccini, R.

    2014-01-01T23:59:59.000Z

    After an introduction to the controversial problem of Low Energy Nuclear Reactions (LENR) catalyzed by neutrons on metallic hydride surfaces we present the results of an experiment, made in collaboration with ENEA Labs in Frascati, to search neutrons from plasma discharges in electrolytic cells. The negative outcome of our experiment goes in the direction of ruling out those theoretical models expecting LENR to occur in condensed matter systems under specific conditions. Our criticism on the theoretical foundations of such models will also be presented.

  2. Nuclear talks in Austria International representatives will meet in Vienna on Saturday to discuss a

    E-Print Network [OSTI]

    Nuclear talks in Austria International representatives will meet in Vienna on Saturday to discuss a controversial nuclear fusion plan. The technical meeting of experts is intended to pave the way of nuclear fusion say it provides an attractive long-term energy option, because the basic materials needed

  3. Sandia National Laboratories: DOE International Energy Storage...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    International Energy Storage Database Has Logged 420 Energy Storage Projects Worldwide with 123 GW of Installed Capacity DOE International Energy Storage Database Has Logged 420...

  4. Nuclear Energy | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    systems, nonproliferation and national security, and environmental management. Nuclear energy is the largest generator of carbon-free electricity in use today, and it will play...

  5. International Energy Agency 2011 Wind Energy Annual Report Available...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    International Energy Agency 2011 Wind Energy Annual Report Available for Download International Energy Agency 2011 Wind Energy Annual Report Available for Download October 1, 2012...

  6. Office of Nuclear Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Office of Nuclear Energy Small Modular Reactors Small Modular Reactors The Small Modular Reactor program advances the licensing and commercialization of this next-generation...

  7. Nuclear Energy Density Optimization

    E-Print Network [OSTI]

    M. Kortelainen; T. Lesinski; J. Mor; W. Nazarewicz; J. Sarich; N. Schunck; M. V. Stoitsov; S. Wild

    2010-05-27T23:59:59.000Z

    We carry out state-of-the-art optimization of a nuclear energy density of Skyrme type in the framework of the Hartree-Fock-Bogoliubov (HFB) theory. The particle-hole and particle-particle channels are optimized simultaneously, and the experimental data set includes both spherical and deformed nuclei. The new model-based, derivative-free optimization algorithm used in this work has been found to be significantly better than standard optimization methods in terms of reliability, speed, accuracy, and precision. The resulting parameter set UNEDFpre results in good agreement with experimental masses, radii, and deformations and seems to be free of finite-size instabilities. An estimate of the reliability of the obtained parameterization is given, based on standard statistical methods. We discuss new physics insights offered by the advanced covariance analysis.

  8. Sandia National Laboratories: Nuclear Energy Systems Laboratory...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory (NESL) Transient Nuclear Fuels Testing Radiation Effects Sciences Solar Electric Propulsion Nuclear Energy Safety Technologies Experimental Testing...

  9. Sandia National Laboratories: Nuclear Energy Systems Laboratory...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory (NESL) Transient Nuclear Fuels Testing Radiation Effects Sciences Solar Electric Propulsion Nuclear Energy Safety Technologies Experimental Testing Phenomenological...

  10. Symmetry Energy in Nuclear Surface

    E-Print Network [OSTI]

    Pawel Danielewicz; Jenny Lee

    2008-12-25T23:59:59.000Z

    Interplay between the dependence of symmetry energy on density and the variation of nucleonic densities across nuclear surface is discussed. That interplay gives rise to the mass dependence of the symmetry coefficient in an energy formula. Charge symmetry of the nuclear interactions allows to introduce isoscalar and isovector densities that are approximately independent of the magnitude of neutron-proton asymmetry.

  11. Nuclear Energy Page 570Page 570

    E-Print Network [OSTI]

    Nuclear Energy Page 570Page 570 #12;Energy Supply and Conservation/ Nuclear Energy FY 2007;Energy Supply and Conservation/Nuclear Energy/ Overview FY 2007 Congressional Budget Energy Supply and Conservation Office of Nuclear Energy, Science and Technology Overview Appropriation Summary by Program

  12. International energy: Research organizations, 1986--1990

    SciTech Connect (OSTI)

    Hendricks, P.; Jordan, S. (eds.) (USDOE Office of Scientific and Technical Information, Oak Ridge, TN (USA))

    1991-03-01T23:59:59.000Z

    The International Energy: Research Organizations publication contains the standardized names of energy research organizations used in energy information databases. Involved in this cooperative task are (1) the technical staff of the USDOE Office of Scientific and Technical Information (OSTI) in cooperation with the member countries of the Energy Technology Data Exchange (ETDE) and (2) the International Nuclear Information System (INIS). This publication identifies current organizations doing research in all energy fields, standardizes the format for recording these organization names in bibliographic citations, assigns a numeric code to facilitate data entry, and identifies report number prefixes assigned by these organizations. These research organization names may be used in searching the databases Energy Science Technology'' on DIALOG and Energy'' on STN International. These organization names are also used in USDOE databases on the Integrated Technical Information System. Research organizations active in the past five years, as indicated by database records, were identified to form this publication. This directory includes approximately 34,000 organizations that reported energy-related literature from 1986 to 1990 and updates the DOE Energy Data Base: Corporate Author Entries.

  13. Internationally Standardized Cost Item Definitions for Decommissioning of Nuclear Installations

    SciTech Connect (OSTI)

    Lucien Teunckens; Kurt Pflugrad; Candace Chan-Sands; Ted Lazo

    2000-06-04T23:59:59.000Z

    The European Commission (EC), the International Atomic Energy Agency (IAEA), and the Organization for Economic Cooperation and Development/Nuclear Energy Agency (OECD/NEA) have agreed to jointly prepare and publish a standardized list of cost items and related definitions for decommissioning projects. Such a standardized list would facilitate communication, promote uniformity, and avoid inconsistency or contradiction of results or conclusions of cost evaluations for decommissioning projects carried out for specific purposes by different groups. Additionally, a standardized structure would also be a useful tool for more effective cost management. This paper describes actual work and result thus far.

  14. International Nuclear Fuel Cycle Fact Book. Revision 12

    SciTech Connect (OSTI)

    Leigh, I.W.

    1992-05-01T23:59:59.000Z

    As the US Department of Energy (DOE) and DOE contractors have become increasingly involved with other nations in nuclear fuel cycle and waste management cooperative activities, a need exists costs for a ready source of information concerning foreign fuel cycle programs, facilities, and personnel. This Fact Book has been compiled to meet that need. The information contained in the International Nuclear Fuel Cycle Fact Book has been obtained from many unclassified sources: nuclear trade journals and newsletters; reports of foreign visits and visitors; CEC, IAEA, and OECD/NMEA activities reports; and proceedings of conferences and workshops. The data listed typically do not reflect any single source but frequently represent a consolidation/combination of information.

  15. International nuclear fuel cycle fact book

    SciTech Connect (OSTI)

    Leigh, I.W.

    1988-01-01T23:59:59.000Z

    As the US Department of Energy (DOE) and DOE contractors have become increasingly involved with other nations in nuclear fuel cycle and waste management cooperative activities, a need has developed for a ready source or information concerning foreign fuel cycle programs, facilities, and personnel. This Fact Book was compiled to meet that need. The information contained has been obtained from nuclear trade journals and newsletters; reports of foreign visits and visitors; CEC, IAEA, and OECD/NEA activities reports; proceedings of conferences and workshops; and so forth. Sources do not agree completely with each other, and the data listed herein does not reflect any one single source but frequently is consolidation/combination of information. Lack of space as well as the intent and purpose of the Fact Book limit the given information to that pertaining to the Nuclear Fuel Cycle and to data considered of primary interest or most helpful to the majority of users.

  16. Joint Statement on the Global Nuclear Energy Partnership and...

    Office of Environmental Management (EM)

    Joint Statement on the Global Nuclear Energy Partnership and Nuclear Energy Cooperation Joint Statement on the Global Nuclear Energy Partnership and Nuclear Energy Cooperation...

  17. Nuclear Power Trends Energy Economics and Sustainability

    E-Print Network [OSTI]

    Nuclear Power Trends Energy Economics and Sustainability L. H. Tsoukalas Purdue University Nuclear;National Research Council of Greece, May 8, 2008 Outline The Problem Nuclear Energy Trends Energy Economics Life Cycle Analysis Nuclear Sustainability Nuclear Energy in Greece? #12;National Research

  18. Global Nuclear Energy Partnership Programmatic Environmental Impact Statement

    SciTech Connect (OSTI)

    R.A. Wigeland

    2008-10-01T23:59:59.000Z

    Abstract: The proposed Global Nuclear Energy Partnership (GNEP) Program, which is part of the Presidents Advanced Energy Initiative, is intended to support a safe, secure, and sustainable expansion of nuclear energy, both domestically and internationally. Domestically, the GNEP Program would promote technologies that support economic, sustained production of nuclear-generated electricity, while reducing the impacts associated with spent nuclear fuel disposal and reducing proliferation risks. The Department of Energy (DOE) proposed action envisions changing the United States nuclear energy fuel cycle from an open (or once-through) fuel cyclein which nuclear fuel is used in a power plant one time and the resulting spent nuclear fuel is stored for eventual disposal in a geologic repositoryto a closed fuel cycle in which spent nuclear fuel would be recycled to recover energy-bearing components for use in new nuclear fuel. At this time, DOE has no specific proposed actions for the international component of the GNEP Program. Rather, the United States, through the GNEP Program, is considering various initiatives to work cooperatively with other nations. Such initiatives include the development of grid-appropriate reactors and the development of reliable fuel services (to provide an assured supply of fresh nuclear fuel and assist with the management of the used fuel) for nations who agree to employ nuclear energy only for peaceful purposes, such as electricity generation.

  19. The Nuclear Revolution, Relative Gains, and International Nuclear Assistance

    E-Print Network [OSTI]

    Kroenig, Matthew

    2006-01-01T23:59:59.000Z

    it would transfer nuclear technology. Washington Post. 26preferences: the export of sensitive nuclear technology.export of sensitive nuclear technology presents a kind of

  20. Atomic Energy and Nuclear Materials Program (Tennessee)

    Broader source: Energy.gov [DOE]

    The Atomic Energy and Nuclear Materials section of the Tennessee Code covers all of the regulations, licenses, permits, siting requirements, and practices relevant to a nuclear energy development. ...

  1. Sandia National Laboratories: Nuclear Energy Videos

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Videos Nuclear Energy Videos The Nuclear Energy Capabilities video is 40 minutes long, but is broken into video segments for each capability. You may select a specific capability...

  2. international exercises | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, , .,Shreve;SolidThermalexercises | National Nuclear

  3. Sandia National Laboratories: Nuclear Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Energy Experimental Testing On March 9, 2012, in Multi-scale and Multi-process Testing Large-Scale Validation Experiments Multi-scale and Multi-process Testing Exploring...

  4. Energy and Security in Northeast Asia: Proposals for Nuclear Cooperation

    E-Print Network [OSTI]

    Kaneko, Kumao; Suzuki, Atsuyuki; Choi, Jor-Shan; Fei, Edward

    1998-01-01T23:59:59.000Z

    Henry S. Rowen, "Nuclear Energy and Nuclear Proliferation -distinguish cooperation on nuclear energy as a vital first-concerns about nuclear energy (dwindling capacity for waste

  5. Energy and Security in Northeast Asia: Proposals for Nuclear Cooperation

    E-Print Network [OSTI]

    Kaneko, Kumao; Suzuki, Atsuyuki; Choi, Jor-Shan; Fei, Edward

    1998-01-01T23:59:59.000Z

    Henry S. Rowen, "Nuclear Energy and Nuclear Proliferation -present East Asian national nuclear energy programs. WithoutNortheast Asian nuclear energy cooperation advanced by

  6. Draft Advanced Nuclear Energy Solicitation Public Meeting Presentation...

    Office of Environmental Management (EM)

    Draft Advanced Nuclear Energy Solicitation Public Meeting Presentation Draft Advanced Nuclear Energy Solicitation Public Meeting Presentation Draft Advanced Nuclear Solicitation...

  7. International Energy Outlook 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin:DeploymentSite Name:24,High natural

  8. International Energy Outlook 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin:DeploymentSite Name:24,High naturalProsperity Conference | The

  9. International Energy Outlook 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin:DeploymentSite Name:24,High naturalProsperity Conference |

  10. International Energy Outlook 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin:DeploymentSite Name:24,High naturalProsperity Conference

  11. International Energy Outlook 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin:DeploymentSite Name:24,High naturalProsperity

  12. International Energy Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin:DeploymentSite Name:24,High naturalProsperity

  13. International Energy Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin:DeploymentSite Name:24,High naturalProsperity

  14. Encore Energy Systems formerly Energy Vision International formerly...

    Open Energy Info (EERE)

    Encore Energy Systems formerly Energy Vision International formerly DeMarco Energy Systems of Amer Jump to: navigation, search Name: Encore Energy Systems (formerly Energy Vision...

  15. International Energy Annual, 1992

    SciTech Connect (OSTI)

    Not Available

    1994-01-14T23:59:59.000Z

    This report is prepared annually and presents the latest information and trends on world energy production and consumption for petroleum, natural gas, coal, and electricity. Trade and reserves are shown for petroleum, natural gas, and coal. Prices are included for selected petroleum products. Production and consumption data are reported in standard units as well as British thermal units (Btu) and joules.

  16. International Engagement | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes | National NuclearInterlibrary Loan InterlibraryTrilateralEngagement

  17. International Exercises | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes | National NuclearInterlibrary Loan

  18. International Programs | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes | National NuclearInterlibrary LoanSafeguards | NationalPrograms |

  19. Recommendations for a Department of Energy Nuclear Energy R and D Agenda Volume 2 Appendices

    SciTech Connect (OSTI)

    NONE

    1997-12-01T23:59:59.000Z

    The current US nuclear energy policy is primarily formulated as part of the nation`s overall energy policy. In addition, nuclear energy policy is impacted by other US policies, such as those for defense and environment, and by international obligations through their effects on nuclear weapons dismantlement and stewardship, continued reliance on space and naval nuclear power sources, defense waste cleanup, and on nuclear nonproliferation. This volume is composed of the following appendices: Appendix 1--Objectives of the Federal Government Nuclear Energy Related Policies and Research and Development Programs; Appendix 2--Nuclear Energy and Related R and D in the US; Appendix 3--Summary of Issues That Drive Nuclear Energy Research and Development; Appendix 4: Options for Policy and Research and Development; Appendix 5--Pros and Cons of Objectives and Options; and Appendices 6--Recommendations.

  20. The Nuclear Revolution, Relative Gains, and International Nuclear Assistance

    E-Print Network [OSTI]

    Kroenig, Matthew

    2006-01-01T23:59:59.000Z

    204. Bhatia, Shyam. 1988. Nuclear rivals in the Middle East.of the merits of selective nuclear proliferation. Journal ofThe Case for a Ukranian nuclear deterrent. Foreign Affairs.

  1. International Partnerships and Projects | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,39732on ArmedManufacturing |Time-Based International Nuclear

  2. Internal Combustion Engine Basics | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes | National NuclearInterlibrary Loan Interlibrary Loan TheInternal

  3. Sandia Energy - Nuclear Fuel Cycle

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear PressLaboratory Fellows JerryNuclear Energy

  4. 2007 Estimated International Energy Flows

    SciTech Connect (OSTI)

    Smith, C A; Belles, R D; Simon, A J

    2011-03-10T23:59:59.000Z

    An energy flow chart or 'atlas' for 136 countries has been constructed from data maintained by the International Energy Agency (IEA) and estimates of energy use patterns for the year 2007. Approximately 490 exajoules (460 quadrillion BTU) of primary energy are used in aggregate by these countries each year. While the basic structure of the energy system is consistent from country to country, patterns of resource use and consumption vary. Energy can be visualized as it flows from resources (i.e. coal, petroleum, natural gas) through transformations such as electricity generation to end uses (i.e. residential, commercial, industrial, transportation). These flow patterns are visualized in this atlas of 136 country-level energy flow charts.

  5. Sandia Energy » Nuclear Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementingnpitche Home About npitche ThisStrategic Petroleum

  6. Nuclear energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLuOpenNorth AmericaNorthwest Rural PubNovaNMRENuclear Power Corp

  7. Nuclear Energy Governance and the Politics of Social Justice: Technology, Public Goods, and Redistribution in Russia and France

    E-Print Network [OSTI]

    Grigoriadis, Theocharis N

    2009-01-01T23:59:59.000Z

    Energy Policy, Vol. 34 Generation IV International Forum. Introduction to Generation IV Nuclear Energy Systems and theIII Plus 2030-onward Generation IV 2030-onward 2030-onward

  8. Safeguards Guidance Document for Designers of Commercial Nuclear Facilities: International Nuclear Safeguards Requirements and Practices For Uranium Enrichment Plants

    SciTech Connect (OSTI)

    Robert Bean; Casey Durst

    2009-10-01T23:59:59.000Z

    This report is the second in a series of guidelines on international safeguards requirements and practices, prepared expressly for the designers of nuclear facilities. The first document in this series is the description of generic international nuclear safeguards requirements pertaining to all types of facilities. These requirements should be understood and considered at the earliest stages of facility design as part of a new process called Safeguards-by-Design. This will help eliminate the costly retrofit of facilities that has occurred in the past to accommodate nuclear safeguards verification activities. The following summarizes the requirements for international nuclear safeguards implementation at enrichment plants, prepared under the Safeguards by Design project, and funded by the U.S. Department of Energy (DOE) National Nuclear Security Administration (NNSA), Office of NA-243. The purpose of this is to provide designers of nuclear facilities around the world with a simplified set of design requirements and the most common practices for meeting them. The foundation for these requirements is the international safeguards agreement between the country and the International Atomic Energy Agency (IAEA), pursuant to the Treaty on the Non-proliferation of Nuclear Weapons (NPT). Relevant safeguards requirements are also cited from the Safeguards Criteria for inspecting enrichment plants, found in the IAEA Safeguards Manual, Part SMC-8. IAEA definitions and terms are based on the IAEA Safeguards Glossary, published in 2002. The most current specification for safeguards measurement accuracy is found in the IAEA document STR-327, International Target Values 2000 for Measurement Uncertainties in Safeguarding Nuclear Materials, published in 2001. For this guide to be easier for the designer to use, the requirements have been restated in plainer language per expert interpretation using the source documents noted. The safeguards agreement is fundamentally a legal document. As such, it is written in a legalese that is understood by specialists in international law and treaties, but not by most outside of this field, including designers of nuclear facilities. For this reason, many of the requirements have been simplified and restated. However, in all cases, the relevant source document and passage is noted so that readers may trace the requirement to the source. This is a helpful living guide, since some of these requirements are subject to revision over time. More importantly, the practices by which the requirements are met are continuously modernized by the IAEA and nuclear facility operators to improve not only the effectiveness of international nuclear safeguards, but also the efficiency. As these improvements are made, the following guidelines should be updated and revised accordingly.

  9. OK International | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLuOpenNorth AmericaNorthwest RuralNujira LtdEnergyOK International

  10. Nuclear Energy Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire3627 Federal Register /7 This is aLinks

  11. Nuclear energy release from fragmentation

    E-Print Network [OSTI]

    Cheng Li; S. R. Souza; M. B. Tsang; Feng-Shou Zhang

    2015-05-09T23:59:59.000Z

    Nuclear energy released by splitting Uranium and Thorium isotopes into two, three, four, up to eight fragments with nearly equal size are studied. We found that the energy released come from equally splitting the $^{235,238}$U and $^{230,232}$Th nuclei into to three fragments is largest. The statistical multifragmentation model is employed to calculate the probability of different breakup channels for the excited nuclei. Weighing the the probability distributions of fragments multiplicity at different excitation energies for the $^{238}$U nucleus, we found that an excitation energy between 1.2 and 2 MeV/u is optimal for the $^{235}$U, $^{238}$U, $^{230}$Th and $^{232}$Th nuclei to release nuclear energy of about 0.7-0.75 MeV/u.

  12. Nuclear energy release from fragmentation

    E-Print Network [OSTI]

    Li, Cheng; Tsang, M B; Zhang, Feng-Shou

    2015-01-01T23:59:59.000Z

    Nuclear energy released by splitting Uranium and Thorium isotopes into two, three, four, up to eight fragments with nearly equal size are studied. We found that the energy released come from equally splitting the $^{235,238}$U and $^{230,232}$Th nuclei into to three fragments is largest. The statistical multifragmentation model is employed to calculate the probability of different breakup channels for the excited nuclei. Weighing the the probability distributions of fragments multiplicity at different excitation energies for the $^{238}$U nucleus, we found that an excitation energy between 1.2 and 2 MeV/u is optimal for the $^{235}$U, $^{238}$U, $^{230}$Th and $^{232}$Th nuclei to release nuclear energy of about 0.7-0.75 MeV/u.

