Sample records for internal combustion engine

  1. Rotary internal combustion engine

    SciTech Connect (OSTI)

    Crittenden, W.

    1987-01-27T23:59:59.000Z

    This patent describes an improved rotary internal combustion engine comprising: (a) a combustion chamber which is generally circular in cross-section and which has a ring-like peripheral wall; (b) a driven shaft member journaled for rotation and disposed to pass eccentrically through the combustion chamber; (c) a compression chamber which is generally circular in cross-section positioned with a ring-like wall is adjacent to and spatially offset with the combustion chamber such that the driven shaft passes centrally therethrough; and (d) a circular combustion rotor fixed concentrically to the shaft member for rotation eccentrically within the combustion chamber. The combustion rotor is positioned such that the space between the periphery of the rotor and the periphery of the combustion chamber results in a crescent shape.

  2. Internal combustion engine system

    SciTech Connect (OSTI)

    Nam, C.W.

    1987-01-27T23:59:59.000Z

    This patent describes an internal combustion engine system comprising: an engine body including a main combustion engine for transmitting the power generated by explosion pressure to a pumping piston and a power transmission apparatus for transmitting to a power crank shaft power that is increased by the ratio of the cross-sectional area of a combustion chamber piston to a power piston. The stroke distance of the combustion chamber piston is equal to that of the power piston; a swash plate-type stirling engine coupled to an exhaust gas outlet of the main combustion engine to be driven by exhaust heat therefrom; a one-stage screw-type compressor coupled by a driving shaft to the swash plate-type stirling engine, thereby generating a great amount of compressed air; a turbo-charger mounted adjacent to a gas outlet of the stirling engine to force a supply of fresh air into the combustion chamber of the main combustion engine; a booster being mounted between a compressed air source and the power transmission apparatus to amplify the air pressure derived from the compressed air source and then provide the amplified air pressure to the power transmission apparatus by operation of a cam in accordance with the rotation of the first crankshaft; compressed air sources being mounted between the compressor and the booster for storing a great amount of compressed air from the compressor; and an accumulator in communication with the power transmission apparatus through a fluid oil pipe, thereby maintaining constant control of the oil pressure in the power transmission apparatus.

  3. Internal combustion engine

    SciTech Connect (OSTI)

    Evans, H.G.; Speer, S.

    1991-12-31T23:59:59.000Z

    This patent describes improvement in a 2-cycle, diesel cycle internal combustion engine comprising a single in-line engine block, internal wall surfaces defining at least one cylinder within the engine block, the central longitudinal axis of each cylinder being within a common plane extending longitudinally of the engine block, the axially extending internal wall surface of each cylinder being closed at one end and having at least one air intake port therethrough, a piston axially and reciprocally movable within each cylinder over a permitted stroke distance, so as to alternately cover and expose each air intake port for a finite time period; an exhaust port at the closed end of the cylinder above the piston, and a mechanically operated valve for opening and closing such exhaust port located immediately adjacent such port, a substantially rigid connecting rod pivotably connected at one end of each piston, and a crankshaft, rotatably connected to the second end of each connecting rod, such that the crankshaft is caused to rotate connecting means between the piston and the connecting rod. The improvement comprises the diameter of the cylinder is greater than the permitted stroke distance of the piston within the cylinder, and the axis of the crankshaft is parallel to and laterally offset from the common plane by a distance sufficient to form an angle alpha between the connecting rod and the axis of the cylinder, when the piston is at top-dead center, of at least about 12 degrees, such that the time during which each air intake port is exposed is increased when the direction of crankshaft rotation is opposite to the direction of the crankshaft offset from the common plane.

  4. H2 Internal Combustion Engine Research

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    H 2 Internal Combustion Engine Research* H Internal Combustion Engine Research 2 Thomas Wallner Argonne National Laboratory 2008 DOE Merit Review Bethesda, Maryland February 25 th...

  5. Internal combustion engine

    DOE Patents [OSTI]

    Baker, Quentin A. (P.O. Box 6477, San Antonio, TX 78209); Mecredy, Henry E. (1630-C W. 6th, Austin, TX 78703); O'Neal, Glenn B. (6503 Wagner Way, San Antonio, TX 78256)

    1991-01-01T23:59:59.000Z

    An improved engine is provided that more efficiently consumes difficult fuels such as coal slurries or powdered coal. The engine includes a precombustion chamber having a portion thereof formed by an ignition plug. The precombustion chamber is arranged so that when the piston is proximate the head, the precombustion chamber is sealed from the main cylinder or the main combustion chamber and when the piston is remote from the head, the precombustion chamber and main combustion chamber are in communication. The time for burning of fuel in the precombustion chamber can be regulated by the distance required to move the piston from the top dead center position to the position wherein the precombustion chamber and main combustion chamber are in communication.

  6. Microwave-Assisted Ignition for Improved Internal Combustion Engine Efficiency

    E-Print Network [OSTI]

    DeFilippo, Anthony Cesar

    2013-01-01T23:59:59.000Z

    J. B. (1988) Internal Combustion Engine Fundamentals.novel microwave internal combustion engine ignition source,in the Internal Combustion Engine." SAE Technical Paper

  7. Sandia National Laboratories: Internal Combustion Engine Division...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Internal Combustion Engine Division conference CRF Researchers Received "Best Paper" Award for Paper Presented at American Society of Mechanical Engineers' (ASME) 2012 Internal...

  8. Sandia National Laboratories: internal combustion engine fuel...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    internal combustion engine fuel efficiency Measurements of Thermal Stratification in a Homogenous Charge Compression Ignition Engine On February 27, 2013, in CRF, Energy,...

  9. Free Energy and Internal Combustion Engine Cycles

    E-Print Network [OSTI]

    Harris, William D

    2012-01-01T23:59:59.000Z

    The performance of one type (Carnot) of Internal Combustion Engine (ICE) cycle is analyzed within the framework of thermodynamic free energies. ICE performance is different from that of an External Combustion Engine (ECE) which is dictated by Carnot's rule.

  10. Free Energy and Internal Combustion Engine Cycles

    E-Print Network [OSTI]

    William D. Harris

    2012-01-11T23:59:59.000Z

    The performance of one type (Carnot) of Internal Combustion Engine (ICE) cycle is analyzed within the framework of thermodynamic free energies. ICE performance is different from that of an External Combustion Engine (ECE) which is dictated by Carnot's rule.

  11. Internal Combustion Engine Energy Retention (ICEER)

    Broader source: Energy.gov (indexed) [DOE]

    ICEER Internal Combustion Engine Energy Retention PI: Jeffrey Gonder Team: Eric Wood & Sean Lopp National Renewable Energy Laboratory June 18, 2014 Project ID: VSS126 This...

  12. Microwave-Assisted Ignition for Improved Internal Combustion Engine Efficiency

    E-Print Network [OSTI]

    DeFilippo, Anthony Cesar

    2013-01-01T23:59:59.000Z

    internal combustion engine applications. Advanced engines can achieve higher efficiencies and reduced emissions

  13. Injector tip for an internal combustion engine

    DOE Patents [OSTI]

    Shyu, Tsu Pin; Ye, Wen

    2003-05-20T23:59:59.000Z

    This invention relates to a the tip structure of a fuel injector as used in a internal combustion engine. Internal combustion engines using Homogeneous Charge Compression Ignition (HCCI) technology require a tip structure that directs fuel spray in a downward direction. This requirement necessitates a tip design that is capable of withstanding mechanical stresses associated with the design.

  14. Internal combustion engine and method for control

    DOE Patents [OSTI]

    Brennan, Daniel G

    2013-05-21T23:59:59.000Z

    In one exemplary embodiment of the invention an internal combustion engine includes a piston disposed in a cylinder, a valve configured to control flow of air into the cylinder and an actuator coupled to the valve to control a position of the valve. The internal combustion engine also includes a controller coupled to the actuator, wherein the controller is configured to close the valve when an uncontrolled condition for the internal engine is determined.

  15. BIBLIOGRAPHY ON INTERNAL COMBUSTION ENGINES 1. F. Obert, Internal Combustion Engines and Air Pollution, Intext Educational Publishers, 1973

    E-Print Network [OSTI]

    Goldwasser, Shafi

    BIBLIOGRAPHY ON INTERNAL COMBUSTION ENGINES 1. F. Obert, Internal Combustion Engines and Air, The Internal Combustion Engine, International Textbook Company, 1961. (A basic text now out of print and somewhat dated.) 3. C.F. Taylor, The Internal Combustion Engine in Theory and Practice. Volumes I and II, M

  16. Starting apparatus for internal combustion engines

    DOE Patents [OSTI]

    Dyches, G.M.; Dudar, A.M.

    1995-01-01T23:59:59.000Z

    This report is a patent description for a system to start an internal combustion engine. Remote starting and starting by hearing impaired persons are addressed. The system monitors the amount of current being drawn by the starter motor to determine when the engine is started. When the engine is started the system automatically deactivates the starter motor. Five figures are included.

  17. Two phase exhaust for internal combustion engine

    DOE Patents [OSTI]

    Vuk, Carl T. (Denver, IA)

    2011-11-29T23:59:59.000Z

    An internal combustion engine having a reciprocating multi cylinder internal combustion engine with multiple valves. At least a pair of exhaust valves are provided and each supply a separate power extraction device. The first exhaust valves connect to a power turbine used to provide additional power to the engine either mechanically or electrically. The flow path from these exhaust valves is smaller in area and volume than a second flow path which is used to deliver products of combustion to a turbocharger turbine. The timing of the exhaust valve events is controlled to produce a higher grade of energy to the power turbine and enhance the ability to extract power from the combustion process.

  18. 2.61 Internal Combustion Engines, Spring 2004

    E-Print Network [OSTI]

    Heywood, John B.

    Fundamentals of how the design and operation of internal combustion engines affect their performance, operation, fuel requirements, and environmental impact. Study of fluid flow, thermodynamics, combustion, heat transfer ...

  19. H2 Internal Combustion Engine Research Towards 45% efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Internal Combustion Engine Research Towards 45% efficiency and Tier2-Bin5 emissions H2 Internal Combustion Engine Research Towards 45% efficiency and Tier2-Bin5 emissions 2009 DOE...

  20. Findings of Hydrogen Internal Combustion Engine Durability

    SciTech Connect (OSTI)

    Garrett Beauregard

    2010-12-31T23:59:59.000Z

    Hydrogen Internal Combustion Engine (HICE) technology takes advantage of existing knowledge of combustion engines to provide a means to power passenger vehicle with hydrogen, perhaps as an interim measure while fuel cell technology continues to mature. This project seeks to provide data to determine the reliability of these engines. Data were collected from an engine operated on a dynamometer for 1000 hours of continuous use. Data were also collected from a fleet of eight (8) full-size pickup trucks powered with hydrogen-fueled engines. In this particular application, the data show that HICE technology provided reliable service during the operating period of the project. Analyses of engine components showed little sign of wear or stress except for cylinder head valves and seats. Material analysis showed signs of hydrogen embrittlement in intake valves.

  1. Starting apparatus for internal combustion engines

    DOE Patents [OSTI]

    Dyches, Gregory M. (Barnwell, SC); Dudar, Aed M. (Augusta, GA)

    1997-01-01T23:59:59.000Z

    An internal combustion engine starting apparatus uses a signal from a curt sensor to determine when the engine is energized and the starter motor should be de-energized. One embodiment comprises a transmitter, receiver, computer processing unit, current sensor and relays to energize a starter motor and subsequently de-energize the same when the engine is running. Another embodiment comprises a switch, current transducer, low-pass filter, gain/comparator, relay and a plurality of switches to energize and de-energize a starter motor. Both embodiments contain an indicator lamp or speaker which alerts an operator as to whether a successful engine start has been achieved. Both embodiments also contain circuitry to protect the starter and to de-energize the engine.

  2. Jet plume injection and combustion system for internal combustion engines

    DOE Patents [OSTI]

    Oppenheim, A.K.; Maxson, J.A.; Hensinger, D.M.

    1993-12-21T23:59:59.000Z

    An improved combustion system for an internal combustion engine is disclosed wherein a rich air/fuel mixture is furnished at high pressure to one or more jet plume generator cavities adjacent to a cylinder and then injected through one or more orifices from the cavities into the head space of the cylinder to form one or more turbulent jet plumes in the head space of the cylinder prior to ignition of the rich air/fuel mixture in the cavity of the jet plume generator. The portion of the rich air/fuel mixture remaining in the cavity of the generator is then ignited to provide a secondary jet, comprising incomplete combustion products which are injected into the cylinder to initiate combustion in the already formed turbulent jet plume. Formation of the turbulent jet plume in the head space of the cylinder prior to ignition has been found to yield a higher maximum combustion pressure in the cylinder, as well as shortening the time period to attain such a maximum pressure. 24 figures.

  3. Jet plume injection and combustion system for internal combustion engines

    DOE Patents [OSTI]

    Oppenheim, Antoni K. (Kensington, CA); Maxson, James A. (Berkeley, CA); Hensinger, David M. (Albany, CA)

    1993-01-01T23:59:59.000Z

    An improved combustion system for an internal combustion engine is disclosed wherein a rich air/fuel mixture is furnished at high pressure to one or more jet plume generator cavities adjacent to a cylinder and then injected through one or more orifices from the cavities into the head space of the cylinder to form one or more turbulent jet plumes in the head space of the cylinder prior to ignition of the rich air/fuel mixture in the cavity of the jet plume generator. The portion of the rich air/fuel mixture remaining in the cavity of the generator is then ignited to provide a secondary jet, comprising incomplete combustion products which are injected into the cylinder to initiate combustion in the already formed turbulent jet plume. Formation of the turbulent jet plume in the head space of the cylinder prior to ignition has been found to yield a higher maximum combustion pressure in the cylinder, as well as shortening the time period to attain such a maximum pressure.

  4. Integrated CHP/Advanced Reciprocating Internal Combustion Engine...

    Broader source: Energy.gov (indexed) [DOE]

    restrictions. Integrated Combined Heat and PowerAdvanced Reciprocating Internal Combustion Engine System for Landfill Gas to Power Applications More Documents & Publications...

  5. Carburetor priming system for internal combustion engines

    SciTech Connect (OSTI)

    Everts, R.G.

    1986-05-20T23:59:59.000Z

    A carburetor priming system is described for an internal combustion engine, the engine including: a fuel tank, a carburetor having an air inlet, a fuel-air mixing throat, and an air-fuel mixture outlet communicating with the combustion chambers of the engine, the priming system comprising, in combination: (a) a hollow housing having air inlet openings in the walls thereof, shaped and dimensioned to cover the air inlet of the carburetor; (b) an air-permeable wick retained in the housing; (c) priming fuel pump means, including (i) a depressable hollow resilient priming bulb, (ii) a priming fuel supply conduit extending between the fuel tank and the interior of the priming bulb, (iii) a priming fuel discharge conduit extending between the interior of the priming bulb and the wick, (iv) a normally closed first check valve in the priming fuel supply conduit which opens to permit fuel to flow into the priming bulb and which closes when the priming bulb is depressed, (v) a normally closed second check valve disposed in the priming fuel discharge conduit, the second check valve being mechanically actuated by external pressure on the priming bulb, to open when the priming bulb is depressed.

  6. Modeling piston skirt lubrication in internal combustion engines

    E-Print Network [OSTI]

    Bai, Dongfang, Ph. D. Massachusetts Institute of Technology

    2012-01-01T23:59:59.000Z

    Ever-increasing demand for reduction of the undesirable emissions from the internal combustion engines propels broader effort in auto industry to design more fuel efficient engines. One of the major focuses is the reduction ...

  7. Fuel agitating device for internal combustion engine

    SciTech Connect (OSTI)

    Scouten, D.G.

    1991-12-03T23:59:59.000Z

    This paper describes an agitator for fuel being conducted to an internal combustion engine comprising a casing, a fuel inlet conduit in the casing, a fuel outlet conduit in the casing, a chamber within the casing between the fuel inlet conduit and the fuel outlet conduit, the chamber including an entry portion proximate the fuel inlet conduit and an exit portion proximate the fuel outlet conduit and a central portion between the entry portion and the exit portion, flow divider means having a first divided portion in the entry portion and a second divider portion in the central portion for dividing the entry portion and the central portion into two fuel flow paths on opposite sides thereof, an inner wall in the casing defining the exit portion, flange means on the casing spaced radially inwardly from the inner wall and located between the second divider portion and the exit portion, and conduit means within the flange means for conducting fuel to the outlet conduit.

  8. Variable camshaft timing for internal combustion engine

    SciTech Connect (OSTI)

    Butterfield, R.P.; Smith, F.R.; Dembosky, S.K.

    1991-09-10T23:59:59.000Z

    This patent describes an internal combustion engine. It comprises a rotatable crankshaft; a camshaft, the camshaft being rotatable about its longitudinal central axis and being subject to a unidirectionally acting torque during the rotation thereof; first means mounted on the camshaft, the first means being oscillatable with respect to the camshaft about the longitudinal central axis of the camshaft at least through a limited arc; second means keyed to the camshaft for rotation therewith; rotary movement transmitting means interconnecting the crankshaft and one of the first means and the second means for transmitting rotary movement from the crankshaft to the camshaft; a first hydraulic cylinder having a body end pivotably attached to one of the first means and the second means and a piston end pivotably attached to the other of the first means and the second means; a second hydraulic cylinder having a body end pivotably attached to the one of the first means and the second means and a piston end pivotably attached to the other of the first means and the second means, the second hydraulic cylinder and the first hydraulic cylinder being disposed to act in opposite directions.

  9. Optimal internal combustion engine tuning utilizing perturbation/correlation

    E-Print Network [OSTI]

    Brian Daniel Pautler

    2003-01-01T23:59:59.000Z

    This thesis addresses the application of the perturbation/correlation method to optimizing the torque output of internal combustion engines. This application was inspired by observations of the limitations in current techniques of the automotive...

  10. Variable compression ratio device for internal combustion engine

    DOE Patents [OSTI]

    Maloney, Ronald P.; Faletti, James J.

    2004-03-23T23:59:59.000Z

    An internal combustion engine, particularly suitable for use in a work machine, is provided with a combustion cylinder, a cylinder head at an end of the combustion cylinder and a primary piston reciprocally disposed within the combustion cylinder. The cylinder head includes a secondary cylinder and a secondary piston reciprocally disposed within the secondary cylinder. An actuator is coupled with the secondary piston for controlling the position of the secondary piston dependent upon the position of the primary piston. A communication port establishes fluid flow communication between the combustion cylinder and the secondary cylinder.

  11. High efficiency stoichiometric internal combustion engine system

    DOE Patents [OSTI]

    Winsor, Richard Edward (Waterloo, IA); Chase, Scott Allen (Cedar Falls, IA)

    2009-06-02T23:59:59.000Z

    A power system including a stoichiometric compression ignition engine in which a roots blower is positioned in the air intake for the engine to control air flow. Air flow is decreased during part power conditions to maintain the air-fuel ratio in the combustion chamber of the engine at stoichiometric, thus enabling the use of inexpensive three-way catalyst to reduce oxides of nitrogen. The roots blower is connected to a motor generator so that when air flow is reduced, electrical energy is stored which is made available either to the roots blower to temporarily increase air flow or to the system electrical load and thus recapture energy that would otherwise be lost in reducing air flow.

  12. Internal combustion engine using premixed combustion of stratified charges

    DOE Patents [OSTI]

    Marriott, Craig D. (Rochester Hills, MI); Reitz, Rolf D. (Madison, WI

    2003-12-30T23:59:59.000Z

    During a combustion cycle, a first stoichiometrically lean fuel charge is injected well prior to top dead center, preferably during the intake stroke. This first fuel charge is substantially mixed with the combustion chamber air during subsequent motion of the piston towards top dead center. A subsequent fuel charge is then injected prior to top dead center to create a stratified, locally richer mixture (but still leaner than stoichiometric) within the combustion chamber. The locally rich region within the combustion chamber has sufficient fuel density to autoignite, and its self-ignition serves to activate ignition for the lean mixture existing within the remainder of the combustion chamber. Because the mixture within the combustion chamber is overall premixed and relatively lean, NO.sub.x and soot production are significantly diminished.

  13. High order moment method for polydisperse evaporating sprays with mesh movement: application to internal combustion engines

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    to internal combustion engines D. Kaha,3 , O. Emreb,c,d,2 , Q. H. Trand , S. de Chaisemartind, , S. Jayd , F meshes. Extending the approach to internal combustion engine and fuel injection requires solving two simulations with spray in internal combustion engines have become a critical target in the automotive industry

  14. Apparatus for photocatalytic destruction of internal combustion engine emissions during cold start

    DOE Patents [OSTI]

    Janata, Jiri (Richland, WA); McVay, Gary L. (Richland, WA); Peden, Charles H. (West Richland, WA); Exarhos, Gregory J. (Richland, WA)

    1998-01-01T23:59:59.000Z

    A method and apparatus for the destruction of emissions from an internal combustion engine wherein a substrate coated with TiO.sub.2 is exposed to a light source in the exhaust system of an internal combustion engine thereby catalyzing oxidation/reduction reactions between gaseous hydrocarbons, carbon monoxide, nitrogen oxides and oxygen in the exhaust of the internal combustion engine.

  15. Method and device for diagnosing and controlling combustion instabilities in internal combustion engines operating in or transitioning to homogeneous charge combustion ignition mode

    DOE Patents [OSTI]

    Wagner, Robert M [Knoxville, TN; Daw, Charles S [Knoxville, TN; Green, Johney B [Knoxville, TN; Edwards, Kevin D [Knoxville, TN

    2008-10-07T23:59:59.000Z

    This invention is a method of achieving stable, optimal mixtures of HCCI and SI in practical gasoline internal combustion engines comprising the steps of: characterizing the combustion process based on combustion process measurements, determining the ratio of conventional and HCCI combustion, determining the trajectory (sequence) of states for consecutive combustion processes, and determining subsequent combustion process modifications using said information to steer the engine combustion toward desired behavior.

  16. Nanoparticle Emissions from Internal Combustion Engines

    E-Print Network [OSTI]

    Minnesota, University of

    Meeting Ultra Fine Particles in the Atmosphere 15 March 2000 Engine Exhaust Particle Emissions: Some, low S fuel 1988 engine low S fuel 1979 Roadway study The new engine increased number emissions 10 of highly agglomerated solid carbonaceous material and ash and volatile organic and sulfur compounds

  17. Fuel injector nozzle for an internal combustion engine

    DOE Patents [OSTI]

    Cavanagh, Mark S. (Bloomington, IL); Urven, Jr., Roger L. (Colona, IL); Lawrence, Keith E. (Peoria, IL)

    2011-03-22T23:59:59.000Z

    A direct injection fuel injector includes a nozzle tip having a plurality of passages allowing fluid communication between an inner nozzle tip surface portion and an outer nozzle tip surface portion and directly into a combustion chamber of an internal combustion engine. A first group of the passages have inner surface apertures located substantially in a first common plane. A second group of the passages have inner surface apertures located substantially in at least a second common plane substantially parallel to the first common plane. The second group has more passages than the first group.

  18. Fuel injector nozzle for an internal combustion engine

    DOE Patents [OSTI]

    Cavanagh, Mark S. (Bloomington, IL); Urven, Jr., Roger L. (Colona, IL); Lawrence, Keith E. (Peoria, IL)

    2008-11-04T23:59:59.000Z

    A direct injection fuel injector includes a nozzle tip having a plurality of passages allowing fluid communication between an inner nozzle tip surface portion and an outer nozzle tip surface portion and directly into a combustion chamber of an internal combustion engine. A first group of the passages have inner surface apertures located substantially in a first common plane. A second group of the passages have inner surface apertures located substantially in at least a second common plane substantially parallel to the first common plane. The second group has more passages than the first group.

  19. Fuel injector nozzle for an internal combustion engine

    DOE Patents [OSTI]

    Cavanagh, Mark S. (Bloomington, IL); Urven, Jr., Roger L. (Colona, IL); Lawrence, Keith E. (Peoria, IL)

    2007-11-06T23:59:59.000Z

    A direct injection fuel injector includes a nozzle tip having a plurality of passages allowing fluid communication between an inner nozzle tip surface portion and an outer nozzle tip surface portion and directly into a combustion chamber of an internal combustion engine. A first group of the passages have inner surface apertures located substantially in a first common plane. A second group of the passages have inner surface apertures located substantially in at least a second common plane substantially parallel to the first common plane. The second group has more passages than the first group.

  20. Fuel Injector Nozzle For An Internal Combustion Engine

    DOE Patents [OSTI]

    Cavanagh, Mark S. (Bloomington, IL); Urven, Jr.; Roger L. (Colona, IL); Lawrence, Keith E. (Peoria, IL)

    2006-04-25T23:59:59.000Z

    A direct injection fuel injector includes a nozzle tip having a plurality of passages allowing fluid communication between an inner nozzle tip surface portion and an outer nozzle tip surface portion and directly into a combustion chamber of an internal combustion engine. A first group of the passages have inner surface apertures located substantially in a first common plane. A second group of the passages have inner surface apertures located substantially in at least a second common plane substantially parallel to the first common plane. The second group has more passages than the first group.

  1. The effects of spark ignition parameters on the lean burn limit of natural gas combustion in an internal combustion engine

    E-Print Network [OSTI]

    Chlubiski, Vincent Daniel

    1997-01-01T23:59:59.000Z

    A full factorial experiment was conducted to determine the effects of internal combustion engine ignition parameters on the air-fuel ratio (A/F) lean limit of combustion with compressed natural gas (CNG). Spark electrical characteristics (voltage...

  2. Enhanced Efficiency of Internal Combustion Engines By Employing Spinning Gas

    SciTech Connect (OSTI)

    Geyko, Vasily; Fisch, Nathaniel

    2014-02-27T23:59:59.000Z

    The efficiency of the internal combustion engine might be enhanced by employing spinning gas. A gas spinning at near sonic velocities has an effectively higher heat capacity, which allows practical fuel cycles, which are far from the Carnot efficiency, to approach more closely the Carnot efficiency. A gain in fuel efficiency of several percent is shown to be theoretically possible for the Otto and Diesel cycles. The use of a flywheel, in principle, could produce even greater increases in the efficiency.

  3. Microwave-Assisted Ignition for Improved Internal Combustion Engine Efficiency

    E-Print Network [OSTI]

    DeFilippo, Anthony Cesar

    2013-01-01T23:59:59.000Z

    Modeling of Emissions from HCCI Engines using a ConsistentMechanism for Iso-Octane HCCI Combustion With TargetedCharge Compression Ignition (HCCI) Engine: Experimental and

  4. Reed valves for internal combustion engines

    SciTech Connect (OSTI)

    Boyesen, E.

    1987-09-29T23:59:59.000Z

    A two-cycle engine is described comprising a cylinder and a piston working in the cylinder. The engine has a compression chamber below the piston and a fuel intake system including a ported valve seat for delivering fuel into the compression chamber. The cylinder has an exhaust port and a transfer passage for delivering compressed fuel from the compression chamber to the space above the piston, and a reed valve overlying the port in the valve seat and adapted to flex away from the ported seat during the upward stroke of the piston. The reed valve is of multiple layer construction with an outlet layer formed of relatively rigid resin material and an inner layer presented inwardly for contact with the valve seat and formed of relatively flexible temperature-resistant synthetic rubber material. The rubber layer is thinner than the resin layer and the resin and rubber layers are adhesively bonded to each other.

  5. Water distillation using waste engine heat from an internal combustion engine

    E-Print Network [OSTI]

    Mears, Kevin S

    2006-01-01T23:59:59.000Z

    To meet the needs of forward deployed soldiers and disaster relief personnel, a mobile water distillation system was designed and tested. This system uses waste engine heat from the exhaust flow of an internal combustion ...

  6. Internal Combustion Engine Basics | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes | National NuclearInterlibrary Loan Interlibrary Loan TheInternal

  7. Apparatus for photocatalytic destruction of internal combustion engine emissions during cold start

    DOE Patents [OSTI]

    Janata, J.; McVay, G.L.; Peden, C.H.; Exarhos, G.J.

    1998-07-14T23:59:59.000Z

    A method and apparatus are disclosed for the destruction of emissions from an internal combustion engine wherein a substrate coated with TiO{sub 2} is exposed to a light source in the exhaust system of an internal combustion engine thereby catalyzing oxidation/reduction reactions between gaseous hydrocarbons, carbon monoxide, nitrogen oxides and oxygen in the exhaust of the internal combustion engine. 4 figs.

  8. Modeling the lubrication of the piston ring pack in internal combustion engines using the deterministic method

    E-Print Network [OSTI]

    Chen, Haijie

    2011-01-01T23:59:59.000Z

    Piston ring packs are used in internal combustion engines to seal both the high pressure gas in the combustion chamber and the lubricant oil in the crank case. The interaction between the piston ring pack and the cylinder ...

  9. Development of High Efficiency Clean Combustion Engine Designs for Spark-Ignition and Compression-Ignition Internal Combustion Engines

    SciTech Connect (OSTI)

    Marriott, Craig; Gonzalez, Manual; Russell, Durrett

    2011-06-30T23:59:59.000Z

    This report summarizes activities related to the revised STATEMENT OF PROJECT OBJECTIVES (SOPO) dated June 2010 for the Development of High-Efficiency Clean Combustion engine Designs for Spark-Ignition and Compression-Ignition Internal Combustion Engines (COOPERATIVE AGREEMENT NUMBER DE-FC26-05NT42415) project. In both the spark- (SI) and compression-ignition (CI) development activities covered in this program, the goal was to develop potential production-viable internal combustion engine system technologies that both reduce fuel consumption and simultaneously met exhaust emission targets. To be production-viable, engine technologies were also evaluated to determine if they would meet customer expectations of refinement in terms of noise, vibration, performance, driveability, etc. in addition to having an attractive business case and value. Prior to this activity, only proprietary theoretical / laboratory knowledge existed on the combustion technologies explored The research reported here expands and develops this knowledge to determine series-production viability. Significant SI and CI engine development occurred during this program within General Motors, LLC over more than five years. In the SI program, several engines were designed and developed that used both a relatively simple multi-lift valve train system and a Fully Flexible Valve Actuation (FFVA) system to enable a Homogeneous Charge Compression Ignition (HCCI) combustion process. Many technical challenges, which were unknown at the start of this program, were identified and systematically resolved through analysis, test and development. This report documents the challenges and solutions for each SOPO deliverable. As a result of the project activities, the production viability of the developed clean combustion technologies has been determined. At this time, HCCI combustion for SI engines is not considered production-viable for several reasons. HCCI combustion is excessively sensitive to control variables such as internal dilution level and charge temperature. As a result, HCCI combustion has limited robustness when variables exceed the required narrow ranges determined in this program. HCCI combustion is also not available for the entire range of production engine speeds and loads, (i.e., the dynamic range is limited). Thus, regular SI combustion must be employed for a majority of the full dynamic range of the engine. This degrades the potential fuel economy impact of HCCI combustion. Currently-available combustion control actuators for the simple valve train system engine do not have the authority for continuous air - fuel or torque control for managing the combustion mode transitions between SI and HCCI and thus, require further refinement to meet customer refinement expectations. HCCI combustion control sensors require further development to enable robust long-term HCCI combustion control. Finally, the added technologies required to effectively manage HCCI combustion such as electric cam phasers, central direct fuel injection, cylinder pressure sensing, high-flow exhaust gas recirculation system, etc. add excessive on-engine cost and complexity that erodes the production-viability business

  10. Exhaust gas recirculation system for an internal combustion engine

    DOE Patents [OSTI]

    Wu, Ko-Jen

    2013-05-21T23:59:59.000Z

    An exhaust gas recirculation system for an internal combustion engine comprises an exhaust driven turbocharger having a low pressure turbine outlet in fluid communication with an exhaust gas conduit. The turbocharger also includes a low pressure compressor intake and a high pressure compressor outlet in communication with an intake air conduit. An exhaust gas recirculation conduit fluidly communicates with the exhaust gas conduit to divert a portion of exhaust gas to a low pressure exhaust gas recirculation branch extending between the exhaust gas recirculation conduit and an engine intake system for delivery of exhaust gas thereto. A high pressure exhaust gas recirculation branch extends between the exhaust gas recirculation conduit and the compressor intake and delivers exhaust gas to the compressor for mixing with a compressed intake charge for delivery to the intake system.

  11. Hydrogen Operated Internal Combustion Engines A New Generation Fuel

    E-Print Network [OSTI]

    B. Rajendra Prasath; E. Leelakrishnan; N. Lokesh; H. Suriyan; E. Guru Prakash; K. Omur; Mustaq Ahmed

    Abstract- The present scenario of the automotive and agricultural sectors is fairly scared with the depletion of fossil fuel. The researchers are working towards to find out the best replacement for the fossil fuel; if not at least to offset the total fuel demand. In regards to emission, the fuel in the form of gaseous state is much than liquid fuel. By considering the various aspects of fuel, hydrogen is expected as a best option when consider as a gaseous state fuel. It is identified as a best alternate fuel for internal combustion engines as well as power generation application, which can be produced easily by means of various processes. The hydrogen in the form of gas can be used in the both spark ignition and compression ignition engines for propelling the vehicles. The selected fuel is much cleaner and fuel efficient than conventional fuel. The present study focusing the various aspects and usage of hydrogen fuel in S.I engine and C.I engine. Keywords- Hydrogen, Spark ignition engine, compression ignition engine, performance, Emission I.

