Powered by Deep Web Technologies
Note: This page contains sample records for the topic "internal combustion engine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Internal combustion engine  

SciTech Connect

An improvement to an internal combustion engine is disclosed that has a fuel system for feeding a fuel-air mixture to the combustion chambers and an electrical generation system, such as an alternator. An electrolytic cell is attached adjacent to the engine to generate hydrogen and oxygen upon the application of a voltage between the cathode and anode of the electrolytic cell. The gas feed connects the electrolytic cell to the engine fuel system for feeding the hydrogen and oxygen to the engine combustion chambers. Improvements include placing the electrolytic cell under a predetermined pressure to prevent the electrolyte from boiling off, a cooling system for the electrolytic cell and safety features.

Valdespino, J.M.

1981-06-09T23:59:59.000Z

2

Internal combustion engine  

DOE Patents (OSTI)

An improved engine is provided that more efficiently consumes difficult fuels such as coal slurries or powdered coal. The engine includes a precombustion chamber having a portion thereof formed by an ignition plug. The precombustion chamber is arranged so that when the piston is proximate the head, the precombustion chamber is sealed from the main cylinder or the main combustion chamber and when the piston is remote from the head, the precombustion chamber and main combustion chamber are in communication. The time for burning of fuel in the precombustion chamber can be regulated by the distance required to move the piston from the top dead center position to the position wherein the precombustion chamber and main combustion chamber are in communication.

Baker, Quentin A. (P.O. Box 6477, San Antonio, TX 78209); Mecredy, Henry E. (1630-C W. 6th, Austin, TX 78703); O' Neal, Glenn B. (6503 Wagner Way, San Antonio, TX 78256)

1991-01-01T23:59:59.000Z

3

Low emission internal combustion engine  

DOE Patents (OSTI)

A low emission, internal combustion compression ignition engine having a cylinder, a piston movable in the cylinder and a pre-combustion chamber communicating with the cylinder near the top thereof and in which low emissions of NO.sub.x are achieved by constructing the pre-combustion chamber to have a volume of between 70% and 85% of the combined pre-chamber and main combustion chamber volume when the piston is at top dead center and by variably controlling the initiation of fuel injection into the pre-combustion chamber.

Karaba, Albert M. (Muskegon, MI)

1979-01-01T23:59:59.000Z

4

Free Energy and Internal Combustion Engine Cycles  

E-Print Network (OSTI)

The performance of one type (Carnot) of Internal Combustion Engine (ICE) cycle is analyzed within the framework of thermodynamic free energies. ICE performance is different from that of an External Combustion Engine (ECE) which is dictated by Carnot's rule.

Harris, William D

2012-01-01T23:59:59.000Z

5

Carburetor for internal combustion engines  

DOE Patents (OSTI)

A carburetor for internal combustion engines having a housing including a generally discoidal wall and a hub extending axially from the central portion thereof, an air valve having a relatively flat radially extending surface directed toward and concentric with said discoidal wall and with a central conoidal portion having its apex directed toward the interior of said hub portion. The housing wall and the radially extending surface of the valve define an air passage converging radially inwardly to form an annular valving construction and thence diverge into the interior of said hub. The hub includes an annular fuel passage terminating at its upper end in a circumferential series of micro-passages for directing liquid fuel uniformly distributed into said air passage substantially at said valving constriction at right angles to the direction of air flow. The air valve is adjustable axially toward and away from the discoidal wall of the carburetor housing to regulate the volume of air drawn into the engine with which said carburetor is associated. Fuel is delivered under pressure to the fuel metering valve and from there through said micro-passages and controlled cams simultaneously regulate the axial adjustment of said air valve and the rate of delivery of fuel through said micro-passages according to a predetermined ratio pattern. A third jointly controlled cam simultaneously regulates the ignition timing in accordance with various air and fuel supply settings. The air valve, fuel supply and ignition timing settings are all independent of the existing degree of engine vacuum.

Csonka, John J. (625 Linwood Ave., Buffalo, NY 14209); Csonka, Albert B. (109 Larchmont Rd., Buffalo, NY 14214)

1978-01-01T23:59:59.000Z

6

Internal combustion engine and method for control  

SciTech Connect

In one exemplary embodiment of the invention an internal combustion engine includes a piston disposed in a cylinder, a valve configured to control flow of air into the cylinder and an actuator coupled to the valve to control a position of the valve. The internal combustion engine also includes a controller coupled to the actuator, wherein the controller is configured to close the valve when an uncontrolled condition for the internal engine is determined.

Brennan, Daniel G

2013-05-21T23:59:59.000Z

7

Starting apparatus for internal combustion engines  

DOE Patents (OSTI)

This report is a patent description for a system to start an internal combustion engine. Remote starting and starting by hearing impaired persons are addressed. The system monitors the amount of current being drawn by the starter motor to determine when the engine is started. When the engine is started the system automatically deactivates the starter motor. Five figures are included.

Dyches, G.M.; Dudar, A.M.

1995-01-01T23:59:59.000Z

8

Two phase exhaust for internal combustion engine  

Science Conference Proceedings (OSTI)

An internal combustion engine having a reciprocating multi cylinder internal combustion engine with multiple valves. At least a pair of exhaust valves are provided and each supply a separate power extraction device. The first exhaust valves connect to a power turbine used to provide additional power to the engine either mechanically or electrically. The flow path from these exhaust valves is smaller in area and volume than a second flow path which is used to deliver products of combustion to a turbocharger turbine. The timing of the exhaust valve events is controlled to produce a higher grade of energy to the power turbine and enhance the ability to extract power from the combustion process.

Vuk, Carl T. (Denver, IA)

2011-11-29T23:59:59.000Z

9

Findings of Hydrogen Internal Combustion Engine Durability  

DOE Green Energy (OSTI)

Hydrogen Internal Combustion Engine (HICE) technology takes advantage of existing knowledge of combustion engines to provide a means to power passenger vehicle with hydrogen, perhaps as an interim measure while fuel cell technology continues to mature. This project seeks to provide data to determine the reliability of these engines. Data were collected from an engine operated on a dynamometer for 1000 hours of continuous use. Data were also collected from a fleet of eight (8) full-size pickup trucks powered with hydrogen-fueled engines. In this particular application, the data show that HICE technology provided reliable service during the operating period of the project. Analyses of engine components showed little sign of wear or stress except for cylinder head valves and seats. Material analysis showed signs of hydrogen embrittlement in intake valves.

Garrett Beauregard

2010-12-31T23:59:59.000Z

10

2.61 Internal Combustion Engines, Spring 2004  

E-Print Network (OSTI)

Fundamentals of how the design and operation of internal combustion engines affect their performance, operation, fuel requirements, and environmental impact. Study of fluid flow, thermodynamics, combustion, heat transfer ...

Heywood, John B.

11

HICEV AMERICA: HYDROGEN INTERNAL COMBUSTION ENGINE  

NLE Websites -- All DOE Office Websites (Extended Search)

HICEV AMERICA: HICEV AMERICA: HYDROGEN INTERNAL COMBUSTION ENGINE VEHICLE (HICEV) TECHNICAL SPECIFICATIONS Revision 0 November 1, 2004 Prepared by Electric Transportation Applications HICEV America Vehicle Specification i TABLE OF CONTENTS Minimum Vehicle Requirements 1 1. Regulatory Requirements 7 2. Chassis 8 3. Vehicle Characteristics 10 4. Drive System 11 5. Vehicle Performance 12 6. Hydrogen Fuel Storage System (HFSS) 14 7. Additional Vehicle Systems 17 8. Documentation 18 Appendices Appendix A - Vehicle Data 19 Appendix B - FMVSS Certification Methodology 26 DB12/7/04 HICEV America Vehicle Specification 2 MINIMUM VEHICLE REQUIREMENTS The HICEV America Program is sponsored by the U.S. Department of Energy Office of Transportation Technology to provide for independent assessment of hydrogen fueled, internal

12

Jet plume injection and combustion system for internal combustion engines  

DOE Patents (OSTI)

An improved combustion system for an internal combustion engine is disclosed wherein a rich air/fuel mixture is furnished at high pressure to one or more jet plume generator cavities adjacent to a cylinder and then injected through one or more orifices from the cavities into the head space of the cylinder to form one or more turbulent jet plumes in the head space of the cylinder prior to ignition of the rich air/fuel mixture in the cavity of the jet plume generator. The portion of the rich air/fuel mixture remaining in the cavity of the generator is then ignited to provide a secondary jet, comprising incomplete combustion products which are injected into the cylinder to initiate combustion in the already formed turbulent jet plume. Formation of the turbulent jet plume in the head space of the cylinder prior to ignition has been found to yield a higher maximum combustion pressure in the cylinder, as well as shortening the time period to attain such a maximum pressure.

Oppenheim, Antoni K. (Kensington, CA); Maxson, James A. (Berkeley, CA); Hensinger, David M. (Albany, CA)

1993-01-01T23:59:59.000Z

13

Jet plume injection and combustion system for internal combustion engines  

DOE Patents (OSTI)

This invention is comprised of an improved combustion system for an internal combustion engine is disclosed wherein a rich air/fuel mixture is furnished at high pressure to one or more jet plume generator cavities adjacent to a cylinder and then injected through one or more orifices from the cavities into the head space of the cylinder to form one or more turbulent jet plumes in the head space of the cylinder prior to ignition of the rich air/fuel mixture in the cavity of the jet plume generator. The portion of the rich air/fuel mixture remaining in the cavity of the generator is then ignited to provide a secondary jet, comprising incomplete combustion products which are injected into the cylinder to initiate combustion in the already formed turbulent jet plume. Formation of the turbulent jet plume in the head space of the cylinder prior to ignition has been found to yield a higher maximum combustion pressure in the cylinder, as well as shortening the time period to attain such a maximum pressure.

Oppenheim, A.K.; Maxson, J.A.; Hensinger, D.M.

1992-12-31T23:59:59.000Z

14

Jet plume injection and combustion system for internal combustion engines  

DOE Patents (OSTI)

An improved combustion system for an internal combustion engine is disclosed wherein a rich air/fuel mixture is furnished at high pressure to one or more jet plume generator cavities adjacent to a cylinder and then injected through one or more orifices from the cavities into the head space of the cylinder to form one or more turbulent jet plumes in the head space of the cylinder prior to ignition of the rich air/fuel mixture in the cavity of the jet plume generator. The portion of the rich air/fuel mixture remaining in the cavity of the generator is then ignited to provide a secondary jet, comprising incomplete combustion products which are injected into the cylinder to initiate combustion in the already formed turbulent jet plume. Formation of the turbulent jet plume in the head space of the cylinder prior to ignition has been found to yield a higher maximum combustion pressure in the cylinder, as well as shortening the time period to attain such a maximum pressure. 24 figures.

Oppenheim, A.K.; Maxson, J.A.; Hensinger, D.M.

1993-12-21T23:59:59.000Z

15

Hydrogen-fueled internal combustion engines.  

DOE Green Energy (OSTI)

The threat posed by climate change and the striving for security of energy supply are issues high on the political agenda these days. Governments are putting strategic plans in motion to decrease primary energy use, take carbon out of fuels and facilitate modal shifts. Taking a prominent place in these strategic plans is hydrogen as a future energy carrier. A number of manufacturers are now leasing demonstration vehicles to consumers using hydrogen-fueled internal combustion engines (H{sub 2}ICEs) as well as fuel cell vehicles. Developing countries in particular are pushing for H{sub 2}ICEs (powering two- and three-wheelers as well as passenger cars and buses) to decrease local pollution at an affordable cost. This article offers a comprehensive overview of H{sub 2}ICEs. Topics that are discussed include fundamentals of the combustion of hydrogen, details on the different mixture formation strategies and their emissions characteristics, measures to convert existing vehicles, dedicated hydrogen engine features, a state of the art on increasing power output and efficiency while controlling emissions and modeling.

Verhelst, S.; Wallner, T.; Energy Systems; Ghent Univ.

2009-12-01T23:59:59.000Z

16

Modeling piston skirt lubrication in internal combustion engines  

E-Print Network (OSTI)

Ever-increasing demand for reduction of the undesirable emissions from the internal combustion engines propels broader effort in auto industry to design more fuel efficient engines. One of the major focuses is the reduction ...

Bai, Dongfang, Ph. D. Massachusetts Institute of Technology

2012-01-01T23:59:59.000Z

17

High efficiency stoichiometric internal combustion engine system  

DOE Patents (OSTI)

A power system including a stoichiometric compression ignition engine in which a roots blower is positioned in the air intake for the engine to control air flow. Air flow is decreased during part power conditions to maintain the air-fuel ratio in the combustion chamber of the engine at stoichiometric, thus enabling the use of inexpensive three-way catalyst to reduce oxides of nitrogen. The roots blower is connected to a motor generator so that when air flow is reduced, electrical energy is stored which is made available either to the roots blower to temporarily increase air flow or to the system electrical load and thus recapture energy that would otherwise be lost in reducing air flow.

Winsor, Richard Edward (Waterloo, IA); Chase, Scott Allen (Cedar Falls, IA)

2009-06-02T23:59:59.000Z

18

Control of Combustion Processes in an Internal Combustion Engine by Low-Temperature Plasma  

Science Conference Proceedings (OSTI)

A new method of operation of internal combustion engines enhances power and reduces fuel consumption and exhaust toxicity. Low-temperature plasma control combines working processes of thermal engines and steam machines into a single process.

E. A. Olenev

2002-07-01T23:59:59.000Z

19

Alcohol fuel conversion apparatus for internal combustion engines  

Science Conference Proceedings (OSTI)

An alcohol fuel conversion apparatus is described for internal combustion engines comprising: fuel storage means containing an alcohol fuel; primary heat exchanger means in fluid communication with the fuel storage means for transferring heat to pressurized alcohol contained within the heat exchanger means; a heat source for heating the heat exchange means; pressure relief valve means, in closed fluid communication with the primary heat exchange means, operable to release heated pressurized alcohol into an expansion chamber; converter means, including the expansion chamber, in fluid communication with the pressure relief valve means for receiving the heated pressurized alcohol and for the vaporization of the alcohol; carburetor means in fluid communication with the converter means for metering and mixing vaporized alcohol with air for proper combustion and for feeding the mixture to an internal combustion engine; and pump means for pressurized pumping of alcohol from the fuel storage means to the heat exchanger means, converter means, carburetor means, and to the engine.

Carroll, B.I.

1987-01-13T23:59:59.000Z

20

Hydrogen Internal Combustion Engine (ICE) Vehicle Testing Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

Internal Combustion Internal Combustion Engine (ICE) Vehicle Testing Activities James Francfort Idaho National Laboratory 2 Paper #2006-01-0433 Presentation Outline Background and goal APS Alternative Fuel (Hydrogen) Pilot Plant - design and operations Fuel dispensing and prototype dispenser Hydrogen (H2) and HCNG (compressed natural gas) internal combustion engine (ICE) vehicle testing WWW Information 3 Paper #2006-01-0433 Background Advanced Vehicle Testing Activity (AVTA) is part of DOE's FreedomCAR and Vehicle Technologies Program These activities are conducted by the Idaho National Laboratory (INL) and the AVTA testing partner Electric Transportation Applications (ETA) 4 Paper #2006-01-0433 AVTA Goal Provide benchmark data for technology modeling, research and development programs, and help fleet managers and

Note: This page contains sample records for the topic "internal combustion engine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Internal Combustion Engine Advances for Distributed Generation Markets  

Science Conference Proceedings (OSTI)

Internal combustion engines (ICEs) can play a potentially significant role as a distributed generation resource. This report provides intelligence on vendor programs and on advances in ICE technology that could lead to commercial offerings within a 2-5 year time frame.

1997-09-30T23:59:59.000Z

22

Internal combustion engine using premixed combustion of stratified charges  

DOE Patents (OSTI)

During a combustion cycle, a first stoichiometrically lean fuel charge is injected well prior to top dead center, preferably during the intake stroke. This first fuel charge is substantially mixed with the combustion chamber air during subsequent motion of the piston towards top dead center. A subsequent fuel charge is then injected prior to top dead center to create a stratified, locally richer mixture (but still leaner than stoichiometric) within the combustion chamber. The locally rich region within the combustion chamber has sufficient fuel density to autoignite, and its self-ignition serves to activate ignition for the lean mixture existing within the remainder of the combustion chamber. Because the mixture within the combustion chamber is overall premixed and relatively lean, NO.sub.x and soot production are significantly diminished.

Marriott, Craig D. (Rochester Hills, MI); Reitz, Rolf D. (Madison, WI

2003-12-30T23:59:59.000Z

23

Apparatus for photocatalytic destruction of internal combustion engine emissions during cold start  

DOE Patents (OSTI)

A method and apparatus for the destruction of emissions from an internal combustion engine wherein a substrate coated with TiO.sub.2 is exposed to a light source in the exhaust system of an internal combustion engine thereby catalyzing oxidation/reduction reactions between gaseous hydrocarbons, carbon monoxide, nitrogen oxides and oxygen in the exhaust of the internal combustion engine.

Janata, Jiri (Richland, WA); McVay, Gary L. (Richland, WA); Peden, Charles H. (West Richland, WA); Exarhos, Gregory J. (Richland, WA)

1998-01-01T23:59:59.000Z

24

Fuel injector nozzle for an internal combustion engine  

DOE Green Energy (OSTI)

A direct injection fuel injector includes a nozzle tip having a plurality of passages allowing fluid communication between an inner nozzle tip surface portion and an outer nozzle tip surface portion and directly into a combustion chamber of an internal combustion engine. A first group of the passages have inner surface apertures located substantially in a first common plane. A second group of the passages have inner surface apertures located substantially in at least a second common plane substantially parallel to the first common plane. The second group has more passages than the first group.

Cavanagh, Mark S. (Bloomington, IL); Urven, Jr., Roger L. (Colona, IL); Lawrence, Keith E. (Peoria, IL)

2008-11-04T23:59:59.000Z

25

Anti-overrunning device for an internal combustion engine  

Science Conference Proceedings (OSTI)

An anti-overrunning device is described for an internal combustion engine, comprising: (a) a carburetor having a venture passage for a fuel and air mixture, (b) a throttle valve in the passage movable to open and closed positions to regulate the effective area of the passage, (c) an actuator including a diaphragm responsive to pneumatic pressure operatively connected to the throttle valve, (d) an inertial pump comprising a housing having a weighted diaphragm mounted on an engine and subject to engine vibrations to develop pneumatic pressure, the inertial pump having an outlet connection to the actuator, and (e) a vibration sensor valve interposed in the outlet connection between the inertial pump and the actuator responsive to excessive vibration of the engine to connect the pump pressure to the actuator to cause movement of the throttle valve in a closing direction to reduce the speed of the engine.

Sejimo, Y.; Tsubai, T.; Tobinai, T.

1989-03-07T23:59:59.000Z

26

Anti-overrunning device for an internal combustion engine  

SciTech Connect

An anti-overrunning device for an internal combustion engine is described, consisting of (a) a carburetor having a venturi passage for a fuel and air mixture, (b) a throttle valve in the passage movable to open and closed positions to regulate the effective area of the passage, (c) an actuator including a diaphragm responsive to pneumatic pressure operatively connected to the throttle valve, (d) an inertial pump comprising a housing having a weighted diaphragm mounted on an engine and subject to engine vibrations to develop pneumatic pressure, the inertial pump having an inlet to receive atmospheric air and an outlet connected to the actuator, and (e) a vibration sensor in communication with the inertial pump inlet responsive to excessive vibration of the engine to connect the inlet to atmosphere to initiate pumping air from the outlet to the actuator to cause movement of the actuator diaphragm and the throttle valve in a closing direction to reduce the speed of the engine.

Sejimo, Y.; Tsubai, T.; Tobinai, T.

1989-03-07T23:59:59.000Z

27

Water distillation using waste engine heat from an internal combustion engine  

E-Print Network (OSTI)

To meet the needs of forward deployed soldiers and disaster relief personnel, a mobile water distillation system was designed and tested. This system uses waste engine heat from the exhaust flow of an internal combustion ...

Mears, Kevin S

2006-01-01T23:59:59.000Z

28

Water cooled scavenged crankcase type otto internal combustion engine  

Science Conference Proceedings (OSTI)

In a system for a water cooled scavenged crankcase type two-cycle internal combustion engine comprising: a heat reclaimation system for extracting heat from an engine jacket for heating water supplied form an add-on reservoir via a heat exchanger located within the engine cylinder cooling system, the water being subsequently additionally heated by an exhaust pipe type heat exchanger to a superheated steam state and thence conveyed by a conduit to a steam lubricator for adjustably conveying in variably timed spaced succession intervals of regulated droplets of high viscous oil, fortified with adde graphite and tallow enrichment lubricant ingredients, and thence conveying such by steam at atmospheric pressure into an intake manifold which receives a carbureted air/fuel mixture into the crankcase via a manually operated auxiliary air intake device and way check valve and fire screen, due to suction effect of the piston up stroke action of the piston during engine operation.

Bidwell, H.

1988-10-25T23:59:59.000Z

29

Modeling engine oil vaporization and transport of the oil vapor in the piston ring pack on internal combustion engines.  

E-Print Network (OSTI)

??A model was developed to study engine oil vaporization and oil vapor transport in the piston ring pack of internal combustion engines. With the assumption… (more)

Cho, Yeunwoo, 1973-

2004-01-01T23:59:59.000Z

30

Partially-Premixed Flames in Internal Combustion Engines  

DOE Green Energy (OSTI)

This was a joint university-industry research program funded by the Partnerships for the Academic-Industrial Research Program (PAIR). The research examined partially premixed flames in laboratory and internal combustion engine environments at Vanderbilt University, University of Michigan, and General Motors Research and Development. At Vanderbilt University, stretched and curved ''tubular'' premixed flames were measured in a unique optically accessible burner with laser-induced spontaneous Raman scattering. Comparisons of optically measured temperature and species concentration profiles to detailed transport, complex chemistry simulations showed good correspondence at low-stretch conditions in the tubular flame. However, there were significant discrepancies at high-stretch conditions near flame extinction. The tubular flame predictions were found to be very sensitive to the specific hydrogen-air chemical kinetic mechanism and four different mechanisms were compared. In addition, the thermo-diffusive properties of the deficient reactant, H2, strongly affected the tubular flame structure. The poor prediction near extinction is most likely due to deficiencies in the chemical kinetic mechanisms near extinction. At the University of Michigan, an optical direct-injected engine was built up for laser-induced fluorescence imaging experiments on mixing and combustion under stratified charge combustion conditions with the assistance of General Motors. Laser attenuation effects were characterized both experimentally and numerically to improve laser imaging during the initial phase of the gasoline-air mixture development. Toluene was added to the isooctane fuel to image the fuel-air equivalence ratio in an optically accessible direct-injected gasoline engine. Temperature effects on the toluene imaging of fuel-air equivalence ratio were characterized. For the first time, oxygen imaging was accomplished in an internal combustion engine by combination of two fluorescence trackers, toluene and 3-pentanone. With this method, oxygen, fuel and equivalence ratio were measured in the cylinder. At General Motors, graduate students from the University of Michigan and Vanderbilt University worked with GM researchers to develop high-speed imaging methods for optically accessible direct-injection engines. Spark-emission spectroscopy was combined with high-speed spectrally-resolved combustion imaging in a direct-injected engine.

Robert W. Pitz; Michael C. Drake; Todd D. Fansler; Volker Sick

2003-11-05T23:59:59.000Z

31

Method and device for diagnosing and controlling combustion instabilities in internal combustion engines operating in or transitioning to homogeneous charge combustion ignition mode  

DOE Patents (OSTI)

This invention is a method of achieving stable, optimal mixtures of HCCI and SI in practical gasoline internal combustion engines comprising the steps of: characterizing the combustion process based on combustion process measurements, determining the ratio of conventional and HCCI combustion, determining the trajectory (sequence) of states for consecutive combustion processes, and determining subsequent combustion process modifications using said information to steer the engine combustion toward desired behavior.

Wagner, Robert M [Knoxville, TN; Daw, Charles S [Knoxville, TN; Green, Johney B [Knoxville, TN; Edwards, Kevin D [Knoxville, TN

2008-10-07T23:59:59.000Z

32

Multiple fuel supply system for an internal combustion engine  

DOE Patents (OSTI)

A multiple fuel supply or an internal combustion engine wherein phase separation of components is deliberately induced. The resulting separation permits the use of a single fuel tank to supply components of either or both phases to the engine. Specifically, phase separation of a gasoline/methanol blend is induced by the addition of a minor amount of water sufficient to guarantee separation into an upper gasoline phase and a lower methanol/water phase. A single fuel tank holds the two-phase liquid with separate fuel pickups and separate level indicators for each phase. Either gasoline or methanol, or both, can be supplied to the engine as required by predetermined parameters. A fuel supply system for a phase-separated multiple fuel supply contained in a single fuel tank is described.

Crothers, William T. (Sunol, CA)

1977-01-01T23:59:59.000Z

33

Exhaust gas recirculation system for an internal combustion engine  

SciTech Connect

An exhaust gas recirculation system for an internal combustion engine comprises an exhaust driven turbocharger having a low pressure turbine outlet in fluid communication with an exhaust gas conduit. The turbocharger also includes a low pressure compressor intake and a high pressure compressor outlet in communication with an intake air conduit. An exhaust gas recirculation conduit fluidly communicates with the exhaust gas conduit to divert a portion of exhaust gas to a low pressure exhaust gas recirculation branch extending between the exhaust gas recirculation conduit and an engine intake system for delivery of exhaust gas thereto. A high pressure exhaust gas recirculation branch extends between the exhaust gas recirculation conduit and the compressor intake and delivers exhaust gas to the compressor for mixing with a compressed intake charge for delivery to the intake system.

Wu, Ko-Jen

2013-05-21T23:59:59.000Z

34

Automatic fault diagnosis of internal combustion engine based on spectrogram and artificial neural network  

Science Conference Proceedings (OSTI)

This paper presents a signal analysis technique for internal combustion (IC) engine fault diagnosis based on the spectrogram and artificial neural network (ANN). Condition monitoring and fault diagnosis of IC engine through acoustic signal analysis is ... Keywords: acoustic analysis, fault diagnosis, internal combustion engine

Sandeep Kumar Yadav; Prem Kumar Kalra

2010-04-01T23:59:59.000Z

35

Modeling the lubrication of the piston ring pack in internal combustion engines using the deterministic method  

E-Print Network (OSTI)

Piston ring packs are used in internal combustion engines to seal both the high pressure gas in the combustion chamber and the lubricant oil in the crank case. The interaction between the piston ring pack and the cylinder ...

Chen, Haijie

2011-01-01T23:59:59.000Z

36

Research on the Performance and Emission of a Port Fuel Injection Hydrogen Internal Combustion Engine  

Science Conference Proceedings (OSTI)

A 2.0L nature aspirate gasoline engine was modified to port fuel injection (PFI) hydrogen internal combustion engine (HICE) and a series dynamometer tests were carried out. The in-cylinder combustion process was analyzed, the performance, thermal efficiency ... Keywords: hydrogen ICE, performance, emission, combustion characteristics

Dawei Sun; Fushui Liu

2011-02-01T23:59:59.000Z

37

Research on the Performance and Emission of a Port Fuel Injection Hydrogen Internal Combustion Engine  

Science Conference Proceedings (OSTI)

A 2.0L nature aspirate gasoline engine was modified to port fuel injection (PFI) hydrogen internal combustion engine (HICE) and a series dynamometer tests were carried out. The in-cylinder combustion process was analyzed, the performance, thermal efficiency ... Keywords: hydrogen ICE, performance, emission, combustion characteristics

Dawei Sun; Fushui Liu

2010-12-01T23:59:59.000Z

38

Towards a detailed soot model for internal combustion engines  

Science Conference Proceedings (OSTI)

In this work, we present a detailed model for the formation of soot in internal combustion engines describing not only bulk quantities such as soot mass, number density, volume fraction, and surface area but also the morphology and chemical composition of soot aggregates. The new model is based on the Stochastic Reactor Model (SRM) engine code, which uses detailed chemistry and takes into account convective heat transfer and turbulent mixing, and the soot formation is accounted for by SWEEP, a population balance solver based on a Monte Carlo method. In order to couple the gas-phase to the particulate phase, a detailed chemical kinetic mechanism describing the combustion of Primary Reference Fuels (PRFs) is extended to include small Polycyclic Aromatic Hydrocarbons (PAHs) such as pyrene, which function as soot precursor species for particle inception in the soot model. Apart from providing averaged quantities as functions of crank angle like soot mass, volume fraction, aggregate diameter, and the number of primary particles per aggregate for example, the integrated model also gives detailed information such as aggregate and primary particle size distribution functions. In addition, specifics about aggregate structure and composition, including C/H ratio and PAH ring count distributions, and images similar to those produced with Transmission Electron Microscopes (TEMs), can be obtained. The new model is applied to simulate an n-heptane fuelled Homogeneous Charge Compression Ignition (HCCI) engine which is operated at an equivalence ratio of 1.93. In-cylinder pressure and heat release predictions show satisfactory agreement with measurements. Furthermore, simulated aggregate size distributions as well as their time evolution are found to qualitatively agree with those obtained experimentally through snatch sampling. It is also observed both in the experiment as well as in the simulation that aggregates in the trapped residual gases play a vital role in the soot formation process. (author)

Mosbach, Sebastian; Celnik, Matthew S.; Raj, Abhijeet; Kraft, Markus [Department of Chemical Engineering and Biotechnology, University of Cambridge, Pembroke Street, Cambridge CB2 3RA (United Kingdom); Zhang, Hongzhi R. [Department of Chemical Engineering, University of Utah, 1495 East 100 South, Kennecott Research Building, Salt Lake City, UT 84112 (United States); Kubo, Shuichi [Frontier Research Center, Toyota Central R and D Labs., Inc., Nagakute, Aichi 480-1192 (Japan); Kim, Kyoung-Oh [Higashifuji Technical Center, Toyota Motor Corporation, Mishuku 1200, Susono, Shizuoka 480-1193 (Japan)

2009-06-15T23:59:59.000Z

39

Evaluation and silicon nitride internal combustion engine components  

DOE Green Energy (OSTI)

The feasibility of silicon nitride (Si[sub 3]N[sub 4]) use in internal combustion engines was studied by testing three different components for wear resistance and lower reciprocating mass. The information obtained from these preliminary spin rig and engine tests indicates several design changes are necessary to survive high-stress engine applications. The three silicon nitride components tested were valve spring retainers, tappet rollers, and fuel pump push rod ends. Garrett Ceramic Components' gas-pressure sinterable Si[sub 3]N[sub 4] (GS-44) was used to fabricate the above components. Components were final machined from densified blanks that had been green formed by isostatic pressing of GS-44 granules. Spin rig testing of the valve spring retainers indicated that these Si[sub 3]N[sub 4] components could survive at high RPM levels (9,500) when teamed with silicon nitride valves and lower spring tension than standard titanium components. Silicon nitride tappet rollers showed no wear on roller O.D. or I.D. surfaces, steel axles and lifters; however, due to the uncrowned design of these particular rollers the cam lobes indicated wear after spin rig testing. Fuel pump push rod ends were successful at reducing wear on the cam lobe and rod end when tested on spin rigs and in real-world race applications.

Voldrich, W. (Allied-Signal Aerospace Co., Torrance, CA (United States). Garrett Ceramic Components Div.)

1992-04-01T23:59:59.000Z

40

MECH 410N Outline-2010.doc MECH 410N -Internal Combustion Engines  

E-Print Network (OSTI)

MECH 410N Outline-2010.doc 01/09/2010 MECH 410N - Internal Combustion Engines COURSE OUTLINE 1-IGNITION ENGINES 2.1. Air-Standard & Fuel-Air Cycle analysis 2.2. Performance Criteria 2.3. SI Engine Combustion 3.2. The Limited Pressure Cycle 3.3. The fuel-air cycle with complete combustion 3.4. Turbocharged

Note: This page contains sample records for the topic "internal combustion engine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

A coal-water slurry fueled internal combustion engine and method for operating same  

DOE Patents (OSTI)

An internal combustion engine fueled with a coal-water slurry is described. About 90 percent of the coal-water slurry charge utilized in the power cycle of the engine is directly injected into the main combustion chamber where it is ignited by a hot stream of combustion gases discharged from a pilot combustion chamber of a size less than about 10 percent of the total clearance volume of main combustion chamber with the piston at top dead center. The stream of hot combustion gases is provided by injecting less than about 10 percent of the total coal-water slurry charge into the pilot combustion chamber and using a portion of the air from the main combustion chamber that has been heated by the walls defining the pilot combustion chamber as the ignition source for the coal-water slurry injected into the pilot combustion chamber.

McMillian, M.H.

1992-12-31T23:59:59.000Z

42

Coal-water slurry fuel internal combustion engine and method for operating same  

SciTech Connect

An internal combustion engine fueled with a coal-water slurry is described. About 90 percent of the coal-water slurry charge utilized in the power cycle of the engine is directly injected into the main combustion chamber where it is ignited by a hot stream of combustion gases discharged from a pilot combustion chamber of a size less than about 10 percent of the total clearance volume of main combustion chamber with the piston at top dead center. The stream of hot combustion gases is provided by injecting less than about 10 percent of the total coal-water slurry charge into the pilot combustion chamber and using a portion of the air from the main combustion chamber that has been heated by the walls defining the pilot combustion chamber as the ignition source for the coal-water slurry injected into the pilot combustion chamber.

McMillian, Michael H. (Fairmont, WV)

1992-01-01T23:59:59.000Z

43

Modeling engine oil vaporization and transport of the oil vapor in the piston ring pack on internal combustion engines  

E-Print Network (OSTI)

A model was developed to study engine oil vaporization and oil vapor transport in the piston ring pack of internal combustion engines. With the assumption that the multi-grade oil can be modeled as a compound of several ...

Cho, Yeunwoo, 1973-

2004-01-01T23:59:59.000Z

44

Numerical modeling of hydrogen-fueled internal combustion engines  

DOE Green Energy (OSTI)

The planned use of hydrogen as the energy carrier of the future introduces new challenges and opportunities, especially to the engine design community. Hydrogen is a bio-friendly fuel that can be produced from renewable resources and has no carbon dioxide combustion products; and in a properly designed ICE, almost zero NO{sub x} and hydrocarbon emissions can be achieved. Because of the unique properties of hydrogen combustion - in particular the highly wrinkled nature of the laminar flame front due to the preferential diffusion instability - modeling approaches for hydrocarbon gaseous fuels are not generally applicable to hydrogen combustion. This paper reports on the current progress to develop a engine design capability based on KIVA family of codes for hydrogen-fueled, spark-ignited engines in support of the National Hydrogen Program. A turbulent combustion model, based on a modified eddy-turnover model in conjunction with an intake flow valve model, is found to describe well the efficiency and NO{sub x} emissions of this engine satisfy the Equivalent Zero Emission Vehicle (EZEV) standard established by the California Resource Board. 26 refs., 10 figs., 1 tab.

Johnson, N.L.; Amsden, A.A.

1996-12-31T23:59:59.000Z

45

Experimental Study of Air-Fuel Ratio Control Strategy for a Hydrogen Internal Combustion Engine  

Science Conference Proceedings (OSTI)

One of the most attractive combustive features for hydrogen fuel is its wide range of flammability. The wide flammability limits allow hydrogen engine to be operated at extremely lean air–fuel ratios compared to conventional fuels. Concepts for ... Keywords: Hydrogen internal combustion engine, Air/Fuel ratio, Control strategy

Zhong-yu Zhao; Fu-shui Liu

2010-11-01T23:59:59.000Z

46

Nitrogen enriched combustion of a natural gas internal combustion engine to reduce NO.sub.x emissions  

DOE Green Energy (OSTI)

A method and system for reducing nitrous oxide emissions from an internal combustion engine. An input gas stream of natural gas includes a nitrogen gas enrichment which reduces nitrous oxide emissions. In addition ignition timing for gas combustion is advanced to improve FCE while maintaining lower nitrous oxide emissions.

Biruduganti, Munidhar S. (Naperville, IL); Gupta, Sreenath Borra (Naperville, IL); Sekar, R. Raj (Naperville, IL); McConnell, Steven S. (Shorewood, IL)

2008-11-25T23:59:59.000Z

47

Effects of lubricant viscosity and surface texturing on ring-pack performance in internal combustion engines  

E-Print Network (OSTI)

The piston ring-pack contributes approximately 25% of the mechanical losses in an internal combustion engine. Both lubricant viscosity and surface texturing were investigated in an effort to reduce this ring-pack friction ...

Takata, Rosalind (Rosalind Kazuko), 1978-

2006-01-01T23:59:59.000Z

48

Modeling the structural behavior of the piston rings under different boundary conditions in internal combustion engines  

E-Print Network (OSTI)

In the process of designing internal combustion engine, piston ring plays an important role in fulfilling the requirements of camber gas sealing, friction reduction and lubrication oil consumption. The goal of this thesis ...

Xu, Dian

2010-01-01T23:59:59.000Z

49

Numerical modeling of piston secondary motion and skirt lubrication in internal combustion engines  

E-Print Network (OSTI)

Internal combustion engines dominate transportation of people and goods, contributing significantly to air pollution, and requiring large amounts of fossil fuels. With increasing public concern about the environment and ...

McClure, Fiona

2007-01-01T23:59:59.000Z

50

Research and development of hydrogen direct-injection internal combustion engine system  

Science Conference Proceedings (OSTI)

The research and development of hydrogen-internal combustion engine (ICE) system for heavy-duty trucks, with the goal of allowing carbon dioxide (CO2)-free operation in transportation department, has been carried out. The high-pressure hydrogen ... Keywords: NOx emission reduction, NOx storage reduction catalyst, carbon dioxide-free, direct injection, heavy-duty truck, high-pressure hydrogen injector, hydrogen, internal combustion engine

Yoshio Sato; Atsuhiro Kawamura; Tadanori Yanai; Kaname Naganuma; Kimitaka Yamane; Yasuo Takagi

2009-02-01T23:59:59.000Z

51

Advanced Vehicle Testing Activity: Other Internal Combustion...  

NLE Websites -- All DOE Office Websites (Extended Search)

Other Internal Combustion Engine Vehicles to someone by E-mail Share Advanced Vehicle Testing Activity: Other Internal Combustion Engine Vehicles on Facebook Tweet about Advanced...

52

Materials Reliability Program: Aging Management Strategies for Westinghouse and Combustion Engineering PWR Internals (MRP-232)  

Science Conference Proceedings (OSTI)

This report summarizes the aging management strategy development for Westinghouse and Combustion Engineering (CE) reactor internals. This report provides the technical basis for the aging management requirements of Westinghouse and CE reactor internals in the Pressurized Water Reactor (PWR) internals I&E guidelines (MRP-227-Rev. 0).

2008-12-22T23:59:59.000Z

53

"Optimization of efficiency of internal combustion engines via using  

NLE Websites -- All DOE Office Websites (Extended Search)

Optimization of efficiency of internal combustion engines via using Optimization of efficiency of internal combustion engines via using spinning gas and non-spectroscopic method of determining gas constituents through rotation ..--.. Inventors Nathaniel Fisch, Vasily Geyko An important use of the disclosed approach is the improvement efficiency of thermal cycles and as result efficiency of engines. Different cycles and different ways of compression of spinning gas may be used to maximize possible efficiency gain. In conventional internal combustion engines, gas spinning is either not used at all or used only with the purpose of increasing turbulence and better mixing. In the disclosed method, gas rotation is used for energy storage, hence it allows an improvement in thermal cycle efficiency. To achieve significant effect related to

54

Monitoring of some functional parameters for an internal-combustion engine  

Science Conference Proceedings (OSTI)

This work presents the achievement of a monitoring, recording, processing and interpretation concept, at laboratory scale, of some functional parameters for a spark-ignition engine, based on an electronic equipment, which measures the values of 17 parameters ... Keywords: cylinder, internal-combustion engine, pressure, sensors, speed

Sorin Ra?iu; Gabriel Nicolae Popa; Vasile Alexa

2008-11-01T23:59:59.000Z

55

Microwave-Assisted Ignition for Improved Internal Combustion Engine Efficiency  

E-Print Network (OSTI)

thermal efficiency for electricity generation from combustible sources ( , or as a fraction of energy converted in the case of solar

DeFilippo, Anthony Cesar

2013-01-01T23:59:59.000Z

56

Traveling-Wave Thermoacoustic Engines With Internal Combustion  

DOE Patents (OSTI)

Thermoacoustic devices are disclosed wherein, for some embodiments, a combustion zone provides heat to a regenerator using a mean flow of compressible fluid. In other embodiments, burning of a combustible mixture within the combustion zone is pulsed in phase with the acoustic pressure oscillations to increase acoustic power output. In an example embodiment, the combustion zone and the regenerator are thermally insulated from other components within the thermoacoustic device.

Weiland, Nathan Thomas (Blacksburg, VA); Zinn, Ben T. (Atlanta, GA); Swift, Gregory William (Sante Fe, NM)

2004-05-11T23:59:59.000Z

57

The railplug: A new ignitor for internal combustion engines  

SciTech Connect

A miniaturized railgun, termed the {open_quotes}railplug,{close_quotes} has been developed for use as an ignitor of combustible mixtures in engines. The device drives a plasma armature in a multishot mode with the aim of creating a line-source for ignition rather than the point source provided by traditional spark plugs. Railplugs have been fabricated in both parallel rail and co-axial rail geometries. The railplug differs from most plasma armature railguns in two striking ways: (1) no fuse or pellet is used to initially establish the plasma (the armature is simply the arc created by a high-voltage pulse), and (2) it operates over a range of elevated pressures (up to 500 psi). Consequently, the railplug power supply must provide a high voltage spike to breakdown the gap between the rails followed by a sustaining voltage that supplies current to drive the arc down the rails. Conceptually, this is the equivalent of combining the electrostatic problem of a sparkplug with the electrodynamic one of a railgun. Two power supply options that do this are outlined, as well as details of railplug geometries. Successes to date have demonstrated the firing of plugs for over 10{sup 4} shots at delivered arc energies of 1 J per shot. Rep rates have been demonstrated up to 50 Hz.

Faidley, R.W.; Darden, M.H.; Weldon, W.F.

1995-01-01T23:59:59.000Z

58

Internal combustion engine with rotary valve assembly having variable intake valve timing  

DOE Patents (OSTI)

An internal combustion engine has rotary valves associated with movable shutters operable to vary the closing of intake air/fuel port sections to obtain peak volumetric efficiency over the entire range of speed of the engine. The shutters are moved automatically by a control mechanism that is responsive to the RPM of the engine. A foot-operated lever associated with the control mechanism is also used to move the shutters between their open and closed positions.

Hansen, Craig N. (Eden Prairie, MN); Cross, Paul C. (Shorewood, MN)

1995-01-01T23:59:59.000Z

59

Apparatus for improving gasoline comsumption, power and reducing emission pollutants of internal combustion engines  

Science Conference Proceedings (OSTI)

This patent describes an apparatus for improving performance and reducing fuel comsumption and emission pollutants from an internal combustion gasoline engine. This apparatus consists of: 1.) an internal combustion gasoline engine having, in part, an intake manifold and an exhaust manifold where the exhaust manifold is modified to include a manifold exhaust port; 2.) a modified internal combustion engine carburetor connected to the intake manifold on the engine; 3.) a positive crankcase ventilation valve (PCV) which has an input port conventionally connected to the internal combustion engine and also has a PCV output port; 4.) an automobile fuel pump having an input connected to a conventional fuel tank and having a fuel pump output port; 5.) a thermic reactor; 6.) a thermic reactor air cleaner pneumatically connected to the clean air input port on the thermic reactor; 7.) a catalytic gas injector; 8.) a fuel regulator/restrictor consisting of a solid block having a fuel pump input port and a carburetor output port.

Piedrafita, R.

1986-02-18T23:59:59.000Z

60

Method and apparatus for minimizing the fuel usage in an internal combustion engine  

SciTech Connect

An apparatus and method is disclosed for minimizing the fuel usage in an internal combustion engine. The subject invention is particularly adapted for use with an engine installation subject to varying loads and which includes a governor for varying fuel flow as a function of load. In operation, the combustibles in the exhaust gas of the engine is continuously monitored. The measured level of combustibles is then compared with a predetermined level corresponding to optimum efficiency. A controller is provided for varying the air/fuel ratio supplied to the engine for maximizing efficiency in correspondence with the preset level. By this arrangement, energy output is increased permitting the governor to further reduce fuel flow, thereby minimizing energy costs.

Smojven, R.R.

1984-09-18T23:59:59.000Z

Note: This page contains sample records for the topic "internal combustion engine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Apparatus and method for operating internal combustion engines from variable mixtures of gaseous fuels  

DOE Patents (OSTI)

An apparatus and method for utilizing any arbitrary mixture ratio of multiple fuel gases having differing combustion characteristics, such as natural gas and hydrogen gas, within an internal combustion engine. The gaseous fuel composition ratio is first sensed, such as by thermal conductivity, infrared signature, sound propagation speed, or equivalent mixture differentiation mechanisms and combinations thereof which are utilized as input(s) to a "multiple map" engine control module which modulates selected operating parameters of the engine, such as fuel injection and ignition timing, in response to the proportions of fuel gases available so that the engine operates correctly and at high efficiency irrespective of the gas mixture ratio being utilized. As a result, an engine configured according to the teachings of the present invention may be fueled from at least two different fuel sources without admixing constraints.