  13. Long-term global nuclear energy and fuel cycle strategies

    SciTech Connect (OSTI)

    Krakowski, R.A. [Los Alamos National Lab., NM (United States). Technology and Safety Assessment Div.

    1997-09-24T23:59:59.000Z

    The Global Nuclear Vision Project is examining, using scenario building techniques, a range of long-term nuclear energy futures. The exploration and assessment of optimal nuclear fuel-cycle and material strategies is an essential element of the study. To this end, an established global E{sup 3} (energy/economics/environmental) model has been adopted and modified with a simplified, but comprehensive and multi-regional, nuclear energy module. Consistent nuclear energy scenarios are constructed using this multi-regional E{sup 3} model, wherein future demands for nuclear power are projected in price competition with other energy sources under a wide range of long-term demographic (population, workforce size and productivity), economic (price-, population-, and income-determined demand for energy services, price- and population-modified GNP, resource depletion, world-market fossil energy prices), policy (taxes, tariffs, sanctions), and top-level technological (energy intensity and end-use efficiency improvements) drivers. Using the framework provided by the global E{sup 3} model, the impacts of both external and internal drivers are investigated. The ability to connect external and internal drivers through this modeling framework allows the study of impacts and tradeoffs between fossil- versus nuclear-fuel burning, that includes interactions between cost, environmental, proliferation, resource, and policy issues.

  14. Sandia Energy - Nuclear Energy Workshops

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol Home Distribution Grid Integration PermalinkClimate

  15. DEPARTMENT OF ENERGY NATIONAL NUCLEAR SECURITY

    E-Print Network [OSTI]

    361 DEPARTMENT OF ENERGY NATIONAL NUCLEAR SECURITY ADMINISTRATION Federal Funds General and special in the National Nuclear Security Administration, including official reception and representation expenses (not Reactors appropriations including the National Nuclear Security Administration field offices. This account

  16. DEPARTMENT OF ENERGY NATIONAL NUCLEAR SECURITY

    E-Print Network [OSTI]

    379 DEPARTMENT OF ENERGY NATIONAL NUCLEAR SECURITY ADMINISTRATION Federal Funds General and special in the National Nuclear Security Administration, including official reception and representation expenses, and Naval Reactors appropriations including the National Nuclear Security Administration (NNSA) field of

  17. International Topical Meeting on Nuclear Reactor Thermalhydraulics, NURETH-15 NURETH15-xxx Pisa, Italy, May 12-15, 2013

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    The 15th International Topical Meeting on Nuclear Reactor Thermalhydraulics, NURETH-15 NURETH15-xxx technologies in the context of generation IV nuclear power reactors. In order to improve electric efficiency during last years as a possible energy conversion cycle for Sodium nuclear Fast Reactors (SFRs) [1

  18. Nuclear Energy University Program | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire3627 Federal Register /7 This is aLinksNuclear EnergyEnergy

  19. International Energy Agency (IEA) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup | OpenHunan RunhuaInnerInformationInternational Energy Agency (IEA)

  20. International Energy Initiative | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup | OpenHunan RunhuaInnerInformationInternational Energy

  1. International Engagement | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

  2. International Exercises | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

  3. International Programs | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn OtherEnergy International Fuel Services»

  4. International nuclear fuel cycle fact book. Revision 6

    SciTech Connect (OSTI)

    Harmon, K.M.; Lakey, L.T.; Leigh, I.W.; Jeffs, A.G.

    1986-01-01T23:59:59.000Z

    The International Fuel Cycle Fact Book has been compiled in an effort to provide (1) an overview of worldwide nuclear power and fuel cycle programs and (2) current data concerning fuel cycle and waste management facilities, R and D programs and key personnel. Additional information on each country's program is available in the International Source Book: Nuclear Fuel Cycle Research and Development, PNL-2478, Rev. 2.

  5. Nuclear methods in environmental and energy research

    SciTech Connect (OSTI)

    Vogt, J R [ed.

    1980-01-01T23:59:59.000Z

    A total of 75 papers were presented on nuclear methods for analysis of environmental and biological samples. Sessions were devoted to software and mathematical methods; nuclear methods in atmospheric and water research; nuclear and atomic methodology; nuclear methods in biology and medicine; and nuclear methods in energy research.

  6. Nuclear symmetry energy at subnormal densities from measured nuclear masses

    E-Print Network [OSTI]

    Min Liu; Ning Wang; Zhuxia Li; Fengshou Zhang

    2010-11-17T23:59:59.000Z

    The symmetry energy coefficients for nuclei with mass number A=20~250 are extracted from more than 2000 measured nuclear masses. With the semi-empirical connection between the symmetry energy coefficients of finite nuclei and the nuclear symmetry energy at reference densities, we investigate the density dependence of symmetry energy of nuclear matter at subnormal densities. The obtained results are compared with those extracted from other methods.

  7. Nuclear | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLuOpenNorth AmericaNorthwest Rural PubNovaNMRENuclear Power

  8. Internal Combustion Engine Energy Retention (ICEER)

    Broader source: Energy.gov (indexed) [DOE]

    ICEER Internal Combustion Engine Energy Retention PI: Jeffrey Gonder Team: Eric Wood & Sean Lopp National Renewable Energy Laboratory June 18, 2014 Project ID: VSS126 This...

  9. EU signs ITER deal Negotiations on the ITER international nuclear

    E-Print Network [OSTI]

    Korea and the US, the agreement aims to develop a project that will test the feasibility of nuclearEU signs ITER deal Negotiations on the ITER international nuclear fusion project have been on Wednesday reached a final agreement on the ITER project after years of talks. "The completion

  10. Nuclear Energy Technical Assistance | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire3627 Federal Register /7 This is aLinksNuclear Energy

  11. DOE International Energy Advisors | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsNovember 13, 2014ContributingDOE Contract DOE International Energy Advisors DOE

  12. Global Nuclear Energy Partnership Waste Treatment Baseline

    SciTech Connect (OSTI)

    Dirk Gombert; William Ebert; James Marra; Robert Jubin; John Vienna

    2008-05-01T23:59:59.000Z

    The Global Nuclear Energy Partnership program (GNEP) is designed to demonstrate a proliferation-resistant and sustainable integrated nuclear fuel cycle that can be commercialized and used internationally. Alternative stabilization concepts for byproducts and waste streams generated by fuel recycling processes were evaluated and a baseline of waste forms was recommended for the safe disposition of waste streams. Waste forms are recommended based on the demonstrated or expected commercial practicability and technical maturity of the processes needed to make the waste forms, and performance of the waste form materials when disposed. Significant issues remain in developing technologies to process some of the wastes into the recommended waste forms, and a detailed analysis of technology readiness and availability may lead to the choice of a different waste form than what is recommended herein. Evolving regulations could also affect the selection of waste forms.

  13. Nuclear Facilities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOilNEWResponse to Time-Based Rates from the ConsumerNuclear EnergyNuclear

  14. International Energy Agency (IEA) | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,39732on ArmedManufacturing |Time-Based RatesInternational Energy

  15. Solar Energy International | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form HistoryRistmaSinosteel CorporationSocovoltaicSolaerInternational Jump

  16. Free Energy International Canada | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump1946865°, -86.0529604° Show MapFredericksburg County,International

  17. International Environmental Energy Corporation IEEC | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup | OpenHunan RunhuaInnerInformationInternational

  18. Department of Energy Announces 24 Nuclear Energy Research Awards...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4 Nuclear Energy Research Awards to U.S. Universities Department of Energy Announces 24 Nuclear Energy Research Awards to U.S. Universities December 15, 2005 - 4:46pm Addthis 12...

  19. International energy: Research organizations, 1988--1992. Revision 1

    SciTech Connect (OSTI)

    Hendricks, P.; Jordan, S. [eds.] [USDOE Office of Scientific and Technical Information, Oak Ridge, TN (United States)

    1993-06-01T23:59:59.000Z

    This publication contains the standardized names of energy research organizations used in energy information databases. Involved in this cooperative task are (1) the technical staff of the US DOE Office of Scientific and Technical Information (OSTI) in cooperation with the member countries of the Energy Technology Data Exchange (ETDE) and (2) the International Nuclear Information System (INIS). ETDE member countries are also members of the International Nuclear Information System (INIS). Nuclear organization names recorded for INIS by these ETDE member countries are also included in the ETDE Energy Database. Therefore, these organization names are cooperatively standardized for use in both information systems. This publication identifies current organizations doing research in all energy fields, standardizes the format for recording these organization names in bibliographic citations, assigns a numeric code to facilitate data entry, and identifies report number prefixes assigned by these organizations. These research organization names may be used in searching the databases ``Energy Science & Technology`` on DIALOG and ``Energy`` on STN International. These organization names are also used in USDOE databases on the Integrated Technical Information System. Research organizations active in the past five years, as indicated by database records, were identified to form this publication. This directory includes approximately 31,000 organizations that reported energy-related literature from 1988 to 1992 and updates the DOE Energy Data Base: Corporate Author Entries.

  20. International Conference on the Physics of Reactors "Nuclear Power: A Sustainable Resource" Casino-Kursaal Conference Center, Interlaken, Switzerland, September 14-19, 2008

    E-Print Network [OSTI]

    Boyer, Edmond

    International Conference on the Physics of Reactors "Nuclear Power: A Sustainable Resource" Casino International Forum for the new nuclear energy systems, we have developed a new concept of molten salt reactor Products which poison the core can be extracted without stopping reactor operation; nuclear waste

  1. International Cooperation | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,39732on ArmedManufacturing |Time-Based Rates fromInternational

  2. Nuclear Energy RenaissanceNuclear Energy Renaissance National Research Council andNational Research Council and

    E-Print Network [OSTI]

    Nuclear Energy RenaissanceNuclear Energy Renaissance National Research Council andNational Research ·· Objectives of Nuclear Power RegulationObjectives of Nuclear Power Regulation ·· Major Functions, ANDREGULATIONS, REQUIREMENTS, AND ACCEPTANCE CRITERIAACCEPTANCE CRITERIA ·· LICENSING OF NUCLEAR FACILITIES

  3. Global Nuclear Energy Partnership Fact Sheet - Develop Enhanced...

    Office of Environmental Management (EM)

    Develop Enhanced Nuclear Safeguards Global Nuclear Energy Partnership Fact Sheet - Develop Enhanced Nuclear Safeguards GNEP will help prevent misuse of civilian nuclear facilities...

  4. Energy Efficiency Projects: Overcoming Internal Barriers to Implementa...

    Broader source: Energy.gov (indexed) [DOE]

    discusses overcoming internal barriers to funding andor implementing energy efficiency projects. Energy Efficiency Projects: Overcoming Internal Barriers to Implementation...

  5. "Renewable Energy Transition and International Climate Cooperation

    E-Print Network [OSTI]

    Sheridan, Jennifer

    "Renewable Energy Transition and International Climate Cooperation: The German Experience" Jürgen and sustainability science; complex systems analysis, mathematical modeling and computer simulation; technology assessment, arms control and international security. For more information: eucenter

  6. International Energy Agency | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOil & Gas » Methane Hydrate » International CooperationEnergy Agency

  7. International Energy Forum Ministerial | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOil & Gas » Methane Hydrate » International CooperationEnergy

  8. Materials Challenges in Nuclear Energy

    SciTech Connect (OSTI)

    Zinkle, Steven J [ORNL] [ORNL; Was, Gary [University of Michigan] [University of Michigan

    2013-01-01T23:59:59.000Z

    Nuclear power currently provides about 13% of the worldwide electrical power, and has emerged as a reliable baseload source of electricity. A number of materials challenges must be successfully resolved for nuclear energy to continue to make further improvements in reliability, safety and economics. The operating environment for materials in current and proposed future nuclear energy systems is summarized, along with a description of materials used for the main operating components. Materials challenges associated with power uprates and extensions of the operating lifetimes of reactors are described. The three major materials challenges for the current and next generation of water-cooled fission reactors are centered on two structural materials aging degradation issues (corrosion and stress corrosion cracking of structural materials and neutron-induced embrittlement of reactor pressure vessels), along with improved fuel system reliability and accident tolerance issues. The major corrosion and stress corrosion cracking degradation mechanisms for light water reactors are reviewed. The materials degradation issues for the Zr alloy clad UO2 fuel system currently utilized in the majority of commercial nuclear power plants is discussed for normal and off-normal operating conditions. Looking to proposed future (Generation IV) fission and fusion energy systems, there are 5 key bulk radiation degradation effects (low temperature radiation hardening and embrittlement, radiation-induced and modified solute segregation and phase stability, irradiation creep, void swelling, and high temperature helium embrittlement) and a multitude of corrosion and stress corrosion cracking effects (including irradiation-assisted phenomena) that can have a major impact on the performance of structural materials.

  9. Sandia Energy - Nuclear Energy Safety Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear PressLaboratory Fellows Jerry

  10. Energy Storage Systems 2007 Peer Review - International Energy...

    Broader source: Energy.gov (indexed) [DOE]

    international energy storage programs are below. Other presentation categories were: Economics - Benefit Studies and Environment Benefit Studies Utility & Commercial Applications...

  11. Is Nuclear Energy the Solution?

    E-Print Network [OSTI]

    Saier, Milton H.; Trevors, Jack T.

    2010-01-01T23:59:59.000Z

    the potential of nuclear power to combat global warming havecompetitive today, and for nuclear power to succeed, it must

  12. International nuclear fuel cycle fact book: Revision 9

    SciTech Connect (OSTI)

    Leigh, I.W.

    1989-01-01T23:59:59.000Z

    The International Nuclear Fuel Cycle Fact Book has been compiled in an effort to provide current data concerning fuel cycle and waste management facilities, R and D programs and key personnel. The Fact Book contains: national summaries in which a section for each country which summarizes nuclear policy, describes organizational relationships and provides addresses, names of key personnel, and facilities information; and international agencies in which a section for each of the international agencies which has significant fuel cycle involvement, and a listing of nuclear societies. The national summaries, in addition to the data described above, feature a small map for each country as well as some general information. The latter is presented from the perspective of the Fact Book user in the United States.

  13. Energy Praises the Nuclear Regulatory Commission Approval of...

    Energy Savers [EERE]

    Energy Praises the Nuclear Regulatory Commission Approval of the First United States Nuclear Plant Site in Over 30 Years Energy Praises the Nuclear Regulatory Commission Approval...

  14. Department of Energy and Nuclear Regulatory Commission Increase...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nuclear Regulatory Commission Increase Cooperation to Advance Global Nuclear Energy Partnership Department of Energy and Nuclear Regulatory Commission Increase Cooperation to...

  15. Universal Nuclear Energy Density Functional

    SciTech Connect (OSTI)

    Carlson, Joseph; Furnstahl, Richard; Horoi, Mihai; Lusk, Rusty; Nazarewicz, Witold; Ng, Esmond; Thompson, Ian; Vary, James

    2012-12-01T23:59:59.000Z

    An understanding of the properties of atomic nuclei is crucial for a complete nuclear theory, for element formation, for properties of stars, and for present and future energy and defense applications. During the period of Dec. 1 2006 Jun. 30, 2012, the UNEDF collaboration carried out a comprehensive study of all nuclei, based on the most accurate knowledge of the strong nuclear interaction, the most reliable theoretical approaches, the most advanced algorithms, and extensive computational resources, with a view towards scaling to the petaflop platforms and beyond. Until recently such an undertaking was hard to imagine, and even at the present time such an ambitious endeavor would be far beyond what a single researcher or a traditional research group could carry out.

  16. Elementary! A Nuclear Forensics Workshop Teaches Vital Skills to International Practitioners

    SciTech Connect (OSTI)

    Brim, Cornelia P.; Minnema, Lindsay T.

    2014-04-01T23:59:59.000Z

    The article describes the Nuclear Forensics Workshop sponsored by the International Atomic Energy Agency (IAEA), the Office of Nonproliferation and International Security (NIS) and hosted by Pacific Northwest National Laboratory October 28-November 8, 2013 in Richland,Washington. Twenty-six participants from 10 countries attended the workshop. Experts from from Los Alamos, Lawrence Livermore, and Pacific Northwest national laboratories collaborated with an internationally recognized cadre of experts from the U.S. Department of Homeland Security and other U.S. agencies, IAEA, the Australian Nuclear Science and Technology Organisation, the United Kingdom Atomic Weapons Establishment (AWE), and the European Union Joint Research Center Institute for Transuranium Elements, to train practitioners in basic methodologies of nuclear forensic examinations.

  17. Nuclear Energy's Renaissance Andrew C. Kadak

    E-Print Network [OSTI]

    23% 22% 3% 8% 3% 41% Electricity Production Source: EIA Gas 15% Hydro 8% Coal 51% Oil 3% Other 2 Policy calls for expansion of Nuclear Energy Oil Coal Natural Gas Hydro Nuclear Other Renewables #12

  18. Issues in International Energy Consumption Analysis: Electricity...

    U.S. Energy Information Administration (EIA) Indexed Site

    Issues in International Energy Consumption Analysis: Electricity Usage in India's Housing Sector November 2014 Independent Statistics & Analysis www.eia.gov U.S. Department of...

  19. International Electricity Regulation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Regulation International Electricity Regulation U.S. trade in electric energy with Canada and Mexico is rising, bringing economic and reliability benefits to the United States and...

  20. A Strategy for Nuclear Energy Research and Development

    SciTech Connect (OSTI)

    Ralph G. Bennett

    2008-12-01T23:59:59.000Z

    The United States is facing unprecedented challenges in climate change and energy security. President-elect Obama has called for a reduction of CO2 emissions to 1990 levels by 2020, with a further 80% reduction by 2050. Meeting these aggressive goals while gradually increasing the overall energy supply requires that all non-emitting technologies must be advanced. The development and deployment of nuclear energy can, in fact, help the United States meet several key challenges: 1) Increase the electricity generated by non-emitting sources to mitigate climate change, 2) Foster the safe and proliferation-resistant use of nuclear energy throughout the world, 3) Reduce the transportation sectors dependence on imported fossil fuels, and 4) Reduce the demand on natural gas for process heat and hydrogen production. However, because of the scale, cost, and time horizons involved, increasing nuclear energys share will require a coordinated research effortcombining the efforts of industry and government, supported by innovation from the research community. This report outlines the significant nuclear energy research and development (R&D) necessary to create options that will allow government and industrial decision-makers to set policies and create nuclear energy initiatives that are decisive and sustainable. The nuclear energy R&D strategy described in this report adopts the following vision: Safe and economical nuclear energy in the United States will expand to address future electric and non-electric needs, significantly reduce greenhouse gas emissions and provide energy diversity, while providing leadership for safe, secure and responsible expansion of nuclear energy internationally.

  1. Nuclear Safety | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOilNEWResponse to Time-Based Rates from theLiabilityEnergyNuclear

  2. Harry Potter, Oxford and Nuclear Energy | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Affairs Specialist, Office of Public Affairs Dr. Peter Lyons, the Assistant Secretary for Nuclear Energy at the Energy Department and the U.S. government's foremost expert on...

  3. Fragments' internal and kinetic temperatures in the framework of a Nuclear Statistical Multifragmentation Model

    E-Print Network [OSTI]

    S. R. Souza; B. V. Carlson; R. Donangelo; W. G. Lynch; M. B. Tsang

    2014-11-27T23:59:59.000Z

    The agreement between the fragments' internal and kinetic temperatures with the breakup temperature is investigated using a Statistical Multifragmentation Model which makes no a priori as- sumption on the relationship between them. We thus examine the conditions for obtaining such agreement and find that, in the framework of our model, this holds only in a relatively narrow range of excitation energy. The role played by the qualitative shape of the fragments' state densities is also examined. Our results suggest that the internal temperature of the light fragments may be affected by this quantity, whose behavior may lead to constant internal temperatures over a wide excitation energy range. It thus suggests that the nuclear thermometry may provide valuable information on the nuclear state density.

  4. Safeguards Guidance for Designers of Commercial Nuclear Facilities International Safeguards Requirements for Uranium Enrichment Plants

    SciTech Connect (OSTI)

    Philip Casey Durst; Scott DeMuth; Brent McGinnis; Michael Whitaker; James Morgan

    2010-04-01T23:59:59.000Z

    For the past two years, the United States National Nuclear Security Administration, Office of International Regimes and Agreements (NA-243), has sponsored the Safeguards-by-Design Project, through which it is hoped new nuclear facilities will be designed and constructed worldwide more amenable to nuclear safeguards. In the course of this project it was recognized that commercial designer/builders of nuclear facilities are not always aware of, or understand, the relevant domestic and international safeguards requirements, especially the latter as implemented by the International Atomic Energy Agency (IAEA). To help commercial designer/builders better understand these requirements, a report was prepared by the Safeguards-by-Design Project Team that articulated and interpreted the international nuclear safeguards requirements for the initial case of uranium enrichment plants. The following paper summarizes the subject report, the specific requirements, where they originate, and the implications for design and construction. It also briefly summarizes the established best design and operating practices that designer/builder/operators have implemented for currently meeting these requirements. In preparing the subject report, it is recognized that the best practices are continually evolving as the designer/builder/operators and IAEA consider even more effective and efficient means for meeting the safeguards requirements and objectives.