  12. Hydrogen Internal Combustion Engine Two Wheeler with on-board Metal Hydride Storage

    E-Print Network [OSTI]

    Hydrogen Internal Combustion Engine Two Wheeler with on-board Metal Hydride Storage K. Sapru*, S, as a transition, the hydrogen internal combustion engine can lead the way to a hydrogen economy, allowing of these can ease India's dependence on foreign oil, and also eliminate the drastic power shortage, which

  13. Observing and modeling nonlinear dynamics in an internal combustion engine Engineering Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-8088

    E-Print Network [OSTI]

    Tennessee, University of

    Observing and modeling nonlinear dynamics in an internal combustion engine C. S. Daw* Engineering motivated, nonlinear map as a model for cyclic combustion variation in spark-ignited internal combustion combustion engines can exhibit substantial cycle-to-cycle variation in combustion energy release

  14. Computations and modeling of oil transport between piston lands and liner in internal combustion engines

    E-Print Network [OSTI]

    Fang, Tianshi

    2014-01-01T23:59:59.000Z

    The consumption of lubricating oil in internal combustion engines is a continuous interest for engine developers and remains to be one of the least understood areas. A better understanding on oil transport is critical to ...

  15. A cycle simulation of coal particle fueled reciprocating internal-combustion engines

    E-Print Network [OSTI]

    Rosegay, Kenneth Harold

    1982-01-01T23:59:59.000Z

    modifications to conventional diesels or to- tally new designs to be successful. Anal tical Studies Very little analytical work has been directed at the combustion of coal particles in the cylinder of an 16 internal combustion engine. The first...A CYCLE SIMULATION OF COAL PARTICLE FUELED RECIPROCATING INTERNAL-COMBUSTION ENGINES A Thesis by KENNETH HAROLD ROSEGAY Submitted to the Graduate College of Texas ASM University in partial fulfillment of the requirement for the degree...

  16. Towards a detailed soot model for internal combustion engines

    SciTech Connect (OSTI)

    Mosbach, Sebastian; Celnik, Matthew S.; Raj, Abhijeet; Kraft, Markus [Department of Chemical Engineering and Biotechnology, University of Cambridge, Pembroke Street, Cambridge CB2 3RA (United Kingdom); Zhang, Hongzhi R. [Department of Chemical Engineering, University of Utah, 1495 East 100 South, Kennecott Research Building, Salt Lake City, UT 84112 (United States); Kubo, Shuichi [Frontier Research Center, Toyota Central R and D Labs., Inc., Nagakute, Aichi 480-1192 (Japan); Kim, Kyoung-Oh [Higashifuji Technical Center, Toyota Motor Corporation, Mishuku 1200, Susono, Shizuoka 480-1193 (Japan)

    2009-06-15T23:59:59.000Z

    In this work, we present a detailed model for the formation of soot in internal combustion engines describing not only bulk quantities such as soot mass, number density, volume fraction, and surface area but also the morphology and chemical composition of soot aggregates. The new model is based on the Stochastic Reactor Model (SRM) engine code, which uses detailed chemistry and takes into account convective heat transfer and turbulent mixing, and the soot formation is accounted for by SWEEP, a population balance solver based on a Monte Carlo method. In order to couple the gas-phase to the particulate phase, a detailed chemical kinetic mechanism describing the combustion of Primary Reference Fuels (PRFs) is extended to include small Polycyclic Aromatic Hydrocarbons (PAHs) such as pyrene, which function as soot precursor species for particle inception in the soot model. Apart from providing averaged quantities as functions of crank angle like soot mass, volume fraction, aggregate diameter, and the number of primary particles per aggregate for example, the integrated model also gives detailed information such as aggregate and primary particle size distribution functions. In addition, specifics about aggregate structure and composition, including C/H ratio and PAH ring count distributions, and images similar to those produced with Transmission Electron Microscopes (TEMs), can be obtained. The new model is applied to simulate an n-heptane fuelled Homogeneous Charge Compression Ignition (HCCI) engine which is operated at an equivalence ratio of 1.93. In-cylinder pressure and heat release predictions show satisfactory agreement with measurements. Furthermore, simulated aggregate size distributions as well as their time evolution are found to qualitatively agree with those obtained experimentally through snatch sampling. It is also observed both in the experiment as well as in the simulation that aggregates in the trapped residual gases play a vital role in the soot formation process. (author)

  17. Coal-water slurry fuel internal combustion engine and method for operating same

    DOE Patents [OSTI]

    McMillian, Michael H. (Fairmont, WV)

    1992-01-01T23:59:59.000Z

    An internal combustion engine fueled with a coal-water slurry is described. About 90 percent of the coal-water slurry charge utilized in the power cycle of the engine is directly injected into the main combustion chamber where it is ignited by a hot stream of combustion gases discharged from a pilot combustion chamber of a size less than about 10 percent of the total clearance volume of main combustion chamber with the piston at top dead center. The stream of hot combustion gases is provided by injecting less than about 10 percent of the total coal-water slurry charge into the pilot combustion chamber and using a portion of the air from the main combustion chamber that has been heated by the walls defining the pilot combustion chamber as the ignition source for the coal-water slurry injected into the pilot combustion chamber.

  18. Hydrocarbon-fueled internal combustion engines: "the worst form of vehicle propulsion... except for all the other forms"

    E-Print Network [OSTI]

    Hydrocarbon-fueled internal combustion engines: "the worst form of vehicle propulsion... except of Southern California, Los Angeles, CA 90089-1453 Introduction Hydrocarbon-fueled internal combustion engines towards the use of hydrocarbon fueled internal combustion engines was the discovery of "large" amounts

  19. Cylinder Pressures and Vibration in Internal Combustion Engine Condition G O Chandroth, A J C Sharkey and N E Sharkey

    E-Print Network [OSTI]

    Sharkey, Amanda

    Cylinder Pressures and Vibration in Internal Combustion Engine Condition Monitoring G O Chandroth focus on the detection of incipient faults in an internal combustion engine using a minimum number. The cylinder pressure (P) developed within an internal combustion engine can be considered to be the pulse

  20. Optimization of the Calibration for an Internal Combustion Engine Management System Using Multi-Objective Genetic Algorithms

    E-Print Network [OSTI]

    Coello, Carlos A. Coello

    Optimization of the Calibration for an Internal Combustion Engine Management System Using Multi, the level of complexity of internal combustion engines is increasing steadily and the number of these problems, almost since the advent of electronics control of internal combustion engines, finding a way

  1. Evaluation and silicon nitride internal combustion engine components

    SciTech Connect (OSTI)

    Voldrich, W. (Allied-Signal Aerospace Co., Torrance, CA (United States). Garrett Ceramic Components Div.)

    1992-04-01T23:59:59.000Z

    The feasibility of silicon nitride (Si[sub 3]N[sub 4]) use in internal combustion engines was studied by testing three different components for wear resistance and lower reciprocating mass. The information obtained from these preliminary spin rig and engine tests indicates several design changes are necessary to survive high-stress engine applications. The three silicon nitride components tested were valve spring retainers, tappet rollers, and fuel pump push rod ends. Garrett Ceramic Components' gas-pressure sinterable Si[sub 3]N[sub 4] (GS-44) was used to fabricate the above components. Components were final machined from densified blanks that had been green formed by isostatic pressing of GS-44 granules. Spin rig testing of the valve spring retainers indicated that these Si[sub 3]N[sub 4] components could survive at high RPM levels (9,500) when teamed with silicon nitride valves and lower spring tension than standard titanium components. Silicon nitride tappet rollers showed no wear on roller O.D. or I.D. surfaces, steel axles and lifters; however, due to the uncrowned design of these particular rollers the cam lobes indicated wear after spin rig testing. Fuel pump push rod ends were successful at reducing wear on the cam lobe and rod end when tested on spin rigs and in real-world race applications.

  2. Nitrogen enriched combustion of a natural gas internal combustion engine to reduce NO.sub.x emissions

    DOE Patents [OSTI]

    Biruduganti, Munidhar S. (Naperville, IL); Gupta, Sreenath Borra (Naperville, IL); Sekar, R. Raj (Naperville, IL); McConnell, Steven S. (Shorewood, IL)

    2008-11-25T23:59:59.000Z

    A method and system for reducing nitrous oxide emissions from an internal combustion engine. An input gas stream of natural gas includes a nitrogen gas enrichment which reduces nitrous oxide emissions. In addition ignition timing for gas combustion is advanced to improve FCE while maintaining lower nitrous oxide emissions.

  3. Emission control system and method for internal combustion engine

    SciTech Connect (OSTI)

    Owens, L.

    1980-06-03T23:59:59.000Z

    Fresh air is introduced into the exhaust pipe leading to the muffler for an internal combustion engine, while the air and exhaust gas mixture is cooled, not only in the muffler but also in a circuitous tube which extends from the muffler to the normal discharge or tail pipe and in which a special cooler may be installed. From the outlet of the special cooling tube, which faces forwardly, a portion of the air and exhaust gas mixture, now cooled, is led from a Y-connection to the intake tube of the air filter, so that the air and exhaust gas mixture will be introduced into the intake system prior to the carburetor. A rearwardly slanting arm of the Y-connection connects the front end of the special cooling pipe with the normal tail pipe. The carburetor has one or more air bleed tubes leading into the mixture passage at or below the butterfly valves, so that at idling speeds, a small amount of fresh air is introduced, irrespective of the position of the butterfly valves, to overcome any tendency for the engine, when idling, to cough or sputter due to the introduction of an air and exhaust gas mixture to the air filter intake.

  4. Modeling engine oil vaporization and transport of the oil vapor in the piston ring pack on internal combustion engines

    E-Print Network [OSTI]

    Cho, Yeunwoo, 1973-

    2004-01-01T23:59:59.000Z

    A model was developed to study engine oil vaporization and oil vapor transport in the piston ring pack of internal combustion engines. With the assumption that the multi-grade oil can be modeled as a compound of several ...

  5. Rotating electrical machines - Part 22: AC generators for reciprocating internal combustion (RIC) engine driven generating sets

    E-Print Network [OSTI]

    International Electrotechnical Commission. Geneva

    1996-01-01T23:59:59.000Z

    Establishes the principal characteristics of a.c. generators under the control of their voltage regulators when used for reciprocating internal combustion engine driven generating sets. Supplements the requirements given in IEC 60034-1.

  6. Effects of lubricant viscosity and surface texturing on ring-pack performance in internal combustion engines

    E-Print Network [OSTI]

    Takata, Rosalind (Rosalind Kazuko), 1978-

    2006-01-01T23:59:59.000Z

    The piston ring-pack contributes approximately 25% of the mechanical losses in an internal combustion engine. Both lubricant viscosity and surface texturing were investigated in an effort to reduce this ring-pack friction ...

  7. Numerical modeling of piston secondary motion and skirt lubrication in internal combustion engines

    E-Print Network [OSTI]

    McClure, Fiona

    2007-01-01T23:59:59.000Z

    Internal combustion engines dominate transportation of people and goods, contributing significantly to air pollution, and requiring large amounts of fossil fuels. With increasing public concern about the environment and ...

  8. Piston ring design for reduced friction in modern internal combustion engines

    E-Print Network [OSTI]

    Smedley, Grant, 1978-

    2004-01-01T23:59:59.000Z

    Piston ring friction losses account for approximately 20% of the total mechanical losses in modern internal combustion engines. A reduction in piston ring friction would therefore result in higher efficiency, lower fuel ...

  9. Microwave-Assisted Ignition for Improved Internal Combustion Engine Efficiency

    E-Print Network [OSTI]

    DeFilippo, Anthony Cesar

    2013-01-01T23:59:59.000Z

    Gas-Phase Combustion .41 Gas-Phase combustionfor traditional gas- phase combustion modeling are presented

  10. PHYSICAL REVIEW E 90, 022139 (2014) Enhanced efficiency of internal combustion engines by employing spinning gas

    E-Print Network [OSTI]

    transfer to the wall [5,6], optimal piston trajectory [7], and other nonideal effects in combusting gas [8PHYSICAL REVIEW E 90, 022139 (2014) Enhanced efficiency of internal combustion engines by employing spinning gas V. I. Geyko* and N. J. Fisch Department of Astrophysical Sciences, Princeton University

  11. Mitigating the effect of siloxanes on internal combustion engines using landfill gasses

    DOE Patents [OSTI]

    Besmann, Theodore M

    2014-01-21T23:59:59.000Z

    A waste gas combustion method that includes providing a combustible fuel source, in which the combustible fuel source is composed of at least methane and siloxane gas. A sodium source or magnesium source is mixed with the combustible fuel source. Combustion of the siloxane gas of the combustible fuel source produces a silicon containing product. The sodium source or magnesium source reacts with the silicon containing product to provide a sodium containing glass or sodium containing silicate, or a magnesium containing silicate. By producing the sodium containing glass or sodium containing silicate, or the magnesium containing silicate, or magnesium source for precipitating particulate silica instead of hard coating, the method may reduce or eliminate the formation of silica deposits within the combustion chamber and the exhaust components of the internal combustion engine.

  12. Internal combustion engine cylinder-to-cylinder balancing with balanced air-fuel ratios

    DOE Patents [OSTI]

    Harris, Ralph E.; Bourn, Gary D.; Smalley, Anthony J.

    2006-01-03T23:59:59.000Z

    A method of balancing combustion among cylinders of an internal combustion engine. For each cylinder, a normalized peak firing pressure is calculated as the ratio of its peak firing pressure to its combustion pressure. Each cylinder's normalized peak firing pressure is compared to a target value for normalized peak firing pressure. The fuel flow is adjusted to any cylinder whose normalized peak firing pressure is not substantially equal to the target value.

  13. Microwave-Assisted Ignition for Improved Internal Combustion Engine Efficiency

    E-Print Network [OSTI]

    DeFilippo, Anthony Cesar

    2013-01-01T23:59:59.000Z

    OH. Proceedings of the Combustion Institute: 32(2):3171-Thermochemical Database for Combustion. Argonne NationalMicrowave Radiation. Combustion Science and Technology:

  14. Sandia National Laboratories: predictive engine spray combustion...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    predictive engine spray combustion modeling Sandia Expands an International Collaboration and Web Database on Engine Fuel Spray Combustion Research On November 13, 2012, in CRF,...

  15. Side branch absorber for exhaust manifold of two-stroke internal combustion engine

    DOE Patents [OSTI]

    Harris, Ralph E. (San Antonio, TX); Broerman, III, Eugene L. (San Antonio, TX); Bourn, Gary D. (Laramie, WY)

    2011-01-11T23:59:59.000Z

    A method of improving scavenging operation of a two-stroke internal combustion engine. The exhaust pressure of the engine is analyzed to determine if there is a pulsation frequency. Acoustic modeling is used to design an absorber. An appropriately designed side branch absorber may be attached to the exhaust manifold.

  16. Power and efficiency limits for internal combustion engines via methods of finite-time thermodynamics

    E-Print Network [OSTI]

    Berry, R. Stephen

    Power and efficiency limits for internal combustion engines via methods of finite publication 17 June 1993) Analytical expressionsfor the upper bounds of power and efficiency of an internal and expensiveto compute and analyze.2If we are interestedin maximum power output or in maximum effi- ciency

  17. Traveling-Wave Thermoacoustic Engines With Internal Combustion

    DOE Patents [OSTI]

    Weiland, Nathan Thomas (Blacksburg, VA); Zinn, Ben T. (Atlanta, GA); Swift, Gregory William (Sante Fe, NM)

    2004-05-11T23:59:59.000Z

    Thermoacoustic devices are disclosed wherein, for some embodiments, a combustion zone provides heat to a regenerator using a mean flow of compressible fluid. In other embodiments, burning of a combustible mixture within the combustion zone is pulsed in phase with the acoustic pressure oscillations to increase acoustic power output. In an example embodiment, the combustion zone and the regenerator are thermally insulated from other components within the thermoacoustic device.

  18. Internal combustion engine with rotary valve assembly having variable intake valve timing

    DOE Patents [OSTI]

    Hansen, Craig N. (Eden Prairie, MN); Cross, Paul C. (Shorewood, MN)

    1995-01-01T23:59:59.000Z

    An internal combustion engine has rotary valves associated with movable shutters operable to vary the closing of intake air/fuel port sections to obtain peak volumetric efficiency over the entire range of speed of the engine. The shutters are moved automatically by a control mechanism that is responsive to the RPM of the engine. A foot-operated lever associated with the control mechanism is also used to move the shutters between their open and closed positions.

  19. Developing an approach utilizing local deterministic analysis to predict the cycle friction of the piston ring-pack in internal combustion engines

    E-Print Network [OSTI]

    Liu, Yang, S.M. Massachusetts Institute of Technology

    2013-01-01T23:59:59.000Z

    Nowadays, a rapid growth of internal combustion (IC) engines is considered to be a major contributor to energy crisis. About 20% of the mechanical loss in internal combustion engines directly goes to the friction loss ...

  20. Microwave-Assisted Ignition for Improved Internal Combustion Engine Efficiency

    E-Print Network [OSTI]

    DeFilippo, Anthony Cesar

    2013-01-01T23:59:59.000Z

    technology-chemistry-combustion- gasoline_surrogate CH3CO(+gasoline surrogate fuel includes 1550 species and 6000 reactions (Mehl, 2011). Simplified chemistry

  1. Comparison of the Fire Consequences of an Electric Vehicle and an Internal Combustion Engine Vehicle.

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    Comparison of the Fire Consequences of an Electric Vehicle and an Internal Combustion Engine key new technologies in the development of electric vehicles (EV), risks pertaining to them have at presenting the main results of these fire tests. KEYWORDS: electric vehicles, battery, fire, safety

  2. Comparisons between measurement and analysis of fluid motion in internal combustion engines

    SciTech Connect (OSTI)

    Witze, P.O. (ed.)

    1981-10-01T23:59:59.000Z

    The Engine Combustion Technology Project was created for the purpose of promoting the development of advanced piston engine concepts by the development of techniques to measure, analyze, and understand the combustion process. The technologies emphasized in the project include laser-based measurement techniques and large-scale computer simulations. Considerable progress has already been achieved by project participants in modeling engine air motion, fuel sprays, and engine combustion phenomena. This milestone report covers one part of that progress, summarizing the current capabilities of multi-dimensional computer codes being developed by the project to predict the behavior of turbulent air motion in an engine environment. Computed results are compared directly with experimental data in six different areas of importance to internal combustion engines: (1) Induction-generated ring-vortex structures; (2) Piston-induced vortex roll-up; (3) Behavior of turbulence during compression; (4) Decay of swirling flow during compression; (5) Decay of swirling flow in a constant volume engine simulator; (6) Exhaust-pipe flow. The computational procedures used include vortex dynamics, rapid distortion theory, and finite difference models employing two-equation and subgrid-scale turbulence models. Although the capability does not yet exist to predict the air motion in an engine from its geometric configuration alone, the results presented show that many flowfield sub-processes can be predicted given well-specified initial and boundary conditions.

  3. Internal combustion engine system having a power turbine with a broad efficiency range

    DOE Patents [OSTI]

    Whiting, Todd Mathew; Vuk, Carl Thomas

    2010-04-13T23:59:59.000Z

    An engine system incorporating an air breathing, reciprocating internal combustion engine having an inlet for air and an exhaust for products of combustion. A centripetal turbine receives products of the combustion and has a housing in which a turbine wheel is rotatable. The housing has first and second passages leading from the inlet to discrete, approximately 180.degree., portions of the circumference of the turbine wheel. The passages have fixed vanes adjacent the periphery of the turbine wheel and the angle of the vanes in one of the passages is different than those in the other so as to accommodate different power levels providing optimum approach angles between the gases passing the vanes and the blades of the turbine wheel. Flow through the passages is controlled by a flapper valve to direct it to one or the other or both passages depending upon the load factor for the engine.

  4. Module 3: Hydrogen Use in Internal Combustion Engines

    Broader source: Energy.gov [DOE]

    This course covers combustive properties, air/fuel ratio, types of pre-ignition problems, type of ignition systems, crankcase ventilation issues, thermal efficiency, emissions, power output, effect of mixing hydrogen

  5. Apparatus and method for operating internal combustion engines from variable mixtures of gaseous fuels

    DOE Patents [OSTI]

    Heffel, James W.; Scott, Paul B.

    2003-09-02T23:59:59.000Z

    An apparatus and method for utilizing any arbitrary mixture ratio of multiple fuel gases having differing combustion characteristics, such as natural gas and hydrogen gas, within an internal combustion engine. The gaseous fuel composition ratio is first sensed, such as by thermal conductivity, infrared signature, sound propagation speed, or equivalent mixture differentiation mechanisms and combinations thereof which are utilized as input(s) to a "multiple map" engine control module which modulates selected operating parameters of the engine, such as fuel injection and ignition timing, in response to the proportions of fuel gases available so that the engine operates correctly and at high efficiency irrespective of the gas mixture ratio being utilized. As a result, an engine configured according to the teachings of the present invention may be fueled from at least two different fuel sources without admixing constraints.

  6. Apparatus and method for operating internal combustion engines from variable mixtures of gaseous fuels

    DOE Patents [OSTI]

    Heffel, James W. (Lake Matthews, CA); Scott, Paul B. (Northridge, CA); Park, Chan Seung (Yorba Linda, CA)

    2011-11-01T23:59:59.000Z

    An apparatus and method for utilizing any arbitrary mixture ratio of multiple fuel gases having differing combustion characteristics, such as natural gas and hydrogen gas, within an internal combustion engine. The gaseous fuel composition ratio is first sensed, such as by thermal conductivity, infrared signature, sound propagation speed, or equivalent mixture differentiation mechanisms and combinations thereof which are utilized as input(s) to a "multiple map" engine control module which modulates selected operating parameters of the engine, such as fuel injection and ignition timing, in response to the proportions of fuel gases available so that the engine operates correctly and at high efficiency irrespective of the gas mixture ratio being utilized. As a result, an engine configured according to the teachings of the present invention may be fueled from at least two different fuel sources without admixing constraints.

  7. Vehicle Technologies Office Merit Review 2014: Internal Combustion...

    Broader source: Energy.gov (indexed) [DOE]

    4: Internal Combustion Engine Energy Retention (ICEER) Vehicle Technologies Office Merit Review 2014: Internal Combustion Engine Energy Retention (ICEER) Presentation given by...

  8. 1 Copyright 2012 by ASME Proceedings of the ASME 2012 Internal Combustion Engine Division Fall Technical Conference

    E-Print Network [OSTI]

    Daraio, Chiara

    1 Copyright 2012 by ASME Proceedings of the ASME 2012 Internal Combustion Engine Division Fall and Combustion Systems ETH Zrich Switzerland ABSTRACT The emission trade-off between soot and NOx is an issue and on the aftertreatment sides in order to optimize the engine emissions while maintaining the highest possible efficiency

  9. Method for reducing peak phase current and decreasing staring time for an internal combustion engine having an induction machine

    DOE Patents [OSTI]

    Amey, David L. (Birmingham, MI); Degner, Michael W. (Farmington Hills, MI)

    2002-01-01T23:59:59.000Z

    A method for reducing the starting time and reducing the peak phase currents for an internal combustion engine that is started using an induction machine starter/alternator. The starting time is reduced by pre-fluxing the induction machine and the peak phase currents are reduced by reducing the flux current command after a predetermined period of time has elapsed and concurrent to the application of the torque current command. The method of the present invention also provides a strategy for anticipating the start command for an internal combustion engine and determines a start strategy based on the start command and the operating state of the internal combustion engine.

  10. Internal combustion engines for alcohol motor fuels: a compilation of background technical information

    SciTech Connect (OSTI)

    None

    1980-11-01T23:59:59.000Z

    This compilation, a draft training manual containing technical background information on internal combustion engines and alcohol motor fuel technologies, is presented in 3 parts. The first is a compilation of facts from the state of the art on internal combustion engine fuels and their characteristics and requisites and provides an overview of fuel sources, fuels technology and future projections for availability and alternatives. Part two compiles facts about alcohol chemistry, alcohol identification, production, and use, examines ethanol as spirit and as fuel, and provides an overview of modern evaluation of alcohols as motor fuels and of the characteristics of alcohol fuels. The final section compiles cross references on the handling and combustion of fuels for I.C. engines, presents basic evaluations of events leading to the use of alcohols as motor fuels, reviews current applications of alcohols as motor fuels, describes the formulation of alcohol fuels for engines and engine and fuel handling hardware modifications for using alcohol fuels, and introduces the multifuel engines concept. (LCL)

  11. Wavelet Analysis of Cycle-to-Cycle Pressure Variations in an Internal Combustion Engine

    E-Print Network [OSTI]

    Asok K. Sen; Grzegorz Litak; Rodolfo Taccani; Robert Radu

    2006-07-19T23:59:59.000Z

    Using a continuous wavelet transform we have analyzed the cycle-to-cycle variations of pressure in an internal combustion engine. The time series of maximum pressure variations are examined for different loading and their wavelet power spectrum is calculated for each load. From the wavelet power spectrum we detected the presence of long, intermediate and short-term periodicities in the pressure signal. It is found that depending on the load, the long and intermediate-term periodicities may span several cycles, whereas the short-period oscillations tend to appear intermittently. Knowledge of these periodicities may be useful to develop effective control strategies for efficient combustion.

  12. H2 Internal Combustion Engine Research Towards 45% efficiency...

    Broader source: Energy.gov (indexed) [DOE]

    Funding in FY09: 500k Funding for FY10: 840k request Barriers Understand and optimize hydrogen direct injection engine operation Evaluate in-cylinder emissions reduction...

  13. Proceedings of ASME Internal Combustion Engine Division 2009 Fall Technical Conference September 27-30, 2009, Lucerne, Switzerland

    E-Print Network [OSTI]

    Daraio, Chiara

    September 27-30, 2009, Lucerne, Switzerland ICEF2009-14085 EXHAUST-STREAM AND IN-CYLINDER MEASUREMENTS Internal Combustion Engine Division Fall Technical Conference ICEF2009 September 20-24, 2009, Lucerne

  14. Maximizing Power Output in Homogeneous Charge Compression Ignition (HCCI) Engines and Enabling Effective Control of Combustion Timing

    E-Print Network [OSTI]

    Saxena, Samveg

    2011-01-01T23:59:59.000Z

    61. Heywood, J.B. , Internal Combustion Engine Fundamentals,69. Heywood, J.B. , Internal Combustion Engine Fundamentals,the oil pump of internal combustion engines conducted at

  15. http://rcc.its.psu.edu/hpc Simulation of In-Cylinder Processes in Internal Combustion Engines

    E-Print Network [OSTI]

    Bjrnstad, Ottar Nordal

    http://rcc.its.psu.edu/hpc Simulation of In-Cylinder Processes in Internal Combustion Engines in alternative energy sources and powertrain configurations. Nevertheless, total global oil use is projected into clean and efficient turbulent combustion remains imperative. A single grand challenge was identified

  16. Method and apparatus to clean the intake system of an internal combustion engine

    SciTech Connect (OSTI)

    Hein, S.R.; Clack, S.R.; Burrows, J.L.

    1991-02-05T23:59:59.000Z

    This patent describes an apparatus for cleaning the intake system of an internal combustion engine. It comprises: an air metering block having air passage means therein including an air outlet; an adapter means to connect the outlet of the air metering block to the intake system of the engine; air inlet means in the block communicating with the air passage means, an adjustment means within the air metering block for controlling the amount of air introduced into the air passage means; an injector means for connection to the intake system of an engine for injecting a solvent into the intake system of the engine; and a control means for controlling the injector means to vary the amount of solvent injected into the intake system of the engine by the injector means.

  17. ME 374C Combustion Engine Processes ABET EC2000 syllabus

    E-Print Network [OSTI]

    Ben-Yakar, Adela

    ME 374C Combustion Engine Processes Page 1 ABET EC2000 syllabus ME 374C Combustion Engine combustion engines, fuels, carburetion, combustion, exhaust emissions, knock, fuel injection, and factors to an appropriate major sequence in engineering. Textbook(s): Internal Combustion Engines and Automotive Engineering

  18. Modeling of reciprocating internal combustion engines for power generation and heat recovery

    SciTech Connect (OSTI)

    Yun, Kyung Tae; Cho, Heejin; Luck, Rogelio; Mago, Pedro J.

    2013-02-01T23:59:59.000Z

    This paper presents a power generation and heat recovery model for reciprocating internal combustion engines (ICEs). The purpose of the proposed model is to provide realistic estimates of performance/efficiency maps for both electrical power output and useful thermal output for various capacities of engines for use in a preliminary CHP design/simulation process. The proposed model will serve as an alternative to constant engine efficiencies or empirical efficiency curves commonly used in the current literature for simulations of CHP systems. The engine performance/efficiency calculation algorithm has been coded to a publicly distributed FORTRAN Dynamic Link Library (DLL), and a user friendly tool has been developed using Visual Basic programming. Simulation results using the proposed model are validated against manufacturers technical data.

  19. Plasmatron Fuel Reformer Development and Internal Combustion...

    Broader source: Energy.gov (indexed) [DOE]

    Plasmatron Fuel Reformer Development and Internal Combustion Engine Vehicle Applications* L. Bromberg MIT Plasma Science and Fusion Center Cambridge MA 02139 * Work supported by US...

  20. Analysis Of Exhaust Emission Of Internal Combustion Engine Using Biodiesel Blend

    E-Print Network [OSTI]

    Suvendu Mohanty; Dr. Om Prakash; Reasearch Scholar

    Abstract-The main purpose of this research is to study the effect of various blends of an environmental friendly alternative fuel such as biodiesel on the performance of diesel engine. In the Present investigation experimental work has been carried out to analyze the performance and exhaust emission characteristics of a single cylinder internal combustion engine fuelled with biodiesel blend at the different load. In this experiment the biodiesel which is use as a waste cooking oil (WCO) biodiesel.To investigation of the emission characteristics of the engine loads, which is supplied from the alternator. The experiment was carried out different load i.e. (NO LOAD, 100W 200W, 500W, 1000W, 1500W, 2000W, 2500W & 3000Watt) at engine speed 1500 rpm/min. A test was applied in which an engine was fuel with diesel and seven different blends of diesel. Biodiesel (B5, B10, B20, B40, B60, B80, B100) made from waste cooking oil and the results were analyzed.The emission of were measured carbon monoxide (CO), hydrocarbon carbon(HC), Oxides of nitrogen (NOX) and oxygen ().The experimental results will be compared with biodiesel blends and diesel. The biodiesel results of (WCO) in lower emission of hydro carbon (HC) and (CO) and increase emission of (NO2). This study showed that the results of exhaust emission of biodiesel blends were lower than the diesel fuel. Keyword- Biodiesel (WCO), diesel engine, gas analyzer, Exhaust emission. I.

  1. Cooling system of an internal combustion engine having a turbo-charger

    SciTech Connect (OSTI)

    Hasegawa, M.; Fukuda, T.

    1986-09-02T23:59:59.000Z

    A cooling system of an internal combustion engine is described having a turbo-charger, comprising a cooling water circulation passageway filled with cooling water for cooling the engine including at least a cylinder head cooling portion, a cooling water circulation passageway for cooling the turbo-charger including a turbo-charger cooling portion, and means for supplying a part of the engine cooling water to the turbo-charger cooling water ciruclation passageway and returning it from there to the engine cooling water cirulation passageway, characterized in that the turbo-charger cooling portion is positioned at the same level or higher than the cylinder head cooling portion of the engine, the turbo-charger cooling water circulation passageway includes a water volume positioned at a level higher than the turbo-charger cooling portion. The volume is connected to a cooling water reservoir tank via a pressure relief valve which is opened when pressure in the volume exceeds a predetermined value to supply cooling water to the volume.

  2. Stretch Efficiency for Combustion Engines: Exploiting New Combustion...

    Broader source: Energy.gov (indexed) [DOE]

    for Combustion Engines: Exploiting New Combustion Regimes Stretch Efficiency for Combustion Engines: Exploiting New Combustion Regimes 2013 DOE Hydrogen and Fuel Cells Program and...

  3. Variable oxygen/nitrogen enriched intake air system for internal combustion engine applications

    DOE Patents [OSTI]

    Poola, Ramesh B. (Woodridge, IL); Sekar, Ramanujam R. (Naperville, IL); Cole, Roger L. (Elmhurst, IL)

    1997-01-01T23:59:59.000Z

    An air supply control system for selectively supplying ambient air, oxygen enriched air and nitrogen enriched air to an intake of an internal combustion engine includes an air mixing chamber that is in fluid communication with the air intake. At least a portion of the ambient air flowing to the mixing chamber is selectively diverted through a secondary path that includes a selectively permeable air separating membrane device due a differential pressure established across the air separating membrane. The permeable membrane device separates a portion of the nitrogen in the ambient air so that oxygen enriched air (permeate) and nitrogen enriched air (retentate) are produced. The oxygen enriched air and the nitrogen enriched air can be selectively supplied to the mixing chamber or expelled to atmosphere. Alternatively, a portion of the nitrogen enriched air can be supplied through another control valve to a monatomic-nitrogen plasma generator device so that atomic nitrogen produced from the nitrogen enriched air can be then injected into the exhaust of the engine. The oxygen enriched air or the nitrogen enriched air becomes mixed with the ambient air in the mixing chamber and then the mixed air is supplied to the intake of the engine. As a result, the air being supplied to the intake of the engine can be regulated with respect to the concentration of oxygen and/or nitrogen.

  4. NREL Showcases Hydrogen Internal Combustion Engine Bus, Helps DOE Set Standards for Outreach (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-11-01T23:59:59.000Z

    This fact sheet describes the National Renewable Energy Laboratory's (NREL's) accomplishments in showcasing a Ford hydrogen-powered internal combustion engine (H2ICE) bus at The Taste of Colorado festival in Denver. NREL started using its U.S. Department of Energy-funded H2ICE bus in May 2010 as the primary shuttle vehicle for VIP visitors, members of the media, and new employees. In September 2010, NREL featured the bus at The Taste of Colorado. This was the first major outreach event for the bus. NREL's educational brochure, vehicle wrap designs, and outreach efforts serve as a model for other organizations with DOE-funded H2ICE buses. Work was performed by the Hydrogen Education Group and Market Transformation Group in the Hydrogen Technologies and Systems Center.