Heffel, James W. (Lake Matthews, CA); Scott, Paul B. (Northridge, CA); Park, Chan Seung (Yorba Linda, CA)

2011-11-01T23:59:59.000Z

62

Developing an approach utilizing local deterministic analysis to predict the cycle friction of the piston ring-pack in internal combustion engines  

E-Print Network (OSTI)

Nowadays, a rapid growth of internal combustion (IC) engines is considered to be a major contributor to energy crisis. About 20% of the mechanical loss in internal combustion engines directly goes to the friction loss ...

Liu, Yang, S.M. Massachusetts Institute of Technology

2013-01-01T23:59:59.000Z

63

http://rcc.its.psu.edu/hpc Simulation of In-Cylinder Processes in Internal Combustion Engines  

E-Print Network (OSTI)

http://rcc.its.psu.edu/hpc Simulation of In-Cylinder Processes in Internal Combustion Engines into clean and efficient turbulent combustion remains imperative. A single grand challenge was identified in a 2006 DOE workshop on clean and efficient combustion of 21st century transportation fuels [1]: "The

Bjørnstad, Ottar Nordal

64

Wavelet Analysis of Cycle-to-Cycle Pressure Variations in an Internal Combustion Engine  

E-Print Network (OSTI)

Using a continuous wavelet transform we have analyzed the cycle-to-cycle variations of pressure in an internal combustion engine. The time series of maximum pressure variations are examined for different loading and their wavelet power spectrum is calculated for each load. From the wavelet power spectrum we detected the presence of long, intermediate and short-term periodicities in the pressure signal. It is found that depending on the load, the long and intermediate-term periodicities may span several cycles, whereas the short-period oscillations tend to appear intermittently. Knowledge of these periodicities may be useful to develop effective control strategies for efficient combustion.

Asok K. Sen; Grzegorz Litak; Rodolfo Taccani; Robert Radu

2006-07-19T23:59:59.000Z

65

Method for reducing peak phase current and decreasing staring time for an internal combustion engine having an induction machine  

DOE Patents (OSTI)

A method for reducing the starting time and reducing the peak phase currents for an internal combustion engine that is started using an induction machine starter/alternator. The starting time is reduced by pre-fluxing the induction machine and the peak phase currents are reduced by reducing the flux current command after a predetermined period of time has elapsed and concurrent to the application of the torque current command. The method of the present invention also provides a strategy for anticipating the start command for an internal combustion engine and determines a start strategy based on the start command and the operating state of the internal combustion engine.

Amey, David L. (Birmingham, MI); Degner, Michael W. (Farmington Hills, MI)

2002-01-01T23:59:59.000Z

66

The railplug: Development of a new ignitor for internal combustion engines. Final report  

DOE Green Energy (OSTI)

A three year investigation of a new type of ignitor for internal combustion engines has been performed using funds from the Advanced Energy Projects Program of The Basic Energy Sciences Division of the U.S. Department of Energy and with matching funding from Research Applications, Inc. This project was a spin-off of {open_quotes}Star Wars{close_quotes} defense technology, specifically the railgun. The {open_quotes}railplug{close_quotes} is a miniaturized railgun which produces a high velocity plume of plasma that is injected into the combustion chamber of an engine. Unlike other types of alternative ignitors, such as plasma jet ignitors, electromagnetic forces enhance the acceleration of the plasma generated by a railplug. Thus, for a railplug, the combined effects of electromagnetic and thermodynamic forces drive the plasma into the combustion chamber. Several engine operating conditions or configurations can be identified that traditionally present ignition problems, and might benefit from enhanced ignition systems. One of these is ultra-lean combustion in spark ignition (SI) engines. This concept has the potential for lowering emissions of NOx while simultaneously improving thermal efficiency. Unfortunately, current lean burn engines cannot be operated sufficiently lean before ignition related problems are encountered to offer any benefits. High EGR engines have similar potential for emissions improvement, but also experience similar ignition problems, particularly at idle. Other potential applications include diesel cold start, alcohol and dual fuel engines, and high altitude relight of gas turbines. The railplug may find application for any of the above. This project focused on three of these potential applications: lean burn SI engines, high EGR SI engines, and diesel cold start.

Matthews, R.D.; Nichols, S.P.; Weldon, W.F.

1994-11-29T23:59:59.000Z

67

BIBLIOGRAPHY ON INTERNAL COMBUSTION ENGINES 1. F. Obert, Internal Combustion Engines and Air Pollution, Intext Educational Publishers, 1973  

E-Print Network (OSTI)

depend on vari- ous factors: engine temperature and load, aftertreatment de- vices and dilution-11545-2010 © Author(s) 2010. CC Attribution 3.0 License. Atmospheric Chemistry and Physics Impact of aftertreatment aftertreatment systems. One vehicle lacked exhaust aftertreatment devices, one ve- hicle was equipped

Entekhabi, Dara

68

The effects of spark ignition parameters on the lean burn limit of natural gas combustion in an internal combustion engine  

E-Print Network (OSTI)

A full factorial experiment was conducted to determine the effects of internal combustion engine ignition parameters on the air-fuel ratio (A/F) lean limit of combustion with compressed natural gas (CNG). Spark electrical characteristics (voltage, current, power, energy and duration), electrode design, electrode gap and compression ratio were the control variables and A/F lean limit, fuel consumption and hydrocarbon and oxides of nitrogen emission concentrations were the response variables. Experiments were performed on a General Motors' 2.2 liter four cylinder engine. Spark electrical characteristics were varied by applying various primary voltages and secondary resistances to the production inductive ignition system, with the engine operating at two operating conditions, a light load and a road load, and with two compression ratios. Cylinder pressure data was acquired to quantify load and combustion stability. Spark electrical characteristics were acquired with a digital oscilloscope to quantify secondary spark electrical characteristics. The results indicated that the response variables were generally insensitive to all the control variables, except for compression ratio. However, contrary to the literature, the A/F lean limit and fuel efficiency degraded with a higher compression ratio. Single and multi-variant linear regressions were studied between the A/F lean limit and the spark electrical characteristics. The only statistically significant and notable finding was a multi-variant linear regression of the A/F lean limit to increasing spark duration and decreasing spark energy at the road load operating condition. Statistical significance of the effect of the ignition system control variables on the response variables was higher at the road load than the light load operating condition. Emissions responded as expected with the higher compression ratio.

Chlubiski, Vincent Daniel

1997-01-01T23:59:59.000Z

69

Apparatus for controlling the air-fuel ratio in an internal combustion engine  

Science Conference Proceedings (OSTI)

Apparatus for controlling the air-fuel ratio in an internal combustion engine to substantially maintain the ratio at a predetermined value while the engine is operating under various load conditions. The engine has a carburetor with an air passageway through which air is drawn into the engine. Fuel is supplied to the carburetor through a fuel system and mixed with air passing through the carburetor. The presence of oxygen in the combustion products, which is a function of the air-fuel ratio of the mixture, is sensed and a first electrical signal representative of the oxygen content is supplied. The first electrical signal is compared with a predetermined reference level which is a function of the predetermined value to produce a second electrical signal having first and second signal elements, a first signal element being produced when the air-fuel ratio of the mixture is greater than the predetermined level and a second signal element being produced when the ratio is less than the level. A control responsive to the second electrical signal supplies to an air metering unit a control signal by which the quantity of air introduced into the fuel system is controlled. A change in the control signal is produced whenever the second electrical signal has a transition from one signal element to the other thereby for the air metering unit to change the quantity of air introduced into the fuel system conduit by an amount necessary to substantially maintain the air-fuel ratio at the predetermined value.

Gantzert, T.R.; Hicks, D.L.; Lindberg, A.W.

1981-07-21T23:59:59.000Z

70

A comparison between direct spark ignition and prechamber ignition in an internal combustion engine  

DOE Green Energy (OSTI)

We simulated the flow field and flame propagation near top dead center in a generic large-bore internal combustion engine using the COYOTE computer program, which is based on the full Navier-Stokes equations for a fluid mixture. The combustion chamber is a right circular cylinder, and the main charge is uniformly premixed. The calculations are axisymmetric. The results illustrate the differences in flow patterns, flame propagation, and thermal NO production between ignition with a spark plug and with a small prechamber. In the spark-ignited case, the flame propagates away from the spark plug approximately as a segment of a spherical surface, just as expected. With the prechamber, a high speed jet of hot combustion products shoots into the main chamber, quickly producing a large flame sheet that spreads along the piston face. The prechamber run consumes all of the fuel in half the time required by the spark-ignited case. The two cases produce comparable amounts of thermal NO at the end of fuel combustion.

Cloutman, L.D.

1993-12-03T23:59:59.000Z

71

Apparatus for closed-loop combustion control in internal combustion engines  

SciTech Connect

Schematically disclosed is an engine control apparatus wherein cylinder pressure is sensed before and after the top dead center position. Desired cylinder pressure curves are stored in a microcomputer for a range of engine speed-load combinations. By electrically comparing the actual pressure-time curve with the desired pressure curve for the existing speed-load combination it should be possible to generate an error signal representing deviation of actual engine performance from the desired performance, i.e., a permissible plus or minus band following the desired curve. The invention would provide a control action using only three parameters, namely engine speed, engine load and cylinder pressure.

Cheklich, G.E.

1983-03-10T23:59:59.000Z

72

Estimating the impact on fuel tax revenues from a changing light vehicle fleet with increased advanced internal combustion engine vehicles and electric vehicles.  

E-Print Network (OSTI)

??Advanced fuel economies in both traditional internal combustion engine vehicles (ICEs) and electric vehicles (EVs) have a strong influence on transportation revenue by reducing fuel… (more)

Hall, Andrea Lynn

2013-01-01T23:59:59.000Z

73

E-Alerts: Combustion, engines, and propellants (reciprocation and rotating combustion engines). E-mail newsletter  

Science Conference Proceedings (OSTI)

Design, performance, and testing of reciprocating and rotating engines of various configurations for all types of propulsion. Includes internal and external combustion engines; engine exhaust systems; engine air systems components; engine structures; stirling and diesel engines.

NONE

1999-04-01T23:59:59.000Z

74

ME 374C Combustion Engine Processes ABET EC2000 syllabus  

E-Print Network (OSTI)

ME 374C ­ Combustion Engine Processes Page 1 ABET EC2000 syllabus ME 374C ­ Combustion Engine combustion engines, fuels, carburetion, combustion, exhaust emissions, knock, fuel injection, and factors to an appropriate major sequence in engineering. Textbook(s): Internal Combustion Engines and Automotive Engineering

Ben-Yakar, Adela

75

Mixture of micronized coal powder with gaseous fuels for use in internal combustion engines  

DOE Patents (OSTI)

An improved fuel mixture for use in internal combustion engines is described. This fuel is an intimate mixture of micronized coal, having an average particle size of less than 100 microns, with a gaseous fuel selected from natural gas and coal-derived. The coal can be present from more than 0 percent to less than 100 percent, with generally the lower percentages being preferred. The addition of the coal to the gaseous fuel improves engine efficiency and power rating, and also decreases peak engine pressure allowing for higher compression ratios. An increase in the amount of the coal increases the oxides of sulfur while reducing the oxides of nitrogen in the exhaust. An increase in the amount of gas, on the other hand, increases the oxides of nitrogen but lowers oxides of sulfur. Accordingly, a preferred mixture will depend upon a particular application for the coal/gas fuel and thereby increases user fuel flexibility considerations. Modeling of the fuel mixture for use in a diesel engine is described. 3 figs., 3 tabs.

Carpenter, L.K.

1990-01-03T23:59:59.000Z

76

Alternative Fuel Pilot Plant & Hydrogen Internal Combustion Engine Vehicle Testing  

NLE Websites -- All DOE Office Websites (Extended Search)

RESEARCH & DEVELOPMENT RESEARCH & DEVELOPMENT Science Arizona Public Service Alternative Fuel Pilot Plant & Hydrogen Internal Combustion Engine Vehicle Testing Alternative Fuel Pilot Plant The Arizona Public Service Alternative Fuel Pilot Plant is a model alternative fuel refueling system, dispensing hydrogen, compressed natural gas (CNG), and hydrogen/ CNG blends (HCNG). The plant is used daily to fuel vehicles operated in Arizona Public Service's fleet. Hydrogen Subsystem The plant's hydrogen system consists of production, compression, storage, and dispensing. The hydrogen produced is suitable for use in fuel cell-powered vehicles, for which the minimum hydrogen purity goal is 99.999%. Hydrogen is produced using an electrolysis process that separates water into hydrogen and oxygen. At present, the hydrogen is

77

NREL Showcases Hydrogen Internal Combustion Engine Bus, Helps DOE Set Standards for Outreach (Fact Sheet)  

SciTech Connect

This fact sheet describes the National Renewable Energy Laboratory's (NREL's) accomplishments in showcasing a Ford hydrogen-powered internal combustion engine (H2ICE) bus at The Taste of Colorado festival in Denver. NREL started using its U.S. Department of Energy-funded H2ICE bus in May 2010 as the primary shuttle vehicle for VIP visitors, members of the media, and new employees. In September 2010, NREL featured the bus at The Taste of Colorado. This was the first major outreach event for the bus. NREL's educational brochure, vehicle wrap designs, and outreach efforts serve as a model for other organizations with DOE-funded H2ICE buses. Work was performed by the Hydrogen Education Group and Market Transformation Group in the Hydrogen Technologies and Systems Center.

2010-11-01T23:59:59.000Z

78

Analysis on driving forces of oil pumps for internal combustion engines  

Science Conference Proceedings (OSTI)

Measures to reduce friction losses for internal combustion engines have been promoted as a means to meet the recent socioeconomical demand for energy saving. This paper describes a unique study on oil pump driving forces as a part of such efforts. In this study, oil pump driving forces are divided into (1) pumping work, (2) gear intermeshing loss, (3) resistance by the viscosity of lubricating oil, (4) mechanical loss and (5) bearing friction loss. Individual driving forces have been analyzed by respective theories, which are synthesized into a theoretical equation. The comparison between the theoretically calculated values and measured values obtained by the tests has revealed that they are in good agreement, as being described in the text of the paper.

Baba, Y.; Hoshi, M.

1986-01-01T23:59:59.000Z

79

Evaluation and silicon nitride internal combustion engine components. Final report, Phase I  

DOE Green Energy (OSTI)

The feasibility of silicon nitride (Si{sub 3}N{sub 4}) use in internal combustion engines was studied by testing three different components for wear resistance and lower reciprocating mass. The information obtained from these preliminary spin rig and engine tests indicates several design changes are necessary to survive high-stress engine applications. The three silicon nitride components tested were valve spring retainers, tappet rollers, and fuel pump push rod ends. Garrett Ceramic Components` gas-pressure sinterable Si{sub 3}N{sub 4} (GS-44) was used to fabricate the above components. Components were final machined from densified blanks that had been green formed by isostatic pressing of GS-44 granules. Spin rig testing of the valve spring retainers indicated that these Si{sub 3}N{sub 4} components could survive at high RPM levels (9,500) when teamed with silicon nitride valves and lower spring tension than standard titanium components. Silicon nitride tappet rollers showed no wear on roller O.D. or I.D. surfaces, steel axles and lifters; however, due to the uncrowned design of these particular rollers the cam lobes indicated wear after spin rig testing. Fuel pump push rod ends were successful at reducing wear on the cam lobe and rod end when tested on spin rigs and in real-world race applications.

Voldrich, W. [Allied-Signal Aerospace Co., Torrance, CA (United States). Garrett Ceramic Components Div.

1992-04-01T23:59:59.000Z

80

Comparative evaluation of acoustical noise levels of Soleq Evcort EV and ICE (internal combustion engine) counterpart  

DOE Green Energy (OSTI)

The Idaho National Engineering Laboratory (INEL) evaluates Ev propulsion systems and components for the US Department of Energy (DOE) Electric and Hybrid Vehicle (EHV) Program. This paper describes an INEL study which compares the exterior and interior acoustic noise levels of an electric vehicle to its internal combustion engine (ICE) counterpart base vehicle, under various operating conditions. The electric vehicle was a converted 1988 Ford Escort station wagon, retrofitted with a DC electric powertrain developed by Soleq Corporation. A comparably-equipped gasoline-fueled ICE-powered Ford Escort station wagon provided the baseline acoustic noise levels with which to compare the electric vehicle. Measurements of the interior and exterior noise levels were obtained using a Bruel and Kjaer (B K) Type 2231 Modular Precision Sound Level Meter. The tests were conducted in accordance with applicable Society of Automotive Engineer's (SAE) standard practices at Chrysler's Arizona Proving Grounds in Wittmann, Arizona. The results indicate that radiated interior and exterior acoustic noise levels of the electric vehicle were noticeably quieter under acceleration and idly conditions. However, under constant speed operation the electric and the ICE exhibited essentially equivalent interior and exterior noise levels. 8 refs., 2 tabs.

MacDowall, R.D.

1990-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "internal combustion engine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Advanced Vehicle Testing Activity- Other Internal Combustion...  

NLE Websites -- All DOE Office Websites (Extended Search)

Other Internal Combustion Engine Vehicles What's New 2012 Honda Civic CNG Baseline Performance Testing (PDF 292KB) 2013 Volkswagen Jetta TDI Baseline Performance Testing (PDF...

82

Advanced Vehicle Testing Activity: Hydrogen Internal Combustion...  

NLE Websites -- All DOE Office Websites (Extended Search)

to someone by E-mail Share Advanced Vehicle Testing Activity: Hydrogen Internal Combustion Engine Vehicle Basics on Facebook Tweet about Advanced Vehicle Testing Activity:...

83

Advanced Vehicle Testing Activity: Other Internal Combustion...  

NLE Websites -- All DOE Office Websites (Extended Search)

Other Internal Combustion Engine Vehicles The Advanced Vehicle Testing Activity (AVTA) is tasked by the U.S. Department of Energy's (DOE) Vehicle Technology Office (VTO) to conduct...

84

Advanced Vehicle Testing Activity: Hydrogen Internal Combustion...  

NLE Websites -- All DOE Office Websites (Extended Search)

to someone by E-mail Share Advanced Vehicle Testing Activity: Hydrogen Internal Combustion Engine Vehicle Specifications and Test Procedures on Facebook Tweet about Advanced...

85

Running out of steam. Part III. Development blues. [Alternatives to automotive internal combustion engines  

SciTech Connect

The history is given of systems that have been looked upon alternately as either strong competitors or engineering curiosities in the revived search to replace the Otto-cycle power plant with a cleaner, more efficient, and equally reliable passenger car engine. These recent efforts are largely attempts to polish up old technologies that were around long before a single model-T rolled off Henry Ford's first assembly line. The first steam vehicle, for example, hit the road more than 200 years ago and over the years has undergone considerable refinement. But, in spite of this long history and with the exception of short bursts of enthusiasm, the development of a steam-powered passenger car has never been high on the automobile industry's list of priorities. Some clues are given as to why this is true and why a number of ''think tank'' reports published over the past few years on the future role of steam-driven cars have ranged from mildly optimistic to forthrightly pessimistic. Electric vehicles have had a somewhat parallel history. They were early competitors with the Otto engine, but, unlike the steam cars, they have never completely disappeared. Indeed, for some special uses, they have outperformed all varieties of internal combustion engines (I.C.E.). Further inroads into the Otto-cycle car market, however, depend upon improved car design and the advancement of battery technology, an area of research that has been painfully slow in yielding results. Were it not for the wide public interest in environmental and resource issues that has been translated into new laws dealing with air pollution and resource management, the auto industry would have been content to sit on its I.C.E. for some time to come.

Reitze, A.W. Jr.

1977-01-01T23:59:59.000Z

86

Economics of electron beam and electrical discharge processing for post-combustion NO{sub x} control in internal combustion engines  

DOE Green Energy (OSTI)

This paper discusses the physics and chemistry of non-thermal plasma processing for post-combustion NO{sub x} control in internal combustion engines. A comparison of electron beam and electrical discharge processing is made regarding their power consumption, radical production, NO{sub x} removal mechanisms, and by-product formation. Pollution control applications present a good opportunity for transferring pulsed power techniques to the commercial sector. However, unless advances are made to drastically reduce the price and power consumption of electron beam sources and pulsed power systems, these plasma techniques will not become commercially competitive with conventional thermal or surface-catalytic methods.

Penetrante, B.M.

1993-08-02T23:59:59.000Z

87

Fundamental limitations of non-thermal plasma processing for internal combustion engine NO{sub x} control  

DOE Green Energy (OSTI)

This paper discusses the physics and chemistry of non-thermal plasma processing for post-combustion NO{sub x} control in internal combustion engines. A comparison of electron beam and electrical discharge processing is made regarding their power consumption, radical production, NO{sub x} removal mechanisms, and by product formation. Can non-thermal deNO{sub x} operate efficiently without additives or catalysts? How much electrical power does it cost to operate? What are the by-products of the process? This paper addresses these fundamental issues based on an analysis of the electron-molecule processes and chemical kinetics.

Penetrante, B.M.

1993-08-19T23:59:59.000Z

88

Multi-dimensional computation of compressible reacting flows through porous media to apply to Internal Combustion Engine simulation  

Science Conference Proceedings (OSTI)

In this work, a new multi-dimensional Finite Volume (FV) solver of partial differential equations (PDEs) for compressible and reacting flows through porous media has been developed. The solver makes use of a pseudo-staggered arrangement, in order to ... Keywords: CFD, Computational fluid dynamics, DPF, Diesel exhaust after-treatment simulation, Diesel particulate filters, ICE, Internal combustion engines, Numerical methods, Porous media solver

F. Piscaglia; A. Montorfano; A. Onorati

2010-10-01T23:59:59.000Z

89

On the wall jet from the ring crevice of an internal combustion engine  

DOE Green Energy (OSTI)

Numerical simulations and experiments of the jetting of gases from the ring crevices of a laboratory engine shortly after exhaust valve opening showed an unanticipated radial flow of the crevice gases into the main combustion chamber. We report well-resolved numerical simulations of a wall jet that show that this radial motion is driven by vorticity generation in the wall boundary layer and at the corner of the piston crown.

Cloutman, L.D. [Lawrence Livermore National Lab., CA (United States); Green, R.M. [Sandia National Labs., Livermore, CA (United States)

1996-05-01T23:59:59.000Z

90

Modeling the performance of the piston ring-pack with consideration of non-axisymmetric characteristics of the power cylinder system in internal combustion engines  

E-Print Network (OSTI)

The performance of the piston ring-pack is directly associated with the friction, oil consumption, wear, and blow-by in internal combustion engines. Because of non-axisymmetric characteristics of the power cylinder system, ...

Liu, Liang, 1971-

2005-01-01T23:59:59.000Z

91

A research plan to study emissions from small internal combustion engines. Final report Sep 78-Sep 79  

SciTech Connect

The report examines some of the requirements for investigating the environmental status of small internal combustion (IC) engines. These engines range in size from 1.5 to 15 hp and power a variety of equipment operated by homeowners and industry. With EPA's general growing concern of identifying sources of potentially carcinogenic emissions, a possibility exists that these small IC engines are a problem source. Research to characterize emissions from IC engines has largely been limited to critical pollutants, even though the small IC engine is an incomplete combustor. It follows that some carcinogens and other hazardous compounds are probable. The basic requirements addressed in the report include analytical equipment, experimental systems design, and statistical experimental design.

Murrell, J.W.

1980-04-01T23:59:59.000Z

92

NREL Showcases Hydrogen Internal Combustion Engine Bus, Helps DOE Set Standards for Outreach (Fact Sheet), Hydrogen and Fuel Cell Technical Highlights (HFCTH)  

NLE Websites -- All DOE Office Websites (Extended Search)

557 * November 2010 557 * November 2010 NREL Showcases Hydrogen Internal Combustion Engine Bus, Helps DOE Set Standards for Outreach National Renewable Energy Laboratory (NREL) Teams: Hydrogen Education, Melanie Caton; Market Transformation, Michael Ulsh Accomplishment: NREL started using its Ford hydrogen-powered internal combustion engine (H 2 ICE) bus in May 2010 as the primary shuttle vehicle for VIP visitors, members of the media, and new employees. As the first national laboratory to receive such a bus, NREL

93

A retrospective survey of the use of laboratory tests to simulate internal combustion engine materials tribology problems  

DOE Green Energy (OSTI)

Progress in the Field of tribology strongly parallels, and has always been strongly driven by, developments and needs in transportation and related industries. Testing of candidate materials for internal combustion engine applications has historically taken several routes: (1) replacement of parts in actual engines subjected to daily use, (2) testing in special, instrumented test engines, (3) and simulative testing in laboratory tribometers using relatively simple specimens. The advantages and disadvantages of each approach are reviewed using historical examples. A four-decade, retrospective survey of the tribomaterials literature focused on the effectiveness of laboratory simulations for engine materials screening. Guidelines for designing and ducting successful tribology laboratory simulations will be discussed. These concepts were used to design a valve wear simulator at Oak Ridge National Laboratory.

Blau, P.J.

1992-12-31T23:59:59.000Z

94

Engine Combustion & Efficiency - FEERC  

NLE Websites -- All DOE Office Websites (Extended Search)

Engine Combustion & Efficiency Engine Combustion & Efficiency ORNL currently and historically supports the U.S. DOE on multi-cylinder and vehicle applications of diesel combustion, lean burn gasoline combustion, and low temperature combustion processes, and performs principal research on efficiency enabling technologies including emission controls, thermal energy recovery, and bio-renewable fuels. Research areas span from fundamental concepts to engine/vehicle integration and demonstration with a particular emphasis on the following areas: Thermodynamics for identifying and characterizing efficiency opportunities for engine-systems as well as the development of non-conventional combustion concepts for reducing fundamental combustion losses. Nonlinear sciences for improving the physical understanding and

95

Method of combustion for dual fuel engine  

DOE Patents (OSTI)

Apparatus and a method of introducing a primary fuel, which may be a coal water slutty, and a high combustion auxiliary fuel, which may be a conventional diesel oil, into an internal combustion diesel engine comprises detecting the load conditions of the engine, determining the amount of time prior to the top dead center position of the piston to inject the main fuel into the combustion chamber, and determining the relationship of the timing of the injection of the auxiliary fuel into the combustion chamber to achieve a predetermined specific fuel consumption, a predetermined combustion efficiency, and a predetermined peak cylinder firing pressure.

Hsu, Bertrand D. (Erie, PA); Confer, Gregory L. (Erie, PA); Shen, Zujing (Erie, PA); Hapeman, Martin J. (Edinboro, PA); Flynn, Paul L. (Fairview, PA)

1993-12-21T23:59:59.000Z

96

Method of combustion for dual fuel engine  

DOE Patents (OSTI)

Apparatus and a method of introducing a primary fuel, which may be a coal water slurry, and a high combustion auxiliary fuel, which may be a conventional diesel oil, into an internal combustion diesel engine comprises detecting the load conditions of the engine, determining the amount of time prior to the top dead center position of the piston to inject the main fuel into the combustion chamber, and determining the relationship of the timing of the injection of the auxiliary fuel into the combustion chamber to achieve a predetermined specific fuel consumption, a predetermined combustion efficiency, and a predetermined peak cylinder firing pressure. 19 figures.

Hsu, B.D.; Confer, G.L.; Zujing Shen; Hapeman, M.J.; Flynn, P.L.

1993-12-21T23:59:59.000Z

97

Vehicle Technologies Office: Advanced Combustion Engines  

NLE Websites -- All DOE Office Websites (Extended Search)

Combustion Engines Combustion Engines Improving the efficiency of internal combustion engines is one of the most promising and cost-effective near- to mid-term approaches to increasing highway vehicles' fuel economy. The Vehicle Technologies Office's research and development activities address critical barriers to commercializing higher efficiency, very low emissions advanced internal combustion engines for passenger and commercial vehicles. This technology has great potential to reduce U.S. petroleum consumption, resulting in greater economic, environmental, and energy security. Already offering outstanding drivability and reliability to over 230 million passenger vehicles, internal combustion engines have the potential to become substantially more efficient. Initial results from laboratory engine tests indicate that passenger vehicle fuel economy can be improved by more than up to 50 percent, and some vehicle simulation models estimate potential improvements of up to 75 percent. Advanced combustion engines can utilize renewable fuels, and when combined with hybrid electric powertrains could have even further reductions in fuel consumption. As the EIA reference case forecasts that by 2035, more than 99 percent of light- and heavy-duty vehicles sold will still have internal combustion engines, the potential fuel savings is tremendous.

98

Engine Valve Actuation For Combustion Enhancement  

DOE Patents (OSTI)

A combustion chamber valve, such as an intake valve or an exhaust valve, is briefly opened during the compression and/or power strokes of a 4-stroke combustion cycle in an internal combustion engine (in particular, a diesel or CI engine). The brief opening may (1) enhance mixing withing the combustion chamber, allowing more complete oxidation of particulates to decrease engine emissions; and/or may (2) delay ignition until a more desirable time, potentially allowing a means of timing ignition in otherwise difficult-to-control conditions, e.g., in HCCI (Homogeneous Charge Compression Ignition) conditions.

Reitz, Rolf Deneys (Madison, WI); Rutland, Christopher J. (Madison, WI); Jhavar, Rahul (Madison, WI)

2004-05-18T23:59:59.000Z

99

Engine valve actuation for combustion enhancement  

DOE Patents (OSTI)

A combustion chamber valve, such as an intake valve or an exhaust valve, is briefly opened during the compression and/or power strokes of a 4-strokes combustion cycle in an internal combustion engine (in particular, a diesel or CI engine). The brief opening may (1) enhance mixing withing the combustion chamber, allowing more complete oxidation of particulates to decrease engine emissions; and/or may (2) delay ignition until a more desirable time, potentially allowing a means of timing ignition in otherwise difficult-to-control conditions, e.g., in HCCI (Homogeneous Charge Compression Ignition) conditions.

Reitz, Rolf Deneys (Madison, WI); Rutland, Christopher J. (Madison, WI); Jhavar, Rahul (Madison, WI)

2008-03-04T23:59:59.000Z

100

Vehicle Technologies Office: Combustion Engine Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Combustion Engine Combustion Engine Research to someone by E-mail Share Vehicle Technologies Office: Combustion Engine Research on Facebook Tweet about Vehicle Technologies Office: Combustion Engine Research on Twitter Bookmark Vehicle Technologies Office: Combustion Engine Research on Google Bookmark Vehicle Technologies Office: Combustion Engine Research on Delicious Rank Vehicle Technologies Office: Combustion Engine Research on Digg Find More places to share Vehicle Technologies Office: Combustion Engine Research on AddThis.com... Just the Basics Hybrid & Vehicle Systems Energy Storage Advanced Power Electronics & Electrical Machines Advanced Combustion Engines Combustion Engines Emission Control Waste Heat Recovery Fuels & Lubricants Materials Technologies Combustion Engine Research

Note: This page contains sample records for the topic "internal combustion engine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Internal combustion electric power hybrid power plant  

SciTech Connect

An internal combustion-electric motor hybrid power plant for an automotive vehicle is disclosed. The power plant includes an internal combustion engine and a direct current electric motor generator which are connected to a drive shaft for the vehicle. A clutch mechanism is provided to connect the internal combustion engine, the direct current electric motor generator and the drive shaft for selectively engaging and disengaging the drive shaft with the internal combustion engine and the motor generator. A storage battery is electrically connected to the motor generator to supply current to and receive current therefrom. Thermoelectric semi-conductors are arranged to be heated by the waste heat of the internal combustion engine. These thermoelectric semi-conductors are electrically connected to the battery to supply current thereto. The thermoelectric semi-conductors are mounted in contact with the outer surfaces of the exhaust pipe of the internal combustion engine and also with the outer surfaces of the cylinder walls of the engine.

Cummings, T.A.

1979-04-10T23:59:59.000Z

102

Vehicle Technologies Office: Advanced Combustion Engines  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Combustion Advanced Combustion Engines to someone by E-mail Share Vehicle Technologies Office: Advanced Combustion Engines on Facebook Tweet about Vehicle Technologies Office: Advanced Combustion Engines on Twitter Bookmark Vehicle Technologies Office: Advanced Combustion Engines on Google Bookmark Vehicle Technologies Office: Advanced Combustion Engines on Delicious Rank Vehicle Technologies Office: Advanced Combustion Engines on Digg Find More places to share Vehicle Technologies Office: Advanced Combustion Engines on AddThis.com... Just the Basics Hybrid & Vehicle Systems Energy Storage Advanced Power Electronics & Electrical Machines Advanced Combustion Engines Combustion Engines Emission Control Waste Heat Recovery Fuels & Lubricants Materials Technologies Advanced Combustion Engines

103

Investigation of spark discharge processes and ignition systems for spark-ignited internal combustion engines  

E-Print Network (OSTI)

Spark ignition of the air-fuel mixture at the appropriate time is important for successful flame initiation and complete combustion thereafter without unnecessary emissions. The physical and chemical reactions taking place between the spark plug electrodes during spark delivery determine the intensity of the spark and subsequent flame initiation. The energy of spark and the duration of its delivery are dependent on the ignition system design. The characteristics of the spark plug determine the interaction of the spark with the air-fuel mixture. The compression pressure, combustion chamber temperature and mixture motion at the time of spark generation play a significant role in the flame initiation process. All of these parameters are responsible for the resulting spark discharge and flame initiation process. The objectives of this research include investigation of the different phases of spark discharge and development of a thermodynamic analysis to determine the rate of change of the spark kernel temperature with time during the initial phases of the spark discharge. The effect of spark energy delivery rate, heat transfer losses and mass entrainment on the spark kernel temperature was determined through the thermodynamic analysis. This research also includes an evaluation of the various types of conventional as well as high-energy ignition systems for lean burn engines. An experimental ignition system was constructed to determine the effect of ignition energy, spark plug electrode geometry and gas pressure on the characteristics of the spark discharge. Images of spark discharge were captured through photography using three different types of electrode geometries and also by varying the pressure and by changing the ignition energy using different condensers in the ignition system. Finally, the results of the thermodynamic analysis were compared with the results from the experiment.

Khare, Yogesh Jayant

2000-01-01T23:59:59.000Z

104

Method and system for controlled combustion engines  

DOE Patents (OSTI)

A system for controlling combustion in internal combustion engines of both the Diesel or Otto type, which relies on establishing fluid dynamic conditions and structures wherein fuel and air are entrained, mixed and caused to be ignited in the interior of a multiplicity of eddies, and where these structures are caused to sequentially fill the headspace of the cylinders.

Oppenheim, A. K. (Berkeley, CA)

1990-01-01T23:59:59.000Z

105

Performance, Efficiency, and Emissions Characterization of Reciprocating Internal Combustion Engines Fueled with Hydrogen/Natural Gas Blends  

Science Conference Proceedings (OSTI)

Hydrogen is an attractive fuel source not only because it is abundant and renewable but also because it produces almost zero regulated emissions. Internal combustion engines fueled by compressed natural gas (CNG) are operated throughout a variety of industries in a number of mobile and stationary applications. While CNG engines offer many advantages over conventional gasoline and diesel combustion engines, CNG engine performance can be substantially improved in the lean operating region. Lean operation has a number of benefits, the most notable of which is reduced emissions. However, the extremely low flame propagation velocities of CNG greatly restrict the lean operating limits of CNG engines. Hydrogen, however, has a high flame speed and a wide operating limit that extends into the lean region. The addition of hydrogen to a CNG engine makes it a viable and economical method to significantly extend the lean operating limit and thereby improve performance and reduce emissions. Drawbacks of hydrogen as a fuel source, however, include lower power density due to a lower heating value per unit volume as compared to CNG, and susceptibility to pre-ignition and engine knock due to wide flammability limits and low minimum ignition energy. Combining hydrogen with CNG, however, overcomes the drawbacks inherent in each fuel type. Objectives of the current study were to evaluate the feasibility of using blends of hydrogen and natural gas as a fuel for conventional natural gas engines. The experiment and data analysis included evaluation of engine performance, efficiency, and emissions along with detailed in-cylinder measurements of key physical parameters. This provided a detailed knowledge base of the impact of using hydrogen/natural gas blends. A four-stroke, 4.2 L, V-6 naturally aspirated natural gas engine coupled to an eddy current dynamometer was used to measure the impact of hydrogen/natural gas blends on performance, thermodynamic efficiency and exhaust gas emissions in a reciprocating four stroke cycle engine. The test matrix varied engine load and air-to-fuel ratio at throttle openings of 50% and 100% at equivalence ratios of 1.00 and 0.90 for hydrogen percentages of 10%, 20% and 30% by volume. In addition, tests were performed at 100% throttle opening, with an equivalence ratio of 0.98 and a hydrogen blend of 20% to further investigate CO emission variations. Data analysis indicated that the use of hydrogen/natural gas fuel blend penalizes the engine operation with a 1.5 to 2.0% decrease in torque, but provided up to a 36% reduction in CO, a 30% reduction in NOX, and a 5% increase in brake thermal efficiency. These results concur with previous results published in the open literature. Further reduction in emissions can be obtained by retarding the ignition timing.

Kirby S. Chapman; Amar Patil

2007-06-30T23:59:59.000Z

106

Method and apparatus utilizing valve throttling and charge stratification in the operation of an internal combustion engine  

Science Conference Proceedings (OSTI)

In an internal combustion engine this patent describes means forming a combustion chamber, a spark plug in the chamber, a piston disposed in the chamber for reciprocable movement toward and away from the spark plug, a valve member, circular seat means for the valve member, means for varying the lift of the valve member, a generally cylindrical shroud corresponding generally to the size of the seat means. The cylindrical shroud is relieved only in the direction of the spark plug so that, when the valve member is moved relative to the shroud by the lift-varying means, a stratified mixture of air and fuel is directed toward the spark plug until the lift-varying means causes the valve member to pass beyond the shroud so that during the initial lift of the valve member the stratified air and fuel mixture is directed solely toward the spark plug until the valve member passes beyond the shroud and the air and fuel mixture is directed generally through a 360/sup 0/ arc after the valve member passes beyond the shroud, and means limiting the lift of the valve member so that it does not pass the shroud during lighter loads, whereby the air and fuel mixture is directed primarily toward the spark plug until the valve member passes beyond the shroud.

Burandt, C.O.

1988-02-16T23:59:59.000Z

107

Cold start fuel management of port-fuel-injected internal combustion engines  

E-Print Network (OSTI)

The purpose of this study is to investigate how changes in fueling strategy in the second cycle of engine operation influence the delivered charge fuel mass and engine out hydrocarbon (EOHC) emissions in that and subsequent ...

Cuseo, James M. (James Michael)

2005-01-01T23:59:59.000Z

108

Past experiences with automotive external combustion engines  

SciTech Connect

GMR (General Motors Research Laboratories, now GM R and D Center) has a history of improving the internal combustion engine, especially as it relates to automotive use. During the quarter century from 1950--75, considerable effort was devoted to evaluating alternative powerplants based on thermodynamic cycles different from those on which the established spark-ignition and diesel engines are founded. Two of these, the steam engine and the Stirling engine, incorporated external combustion. Research on those two alternatives is reviewed. Both were judged to fall short of current needs for commercial success as prime movers for conventional automotive vehicles.

Amann, C.A.

1999-07-01T23:59:59.000Z

109

Fail-safe coolant thermostat system for an internal combustion engine  

SciTech Connect

This patent describes an improvement in a device for controlling the flow of cooling fluid between a fluid-cooled engine and a radiator, wherein a primary passage is provided with a thermostat that normally controls the flow of cooling fluid between the engine and the radiator. It comprises: a bypass passage connected in parallel with the primary passage and thermostat; a control valve contained within the bypass passage, the valve comprising a solenoid operated cup-shaped valve body and means for continually urging open the valve toward an open position; and means for de-energizing the solenoid for positioning the control valve in an open condition when either the engine is not operating or the cooling fluid temperature exceeds a positioning the control valve in a closed condition when the engine is operating and the cooling fluid temperature is below the predetermined level.

Shelton, V.E.

1990-07-24T23:59:59.000Z

110

Integrated Advanced Reciprocating Internal Combustion Engine System for Increased Utilization of Gaseous Opportunity Fuels  

SciTech Connect

The project is addressing barriers to or opportunities for increasing distributed generation (DG)/combined heat and power (CHP) use in industrial applications using renewable/opportunity fuels. This project brings together novel gas quality sensor (GQS) technology with engine management for opportunity fuels such as landfill gas, digester gas and coal bed methane. By providing the capability for near real-time monitoring of the composition of these opportunity fuels, the GQS output can be used to improve the performance, increase efficiency, raise system reliability, and provide improved project economics and reduced emissions for engines used in distributed generation and combined heat and power.

Pratapas, John; Zelepouga, Serguei; Gnatenko, Vitaliy; Saveliev, Alexei; Jangale, Vilas; Li, Hailin; Getz, Timothy; Mather, Daniel

2013-08-31T23:59:59.000Z

111

Investigation of a rotary valving system with variable valve timing for internal combustion engines: Final technical report  

DOE Green Energy (OSTI)

The objective of the program was to provide a functional demonstration of the Hansen Rotary Valving System with Variable Valve timing (HRVS/VVT), capable of throttleless inlet charge control, as an alternative to conventional poppet-valves for use in spark ignited internal combustion engines. The goal of this new technology is to secure benefits in fuel economy, broadened torque band, vibration reduction, and overhaul accessibility. Additionally, use of the variable valve timing capability to vary the effective compression ratio is expected to improve multi-fuel tolerance and efficiency. Efforts directed at the design of HRVS components proved to be far more extensive than had been anticipated, ultimately requiring that proof-trial design/development work be performed. Although both time and funds were exhausted before optical or ion-probe types of in-cylinder investigation could be undertaken, a great deal of laboratory data was acquired during the course of the design/development work. This laboratory data is the basis for the information presented in this Final Report.

Cross, P.C.; Hansen, C.N.

1994-11-18T23:59:59.000Z

112

Feasibility test on compounding the internal combustion engine for automotive vehicles, Task II. Final report  

DOE Green Energy (OSTI)

The organic Rankine bottoming cycle can be considered for various automobile and truck applications. The most attractive use, however, is in large, heavy-duty diesel trucks for long distance hauling. Here, the engine load and speed requirements are nearly constant over a large portion of the operating hours, and high mileages are accumulated. Thus, the potential fuel savings are sufficient to justify the added cost of a bottoming cycle system. A conceptual design study of compounding the diesel truck engine with an ORCS was made and the results of the study are presented. Based on the results of the conceptual design study which showed a 15 percent fuel economy improvement potential over the duty cycle, an early feasibility demonstration test of the system was initiated. The demonstration system uses a Mack ENDT 676 diesel engine with existing but nonoptimum ORCS hardware made available from an earlier automotive Rankine-cycle program. The results of these feasibility demonstration tests, both steady-state and transient, over the operating range of the diesel engine, are presented.

Not Available

1976-01-01T23:59:59.000Z

113

Engine spray combustion modeling using unified spray model with dynamic mesh refinement.  

E-Print Network (OSTI)

??The primary objective of this study is to improve the spray and combustion modeling of internal combustion engines using dynamic mesh refinement. The first part… (more)

Kolakaluri, Ravi

2009-01-01T23:59:59.000Z

114

The railplug: Development of a new ignitor for internal combustion engines  

DOE Green Energy (OSTI)

The goal of the railplug project is to commercialize this miniaturized railgun as an engine technology as rapidly as possible. To improve the technology transfer process, a board of industrial advisors was established. A list of representatives is included at the end of this annual report. The Railplug External Advisory Board (REAB) met in Austin on March 17--18, 1991 to discuss the project plan. A list of comments from the REAB is included at the end of this progress report, along with our written response to those comments. An alternate first'' meeting with some representatives of the REAB was held on July 9, 1991. This meeting was attended by most of the board members who were unable to attend the first meeting. The second meeting of the REAB was held in Toronto, Canada, on October 10, 1991. A list of the board members comments from this meeting is included at the end of this report, along with our written response to those comments. These meetings have proven to be most useful in assuring that this project is conducted as efficiently as possible. The railplug project is essentially divided into three main tasks: (1) Railplug system development; (2) application of railplugs to engines; and (3) railplug durability. The status of each of these tasks is described below.

Matthew, R.D.; Nichols, S.P.; Weldon, W.F.

1991-10-01T23:59:59.000Z

115

Contrôle de combustion en transitoires des moteurs à combustion interne.  