  5. Department of Energy National Nuclear Security Administration...

    Broader source: Energy.gov (indexed) [DOE]

    of the Omega West Facility at Los Alamos National Laboratory, Los Alamos, New Mexico U. S. Department of Energy National Nuclear Security Administration Office of Los...

  6. International energy outlook 1997 with projections to 2015

    SciTech Connect (OSTI)

    NONE

    1997-04-01T23:59:59.000Z

    The International Energy Outlook 1997 (IE097) presents an assessment by the Energy Information Administration (EIA) of the outlook for international energy markets through 2015.

  7. Theories of Low Energy Nuclear Transmutations

    E-Print Network [OSTI]

    Y. N. Srivastava; A. Widom; J. Swain

    2012-10-27T23:59:59.000Z

    Employing concrete examples from nuclear physics it is shown that low energy nuclear reactions can and have been induced by all of the four fundamental interactions (i) (stellar) gravitational, (ii) strong, (iii) electromagnetic and (iv) weak. Differences are highlighted through the great diversity in the rates and similarity through the nature of the nuclear reactions initiated by each.

  8. Advanced international training course on state systems of accounting for and control of nuclear materials

    SciTech Connect (OSTI)

    Not Available

    1981-10-01T23:59:59.000Z

    This report incorporates all lectures and presentations at the Advanced International Training Course on State Systems of Accounting for and Control of Nuclear Material held April 27 through May 12, 1981 at Santa Fe and Los Alamos, New Mexico, and Richland, Washington, USA. Authorized by the US Nuclear Non-Proliferation Act and sponsored by the US Department of Energy in cooperation with the International Atomic Energy Agency, the course was developed to provide practical training in the design, implementation, and operation of a state system of nuclear materials accountability and control that satisfies both national and international safeguards. Major emphasis for the 1981 course was placed on safeguards methods used at bulk-handling facilities, particularly low-enriched uranium conversion and fuel fabrication plants. The course was conducted by the University of California's Los Alamos National Laboratory, the Battelle Pacific Northwest Laboratory, and Exxon Nuclear Company, Inc. Tours and demonstrations were arranged at both the Los Alamos National Laboratory, Los Alamos, New Mexico, and the Exxon Nuclear fuel fabrication plant, Richland, Washington.

  9. Office of Advanced Nuclear Research Office of Nuclear Energy, Science and Technology

    E-Print Network [OSTI]

    Leads Technical Leads - evaluation of nuclear hydrogen production methods and system/infrastructure Programmatic Overview Nuclear Hydrogen InitiativeNuclear Hydrogen Initiative #12;Office of Nuclear Energy, Science and Technology Henderson/2003 Hydrogen Initiative.ppt 2 Nuclear Hydrogen Initiative

  10. India's baseline plan for nuclear energy self-sufficiency.

    SciTech Connect (OSTI)

    Bucher, R .G.; Nuclear Engineering Division

    2009-01-01T23:59:59.000Z

    India's nuclear energy strategy has traditionally strived for energy self-sufficiency, driven largely by necessity following trade restrictions imposed by the Nuclear Suppliers Group (NSG) following India's 'peaceful nuclear explosion' of 1974. On September 6, 2008, the NSG agreed to create an exception opening nuclear trade with India, which may create opportunities for India to modify its baseline strategy. The purpose of this document is to describe India's 'baseline plan,' which was developed under constrained trade conditions, as a basis for understanding changes in India's path as a result of the opening of nuclear commerce. Note that this treatise is based upon publicly available information. No attempt is made to judge whether India can meet specified goals either in scope or schedule. In fact, the reader is warned a priori that India's delivery of stated goals has often fallen short or taken a significantly longer period to accomplish. It has been evident since the early days of nuclear power that India's natural resources would determine the direction of its civil nuclear power program. It's modest uranium but vast thorium reserves dictated that the country's primary objective would be thorium utilization. Estimates of India's natural deposits vary appreciably, but its uranium reserves are known to be extremely limited, totaling approximately 80,000 tons, on the order of 1% of the world's deposits; and nominally one-third of this ore is of very low uranium concentration. However, India's roughly 300,000 tons of thorium reserves account for approximately 30% of the world's total. Confronted with this reality, the future of India's nuclear power industry is strongly dependent on the development of a thorium-based nuclear fuel cycle as the only way to insure a stable, sustainable, and autonomous program. The path to India's nuclear energy self-sufficiency was first outlined in a seminal paper by Drs. H. J. Bhabha and N. B. Prasad presented at the Second United Nations Conference on the Peaceful Uses of Atomic Energy in 1958. The paper described a three stage plan for a sustainable nuclear energy program consistent with India's limited uranium but abundant thorium natural resources. In the first stage, natural uranium would be used to fuel graphite or heavy water moderated reactors. Plutonium extracted from the spent fuel of these thermal reactors would drive fast reactors in the second stage that would contain thorium blankets for breeding uranium-233 (U-233). In the final stage, this U-233 would fuel thorium burning reactors that would breed and fission U-233 in situ. This three stage blueprint still reigns as the core of India's civil nuclear power program. India's progress in the development of nuclear power, however, has been impacted by its isolation from the international nuclear community for its development of nuclear weapons and consequent refusal to sign the Nuclear Nonproliferation Treaty (NPT). Initially, India was engaged in numerous cooperative research programs with foreign countries; for example, under the 'Atoms for Peace' program, India acquired the Cirus reactor, a 40 MWt research reactor from Canada moderated with heavy water from the United States. India was also actively engaged in negotiations for the NPT. But, on May 18, 1974, India conducted a 'peaceful nuclear explosion' at Pokharan using plutonium produced by the Cirus reactor, abruptly ending the era of international collaboration. India then refused to sign the NPT, which it viewed as discriminatory since it would be required to join as a non-nuclear weapons state. As a result of India's actions, the Nuclear Suppliers Group (NSG) was created in 1975 to establish guidelines 'to apply to nuclear transfers for peaceful purposes to help ensure that such transfers would not be diverted to unsafeguarded nuclear fuel cycle or nuclear explosive activities. These nuclear export controls have forced India to be largely self-sufficient in all nuclear-related technologies.

  11. international engagement | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, , .,Shreve;SolidThermal

  12. international programs | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, , .,Shreve;SolidThermalexercises | National

  13. international security policy | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, , .,Shreve;SolidThermalexercises | Nationalpolicy |

  14. international security | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, , .,Shreve;SolidThermalexercises | Nationalpolicy ||

  15. Building International Emergency Management Systems | National Nuclear

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTuba City, Arizona,Site Operations GuideAlternateSecurity Administration

  16. Nuclear Processes at Solar Energy

    E-Print Network [OSTI]

    Carlo Broggini

    2003-08-29T23:59:59.000Z

    LUNA, Laboratory for Underground Nuclear Astrophysics at Gran Sasso, is measuring fusion cross sections down to the energy of the nucleosynthesis inside stars. Outstanding results obtained up to now are the cross-section measurements within the Gamow peak of the Sun of $^{3}He(^{3}He,2p)^{4}He$ and the $D(p,\\gamma)^{3}He$. The former plays a big role in the proton-proton chain, largely affecting the calculated solar neutrino luminosity, whereas the latter is the reaction that rules the proto-star life during the pre-main sequence phase. The implications of such measurements will be discussed. Preliminary results obtained last year on the study of $^{14}N(p,\\gamma)^{15}O$, the slowest reaction of the CNO cycle, will also be shown.

  17. Energy Secretary Moniz Announces Formation of Nuclear Energy...

    Energy Savers [EERE]

    of Nuclear Energy (NE) in October 2013, which focused on topics such as the management of spent nuclear fuel and high-level radioactive waste, to include transportation and related...

  18. Global Nuclear Energy Partnership Fact Sheet - Expand Domestic...

    Broader source: Energy.gov (indexed) [DOE]

    Expand Domestic Use of Nuclear Power Global Nuclear Energy Partnership Fact Sheet - Expand Domestic Use of Nuclear Power GNEP will build on the recent advances made by the...

  19. Department of Energy Awards $15 Million for Nuclear Fuel Cycle...

    Energy Savers [EERE]

    nuclear fuel cycle technology development, meet the need for advanced nuclear energy production and help to close the nuclear fuel cycle in the United States. "Today's awards...

  20. Preparation of nuclear fuel spheres by flotation-internal gelation

    DOE Patents [OSTI]

    Haas, P.A.; Fowler, V.L.; Lloyd, M.H.

    1984-12-21T23:59:59.000Z

    A simplified internal gelation process is claimed for the preparation of gel spheres of nuclear fuels. The process utilizes perchloroethylene as a gelation medium. Gelation is accomplished by directing droplets of a nuclear fuel broth into a moving volume of hot perchloroethylene (about 85/sup 0/C) in a trough. Gelation takes place as the droplets float on the surface of the perchloroethylene and the resultant gel spheres are carried directly into an ager column which is attached to the trough. The aged spheres are disengaged from the perchloroethylene on a moving screen and are deposited in an aqueous wash column. 3 figs.

  1. 1993 International conference on nuclear waste management and environmental remediation, Prague, Czech Republic, September 5--11, 1993. Combined foreign trip report

    SciTech Connect (OSTI)

    Slate, S.C. [comp.; Allen, R.E. [ed.

    1993-12-01T23:59:59.000Z

    The purpose of the trip was to attend the 1993 International Conference on Nuclear Waste Management and Environmental Remediation. The principal objective of this conference was to facilitate a truly international exchange of information on the management of nuclear wastes as well as contaminated facilities and sites emanating from nuclear operations. The conference was sponsored by the American Society of Mechanical Engineers, the Czech and Slovak Mechanical Engineering Societies, and the Czech and Slovak Nuclear Societies in cooperation with the Commission of the European Communities, the International Atomic Energy Agency, and the OECD Nuclear Agency. The conference was cosponsored by the American Nuclear Society, the Atomic Energy Society of Japan, the Canadian Nuclear Society, the (former USSR) Nuclear Society, and the Japan Society of Mechanical Engineers. This was the fourth in a series of biennial conferences, which started in Hong Kong, in 1987. This report summarizes shared aspects of the trip; however, each traveler`s observations and recommendations are reported separately.

  2. Innovations in the Use of Nuclear Energy for Sustainable Manufacturing

    SciTech Connect (OSTI)

    J. Stephen Herring

    2010-10-01T23:59:59.000Z

    Abstract Over the next 50 years, nuclear energy will become increasingly important in providing the electricity and heat needed both by the presently industrialized countries and by those countries which are now developing their manufacturing industries. The twin concerns of global climate change and of the vulnerability of energy supplies caused by increasing international competition will lead to a greater reliance on nuclear energy for both electricity and process heat. Conservative estimates of new nuclear construction indicate a 50% increase in capacity by 2030. Other estimates predict a tripling of present capacity. Required machine tool technologies will include the improvements in the manufacture of standard LWR components, such as pressure vessels and pumps. Further in the future, technologies for working high temperature metals and ceramics will be needed and will require new machining capabilities.

  3. INSTITUTE OF PHYSICS PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 42 (2002) 13511356 PII: S0029-5515(02)54166-1

    E-Print Network [OSTI]

    Najmabadi, Farrokh

    2002-01-01T23:59:59.000Z

    in an inertial fusion energy power plant R.W. Petzoldt1 , D.T. Goodin1 , A. Nikroo1 , E. Stephens1 , N. Siegel2 (IFE) power plant designs, the fuel is a spherical layer of frozen DT contained in a target fusion energy (IFE) power plant, the fuel is solid DT at 18 K encapsulated inside a target

  4. Office of Nuclear Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Nuclear Power in Space Explore the history of nuclear power systems in U.S. space exploration -- from early satellites to the moon, Mars and beyond. May 19, 2015 7th...

  5. International energy indicators. [Statistical tables and graphs

    SciTech Connect (OSTI)

    Bauer, E.K. (ed.)

    1980-05-01T23:59:59.000Z

    International statistical tables and graphs are given for the following: (1) Iran - Crude Oil Capacity, Production and Shut-in, June 1974-April 1980; (2) Saudi Arabia - Crude Oil Capacity, Production, and Shut-in, March 1974-Apr 1980; (3) OPEC (Ex-Iran and Saudi Arabia) - Capacity, Production and Shut-in, June 1974-March 1980; (4) Non-OPEC Free World and US Production of Crude Oil, January 1973-February 1980; (5) Oil Stocks - Free World, US, Japan, and Europe (Landed, 1973-1st Quarter, 1980); (6) Petroleum Consumption by Industrial Countries, January 1973-December 1979; (7) USSR Crude Oil Production and Exports, January 1974-April 1980; and (8) Free World and US Nuclear Generation Capacity, January 1973-March 1980. Similar statistical tables and graphs included for the United States include: (1) Imports of Crude Oil and Products, January 1973-April 1980; (2) Landed Cost of Saudi Oil in Current and 1974 Dollars, April 1974-January 1980; (3) US Trade in Coal, January 1973-March 1980; (4) Summary of US Merchandise Trade, 1976-March 1980; and (5) US Energy/GNP Ratio, 1947 to 1979.

  6. International Energy and Environmental Congress: Proceedings

    SciTech Connect (OSTI)

    Not Available

    1993-09-01T23:59:59.000Z

    This document contains information presented at the International Energy and Environmental Congress `93 proceedings. Symposiums included demand-side management strategic directions; federal energy management; corporate energy management; and pollution control technologies. Individual reports from the symposiums are processed separately for the data bases.

  7. Asia Pacific Clean Energy International OTEC Symposium

    E-Print Network [OSTI]

    in 2013 · NELHA Ocean Energy Research Center ­ Continued Heat Exchanger deployment & testing in relevantAsia Pacific Clean Energy Summit International OTEC Symposium Developer's Perspective Round Table · Invests in green related industries, products and services ­ property, new energy, aviation, agriculture

  8. Free Energy and Internal Combustion Engine Cycles

    E-Print Network [OSTI]

    Harris, William D

    2012-01-01T23:59:59.000Z

    The performance of one type (Carnot) of Internal Combustion Engine (ICE) cycle is analyzed within the framework of thermodynamic free energies. ICE performance is different from that of an External Combustion Engine (ECE) which is dictated by Carnot's rule.

  9. Free Energy and Internal Combustion Engine Cycles

    E-Print Network [OSTI]

    William D. Harris

    2012-01-11T23:59:59.000Z

    The performance of one type (Carnot) of Internal Combustion Engine (ICE) cycle is analyzed within the framework of thermodynamic free energies. ICE performance is different from that of an External Combustion Engine (ECE) which is dictated by Carnot's rule.

  10. Solar Energy International Solar PV 101 Training

    Office of Energy Efficiency and Renewable Energy (EERE)

    Solar Energy International is offering a five-day training that provides an overview of the three basic PV system applications, primarily focusing on grid-direct systems. The goal of the course is...

  11. Global economics/energy/environmental (E{sup 3}) modeling of long-term nuclear energy futures

    SciTech Connect (OSTI)

    Krakowski, R.A.; Davidson, J.W.; Bathke, C.G.; Arthur, E.D.; Wagner, R.L. Jr.

    1997-09-01T23:59:59.000Z

    A global energy, economics, environment (E{sup 3}) model has been adopted and modified with a simplified, but comprehensive and multi-regional, nuclear energy module. Using this model, consistent nuclear energy scenarios are constructed. A spectrum of future is examined at two levels in a hierarchy of scenario attributes in which drivers are either external or internal to nuclear energy. Impacts of a range of nuclear fuel-cycle scenarios are reflected back to the higher-level scenario attributes. An emphasis is placed on nuclear materials inventories (in magnitude, location, and form) and their contribution to the long-term sustainability of nuclear energy and the future competitiveness of both conventional and advanced nuclear reactors.

  12. Department of Energy Releases Global Nuclear Energy Partnership...

    Energy Savers [EERE]

    Nuclear Energy Partnership (GNEP) Strategic Plan, which details the Initiative's purpose, principles and implementation strategy. The Plan outlines a path forward to enable...

  13. International Conference on Ocean Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    on Ocean Energy International Conference on Ocean Energy November 4, 2014 1:00PM EST to November 6, 2014 10:00PM EST Halifax, Nova Scotia, Canada http:www.icoe2014canada.org...

  14. The Japan Times Printer Friendly Articles France has won the competition to host the International Thermonuclear Experimental Reactor (ITER), the world's first nuclear-

    E-Print Network [OSTI]

    the International Thermonuclear Experimental Reactor (ITER), the world's first nuclear- fusion reactor. Japan fought wins by withdrawing ITER bid Thermonuclear fusion utilizes the same process that powers the sun -- nuclear-fusion reactions -- to produce energy. Scientists at the ITER plant will create nuclear-fusion

  15. International Fuel Services and Commercial Engagement | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    International Fuel Services and Commercial Engagement International Fuel Services and Commercial Engagement The Office of International Nuclear Energy Policy and Cooperation...

  16. Sandia National Laboratories: Nuclear Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Material Research and Testing (BAM) have been collaborating for over 30 years in the area of Used Nuclear Fuel Storage and Transportation. This site documents the agenda and...

  17. Sandia National Laboratories: Nuclear Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DOE's nuclear-waste efforts and the goals of the Deep ... Waste Isolation Pilot Plant Accident Investigation Analysis Support On December 3, 2014, in Computational Modeling &...

  18. IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 50 (2010) 014001 (11pp) doi:10.1088/0029-5515/50/1/014001

    E-Print Network [OSTI]

    2010-01-01T23:59:59.000Z

    Cabinet of the French High Commissioner for Atomic Energy CEA, 91191 Gif-sur-Yvette, France Received 19 consumption of the hydrocarbons exceeds new discoveries and the margin between production capacity and demand is becoming very small. Consequently the age of cheap oil is over and producers are increasingly considering

  19. IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 50 (2010) 014005 (5pp) doi:10.1088/0029-5515/50/1/014005

    E-Print Network [OSTI]

    2010-01-01T23:59:59.000Z

    . is not significantly changed, the CO2 emission could increase by a factor of two within the next 20 years warming, since China has now become the second largest CO2 producing country. If its energy structure for another 50 years to generate electricity by fusion. A much more aggressive approach should be taken

  20. DOE Office of Nuclear Energy Transportation Planning, Route Selection...

    Office of Environmental Management (EM)

    DOE Office of Nuclear Energy Transportation Planning, Route Selection, and Rail Issues DOE Office of Nuclear Energy Transportation Planning, Route Selection, and Rail Issues...

  1. Nuclear energy is an important source of power, supplying 20

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    energy expansion by developing options to increase the energy extracted from nuclear fuel, improve waste management, and strengthen nuclear nonproliferation controls. To...

  2. Global Nuclear Energy Partnership Fact Sheet - Develop Advanced...

    Office of Environmental Management (EM)

    Global Nuclear Energy Partnership Fact Sheet - Develop Advanced Burner Reactors Global Nuclear Energy Partnership Fact Sheet - Develop Advanced Burner Reactors GNEP will develop...

  3. Nuclear Energy Research Advisory Committee (NERAC) agenda 11...

    Broader source: Energy.gov (indexed) [DOE]

    agenda 11303 Nuclear Energy Research Advisory Committee (NERAC) agenda 11303 This is an agenda of the 110303 and 110403 Nuclear Energy Research Advisory Committee (NERAC)...

  4. Guangdong Nuclear Power and New Energy Industrial Investment...

    Open Energy Info (EERE)

    Guangdong Nuclear Power and New Energy Industrial Investment Fund Management Company Jump to: navigation, search Name: Guangdong Nuclear Power and New Energy Industrial Investment...

  5. Global Nuclear Energy Partnership Fact Sheet - Demonstrate Small...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Global Nuclear Energy Partnership Fact Sheet - Demonstrate Small-Scale Reactors Global Nuclear Energy Partnership Fact Sheet - Demonstrate Small-Scale Reactors GNEP will provide...

  6. Sandia Energy - Sandia Nuclear Power Safety Expert Elected to...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Power Safety Expert Elected to National Academy of Engineering Home Infrastructure Security Energy Nuclear Energy Capabilities News News & Events Research & Capabilities...

  7. Viscosity of High Energy Nuclear Fluids

    E-Print Network [OSTI]

    V. Parihar; A. Widom; D. Drosdoff; Y. N. Srivastava

    2007-03-15T23:59:59.000Z

    Relativistic high energy heavy ion collision cross sections have been interpreted in terms of almost ideal liquid droplets of nuclear matter. The experimental low viscosity of these nuclear fluids have been of considerable recent quantum chromodynamic interest. The viscosity is here discussed in terms of the string fragmentation models wherein the temperature dependence of the nuclear fluid viscosity obeys the Vogel-Fulcher-Tammann law.