  5. Electric Vehicles Since the invention of the internal combustion engine in 1807 petrol and diesel vehicles have become a

    E-Print Network [OSTI]

    Hickman, Mark

    Electric Vehicles Since the invention of the internal combustion engine in 1807 petrol and diesel and adopted. Electric vehicles (EVs) in particular are leading the charge, with car manufacturers stepping up these vehicles; the current market for electric vehicles; the results from existing pilot project; as well

  6. Evaluation and silicon nitride internal combustion engine components. Final report, Phase I

    SciTech Connect (OSTI)

    Voldrich, W. [Allied-Signal Aerospace Co., Torrance, CA (United States). Garrett Ceramic Components Div.

    1992-04-01T23:59:59.000Z

    The feasibility of silicon nitride (Si{sub 3}N{sub 4}) use in internal combustion engines was studied by testing three different components for wear resistance and lower reciprocating mass. The information obtained from these preliminary spin rig and engine tests indicates several design changes are necessary to survive high-stress engine applications. The three silicon nitride components tested were valve spring retainers, tappet rollers, and fuel pump push rod ends. Garrett Ceramic Components` gas-pressure sinterable Si{sub 3}N{sub 4} (GS-44) was used to fabricate the above components. Components were final machined from densified blanks that had been green formed by isostatic pressing of GS-44 granules. Spin rig testing of the valve spring retainers indicated that these Si{sub 3}N{sub 4} components could survive at high RPM levels (9,500) when teamed with silicon nitride valves and lower spring tension than standard titanium components. Silicon nitride tappet rollers showed no wear on roller O.D. or I.D. surfaces, steel axles and lifters; however, due to the uncrowned design of these particular rollers the cam lobes indicated wear after spin rig testing. Fuel pump push rod ends were successful at reducing wear on the cam lobe and rod end when tested on spin rigs and in real-world race applications.

  7. Analysis of heat release dynamics in an internal combustion engine using multifractals and wavelets

    SciTech Connect (OSTI)

    Sen, Asok K [Indiana University; Litak, Grzegorz [Technical University of Lublin; FINNEY, Charles E A [ORNL; Daw, C Stuart [ORNL; Wagner, Robert M [ORNL

    2010-01-01T23:59:59.000Z

    In this paper we analyze data from previously reported experimental measurements of cycle-to-cycle combustion variations in a lean-fueled, multi-cylinder spark-ignition (SI) engine. We characterize the changes in the observed combustion dynamics with as-fed fuel air ratio using conventional histograms and statistical moments, and we further characterize the shifts in combustion complexity in terms of multifractals and wavelet decomposition. Changes in the conventional statistics and multifractal structure indicate trends with fuel air ratio that parallel earlier reported observations. Wavelet decompositions reveal persistent, non-stochastic oscillation modes at higher fuel air ratios that were not obvious in previous analyses. Recognition of these long-time-scale, non-stochastic oscillations is expected to be useful for improving modelling and control of engine combustion variations and multi-cylinder balancing.

  8. ADVANCED INTERNAL COMBUSTION ELECTRICAL GENERATOR Peter Van Blarigan

    E-Print Network [OSTI]

    Livermore, CA 94550 Abstract In this paper, research on hydrogen internal combustion engines is discussed with industrial partners. The electrical generator is based on developed internal combustion reciprocating engine. In light of these factors, the capabilities of internal combustion engines have been reviewed. In regards

  9. Modeling the performance of the piston ring-pack with consideration of non-axisymmetric characteristics of the power cylinder system in internal combustion engines

    E-Print Network [OSTI]

    Liu, Liang, 1971-

    2005-01-01T23:59:59.000Z

    The performance of the piston ring-pack is directly associated with the friction, oil consumption, wear, and blow-by in internal combustion engines. Because of non-axisymmetric characteristics of the power cylinder system, ...

  10. Vehicle Technologies Office: 2014 Advanced Combustion Engine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Combustion Engine Annual Progress Report Vehicle Technologies Office: 2014 Advanced Combustion Engine Annual Progress Report The Advanced Combustion Engine research and...

  11. Method of combustion for dual fuel engine

    DOE Patents [OSTI]

    Hsu, B.D.; Confer, G.L.; Zujing Shen; Hapeman, M.J.; Flynn, P.L.

    1993-12-21T23:59:59.000Z

    Apparatus and a method of introducing a primary fuel, which may be a coal water slurry, and a high combustion auxiliary fuel, which may be a conventional diesel oil, into an internal combustion diesel engine comprises detecting the load conditions of the engine, determining the amount of time prior to the top dead center position of the piston to inject the main fuel into the combustion chamber, and determining the relationship of the timing of the injection of the auxiliary fuel into the combustion chamber to achieve a predetermined specific fuel consumption, a predetermined combustion efficiency, and a predetermined peak cylinder firing pressure. 19 figures.

  12. Method of combustion for dual fuel engine

    DOE Patents [OSTI]

    Hsu, Bertrand D. (Erie, PA); Confer, Gregory L. (Erie, PA); Shen, Zujing (Erie, PA); Hapeman, Martin J. (Edinboro, PA); Flynn, Paul L. (Fairview, PA)

    1993-12-21T23:59:59.000Z

    Apparatus and a method of introducing a primary fuel, which may be a coal water slutty, and a high combustion auxiliary fuel, which may be a conventional diesel oil, into an internal combustion diesel engine comprises detecting the load conditions of the engine, determining the amount of time prior to the top dead center position of the piston to inject the main fuel into the combustion chamber, and determining the relationship of the timing of the injection of the auxiliary fuel into the combustion chamber to achieve a predetermined specific fuel consumption, a predetermined combustion efficiency, and a predetermined peak cylinder firing pressure.

  13. Engine Valve Actuation For Combustion Enhancement

    DOE Patents [OSTI]

    Reitz, Rolf Deneys (Madison, WI); Rutland, Christopher J. (Madison, WI); Jhavar, Rahul (Madison, WI)

    2004-05-18T23:59:59.000Z

    A combustion chamber valve, such as an intake valve or an exhaust valve, is briefly opened during the compression and/or power strokes of a 4-stroke combustion cycle in an internal combustion engine (in particular, a diesel or CI engine). The brief opening may (1) enhance mixing withing the combustion chamber, allowing more complete oxidation of particulates to decrease engine emissions; and/or may (2) delay ignition until a more desirable time, potentially allowing a means of timing ignition in otherwise difficult-to-control conditions, e.g., in HCCI (Homogeneous Charge Compression Ignition) conditions.

  14. Engine valve actuation for combustion enhancement

    DOE Patents [OSTI]

    Reitz, Rolf Deneys (Madison, WI); Rutland, Christopher J. (Madison, WI); Jhavar, Rahul (Madison, WI)

    2008-03-04T23:59:59.000Z

    A combustion chamber valve, such as an intake valve or an exhaust valve, is briefly opened during the compression and/or power strokes of a 4-strokes combustion cycle in an internal combustion engine (in particular, a diesel or CI engine). The brief opening may (1) enhance mixing withing the combustion chamber, allowing more complete oxidation of particulates to decrease engine emissions; and/or may (2) delay ignition until a more desirable time, potentially allowing a means of timing ignition in otherwise difficult-to-control conditions, e.g., in HCCI (Homogeneous Charge Compression Ignition) conditions.

  15. Stretch Efficiency for Combustion Engines: Exploiting New Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Washington D.C. ace15daw.pdf More Documents & Publications Stretch Efficiency for Combustion Engines: Exploiting New Combustion Regimes Stretch Efficiency for Combustion...

  16. Method and system for controlled combustion engines

    DOE Patents [OSTI]

    Oppenheim, A. K. (Berkeley, CA)

    1990-01-01T23:59:59.000Z

    A system for controlling combustion in internal combustion engines of both the Diesel or Otto type, which relies on establishing fluid dynamic conditions and structures wherein fuel and air are entrained, mixed and caused to be ignited in the interior of a multiplicity of eddies, and where these structures are caused to sequentially fill the headspace of the cylinders.

  17. Catalytic Methane Reduction in the Exhaust Gas of Combustion Engines

    E-Print Network [OSTI]

    Dunin-Borkowski, Rafal E.

    Catalytic Methane Reduction in the Exhaust Gas of Combustion Engines Peter Mauermann1,* , Michael Dornseiffer6 , Frank Amkreutz6 1 Institute for Combustion Engines , RWTH Aachen University, Schinkelstr. 8, D of the hydrocarbon exhaust of internal combustion engines. In contrast to other gaseous hydrocarbons, significant

  18. COMBUSTION RESEARCH PROGRAM. CHAPTER FROM ENERGY & ENVIRONMENT ANNUAL REPORT 1977

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01T23:59:59.000Z

    of Combustion in Internal Combustion Engines," Paper 750890,clean burning internal combustion engines. Another importantthat occur in an internal combustion engine. Our goal is the

  19. PRODUCTION, STORAGE AND PROPERTIES OF HYDROGEN AS INTERNAL COMBUSTION ENGINE FUEL: A CRITICAL REVIEW

    E-Print Network [OSTI]

    In the age of ever increasing energy demand, hydrogen may play a major role as fuel. Hydrogen can be used as a transportation fuel, whereas neither nuclear nor solar energy can be used directly. The blends of hydrogen and ethanol have been used as alternative renewable fuels in a carbureted spark ignition engine. Hydrogen has very special properties as a transportation fuel, including a rapid burning speed, a high effective octane number, and no toxicity or ozone-forming potential. A stoichiometric hydrogenair mixture has very low minimum ignition energy of 0.02 MJ. Combustion product of hydrogen is clean, which consists of water and a little amount of nitrogen oxides (NOx). The main drawbacks of using hydrogen as a transportation fuel are huge on-board storage tanks. Hydrogen stores approximately 2.6 times more energy per unit mass than gasoline. The disadvantage is that it needs an estimated 4 times more volume than gasoline to store that energy. The production and the storage of hydrogen fuel are not yet fully standardized. The paper reviews the different production techniques as well as storage systems of hydrogen to be used as IC engine fuel. The desirable and undesirable properties of hydrogen as IC engine fuels have also been discussed.

  20. Fuels for Advanced Combustion Engines

    Broader source: Energy.gov (indexed) [DOE]

    Fuels for Advanced Combustion Engines Bradley T. Zigler National Renewable Energy Laboratory 15 May 2012 Project ID FT002 This presentation does not contain any proprietary,...

  1. Chaotic Combustion in Spark Ignition Engines

    E-Print Network [OSTI]

    M. Wendeker; J. Czarnigowski; G. Litak; K. Szabelski

    2002-12-27T23:59:59.000Z

    We analyse the combustion process in a spark ignition engine using the experimental data of an internal pressure during the combustion process and show that the system can be driven to chaotic behaviour. Our conclusion is based on the observation of unperiodicity in the time series, suitable stroboscopic maps and a complex structure of a reconstructed strange attractor. This analysis can explain that in some circumstances the level of noise in spark ignition engines increases considerably due to nonlinear dynamics of a combustion process.

  2. ENGINEERING INTERNATIONAL

    E-Print Network [OSTI]

    University of Technology, Sydney

    COURSE GUIDE 2013 UTS: ENGINEERING INTERNATIONAL UNDERGRADUATE w w w.eng.uts.edu.au #12;2 / ENGINEERING IN AUSTRALIA Internationally, Australian universities have a reputation for high quality research developed close links with many international institutions, particularly in Asia. ENGINEERING IN SYDNEY

  3. In this research project I will design and build a demo model of Professor Sun's patented camless valve actuator device. Modern internal combustion engines rely on valves in each

    E-Print Network [OSTI]

    Minnesota, University of

    valve actuator device. Modern internal combustion engines rely on valves in each cylinder to open, they can be programmed to allow much more efficiency in the combustion cycle at any engine speed, with any the engine and instead replaces it with electronic actuators that can be precisely controlled by the onboard

  4. Thermodynamic Advantages of Low Temperature Combustion Engines...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advantages of Low Temperature Combustion Engines Including the Use of Low Heat Rejection Concepts Thermodynamic Advantages of Low Temperature Combustion Engines Including the Use...

  5. Improved Solvers for Advanced Engine Combustion Simulation |...

    Broader source: Energy.gov (indexed) [DOE]

    Improved Solvers for Advanced Engine Combustion Simulation Improved Solvers for Advanced Engine Combustion Simulation 2013 DOE Hydrogen and Fuel Cells Program and Vehicle...

  6. Progress of the Engine Combustion Network

    Broader source: Energy.gov (indexed) [DOE]

    the Progress of the Engine Combustion Network Engine Combustion Network Lyle M. Pickett Sandia National Laboratories Sponsor: DOE Office of Vehicle Technologies Program Manager:...

  7. Optimization of Advanced Diesel Engine Combustion Strategies...

    Broader source: Energy.gov (indexed) [DOE]

    Optimization of Advanced Diesel Engine Combustion Strategies Optimization of Advanced Diesel Engine Combustion Strategies 2010 DOE Vehicle Technologies and Hydrogen Programs Annual...

  8. Maximizing Power Output in Homogeneous Charge Compression Ignition (HCCI) Engines and Enabling Effective Control of Combustion Timing

    E-Print Network [OSTI]

    Saxena, Samveg

    2011-01-01T23:59:59.000Z

    vane pump for the oil pump of internal combustion engines speed control of oil pumps in internal combustion engines oil and coolant are at lower temperatures, and heat sources from adjacent cylinders undergoing combustion

  9. Performance, Efficiency, and Emissions Characterization of Reciprocating Internal Combustion Engines Fueled with Hydrogen/Natural Gas Blends

    SciTech Connect (OSTI)

    Kirby S. Chapman; Amar Patil

    2007-06-30T23:59:59.000Z

    Hydrogen is an attractive fuel source not only because it is abundant and renewable but also because it produces almost zero regulated emissions. Internal combustion engines fueled by compressed natural gas (CNG) are operated throughout a variety of industries in a number of mobile and stationary applications. While CNG engines offer many advantages over conventional gasoline and diesel combustion engines, CNG engine performance can be substantially improved in the lean operating region. Lean operation has a number of benefits, the most notable of which is reduced emissions. However, the extremely low flame propagation velocities of CNG greatly restrict the lean operating limits of CNG engines. Hydrogen, however, has a high flame speed and a wide operating limit that extends into the lean region. The addition of hydrogen to a CNG engine makes it a viable and economical method to significantly extend the lean operating limit and thereby improve performance and reduce emissions. Drawbacks of hydrogen as a fuel source, however, include lower power density due to a lower heating value per unit volume as compared to CNG, and susceptibility to pre-ignition and engine knock due to wide flammability limits and low minimum ignition energy. Combining hydrogen with CNG, however, overcomes the drawbacks inherent in each fuel type. Objectives of the current study were to evaluate the feasibility of using blends of hydrogen and natural gas as a fuel for conventional natural gas engines. The experiment and data analysis included evaluation of engine performance, efficiency, and emissions along with detailed in-cylinder measurements of key physical parameters. This provided a detailed knowledge base of the impact of using hydrogen/natural gas blends. A four-stroke, 4.2 L, V-6 naturally aspirated natural gas engine coupled to an eddy current dynamometer was used to measure the impact of hydrogen/natural gas blends on performance, thermodynamic efficiency and exhaust gas emissions in a reciprocating four stroke cycle engine. The test matrix varied engine load and air-to-fuel ratio at throttle openings of 50% and 100% at equivalence ratios of 1.00 and 0.90 for hydrogen percentages of 10%, 20% and 30% by volume. In addition, tests were performed at 100% throttle opening, with an equivalence ratio of 0.98 and a hydrogen blend of 20% to further investigate CO emission variations. Data analysis indicated that the use of hydrogen/natural gas fuel blend penalizes the engine operation with a 1.5 to 2.0% decrease in torque, but provided up to a 36% reduction in CO, a 30% reduction in NOX, and a 5% increase in brake thermal efficiency. These results concur with previous results published in the open literature. Further reduction in emissions can be obtained by retarding the ignition timing.

  10. Using Biofuel Tracers to Study Alternative Combustion Regimes

    E-Print Network [OSTI]

    Mack, John Hunter; Flowers, Daniel L.; Buchholz, Bruce A.; Dibble, Robert W.

    2006-01-01T23:59:59.000Z

    1979. J.B. Heywood, Internal Combustion Engine Fundamentals.Introduction to Internal Combustion Engines (3rd Edition).Coefficient in the Internal Combustion Engine, SAE Paper

  11. Cold start fuel management of port-fuel-injected internal combustion engines

    E-Print Network [OSTI]

    Cuseo, James M. (James Michael)

    2005-01-01T23:59:59.000Z

    The purpose of this study is to investigate how changes in fueling strategy in the second cycle of engine operation influence the delivered charge fuel mass and engine out hydrocarbon (EOHC) emissions in that and subsequent ...

  12. Hydrogen engine and combustion control process

    DOE Patents [OSTI]

    Swain, Michael R. (Coral Gables, FL); Swain, Matthew N. (Miami, FL)

    1997-01-01T23:59:59.000Z

    Hydrogen engine with controlled combustion comprises suction means connected to the crankcase reducing or precluding flow of lubricating oil or associated gases into the combustion chamber.

  13. Optimization of Advanced Diesel Engine Combustion Strategies

    Broader source: Energy.gov (indexed) [DOE]

    - UW-ERC 1 "University Research in Advanced Combustion and Emissions Control" Optimization of Advanced Diesel Engine Combustion Strategies Profs. Rolf Reitz, D. Foster, J....

  14. A thermodynamic analysis of the rotary-vee internal combustion engine

    E-Print Network [OSTI]

    Bailey, Stephen Glenn

    1994-01-01T23:59:59.000Z

    , gives rotary engines some of their appeal. As pointed out by Wankel [7], there are literally hundreds of rotary variations that have been proposed, patented, and, to a very limited extent, produced. The Wankel engine was the first positive... that are in rotary motion. The earliest patents concerning this machine in the United States dates back to 1917, with patents related to this design issued every decade since. Development of this engine has included periods of inactivity, and has not seen any...

  15. Proceedings of ASME 2012 Internal Combustion Engine Division Spring Technical Conference May 69, 2012, Torino, Piemonte, Italy

    E-Print Network [OSTI]

    Stefanopoulou, Anna

    - CYLINDER HCCI ENGINE WITH HIGH RESIDUALS Erik Hellstr¨om, Jacob Larimore, and Anna Stefanopoulou University ABSTRACT Cyclic variability (CV) in lean HCCI combustion at the lim- its of operation is a known phenomenon of lean HCCI operation with negative valve overlap (nvo). A com- bustion analysis method that estimates

  16. A hybrid 2-zone/WAVE engine combustion model for simulating combustion instabilities during dilute operation

    SciTech Connect (OSTI)

    Edwards, Kevin Dean [ORNL; Wagner, Robert M [ORNL; Chakravarthy, Veerathu K [ORNL; Daw, C Stuart [ORNL; Green Jr, Johney Boyd [ORNL

    2006-01-01T23:59:59.000Z

    Internal combustion engines are operated under conditions of high exhaust gas recirculation (EGR) to reduce NO x emissions and promote enhanced combustion modes such as HCCI. However, high EGR under certain conditions also promotes nonlinear feedback between cycles, leading to the development of combustion instabilities and cyclic variability. We employ a two-zone phenomenological combustion model to simulate the onset of combustion instabilities under highly dilute conditions and to illustrate the impact of these instabilities on emissions and fuel efficiency. The two-zone in-cylinder combustion model is coupled to a WAVE engine-simulation code through a Simulink interface, allowing rapid simulation of several hundred successive engine cycles with many external engine parametric effects included. We demonstrate how this hybrid model can be used to study strategies for adaptive feedback control to reduce cyclic combustion instabilities and, thus, preserve fuel efficiency and reduce emissions.

  17. Vehicle Technologies Office Merit Review 2014: Internal Combustion Engine Energy Retention (ICEER)

    Broader source: Energy.gov [DOE]

    Presentation given by National Renewable Energy Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Internal...

  18. 1 Copyright 2007 by ASME A LEARNING ALGORITHM FOR OPTIMAL INTERNAL COMBUSTION

    E-Print Network [OSTI]

    Papalambros, Panos

    1 Copyright 2007 by ASME A LEARNING ALGORITHM FOR OPTIMAL INTERNAL COMBUSTION ENGINE CALIBRATION-4256, Email: amaliko@umich.edu ABSTRACT Advanced internal combustion engine technologies have increased combustion engine calibration, fuel economy 1. INTRODUCTION The growing requests for better performance

  19. Investigation of spark discharge processes and ignition systems for spark-ignited internal combustion engines

    E-Print Network [OSTI]

    Khare, Yogesh Jayant

    2000-01-01T23:59:59.000Z

    includes an evaluation of the various types of conventional as well as high-energy ignition systems for lean burn engines. An experimental ignition system was constructed to determine the effect of ignition energy, spark plug electrode geometry and gas...

  20. Integrated Advanced Reciprocating Internal Combustion Engine System for Increased Utilization of Gaseous Opportunity Fuels

    SciTech Connect (OSTI)

    Pratapas, John; Zelepouga, Serguei; Gnatenko, Vitaliy; Saveliev, Alexei; Jangale, Vilas; Li, Hailin; Getz, Timothy; Mather, Daniel

    2013-08-31T23:59:59.000Z

    The project is addressing barriers to or opportunities for increasing distributed generation (DG)/combined heat and power (CHP) use in industrial applications using renewable/opportunity fuels. This project brings together novel gas quality sensor (GQS) technology with engine management for opportunity fuels such as landfill gas, digester gas and coal bed methane. By providing the capability for near real-time monitoring of the composition of these opportunity fuels, the GQS output can be used to improve the performance, increase efficiency, raise system reliability, and provide improved project economics and reduced emissions for engines used in distributed generation and combined heat and power.

  1. Combustion Timing Control of Natural Gas HCCI Engines Using Physics-Based Modeling and LQR Controller

    E-Print Network [OSTI]

    Abdelgawad, Marwa

    2012-07-16T23:59:59.000Z

    Homogeneous Charge Compression Ignition (HCCI) Engines hold promises of being the next generation of internal combustion engines due to their ability to produce high thermal efficiencies and low emission levels. HCCI combustion is achieved through...

  2. Distributed ignition method and apparatus for a combustion engine

    DOE Patents [OSTI]

    Willi, Martin L.; Bailey, Brett M.; Fiveland, Scott B.; Gong, Weidong

    2006-03-07T23:59:59.000Z

    A method and apparatus for operating an internal combustion engine is provided. The method comprises the steps of introducing a primary fuel into a main combustion chamber of the engine, introducing a pilot fuel into the main combustion chamber of the engine, determining an operating load of the engine, determining a desired spark plug ignition timing based on the engine operating load, and igniting the primary fuel and pilot fuel with a spark plug at the desired spark plug ignition timing. The method is characterized in that the octane number of the pilot fuel is lower than the octane number of the primary fuel.

  3. Estimation of a Noise Level Using Coarse-Grained Entropy of Experimental Time Series of Internal Pressure in a Combustion Engine

    E-Print Network [OSTI]

    Grzegorz Litak; Rodolfo Taccani; Krzysztof Urbanowicz; Janusz A. Holyst; Miroslaw Wendeker; Alessandro Giadrossi

    2004-05-22T23:59:59.000Z

    We report our results on non-periodic experimental time series of pressure in a single cylinder spark ignition engine. The experiments were performed for different levels of loading. We estimate the noise level in internal pressure calculating the coarse-grained entropy from variations of maximal pressures in successive cycles. The results show that the dynamics of the combustion is a nonlinear multidimensional process mediated by noise. Our results show that so defined level of noise in internal pressure is not monotonous function of loading.

  4. Staged combustion with piston engine and turbine engine supercharger

    DOE Patents [OSTI]

    Fischer, Larry E.; Anderson, Brian L.; O'Brien, Kevin C.

    2011-11-01T23:59:59.000Z

    A combustion engine method and system provides increased fuel efficiency and reduces polluting exhaust emissions by burning fuel in a two-stage combustion system. Fuel is combusted in a piston engine in a first stage producing piston engine exhaust gases. Fuel contained in the piston engine exhaust gases is combusted in a second stage turbine engine. Turbine engine exhaust gases are used to supercharge the piston engine.

  5. Staged combustion with piston engine and turbine engine supercharger

    DOE Patents [OSTI]

    Fischer, Larry E. (Los Gatos, CA); Anderson, Brian L. (Lodi, CA); O'Brien, Kevin C. (San Ramon, CA)

    2006-05-09T23:59:59.000Z

    A combustion engine method and system provides increased fuel efficiency and reduces polluting exhaust emissions by burning fuel in a two-stage combustion system. Fuel is combusted in a piston engine in a first stage producing piston engine exhaust gases. Fuel contained in the piston engine exhaust gases is combusted in a second stage turbine engine. Turbine engine exhaust gases are used to supercharge the piston engine.

  6. Evaluation of Sialon internal combustion engine components and fabrication of several ceramic components for automotive applications

    SciTech Connect (OSTI)

    McMurtry, C.H.; Ten Eyck, M.O.

    1992-10-01T23:59:59.000Z

    Fabrication development work was carried out on a push-rod tip having a stepped OD design and a 90[degree] shoulder in the transition area. Spray-dried Sialon premix was used in dry press tooling, and components were densified to about 98% of theoretical density using pressureless sintering conditions. Upon evaluation of the sintered components, it was found that afl components showed defects in the transition area. Modifications of the pressing parameters, incorporation of a 45[degree] angle in the shoulder area, and the use of tailored premix did not lead to the fabrication of defect-free parts. From these observations, it was concluded that the original part design could not easily be adapted to high-volume ceramic manufacturing methods. Subsequently, a modification to the desip was implemented. An SiC material with improved toughness (Hexoloy SX) was used for fabricating several test components with a closely machined, straight OD design. Pressureless-sintered and post-hot isostatically pressed (HIPed) Hexoloy SX components were supplied to The American Ceramic Engine Company (ACE) for assembly and testing. Fuel pump push-rod assemblies with Hemoloy SX tips were prepared by ACE, but no testing has been carried out to date.

  7. Evaluation of Sialon internal combustion engine components and fabrication of several ceramic components for automotive applications

    SciTech Connect (OSTI)

    McMurtry, C.H.; Ten Eyck, M.O.

    1992-10-01T23:59:59.000Z

    Fabrication development work was carried out on a push-rod tip having a stepped OD design and a 90{degree} shoulder in the transition area. Spray-dried Sialon premix was used in dry press tooling, and components were densified to about 98% of theoretical density using pressureless sintering conditions. Upon evaluation of the sintered components, it was found that afl components showed defects in the transition area. Modifications of the pressing parameters, incorporation of a 45{degree} angle in the shoulder area, and the use of tailored premix did not lead to the fabrication of defect-free parts. From these observations, it was concluded that the original part design could not easily be adapted to high-volume ceramic manufacturing methods. Subsequently, a modification to the desip was implemented. An SiC material with improved toughness (Hexoloy SX) was used for fabricating several test components with a closely machined, straight OD design. Pressureless-sintered and post-hot isostatically pressed (HIPed) Hexoloy SX components were supplied to The American Ceramic Engine Company (ACE) for assembly and testing. Fuel pump push-rod assemblies with Hemoloy SX tips were prepared by ACE, but no testing has been carried out to date.

  8. HCCI engine control and optimization

    E-Print Network [OSTI]

    Killingsworth, Nicholas J.

    2007-01-01T23:59:59.000Z

    102 xiv LIST OF TABLES Table 1.1: Internal Combustion Engine33] J. B. Heywood. Internal Combustion Engine Fundamentals.phenomena in internal combustion engines and rapid

  9. Using Biofuel Tracers to Study Alternative Combustion Regimes

    E-Print Network [OSTI]

    Mack, John Hunter; Flowers, Daniel L.; Buchholz, Bruce A.; Dibble, Robert W.

    2006-01-01T23:59:59.000Z

    1979. J.B. Heywood, Internal Combustion Engine Fundamentals.Ignition Engine with Optimal Combustion Control. US PatentIntroduction to Internal Combustion Engines (3rd Edition).

  10. Sandia National Laboratories: Engine Combustion Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Engine Combustion Network Lyle Pickett Named a Society of Automotive Engineers Fellow On October 22, 2013, in CRF, Energy, Facilities, News, News & Events, Transportation Energy...

  11. High-Efficiency Clean Combustion Engine Designs for Compression...

    Energy Savers [EERE]

    High-Efficiency Clean Combustion Engine Designs for Compression Ignition Engines High-Efficiency Clean Combustion Engine Designs for Compression Ignition Engines Presentation from...

  12. Engine Combustion Network Experimental Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Maintained by the Engine Combustion Department of Sandia National Laboratories, data currently available on the website includes reacting and non-reacting sprays in a constant-volume chamber at conditions typical of diesel combustion. The data are useful for model development and validation because of the well-defined boundary conditions and the wide range of conditions employed. A search utility displays data based on experimental conditions such as ambient temperature, ambient density, injection pressure, nozzle size, fuel, etc. Experiment-related visualizations are also available. The search utility for experimental data is located at http://public.ca.sandia.gov/ecn/cvdata/frameset.html (Specialized Interface)

  13. Sandia Energy - Engine Combustion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear Press ReleasesInAppliedEnergy Storage Components andEngine

  14. CYCLE-BY-CYCLE COMBUSTION VARIATIONS IN SPARK-IGNITED ENGINES Engineering Technology Division, Oak Ridge National Laboratory, Oak Ridge TN 37831-8088 USA

    E-Print Network [OSTI]

    Tennessee, University of

    -2053 USA ABSTRACT Under constant nominal operating conditions, internal combustion engines can exhibit sub Introduction Under constant nominal operating conditions, internal combustion engines can exhibit substantialCYCLE-BY-CYCLE COMBUSTION VARIATIONS IN SPARK-IGNITED ENGINES C.S. DAW Engineering Technology

  15. Effect of market fuel variation and cetane improvers on CAI combustion in a GDI engine

    E-Print Network [OSTI]

    Cedrone, Kevin David

    2010-01-01T23:59:59.000Z

    There is continued interest in improving the fuel conversion efficiency of internal combustion engines and simultaneously reducing their emissions. One promising technology is that of Controlled Auto Ignition (CAI) combustion. ...

  16. Modeling of High Efficiency Clean Combustion Engines

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lawrence Livermore National Laboratory Modeling of high efficiency clean combustion engines Daniel Flowers Salvador Aceves Tom Piggott Daniel Flowers, Salvador Aceves, Tom Piggott,...

  17. Chemical Kinetic Models for Advanced Engine Combustion

    Broader source: Energy.gov (indexed) [DOE]

    Models for Advanced Engine Combustion William J. Pitz (PI) Marco Mehl, Charles K. Westbrook Lawrence Livermore National Laboratory June 17, 2014 DOE National Laboratory Advanced...

  18. Fuels For Advanced Combustion Engines (FACE)

    Broader source: Energy.gov (indexed) [DOE]

    Fuels For Advanced Combustion Engines (FACE) Presented by: Scott Sluder, Ron Graves, John Storey Oak Ridge National Laboratory Brad Zigler, Wendy Clark National Renewable Energy...

  19. Multicylinder Diesel Engine for Low Temperature Combustion Operation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Low Temperature Combustion Operation Multicylinder Diesel Engine for Low Temperature Combustion Operation Fuel injection strategies to extend low temperature combustion...

  20. HCCI engine control and optimization

    E-Print Network [OSTI]

    Killingsworth, Nicholas J.

    2007-01-01T23:59:59.000Z

    102 xiv LIST OF TABLES Table 1.1: Internal Combustion Enginephenomena in internal combustion engines and rapid33] J. B. Heywood. Internal Combustion Engine Fundamentals.

  1. Combustion engineering issues for solid fuel systems

    SciTech Connect (OSTI)

    Bruce Miller; David Tillman [Pennsylvania State University, University Park, PA (United States). Energy Institute

    2008-05-15T23:59:59.000Z

    The book combines modeling, policy/regulation and fuel properties with cutting edge breakthroughs in solid fuel combustion for electricity generation and industrial applications. This book provides real-life experiences and tips for addressing the various technical, operational and regulatory issues that are associated with the use of fuels. Contents are: Introduction; Coal Characteristics; Characteristics of Alternative Fuels; Characteristics and Behavior of Inorganic Constituents; Fuel Blending for Combustion Management; Fuel Preparation; Conventional Firing Systems; Fluidized-Bed Firing Systems; Post-Combustion Emissions Control; Some Computer Applications for Combustion Engineering with Solid Fuels; Gasification; Policy Considerations for Combustion Engineering.

  2. ENHANCED IGNITION FOR I.C. ENGINES WITH PREMIXED CHARGE

    E-Print Network [OSTI]

    Dale, J.D.

    2013-01-01T23:59:59.000Z

    Igniter for Internal Combustion Engines," SAE Paper 760764.Emissions from an Internal Combustion Engine,'' Combusti and11 Laser Ignited Internal Combustion Engine -An Experimental

  3. An Experimental Based Investigation of Oxycombustion in an SI Engine

    E-Print Network [OSTI]

    Van Blarigan, Andrew Charles

    2012-01-01T23:59:59.000Z

    et al. 2011), and internal combustion engines (Bilger and WuJohn B. (1988). Internal Combustion Engine Fundamentals. NewReciprocat- ing Internal Combustion Engines. In: Innovative

  4. An Experimental Based Investigation of Oxycombustion in an SI Engine

    E-Print Network [OSTI]

    Van Blarigan, Andrew Charles

    2012-01-01T23:59:59.000Z

    John B. (1988). Internal Combustion Engine Fundamentals. NewReciprocat- ing Internal Combustion Engines. In: InnovativeCoefficient in the Internal Combustion Engine. In: SAE

  5. Analytical Framework to Evaluate Emission Control Systems for Marine Engines

    E-Print Network [OSTI]

    Jayaram, Varalakshmi

    2010-01-01T23:59:59.000Z

    Reciprocation internal combustion engines - Exhaust emissionReciprocating internal combustion engines - Exhaust emissionOn the emissions from internal-combustion engines: A review.