E-Print Network (OSTI)

??Cette thèse traite le problème du contrôle de combustion des moteurs automobiles à combustion interne. On propose une méthode complétant les stratégies de contrôle existantes… (more)

Hillion, Mathieu

2009-01-01T23:59:59.000Z

116

Evaluation of Sialon internal combustion engine components and fabrication of several ceramic components for automotive applications  

DOE Green Energy (OSTI)

Fabrication development work was carried out on a push-rod tip having a stepped OD design and a 90[degree] shoulder in the transition area. Spray-dried Sialon premix was used in dry press tooling, and components were densified to about 98% of theoretical density using pressureless sintering conditions. Upon evaluation of the sintered components, it was found that afl components showed defects in the transition area. Modifications of the pressing parameters, incorporation of a 45[degree] angle in the shoulder area, and the use of tailored premix did not lead to the fabrication of defect-free parts. From these observations, it was concluded that the original part design could not easily be adapted to high-volume ceramic manufacturing methods. Subsequently, a modification to the desip was implemented. An SiC material with improved toughness (Hexoloy SX) was used for fabricating several test components with a closely machined, straight OD design. Pressureless-sintered and post-hot isostatically pressed (HIPed) Hexoloy SX components were supplied to The American Ceramic Engine Company (ACE) for assembly and testing. Fuel pump push-rod assemblies with Hemoloy SX tips were prepared by ACE, but no testing has been carried out to date.

McMurtry, C.H.; Ten Eyck, M.O.

1992-10-01T23:59:59.000Z

117

Evaluation of Sialon internal combustion engine components and fabrication of several ceramic components for automotive applications  

DOE Green Energy (OSTI)

Fabrication development work was carried out on a push-rod tip having a stepped OD design and a 90{degree} shoulder in the transition area. Spray-dried Sialon premix was used in dry press tooling, and components were densified to about 98% of theoretical density using pressureless sintering conditions. Upon evaluation of the sintered components, it was found that afl components showed defects in the transition area. Modifications of the pressing parameters, incorporation of a 45{degree} angle in the shoulder area, and the use of tailored premix did not lead to the fabrication of defect-free parts. From these observations, it was concluded that the original part design could not easily be adapted to high-volume ceramic manufacturing methods. Subsequently, a modification to the desip was implemented. An SiC material with improved toughness (Hexoloy SX) was used for fabricating several test components with a closely machined, straight OD design. Pressureless-sintered and post-hot isostatically pressed (HIPed) Hexoloy SX components were supplied to The American Ceramic Engine Company (ACE) for assembly and testing. Fuel pump push-rod assemblies with Hemoloy SX tips were prepared by ACE, but no testing has been carried out to date.

McMurtry, C.H.; Ten Eyck, M.O.

1992-10-01T23:59:59.000Z

118

Hydrogen engine and combustion control process  

DOE Patents (OSTI)

Hydrogen engine with controlled combustion comprises suction means connected to the crankcase reducing or precluding flow of lubricating oil or associated gases into the combustion chamber.

Swain, Michael R. (Coral Gables, FL); Swain, Matthew N. (Miami, FL)

1997-01-01T23:59:59.000Z

119

Improved Engine Design Through More Efficient Combustion ...  

Improved Engine Design Through More Efficient Combustion Simulations The Multi-Zone Combustion Model (MCM) is a software tool that enables ...

120

Staged combustion with piston engine and turbine engine supercharger  

DOE Patents (OSTI)

A combustion engine method and system provides increased fuel efficiency and reduces polluting exhaust emissions by burning fuel in a two-stage combustion system. Fuel is combusted in a piston engine in a first stage producing piston engine exhaust gases. Fuel contained in the piston engine exhaust gases is combusted in a second stage turbine engine. Turbine engine exhaust gases are used to supercharge the piston engine.

Fischer, Larry E. (Los Gatos, CA); Anderson, Brian L. (Lodi, CA); O' Brien, Kevin C. (San Ramon, CA)

2006-05-09T23:59:59.000Z

Note: This page contains sample records for the topic "internal combustion engine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Staged combustion with piston engine and turbine engine supercharger  

DOE Patents (OSTI)

A combustion engine method and system provides increased fuel efficiency and reduces polluting exhaust emissions by burning fuel in a two-stage combustion system. Fuel is combusted in a piston engine in a first stage producing piston engine exhaust gases. Fuel contained in the piston engine exhaust gases is combusted in a second stage turbine engine. Turbine engine exhaust gases are used to supercharge the piston engine.

Fischer, Larry E. (Los Gatos, CA); Anderson, Brian L. (Lodi, CA); O' Brien, Kevin C. (San Ramon, CA)

2011-11-01T23:59:59.000Z

122

A hybrid 2-zone/WAVE engine combustion model for simulating combustion instabilities during dilute operation  

Science Conference Proceedings (OSTI)

Internal combustion engines are operated under conditions of high exhaust gas recirculation (EGR) to reduce NO x emissions and promote enhanced combustion modes such as HCCI. However, high EGR under certain conditions also promotes nonlinear feedback between cycles, leading to the development of combustion instabilities and cyclic variability. We employ a two-zone phenomenological combustion model to simulate the onset of combustion instabilities under highly dilute conditions and to illustrate the impact of these instabilities on emissions and fuel efficiency. The two-zone in-cylinder combustion model is coupled to a WAVE engine-simulation code through a Simulink interface, allowing rapid simulation of several hundred successive engine cycles with many external engine parametric effects included. We demonstrate how this hybrid model can be used to study strategies for adaptive feedback control to reduce cyclic combustion instabilities and, thus, preserve fuel efficiency and reduce emissions.

Edwards, Kevin Dean [ORNL; Wagner, Robert M [ORNL; Chakravarthy, Veerathu K [ORNL; Daw, C Stuart [ORNL; Green Jr, Johney Boyd [ORNL

2006-01-01T23:59:59.000Z

123

Engine control system for multiple combustion modes  

Science Conference Proceedings (OSTI)

To reduce the emission by Diesel-engine in railway traction, continuous development and innovation in combustion, sensing net, control method and strategies are required to met the legal requirements. Multiple combustion modes by Diesel engines can reduce ...

D. Bonta; V. Tulbure; Cl. Festila

2008-05-01T23:59:59.000Z

124

Engine Combustion Network Experimental Data  

DOE Data Explorer (OSTI)

Maintained by the Engine Combustion Department of Sandia National Laboratories, data currently available on the website includes reacting and non-reacting sprays in a constant-volume chamber at conditions typical of diesel combustion. The data are useful for model development and validation because of the well-defined boundary conditions and the wide range of conditions employed. A search utility displays data based on experimental conditions such as ambient temperature, ambient density, injection pressure, nozzle size, fuel, etc. Experiment-related visualizations are also available. The search utility for experimental data is located at http://public.ca.sandia.gov/ecn/cvdata/frameset.html (Specialized Interface)

125

U.S. Department of Energy FreedomCar & Vehicle Technologies Program CARB Executive Order Exemption Process for a Hydrogen-fueled Internal Combustion engine Vehicle -- Status Report  

DOE Green Energy (OSTI)

The CARB Executive Order Exemption Process for a Hydrogen-fueled Internal Combustion Engine Vehicle was undertaken to define the requirements to achieve a California Air Resource Board Executive Order for a hydrogenfueled vehicle retrofit kit. A 2005 to 2006 General Motors Company Sierra/Chevrolet Silverado 1500HD pickup was assumed to be the build-from vehicle for the retrofit kit. The emissions demonstration was determined not to pose a significant hurdle due to the non-hydrocarbon-based fuel and lean-burn operation. However, significant work was determined to be necessary for Onboard Diagnostics Level II compliance. Therefore, it is recommended that an Experimental Permit be obtained from the California Air Resource Board to license and operate the vehicles for the durability of the demonstration in support of preparing a fully compliant and certifiable package that can be submitted.

Not Available

2008-04-01T23:59:59.000Z

126

MN Center for Renewable Energy: Cellulosic Ethanol, Optimization of Bio-fuels in Internal Combustion Engines, & Course Development for Technicians in These Areas  

DOE Green Energy (OSTI)

This final report for Grant #DE-FG02-06ER64241, MN Center for Renewable Energy, will address the shared institutional work done by Minnesota State University, Mankato and Minnesota West Community and Technical College during the time period of July 1, 2006 to December 30, 2008. There was a no-cost extension request approved for the purpose of finalizing some of the work. The grant objectives broadly stated were to 1) develop educational curriculum to train technicians in wind and ethanol renewable energy, 2) determine the value of cattails as a biomass crop for production of cellulosic ethanol, and 3) research in Optimization of Bio-Fuels in Internal Combustion Engines. The funding for the MN Center for Renewable Energy was spent on specific projects related to the work of the Center.

John Frey

2009-02-22T23:59:59.000Z

127

ENGINE COMBUSTION CONTROL VIA FUEL REACTIVITY ...  

A compression ignition engine uses two or more fuel charges having two or more reactivities to control the timing and duration of combustion. In a ...

128

Using Biofuel Tracers to Study Alternative Combustion Regimes  

E-Print Network (OSTI)

1979. J.B. Heywood, Internal Combustion Engine Fundamentals.Ignition Engine with Optimal Combustion Control. ” US PatentIntroduction to Internal Combustion Engines (3rd Edition).

Mack, John Hunter; Flowers, Daniel L.; Buchholz, Bruce A.; Dibble, Robert W.

2006-01-01T23:59:59.000Z

129

Insitu Oxygen Conduction Into Internal Combustion Chamber  

Insitu Oxygen Conduction Into Internal Combustion Chamber Note: The technology described above is an early stage opportunity. Licensing rights to this ...

130

Hydrocarbon-fueled internal combustion engines: "the worst form of vehicle propulsion... except for all the other forms"  

E-Print Network (OSTI)

, funded by the Defense Advanced Research Projects Agency (DARPA); a new and improved Stirling engine

131

Combustion engineering issues for solid fuel systems  

SciTech Connect

The book combines modeling, policy/regulation and fuel properties with cutting edge breakthroughs in solid fuel combustion for electricity generation and industrial applications. This book provides real-life experiences and tips for addressing the various technical, operational and regulatory issues that are associated with the use of fuels. Contents are: Introduction; Coal Characteristics; Characteristics of Alternative Fuels; Characteristics and Behavior of Inorganic Constituents; Fuel Blending for Combustion Management; Fuel Preparation; Conventional Firing Systems; Fluidized-Bed Firing Systems; Post-Combustion Emissions Control; Some Computer Applications for Combustion Engineering with Solid Fuels; Gasification; Policy Considerations for Combustion Engineering.

Bruce Miller; David Tillman [Pennsylvania State University, University Park, PA (United States). Energy Institute

2008-05-15T23:59:59.000Z

132

Effect of market fuel variation and cetane improvers on CAI combustion in a GDI engine  

E-Print Network (OSTI)

There is continued interest in improving the fuel conversion efficiency of internal combustion engines and simultaneously reducing their emissions. One promising technology is that of Controlled Auto Ignition (CAI) combustion. ...

Cedrone, Kevin David

2010-01-01T23:59:59.000Z

133

Modeling of liner finish effects on oil control ring lubrication in internal combustion engines based on deterministic method  

E-Print Network (OSTI)

Twin-land oil control ring is widely used in the automotive diesel engines, and is gaining more and more applications in the modern designs of gasoline engines. Its interaction with the cylinder liner surface accounts for ...

Chen, Haijie

2008-01-01T23:59:59.000Z

134

Combustion diagnostic for active engine feedback control  

DOE Patents (OSTI)

This invention detects the crank angle location where combustion switches from premixed to diffusion, referred to as the transition index, and uses that location to define integration limits that measure the portions of heat released during the combustion process that occur during the premixed and diffusion phases. Those integrated premixed and diffusion values are used to develop a metric referred to as the combustion index. The combustion index is defined as the integrated diffusion contribution divided by the integrated premixed contribution. As the EGR rate is increased enough to enter the low temperature combustion regime, PM emissions decrease because more of the combustion process is occurring over the premixed portion of the heat release rate profile and the diffusion portion has been significantly reduced. This information is used to detect when the engine is or is not operating in a low temperature combustion mode and provides that feedback to an engine control algorithm.

Green, Jr., Johney Boyd (Knoxville, TN); Daw, Charles Stuart (Knoxville, TN); Wagner, Robert Milton (Knoxville, TN)

2007-10-02T23:59:59.000Z

135

1 Copyright 2011 by ASME Proceedings of the ASME 2011 Internal Combustion Engine Division Fall Technical Conference  

E-Print Network (OSTI)

(NEA) has shown great potential in NOx reduction without the drawbacks of exhaust gas recirculation (EGR). Use of NEA in stationary natural gas engines has shown up to 70% NOx reduction with a modest 2 promising results in NOx reduction in stationary natural gas engines [2]. Modeling and simulation can play

136

8th International symposium on transport phenomena in combustion  

DOE Green Energy (OSTI)

The 8th International Symposium on Transport Phenomena in Combustion will be held in San Francisco, California, U.S.A., July 16-20, 1995, under the auspices of the Pacific Center of Thermal-Fluids Engineering. The purpose of the Symposium is to provide a forum for researchers and practitioners from around the world to present new developments and discuss the state of the art and future directions and priorities in the areas of transport phenomena in combustion. The Symposium is the eighth in a series; previous venues were Honolulu 1985, Tokyo 1987, Taipei 1988, Sydney 1991, Beijing 1992, Seoul 1993 and Acapulco 1994, with emphasis on various aspects of transport phenomena. The current Symposium theme is combustion. The Symposium has assembled a balanced program with topics ranging from fundamental research to contemporary applications of combustion theory. Invited keynote lecturers will provide extensive reviews of topics of great interest in combustion. Colloquia will stress recent advances and innovations in fire spread and suppression, and in low NO{sub x} burners, furnaces, boilers, internal combustion engines, and other practical combustion systems. Finally, numerous papers will contribute to the fundamental understanding of complex processes in combustion. This document contains abstracts of papers to be presented at the Symposium.

NONE

1995-12-31T23:59:59.000Z

137

Pulsed jet combustion generator for premixed charge engines  

DOE Patents (OSTI)

A method and device for generating pulsed jets which will form plumes comprising eddie structures, which will entrain a fuel/air mixture from the head space of an internal combustion engine, and mixing this fuel/air mixture with a pre-ignited fuel/air mixture of the plumes thereby causing combustion of the reactants to occur within the interior of the eddie structures.

Oppenheim, A. K. (Berkeley, CA); Stewart, H. E. (Alameda, CA); Hom, K. (Hercules, CA)

1990-01-01T23:59:59.000Z

138

Characterization of oil transport in the power cylinder of internal combustion engines during steady state and transient operation  

E-Print Network (OSTI)

Engine friction, wear, and oil consumption are some of the primary interests for the automotive industry. However, there is currently a lack of understanding of the fundamentals involving oil transport inside the power ...

Przesmitzki, Steve (Steve Victor)

2008-01-01T23:59:59.000Z

139

Oil transport inside the oil control ring grove and its interaction with surrounding areas in internal combustion engines  

E-Print Network (OSTI)

In piston ring pack design, there is a tradeoff between reducing friction and increasing oil consumption. While friction reduces engine efficiency, oil consumption can poison exhaust aftertreatment systems. The primary ...

Senzer, Eric B

2012-01-01T23:59:59.000Z

140

Argonne TTRDC - Engines - Home - combustion, compression ignition,  

NLE Websites -- All DOE Office Websites (Extended Search)

* Combustion Visualization * Combustion Visualization * Compression-Ignition * Emissions Control * Fuel Injection and Sprays * Idling * Multi-Dimensional Modeling * Particulate Matter * Spark Ignition Green Racing GREET Hybrid Electric Vehicles Hydrogen & Fuel Cells Materials Modeling, Simulation & Software Plug-In Hybrid Electric Vehicles PSAT Smart Grid Student Competitions Technology Analysis Transportation Research and Analysis Computing Center Working With Argonne Contact TTRDC Engines Omnivorous engine tested by Thomas Wallner Thomas Wallner tests the omnivorous engine, a type of spark-ignition engine. Argonne's engine research is contributing to advances in technology that will impact the use of conventional and alternative fuels and the design of advanced technology vehicles. Compression Ignition

Note: This page contains sample records for the topic "internal combustion engine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

The railplug: Development of a new ignitor for internal combustion engines. Annual report, January 16, 1991--January 15, 1992  

DOE Green Energy (OSTI)

The goal of the railplug project is to commercialize this miniaturized railgun as an engine technology as rapidly as possible. To improve the technology transfer process, a board of industrial advisors was established. A list of representatives is included at the end of this annual report. The Railplug External Advisory Board (REAB) met in Austin on March 17--18, 1991 to discuss the project plan. A list of comments from the REAB is included at the end of this progress report, along with our written response to those comments. An alternate ``first`` meeting with some representatives of the REAB was held on July 9, 1991. This meeting was attended by most of the board members who were unable to attend the first meeting. The second meeting of the REAB was held in Toronto, Canada, on October 10, 1991. A list of the board members comments from this meeting is included at the end of this report, along with our written response to those comments. These meetings have proven to be most useful in assuring that this project is conducted as efficiently as possible. The railplug project is essentially divided into three main tasks: (1) Railplug system development; (2) application of railplugs to engines; and (3) railplug durability. The status of each of these tasks is described below.

Matthew, R.D.; Nichols, S.P.; Weldon, W.F.

1991-10-01T23:59:59.000Z

142

Fundamental studies of fuel chemistry as related to internal combustion engine phenomena. Final technical report, October 1987--December 1989  

DOE Green Energy (OSTI)

Intent of this research effort was to provide insight (through homogeneous gas phase kinetic studies at different constant pressures) to the fuel chemistry issues important to autoignition in engines. Conditions of the proposed experiments were chosen to be similar to engine parameters under knocking conditions: 700--1100 K temperatures, 1--20 atm pressures, and stoichiometries around 1. A variable pressure flow reactor was designed in which a range of reaction pressures and lower reaction temperatures could be accessed. Crossed beam optical access, continuous on-line gas sampling (nondispersive infrared, oxygen paramagnetic, H thermo-conductive, Fourier transform infrared, off-line GC, GC/mass spectrometric, wet chemical), and temperature measurements at the sampling location are available; reacting systems with reaction times ranging from 50--100 ms to 15--20 s can be studied. Testing has begun. Experiments on isobutene/oxygen mixtures have been conducted in the old atmospheric pressure flow reactor at 1150 K and in an equivalence ratio range of pyrolysis with 100 ppM oxygen background to 0.42. The kinetic model indicates that the inhibitory effect of isobutene at high temps is due to depletion of the active radical pool and formation of unreactive stable species and methyl radicals; isobutene oxidation/pyrolysis is heavily influenced by the chemistry of methyl radicals. The reaction of hydroperoxy radical (HO{sub 2}) with methyl radical and its effect on isobutene oxidation will be studied in the new reactor.

Dryer, F.L.; Brezinsky, K.

1990-09-01T23:59:59.000Z

143

CYCLE-BY-CYCLE COMBUSTION VARIATIONS IN SPARK-IGNITED ENGINES Engineering Technology Division, Oak Ridge National Laboratory, Oak Ridge TN 37831-8088 USA  

E-Print Network (OSTI)

CYCLE-BY-CYCLE COMBUSTION VARIATIONS IN SPARK-IGNITED ENGINES C.S. DAW Engineering Technology-2053 USA ABSTRACT Under constant nominal operating conditions, internal combustion engines can exhibit sub- stantial variation in combustion efficiency from one cycle to the next. Previous researchers have attempted

Tennessee, University of

144

A combustion model for IC engine combustion simulations with multi-component fuels  

Science Conference Proceedings (OSTI)

Reduced chemical kinetic mechanisms for the oxidation of representative surrogate components of a typical multi-component automotive fuel have been developed and applied to model internal combustion engines. Starting from an existing reduced mechanism for primary reference fuel (PRF) oxidation, further improvement was made by including additional reactions and by optimizing reaction rate constants of selected reactions. Using a similar approach to that used to develop the reduced PRF mechanism, reduced mechanisms for the oxidation of n-tetradecane, toluene, cyclohexane, dimethyl ether (DME), ethanol, and methyl butanoate (MB) were built and combined with the PRF mechanism to form a multi-surrogate fuel chemistry (MultiChem) mechanism. The final version of the MultiChem mechanism consists of 113 species and 487 reactions. Validation of the present MultiChem mechanism was performed with ignition delay time measurements from shock tube tests and predictions by comprehensive mechanisms available in the literature. A combustion model was developed to simulate engine combustion with multi-component fuels using the present MultiChem mechanism, and the model was applied to simulate HCCI and DI engine combustion. The results show that the present multi-component combustion model gives reliable performance for combustion predictions, as well as computational efficiency improvements through the use of reduced mechanism for multi-dimensional CFD simulations. (author)

Ra, Youngchul; Reitz, Rolf D. [Engine Research Center, University of Wisconsin-Madison (United States)

2011-01-15T23:59:59.000Z

145

Advanced Combustion Engine R&D: Goals, Strategies, and Top Accomplishments  

NLE Websites -- All DOE Office Websites (Extended Search)

Although internal combustion engines have been used Although internal combustion engines have been used for more than a century, significant improvements in energy efficiency and emissions reduction are still possible. In fact, boosting the efficiency of internal combustion engines is one of the most promising and cost-effective approaches to increasing vehicle fuel economy over the next 30 years. The United States can cut its transportation fuel use 20%-40% through commercialization of advanced engines-resulting in greater economic, environmental, and energy security. Using these engines in hybrid and plug-in hybrid electric vehicles will enable even greater fuel savings benefits. The Advanced Combustion Engine R&D subprogram of the U.S. Department of Energy's Vehicle Technologies Program (VTP) is improving the fuel economy of

146

Engine combustion control via fuel reactivity stratification  

Science Conference Proceedings (OSTI)

A compression ignition engine uses two or more fuel charges having two or more reactivities to control the timing and duration of combustion. In a preferred implementation, a lower-reactivity fuel charge is injected or otherwise introduced into the combustion chamber, preferably sufficiently early that it becomes at least substantially homogeneously dispersed within the chamber before a subsequent injection is made. One or more subsequent injections of higher-reactivity fuel charges are then made, and these preferably distribute the higher-reactivity matter within the lower-reactivity chamber space such that combustion begins in the higher-reactivity regions, and with the lower-reactivity regions following thereafter. By appropriately choose the reactivities of the charges, their relative amounts, and their timing, combustion can be tailored to achieve optimal power output (and thus fuel efficiency), at controlled temperatures (and thus controlled NOx), and with controlled equivalence ratios (and thus controlled soot).

Reitz, Rolf Deneys; Hanson, Reed M; Splitter, Derek A; Kokjohn, Sage L

2013-12-31T23:59:59.000Z

147

2010 Advanced Combustion Engine R&D Report  

NLE Websites -- All DOE Office Websites (Extended Search)

and Development Approved by Gurpreet Singh Team Leader, Advanced Combustion Engine R&D Vehicle Technologies Program FY 2010 Progress rePort For AdvAnced combustion engine...

148

Combustion Engineering IGCC Repowering Project  

SciTech Connect

C-E gasification process uses an entrained-flow, two-stage, slagging bottom gasifier. Figure 1 shows a schematic of the gasifier concept. Some of the coal and all of the char is fed to the combustor section, while the remaining coal is fed to the reducter section of the gasifier. The coal and char in the combustor is mixed with air and the fuel-rich mixture is burned creating the high temperature necessary to gasify the coal and melt the mineral matter in the coal. The slag flows through a slag tap at the bottom of the combustor into a water-filled slag tank where it is quenched and transformed into an inert, glassy, granular material. This vitrified slag is non-leaching, making it easy to dispose of in an environmentally acceptable manner. The hot gas leaving the combustor enters the second stage called the reductor. In the reducter, the char gasification occurs along the length of the reductor zone until the temperature falls to a point where the gasification kinetics become too slow. Once the gas temperature reaches this level, essentially no further gasification takes place and the gases subsequently are cooled with convective surface to a temperature low enough to enter the cleanup system. Nearly all of the liberated energy from the coal that does not produce fuel gas is collected and recovered with steam generating surface either in the walls of the vessel or by conventional boiler convective surfaces in the backpass of the gasifier. A mixture of unburned carbon and ash (called char) is carried out of the gasifier with the product gas strewn. The char is collected and recycled back to the gasifier where it is consumed. Thus, there is no net production of char which results in negligible carbon loss. The product gas enters a desulfurization system where it is cleaned of sulfur compounds present in the fuel gas. The clean fuel gas is now available for use in the gas turbine combuster for an integrated coal gasification combined cycle (IGCC) application.

Andrus, H.E.; Thibeault, P.R.; Gibson, C.R.

1992-11-01T23:59:59.000Z

149

Combustion Engineering IGCC Repowering Project  

SciTech Connect

C-E gasification process uses an entrained-flow, two-stage, slagging bottom gasifier. Figure 1 shows a schematic of the gasifier concept. Some of the coal and all of the char is fed to the combustor section, while the remaining coal is fed to the reducter section of the gasifier. The coal and char in the combustor is mixed with air and the fuel-rich mixture is burned creating the high temperature necessary to gasify the coal and melt the mineral matter in the coal. The slag flows through a slag tap at the bottom of the combustor into a water-filled slag tank where it is quenched and transformed into an inert, glassy, granular material. This vitrified slag is non-leaching, making it easy to dispose of in an environmentally acceptable manner. The hot gas leaving the combustor enters the second stage called the reductor. In the reducter, the char gasification occurs along the length of the reductor zone until the temperature falls to a point where the gasification kinetics become too slow. Once the gas temperature reaches this level, essentially no further gasification takes place and the gases subsequently are cooled with convective surface to a temperature low enough to enter the cleanup system. Nearly all of the liberated energy from the coal that does not produce fuel gas is collected and recovered with steam generating surface either in the walls of the vessel or by conventional boiler convective surfaces in the backpass of the gasifier. A mixture of unburned carbon and ash (called char) is carried out of the gasifier with the product gas strewn. The char is collected and recycled back to the gasifier where it is consumed. Thus, there is no net production of char which results in negligible carbon loss. The product gas enters a desulfurization system where it is cleaned of sulfur compounds present in the fuel gas. The clean fuel gas is now available for use in the gas turbine combuster for an integrated coal gasification combined cycle (IGCC) application.

Andrus, H.E.; Thibeault, P.R.; Gibson, C.R.

1992-01-01T23:59:59.000Z

150

2009 Advanced Combustion Engine R&D Annual Report  

NLE Websites -- All DOE Office Websites (Extended Search)

COMBUSTION COMBUSTION ENGINE RESEARCH AND DEVELOPMENT annual progress report 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 Approved by Gurpreet Singh Team Leader, Advanced Combustion Engine R&D Office of Vehicle Technologies FY 2009 Progress rePort For AdvAnced combustion engine reseArcH And deveLoPment Energy Efficiency and Renewable Energy Office of Vehicle Technologies December 2009 U.S. Department of Energy 1000 Independence Avenue, S.W. Washington, D.C. 20585-0121 ii Advanced Combustion Engine Technologies FY 2009 Annual Progress Report

151

Twenty-Seventh Symposium (International) on Combustion/The Combustion Institute, 1998/pp. 28152820 FINGERING INSTABILITY IN SOLID FUEL COMBUSTION  

E-Print Network (OSTI)

2815 Twenty-Seventh Symposium (International) on Combustion/The Combustion Institute, 1998/pp. 2815­2820 FINGERING INSTABILITY IN SOLID FUEL COMBUSTION: THE CHARACTERISTIC SCALES OF THE DEVELOPED STATE ORY ZIK, Israel We present new results on the fingering instability in solid fuel combustion. The instability

Moses, Elisha

152

Combustion: Sandwiched Between Engines and Fuel (Trying to Make...  

NLE Websites -- All DOE Office Websites (Extended Search)

Combustion: Sandwiched Between Engines and Fuel (Trying to Make Bread from Combustion) Speaker(s): Robert Dibble Date: March 10, 2010 - 12:00pm Location: 90-3122 This seminar will...

153

Update on Engine Combustion Research at Sandia National Laboratories  

DOE Green Energy (OSTI)

The objectives of this paper are to describe the research efforts in diesel engine combustion at Sandia National Laboratories' Combustion Research Facility and to provide recent experimental results. We have four diesel engine experiments supported by the Department of Energy, Office of Heavy Vehicle Technologies: a one-cylinder version of a Cummins heavy-duty engine, a diesel simulation facility, a one-cylinder Caterpillar engine to evaluate combustion of alternative fuels, and a homogeneous-charge, compression ignition (HCCI) engine. Recent experimental results of diesel combustion research will be discussed and a description will be given of our HCCI experimental program and of our HCCI modeling work.

Jay Keller; Gurpreet Singh

2001-05-14T23:59:59.000Z

154

Surrogate Model Development for Fuels for Advanced Combustion Engines  

Science Conference Proceedings (OSTI)

The fuels used in internal-combustion engines are complex mixtures of a multitude of different types of hydrocarbon species. Attempting numerical simulations of combustion of real fuels with all of the hydrocarbon species included is highly unrealistic. Thus, a surrogate model approach is generally adopted, which involves choosing a few representative hydrocarbon species whose overall behavior mimics the characteristics of the target fuel. The present study proposes surrogate models for the nine fuels for advanced combustion engines (FACE) that have been developed for studying low-emission, high-efficiency advanced diesel engine concepts. The surrogate compositions for the fuels are arrived at by simulating their distillation profiles to within a maximum absolute error of 4% using a discrete multi-component (DMC) fuel model that has been incorporated in the multi-dimensional computational fluid dynamics (CFD) code, KIVA-ERC-CHEMKIN. The simulated surrogate compositions cover the range and measured concentrations of the various hydrocarbon classes present in the fuels. The fidelity of the surrogate fuel models is judged on the basis of matching their specific gravity, lower heating value, hydrogen/carbon (H/C) ratio, cetane number, and cetane index with the measured data for all nine FACE fuels.

Anand, Krishnasamy [University of Wisconsin, Madison; Ra, youngchul [University of Wisconsin, Madison; Reitz, Rolf [University of Wisconsin; Bunting, Bruce G [ORNL

2011-01-01T23:59:59.000Z

155

Combustion Stability in Complex Engineering Flows | Argonne Leadership...  

NLE Websites -- All DOE Office Websites (Extended Search)

vortex. Virtual testing enables engineers to design next-generation, low-emission combustion systems. Lee Shunn, Cascade Technologies; Shoreh Hajiloo, GE Global Research...

156

Argonne TTRDC - Engines - Multi-Dimensional Modeling - Combustion...  

NLE Websites -- All DOE Office Websites (Extended Search)

Combustion Modeling with Detailed Chemistry It is well known that the optimization of engines burning liquid and gaseous fuels through repeated experiments is a routine but rather...

157

International Journal of Engineering & Technology IJET-IJENS Vol: 11 No: 03 7 Co-combustion of Biosolids with Wood Pellets in a  

E-Print Network (OSTI)

Abstract- Co-combustion of biosolids with coal or other biomass fuel can play a significant role in combustion facilities for energy production and waste management policy context. This paper presents the results of an experimental study to investigate the use of biosolids for cocombustion with wood pellets in a wood pellet stove. Fuel property, gas emissions and stove efficiency are compared. In regard to fuel properties, proximate analysis, ultimate analysis and heating values are determined and emissions of carbon monoxide (CO), nitrogen oxides (NOx) and sulphur dioxide (SO2) are measured and compared. Pilot scale combustion tests revealed that cocombustion of 10 % biosolids with 90% wood pellets resulted in successful combustion without any significant degradation of efficiency and emissions. Nitrogen oxides (NOx) emissions were found to be proportional with the N2 content in the fuel. Sulphur dioxide (SO2) emissions were negligible. Index Terms- Biosolids, co-combustion, wood pellet stove, performance and emissions.

Wood Pellet Stove; Murari Mohon Roy; Animesh Dutta; Kenny Corscadden; Peter Havard

2011-01-01T23:59:59.000Z

158

Towards cleaner combustion engines through groundbreaking detailed chemical kinetic models  

E-Print Network (OSTI)

Towards cleaner combustion engines through groundbreaking detailed chemical kinetic models of more predictive and more accurate detailed chemical kinetic models for the combustion of fuels that the combustion of liquid fuels will remain the main source of energy for transportation for the next 50 years.1

159

THE EFFECTS OF HYDROGEN ADDITION AND INTAKE-INDUCED SWIRL ON THE CHARACTERISTICS OF NATURAL GAS COMBUSTION IN A SINGLE-CYLINDER SPARK-IGNITED ENGINE.  

E-Print Network (OSTI)

??Compressed natural gas (CNG) is an alternative fuel of interest for internal combustion engines (ICEs) in the mass transit and vocational applications. Increasingly, due to… (more)

Corrigan, Melanie

2011-01-01T23:59:59.000Z

160

CSE - International Workshop on Photon Tools for Combustion and...  

NLE Websites -- All DOE Office Websites (Extended Search)

International Workshop on Photon Tools for Combustion and Energy Conversion - Lodging GUEST HOUSE Argonne Guest House Please remember to make your lodging reservation directly...

Note: This page contains sample records for the topic "internal combustion engine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

CSE - International Workshop on Photon Tools for Combustion and...  

NLE Websites -- All DOE Office Websites (Extended Search)

International Workshop on Photon Tools for Combustion and Energy Conversion Organizing Committee Robert S. Tranter, Co-chair (Argonne National Lab) Randall E. Winans, Co-chair...

162

Numerical Simulation on Forced Swirl Combustion Chamber in Diesel Engine  

Science Conference Proceedings (OSTI)

A concept of forced swirl combustion chamber in diesel engine is proposed in this paper. It can be used to enhance the intensity of swirl flow in the cylinder and accelerate the rate of air-fuel mixture process by designing the special structure in the ... Keywords: diesel engine, forced swirl, combustion chamber, simulation

Yong Shang; Fu-shui Liu; Xiang-rong Li

2010-12-01T23:59:59.000Z

163

Numerical Simulation on Forced Swirl Combustion Chamber in Diesel Engine  

Science Conference Proceedings (OSTI)

A concept of forced swirl combustion chamber in diesel engine is proposed in this paper. It can be used to enhance the intensity of swirl flow in the cylinder and accelerate the rate of air-fuel mixture process by designing the special structure in the ... Keywords: diesel engine, forced swirl, combustion chamber, simulation

Shang Yong; Liu Fu-shui; Li Xiang-rong

2011-02-01T23:59:59.000Z

164

FY 2008 Progress Report for Advanced Combustion Engine Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

COMBUSTION COMBUSTION ENGINE TECHNOLOGIES annual progress report 2008 V e h i c l e T e c h n o l o g i e s P r o g r a m U.S. Department of Energy 1000 Independence Avenue, S.W. Washington, D.C. 20585-0121 FY 2008 Progress rePort For AdvAnced combustion engine technologies Energy Efficiency

165

Combustion characterization of methylal in reciprocating engines  

DOE Green Energy (OSTI)

Methylal, CH{sub 3}OCH{sub 2}OCH{sub 3}, also known as dimethoxy-methane, is unique among oxygenates in that it has a low autoignition temperature, no carbon-carbon bonds, and is soluble in middle distillate fuels. Because of these properties, methylal has been shown to be a favorable fuel additive for reducing smoke in diesel engines. Recent measurements of ignition delay times indicate that methylal has a cetane number in the range of 45-50, which is compatible with diesel fuels. Engine tests have shown that adding methylal to diesel fuel significantly reduces smoke emissions. Gaseous emissions and combustion efficiencies obtained with methylal/diesel fuel blends remain essentially the same as those measured using neat diesel fuel. Lubricity measurements of methylal/diesel fuel blends with a ball on cylinder lubrication evaluator (BOCLE) show that methylal improves the lubricity of diesel fuel. Even though additions of methylal lower the fuel viscosity, the results of the BOCLE tests indicate that the methylal/diesel fuel blends cause less pump wear than neat diesel fuel. The one drawback is that methylal has a low boiling point (42{degrees}C) and a relatively high vapor pressure. As a result, it lowers the flash point of diesel fuel and causes a potential fuel tank flammability hazard. One solution to this increased volatility is to make polyoxymethylenes with the general formula of CH{sub 3}O(CH{sub 2}O){sub x}CH{sub 3} where x > 2. The molecules are similar to methylal, but have higher molecular weights and thus higher viscosities and substantially lower vapor pressures. Therefore, their flash points will be compatible with regular diesel fuel. The polyoxymethylenes are expected to have combustion properties similar to methylal. It is theorized that by analogy with hydrocarbons, the ignition quality (i.e., cetane number) of the polyoxymethylenes will be better than that of methylal.

Dodge, L.; Naegeli, D. [Southwest Research Institute, San Antonio, TX (United States)

1994-06-01T23:59:59.000Z

166

ENGINEERING InternatIonal  

E-Print Network (OSTI)

and multilateral, for example, the asian development Bank, International atomic energy agency (united nations and the Sydney cBd, our city campus is easily accessible by bus and train. close to cosmopolitan inner-city suburbs such as glebe, Surry Hills and darling Harbour, the city campus is surrounded by places to shop

University of Technology, Sydney

167

Ynfiniti Engineering Services International | Open Energy Information  

Open Energy Info (EERE)

Ynfiniti Engineering Services International Ynfiniti Engineering Services International Jump to: navigation, search Name Ynfiniti Engineering Services International Place Spain Sector Solar, Wind energy Product Company that specializes in the installation and maintenance of wind farms and solar plants. References Ynfiniti Engineering Services International[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Ynfiniti Engineering Services International is a company located in Spain . References ↑ "Ynfiniti Engineering Services International" Retrieved from "http://en.openei.org/w/index.php?title=Ynfiniti_Engineering_Services_International&oldid=353364" Categories: Clean Energy Organizations

168

Overview of Engine Combustion Research at Sandia National Laboratories  

DOE Green Energy (OSTI)

The objectives of this paper are to describe the ongoing projects in diesel engine combustion research at Sandia National Laboratories' Combustion Research Facility and to detail recent experimental results. The approach we are employing is to assemble experimental hardware that mimic realistic engine geometries while enabling optical access. For example, we are using multi-cylinder engine heads or one-cylinder versions of production heads mated to one-cylinder engine blocks. Optical access is then obtained through a periscope in an exhaust valve, quartz windows in the piston crown, windows in spacer plates just below the head, or quartz cylinder liners. We have three diesel engine experiments supported by the Department of Energy, Office of Heavy Vehicle Technologies: a one-cylinder version of a Cummins heavy-duty engine, a diesel simulation facility, and a one-cylinder Caterpillar engine to evaluate combustion of alternative diesel fuels.

Robert W. Carling; Gurpreet Singh

1999-04-26T23:59:59.000Z

169

Solid fuel combustion system for gas turbine engine  

DOE Patents (OSTI)

A solid fuel, pressurized fluidized bed combustion system for a gas turbine engine includes a carbonizer outside of the engine for gasifying coal to a low Btu fuel gas in a first fraction of compressor discharge, a pressurized fluidized bed outside of the engine for combusting the char residue from the carbonizer in a second fraction of compressor discharge to produce low temperature vitiated air, and a fuel-rich, fuel-lean staged topping combustor inside the engine in a compressed air plenum thereof. Diversion of less than 100% of compressor discharge outside the engine minimizes the expense of fabricating and maintaining conduits for transferring high pressure and high temperature gas and incorporation of the topping combustor in the compressed air plenum of the engine minimizes the expense of modifying otherwise conventional gas turbine engines for solid fuel, pressurized fluidized bed combustion.

Wilkes, Colin (Lebanon, IN); Mongia, Hukam C. (Carmel, IN)

1993-01-01T23:59:59.000Z

170

Combustion Process in a Spark Ignition Engine: Dynamics and Noise Level Estimation  

E-Print Network (OSTI)

We analyse the experimental time series of internal pressure in a four cylinder spark ignition engine. In our experiment, performed for different spark advance angles, apart from usual cyclic changes of engine pressure we observed oscillations. These oscillations are with longer time scales ranging from one to several hundred engine cycles depending on engine working conditions. Basing on the pressure time dependence we have calculated the heat released per cycle. Using the time series of heat release to calculate the correlation coarse-grained entropy we estimated the noise level for internal combustion process. Our results show that for a smaller spark advance angle the system is more deterministic.

T. Kaminski; M. Wendeker; K. Urbanowicz; G. Litak

2003-12-28T23:59:59.000Z

171

Method of controlling cyclic variation in engine combustion  

DOE Patents (OSTI)

Cyclic variation in combustion of a lean burning engine is reduced by detecting an engine combustion event output such as torsional acceleration in a cylinder (i) at a combustion event (k), using the detected acceleration to predict a target acceleration for the cylinder at the next combustion event (k+1), modifying the target output by a correction term that is inversely proportional to the average phase of the combustion event output of cylinder (i) and calculating a control output such as fuel pulse width or spark timing necessary to achieve the target acceleration for cylinder (i) at combustion event (k+1) based on anti-correlation with the detected acceleration and spill-over effects from fueling.

Davis, Jr., Leighton Ira (Ann Arbor, MI); Daw, Charles Stuart (Knoxville, TN); Feldkamp, Lee Albert (Plymouth, MI); Hoard, John William (Livonia, MI); Yuan, Fumin (Canton, MI); Connolly, Francis Thomas (Ann Arbor, MI)

1999-01-01T23:59:59.000Z

172

Method of controlling cyclic variation in engine combustion  

DOE Patents (OSTI)

Cyclic variation in combustion of a lean burning engine is reduced by detecting an engine combustion event output such as torsional acceleration in a cylinder (i) at a combustion event (k), using the detected acceleration to predict a target acceleration for the cylinder at the next combustion event (k+1), modifying the target output by a correction term that is inversely proportional to the average phase of the combustion event output of cylinder (i) and calculating a control output such as fuel pulse width or spark timing necessary to achieve the target acceleration for cylinder (i) at combustion event (k+1) based on anti-correlation with the detected acceleration and spill-over effects from fueling. 27 figs.

Davis, L.I. Jr.; Daw, C.S.; Feldkamp, L.A.; Hoard, J.W.; Yuan, F.; Connolly, F.T.

1999-07-13T23:59:59.000Z

173

2011 Advanced Combustion Engine R&D Annual Report  

NLE Websites -- All DOE Office Websites (Extended Search)

annual progress report 2011 annual progress report 2011 Advanced Combustion Engine Research and Development DOE-ACE-2011AR Approved by Gurpreet Singh Team Leader, Advanced Combustion Engine R&D Vehicle Technologies Program FY 2011 Progress rePort For AdvAnced combustion engine reseArcH And deveLoPment Energy Efficiency and Renewable Energy Vehicle Technologies Program U.S. Department of Energy 1000 Independence Avenue, S.W. Washington, D.C. 20585-0121 December 2011 DOE-ACE-2011AR ii Advanced Combustion Engine R&D FY 2011 Annual Progress Report We would like to express our sincere appreciation to Alliance Technical Services, Inc. and Oak Ridge National Laboratory for their technical and artistic contributions in preparing and publishing this report. In addition, we would like to thank all the participants for their contributions to the programs and all the

174

DOE - Office of Legacy Management -- Combustion Engineering Co...  

Office of Legacy Management (LM)

CT.03-9 USACE Website Also see Documents Related to Combustion Engineering, CT CT.03-1 - DOE Memorandum; Wagoner to Price; Subject: Authorization for Remedial Action at the...

175

Intern Programs | Italian SSSA Engineering Graduate Students  

NLE Websites -- All DOE Office Websites (Extended Search)

summer internships to outstanding graduate engineering students. In this comprehensive program interns work with scientists or engineers on projects related to Fermilab's...

176

DOE Hydrogen Analysis Repository: Future Fuel Cell and Internal...  

NLE Websites -- All DOE Office Websites (Extended Search)

Future Fuel Cell and Internal Combustion Engine Automobile Technologies Project Summary Full Title: Future Fuel Cell and Internal Combustion Engine Automobile Technologies: A...

177

Argonne TTRDC - Engines - Combustion Visualization - emissions,  

NLE Websites -- All DOE Office Websites (Extended Search)

Combustion Visualization Combustion Visualization Exploring Combustion Using Advanced Imaging Techniques In the photo, the GM diesel test cell is shown with vehicle exhaust aftertreatment hardware (diesel particulate filtration and diesel oxidation catalyst) along with other advanced technology-such as a variable geometry turbocharger, cooled exhaust gas recirculation and a common-rail fuel injection system. Fig. 1. The GM diesel test cell is shown with vehicle exhaust aftertreatment hardware (diesel particulate filtration and diesel oxidation catalyst) along with other advanced technology-such as a variable geometry turbocharger, cooled exhaust gas recirculation and a common-rail fuel injection system. Two-dimensional image of hydrogen combustion OH chemiluminescence. Fig. 2. Two-dimensional image of hydrogen combustion OH chemiluminescence.

178

Coal slurry combustion optimization on single cylinder engine  

DOE Green Energy (OSTI)

Under the sponsorship of the US Department of Energy, Morgantown Energy Technology Center, GE Transportation System has been conducting a proof of concept program to use coal water slurry (CWS) fuel to power a diesel engine locomotive since 1988. As reported earlier [1], a high pressure electronically controlled accumulator injector using a diamond compact insert nozzle was developed for this project. The improved reliability and durability of this new FIE allowed for an improved and more thorough study of combustion of CWS fuel in a diesel engine. It was decided to include a diesel pilot fuel injector in the combustion system mainly due to engine start and low load operation needs. BKM, Inc. of San Diego, CA was contracted to develop the electronic diesel fuel pilot/starting FIE for the research engine. As a result, the experimental combustion study was very much facilitated due to the ability of changing pilot/CWS injection timings and quantities without having to stop the engine. Other parameters studied included combustion chamber configuration (by changing CWS fuel injector nozzle hole number/shape/angle), as well as injection pressure. The initial phase of this combustion study is now complete. The results have been adopted into the design of a 12 cylinder engine FIE, to be tested in 1992. This paper summarizes the main findings of this study.