  8. Sandia Energy - Nuclear Power & Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear PressLaboratory Fellows JerryNuclear EnergyNuclear Power

  9. The Future of Energy from Nuclear Fission

    SciTech Connect (OSTI)

    Kim, Son H.; Taiwo, Temitope

    2013-04-13T23:59:59.000Z

    Nuclear energy is an important part of our current global energy system, and contributes to supplying the significant demand for electricity for many nations around the world. There are 433 commercial nuclear power reactors operating in 30 countries with an installed capacity of 367 GWe as of October 2011 (IAEA PRIS, 2011). Nuclear electricity generation totaled 2630 TWh in 2010 representing 14% the worlds electricity generation. The top five countries of total installed nuclear capacity are the US, France, Japan, Russia and South Korea at 102, 63, 45, 24, and 21 GWe, respectively (WNA, 2012a). The nuclear capacity of these five countries represents more than half, 68%, of the total global nuclear capacity. The role of nuclear power in the global energy system today has been motivated by several factors including the growing demand for electric power, the regional availability of fossil resources and energy security concerns, and the relative competitiveness of nuclear power as a source of base-load electricity. There is additional motivation for the use of nuclear power because it does not produce greenhouse gas (GHG) emissions or local air pollutants during its operation and contributes to low levels of emissions throughout the lifecycle of the nuclear energy system (Beerten, J. et. al., 2009). Energy from nuclear fission primarily in the form of electric power and potentially as a source of industrial heat could play a greater role for meeting the long-term growing demand for energy worldwide while addressing the concern for climate change from rising GHG emissions. However, the nature of nuclear fission as a tremendously compact and dense form of energy production with associated high concentrations of radioactive materials has particular and unique challenges as well as benefits. These challenges include not only the safety and cost of nuclear reactors, but proliferation concerns, safeguard and storage of nuclear materials associated with nuclear fuel cycles. In March of 2011, an unprecedented earthquake of 9 magnitude and ensuing tsunami off the east coast of Japan caused a severe nuclear accident in Fukushima, Japan (Prime Minister of Japan and His Cabinet, 2011). The severity of the nuclear accident in Japan has brought about a reinvestigation of nuclear energy policy and deployment activities for many nations around the world, most notably in Japan and Germany (BBC, 2011; Reuter, 2011). The response to the accident has been mixed and its full impact may not be realized for many years to come. The nuclear accident in Fukushima, Japan has not directly affected the significant on-going nuclear deployment activities in many countries. China, Russia, India, and South Korea, as well as others, are continuing with their deployment plans. As of October 2011, China had the most reactors under construction at 27, while Russia, India, and South Korea had 11, 6, and 5 reactors under construction, respectively (IAEA PRIS, 2011). Ten other nations have one or two reactors currently under construction. Many more reactors are planned for future deployment in China, Russia, and India, as well as in the US. Based on the World Nuclear Associations data, the realization of Chinas deployment plan implies that China will surpass the US in total nuclear capacity some time in the future.

  10. NUCLEAR FLUID DYNAMICS VERSUS INTRANUCLEAR CASCADE--POSSIBLE EVIDENCE FOR COLLECTIVE FLOW IN CENTRAL HIGH ENERGY NUCLEAR COLLISIONS

    E-Print Network [OSTI]

    Stocker, H.

    2012-01-01T23:59:59.000Z

    Flow in Central High Energy Nuclear Collisions H. Stockera,theoretical models of high energy nuclear collisions andunder Contract High energy nuclear collisions offer a unique

  11. Roundtables Is nuclear energy different than other

    E-Print Network [OSTI]

    Shrader-Frechette, Kristin

    -energy sources. Given the need to curb greenhouse-gas emissions and avoid fossil fuels, comparing nuclear power -- from real prices that are much higher than those of renewables. Why the subsidies? Partly because subsidies ($165 billion) to commercial nuclear than to wind and solar combined ($5 billion), if one counts

  12. NUCLEAR ENERGY SYSTEM COST MODELING

    SciTech Connect (OSTI)

    Francesco Ganda; Brent Dixon

    2012-09-01T23:59:59.000Z

    The U.S. Department of Energys Fuel Cycle Technologies (FCT) Program is preparing to perform an evaluation of the full range of possible Nuclear Energy Systems (NES) in 2013. These include all practical combinations of fuels and transmuters (reactors and sub-critical systems) in single and multi-tier combinations of burners and breeders with no, partial, and full recycle. As part of this evaluation, Levelized Cost of Electricity at Equilibrium (LCAE) ranges for each representative system will be calculated. To facilitate the cost analyses, the 2009 Advanced Fuel Cycle Cost Basis Report is being amended to provide up-to-date cost data for each step in the fuel cycle, and a new analysis tool, NE-COST, has been developed. This paper explains the innovative Island approach used by NE-COST to streamline and simplify the economic analysis effort and provides examples of LCAE costs generated. The Island approach treats each transmuter (or target burner) and the associated fuel cycle facilities as a separate analysis module, allowing reuse of modules that appear frequently in the NES options list. For example, a number of options to be screened will include a once-through uranium oxide (UOX) fueled light water reactor (LWR). The UOX LWR may be standalone, or may be the first stage in a multi-stage system. Using the Island approach, the UOX LWR only needs to be modeled once and the module can then be reused on subsequent fuel cycles. NE-COST models the unit operations and life cycle costs associated with each step of the fuel cycle on each island. This includes three front-end options for supplying feedstock to fuel fabrication (mining/enrichment, reprocessing of used fuel from another island, and/or reprocessing of this islands used fuel), along with the transmuter and back-end storage/disposal. Results of each island are combined based on the fractional energy generated by each islands in an equilibrium system. The cost analyses use the probability distributions of key parameters and employs Monte Carlo sampling to arrive at an islands cost probability density function (PDF). When comparing two NES to determine delta cost, strongly correlated parameters can be cancelled out so that only the differences in the systems contribute to the relative cost PDFs. For example, one comparative analysis presented in the paper is a single stage LWR-UOX system versus a two-stage LWR-UOX to LWR-MOX system. In this case, the first stage of both systems is the same (but with different fractional energy generation), while the second stage of the UOX to MOX system uses the same type transmuter but the fuel type and feedstock sources are different. In this case, the cost difference between systems is driven by only the fuel cycle differences of the MOX stage.

  13. International Internships in Nuclear Safeguards and Security: Challenges and Successes

    SciTech Connect (OSTI)

    Duncan, Cristen L.; Heinberg, Cynthia L.; Killinger, Mark H.; Goodey, Kent O.; Kryuchkov, Eduard F.; Geraskin, Nikolai I.; Silaev, Maxim E.; Sokova, Elena K.; Ford, David G.

    2010-04-20T23:59:59.000Z

    All students in the Russian safeguards and security degree programs at the National Research Nuclear University MEPhI and Tomsk Polytechnic University, sponsored by the Material Protection, Control and Accounting (MPC&A) Education Project, take part in a domestic internship at a Russian enterprise or facility. In addition, a select few students are placed in an international internship. These internships provide students with a better view of how MPC&A and nonproliferation in general are addressed outside of Russia. The possibility of an international internship is a significant incentive for students to enroll in the safeguards and security degree programs. The U.S. members of the MPC&A Education Project team interview students who have been nominated by their professors. These students must have initiative and reasonable English skills. The project team and professors then select students to be tentatively placed in various international internships during the summer or fall of their final year of study. Final arrangements are then made with the host organizations. This paper describes the benefits of the joint United States/Russia cooperation for next-generation workforce development, some of the international internships that have been carried out, the benefits of these international internships, and lessons learned in implementing them.

  14. SBD International | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form HistoryRistma AG Jump to:Energy InformationS W Energy

  15. International Portfolio | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov.Energy02.pdf7 OPAMEnergy InnovationDevelopment,EnvironmentsEmerging

  16. Kousa International | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to: navigation, search GEOTHERMALTexas: EnergyKosovo: Energy

  17. Neety International | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall, Pennsylvania: EnergyEnergy InformationNaturaSystems |LLC JumpNeety

  18. International energy annual 1990. [Contains Glossary

    SciTech Connect (OSTI)

    none,

    1992-01-23T23:59:59.000Z

    The International Energy Annual presents current data and trends for production, consumption, imports, and exports of primary energy commodities in more than 190 countries, dependencies, and area of special sovereignty. Also included are prices on crude oil, petroleum products, natural gas, electricity, and coal in selected countries. (VC)

  19. Manpower development for new nuclear energy programs

    E-Print Network [OSTI]

    Verma, Aditi

    2012-01-01T23:59:59.000Z

    In the spring of 2012, nine countries were seriously considering embarking on nuclear energy programs, either having signed contracts with reactor vendors or having made investments for the development of infrastructure ...

  20. Department of Energy Nuclear Safety Policy

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-02-08T23:59:59.000Z

    It is the policy of the Department of Energy to design, construct, operate, and decommission its nuclear facilities in a manner that ensures adequate protection of workers, the public, and the environment. Cancels SEN-35-91.

  1. Investing in Clean, Safe Nuclear Energy

    ScienceCinema (OSTI)

    President Obama

    2010-09-01T23:59:59.000Z

    President Obama announces more than $8 billion in loan guarantees for two new nuclear reactors as part of the Administration's commitment to providing clean energy and creating new jobs.

  2. Investing in Clean, Safe Nuclear Energy

    Broader source: Energy.gov [DOE]

    President Obama announces more than $8 billion in loan guarantees for two new nuclear reactors as part of the Administration's commitment to providing clean energy and creating new jobs.

  3. Energy Secretary Bodman Leads US Delegation to International...

    Energy Savers [EERE]

    the international energy market, energy security, energy efficiency, and expanding investment in energy infrastructures. The discussions will also include methods to...

  4. Design and Transient Analysis of Passive Safety Cooling Systems for Advanced Nuclear Reactors

    E-Print Network [OSTI]

    Galvez, Cristhian

    2011-01-01T23:59:59.000Z

    Advisory Committee and Generation IV International Forum.Nuclear Energy Agency The Generation IV International Forum.Technology Roadmap for Generation IV Nuclear Energy Systems.

  5. Medium energy nuclear physics research

    SciTech Connect (OSTI)

    Peterson, G.A.; Dubach, J.F.; Hicks, R.S.; Miskimen, R.A.

    1988-09-01T23:59:59.000Z

    The UMass group has concentrated on using electromagnetic probes, particularly the electron in high-energy scattering experiments at the Stanford Liner Accelerator Center (SLAC). Plans are also being made for high energy work at the Continuous Beam Accelerator Facility (CEBAF). The properties of this accelerator should permit a whole new class of coincidence experiments to be carried out. At SLAC UMass has made major contributions toward the plans for a cluster-jet gas target and detector system at the 16 GeV PEP storage ring. For the future CEBAF accelerator, tests were made of the feasibility of operating wire drift chambers in the vicinity of a continuous electron beam at the University Illinois microtron. At the same time a program of studies of the nuclear structure of more complex nuclei has been continued at the MIT-Bates Linear Accelerator Center and in Amsterdam at the NIKHEF-K laboratory. At the MIT-Bates Accelerator, because of an unforeseen change in beam scheduling as a result of problems with the T{sub 20} experiment, the UMass group was able to complete data acquisition on experiments involving 180{degrees} elastic magnetic scattering on {sup 117}Sn and {sup 41}Ca. A considerable effort has been given to preparations for a future experiment at Bates involving the high-resolution threshold electrodisintegration of the deuteron. The use of these chambers should permit a high degree of discrimination against background events in the measurement of the almost neutrino-like small cross sections that are expected. In Amsterdam at the NIKHEF-K facility, single arm (e,e{prime}) measurements were made in November of 1987 on {sup 10}B in order to better determine the p{sub 3/2} wave function from the transition from the J{sup pi} = 3{sup +} ground state to the O{sup +} excited state at 1.74 MeV. In 1988, (e,e{prime}p) coincidence measurements on {sup 10}B were completed. The objective was to obtain information on the p{sub 3/2} wave function by another means.

  6. Nuclear diffractive structure functions at high energies

    E-Print Network [OSTI]

    C. Marquet; H. Kowalski; T. Lappi; R. Venugopalan

    2008-05-30T23:59:59.000Z

    A future high-energy electron-ion collider would explore the non-linear weakly-coupled regime of QCD, and test the Color Glass Condensate (CGC) approach to high-energy scattering. Hard diffraction in deep inelastic scattering off nuclei will provide many fundamental measurements. In this work, the nuclear diffractive structure function F_{2,A}^D is predicted in the CGC framework, and the features of nuclear enhancement and suppression are discussed.

  7. Sandia National Laboratories: Nuclear Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    21, 2012, in Digital Instrument and Control (I&C) is an integral part of the nuclear power industry in the United States. I&C systems monitor the safe, reliable and secure...

  8. Long-Term Planning for Nuclear Energy Systems Under Deep Uncertainty

    E-Print Network [OSTI]

    Kim, Lance Kyungwoo

    2011-01-01T23:59:59.000Z

    5.3.2 Nuclear Energy System Model . . . . . . . . . . .Brief History of Nuclear Energy . . . . . . . . Nuclear FuelModeling . . . . . . . . . . . . . 5.3 Nuclear Energy System

  9. Long-Term Planning for Nuclear Energy Systems Under Deep Uncertainty

    E-Print Network [OSTI]

    Kim, Lance Kyungwoo

    2011-01-01T23:59:59.000Z

    5.3.2 Nuclear Energy System Model . . . . . . . . . . .scenarios of global nuclear energy demand . . . . . . . .Brief History of Nuclear Energy . . . . . . . . Nuclear Fuel

  10. Canergy International | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainableCSL GasPermits Manual JumpEnergyPhotonicsCanastota,CandlerCanergy

  11. International Truck | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii | Open EnergyIGP Jump to:InformationTruck

  12. Iteknowledgies International | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii | OpenSuperiorEnergyOpen

  13. Mastervolt International | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville, Ohio: Energy Resources Jump to:Michigan:InformationOpenMastervolt

  14. Biofuels International | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass ConversionsSouth Carolina:EnergyPark,BioJetMadison,Bioflame LtdIncIndiana

  15. ICF International | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup | OpenHunan Runhua New Energy DevelopmentListI Sol VenturesICF

  16. Intermediate-energy nuclear chemistry workshop

    SciTech Connect (OSTI)

    Butler, G.W.; Giesler, G.C.; Liu, L.C.; Dropesky, B.J.; Knight, J.D.; Lucero, F.; Orth, C.J.

    1981-05-01T23:59:59.000Z

    This report contains the proceedings of the LAMPF Intermediate-Energy Nuclear Chemistry Workshop held in Los Alamos, New Mexico, June 23-27, 1980. The first two days of the Workshop were devoted to invited review talks highlighting current experimental and theoretical research activities in intermediate-energy nuclear chemistry and physics. Working panels representing major topic areas carried out indepth appraisals of present research and formulated recommendations for future research directions. The major topic areas were Pion-Nucleus Reactions, Nucleon-Nucleus Reactions and Nuclei Far from Stability, Mesonic Atoms, Exotic Interactions, New Theoretical Approaches, and New Experimental Techniques and New Nuclear Chemistry Facilities.

  17. Nuclear Security & Nonproliferation | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear Astrophysics One of the greatNuclear Science/NuclearSafety

  18. Symmetry energy in nuclear density functional theory

    E-Print Network [OSTI]

    W. Nazarewicz; P. -G. Reinhard; W. Satula; D. Vretenar

    2013-07-22T23:59:59.000Z

    The nuclear symmetry energy represents a response to the neutron-proton asymmetry. In this survey we discuss various aspects of symmetry energy in the framework of nuclear density functional theory, considering both non-relativistic and relativistic self-consistent mean-field realizations side-by-side. Key observables pertaining to bulk nucleonic matter and finite nuclei are reviewed. Constraints on the symmetry energy and correlations between observables and symmetry-energy parameters, using statistical covariance analysis, are investigated. Perspectives for future work are outlined in the context of ongoing experimental efforts.

  19. High density behaviour of nuclear symmetry energy

    E-Print Network [OSTI]

    D. N. Basu; Tapan Mukhopadhyay

    2006-12-27T23:59:59.000Z

    Role of the isospin asymmetry in nuclei and neutron stars, with an emphasis on the density dependence of the nuclear symmetry energy, is discussed. The symmetry energy is obtained using the isoscalar as well as isovector components of the density dependent M3Y effective interaction. The constants of density dependence of the effective interaction are obtained by reproducing the saturation energy per nucleon and the saturation density of spin and isospin symmetric cold infinite nuclear matter. Implications for the density dependence of the symmetry energy in case of a neutron star are discussed, and also possible constraints on the density dependence obtained from finite nuclei are compared.

  20. Nuclear Energy Density Optimization: UNEDF2

    E-Print Network [OSTI]

    M. Kortelainen; J. McDonnell; W. Nazarewicz; E. Olsen; P. -G. Reinhard; J. Sarich; N. Schunck; S. M. Wild; D. Davesne; J. Erler; A. Pastore

    2014-10-30T23:59:59.000Z

    The parameters of the UNEDF2 nuclear energy density functional (EDF) model were obtained in an optimization to experimental data consisting of nuclear binding energies, proton radii, odd-even mass staggering data, fission-isomer excitation energies, and single particle energies. In addition to parameter optimization, sensitivity analysis was done to obtain parameter uncertainties and correlations. The resulting UNEDF2 is an all-around EDF. However, the sensitivity analysis also demonstrated that the limits of current Skyrme-like EDFs have been reached and that novel approaches are called for.

  1. International Energy Outlook 2014 - Energy Information Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The Energy Materials Center at CornellOfvia aEnergy

  2. Energy Vision International Florida | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazel Crest,EnergySerranopolis JumpESL Jump to: navigation,Energy

  3. Nuclear Physics A 770 (2006) 131 Relativistic nuclear energy density functional

    E-Print Network [OSTI]

    Weise, Wolfram

    Nuclear Physics A 770 (2006) 1­31 Relativistic nuclear energy density functional constrained by low-energy 10 February 2006 Available online 3 March 2006 Abstract A relativistic nuclear energy density nuclear physics: the relationship between low-energy, non- perturbative QCD and the rich structure

  4. International Perspective on Fukushima Accident

    Broader source: Energy.gov [DOE]

    Presenter: Miroslav Lipr, Head, Operational Safety Section, Department of Nuclear Safety and Security, International Atomic Energy Agency

  5. Greenlife International | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEI ReferenceJump to: navigation,IISrlMassachusetts:

  6. Enerco International | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A PotentialJump to:Emminol Jump to: navigation,EnableEner3EnerTechEnerage

  7. SRI International | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to:RoscommonSBY Solutions Jump to:SM

  8. Scheuco International | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd JumpInformation Evaluation, Regionalization &Schenectady

  9. Advent International | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1AMEE Jump to:Ohio:Ads-tecInformation Circa

  10. RETScreen International | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form History Facebook iconQuito,Jump to: navigation,

  11. Prescience International | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation,Pillar Group BV Jump to: navigation,Power RentalAreas- CovePrescience

  12. MGM International | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf KilaueaInformation Other4Q07) WindLowM2E Power IncMARMCMGM

  13. NBGI International | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose BendMiasoleTremor(Question) | OpenGAIslandN.A.T.I.V.E.NBGI

  14. Edison International | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazel Crest, Illinois:Edinburgh University aka Wave Power Group

  15. Kwikpower International | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |Jilin Zhongdiantou NewKorea Parts andKunshan Henghui NewKuwait

  16. Carbon International | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:Power LPInformation 8thCalwind IICaneyNW1 8LH Sector: Carbon

  17. BBI International | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions Inc Jump to:AurigaPlantillas Jump to:nculosAzurRB9BASICBB

  18. Vectron International | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga,planning methodologies andVacantVan BurenSynFuelsVecariusVectron

  19. Conservation International | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformationNew| OpenCongress, Arizona:Connecticut:Conserval

  20. DEK International | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.pngRoofs andCrops Ltd Jump to: navigation, Jump to:DEAPDEK

  1. Dalu International | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.pngRoofs andCrops Ltd Jump1-EA Jump

  2. Climate Control Using Nuclear Energy

    E-Print Network [OSTI]

    Moninder Singh Modgil

    2008-01-01T23:59:59.000Z

    We examine implications of anthropogenic low pressure regions, - created by injecting heat from nuclear reactors, into atmosphere. We suggest the possibility that such artificially generated low pressure regions, near hurricanes could disrupt their growth, path, and intensity. This method can also create controlled tropical stroms, which lead to substantial rainfall in arid areas, such as - (1)Sahara desert, (2) Australian interior desert, and (3) Indian Thar desert. A simple vortex suction model is developed to study, effect on atmospheric dynamics, by such a nuclear heat injection system.

  3. International nuclear fuel cycle fact book. [Contains glossary

    SciTech Connect (OSTI)

    Leigh, I.W.; Lakey, L.T.; Schneider, K.J.; Silviera, D.J.