  6. Sandia National Laboratories: Engine Combustion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Combustion Direct Measurement of Key Molecule Will Increase Accuracy of Combustion Models On March 3, 2015, in Computational Modeling & Simulation, CRF, Energy, Facilities, News,...

  7. COMBUSTION RESEARCH PROGRAM. CHAPTER FROM ENERGY & ENVIRONMENT ANNUAL REPORT 1977

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01T23:59:59.000Z

    of Combustion in Internal Combustion Engines," Paper 750890,that occur in an internal combustion engine. Our goal is theLAG process in an internal combustion engine, con- ducted at

  8. Adaptive Control to Improve Low Temperature Diesel Engine Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Control to Improve Low Temperature Diesel Engine Combustion Adaptive Control to Improve Low Temperature Diesel Engine Combustion Presentation given at DEER 2006, August 20-24,...

  9. Oxygen-Enriched Combustion for Military Diesel Engine Generators...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oxygen-Enriched Combustion for Military Diesel Engine Generators Oxygen-Enriched Combustion for Military Diesel Engine Generators Substantial increases in brake power and...

  10. Complete Fuel Combustion for Diesel Engines Resulting in Greatly...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Complete Fuel Combustion for Diesel Engines Resulting in Greatly Reduced Emissions and Improved Fuel Efficiency Complete Fuel Combustion for Diesel Engines Resulting in Greatly...

  11. HCCI and Stratified-Charge CI Engine Combustion Research

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Charg HCCI and Stratified-Char e CI Engine ge CI Engine Combustion Research Combustion Research John E. Dec, Magnus Sjberg, and Wontae Hwang Sandia National Laboratories DOE...

  12. Large Eddy Simulation (LES) Applied to Advanced Engine Combustion...

    Broader source: Energy.gov (indexed) [DOE]

    Flow Research - 8353 Combustion Chemistry - 8362 Engine Combustion - 8365 ThermalFluid Science and Engineering * Professor W. Anderson, Purdue * Professor J. -Y. Chen, UC...

  13. Large Eddy Simulation (LES) Applied to Advanced Engine Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Engine Combustion Research Large Eddy Simulation (LES) Applied to Advanced Engine Combustion Research 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies...

  14. 2008 DOE Annual Merit Review Advanced Combustion Engines and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Combustion Engines and Fuels R&DTechnology Integration Plenary Session Overview 2008 DOE Annual Merit Review Advanced Combustion Engines and Fuels R&DTechnology...

  15. Characterization of Particulate Emissions from GDI Engine Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Particulate Emissions from GDI Engine Combustion with Alcohol-blended Fuels Characterization of Particulate Emissions from GDI Engine Combustion with Alcohol-blended Fuels Analysis...

  16. Combustion diagnostic for active engine feedback control

    DOE Patents [OSTI]

    Green, Jr., Johney Boyd (Knoxville, TN); Daw, Charles Stuart (Knoxville, TN); Wagner, Robert Milton (Knoxville, TN)

    2007-10-02T23:59:59.000Z

    This invention detects the crank angle location where combustion switches from premixed to diffusion, referred to as the transition index, and uses that location to define integration limits that measure the portions of heat released during the combustion process that occur during the premixed and diffusion phases. Those integrated premixed and diffusion values are used to develop a metric referred to as the combustion index. The combustion index is defined as the integrated diffusion contribution divided by the integrated premixed contribution. As the EGR rate is increased enough to enter the low temperature combustion regime, PM emissions decrease because more of the combustion process is occurring over the premixed portion of the heat release rate profile and the diffusion portion has been significantly reduced. This information is used to detect when the engine is or is not operating in a low temperature combustion mode and provides that feedback to an engine control algorithm.

  17. U.S. Department of Energy FreedomCar & Vehicle Technologies Program CARB Executive Order Exemption Process for a Hydrogen-fueled Internal Combustion engine Vehicle -- Status Report

    SciTech Connect (OSTI)

    Not Available

    2008-04-01T23:59:59.000Z

    The CARB Executive Order Exemption Process for a Hydrogen-fueled Internal Combustion Engine Vehicle was undertaken to define the requirements to achieve a California Air Resource Board Executive Order for a hydrogenfueled vehicle retrofit kit. A 2005 to 2006 General Motors Company Sierra/Chevrolet Silverado 1500HD pickup was assumed to be the build-from vehicle for the retrofit kit. The emissions demonstration was determined not to pose a significant hurdle due to the non-hydrocarbon-based fuel and lean-burn operation. However, significant work was determined to be necessary for Onboard Diagnostics Level II compliance. Therefore, it is recommended that an Experimental Permit be obtained from the California Air Resource Board to license and operate the vehicles for the durability of the demonstration in support of preparing a fully compliant and certifiable package that can be submitted.

  18. MN Center for Renewable Energy: Cellulosic Ethanol, Optimization of Bio-fuels in Internal Combustion Engines, & Course Development for Technicians in These Areas

    SciTech Connect (OSTI)

    John Frey

    2009-02-22T23:59:59.000Z

    This final report for Grant #DE-FG02-06ER64241, MN Center for Renewable Energy, will address the shared institutional work done by Minnesota State University, Mankato and Minnesota West Community and Technical College during the time period of July 1, 2006 to December 30, 2008. There was a no-cost extension request approved for the purpose of finalizing some of the work. The grant objectives broadly stated were to 1) develop educational curriculum to train technicians in wind and ethanol renewable energy, 2) determine the value of cattails as a biomass crop for production of cellulosic ethanol, and 3) research in Optimization of Bio-Fuels in Internal Combustion Engines. The funding for the MN Center for Renewable Energy was spent on specific projects related to the work of the Center.

  19. Pulsed jet combustion generator for premixed charge engines

    DOE Patents [OSTI]

    Oppenheim, A. K. (Berkeley, CA); Stewart, H. E. (Alameda, CA); Hom, K. (Hercules, CA)

    1990-01-01T23:59:59.000Z

    A method and device for generating pulsed jets which will form plumes comprising eddie structures, which will entrain a fuel/air mixture from the head space of an internal combustion engine, and mixing this fuel/air mixture with a pre-ignited fuel/air mixture of the plumes thereby causing combustion of the reactants to occur within the interior of the eddie structures.

  20. Twenty-Seventh Symposium (International) on Combustion/The Combustion Institute, 1998/pp. 20692076 PLANAR LASER-INDUCED FLUORESCENCE IMAGING OF CREVICE

    E-Print Network [OSTI]

    Long, Marshall B.

    2069 Twenty-Seventh Symposium (International) on Combustion/The Combustion Institute, 1998/pp. 2069 the impact of internal combustion engine hydrocarbon emissions on the environment have prompted tighter, absorbed into oil layers, left unvaporized, leakedinto the exhaust manifold, or left over from incomplete

  1. Understanding Loss Mechanisms and Efficiency Improvement Options for HCCI Engines Using Detailed Exergy Analysis

    E-Print Network [OSTI]

    Saxena, Samveg

    2013-01-01T23:59:59.000Z

    Application to Internal-Combustion Engines, Energy, 25(11),in the Internal Combustion Engine, SAE Technical PaperJ.B. , 1988, Internal Combustion Engines Fundamentals,

  2. Jet Ignition Research for Clean Efficient Combustion Engines Prasanna Chinnathambi, Abdullah Karimi, Manikanda Rajagopal, Razi Nalim

    E-Print Network [OSTI]

    Zhou, Yaoqi

    Jet Ignition Research for Clean Efficient Combustion Engines Prasanna Chinnathambi, Abdullah Karimi University Indianapolis Abstract Ignition by a jet of hot gas has application in lean-burn pre-chamber internal combustion engines and in innovative pressure-gain combustors for gas turbine engines. Jet

  3. Development of High-Efficiency Clean Combustion Engines Designs...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Efficiency Clean Combustion Engines Designs for SI and CI Engines Development of High-Efficiency Clean Combustion Engines Designs for SI and CI Engines 2010 DOE Vehicle...

  4. High Efficiency Clean Combustion Engine Designs for Gasoline...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engine Designs for Gasoline and Diesel Engines High Efficiency Clean Combustion Engine Designs for Gasoline and Diesel Engines 2009 DOE Hydrogen Program and Vehicle Technologies...

  5. Improved Solvers for Advanced Engine Combustion Simulation

    Broader source: Energy.gov (indexed) [DOE]

    53560 Improved Solvers for Advanced Engine Combustion Simulation M. J. McNenly (PI), S. M. Aceves, D. L. Flowers, N. J. Killingsworth, G. M. Oxberry, G. Petitpas and R. A....

  6. A combustion model for IC engine combustion simulations with multi-component fuels

    SciTech Connect (OSTI)

    Ra, Youngchul; Reitz, Rolf D. [Engine Research Center, University of Wisconsin-Madison (United States)

    2011-01-15T23:59:59.000Z

    Reduced chemical kinetic mechanisms for the oxidation of representative surrogate components of a typical multi-component automotive fuel have been developed and applied to model internal combustion engines. Starting from an existing reduced mechanism for primary reference fuel (PRF) oxidation, further improvement was made by including additional reactions and by optimizing reaction rate constants of selected reactions. Using a similar approach to that used to develop the reduced PRF mechanism, reduced mechanisms for the oxidation of n-tetradecane, toluene, cyclohexane, dimethyl ether (DME), ethanol, and methyl butanoate (MB) were built and combined with the PRF mechanism to form a multi-surrogate fuel chemistry (MultiChem) mechanism. The final version of the MultiChem mechanism consists of 113 species and 487 reactions. Validation of the present MultiChem mechanism was performed with ignition delay time measurements from shock tube tests and predictions by comprehensive mechanisms available in the literature. A combustion model was developed to simulate engine combustion with multi-component fuels using the present MultiChem mechanism, and the model was applied to simulate HCCI and DI engine combustion. The results show that the present multi-component combustion model gives reliable performance for combustion predictions, as well as computational efficiency improvements through the use of reduced mechanism for multi-dimensional CFD simulations. (author)

  7. A multi-scale model for piston ring dynamics, lubrication and oil transport in internal combustion engines

    E-Print Network [OSTI]

    Baelden, Camille

    2014-01-01T23:59:59.000Z

    Fuel consumption reduction of more than 20% can be achieved through engine friction reduction. Piston and piston rings contribute approximately half of the total engine friction and are therefore central to friction reduction ...

  8. Modeling of liner finish effects on oil control ring lubrication in internal combustion engines based on deterministic method

    E-Print Network [OSTI]

    Chen, Haijie

    2008-01-01T23:59:59.000Z

    Twin-land oil control ring is widely used in the automotive diesel engines, and is gaining more and more applications in the modern designs of gasoline engines. Its interaction with the cylinder liner surface accounts for ...

  9. Sandia National Laboratories: high-fidelity engine combustion...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    engine combustion models Direct Measurement of Key Molecule Will Increase Accuracy of Combustion Models On March 3, 2015, in Computational Modeling & Simulation, CRF, Energy,...

  10. Heavy-Duty Engine Combustion Optimization for High Thermal Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combustion Optimization for High Thermal Efficiency Targeting EPA 2010 Emissions Heavy-Duty Engine Combustion Optimization for High Thermal Efficiency Targeting EPA 2010 Emissions...

  11. High-Efficiency Clean Combustion Engine Designs for Compression...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Russ Durrett For Public Release GM R&D - Diesel Engine Systems High-Efficiency Clean Combustion Engine Designs for Compression Ignition Engines Russ Durrett, Xin He - General...

  12. Second Law Comparisons of Volumetric and Flame Combustion in an Ideal Engine with Exhaust Heat Recovery

    SciTech Connect (OSTI)

    Chakravarthy, Veerathu K [ORNL; Daw, C Stuart [ORNL; Graves, Ronald L [ORNL

    2006-01-01T23:59:59.000Z

    We summarize the results of a theoretical second law (exergy) analysis of an idealized internal combustion engine operating in flame versus volumetric (e.g., HCCI-like) combustion modes. We also consider the impact of exhaust heat recovery. Our primary objective is to better understand the fundamental differences (if any) in thermodynamic irreversibility among these different combustion modes and the resulting impact on engine work output. By combustion irreversibility, we mean that portion of the fuel energy that becomes unavailable for producing useful work due to entropy generation in the combustion process, exclusive of all other heat and friction losses. A key question is whether or not volumetric combustion offers any significant irreversibility advantage over conventional flame combustion. Another key issue is how exhaust heat recovery would be expected to change the net work output of an ideal piston engine. Based on these results, we recommend specific research directions for improving the fuel efficiency of advanced engines.

  13. Oil transport inside the oil control ring grove and its interaction with surrounding areas in internal combustion engines

    E-Print Network [OSTI]

    Senzer, Eric B

    2012-01-01T23:59:59.000Z

    In piston ring pack design, there is a tradeoff between reducing friction and increasing oil consumption. While friction reduces engine efficiency, oil consumption can poison exhaust aftertreatment systems. The primary ...

  14. Characterization of oil transport in the power cylinder of internal combustion engines during steady state and transient operation

    E-Print Network [OSTI]

    Przesmitzki, Steve (Steve Victor)

    2008-01-01T23:59:59.000Z

    Engine friction, wear, and oil consumption are some of the primary interests for the automotive industry. However, there is currently a lack of understanding of the fundamentals involving oil transport inside the power ...

  15. Characterization and modeling of the fundamental aspects of oil transport in the piston ring pack of internal combustion engines

    E-Print Network [OSTI]

    Thirouard, Benoist (Benoist Pierre), 1972-

    2001-01-01T23:59:59.000Z

    Engine oil consumption is one of the primary interests for the automotive industry in controlling emissions and reducing service cost. Due to a lack of understanding of the mechanisms of oil transport along the piston, ...

  16. Design, Construction, and Validation of an In-Cylinder Pressure Recording System for Internal Combustion Engine Analysis

    E-Print Network [OSTI]

    Mangus, Michael D.

    2012-05-31T23:59:59.000Z

    of the differences in fuel properties derived from various feedstock oils. The goal of this investigation was to determine which biodiesel fuel properties impact engine emissions and fuel consumption in comparison to petroleum-based diesel. The findings indicate good...

  17. Influence of the Combustion Energy Release on Surface Accelerations of an HCCI Engine

    SciTech Connect (OSTI)

    Massey, Jeffery A [ORNL; Eaton, Scott J [ORNL; Wagner, Robert M [ORNL

    2009-01-01T23:59:59.000Z

    Large cyclic variability along with increased combustion noise present in low temperature combustion (LTC) modes of internal combustion engines has driven the need for fast response, robust sensors for diagnostics and feedback control. Accelerometers have been shown as a possible technology for diagnostics and feedback control of advanced LTC operation in internal combustion engines. To make better use of this technology, an improved understanding is necessary of the effect of energy release from the combustion process on engine surface vibrations. This study explores the surface acceleration response for a single-cylinder engine operating with homogeneous charge compression ignition (HCCI) combustion. Preliminary investigation of the engine surface accelerations is conducted using a finite element analysis of the engine cylinder jacket along with consideration of cylindrical modes of the engine cylinder. Measured in-cylinder pressure is utilized as a load input to the FE model to provide an initial comparison of the computed and measured surface accelerations. Additionally, the cylindrical cavity resonant modes of the engine geometry are computed and the in-cylinder pressure frequency content is examined to verify this resonant behavior. Experimental correlations between heat release and surface acceleration metrics are then used to identify specific acceleration frequency bands in which characteristics of the combustion heat release process is detected with minimal structural resonant influence. Investigation of a metric capable of indicting combustion phasing is presented. Impact of variations in the combustion energy release process on the surface accelerations is discussed.

  18. OBSERVATION OF FLOW CHARACTERISTICS IN A MODEL I.C. ENGINE CYLINDER

    E-Print Network [OSTI]

    Ishikawa, N.

    2011-01-01T23:59:59.000Z

    Characteristics in an Internal Combustion Engine Cylinder,lIWalls of an Internal Combustion Engine," Sixth Symposium (

  19. Computational Fluid Dynamics Modeling of Diesel Engine Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Controlled Compression Ignition (RCCI) Combustion in a Light-Duty Engine High-Efficiency, Ultra-Low Emission Combustion in a Heavy-Duty Engine via Fuel Reactivity Control...

  20. Engine combustion control via fuel reactivity stratification

    DOE Patents [OSTI]

    Reitz, Rolf Deneys; Hanson, Reed M; Splitter, Derek A; Kokjohn, Sage L

    2013-12-31T23:59:59.000Z

    A compression ignition engine uses two or more fuel charges having two or more reactivities to control the timing and duration of combustion. In a preferred implementation, a lower-reactivity fuel charge is injected or otherwise introduced into the combustion chamber, preferably sufficiently early that it becomes at least substantially homogeneously dispersed within the chamber before a subsequent injection is made. One or more subsequent injections of higher-reactivity fuel charges are then made, and these preferably distribute the higher-reactivity matter within the lower-reactivity chamber space such that combustion begins in the higher-reactivity regions, and with the lower-reactivity regions following thereafter. By appropriately choose the reactivities of the charges, their relative amounts, and their timing, combustion can be tailored to achieve optimal power output (and thus fuel efficiency), at controlled temperatures (and thus controlled NOx), and with controlled equivalence ratios (and thus controlled soot).

  1. Twenty-Seventh Symposium (International) on Combustion/The Combustion Institute, 1998/pp. 28152820 FINGERING INSTABILITY IN SOLID FUEL COMBUSTION

    E-Print Network [OSTI]

    Moses, Elisha

    2815 Twenty-Seventh Symposium (International) on Combustion/The Combustion Institute, 1998/pp. 28152820 FINGERING INSTABILITY IN SOLID FUEL COMBUSTION: THE CHARACTERISTIC SCALES OF THE DEVELOPED STATE ORY ZIK, Israel We present new results on the fingering instability in solid fuel combustion. The instability

  2. Combustion Engine | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platformBuildingCoal Combustion Products

  3. Combustion Exhaust Gas Heat to Power Using Thermoelectric Engines...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exhaust Gas Heat to Power Using Thermoelectric Engines Combustion Exhaust Gas Heat to Power Using Thermoelectric Engines Discusses a novel TEG which utilizes a proprietary stack...

  4. 2008-01-0984 Active Combustion Control of Diesel HCCI Engine: Combustion

    E-Print Network [OSTI]

    2008-01-0984 Active Combustion Control of Diesel HCCI Engine: Combustion Timing M. Hillion, J according to the air path dynamics on a Diesel HCCI engine. This approach complements existing airpath Com- bustion modes (HPC), including Homogeneous Charge Com- pression Ignition (HCCI). HCCI combustion

  5. Turbocharging of small internal combustion engine as a means of improving engine/application system fuel economy-further turbocharger improvements. Final report Oct 80-Feb 82

    SciTech Connect (OSTI)

    Arvin, J.R.

    1982-04-01T23:59:59.000Z

    Improvements to a small diesel engine turbocharger were made based on data gathered during a previous Army contract. The improved turbocharger was fabricated and tested on a small, four cylinder, 239 CID diesel engine. Engine dynamometer test data revealed a 2 to 9 percent reduction in fuel consumption at all points over the operating envelope. A turbocharger was operated for 1011 hours at speeds between 70000 and 78000 rpm without incident. The ball bearings were in excellent condition at the end of the test. A math model of the engine and turbocharger was generated. The model was used to estimate 13 Mode Federal Diesel Emissions Cycle, the LA4 driving cycle and the application of the variable area turbine nozzle (VATN) turbocharger to a diesel engine driven generator set. A recommendation was made to build a gen set demo unit. A fuel savings of 8 to 10 percent was estimated for a 30KW DED generator set.

  6. Combustion Engineering IGCC Repowering Project

    SciTech Connect (OSTI)

    Andrus, H.E.; Thibeault, P.R.; Gibson, C.R.

    1992-11-01T23:59:59.000Z

    C-E gasification process uses an entrained-flow, two-stage, slagging bottom gasifier. Figure 1 shows a schematic of the gasifier concept. Some of the coal and all of the char is fed to the combustor section, while the remaining coal is fed to the reducter section of the gasifier. The coal and char in the combustor is mixed with air and the fuel-rich mixture is burned creating the high temperature necessary to gasify the coal and melt the mineral matter in the coal. The slag flows through a slag tap at the bottom of the combustor into a water-filled slag tank where it is quenched and transformed into an inert, glassy, granular material. This vitrified slag is non-leaching, making it easy to dispose of in an environmentally acceptable manner. The hot gas leaving the combustor enters the second stage called the reductor. In the reducter, the char gasification occurs along the length of the reductor zone until the temperature falls to a point where the gasification kinetics become too slow. Once the gas temperature reaches this level, essentially no further gasification takes place and the gases subsequently are cooled with convective surface to a temperature low enough to enter the cleanup system. Nearly all of the liberated energy from the coal that does not produce fuel gas is collected and recovered with steam generating surface either in the walls of the vessel or by conventional boiler convective surfaces in the backpass of the gasifier. A mixture of unburned carbon and ash (called char) is carried out of the gasifier with the product gas strewn. The char is collected and recycled back to the gasifier where it is consumed. Thus, there is no net production of char which results in negligible carbon loss. The product gas enters a desulfurization system where it is cleaned of sulfur compounds present in the fuel gas. The clean fuel gas is now available for use in the gas turbine combuster for an integrated coal gasification combined cycle (IGCC) application.

  7. Combustion Engineering IGCC Repowering Project

    SciTech Connect (OSTI)

    Andrus, H.E.; Thibeault, P.R.; Gibson, C.R.

    1992-01-01T23:59:59.000Z

    C-E gasification process uses an entrained-flow, two-stage, slagging bottom gasifier. Figure 1 shows a schematic of the gasifier concept. Some of the coal and all of the char is fed to the combustor section, while the remaining coal is fed to the reducter section of the gasifier. The coal and char in the combustor is mixed with air and the fuel-rich mixture is burned creating the high temperature necessary to gasify the coal and melt the mineral matter in the coal. The slag flows through a slag tap at the bottom of the combustor into a water-filled slag tank where it is quenched and transformed into an inert, glassy, granular material. This vitrified slag is non-leaching, making it easy to dispose of in an environmentally acceptable manner. The hot gas leaving the combustor enters the second stage called the reductor. In the reducter, the char gasification occurs along the length of the reductor zone until the temperature falls to a point where the gasification kinetics become too slow. Once the gas temperature reaches this level, essentially no further gasification takes place and the gases subsequently are cooled with convective surface to a temperature low enough to enter the cleanup system. Nearly all of the liberated energy from the coal that does not produce fuel gas is collected and recovered with steam generating surface either in the walls of the vessel or by conventional boiler convective surfaces in the backpass of the gasifier. A mixture of unburned carbon and ash (called char) is carried out of the gasifier with the product gas strewn. The char is collected and recycled back to the gasifier where it is consumed. Thus, there is no net production of char which results in negligible carbon loss. The product gas enters a desulfurization system where it is cleaned of sulfur compounds present in the fuel gas. The clean fuel gas is now available for use in the gas turbine combuster for an integrated coal gasification combined cycle (IGCC) application.

  8. Update on Engine Combustion Research at Sandia National Laboratories

    SciTech Connect (OSTI)

    Jay Keller; Gurpreet Singh

    2001-05-14T23:59:59.000Z

    The objectives of this paper are to describe the research efforts in diesel engine combustion at Sandia National Laboratories' Combustion Research Facility and to provide recent experimental results. We have four diesel engine experiments supported by the Department of Energy, Office of Heavy Vehicle Technologies: a one-cylinder version of a Cummins heavy-duty engine, a diesel simulation facility, a one-cylinder Caterpillar engine to evaluate combustion of alternative fuels, and a homogeneous-charge, compression ignition (HCCI) engine. Recent experimental results of diesel combustion research will be discussed and a description will be given of our HCCI experimental program and of our HCCI modeling work.

  9. 2008 DOE Annual Merit Review Advanced Combustion Engines and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Combustion Engines and Fuels R&DTechnology Integration Plenary Session Overview Stephen Goguen U.S. Department of Energy Vehicle Technologies Program February 2008 2008...

  10. General Motors Clean Combustion Engines Advanced with Predictive...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Motors Clean Combustion Engines Advanced with Predictive Simulation Tools Sandia National Laboratories (SNL) has been working with General Motors (GM) for over 30 years. In the...

  11. Overview of the DOE Advanced Combustion Engine R&D

    Broader source: Energy.gov (indexed) [DOE]

    petroleum. --EERE Strategic Plan, October 2002-- Overview of the DOE Advanced Combustion Engine R&D Presented at the 2009 DOE Hydrogen Program and Vehicle Technologies Program...

  12. Combustion Stability in Complex Engineering Flows | Argonne Leadership...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    build the scientific insight and understanding necessary to engineer practical solutions to the ubiquitous challenges of combustion instabilities. Catalyst: Ramesh Balakrishnan...

  13. Combustion Exhaust Gas Heat to Power usingThermoelectric Engines...

    Broader source: Energy.gov (indexed) [DOE]

    Solutions Combustion Exhaust Gas Heat to Power using Thermoelectric Engines John LaGrandeur October 5, 2011 Advanced Thermoelectric Solutions - 1 - Market motivation based on CO 2...

  14. Using Biofuel Tracers to Study Alternative Combustion Regimes

    E-Print Network [OSTI]

    Mack, John Hunter; Flowers, Daniel L.; Buchholz, Bruce A.; Dibble, Robert W.

    2006-01-01T23:59:59.000Z

    Internal Combustion Engines The methods described below for tracing fuel component carbon in the emissions

  15. ENHANCED IGNITION FOR I.C. ENGINES WITH PREMIXED CHARGE

    E-Print Network [OSTI]

    Dale, J.D.

    2013-01-01T23:59:59.000Z

    OperatEngines- Flame Initiation orInternal Combustion Engines," SAE Paper 760764. Wyczalek, F.an Internal Combustion Engine,'' Combusti and Flame Vol. 31,

  16. Compression ignition engine having fuel system for non-sooting combustion and method

    DOE Patents [OSTI]

    Bazyn, Timothy; Gehrke, Christopher

    2014-10-28T23:59:59.000Z

    A direct injection compression ignition internal combustion engine includes a fuel system having a nozzle extending into a cylinder of the engine and a plurality of spray orifices formed in the nozzle. Each of the spray orifices has an inner diameter dimension of about 0.09 mm or less, and define inter-orifice angles between adjacent spray orifice center axes of about 36.degree. or greater such that spray plumes of injected fuel from each of the spray orifices combust within the cylinder according to a non-sooting lifted flame and gas entrainment combustion pattern. Related methodology is also disclosed.

  17. HCCI engine control and optimization

    E-Print Network [OSTI]

    Killingsworth, Nicholas J.

    2007-01-01T23:59:59.000Z

    Internal Combustion Engine Comparison Engine E?ciency Emissionsinternal combustion engine technology exists that has the potential to substantially improve e?ciency and reduce vehicle emissions,

  18. abb combustion engineering: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Johansen, Tor Arne 54 Development of a catalytic combustion system for the MIT Micro Gas Turbine Engine MIT - DSpace Summary: As part of the MIT micro-gas turbine engine...

  19. Improved Solvers for Advanced Engine Combustion Simulation

    Broader source: Energy.gov [DOE]

    Document: ace076_mcnenly_2013_o.pdfTechnology Area: Advanced Combustion; Combustion and Emissions ControlPresenter: Matthew McNenlyPresenting Organization: Lawrence Livermore National Laboratory ...

  20. LES Applied to Low-Temperature, Diesel and Hydrogen Engine Combustion...

    Energy Savers [EERE]

    LES Applied to Low-Temperature, Diesel and Hydrogen Engine Combustion Research LES Applied to Low-Temperature, Diesel and Hydrogen Engine Combustion Research Presentation from the...

  1. Advanced Combustion Engine R&D: Goals, Strategies, and Top Accomplishm...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combustion Engine R&D: Goals, Strategies, and Top Accomplishments Advanced Combustion Engine R&D: Goals, Strategies, and Top Accomplishments advcombustiongoals.pdf More Documents...

  2. Characterizing dilute combustion instabilities in a multi-cylinder spark-ignited engine using symbolic analysis

    SciTech Connect (OSTI)

    Daw, C Stuart [ORNL; FINNEY, Charles E A [ORNL; Kaul, Brian C [ORNL; Edwards, Kevin Dean [ORNL; Wagner, Robert M [ORNL

    2015-01-01T23:59:59.000Z

    Spark-ignited internal combustion engines have evolved considerably in recent years in response to increasingly stringent regulations for emissions and fuel-economy. One new advanced engine strategy utilizes high levels of exhaust gas recirculation (EGR) to reduce combustion temperatures, thereby increasing thermodynamic efficiency and reducing nitrogen oxide emissions. While this strategy can be highly effective, it also poses major control and design challenges due to the large combustion oscillations that develop at sufficiently high EGR levels. Previous research has documented that combustion instabilities can propagate between successive engine cycles in individual cylinders via self-generated feedback of reactive species and thermal energy in the retained residual exhaust gases. In this work, we use symbolic analysis to characterize multi-cylinder combustion oscillations in an experimental engine operating with external EGR. At low levels of EGR, intra-cylinder oscillations are clearly visible and appear to be associated with brief, intermittent coupling among cylinders. As EGR is increased further, a point is reached where all four cylinders lock almost completely in phase and alternate simultaneously between two distinct bi-stable combustion states. From a practical perspective, it is important to understand the causes of this phenomenon and develop diagnostics that might be applied to ameliorate its effects. We demonstrate here that two approaches for symbolizing the engine combustion measurements can provide useful probes for characterizing these instabilities.

  3. Stretch Efficiency for Combustion Engines: Exploiting New Combustion...

    Broader source: Energy.gov (indexed) [DOE]

    portfolio: - long term, high risk approaches for reducing thermodynamic losses in combustion Fuel Efficiency 40-42% Losses 58-60% Fuel Efficiency 50-60% Losses 40-50% Today's...

  4. Maximizing Power Output in Homogeneous Charge Compression Ignition (HCCI) Engines and Enabling Effective Control of Combustion Timing

    E-Print Network [OSTI]

    Saxena, Samveg

    2011-01-01T23:59:59.000Z

    National Laboratory, Engine Combustion Network, http://Experimental study of biogas combustion characteristics andmechanisms of HCCI combustion, HCCI and CAI engines for

  5. Durability of Diesel Engine Particulate Filters

    Broader source: Energy.gov (indexed) [DOE]

    approved Barriers * - Propulsion Materials Technology: * Changing internal combustion engine combustion regimes Optimize to minimize thermal stresses during regen. * Cost ...

  6. Sandia National Laboratories: spray combustion model

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    spray combustion model Sandia Expands an International Collaboration and Web Database on Engine Fuel Spray Combustion Research On November 13, 2012, in CRF, Energy, Energy...

  7. Method of controlling cyclic variation in engine combustion

    DOE Patents [OSTI]

    Davis, L.I. Jr.; Daw, C.S.; Feldkamp, L.A.; Hoard, J.W.; Yuan, F.; Connolly, F.T.

    1999-07-13T23:59:59.000Z

    Cyclic variation in combustion of a lean burning engine is reduced by detecting an engine combustion event output such as torsional acceleration in a cylinder (i) at a combustion event (k), using the detected acceleration to predict a target acceleration for the cylinder at the next combustion event (k+1), modifying the target output by a correction term that is inversely proportional to the average phase of the combustion event output of cylinder (i) and calculating a control output such as fuel pulse width or spark timing necessary to achieve the target acceleration for cylinder (i) at combustion event (k+1) based on anti-correlation with the detected acceleration and spill-over effects from fueling. 27 figs.

  8. Method of controlling cyclic variation in engine combustion

    DOE Patents [OSTI]

    Davis, Jr., Leighton Ira (Ann Arbor, MI); Daw, Charles Stuart (Knoxville, TN); Feldkamp, Lee Albert (Plymouth, MI); Hoard, John William (Livonia, MI); Yuan, Fumin (Canton, MI); Connolly, Francis Thomas (Ann Arbor, MI)

    1999-01-01T23:59:59.000Z

    Cyclic variation in combustion of a lean burning engine is reduced by detecting an engine combustion event output such as torsional acceleration in a cylinder (i) at a combustion event (k), using the detected acceleration to predict a target acceleration for the cylinder at the next combustion event (k+1), modifying the target output by a correction term that is inversely proportional to the average phase of the combustion event output of cylinder (i) and calculating a control output such as fuel pulse width or spark timing necessary to achieve the target acceleration for cylinder (i) at combustion event (k+1) based on anti-correlation with the detected acceleration and spill-over effects from fueling.

  9. Combustion Process in a Spark Ignition Engine: Dynamics and Noise Level Estimation

    E-Print Network [OSTI]

    T. Kaminski; M. Wendeker; K. Urbanowicz; G. Litak

    2003-12-28T23:59:59.000Z

    We analyse the experimental time series of internal pressure in a four cylinder spark ignition engine. In our experiment, performed for different spark advance angles, apart from usual cyclic changes of engine pressure we observed oscillations. These oscillations are with longer time scales ranging from one to several hundred engine cycles depending on engine working conditions. Basing on the pressure time dependence we have calculated the heat released per cycle. Using the time series of heat release to calculate the correlation coarse-grained entropy we estimated the noise level for internal combustion process. Our results show that for a smaller spark advance angle the system is more deterministic.