Not Available

1992-09-01T23:59:59.000Z

179

FLAMELESS COMBUSTION APPLICATION FOR GAS TURBINE ENGINES IN THE AEROSPACE INDUSTRY.  

E-Print Network (OSTI)

??The objective of this thesis is to review the potential application of flameless combustion technology in aerospace gas turbine engines. Flameless combustion is a regime… (more)

OVERMAN, NICHOLAS

2006-01-01T23:59:59.000Z

180

A homogenous combustion catalyst for fuel efficiency improvements in diesel engines fuelled with diesel and biodiesel.  

E-Print Network (OSTI)

??[Truncated abstract] The ferrous picrate based homogeneous combustion catalyst has been claimed to promote diesel combustion and improve fuel efficiency in diesel engines. However, the… (more)

Zhu, Mingming

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "internal combustion engine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Dynamic instabilities in spark-ignited combustion engines with high exhaust gas recirculation  

DOE Green Energy (OSTI)

We propose a cycle-resolved dynamic model for combustion instabilities in spark-ignition engines operating with high levels of exhaust gas recirculation (EGR). High EGR is important for increasing fuel efficiency and implementing advanced low-emission combustion modes such as homogenous charge compression ignition (HCCI). We account for the complex combustion response to cycle-to-cycle feedback by utilizing a global probability distribution that describes the pre-spark state of in-cylinder fuel mixing. The proposed model does a good job of simulating combustion instabilities observed in both lean-fueling engine experiments and in experiments where nitrogen dilution is used to simulate some of the combustion inhibition of EGR. When used to simulate high internal EGR operation, the model exhibits a range of global bifurcations and chaos that appear to be very robust. We use the model to show that it should be possible to reduce high EGR combustion instabilities by switching from internal to external EGR. We also explain why it might be helpful to deliberately stratify the fuel in the pre-spark gas mixture. It might be possible to extend the simple approach used in this model to other chemical reaction systems with spatial inhomogeneity.

Daw, C Stuart [ORNL; FINNEY, Charles E A [ORNL

2011-01-01T23:59:59.000Z

182

Combustion Analysis Software Package for Internal ...  

Technology Marketing Summary. Researchers at the Colorado State University Engines and Energy Conversion Laboratory have developed a complete software ...

183

Advanced Combustion Engine R&D: Goals, Strategies, and Top Accomplishments (Brochure)  

SciTech Connect

Fact sheet describes the top accomplishments, goals and strategies of DOEs Advanced Combustion Engine Research and Development sub program.

Not Available

2009-03-01T23:59:59.000Z

184

Causes of Combustion Instabilities with Passive and Active Methods of Control for practical application to Gas Turbine Engines.  

E-Print Network (OSTI)

??Combustion at high pressure in applications such as rocket engines and gas turbine engines commonly experience destructive combustion instabilities. These instabilities results from interactions between… (more)

Cornwell, Michael

2011-01-01T23:59:59.000Z

185

Stirling Engine Natural Gas Combustion Demonstration Program. Final report, October 1989-January 1991  

Science Conference Proceedings (OSTI)

Fueled on natural gas, the Stirling engine is an inherently clean, quiet, and efficient engine. With increasing environmental concern for air quality and the increasingly more stringent requirements for low engine exhaust emissions, the Stirling engine may be an attractive alternative to internal combustion (IC) engines. The study has demonstrated that ultra low emissions can be attained with a Stirling-engine-driven electric generator configured to burn natural gas. Combustion parameters were optimized to produce the lowest possible exhaust emissions for a flame-type combustor without compromising overall engine thermal efficiency. A market application survey and manufacturing cost analysis indicate that a market opportunity potentially exists in the volumes needed to economically manufacture a newly designed Stirling engine (Mod III) for stationary applications and hybrid vehicles. The translation of such potential markets into actual markets does, however, pose difficult challenges as substantial investments are required. Also, the general acceptance of a new engine type by purchasers requires a considerable amount of time.

Ernst, W.; Moryl, J.; Riecke, G.

1991-02-01T23:59:59.000Z

186

A University Consortium on Low Temperature Combustion for High Efficiency, Ultra-Low Emission Engines  

SciTech Connect

The objective of the University consortium was to investigate the fundamental processes that determine the practical boundaries of Low Temperature Combustion (LTC) engines and develop methods to extend those boundaries to improve the fuel economy of these engines, while operating with ultra low emissions. This work involved studies of thermal effects, thermal transients and engine management, internal mixing and stratification, and direct injection strategies for affecting combustion stability. This work also examined spark-assisted Homogenous Charge Compression Ignition (HCCI) and exhaust after-treatment so as to extend the range and maximize the benefit of Homogenous Charge Compression Ignition (HCCI)/ Partially Premixed Compression Ignition (PPCI) operation. In summary the overall goals were: ? Investigate the fundamental processes that determine the practical boundaries of Low Temperature Combustion (LTC) engines. ? Develop methods to extend LTC boundaries to improve the fuel economy of HCCI engines fueled on gasoline and alternative blends, while operating with ultra low emissions. ? Investigate alternate fuels, ignition and after-treatment for LTC and Partially Premixed compression Ignition (PPCI) engines.

Dennis N. Assanis; Arvind Atreya; Jyh-Yuan Chen; Wai K. Cheng; Robert W. Dibble; Chris Edwards; Zoran S. Filipi; Christian Gerdes; Hong Im; George A. Lavoie; Margaret S. Wooldridge

2009-12-31T23:59:59.000Z

187

FUEL INTERCHANGEABILITY FOR LEAN PREMIXED COMBUSTION IN GAS TURBINE ENGINES  

DOE Green Energy (OSTI)

In response to environmental concerns of NOx emissions, gas turbine manufacturers have developed engines that operate under lean, pre-mixed fuel and air conditions. While this has proven to reduce NOx emissions by lowering peak flame temperatures, it is not without its limitations as engines utilizing this technology are more susceptible to combustion dynamics. Although dependent on a number of mechanisms, changes in fuel composition can alter the dynamic response of a given combustion system. This is of particular interest as increases in demand of domestic natural gas have fueled efforts to utilize alternatives such as coal derived syngas, imported liquefied natural gas and hydrogen or hydrogen augmented fuels. However, prior to changing the fuel supply end-users need to understand how their system will respond. A variety of historical parameters have been utilized to determine fuel interchangeability such as Wobbe and Weaver Indices, however these parameters were never optimized for today’s engines operating under lean pre-mixed combustion. This paper provides a discussion of currently available parameters to describe fuel interchangeability. Through the analysis of the dynamic response of a lab-scale Rijke tube combustor operating on various fuel blends, it is shown that commonly used indices are inadequate for describing combustion specific phenomena.

Don Ferguson; Geo. A. Richard; Doug Straub

2008-06-13T23:59:59.000Z

188

International Governance of Climate Engineering  

E-Print Network (OSTI)

Solar Radiation Management Governance Initiative conference); Daniel Bodansky, Governing Climate Engineering: Scenarios for Analysis (Harvard Project on Climate Agreements,

Parson, Edward; Ernst, Lia

2012-01-01T23:59:59.000Z

189

Pulsed jet combustion generator for non-premixed charge engines  

DOE Patents (OSTI)

A device for introducing fuel into the head space of cylinder of non-premixed charge (diesel) engines is disclosed, which distributes fuel in atomized form in a plume, whose fluid dynamic properties are such that the compression heated air in the cylinder head space is entrained into the interior of the plume where it is mixed with and ignites the fuel in the plume interior, to thereby control combustion, particularly by use of a multiplicity of individually controllable devices per cylinder.

Oppenheim, A. K. (Berkeley, CA); Stewart, H. E. (Alameda, CA)

1990-01-01T23:59:59.000Z

190

Elimination of abnormal combustion in a hydrogen-fueled engine  

DOE Green Energy (OSTI)

This report covers the design, construction, and testing of a dedicated hydrogen-fueled engine. Both part-load and full-load data were taken under laboratory conditions. The engine design included a billet aluminum single combustion chamber cylinder-head with one intake valve, two sodium coiled exhaust valves, and two spark plugs. The cylinder-head design also included drilled cooling passages. The fuel-delivery system employed two modified Siemens electrically actuated fuel injectors, The exhaust system included two separate headers, one for each exhaust port. The piston/ring combination was designed specifically for hydrogen operation.

Swain, M.R.; Swain, M.N. [Analytical Technologies, Inc., Miami, FL (United States)

1995-11-01T23:59:59.000Z

191

Fuel property effects on engine combustion processes. Final report  

DOE Green Energy (OSTI)

A major obstacle to improving spark ignition engine efficiency is the limitations on compression ratio imposed by tendency of hydrocarbon fuels to knock (autoignite). A research program investigated the knock problem in spark ignition engines. Objective was to understand low and intermediate temperature chemistry of combustion processes relevant to autoignition and knock and to determine fuel property effects. Experiments were conducted in an optically and physically accessible research engine, static reactor, and an atmospheric pressure flow reactor (APFR). Chemical kinetic models were developed for prediction of species evolution and autoignition behavior. The work provided insight into low and intermediate temperature chemistry prior to autoignition of n-butane, iso-butane, n-pentane, 1-pentene, n-heptane, iso-octane and some binary blends. Study of effects of ethers (MTBE, ETBE, TAME and DIPE ) and alcohols (methanol and ethanol) on the oxidation and autoignition of primary reference fuel (PRF) blends.

Cernansky, N.P.; Miller, D.L.

1995-04-27T23:59:59.000Z

192

Combustion Stability in Complex Engineering Flows | Argonne Leadership  

NLE Websites -- All DOE Office Websites (Extended Search)

Instantaneous contours of temperature from large eddy simulation Instantaneous contours of temperature from large eddy simulation Instantaneous contours of temperature from large eddy simulation of a hypersonic scramjet combustor at Mach 8 flight conditions. Ethylene fuel is introduced through injection ports at the upper left and mixes with air at supersonic speeds. Flow separation and recirculation in the open cavity encourages fuel/air mixing and stable combustion. To maintain hypersonic flight, the fuel must be mixed, ignited, and burned to completion all within a few milliseconds. Cascade Technologies, Inc. Combustion Stability in Complex Engineering Flows PI Name: Lee Shunn PI Email: shunn@cascadetechnologies.com Institution: Cascade Technologies, Inc. Allocation Program: INCITE Allocation Hours at ALCF: 35 Million

193

54.5 MPG and Beyond: Speeding Up Development of Advanced Combustion Engines  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Speeding Up Development of Advanced Combustion Speeding Up Development of Advanced Combustion Engines 54.5 MPG and Beyond: Speeding Up Development of Advanced Combustion Engines December 10, 2012 - 1:00pm Addthis Argonne engineer Steve Ciatti works on an engine in Argonne's Engine Research Facility -- a facility where researchers can study in-cylinder combustion and emissions under realistic operating conditions. | Photo courtesy of Argonne National Laboratory. Argonne engineer Steve Ciatti works on an engine in Argonne's Engine Research Facility -- a facility where researchers can study in-cylinder combustion and emissions under realistic operating conditions. | Photo courtesy of Argonne National Laboratory. Rebecca Matulka Rebecca Matulka Digital Communications Specialist, Office of Public Affairs

194

Advanced Combustion Engine R&D 2003 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

1000 Independence Avenue, S.W. 1000 Independence Avenue, S.W. Washington, D.C. 20585-0121 FY 2003 Progress Report for Advanced Combustion Engine Research & Development Energy Efficiency and Renewable Energy Office of FreedomCAR and Vehicle Technologies Approved by Gurpreet Singh December 2003 Advanced Combustion Engine R&D FY 2003 Progress Report ii Advanced Combustion Engine R&D FY 2003 Progress Report iii CONTENTS CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii INDEX OF PRIMARY AUTHORS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii I. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

195

Large bore natural gas engine performance improvements and combustion stabilization through reformed natural gas precombustion chamber fueling.  

E-Print Network (OSTI)

??Lean combustion is a standard approach used to reduce NOx emissions in large bore natural gas engines. However, at lean operating points, combustion instabilities and… (more)

Ruter, Matthew D.

2010-01-01T23:59:59.000Z

196

Influence of the molecular structure of biofuels on combustion in a compression ignition engine.  

E-Print Network (OSTI)

??This thesis presents an experimental study on the influence of the molecular structure of potential biofuels on combustion in a compression ignition engine. The molecular… (more)

Schönborn, A.

2009-01-01T23:59:59.000Z

197

DOE Project: Optimization of Advanced Diesel Engine Combustion Strategies "University Research in Advanced Combustion and Emissions Control" Office of FreedomCAR and Vehicle Technologies Program  

DOE Green Energy (OSTI)

The goal of the present technology development was to increase the efficiency of internal combustion engines while minimizing the energy penalty of meeting emissions regulations. This objective was achieved through experimentation and the development of advanced combustion regimes and emission control strategies, coupled with advanced petroleum and non-petroleum fuel formulations. To meet the goals of the project, it was necessary to improve the efficiency of expansion work extraction, and this required optimized combustion phasing and minimized in-cylinder heat transfer losses. To minimize fuel used for diesel particulate filter (DPF) regeneration, soot emissions were also minimized. Because of the complex nature of optimizing production engines for real-world variations in fuels, temperatures and pressures, the project applied high-fidelity computing and high-resolution engine experiments synergistically to create and apply advanced tools (i.e., fast, accurate predictive models) developed for low-emission, fuel-efficient engine designs. The companion experiments were conducted using representative single- and multi-cylinder automotive and truck diesel engines.

Reitz, Rolf; Foster, D.; Ghandhi, J.; Rothamer, D.; Rutland, C.; Sanders, S.; Trujillo, M.

2012-10-26T23:59:59.000Z

198

Computational study of homogeneous and stratified combustion in a compressed natural gas direct injection engine  

Science Conference Proceedings (OSTI)

In recent years, the type of combustion occurred within engine cylinder plays an important role determining the performance and emissions. In the present study, the computational investigation was performed in order to compare characteristics of homogeneous ... Keywords: compressed natural gas, direct injection, exhaust emissions, homogeneous combustion, stratified combustion

S. Abdullah; W. H. Kurniawan; M. A. Al-Rawi; Y. Ali; T. I. Mohamad

2009-02-01T23:59:59.000Z

199

A Detailed Multi-Zone Thermodynamic Simulation For Direct-Injection Diesel Engine Combustion  

E-Print Network (OSTI)

A detailed multi-zone thermodynamic simulation has been developed for the direct-injection (DI) diesel engine combustion process. For the purpose of predicting heterogeneous type combustion systems, the model explores the formation of pre-ignition radicals, start of combustion, and eventual heat release. These mechanisms are described based on the current understanding and knowledge of the diesel engine combustion acquired through advanced laser-based diagnostics. Six zones are developed to take into account the surrounding bulk gas, liquid- and vapor-phase fuel, pre-ignition mixing, fuel-rich combustion products as well as the diffusion flame combustion products. A three-step phenomenological soot model and a nitric oxide emission model are applied based on where and when each of these reactions mainly occurs within the diesel fuel jet evolution process. The simulation is completed for a 4.5 liter, inline four-cylinder diesel engine for a range of operating conditions. Specifically, the engine possesses a compression ratio of 16.6, and has a bore and stroke of 106 and 127 mm. The results suggest that the simulation is able to accurately reproduce the fuel jet evolution and heat release process for conventional diesel engine combustion conditions. The soot and nitric oxide models are able to qualitatively predict the effects of various engine parameters on the engine-out emissions. In particular, the detailed thermodynamics and characteristics with respect to the combustion and emission formation processes are investigated for different engine speed/loads, injection pressures and timings, and EGR levels. The local thermodynamic properties and energy, mass distributions obtained from the simulation offer some fundamental insights into heterogeneous type combustion systems. The current work provides opportunities to better study and understand the diesel engine combustion and emission formation mechanisms for conventional diesel engine combustion modes. The flexible, low computational cost features of this simulation result in a convenient tool for conducting parametric studies, and benefits for engine control and diagnostics.

Xue, Xingyu 1985-

2012-12-01T23:59:59.000Z

200

Impact of retarded spark timing on engine combustion, hydrocarbon emissions, and fast catalyst light-off  

E-Print Network (OSTI)

An experimental study was performed to determine the effects of substantial spark retard on engine combustion, hydrocarbon (HC) emissions, feed gas enthalpy, and catalyst light-off. Engine experiments were conducted at ...

Hallgren, Brian E. (Brian Eric), 1976-

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "internal combustion engine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Combustion lean limits fundamentals and their application to a SI hydrogen-enhanced engine concept  

E-Print Network (OSTI)

Operating an engine with excess air, under lean conditions, has significant benefits in terms of increased engine efficiency and reduced emissions. However, under high dilution levels, a lean limit is reached where combustion ...

Ayala, Ferran A. (Ferran Alberto), 1976-

2006-01-01T23:59:59.000Z

202

Coal slurry combustion optimization on single cylinder engine. Task 1.1.2.2.2, Combustion R&D  

DOE Green Energy (OSTI)

Under the sponsorship of the US Department of Energy, Morgantown Energy Technology Center, GE Transportation System has been conducting a proof of concept program to use coal water slurry (CWS) fuel to power a diesel engine locomotive since 1988. As reported earlier [1], a high pressure electronically controlled accumulator injector using a diamond compact insert nozzle was developed for this project. The improved reliability and durability of this new FIE allowed for an improved and more thorough study of combustion of CWS fuel in a diesel engine. It was decided to include a diesel pilot fuel injector in the combustion system mainly due to engine start and low load operation needs. BKM, Inc. of San Diego, CA was contracted to develop the electronic diesel fuel pilot/starting FIE for the research engine. As a result, the experimental combustion study was very much facilitated due to the ability of changing pilot/CWS injection timings and quantities without having to stop the engine. Other parameters studied included combustion chamber configuration (by changing CWS fuel injector nozzle hole number/shape/angle), as well as injection pressure. The initial phase of this combustion study is now complete. The results have been adopted into the design of a 12 cylinder engine FIE, to be tested in 1992. This paper summarizes the main findings of this study.

Not Available

1992-09-01T23:59:59.000Z

203

1 Copyright 2003 by ASME 17th International Conference on Fluidised Bed Combustion  

E-Print Network (OSTI)

1 Copyright © 2003 by ASME 17th FBC 17th International Conference on Fluidised Bed Combustion May COMBUSTION OF HIGH-PVC SOLID WASTE WITH HCl RECOVERY Loay Saeed, Antti Tohka, Ron Zevenhoven* Helsinki.zevenhoven@hut.fi * Corresponding author ABSTRACT A process for two-stage combustion of high-PVC solid waste with HCl recovery

Zevenhoven, Ron

204

Review of Heavy-Duty Engine Combustion Research at Sandia National Laboratories  

DOE Green Energy (OSTI)

The objectives of this paper are to describe the research efforts in diesel engine combustion at Sandia National Laboratories' Combustion Research Facility and to provide recent experimental results. We have four diesel engine experiments supported by the Department of Energy, Office of Heavy Vehicle Technologies: a one-cylinder version of a Cummins heavy-duty engine, a diesel simulation facility, a one-cylinder Caterpillar engine to evaluate combustion of alternative fuels, and a homogeneous-charge, compression-ignition (HCCI) engine facility is under development. Recent experimental results to be discussed are: the effects of injection timing and diluent addition on late-combustion soot burnout, diesel-spray ignition and premixed-burn behavior, a comparison of the combustion characteristics of M85 (a mixture of 85% methanol and 15% gasoline) and DF2 (No.2 diesel reference fuel), and a description of our HCCI experimental program and modeling work.

Robert W. Carling; Gurpreet Singh

2000-06-19T23:59:59.000Z

205

w.uts.edu.au/international ENGINEERING  

E-Print Network (OSTI)

energy agency (united nations), International Institute for applied Systems analysis, oecd, and world), Faculty of engineering and Information technology at utS. He is also the director of the centre for energy policy themes ­ in national and global contexts. Such themes include energy market deregulation

University of Technology, Sydney

206

DESIGNATION SURVEY ADDENDUM REPORT II COMBUSTION ENGINEERING SITE  

Office of Legacy Management (LM)

,111 ,111 DESIGNATION SURVEY ADDENDUM REPORT II COMBUSTION ENGINEERING SITE *I W INDSOR, CONNECTICUT 111 E. W . ABELQUIST Prepared for the Office of Environmental Restoration U.S. Department of Energy I- II I- .:jj;jiE// .:::=::::: .ipij!li' ,:::i::.:. ..::I::::/. ,:ii~iiiiai, ..' iiiiiiiiii!!liiii~~~~,~:~:. ~i!i.~iii~' :' -' +g?' gg;; ,- ZY :i/ .:;i" .:!! .:::a .(/i?j i:/i;jl? I!kr ' -:~i~jg~;...,.;, ..,::&Si! :(j)//ji//(!: 3.. :jijiiiiiiqi:wi l~,. ,,v..::;:~/j~B/; g#;$ .;::::::::::! :::::::::: ::j/j j/i; :(/;;I . . :/:jij; ,:j:,i/; ::::::: ,i/j//:j ;igg;ij iii:::: ,;(iii$ :::::i:ii. ,,,,,, :i.;ifi;iuij;; ,,:,: ii ,,:::::::::::: .:zy,:l::... Lb. .::i:::. .,:.:::;:. ](i:iii:;!! :.:::::::p "'.'j?'~ fix&$ .ii .:::i .::i;;!jg#ggi& i///jjji_

207

Axially staged combustion system for a gas turbine engine  

DOE Patents (OSTI)

An axially staged combustion system is provided for a gas turbine engine comprising a main body structure having a plurality of first and second injectors. First structure provides fuel to at least one of the first injectors. The fuel provided to the one first injector is adapted to mix with air and ignite to produce a flame such that the flame associated with the one first injector defines a flame front having an average length when measured from a reference surface of the main body structure. Each of the second injectors comprising a section extending from the reference surface of the main body structure through the flame front and having a length greater than the average length of the flame front. Second structure provides fuel to at least one of the second injectors. The fuel passes through the one second injector and exits the one second injector at a location axially spaced from the flame front.

Bland, Robert J. (Oviedo, FL)

2009-12-15T23:59:59.000Z

208

Second law analysis of premixed compression ignition combustion in a diesel engine using a thermodynamic engine cycle simulation  

E-Print Network (OSTI)

A second law analysis of compression ignition engine was completed using a thermodynamic engine cycle simulation. The major components of availability destruction and transfer for an entire engine cycle were identified and the influence of mode of combustion, injection timing and EGR on availability balance was evaluated. The simulation pressure data was matched with the available experimental pressure data gathered from the tests on the Isuzu 1.7 L direct injection diesel engine. Various input parameters of the simulation were changed to represent actual engine conditions. Availability destruction due to combustion decreases with advanced injection timing and under premixed compression ignition (PCI) modes; but it is found to be insensitive to the level of EGR. Similarly, trends (or lack of trends) in the other components of availability balance were identified for variation in injection timing, EGR level and mode of combustion. Optimum strategy for efficient combustion processes was proposed based on the observed trends.

Oak, Sushil Shreekant

2008-08-01T23:59:59.000Z

209

Fuel effects in homogeneous charge compression ignition (HCCI) engines  

E-Print Network (OSTI)

Homogenous-charge, compression-ignition (HCCI) combustion is a new method of burning fuel in internal combustion (IC) engines. In an HCCI engine, the fuel and air are premixed prior to combustion, like in a spark-ignition ...

Angelos, John P. (John Phillip)

2009-01-01T23:59:59.000Z

210

Definition: Combustion | Open Energy Information  

Open Energy Info (EERE)

Combustion Combustion Jump to: navigation, search Dictionary.png Combustion The process of burning; chemical oxidation accompanied by the generation of light and heat.[1][2] View on Wikipedia Wikipedia Definition "Burning" redirects here. For combustion without external ignition, see spontaneous combustion. For the vehicle engine, see internal combustion engine. For other uses, see Burning (disambiguation) and Combustion (disambiguation). Error creating thumbnail: Unable to create destination directory This article's introduction section may not adequately summarize its contents. To comply with Wikipedia's lead section guidelines, please consider modifying the lead to provide an accessible overview of the article's key points in such a way that it can stand on its own as a

211

Proceedings: 14th International Symposium on Management and Use of Coal Combustion Products (CCPs), Volume 1  

Science Conference Proceedings (OSTI)

International research interest in coal combustion product (CCP) use continues to grow, with promising prospects for avoiding disposal costs, reducing greenhouse gas emissions, and generating revenue from CCP sales. Topics discussed at the 14th International Symposium on Management and Use of Coal Combustion Products included fundamental research on CCP use, product marketing, applied research, CCP management and environmental issues, and commercial CCP applications.

2001-01-04T23:59:59.000Z

212

Proceedings: 14th International Symposium on Management and Use of Coal Combustion Products (CCPs): Volume 2  

Science Conference Proceedings (OSTI)

International research interest in coal combustion product (CCP) use continues to grow, with promising prospects for avoiding disposal costs, reducing greenhouse gas emissions, and generating revenue from CCP sales. Topics discussed at the 14th International Symposium on Management and Use of Coal Combustion Products included fundamental research on CCP use, product marketing, applied research, CCP management and environmental issues, and commercial CCP applications.

2001-01-04T23:59:59.000Z

213

On the role of external combustion engines for on-site power generation  

SciTech Connect

Stationary external combustion engines are prime movers that have potential for becoming viable power generation machines in both the residential/commercial and industrial sectors. These large engines are being developed with the capability to employ alternative and/or non-scarce fuels. Energy sources under consideration include coal, coal derived liquids and gases, low-grade petroleum residues, biomass, and municipal wastes. Advantages of external combustion engines relative to conventional prime movers are: greater fuel efficiency, reduced environmental impacts (noise and emissions), and a high degree of fuel flexibility. External combustion engines include steam turbines, Stirling cycle engines, and externally-fired Brayton gas turbines. Among the various applications for external combustion engines are: total energy plants, ICES, industrial cogeneration, small municipal generating plants, and pumping stations. It is not necessary for all the heat supplied an external combustion engine to come from a single source. Various non-coal sources that can be used either independently or integrated with others to supply heat to external combustion engines include solar energy, municipal wastes, biomass, and geothermal. Stirling engine based systems are described. The development of the Stirling engine is briefly discussed. (MCW)

Holtz, R.E.; Uherka, K.L.

1979-01-01T23:59:59.000Z

214

Combustion in Homogeneous Charge Compression Ignition Engines: Experiments and Detailed Chemical Kinetic Simulations  

DOE Green Energy (OSTI)

Homogeneous charge compression ignition (HCCI) engines are being considered as an alternative to diesel engines. The HCCI concept involves premixing fuel and air prior to induction into the cylinder (as is done in current spark-ignition engine) then igniting the fuel-air mixture through the compression process (as is done in current diesel engines). The combustion occurring in an HCCI engine is fundamentally different from a spark-ignition or Diesel engine in that the heat release occurs as a global autoignition process, as opposed to the turbulent flame propagation or mixing controlled combustion used in current engines. The advantage of this global autoignition is that the temperatures within the cylinder are uniformly low, yielding very low emissions of oxides of nitrogen (NO{sub x}, the chief precursors to photochemical smog). The inherent features of HCCI combustion allows for design of engines with efficiency comparable to, or potentially higher than, diesel engines. While HCCI engines have great potential, several technical barriers exist which currently prevent widespread commercialization of this technology. The most significant challenge is that the combustion timing cannot be controlled by typical in-cylinder means. Means of controlling combustion have been demonstrated, but a robust control methodology that is applicable to the entire range of operation has yet to be developed. This research focuses on understanding basic characteristics of controlling and operating HCCI engines. Experiments and detailed chemical kinetic simulations have been applied to the characterize some of the fundamental operational and design characteristics of HCCI engines. Experiments have been conducted on single and multi-cylinder engines to investigate general features of how combustion timing affects the performance and emissions of HCCI engines. Single-zone modeling has been used to characterize and compare the implementation of different control strategies. Multi-zone modeling has been applied to investigate combustion chamber design with respect to increasing efficiency and reducing emissions in HCCI engines.

Flowers, D L

2002-06-07T23:59:59.000Z

215

Maximizing Power Output in Homogeneous Charge Compression Ignition (HCCI) Engines and Enabling Effective Control of Combustion Timing  

E-Print Network (OSTI)

Experimental study of biogas combustion characteristics andthe operation range of a biogas HCCI engine for powerOperating Conditions in a Biogas Fueled HCCI Engine for

Saxena, Samveg

2011-01-01T23:59:59.000Z

216

Combustion Commonality and Differences Between HSDI and Heavy Duty Truck Engines  

DOE Green Energy (OSTI)

Experimental understanding of the diesel spray and combustion process at the fundamental level has helped advance the virtual lab simulation tools. The computational fluid dynamics (CFD)-based simulation has been globally verified in many engines, providing substantial credibility to the use of this technology in advanced engine development. This paper highlights the common aspects and differences between the smallbore HSDI and the larger displacement heavy-duty truck engine spray and combustion processes. Implications for combustion system strategies will be delineated. Detroit Diesel integrated ''Wired'' approach will be explained with pointers towards future tool enhancements.

Chen, Rong

2000-08-20T23:59:59.000Z

217

Investigation of Bio-Diesel Fueled Engines under Low-Temperature Combustion Strategies  

DOE Green Energy (OSTI)

In accordance with meeting DOE technical targets this research was aimed at developing and optimizing new fuel injection technologies and strategies for the combustion of clean burning renewable fuels in diesel engines. In addition a simultaneous minimum 20% improvement in fuel economy was targeted with the aid of this novel advanced combustion system. Biodiesel and other renewable fuels have unique properties that can be leveraged to reduce emissions and increase engine efficiency. This research is an investigation into the combustion characteristics of biodiesel and its impacts on the performance of a Low Temperature Combustion (LTC) engine, which is a novel engine configuration that incorporates technologies and strategies for simultaneously reducing NOx and particulate emissions while increasing engine efficiency. Generating fundamental knowledge about the properties of biodiesel and blends with petroleum-derived diesel and their impact on in-cylinder fuel atomization and combustion processes was an important initial step to being able to optimize fuel injection strategies as well as introduce new technologies. With the benefit of this knowledge experiments were performed on both optical and metal LTC engines in which combustion and emissions could be observed and measured under realistic conditions. With the aid these experiments and detailed combustion models strategies were identified and applied in order to improve fuel economy and simultaneously reduce emissions.

Chia-fon F. Lee; Alan C. Hansen

2010-09-30T23:59:59.000Z

218

Fault Detection and Isolation of a Cryogenic Rocket Engine Combustion Chamber Using a Parity Space Approach  

Science Conference Proceedings (OSTI)

his paper presents a parity space (PS) approach for fault detection and isolation (FDI) of a cryogenic rocket engine combustion chamber. Nominal and non-nominal simulation data for three engine set points have been provided. The PS approach uses three ... Keywords: Fault Detection, Fault Isolation, Fault Diagnosis, Parity Space, Rocket Engine

Paul van Gelder; André Bos

2009-07-01T23:59:59.000Z

219

CSE - International Workshop on Photon Tools for Combustion and...  

NLE Websites -- All DOE Office Websites (Extended Search)

and other large light sources to energy conversion research -- particularly to combustion and the productionstorage of energy from novel sources. The inaugural meeting was...

220

CSE - International Workshop on Photon Tools for Combustion and...  

NLE Websites -- All DOE Office Websites (Extended Search)

Combustion Chair: Randall E. Winans, Argonne National Laboratory 1:55 Organic Radicals in Pyrolysis of Furans and Biomass-Based Fuels Barney Ellison University of Boulder at...

Note: This page contains sample records for the topic "internal combustion engine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Development of a catalytic combustion system for the MIT Micro Gas Turbine Engine  

E-Print Network (OSTI)

As part of the MIT micro-gas turbine engine project, the development of a hydrocarbon-fueled catalytic micro-combustion system is presented. A conventionally-machined catalytic flow reactor was built to simulate the ...

Peck, Jhongwoo, 1976-

2003-01-01T23:59:59.000Z

222

FY2000 Progress Report for Combustion and Emission Control for Advanced CIDI Engines  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Energy Office of Transportation Technologies 1000 Independence Avenue, S.W. Washington, DC 20585-0121 FY 2000 Progress Report for Combustion and Emission Control for Advanced CIDI Engines Energy Efficiency and Renewable Energy Office of Transportation Technologies Approved by Steven Chalk November 2000 Combustion and Emission Control for Advanced CIDI Engines FY 2000 Progress Report CONTENTS Page iii I. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1 II. EMISSION CONTROL SUBSYSTEM DEVELOPMENT. . . . . . . . . . . . . . . . . . . . . . . . . . . .9 A. Emission Control Subsystem Evaluation for Light-Duty CIDI Vehicles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

223

An experimental study of the oil evolution in critical piston ring pack regions and the effects of piston and ring designs in an internal combustion engine utilizing two-dimensional laser induced fluorescence and the impact on maritime economics  

E-Print Network (OSTI)

Faced with increasing concern for lubricating, oil consumption and engine friction, it is critical to understand the oil transport mechanisms in the power cylinder system. Lubricating oil travels through distinct regions ...

Vokac, Adam, 1978-

2004-01-01T23:59:59.000Z

224

Analysis of Combustion Trajectories of Advanced Combustion Modes in a CIDI Engine with a Two-Zone Phenomenological Model  

DOE Green Energy (OSTI)

We describe a two-zone phenomenological model for simulating in-cylinder details in conventional, highdilution, and high-efficiency clean combustion in a diesel engine. Using this model we characterize the differences in these combustion modes in terms of 3D trajectories involving equivalence ratio, flame temperature, and oxygen mass fraction. These trajectories in turn make it possible to better understand the relative NOx and particulate emissions of the different modes. The two-zone model predictions are shown to be consistent with more detailed CFD simulations and provide the benefit of very rapid simulation.

Gao, Zhiming [ORNL; Daw, C Stuart [ORNL; Wagner, Robert M [ORNL; Sluder, Scott [ORNL; Green Jr, Johney Boyd [ORNL

2011-01-01T23:59:59.000Z

225

TransForum v6n1 - Argonne Engineers See into the Future of Hydrogen...  

NLE Websites -- All DOE Office Websites (Extended Search)

Argonne Engineers See into the Future of Hydrogen Internal Combustion Engines full-combustion image of OH This full-combustion image of OH* shows the number of H + O OH*...

226

On-Engine Ammonia Detection Using Evanescent Fields  

the study of catalyst performance in internal combustion engines. Inventor CONNATSER, RAYNELLA M Energy & Transportation Science Division Licensing Contact

227

Investigation of the viability and cost effectiveness of solid fuel gasifiers close coupled to internal combustion engines for 200 kWe power generation. Technical progress report No. 9  

DOE Green Energy (OSTI)

The viability and cost effectiveness of a 200 kWe engine generator unit fueled by a direct coupled, solid fuel gasifier were studied. Recent literature describing gasifier technology was obtained and personal visits were made to test facility sites and engine manufacturing plants to discuss the subject with researchers and engineers. Two prototype units were inspected, one of which was in partial operation. This report presents a brief discussion of fuel and gasifier technology, gas treatment (clean up) for engine use, engine use technology, other uses for gasifiers, the viability of close coupled units, and an estimate of cost effectiveness. Present small experimental gasifier systems perform as expected and have served to demonstrate the technology. Typically they operate with fuel species which are present and collected on the site of a processing plant. Certain needed development efforts are discussed. Also, fuel must be available at low cost and even then electric power produced in this way is unlikely to be competitive economically where utility poles are available. (LTN)

Mingle, J. G.; Junge, D. C.

1979-01-01T23:59:59.000Z

228

Japanese industrial research on lean combustion: A case study: International Research Monitoring Program  

DOE Green Energy (OSTI)

In recent years, Japanese automakers have introduced a number of successful lean-combustion engines. These engines, in addition to the general expertise in building small cars, have made the Japanese automobiles into the gas mileage champions of the US market. The lean-combustion engines also provide very satisfactory performance and acceptable emissions. United States automakers and research managers, who were probably better informed about lean-combustion than the Japanese were, actively investigated lean-combustion but did not develop an engine. This report examines the basis for the Japanese innovations, the research that took the Japanese past the US state of the art to permit engine development. A preliminary review of recent (1980s) Japanese literature did not turn up strong evidence of new research activity in the lean-combustion area, but did provide background on new engines developed by several major manufacturers. The study was conducted solely through the Japanese and US published literature, with emphasis on early research conducted in the 1970s. This report presents an example of how Japanese research progress can be examined by reviewing the Japanese research literature. Although useful information was obtained by this method, it is still difficult to get a complete picture. When reviewing the literature, as was done for this report, one must remember that the marginal use of references by Japanese researchers obscures prior work, as does the tendency of the Japanese to publish several articles on similar or identical topics. 50 refs., 15 figs.

Hane, G.J.; Hutchinson, R.A.

1987-08-01T23:59:59.000Z

229

Using a Phenomenological Computer Model to Investigate Advanced Combustion Trajectories in a CIDI Engine  

SciTech Connect

This paper summarizes results from simulations of conventional, high-dilution, and high-efficiency clean combustion in a diesel engine based on a two-zone phenomenological model. The two-zone combustion model is derived from a previously published multi-zone model, but it has been further simplified to increase computational speed by a factor of over 100. The results demonstrate that this simplified model is still able to track key aspects of the combustion trajectory responsible for NOx and soot production. In particular, the two-zone model in combination with highly simplified global kinetics correctly predicts the importance of including oxygen mass fraction (in addition to equivalence ratio and temperature) in lowering emissions from high-efficiency clean combustion. The methodology also provides a convenient framework for extracting information directly from in-cylinder pressure measurements. This feature is likely to be useful for on-board combustion diagnostics and controls. Because of the possibility for simulating large numbers of engine cycles in a short time, models of this type can provide insight into multi-cycle and transient combustion behavior not readily accessible to more computationally intensive models. Also the representation of the combustion trajectory in 3D space corresponding to equivalence ratio, flame temperature, and oxygen fraction provides new insight into optimal combustion management.

Gao, Zhiming [ORNL; Wagner, Robert M [ORNL; Sluder, Scott [ORNL; Daw, C Stuart [ORNL; Green Jr, Johney Boyd [ORNL

2011-01-01T23:59:59.000Z

230

Pages that link to "Ynfiniti Engineering Services International...  

Open Energy Info (EERE)

100 | 250 | 500) Retrieved from "http:en.openei.orgwikiSpecial:WhatLinksHereYnfinitiEngineeringServicesInternational" Special pages About us Disclaimers Energy blogs...

231

Internal combuston engine having separated cylinder head oil drains and crankcase ventilation passages  

DOE Patents (OSTI)

An internal combustion engine includes separated oil drain-back and crankcase ventilation passages. The oil drain-back passages extend from the cylinder head to a position below the top level of oil in the engine's crankcase. The crankcase ventilation passages extend from passages formed in the main bearing bulkheads from positions above the oil level in the crankcase and ultimately through the cylinder head. Oil dams surrounding the uppermost portions of the crankcase ventilation passages prevent oil from running downwardly through the crankcase ventilation passages.

Boggs, David Lee (Bloomfield Hills, MI); Baraszu, Daniel James (Plymouth, MI); Foulkes, David Mark (Erfstadt, DE); Gomes, Enio Goyannes (Ann Arbor, MI)

1998-01-01T23:59:59.000Z

232

Combustion optimization studies for stratified charge and diesel engines. Progress report, October 1, 1977--September 30, 1978  

DOE Green Energy (OSTI)

The objectives of the program are to assess the feasibility and operating characteristics of the following high compression, spark ignition (or self ignition), stratified charge (or diesel) engine configuration: compression ratio: 16; open chember; direct fuel injection; unthrottled operation; 615 cc/cylinder; explored speed range 1000 to 4000 rpm (expected practical range 600 to 6000 rpm); fuels: ethanol-diesel mixtures; spark ignition (stratified charge) or self ignition (diesel), to continue the development and the testing of physical and numerical aspects of multi-dimensional combustion models in order to assess and improve their accuracy and to reduce their computation time, and to contribute to the achievement of a more fundamental and detailed understanding, characterization, and command of the processes wich control efficiency and emissions in internal combustion engines. Progress to date includes: engine modifications to obtain a transparent-piston, transparent-head configuration have been implemented; a gaseous fuel injection system has been designed, built, and operated; shadowgraph records of engine combustion have been obtained; a LDV system for in-cylinder gas velocity measurements has been selected; progress has been made toward measuring in-cylinder pressure, temperature, and composition for complete characterization of the charge; modeling of unsteady gaseous jets has yielded results which match asymptotically known steady state solutions; comparison with unsteady, two-dimensional bomb flames has yielded general scaling procedures for the computation of laminar flames; studies toward modeling of thick sprays have continued; DISC and other technical meetings have been attended and the results of the program made known to researchers and automotive industries; a very promising technique to apply television to unsteady events with short characteristic time (< 30 ms) has been developed and applied to obtain records of engine flames.

Steinberger, R.L.; Bracco, F.V.

1978-08-01T23:59:59.000Z

233

Synergies of PCCI-Type Combustion and Lean NOx Trap Catalysis for Diesel Engines  

Science Conference Proceedings (OSTI)

It is widely recognized that future NOx and PM emission targets for diesel engines cannot be met solely via advanced combustion over the full engine drive cycle. Therefore some combination of advanced combustion methodology with an aftertreatment technology will be required. In this study, NOx reduction, fuel efficiency, and regeneration performance of lean NOx trap (LNT) were evaluated for four operating conditions. The combustion approaches included baseline engine operation with and without EGR, two exhaust enrichment methods (post injection and delayed injection), and one advanced combustion mode to enable high efficiency clean combustion (HECC). A 1.7 liter 4-cylinder diesel engine was operated under five conditions, which represent key interest points for light-duty diesel operation. At the low load setting the exhaust temperature was too low to enable LNT regeneration and oxidation; however, HECC (low NOx) was achievable. HECC was also reached under more moderate loads and the exhaust temperatures were high enough to enable even further NOx reductions by the LNT. At high loads HECC becomes difficult but the LNT performance improves and acceptable regeneration can be met with enrichment methodologies.

Parks, II, James E [ORNL; Prikhodko, Vitaly Y [ORNL; Kass, Michael D [ORNL; Huff, Shean P [ORNL

2008-01-01T23:59:59.000Z

234

Controlling combustion characteristics using a slit nozzle in a direct-injection methanol engine  

SciTech Connect

A new type of fuel injection nozzle, called a `slit nozzle,` has been developed to improve poor ignitability and to stabilize combustion under low load conditions in direct-injection methanol diesel engines manufactured for medium-duty trucks. This nozzle has a single oblong vent like a slit. Engine test results indicate that the slit nozzle can improve combustion and thermal efficiency, especially at low loads and no load. This can be explained by the fact that the slit nozzle forms a more highly concentrated methanol spray around the glow-plug than do multi-hole nozzles. As a result, this nozzle improves flame propagation. 3 refs., 12 figs., 4 tabs.

Kusaka, Jin; Daisho, Yasuhiro; Saito, Takeshi; Kihara, Ryoji

1994-10-01T23:59:59.000Z

235

Engines - Spark Ignition Engines - Hydrogen Engines  

NLE Websites -- All DOE Office Websites (Extended Search)

large-scale hydrogen infrastructure by using the well-known and widely used internal combustion engine as the device that transforms the energy stored in hydrogen into motion. The...

236

International Safety Projects - Nuclear Engineering Division...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

237

Predictive modeling of combustion processes  

E-Print Network (OSTI)

Recently, there has been an increasing interest in improving the efficiency and lowering the emissions from operating combustors, e.g. internal combustion (IC) engines and gas turbines. Different fuels, additives etc. are ...

Sharma, Sandeep, Ph. D. Massachusetts Institute of Technology

2009-01-01T23:59:59.000Z

238

Modeling the effects of late cycle oxygen enrichment on diesel engine combustion and emissions.  

DOE Green Energy (OSTI)

A multidimensional simulation of Auxiliary Gas Injection (AGI) for late cycle oxygen enrichment was exercised to assess the merits of AGI for reducing the emissions of soot from heavy duty diesel engines while not adversely affecting the NO{sub x} emissions of the engine. Here, AGI is the controlled enhancement of mixing within the diesel engine combustion chamber by high speed jets of air or another gas. The engine simulated was a Caterpillar 3401 engine. For a particular operating condition of this engine, the simulated soot emissions of the engine were reduced by 80% while not significantly affecting the engine-out NO{sub x} emissions compared to the engine operating without AGI. The effects of AGI duration, timing, and orientation are studied to confirm the window of opportunity for realizing lower engine-out soot while not increasing engine out NO{sub x} through controlled enhancement of in-cylinder mixing. These studies have shown that this window occurs during the late combustion cycle, from 20 to 60 crank angle degrees after top-dead-center. During this time, the combustion chamber temperatures are sufficiently high that soot oxidation increases in response in increased mixing, but the temperature is low enough that NO{sub x} reactions are quenched. The effect of the oxygen composition of the injected air is studied for the range of compositions between 21% and 30% oxygen by volume. This is the range of oxygen enrichment that is practical to produce from an air separation membrane. Simulations showed that this level of oxygen enrichment is insufficient to provide an additional benefit by either increasing the level of soot oxidation or prolonging the window of opportunity for increasing soot oxidation through enhanced mixing.