    1987-01-01T23:59:59.000Z

    As the US Department of Energy (DOE) and DOE contractors have become increasingly involved with other nations in nuclear fuel cycle and waste management cooperative activities, a need has developed for a ready source of information concerning foreign fuel cycle programs, facilities, and personnel. This Fact Book was compiled to meet that need. The information contained has been obtained from nuclear trade journals and newsletters; reports of foreign visits and visitors; CEC, IAEA, and OECD/NEA activities reports; proceedings of conferences and workshops; and so forth. Sources do not agree completely with each other, and the data listed herein does not reflect any one single source but frequently is a consolidation/combination of information. Lack of space as well as the intent and purpose of the Fact Book limit the given information to that pertaining to the Nuclear Fuel Cycle and to data considered of primary interest or most helpful to the majority of users.

  4. Energy Systems International | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A PotentialJump to:Emminol JumpEnergy System

  5. International Energy Agency (IEA) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDIT REPORTEnergyFarmsPower Co Ltd Jump

  6. TW Energy International | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDITCalifornia Sector:Shrenik IndustriesState ofSwitchpowerTCITMETS

  7. International Clean Energy Analysis | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtelInterias Solar Energy Jump to: navigation,Machines Corp IBMsource

  8. International Clean Energy Analysis | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii | Open Energy Informationsource History View

  9. International Energy Agency (IEA) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii | Open Energy Informationsource History

  10. International Energy Agency Feed | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii | Open Energy Informationsource

  11. Renewable Energy Institute International | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ | Roadmap JumpReliance IndustriesRenewable Energy Institute

  12. XLV International Winter Meeting on Nuclear Physics BORMIO, Italy, January 14-21, 2007

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    XLV International Winter Meeting on Nuclear Physics BORMIO, Italy, January 14-21, 2007 The ALICE transition of nuclear matter from a hadron gas to a new state of matter, the Quark Gluon Plasma (QGP

  13. Ira Helfand, MD International Physicians for the Prevention of Nuclear War

    E-Print Network [OSTI]

    Robock, Alan

    Ira Helfand, MD International Physicians for the Prevention of Nuclear War Physicians for Social Responsibility NUCLEAR FAMINE: A BILLION PEOPLE AT RISK Global Impacts of Limited Nuclear War on Agriculture of studies have shown that a limited, regional nuclear war between India and Pakistan would cause significant

  14. International training course on implementation of state systems of accounting for and control of nuclear materials: proceedings

    SciTech Connect (OSTI)

    Not Available

    1984-06-01T23:59:59.000Z

    This report incorporates all lectures and presentations at the International Training Course on Implementation of State Systems of Accounting for and Control of Nuclear Materials held October 17 through November 4, 1983, at Santa Fe and Los Alamos, New Mexico and Richland, Washington, USA. Authorized by the US Nuclear Non-Proliferation Act and sponsored by the US Department of Energy in cooperation with the International Atomic Energy Agency, the course was developed to provide practical training in the design, implementation, and operation of a State system of nuclear materials accountability and control that satisfies both national and international safeguards requirements. Major emphasis for the 1983 course was placed on safeguards methods used at bulk-handling facilities, particularly low-enriched uranium conversion and fuel fabrication plants. The course was conducted by the University of California's Los Alamos National Laboratory and Exxon Nuclear Company, Inc. Tours and demonstrations were arranged at the Los Alamos National Laboratory, Los Alamos, New Mexico, and the Exxon Nuclear fuel fabrication plant, the Battelle Pacific Northwest Laboratory, Westinghouse Fast Flux Test Facility Visitor Center, and Washington Public Power System nuclear reactor facilities in Richland, Washington. Individual presentations were indexed for inclusion in the Energy Data Base.

  15. Is Nuclear Energy the Solution?

    E-Print Network [OSTI]

    Saier, Milton H.; Trevors, Jack T.

    2010-01-01T23:59:59.000Z

    wind power and other renewable technologies, combined with energy efficiency and conservation can be more cost

  16. International Nuclear Energy Research Initiative 2010 Annual...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    an accurately measured response function and Monte Carlo (MC) modeling, which will be applied to verify the (n,p) angular distribution. After developing a prototype detector, the...

  17. International Nuclear Energy Policy and Cooperation | Department...

    Energy Savers [EERE]

    encompasses technologies related to small modular reactors (SMRs), sodium-cooled fast reactors, light water reactor accident-tolerant fuels, actinide separations and waste...

  18. Nuclear Hybrid Energy Systems: Challenges and Opportunities

    SciTech Connect (OSTI)

    P. Sabharwall; S.B. Sitton; S.J. Yoon; C. Stoots

    2014-07-01T23:59:59.000Z

    With growing demand of energy and costs of the fossil fuels, coupled with the environmental concerns have resulted in an increased interest in alternative energy sources. Nuclear hybrid energy systems (NHES) are being considered which incorporates renewable energy sources such as solar and wind energy combined with nuclear reactor and energy storage to meet the peak hours demand imposed on the grid, along with providing process heat for other potential industrial applications. This concept could potentially satisfy various energy demands and improve reliability, robustness and resilience for the entire system as a whole, along with economic and net efficiency gains. This paper provides a brief understanding of potential NHES system and architecture along with the challenges

  19. International energy outlook 1995, May 1995

    SciTech Connect (OSTI)

    NONE

    1995-06-01T23:59:59.000Z

    The International Energy Outlook 1995 (IEO95) presents an assessment by the Energy Information Administration (EIA) of the international energy market outlook through 2010. The report is an extension of the EIA`s Annual Energy Outlook 1995 (AEO95), which was prepared using the National Energy Modeling System (NEMS). US projections appearing in the IEO95 are consistent with those published in the AEO95. IEO95 is provided as a statistical service to energy managers and analysts, both in government and in the private sector. The projects are used by international agencies, Federal and State governments, trade associations, and other planners and decisionmakers. They are published pursuant to the Department of energy Organization Act of 1977 (Public Law 95-91), Section 295(c). The IEO95 projections are based on US and foreign government policies in effect on October 1, 1994. IEO95 displays projections according to six basic country groupings. The regionalization has changed since last year`s report. Mexico has been added to the Organization for Economic Cooperation and Development (OECD), and a more detailed regionalization has been incorporated for the remainder of the world, including the following subgroups: non-OECD Asia, Africa, Middle East, and Central and South America. China is included in non-OECD Asia. Eastern Europe and the former Soviet Union are combined in the EE/FSU subgroup.

  20. The U.S. Department of Energy's Office of Nuclear Energy promotes nuclear power as

    E-Print Network [OSTI]

    Kemner, Ken

    PowerAmericaforMoreThanFiveDecades Past, Present, and Future ... The United States introduced nuclear energy into our domestic electricity--DependOnIt HelpingtoPowerAmericaforMoreThanFiveDecades Past, Present, and Future ... The United States introduced.eia.doe.gov #12;Public Approval is High ... Support for nuclear energy has grown over the past 25 years, according

  1. PERGAMON Annals of Nuclear Energy 26 (1999) 1183-1204 NUCLEAR ENERGY

    E-Print Network [OSTI]

    Pzsit, Imre

    1999-01-01T23:59:59.000Z

    PERGAMON Annals of Nuclear Energy 26 (1999) 1183-1204 annalsof NUCLEAR ENERGY LOCALISATION of Reactor Phystcs, Chalmers Umverslty of Technology S-412 96 Goteborg, Sweden Received 8 December 1998 conditions and it is inferred that the instablhty most probably ts a locahsed self-sustained density wave

  2. International Activities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking of BlytheDepartmentEnergyDemonstrationInteragency2, 2015

  3. Green Energy Resources Inc formerly New York International Log...

    Open Energy Info (EERE)

    International Log Lumber Company Jump to: navigation, search Name: Green Energy Resources Inc (formerly New York International Log & Lumber Company) Place: San Antonio, Texas...

  4. International Energy Conservation Code 2012 & 2015

    E-Print Network [OSTI]

    Ellis, S.

    2014-01-01T23:59:59.000Z

    International Energy Conservation Code 2012 & 2015 Whats the Difference? ESL-KT-14-11-42 CATEE 2014: Clean Air Through Efficiency Conference, Dallas, Texas Nov. 18-20 Energy Codes Specialist Texas A&M Engineering Experiment Station shirleyellis..., Atmospheric Venting Procedure and Solar-Ready - Chapters 1, 2, 3, 5, 6 & Appendix RA & RB Residential Energy Efficiency Commercial Energy Efficiency ESL-KT-14-11-42 CATEE 2014: Clean Air Through Efficiency Conference, Dallas, Texas Nov. 18-20 Seminar Goal...

  5. International Energy Forum Ministerial | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment of EnergyIndustry15Among Statesfor a Smart GridDownload

  6. ORYXE Energy International Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRoseConcerns Jumpsource HistoryFractures below a19/2008 Expire Date3ORYXE

  7. MicroEnergy International | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose BendMiasole Inc Jump

  8. Panda Energy International Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLuOpenNorthOlympiaAnalysis) JumpPalcan s JVCo | Open

  9. LBNL International Energy Studies | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |Jilin Zhongdiantou NewKorea Parts andKunshanGroup Name China

  10. LBNL International Energy Studies | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |Jilin Zhongdiantou NewKorea Parts andKunshanGroup Name China

  11. Methes Energies International Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLu an GroupInformation Meier(Redirected from Merrimack,Methes

  12. XOROX Energy International Group | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapers Home Kyoung'sWoongjin PolysiliconWuxiWyomingWyomingX

  13. Energy Solutions International | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 No revision|LLC Place: Ketchum,SPARQLFailed to load RSS feedZip:

  14. Instabilities in the Nuclear Energy Density Functional

    E-Print Network [OSTI]

    M. Kortelainen; T. Lesinski

    2010-02-05T23:59:59.000Z

    In the field of Energy Density Functionals (EDF) used in nuclear structure and dynamics, one of the unsolved issues is the stability of the functional. Numerical issues aside, some EDFs are unstable with respect to particular perturbations of the nuclear ground-state density. The aim of this contribution is to raise questions about the origin and nature of these instabilities, the techniques used to diagnose and prevent them, and the domain of density functions in which one should expect a nuclear EDF to be stable.

  15. Identifying two steps in the internal wave energy cascade

    E-Print Network [OSTI]

    Sun, Oliver Ming-Teh

    2010-01-01T23:59:59.000Z

    1.1.1 The internal wave energy cascade . . . . . . .? ? , which contain only wave energy trav- eling upward anddistinction is made between wave energy propagating upward

  16. India's Nuclear Energy Program : prospects The talk will begin with a brief introduction to nuclear fission

    E-Print Network [OSTI]

    Shyamasundar, R.K.

    India's Nuclear Energy Program : prospects The talk will begin with a brief introduction to nuclear posed by reactors, the accident liability laws and regulatory structure governing nuclear energy, Wednesday, Oct 29th 4:00 PM (Tea/Coffee at Seminar Hall, TCIS Colloquium India's Nuclear Energy Program

  17. PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUCLEAR PHYSICS

    E-Print Network [OSTI]

    Saxon, D.S.

    2010-01-01T23:59:59.000Z

    Phys. A278 (1977) 387. NUCLEAR FISSION INDUCED BY ATOMICand J.R. Huizenga, in Nuclear Fission (Academic Press, Newvery soft nuclei, nuclear fission and heavy ion reactions.

  18. Nuclear Energy University Program: A Presentation to Vice Presidents...

    Office of Environmental Management (EM)

    Nuclear Energy University Program: A Presentation to Vice Presidents of Research and Development of Historically Black Colleges and Universities, given by the Office of Nuclear...

  19. United States and Japan Sign Joint Nuclear Energy Action Plan...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of a global nuclear energy infrastructure as envisioned in GNEP to develop innovative nuclear reactor and fuel cycle technologies. GNEP seeks to bring about a significant,...

  20. Argonne OutLoud Public Lecture Series: Nuclear Energy | Argonne...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Energy Share Description On November 15, 2012, Argonne National Laboratory opened its doors to the public for a presentationdiscussion titled "Getting to Know Nuclear:...

  1. Sandia Weapon Intern Program visits KCP | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved: 5-13-14 FEDERALAmerica HighSTART Signed |Nuclear

  2. Savannah River Site hosts military interns | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved: 5-13-14 FEDERALAmerica HighSTART SignedhostsNuclearAdministration

  3. Weapons Intern Program participants visit Pantex | National Nuclear

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved: 5-13-14Russian Nuclear Warheads Arrives inAdministrationSecurity

  4. Statement to the IAEA International Conference on Nuclear Security |

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergyIssues DOE's NuclearSpurring SolarSystem,

  5. Nuclear Materials Disposition | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire3627 Federal Register /7 ThisNuclear Materials Disposition

  6. Accelerator Driven Nuclear Energy: The Thorium Option

    SciTech Connect (OSTI)

    Raja, Rajendran

    2009-03-18T23:59:59.000Z

    Conventional nuclear reactors use enriched Uranium as fuel and produce nuclear waste which needs to be stored away for over 10,000 years. At the current rate of use, existing sources of Uranium will last for 50-100 years. We describe a solution to the problem that uses particle accelerators to produce fast neutrons that can be used to burn existing nuclear waste and produce energy. Such systems, initially proposed by Carlo Rubbia and collaborators in the 1990's, are being seriously considered by many countries as a possible solution to the green energy problem. Accelerator driven reactors operate in a sub-critical regime and, thus, are safer and can obtain energy from plentiful elements such as Thorium-232 and Uranium-238. What is missing is the high intensity (10MW) accelerator that produces 1 GeV protons. We will describe scenarios which if implemented will make such systems a reality.

  7. Accelerator Driven Nuclear Energy - The Thorium Option

    SciTech Connect (OSTI)

    Rajendran Raja

    2009-03-18T23:59:59.000Z

    Conventional nuclear reactors use enriched Uranium as fuel and produce nuclear waste which needs to be stored away for over 10,000 years. At the current rate of use, existing sources of Uranium will last for 50-100 years. We describe a solution to the problem that uses particle accelerators to produce fast neutrons that can be used to burn existing nuclear waste and produce energy. Such systems, initially proposed by Carlo Rubbia and collaborators in the 1990's, are being seriously considered by many countries as a possible solution to the green energy problem. Accelerator driven reactors operate in a sub-critical regime and, thus, are safer and can obtain energy from plentiful elements such as Thorium-232 and Uranium-238. What is missing is the high intensity (10MW) accelerator that produces 1 GeV protons. We will describe scenarios which if implemented will make such systems a reality.

  8. Accelerator Driven Nuclear Energy - The Thorium Option

    ScienceCinema (OSTI)

    Rajendran Raja

    2010-01-08T23:59:59.000Z

    Conventional nuclear reactors use enriched Uranium as fuel and produce nuclear waste which needs to be stored away for over 10,000 years. At the current rate of use, existing sources of Uranium will last for 50-100 years. We describe a solution to the problem that uses particle accelerators to produce fast neutrons that can be used to burn existing nuclear waste and produce energy. Such systems, initially proposed by Carlo Rubbia and collaborators in the 1990's, are being seriously considered by many countries as a possible solution to the green energy problem. Accelerator driven reactors operate in a sub-critical regime and, thus, are safer and can obtain energy from plentiful elements such as Thorium-232 and Uranium-238. What is missing is the high intensity (10MW) accelerator that produces 1 GeV protons. We will describe scenarios which if implemented will make such systems a reality.

  9. Coal and nuclear power: Illinois' energy future

    SciTech Connect (OSTI)

    Not Available

    1982-01-01T23:59:59.000Z

    This conference was sponsored by the Energy Resources Center, University of Illinois at Chicago; the US Department of Energy; the Illinois Energy Resources Commission; and the Illinois Department of Energy and Natural Resources. The theme for the conference, Coal and Nuclear Power: Illinois' Energy Future, was based on two major observations: (1) Illinois has the largest reserves of bituminous coal of any state and is surpassed in total reserves only by North Dakota, and Montana; and (2) Illinois has made a heavy commitment to the use of nuclear power as a source of electrical power generation. Currently, nuclear power represents 30% of the electrical energy produced in the State. The primary objective of the 1982 conference was to review these two energy sources in view of the current energy policy of the Reagan Administration, and to examine the impact these policies have on the Midwest energy scene. The conference dealt with issues unique to Illinois as well as those facing the entire nation. A separate abstract was prepared for each of the 30 individual presentations.

  10. International Energy Outlook 2014 - Energy Information Administration

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year199873.4DecemberDecember FormElectricityProjects

  11. Nuclear Fuels | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire3627 Federal Register /7 This

  12. Nuclear Safety | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire3627 Federal Register /76Safeguards and

  13. Is Nuclear Energy the Solution?

    E-Print Network [OSTI]

    Saier, Milton H.; Trevors, Jack T.

    2010-01-01T23:59:59.000Z

    fired power plant per unit of electrical energy. Wind powerpower plants will not be cost competitive with other electricity-generating alternatives. For example, wind

  14. Redundancy of Supply in the International Nuclear Fuel Fabrication Market: Are Fabrication Services Assured?

    SciTech Connect (OSTI)

    Seward, Amy M.; Toomey, Christopher; Ford, Benjamin E.; Wood, Thomas W.; Perkins, Casey J.

    2011-11-14T23:59:59.000Z

    For several years, Pacific Northwest National Laboratory (PNNL) has been assessing the reliability of nuclear fuel supply in support of the U.S. Department of Energy/National Nuclear Security Administration. Three international low enriched uranium reserves, which are intended back up the existing and well-functioning nuclear fuel market, are currently moving toward implementation. These backup reserves are intended to provide countries credible assurance that of the uninterrupted supply of nuclear fuel to operate their nuclear power reactors in the event that their primary fuel supply is disrupted, whether for political or other reasons. The efficacy of these backup reserves, however, may be constrained without redundant fabrication services. This report presents the findings of a recent PNNL study that simulated outages of varying durations at specific nuclear fuel fabrication plants. The modeling specifically enabled prediction and visualization of the reactors affected and the degree of fuel delivery delay. The results thus provide insight on the extent of vulnerability to nuclear fuel supply disruption at the level of individual fabrication plants, reactors, and countries. The simulation studies demonstrate that, when a reasonable set of qualification criteria are applied, existing fabrication plants are technically qualified to provide backup fabrication services to the majority of the world's power reactors. The report concludes with an assessment of the redundancy of fuel supply in the nuclear fuel market, and a description of potential extra-market mechanisms to enhance the security of fuel supply in cases where it may be warranted. This report is an assessment of the ability of the existing market to respond to supply disruptions that occur for technical reasons. A forthcoming report will address political disruption scenarios.

  15. Nuclear Liability | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOilNEWResponse to Time-Based Rates from theLiability Nuclear Liability 1.

  16. International Voluntary Renewable Energy Markets (Presentation)

    SciTech Connect (OSTI)

    Heeter, J.

    2012-06-01T23:59:59.000Z

    This presentation provides an overview of international voluntary renewable energy markets, with a focus on the United States and Europe. The voluntary renewable energy market is the market in which consumers and institutions purchase renewable energy to match their electricity needs on a voluntary basis. In 2010, the U.S. voluntary market was estimated at 35 terawatt-hours (TWh) compared to 300 TWh in the European market, though key differences exist. On a customer basis, Australia has historically had the largest number of customers, pricing for voluntary certificates remains low, at less than $1 megawatt-hour, though prices depend on technology.

  17. Jupiter International Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtelInteriasIowa: Energy Resources JumpJudson,International Ltd Jump to:

  18. Nufcor International Limited Nufcor | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri: EnergyExcellence Seed LLCShores,ActivityNufcor International Limited

  19. Best Power International LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass ConversionsSouth Carolina: EnergyConnecticut:NewCarolina:Power International

  20. Nuclear Energy Density Functionals Constrained by Low-Energy QCD

    E-Print Network [OSTI]

    Dario Vretenar

    2008-02-06T23:59:59.000Z

    A microscopic framework of nuclear energy density functionals is reviewed, which establishes a direct relation between low-energy QCD and nuclear structure, synthesizing effective field theory methods and principles of density functional theory. Guided by two closely related features of QCD in the low-energy limit: a) in-medium changes of vacuum condensates, and b) spontaneous breaking of chiral symmetry; a relativistic energy density functional is developed and applied in studies of ground-state properties of spherical and deformed nuclei.