  10. Solid fuel combustion system for gas turbine engine

    DOE Patents [OSTI]

    Wilkes, Colin (Lebanon, IN); Mongia, Hukam C. (Carmel, IN)

    1993-01-01T23:59:59.000Z

    A solid fuel, pressurized fluidized bed combustion system for a gas turbine engine includes a carbonizer outside of the engine for gasifying coal to a low Btu fuel gas in a first fraction of compressor discharge, a pressurized fluidized bed outside of the engine for combusting the char residue from the carbonizer in a second fraction of compressor discharge to produce low temperature vitiated air, and a fuel-rich, fuel-lean staged topping combustor inside the engine in a compressed air plenum thereof. Diversion of less than 100% of compressor discharge outside the engine minimizes the expense of fabricating and maintaining conduits for transferring high pressure and high temperature gas and incorporation of the topping combustor in the compressed air plenum of the engine minimizes the expense of modifying otherwise conventional gas turbine engines for solid fuel, pressurized fluidized bed combustion.

  11. Stretch Efficiency for Combustion Engines: Exploiting New Combustion...

    Broader source: Energy.gov (indexed) [DOE]

    are well below theoretical potential - Overcoming these limits involves complex optimization of materials, controls, thermodynamics, and engine architecture * Collaborators -...

  12. Optimization of Direct-Injection H2 Combustion Engine Performance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2010 -- Washington D.C. ace009wallner2010o.pdf More Documents & Publications Optimization of Direct-Injection H2 Combustion Engine Performance, Efficiency, and Emissions H2...

  13. International Collaborations on Engineered Barrier Systems: Experiment...

    Energy Savers [EERE]

    International Collaborations on Engineered Barrier Systems: Experimental and Modeling Investigations International Collaborations on Engineered Barrier Systems: Experimental and...

  14. STUDIES OF WALL FLAME QUENCHING AND HYDROCARBON EMISSIONS IN A MODEL SPARK IGNITION ENGINE

    E-Print Network [OSTI]

    Ishikawa, Nobuhiko

    2011-01-01T23:59:59.000Z

    the Piston of an Internal Combustion Engine," In . J. Mech.Cylinder of an Internal Combustion Engine," SAE Paper No.Walls of an Internal Combustion Engine, Sixth Symposium (

  15. Dynamic instabilities in spark-ignited combustion engines with high exhaust gas recirculation

    SciTech Connect (OSTI)

    Daw, C Stuart [ORNL] [ORNL; FINNEY, Charles E A [ORNL] [ORNL

    2011-01-01T23:59:59.000Z

    We propose a cycle-resolved dynamic model for combustion instabilities in spark-ignition engines operating with high levels of exhaust gas recirculation (EGR). High EGR is important for increasing fuel efficiency and implementing advanced low-emission combustion modes such as homogenous charge compression ignition (HCCI). We account for the complex combustion response to cycle-to-cycle feedback by utilizing a global probability distribution that describes the pre-spark state of in-cylinder fuel mixing. The proposed model does a good job of simulating combustion instabilities observed in both lean-fueling engine experiments and in experiments where nitrogen dilution is used to simulate some of the combustion inhibition of EGR. When used to simulate high internal EGR operation, the model exhibits a range of global bifurcations and chaos that appear to be very robust. We use the model to show that it should be possible to reduce high EGR combustion instabilities by switching from internal to external EGR. We also explain why it might be helpful to deliberately stratify the fuel in the pre-spark gas mixture. It might be possible to extend the simple approach used in this model to other chemical reaction systems with spatial inhomogeneity.

  16. Stretch Efficiency for Combustion Engines: Exploiting New Combustion...

    Broader source: Energy.gov (indexed) [DOE]

    developed an EGR Loop TCR system with a Ni+Rh catalyst and evaluated it on a Cummins natural gas engine in a CEC funded project * - Reformer initially produced significant H 2 -...

  17. Stretch Efficiency for Combustion Engines: Exploiting New Combustion...

    Broader source: Energy.gov (indexed) [DOE]

    catalyst sample from GTI used a Ni-based catalyst and evaluated it on a Cummins natural gas engine in a CEC funded project * - Formulation extremely sensitive to sulfur (2...

  18. Coal slurry combustion optimization on single cylinder engine

    SciTech Connect (OSTI)

    Not Available

    1992-09-01T23:59:59.000Z

    Under the sponsorship of the US Department of Energy, Morgantown Energy Technology Center, GE Transportation System has been conducting a proof of concept program to use coal water slurry (CWS) fuel to power a diesel engine locomotive since 1988. As reported earlier [1], a high pressure electronically controlled accumulator injector using a diamond compact insert nozzle was developed for this project. The improved reliability and durability of this new FIE allowed for an improved and more thorough study of combustion of CWS fuel in a diesel engine. It was decided to include a diesel pilot fuel injector in the combustion system mainly due to engine start and low load operation needs. BKM, Inc. of San Diego, CA was contracted to develop the electronic diesel fuel pilot/starting FIE for the research engine. As a result, the experimental combustion study was very much facilitated due to the ability of changing pilot/CWS injection timings and quantities without having to stop the engine. Other parameters studied included combustion chamber configuration (by changing CWS fuel injector nozzle hole number/shape/angle), as well as injection pressure. The initial phase of this combustion study is now complete. The results have been adopted into the design of a 12 cylinder engine FIE, to be tested in 1992. This paper summarizes the main findings of this study.

  19. Engine combustion control at low loads via fuel reactivity stratification

    DOE Patents [OSTI]

    Reitz, Rolf Deneys; Hanson, Reed M; Splitter, Derek A; Kokjohn, Sage L

    2014-10-07T23:59:59.000Z

    A compression ignition (diesel) engine uses two or more fuel charges during a combustion cycle, with the fuel charges having two or more reactivities (e.g., different cetane numbers), in order to control the timing and duration of combustion. By appropriately choosing the reactivities of the charges, their relative amounts, and their timing, combustion can be tailored to achieve optimal power output (and thus fuel efficiency), at controlled temperatures (and thus controlled NOx), and with controlled equivalence ratios (and thus controlled soot). At low load and no load (idling) conditions, the aforementioned results are attained by restricting airflow to the combustion chamber during the intake stroke (as by throttling the incoming air at or prior to the combustion chamber's intake port) so that the cylinder air pressure is below ambient pressure at the start of the compression stroke.

  20. Sandia National Laboratories: Predictive Simulation of Internal...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Predictive Simulation of Internal Combustion Engines Sandia and General Motors: Advancing Clean Combustion Engines with Predictive Simulation Tools On February 14, 2013, in CRF,...

  1. ENSC 461: Four-Stroke Diesel Engine School of Engineering Science

    E-Print Network [OSTI]

    Bahrami, Majid

    and brake unit (HM 365), and internal combustion engine basic module (CT 159). Internal combustion engine basic module The internal combustion engine basic module forms the basis for investigations and experiments on internal combustion engines. This unit is equipped with mechanisms for measuring fuel and air

  2. Direct Visualization of Spray and Combustion Inside a DI-SI Engine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Visualization of Spray and Combustion Inside a DI-SI Engine and Its Implications to Flex-Fuel VVT Operations Direct Visualization of Spray and Combustion Inside a DI-SI Engine and...

  3. Performance Optimization of an Internal Combustion Engine Team: David Apgood, Cameron Blaylock, Joshua Crump, Tyler Kolste, Aaron Jorgensen, Brett Sampson; Advisors: Drs. Eric Pardyjak, Samuel Drake

    E-Print Network [OSTI]

    Provancher, William

    the restrictor nozzle and naturally-aspirated system using industry-standard software - Verify the simulation the restrictor nozzle and the turbocharger - Use the simulation model to make design decisions - Validate to the engine. A nozzle was chosen as a method to optimize the flow through the required 20mm restriction

  4. Advanced Combustion Engine R&D: Goals, Strategies, and Top Accomplishments (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2009-03-01T23:59:59.000Z

    Fact sheet describes the top accomplishments, goals and strategies of DOEs Advanced Combustion Engine Research and Development sub program.

  5. Spray Combustion Cross-Cut Engine Research

    Broader source: Energy.gov (indexed) [DOE]

    Project provides fundamental research that supports DOE industry advanced engine development projects. Project directions and continuation are evaluated annually....

  6. NE]NL~GY r. ORNL/Sub/80-1 386/ &02 C)aS^" B ~Assessment of Internal Combustion

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    NE]NL~GY r. ORNL/Sub/80-1 386/ &02 C)aS^" B ~Assessment of Internal Combustion LAnM~~l~Engines COMBUSTION ENGINES AS DRIVERS FOR HEAT PUMPS FINAL REPORT Date Published: January 1984 Report Prepared Government or any agency thereof. #12;ORNL/Sub/80-13836/1&02 Dist. Category UC-95d ASSESSMENT OF INTERNAL

  7. Simulation of Wear in Combustion Engines V.L. Popov1

    E-Print Network [OSTI]

    Berlin,Technische Universitt

    1 Simulation of Wear in Combustion Engines V.L. Popov1 , I.Yu. Smolin Institute of Strength Physics on the surface of both the piston ring and cylinder of combustion engines during production, running about the processes occurring during the initial run of combustion engines is that it is the surface

  8. Optimisation of the Gas-Exchange System of Combustion Engines by Genetic Algorithm

    E-Print Network [OSTI]

    Marsland, Stephen

    Optimisation of the Gas-Exchange System of Combustion Engines by Genetic Algorithm C. D. Rose, S. R of combustion engine gas-exchange systems still predominantly use trial and error. This paper proposes a new. Keywords - genetic algorithm; variable-length input encoding; combustion engine; optimisation I

  9. Student Trainee (Engineering)- Intern

    Broader source: Energy.gov [DOE]

    The purpose of the Pathways Intern Employment Program is to provide the intern with exposure to public service, enhance educational experience, and support educational goals. The program is...

  10. A University Consortium on Low Temperature Combustion for High Efficiency, Ultra-Low Emission Engines

    SciTech Connect (OSTI)

    Dennis N. Assanis; Arvind Atreya; Jyh-Yuan Chen; Wai K. Cheng; Robert W. Dibble; Chris Edwards; Zoran S. Filipi; Christian Gerdes; Hong Im; George A. Lavoie; Margaret S. Wooldridge

    2009-12-31T23:59:59.000Z

    The objective of the University consortium was to investigate the fundamental processes that determine the practical boundaries of Low Temperature Combustion (LTC) engines and develop methods to extend those boundaries to improve the fuel economy of these engines, while operating with ultra low emissions. This work involved studies of thermal effects, thermal transients and engine management, internal mixing and stratification, and direct injection strategies for affecting combustion stability. This work also examined spark-assisted Homogenous Charge Compression Ignition (HCCI) and exhaust after-treatment so as to extend the range and maximize the benefit of Homogenous Charge Compression Ignition (HCCI)/ Partially Premixed Compression Ignition (PPCI) operation. In summary the overall goals were: ? Investigate the fundamental processes that determine the practical boundaries of Low Temperature Combustion (LTC) engines. ? Develop methods to extend LTC boundaries to improve the fuel economy of HCCI engines fueled on gasoline and alternative blends, while operating with ultra low emissions. ? Investigate alternate fuels, ignition and after-treatment for LTC and Partially Premixed compression Ignition (PPCI) engines.

  11. NC STATE UNIVERSITY College of Engineering North Carolina Solar Center

    E-Print Network [OSTI]

    GX, which runs on compressed natural gas (CNG), is considered the cleanest internal combustion engine

  12. COMBUSTION RESEARCH PROGRAM. CHAPTER FROM ENERGY & ENVIRONMENT ANNUAL REPORT 1977

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01T23:59:59.000Z

    internal combustion engine, con- ducted at General Motors, demonstrated its positive effect on the reduction of emissions

  13. Stirling Engine Natural Gas Combustion Demonstration Program. Final report, October 1989-January 1991

    SciTech Connect (OSTI)

    Ernst, W.; Moryl, J.; Riecke, G.

    1991-02-01T23:59:59.000Z

    Fueled on natural gas, the Stirling engine is an inherently clean, quiet, and efficient engine. With increasing environmental concern for air quality and the increasingly more stringent requirements for low engine exhaust emissions, the Stirling engine may be an attractive alternative to internal combustion (IC) engines. The study has demonstrated that ultra low emissions can be attained with a Stirling-engine-driven electric generator configured to burn natural gas. Combustion parameters were optimized to produce the lowest possible exhaust emissions for a flame-type combustor without compromising overall engine thermal efficiency. A market application survey and manufacturing cost analysis indicate that a market opportunity potentially exists in the volumes needed to economically manufacture a newly designed Stirling engine (Mod III) for stationary applications and hybrid vehicles. The translation of such potential markets into actual markets does, however, pose difficult challenges as substantial investments are required. Also, the general acceptance of a new engine type by purchasers requires a considerable amount of time.

  14. Spray Combustion Cross-Cut Engine Research

    Broader source: Energy.gov (indexed) [DOE]

    and emissions * Load limitations for LTC * CFD model improvement for engine designoptimization * Project funded by DOEVT: FY10- 660K FY11 - 730K Timeline Budget Barriers...

  15. Hydrogen assisted combustion of ethanol in Diesel enginesHydrogen assisted combustion of ethanol in Diesel engines Anil Singh Bika, Luke Franklin, Prof. David B. Kittelson

    E-Print Network [OSTI]

    Minnesota, University of

    Hydrogen assisted combustion of ethanol in Diesel enginesHydrogen assisted combustion of ethanol in Diesel engines Anil Singh Bika, Luke Franklin, Prof. David B. Kittelson Department of Mechanical a means of using nearly pure ethanol as a diesel engine fuel by using hydrogen rich gases to facilitate

  16. Six ORNL researchers receive SAE International awards | ornl...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of fuels and internal combustion engines. Szybist investigates effects of fuels on combustion, engine efficiency, and emissions for conventional spark ignition and...

  17. FUEL INTERCHANGEABILITY FOR LEAN PREMIXED COMBUSTION IN GAS TURBINE ENGINES

    SciTech Connect (OSTI)

    Don Ferguson; Geo. A. Richard; Doug Straub

    2008-06-13T23:59:59.000Z

    In response to environmental concerns of NOx emissions, gas turbine manufacturers have developed engines that operate under lean, pre-mixed fuel and air conditions. While this has proven to reduce NOx emissions by lowering peak flame temperatures, it is not without its limitations as engines utilizing this technology are more susceptible to combustion dynamics. Although dependent on a number of mechanisms, changes in fuel composition can alter the dynamic response of a given combustion system. This is of particular interest as increases in demand of domestic natural gas have fueled efforts to utilize alternatives such as coal derived syngas, imported liquefied natural gas and hydrogen or hydrogen augmented fuels. However, prior to changing the fuel supply end-users need to understand how their system will respond. A variety of historical parameters have been utilized to determine fuel interchangeability such as Wobbe and Weaver Indices, however these parameters were never optimized for todays engines operating under lean pre-mixed combustion. This paper provides a discussion of currently available parameters to describe fuel interchangeability. Through the analysis of the dynamic response of a lab-scale Rijke tube combustor operating on various fuel blends, it is shown that commonly used indices are inadequate for describing combustion specific phenomena.

  18. Published at the Second International Conference on ``Intelligent Systems Engineering'', Hamburg, Sept. 1994. APPLICATION OF FUZZY LOGIC AND NEURAL NETWORK TO THE CONTROL OF A FLAME

    E-Print Network [OSTI]

    Published at the Second International Conference on ``Intelligent Systems Engineering'', Hamburg, Germany 1 INTRODUCTION For optimal control of a combustion process, which is normally highly nonlinear

  19. Increased Engine Efficiency via Advancements in Engine Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engine Technologies Session Introduction Demonstrating and Validating a Next Generation Model-Based Controller for Fuel Efficient, Low Emissions Diesel Engines Super...

  20. 7. International Immersive Projection Technologies Workshop 9. Eurographics Workshop on Virtual Environments (2003)

    E-Print Network [OSTI]

    Kuhlen, Torsten

    2003-01-01T23:59:59.000Z

    H, Neuenhofstrae 181, 52078 Aachen, Germany 3 Institute for Internal Combustion Engines Aachen (VKA), Aachen

  1. Pulsed jet combustion generator for non-premixed charge engines

    DOE Patents [OSTI]

    Oppenheim, A. K. (Berkeley, CA); Stewart, H. E. (Alameda, CA)

    1990-01-01T23:59:59.000Z

    A device for introducing fuel into the head space of cylinder of non-premixed charge (diesel) engines is disclosed, which distributes fuel in atomized form in a plume, whose fluid dynamic properties are such that the compression heated air in the cylinder head space is entrained into the interior of the plume where it is mixed with and ignites the fuel in the plume interior, to thereby control combustion, particularly by use of a multiplicity of individually controllable devices per cylinder.

  2. Master's programme in Engineering Design Programme outline

    E-Print Network [OSTI]

    Lagergren, Jens

    systems, simulators). The Internal Combustion Engines track covers a broad range of topics in depth- chatronics, and internal combustion engines.the main objective of this programme is to produce engineers

  3. A Detailed Multi-Zone Thermodynamic Simulation For Direct-Injection Diesel Engine Combustion

    E-Print Network [OSTI]

    Xue, Xingyu 1985-

    2012-11-15T23:59:59.000Z

    A detailed multi-zone thermodynamic simulation has been developed for the direct-injection (DI) diesel engine combustion process. For the purpose of predicting heterogeneous type combustion systems, the model explores the formation of pre...

  4. Fuel Effects on Advanced Combustion: Heavy-Duty Optical-Engine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    D.C. ft004mueller2010o.pdf More Documents & Publications Fuel Effects on Advanced Combustion: Heavy-Duty Optical-Engine Research Fuels and Combustion Strategies for...

  5. A Detailed Multi-Zone Thermodynamic Simulation For Direct-Injection Diesel Engine Combustion

    E-Print Network [OSTI]

    Xue, Xingyu 1985-

    2012-11-15T23:59:59.000Z

    A detailed multi-zone thermodynamic simulation has been developed for the direct-injection (DI) diesel engine combustion process. For the purpose of predicting heterogeneous type combustion systems, the model explores the formation of pre...

  6. Computers and Chemical Engineering 28 (2004) 21412155 "Store and retrieve" representations of dynamic systems motivated

    E-Print Network [OSTI]

    Androulakis, Ioannis (Yannis)

    2004-01-01T23:59:59.000Z

    in internal combustion engines (Faravelli, Gaffuri, Ranzi, & Griffiths, 1998), or reactor simulations coupling

  7. Combustion Analysis Software Package for Internal Combustion Engines -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i tCollaboration MarchCanadian2016 AnnualEnergy Innovation

  8. International Power Engineering Research Collaborations

    E-Print Network [OSTI]

    Gross, George

    , Power Systems, International Cooperation, Power Engineering Education, Industry and Government Support of electricity is on the rise as efficient and environmentally sensitive electricity services are key have major impacts on the topics of research projects and the education of the new generation of power

  9. DOE Project: Optimization of Advanced Diesel Engine Combustion Strategies "University Research in Advanced Combustion and Emissions Control" Office of FreedomCAR and Vehicle Technologies Program

    SciTech Connect (OSTI)

    Reitz, Rolf; Foster, D.; Ghandhi, J.; Rothamer, D.; Rutland, C.; Sanders, S.; Trujillo, M.

    2012-10-26T23:59:59.000Z

    The goal of the present technology development was to increase the efficiency of internal combustion engines while minimizing the energy penalty of meeting emissions regulations. This objective was achieved through experimentation and the development of advanced combustion regimes and emission control strategies, coupled with advanced petroleum and non-petroleum fuel formulations. To meet the goals of the project, it was necessary to improve the efficiency of expansion work extraction, and this required optimized combustion phasing and minimized in-cylinder heat transfer losses. To minimize fuel used for diesel particulate filter (DPF) regeneration, soot emissions were also minimized. Because of the complex nature of optimizing production engines for real-world variations in fuels, temperatures and pressures, the project applied high-fidelity computing and high-resolution engine experiments synergistically to create and apply advanced tools (i.e., fast, accurate predictive models) developed for low-emission, fuel-efficient engine designs. The companion experiments were conducted using representative single- and multi-cylinder automotive and truck diesel engines.

  10. Maximizing Power Output in Homogeneous Charge Compression Ignition (HCCI) Engines and Enabling Effective Control of Combustion Timing

    E-Print Network [OSTI]

    Saxena, Samveg

    2011-01-01T23:59:59.000Z

    Ford Motor Company, Diesel Engine Aftertreatment: How FordNational Laboratory, Engine Combustion Network, http://High Power Output without Engine Knock and with Ultra-Low

  11. Twenty-Seventh Symposium (International) on Combustion/The Combustion Institute, 1998/pp. 22492257 SIMULATION OF THE TRANSIENT, COMPRESSIBLE, GAS-DYNAMIC

    E-Print Network [OSTI]

    Petzold, Linda R.

    ­2257 SIMULATION OF THE TRANSIENT, COMPRESSIBLE, GAS-DYNAMIC BEHAVIOR OF CATALYTIC-COMBUSTION IGNITION2249 Twenty-Seventh Symposium (International) on Combustion/The Combustion Institute, 1998/pp. 2249 combustion in a stagnation-flow configuration. The analysis considers the elementary heterogeneouschem- istry

  12. Microscale combustion: Technology development and fundamental research Yiguang Ju a

    E-Print Network [OSTI]

    Ju, Yiguang

    of micro-thrusters, micro internal combustion engines, and micro chemical reactors summarized. ThirdlyReview Microscale combustion: Technology development and fundamental research Yiguang Ju a , Kaoru Maruta b,* a Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ

  13. Combustion optimization in a hydrogen-enhanced lean burn SI engine

    E-Print Network [OSTI]

    Goldwitz, Joshua A. (Joshua Arlen), 1980-

    2004-01-01T23:59:59.000Z

    Lean operation of spark ignition (SI) automotive engines offers attractive performance incentives. Lowered combustion temperatures inhibit NO[sub]x pollutant formation while reduced manifold throttling minimizes pumping ...

  14. 1 Copyright 2003 by ASME 17th International Conference on Fluidised Bed Combustion

    E-Print Network [OSTI]

    Zevenhoven, Ron

    1 Copyright 2003 by ASME 17th FBC 17th International Conference on Fluidised Bed Combustion May COMBUSTION OF HIGH-PVC SOLID WASTE WITH HCl RECOVERY Loay Saeed, Antti Tohka, Ron Zevenhoven* Helsinki.zevenhoven@hut.fi * Corresponding author ABSTRACT A process for two-stage combustion of high-PVC solid waste with HCl recovery

  15. COMBUSTION RESEARCH Chapter from the Energy and Environment Division Annual Report 1980

    E-Print Network [OSTI]

    Authors, Various

    2013-01-01T23:59:59.000Z

    internal combustion engines, heat transfer processes are critical to: quenching of wall reactions which cause high hydrocarbon emissions,

  16. Formation mechanisms of combustion chamber deposits

    E-Print Network [OSTI]

    O'Brien, Christopher J. (Christopher John)

    2001-01-01T23:59:59.000Z

    Combustion chamber deposits are found in virtually all internal combustion engines after a few hundred hours of operation. Deposits form on cylinder, piston, and head surfaces that are in contact with fuel-air mixture ...

  17. asme internal combustion: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Conference on Fluidised Bed Combustion Fossil Fuels Websites Summary: COMBUSTION OF HIGH-PVC SOLID WASTE WITH HCl RECOVERY Loay Saeed, Antti Tohka, Ron Zevenhoven*...

  18. Coal slurry combustion optimization on single cylinder engine. Task 1.1.2.2.2, Combustion R&D

    SciTech Connect (OSTI)

    Not Available

    1992-09-01T23:59:59.000Z

    Under the sponsorship of the US Department of Energy, Morgantown Energy Technology Center, GE Transportation System has been conducting a proof of concept program to use coal water slurry (CWS) fuel to power a diesel engine locomotive since 1988. As reported earlier [1], a high pressure electronically controlled accumulator injector using a diamond compact insert nozzle was developed for this project. The improved reliability and durability of this new FIE allowed for an improved and more thorough study of combustion of CWS fuel in a diesel engine. It was decided to include a diesel pilot fuel injector in the combustion system mainly due to engine start and low load operation needs. BKM, Inc. of San Diego, CA was contracted to develop the electronic diesel fuel pilot/starting FIE for the research engine. As a result, the experimental combustion study was very much facilitated due to the ability of changing pilot/CWS injection timings and quantities without having to stop the engine. Other parameters studied included combustion chamber configuration (by changing CWS fuel injector nozzle hole number/shape/angle), as well as injection pressure. The initial phase of this combustion study is now complete. The results have been adopted into the design of a 12 cylinder engine FIE, to be tested in 1992. This paper summarizes the main findings of this study.

  19. Formula Hybrid International Competition

    E-Print Network [OSTI]

    Carver, Jeffrey C.

    torque at low speeds than do internal combustion engines, a hybrid could offer competitive advantages with a traditional combustion engine into a hybrid vehicle, overcoming numerous technical challenges along the way

  20. Impact of workstations on criticality analyses at ABB combustion engineering

    SciTech Connect (OSTI)

    Tarko, L.B.; Freeman, R.S.; O'Donnell, P.F. (ABB Combustion Engineering Nuclear Power, Inc., Windsor, CT (United States))

    1993-01-01T23:59:59.000Z

    During 1991, ABB Combustion Engineering (ABB C-E) made the transition from a CDC Cyber 990 mainframe for nuclear criticality safety analyses to Hewlett Packard (HP)/Apollo workstations. The primary motivation for this change was improved economics of the workstation and maintaining state-of-the-art technology. The Cyber 990 utilized the NOS operating system with a 60-bit word size. The CPU memory size was limited to 131 100 words of directly addressable memory with an extended 250000 words available. The Apollo workstation environment at ABB consists of HP/Apollo-9000/400 series desktop units used by most application engineers, networked with HP/Apollo DN10000 platforms that use 32-bit word size and function as the computer servers and network administrative CPUS, providing a virtual memory system.

  1. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING Int. J. Numer. Meth. Engng 2004; 61:24022427

    E-Print Network [OSTI]

    Jiao, Xiangmin "Jim"

    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING Int. J. Numer. Meth. Engng 2004; 61 Jiao and Michael T. Heath, Computational Science and Engineering, University of Illinois at Urbana, and combustion, in an efficient and accurate manner. The multidisciplinary nature of such systems suggests

  2. Combustion lean limits fundamentals and their application to a SI hydrogen-enhanced engine concept

    E-Print Network [OSTI]

    Ayala, Ferran A. (Ferran Alberto), 1976-

    2006-01-01T23:59:59.000Z

    Operating an engine with excess air, under lean conditions, has significant benefits in terms of increased engine efficiency and reduced emissions. However, under high dilution levels, a lean limit is reached where combustion ...

  3. Impact of retarded spark timing on engine combustion, hydrocarbon emissions, and fast catalyst light-off

    E-Print Network [OSTI]

    Hallgren, Brian E. (Brian Eric), 1976-

    2005-01-01T23:59:59.000Z

    An experimental study was performed to determine the effects of substantial spark retard on engine combustion, hydrocarbon (HC) emissions, feed gas enthalpy, and catalyst light-off. Engine experiments were conducted at ...

  4. College of Engineering 20052006 Student Design Showcase

    E-Print Network [OSTI]

    Wood, Stephen L.

    Engineering Marine and Environmental Systems Ocean Engineering Mechanical and Aerospace Engineering ......................................................................................................................... 39 Marine and Environmental Systems.................................................................... 43 PHISH--Perfected High-Speed Internal-Combustion Solar Hybrid

  5. Computationally Efficient Modeling of High-Efficiency Clean Combustion Engines

    Broader source: Energy.gov [DOE]

    Document: ace012_flowers_2013_o.pdfTechnology Area: Advanced Combustion; Combustion and Emissions ControlPresenter: Dan FlowersPresenting Organization: Lawrence Livermore National Laboratory (LLNL...

  6. An examination of possible reversible combustion at high temperatures and pressures for a reciprocating engine

    E-Print Network [OSTI]

    Patrawala, Kaushik Tanvir

    2009-05-15T23:59:59.000Z

    Engine. (May 2007) Kaushik Tanvir Patrawala, Dipl., Shri Bhagubhai Mafatlal Polyte, India; B.E., University of Bombay (Mumbai), India Chair of Advisory Committee: Dr. Jerald A. Caton Conventional combustion processes are known to be highly... TO RECIPROCATING ENGINE............................................................ 16 Standard air cycle analysis.......................................................................... 16 Availability analysis of a combustion process...

  7. Prerequisites: Control Systems I+II, Engine Class (IC Engines and Propulsion Systems, Introduction to

    E-Print Network [OSTI]

    Daraio, Chiara

    to Modeling and Control of Internal Combustion Engine Systems,...), Matlab/Simulink experience Contact for a Novel Engine Concept Position Control for an Internal Combustion Engine (Simulation) Description an internal combustion engine piston follow a reference position trajectory with sufficient accuracy

  8. Fuel effects in homogeneous charge compression ignition (HCCI) engines

    E-Print Network [OSTI]

    Angelos, John P. (John Phillip)

    2009-01-01T23:59:59.000Z

    Homogenous-charge, compression-ignition (HCCI) combustion is a new method of burning fuel in internal combustion (IC) engines. In an HCCI engine, the fuel and air are premixed prior to combustion, like in a spark-ignition ...

  9. Review of Heavy-Duty Engine Combustion Research at Sandia National Laboratories

    SciTech Connect (OSTI)

    Robert W. Carling; Gurpreet Singh

    2000-06-19T23:59:59.000Z

    The objectives of this paper are to describe the research efforts in diesel engine combustion at Sandia National Laboratories' Combustion Research Facility and to provide recent experimental results. We have four diesel engine experiments supported by the Department of Energy, Office of Heavy Vehicle Technologies: a one-cylinder version of a Cummins heavy-duty engine, a diesel simulation facility, a one-cylinder Caterpillar engine to evaluate combustion of alternative fuels, and a homogeneous-charge, compression-ignition (HCCI) engine facility is under development. Recent experimental results to be discussed are: the effects of injection timing and diluent addition on late-combustion soot burnout, diesel-spray ignition and premixed-burn behavior, a comparison of the combustion characteristics of M85 (a mixture of 85% methanol and 15% gasoline) and DF2 (No.2 diesel reference fuel), and a description of our HCCI experimental program and modeling work.

  10. Sandia National Laboratories: Combustion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    TechnologiesCombustion Combustion The Combustion Research Facility (CRF) is an internationally recognized center of excellence for combustion science and technology whose...

  11. Tailoring next-generation biofuels and their combustion in next-generation engines.

    SciTech Connect (OSTI)

    Gladden, John Michael; Wu, Weihua; Taatjes, Craig A.; Scheer, Adam Michael; Turner, Kevin M.; Yu, Eizadora T.; O'Bryan, Greg; Powell, Amy Jo; Gao, Connie W. [Massachusetts Institute of Technology, Cambridge, MA] [Massachusetts Institute of Technology, Cambridge, MA

    2013-11-01T23:59:59.000Z

    Increasing energy costs, the dependence on foreign oil supplies, and environmental concerns have emphasized the need to produce sustainable renewable fuels and chemicals. The strategy for producing next-generation biofuels must include efficient processes for biomass conversion to liquid fuels and the fuels must be compatible with current and future engines. Unfortunately, biofuel development generally takes place without any consideration of combustion characteristics, and combustion scientists typically measure biofuels properties without any feedback to the production design. We seek to optimize the fuel/engine system by bringing combustion performance, specifically for advanced next-generation engines, into the development of novel biosynthetic fuel pathways. Here we report an innovative coupling of combustion chemistry, from fundamentals to engine measurements, to the optimization of fuel production using metabolic engineering. We have established the necessary connections among the fundamental chemistry, engine science, and synthetic biology for fuel production, building a powerful framework for co-development of engines and biofuels.

  12. Controlling the start of combustion on an HCCI Diesel engine Mathieu HILLION, Jonathan CHAUVIN, and Nicolas PETIT

    E-Print Network [OSTI]

    Controlling the start of combustion on an HCCI Diesel engine Mathieu HILLION, Jonathan CHAUVIN of the combustion of HCCI engines during sharp transients. This approach complements existing airpath and fuelpath Combustion modes (HPC), including Homogeneous Charge Compression Ignition (HCCI). Consider a Diesel engine

  13. Corresponding author: frederique.battin-leclerc@ensic.inpl-nancy.fr Proceeding of the European Combustion Meeting 2009

    E-Print Network [OSTI]

    Boyer, Edmond

    -ignited internal combustion engines, the n-heptane/iso-octane blend (PRF mixture) has long been the most commonly

  14. Maximizing Power Output in Homogeneous Charge Compression Ignition (HCCI) Engines and Enabling Effective Control of Combustion Timing

    E-Print Network [OSTI]

    Saxena, Samveg

    2011-01-01T23:59:59.000Z

    Experimental study of biogas combustion characteristics andthe operation range of a biogas HCCI engine for powerOperating Conditions in a Biogas Fueled HCCI Engine for

  15. Axially staged combustion system for a gas turbine engine

    DOE Patents [OSTI]

    Bland, Robert J. (Oviedo, FL)

    2009-12-15T23:59:59.000Z

    An axially staged combustion system is provided for a gas turbine engine comprising a main body structure having a plurality of first and second injectors. First structure provides fuel to at least one of the first injectors. The fuel provided to the one first injector is adapted to mix with air and ignite to produce a flame such that the flame associated with the one first injector defines a flame front having an average length when measured from a reference surface of the main body structure. Each of the second injectors comprising a section extending from the reference surface of the main body structure through the flame front and having a length greater than the average length of the flame front. Second structure provides fuel to at least one of the second injectors. The fuel passes through the one second injector and exits the one second injector at a location axially spaced from the flame front.