Mather, D. K.; Foster, D. E.; Poola, R. B.; Longman, D. E.; Chanda, A.; Vachon, T. J.

2002-02-28T23:59:59.000Z

239

Development of Innovative Combustion Processes for a Direct-Injection Diesel Engine  

DOE Green Energy (OSTI)

In support of the Partnership for a New Generation Vehicle (PNGV) emissions and fuel economy goals, a small-bore, high-speed, direct-injection (HSDI) diesel facility in which to conduct research into the physics of the combustion process relevant to these engines has been developed. The characteristics of this facility are described, and the motivation for selecting these characteristics and their relation to high efficiency, low-emission HSDI engine technology is discussed.

John Dec; Paul Miles

1999-01-01T23:59:59.000Z

240

Improving combustion stability in a bi-fuel engine  

Science Conference Proceedings (OSTI)

This article describes how a new strategy for ignition timing control can reduce NOx emissions from engines using CNG and gasoline. Until a proper fueling infrastructure is established, a certain fraction of vehicles powered by compressed natural gas (CNG) must have bi-fuel capability. A bi-fuel engine, enjoying the longer range of gasoline and the cleaner emissions of CNG, can overcome the problem of having few CNG fueling stations. However, bi-fuel engines must be optimized to run on both fuels since low CNG volumetric efficiency causes power losses compared to gasoline.

NONE

1995-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "internal combustion engine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Effect of nozzle orifice geometry on spray, combustion, and emission characteristics under diesel engine conditions.  

DOE Green Energy (OSTI)

Diesel engine performance and emissions are strongly coupled with fuel atomization and spray processes, which in turn are strongly influenced by injector flow dynamics. Modern engines employ micro-orifices with different orifice designs. It is critical to characterize the effects of various designs on engine performance and emissions. In this study, a recently developed primary breakup model (KH-ACT), which accounts for the effects of cavitation and turbulence generated inside the injector nozzle is incorporated into a CFD software CONVERGE for comprehensive engine simulations. The effects of orifice geometry on inner nozzle flow, spray, and combustion processes are examined by coupling the injector flow and spray simulations. Results indicate that conicity and hydrogrinding reduce cavitation and turbulence inside the nozzle orifice, which slows down primary breakup, increasing spray penetration, and reducing dispersion. Consequently, with conical and hydroground nozzles, the vaporization rate and fuel air mixing are reduced, and ignition occurs further downstream. The flame lift-off lengths are the highest and lowest for the hydroground and conical nozzles, respectively. This can be related to the rate of fuel injection, which is higher for the hydroground nozzle, leading to richer mixtures and lower flame base speeds. A modified flame index is employed to resolve the flame structure, which indicates a dual combustion mode. For the conical nozzle, the relative role of rich premixed combustion is enhanced and that of diffusion combustion reduced compared to the other two nozzles. In contrast, for the hydroground nozzle, the role of rich premixed combustion is reduced and that of non-premixed combustion is enhanced. Consequently, the amount of soot produced is the highest for the conical nozzle, while the amount of NOx produced is the highest for the hydroground nozzle, indicating the classical tradeoff between them.

Som, S.; Longman, D. E; Ramirez, A. I.; Aggarwal, S. K. (Energy Systems); (Univ. of Illinois at Chicago)

2011-03-01T23:59:59.000Z

242

Characterization of Engine Control Authority on HCCI Combustion as the High Load Limit is Approached  

SciTech Connect

While the potential emissions and efficiency benefits of homogeneous charge compression ignition (HCCI) combustion are well known, realizing the potentials on a production intent engine presents numerous challenges. In this study we focus on characterizing the authority of the available engine controls as the high load limit of HCCI combustion is approached. The experimental work is performed on a boosted single-cylinder research engine equipped with direct injection (DI) fueling, cooled external exhaust gas recirculation (EGR), and a hydraulic valve actuation (HVA) valve train to enable the negative valve overlap (NVO) breathing strategy. Valve lift and duration are held constant while phasing is varied in an effort to make the results as relevant as possible to production intent cam-based variable valve actuation (VVA) systems on multi-cylinder engines. Results presented include engine loads from 350 to 650 kPa IMEPnet and manifold pressure from 98 to 190 kPaa at 2000 rpm. It is found that in order to increase engine load to 650 kPa IMEPnet, it is necessary to increase manifold pressure and external EGR while reducing the NVO duration. Both NVO duration and fuel injection timing are effective means of controlling combustion phasing, with NVO duration being a coarse control and fuel injection timing being a fine control. NOX emissions are low throughout the study, with emissions below 0.1 g/kW-h at all boosted HCCI conditions, while good combustion efficiency is maintained (>96.5%). Net indicated thermal efficiency increases with load up to 600 kPa IMEPnet, where a peak efficiency of 41% is achieved. Results of independent parametric investigations are presented on the effect of external EGR, intake effect of manifold pressure, and the effect of NVO duration. It is found that increasing EGR at a constant manifold pressure and increasing manifold pressure at a constant EGR rate both have the effect of retarding combustion phasing. It is also found that combustion phasing becomes increasingly sensitive to NVO duration as engine load increases. Finally, comparisons are made between three commonly used noise metrics (AVL noise meter, ringing intensity (RI), and maximum pressure rise rate (MPRR)). It is found that compared to the AVL noise meter, RI significantly underestimates combustion noise under boosted conditions.

Szybist, James P [ORNL; Edwards, Kevin Dean [ORNL; Foster, Matthew [Delphi; Confer, Keith [Delphi; Moore, Wayne [Delphi

2013-01-01T23:59:59.000Z

243

Apparatus and method for operating internal combustion engines ...  

Solar Photovoltaic; Solar Thermal; Startup America; Vehicles and Fuels; Wind Energy; ... The Regents of the University of California (Oakland, CA) Application Number:

244

Microwave-Assisted Ignition for Improved Internal Combustion Engine Efficiency  

E-Print Network (OSTI)

Collisions with Carbon Dioxide. ” J. Phys. Chem. Ref. Data,of the harmful impact of carbon dioxide emissions. Chapterof atmospheric carbon dioxide have intensified the

DeFilippo, Anthony Cesar

2013-01-01T23:59:59.000Z

245

Alternative Fuel Pilot Plant & Hydrogen Internal Combustion Engine...  

NLE Websites -- All DOE Office Websites (Extended Search)

a model alternative fuel refueling system, dispensing hydrogen, compressed natural gas (CNG), and hydrogenCNG blends (HCNG). The plant is used daily to fuel vehicles operated in...

246

Microwave-Assisted Ignition for Improved Internal Combustion Engine Efficiency  

E-Print Network (OSTI)

contiguous United States crude oil production would peakthose associated with conventional oil. The problem has thusbiomass, coal, and whale oil for heat and light, harnessing

DeFilippo, Anthony Cesar

2013-01-01T23:59:59.000Z

247

Variable Stroke Crank Shaft for an Internal Combustion Engine.  

E-Print Network (OSTI)

??Our planet is continuously being depleted of its natural resources leading to a need to conserve energy and the environment. One of the major energy… (more)

Ismail, Fareed

2012-01-01T23:59:59.000Z

248

Animal fat (tallow) as fuel for stationary internal combustion engines.  

E-Print Network (OSTI)

??The main aim of this thesis is to verify the suitability of waste animal fat, obtained from animal by-products in a process called rendering, as… (more)

Piaszyk, Jakub

2012-01-01T23:59:59.000Z

249

COMBUSTION  

E-Print Network (OSTI)

This document presents an overview of combustion as a waste management strategy in relation to the development of material-specific emission factors for EPA’s Waste Reduction Model (WARM). Included are estimates of the net greenhouse gas (GHG) emissions from combustion of most of the materials considered in WARM and several categories of mixed waste. 1. A SUMMARY OF THE GHG IMPLICATIONS OF COMBUSTION Combustion of municipal solid waste (MSW) results in emissions of CO 2 and N2O. Note that CO2 from combustion of biomass (such as paper products and yard trimmings) is not counted because it is biogenic (as explained in the Introduction & Overview chapter). WARM estimates emissions from combustion of MSW in waste-to-energy (WTE) facilities. WARM does not consider any recovery of materials from the MSW stream that may occur before MSW is delivered to the combustor. WTE facilities can be divided into three categories: (1) mass burn, (2) modular and (3) refusederived fuel (RDF). A mass burn facility generates electricity and/or steam from the combustion of

unknown authors

2012-01-01T23:59:59.000Z

250

Advanced radiation techniques for inspection of diesel engine combustion chamber materials components. Final report  

DOE Green Energy (OSTI)

Heavy duty truck engines must meet stringent life cycle cost and regulatory requirements. Meeting these requirements has resulted in convergence on 4-stroke 6-in-line, turbocharged, and after-cooled engines with direct-injection combustion systems. These engines provide much higher efficiencies (42%, fuel consumption 200 g/kW-hr) than automotive engines (31%, fuel consumption 270 g/kW-hr), but at higher initial cost. Significant near-term diesel engine improvements are necessary and are spurred by continuing competitive, Middle - East oil problems and Congressional legislation. As a result of these trends and pressures, Caterpillar has been actively pursuing a low-fuel consumption engine research program with emphasis on product quality through process control and product inspection. The goal of this project is to combine the nondestructive evaluation and computational resources and expertise available at LLNL with the diesel engine and manufacturing expertise of the Caterpillar Corporation to develop in-process monitoring and inspection techniques for diesel engine combustion chamber components and materials. Early development of these techniques will assure the optimization of the manufacturing process by design/inspection interface. The transition from the development stage to the manufacturing stage requires a both a thorough understanding of the processes and a way of verifying conformance to process standards. NDE is one of the essential tools in accomplishing both elements and in this project will be integrated with Caterpillar`s technological and manufacturing expertise to accomplish the project goals.

NONE

1995-10-09T23:59:59.000Z

251

Engine lubrication oil aeration  

E-Print Network (OSTI)

The lubrication system of an internal combustion engine serves many purposes. It lubricates moving parts, cools the engine, removes impurities, supports loads, and minimizes friction. The entrapment of air in the lubricating ...

Baran, Bridget A. (Bridget Anne)

2007-01-01T23:59:59.000Z

252

Fuel Effects on Ignition and Their Impact on Advanced Combustion Engines (Poster)  

DOE Green Energy (OSTI)

The objective of this report is to develop a pathway to use easily measured ignition properties as metrics for characterizing fuels in advanced combustion engine research--correlate IQT{trademark} measured parameters with engine data. In HCCL engines, ignition timing depends on the reaction rates throughout compression stroke: need to understand sensitivity to T, P, and [O{sub 2}]; need to rank fuels based on more than one set of conditions; and need to understand how fuel composition (molecular species) affect ignition properties.

Taylor, J.; Li, H.; Neill, S.

2006-08-01T23:59:59.000Z

253

Reactivity Controlled Compression Ignition (RCCI) Combustion on a Multi-Cylinder Light-Duty Diesel Engine  

Science Conference Proceedings (OSTI)

Reactivity controlled compression ignition is a low-temperature combustion technique that has been shown, both in computational fluid dynamics modeling and single-cylinder experiments, to obtain diesel-like efficiency or better with ultra-low nitrogen oxide and soot emissions, while operating primarily on gasoline-like fuels. This paper investigates reactivity controlled compression ignition operation on a four-cylinder light-duty diesel engine with production-viable hardware using conventional gasoline and diesel fuel. Experimental results are presented over a wide speed and load range using a systematic approach for achieving successful steady-state reactivity controlled compression ignition combustion. The results demonstrated diesel-like efficiency or better over the operating range explored with low engine-out nitrogen oxide and soot emissions. A peak brake thermal efficiency of 39.0% was demonstrated for 2600 r/min and 6.9 bar brake mean effective pressure with nitrogen oxide emissions reduced by an order of magnitude compared to conventional diesel combustion operation. Reactivity controlled compression ignition emissions and efficiency results are compared to conventional diesel combustion operation on the same engine.

Curran, Scott [ORNL; Hanson, Reed M [ORNL; Wagner, Robert M [ORNL

2012-01-01T23:59:59.000Z

254

Combustion, Control, and Fuel Effects in a Spark Assisted HCCI Engine Equipped with Variable Valve Timing  

SciTech Connect

Widespread implementation of homogeneous charge compression ignition (HCCI) engines is presently hindered by stability, control, and load range issues. Although the operable HCCI speed/load range is expanding, it is likely that the initial HCCI engines will rely on conventional combustion for part of the operating cycle. In the present study, we have investigated the role of fuel properties and chemistry on the operation of a spark-assisted gasoline HCCI engine. The engine employed is a single cylinder, 500 cc, port fuel injected research engine, operating near lambda = 1.0 and equipped with hydraulic variable valve actuation. HCCI is initiated by early exhaust valve closing to retain exhaust in the cylinder, thereby increasing the cylinder gas temperature. This is also referred to as a 'negative overlap' strategy. A total of 10 custom blended gasolines and three different batches of indolene from two suppliers were run at 5 speed-load combinations and performance was characterized by timing sweeps. Within the quality of the data set, we can say the all fuels provided equivalent combustion and performance characteristics when compared at the same combustion phasing. The fuels did, however, require different degrees of retained exhaust as measured by exhaust valve closing angle to achieve the same combustion phasing. Fuels with higher octane sensitivity were found to ignite more easily or more quickly and to burn more quickly than fuels with lower octane sensitivity. This is an expected result since the engine is naturally aspirated and operates with high compression temperatures due to the high retained exhaust fraction and recompression.

Bunting, Bruce G [ORNL

2006-01-01T23:59:59.000Z

255

Past International Joint Workshops of the Engine Emissions R...  

NLE Websites -- All DOE Office Websites (Extended Search)

Past International Joint Workshops of the Engine Emissions R&D Cluster Photo of a session from a past cluster workshop, showing participants seates at tables listening to a...

256

Changes related to "Ynfiniti Engineering Services International...  

Open Energy Info (EERE)

Login | Sign Up Wiki Browse Latinoamrica Buildings Clean Energy Economy Coordinated Low Emissions Assistance Network Geothermal Incentives and Policies International Clean Energy...

257

Three-dimensional modeling of diesel engine intake flow, combustion and emissions-II  

DOE Green Energy (OSTI)

A three-dimensional computer code, KIVA, is being modified to include state-of-the-art submodels for diesel engine flow and combustion. Improved and/or new submodels which have already been implemented and previously reported are: Wall heat transfer with unsteadiness and compressibility, laminar-turbulent characteristic time combustion with unburned HC and Zeldo`vich NO{sub x}, and spray/wall impingement with rebounding and sliding drops. Progress on the implementation of improved spray drop drag and drop breakup models, the formulation and testing of a multistep kinetics ignition model and preliminary soot modeling results are described in this report. In addition, the use of a block structured version of KIVA to model the intake flow process is described. A grid generation scheme has been developed for modeling realistic (complex) engine geometries, and computations have been made of intake flow in the ports and combustion chamber of a two-intake-valve engine. The research also involves the use of the code to assess the effects of subprocesses on diesel engine performance. The accuracy of the predictions is being tested by comparisons with engine experiments. To date, comparisons have been made with measured engine cylinder pressure, temperature and heat flux data, and the model results are in good agreement with the experiments. Work is in progress that will allow validation of in-cylinder flow and soot formation predictions. An engine test facility is described that is being used to provide the needed validation data. Test results have been obtained showing the effect of injection rate and split injections on engine performance and emissions.

Reitz, R.D.; Rutland, C.J.

1993-09-01T23:59:59.000Z

258

Hydrogen-Assisted IC Engine Combustion as a Route to Hydrogen Implementation  

DOE Green Energy (OSTI)

The 'Freedom Car' Initiative announced by the Bush Administration has placed a significant emphasis on development of a hydrogen economy in the United States. While the hydrogen-fueled fuel-cell vehicle that is the focus of the 'Freedom Car' program would rely on electrochemical energy conversion, and despite the large amount of resources being devoted to its objectives, near-term implementation of hydrogen in the transportation sector is not likely to arise from fuel cell cars. Instead, fuel blending and ''hydrogen-assisted'' combustion are more realizable pathways for wide-scale hydrogen utilization within the next ten years. Thus, a large potential avenue for utilization of hydrogen in transportation applications is through blending with natural gas, since there is an existing market for natural-gas vehicles of various classes, and since hydrogen can provide a means of achieving even stricter emissions standards. Another potential avenue is through use of hydrogen to 'assist' diesel combustion to permit alternate combustion strategies that can achieve lower emissions and higher efficiency. This project focused on developing the underlying fundamental information to support technologies that will facilitate the introduction of coal-derived hydrogen into the market. Two paths were envisioned for hydrogen utilization in transportation applications. One is for hydrogen to be mixed with other fuels, specifically natural gas, to enhance performance in existing natural gas-fueled vehicles (e.g., transit buses) and provide a practical and marketable avenue to begin using hydrogen in the field. A second is to use hydrogen to enable alternative combustion modes in existing diesel engines, such as homogeneous charge compression ignition, to permit enhanced efficiency and reduced emissions. Thus, this project on hydrogen-assisted combustion encompassed two major objectives: (1) Optimization of hydrogen-natural gas mixture composition and utilization through laboratory studies of spark-ignition engine operation on H{sub 2}-NG and numerical simulation of the impact of hydrogen blending on the physical and chemical processes within the engine; and (2) Examination of hydrogen-assisted combustion in advanced compression-ignition engine processes. To that end, numerical capabilities were applied to the study of hydrogen assisted combustion and experimental facilities were developed to achieve the project objectives.

Andre Boehman; Daniel Haworth

2008-09-30T23:59:59.000Z

259

Proceedings of the sixth international conference on fluidized bed combustion. Volume II. Technical sessions  

SciTech Connect

The Sixth International Conference on Fluidized Bed Combustion was held April 9-11, 1980, at the Atlanta Hilton, Atlanta, Georgia. It was sponsored by the US Department of Energy, the Electric Power Research Institute, the US Environmental Protection Agency, and the Tennessee Valley Authority. The papers covered recent developments in atmospheric and pressurized fluidized-bed combustion, especially the design, operation and control of pilot and demonstration plants. The cleanup of combustion products and the erosion, corrosion and fouling of gas turbines was emphasized also. Fifty-five papers from Volume 2 of the proceedings have been entered individually into EDB and ERA; five papers had been entered previously from other sources. (LTN)

none,

1980-08-01T23:59:59.000Z

260

An approach for modeling the valve train system to control the homogeneous combustion in a compression ignition engine  

Science Conference Proceedings (OSTI)

This paper presents an approach for modeling the valve train system to obtain a homogeneous charge compression ignition (HCCI) engine from a gasoline engine. The HCCI engines use different indirect strategies to control the start of the combustion. The ... Keywords: exhaust gas recirculation, homogeneous charge compression ignition, variable valve timing

Radu Cosgarea; Corneliu Cofaru; Mihai Aleonte; Maria Luminita Scutaru; Liviu Jelenschi; Gabriel Sandu

2011-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "internal combustion engine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Characterization of Single-Cylinder Small-Bore 4-Stroke CIDI Engine Combustion  

DOE Green Energy (OSTI)

Direct injection diesel engines power most of the heavy-duty vehicles. Due to their superior fuel economy, high power density and low carbon dioxide emissions, turbocharged, small bore, high speed, direct injection diesel engines are being considered to power light duty vehicles. Such vehicles have to meet stringent emission standards. However, it is difficult to meet these standards by modifying the in-cylinder thermodynamic and combustion processes to reduce engine-out emissions. After-treatment devices will be needed to achieve even lower emission targets required in the production engines to account for the anticipated deterioration after long periods of operation in the field. To reduce the size, mass and cost of the after-treatment devices, there is a need to reduce engine-out emissions and optimize both the engine and the aftertreatment devices as one integrated system. For example, the trade-off between engine-out NOx and PM, suggests that one of these species can be minimized in the engine, with a penalty in the other, which can be addressed efficiently in the after-treatment devices. Controlling engine-out emissions can be achieved by optimizing many engine design and operating parameters. The design parameters include, but are not limited to, the type of injection system: (CRS) Common Rail System, (HEUI ) Hydraulically Actuated and Electronically controlled Unit Injector, or (EUI) Electronic Unit Injector; engine compression ratio, combustion chamber design (bowl design), reentrance geometry, squish area and intake and exhaust ports design. With four-valve engines, the swirl ratio depends on the design of both the tangential and helical ports and their relative locations. For any specific engine design, the operating variables need also to be optimized. These include injection pressure, injection rate, injection duration and timing (pilot, main, and post injection), EGR ratio, and swirl ratio. The goal of the program is to gain a better understanding of the spray behavior under high injection pressures in small-bore, high compression ratio, high-speed, direct-injection diesel engines equipped with advanced fuel injection system. The final results demonstrate the capability of the engine in reducing the engine-out emissions and improve the trade-off between nitrogen oxides (NOx), particulate matter, other emissions and fuel economy. This report introduces a new phenomenological model for the fuel distribution and combustion, and emissions formation in the small bore, high speed, direct injection diesel engine. This will be followed by an analysis of the effect of each of injection pressure, EGR, injection advance and retard and swirl ratio on engine-out emissions and fuel economy. A discussion will be given on the 2-D and 3-D trade of maps. Finally a discussion will be made on the low temperature combustion regimes, its major problems and proposed solutions.

Henein, N A

2005-11-30T23:59:59.000Z

262

Intern experience at Fluor Engineers, Inc.: an internship report  

E-Print Network (OSTI)

This report demonstrates how the author's internship with the Houston Division of Fluor Engineers, Inc. fulfilled requirements of the Doctor of Engineering program and met the internship objectives. During the sixteen-month period between May 1980 and August 1981, the intern held the position of Engineer with the Cost and Scheduling Department. This position allowed the author to observe and participate in a wide variety of projects in both technical and supervisory capacities, dealing primarily with scheduling and cost control for construction of large chemical process plants. Substantial experience was also obtained from interface with other departments of the company, including accounting, procurement, process engineering, project engineering, finance, and design engineering. Additionally, the intern's position allowed regular contact with project and corporate management, providing exposure to the company's top decision makers. A brief overview of both cost engineering and scheduling engineering is presented to demonstrate the technical aspect of the internship. Finally, several of the author's positions at Fluor are described in order to detail the intern's experience and show specifically how each objective was achieved.

Dobbs, Stephen Benton, 1956-

1983-08-01T23:59:59.000Z

263

Mr. R. B. Bell, Jr. Combustion Engineering, Inc. Post Office Box 500  

Office of Legacy Management (LM)

g@ *tq g@ *tq 47 e "Y q$ . -0 t: 2 ~ i' ,; B 0 e %d&$ Department of Energy Washington, DC 20585 Mr. R. B. Bell, Jr. Combustion Engineering, Inc. Post Office Box 500 Windsor, Connecticut 06095-0500 Dear Mr. Bell: I have received two copies of the access agreement for the radiological survey of the Combustion Engineering Property at 1000 Prospect Hill Road in Windsor. I have signed the agreements on behalf of the U.S. Department of Energy, and I am returning one signed original copy to you, By copy of this letter, I am requesting that the Oak Ridge Institute for Science and Education contact you or Mr. Moulton to make arrangements for the survey. If you have any questions or if I may be of assistance, please call me at 301-903-8149. Sincerely

264

Advanced Combustion Engine Program 2005 Merit Review and Peer Evaluation Report  

NLE Websites -- All DOE Office Websites (Extended Search)

Less dependence on foreign oil, and eventual transition to an emissions-free, petroleum-free vehicle ADVANCED COMBUSTION ENGINE PROGRAM F r e e d o m C A r A n d V e h i C l e T e C h n o l o g i e s P r o g r A m MERIT REVIEW & PEER EVALUATION REPORT Department of Energy Washington, DC 20585 October 5, 2005 Dear Colleague: This document summarizes the comments provided by the Review Panel for the FY 2005 Department of Energy (DOE) Advanced Combustion Engine R&D Merit Review and Peer Evaluation Meeting, the "ACE Review," held on April 19-21, 2005 at Argonne National Laboratory (ANL). The raw evaluations and comments of the panel were provided (with reviewers' names deleted) to the presenters in early June and were used by national laboratory researchers in the development of Annual Operating Plans (AOPs) for fiscal year (FY) 2006. The panel's

265

Experimental researches of fuelling systems and alcohol blends on combustion and emissions in a two stroke Si engine  

Science Conference Proceedings (OSTI)

Fuelling systems play a major role in the process of air-fuel mixture formation, due to this fact; the aim of this paper was to achieve an optimal mixture, which results in low exhaust emissions and best behavior of the combustion process. In order to ... Keywords: alcohols, combustion, engine, exhaust emissions, gasoline

Mihai Aleonte; Corneliu Cofaru; Radu Cosgarea; Maria Luminita Scutaru; Liviu Jelenschi; Gabriel Sandu

2011-04-01T23:59:59.000Z

266

Assessment of ISLOCA risk-methodology and application to a combustion engineering plant  

Science Conference Proceedings (OSTI)

Inter-system loss-of-coolant accidents (ISLOCAs) have been identified as important contributors to offsite risk for some nuclear power plants. A methodology has been developed for identifying and evaluating plant-specific hardware designs, human factors issues, and accident consequence factors relevant to the estimation of ISOLOCA core damage frequency and risk. This report presents a detailed of description of the application of this analysis methodology to a Combustion Engineering plant.

Kelly, D.L.; Auflick, J.L.; Haney, L.N. [EG and G Idaho, Inc., Idaho Falls, ID (United States)

1992-04-01T23:59:59.000Z

267

Summary of Demonstration Projects Using Coal Combustion Residuals as Engineered Structural Fill  

Science Conference Proceedings (OSTI)

This report summarizes six demonstration projects in which coal combustion residuals (CCRs) were used as engineered structural fill to construct embankments for highways, a bridge approach, and an airport runway extension. The CCRs studied included coal fly ash, bottom ash, and stabilized flue gas desulfurization (FGD) material. Significant aspects of the design, construction, and performance of these structural fills are described. CCRs are often cost-effective substitutes for natural soils in structura...

2010-11-09T23:59:59.000Z

268

Argonne TTRDC - Engines - Multi-Dimensional Modeling  

NLE Websites -- All DOE Office Websites (Extended Search)

and optimization of internal combustion engines using advanced transportation biofuels will greatly enhance the science for clean energy in the 21st century. Given the cost...

269

Proceedings of the Sixth International Conference on Fluidized Bed Combustion. Volume 1. Plenary sessions  

Science Conference Proceedings (OSTI)

The Sixth International Conference on Fluidized Bed Combustion was held at the Atlanta Hilton, Atlanta, Georgia, April 9-11, 1980. The papers in this volume involved presentation of the research and development programs of the US (US DOE, TVA, EPRI and US EPA), United Kingdom, Federal Republic of Germany and the People's Republic of China. Eight papers from Vol. 1 (Plenary Sessions) of the proceedings have been entered individually into EDB and ERA. (LTN)

none,

1980-08-01T23:59:59.000Z

270

Soybean and Coconut Biodiesel Fuel Effects on Combustion Characteristics in a Light-Duty Diesel Engine  

Science Conference Proceedings (OSTI)

This study investigated the effects of soybean- and coconut-derived biodiesel fuels on combustion characteristics in a 1.7-liter direct injection, common rail diesel engine. Five sets of fuels were studied: 2007 ultra-low sulfur diesel (ULSD), 5% and 20% volumetric blends of soybean biodiesel with ULSD (soybean B5 and B20), and 5% and 20% volumetric blends of coconut biodiesel with ULSD (coconut B5 and B20). In conventional diesel combustion mode, particulate matter (PM) and nitrogen oxides (NO/dx) emissions were similar for all fuels studied except soybean B20. Soybean B20 produced the lowest PM but the highest NO/dx emissions. Compared with conventional diesel combustion mode, high efficiency clean combustion (HECC) mode, achieved by increased EGR and combustion phasing, significantly reduced both PM and NO/dx emissions for all fuels studied at the expense of higher hydrocarbon (HC) and carbon monoxide (CO) emissions and an increase in fuel consumption (less than 4%). ULSD, soybean B5, and coconut B5 showed no difference in exhaust emissions. However, PM emissions increased slightly for soybean B20 and coconut B20. NO/dx emissions increased significantly for soybean B20, while those for coconut B20 were comparable to ULSD. Differences in the chemical and physical properties of soybean and coconut biodiesel fuels compared with ULSD, such as higher fuel-borne oxygen, greater viscosity, and higher boiling temperatures, play a key role in combustion processes and, therefore, exhaust emissions. Furthermore, the highly unsaturated ester composition in soybean biodiesel can be another factor in the increase of NO/dx emissions.

Han, Manbae [ORNL; Cho, Kukwon [ORNL; Sluder, Scott [ORNL; Wagner, Robert M [ORNL

2008-01-01T23:59:59.000Z

271

Beijing Haohua Rivers International Water Engineering Consulting Co Ltd |  

Open Energy Info (EERE)

Haohua Rivers International Water Engineering Consulting Co Ltd Haohua Rivers International Water Engineering Consulting Co Ltd Jump to: navigation, search Name Beijing Haohua Rivers International Water Engineering Consulting Co.Ltd. Place Beijing, Beijing Municipality, China Zip 100053 Product String representation "Beijing Haohua ... ulting Co. Ltd." is too long. Coordinates 39.90601°, 116.387909° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.90601,"lon":116.387909,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

272

Shockwave Engine: Wave Disk Engine  

Science Conference Proceedings (OSTI)

Broad Funding Opportunity Announcement Project: MSU is developing a new engine for use in hybrid automobiles that could significantly reduce fuel waste and improve engine efficiency. In a traditional internal combustion engine, air and fuel are ignited, creating high-temperature and high-pressure gases which expand rapidly. This expansion of gases forces the engine’s pistons to pump and powers the car. MSU’s engine has no pistons. It uses the combustion of air and fuel to build up pressure within the engine, generating a shockwave that blasts hot gas exhaust into the blades of the engine’s rotors causing them to turn, which generates electricity. MSU’s redesigned engine would be the size of a cooking pot and contain fewer moving parts—reducing the weight of the engine by 30%. It would also enable a vehicle that could use 60% of its fuel for propulsion.

None

2010-01-14T23:59:59.000Z

273

Companion of the 30th international conference on Software engineering  

Science Conference Proceedings (OSTI)

Welcome to the 30th International Conference on Software Engineering in Leipzig, Germany. On behalf of the entire organizing committee, we are very happy to welcome you to ICSE which returns to Germany for the third time after Munich (1978) and Berlin ...

Wilhelm Schäfer; Matthew B. Dwyer; Volker Gruhn

2008-05-01T23:59:59.000Z

274

Study of using oxygen-enriched combustion air for locomotive diesel engines  

DOE Green Energy (OSTI)

A thermodynamic simulation is used to study effects of O2-enriched intake air on performance and NO emissions of a locomotive diesel engine. Parasitic power of the air separation membrane required to supply the O2-enriched air is also estimated. For a given constraint on peak cylinder pressure, gross and net power output of an engine operating under different levels of O2 enrichment are compared with those obtained when a high-boost turbocharged engine is used. A 4% increase in peak cylinder pressure can result in 13% increase in net engine power when intake air with 28 vol% O2 is used and fuel injection timing retarded by 4 degrees. When the engine is turbocharged to a higher inlet boost, the same increase in peak cylinder pressure can result in only 4% improvement in power. If part of the higher exhaust enthalpies from the O2 enrichment is recovered, the power requirements of the air separator membrane can be met. O2 enrichment with its higher combustion temperatures reduces emissions of particulates and visible smoke but increases NO emissions (by up to 3 times at 26% O2 content). Therefore, exhaust gas after-treatment and heat recovery would be required if the full potential of O2 enrichment for improving the performance of locomotive diesel engines is to be realized.

Poola, R.B.; Sekar, R. [Argonne National Lab., IL (United States); Assanis, D.N. [Michigan Univ., Ann Arbor, MI (United States); Cataldi, G.R. [Association of American Railroads, Washington, DC (United States)

1996-10-01T23:59:59.000Z

275

Apparatus and filtering systems relating to combustors in combustion turbine engines  

DOE Patents (OSTI)

A combustor for a combustion turbine engine, the combustor that includes: a chamber defined by an outer wall and forming a channel between windows defined through the outer wall toward a forward end of the chamber and at least one fuel injector positioned toward an aft end of the chamber; a screen; and a standoff comprising a raised area on an outer surface of the outer wall near the periphery of the windows; wherein the screen extends over the windows and is supported by the standoff in a raised position in relation to the outer surface of the outer wall and the windows.

Johnson, Thomas Edward (Greer, SC); Zuo, Baifang (Simpsonville, SC); Stevenson, Christian Xavier (Inman, SC)

2012-07-24T23:59:59.000Z

276

Effects of engine speed, fueling rate, and combustion phasing on the thermal stratification required to limit HCCI knocking intensity.  

DOE Green Energy (OSTI)

Thermal stratification has the potential to reduce pressure-rise rates and allow increased power output for HCCI engines. This paper systematically examines how the amount of thermal stratification of the core of the charge has to be adjusted to avoid excessive knock as the engine speed and fueling rate are increased. This is accomplished by a combination of multi-zone chemical-kinetics modeling and engine experiments, using iso-octane as the fuel. The experiments show that, for a low-residual engine configuration, the pressure traces are self-similar during changes to the engine speed when CA50 is maintained by adjusting the intake temperature. Consequently, the absolute pressure-rise rate measured as bar/ms increases proportionally with the engine speed. As a result, the knocking (ringing) intensity increases drastically with engine speed, unless counteracted by some means. This paper describes how adjustments of the thermal width of the in-cylinder charge can be used to limit the ringing intensity to 5 MW/m2 as both engine speed and fueling are increased. If the thermal width can be tailored without constraints, this enables smooth operation even for combinations of high speed, high load, and combustion phasing close to TDC. Since large alterations of the thermal width of the charge are not always possible, combustion retard is considered to reduce the requirement on the thermal stratification. The results show that combustion retard carries significant potential since it amplifies the benefit of a fixed thermal width. Therefore, the thermal stratification required for operation with an acceptable knocking intensity can be decreased substantially by the use of combustion retard. This enables combinations of high engine speed and high fueling rate even for operation with the naturally occurring thermal stratification. However, very precise control of the combustion phasing will likely be required for such operation.

SjÞoberg, Magnus; Dec, John E.

2004-12-01T23:59:59.000Z

277

Combustion Process in a Spark Ignition Engine: Analysis of Cyclic Maximum Pressure and Peak Pressure Angle  

E-Print Network (OSTI)

In this paper we analyze the cycle-to-cycle variations of maximum pressure $p_{max}$ and peak pressure angle $\\alpha_{pmax}$ in a four-cylinder spark ignition engine. We examine the experimental time series of $p_{max}$ and $\\alpha_{pmax}$ for three different spark advance angles. Using standard statistical techniques such as return maps and histograms we show that depending on the spark advance angle, there are significant differences in the fluctuations of $p_{max}$ and $\\alpha_{pmax}$. We also calculate the multiscale entropy of the various time series to estimate the effect of randomness in these fluctuations. Finally, we explain how the information on both $p_{max}$ and $\\alpha_{pmax}$ can be used to develop optimal strategies for controlling the combustion process and improving engine performance.

G. Litak; T. Kaminski; J. Czarnigowski; A. K. Sen; M. Wendeker

2006-11-29T23:59:59.000Z

278

Particulate matter emissions from a DISI engine under cold-fast-idle conditions for ethanol-gasoline blends  

E-Print Network (OSTI)

In an effort to build internal combustion engines with both reduced brake-specific fuel consumption and better emission control, engineers developed the Direct Injection Spark Ignition (DISI) engine. DISI engines combine ...

Dimou, Iason

2011-01-01T23:59:59.000Z

279

International Joint Workshop of the Engine Emissions R&D Cluster  

NLE Websites -- All DOE Office Websites (Extended Search)

International Joint Workshop of the Engine Emissions R&D Cluster Banner image for International JHoint Workshop of the Engine Emissions R&D Cluster Welcome to the website of the...

280

Proceedings of the 6th International Workshop on Traceability in Emerging Forms of Software Engineering  

Science Conference Proceedings (OSTI)

Welcome to the 6th International Workshop on Traceability in Emerging Forms of Software Engineering (TEFSE 2011), which is collocated with the 33rd ACM/IEEE International Conference on Software Engineering (ICSE'11) in Waikiki, Honolulu, Hawaii. We hope ...

Denys Poshyvanyk; Massimiliano Di Penta; Huzefa Kagdi

2011-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "internal combustion engine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Mixing and flame structures inferred from OH-PLIF for conventional and low-temperature diesel engine combustion  

SciTech Connect

The structure of first- and second-stage combustion is investigated in a heavy-duty, single-cylinder optical engine using chemiluminescence imaging, Mie-scatter imaging of liquid-fuel, and OH planar laser-induced fluorescence (OH-PLIF) along with calculations of fluorescence quenching. Three different diesel combustion modes are studied: conventional non-diluted high-temperature combustion (HTC) with either (1) short or (2) long ignition delay, and (3) highly diluted low-temperature combustion (LTC) with early fuel injection. For the short ignition delay HTC condition, the OH fluorescence images show that second-stage combustion occurs mainly on the fuel jet periphery in a thickness of about 1 mm. For the long ignition delay HTC condition, the second-stage combustion zone on the jet periphery is thicker (5-6 mm). For the early-injection LTC condition, the second-stage combustion is even thicker (20-25 mm) and occurs only in the down-stream regions of the jet. The relationship between OH concentration and OH-PLIF intensity over a range of equivalence ratios is estimated from quenching calculations using collider species concentrations predicted by chemical kinetics simulations of combustion. The calculations show that both OH concentration and OH-PLIF intensity peak near stoichiometric mixtures and fall by an order of magnitude or more for equivalence ratios less than 0.2-0.4 and greater than 1.4-1.6. Using the OH fluorescence quenching predictions together with OH-PLIF images, quantitative boundaries for mixing are established for the three engine combustion modes. (author)

Singh, Satbir [General Motors Research and Development, Warren, MI 48090 (United States); Musculus, Mark P.B. [Sandia National Laboratories, Livermore, CA 94551 (United States); Reitz, Rolf D. [Department of Mechanical Engineering, University of Wisconsin, Madison, WI 53706 (United States)

2009-10-15T23:59:59.000Z

282

Piston Bowl Optimization for RCCI Combustion in a Light-Duty Multi-Cylinder Engine  

Science Conference Proceedings (OSTI)

Reactivity Controlled Compression Ignition (RCCI) is an engine combustion strategy that that produces low NO{sub x} and PM emissions with high thermal efficiency. Previous RCCI research has been investigated in single-cylinder heavy-duty engines. The current study investigates RCCI operation in a light-duty multi-cylinder engine at 3 operating points. These operating points were chosen to cover a range of conditions seen in the US EPA light-duty FTP test. The operating points were chosen by the Ad Hoc working group to simulate operation in the FTP test. The fueling strategy for the engine experiments consisted of in-cylinder fuel blending using port fuel-injection (PFI) of gasoline and early-cycle, direct-injection (DI) of diesel fuel. At these 3 points, the stock engine configuration is compared to operation with both the original equipment manufacturer (OEM) and custom machined pistons designed for RCCI operation. The pistons were designed with assistance from the KIVA 3V computational fluid dynamics (CFD) code. By using a genetic algorithm optimization, in conjunction with KIVA, the piston bowl profile was optimized for dedicated RCCI operation to reduce unburned fuel emissions and piston bowl surface area. By reducing these parameters, the thermal efficiency of the engine was improved while maintaining low NOx and PM emissions. Results show that with the new piston bowl profile and an optimized injection schedule, RCCI brake thermal efficiency was increased from 37%, with the stock EURO IV configuration, to 40% at the 2,600 rev/min, 6.9 bar BMEP condition, and NOx and PM emissions targets were met without the need for exhaust after-treatment.

Hanson, Reed M [ORNL; Curran, Scott [ORNL; Wagner, Robert M [ORNL; Reitz, Rolf [University of Wisconsin; Kokjohn, Sage [University of Wisconsin, Madison

2012-01-01T23:59:59.000Z

283

Experimental Investigation of Fuel-Reactivity Controlled Compression Ignition (RCCI) Combustion Mode in a Multi-Cylinder, Light-Duty Diesel Engine  

DOE Green Energy (OSTI)

An experimental study was performed to provide the combustion and emission characteristics resulting from fuel-reactivity controlled compression ignition (RCCI) combustion mode utilizing dual-fuel approach in a light-duty, multi-cylinder diesel engine. In-cylinder fuel blending using port fuel injection of gasoline before intake valve opening (IVO) and early-cycle, direct injection of diesel fuel was used as the charge preparation and fuel blending strategy. In order to achieve the desired auto-ignition quality through the stratification of the fuel-air equivalence ratio ( ), blends of commercially available gasoline and diesel fuel were used. Engine experiments were performed at an engine speed of 2300rpm and an engine load of 4.3bar brake mean effective pressure (BMEP). It was found that significant reduction in both nitrogen oxide (NOx) and particulate matter (PM) was realized successfully through the RCCI combustion mode even without applying exhaust gas recirculation (EGR). However, high carbon monoxide (CO) and hydrocarbon (HC) emissions were observed. The low combustion gas temperature during the expansion and exhaust processes seemed to be the dominant source of high CO emissions in the RCCI combustion mode. The high HC emissions during the RCCI combustion mode could be due to the increased combustion quenching layer thickness as well as the -stratification at the periphery of the combustion chamber. The slightly higher brake thermal efficiency (BTE) of the RCCI combustion mode was observed than the other combustion modes, such as the conventional diesel combustion (CDC) mode, and single-fuel, premixed charge compression ignition (PCCI) combustion mode. The parametric study of the RCCI combustion mode revealed that the combustion phasing and/or the peak cylinder pressure rise rate of the RCCI combustion mode could be controlled by several physical parameters premixed ratio (rp), intake swirl intensity, and start of injection (SOI) timing of directly injected fuel unlike other low temperature combustion (LTC) strategies.

Cho, Kukwon [ORNL; Curran, Scott [ORNL; Prikhodko, Vitaly Y [ORNL; Sluder, Scott [ORNL; Parks, II, James E [ORNL; Wagner, Robert M [ORNL

2011-01-01T23:59:59.000Z

284

Investigation of Diesel combustion using multiple injection strategies for idling after cold start of passenger-car engines  

Science Conference Proceedings (OSTI)

A comprehensive investigation was carried out in order to better understand the combustion behaviour in a low compression ratio DI Diesel engine when multiple injection strategies are applied just after the engine cold starts in low temperature conditions (idling). More specifically, the aim of this study was twofold: on one hand, to understand the effect of the multiple injection strategies on the indicated mean effective pressure; on the other hand, to contribute to the understanding of combustion stability characterized by the coefficient of variation of indicated mean effective pressure. The first objective was fulfilled by analyzing the rate of heat release obtained by in-cylinder pressure diagnosis. The results showed that the timing of the pilot injection closest to the main injection was the most influential parameter based on the behaviour of the rate of heat release (regardless of the multiple injection strategy applied). For the second objective, the combustion stability was found to be correlated with the combustion centroid angle. The results showed a trend between them and the existence of a range of centroid angles where the combustion stability is strong enough. In addition, it was also evident that convenient split injection allows shifting the centroid to such a zone and improves combustion stability after start. (author)

Payri, F.; Broatch, A.; Salavert, J.M.; Martin, J. [CMT-Motores Termicos, Universidad Politecnica de Valencia, Aptdo. 22012, E-46071 Valencia (Spain)

2010-10-15T23:59:59.000Z

285

Low Temperature Combustion with Thermo-Chemical Recuperation to Maximize In-Use Engine Efficiency  

SciTech Connect

The key to overcome Low Temperature Combustion (LTC) load range limitations in reciprocating engines is based on proper control over the thermo-chemical properties of the in-cylinder charge. The studied alternative to achieve the required control of LTC is the use of two separate fuel streams to regulate timing and heat release at specific operational points, where the secondary fuel is a reformed product of the primary fuel in the tank. It is proposed in this report that the secondary fuel can be produced using exhaust heat and Thermo-Chemical Recuperation (TCR). TCR for reciprocating engines is a system that employs high efficiency recovery of sensible heat from engine exhaust gas and uses this energy to transform fuel composition. The recuperated sensible heat is returned to the engine as chemical energy. Chemical conversions are accomplished through catalytic and endothermic reactions in a specially designed reforming reactor. An equilibrium model developed by Gas Technology Institute (GTI) for heptane steam reforming was applied to estimate reformed fuel composition at different reforming temperatures. Laboratory results, at a steam/heptane mole ratio less than 2:1, confirm that low temperature reforming reactions, in the range of 550 K to 650 K, can produce 10-30% hydrogen (by volume, wet) in the product stream. Also, the effect of trading low mean effective pressure for displacement to achieve power output and energy efficiency has been explored by WVU. A zerodimensional model of LTC using heptane as fuel and a diesel Compression Ignition (CI) combustion model were employed to estimate pressure, temperature and total heat release as inputs for a mechanical and thermal loss model. The model results show that the total cooling burden on an LTC engine with lower power density and higher displacement was 14.3% lower than the diesel engine for the same amount of energy addition in the case of high load (43.57mg fuel/cycle). These preliminary modeling and experimental results suggest that the LTC-TCR combination may offer a high efficiency solution to engine operation. A single zone model using a detailed chemical kinetic mechanism was implemented in CHEMKIN and to study the effects of base fuel and steam-fuel reforming products on the ignition timing and heat release characteristics. The study was performed considering the reformed fuel species composition for total n-heptane conversion (ideal case) and also at the composition corresponding to a specific set of operational reforming temperatures (real case). The computational model confirmed that the reformed products have a strong influence on the low temperature heat release (LTHR) region, affecting the onset of the high temperature heat release (HTHR). The ignition timing was proportionally delayed with respect to the baseline fuel case when higher concentrations of reformed gas were used. For stoichiometric concentration of RG, it was found that by increasing the proportion of reformed fuel to total fuel (RG), from 0% to 30%, the amount of energy released during the LTHR regime, or HR{sub L}, was reduced by 48% and the ignition timing was delayed 10.4 CA degrees with respect to the baseline fuel case. For RG composition corresponding to certain operational reforming temperatures, it was found that the most significant effects on the HCCI combustion, regarding HR{sub L} reduction and CA50 delay, was obtained by RG produced at a reforming temperature range of 675 K-725 K.