  1. Nuclear energy density optimization: Shell structure

    E-Print Network [OSTI]

    M. Kortelainen; J. McDonnell; W. Nazarewicz; E. Olsen; P. -G. Reinhard; J. Sarich; N. Schunck; S. M. Wild; D. Davesne; J. Erler; A. Pastore

    2014-04-28T23:59:59.000Z

    Nuclear density functional theory is the only microscopical theory that can be applied throughout the entire nuclear landscape. Its key ingredient is the energy density functional. In this work, we propose a new parameterization UNEDF2 of the Skyrme energy density functional. The functional optimization is carried out using the POUNDerS optimization algorithm within the framework of the Skyrme Hartree-Fock-Bogoliubov theory. Compared to the previous parameterization UNEDF1, restrictions on the tensor term of the energy density have been lifted, yielding a very general form of the energy density functional up to second order in derivatives of the one-body density matrix. In order to impose constraints on all the parameters of the functional, selected data on single-particle splittings in spherical doubly-magic nuclei have been included into the experimental dataset. The agreement with both bulk and spectroscopic nuclear properties achieved by the resulting UNEDF2 parameterization is comparable with UNEDF1. While there is a small improvement on single-particle spectra and binding energies of closed shell nuclei, the reproduction of fission barriers and fission isomer excitation energies has degraded. As compared to previous UNEDF parameterizations, the parameter confidence interval for UNEDF2 is narrower. In particular, our results overlap well with those obtained in previous systematic studies of the spin-orbit and tensor terms. UNEDF2 can be viewed as an all-around Skyrme EDF that performs reasonably well for both global nuclear properties and shell structure. However, after adding new data aiming to better constrain the nuclear functional, its quality has improved only marginally. These results suggest that the standard Skyrme energy density has reached its limits and significant changes to the form of the functional are needed.

  2. Energy use in Sweden: An international perspective

    SciTech Connect (OSTI)

    Schipper, L. [Lawrence Berkeley Lab., CA (United States)]|[Stockholm Environment Inst. (Sweden); Johnson, F.; Howarth, R.; Price, L. [Lawrence Berkeley Lab., CA (United States); Andersson, B.; Andersson, B.G. [Lawrence Berkeley Lab., CA (United States)]|[Handelshoegskolan, Stockholm (Sweden)

    1993-12-01T23:59:59.000Z

    This report analyzes the evolution of energy use in Sweden since the early 1970s. The purpose of the study, which is sponsored by NUTEK, Department of Energy Efficiency, the Swedish Agency for Technical and Industrial Development, is to shed light on the future path of energy use in Sweden by quantifying and understanding changes in past energy use. Energy efficiency has been identified by Swedish authorities in countless official studies as a key element in Sweden`s efforts to restrain oil imports, reduce reliance on nuclear power, reduce environmental impacts of energy use, and reduce CO{sub 2} emissions. To understand the role or performance of energy efficiency in the 1970s and 1980s in Sweden, and what this performance means about the future, the authors seek answers to three broad questions: (1) How has the structure and efficiency of energy use in Sweden evolved since the early 1970s, and where data permit, since even earlier? What caused these changes? (2) How does the structure of energy use in Sweden differ from that of other countries, and how has the evolution of energy use in Sweden differed from developments in other countries? (3) How much energy has Sweden saved, and why? Are these savings permanent? To what extent were they offset by changes in the structure of energy use? And to what extent is the magnitude of these savings dependent upon the way we measure energy use? The report reviews the long-term evolution of Swedish energy use, focusing on developments in five sectors of the economy: residential, service, industrial (manufacturing and {open_quotes}other industry{close_quotes} defined as mining, agriculture, forestry and fisheries, and construction), travel, and freight. The authors then examine Swedish energy use in a broader perspective, drawing detailed comparisons to other nations. Finally, they discuss a series of issues that hover over the future of energy demand in Sweden.

  3. Is Nuclear Energy the Solution?

    E-Print Network [OSTI]

    Saier, Milton H.; Trevors, Jack T.

    2010-01-01T23:59:59.000Z

    Canada N1G 2W1 e-mail: jtrevors@uoguelph.ca Water Air Soil Pollut (2010) 208:13 over 50 billion US dollars, and renewable energy

  4. Relativistic Nuclear Energy Density Functionals: adjusting parameters to binding energies

    E-Print Network [OSTI]

    T. Niksic; D. Vretenar; P. Ring

    2008-09-08T23:59:59.000Z

    We study a particular class of relativistic nuclear energy density functionals in which only nucleon degrees of freedom are explicitly used in the construction of effective interaction terms. Short-distance (high-momentum) correlations, as well as intermediate and long-range dynamics, are encoded in the medium (nucleon density) dependence of the strength functionals of an effective interaction Lagrangian. Guided by the density dependence of microscopic nucleon self-energies in nuclear matter, a phenomenological ansatz for the density-dependent coupling functionals is accurately determined in self-consistent mean-field calculations of binding energies of a large set of axially deformed nuclei. The relationship between the nuclear matter volume, surface and symmetry energies, and the corresponding predictions for nuclear masses is analyzed in detail. The resulting best-fit parametrization of the nuclear energy density functional is further tested in calculations of properties of spherical and deformed medium-heavy and heavy nuclei, including binding energies, charge radii, deformation parameters, neutron skin thickness, and excitation energies of giant multipole resonances.

  5. Laser Inertial Fusion-based Energy: Neutronic Design Aspects of a Hybrid Fusion-Fission Nuclear Energy System

    E-Print Network [OSTI]

    Kramer, Kevin James

    2010-01-01T23:59:59.000Z

    and Hydroelectric 1.1.3 Nuclear Energy . . . . . . . . .microparticles. Annals of Nuclear Energy, [96] F.B. Brown,In Progress in Nuclear Energy, 17. Pergamon Press, 1986.

  6. Laser Inertial Fusion-based Energy: Neutronic Design Aspects of a Hybrid Fusion-Fission Nuclear Energy System

    E-Print Network [OSTI]

    Kramer, Kevin James

    2010-01-01T23:59:59.000Z

    and Hydroelectric 1.1.3 Nuclear Energy . . . . . . . . .Gain GNEP Global Nuclear Energy Partnership HEU HighlyIn Progress in Nuclear Energy, 17. Pergamon Press, 1986.

  7. Nuclear Hybrid Energy Systems: Molten Salt Energy Storage

    SciTech Connect (OSTI)

    P. Sabharwall; M. Green; S.J. Yoon; S.M. Bragg-Sitton; C. Stoots

    2014-07-01T23:59:59.000Z

    With growing concerns in the production of reliable energy sources, the next generation in reliable power generation, hybrid energy systems, are being developed to stabilize these growing energy needs. The hybrid energy system incorporates multiple inputs and multiple outputs. The vitality and efficiency of these systems resides in the energy storage application. Energy storage is necessary for grid stabilizing and storing the overproduction of energy to meet peak demands of energy at the time of need. With high thermal energy production of the primary nuclear heat generation source, molten salt energy storage is an intriguing option because of its distinct properties. This paper will discuss the different energy storage options with the criteria for efficient energy storage set forth, and will primarily focus on different molten salt energy storage system options through a thermodynamic analysis

  8. Symmetry energy coefficients for asymmetric nuclear matter

    E-Print Network [OSTI]

    Fbio L. Braghin

    2003-12-16T23:59:59.000Z

    Symmetry energy coefficients of asymmetric nuclear matter are investigated as the inverse of nuclear matter polarizabilities with two different approaches. Firstly a general calculation shows they may depend on the neutron-proton asymmetry itself. The choice of particular prescriptions for the density fluctuations lead to certain isospin (n-p asymmetry) dependences of the polarizabilities. Secondly, with Skyrme type interactions, the static limit of the dynamical polarizability is investigated corresponding to the inverse symmetry energy coefficient which assumes different values at different asymmetries (and densities and temperatures). The symmetry energy coefficient (in the isovector channel) is found to increase as n-p asymmetries increase. The spin symmetry energy coefficient is also briefly investigated.

  9. Enhancement Mechanisms of Low Energy Nuclear Reactions

    E-Print Network [OSTI]

    Gareev, F A

    2005-01-01T23:59:59.000Z

    The review of possible stimulation mechanisms of LENR (low energy nuclear reaction) is represented. We have concluded that transmutation of nuclei at low energies and excess heat are possible in the framework of the modern physical theory - the universal resonance synchronization principle [1] and based on its different enhancement mechanisms of reaction rates are responsible for these processes [2]. The excitation and ionization of atoms may play role as a trigger for LENR. Superlow energy of external fields may stimulate LENR [3]. Investigation of this phenomenon requires knowledge of different branches of science: nuclear and atomic physics, chemistry and electrochemistry, condensed matter and solid state physics,... The results of this research field can provide a new source of energy, substances and technologies. The puzzle of poor reproducibility of experimental data is due to the fact that LENR occurs in open systems and it is extremely sensitive to parameters of external fields and systems. Classical ...

  10. Molten salts and nuclear energy production Christian Le Bruna*

    E-Print Network [OSTI]

    Boyer, Edmond

    Molten salts and nuclear energy production Christian Le Bruna* a Laboratoire de Physique or chlorides) have been taken in consideration very soon in nuclear energy production researches, thorium cycle 1. Introduction The main characteristic of nuclear energy production is the large energy

  11. Symmetry energy from nuclear multifragmentation

    E-Print Network [OSTI]

    Swagata Mallik; Gargi Chaudhuri

    2013-01-23T23:59:59.000Z

    The ratio of symmetry energy coefficient to temperature $C_{sym}/T$ is extracted from different prescriptions using the isotopic as well as the isobaric yield distributions obtained in different projectile fragmentation reactions. It is found that the values extracted from our theoretical calculation agree with those extracted from the experimental data but they differ very much from the input value of the symmetry energy used. The best possible way to deduce the value of the symmetry energy coefficient is to use the fragment yield at the breakup stage of the reaction and it is better to use the grand canonical model for the fragmentation analysis. This is because the formulas that are used for the deduction of the symmetry energy coefficient are all derived in the framework of the grand canonical ensemble which is valid only at the break-up (equilibrium) condition. The yield of "cold" fragments either from the theoretical models or from experiments when used for extraction of the symmetry energy coefficient using these prescriptions might lead to the wrong conclusion.

  12. Department of Energy Idaho - Nuclear Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGas SeparationsRelevantDOEDelegations CurrentLaboratory Programs

  13. Office of Nuclear Energy | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sure you wantJoin us for #SpaceWeekOMB Policies OMBOffice

  14. Nuclear Energy Advisory Committee | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire3627 Federal Register /7 This is aLinks toDeterrence

  15. Nuclear Energy Enabling Technologies | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire3627 Federal Register /7 This is aLinks toDeterrenceEnabling

  16. NE - Nuclear Energy - Energy Conservation Plan

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015of 2005 attheMohammed Khan - Technology ProjectEnergyNAICS

  17. Application of Nuclear Energy to Bitumen Upgrading and Biomass Conversion

    SciTech Connect (OSTI)

    Mamoru Numata; Yasushi Fujimura [JGC Corporation (Japan); Takayuki Amaya [Ministry of Education, Culture, Sports, Science and Technology - MEXT, Japan 2-5-1 Marunouchi Chiyoda-ku, Tokyo 100-8959 (Japan); Masao Hori [Nuclear Systems Association, 1-7-6 Toranomon Tokyo, 105-0001 (Japan)

    2006-07-01T23:59:59.000Z

    Key drivers for the increasing use of nuclear energy are the need to mitigate global warming and the requirement for energy security. Nuclear energy can be applied not only to generate electricity but also as a heat source. Moreover, nuclear energy can be applied for hydrogen as well as water production. The application of nuclear energy to oil processing and biomass production is studied in this paper. (authors)

  18. Department of Energy Office of Nuclear Physics

    E-Print Network [OSTI]

    Llope, William J.

    Department of Energy Office of Nuclear Physics Reviewer Excerpts from the Technical, Cost, Schedule to clarify the quark-gluon plasma signature. "In summary, the STAR-TOF project is a novel system and Management Review of the STAR Time-of-Flight (TOF) Detector August 22-23, 2005 #12;EXCERPTS FROM PANEL MEMBER

  19. Energy use in Denmark: An international perspective

    SciTech Connect (OSTI)

    Schipper, L.; Howarth, R.; Andersson, B.; Price, L.

    1992-08-01T23:59:59.000Z

    This report analyzes the evolution use in Denmark since the early 1970s in order to shed light on the future path of energy use in Denmark, with particular emphasis on the role of energy efficiency. The authors found that improvements in end-use energy efficiency reduced primary energy requirements in Denmark by 22% between 1972 and 1988. Focusing on developments in six individual sectors of the Danish economy (residential, manufacturing, other industry, service, travel, and freight), they found that the residential, manufacturing, and service sectors have led the improvements in efficiency. Travel showed few significant improvements and the efficiency of freight transportation worsened. The international comparisons showed that the structure of energy use in Denmark is less energy-intensive than that of most high-income OECD countries, with the exception of Japan. Overall, they concluded that most of the energy savings achieved in Denmark were brought about through improvements in technology. They also found that an important stimulus for improved efficiency was higher energy prices, led in no small part by significant taxes imposed on small consumers of heating oil, electricity, and motor fuels. Energy-efficiency programs accelerated energy savings in homes and commercial buildings. The rate of improvement of energy efficiency in Denmark has slowed down significantly since 1984, consistent with trends observed in other major countries. While many of the energy-efficiency goals stated or implied in Denmark`s Energi 2000 are achievable over a very long period, present trends do not point towards achievement of these goals by 2010 or even 2020. Strong measures will have to be developed by both public and private authorities if energy efficiency is to make a key contributions to reducing environmental problems associated with energy use in Denmark.

  20. Nuclear Energy Governance and the Politics of Social Justice: Technology, Public Goods, and Redistribution in Russia and France

    E-Print Network [OSTI]

    Grigoriadis, Theocharis N

    2009-01-01T23:59:59.000Z

    Karin. "Nuclear Energy and Sustainability: UnderstandingKarin. "Nuclear Energy and Sustainability: Understandingfission sustainability with hybrid nuclear cycles", Energy

  1. International District Energy Association IDEA | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup | OpenHunan RunhuaInnerInformation InternationalInternational

  2. Sandia Energy - Nuclear Energy Systems Laboratory (NESL) / Brayton Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear PressLaboratory Fellows JerryNuclear Energy Systems

  3. Zenergy International Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1 Wind Projectsource History ViewZAP JumpZenergy International

  4. Perfectenergy International Limited | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroupPerfectenergy International Limited Jump to: navigation, search Name:

  5. Corporate International Operations | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformationNew|Core Analysis At Geysers|Cornwall,CorporateInternational

  6. Datatechnic International SA | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE Facility Database DataDatatechnic International SA Jump to: navigation,

  7. International Monetary Fund | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup | OpenHunanInformation source History View New PagesInternational

  8. International Power Corporation Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup | OpenHunanInformation source History View NewInternational Power

  9. Daly International UK Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.pngRoofs andCrops Ltd Jump1-EA JumpDaly International UK Ltd

  10. BFS, a Legacy to the International Reactor Physics, Criticality Safety, and Nuclear Data Communities

    SciTech Connect (OSTI)

    J. Blair Briggs; Anatoly Tsibulya; Yevgeniy Rozhikhin

    2012-03-01T23:59:59.000Z

    Interest in high-quality integral benchmark data is increasing as efforts to quantify and reduce calculational uncertainties accelerate to meet the demands of next generation reactor and advanced fuel cycle concepts. Two Organization for Economic Cooperation and Development (OECD) Nuclear Energy Agency (NEA) activities, the International Criticality Safety Benchmark Evaluation Project (ICSBEP), initiated in 1992, and the International Reactor Physics Experiment Evaluation Project (IRPhEP), initiated in 2003, have been identifying existing integral experiment data, evaluating those data, and providing integral benchmark specifications for methods and data validation for nearly two decades. Thus far, 14 countries have contributed to the IRPhEP, and 20 have contributed to the ICSBEP. Data provided by these two projects will be of use to the international reactor physics, criticality safety, and nuclear data communities for future decades The Russian Federation has been a major contributor to both projects with the Institute of Physics and Power Engineering (IPPE) as the major contributor from the Russian Federation. Included in the benchmark specifications from the BFS facilities are 34 critical configurations from BFS-49, 61, 62, 73, 79, 81, 97, 99, and 101; spectral characteristics measurements from BFS-31, 42, 57, 59, 61, 62, 73, 97, 99, and 101; reactivity effects measurements from BFS-62-3A; reactivity coefficients and kinetics measurements from BFS-73; and reaction rate measurements from BFS-42, 61, 62, 73, 97, 99, and 101.

  11. International training course on implementation of state systems of accounting for and control of nuclear materials: proceedings

    SciTech Connect (OSTI)

    Not Available

    1986-06-01T23:59:59.000Z

    This report incorporates all lectures and presentations at the International Training Course on Implementation of State Systems of Accounting for and Control of Nuclear Materials held June 3 through June 21, 1985, at Santa Fe and Los Alamos, New Mexico, and San Clemente, California. Authorized by the US Nuclear Non-Proliferation Act and sponsored by the US Department of Energy in cooperation with the International Atomic Energy Agency, the Course was developed to provide practical training in the design, implementation, and operation of a state system of nuclear materials accountability and control that satisfies both national and international safeguards requirements. Major emphasis for the 1985 course was placed on safeguards methods used at item-control facilities, particularly nuclear power generating stations and test reactors. An introduction to safeguards methods used at bulk handling facilities, particularly low-enriched uranium conversion and fuel fabrication plants, was also included. The course was conducted by the University of California's Los Alamos National Laboratory and the Southern California Edison Company. Tours and demonstrations were arranged at the Los Alamos National Laboratory, Los Alamos, New Mexico, and the San Onofre Nuclear Generating Station, San Clemente, California.

  12. GE Hitachi Nuclear Energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump1946865°, -86.0529604°Wisconsin:FyreStorm Inc JumpGAD (SmartCICGE

  13. Long-Term Planning for Nuclear Energy Systems Under Deep Uncertainty

    E-Print Network [OSTI]

    Kim, Lance Kyungwoo

    2011-01-01T23:59:59.000Z

    nuclear energy poses proliferation risks is central toand security risks of nuclear energy systems in a mannerComparing the risk of nuclear energy to public health and

  14. Report of the Nuclear Energy Research Advisory Committee, Subcommittee on Nuclear Laboratory Requirements

    Broader source: Energy.gov [DOE]

    As an element of its plans to return the U.S. Department of Energy (DOE) site in eastern Idaho to its historic mission of nuclear technology development, the DOE asked its Nuclear Energy Research...

  15. Proposal for the International Atomic Energy Agency Training Course

    SciTech Connect (OSTI)

    McCarthy, T.L.

    1994-06-01T23:59:59.000Z

    The Hanford Site has hosted similar activities, including both Hanford Summits I and II. The Hanford Summits were two-day televised events to discuss the commitment of the current Presidential administration to the environmental restoration of the Hanford Site. Public involvement and strategic issues established from Hanford Summit I include: Regulatory issues, training and education, economic development and partnership, and technology transfer. Hanford Summit II provided a summary of how Secretary of Energy O`Leary is proceeding on the above strategic issues. The DOE and Westinghouse School for Environmental Excellence frequently offers a six-week course for environmental professionals and workers. Approximately thirty to forty individuals attend the training course, which provides training in environmental regulation compliance. The Hanford Site has hosted two previous International Atomic Energy Agency training courses. The courses lasted two weeks and had approximately eight to ten participants. Nuclear Material Management and Neutron Monitoring were the courses hosted by the Hanford Site.

  16. Lessons Learned from the Decommissioning of Nuclear Facilities and the Safe Termination of Nuclear Activities. Outcomes of the International Conference, 11-15 December 2006, Athens, Greece

    SciTech Connect (OSTI)

    Batandjieva, B.; Laraia, M. [International Atomic Energy Agency, Vienna (Austria)

    2008-01-15T23:59:59.000Z

    Full text of publication follows: decommissioning activities are increasing worldwide covering wide range of facilities - from nuclear power plant, through fuel cycle facilities to small laboratories. The importance of these activities is growing with the recognition of the need for ensuring safe termination of practices and reuse of sites for various purposes, including the development of new nuclear facilities. Decommissioning has been undertaken for more than forty years and significant knowledge has been accumulated and lessons have been learned. However the number of countries encountering decommissioning for the first time is increasing with the end of the lifetime of the facilities around the world, in particular in countries with small nuclear programmes (e.g. one research reactor) and limited human and financial resources. In order to facilitate the exchange of lessons learned and good practices between all Member States and to facilitate and improve safety of the planned, ongoing and future decommissioning projects, the IAEA in cooperation with the Nuclear Energy Agency to OECD, European Commission and World Nuclear Association organised the international conference on Lessons Learned from the Decommissioning of Nuclear Facilities and the Safe Termination of Nuclear Activities, held in Athens, Greece. The conference also highlighted areas where future cooperation at national and international level is required in order to improve decommissioning planning and safety during decommissioning and to facilitate decommissioning by selecting appropriate strategies and technologies for decontamination, dismantling and management of waste. These and other aspects discussed at the conference are presented in this paper, together with the planned IAEA measures for amendment and implementation of the International Action Plan on Decommissioning of Nuclear Facilities and its future programme on decommissioning.