  16. Combustion in Homogeneous Charge Compression Ignition Engines: Experiments and Detailed Chemical Kinetic Simulations

    SciTech Connect (OSTI)

    Flowers, D L

    2002-06-07T23:59:59.000Z

    Homogeneous charge compression ignition (HCCI) engines are being considered as an alternative to diesel engines. The HCCI concept involves premixing fuel and air prior to induction into the cylinder (as is done in current spark-ignition engine) then igniting the fuel-air mixture through the compression process (as is done in current diesel engines). The combustion occurring in an HCCI engine is fundamentally different from a spark-ignition or Diesel engine in that the heat release occurs as a global autoignition process, as opposed to the turbulent flame propagation or mixing controlled combustion used in current engines. The advantage of this global autoignition is that the temperatures within the cylinder are uniformly low, yielding very low emissions of oxides of nitrogen (NO{sub x}, the chief precursors to photochemical smog). The inherent features of HCCI combustion allows for design of engines with efficiency comparable to, or potentially higher than, diesel engines. While HCCI engines have great potential, several technical barriers exist which currently prevent widespread commercialization of this technology. The most significant challenge is that the combustion timing cannot be controlled by typical in-cylinder means. Means of controlling combustion have been demonstrated, but a robust control methodology that is applicable to the entire range of operation has yet to be developed. This research focuses on understanding basic characteristics of controlling and operating HCCI engines. Experiments and detailed chemical kinetic simulations have been applied to the characterize some of the fundamental operational and design characteristics of HCCI engines. Experiments have been conducted on single and multi-cylinder engines to investigate general features of how combustion timing affects the performance and emissions of HCCI engines. Single-zone modeling has been used to characterize and compare the implementation of different control strategies. Multi-zone modeling has been applied to investigate combustion chamber design with respect to increasing efficiency and reducing emissions in HCCI engines.

  17. VERIFI code optimization yields three-fold increase in engine...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    fluid dynamics and combustion characteristics that are at the heart of all internal combustion engines. Using high performance computing and X-ray radiography data from...

  18. Twenty-Sixth Symposium (International) on Combustion/The Combustion Institute, 1996/pp. 12751281 INFLUENCE OF GRAVITY ON THE PROPAGATION OF INITIALLY

    E-Print Network [OSTI]

    Heil, Matthias

    1275 Twenty-Sixth Symposium (International) on Combustion/The Combustion Institute, 1996/pp. 1275 of an initially spherical kernel of burned gas in a fresh reactive mixture in the presence of a gravity field, the same occurs at the front surface but typically the flame persists at the back. For Le 1, the combustion

  19. 2002 Spring Technical Meeting Central States Section / The Combustion Institute

    E-Print Network [OSTI]

    Tennessee, University of

    Motors Research & Development Center Local Fuel-Air Ratio Measurements in Internal Combustion Engines Research Laboratory A Multi-dimensional Combustion Model for Gasoline Direct-Injection Engine Design 10 Emissions from Small Utility Engines 12:00 PM Lunch & Business Meeting SESSION A.2: Multiphase Combustion

  20. Geotechnical/Environmental Engineering Intern Manchester, NH

    E-Print Network [OSTI]

    Pohl, Karsten

    Geotechnical/Environmental Engineering Intern Manchester, NH POSITION DESCRIPTION The candidate will provide support for site characterization geotechnical investigations, site development, remediation include, but are not limited to: Interpreting, and presenting, environmental data; performing engineering

  1. http://jer.sagepub.com/ International Journal of Engine Research

    E-Print Network [OSTI]

    Wooldridge, Margaret S.

    single-cylinder research engine to spark-assisted HCCI An experimental investigation of the sensitivity and combustion properties of a single-cylinder research engine to spark-assisted HCCI B T Zigler1,2 , P E Keros1 ignition (HCCI) combustion may be a method to improve the operation of HCCI engines. In the current study

  2. Summary Report on the Transportation Combustion Engine Efficiency Colloquium Held at USCAR, March 3 and 4, 2010

    SciTech Connect (OSTI)

    Daw, C Stuart [ORNL; Graves, Ronald L [ORNL; Caton, Jerald A [ORNL; Wagner, Robert M [ORNL

    2010-11-01T23:59:59.000Z

    This report summarizes results from an invited two-day colloquium of twenty-nine combustion engine experts from academia, industry, and national labs that was convened March 3rd and 4th, 2010, at the headquarters of the United States Council for Automotive Research (USCAR) in Southfield, Michigan. The colloquium was held at the request of The Department of Energy (DOE) Office of Freedom Car and Vehicle Technologies (OFCVT) to review and assess the current state of transportation combustion engine technology from theoretical and practical perspectives. In the ensuing discussions, the experts were able to reach a broad consensus on some important questions regarding current fuel efficiency limits. They also identified technology barriers and recommended specific near and longer-term R&D priorities for DOE's consideration. Internal combustion engines currently play a dominant role in U.S. transportation and are expected to continue to do so well beyond 2020 [1]. Because of this, the Department of Energy (DOE) has placed high priority on promoting technologies that maximize combustion engine fuel efficiency while minimizing greenhouse gas emissions. Identification of the most promising paths to achieve these goals has recently become more complicated as non-traditional transportation fuels and hybrid electric vehicles become widely available. To reassess the state of combustion engine science and identify new opportunities for technology breakthroughs, an invited colloquium of combustion engine experts was convened on March 3rd and 4th, 2010, at the headquarters of the United States Council for Automotive Research (USCAR) in Southfield, Michigan. The colloquium objectives were: (1) Review and assess the current state of transportation combustion engine technology from both theoretical and practical perspectives; (2) Arrive at a consensus on the theoretical and practical fuel efficiencies that can be achieved; and (3) Recommend near and longer-term R&D priorities for DOE to consider in developing their strategic planning for reaching efficiency goals. This report summarizes the main discussion points and recommendations that emerged from the meeting. Included are areas where there is widespread consensus and areas where there are still important technical uncertainties and wide ranging opinions.

  3. Department of Mechanical, Materials, and Aerospace Engineering Department of Mechanical, Materials, and Aerospace Engineering

    E-Print Network [OSTI]

    Saniie, Jafar

    instrumentation, com- bustion, internal combustion engines, two-phase flow and heat-transfer, electrohydrodynamics mobile and stationary combustion sources. Materials science and engineering laboratories includeDepartment of Mechanical, Materials, and Aerospace Engineering Department of Mechanical, Materials

  4. A reduced chemical kinetic model for IC engine combustion simulations with primary reference fuels

    SciTech Connect (OSTI)

    Ra, Youngchul; Reitz, Rolf D. [Engine Research Center, University of Wisconsin-Madison, 1500 Engineering Drive, ERB 1016B, Madison, WI 53706 (United States)

    2008-12-15T23:59:59.000Z

    A reduced chemical kinetic mechanism for the oxidation of primary reference fuel (PRF) has been developed and applied to model internal combustion engines. Starting from an existing reduced reaction mechanism for n-heptane oxidation, a new reduced n-heptane mechanism was generated by including an additional five species and their relevant reactions, by updating the reaction rate constants of several reactions pertaining to oxidation of carbon monoxide and hydrogen, and by optimizing reaction rate constants of selected reactions. Using a similar approach, a reduced mechanism for iso-octane oxidation was built and combined with the n-heptane mechanism to form a PRF mechanism. The final version of the PRF mechanism consists of 41 species and 130 reactions. Validation of the present PRF mechanism was performed with measurements from shock tube tests, and HCCI and direct injection engine experiments available in the literature. The results show that the present PRF mechanism gives reliable performance for combustion predictions, as well as computational efficiency improvements for multidimensional CFD simulations. (author)

  5. Combustion Commonality and Differences Between HSDI and Heavy Duty Truck Engines

    SciTech Connect (OSTI)

    Chen, Rong

    2000-08-20T23:59:59.000Z

    Experimental understanding of the diesel spray and combustion process at the fundamental level has helped advance the virtual lab simulation tools. The computational fluid dynamics (CFD)-based simulation has been globally verified in many engines, providing substantial credibility to the use of this technology in advanced engine development. This paper highlights the common aspects and differences between the smallbore HSDI and the larger displacement heavy-duty truck engine spray and combustion processes. Implications for combustion system strategies will be delineated. Detroit Diesel integrated ''Wired'' approach will be explained with pointers towards future tool enhancements.

  6. Analytical Framework to Evaluate Emission Control Systems for Marine Engines

    E-Print Network [OSTI]

    Jayaram, Varalakshmi

    2010-01-01T23:59:59.000Z

    J. , Internal Combustion Engine Fundamentals. March 31stfrom a large ship diesel engine. Atmos. Environ. 2009, 43 (low-speed marine diesel engine. Aerosol Sci. Technol. 2007,

  7. Investigation of Bio-Diesel Fueled Engines under Low-Temperature Combustion Strategies

    SciTech Connect (OSTI)

    Chia-fon F. Lee; Alan C. Hansen

    2010-09-30T23:59:59.000Z

    In accordance with meeting DOE technical targets this research was aimed at developing and optimizing new fuel injection technologies and strategies for the combustion of clean burning renewable fuels in diesel engines. In addition a simultaneous minimum 20% improvement in fuel economy was targeted with the aid of this novel advanced combustion system. Biodiesel and other renewable fuels have unique properties that can be leveraged to reduce emissions and increase engine efficiency. This research is an investigation into the combustion characteristics of biodiesel and its impacts on the performance of a Low Temperature Combustion (LTC) engine, which is a novel engine configuration that incorporates technologies and strategies for simultaneously reducing NOx and particulate emissions while increasing engine efficiency. Generating fundamental knowledge about the properties of biodiesel and blends with petroleum-derived diesel and their impact on in-cylinder fuel atomization and combustion processes was an important initial step to being able to optimize fuel injection strategies as well as introduce new technologies. With the benefit of this knowledge experiments were performed on both optical and metal LTC engines in which combustion and emissions could be observed and measured under realistic conditions. With the aid these experiments and detailed combustion models strategies were identified and applied in order to improve fuel economy and simultaneously reduce emissions.

  8. Efficiency analysis of varying EGR under PCI mode of combustion in a light duty diesel engine

    E-Print Network [OSTI]

    Pillai, Rahul Radhakrishna

    2008-10-10T23:59:59.000Z

    HC Hydrocarbon HCCI Homogenous Charge Compression Ignition HiMICS Homogenous Charge Intelligent Multiple Injection Combustion System IC Internal Combustion IDI Indirect Injection IMEP Indicative Mean Effective Pressure ISPOL Isuzu Poland... in HC and CO formation [2]. Two main methods have been developed to achieve the low temperature combustion. They are homogenous charge compression ignition (HCCI) and premixed compression ignition (PCI). 1.2.3 HCCI and Its Development HCCI...

  9. Prerequisites: Control Systems I+II, Engine Class (IC Engines and Propulsion Systems, Introduction to

    E-Print Network [OSTI]

    Daraio, Chiara

    to Modeling and Control of Internal Combustion Engine Systems,...), Model Predictive Control, Matlab Iterative Learning Control for Internal Combustion Engines Modeling and Control Description: In classical. The objective of this work is to apply learning algorithms to highly dynamic internal combustion engines

  10. DEPARTMENT OF MECHANICAL & INDUSTRIAL ENGINEERING OF NORTHEASTERN UNIVERSITY Final Reports of Engine

    E-Print Network [OSTI]

    Mft, Sinan

    Our group is studying on internal combustion engine tribology, and through reading, we found, it is one of the most important friction pair of internal combustion engine. Researches show that, the 25% ~ 50%friction work of internal combustion engines consumed by the cylinder-piston ring friction pair

  11. Emission Reduction and Assisted Combustion Strategies for Compression Ignition Engines with Subsequent Testing on a Single-Cylinder Engine

    E-Print Network [OSTI]

    Ragone, Colter

    2012-08-31T23:59:59.000Z

    temperatures, while decreasing brake specific PM due to increased turbulence. Resulting performance calculations displayed a slight increase in fuel consumption. Chapter three analyzes the effects of ozone-assisted combustion on a single cylinder diesel engine...

  12. Efficiency analysis of varying EGR under PCI mode of combustion in a light duty diesel engine

    E-Print Network [OSTI]

    Pillai, Rahul Radhakrishna

    2008-10-10T23:59:59.000Z

    The recent pollution norms have brought a strong emphasis on the reduction of diesel engine emissions. Low temperature combustion technology such as premixed compression ignition (PCI) has the capability to significantly and simultaneously reduce...

  13. Development of a catalytic combustion system for the MIT Micro Gas Turbine Engine

    E-Print Network [OSTI]

    Peck, Jhongwoo, 1976-

    2003-01-01T23:59:59.000Z

    As part of the MIT micro-gas turbine engine project, the development of a hydrocarbon-fueled catalytic micro-combustion system is presented. A conventionally-machined catalytic flow reactor was built to simulate the ...

  14. Optical-Engine Study of a Low-Temperature Combustion Strategy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Study of a Low-Temperature Combustion Strategy Employing a Dual-Row, Narrow-Included-Angle Nozzle and Early, Direct Injection of Diesel Fuel Optical-Engine Study of a...

  15. Cycle-to-Cycle Fluctuations of Burned Fuel Mass in Spark Ignition Combustion Engines

    E-Print Network [OSTI]

    M. Wendeker; G. Litak; M. Krupa

    2003-12-28T23:59:59.000Z

    We examine a simple, fuel-air, model of combustion in spark ignition (si) engine with indirect injection. In our two fluid model, variations of fuel mass burned in cycle sequences appear due to stochastic fluctuations of a fuel feed amount. We have shown that a small amplitude of these fluctuations affects considerably the stability of a combustion process strongly depending on the quality of air-fulel mixture. The largest influence was found in the limit of a lean combustion. The possible effect of nonlinearities in the combustion process were also discussed.

  16. Low Temperature Combustion Demonstrator for High Efficiency Clean...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Merit Review Low Temperature Combustion Demonstrator for High Efficiency Clean Combustion DE-FC26-05NT42413 William de Ojeda International Truck and Engine Company 26 Feb 2008 This...

  17. INTERNATIONAL JOURNAL OF CHEMICAL REACTOR ENGINEERING

    E-Print Network [OSTI]

    Palanki, Srinivas

    INTERNATIONAL JOURNAL OF CHEMICAL REACTOR ENGINEERING Volume 4 2006 Article A19 Design of a Fuel for automotive ap- plications, using methane as a fuel, are analyzed. Basic chemical engineering principles methane to generate hydrogen, are analyzed. In particular, basic chemical engineering principles

  18. Durability of Diesel Engine Particulate Filters (Agreement ID...

    Broader source: Energy.gov (indexed) [DOE]

    approved Barriers * - Propulsion Materials Technology: * Changing internal combustion engine regimes Optimize to minimize fuel penalty & thermal stresses during regeneration *...

  19. Diesel engine combustion and emissions from fuel to exhaust aftertreatment. SP-1113

    SciTech Connect (OSTI)

    NONE

    1995-12-31T23:59:59.000Z

    There are many dimensions involved in any study of Diesel Engine Emissions. These dimensions include: the fuel used, how the fuel is presented into the combustion chamber, how the air is presented into the combustion chamber, the actual process of combustion and emissions formation, the treatment of the emissions after combustion, and the test methods used to quantify the emissions. All of these dimensions are covered in this publication. The fuel topics include: plant oil based fuels and gas dissolved in fuel oil. The air delivery to the combustion chamber is effected by both port performance and geometry and ambient conditions and these topics are included. The thermodynamics of the combustion process and modeling are included in this publication. Aftertreatment is included with a paper on particulate filters. A correlation study using the ISO8178 testing method is also included. All nine papers have been processed separately for inclusion on the database.

  20. Vehicle Technologies Office: 2012 Advanced Combustion R&D Annual...

    Energy Savers [EERE]

    the critical technical barriers to commercialization of advanced internal combustion engines (ICEs) for passenger and commercial vehicles that meet future federal emissions...

  1. Comment/Rebuttal Comments on "Electrorheology Leads to Efficient Combustion" by

    E-Print Network [OSTI]

    Glder, mer L.

    Comment/Rebuttal Comments on "Electrorheology Leads to Efficient Combustion" by Tao et al. O mer L of combustion in general and internal combustion (IC) engine combustion technology in particular. Given posit that "because combustion starts at the interface between fuel and air and most harmful emissions

  2. Simulation of High Efficiency Clean Combustion Engines and Detailed...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    analysis of and improving simulation methodologies for high efficiency clean combustion regimes, and computational performance deer11flowers.pdf More Documents &...

  3. Simulation of High Efficiency Clean Combustion Engines and Detailed...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    continuing work on exploring fuel chemistry, analysis of advanced combustion regimes, and improvements in simulation methodologies deer12flowers.pdf More Documents & Publications...

  4. Overview of DOE Advanced Combustion Engine R&D

    Broader source: Energy.gov (indexed) [DOE]

    modeling and experiments Advanced diagnostics including optical, laser, x-ray, and neutron based techniques Multi-dimensional computational models and combustion...

  5. Overview of the DOE Advanced Combustion Engine R&D

    Broader source: Energy.gov (indexed) [DOE]

    (NOx and PM Control) ANL - X-ray fuel spray characterization LLNL - Chemical kinetics models (LTC and emissions) LANL - CFD modeling of combustion ...

  6. Predicting the behavior of a lean-burn hydrogen-enhanced engine concept

    E-Print Network [OSTI]

    Ivanic, Žiga, 1978-

    2004-01-01T23:59:59.000Z

    (cont.) Lean operation of a spark ignition (SI) internal combustion engine (ICE) offers attractive performance incentives. Lowered combustion temperatures inhibit formation of nitrogen oxides (NOx), while reduced intake ...

  7. Japanese industrial research on lean combustion: A case study: International Research Monitoring Program

    SciTech Connect (OSTI)

    Hane, G.J.; Hutchinson, R.A.

    1987-08-01T23:59:59.000Z

    In recent years, Japanese automakers have introduced a number of successful lean-combustion engines. These engines, in addition to the general expertise in building small cars, have made the Japanese automobiles into the gas mileage champions of the US market. The lean-combustion engines also provide very satisfactory performance and acceptable emissions. United States automakers and research managers, who were probably better informed about lean-combustion than the Japanese were, actively investigated lean-combustion but did not develop an engine. This report examines the basis for the Japanese innovations, the research that took the Japanese past the US state of the art to permit engine development. A preliminary review of recent (1980s) Japanese literature did not turn up strong evidence of new research activity in the lean-combustion area, but did provide background on new engines developed by several major manufacturers. The study was conducted solely through the Japanese and US published literature, with emphasis on early research conducted in the 1970s. This report presents an example of how Japanese research progress can be examined by reviewing the Japanese research literature. Although useful information was obtained by this method, it is still difficult to get a complete picture. When reviewing the literature, as was done for this report, one must remember that the marginal use of references by Japanese researchers obscures prior work, as does the tendency of the Japanese to publish several articles on similar or identical topics. 50 refs., 15 figs.

  8. Ushering in a New Era of Intelligent Engine Design

    E-Print Network [OSTI]

    Kemner, Ken

    for Internal Combustion Engines (PreSICE) workshop report (March 3, 2011). The workshop was attended by more and expensive. The U.S. Department of Energy's Predictive Simulation for Internal Combustion Engines (Pre. Improving the fuel efficiency of internal combustion engines is criticalto reducing U.S. dependence

  9. Predictive modeling of combustion processes

    E-Print Network [OSTI]

    Sharma, Sandeep, Ph. D. Massachusetts Institute of Technology

    2009-01-01T23:59:59.000Z

    Recently, there has been an increasing interest in improving the efficiency and lowering the emissions from operating combustors, e.g. internal combustion (IC) engines and gas turbines. Different fuels, additives etc. are ...

  10. Sandia National Laboratories: Sandia Expands an International...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ClimateECAbout ECFacilitiesCRFSandia Expands an International Collaboration and Web Database on Engine Fuel Spray Combustion Research Sandia Expands an International Collaboration...

  11. Method and apparatus for active control of combustion rate through modulation of heat transfer from the combustion chamber wall

    DOE Patents [OSTI]

    Roberts, Jr., Charles E.; Chadwell, Christopher J.

    2004-09-21T23:59:59.000Z

    The flame propagation rate resulting from a combustion event in the combustion chamber of an internal combustion engine is controlled by modulation of the heat transfer from the combustion flame to the combustion chamber walls. In one embodiment, heat transfer from the combustion flame to the combustion chamber walls is mechanically modulated by a movable member that is inserted into, or withdrawn from, the combustion chamber thereby changing the shape of the combustion chamber and the combustion chamber wall surface area. In another embodiment, heat transfer from the combustion flame to the combustion chamber walls is modulated by cooling the surface of a portion of the combustion chamber wall that is in close proximity to the area of the combustion chamber where flame speed control is desired.

  12. Optically accessible high-pressure combustion apparatus Stephen D. Tsea)

    E-Print Network [OSTI]

    Tse, Stephen D.

    . DOI: 10.1063/1.1634358 I. INTRODUCTION Recognizing that combustion processes within internal combustion engines take place in elevated pressure environ- ments, that most fundamental information of atmospheres, and hence are representative of those in inter- nal combustion engines. Of particular interest

  13. Combustion | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Combustion Combustion To develop a more thorough understanding of combustion, scientists and engineers must be able to analyze the interaction of many different chemical species at...

  14. Process/Engineering Co-Simulation of Oxy-Combustion and Chemical Looping Combustion

    SciTech Connect (OSTI)

    Sloan, David

    2012-12-31T23:59:59.000Z

    Over the past several years, the DOE has sponsored various funded programs, collectively referred to as Advanced Process Engineering Co-Simulator (APECS) programs, which have targeted the development of a steady-state simulator for advanced power plants. The simulator allows the DOE and its contractors to systematically evaluate various power plant concepts, either for preliminary conceptual design or detailed final design. One of the novel and powerful characteristics of the simulator is that it is designed to couple a hierarchy of plant-level and equipment-level models that have varying levels of fidelity and computational speed suitable. For example, the simulator may be used to couple the cycle analysis software Aspen Plus? (marketed by Aspen Technology, Inc.) with an equipment item on the process flowsheet modeled with the FLUENT? computational fluid dynamics (CFD) code (marketed by ANSYS Inc.). An important enhancement to the APECS toolkit has been the creation of computationally efficient reduced-order models (ROMs) based on information generated from high-fidelity CFD models. The overarching goal of the present DOE program has been to advance and apply APECS to an overlapping advanced carbon capture technology applications area and a dense-phase, chemical looping (CL) applications area. The specific objectives of the project are to (1) develop ROMs for dense-phase computations using the ROM Builder (based on the regression ROM methodology plus principal component analysis (PCA) for contour plots), and (2) demonstrate commercial-scale, oxyfired (OF), circulating fluidized bed (CFB) co-simulations, as well as CL combustion cosimulations, using the ROM and APECS tool kit. The overall intent of the program is to enhance the APECS toolkit so that it is capable of providing dense-phase riser co-simulations using a CAPEOPEN (CO)-compliant ROM, constructed using the ROM Builder, for CL and oxy-fired CFB systems. As the prime contractor, Alstom Power has the responsibility to demonstrate the capabilities of the enhanced APECS tool to simulate commercial-scale OF CFB and CL combustion co-simulations, both of which involve the time-dependent, dense-phase submodels in the FLUENT? code. ANSYS Inc., as a subcontractor, bears the responsibility to enhance the APECS tool kit for the dense-phase submodel applications, and to assist in the development of specific User-Defined Functions (UDFs) necessary for the particle-phase reactions. In April of 2012, Alstom was notified that the workscope would be curtailed after the end of the budget period. Alstom and the DOE agreed to a revised workscope. The technical work was originally encompassed by Tasks 3 and 4. Task 3, associated with the OF CFB applications area, was curtailed, and Task 4, associated with the CL applications area, was eliminated. Only a portion of Task 3 has been completed. Consequently, this report constitutes a final report for that body of work that was accomplished through May of 2012, in accordance with the workscope revisions.

  15. Towards cleaner combustion engines through groundbreaking detailed chemical kinetic models

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Ignition (HCCI) engines. The HCCI engine is characterised by the fact that the fuel and air are mixed

  16. External combustion engine assessment. Topical report, April 1, 1990-December 31, 1991

    SciTech Connect (OSTI)

    Wurm, J.; Kinast, J.A.; Czachorski, M.; Fejer, A.A.

    1992-04-01T23:59:59.000Z

    Development status and near-term availability of several external combustion (EC) engine technologies are assessed with the purpose of surveying current information on reliability, durability, manufacturing cost, and commercialization efforts. The technologies include power producing engines of the Stirling, Brayton, and Ericsson types, closed-cycle gas turbines, and integrated refrigeration machines based on the Stirling and Vuilleumier heat-driven cycles.

  17. Analysis of combustion in a small homogeneous charge compression assisted ignition engine

    E-Print Network [OSTI]

    237 Analysis of combustion in a small homogeneous charge compression assisted ignition engine H Ma1 characteristics to homogeneous charge compression ignition (HCCI) engines. Difficulties such as unknown ignition timing and the polytropic index have been addressed by combining both heat release and mass fraction burn

  18. Sensitivity Analysis of Combustion Timing and Duration of Homogeneous Charge Compression Ignition (HCCI) Engines

    E-Print Network [OSTI]

    Stefanopoulou, Anna

    (HCCI) Engines C. J. Chiang and A. G. Stefanopoulou University of Michigan, Ann Arbor Email: cjchiang of a Homogeneous Charge Com- pression Ignition (HCCI) engine. Qualitative and quantitative information on the individual effects of fuel and exhaust gas recirculation (EGR) on the HCCI combustion is provided. Using

  19. International Journal of Software Engineering and Knowledge Engineering World Scientific Publishing Company

    E-Print Network [OSTI]

    Xu, Haiping

    International Journal of Software Engineering and Knowledge Engineering World Scientific Publishing Company 1 FUTURE RESEARCH DIRECTIONS OF SOFTWARE ENGINEERING AND KNOWLEDGE ENGINEERING* HAIPING XU) Software Engineering (SE) and Knowledge Engineering (KE) are closely related disciplines with goals

  20. Method and apparatus for controlling hybrid powertrain system in response to engine temperature

    DOE Patents [OSTI]

    Martini, Ryan D; Spohn, Brian L; Lehmen, Allen J; Cerbolles, Teresa L

    2014-10-07T23:59:59.000Z

    A method for controlling a hybrid powertrain system including an internal combustion engine includes controlling operation of the hybrid powertrain system in response to a preferred minimum coolant temperature trajectory for the internal combustion engine.

  1. Fundamentals of High Pressure Combustion Chapter in High Pressure Processes in Chemical Engineering, Edited by Maximillian Lackner,

    E-Print Network [OSTI]

    Miller, Richard S.

    [2]. Furthermore, gas turbine combustion pres- sures have been increasing at a near linear rateFundamentals of High Pressure Combustion Chapter in High Pressure Processes in Chemical Engineering of the following chapter is to present an overview of the fundamentals of combustion processes in high pressure

  2. Fuels and Combustion Strategies for High-Efficiency Clean-Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combustion Strategies for High-Efficiency Clean-Combustion Engines Fuels and Combustion Strategies for High-Efficiency Clean-Combustion Engines 2012 DOE Hydrogen and Fuel Cells...

  3. HCCI and Stratified-Charge CI Engine Combustion Research

    Broader source: Energy.gov (indexed) [DOE]

    a comprehensive understanding of HCCI processes. 5 All-Metal Engine Optical Engine Optics Table Dynamometer Intake Plenum Exhaust Plenum Water & Oil Pumps & Heaters Flame...

  4. HCCI and Stratified-Charge CI Engine Combustion Research

    Broader source: Energy.gov (indexed) [DOE]

    a comprehensive understanding of HCCI processes. 6 All-Metal Engine Optical Engine Optics Table Dynamometer Intake Plenum Exhaust Plenum Water & Oil Pumps & Heaters Flame...

  5. Optimization of Direct-Injection H2 Combustion Engine Performance...

    Broader source: Energy.gov (indexed) [DOE]

    Engine friction Values derived from measurement on multi-cylinder engine Turbo-charger performance Derived from results of turbo-charged multi-cylinder hydrogen...

  6. Prerequisites: Control Systems I+II, System Modeling, Engine Class (Introduction to Modeling and Control of

    E-Print Network [OSTI]

    Daraio, Chiara

    and Control of Internal Combustion Engine Systems, IC Engines, ...), Optimization Course, Matlab The gas-diesel engine is a natural gas engine, where the combustion is initiated by a small quantity on the investigation of the combustion process of the gas-diesel engine. A highly flexible engine test-bench with COC

  7. M. Bahrami ENSC 461 (S 11) IC Engines 1 Air Standard Assumptions

    E-Print Network [OSTI]

    Bahrami, Majid

    is provided by burning fuel within the system boundaries, i.e., internal combustion engines. The following. Internal Combustion Engines 1. spark ignition engines: a mixture of fuel and air is ignited by a spark in (ideal) power cycles are internally reversible. 3- Combustion process is modeled by a heat

  8. An experimental study of the oil evolution in critical piston ring pack regions and the effects of piston and ring designs in an internal combustion engine utilizing two-dimensional laser induced fluorescence and the impact on maritime economics

    E-Print Network [OSTI]

    Vokac, Adam, 1978-

    2004-01-01T23:59:59.000Z

    Faced with increasing concern for lubricating, oil consumption and engine friction, it is critical to understand the oil transport mechanisms in the power cylinder system. Lubricating oil travels through distinct regions ...

  9. Sandia National Laboratories: light-duty diesel engine

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Paper Presented at American Society of Mechanical Engineers' (ASME) 2012 Internal Combustion Engine Division (ICED) Conference On August 28, 2013, in CRF, Energy, Energy...

  10. Overview of the Advanced Combustion Engine R&D

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    high-efficiency engines using hydrocarbon-based (petroleum and non-petroleum) fuels and hydrogen Light-Duty Heavy-Duty 2010 2015 2015 2018 Engine brake thermal efficiency 45% 50%...

  11. Modeling of scalar dissipation rates in flamelet models for low temperature combustion engine simulations

    E-Print Network [OSTI]

    Gupta, Saurabh; Pal, Pinaki; Im, Hong G

    2014-01-01T23:59:59.000Z

    The flamelet approach offers a viable framework for combustion modeling of homogeneous charge compression ignition (HCCI) engines under stratified mixture conditions. Scalar dissipation rate acts as a key parameter in flamelet-based combustion models which connects the physical mixing space to the reactive space. The aim of this paper is to gain fundamental insights into turbulent mixing in low temperature combustion (LTC) engines and investigate the modeling of scalar dissipation rate. Three direct numerical simulation (DNS) test cases of two-dimensional turbulent auto-ignition of a hydrogen-air mixture with different correlations of temperature and mixture fraction are considered, which are representative of different ignition regimes. The existing models of mean and conditional scalar dissipation rates, and probability density functions (PDFs) of mixture fraction and total enthalpy are a priori validated against the DNS data.

  12. Internal combuston engine having separated cylinder head oil drains and crankcase ventilation passages

    DOE Patents [OSTI]

    Boggs, D.L.; Baraszu, D.J.; Foulkes, D.M.; Gomes, E.G.

    1998-12-29T23:59:59.000Z

    An internal combustion engine includes separated oil drain-back and crankcase ventilation passages. The oil drain-back passages extend from the cylinder head to a position below the top level of oil in the engine`s crankcase. The crankcase ventilation passages extend from passages formed in the main bearing bulkheads from positions above the oil level in the crankcase and ultimately through the cylinder head. Oil dams surrounding the uppermost portions of the crankcase ventilation passages prevent oil from running downwardly through the crankcase ventilation passages. 4 figs.

  13. Comparison of Simulated and Experimental Combustion of Biodiesel Blends in a Single Cylinder Diesel HCCI Engine

    SciTech Connect (OSTI)

    Szybist, James P [ORNL; McFarlane, Joanna [ORNL; Bunting, Bruce G [ORNL

    2007-01-01T23:59:59.000Z

    The effect of biodiesel content on homogeneous charge compression ignition (HCCI) engine performance has been investigated both experimentally and by computer simulation. Combustion experiments were performed in a single cylinder HCCI engine using blends of soy biodiesel in ultra low sulfur diesel, with concentrations ranging from 0 to 50 vol% and equivalence ratios ( ) from 0.38 to 0.48. Data from the engine tests included combustion analysis and exhaust composition analysis with standard gaseous emissions equipment. The engine utilized a custom port fuel injection strategy to provide highly premixed charges of fuel and air, making it possible to compare the results with single zone chemical kinetics simulations that were performed using CHEMKIN III, with a reaction set including 670 species and over 3000 reactions. The reaction mechanism incorporated equations for the combustion of a paraffinic fuel, n-heptane, and an oxygenated component, methyl butanoate, as well as reactions for the formation of NOx. The zero-dimensional model did a reasonably good job of predicting the HCCI combustion event, correctly predicting intake temperature effects on the phasing of both low temperature heat release (LTHR) and the main combustion event. It also did a good job of predicting the magnitude of LTHR. Differences between the simulation and experimental data included the dependence on biodiesel concentration and the duration of both LTHR and the main combustion event. The probable reasons for these differences are the changing derived cetane number (DCN) of the model fuel blend with biodiesel concentration, and the inability of the model to account for stratification of temperature and . The simulation also showed that concentrations of intermediate species produced during LTHR are dependent on the magnitude of LTHR, but otherwise the addition of biodiesel has no discernable effect.