Nigel N. Clark; Francisco Posada; Clinton Bedick; John Pratapas; Aleksandr Kozlov; Martin Linck; Dmitri Boulanov

2009-03-30T23:59:59.000Z

286

CONFIRMATORY SURVEY RESULTS FOR PORTIONS OF THE ABB COMBUSTION ENGINEERING SITE IN WINDSOR, CONNECTICUT DURING THE FALL OF 2011  

SciTech Connect

From the mid-1950s until mid-2000, the Combustion Engineering, Inc. (CE) site in Windsor, Connecticut (Figure A-1) was involved in the research, development, engineering, production, and servicing of nuclear fuels, systems, and services. The site is currently undergoing decommissioning that will lead to license termination and unrestricted release in accordance with the requirements of the License Termination Rule in 10 CFR Part 20, Subpart E. Asea Brown Boveri Incorporated (ABB) has been decommissioning the CE site since 2001.

Wade C. Adams

2011-12-09T23:59:59.000Z

287

International Symposium on Air Breathing Engines, 8th, Cincinnati, OH, June 14-19, 1987, Proceedings  

SciTech Connect

The present conference on air-breathing aircraft engine technology considers topics in inlet design, radial-flow turbomachinery, fuel injection and combustion systems, axial flow compressor design and performance, ramjet configurations, turbine flow phenomena, engine control and service life, fluid flow-related problems, engine diagnostic methods, propfan design, combustor performance and pollutant chemistry, combustion dynamics, and engine system analysis. Attention is given to thrust-vectoring systems, supersonic missile air intakes, three-dimensional centrifugal compressors, airblast atomizers, secondary flows in axial flow compressors, axial compressor blade tip clearance flows, hydrogen scramjets with sidewall injection, the performance of a variable-geometry turbine, advanced tip clearance control systems, rotary jet mixing, fan blade aeroelastic behavior, flow dynamics in combustion processes, and the technology of low cost turbomachinery.

Billig, F.S.

1987-01-01T23:59:59.000Z

288

Futuristic concepts in engines and components  

Science Conference Proceedings (OSTI)

This publication includes papers on two-stroke engines and components, Brayton Stirling and Otto Cycles, alternative cycles, advanced combustion, and other related topics. Contents include: Paving the way to controlled combustion engines (CCE); A new class of stratified-charge internal combustion engine; Internal combustion (IC) engine with minimum number of moving parts; New type of heat engine -- externally heated air engine; A porous media burner for reforming methanol for fuel cell powered electric vehicles; Using a Stirling engine simulation program as a regenerator design aid; In-cylinder regenerated engines; High speed electronic fuel injection for direct injected rotary engine; and The characteristics of fuel consumption and exhaust emissions of the side exhaust port rotary engine.

NONE

1995-12-31T23:59:59.000Z

289

Design and development of eco-friendly alcohol engine fitted with waste heat recovery system  

Science Conference Proceedings (OSTI)

The present paper discusses the design and development of an eco-friendly alcohol engine fitted with the waste heat recovery system as a remedial alternative to the existing commonly used internal combustion engine. With the present trends in Internal ...

G. Vijayan Iyer; Nikos E. Mastorakis

2006-06-01T23:59:59.000Z

290

Solution Combustion Synthesis Impregnated Layer Combustion Synthesis is a Novel  

E-Print Network (OSTI)

Solution Combustion Synthesis Impregnated Layer Combustion Synthesis is a Novel Methodology Engineering University of Notre Dame University of Notre Dame #12;Outline: Overview of combustion synthesis Reaction system Combustion front analaysis Theoretical model results Conclusions Acknowledgements #12

Mukasyan, Alexander

291

Heat-pipe gas-combustion system endurance test for Stirling engine. Final report, May 1990-September 1990  

SciTech Connect

Stirling Thermal Motors, Inc., (STM) has been developing a general purpose Heat Pipe Gas Combustion System (HPGC) suitable for use with the STM4-120 Stirling engine. The HPGC consists of a parallel plate recuperative preheater, a finned heat pipe evaporator and a film cooled gas combustor. A principal component of the HPGC is the heat pipe evaporator which collects and distributes the liquid sodium over the heat transfer surfaces. The liquid sodium evaporates and flows to the condensers where it delivers its latent heat. The report presents test results of endurance tests run on a Gas-Fired Stirling Engine (GFSE). Tests on a dynamometer test stand yielded 67 hours of engine operation at power levels over 10 kW (13.5 hp) with 26 hours at power levels above 15 kW (20 hp). Total testing of the engine, including both motoring tests and engine operation, yielded 245 hours of engine run time.

Mahrle, P.

1990-12-01T23:59:59.000Z

292

Drop Test Results for the Combustion Engineering Model No. ABB-2901 Fuel Pellet Package  

SciTech Connect

The U.S. Nuclear Regulatory Commission (USNRC) contracted with the Packaging Review Group (PRG) at Lawrence Livermore National Laboratory (LLNL) to conduct a single, 30-ft shallow-angle drop test on the Combustion Engineering ABB-2901 drum-type shipping package. The purpose of the test was to determine if bolted-ring drum closures could fail during shallow-angle drops. The PRG at LLNL planned the test, and Defense Technologies Engineering Division (DTED) personnel from LLNL's Site-300 Test Group executed the plan. The test was conducted in November 2001 using the drop-tower facility at LLNL's Site 300. Two representatives from Westinghouse Electric Company in Columbia, South Carolina (WEC-SC); two USNRC staff members; and three PRG members from LLNL witnessed the preliminary test runs and the final test. The single test clearly demonstrated the vulnerability of the bolted-ring drum closure to shallow-angle drops-the test package's drum closure was easily and totally separated from the drum package. The results of the preliminary test runs and the 30-ft shallow-angle drop test offer valuable qualitative understandings of the shallow-angle impact.

Hafner, R S; Mok, G C; Hagler, L G

2004-04-23T23:59:59.000Z

293

DOE Project 18546, AOP Task 1.1, Fuel Effects on Advanced Combustion Engines  

DOE Green Energy (OSTI)

Research in 2011 was focused on diesel range fuels and diesel combustion and fuels evaluated in 2011 included a series of oxygenated biofuels fuels from University of Maine, oxygenated fuel compounds representing materials which could be made from sewage, oxygenated marine diesel fuels for low emissions, and a new series of FACE fuel surrogates and FACE fuels with detailed exhaust chemistry and particulate size measurements. Fuels obtained in late 2011, which will be evaluated in 2012, include a series of oil shale derived fuels from PNNL, green diesel fuel (hydrotreated vegetable oil) from UOP, University of Maine cellulosic biofuel (levulene), and pyrolysis derived fuels from UOP pyrolysis oil, upgraded at University of Georgia. We were able to demonstrate, through a project with University of Wisconsin, that a hybrid strategy for fuel surrogates provided both accurate and rapid CFD combustion modeling for diesel HCCI. In this strategy, high molecular weight compounds are used to more accurately represent physical processes and smaller molecular weight compounds are used for chemistry to speed chemical calculations. We conducted a small collaboration with sp3H, a French company developing an on-board fuel quality sensor based on near infrared analysis to determine how to use fuel property and chemistry information for engine control. We were able to show that selected outputs from the sensor correlated to both fuel properties and to engine performance. This collaboration leveraged our past statistical analysis work and further work will be done as opportunity permits. We conducted blending experiments to determine characteristics of ethanol blends based on the gasoline characteristics used for blending. Results indicate that much of the octane benefits gained by high level ethanol blending can be negated by use of low octane gasoline blend stocks, as allowed by ASTM D5798. This may limit ability to optimize engines for improved efficiency with ethanol fuels. Extensive data from current and previous years was leveraged into participation with several large proposal teams, as our fuels database covers a very wide range of conventional and emerging fuels and biofuels.

Bunting, Bruce G [ORNL; Bunce, Michael [ORNL

2012-01-01T23:59:59.000Z

294

Thermal engine driven heat pump for recovery of volatile organic compounds  

DOE Patents (OSTI)

The present invention relates to a method and apparatus for separating volatile organic compounds from a stream of process gas. An internal combustion engine drives a plurality of refrigeration systems, an electrical generator and an air compressor. The exhaust of the internal combustion engine drives an inert gas subsystem and a heater for the gas. A water jacket captures waste heat from the internal combustion engine and drives a second heater for the gas and possibly an additional refrigeration system for the supply of chilled water. The refrigeration systems mechanically driven by the internal combustion engine effect the precipitation of volatile organic compounds from the stream of gas.

Drake, Richard L. (Schenectady, NY)

1991-01-01T23:59:59.000Z

295

Method for valve seating control for an electro-hydraulic engine valve  

DOE Patents (OSTI)

Valve lift in an internal combustion engine is controlled by an electro-hydraulic actuation mechanism including a selectively actuable hydraulic feedback circuit.

Sun, Zongxuan (Plymouth, MN)

2011-01-11T23:59:59.000Z

296

Combustion Research Facility | A Department of Energy Office...  

NLE Websites -- All DOE Office Websites (Extended Search)

Heavy-Duty Heavy-Duty Low-Temperature and Diesel Combustion HCCISCCI Engine Fundamentals Spray Combustion Automotive Low-Temperature Diesel Combustion DISI Combustion...

297

The Second International Stirling Engine Conference, Shanghai, Peoples Republic of China, June 1984  

SciTech Connect

The Second International Stirling Engine Conference was held in Shanghai, Peoples Republic of China in June 1984. This paper reviews some of the events leading to the conference and the establishment of the Stirling Engine Conference Council.

Walker, G.

1984-08-01T23:59:59.000Z

298

International Joint Workshop of the Engine Emissions R&D Cluster  

NLE Websites -- All DOE Office Websites (Extended Search)

Contact Us For additional information about the International Joint Workshop of the Engine Emissions R&D Cluster, please contact: Kyeong O. Lee, Ph.D. Engine Emissions Research...

299

Initial Evaluation of Engine Combustion Network Injectors with X-Ray Diagnostics  

Science Conference Proceedings (OSTI)

A significant hurdle in the understanding of diesel sprays is the sensitivity of such sprays to the detailed geometry of the spray nozzle. This sensitivity hampers the comparison of results from spray measurements by different research groups, even if the groups measure nozzles with the same nominal geometry. Moreover, these differences make the comparison and validation of different diagnostic techniques problematic. To remove this source of uncertainty from diesel spray measurements, a collaboration of several research groups has formed to measure a common set of injectors under identical conditions under the auspices of Sandia National Laboratorys Engine Combustion Network. The current work describes the initial measurement of these injectors and the sprays created by these injectors using the x-ray diagnostics available at the Advanced Photon Source. X-ray phase-enhanced imaging is used to perform time-resolved, in situ measurements of injector pintle motion. In addition to these measurements, x-ray radiography measurements of the sprays from these injectors will be performed to better understand the near-nozzle fuel mass distribution in these sprays.

Kastengren, A.; Powell, C.F.; Tilocco, F.Z.; Fezzaa, K.

2012-09-10T23:59:59.000Z

300

Combustion Engineering Integrated Coal Gasification Combined Cycle Repowering Project: Clean Coal Technology Program  

SciTech Connect

On February 22, 1988, DOE issued Program Opportunity Notice (PON) Number-DE-PS01-88FE61530 for Round II of the CCT Program. The purpose of the PON was to solicit proposals to conduct cost-shared ICCT projects to demonstrate technologies that are capable of being commercialized in the 1990s, that are more cost-effective than current technologies, and that are capable of achieving significant reduction of SO[sub 2] and/or NO[sub x] emissions from existing coal burning facilities, particularly those that contribute to transboundary and interstate pollution. The Combustion Engineering (C-E) Integrated Coal Gasification Combined Cycle (IGCC) Repowering Project was one of 16 proposals selected by DOE for negotiation of cost-shared federal funding support from among the 55 proposals that were received in response to the PON. The ICCT Program has developed a three-level strategy for complying with the National Environmental Policy Act (NEPA) that is consistent with the President's Council on Environmental Quality regulations implementing NEPA (40 CFR 1500-1508) and the DOE guidelines for compliance with NEPA (10 CFR 1021). The strategy includes the consideration of programmatic and project-specific environmental impacts during and subsequent to the reject selection process.

1992-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "internal combustion engine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Combustion Engineering Integrated Coal Gasification Combined Cycle Repowering Project, Clean Coal Technology Program  

Science Conference Proceedings (OSTI)

The DOE entered into a cooperative agreement with Combustion Engineering, Inc. (C-E) under which DOE proposes to provide cost-shared funding to design, construct, and operate an Integrated Coal Gasification Combined Cycle (IGCC) project to repower an existing steam turbine generator set at the Springfield (Illinois) City Water, Light and Power (CWL P) Lakeside Generating Station, while capturing 90% of the coal's sulfur and producing elemental sulfur as a salable by-product. The proposed demonstration would help determine the technical and economic feasibility of the proposed IGCC technology on a scale that would allow the utility industry to assess its applicability for repowering other coal-burning power plants. This Environmental Assessment (EA) has been prepared by DOE in compliance with the requirements of National Environmental Policy Act (NEPA). The sources of information for this EA include the following: C-E's technical proposal for the project submitted to DOE in response to the Innovative Clean Coal Technology (ICCT) Program Opportunity Notice (PON); discussions with C-E and CWL P staff; the volume of environmental information for the project and its supplements provided by C-E; and a site visit to the proposed project site.

Not Available

1992-03-01T23:59:59.000Z

302

Combustion Engineering Integrated Coal Gasification Combined Cycle Repowering Project, Clean Coal Technology Program. Environmental Assessment  

Science Conference Proceedings (OSTI)

The DOE entered into a cooperative agreement with Combustion Engineering, Inc. (C-E) under which DOE proposes to provide cost-shared funding to design, construct, and operate an Integrated Coal Gasification Combined Cycle (IGCC) project to repower an existing steam turbine generator set at the Springfield (Illinois) City Water, Light and Power (CWL&P) Lakeside Generating Station, while capturing 90% of the coal`s sulfur and producing elemental sulfur as a salable by-product. The proposed demonstration would help determine the technical and economic feasibility of the proposed IGCC technology on a scale that would allow the utility industry to assess its applicability for repowering other coal-burning power plants. This Environmental Assessment (EA) has been prepared by DOE in compliance with the requirements of National Environmental Policy Act (NEPA). The sources of information for this EA include the following: C-E`s technical proposal for the project submitted to DOE in response to the Innovative Clean Coal Technology (ICCT) Program Opportunity Notice (PON); discussions with C-E and CWL&P staff; the volume of environmental information for the project and its supplements provided by C-E; and a site visit to the proposed project site.

Not Available

1992-03-01T23:59:59.000Z

303

LED-induced fluorescence diagnostics for turbine and combustion engine thermometry  

DOE Green Energy (OSTI)

Fluorescence from phosphor coatings is the basis of an established technique for measuring temperature in a wide variety of turbine and combustion engine applications. Example surfaces include blades, vanes, combustors, intake valves, pistons, and rotors. Many situations that are remote and noncontact require the high intensity of a laser to illuminate the phosphor, especially if the surface is moving. Thermometric resolutions of 0.1 C are obtainable, and some laboratory versions of these systems have been calibrated against NIST standards to even higher precision. To improve the measurement signal-to-noise ratio, synchronous detection timing has been used to repeatedly interrogate the same blade in a high speed rotating turbine. High spatial resolution can be obtained by tightly focusing the interrogation beam in measurements of static surfaces, and by precise differential timing of the laser pulses on rotating surfaces. We report here the use of blue light emitting diodes (LEDs) as a n illumination source for producing useable fluorescence from phosphors for temperature measurements. An LED can excite most of the same phosphors used to cover the temperature range from 8 to 1400 C. The advantages of using LEDs are obvious in terms of size, power requirements, space requirements and cost. There can also be advantages associated with very long operating lifetimes, wide range of available colors, and their broader emission bandwidths as compared to laser diodes. Temperature may be inferred either from phase or time-decay determinations.

Allison, S.W.

2001-08-17T23:59:59.000Z

304

Apparatus and filtering systems relating to combustors in combustion turbine engines  

DOE Patents (OSTI)

A combustor for a combustion turbine engine that includes: a chamber defined by an outer wall and forming a channel between windows defined through the outer wall toward a forward end of the chamber and at least one fuel injector positioned toward an aft end of the chamber; and a multilayer screen filter comprising at least two layers of screen over at least a portion of the windows and at least one layer of screen over the remaining portion of the windows. The windows include a forward end and a forward portion, and an aft end and an aft portion. The multilayer screen filter is positioned over the windows such that, in operation, a supply of compressed air entering the chamber through the windows passes through at least one layer of screen. The multilayer screen filter is configured such that the aft portion of the windows include at least two layers of screen, and the forward portion of the windows includes one less layer of screen than the aft portion of the windows.

Johnson, Thomas Edward (Greer, SC); Zuo, Baifang (Simpsonville, SC); Stevenson, Christian Xavier (Inman, SC)

2012-03-27T23:59:59.000Z

305

Fuel Effects on Combustion and Emissions of a Direct-Inection Diesel Engine Operating at Moderate to High Engine Speed and Load  

Science Conference Proceedings (OSTI)

It is advantageous to increase the specific power output of diesel engines and to operate them at higher load for a greater portion of a driving cycle to achieve better thermal efficiency and thus reduce vehicle fuel consumption. Such operation is limited by excessive smoke formation at retarded injection timing and high rates of cylinder pressure rise at more advanced timing. Given this window of operation, it is desired to understand the influence of fuel properties such that optimum combustion performance and emissions can be retained over the range of fuels commonly available in the marketplace. It has been shown in previous studies that varying cetane number (CN) of diesel fuel has little effect on ignition delay at high engine load due to the domination of high cylinder temperature on ignition kinetics. The work here experimentally confirms that finding but also shows that emissions and combustion performance vary according to fuel reactivity. Data are examined from a direct-injection single cylinder research engine for eight common diesel fuels including soy-based biodiesel blends at two high load operating points with no exhaust gas recirculation (EGR) and at a moderate load with four levels of EGR. It is shown in the work that at high engine load where combustion is controlled by mixing processes, CN and other fuel properties have little effect on engine performance, although lower CN fuels produce a small increase in noise, smoke and CO emissions. Biodiesel blends increase NOX emissions and decreases CO and smoke emissions at high load, but otherwise have little effect on performance. At moderate load, higher CN fuels are more tolerant to EGR due to their better chemical reactivity at retarded injection timing, but all fuels produce comparable thermal efficiency at advanced combustion phasing regardless of EGR. In contrast to the high load conditions, there was no increase in NOX emissions for biodiesel at the moderate load condition. It is concluded that although higher CN does not significantly alter ignition delay at moderate to high loads it has a dominant influence on the acceptable injection timing range. Apart from CN effects, fuel oxygen content plays an independent role in reducing some emissions. It is therefore recommended that compensation for fuel ignitability and oxygen content be included in combustion control strategies to optimize emissions and performance of future diesel engines.

Szybist, James P [ORNL; Szymkowicz, Patrick G. [General Motors Corporation; Northrop, William F [General Motors Corporation

2012-01-01T23:59:59.000Z

306

Experimental Investigation of the Effects of Fuel Characteristics on High Efficiency Clean Combustion (HECC) in a Light-Duty Diesel Engine  

Science Conference Proceedings (OSTI)

An experimental study was performed to understand fuel property effects on low temperature combustion (LTC) processes in a light-duty diesel engine. These types of combustion modes are often collectively referred to as high efficiency clean combustion (HECC). A statistically designed set of research fuels, the Fuels for Advanced Combustion Engines (FACE), were used for this study. Engine conditions consistent with low speed cruise (1500 rpm, 2.6 bar BMEP) were chosen for investigating fuel property effects on HECC operation in a GM 1.9-L common rail diesel engine. The FACE fuel matrix includes nine combinations of fuel properties including cetane number (30 to 55), aromatic contents (20 to 45 %), and 90 % distillation temperature (270 to 340 C). HECC operation was achieved with high levels of EGR and adjusting injection parameters, e.g. higher fuel rail pressure and single injection event, which is also known as Premixed Charge Compression Ignition (PCCI) combustion. Engine performance, pollutant emissions, and details of the combustion process are discussed in this paper. Cetane number was found to significantly affect the combustion process with variations in the start of injection (SOI) timing, which revealed that the ranges of SOI timing for HECC operation and the PM emission levels were distinctively different between high cetane number (55) and low cetane number fuels (30). Low cetane number fuels showed comparable levels of regulated gas emissions with high cetane number fuels and had an advantage in PM emissions.

Cho, Kukwon [ORNL; Han, Manbae [ORNL; Wagner, Robert M [ORNL; Sluder, Scott [ORNL

2009-01-01T23:59:59.000Z

307

In-cylinder pressure and inter-cycle variability analysis for a compression ignition engine : Bayesian approaches.  

E-Print Network (OSTI)

??This thesis introduced Bayesian statistics as an analysis technique to isolate resonant frequency information in in-cylinder pressure signals taken from internal combustion engines. Applications of… (more)

Bodisco, Timothy Alexis

2013-01-01T23:59:59.000Z

308

Small engine control by fuzzy logic  

Science Conference Proceedings (OSTI)

Small spark-ignition gasoline-fuelled internal-combustion engines can be found all over the world performing in various roles including power generation, agricultural applications and motive power for small boats. To attain low cost, these engines are ... Keywords: applied artificial intelligence, emissions reduction, engine control, engine management systems, fuzzy control, intelligent system

S. H. Lee; R. J. Howlett; S. D. Walters

2004-12-01T23:59:59.000Z

309

COMBUSTION-GENERATED INDOOR AIR POLLUTION  

E-Print Network (OSTI)

Pollutants from Indoor Combustion Sources: I. Field Measure-Characteristics in Two Stage Combustion, paper presented atInternational) on Combustion, August, 1974, Tokyo, Japan. 8

Hollowell, C.D.

2011-01-01T23:59:59.000Z

310

On use of CO{sub 2} chemiluminescence for combustion metrics in natural gas fired reciprocating engines.  

DOE Green Energy (OSTI)

Flame chemiluminescence is widely acknowledged to be an indicator of heat release rate in premixed turbulent flames that are representative of gas turbine combustion. Though heat release rate is an important metric for evaluating combustion strategies in reciprocating engine systems, its correlation with flame chemiluminescence is not well studied. To address this gap an experimental study was carried out in a single-cylinder natural gas fired reciprocating engine that could simulate turbocharged conditions with exhaust gas recirculation. Crank angle resolved spectra (266-795 nm) of flame luminosity were measured for various operational conditions by varying the ignition timing for MBT conditions and by holding the speed at 1800 rpm and Brake Mean effective Pressure (BMEP) at 12 bar. The effect of dilution on CO*{sub 2}chemiluminescence intensities was studied, by varying the global equivalence ratio (0.6-1.0) and by varying the exhaust gas recirculation rate. It was attempted to relate the measured chemiluminescence intensities to thermodynamic metrics of importance to engine research -- in-cylinder bulk gas temperature and heat release rate (HRR) calculated from measured cylinder pressure signals. The peak of the measured CO*{sub 2} chemiluminescence intensities coincided with peak pressures within {+-}2 CAD for all test conditions. For each combustion cycle, the peaks of heat release rate, spectral intensity and temperature occurred in that sequence, well separated temporally. The peak heat release rates preceded the peak chemiluminescent emissions by 3.8-9.5 CAD, whereas the peak temperatures trailed by 5.8-15.6 CAD. Such a temporal separation precludes correlations on a crank-angle resolved basis. However, the peak cycle heat release rates and to a lesser extent the peak cycle temperatures correlated well with the chemiluminescent emission from CO*{sub 2}. Such observations point towards the potential use of flame chemiluminescence to monitor peak bulk gas temperatures as well as peak heat release rates in natural gas fired reciprocating engines.

Gupta, S. B.; Bihari, B.; Biruduganti, M.; Sekar, R.; Zigan, J. (Energy Systems); (Cummins Technical Center)

2011-01-01T23:59:59.000Z

311

Computational Combustion  

DOE Green Energy (OSTI)

Progress in the field of computational combustion over the past 50 years is reviewed. Particular attention is given to those classes of models that are common to most system modeling efforts, including fluid dynamics, chemical kinetics, liquid sprays, and turbulent flame models. The developments in combustion modeling are placed into the time-dependent context of the accompanying exponential growth in computer capabilities and Moore's Law. Superimposed on this steady growth, the occasional sudden advances in modeling capabilities are identified and their impacts are discussed. Integration of submodels into system models for spark ignition, diesel and homogeneous charge, compression ignition engines, surface and catalytic combustion, pulse combustion, and detonations are described. Finally, the current state of combustion modeling is illustrated by descriptions of a very large jet lifted 3D turbulent hydrogen flame with direct numerical simulation and 3D large eddy simulations of practical gas burner combustion devices.

Westbrook, C K; Mizobuchi, Y; Poinsot, T J; Smith, P J; Warnatz, J

2004-08-26T23:59:59.000Z

312

Light Duty Efficient, Clean Combustion  

SciTech Connect

Cummins has successfully completed the Light Duty Efficient Clean Combustion (LDECC) cooperative program with DoE. This program was established in 2007 in support of the Department of Energy's Vehicles Technologies Advanced Combustion and Emissions Control initiative to remove critical barriers to the commercialization of advanced, high efficiency, emissions compliant internal combustion (IC) engines for light duty vehicles. Work in this area expanded the fundamental knowledge of engine combustion to new regimes and advanced the knowledge of fuel requirements for these diesel engines to realize their full potential. All of the following objectives were met with fuel efficiency improvement targets exceeded: (1) Improve light duty vehicle (5000 lb. test weight) fuel efficiency by 10.5% over today's state-of-the-art diesel engine on the FTP city drive cycle; (2) Develop and design an advanced combustion system plus aftertreatment system that synergistically meets Tier 2 Bin 5 NOx and PM emissions standards while demonstrating the efficiency improvements; (3) Maintain power density comparable to that of current conventional engines for the applicable vehicle class; and (4) Evaluate different fuel components and ensure combustion system compatibility with commercially available biofuels. Key accomplishments include: (1) A 25% improvement in fuel efficiency was achieved with the advanced LDECC engine equipped with a novel SCR aftertreatment system compared to the 10.5% target; (2) An 11% improvement in fuel efficiency was achieved with the advanced LDECC engine and no NOx aftertreamtent system; (3) Tier 2 Bin 5 and SFTP II emissions regulations were met with the advanced LDECC engine equipped with a novel SCR aftertreatment system; (4) Tier 2 Bin 5 emissions regulations were met with the advanced LDECC engine and no NOx aftertreatment, but SFTP II emissions regulations were not met for the US06 test cycle - Additional technical barriers exist for the no NOx aftertreatment engine; (5) Emissions and efficiency targets were reached with the use of biodiesel. A variety of biofuel feedstocks (soy, rapeseed, etc.) was investigated; (6) The advanced LDECC engine with low temperature combustion was compatible with commercially available biofuels as evaluated by engine performance testing and not durability testing; (7) The advanced LDECC engine equipped with a novel SCR aftertreatment system is the engine system architecture that is being further developed by the Cummins product development organization. Cost reduction and system robustness activities have been identified for future deployment; (8) The new engine and aftertreatment component technologies are being developed by the Cummins Component Business units (e.g. fuel system, turbomachinery, aftertreatment, electronics, etc.) to ensure commercial viability and deployment; (9) Cummins has demonstrated that the technologies developed for this program are scalable across the complete light duty engine product offerings (2.8L to 6.7L engines); and (10) Key subsystems developed include - sequential two stage turbo, combustions system for low temperature combustion, novel SCR aftertreatment system with feedback control, and high pressure common rail fuel system. An important element of the success of this project was leveraging Cummins engine component technologies. Innovation in component technology coupled with system integration is enabling Cummins to move forward with the development of high efficiency clean diesel products with a long term goal of reaching a 40% improvement in thermal efficiency for the engine plus aftertreatment system. The 40% improvement is in-line with the current light duty vehicle efficiency targets set by the 2010 DoE Vehicle Technologies MYPP and supported through co-operative projects such as the Cummins Advanced Technology Powertrains for Light-Duty Vehicles (ATP-LD) started in 2010.

Donald Stanton

2010-12-31T23:59:59.000Z

313

Light Duty Efficient, Clean Combustion  

DOE Green Energy (OSTI)

Cummins has successfully completed the Light Duty Efficient Clean Combustion (LDECC) cooperative program with DoE. This program was established in 2007 in support of the Department of Energy's Vehicles Technologies Advanced Combustion and Emissions Control initiative to remove critical barriers to the commercialization of advanced, high efficiency, emissions compliant internal combustion (IC) engines for light duty vehicles. Work in this area expanded the fundamental knowledge of engine combustion to new regimes and advanced the knowledge of fuel requirements for these diesel engines to realize their full potential. All of the following objectives were met with fuel efficiency improvement targets exceeded: (1) Improve light duty vehicle (5000 lb. test weight) fuel efficiency by 10.5% over today's state-of-the-art diesel engine on the FTP city drive cycle; (2) Develop and design an advanced combustion system plus aftertreatment system that synergistically meets Tier 2 Bin 5 NOx and PM emissions standards while demonstrating the efficiency improvements; (3) Maintain power density comparable to that of current conventional engines for the applicable vehicle class; and (4) Evaluate different fuel components and ensure combustion system compatibility with commercially available biofuels. Key accomplishments include: (1) A 25% improvement in fuel efficiency was achieved with the advanced LDECC engine equipped with a novel SCR aftertreatment system compared to the 10.5% target; (2) An 11% improvement in fuel efficiency was achieved with the advanced LDECC engine and no NOx aftertreamtent system; (3) Tier 2 Bin 5 and SFTP II emissions regulations were met with the advanced LDECC engine equipped with a novel SCR aftertreatment system; (4) Tier 2 Bin 5 emissions regulations were met with the advanced LDECC engine and no NOx aftertreatment, but SFTP II emissions regulations were not met for the US06 test cycle - Additional technical barriers exist for the no NOx aftertreatment engine; (5) Emissions and efficiency targets were reached with the use of biodiesel. A variety of biofuel feedstocks (soy, rapeseed, etc.) was investigated; (6) The advanced LDECC engine with low temperature combustion was compatible with commercially available biofuels as evaluated by engine performance testing and not durability testing; (7) The advanced LDECC engine equipped with a novel SCR aftertreatment system is the engine system architecture that is being further developed by the Cummins product development organization. Cost reduction and system robustness activities have been identified for future deployment; (8) The new engine and aftertreatment component technologies are being developed by the Cummins Component Business units (e.g. fuel system, turbomachinery, aftertreatment, electronics, etc.) to ensure commercial viability and deployment; (9) Cummins has demonstrated that the technologies developed for this program are scalable across the complete light duty engine product offerings (2.8L to 6.7L engines); and (10) Key subsystems developed include - sequential two stage turbo, combustions system for low temperature combustion, novel SCR aftertreatment system with feedback control, and high pressure common rail fuel system. An important element of the success of this project was leveraging Cummins engine component technologies. Innovation in component technology coupled with system integration is enabling Cummins to move forward with the development of high efficiency clean diesel products with a long term goal of reaching a 40% improvement in thermal efficiency for the engine plus aftertreatment system. The 40% improvement is in-line with the current light duty vehicle efficiency targets set by the 2010 DoE Vehicle Technologies MYPP and supported through co-operative projects such as the Cummins Advanced Technology Powertrains for Light-Duty Vehicles (ATP-LD) started in 2010.

Donald Stanton

2010-12-31T23:59:59.000Z

314

Light Duty Efficient, Clean Combustion  

SciTech Connect

Cummins has successfully completed the Light Duty Efficient Clean Combustion (LDECC) cooperative program with DoE. This program was established in 2007 in support of the Department of Energy’s Vehicles Technologies Advanced Combustion and Emissions Control initiative to remove critical barriers to the commercialization of advanced, high efficiency, emissions compliant internal combustion (IC) engines for light duty vehicles. Work in this area expanded the fundamental knowledge of engine combustion to new regimes and advanced the knowledge of fuel requirements for these diesel engines to realize their full potential. All of the following objectives were met with fuel efficiency improvement targets exceeded: 1. Improve light duty vehicle (5000 lb. test weight) fuel efficiency by 10.5% over today’s state-ofthe- art diesel engine on the FTP city drive cycle 2. Develop & design an advanced combustion system plus aftertreatment system that synergistically meets Tier 2 Bin 5 NOx and PM emissions standards while demonstrating the efficiency improvements. 3. Maintain power density comparable to that of current conventional engines for the applicable vehicle class. 4. Evaluate different fuel components and ensure combustion system compatibility with commercially available biofuels. Key accomplishments include: ? A 25% improvement in fuel efficiency was achieved with the advanced LDECC engine equipped with a novel SCR aftertreatment system compared to the 10.5% target ? An 11% improvement in fuel efficiency was achieved with the advanced LDECC engine and no NOx aftertreamtent system ? Tier 2 Bin 5 and SFTP II emissions regulations were met with the advanced LDECC engine equipped with a novel SCR aftertreatment system ? Tier 2 Bin 5 emissions regulations were met with the advanced LDECC engine and no NOx aftertreatment, but SFTP II emissions regulations were not met for the US06 test cycle – Additional technical barriers exist for the no NOx aftertreatment engine ? Emissions and efficiency targets were reached with the use of biodiesel. A variety of biofuel feedstocks (soy, rapeseed, etc.) was investigated. ? The advanced LDECC engine with low temperature combustion was compatible with commercially available biofuels as evaluated by engine performance testing and not durability testing. ? The advanced LDECC engine equipped with a novel SCR aftertreatment system is the engine system architecture that is being further developed by the Cummins product development organization. Cost reduction and system robustness activities have been identified for future deployment. ? The new engine and aftertreatment component technologies are being developed by the Cummins Component Business units (e.g. fuel system, turbomachinery, aftertreatment, electronics, etc.) to ensure commercial viability and deployment ? Cummins has demonstrated that the technologies developed for this program are scalable across the complete light duty engine product offerings (2.8L to 6.7L engines) ? Key subsystems developed include – sequential two stage turbo, combustions system for low temperature combustion, novel SCR aftertreatment system with feedback control, and high pressure common rail fuel system An important element of the success of this project was leveraging Cummins engine component technologies. Innovation in component technology coupled with system integration is enabling Cummins to move forward with the development of high efficiency clean diesel products with a long term goal of reaching a 40% improvement in thermal efficiency for the engine plus aftertreatment system. The 40% improvement is in-line with the current light duty vehicle efficiency targets set by the 2010 DoE Vehicle Technologies MYPP and supported through co-operative projects such as the Cummins Advanced Technology Powertrains for Light- Duty Vehicles (ATP-LD) started in 2010.

Stanton, Donald W

2011-06-03T23:59:59.000Z

315

Low Temperature Combustion using nitrogen enrichment to mitigate nox from large bore natural gas-filled engines.  

DOE Green Energy (OSTI)

Low Temperature Combustion (LTC) is identified as one of the pathways to meet the mandatory ultra low NOx emissions levels set by regulatory agencies. This phenomenon can be realized by utilizing various advanced combustion control strategies. The present work discusses nitrogen enrichment using an Air Separation Membrane (ASM) as a better alternative to the mature Exhaust Gas Re-circulation (EGR) technique currently in use. A 70% NOx reduction was realized with a moderate 2% nitrogen enrichment while maintaining power density and simultaneously improving Fuel Conversion Efficiency (FCE). The maximum acceptable Nitrogen Enriched Air (NEA) in a single cylinder spark ignited natural gas engine was investigated in this paper. Any enrichment beyond this level degraded engine performance both in terms of power density and FCE, and unburned hydrocarbon (UHC) emissions. The effect of ignition timing was also studied with and without N2 enrichment. Finally, lean burn versus stoichiometric operation utilizing NEA was compared. Analysis showed that lean burn operation along with NEA is one of the effective pathways for realizing better FCE and lower NOx emissions.

Biruduganti, M. S.; Gupta, S. B.; Sekar, R. R. (Energy Systems)

2008-01-01T23:59:59.000Z

316

Proceedings of the ninth international conference on Generative programming and component engineering  

Science Conference Proceedings (OSTI)

Welcome to the Ninth International Conference on Generative Programming and Component Engineering (GPCE'10). GPCE is a venue for researchers and practitioners interested in software components and program generation, and how these technologies can increase ...

Eelco Visser; Jaakko Järvi

2010-10-01T23:59:59.000Z

317

Proceedings of the 4th ACM/SPEC International Conference on Performance Engineering  

Science Conference Proceedings (OSTI)

We are delighted to bring you an outstanding technical program to 2013 International Conference on Performance Engineering -- ICPE'13 in Prague. The main Research track for the conference attracted 42 submissions. Thanks to the diligent efforts ...

Petr T?ma; Giuliano Casale; Tony Field; José Nelson Amaral, Seetharami Seelam

2013-04-01T23:59:59.000Z

318

An investigation of late-combustion soot burnout in a DI diesel engine using simultaneous planar imaging of soot and OH radical  

DOE Green Energy (OSTI)

Diesel engine design continues to be driven by the need to improve performance while at the same time achieving further reductions in emissions. The development of new designs to accomplish these goals requires an understanding of how the emissions are produced in the engine. Laser-imaging diagnostics are uniquely capable of providing this information, and the understanding of diesel combustion and emissions formation has been advanced considerably in recent years by their application. However, previous studies have generally focused on the early and middle stages of diesel combustion. These previous laser-imaging studies do provide important insight into the soot formation and oxidation processes during the main combustion event. They indicate that prior to the end of injection, soot formation is initiated by fuel-rich premixed combustion (equivalence ratio > 4) near the upstream limit of the luminous portion of the reacting fuel jet. The soot is then oxidized at the diffusion flame around the periphery of the luminous plume. Under typical diesel engine conditions, the diffusion flame does not burn the remaining fuel and soot as rapidly as it is supplied, resulting in an expanding region of rich combustion products and soot. This is evident in natural emission images by the increasing size of the luminous soot cloud prior to the end of injection. Hence, the amount of soot in the combustion chamber typically increases until shortly after the end of fuel injection, at which time the main soot formation period ends and the burnout phase begins. Sampling valve and two-color pyrometry data indicate that the vast majority (more than 90%) of the soot formed is oxidized before combustion ends; however, it is generally thought that a small fraction of this soot from the main combustion zones is not consumed and is the source of tail pipe soot emissions.

John E. Dec; Peter L. Kelly-Zion

1999-10-01T23:59:59.000Z

319

Development of Low Temperature Combustion Modes to Reduce Overall Emissions from a Medium-Duty, Four Cylinder Diesel Engine  

E-Print Network (OSTI)

Low temperature combustion (LTC) is an appealing new method of combustion that promises low nitric oxides and soot emissions while maintaining or improving on engine performance. The three main points of this study were to develop and validate an engine model in GT-Power capable of implementing LTC, to study parametrically exhaust gas recirculation (EGR) and injection timing effects on performance and emissions, and to investigate methods to decrease pressure rise rates during LTC operation. The model was validated at nine different operating points, 3 speeds and 3 loads, while the parametric studies were conducted on 6 of the 9 operating points, 3 speeds and 2 loads. The model consists of sections that include: cylinders, ports, intake and exhaust manifolds, EGR system, and turbocharger. For this model, GT-Power calculates the combustion using a multi-zone, quasi-dimensional model and a knock-induced combustion model. The main difference between them is that the multi-zone model is directly injected while the knock model is port injected. A variety of sub models calculate the fluid flow and heat transfer. A parametric study varying the EGR and the injection timing to determine the optimal combination was conducted using the multi-zone model while a parametric study that just varies EGR is carried out using the knock model. The first parametric study showed that the optimal EGR and injection timing combination for the low loads occurred at high levels of EGR (60 percent) and advanced injection timings (30 to 40 crank angle degrees before top dead center). The optimal EGR and injection timing combination for the high loads occurred at low levels of EGR (30 percent to 40 percent) and retarded injection timings (7.5 to 5 crank angle degrees before top dead center). The knock model determined that the ideal EGR ratio for homogeneous charge compression ignition (HCCI) operation varied from 30 percent to 45 percent, depending on the operating condition. Three methods were investigated as possible ways to reduce pressure rise rates during LTC operation. The only feasible method was the multiple injection strategy which provided dramatically reduced pressure rise rates across all EGR levels and injection timings.

Breen, Jonathan Robert

2010-08-01T23:59:59.000Z

320

Free-piston engine  

DOE Patents (OSTI)

A combustion system which can utilize high compression ratios, short burn durations, and homogeneous fuel/air mixtures in conjunction with low equivalence ratios. In particular, a free-piston, two-stroke autoignition internal combustion engine including an electrical generator having a linear alternator with a double-ended free piston that oscillates inside a closed cylinder is provided. Fuel and air are introduced in a two-stroke cycle fashion on each end, where the cylinder charge is compressed to the point of autoignition without spark plugs. The piston is driven in an oscillating motion as combustion occurs successively on each end. This leads to rapid combustion at almost constant volume for any fuel/air equivalence ratio mixture at very high compression ratios. The engine is characterized by high thermal efficiency and low NO.sub.x emissions. The engine is particularly suited for generating electrical current in a hybrid automobile.

Van Blarigan, Peter (Truckee, CA)

2001-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "internal combustion engine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

APPENDIX B: CARBON DIOXIDE CAPTURE TECHNOLOGY SHEETS PRE-COMBUSTION SOLVENTS  

NLE Websites -- All DOE Office Websites (Extended Search)

CARBON DIOXIDE CAPTURE TECHNOLOGY SHEETS PRE-COMBUSTION SOLVENTS PRE-COMBUSTION SORBENTS PRE-COMBUSTION MEMBRANES POST-COMBUSTION SOLVENTS POST-COMBUSTION SORBENTS POST-COMBUSTION MEMBRANES OXY-COMBUSTION OXYGEN PRODUCTION CHEMICAL LOOPING ADVANCED COMPRESSION R&D COLLABORATIONS B-1 APPENDIX B: CARBON DIOXIDE CAPTURE TECHNOLOGY SHEETS APPENDIX B: CARBON DIOXIDE CAPTURE TECHNOLOGY SHEETS NATIONAL ENERGY TECHNOLOGY LABORATORY PRE-COMBUSTION SOLVENTS B-6 SRI International - CO 2 Capture Using AC-ABC Processt B-7 PRE-COMBUSTION SORBENTS B-14 TDA Research - CO 2 Capture for Low-Rank Coal IGCC Systems B-15 URS Group - Sorbent Development for WGS B-18 Air Products and Chemicals - Advanced Acid Gas Separation B-24 Ohio State University-Department of Chemical Engineering - Calcium Looping for Hydrogen Production B-33

322

Parametric combustion modeling for ethanol-gasoline fuelled spark ignition engines.  

E-Print Network (OSTI)

?? Ethanol-gasoline fuel blends are increasingly being used in spark ignition (SI) engines due to continued growth in renewable fuels as part of a growing… (more)

Yeliana

2011-01-01T23:59:59.000Z

323

An Engineering and Economic Assessment of Post-Combustion CO2 Capture Retrofit to Intermountain  

Science Conference Proceedings (OSTI)

The Electric Power Research Institute (EPRI) is examining the feasibility of retrofitting post-combustion capture (PCC) to existing pulverized coal (PC) and/or circulating fluidized-bed (CFB) power plants for five host participants. Knowledge gained from previous CoalFleet ultrasupercritical (USC) PCC design studies is being applied directly to specific site conditions, plant designs, and operating data provided by each host utility participant. This project highlights the technical and economic issues a...