  17. Nuclear Energy Governance and the Politics of Social Justice: Technology, Public Goods, and Redistribution in Russia and France

    E-Print Network [OSTI]

    Grigoriadis, Theocharis N

    2009-01-01T23:59:59.000Z

    Essentials, March 2007. OECD/Nuclear Energy Agency. "Nuclear Energy and the Kyoto Protocol"OECD/IEA Report OECD/Nuclear Energy Agency. "Nuclear Energy

  18. Office of Nuclear Safety | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,39732onMake YourDepartment ofC TEnergy Nuclear Safety andNuclear

  19. Nuclear Speed-Dating | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparencyDOE Project TapsDOERecoveryNuclear Speed-Dating Nuclear

  20. Monthly/Annual Energy Review - nuclear section

    Reports and Publications (EIA)

    2015-01-01T23:59:59.000Z

    Monthly and latest annual statistics on nuclear electricity capacity, generation, and number of operable nuclear reactors.

  1. International Energy Services USA Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup | OpenHunan RunhuaInnerInformationInternational EnergyEnergy

  2. INTERNATIONAL ENERGY AGENCY AGENCE INTERNATIONALE DE L'ENERGIE International Energy Conference

    E-Print Network [OSTI]

    TechnologiesHydrogen Fuel Cell Vehicles Zero Net Emission Buildings Nuclear Power Generation IV Zero

  3. Nuclear Power and the World's Energy Requirements

    E-Print Network [OSTI]

    V. Castellano; R. F. Evans; J. Dunning-Davies

    2004-06-10T23:59:59.000Z

    The global requirements for energy are increasing rapidly as the global population increases and the under-developed nations become more advanced. The traditional fuels used in their traditional ways will become increasingly unable to meet the demand. The need for a review of the energy sources available is paramount, although the subsequent need to develop a realistic strategy to deal with all local and global energy requirements is almost as important. Here attention will be restricted to examining some of the claims and problems of using nuclear power to attempt to solve this major question.

  4. Nuclear Safety Reporting Criteria | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in ManyDepartment of Energy NorthBDepartment of Energy Nuclear

  5. Nuclear Facility Operations | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire3627 Federal Register /7 This is aLinksNuclearOperations

  6. Internal energy relaxation in shock wave structure

    SciTech Connect (OSTI)

    Josyula, Eswar, E-mail: Eswar.Josyula@us.af.mil; Suchyta, Casimir J. [Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433 (United States)] [Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433 (United States); Boyd, Iain D. [University of Michigan, Ann Arbor, Michigan 48109 (United States)] [University of Michigan, Ann Arbor, Michigan 48109 (United States); Vedula, Prakash [University of Oklahoma, Norman, Oklahoma 73019 (United States)] [University of Oklahoma, Norman, Oklahoma 73019 (United States)

    2013-12-15T23:59:59.000Z

    The Wang Chang-Uhlenbeck (WCU) equation is numerically integrated to characterize the internal structure of Mach 3 and Mach 5 shock waves in a gas with excitation in the internal energy states for the treatment of inelastic collisions. Elastic collisions are modeled with the hard sphere collision model and the transition rates for the inelastic collisions modified appropriately using probabilities based on relative velocities of the colliding particles. The collision integral is evaluated by the conservative discrete ordinate method [F. Tcheremissine, Solution of the Boltzmann kinetic equation for high-speed flows, Comput. Math. Math. Phys. 46, 315329 (2006); F. Cheremisin, Solution of the Wang Chang-Uhlenbeck equation, Dokl. Phys. 47, 487490 (2002)] developed for the Boltzmann equation. For the treatment of the diatomic molecules, the internal energy modes in the Boltzmann equation are described quantum mechanically given by the WCU equation. As a first step in the treatment of the inelastic collisions by the WCU equation, a two- and three-quantum system is considered to study the effect of the varying of (1) the inelastic cross section and (2) the energy gap between the quantum energy states. An alternative method, the direct simulation Monte Carlo method, is used for the Mach 3 shock wave to ensure the consistency of implementation in the two methods and there is an excellent agreement between the two methods. The results from the WCU implementation showed consistent trends for the Mach 3 and Mach5 standing shock waves simulations. Inelastic contributions change the downstream equilibrium state and allow the flow to transition to the equilibrium state further upstream.

  7. "THE NUCLEAR OPTION IN GREEK NATIONAL ENERGY POLICY

    E-Print Network [OSTI]

    "THE NUCLEAR OPTION IN GREEK NATIONAL ENERGY POLICY: A RENAISSANCE OR A DJA VUE" by RAPHAEL MOISSIS? · the Commission: · Recognizes the contribution of nuclear energy in CO2 emission reduction. · Underlines of nuclear energy generation is reduced, it is essential that this reduction be phased

  8. Master's programme in Nuclear Energy Engineering Programme outline

    E-Print Network [OSTI]

    Haviland, David

    Master's programme in Nuclear Energy Engineering Programme outline The two-year Master's programme to work abroad. career ProsPects Nuclear power is a significant part of the current energy balance.With advances in science and technology, nuclear energy is increasingly re- garded as an eminent part

  9. THE FUTURE OF NUCLEAR ENERGY IN THE UK

    E-Print Network [OSTI]

    Birmingham, University of

    THE FUTURE OF NUCLEAR ENERGY IN THE UK Birmingham Policy Commission The Report July 2012 #12;2 The Future of Nuclear Energy in the UK Foreword by the Chair of the Commission It was a great honour to have security. Historically nuclear energy has had a significant role in the UK and could continue to do so

  10. Getting to Know Nuclear Energy: The Past, Present & Future

    E-Print Network [OSTI]

    Kemner, Ken

    Getting to Know Nuclear Energy: The Past, Present & Future Argonne National Laboratory was founded on the peaceful uses of nuclear energy and has pioneered many of the technologies in use today. Argonne's Roger Blomquist will discuss the history of nuclear energy, advanced reactor designs and future technologies, all

  11. Innovating for Nuclear Energy | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,39732on Armed ServicesDepartmentInformationInitiatives

  12. Innovating for Nuclear Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking of BlytheDepartment ofEnergy Information forInjury and Illness

  13. Energy System Expectations for Nuclear in the 21. Century: A Plausible Range

    SciTech Connect (OSTI)

    Langlois, Lucille M.; McDonald, Alan; Rogner, Hans-Holger; Vera, Ivan [International Atomic Energy Agency - IAEA, P.O. Box 100, Wagramer Strasse 5, A-1400 Vienna (Austria)

    2002-07-01T23:59:59.000Z

    This paper outlines a range of scenarios describing what the world's energy system might look like in the middle of the century, and what nuclear energy's most profitable role might be. The starting point is the 40 non-greenhouse-gas-mitigation scenarios in the Special Report on Emissions Scenarios (SRES) of the Intergovernmental Panel on Climate Change (IPCC, 2000). Given their international authorship and comprehensive review by governments and scientific experts, the SRES scenarios are the state of the art in long-term energy scenarios. However, they do not present the underlying energy system structures in enough detail for specific energy technology and infrastructure analyses. This paper therefore describes initial steps within INPRO (The International Project on Innovative Nuclear Reactors and Fuel Cycles of the International Atomic Energy Agency) to translate the SRES results into a range of possible nuclear energy technology requirements for mid-century. The paper summarizes the four SRES scenarios that will be used in INPRO and the reasons for their selection. It provides illustrative examples of the sort of additional detail that is being developed about the overall energy system implied by each scenario, and about specific scenario features particularly relevant to nuclear energy. As recommended in SRES, the selected scenarios cover all four SRES 'story-line families'. The energy system translations being developed in INPRO are intended to indicate how energy services may be provided in mid-century and to delineate likely technology and infrastructure implications. They will indicate answers to questions like the following. The list is illustrative, not comprehensive. - What kind of nuclear power plants will best fit the mid-century energy system? - What energy forms and other products and services provided by nuclear reactors will best fit the mid-century energy system? - What would be their market shares? - How difficult will it be to site new nuclear facilities? - Which are nuclear energy's biggest competitors? - Which non-nuclear technologies can nuclear power complement? - What is the range of potential demand growth for new capacity? - How is demand growth distributed geographically around the world? Different scenarios imply different answers, which are then the starting point for estimating what future reactor users might require of reactor and fuel cycle designs around mid-century. These user requirements - in terms of economics, safety, proliferation resistance, waste, and environmental impacts - are intended to help establish key directions in which to encourage innovation. They are intended as a useful input to managers designing R and D strategies targeted on the anticipated energy system needs, and other relevant needs, of mid-century. (authors)

  14. Nuclear war, US agriculture, and biomass energy

    SciTech Connect (OSTI)

    Chester, C.V.

    1986-01-01T23:59:59.000Z

    In the event of most of the plausible scenarios for nuclear war, most US farms and farm populations are likely to survive. Fallout and ''Nuclear Winter'' are likely to cause loss of at least one year's production, which can be endured if surviving grain stocks can be distributed to the surviving population. A year after the attack when fallout radiation has decayed by a factor of 10/sup 5/, in most areas the major threat to resumed farm production is damage to oil refining capability. Biomass could be an invulnerable alternative to petroleum fuels on the farm if in peacetime the costs can be made competitive and ease and convenience of use made acceptable. The long-term prospect of increasing oil prices and decreasing food prices may eventually make some source of biomass energy (gasification, vegetable oils) economically competitive. Development of on-farm biomass energy would enhance US security.

  15. Nuclear Security & Nonproliferation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative JC3 RSS September 9, 2013News Archive News Archive RSSNoticesEnergyNuclearNational

  16. Nuclear Data for Fusion Energy Technologies: Requests, Status and Development Needs

    SciTech Connect (OSTI)

    Fischer, U. [Association FZK-Euratom, Forschungszentrum Karlsruhe, Institut fuer Reaktorsicherheit, Postfach 3640, D-76021 Karlsruhe (Germany); Batistoni, P. [Associazione Euratom-ENEA sulla Fusione, ENEA Fusion Divison, Via E. Fermi 27, I-00044 Frascati (Italy); Cheng, E. [TSI Research, Inc., P.O. Box 2754, Rancho Santa Fe, CA 92067 (United States); Forrest, R.A. [Euratom/UKAEA Fusion Association, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB (United Kingdom); Nishitani, T. [Fusion Neutronics Laboratory, JAERI, Tokai-mura, Naka-gun, Ibaraki-ken 319-1195 (Japan)

    2005-05-24T23:59:59.000Z

    The current status of nuclear data evaluations for fusion technologies is reviewed. Well-qualified data are available for neutronics and activation calculations of fusion power reactors and the next-step device ITER, the International Thermonuclear Experimental Reactor. Major challenges for the further development of fusion nuclear data arise from the needs of the long-term fusion programme. In particular, co-variance data are required for uncertainty assessments of nuclear responses. Further, the nuclear data libraries need to be extended to higher energies above 20 MeV to enable neutronics and activation calculations of IFMIF, the International Fusion Material Irradiation Facility. A significant experimental effort is required in this field to provide a reliable and sound database for the evaluation of cross-section data in the higher energy range.

  17. International Agreements Comments | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,39732on ArmedManufacturing |Time-Based Rates from theInternational

  18. China Power International New Energy Holding Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here.TelluricPower International New Energy Holding Ltd Place: Shanghai

  19. International Atomic Energy Agency (IAEA) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDIT REPORTEnergyFarmsPower Co Ltd Jump to:InnovativeIdealInternational

  20. Washington International Renewable Energy Conference | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2, 2015Visiting Strong, Smart, andThomas H.Walk-InWashington International

  1. SolarPro Energy International | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk, NewSingapore Jump to:VoltaicSolarPro Energy International Jump

  2. International Energy Agency Technology Roadmap for Wind Energy | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup | OpenHunan RunhuaInnerInformationInternational Energy Agency

  3. International Solar Energy Society ISES | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup | OpenHunanInformation source HistoryInternational Solar Energy

  4. Nuclear Safety Information Dashboard | Department of Energy

    Office of Environmental Management (EM)

    Nuclear Safety Information Dashboard Nuclear Safety Information Dashboard The Nuclear Safety Information (NSI) Dashboard provides a new user interface to the Occurrence Reporting...

  5. RIS International Energy Conference ISSUES AND PERSPECTIVES ABOUT

    E-Print Network [OSTI]

    RIS International Energy Conference ISSUES AND PERSPECTIVES ABOUT ENERGY TECHNOLOGY FORESIGHT IN EUROPE Presentation by Michel POIREAU, Head of Unit, Strategy and Policy Aspects of Energy RTD Michel.Poireau@cec.eu.int tel. +32-2-2951411 #12;DG-RTD/J1/MP RIS International Energy Conference 19 May 2003 2 ISSUES

  6. NUCLEAR MATERIALTRANSACTION REPORT | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction toManagement ofConverDyn NOPR ConverDynNTERTrainingNUCLEAR

  7. National Nuclear Security Administration | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_Cost Estimating35.docMusingsEnergyAdministration National Nuclear

  8. NUCLEAR SPIN ISOSPIN RESPONSES FOR LOW-ENERGY NEUTRINOS

    E-Print Network [OSTI]

    Washington at Seattle, University of

    NUCLEAR SPIN ISOSPIN RESPONSES FOR LOW-ENERGY NEUTRINOS Hiroyasu EJIRI Nuclear Physics Laboratory Research Center for Nuclear Physics, Osaka University, Ibaraki, Osaka, 567 Japan. E-mail address: ejiri@rcnp.osaka-u.ac.jp (H. Ejiri). Physics Reports 338 (2000) 265}351 Nuclear spin isospin responses for low

  9. Mycle Schneider Consulting Independent Analysis on Energy and Nuclear Policy

    E-Print Network [OSTI]

    Laughlin, Robert B.

    -2007 Mycle Schneider was part of a consultants' consortium that assessed nuclear decommissioning and wasteMycle Schneider Consulting Independent Analysis on Energy and Nuclear Policy 45, allée des deux@orange.fr Nuclear France Abroad History, Status and Prospects of French Nuclear Activities in Foreign Countries

  10. Management of the Department of Energy Nuclear Weapons Complex

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-06-08T23:59:59.000Z

    The Order defines and affirms the authorities and responsibilities of the National Nuclear Security Administration (NNSA) for the management of the Department of Energy Nuclear Weapons Complex and emphasizes that the management of the United States nuclear weapons stockpile is the DOE's highest priority for the NNSA and the DOE Nuclear Weapons Complex. Cancels DOE O 5600.1.

  11. STYRIAN AcADEmY FoR SUSTAINABlE ENERGIES INTERNATIoNAl WINTER School 2011

    E-Print Network [OSTI]

    STYRIAN AcADEmY FoR SUSTAINABlE ENERGIES INTERNATIoNAl WINTER School 2011 "SUSTAINABlE SmART c climate, hazardous nuclear technologies, high investment costs for modernizing the energy system sustainable development of society with innovative energy solutions. The STYRIAN ACADEMY Winter School 2011

  12. Confidentiality Agreement between the Nuclear Decommissioning...

    Office of Environmental Management (EM)

    Services Communication & Engagement International Programs Confidentiality Agreement between the Nuclear Decommissioning Authority and US Department of Energy...

  13. Optimal allocation of International Atomic Energy Agency inspection resources

    SciTech Connect (OSTI)

    Markin, J.T.

    1987-12-01T23:59:59.000Z

    The Safeguards Department of the International Atomic Energy Agency (IAEA) conducts inspections to assure the peaceful use of a state's nuclear materials and facilities. Because of limited resources for conducting inspections, the careful disposition of inspection effort among these facilities is essential if the IAEA is to attain its safeguards goals. This report describes an optimization procedure for assigning an inspection effort to maximize attainment of IAEA goals. The procedure does not require quantitative estimates of safeguards effectiveness, material value, or facility importance. Instead, the optimization is based on qualitative, relative prioritizations of inspection activities and materials to be safeguarded. This allocation framework is applicable to an arbitrary group of facilities such as a state's fuel cycle, the facilities inspected by an operations division, or all of the facilities inspected by the IAEA.

  14. Building a Universal Nuclear Energy Density Functional

    SciTech Connect (OSTI)

    Carlson, Joe A. [Michigan State University; Furnstahl, Dick; Horoi, Mihai; Lust, Rusty; Nazaewicc, Witek; Ng, Esmond; Thompson, Ian; Vary, James

    2012-12-30T23:59:59.000Z

    During the period of Dec. 1 2006 Jun. 30, 2012, the UNEDF collaboration carried out a comprehensive study of all nuclei, based on the most accurate knowledge of the strong nuclear interaction, the most reliable theoretical approaches, the most advanced algorithms, and extensive computational resources, with a view towards scaling to the petaflop platforms and beyond. The long-term vision initiated with UNEDF is to arrive at a comprehensive, quantitative, and unified description of nuclei and their reactions, grounded in the fundamental interactions between the constituent nucleons. We seek to replace current phenomenological models of nuclear structure and reactions with a well-founded microscopic theory that delivers maximum predictive power with well-quantified uncertainties. Specifically, the mission of this project has been three-fold: ? First, to find an optimal energy density functional (EDF) using all our knowledge of the nucleonic Hamiltonian and basic nuclear properties; ? Second, to apply the EDF theory and its extensions to validate the functional using all the available relevant nuclear structure and reaction data; ? Third, to apply the validated theory to properties of interest that cannot be measured, in particular the properties needed for reaction theory.

  15. Development of an International Standard for Energy Management

    E-Print Network [OSTI]

    Meffert, B.; McKane, A.

    International interest in energy management is driving the development of an ISO management standard. The U.S. DOE is leading this effort in partnership with other countries. The speakers will describe the development of an international management...

  16. 20th International Training Course (ITC-20) on the physical protection of nuclear facilities and materials evaluation report.

    SciTech Connect (OSTI)

    Ramirez, Amanda Ann

    2008-09-01T23:59:59.000Z

    The goal of this evaluation report is to provide the information necessary to improve the effectiveness of the ITC provided to the International Atomic Energy Agency Member States. This report examines ITC-20 training content, delivery methods, scheduling, and logistics. Ultimately, this report evaluates whether the course provides the knowledge and skills necessary to meet the participants needs in the protection of nuclear materials and facilities.

  17. Synopsis of the international workshop on illicit trafficking of nuclear material

    SciTech Connect (OSTI)

    Niemeyer, S.

    1997-03-01T23:59:59.000Z

    In this paper a synopsis is presented of the second ITWG (Nuclear Smuggling International Technical Working Group) meeting that was held in Obninsk, Russia, on December 2-4, 1996, at the Institute of Physics and Power Engineering.

  18. Nuclear Energy: Where do we go from here? Keith Bradley

    E-Print Network [OSTI]

    Levi, Anthony F. J.

    11.30am Nuclear Energy: Where do we go from here? Keith Bradley Argonne National Laboratories Abstract For the past several decades, nuclear energy has proven to be one of the most reliable and cost's so-called carbon footprint suggested a resurgence in modern nuclear power -- a renaissance period

  19. Office of Nuclear Energy, Science and Technology Executive Summary

    E-Print Network [OSTI]

    nuclear power plant in the U.S. by 2010 to support the President's goal of reducing greenhouse gasOffice of Nuclear Energy, Science and Technology Executive Summary Mission As we become more in this new century, the benefits of nuclear fission as a key energy source for both the near- and long

  20. Nuclear Fusion: A Solution to the GlobalNuclear Fusion: A Solution to the Global Energy CrisisEnergy Crisis

    E-Print Network [OSTI]

    Strathclyde, University of

    Nuclear Fusion: A Solution to the GlobalNuclear Fusion: A Solution to the Global Energy Crisis.maclellan@strath.ac.uk Introduction and Motivation What is Nuclear Fusion? Laser Plasma Interactions The world, and particularly is harnessing the power of nuclear fusion. It is however, extremely difficult to sustain a fusion reaction

  1. Enhancement Mechanisms of Low Energy Nuclear Reactions

    E-Print Network [OSTI]

    F. A. Gareev; I. E. Zhidkova

    2005-05-08T23:59:59.000Z

    The review of possible stimulation mechanisms of LENR (low energy nuclear reaction) is represented. We have concluded that transmutation of nuclei at low energies and excess heat are possible in the framework of the modern physical theory - the universal resonance synchronization principle [1] and based on its different enhancement mechanisms of reaction rates are responsible for these processes [2]. The excitation and ionization of atoms may play role as a trigger for LENR. Superlow energy of external fields may stimulate LENR [3]. Investigation of this phenomenon requires knowledge of different branches of science: nuclear and atomic physics, chemistry and electrochemistry, condensed matter and solid state physics,... The results of this research field can provide a new source of energy, substances and technologies. The puzzle of poor reproducibility of experimental data is due to the fact that LENR occurs in open systems and it is extremely sensitive to parameters of external fields and systems. Classical reproducibility principle should be reconsidered for LENR experiments. Poor reproducibility and unexplained results do not means that the experiment is wrong. Our main conclusions:

  2. A High Energy Nuclear Database Proposal

    E-Print Network [OSTI]

    David A. Brown; Ramona Vogt

    2005-10-13T23:59:59.000Z

    We propose to develop a high-energy heavy-ion experimental database and make it accessible to the scientific community through an on-line interace. This database will be searchable and cross-indexed with relevant publications, including published detector descriptions. Since this database will be a community resource, it requires the high-energy nuclear physics community's financial and manpower support. This database should eventually contain all published data from the Bevalac, AGS and SPS to RHIC and LHC energies, proton-proton to nucleus-nucleus collisions as well as other relevant systems and all measured observables. Such a database would have tremendous scientific payoff as it makes systematic studies easier and allows simpler benchmarking of theoretical models to a broad range of old and new experiments. Furthermore, there is a growing need for compilations of high-energy nuclear data for applications including stockpile stewardship, technology development for intertial confinement fusion and target and source development for upcoming facilities such as the Next Linear Collider. To enhance the utility of this database, we propose periodically performing evaluations of the data and summarizing the results in topical reviews.