  14. Development of Innovative Combustion Processes for a Direct-Injection Diesel Engine

    SciTech Connect (OSTI)

    John Dec; Paul Miles

    1999-01-01T23:59:59.000Z

    In support of the Partnership for a New Generation Vehicle (PNGV) emissions and fuel economy goals, a small-bore, high-speed, direct-injection (HSDI) diesel facility in which to conduct research into the physics of the combustion process relevant to these engines has been developed. The characteristics of this facility are described, and the motivation for selecting these characteristics and their relation to high efficiency, low-emission HSDI engine technology is discussed.

  15. Characterization of Engine Control Authority on HCCI Combustion as the High Load Limit is Approached

    SciTech Connect (OSTI)

    Szybist, James P [ORNL] [ORNL; Edwards, Kevin Dean [ORNL] [ORNL; Foster, Matthew [Delphi] [Delphi; Confer, Keith [Delphi] [Delphi; Moore, Wayne [Delphi] [Delphi

    2013-01-01T23:59:59.000Z

    While the potential emissions and efficiency benefits of homogeneous charge compression ignition (HCCI) combustion are well known, realizing the potentials on a production intent engine presents numerous challenges. In this study we focus on characterizing the authority of the available engine controls as the high load limit of HCCI combustion is approached. The experimental work is performed on a boosted single-cylinder research engine equipped with direct injection (DI) fueling, cooled external exhaust gas recirculation (EGR), and a hydraulic valve actuation (HVA) valve train to enable the negative valve overlap (NVO) breathing strategy. Valve lift and duration are held constant while phasing is varied in an effort to make the results as relevant as possible to production intent cam-based variable valve actuation (VVA) systems on multi-cylinder engines. Results presented include engine loads from 350 to 650 kPa IMEPnet and manifold pressure from 98 to 190 kPaa at 2000 rpm. It is found that in order to increase engine load to 650 kPa IMEPnet, it is necessary to increase manifold pressure and external EGR while reducing the NVO duration. Both NVO duration and fuel injection timing are effective means of controlling combustion phasing, with NVO duration being a coarse control and fuel injection timing being a fine control. NOX emissions are low throughout the study, with emissions below 0.1 g/kW-h at all boosted HCCI conditions, while good combustion efficiency is maintained (>96.5%). Net indicated thermal efficiency increases with load up to 600 kPa IMEPnet, where a peak efficiency of 41% is achieved. Results of independent parametric investigations are presented on the effect of external EGR, intake effect of manifold pressure, and the effect of NVO duration. It is found that increasing EGR at a constant manifold pressure and increasing manifold pressure at a constant EGR rate both have the effect of retarding combustion phasing. It is also found that combustion phasing becomes increasingly sensitive to NVO duration as engine load increases. Finally, comparisons are made between three commonly used noise metrics (AVL noise meter, ringing intensity (RI), and maximum pressure rise rate (MPRR)). It is found that compared to the AVL noise meter, RI significantly underestimates combustion noise under boosted conditions.

  16. Model Development and Analysis of Clean & Efficient Engine Combustion

    Broader source: Energy.gov (indexed) [DOE]

    capability to the engine designer Theoretical Bandwidth (GBs) CPU GPU The high performance computing hardware landscape is changing. In FY13: We showed potential of GPU for...

  17. Engineering The only online degree program focused on moving

    E-Print Network [OSTI]

    Van Veen, Barry D.

    Master of Engineering in Engine Systems The only online degree program focused on moving the internal combustion industry forward through graduate education of working engineers. Master of Engineering in Engine Systems The only online degree program focused on moving the internal combustion industry forward

  18. Combustion Phasing Model for Control of a Gasoline-Ethanol Fueled SI Engine with Variable Valve Timing

    E-Print Network [OSTI]

    Combustion Phasing Model for Control of a Gasoline-Ethanol Fueled SI Engine with Variable Valve engine efficiency. Fuel-flexible engines permit the increased use of ethanol-gasoline blends. Ethanol points across the engine operating range for four blends of gasoline and ethanol. I. INTRODUCTION Fuel

  19. FY 2008 Progress Report for Advanced Combustion Engine Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport in Representative GeologicReportingEnergy3,Energy FY 09 Lab6COMBUSTION

  20. An analytical investigation of the effects of water injection on combustion products and detonation in spark ignition engines

    E-Print Network [OSTI]

    Brown, William Charles

    1979-01-01T23:59:59.000Z

    AN ANALYTICAL INVESTIGATION OF THE EFFECTS OF WATER INJECTION ON COMBUSTION PRODUCTS AND DETONATION IN SPARK IGNITION ENGINES A Thesis by WILIIAM CHARLES BROWN Submitted to the Graduate College of Texas ANNI University in partial fulfillment... of the requirement for the degree of MASTER OF SCIENCE August 1979 Major Subject: Aerospace Engineering AN ANALYTICAL INVESTIGATION Ol' THE El'FECTS OF WATER INJECTION ON COMBUSTION PRODUCTS AND DETONATION IN SPARK IGNITION ENGINES A Thesis by WILLIAM...

  1. Cyclic Combustion Variations in Dual Fuel Partially Premixed Pilot-Ignited Natural Gas Engines

    SciTech Connect (OSTI)

    Srinivasan, K. K.; Krishnan, S. R.

    2012-05-09T23:59:59.000Z

    Dual fuel pilot ignited natural gas engines are identified as an efficient and viable alternative to conventional diesel engines. This paper examines cyclic combustion fluctuations in conventional dual fuel and in dual fuel partially premixed low temperature combustion (LTC). Conventional dual fueling with 95% (energy basis) natural gas (NG) substitution reduces NOx emissions by almost 90%t relative to straight diesel operation; however, this is accompanied by 98% increase in HC emissions, 10 percentage points reduction in fuel conversion efficiency (FCE) and 12 percentage points increase in COVimep. Dual fuel LTC is achieved by injection of a small amount of diesel fuel (2-3 percent on an energy basis) to ignite a premixed natural gas???????¢????????????????air mixture to attain very low NOx emissions (less than 0.2 g/kWh). Cyclic variations in both combustion modes were analyzed by observing the cyclic fluctuations in start of combustion (SOC), peak cylinder pressures (Pmax), combustion phasing (Ca50), and the separation between the diesel injection event and Ca50 (termed ???????¢????????????????relative combustion phasing???????¢???????????????). For conventional dual fueling, as % NG increases, Pmax decreases, SOC and Ca50 are delayed, and cyclic variations increase. For dual fuel LTC, as diesel injection timing is advanced from 20???????????????° to 60???????????????°BTDC, the relative combustion phasing is identified as an important combustion parameter along with SoC, Pmax, and CaPmax. For both combustion modes, cyclic variations were characterized by alternating slow and fast burn cycles, especially at high %NG and advanced injection timings. Finally, heat release return maps were analyzed to demonstrate thermal management strategies as an effective tool to mitigate cyclic combustion variations, especially in dual fuel LTC.

  2. Reactivity Controlled Compression Ignition (RCCI) Combustion on a Multi-Cylinder Light-Duty Diesel Engine

    SciTech Connect (OSTI)

    Curran, Scott [ORNL; Hanson, Reed M [ORNL; Wagner, Robert M [ORNL

    2012-01-01T23:59:59.000Z

    Reactivity controlled compression ignition is a low-temperature combustion technique that has been shown, both in computational fluid dynamics modeling and single-cylinder experiments, to obtain diesel-like efficiency or better with ultra-low nitrogen oxide and soot emissions, while operating primarily on gasoline-like fuels. This paper investigates reactivity controlled compression ignition operation on a four-cylinder light-duty diesel engine with production-viable hardware using conventional gasoline and diesel fuel. Experimental results are presented over a wide speed and load range using a systematic approach for achieving successful steady-state reactivity controlled compression ignition combustion. The results demonstrated diesel-like efficiency or better over the operating range explored with low engine-out nitrogen oxide and soot emissions. A peak brake thermal efficiency of 39.0% was demonstrated for 2600 r/min and 6.9 bar brake mean effective pressure with nitrogen oxide emissions reduced by an order of magnitude compared to conventional diesel combustion operation. Reactivity controlled compression ignition emissions and efficiency results are compared to conventional diesel combustion operation on the same engine.

  3. Proceedings of the sixth international conference on fluidized bed combustion. Volume II. Technical sessions

    SciTech Connect (OSTI)

    none,

    1980-08-01T23:59:59.000Z

    The Sixth International Conference on Fluidized Bed Combustion was held April 9-11, 1980, at the Atlanta Hilton, Atlanta, Georgia. It was sponsored by the US Department of Energy, the Electric Power Research Institute, the US Environmental Protection Agency, and the Tennessee Valley Authority. The papers covered recent developments in atmospheric and pressurized fluidized-bed combustion, especially the design, operation and control of pilot and demonstration plants. The cleanup of combustion products and the erosion, corrosion and fouling of gas turbines was emphasized also. Fifty-five papers from Volume 2 of the proceedings have been entered individually into EDB and ERA; five papers had been entered previously from other sources. (LTN)

  4. Combustion, Control, and Fuel Effects in a Spark Assisted HCCI Engine Equipped with Variable Valve Timing

    SciTech Connect (OSTI)

    Bunting, Bruce G [ORNL

    2006-01-01T23:59:59.000Z

    Widespread implementation of homogeneous charge compression ignition (HCCI) engines is presently hindered by stability, control, and load range issues. Although the operable HCCI speed/load range is expanding, it is likely that the initial HCCI engines will rely on conventional combustion for part of the operating cycle. In the present study, we have investigated the role of fuel properties and chemistry on the operation of a spark-assisted gasoline HCCI engine. The engine employed is a single cylinder, 500 cc, port fuel injected research engine, operating near lambda = 1.0 and equipped with hydraulic variable valve actuation. HCCI is initiated by early exhaust valve closing to retain exhaust in the cylinder, thereby increasing the cylinder gas temperature. This is also referred to as a 'negative overlap' strategy. A total of 10 custom blended gasolines and three different batches of indolene from two suppliers were run at 5 speed-load combinations and performance was characterized by timing sweeps. Within the quality of the data set, we can say the all fuels provided equivalent combustion and performance characteristics when compared at the same combustion phasing. The fuels did, however, require different degrees of retained exhaust as measured by exhaust valve closing angle to achieve the same combustion phasing. Fuels with higher octane sensitivity were found to ignite more easily or more quickly and to burn more quickly than fuels with lower octane sensitivity. This is an expected result since the engine is naturally aspirated and operates with high compression temperatures due to the high retained exhaust fraction and recompression.

  5. Fuel Effects on Ignition and Their Impact on Advanced Combustion Engines (Poster)

    SciTech Connect (OSTI)

    Taylor, J.; Li, H.; Neill, S.

    2006-08-01T23:59:59.000Z

    The objective of this report is to develop a pathway to use easily measured ignition properties as metrics for characterizing fuels in advanced combustion engine research--correlate IQT{trademark} measured parameters with engine data. In HCCL engines, ignition timing depends on the reaction rates throughout compression stroke: need to understand sensitivity to T, P, and [O{sub 2}]; need to rank fuels based on more than one set of conditions; and need to understand how fuel composition (molecular species) affect ignition properties.

  6. Advanced Combustion | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Combustion Advanced Combustion Combustion engines drive a large percentage of our nation's transportation vehicles and power generation and manufacturing facilities. Today's...

  7. Time Irreversibility of Cycle-by-Cycle Engine Combustion Variations J.B. Green, Jr., C.S. Daw, J.S. Armfield

    E-Print Network [OSTI]

    Tennessee, University of

    - nism of combustion instability is residual gas. Specif- ically, residual fuel and air left from pastTime Irreversibility of Cycle-by-Cycle Engine Combustion Variations J.B. Green, Jr., C.S. Daw, J. The observation of time irreversibility in cycle- resolved combustion measurements indicates that this combustion

  8. IFP Energies nouvelles International Conference Rencontres Scientifiques d'IFP Energies nouvelles

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    LES4ICE 2012 - Large Eddy Simulation for Internal Combustion Engine Flows LES4ICE 2012 - La simulation engine combustion is critical to improve engine efficiency while reducing pol- lutant emissions. To study aux grandes chelles pour les coulements dans les moteurs combustion interne Large-Eddy Simulation

  9. Hydrogen-Assisted IC Engine Combustion as a Route to Hydrogen Implementation

    SciTech Connect (OSTI)

    Andre Boehman; Daniel Haworth

    2008-09-30T23:59:59.000Z

    The 'Freedom Car' Initiative announced by the Bush Administration has placed a significant emphasis on development of a hydrogen economy in the United States. While the hydrogen-fueled fuel-cell vehicle that is the focus of the 'Freedom Car' program would rely on electrochemical energy conversion, and despite the large amount of resources being devoted to its objectives, near-term implementation of hydrogen in the transportation sector is not likely to arise from fuel cell cars. Instead, fuel blending and ''hydrogen-assisted'' combustion are more realizable pathways for wide-scale hydrogen utilization within the next ten years. Thus, a large potential avenue for utilization of hydrogen in transportation applications is through blending with natural gas, since there is an existing market for natural-gas vehicles of various classes, and since hydrogen can provide a means of achieving even stricter emissions standards. Another potential avenue is through use of hydrogen to 'assist' diesel combustion to permit alternate combustion strategies that can achieve lower emissions and higher efficiency. This project focused on developing the underlying fundamental information to support technologies that will facilitate the introduction of coal-derived hydrogen into the market. Two paths were envisioned for hydrogen utilization in transportation applications. One is for hydrogen to be mixed with other fuels, specifically natural gas, to enhance performance in existing natural gas-fueled vehicles (e.g., transit buses) and provide a practical and marketable avenue to begin using hydrogen in the field. A second is to use hydrogen to enable alternative combustion modes in existing diesel engines, such as homogeneous charge compression ignition, to permit enhanced efficiency and reduced emissions. Thus, this project on hydrogen-assisted combustion encompassed two major objectives: (1) Optimization of hydrogen-natural gas mixture composition and utilization through laboratory studies of spark-ignition engine operation on H{sub 2}-NG and numerical simulation of the impact of hydrogen blending on the physical and chemical processes within the engine; and (2) Examination of hydrogen-assisted combustion in advanced compression-ignition engine processes. To that end, numerical capabilities were applied to the study of hydrogen assisted combustion and experimental facilities were developed to achieve the project objectives.

  10. Engine lubrication oil aeration

    E-Print Network [OSTI]

    Baran, Bridget A. (Bridget Anne)

    2007-01-01T23:59:59.000Z

    The lubrication system of an internal combustion engine serves many purposes. It lubricates moving parts, cools the engine, removes impurities, supports loads, and minimizes friction. The entrapment of air in the lubricating ...

  11. Mixed mode control method and engine using same

    DOE Patents [OSTI]

    Kesse, Mary L. (Peoria, IL); Duffy, Kevin P. (Metamora, IL)

    2007-04-10T23:59:59.000Z

    A method of mixed mode operation of an internal combustion engine includes the steps of controlling a homogeneous charge combustion event timing in a given engine cycle, and controlling a conventional charge injection event to be at least a predetermined time after the homogeneous charge combustion event. An internal combustion engine is provided, including an electronic controller having a computer readable medium with a combustion timing control algorithm recorded thereon, the control algorithm including means for controlling a homogeneous charge combustion event timing and means for controlling a conventional injection event timing to be at least a predetermined time from the homogeneous charge combustion event.

  12. Effects of primary breakup modeling on spray and combustion characteristics of compression ignition engines

    SciTech Connect (OSTI)

    Som, S.; Aggarwal, S.K. [Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, IL 60607 (United States)

    2010-06-15T23:59:59.000Z

    Injector flow dynamics and primary breakup processes are known to play a pivotal role in determining combustion and emissions in diesel engines. In the present study, we examine the effects of primary breakup modeling on the spray and combustion characteristics under diesel engine conditions. The commonly used KH model, which considers the aerodynamically induced breakup based on the Kelvin-Helmholtz instability, is modified to include the effects of cavitation and turbulence generated inside the injector. The KH model and the new (KH-ACT) model are extensively evaluated by performing 3-D time-dependent simulations with detailed chemistry under diesel engine conditions. Results indicate that the inclusion of cavitation and turbulence enhances primary breakup, leading to smaller droplet sizes, decrease in liquid penetration, and increase in the radial dispersion of spray. Predictions are compared with measurements for non-evaporating and evaporating sprays, as well as with flame measurements. While both the models are able to reproduce the experimentally observed global spray and combustion characteristics, predictions using the KH-ACT model exhibit closer agreement with measurements in terms of liquid penetration, cone angle, spray axial velocity, and liquid mass distribution for non-evaporating sprays. Similarly, the KH-ACT model leads to better agreement with respect to the liquid length and vapor penetration distance for evaporating sprays, and with respect to the flame lift-off location for combusting sprays. The improved agreement is attributed to the ability of the new model to account for the effects of turbulence and cavitation generated inside the injector, which enhance the primary breakup. Results further indicate that the combustion under diesel engine conditions is characterized by a double-flame structure with a rich premixed reaction zone near the flame stabilization region and a non-premixed reaction zone further downstream. This flame structure is consistent with the Dec's model for diesel engine combustion (Dec, 1997), and well captured by a newly developed flame index based on the scalar product of CO and O{sub 2} mass fraction gradients. (author)

  13. Internal combuston engine having separated cylinder head oil drains and crankcase ventilation passages

    DOE Patents [OSTI]

    Boggs, David Lee (Bloomfield Hills, MI); Baraszu, Daniel James (Plymouth, MI); Foulkes, David Mark (Erfstadt, DE); Gomes, Enio Goyannes (Ann Arbor, MI)

    1998-01-01T23:59:59.000Z

    An internal combustion engine includes separated oil drain-back and crankcase ventilation passages. The oil drain-back passages extend from the cylinder head to a position below the top level of oil in the engine's crankcase. The crankcase ventilation passages extend from passages formed in the main bearing bulkheads from positions above the oil level in the crankcase and ultimately through the cylinder head. Oil dams surrounding the uppermost portions of the crankcase ventilation passages prevent oil from running downwardly through the crankcase ventilation passages.

  14. 1350 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 17, NO. 6, NOVEMBER 2009 HCCI Engine Combustion-Timing Control

    E-Print Network [OSTI]

    Krstic, Miroslav

    1350 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 17, NO. 6, NOVEMBER 2009 HCCI Engine´, Fellow, IEEE Abstract--Homogenous-charge-compression-ignition (HCCI) engines have the benefit of high for the determination of an optimal combustion-timing setpoint on an experimental HCCI engine. The use of ES has

  15. Proceedings of the sixth international conference on fluidized bed combustion. Volume III. Technical sessions

    SciTech Connect (OSTI)

    none,

    1980-08-01T23:59:59.000Z

    The Sixth International Conference on Fluidized Bed Combustion was held April 9-11, 1980, at the Atlanta Hilton, Atlanta, Georgia. It was sponsored by the US Department of Energy, the Electric Power Research Institute, the US Environmental Protection Agency, and the Tennessee Valley Authority. Forty-five papers from Vol. III of the proceedings have been entered individually into EDB and ERA. Two papers had been entered previously from other sources. (LTN)

  16. Proceedings of the Sixth International Conference on Fluidized Bed Combustion. Volume 1. Plenary sessions

    SciTech Connect (OSTI)

    none,

    1980-08-01T23:59:59.000Z

    The Sixth International Conference on Fluidized Bed Combustion was held at the Atlanta Hilton, Atlanta, Georgia, April 9-11, 1980. The papers in this volume involved presentation of the research and development programs of the US (US DOE, TVA, EPRI and US EPA), United Kingdom, Federal Republic of Germany and the People's Republic of China. Eight papers from Vol. 1 (Plenary Sessions) of the proceedings have been entered individually into EDB and ERA. (LTN)

  17. Fuels for Advanced Combustion Engines Research Diesel Fuels: Analysis of Physical and Chemical Properties

    SciTech Connect (OSTI)

    Gallant, Tom [Pacific Northwest National Laboratory (PNNL); Franz, Jim [Pacific Northwest National Laboratory (PNNL); Alnajjar, Mikhail [Pacific Northwest National Laboratory (PNNL); Storey, John Morse [ORNL; Lewis Sr, Samuel Arthur [ORNL; Sluder, Scott [ORNL; Cannella, William C [Chevron, USA; Fairbridge, Craig [National Centre for Upgrading Technology, Canada; Hager, Darcy [National Centre for Upgrading Technology, Canada; Dettman, Heather [CANMET Energy; Luecke, Jon [National Renewable Energy Laboratory (NREL); Ratcliff, Matthew A. [National Renewable Energy Laboratory (NREL); Zigler, Brad [National Renewable Energy Laboratory (NREL)

    2009-01-01T23:59:59.000Z

    The CRC Fuels for Advanced Combustion Engines working group has worked to identify a matrix of research diesel fuels for use in advanced combustion research applications. Nine fuels were specified and formulated to investigate the effects of cetane number aromatic content and 90% distillation fraction. Standard ASTM analyses were performed on the fuels as well as GC/MS and /u1H//u1/u3C NMR analyses and thermodynamic characterizations. Details of the actual results of the fuel formulations compared with the design values are presented, as well as results from standard analyses, such as heating value, viscosity and density. Cetane number characterizations were accomplished by using both the engine method and the Ignition Quality Tester (IQT/sT) apparatus.

  18. Assessment of ISLOCA risk-methodology and application to a combustion engineering plant

    SciTech Connect (OSTI)

    Kelly, D.L.; Auflick, J.L.; Haney, L.N. [EG and G Idaho, Inc., Idaho Falls, ID (United States)

    1992-04-01T23:59:59.000Z

    Inter-system loss-of-coolant accidents (ISLOCAs) have been identified as important contributors to offsite risk for some nuclear power plants. A methodology has been developed for identifying and evaluating plant-specific hardware designs, human factors issues, and accident consequence factors relevant to the estimation of ISOLOCA core damage frequency and risk. This report presents a detailed of description of the application of this analysis methodology to a Combustion Engineering plant.

  19. Frontiers in Catalysis Science and Engineering Seminar Series

    E-Print Network [OSTI]

    in internal combustion engines and power plants. Copper-exchanged promising as selective catalytic reduction ) are a major atmospheric pollutant produced through the combustion of fossil fuels in internal combustionFrontiers in Catalysis Science and Engineering Seminar Series Small Pore Zeolites: Effective

  20. Flow Turbulence Combust (2009) 82:437453 DOI 10.1007/s10494-008-9145-3

    E-Print Network [OSTI]

    2009-01-01T23:59:59.000Z

    an important role in the design and analysis of practical combustion devices such as internal combustion engines, industrial burners and furnaces, and gas turbine combustors. Combustion of hydrocarbon fuelsFlow Turbulence Combust (2009) 82:437453 DOI 10.1007/s10494-008-9145-3 Efficient Implementation

  1. Caterpillar, Argonne undertake cooperative virtual engine design...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    project By Jared Sagoff * June 30, 2014 Tweet EmailPrint ARGONNE, Ill - Internal combustion engines are poised for dramatic breakthroughs in improving efficiency with lower...

  2. Soybean and Coconut Biodiesel Fuel Effects on Combustion Characteristics in a Light-Duty Diesel Engine

    SciTech Connect (OSTI)

    Han, Manbae [ORNL; Cho, Kukwon [ORNL; Sluder, Scott [ORNL; Wagner, Robert M [ORNL

    2008-01-01T23:59:59.000Z

    This study investigated the effects of soybean- and coconut-derived biodiesel fuels on combustion characteristics in a 1.7-liter direct injection, common rail diesel engine. Five sets of fuels were studied: 2007 ultra-low sulfur diesel (ULSD), 5% and 20% volumetric blends of soybean biodiesel with ULSD (soybean B5 and B20), and 5% and 20% volumetric blends of coconut biodiesel with ULSD (coconut B5 and B20). In conventional diesel combustion mode, particulate matter (PM) and nitrogen oxides (NO/dx) emissions were similar for all fuels studied except soybean B20. Soybean B20 produced the lowest PM but the highest NO/dx emissions. Compared with conventional diesel combustion mode, high efficiency clean combustion (HECC) mode, achieved by increased EGR and combustion phasing, significantly reduced both PM and NO/dx emissions for all fuels studied at the expense of higher hydrocarbon (HC) and carbon monoxide (CO) emissions and an increase in fuel consumption (less than 4%). ULSD, soybean B5, and coconut B5 showed no difference in exhaust emissions. However, PM emissions increased slightly for soybean B20 and coconut B20. NO/dx emissions increased significantly for soybean B20, while those for coconut B20 were comparable to ULSD. Differences in the chemical and physical properties of soybean and coconut biodiesel fuels compared with ULSD, such as higher fuel-borne oxygen, greater viscosity, and higher boiling temperatures, play a key role in combustion processes and, therefore, exhaust emissions. Furthermore, the highly unsaturated ester composition in soybean biodiesel can be another factor in the increase of NO/dx emissions.

  3. High Efficiency Clean Combustion Engine Designs for Gasoline and Diesel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGEN TOTechnology Validation »Engines | Department

  4. High-Efficiency Clean Combustion Engine Designs for Compression Ignition

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGEND D e e p p a a r r t t m m e1DepartmentEngines

  5. Advanced Combustion and Fuels

    Broader source: Energy.gov (indexed) [DOE]

    and predictive tools for fuel property effects on combustion and engine efficiency optimization (Fuels & Lubricants Technologies) * Lack of modeling capability for combustion and...

  6. Microwave-Assisted Ignition for Improved Internal Combustion Engine Efficiency

    E-Print Network [OSTI]

    DeFilippo, Anthony Cesar

    2013-01-01T23:59:59.000Z

    though carbon capture and storage (CCS) technology couldmonoxide. Carbon Capture and Sequestration (CCS) technologyof the technology. A power plant built with carbon capture

  7. Microwave-Assisted Ignition for Improved Internal Combustion Engine Efficiency

    E-Print Network [OSTI]

    DeFilippo, Anthony Cesar

    2013-01-01T23:59:59.000Z

    savings associated with using ethanol fuel that has not been33%. Unfortunately, ethanol fuel with water content greaterperformance with diluted ethanol fuel presents a fundamental

  8. Vaporizer design criteria for ethanol fueled internal combustion engines

    E-Print Network [OSTI]

    Ariyaratne, Arachchi Rallage

    1985-01-01T23:59:59.000Z

    Properties of Alcohols, Water and Petroleum Fuels. 2 Results of regression analysis. 3 Effect of various parameters on vaporization length. 51 4 Predicted tube length for different fuel requirements (Ten stainless steel tubes, 4. 7 mm ID. ). 60 ix LIST... with quality with increasing heat flux as parameter. 18 5 Reynolds Number Factor, F. 6 Suppression Factor, S. 27 27 7 Flow chart of the algorithm for vaporization length. 8 The single tube heat exchanger. 33 36 9 Thermocouple arrangement along...

  9. Microwave-Assisted Ignition for Improved Internal Combustion Engine Efficiency

    E-Print Network [OSTI]

    DeFilippo, Anthony Cesar

    2013-01-01T23:59:59.000Z

    cost than traditional crystalline-silicon solar panels, andof a technology, the cost. Solar photovoltaic panels, for

  10. Plasmatron Fuel Reformer Development and Internal Combustion Engine Vehicle

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in235-1Department of EnergyPlanned Audits

  11. Integrated CHP/Advanced Reciprocating Internal Combustion Engine System for

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked Questions for DOEtheInspection Report:Instructions forLandfill Gas to Power

  12. H2 Internal Combustion Engine Research Towards 45% efficiency and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGrid Integration0-1 MarchH-Tank Farm WasteEducateTier2-Bin5

  13. H2 Internal Combustion Engine Research | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGrid Integration0-1 MarchH-Tank Farm

  14. Nanoparticle Emissions from Internal Combustion Engines | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in Many Devils Wash,Energy NRELNamrataEnergyTechnologies

  15. An ignition and combustion model based on the level-set method for spark ignition engine multidimensional modeling

    SciTech Connect (OSTI)

    Tan, Zhichao; Reitz, Rolf D. [Engine Research Center, University of Wisconsin-Madison, 1500 Engineering Drive, Madison, WI 53706 (United States)

    2006-04-15T23:59:59.000Z

    To improve the prediction accuracy of the spark ignition and combustion processes in spark ignition engines, improved ignition and flame propagation models have been developed and implemented in the CFD code, KIVA-3V. An equation to calculate the spark ignition kernel growth rate is derived that considers the effects of the spark ignition discharge energy and flow turbulence on the ignition kernel growth. In addition, a flamelet combustion model based on the G equation combustion model was developed and implemented. To test the ignition and combustion models, they were applied to a homogeneous charge pancake-shaped-combustion-chamber engine, in which experimental heat flux data from probes in the engine head and cylinder liner were available. By comparing the flame arrival timings with the simulation predictions, the ignition and combustion models were validated. In addition, the models were also applied to a homogeneous charge propane-fueled SI engine. Good agreement with experimental cylinder pressures and NO{sub x} data was obtained as a function of ignition timing, engine speed, and EGR levels. (author)

  16. Pore structure of soot deposits from several combustion Karl J. Rockne a,b,*, Gary L. Taghon b

    E-Print Network [OSTI]

    Rockne, Karl J.

    (typically when the C/O2 ratio >2) by internal combustion engines, industrial and domestic combustion sourcesPore structure of soot deposits from several combustion sources Karl J. Rockne a,b,*, Gary L. Taghon b , David S. Kosson a,1 a Department of Chemical and Biochemical Engineering, Rutgers, The State

  17. Development of Low Temperature Combustion Modes to Reduce Overall Emissions from a Medium-Duty, Four Cylinder Diesel Engine

    E-Print Network [OSTI]

    Breen, Jonathan Robert

    2011-10-21T23:59:59.000Z

    generation. This engine system is used more commonly in the ground transportation, the maritime transportation, and the base-load power generation industries over the spark-ignition (i.e. gasoline) engine due to its improved fuel efficiency. The diesel... (LTC) engine systems are a very current topic of research inside the automotive industry. This novel combustion mode is heavily present in current literature due to its probable application in next generation diesel engines. Industry and academic...

  18. Proceedings of the Combustion Institute, Volume 28, 2000/pp. 17931800 MORPHOLOGY AND BURNING RATES OF EXPANDING SPHERICAL

    E-Print Network [OSTI]

    Tse, Stephen D.

    within internal combustion engines are substantially higher, a novel experimental apparatus- termined for pressures up to a few atmospheres. Since combustion processes within internal combus- tion1793 Proceedings of the Combustion Institute, Volume 28, 2000/pp. 17931800 MORPHOLOGY AND BURNING

  19. Solution Combustion Synthesis Impregnated Layer Combustion Synthesis is a Novel

    E-Print Network [OSTI]

    Mukasyan, Alexander

    Solution Combustion Synthesis Impregnated Layer Combustion Synthesis is a Novel Methodology Engineering University of Notre Dame University of Notre Dame #12;Outline: Overview of combustion synthesis Reaction system Combustion front analaysis Theoretical model results Conclusions Acknowledgements #12

  20. IFP Energies nouvelles International Conference Rencontres Scientifiques d'IFP Energies nouvelles

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    LES4ICE 2012 - Large Eddy Simulation for Internal Combustion Engine Flows LES4ICE 2012 - La simulation aux grandes chelles pour les coulements dans les moteurs combustion interne Numerical Methods and Turbulence Modeling for LES of Piston Engines: Impact on Flow Motion and Combustion A. Misdariis1,2, *, A

  1. Apparatus and filtering systems relating to combustors in combustion turbine engines

    DOE Patents [OSTI]

    Johnson, Thomas Edward (Greer, SC); Zuo, Baifang (Simpsonville, SC); Stevenson, Christian Xavier (Inman, SC)

    2012-07-24T23:59:59.000Z

    A combustor for a combustion turbine engine, the combustor that includes: a chamber defined by an outer wall and forming a channel between windows defined through the outer wall toward a forward end of the chamber and at least one fuel injector positioned toward an aft end of the chamber; a screen; and a standoff comprising a raised area on an outer surface of the outer wall near the periphery of the windows; wherein the screen extends over the windows and is supported by the standoff in a raised position in relation to the outer surface of the outer wall and the windows.

  2. asme international gas: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Summary: 1 Copyright 2007 by ASME A LEARNING ALGORITHM FOR OPTIMAL INTERNAL COMBUSTION ENGINE CALIBRATION IN REAL TIME Andreas A. Malikopoulos* Panos Y. Papalambros...

  3. Fuel Effects on Mixing-Controlled Combustion Strategies for High...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mixing-Controlled Combustion Strategies for High-Efficiency Clean-Combustion Engines Fuel Effects on Mixing-Controlled Combustion Strategies for High-Efficiency Clean-Combustion...

  4. Assessment of Combustion and Turbulence Models for the Simulation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combustion and Turbulence Models for the Simulation of Combustion Processes in a DI Diesel Engine Assessment of Combustion and Turbulence Models for the Simulation of Combustion...

  5. Combustion processes in black liquor recovery: Analysis and interpretation of combustion rate data and an engineering design model

    SciTech Connect (OSTI)

    Fredrick, W.J.

    1990-03-01T23:59:59.000Z

    The overall objective of this project is to develop computational models for predicting the combustion times for black liquor droplets in a recovery furnace environment. These models are needed as an important component of large-scale, global recovery boiler models. The work is divided into two tasks: interpretation of experimental black liquor single droplet combustion data from two laboratories; and formulation and evaluation of computational models for the stages of combustion of black liquor droplets. This report contains the results of the project. 109 refs., 64 figs., 12 tabs.

  6. Effects of engine speed, fueling rate, and combustion phasing on the thermal stratification required to limit HCCI knocking intensity.

    SciTech Connect (OSTI)

    Sjoberg, Magnus; Dec, John E.