2011-05-31T23:59:59.000Z

324

Educational initiative for EE/RE engineering skills: Solar Two student interns. Final report  

SciTech Connect

The US Department of Energy sponsored five student interns from the University of California, Riverside, College of Engineering to work during the summer of 1996 at the Solar Two Energy facility in the Mojave Desert. Through the DOE intern program, engineering students supported the Solar Two Project under the supervision of engineers from Southern California Edison. The prime purpose was to provide outreach and educational support for expanding interactions with university students to increase awareness of careers in renewable energy and energy efficiency fields. The College of Engineering-Center for Environmental Research and Technology (CE-CERT) coordinated this project. CE-CERT is primarily a research facility focusing on air pollution and energy efficiency. CE-CERT serves undergraduate and graduate students by employing them on research projects, supporting them in the research and experimentation required for Senior Design Projects, and sponsoring them in student engineering competitions.

Norbeck, J.M.

1997-07-01T23:59:59.000Z

325

Job Title Organization Name Type End Date Job ID Intern -Industrial Engineer Jabil Circuit, Inc. Intern 8/15/2012 36012  

E-Print Network (OSTI)

Job Title Organization Name Type End Date Job ID Intern - Industrial Engineer Jabil Circuit, Inc HVAC Equipment Technical Support Tom Barrow Co. Full-time 7/31/2012 36332 Internship HQ Inc Intern 9

Meyers, Steven D.

326

VALIDATION AND RESULTS OF A PSEUDO-MULTI-ZONE COMBUSTION TRAJECTORY PREDICTION MODEL FOR CAPTURING SOOT AND NOX FORMATION ON A MEDIUM DUTY DIESEL ENGINE  

SciTech Connect

A pseudo-multi-zone phenomenological model has been created with the ultimate goal of supporting efforts to enable broader commercialization of low temperature combustion modes in diesel engines. The benefits of low temperature combustion are the simultaneous reduction in soot and nitric oxide emissions and increased engine efficiency if combustion is properly controlled. Determining what qualifies as low temperature combustion for any given engine can be difficult without expensive emissions analysis equipment. This determination can be made off-line using computer models or through factory calibration procedures. This process could potentially be simplified if a real-time prediction model could be implemented to run for any engine platform this is the motivation for this study. The major benefit of this model is the ability for it to predict the combustion trajectory, i.e. local temperature and equivalence ratio in the burning zones. The model successfully captures all the expected trends based on the experimental data and even highlights an opportunity for simply using the average reaction temperature and equivalence ratio as an indicator of emissions levels alone - without solving formation sub-models. This general type of modeling effort is not new, but a major effort was made to minimize the calculation duration to enable implementation as an input to real-time next-cycle engine controller Instead of simply using the predicted engine out soot and NOx levels, control decisions could be made based on the trajectory. This has the potential to save large amounts of calibration time because with minor tuning (the model has only one automatically determined constant) it is hoped that the control algorithm would be generally applicable.

Bittle, Joshua A. [Texas A& M University] [Texas A& M University; Gao, Zhiming [ORNL] [ORNL; Jacobs, Timothy J. [Texas A& M University] [Texas A& M University

2013-01-01T23:59:59.000Z

327

Engineering and Cost Assessment of Listed Special Waste Designation of Coal Combustion Residuals Under Subtitle C of the Resource Co nservation and Recovery Act  

Science Conference Proceedings (OSTI)

The Electric Power Research Institute (EPRI) undertook this project to identify engineering cost estimates for the changes at power plants needed to comply with the Subtitle C option in proposed federal rules regarding the management of coal combustion residuals. The analysis represents a high level evaluation of various plant operations before such federal rules are finalized. It relies on best engineering judgment interpretations of applying the proposed regulations on current practices for generating...

2010-11-16T23:59:59.000Z

328

Studying the Internal Ballistics of a Combustion Driven Potato Cannon using High-speed Video  

E-Print Network (OSTI)

A potato cannon was designed to accommodate several different experimental propellants and have a transparent barrel so the movement of the projectile could be recorded on high-speed video (at 2000 frames per second). Both combustion chamber and barrel were made of polyvinyl chloride (PVC). Five experimental propellants were tested: propane (C3H8), acetylene (C2H2), ethanol (C2H6O), methanol (CH4O), and butane (C4H10). The amount of each experimental propellant was calculated to approximate a stoichometric mixture and considering the Upper Flammability Limit (UFL) and the Lower Flammability Limit (LFL), which in turn were affected by the volume of the combustion chamber. Cylindrical projectiles were cut from raw potatoes so that there was an airtight fit, and each weighed 50 (+/- 0.5) grams. For each trial, position as a function of time was determined via frame by frame analysis. Five trials were taken for each experimental propellant and the results analyzed to compute velocity and acceleration as functions...

Courtney, E D S

2013-01-01T23:59:59.000Z

329

Proceedings of the ASME 2011 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference  

E-Print Network (OSTI)

and Information in Engineering Conference IDETC/CIE 2011 August 28-31, 2011, Washington, DC, USA DETC2011 and Information in Engineering Conference IDETC/CIE 2011 August 28-31, 2011, Washington, DC, USA DETC2011-4 1 in sig- nals [1, 2]. For a one-dimensional signal, a window of an odd number of elements slides over

Chen, YangQuan

330

Vehicle Technologies Office: Materials for High Efficiency Combustion...  

NLE Websites -- All DOE Office Websites (Extended Search)

High Efficiency Combustion Engines to someone by E-mail Share Vehicle Technologies Office: Materials for High Efficiency Combustion Engines on Facebook Tweet about Vehicle...

331

Proceedings: 15th International American Coal Ash Association Symposium on Management and Use of Coal Combustion Products (CCPs): Bu ilding Partnerships for Sustainability  

Science Conference Proceedings (OSTI)

The theme of the symposium is "building partnerships for sustainability." Topics discussed at the 15th International Symposium on Management and Use of CCPs included fundamental coal combustion product (CCP) use research, product marketing, applied research, CCP management and environmental issues, and commercial uses. There is a continuing international research interest in CCP use because of the prospects of avoiding disposal costs, reducing greenhouse gas emissions, and generating revenue from CCP sales.

2003-04-28T23:59:59.000Z

332

Proceedings: 15th International American Coal Ash Association Symposium on Management and Use of Coal Combustion Products (CCPs): Bu ilding Partnerships for Sustainability  

Science Conference Proceedings (OSTI)

Topics discussed at the 15th International American Coal Ash Association (ACAA) Symposium, "Management and Use of Coal Combustion Products (CCPs)," included fundamental CCP use, research, product marketing, applied research, CCP management and environmental issues, and commercial uses. There is a continuing international research interest in CCP use because of its commercial value and its environmental benefits, such as reducing greenhouse gas emissions, reducing landfill needs, and utilizing recycled ma...

2003-01-02T23:59:59.000Z

333

COMBUSTION OF COAL IN AN OPPOSED FLOW DIFFUSION BURNER  

E-Print Network (OSTI)

J.M. , liThe F1uidised Combustion of Coal," Sixteenth Sm osium {International} on Combustion, August 1976 (to beof Various Polymers Under Combustion Conditions," Fourteenth

Chin, W.K.

2010-01-01T23:59:59.000Z

334

Understanding Mercury Chemistry via the Reaction Engineering International (REI) ProMerc(tm) Model  

Science Conference Proceedings (OSTI)

Mercury chemistry in a coal-fired boiler remains poorly understood. As a result, power company engineers cannot predict with confidence the level of mercury emissions they would experience at a given site if they change coals, add/enhance criteria pollutant controls, or implement mercury controls. Similarly, they cannot predict with confidence how mercury control test results at one site extrapolate to other sites. This report documents a modeling study conducted by Reaction Engineering International (RE...

2008-03-04T23:59:59.000Z

335

Application of oxygen-enriched combustion for locomotive diesel engines. Phase 1  

DOE Green Energy (OSTI)

A thermodynamic simulation is used to study the effects of oxygen-enriched intake air on the performance and nitrogen oxide (NO) emissions of a locomotive diesel engine. The parasitic power of the air separation membrane required to supply the oxygen-enriched air is also estimated. For a given constraint on peak cylinder pressure, the gross and net power outputs of an engine operating under different levels of oxygen enrichment are compared with those obtained when a high-boost turbocharged engine is used. A 4% increase in peak cylinder pressure can result in an increase in net engine power of approximately 13% when intake air with an oxygen content of 28% by volume is used and fuel injection timing is retarded by 4 degrees. When the engine is turbocharged to a higher inlet boost, the same increase in peak cylinder pressure improves power by only 4%. If part of the significantly higher exhaust enthalpies available as a result of oxygen enrichment are recovered, the power requirements of the air separator membrane can be met, resulting in substantial net power improvements. Oxygen enrichment reduces particulate and visible smoke emissions but increases NO emissions. However, a combination of retarded fuel injection timing and post-treatment of exhaust gases may be adequate to meet the locomotive diesel engine NO{sub x} standards. Exhaust gas after-treatment and heat recovery would be required to realize the full potential of oxygen enrichment. Economic analysis shows that oxygen-enrichment technology is economically feasible and provides high returns on investment. The study also indicates the strong influence of membrane parasitic requirements and exhaust energy recovery on economic benefits. To obtain an economic advantage while using a membrane with higher parasitic power requirements, it is necessary to recover a part of the exhaust energy.

Poola, R.B.; Sekar, R.R.; Assanis, D.N.

1996-09-01T23:59:59.000Z

336

Hydrogen Internal Combustion Engine Two Wheeler with on-board Metal Hydride Storage  

E-Print Network (OSTI)

in India and China as compared to worldwide averages (Tables 1, 2). While the growth rate of renewable. The eventual goal is to fuel the vehicle with domestically produced renewable hydrogen. Renewable hydrogen can of renewable energy sources is very limited and needs to be aggressively increased. This will help combat

337

Development and validation of a hybrid electric vehicle with hydrogen internal combustion engine.  

E-Print Network (OSTI)

??The motivation for the use of hydrogen as fuel is that it is renewable and can reduce emissions. Hydrogen fuel cell vehicles are still likely… (more)

He, Xiaolai

2006-01-01T23:59:59.000Z

338

Fuel property effects on engine combustion processes. Annual report, January 1, 1993--December 31, 1993  

DOE Green Energy (OSTI)

Our engine studies have concentrated on 2 areas of interest to autoignition and emissions from engines. In the first, we investigated the effect of nitric oxide (NO) on the reactivity and autoignition behavior of 87 PRF. In the second study, we continued work on the effects of blending ethers on the reactivity and autoignition of a primary reference fuel blend, 87 PRF, with emphasis placed on the chemical interactions between ethers and the baseline fuel. The effects of nitric oxide (NO) on the reactivity and autoignition behavior of 87 PRF were examined in our research engine under motored conditions at compression ratios of 5.2 and 8.2. The most significant conclusions of our study are: (1) nitric oxide does interact with the hydrocarbon oxidation at conditions typically experienced by the end gas in a fired engine; (2) the effect is complex and, depending on the reaction environment, the same concentration of NO can produce dramatically different results. These results are particularly important given the fact that residual fractions and recycled exhaust gases in spark ignited engines typically result in about 200--600 ppm of NO in the unburned charge. The octane enhancing ethers, MTBE, ETBE, TAME, and DIPE, were blended into 87 PRF at a constant 0 atom fraction of 1.94% in the fuel mixtures and the mixtures were tested under motored conditions at our new compression ratio of 8.2. This new compression ratio allows studies on autoignition behaviors of 87 PRF with and without ethers. The results showed that, when using 87 PRF/ether mixtures, reactivity was significantly reduced as indicated by the higher inlet temperature required to initiate reactivity, significantly lower maximum CO concentration and the significantly higher inlet temperature required for autoignition.

Cernansky, N.P.

1994-01-10T23:59:59.000Z

339

Maximizing Power Output in Homogeneous Charge Compression Ignition (HCCI) Engines and Enabling Effective Control of Combustion Timing  

E-Print Network (OSTI)

a HCCI engine for power generation”, Energy Conversion andbiogas HCCI engine for power generation , Applied Energy, inHCCI Engine for Power Generation, ASME IC Engine Conference,

Saxena, Samveg

2011-01-01T23:59:59.000Z

340

Sandia Combustion Research: Technical review  

SciTech Connect

This report contains reports from research programs conducted at the Sandia Combustion Research Facility. Research is presented under the following topics: laser based diagnostics; combustion chemistry; reacting flow; combustion in engines and commercial burners; coal combustion; and industrial processing. Individual projects were processed separately for entry onto the DOE databases.

NONE

1995-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "internal combustion engine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Nano/Micro Engineered and Molecular Systems The 8th Annual IEEE International Conference on  

E-Print Network (OSTI)

Nano/Micro Engineered and Molecular Systems The 8th Annual IEEE International Conference on April 7. Nanomedicine 4. Nanobiology, Nano-bio-informatics 5. Molecular Sensors, Actuators, and Systems 6. Carbon Nanotube and Graphene based Devices and Systems 7. Microfluidics and Nanofluidics 8. Micro and Nano Heat

Sanders, Seth

342

Third International Workshop on Software Engineering for High Performance Computing (HPC) Applications  

E-Print Network (OSTI)

Third International Workshop on Software Engineering for High Performance Computing (HPC, and financial modeling. The TOP500 website (http://www.top500.org) lists the top 500 high performance computing to define new ways of measuring high performance computing systems that take into account not only the low

Carver, Jeffrey C.

343

Proceedings of IMECE'04 2004 ASME International Mechanical Engineering Congress & Exposition  

E-Print Network (OSTI)

and induce radiation exposure. Therefore, a great need exists for new noninvasive methods that pose lessProceedings of IMECE'04 2004 ASME International Mechanical Engineering Congress & Exposition-Slope Difference Mapping of Transient Radiation Signals Zhixiong Guo* Department of Mechanical and Aerospace

Guo, Zhixiong "James"

344

An investigation of lean combustion in a natural gas-fueled spark-ignited engine  

SciTech Connect

The objective of this work was to investigate the performance and emission characteristics of natural gas in an original equipment manufacturer (OEM), light-duty, spark-ignited engine being operated in the lean fueling regime and compare the operation with gasoline fueling cases. Data were acquired for several operating conditions of speed, throttle position, air-fuel equivalence ratio, and spark timing for both fuels. Results showed that for stoichiometric fueling, with a naturally aspirated engine, a power loss of 10 to 15 percent can be expected for natural gas over gasoline fueling. For lean operation, however, power increases can be expected for equivalence ratios below about {phi} = 0.80 with natural gas fueling as compared to gasoline. Higher brake thermal efficiencies can also be expected with natural gas fueling with maximum brake torque (MBT) timings over the range of equivalence ratios investigated in this work. Coefficient of variation (COV) data based on the indicated mean effective pressure (IMEP) demonstrated that the engine is much less sensitive to equivalence ratio leaning for natural gas fueling as compared to gasoline cases. The lean limit for a COV of 10 percent was about {phi} = 0.72 for gasoline and {phi} = 0.63 for natural gas. Lean fueling resulted in significantly reduced NO{sub x} levels where a lower plateau for NO{sub x} concentrations was reached at {phi} near or below 0.70, which corresponded to about 220 ppm. For natural gas fueling, this corresponded to about 1.21 gm/kW-h. Finally, with MBT timings, relatively short heat release durations were obtained for lean fueling with natural gas compared to gasoline.

Gupta, M.; Bell, S.R.; Tillman, S.T. [Univ. of Alabama, Tuscaloosa, AL (United States). Dept. of Mechanical Engineering

1996-06-01T23:59:59.000Z

345

Large eddy simulation of supersonic combustion with application to scramjet engines  

E-Print Network (OSTI)

diffusion term qj Heat flux vector R? Specific gas constant for species ? rd DDES RANS/LES blending parameter Re Reynolds number Rij Reynolds stress tensor Rm Mixture specific gas constant R0 Universal gas constant ~rL, ~rR Vectors from centre of left... and economical access to space. In order to meet these needs and ambitions, significant advancements in propulsion technol- ogy are required. The gas turbine engines commonly employed in subsonic and low supersonic aircraft are not practical above flight Mach...

Cocks, Peter

2011-07-12T23:59:59.000Z

346

Business Engineering (B.Sc.) Summer Term 2013  

E-Print Network (OSTI)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 Internal Combustion Engines and Exhaust Gas Aftertreatment Technology- 2134138Business Engineering (B.Sc.) Summer Term 2013 Long version Date: 05.03.2013 Faculty of Economics and Business Engineering KIT - University of the State of Baden-Wuerttemberg and National Research Center

Stein, Oliver

347

Economics Engineering (M.Sc.) Summer Term 2013  

E-Print Network (OSTI)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253 Internal Combustion Engines and Exhaust Gas Aftertreatment Technology- 2134138Economics Engineering (M.Sc.) Summer Term 2013 Long version Date: 05.03.2013 Faculty of Economics and Business Engineering KIT - University of the State of Baden-Wuerttemberg and National Research Center

Stein, Oliver

348

Economics Engineering (B.Sc.) Summer Term 2013  

E-Print Network (OSTI)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 Internal Combustion Engines and Exhaust Gas Aftertreatment Technology- 2134138Economics Engineering (B.Sc.) Summer Term 2013 Long version Date: 06.03.2013 Department of Economics and Business Engineering KIT - University of the State of Baden-Wuerttemberg and National Research

Stein, Oliver

349

Misfire identification in a four-stroke four-cylinder petrol engine using decision tree  

Science Conference Proceedings (OSTI)

Misfire detection in an internal combustion engine is very crucial to maintain optimum performance throughout its service life and to reduce emissions. The vibration of the engine block contains indirect information regarding the condition of the engine. ... Keywords: Decision tree, Engine condition monitoring, Feature selection, Knock, Misfire

S. Babu Devasenapati; V. Sugumaran; K. I. Ramachandran

2010-03-01T23:59:59.000Z

350

At-the-Burner Combustion Measurement Case Study Report: Demonstrations of Forney's OptiFlame and MK Engineering's MPV-1 Combustion S ensors  

Science Conference Proceedings (OSTI)

While detailed manual testing can optimize combustion conditions in a utility boiler, current instrumentation is not sufficient to monitor whether or not tuned conditions persist. Two new technologies have the potential to supplement current techniques to tune boilers and also provide a means to continuously monitor the systems.

2000-02-14T23:59:59.000Z

351

Maximizing Power Output in Homogeneous Charge Compression Ignition (HCCI) Engines and Enabling Effective Control of Combustion Timing  

E-Print Network (OSTI)

Company, “Diesel Engine Aftertreatment: How Ford Knocks Outwhile a Diesel engine also requires expensive aftertreatmentfrom Diesel engines require the use of aftertreatment

Saxena, Samveg

2011-01-01T23:59:59.000Z

352

Using Biofuel Tracers to Study Alternative Combustion Regimes  

E-Print Network (OSTI)

Wood, “Investigation of the Fate of Specific Hydrocarbon Fuel Components in Diesel Engine Combustion

Mack, John Hunter; Flowers, Daniel L.; Buchholz, Bruce A.; Dibble, Robert W.

2006-01-01T23:59:59.000Z

353

COMBUSTION-GENERATED INDOOR AIR POLLUTION  

E-Print Network (OSTI)

x A Emission Characteristics in Two Stage Combustion. PaperInternational) on Combustion, Tokyo (August, 1974). Chang,fll , J I ___F J "J LBL-S9lS COMBUSTION-GENERATED INDOOR AIR

Hollowell, C.D.

2010-01-01T23:59:59.000Z

354

SIAM Conference on Numerical Combustion Sedona, AZ May 9-12, 2004  

Science Conference Proceedings (OSTI)

The Society for Industrial and Applied Mathematics hosted the Tenth International Conference on Numerical Combustion held May 9-12, 2004 in Sedona, Arizona. This distinguished conference series began in 1985 in Sophia Antipolis, France and was followed by conferences in San Francisco, California (1987), Juan les Pins, France (1989), St. Petersburg Beach, Florida (1991), Garmisch, Germany (1993), New Orleans, Louisiana (1996), York, England (1998), Amelia Island, Florida (2000), and Sorrento, Italy (2002). SIAM is widely recognized as the originator and the U.S. anchor of this important meeting whose topics concerns the applied mathematics and computation associated with combustion and reactive flow. In particular, the International Numerical Combustion Symposiums have become one of the international major venues for research on direct simulation and modeling turbulent reacting flow. It is also one of the major international venues for theoretical work in reacting flows. This meeting drew approximately 200 participants from 30 countries whose research included the topics in turbulence, kinetics, detonation, flames, pollution, microgravity, micro-combustion, ignition, applications of parallel processing, tera-scale computation of combustion applications, material synthesis, droplets and sprays, heterogeneous combustion, energetic materials (propellants and explosives), engine and furnace combustion, fires, numerical methods and, software engineering for combustion applications.

None

2004-09-23T23:59:59.000Z

355

Renewable Energy Laboratory Development for Biofuels Advanced Combustion Studies  

DOE Green Energy (OSTI)

The research advanced fundamental science and applied engineering for increasing the efficiency of internal combustion engines and meeting emissions regulations with biofuels. The project developed a laboratory with new experiments and allowed investigation of new fuels and their combustion and emissions. This project supports a sustainable domestic biofuels and automotive industry creating economic opportunities across the nation, reducing the dependence on foreign oil, and enhancing U.S. energy security. The one year period of research developed fundamental knowledge and applied technology in advanced combustion, emissions and biofuels formulation to increase vehicle's efficiency. Biofuelsâ?? combustion was investigated in a Compression Ignition Direct Injection (DI) to develop idling strategies with biofuels and an Indirect Diesel Injection (IDI) intended for auxiliary power unit.

Soloiu, Valentin

2012-03-31T23:59:59.000Z

356

Combustibles Alternativos  

NLE Websites -- All DOE Office Websites (Extended Search)

Combustibles Alternativos Dispensador de Combustible Alternativo Los combustibles alternativos estn derivados de otras fuentes adems del petrleo. Unos son producidos en el...

357

Preliminary investigation of the effects of coal-water slurry fuels on the combustion in GE coal fueled diesel engine (Task 1. 1. 2. 2. 1, Fuels)  

DOE Green Energy (OSTI)

In prior work with the coal fired diesel research engine, a necessity to determine the sensitivity of the engine to a wider range of fuels was resolved and included in the R and D Test Plan submitted on 2/9/89. In general, the economic viability and universal acceptance of the commercial engine will be a factor of its ability to tolerate the widest range of source fuels with minimal fuel beneficiation. As detailed in the R and D Test Plan, a preliminary investigation on the effects of coal-water slurry (CWS) fuels on the combustion in a GE single cylinder test engine was conducted. The following conclusions are obtained from this investigation. All the test CWS fuels were successfully burned in the GE engine combustion system. They include: 3 to 15 microns mean particle size; 0.7 to 2.8% ash level; KY Blue Gem and PA Mariana bituminous coal, WY Kemmer and Spring Creek Sub-Bituminous coal; coal beneficiated with physical and chemical processes; two kinds of additives for OTISCA CWS; and burnout is not effected by ash or particle size within the test range. For each kind of CWS fuel, the detail design parameters of the fuel injection system has to be compatible. With sufficiently high fuel injection pressure, the 3 micron mean particle size OTISCA fuel burns faster than the 5 micron ones. For OTISCA fuel, the burn rate using Ammonium Lignosulfonate as additive is faster than using Ammonium Condensed Naphthalene Sulfonate. Appendices contain data on heat release, fuel characterization reports from two laboratories, general engine test data, and particulate size distribution. 3 refs.

Not Available

1990-06-01T23:59:59.000Z

358

Effects of diesel fuel combustion-modifier additives on In-cylinder soot formation in a heavy-duty Dl diesel engine.  

DOE Green Energy (OSTI)

Based on a phenomenological model of diesel combustion and pollutant-formation processes, a number of fuel additives that could potentially reduce in-cylinder soot formation by altering combustion chemistry have been identified. These fuel additives, or ''combustion modifiers'', included ethanol and ethylene glycol dimethyl ether, polyethylene glycol dinitrate (a cetane improver), succinimide (a dispersant), as well as nitromethane and another nitro-compound mixture. To better understand the chemical and physical mechanisms by which these combustion modifiers may affect soot formation in diesel engines, in-cylinder soot and diffusion flame lift-off were measured, using an optically-accessible, heavy-duty, direct-injection diesel engine. A line-of-sight laser extinction diagnostic was employed to measure the relative soot concentration within the diesel jets (''jetsoot'') as well as the rates of deposition of soot on the piston bowl-rim (''wall-soot''). An OH chemiluminescence imaging technique was utilized to measure the lift-off lengths of the diesel diffusion flames so that fresh oxygen entrainment rates could be compared among the fuels. Measurements were obtained at two operating conditions, using blends of a base commercial diesel fuel with various combinations of the fuel additives. The ethanol additive, at 10% by mass, reduced jet-soot by up to 15%, and reduced wall-soot by 30-40%. The other fuel additives also affected in-cylinder soot, but unlike the ethanol blends, changes in in-cylinder soot could be attributed solely to differences in the ignition delay. No statistically-significant differences in the diesel flame lift-off lengths were observed among any of the fuel additive formulations at the operating conditions examined in this study. Accordingly, the observed differences in in-cylinder soot among the fuel formulations cannot be attributed to differences in fresh oxygen entrainment upstream of the soot-formation zones after ignition.

Musculus, Mark P. (Sandia National Laboratories, Livermore, CA); Dietz, Jeff (The Lubrizol Corp.)

2005-07-01T23:59:59.000Z

359

Influence of water injection on performance and emissions of a direct-injection hydrogen research engine.  

DOE Green Energy (OSTI)

The application of hydrogen (H{sub 2}) as an internal combustion (IC) engine fuel has been under investigation for several decades. The favorable physical properties of hydrogen make it an excellent alternative fuel for IC engines and hence it is widely regarded as the energy carrier of the future. Direct injection of hydrogen allows optimizing this potential as it provides multiple degrees of freedom to influence the in-cylinder combustion processes and consequently engine efficiency and exhaust emissions.

Nande, A. M.; Wallner, T.; Naber, J. (Energy Systems); (MIchigan Technological Univ.)

2008-10-06T23:59:59.000Z

360

The Effects of Charge Motion and Laminar Flame Speed on Late Robust Combustion in a Spark-Ignition Engine  

E-Print Network (OSTI)

The effects of charge motion and laminar flame speeds on combustion and exhaust temperature have been studied by using an air jet in the intake flow to produce an adjustable swirl or tumble motion, and by replacing the ...

Cheng, Wai K.

Note: This page contains sample records for the topic "internal combustion engine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

International Conference on Engineering Education August 6 -- 10, 2001 Oslo, Norway  

E-Print Network (OSTI)

Introduction of modern CAD-CAP-CAM technologies shortened the product development cycle and lowered production costs. To deliver new product faster and cheaper, engineers are forced to learn faster and more efficiently. Rapid development of information and communication technologies (ICT) enabled new tools for education and boosted distance learning tools. The goal of this paper is to give some ideas and results on how can ICT are used efficiently in engineering education, based on the experiences and international cooperation from Italy, Norway, Germany and Spain, as well as from Bosnia and Herzegovina, a country with undeveloped industry. On one side, we have industry on the level of fifties and on the opposite side we have ICT technologies, which can not be as slow as local industry development. The paper is based on experiences gathered through international project "Establishment of Phare Open and Distance Learning Centers in Bosnia and Herzegovina" and treats the development activities in the ODL Center at the Faculty of Mechanical Engineering in Zenica.

Is It Possible; Darko Petkovic; Samir Lemes; Mladen Jecmenica; Joan Vivancos Calvet

2001-01-01T23:59:59.000Z

362

Packed Bed Combustion: An Overview  

E-Print Network (OSTI)

Packed Bed Combustion: An Overview William Hallett Dept. of Mechanical Engineering Université d'Ottawa - University of Ottawa #12;Packed Bed Combustion - University of Ottawa - CICS 2005 Introduction air fuel feedproducts xbed grate Packed Bed Combustion: fairly large particles of solid fuel on a grate, air supplied

Hallett, William L.H.

363

Integration of Radioisotope Heat Source with Stirling Engine and Cooler for Venus Internal-Structure Mission  

SciTech Connect

The primary mission goal is to perform long-term seismic measurements on Venus, to study its largely unknown internal structure. The principal problem is that most payload components cannot long survive Venus's harsh environment, 90 bars at 500 degrees C. To meet the mission life goal, such components must be protected by a refrigerated payload bay. JPL Investigators have proposed a mission concept employing a lander with a spherical payload bay cooled to 25 degrees C by a Stirling cooler powered by a radioisotope-heated Sitrling engine. To support JPL's mission study, NASA/Lewis and MTI have proposed a conceptual design for a hydraulically coupled Stirling engine and cooler, and Fairchild Space - with support of the Department of Energy - has proposed a design and integration scheme for a suitable radioisotope heat source. The key integration problem is to devise a simple, light-weight, and reliable scheme for forcing the radioisotope decay heat to flow through the Stirling engine during operation on Venus, but to reject that heat to the external environment when the Stirling engine and cooler are not operating (e.g., during the cruise phase, when the landers are surrounded by heat shields needed for protection during subsequent entry into the Venusian atmosphere.) A design and integration scheme for achieving these goals, together with results of detailed thermal analyses, are described in this paper. There are 7 copies in the file.

Schock, Alfred

1993-10-01T23:59:59.000Z

364

A coupled model for ring dynamics, gas flow, and oil flow through the ring grooves in IC engines  

E-Print Network (OSTI)

Oil flows through ring/groove interface play a critical role in oil transport among different regions the piston ring pack of internal combustion engines. This thesis work is intended to improve the understanding and ...

Jia, Ke, S. M. Massachusetts Institute of Technology

2009-01-01T23:59:59.000Z

365

NREL: Vehicles and Fuels Research - Advanced Combustion and Fuels...  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Combustion and Fuels Projects NREL's advanced combustion and fuels projects bridge fundamental chemical kinetics and engine research to investigate how new vehicle fuels...

366

CATALYZED COMBUSTION IN A FLAT PLATE BOUNDARY LAYER I. EXPERIMENTAL MEASUREMENTS AND COMPARISON WITH NUMERICAL CALCULATIONS  

E-Print Network (OSTI)

l~ Roberts, "Catathermal Combustion: A New Process for Lm'l-significant gas phase combustion is induced by the presenceInternational) on Combustion (to be published), The

Robben, R.

2010-01-01T23:59:59.000Z

367

THE COMBUSTION OF SOLVENT REPINED COAL IN AN OPPOSED FLOW DIFFUSION FLAME  

E-Print Network (OSTI)

pyrolysis of various polymers under combustion conditions.Fourteenth Symposium (International) on Combustion,The Combustion Institute Pittsburgh, 1177. Chin, W.K. and

Chin, W.K.

2011-01-01T23:59:59.000Z

368

CATALYZED COMBUSTION IN A FLAT PLATE BOUNDARY LAYER II. NUMERICAL CALCULATIONS  

E-Print Network (OSTI)

D.G. , Fourteenth Sympo- sium (International) on Combustion,The Combustion Institute, Pittsburgh, 107 (1973). Wilson,Program for Calculation of Combustion Reaction Equilibrium

Schefer, R.

2010-01-01T23:59:59.000Z

369

Superheated fuel injection for combustion of liquid-solid slurries  

DOE Patents (OSTI)

A method and device for obtaining, upon injection, flash evaporation of a liquid in a slurry fuel to aid in ignition and combustion. The device is particularly beneficial for use of coal-water slurry fuels in internal combustion engines such as diesel engines and gas turbines, and in external combustion devices such as boilers and furnaces. The slurry fuel is heated under pressure to near critical temperature in an injector accumulator, where the pressure is sufficiently high to prevent boiling. After injection into a combustion chamber, the water temperature will be well above boiling point at a reduced pressure in the combustion chamber, and flash boiling will preferentially take place at solid-liquid surfaces, resulting in the shattering of water droplets and the subsequent separation of the water from coal particles. This prevents the agglomeration of the coal particles during the subsequent ignition and combustion process, and reduces the energy required to evaporate the water and to heat the coal particles to ignition temperature. The overall effect will be to accelerate the ignition and combustion rates, and to reduce the size of the ash particles formed from the coal.

Robben, Franklin A. (Berkeley, CA)

1985-01-01T23:59:59.000Z

370

Superheated fuel injection for combustion of liquid-solid slurries  

DOE Patents (OSTI)

A method and device are claimed for obtaining, upon injection, flash evaporation of a liquid in a slurry fuel to aid in ignition and combustion. The device is particularly beneficial for use of coal-water slurry fuels in internal combustion engines such as diesel engines and gas turbines, and in external combustion devices such as boilers and furnaces. The slurry fuel is heated under pressure to near critical temperature in an injector accumulator, where the pressure is sufficiently high to prevent boiling. After injection into a combustion chamber, the water temperature will be well above boiling point at a reduced pressure in the combustion chamber, and flash boiling will preferentially take place at solid-liquid surfaces, resulting in the shattering of water droplets and the subsequent separation of the water from coal particles. This prevents the agglomeration of the coal particles during the subsequent ignition and combustion process, and reduces the energy required to evaporate the water and to heat the coal particles to ignition temperature. The overall effect will be to accelerate the ignition and combustion rates, and to reduce the size of the ash particles formed from the coal. 2 figs., 2 tabs.

Robben, F.A.

1984-10-19T23:59:59.000Z

371

Benchmarking of New and Emerging Reciprocating Engine Products  

Science Conference Proceedings (OSTI)

Internal combustion engines (ICEs) fueled by diesel and natural gas continue to be a low-cost option for distributed generation of electric power. This report presents a summary of new and emerging products and technologies from major engine manufacturers in the United States, Europe, and the Far East.

2001-12-20T23:59:59.000Z

372

Maximizing Power Output in Homogeneous Charge Compression Ignition (HCCI) Engines and Enabling Effective Control of Combustion Timing  

E-Print Network (OSTI)

fuels in Diesel engines. Biodiesel, for example, is one fuelalternative fuels like biodiesel. 2.2.3 Homogeneous charge

Saxena, Samveg

2011-01-01T23:59:59.000Z

373

Method of improving fuel combustion efficiency  

Science Conference Proceedings (OSTI)

This patent describes a method of operating an internal combustion engine. It comprises: vaporizing a gasoline-alcohol fuel mixture by heating it in a chamber to above the final boiling point of the gasoline at one atmosphere pressure in the absence of air to form a vaporized gasoline-alcohol fuel mixture and immediately mixing the vaporized gasoline-alcohol fuel mixture with air in a carburetor without forming liquid droplets in the mixture and then immediately combusting the mixture in the engine in substantially a vaporized state. The gasoline comprises a mixture of hydrocarbons: the mixture having an intermediate carbon range relative to c{sub 4}-C{sub 12} fuel.

Talbert, W.L.

1990-09-11T23:59:59.000Z

374

International Symposium on Air Breathing Engines, 9th, Athens, Greece, Sept. 3-8, 1989, Proceedings. Volumes 1 2  

SciTech Connect

The conference presents papers on the National Aerospace Plane Program, highly loaded axial flow compressors, Swedish philosophy in aeroengine development, the active control of engine instabilities, and turbulent free shear layer mixing and combustion. Consideration is also given to direct and hybrid solutions of three-dimensional flow in axial radial turbomachines using the mean stream surface method, the numerical simulation of turbomachinery flows with a simple ONERA model of viscous effects, and the combustion characteristics of a boron-fueled SFRJ with aft burner. Other topics include studies on the influence of Mach number on profile losses of a reaction turbine cascade, flow in compressor interstage ducts, and full-scale liquid fuel ramjet combustor tests.

Billig, F.S.

1989-01-01T23:59:59.000Z

375

Ushering a new era of intelligent engine design  

NLE Websites -- All DOE Office Websites (Extended Search)

Ushering in a New Era of Ushering in a New Era of Intelligent Engine Design 3 2 "The use of predictive simulation tools for enhancing combustion engine performance will shrink engine development timescales, accelerate time to market, and reduce development costs, while ensuring the timely achievement of energy security and emissions targets and enhancing U.S. industrial competitiveness." - From the U.S. Department of Energy's Predictive Simulation for Internal Combustion Engines (PreSICE) workshop report (March 3, 2011). The workshop was attended by more than 60 U.S. leaders in the engine combustion field from industry, academia, and national laboratories. The traditional "build and test" prototype approach to automotive engine design and development is time consuming and expensive.

376

carleton.ca/ engineering-design  

E-Print Network (OSTI)

of Nuclear safeguards, biomass and combustion systems, Stirling engines, thermoelectric materials, smartgrids

Dawson, Jeff W.

377

Evaluation of injector location and nozzle design in a direct-injection hydrogen research engine.  

DOE Green Energy (OSTI)

The favorable physical properties of hydrogen (H{sub 2}) make it an excellent alternative fuel for internal combustion (IC) engines and hence it is widely regarded as the energy carrier of the future. Hydrogen direct injection provides multiple degrees of freedom for engine optimization and influencing the in-cylinder combustion processes. This paper compares the results in the mixture formation and combustion behavior of a hydrogen direct-injected single-cylinder research engine using two different injector locations as well as various injector nozzle designs.

Wallner, T.; Nande, A. M.; Naber, J.; Energy Systems; Michigan Technological Univ.

2008-06-01T23:59:59.000Z

378

An Engineering and Economic Assessment of Post-Combustion CO2 Capture Retrofit to Bay Shore Plant  

Science Conference Proceedings (OSTI)

The Electric Power Research Institute (EPRI) is currently examining the feasibility of retrofitting post-combustion capture (PCC) to existing pulverized coal (PC) and/or circulating fluidized bed (CFB) power plants for five different host participants. The project is applying the knowledge gained from previous CoalFleet ultra-supercritical PCC design studies to specific site conditions, plant designs, and operating data provided by each host utility participant. This project aims to highlight the technic...

2011-12-31T23:59:59.000Z

379

An Engineering and Economic Assessment of Post Combustion CO2 Capture Retrofit to Midwest Generation's Coal Fired Powerto n Station  

Science Conference Proceedings (OSTI)

EPRI is currently examining the feasibility of retrofitting post combustion capture (PCC) to existing pulverized coal (PC) and/or circulating fluidized-bed (CFB) power plants for five different "host" participants. Knowledge gained from previous CoalFleet Ultra Super Critical (USC) PCC design studies is being applied directly to specific site conditions, plant design, and operating data provided by each host utility participant. The project aims to highlight the technical and economic issues associated w...

2010-12-21T23:59:59.000Z

380

Estimation of uranium and cobalt-60 distribution coefficients and uranium-235 enrichment at the Combustion Engineering Company site in Windsor, Connecticut  

SciTech Connect

Site-specific distribution coefficients for uranium isotopes and cobalt-60 (Co-60) and the fraction of uranium-235 (U-235) enrichment by mass were estimated for environmental samples collected from the Combustion Engineering Company site in Windsor, CT. This site has been identified for remedial action under the US Department of Energy`s (DOE) Formerly Utilized Sites Remedial Action Program. The authority of DOE at the Combustion Engineering site is limited to (1) Building 3; (2) other activities or areas associated exclusively with Building 3 (such as sewer lines); or (3) contamination that is exclusively highly enriched uranium. In this study, 16 samples were collected from the Combustion Engineering site, including 8 soil, 4 sediment, 3 water, and 1 water plus sludge sample. These samples were analyzed for isotopic uranium by alpha spectrometry and for Co-60 by gamma spectrometry. The site-specific distribution coefficient for each isotope was estimated as the ratio of extractable radionuclide activity in the solid phase to the activity in the contact solution following a 19-day equilibration. The uranium activity measurements indicate that uranium-234 (U-234) and uranium-238 (U-238) were in secular equilibrium in two soil samples and that soil and sediment samples collected from other sampling locations had higher U-234 activity than U-238 activity in both the solid and solution phases. The site-specific distribution coefficient (Kd) ranged from 82 to 44,600 mL/g for U-238 and from 102 to 65,900 mL/g for U-234. Calculation of U-235 enrichment by mass indicated that four soil samples had values greater than 0.20; these values were 0.37, 0.38, 0.46, and 0.68. Cobalt-60 activity was detected in only three sediment samples. The measured Co-60 activity in the solid phase ranged from 0.15 to 0.45 pCi/g and that in the water phase of all three samples combined was 4 pCi/L. The Kd value for Co-60 in the site brook sediment was calculated to be 70 mL/g.

Wang, Y.; Orlandini, K.A.; Yu, C.

1996-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "internal combustion engine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Controlling fuel and diluent gas flow for a diesel engine operating in the fuel rich low-temperature-combustion mode  

E-Print Network (OSTI)

The flow of a diluent gas supplied to a motoring engine was controlled at a diluent to air mass flow ratios of 10%, 30%, 50%, and 70%. This arrangement was a significant set up for running the engine in the Low-Temperature ...

Lopez, David M

2007-01-01T23:59:59.000Z

382

Lean combustion in automotive engines: as assessment of the addition of hydrogen to gasoline as compared to other techniques  

SciTech Connect

An examination was made of the feasibility, practicability, performance, fuel economy, and emissions of the concept of the addition of hydrogen to gasoline for use as an automobile fuel. The specific hydrogen addition concepts evaluated included onboard storage of hydrogen as a bottled gas, as a cryogenic liquid, and as a regenerable gas in a metal hydride storage system, and the onboard generation of hydrogen by the reformation of gasoline in a fuel reformer (or gas generator). Both partial oxidation and steam reforming fuel reformers were considered. For perspective, comparisons were made of the hydrogen addition concept with the conventional spark ignition engine baseline and other lean engine concepts, e.g., advanced lean carbureted engines and stratified charge engines. Hydrogen addition via fuel reformation was found to be a feasible method of achieving ultralean engine operation.

1976-02-01T23:59:59.000Z

383

Preheated Combustion Air (International Fact Sheet), Energy Tips-Process Heating, Process Heating Tip Sheet #1c  

Science Conference Proceedings (OSTI)

This English/Chinese international tip sheet provides information for optimizing industrial process heating systems and includes measurements in metric units.

Not Available

2010-10-01T23:59:59.000Z

384

Supersonic combustion studies using a multivariate quadrature based method for combustion modeling  

E-Print Network (OSTI)

Supersonic combustion studies using a multivariate quadrature based method for combustion modeling function (PDF) of thermochemical variables can be used for accurately computing the combustion source term of predictive models for supersonic combustion is a critical step in design and development of scramjet engines

Raman, Venkat

385

The Department of Mechanical Engineering --Engineering Mechanics  

E-Print Network (OSTI)

, Missile, Research, Development and Engineering Directorate's Propulsion Iaborato'. Ills primaly areas of research are in numerical combustion, and the thermal and mechanical aging ofnitrate esterpropellants decomposition and combustion. Stabilizers are added to the propellants to neutralize the decomposition products

Endres. William J.

386

EngOpt 2012 -International Conference on Engineering Optimization Rio de Janeiro, Brazil, 1-5 July 2012.  

E-Print Network (OSTI)

EngOpt 2012 - International Conference on Engineering Optimization Rio de Janeiro, Brazil, 1-5 July, 39401-089 - Montes Claros - MG, Brazil E-mail: nilson.brito@unimontes.br Departamento de Matem´atica, Universidade Federal de Ouro Preto, 35400-000 - Ouro Preto - MG, Brazil E-mail: anderson

Cruz, Frederico

387

The Expro Engineering Sponsorship Programme Expro International Group is an upstream oil and gas sector service company  

E-Print Network (OSTI)

and process flow from high-value oil and gas wells, from exploration and appraisal through to mature fieldThe Expro Engineering Sponsorship Programme Expro International Group is an upstream oil and gas for the development and delivery of innovative technologies to meet the needs of the oil and gas industry globally

Painter, Kevin

388

1 Copyright 2010 by ASME ASME 2010 International Mechanical Engineering Congress and Exposition  

E-Print Network (OSTI)

processes and a conceptual Liquid Piston Stirling Engine are immediate applications. Proposed is a thin

Van de Ven, James D.

389

1 Copyright 2010 by ASME Proceedings of the ASME 2010 International Design Engineering Technical Conferences &  

E-Print Network (OSTI)

-dof linkages, cams, and gear trains, such as the Ross-yoke Stirling engine mechanism shown in Figure 1 trains. #12;2 Copyright © 2010 by ASME Figure 1. Ross-Yoke Stirling Engine Mechanism www.ent.ohiou.edu/~urieli/stirling/engines. For example, Figure 11 shows a screen shot of a geared nine-bar Stirling engine mechanism animation made

Williams II, Robert L.

390

Vehicle Technologies Office: Combustion and Emission Control  

NLE Websites -- All DOE Office Websites (Extended Search)

and fuel formulation to arrive at the most cost-effective approach to optimizing advanced combustion engine efficiency and performance while reducing emissions to near-zero levels....