  3. Overview of Nuclear Energy: Present and Projected Use

    SciTech Connect (OSTI)

    Alexander Stanculescu

    2011-09-01T23:59:59.000Z

    Several factors will influence the contribution of nuclear energy to the future energy mix. Among them, the most important are the degree of global commitment to greenhouse gas reduction, continued vigilance in safety and safeguards, technological advances, economic competitiveness and innovative financing arrangements for new nuclear power plant constructions, the implementation of nuclear waste disposal, and, last but not least, public perception, information and education. The paper presents an overview of the current nuclear energy situation, possible development scenarios, of reactor technology, and of non-electric applications of nuclear energy.

  4. Nuclear binding energy and symmetry energy of nuclear matter with modern nucleon-nucleon potentials

    SciTech Connect (OSTI)

    Hassaneen, Kh.S.A., E-mail: khs_94@yahoo.com [Physics Department, Faculty of Science, Sohag University, Sohag (Egypt); Abo-Elsebaa, H.M.; Sultan, E.A. [Physics Department, Faculty of Science, Sohag University, Sohag (Egypt); Mansour, H.M.M. [Physics Department, Faculty of Science, Cairo University, Giza (Egypt)

    2011-03-15T23:59:59.000Z

    Research Highlights: > The nuclear matter is studied within the Brueckner-Hartree-Fock (BHF) approach employing the most recent accurate nucleon-nucleon potentials. > The results come out by approximating the single particle self-consistent potential with a parabolic form. > We discuss the current status of the Coester line, i.e., density and energy of the various saturation points being strongly linearly correlated. > The nuclear symmetry energy is calculated as the difference between the binding energy of pure neutron matter and that of symmetric nuclear matter. - Abstract: The binding energy of nuclear matter at zero temperature in the Brueckner-Hartree-Fock approximation with modern nucleon-nucleon potentials is studied. Both the standard and continuous choices of single particle energies are used. These modern nucleon-nucleon potentials fit the deuteron properties and are phase shifts equivalent. Comparison with other calculations is made. In addition we present results for the symmetry energy obtained with different potentials, which is of great importance in astrophysical calculation.

  5. Nuclear Energy Response in the EMF27 Study

    SciTech Connect (OSTI)

    Kim, Son H.; Wada, Kenichi; Kurosawa, Atsushi; Roberts, Matthew

    2014-03-25T23:59:59.000Z

    The nuclear energy response for mitigating global climate change across eighteen participating models of the EMF27 study is investigated. Diverse perspectives on the future role of nuclear power in the global energy system are evident in the broad range of nuclear power contributions from participating models of the study. In the Baseline scenario without climate policy, nuclear electricity generation and shares span 0 66 EJ/ year and 0 - 25% in 2100 for all models, with a median nuclear electricity generation of 39 EJ/year (1,389 GWe at 90% capacity factor) and median share of 9%. The role of nuclear energy increased under the climate policy scenarios. The median of nuclear energy use across all models doubled in the 450 ppm CO2e scenario with a nuclear electricity generation of 67 EJ/year (2,352 GWe at 90% capacity factor) and share of 17% in 2100. The broad range of nuclear electricity generation (11 214 EJ/year) and shares (2 - 38%) in 2100 of the 450 ppm CO2e scenario reflect differences in the technology choice behavior, technology assumptions and competitiveness of low carbon technologies. Greater clarification of nuclear fuel cycle issues and risk factors associated with nuclear energy use are necessary for understanding the nuclear deployment constraints imposed in models and for improving the assessment of the nuclear energy potential in addressing climate change.

  6. 5. Energy Production and Transport 5.1 Energy Release from Nuclear Reactions

    E-Print Network [OSTI]

    Peletier, Reynier

    5. Energy Production and Transport 5.1 Energy Release from Nuclear Reactions As mentioned when we looked at energy generation, it is now known that most of the energy radiated by stars must be released by nuclear reactions. In this section we will consider why it is that energy can be released by nuclear

  7. International Atomic Energy Agency (IAEA) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup | OpenHunan RunhuaInner MongoliaIntegrysInteractaInterlightInternational

  8. SURFACE SYMMETRY ENERGY OF NUCLEAR ENERGY DENSITY FUNCTIONALS

    SciTech Connect (OSTI)

    Nikolov, N; Schunck, N; Nazarewicz, W; Bender, M; Pei, J

    2010-12-20T23:59:59.000Z

    We study the bulk deformation properties of the Skyrme nuclear energy density functionals. Following simple arguments based on the leptodermous expansion and liquid drop model, we apply the nuclear density functional theory to assess the role of the surface symmetry energy in nuclei. To this end, we validate the commonly used functional parametrizations against the data on excitation energies of superdeformed band-heads in Hg and Pb isotopes, and fission isomers in actinide nuclei. After subtracting shell effects, the results of our self-consistent calculations are consistent with macroscopic arguments and indicate that experimental data on strongly deformed configurations in neutron-rich nuclei are essential for optimizing future nuclear energy density functionals. The resulting survey provides a useful benchmark for further theoretical improvements. Unlike in nuclei close to the stability valley, whose macroscopic deformability hangs on the balance of surface and Coulomb terms, the deformability of neutron-rich nuclei strongly depends on the surface-symmetry energy; hence, its proper determination is crucial for the stability of deformed phases of the neutron-rich matter and description of fission rates for r-process nucleosynthesis.

  9. Monthly energy review, December 1992

    SciTech Connect (OSTI)

    Not Available

    1992-12-22T23:59:59.000Z

    The Monthly Energy Review contains summary data on energy consumption, petroleum, natural gas, oil and gas resource development, coal, electricity, nuclear energy, energy prices, and international energy.

  10. Monthly energy review, January 1993

    SciTech Connect (OSTI)

    Not Available

    1993-01-26T23:59:59.000Z

    The Monthly Energy Review contains summary data on energy consumption, petroleum, natural gas, oil and gas resource development, coal, electricity, nuclear energy, energy prices, and international energy.

  11. Sandia National Laboratories: Nuclear Energy and Fuel Systems...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Energy and Fuel Systems Programs Protected: Nuclear Fuel Cycle Options Catalog On February 26, 2015, in There is no excerpt because this is a protected post. SNL & BAM...

  12. Nuclear Energy Research and Development Roadmap | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in ManyDepartment of Energy NorthB O|WorkNationalNuclear Energy

  13. The History of Nuclear Energy | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2, 2015 - JanuaryTank 48HPublic Dissemination ofSecurityHistory of Nuclear

  14. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi

    E-Print Network [OSTI]

    Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker Biodiversity (Mycology and Microbiology), Agriculture and Agri-Food Canada, Ottawa, ON, Canada K1A 0C6; c the nuclear ribosomal RNA cistron were compared together with regions of three representative protein- coding

  15. International Source Book: Nuclear Fuel Cycle Research and Development Vol 1 Volume 1

    SciTech Connect (OSTI)

    Harmon,, K. M.; Lakey,, L. T.

    1983-07-01T23:59:59.000Z

    This document starts with an overview that summarizes nuclear power policies and waste management activities for nations with significant commercial nuclear fuel cycle activities either under way or planned. A more detailed program summary is then included for each country or international agency conducting nuclear fuel cycle and waste management research and development. This first volume includes the overview and the program summaries of those countries listed alphabetically from Argentina to Italy.

  16. Renewability and sustainability aspects of nuclear energy

    SciTech Connect (OSTI)

    ?ahin, Smer, E-mail: ssahin@atilim.edit.tr [Department of Mechanical Engineering, Faculty of Engineering, ATILIM University, 06836 ?ncek, Glba??, Ankara (Turkey)

    2014-09-30T23:59:59.000Z

    Renewability and sustainability aspects of nuclear energy have been presented on the basis of two different technologies: (1) Conventional nuclear technology; CANDU reactors. (2) Emerging nuclear technology; fusion/fission (hybrid) reactors. Reactor grade (RG) plutonium, {sup 233}U fuels and heavy water moderator have given a good combination with respect to neutron economy so that mixed fuel made of (ThO{sub 2}/RG?PuO{sub 2}) or (ThC/RG-PuC) has lead to very high burn up grades. Five different mixed fuel have been selected for CANDU reactors composed of 4 % RG?PuO{sub 2} + 96 % ThO{sub 2}; 6 % RG?PuO{sub 2} + 94 % ThO{sub 2}; 10 % RG?PuO{sub 2} + 90 % ThO{sub 2}; 20 % RG?PuO{sub 2} + 80 % ThO{sub 2}; 30 % RG?PuO{sub 2} + 70 % ThO{sub 2}, uniformly taken in each fuel rod in a fuel channel. Corresponding operation lifetimes have been found as ? 0.65, 1.1, 1.9, 3.5, and 4.8 years and with burn ups of ? 30 000, 60 000, 100 000, 200 000 and 290 000 MW.d/ton, respectively. Increase of RG?PuO{sub 2} fraction in radial direction for the purpose of power flattening in the CANDU fuel bundle has driven the burn up grade to 580 000 MW.d/ton level. A laser fusion driver power of 500 MW{sub th} has been investigated to burn the minor actinides (MA) out of the nuclear waste of LWRs. MA have been homogenously dispersed as carbide fuel in form of TRISO particles with volume fractions of 0, 2, 3, 4 and 5 % in the Flibe coolant zone in the blanket surrounding the fusion chamber. Tritium breeding for a continuous operation of the fusion reactor is calculated as TBR = 1.134, 1.286, 1.387, 1.52 and 1.67, respectively. Fission reactions in the MA fuel under high energetic fusion neutrons have lead to the multiplication of the fusion energy by a factor of M = 3.3, 4.6, 6.15 and 8.1 with 2, 3, 4 and 5 % TRISO volume fraction at start up, respectively. Alternatively with thorium, the same fusion driver would produce ?160 kg {sup 233}U per year in addition to fission energy production in situ, multiplying the fusion energy by a factor of ?1.3.

  17. Sandia Energy - Sandia Teaches Nuclear Safety Course

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol Home Distribution GridDocuments HomeDatabase on EngineATeaches Nuclear Safety

  18. Nuclear energy | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparencyDOE Project TapsDOERecoveryNuclearLife Cycleenergy

  19. Advanced Nuclear Reactors | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP7-0973 1BP-14 PowerAdvanced Modeling &Advanced Nuclear

  20. Nuclear Safety Regulatory Framework | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked QuestionsDepartment ofDepartment640 FederalDepartment ofNRC'sNuclear Safety

  1. Nuclear Security Conference 2010 | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked QuestionsDepartment ofDepartment640 FederalDepartment83-2007 NovemberNuclear

  2. Internal Behaviour Change Programs and Increasing Energy Effciency Webcast

    Broader source: Energy.gov [DOE]

    This presentation, given through the DOE's Technical Assitance Program (TAP), addresses Internal Behaviour Change Programs and Increasing Energy Efficiency. Presented on August 25, 2011.

  3. Studies in Low-Energy Nuclear Science

    SciTech Connect (OSTI)

    Carl R. Brune; Steven M. Grimes

    2006-03-30T23:59:59.000Z

    This report presents a summary of research projects in the area of low energy nuclear reactions and structure, carried out between 1 January 2003 and 31 December 2005 and supported by U.S. DOE grant number DE-FG03-03NA00074. Cross sections measured with high resolution have been subjected to an Ericson theory analysis to infer information about the nuclear level density. Other measurements were made of the spectral shape of particles produced in evaporation processes; these also yield level density information. A major project was the development of a new Hauser-Feshbach code for analyzing such spectra. Other measurements produced information on the spectra of gamma rays emitted in reactions on heavy nuclei and gave a means of refining our understanding of gamma-ray strength functions. Finally,reactions on light nuclei were studied and subjected to an R-matrix analysis. Cross sections fora network of nuclear reactions proceedingthrough a given compound nucleus shouldgreatly constrain the family of allowed parameters. Modifications to the formalism andcomputer code are also discussed.

  4. Constraining the nuclear symmetry-energy at super-density

    E-Print Network [OSTI]

    Yong, Gao-Chan

    2015-01-01T23:59:59.000Z

    The nuclear symmetry-energy has broad implications in both nuclear physics and astrophysics. Due to hard work of many people, the nuclear symmetry-energy around saturation density has been roughly constrained. However, the nuclear symmetry-energy at super-density is still in chaos. By considering both the effects of the nucleon-nucleon short-rang correlations and the isospin-dependent in-medium inelastic baryon-baryon scattering cross sections in the transport model, two unrelated experimental measurements are simultaneously analyzed. A soft symmetry-energy at super-density is first consistently obtained by the double comparison of the symmetry-energy sensitive observables.

  5. Department of Energy Commends the Nuclear Regulatory Commission...

    Energy Savers [EERE]

    of Energy is proud to foster an environment where nuclear power - a safe and emissions-free source of energy - can begin to thrive," Secretary of Energy Samuel W. Bodman said....

  6. International Source Book: Nuclear Fuel Cycle Research and Development Volume 2

    SciTech Connect (OSTI)

    Harmon,, K. M.; Lakey,, L. T.

    1982-11-01T23:59:59.000Z

    This document starts with an overview that summarizes nuclear power policies and waste management activities for nations with significant commercial nuclear fuel cycle activities either under way or planned. A more detailed program summary is then included for each country or international agency conducting nuclear fuel cycle and waste management research and development. This second volume includes the program summaries of those countries listed alphabetically from Japan to Yugoslavia. Information on international agencies and associations, particularly the IAEA, NEA, and CEC, is provided also.

  7. Nuclear energy in a nuclear weapon free world

    SciTech Connect (OSTI)

    Pilat, Joseph [Los Alamos National Laboratory

    2009-01-01T23:59:59.000Z

    The prospect of a nuclear renaissance has revived a decades old debate over the proliferation and terrorism risks of the use of nuclear power. This debate in the last few years has taken on an added dimension with renewed attention to disarmament. Increasingly, concerns that proliferation risks may reduce the prospects for realizing the vision of a nuclear-weapon-free world are being voiced.

  8. The Politically Correct Nuclear Energy Plant

    E-Print Network [OSTI]

    Transportation ? Fuel Cells ? Electric Cars ? Solar Electric Cars Natural Gas ? Combo-Cars Hydrogen Nuclear Plants Operating Very Well But, Generating Companies not Interested in New Nuclear Plants

  9. Foiling the Flu Bug Global Partnerships for Nuclear Energy

    E-Print Network [OSTI]

    1 1663 Foiling the Flu Bug Global Partnerships for Nuclear Energy Dark Universe Mysteries WILL NOT NEED TESTING Expanding Nuclear Energy the Right Way GLOBAL PARTNERSHIPS AND AN ADVANCED FUEL CYCLE sense.The Laboratory is operated by Los Alamos National Security, LLC, for the Department of Energy

  10. Energy Department Announces New Awards for Advanced Nuclear Energy...

    Energy Savers [EERE]

    awarded more than 5 million to undergraduate and graduate students pursuing nuclear engineering degrees and other nuclear science and engineering programs relevant to nuclear...

  11. Reactor Vessel and Reactor Vessel Internals Segmentation at Zion Nuclear Power Station - 13230

    SciTech Connect (OSTI)

    Cooke, Conrad; Spann, Holger [Siempelkamp Nuclear Services: 5229 Sunset Blvd., (Suite M), West Columbia, SC, 29169 (United States)] [Siempelkamp Nuclear Services: 5229 Sunset Blvd., (Suite M), West Columbia, SC, 29169 (United States)

    2013-07-01T23:59:59.000Z

    Zion Nuclear Power Station (ZNPS) is a dual-unit Pressurized Water Reactor (PWR) nuclear power plant located on the Lake Michigan shoreline, in the city of Zion, Illinois approximately 64 km (40 miles) north of Chicago, Illinois and 67 km (42 miles) south of Milwaukee, Wisconsin. Each PWR is of the Westinghouse design and had a generation capacity of 1040 MW. Exelon Corporation operated both reactors with the first unit starting production of power in 1973 and the second unit coming on line in 1974. The operation of both reactors ceased in 1996/1997. In 2010 the Nuclear Regulatory Commission approved the transfer of Exelon Corporation's license to ZionSolutions, the Long Term Stewardship subsidiary of EnergySolutions responsible for the decommissioning of ZNPS. In October 2010, ZionSolutions awarded Siempelkamp Nuclear Services, Inc. (SNS) the contract to plan, segment, remove, and package both reactor vessels and their respective internals. This presentation discusses the tools employed by SNS to remove and segment the Reactor Vessel Internals (RVI) and Reactor Vessels (RV) and conveys the recent progress. SNS's mechanical segmentation tooling includes the C-HORCE (Circumferential Hydraulically Operated Cutting Equipment), BMT (Bolt Milling Tool), FaST (Former Attachment Severing Tool) and the VRS (Volume Reduction Station). Thermal segmentation of the reactor vessels will be accomplished using an Oxygen- Propane cutting system. The tools for internals segmentation were designed by SNS using their experience from other successful reactor and large component decommissioning and demolition (D and D) projects in the US. All of the designs allow for the mechanical segmentation of the internals remotely in the water-filled reactor cavities. The C-HORCE is designed to saw seven circumferential cuts through the Core Barrel and Thermal Shield walls with individual thicknesses up to 100 mm (4 inches). The BMT is designed to remove the bolts that fasten the Baffle Plates to the Baffle Former Plates. The FaST is designed to remove the Baffle Former Plates from the Core Barrel. The VRS further volume reduces segmented components using multiple configurations of the 38i and horizontal reciprocating saws. After the successful removal and volume reduction of the Internals, the RV will be segmented using a 'First in the US' thermal cutting process through a co-operative effort with Siempelkamp NIS Ingenieurgesellschaft mbH using their experience at the Stade NPP and Karlsruhe in Germany. SNS mobilized in the fall of 2011 to commence execution of the project in order to complete the RVI segmentation, removal and packaging activities for the first unit (Unit 2) by end of the 2012/beginning 2013 and then mobilize to the second unit, Unit 1. Parallel to the completion of the segmentation of the reactor vessel internals at Unit 1, SNS will segment the Unit 2 pressure vessel and at completion move to Unit 1. (authors)

  12. Free Energy International Free Energy Europe | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A PotentialJumpGermanFife Energy ParkForkedFranklin ElectricFred

  13. International Energy and Climate Initiative - Energy+ | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtelInterias Solar Energy Jump to:

  14. Categorical Exclusion Determinations: Nuclear Energy | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T, Inc.'sEnergy BushCalifornia9Hampshire CategoricalDakota CategoricalNuclear

  15. Nuclear Energy Advisory Committee Meeting Materials | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in ManyDepartment of Energy NorthB O|WorkNational Laboratory |Nuclear

  16. 2012 Annual Planning Summary for Nuclear Energy | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015ofDepartment ofCBFO-13-3322(EE) | Department1The ongoing andDepartmentNuclear

  17. INTERNATIONAL COMPARISON OF RESIDENTIAL ENERGY USE: INDICATORS OF RESIDENTIAL ENERGY USE AND EFFICIENCY PART ONE: THE DATA BASE

    E-Print Network [OSTI]

    Schipper, L.

    2013-01-01T23:59:59.000Z

    and Analysis of Swedish Residential Energy Use Data 1960-80.1980. International Residential Energy Use and ConservationInternational Comparison of Residential Energy ! Js~. Report

  18. International Marine Renewable Energy Conference | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOil & Gas » Methane Hydrate » InternationalEnergy

  19. Nuclear Energy Advanced Modeling and Simulation (NEAMS) Software...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Software Verification and Validation (V&V) Plan Requirements Nuclear Energy Advanced Modeling and Simulation (NEAMS) Software Verification and Validation (V&V) Plan Requirements...

  20. Symmetry energy at subnuclear densities deduced from nuclear masses

    E-Print Network [OSTI]

    Kazuhiro Oyamatsu; Kei Iida

    2010-04-19T23:59:59.000Z

    We examine how nuclear masses are related to the density dependence of the symmetry energy. Using a macroscopic nuclear model we calculate nuclear masses in a way dependent on the equation of state of asymmetric nuclear matter. We find by comparison with empirical two-proton separation energies that a smaller symmetry energy at subnuclear densities, corresponding to a larger density symmetry coefficient L, is favored. This tendency, which is clearly seen for nuclei that are neutron-rich, nondeformed, and light, can be understood from the property of the surface symmetry energy in a compressible liquid-drop picture.