391

Coal Combustion Science  

SciTech Connect

The objective of this activity is to support the Office of Fossil Energy in executing research on coal combustion science. This activity consists of basic research on coal combustion that supports both the Pittsburgh Energy Technology Center Direct Utilization Advanced Research and Technology Development Program, and the International Energy Agency Coal Combustion Science Project. Specific tasks for this activity include: (1) coal devolatilization - the objective of this risk is to characterize the physical and chemical processes that constitute the early devolatilization phase of coal combustion as a function of coal type, heating rate, particle size and temperature, and gas phase temperature and oxidizer concentration; (2) coal char combustion -the objective of this task is to characterize the physical and chemical processes involved during coal char combustion as a function of coal type, particle size and temperature, and gas phase temperature and oxygen concentration; (3) fate of mineral matter during coal combustion - the objective of this task is to establish a quantitative understanding of the mechanisms and rates of transformation, fragmentation, and deposition of mineral matter in coal combustion environments as a function of coal type, particle size and temperature, the initial forms and distribution of mineral species in the unreacted coal, and the local gas temperature and composition.

Hardesty, D.R. (ed.); Fletcher, T.H.; Hurt, R.H.; Baxter, L.L. (Sandia National Labs., Livermore, CA (United States))

1991-08-01T23:59:59.000Z

392

Demonstration of Air-Power-Assist Engine Technology for Clean Combustion and Direct Energy Recovery in Heavy Duty Application  

SciTech Connect

The first phase of the project consists of four months of applied research, starting from September 1, 2005 and was completed by December 31, 2005. During this time, the project team heavily relied on highly detailed numerical modeling techniques to evaluate the feasibility of the APA technology. Specifically, (i) A GT-Power{sup TM}engine simulation model was constructed to predict engine efficiency at various operating conditions. Efficiency was defined based on the second-law thermodynamic availability. (ii) The engine efficiency map generated by the engine simulation was then fed into a simplified vehicle model, which was constructed in the Matlab/Simulink environment, to predict fuel consumption of a refuse truck on a simple collection cycle. (iii) Design and analysis work supporting the concept of retrofitting an existing Sturman Industries Hydraulic Valve Actuation (HVA) system with the modifications that are required to run the HVA system with Air Power Assist functionality. A Matlab/Simulink model was used to calculate the dynamic response of the HVA system. Computer aided design (CAD) was done in Solidworks for mechanical design and hydraulic layout. At the end of Phase I, 11% fuel economy improvement was predicted. During Phase II, the engine simulation group completed the engine mapping work. The air handling group made substantial progress in identifying suppliers and conducting 3D modelling design. Sturman Industries completed design modification of the HVA system, which was reviewed and accepted by Volvo Powertrain. In Phase II, the possibility of 15% fuel economy improvement was shown with new EGR cooler design by reducing EGR cooler outlet temperature with APA engine technology from Air Handling Group. In addition, Vehicle Simulation with APA technology estimated 4 -21% fuel economy improvement over a wide range of driving cycles. During Phase III, the engine experimental setup was initiated at VPTNA, Hagerstown, MD. Air Handling system and HVA system were delivered to VPTNA and then assembly of APA engine was completed by June 2007. Functional testing of APA engine was performed and AC and AM modes testing were completed by October 2007. After completing testing, data analysis and post processing were performed. Especially, the models were instrumental in identifying some of the key issues with the experimental HVA system. Based upon the available engine test results during AC and AM modes, the projected fuel economy improvement over the NY composite cycle is 14.7%. This is close to but slightly lower than the originally estimated 18% from ADVISOR simulation. The APA project group demonstrated the concept of APA technology by using simulation and experimental testing. However, there are still exists of technical challenges to meet the original expectation of APA technology. The enabling technology of this concept, i.e. a fully flexible valve actuation system that can handle high back pressure from the exhaust manifold is identified as one of the major technical challenges for realizing the APA concept.

Hyungsuk Kang; Chun Tai

2010-05-01T23:59:59.000Z

393

Congeneration system with a Stirling engine  

SciTech Connect

This patent describes a cogeneration system for producing process heat for useful purposes and electric energy. It comprises an electric generator; a Stirling cycle engine having an output shaft operatively coupled to the generator for driving the generator, the engine including at least one internal fuel combustor; means for circulating a cooling liquid about the generator and engine to extract heat therefrom; an exhaust system coupled with the engine for exhausting combustion gases from the engine, the exhaust system including a condensing heat exchanger for cooling the combustion gases below the condensing, temperature of the water vapor in the exhaust gases; means for directing the cooling liquid around the condensing heat exchanger to extract heat therefrom and heat the liquid; and means for directing the cooling liquid for useful purposes.

Meijer, R.J.; Meijer, E.J.; Godett, T.M.

1991-12-24T23:59:59.000Z

394

CFD optimization for GDI spray model tuning and enhancement of engine performance  

Science Conference Proceedings (OSTI)

Coupling a 3D Computational Fluid Dynamics (CFD) tool with a rigorous method of decision making is becoming indispensable in the design process of complex systems, as internal combustion engines. CFD based optimization (CFD-O) is here carried out on ... Keywords: CFD based optimization, Charge stratification, Gasoline direct injection, Multidimensional modelling, Spark ignition engines, Split injection

M. Costa; U. Sorge; L. Allocca

2012-07-01T23:59:59.000Z

395

High-speed video observation and on-line measurements of oil aeration in an internal combustion engine  

E-Print Network (OSTI)

Along the oil's journey through the oil lube system, the oil lubricates, cools, removes impurities, supports load, and minimizes friction. At the end of the oil's journey it returns to the sump where it remains nearly ...

Manz, Devon L

2005-01-01T23:59:59.000Z

396

Proceedings of ASME 2009 2009 ASME International Mechanical Engineering Congress and Exposition  

E-Print Network (OSTI)

of the liquid piston includes the fluidyne Stirling engine, also used for water pumping [2-4]. A preliminary-to-Back, Liquid Piston Stirling Engine for Water Pumping," Journal of Energy in Southern Africa, 13(2), pp. 36 Energy, 13(2), pp. 261-268. [4] West, C. D., 1983, Liquid Piston Stirling Engines, Van Nostrand Reinhold

Van de Ven, James D.

397

Creation Plaza, Technical Section, International Academic Exchange Office, Graduate School of Engineering., Nagoya University  

E-Print Network (OSTI)

of California, Berkeley, Berkeley, CA 94720 Stirling Engines for Distributed Low-Cost Solar concentrators, integrated with free-piston Stirling engine devices incorporating integrated electric generation-piston Stirling engine prototype. A very low loss resonant displacer piston is designed for the system using

Takahashi, Ryo

398

Engineering  

NLE Websites -- All DOE Office Websites (Extended Search)

Engineering Engineering Engineering1354608000000EngineeringSome of these resources are LANL-only and will require Remote Access./No/Questions? 667-5809library@lanl.gov Engineering Some of these resources are LANL-only and will require Remote Access. Key Resources Reference Standards Data Sources Organizations Journals Key Resources Engineering Village Includes Engineering Index (Ei) and Compendex Knovel Handbooks, databases, and eBooks integrated with analytical and search tools IEEE Xplore Full text access to technical literature, standards, and conference proceedings in engineering and technology SPIE Digital Library Full-text papers from SPIE journals and proceedings published since 1998; subject coverage includes optics, photonics, electronic imaging, visual information processing, biomedical optics, lasers, and

399

Engines - Spark Ignition Engines  

NLE Websites -- All DOE Office Websites (Extended Search)

Spark Ignition Engines Spark Ignition Engines Thomas Wallner and omni engine Thomas Wallner and the omnivorous engine Background Today the United States import more than 60% of its crude oil and petroleum products. Transportation accounts for a major portion of these imports. Research in this field is focused on reducing the dependency on foreign oil by increasing the engine efficiency on the one hand and blending gasoline with renewable domestic fuels, such as ethanol, on the other. Argonne's Research The main focus of research is on evaluation of advanced combustion concepts and effects of fuel properties on engine efficiency, performance and emissions. The platforms used are a single-cylinder research engine as well as an automotive-size four-cylinder engine with direct fuel injection.

400

Engineering  

NLE Websites -- All DOE Office Websites (Extended Search)

Electrodynamics Bioscience, Biosecurity, Health Chemical Science Earth, Space Sciences Energy Engineering High Energy Density Plasmas, Fluids Information Science, Computing,...

Note: This page contains sample records for the topic "internal combustion engine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

International Joint Workshop of the Engine Emissions R&D Cluster  

NLE Websites -- All DOE Office Websites (Extended Search)

Event Announcements The 3rd Joint Workshop will be held in Japan in 2014. Detailed information will be provided soon. Who Should Attend? Potential participants will be engineers...

402

2011 International Conference on Electrical Engineering and Informatics 17-19 July 2011, Bandung, Indonesia  

E-Print Network (OSTI)

, Indonesia CAMSHIFT Improvement on Multi-Hue and Multi-Object Tracking P. Hidayatullah*, H. Konik** * Computer Engineering Department, Bandung State Polytechnic, Bandung, Indonesia ** Laboratoire Hubert Curien

Paris-Sud XI, Université de

403

Combustion Safety Overview  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

March 1-2, 2012 March 1-2, 2012 Building America Stakeholders Meeting Austin, Texas Combustion Safety in the Codes Larry Brand Gas Technology Institute Acknowledgement to Paul Cabot - American Gas Association 2 | Building America Program www.buildingamerica.gov Combustion Safety in the Codes Widely adopted fuel gas codes: * National Fuel Gas Code - ANSI Z223.1/NFPA 54, published by AGA and NFPA (NFGC) * International Fuel Gas Code - published by the International Code Council (IFGC) * Uniform Plumbing Code published by IAPMO (UPC) Safety codes become requirements when adopted by the Authority Having Jurisdiction (governments or fire safety authorities) 3 | Building America Program www.buildingamerica.gov Combustion Safety in the Codes Formal Relationships Between these codes: - The IFGC extracts many safety

404

Engine idle speed control system  

SciTech Connect

An idle speed control system is described for an internal combustion engine having a fuel delivery means for supplying fuel to the engine, the idle speed control system comprising in combination: means for controlling the fuel delivery means to supply a scheduled idle fuel quantity during a idle operating state of the engine; means for sensing the engine idle speed; integrator means responsive to the engine idle speed and a desired engine idle speed for adjusting the scheduled idle fuel quantity in direction and amount to cause correspondence between the engine idle speed and the desired engine idle speed, the integrator means adjustment being a measure of engine load conditions; and means for establishing the scheduled idle fuel quantity, the means including (A) means for establishing a family of curves as a function of the amount of integrator adjustment of the scheduled idle fuel quantity, each curve of the family of curves representing idle fuel quantity as a function of engine idle speed for a respective engine load condition, and (B) means for selecting the curve corresponding to the integrator adjustment of the scheduled idle fuel quantity and providing the scheduled fuel quantity from the selected curve in accord with the sensed engine idle speed.

Ament, F.

1986-07-01T23:59:59.000Z

405

Hydrogen program combustion research: Three dimensional computational modeling  

DOE Green Energy (OSTI)

We have significantly increased our computational modeling capability by the addition of a vertical valve model in KIVA-3, code used internationally for engine design. In this report the implementation and application of the valve model is described. The model is shown to reproduce the experimentally verified intake flow problem examined by Hessel. Furthermore, the sensitivity and performance of the model is examined for the geometry and conditions of the hydrogen-fueled Onan engine in development at Sandia National Laboratory. Overall the valve model is shown to have comparable accuracy as the general flow simulation capability in KIVA-3, which has been well validated by past comparisons to experiments. In the exploratory simulations of the Onan engine, the standard use of the single kinetic reaction for hydrogen oxidation was found to be inadequate for modeling the hydrogen combustion because of its inability to describe both the observed laminar flame speed and the absence of autoignition in the Onan engine. We propose a temporary solution that inhibits the autoignition without sacrificing the ability to model spark ignition. In the absence of experimental data on the Onan engine, a computational investigation was undertaken to evaluate the importance of modeling the intake flow on the combustion and NO{sub x} emissions. A simulation that began with the compression of a quiescent hydrogen-air mixture was compared to a simulation of the full induction process with resolved opening and closing of the intake valve. Although minor differences were observed in the cylinder-averaged pressure, temperature, bulk-flow kinetic energy and turbulent kinetic energy, large differences where observed in the hydrogen combustion rate and NO{sub x} emissions. The flow state at combustion is highly heterogeneous and sensitive to the details of the bulk and turbulent flow and that an accurate simulation of the Onan engine must include the modeling of the air-fuel induction.

Johnson, N.L.; Amsden, A.A.; Butler, T.D.

1995-05-01T23:59:59.000Z

406

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING Int. J. Numer. Meth. Engng 2006; 65:12691309  

E-Print Network (OSTI)

Engineering and Sciences (ICES), The University of Texas at Austin, Austin, TX 78712, U.S.A. 2Department of Petroleum and Geosystems Engineering, The University of Texas at Austin, Austin, TX 78712, U.S.A. 3Baker. The refinement strategy is an extension of a fully automatic, energy-norm based, hp-adaptive algorithm. We

Torres-Verdín, Carlos

407

Coal combustion system  

SciTech Connect

In a coal combustion system suitable for a gas turbine engine, pulverized coal is transported to a rich zone combustor and burned at an equivalence ratio exceeding 1 at a temperature above the slagging temperature of the coal so that combustible hot gas and molten slag issue from the rich zone combustor. A coolant screen of water stretches across a throat of a quench stage and cools the combustible gas and molten slag to below the slagging temperature of the coal so that the slag freezes and shatters into small pellets. The pelletized slag is separated from the combustible gas in a first inertia separator. Residual ash is separated from the combustible gas in a second inertia separator. The combustible gas is mixed with secondary air in a lean zone combustor and burned at an equivalence ratio of less than 1 to produce hot gas motive at temperature above the coal slagging temperature. The motive fluid is cooled in a dilution stage to an acceptable turbine inlet temperature before being transported to the turbine.

Wilkes, Colin (Lebanon, IN); Mongia, Hukam C. (Carmel, IN); Tramm, Peter C. (Indianapolis, IN)

1988-01-01T23:59:59.000Z

408

Sandia Combustion Research Program  

DOE Green Energy (OSTI)

During the late 1970s, in response to a national energy crisis, Sandia proposed to the US Department of Energy (DOE) a new, ambitious program in combustion research. Shortly thereafter, the Combustion Research Facility (CRF) was established at Sandia's Livermore location. Designated a ''user facility,'' the charter of the CRF was to develop and maintain special-purpose resources to support a nationwide initiative-involving US inventories, industry, and national laboratories--to improve our understanding and control of combustion. This report includes descriptions several research projects which have been simulated by working groups and involve the on-site participation of industry scientists. DOE's Industry Technology Fellowship program, supported through the Office of Energy Research, has been instrumental in the success of some of these joint efforts. The remainder of this report presents results of calendar year 1988, separated thematically into eleven categories. Referred journal articles appearing in print during 1988 and selected other publications are included at the end of Section 11. Our traditional'' research activities--combustion chemistry, reacting flows, diagnostics, engine and coal combustion--have been supplemented by a new effort aimed at understanding combustion-related issues in the management of toxic and hazardous materials.

Johnston, S.C.; Palmer, R.E.; Montana, C.A. (eds.) [eds.

1988-01-01T23:59:59.000Z

409

Waste heat recovery in automobile engines : potential solutions and benefits  

E-Print Network (OSTI)

Less than 30% of the energy in a gallon of gasoline reaches the wheels of a typical car; most of the remaining energy is lost as heat. Since most of the energy consumed by an internal combustion engine is wasted, capturing ...

Ruiz, Joaquin G., 1981-

2005-01-01T23:59:59.000Z

410

Electrical generation plant design practice intern experience at Power Systems Engineering, Inc.: an internship report  

E-Print Network (OSTI)

A survey of the author's internship experience with Power Systems Engineering, Inc. during the period September 1980 through August, 1981 is presented. During this onr year internship, the author was assigned to two engineering projects. One involved design of a 480 MW power plant. The other was the design of a 8.2 MW induction generator for cogeneration. The author's activities during this period can be categorized into two major areas. First, technically oriented, he designed protective relaying and SCADA systems for the projects. Secondly, he assisted the Project Manager in project management activities such as project progress and cost control. The intent of this report is to prepare a training manual for PSE young engineers. It covers both technical guidelines for power plant design and nonacademic professional codes. Although this report is primarily written for young engineers, it can also be used as a reference by older and experienced engineers.

Lee, Ting-Zern Joe, 1950-

1981-12-01T23:59:59.000Z

411

Web Information Systems Engineering - WISE 2010 Workshops: WISE 2010 International Symposium WISS, and International Workshops CISE, MBC, Hong Kong, ... Applications, incl. Internet/Web, and HCI), 1st edition  

Science Conference Proceedings (OSTI)

This book contains the carefully selected and reviewed papers presented at three satellite events that were held in conjunction with the 11th International Conference on Web Information Systems Engineering, WISE 2010, in Hong Kong, China, in December ...

Dickson K. W. Chiu; Ladjel Bellatreche; Hideyasu Sasaki; Ho-fung Leung; Shing-Chi Cheung; Haiyang Hu; Jie Shao

2011-11-01T23:59:59.000Z

412

High Performance Scientific and Engineering Computing: Proceedings of the International Fortwihr Conference on Hpsec, Munich, March 16-18, 1998, 1st edition  

Science Conference Proceedings (OSTI)

From the Publisher:This volume contains the proceedings of an international conference on high performance scientific and engineering computing held in Munich in March 1998 and organized by FORTWIHR, the Bavarian Consortium for High Performance Scientific ...

Hans-Joachim -J Bungartz; F. Durst; C. Zenger

1999-01-01T23:59:59.000Z

413

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING Int. J. Numer. Meth. Engng 2010; 81:12591280  

E-Print Network (OSTI)

of Petroleum and Geosystems Engineering, University of Texas, Austin, TX 78712, U.S.A. SUMMARY The mechanical] was proposed in [11]. DDA employs minimization of potential energy and the penalty method to solve

Patzek, Tadeusz W.

414

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING Int. J. Numer. Meth. Engng (2009)  

E-Print Network (OSTI)

of Petroleum and Geosystems Engineering, University of Texas, Austin, TX 78712, U.S.A. SUMMARY The mechanical] was proposed in [11]. DDA employs minimization of potential energy and the penalty method to solve

Patzek, Tadeusz W.

415

Proceedings of the 2nd International Convention on Rehabilitation Engineering & Assistive Technology  

Science Conference Proceedings (OSTI)

Assistive and Rehabilitative Technologies (ART) are the systematic applications of scientific and engineering principles to improve the quality of life for people with disabilities. Though the providing of technology needed to accomplish tasks that were ...

Pairash Thajchayapong; Zen KOH; Wantanee PHANTACHAT; Wei Tech ANG

2008-05-01T23:59:59.000Z

416

Proceedings of IMECE2005 2005 ASME International Mechanical Engineering Congress and Exposition  

E-Print Network (OSTI)

OF VEHICLES Akira Okamoto Department of Electrical and Computer Engineering University of Idaho Moscow, Idaho of Idaho Moscow, Idaho 83843-0902 U.S.A dedwards@uidaho.edu ABSTRACT Various control algorithms have been

Idaho, University of

417

Advanced Combustion  

Science Conference Proceedings (OSTI)

Topics covered in this presentation include: the continued importance of coal; related materials challenges; combining oxy-combustion & A-USC steam; and casting large superalloy turbine components.

Holcomb, Gordon R. [NETL

2013-03-05T23:59:59.000Z

418

ACEEE International Journal on Electrical and Power Engineering, Vol. 1, No. 1, Jan 2010 2010 ACEEE  

E-Print Network (OSTI)

ACEEE DOI: 01.ijepe.01.01.06 Direct Model Reference Adaptive Internal Model Controller for DFIG Wind internal model Controller, MIT Rule, DFIG, wind farms. NOMENCLATURE sV =stator voltage [V] sR =stator-third of China's vast landmass is suffering from acid rain caused by its rapid industrial growth. DFIG

Paris-Sud XI, Université de

419

Injection Timing Effects on Brake Fuel Conversion Efficiency and Engine System's Respones  

E-Print Network (OSTI)

Societal concerns on combustion-based fuel consumption are ever-increasing. With respect to internal combustion engines, this translates to a need to increase brake fuel conversion efficiency (BFCE). Diesel engines are a relatively efficient internal combustion engine to consider for numerous applications, but associated actions to mitigate certain exhaust emissions have generally deteriorated engine efficiency. Conventionally, diesel engine emission control has centered on in-cylinder techniques. Although these continue to hold promise, the industry trend is presently favoring the use of after-treatment devices which create new opportunities to improve the diesel engine's brake fuel conversion efficiency. This study focuses on injection timing effects on the combustion processes, engine efficiency, and the engine system's responses. The engine in the study is a medium duty diesel engine (capable of meeting US EPA Tier III off road emission standards) equipped with common rail direct fuel injection, variable geometry turbo charging, and interfaced with a custom built engine controller. The study found that injection timing greatly affected BFCE by changing the combustion phasing. BFCE would increase up to a maximum then begin to decrease as phasing became less favorable. Combustion phasing would change from being mostly mixing controlled combustion to premixed combustion as injection timing would advance allowing more time for fuel to mix during the ignition delay. Combustion phasing, in turn, would influence many other engine parameters. As injection timing is advanced, in-cylinder temperatures and pressures amplify, and intake and exhaust manifold pressures deteriorate. Rate of heat release and rate of heat transfer increase when injection timing is advanced. Turbocharger speed falls with the advancing injection timing. Torque, however, rose to a maximum then fell off again even though engine speed and fueling rate were held constant between different injection timings. Interestingly, the coefficient of heat transfer changes from a two peak curve to a smooth one peak curve as the injection timing is advanced further. The major conclusion of the study is that injection advance both positively and negatively influences the diesel engine's response which contributes to the brake fuel conversion efficiency.

McLean, James Elliott

2011-08-01T23:59:59.000Z

420

Engineering  

NLE Websites -- All DOE Office Websites (Extended Search)

Engineering Engineering Lawrence Livermore National Laboratory Home Technologies Core Competencies Showcase Careers Partnerships About Advanced Manufacturing Developing high-performance materials, devices, components, and assemblies enabled by innovative design tools and novel manufacturing techniques Learn more Applied Electromagnetics Supporting the development of electromagnetic systems that are pervasive and paramount to the greater National Security community. Learn more Data Sciences Enabling better decisions through the development and application of state-of-the-art techniques in machine learning, statistics, and decision sciences Learn more Precision Engineering Embracing determinism to guide rigorous design, construction, and metrology of mechatronic systems, instruments, and manufactured components

Note: This page contains sample records for the topic "internal combustion engine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Vehicle Technologies Office: Retooling Today's Engines for the Hydrogen  

NLE Websites -- All DOE Office Websites (Extended Search)

Retooling Today's Retooling Today's Engines for the Hydrogen Economy to someone by E-mail Share Vehicle Technologies Office: Retooling Today's Engines for the Hydrogen Economy on Facebook Tweet about Vehicle Technologies Office: Retooling Today's Engines for the Hydrogen Economy on Twitter Bookmark Vehicle Technologies Office: Retooling Today's Engines for the Hydrogen Economy on Google Bookmark Vehicle Technologies Office: Retooling Today's Engines for the Hydrogen Economy on Delicious Rank Vehicle Technologies Office: Retooling Today's Engines for the Hydrogen Economy on Digg Find More places to share Vehicle Technologies Office: Retooling Today's Engines for the Hydrogen Economy on AddThis.com... Retooling Today's Engines for the Hydrogen Economy Hydrogen-Powered Internal Combustion Engines Gain Momentum in the Quest to

422

TransForum v9n2 - Low Temperature Combustion  

NLE Websites -- All DOE Office Websites (Extended Search)

Low-Temperature Combustion Knocks Out NOx, Saves Fuel and Money One of the hottest concepts in clean diesel technology is low-temperature combustion (LTC). Engineers from Argonne's...

423

Low emissions compression ignited engine technology  

DOE Patents (OSTI)

A method and apparatus for operating a compression ignition engine having a cylinder wall, a piston, and a head defining a combustion chamber. The method and apparatus includes delivering fuel substantially uniformly into the combustion chamber, the fuel being dispersed throughout the combustion chamber and spaced from the cylinder wall, delivering an oxidant into the combustion chamber sufficient to support combustion at a first predetermined combustion duration, and delivering a diluent into the combustion chamber sufficient to change the first predetermined combustion duration to a second predetermined combustion duration different from the first predetermined combustion duration.

Coleman, Gerald N. (Dunlap, IL); Kilkenny, Jonathan P. (Peoria, IL); Fluga, Eric C. (Dunlap, IL); Duffy, Kevin P. (East Peoria, IL)

2007-04-03T23:59:59.000Z

424

Transonic Combustion Inc | Open Energy Information  

Open Energy Info (EERE)

Transonic Combustion Inc Transonic Combustion Inc Jump to: navigation, search Name Transonic Combustion, Inc. Place Camarillo, California Zip CA 93012 Sector Efficiency, Renewable Energy Product Transonic Combustion, Inc. is a US based research & development company focused on developing ultra-high efficiency automotive engines that run on gasoline and bio-renewable flex fuels. References Transonic Combustion, Inc.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Transonic Combustion, Inc. is a company located in Camarillo, California . References ↑ "Transonic Combustion, Inc." Retrieved from "http://en.openei.org/w/index.php?title=Transonic_Combustion_Inc&oldid=352376

425

HCCI Combustion: Analysis and Experiments  

DOE Green Energy (OSTI)

Homogeneous charge compression ignition (HCCI) is a new combustion technology that may develop as an alternative to diesel engines with high efficiency and low NOx and particulate matter emissions. This paper describes the HCCI research activities being currently pursued at Lawrence Livermore National Laboratory and at the University of California Berkeley. Current activities include analysis as well as experimental work. On analysis, we have developed two powerful tools: a single zone model and a multi-zone model. The single zone model has proven very successful in predicting start of combustion and providing reasonable estimates for peak cylinder pressure, indicated efficiency and NOX emissions. This model is being applied to develop detailed engine performance maps and control strategies, and to analyze the problem of engine startability. The multi-zone model is capable of very accurate predictions of the combustion process, including HC and CO emissions. The multi-zone model h as applicability to the optimization of combustion chamber geometry and operating conditions to achieve controlled combustion at high efficiency and low emissions. On experimental work, we have done a thorough evaluation of operating conditions in a 4-cylinder Volkswagen TDI engine. The engine has been operated over a wide range of conditions by adjusting the intake temperature and the fuel flow rate. Satisfactory operation has been obtained over a wide range of operating conditions. Cylinder-to-cylinder variations play an important role in limiting maximum power, and should be controlled to achieve satisfactory performance.

Salvador M. Aceves; Daniel L. Flowers; Joel Martinez-Frias; J. Ray Smith; Robert Dibble; Michael Au; James Girard

2001-05-14T23:59:59.000Z

426

Materials Reliability Program: San Onofre Nuclear Generating Station Reactor Vessel Internals Management Engineering Program (MRP-303)  

Science Conference Proceedings (OSTI)

All operating pressurized water reactors must have a reactor vessel internals aging management document in place by December 2011 according to the mandatory requirement under Nuclear Energy Institute (NEI) 03-08. This program should be developed to meet the guidance provided by Materials Reliability Program (MRP) -227, Rev. 0, Pressurized Water Reactor Internals Inspection and Evaluation Guidelines. For non-license renewal plants, the requirements are valid within the current license period, and the Elec...

2011-02-28T23:59:59.000Z

427

Internal Technical Report, Low-To-Moderate Temperature Reservoir Engineering Research Program - Fiscal Year 1982  

DOE Green Energy (OSTI)

Numerous low (<90 C) to moderate (90 C-150 C) geothermal resources occur in many areas of the United States. The reservoir research conducted at the Idaho National Engineering Laboratory (INEL) is designed to develop innovative techniques that can be used to evaluate reservoir characteristics and improve reservoir management for low-to-moderate temperature resources. The purpose of this report is to review the program accomplishments for FY 1982 and present the initial data and results obtained from the ongoing research program. The project tasks reported in this document are: (1) Low-To-Moderate Temperature Hydrothermal Reservoir Engineering Handbook; and (2) Reservoir Assessment Technique Development--data analysis and reaction kinetics.

Russell, B.F.; Dolenc, M.R.; Downs, W.F.; Hull, L.C.

1982-09-01T23:59:59.000Z

428

Highly efficient 6-stroke engine cycle with water injection  

combustion piston engine. The increased efficiency is a result of recovering heat primarily from the engine exhaust gases, and also from the engine coolant.

429

Proceedings of the 2008 international workshop on Software Engineering in east and south europe  

Science Conference Proceedings (OSTI)

It is our great pleasure to welcome you to the Software Engineering in East and South Europe workshop -- SEESE'08. East and South European countries are going through a process of intensive changes and ICT plays an important role in supporting ...

Ivica Crnkovi?; Jerzy Nawrocki

2008-05-01T23:59:59.000Z

430

International Conference on Earthquake Engineering and Seismology (ICEES 2011), NUST, Islamabad, Pakistan  

E-Print Network (OSTI)

, Pakistan April 25-26, 2011 Post-Event Reconstruction in Asia since 1999: An Overview Focusing on the Social, Lahore, Pakistan (siddiq.akbar@uet.edu.pk ) Abstract The concentration of human population in Asia, Islamabad, Pakistan April 25-26, 2011 Considering that seismology and earthquake engineering had taken roots

Brest, Université de

431

Analysis of Combustion Chamber Deposits by ESI-TOF-MS and MALDI-TOF-MS  

DOE Green Energy (OSTI)

Combustion chamber deposits (CCDs) in internal combustion engines have been studied by various techniques to understand the relationship of performance degradation with deposit quantity and structure. XPS, XAS, NMR, and elemental analysis have offered insight into the bulk structure of C, H, N, O and metal components [1]. MS has offered some information about compound structure, but results are limited due to the insolubility and complexity of the materials. Recent advances in MS have opened new possibilities for analysis of CCDs. Here we report initial findings on the carbon structure of these deposits determined by ESI-TOF-MS and MADLI-TOF-MS.

Reynolds, J G; Shields, S J; Roos, J W

2001-06-14T23:59:59.000Z

432

Group combustion of liquid fuel in laminar spray jet  

SciTech Connect

The present study examines the global configuration, detailed structure, and combustion characteristic of sprays under various firing conditions represented by various principal parameters including group combustion number, fuel-air mass ratio, Reynolds number, and spray angle. A system of conservation equations of spray flames in an axisymmetric configuration is solved by a finite-difference method for n-Butylbenzen (C/sub 10/H/sub 14/). An extensive spray sensitivity study reveals remarkable insight into the group flame structure which can be adopted as a basic engineering criteria for spray flame classification. It can be used to develop practical guides for the design of atomizers and burners. Highlights of the study are described in the following. There are three principal spray group combustion modes that may occur independently in a spray burner. These combustion modes are external, internal and critical group combustion modes, according to the relative magnitude of the length of the flame and the spray jet. The external group flame, located outside the spray jet is deemed to be the principal combustion configuration of practical spray flame. Predicted spray structure of the external flame is found to be in good agreement with the experimental observations. In particular, axial and radial distributions of major spray variables, droplet size, number density of droplet, concentration of fuel and oxidizer, velocities, and temperature, together with the flame contour and jet boundary are in qualitative agreement with the laboratory scale kerosene spray flame reported by Onuma and coworkers (1974, 1976). The existence of an air deficient fuel rich combustible mixture in the spray core is expected to provoke significant thermal decomposition of the hydrocarbon and also facilitate the formation of soot and particles.

Kim, H.Y.

1982-01-01T23:59:59.000Z

433

NETL: IEP - Post-Combustion CO2 Emissions Control - Novel Solvent...  

NLE Websites -- All DOE Office Websites (Extended Search)

IEP Post-Combustion CO2 Emissions Control Novel Solvent System for Post Combustion CO2 Capture Project No.: DE-FE0005799 ION Engineering Ionic Liquid ION Engineering Ionic...

434

Adaptive engine injection for emissions reduction  

DOE Patents (OSTI)

NOx and soot emissions from internal combustion engines, and in particular compression ignition (diesel) engines, are reduced by varying fuel injection timing, fuel injection pressure, and injected fuel volume between low and greater engine loads. At low loads, fuel is injected during one or more low-pressure injections occurring at low injection pressures between the start of the intake stroke and approximately 40 degrees before top dead center during the compression stroke. At higher loads, similar injections are used early in each combustion cycle, in addition to later injections which preferably occur between about 90 degrees before top dead center during the compression stroke, and about 90 degrees after top dead center during the expansion stroke (and which most preferably begin at or closely adjacent the end of the compression stroke). These later injections have higher injection pressure, and also lower injected fuel volume, than the earlier injections.

Reitz, Rolf D. (Madison, WI): Sun, Yong (Madison, WI)

2008-12-16T23:59:59.000Z

435

An Engineering and Economic Assessment of Post-Combustion CO2 Capture for 1100 F Ultra-Supercritical Pulverized Coal Power Plant Applications  

Science Conference Proceedings (OSTI)

A previously published (2000) evaluation of the post-combustion capture (PCC) of CO2 by Parsons and cofunded by DOE and the Electric Power Research Institute (EPRI) concluded that the technology was not an efficient or cost-effective way to proceed. However, since publication of the study, significant improvements have been identified. This proposed study is intended to incorporate and quantify the identified improvements and reevaluate amine solvent-based processes for post-combustion CO2 capture, estab...

2010-10-19T23:59:59.000Z

436

Enhanced air/fuel mixing for automotive stirling engine turbulator-type combustors  

DOE Patents (OSTI)

The invention relates to the improved combustion of fuel in a combustion chamber of a stirling engine and the like by dividing combustion into primary and secondary combustion zones through the use of a diverter plate.

Riecke, George T. (Ballston Spa, NY); Stotts, Robert E. (Newark, NY)

1992-01-01T23:59:59.000Z

437

Hydrogen engine performance analysis project. Second annual report  

DOE Green Energy (OSTI)

Progress in a 3 year research program to evaluate the performance and emission characteristics of hydrogen-fueled internal combustion engines is reported. Fifteen hydrogen engine configurations will be subjected to performance and emissions characterization tests. During the first two years, baseline data for throttled and unthrottled, carburetted and timed hydrogen induction, Pre IVC hydrogen-fueled engine configurations, with and without exhaust gas recirculation (EGR) and water injection, were obtained. These data, along with descriptions of the test engine and its components, the test apparatus, experimental techniques, experiments performed and the results obtained, are given. Analyses of other hydrogen-engine project data are also presented and compared with the results of the present effort. The unthrottled engine vis-a-vis the throttled engine is found, in general, to exhibit higher brake thermal efficiency. The unthrottled engine also yields lower NO/sub x/ emissions, which were found to be a strong function of fuel-air equivalence ratio. (LCL)

Adt, Jr., R. R.; Swain, M. R.; Pappas, J. M.

1980-01-01T23:59:59.000Z

438

The Advanced Tangentially Fired Combustion Techniques for the...  

NLE Websites -- All DOE Office Websites (Extended Search)

MWe, but is capable of producing 200 MWe. The boiler is a Combustion Engineering, Inc. radiant reheat, natural circulation, steam generator, with five elevations of burners fed...

439

Advanced Start of Combustion Sensor Phases I and II-A: Feasibility Demonstration, Design and Optimization  

DOE Green Energy (OSTI)

Homogeneous Compressed Charge Ignition (HCCI) has elevated the need for Start of Combustion (SOC) sensors. HCCI engines have been the exciting focus of engine research recently, primarily because HCCI offers higher thermal efficiency than the conventional Spark Ignition (SI) engines and significantly lower NOx and soot emissions than conventional Compression Ignition (CI) engines, and could be fuel neutral. HCCI has the potential to unify all the internal combustion engine technology to achieve the high-efficiency, low-emission goal. However, these advantages do not come easy. It is well known that the problems encountered with HCCI combustion center on the difficulty of controlling the Start of Combustion. TIAX has an SOC sensor under development which has shown promise. In previous work, including a DOE-sponsored SBIR project, TIAX has developed an accelerometer-based method which was able to determine SOC within a few degrees crank angle for a range of operating conditions. A signal processing protocol allows reconstruction of the combustion pressure event signal imbedded in the background engine vibration recorded by the accelerometer. From this reconstructed pressure trace, an algorithm locates the SOC. This SOC sensor approach is nonintrusive, rugged, and is particularly robust when the pressure event is strong relative to background engine vibration (at medium to high engine load). Phase I of this project refined the previously developed technology with an engine-generic and robust algorithm. The objective of the Phase I research was to answer two fundamental questions: Can the accelerometer-based SOC sensor provide adequate SOC event capture to control an HCCI engine in a feedback loop? And, will the sensor system meet cost, durability, and software efficiency (speed) targets? Based upon the results, the answer to both questions was 'YES'. The objective of Phase II-A was to complete the parameter optimization of the SOC sensor prototype in order to reach a juncture where plans can be and are discussed with an industry partner for how best to perform a more detailed implementation of the TIAX SOC technology on an HCCI engine system. This occurred, as evidenced the number of potential commercialization partners shown in Table 4. Potential Commercialization Partners Contacted (up to date as of January 31, 2010). During the two phases, a robust, engine-generic algorithm was developed that met the desired targets and was shown to work extremely well for HCCI engine operation.

Chad Smutzer

2010-01-31T23:59:59.000Z

440

Coal Combustion Products Extension Program  

SciTech Connect

This final project report presents the activities and accomplishments of the ''Coal Combustion Products Extension Program'' conducted at The Ohio State University from August 1, 2000 to June 30, 2005 to advance the beneficial uses of coal combustion products (CCPs) in highway and construction, mine reclamation, agricultural, and manufacturing sectors. The objective of this technology transfer/research program at The Ohio State University was to promote the increased use of Ohio CCPs (fly ash, FGD material, bottom ash, and boiler slag) in applications that are technically sound, environmentally benign, and commercially competitive. The project objective was accomplished by housing the CCP Extension Program within The Ohio State University College of Engineering with support from the university Extension Service and The Ohio State University Research Foundation. Dr. Tarunjit S. Butalia, an internationally reputed CCP expert and registered professional engineer, was the program coordinator. The program coordinator acted as liaison among CCP stakeholders in the state, produced information sheets, provided expertise in the field to those who desired it, sponsored and co-sponsored seminars, meetings, and speaking at these events, and generally worked to promote knowledge about the productive and proper application of CCPs as useful raw materials. The major accomplishments of the program were: (1) Increase in FGD material utilization rate from 8% in 1997 to more than 20% in 2005, and an increase in overall CCP utilization rate of 21% in 1997 to just under 30% in 2005 for the State of Ohio. (2) Recognition as a ''voice of trust'' among Ohio and national CCP stakeholders (particularly regulatory agencies). (3) Establishment of a national and international reputation, especially for the use of FGD materials and fly ash in construction applications. It is recommended that to increase Ohio's CCP utilization rate from 30% in 2005 to 40% by 2010, the CCP Extension Program be expanded at OSU, with support from state and federal agencies, utilities, trade groups, and the university, to focus on the following four specific areas of promise: (a) Expanding use in proven areas (such as use of fly ash in concrete); (b) Removing or reducing regulatory and perceptual barriers to use (by working in collaboration with regulatory agencies); (c) Developing new or under-used large-volume market applications (such as structural fills); and (d) Placing greater emphasis on FGD byproducts utilization.

Tarunjit S. Butalia; William E. Wolfe

2006-01-11T23:59:59.000Z

Note: This page contains sample records for the topic "internal combustion engine" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Kompetenscentrum Frbrnningsprocesser Centre of Competence Combustion Processes  

E-Print Network (OSTI)

engine fuel effi- ciency is limited by emission Aftertreatment due to emis- sions legislation. However 2011 Faculty of Engineering, LTH Lund University #12;KCFP Kompetenscentrum Förbränningsprocesser Centre of Competence Combustion Processes Faculty of Engineering, LTH P.O. Box 118 SE-221 00 Lund Sweden #12;KCFP

442

Combination, a model vehicle engine and a direct-current generator  

SciTech Connect

This patent describes an engine for a model vehicle and a direct-current generator, comprising: an internal-combustion engine; and a direct-current generator operatively coupled to the engine; wherein the generator comprises an armature, and a drive coupling member drivingly engaged with the armature; the armature has three poles; each of the poles has not less than six hundred turns of magnetic wire; the engine having first means comprising a crankshaft, and second means comprising a connecting rod; and one of the first a second means has means for drivingly engaging the drive coupling for imparting rotation to the generator from the engine.

Williams, G.A.

1987-01-20T23:59:59.000Z

443

International Fuel Technology Inc | Open Energy Information  

Open Energy Info (EERE)

Fuel Technology Inc Fuel Technology Inc Jump to: navigation, search Name International Fuel Technology Inc Place St. Louis, Missouri Zip 63105 Product Supplier of environmentally friendly surfactant-based fuel additives designed to significantly reduce harmful emissions produced from internal combustion engines. References International Fuel Technology Inc[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. International Fuel Technology Inc is a company located in St. Louis, Missouri . References ↑ "International Fuel Technology Inc" Retrieved from "http://en.openei.org/w/index.php?title=International_Fuel_Technology_Inc&oldid=347044" Categories: Clean Energy Organizations

444

NETL: Combustion Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Summary for the Combustion Program The Combustion Technologies Product promotes the advancement of coal combustion power generation for use in industrial, commercial, and utility...

445

COMBUSTION RESEARCH - FY-1979  

E-Print Network (OSTI)

Optical Measurement of Combustion Products by Zeeman Atomicand T. Hadeishi • . . • . • . • • . • Combustion Sources offrom Pulverized Coal Combustion J. Pennucci, R. Greif, F.

,

2012-01-01T23:59:59.000Z

446

Combustion 2000  

SciTech Connect

This report is a presentation of work carried out on Phase II of the HIPPS program under DOE contract DE-AC22-95PC95144 from June 1995 to March 2001. The objective of this report is to emphasize the results and achievements of the program and not to archive every detail of the past six years of effort. These details are already available in the twenty-two quarterly reports previously submitted to DOE and in the final report from Phase I. The report is divided into three major foci, indicative of the three operational groupings of the program as it evolved, was restructured, or overtaken by events. In each of these areas, the results exceeded DOE goals and expectations. HIPPS Systems and Cycles (including thermodynamic cycles, power cycle alternatives, baseline plant costs and new opportunities) HITAF Components and Designs (including design of heat exchangers, materials, ash management and combustor design) Testing Program for Radiative and Convective Air Heaters (including the design and construction of the test furnace and the results of the tests) There are several topics that were part of the original program but whose importance was diminished when the contract was significantly modified. The elimination of the subsystem testing and the Phase III demonstration lessened the relevance of subtasks related to these efforts. For example, the cross flow mixing study, the CFD modeling of the convective air heater and the power island analysis are important to a commercial plant design but not to the R&D product contained in this report. These topics are of course, discussed in the quarterly reports under this contract. The DOE goal for the High Performance Power Plant System ( HIPPS ) is high thermodynamic efficiency and significantly reduced emissions. Specifically, the goal is a 300 MWe plant with > 47% (HHV) overall efficiency and {le} 0.1 NSPS emissions. This plant must fire at least 65% coal with the balance being made up by a premium fuel such as natural gas. To achieve these objectives requires a change from complete reliance of coal-fired systems on steam turbines (Rankine cycles) and moving forward to a combined cycle utilizing gas turbines (Brayton cycles) which offer the possibility of significantly greater efficiency. This is because gas turbine cycles operate at temperatures well beyond current steam cycles, allowing the working fluid (air) temperature to more closely approach that of the major energy source, the combustion of coal. In fact, a good figure of merit for a HIPPS design is just how much of the enthalpy from coal combustion is used by the gas turbine. The efficiency of a power cycle varies directly with the temperature of the working fluid and for contemporary gas turbines the optimal turbine inlet temperature is in the range of 2300-2500 F (1260-1371 C). These temperatures are beyond the working range of currently available alloys and are also in the range of the ash fusion temperature of most coals. These two sets of physical properties combine to produce the major engineering challenges for a HIPPS design. The UTRC team developed a design hierarchy to impose more rigor in our approach. Once the size of the plant had been determined by the choice of gas turbine and the matching steam turbine, the design process of the High Temperature Advanced Furnace (HITAF) moved ineluctably to a down-fired, slagging configuration. This design was based on two air heaters: one a high temperature slagging Radiative Air Heater (RAH) and a lower temperature, dry ash Convective Air Heater (CAH). The specific details of the air heaters are arrived at by an iterative sequence in the following order:-Starting from the overall Cycle requirements which set the limits for the combustion and heat transfer analysis-The available enthalpy determined the range of materials, ceramics or alloys, which could tolerate the temperatures-Structural Analysis of the designs proved to be the major limitation-Finally the commercialization issues of fabrication and reliability, availability and maintenance. The program that has s

A. Levasseur; S. Goodstine; J. Ruby; M. Nawaz; C. Senior; F. Robson; S. Lehman; W. Blecher; W. Fugard; A. Rao; A. Sarofim; P. Smith; D. Pershing; E. Eddings; M. Cremer; J. Hurley; G. Weber; M. Jones; M. Collings; D. Hajicek; A. Henderson; P. Klevan; D. Seery; B. Knight; R. Lessard; J. Sangiovanni; A. Dennis; C. Bird; W. Sutton; N. Bornstein; F. Cogswell; C. Randino; S. Gale; Mike Heap

2001-06-30T23:59:59.000Z

447