    2004-12-01T23:59:59.000Z

    Thermal stratification has the potential to reduce pressure-rise rates and allow increased power output for HCCI engines. This paper systematically examines how the amount of thermal stratification of the core of the charge has to be adjusted to avoid excessive knock as the engine speed and fueling rate are increased. This is accomplished by a combination of multi-zone chemical-kinetics modeling and engine experiments, using iso-octane as the fuel. The experiments show that, for a low-residual engine configuration, the pressure traces are self-similar during changes to the engine speed when CA50 is maintained by adjusting the intake temperature. Consequently, the absolute pressure-rise rate measured as bar/ms increases proportionally with the engine speed. As a result, the knocking (ringing) intensity increases drastically with engine speed, unless counteracted by some means. This paper describes how adjustments of the thermal width of the in-cylinder charge can be used to limit the ringing intensity to 5 MW/m2 as both engine speed and fueling are increased. If the thermal width can be tailored without constraints, this enables smooth operation even for combinations of high speed, high load, and combustion phasing close to TDC. Since large alterations of the thermal width of the charge are not always possible, combustion retard is considered to reduce the requirement on the thermal stratification. The results show that combustion retard carries significant potential since it amplifies the benefit of a fixed thermal width. Therefore, the thermal stratification required for operation with an acceptable knocking intensity can be decreased substantially by the use of combustion retard. This enables combinations of high engine speed and high fueling rate even for operation with the naturally occurring thermal stratification. However, very precise control of the combustion phasing will likely be required for such operation.

  7. Chair: Christian M. Lastoskie Associate Professor, Civil & Environmental Engineering

    E-Print Network [OSTI]

    Kamat, Vineet R.

    electricity generated from natural gas combined cycle (NGCC) power plants; compressed natural gas vehicles (CNGVs), which are internal combustion engine vehicles (ICEVs) modified to burn compressed natural gas

  8. Catalytic combustion of very lean mixtures in a reverse flow reactor using an internal electrical heater

    SciTech Connect (OSTI)

    Cunill, F.; Beld, L. van de; Westerterp, K.R. [Univ. of Twente, Enschede (Netherlands)] [Univ. of Twente, Enschede (Netherlands)

    1997-10-01T23:59:59.000Z

    An experimental study of the reverse flow reactor, equipped with an internal electrical heater, for the autothermal combustion of very dilute organic compounds, in particular ethene, propane, and their mixtures, has been carried out. The influence of several operating parameters like electrical heater power, cycle period, chemical character, and concentration of the pollutants on the maximum temperature and on the shape of temperature profiles in the stationary state is discussed. Experimental results show that an internal electrical heater can be successfully used to oxidize completely very lean mixtures which would not be able to maintain an autothermal process only by themselves. The predictions with a heterogeneous one-dimensional model without using fit parameters show a good agreement with experiments except for critical situations.

  9. aluminum particle combustion: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A. 2014-07-15 26 A cycle simulation of coal particle fueled reciprocating internal-combustion engines Texas A&M University - TxSpace Summary: problems (which are summarized in...

  10. Experimental Investigation of Fuel-Reactivity Controlled Compression Ignition (RCCI) Combustion Mode in a Multi-Cylinder, Light-Duty Diesel Engine

    SciTech Connect (OSTI)

    Cho, Kukwon [ORNL] [ORNL; Curran, Scott [ORNL] [ORNL; Prikhodko, Vitaly Y [ORNL] [ORNL; Sluder, Scott [ORNL] [ORNL; Parks, II, James E [ORNL; Wagner, Robert M [ORNL] [ORNL

    2011-01-01T23:59:59.000Z

    An experimental study was performed to provide the combustion and emission characteristics resulting from fuel-reactivity controlled compression ignition (RCCI) combustion mode utilizing dual-fuel approach in a light-duty, multi-cylinder diesel engine. In-cylinder fuel blending using port fuel injection of gasoline before intake valve opening (IVO) and early-cycle, direct injection of diesel fuel was used as the charge preparation and fuel blending strategy. In order to achieve the desired auto-ignition quality through the stratification of the fuel-air equivalence ratio ( ), blends of commercially available gasoline and diesel fuel were used. Engine experiments were performed at an engine speed of 2300rpm and an engine load of 4.3bar brake mean effective pressure (BMEP). It was found that significant reduction in both nitrogen oxide (NOx) and particulate matter (PM) was realized successfully through the RCCI combustion mode even without applying exhaust gas recirculation (EGR). However, high carbon monoxide (CO) and hydrocarbon (HC) emissions were observed. The low combustion gas temperature during the expansion and exhaust processes seemed to be the dominant source of high CO emissions in the RCCI combustion mode. The high HC emissions during the RCCI combustion mode could be due to the increased combustion quenching layer thickness as well as the -stratification at the periphery of the combustion chamber. The slightly higher brake thermal efficiency (BTE) of the RCCI combustion mode was observed than the other combustion modes, such as the conventional diesel combustion (CDC) mode, and single-fuel, premixed charge compression ignition (PCCI) combustion mode. The parametric study of the RCCI combustion mode revealed that the combustion phasing and/or the peak cylinder pressure rise rate of the RCCI combustion mode could be controlled by several physical parameters premixed ratio (rp), intake swirl intensity, and start of injection (SOI) timing of directly injected fuel unlike other low temperature combustion (LTC) strategies.

  11. Combustion Process in a Spark Ignition Engine: Analysis of Cyclic Maximum Pressure and Peak Pressure Angle

    E-Print Network [OSTI]

    G. Litak; T. Kaminski; J. Czarnigowski; A. K. Sen; M. Wendeker

    2006-11-29T23:59:59.000Z

    In this paper we analyze the cycle-to-cycle variations of maximum pressure $p_{max}$ and peak pressure angle $\\alpha_{pmax}$ in a four-cylinder spark ignition engine. We examine the experimental time series of $p_{max}$ and $\\alpha_{pmax}$ for three different spark advance angles. Using standard statistical techniques such as return maps and histograms we show that depending on the spark advance angle, there are significant differences in the fluctuations of $p_{max}$ and $\\alpha_{pmax}$. We also calculate the multiscale entropy of the various time series to estimate the effect of randomness in these fluctuations. Finally, we explain how the information on both $p_{max}$ and $\\alpha_{pmax}$ can be used to develop optimal strategies for controlling the combustion process and improving engine performance.

  12. Mixing and flame structures inferred from OH-PLIF for conventional and low-temperature diesel engine combustion

    SciTech Connect (OSTI)

    Singh, Satbir [General Motors Research and Development, Warren, MI 48090 (United States); Musculus, Mark P.B. [Sandia National Laboratories, Livermore, CA 94551 (United States); Reitz, Rolf D. [Department of Mechanical Engineering, University of Wisconsin, Madison, WI 53706 (United States)

    2009-10-15T23:59:59.000Z

    The structure of first- and second-stage combustion is investigated in a heavy-duty, single-cylinder optical engine using chemiluminescence imaging, Mie-scatter imaging of liquid-fuel, and OH planar laser-induced fluorescence (OH-PLIF) along with calculations of fluorescence quenching. Three different diesel combustion modes are studied: conventional non-diluted high-temperature combustion (HTC) with either (1) short or (2) long ignition delay, and (3) highly diluted low-temperature combustion (LTC) with early fuel injection. For the short ignition delay HTC condition, the OH fluorescence images show that second-stage combustion occurs mainly on the fuel jet periphery in a thickness of about 1 mm. For the long ignition delay HTC condition, the second-stage combustion zone on the jet periphery is thicker (5-6 mm). For the early-injection LTC condition, the second-stage combustion is even thicker (20-25 mm) and occurs only in the down-stream regions of the jet. The relationship between OH concentration and OH-PLIF intensity over a range of equivalence ratios is estimated from quenching calculations using collider species concentrations predicted by chemical kinetics simulations of combustion. The calculations show that both OH concentration and OH-PLIF intensity peak near stoichiometric mixtures and fall by an order of magnitude or more for equivalence ratios less than 0.2-0.4 and greater than 1.4-1.6. Using the OH fluorescence quenching predictions together with OH-PLIF images, quantitative boundaries for mixing are established for the three engine combustion modes. (author)

  13. Transonic Combustion ? - Injection Strategy Development for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transonic Combustion - Injection Strategy Development for Supercritical Gasoline Injection-Ignition in a Light Duty Engine Transonic Combustion - Injection Strategy...

  14. Motoring of a Flexible Resonant Engine to Estimate Associated Damping Losses

    E-Print Network [OSTI]

    Collins, Gary S.

    . Introduction The performance of internal combustion engines is limited by heat losses, friction losses, throttling, and combustion losses. These issues become more prevalent as the size of the engine is scaled of applications. One new concept is the development of a resonant heat engine, where combustion happens

  15. Method and apparatus for advanced staged combustion utilizing forced internal recirculation

    DOE Patents [OSTI]

    Rabovitser, Iosif K.; Knight, Richard A.; Cygan, David F.; Nester, Serguei; Abbasi, Hamid A.

    2003-12-16T23:59:59.000Z

    A method and apparatus for combustion of a fuel in which a first-stage fuel and a first-stage oxidant are introduced into a combustion chamber and ignited, forming a primary combustion zone. At least about 5% of the total heat output produced by combustion of the first-stage fuel and the first-stage oxidant is removed from the primary combustion zone, forming cooled first-stage combustion products. A portion of the cooled first-stage combustion products from a downstream region of the primary combustion zone is recirculated to an upstream region of primary combustion zone. A second-stage fuel is introduced into the combustion chamber downstream of the primary combustion zone and ignited, forming a secondary combustion zone. At least about 5% of the heat from the secondary combustion zone is removed. In accordance with one embodiment, a third-stage oxidant is introduced into the combustion chamber downstream of the secondary combustion zone, forming a tertiary combustion zone.

  16. uel cells are attractive alternatives to combustion engines for electri-cal-power generation because of their very high efficiencies and low

    E-Print Network [OSTI]

    Haile, Sossina M.

    uel cells are attractive alternatives to combustion engines for electri- cal-power generation because of their very high efficiencies and low pollution levels. Like a combustion engine, a fuel cell such as hydrogen is brought into the anode compartment and oxygen is brought into the cathode compartment

  17. Investigation of Diesel combustion using multiple injection strategies for idling after cold start of passenger-car engines

    SciTech Connect (OSTI)

    Payri, F.; Broatch, A.; Salavert, J.M.; Martin, J. [CMT-Motores Termicos, Universidad Politecnica de Valencia, Aptdo. 22012, E-46071 Valencia (Spain)

    2010-10-15T23:59:59.000Z

    A comprehensive investigation was carried out in order to better understand the combustion behaviour in a low compression ratio DI Diesel engine when multiple injection strategies are applied just after the engine cold starts in low temperature conditions (idling). More specifically, the aim of this study was twofold: on one hand, to understand the effect of the multiple injection strategies on the indicated mean effective pressure; on the other hand, to contribute to the understanding of combustion stability characterized by the coefficient of variation of indicated mean effective pressure. The first objective was fulfilled by analyzing the rate of heat release obtained by in-cylinder pressure diagnosis. The results showed that the timing of the pilot injection closest to the main injection was the most influential parameter based on the behaviour of the rate of heat release (regardless of the multiple injection strategy applied). For the second objective, the combustion stability was found to be correlated with the combustion centroid angle. The results showed a trend between them and the existence of a range of centroid angles where the combustion stability is strong enough. In addition, it was also evident that convenient split injection allows shifting the centroid to such a zone and improves combustion stability after start. (author)

  18. Sandia National Laboratories: International Tokamak Engineering...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Analysis, Systems Engineering Sandian Dean Buchenauer (in Sandia's Hydrogen and Metallurgy Science Dept.) and Professor David Q. Hwang (UC Davis, School of Engineering) will...

  19. Particulate matter emissions from a DISI engine under cold-fast-idle conditions for ethanol-gasoline blends

    E-Print Network [OSTI]

    Dimou, Iason

    2011-01-01T23:59:59.000Z

    In an effort to build internal combustion engines with both reduced brake-specific fuel consumption and better emission control, engineers developed the Direct Injection Spark Ignition (DISI) engine. DISI engines combine ...

  20. Modeling of NO sensitization of IC engines surrogate fuels auto-ignition and combustion

    E-Print Network [OSTI]

    Anderlohr, Jrg; Bounaceur, Roda; Battin-Leclerc, Frdrique

    2009-01-01T23:59:59.000Z

    This paper presents a new chemical kinetic model developed for the simulation of auto-ignition and combustion of engine surrogate fuel mixtures sensitized by the presence of NOx. The chemical mechanism is based on the PRF auto-ignition model (n-heptane/iso-octane) of Buda et al. [1] and the NO/n-butane/n-pentane model of Glaude et al. [2]. The later mechanism has been taken as a reference for the reactions of NOx with larger alcanes (n-heptane, iso-octane). A coherent two components engine fuel surrogate mechanism has been generated which accounts for the influence of NOx on auto-ignition. The mechanism has been validated for temperatures between 700 K and 1100 K and pressures between 1 and 10 atm covering the temperature and pressure ranges characteristic of engine post-oxidation thermodynamic conditions. Experiments used for validation include jet stirred reactor conditions for species evolution as a function of temperature, as well as diesel HCCI engine experiments for auto-ignition delay time measurements...

  1. Gas-Fired Reciprocating Engines

    Broader source: Energy.gov [DOE]

    The reciprocating, or piston-driven, engine is a widespread and well-known technology. Also called internal combustion engines, reciprocating engines require fuel, air, compression, and a combustion source to function. Depending on the ignition source, they generally fall into two categories: (1) spark-ignited engines, typically fueled by gasoline or natural gas, and (2) compression-ignited engines, typically fueled by diesel oil fuel.

  2. COMBUSTION-GENERATED INDOOR AIR POLLUTION

    E-Print Network [OSTI]

    Hollowell, C.D.

    2011-01-01T23:59:59.000Z

    Pollutants from Indoor Combustion Sources: I. Field Measure-Characteristics in Two Stage Combustion, paper presented atInternational) on Combustion, August, 1974, Tokyo, Japan. 8

  3. Shockwave Engine: Wave Disk Engine

    SciTech Connect (OSTI)

    None

    2010-01-14T23:59:59.000Z

    Broad Funding Opportunity Announcement Project: MSU is developing a new engine for use in hybrid automobiles that could significantly reduce fuel waste and improve engine efficiency. In a traditional internal combustion engine, air and fuel are ignited, creating high-temperature and high-pressure gases which expand rapidly. This expansion of gases forces the engines pistons to pump and powers the car. MSUs engine has no pistons. It uses the combustion of air and fuel to build up pressure within the engine, generating a shockwave that blasts hot gas exhaust into the blades of the engines rotors causing them to turn, which generates electricity. MSUs redesigned engine would be the size of a cooking pot and contain fewer moving partsreducing the weight of the engine by 30%. It would also enable a vehicle that could use 60% of its fuel for propulsion.

  4. Low Temperature Combustion with Thermo-Chemical Recuperation to Maximize In-Use Engine Efficiency

    SciTech Connect (OSTI)

    Nigel N. Clark; Francisco Posada; Clinton Bedick; John Pratapas; Aleksandr Kozlov; Martin Linck; Dmitri Boulanov

    2009-03-30T23:59:59.000Z

    The key to overcome Low Temperature Combustion (LTC) load range limitations in reciprocating engines is based on proper control over the thermo-chemical properties of the in-cylinder charge. The studied alternative to achieve the required control of LTC is the use of two separate fuel streams to regulate timing and heat release at specific operational points, where the secondary fuel is a reformed product of the primary fuel in the tank. It is proposed in this report that the secondary fuel can be produced using exhaust heat and Thermo-Chemical Recuperation (TCR). TCR for reciprocating engines is a system that employs high efficiency recovery of sensible heat from engine exhaust gas and uses this energy to transform fuel composition. The recuperated sensible heat is returned to the engine as chemical energy. Chemical conversions are accomplished through catalytic and endothermic reactions in a specially designed reforming reactor. An equilibrium model developed by Gas Technology Institute (GTI) for heptane steam reforming was applied to estimate reformed fuel composition at different reforming temperatures. Laboratory results, at a steam/heptane mole ratio less than 2:1, confirm that low temperature reforming reactions, in the range of 550 K to 650 K, can produce 10-30% hydrogen (by volume, wet) in the product stream. Also, the effect of trading low mean effective pressure for displacement to achieve power output and energy efficiency has been explored by WVU. A zerodimensional model of LTC using heptane as fuel and a diesel Compression Ignition (CI) combustion model were employed to estimate pressure, temperature and total heat release as inputs for a mechanical and thermal loss model. The model results show that the total cooling burden on an LTC engine with lower power density and higher displacement was 14.3% lower than the diesel engine for the same amount of energy addition in the case of high load (43.57mg fuel/cycle). These preliminary modeling and experimental results suggest that the LTC-TCR combination may offer a high efficiency solution to engine operation. A single zone model using a detailed chemical kinetic mechanism was implemented in CHEMKIN and to study the effects of base fuel and steam-fuel reforming products on the ignition timing and heat release characteristics. The study was performed considering the reformed fuel species composition for total n-heptane conversion (ideal case) and also at the composition corresponding to a specific set of operational reforming temperatures (real case). The computational model confirmed that the reformed products have a strong influence on the low temperature heat release (LTHR) region, affecting the onset of the high temperature heat release (HTHR). The ignition timing was proportionally delayed with respect to the baseline fuel case when higher concentrations of reformed gas were used. For stoichiometric concentration of RG, it was found that by increasing the proportion of reformed fuel to total fuel (RG), from 0% to 30%, the amount of energy released during the LTHR regime, or HR{sub L}, was reduced by 48% and the ignition timing was delayed 10.4 CA degrees with respect to the baseline fuel case. For RG composition corresponding to certain operational reforming temperatures, it was found that the most significant effects on the HCCI combustion, regarding HR{sub L} reduction and CA50 delay, was obtained by RG produced at a reforming temperature range of 675 K-725 K.

  5. Parallel Performance of a Combustion Chemistry Simulation Gregg Skinner

    E-Print Network [OSTI]

    Padua, David

    of reactive ow. Reactive ow modeling problems are governed by equations conserving mass, energy, and momentum combustion- generated pollutants, reducing knocking in internal combustion engines, studying. They are coupled with a hydrodynamic system driven by the energy released or absorbed from the chemical reactions

  6. Real-Time Combustion Torque Estimation on a Diesel Engine Test Bench Using Time-Varying Kalman Filtering

    E-Print Network [OSTI]

    Real-Time Combustion Torque Estimation on a Diesel Engine Test Bench Using Time-Varying Kalman sensor the easily available instantaneous crankshaft angle speed. The observer consists in a Kalman torque observer, we use a physics-based model underlying the role of time-varying inertia. A Kalman

  7. CONFIRMATORY SURVEY RESULTS FOR PORTIONS OF THE ABB COMBUSTION ENGINEERING SITE IN WINDSOR, CONNECTICUT DURING THE FALL OF 2011

    SciTech Connect (OSTI)

    Wade C. Adams

    2011-12-09T23:59:59.000Z

    From the mid-1950s until mid-2000, the Combustion Engineering, Inc. (CE) site in Windsor, Connecticut (Figure A-1) was involved in the research, development, engineering, production, and servicing of nuclear fuels, systems, and services. The site is currently undergoing decommissioning that will lead to license termination and unrestricted release in accordance with the requirements of the License Termination Rule in 10 CFR Part 20, Subpart E. Asea Brown Boveri Incorporated (ABB) has been decommissioning the CE site since 2001.

  8. Sandia National Laboratories: advanced combustion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    combustion Sandia and General Motors: Advancing Clean Combustion Engines with Predictive Simulation Tools On February 14, 2013, in CRF, Energy, Partnership, Transportation Energy...

  9. Proceedings of the ASME 2010 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference

    E-Print Network [OSTI]

    Proceedings of the ASME 2010 International Design Engineering Technical Conferences & Computers generation of low-level code that can be solved using GAMS and its solvers (BARON). This framework 2010 by ASME Proceedings of the ASME 2010 International Design Engineering Technical Conferences

  10. Prediction of Carbon Monoxide and Hydrocarbon Emissions in Isooctane HCCI Engine Combustion Using Multi-Zone Simulations

    SciTech Connect (OSTI)

    Flowers, D; Aceves, S M; Martinez-Frias, J; Dibble, R

    2002-05-02T23:59:59.000Z

    Homogeneous Charge Compression Ignitions (HCCI) engines show promise as an alternative to Diesel engines, yet research remains: development of practical HCCI engines will be aided greatly by accurate modeling tools. A novel detailed chemical kinetic model that incorporates information from a computational fluid mechanics code has been developed to simulate HCCI combustion. This model very accurately predicts many aspects of the HCCI combustion process. High-resolution computational grids can be used for the fluid mechanics portion of the simulation, but the chemical kinetics portion of the simulation can be reduced to a handful of computational zones (for all previous work 10 zones have been used). While overall this model has demonstrated a very good predictive capability for HCCI combustion, previous simulations using this model have tended to underpredict carbon monoxide emissions by an order of magnitude. A factor in the underprediction of carbon monoxide may be that all previous simulations have been conducted with 10 chemical kinetic zones. The chemistry that results in carbon monoxide emissions is very sensitive to small changes in temperature within the engine. The resolution in temperature is determined directly by the number of zones. This paper investigates how the number of zones (i.e. temperature resolution) affects the model's prediction of hydrocarbon and carbon monoxide emissions in an HCCI engine. Simulations with 10, 20, and 40 chemical kinetic zones have been conducted using a detailed chemical kinetic mechanism (859 species, 3606 reactions) to simulate an isooctane fueled HCCI engine. The results show that 10-zones are adequate to resolve the hydrocarbon emissions, but a greater numbers of zones are required to resolve carbon monoxide emissions. Results are also presented that explore spatial sources of the exhaust emissions within the HCCI engine combustion chamber.

  11. SEKE2015 Call For Papers The 27th International Conference on Software Engineering and Knowledge Engineering

    E-Print Network [OSTI]

    Xu, Haiping

    Software Safety Software Security Software Engineering Case Study and Experience Reports Web-Based ToolsSEKE2015 Call For Papers The 27th International Conference on Software Engineering and Knowledge Engineering www.ksi.edu/seke/seke15.html (Alternate website: ksiresearchorg.ipage.com/seke/seke15.html

  12. Method for valve seating control for an electro-hydraulic engine valve

    DOE Patents [OSTI]

    Sun, Zongxuan (Plymouth, MN)

    2011-01-11T23:59:59.000Z

    Valve lift in an internal combustion engine is controlled by an electro-hydraulic actuation mechanism including a selectively actuable hydraulic feedback circuit.

  13. Thermal engine driven heat pump for recovery of volatile organic compounds

    DOE Patents [OSTI]

    Drake, Richard L. (Schenectady, NY)

    1991-01-01T23:59:59.000Z

    The present invention relates to a method and apparatus for separating volatile organic compounds from a stream of process gas. An internal combustion engine drives a plurality of refrigeration systems, an electrical generator and an air compressor. The exhaust of the internal combustion engine drives an inert gas subsystem and a heater for the gas. A water jacket captures waste heat from the internal combustion engine and drives a second heater for the gas and possibly an additional refrigeration system for the supply of chilled water. The refrigeration systems mechanically driven by the internal combustion engine effect the precipitation of volatile organic compounds from the stream of gas.

  14. Variable Camshaft Timing Engine Control A. G. Stefanopoulou, J. S. Freudenberg, J. W. Grizzle

    E-Print Network [OSTI]

    Stefanopoulou, Anna

    | Multivariable Feedback Control, Air-to-Fuel Ratio, Emissions, Pollution Control, Internal Combustion Engines. I and Computer Science, University of Michigan an internal combustion engine to reduce feedgas emis- sions1 Variable Camshaft Timing Engine Control A. G. Stefanopoulou, J. S. Freudenberg, J. W. Grizzle

  15. Variable Camshaft Timing Engine Control A. G. Stefanopoulou, J. S. Freudenberg, J. W. Grizzle

    E-Print Network [OSTI]

    Grizzle, Jessy W.

    | Multivariable Feedback Control, Air-to-Fuel Ratio, Emissions, Pollution Control, Internal Combustion Engines. I of Michigan an internal combustion engine to reduce feedgas emis- sions, regulate air-to-fuel ratio A. For the variable cam timing engine, issue i arises from the fact that minimization of feedgas emissions, smooth eng

  16. Combustion Control of Diesel Engines Using Injection Timing M. Hillion, H. Buhlbuck, and J. Chauvin

    E-Print Network [OSTI]

    is sufficient to provide a stable Diesel combustion at steady state. On the other hand, during transient

  17. Heat-pipe gas-combustion system endurance test for Stirling engine. Final report, May 1990-September 1990

    SciTech Connect (OSTI)

    Mahrle, P.

    1990-12-01T23:59:59.000Z

    Stirling Thermal Motors, Inc., (STM) has been developing a general purpose Heat Pipe Gas Combustion System (HPGC) suitable for use with the STM4-120 Stirling engine. The HPGC consists of a parallel plate recuperative preheater, a finned heat pipe evaporator and a film cooled gas combustor. A principal component of the HPGC is the heat pipe evaporator which collects and distributes the liquid sodium over the heat transfer surfaces. The liquid sodium evaporates and flows to the condensers where it delivers its latent heat. The report presents test results of endurance tests run on a Gas-Fired Stirling Engine (GFSE). Tests on a dynamometer test stand yielded 67 hours of engine operation at power levels over 10 kW (13.5 hp) with 26 hours at power levels above 15 kW (20 hp). Total testing of the engine, including both motoring tests and engine operation, yielded 245 hours of engine run time.

  18. Prime Movers of Globalization: The History and Impact of Diesel Engines and Gas Turbines

    E-Print Network [OSTI]

    Anderson, Byron P.

    2011-01-01T23:59:59.000Z

    and Impact of Diesel Engines and Gas Turbines By Vaclav Smiland Impact of Diesel Engines and Gas Turbines. Cambridge,of the internal combustion engine invented by Rudolf Diesel

  19. Drop Test Results for the Combustion Engineering Model No. ABB-2901 Fuel Pellet Package

    SciTech Connect (OSTI)

    Hafner, R S; Mok, G C; Hagler, L G

    2004-04-23T23:59:59.000Z

    The U.S. Nuclear Regulatory Commission (USNRC) contracted with the Packaging Review Group (PRG) at Lawrence Livermore National Laboratory (LLNL) to conduct a single, 30-ft shallow-angle drop test on the Combustion Engineering ABB-2901 drum-type shipping package. The purpose of the test was to determine if bolted-ring drum closures could fail during shallow-angle drops. The PRG at LLNL planned the test, and Defense Technologies Engineering Division (DTED) personnel from LLNL's Site-300 Test Group executed the plan. The test was conducted in November 2001 using the drop-tower facility at LLNL's Site 300. Two representatives from Westinghouse Electric Company in Columbia, South Carolina (WEC-SC); two USNRC staff members; and three PRG members from LLNL witnessed the preliminary test runs and the final test. The single test clearly demonstrated the vulnerability of the bolted-ring drum closure to shallow-angle drops-the test package's drum closure was easily and totally separated from the drum package. The results of the preliminary test runs and the 30-ft shallow-angle drop test offer valuable qualitative understandings of the shallow-angle impact.

  20. Low temperature combustion using nitrogen enrichment to mitigate NOx from large bore natural gas fueled engines.

    SciTech Connect (OSTI)

    Biruduganti, M.; Gupta, S.; Sekar, R.; Energy Systems

    2010-01-01T23:59:59.000Z

    Low temperature combustion is identified as one of the pathways to meet the mandatory ultra low NO{sub x} emissions levels set by the regulatory agencies. Exhaust gas recirculation (EGR) is a well known technique to realize low NO{sub x} emissions. However, EGR has many built-in adverse ramifications that negate its advantages in the long term. This paper discusses nitrogen enrichment of intake air using air separation membranes as a better alternative to the mature EGR technique. This investigation was undertaken to determine the maximum acceptable level of nitrogen enrichment of air for a single-cylinder spark-ignited natural gas engine. NO{sub x} reduction as high as 70% was realized with a modest 2% nitrogen enrichment while maintaining power density and simultaneously improving fuel conversion efficiency (FCE). Any enrichment beyond this level degraded engine performance in terms of power density, FCE, and unburned hydrocarbon emissions. The effect of ignition timing was also studied with and without N{sub 2} enrichment. Finally, lean burn versus stoichiometric operation utilizing nitrogen enrichment was compared. Analysis showed that lean burn operation along with nitrogen enrichment is one of the effective pathways for realizing better FCE and lower NO{sub x} emissions.

  1. Multi-zone modelling of partially premixed low-temperature combustion in pilot-ignited natural-gas engines

    SciTech Connect (OSTI)

    Krishnan, S. R.; Srinivasan, K. K.

    2010-06-29T23:59:59.000Z

    Detailed results from a multi-zone phenomenological simulation of partially premixed advanced-injection low-pilot-ignited natural-gas low-temperature combustion are presented with a focus on early injection timings (the beginning of (pilot) injection (BOI)) and very small diesel quantities (2-3 per cent of total fuel energy). Combining several aspects of diesel and spark ignition engine combustion models, the closed-cycle simulation accounted for diesel autoignition, diesel spray combustion, and natural-gas combustion by premixed turbulent flame propagation. The cylinder contents were divided into an unburned zone, several pilot fuel zones (or 'packets') that modelled diesel evaporation and ignition, a flame zone for natural-gas combustion, and a burned zone. The simulation predicted the onset of ignition, cylinder pressures, and heat release rate profiles satisfactorily over a wide range of BOIs (20-60???° before top dead centre (before TDC)) but especially well at early BOIs. Strong coupling was observed between pilot spray combustion in the packets and premixed turbulent combustion in the flame zone and, therefore, the number of ignition centres (packets) profoundly affected flame combustion. The highest local peak temperatures (greater than 2000 K) were observed in the packets, while the flame zone was much cooler (about 1650 K), indicating that pilot diesel spray combustion is probably the dominant source of engine-out emissions of nitrogen oxide (NO x). Further, the 60???° before TDC BOI yielded the lowest average peak packet temperatures (about 1720 K) compared with the 20???° before TDC BOI (about 2480 K) and 40???° before TDC BOI (about 2700 K). These trends support experimental NO x trends, which showed the lowest NO x emissions for the 60???°, 20???°, and 40???° before TDC BOIs in that order. Parametric studies showed that increasing the intake charge temperature, pilot quantity, and natural-gas equivalence ratio all led to higher peak heat release rates and hotter packets but the pilot quantity and intake temperature affected the potential for NO x formation to a greater extent.

  2. Glow Plug Integrated Piezo-Ceramic Combustion Sensor for Diesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Glow Plug Integrated Piezo-Ceramic Combustion Sensor for Diesel Engines Glow Plug Integrated Piezo-Ceramic Combustion Sensor for Diesel Engines 2005 Diesel Engine Emissions...

  3. Advanced modeling ,control, and design of an electromechanical engine value drive system with a limited-angle actuator

    E-Print Network [OSTI]

    Qiu, Yihui, Ph. D. Massachusetts Institute of Technology

    2009-01-01T23:59:59.000Z

    This thesis addresses a specific variable valve actuation (VVA) system ---- an electromechanical valvetrain ---- in order to provide variable valve timing (VVT) in internal combustion (IC) engines. This electromechanical ...

  4. Prerequisites: Control Systems I+II, System Modeling, Engine Class (Introduction to Modeling and Control of

    E-Print Network [OSTI]

    Daraio, Chiara

    and Control The gas-diesel engine is a natural gas engine, where the combustion is initiated by a small is much higher than the ignition energy of a common spark plug. As a consequence, the natural gas and Control of Internal Combustion Engine Systems, IC Engines, ...), Matlab/Simulink experience Contact

  5. A miniature free-piston engine/compressor Authors: Lei Tian1

    E-Print Network [OSTI]

    Durfee, William K.

    1 A miniature free-piston engine/compressor Authors: Lei Tian1 , David B Kittelson1 , William K, constructed and evaluated a tiny internal combustion air compressor that uses a free-piston configuration engine. Keywords HCCI, Engine-compressor, Portable power supply, engine modeling, combustion modeling 1

  6. National Aeronautics and Space Administration The J2X Engine

    E-Print Network [OSTI]

    by a small, internal combustion chamber separate from the primary combustion chamber producing engine thrustNational Aeronautics and Space Administration NASAfacts The J­2X Engine NASA's New Upper Stage Engine The next generation of space exploration has begun with the development of NASA's Space Launch

  7. A Numerical Study of a Simple Stochastic/Deterministic Model of Cycle-to-Cycle Combustion Fluctuations in Spark Ignition Engines

    E-Print Network [OSTI]

    G. Litak; M. Wendeker; M. Krupa; J. Czarnigowski

    2004-05-23T23:59:59.000Z

    We examine a simple, fuel-air, model of combustion in a spark ignition (si) engine with indirect injection. In our two fluid model, variations of fuel mass burned in cycle sequences appear due to stochastic fluctuations of a fuel feed amount. We have shown that a small amplitude of these fluctuations affects considerably the stability of a combustion process strongly depending on the quality of air-fuel mixture. The largest influence was found in the limit of a lean combustion. The possible effect of nonlinearities in the combustion process has been also discussed.

  8. Second law analysis of premixed compression ignition combustion in a diesel engine using a thermodynamic engine cycle simulation

    E-Print Network [OSTI]

    Oak, Sushil Shreekant

    2008-10-10T23:59:59.000Z

    ................................................................ 17 4.3.2 Combustion Model................................................................ 17 4.3.3 Heat Transfer Model ............................................................. 18 4.3.4 Fluid Mechanics Model...

  9. Mechanical & Aerospace Engineering

    E-Print Network [OSTI]

    and natural gas engines and related components, with sales exceeding $18 billion. Charlton started his career and natural gas engine technologies - for Ford Motor Company, British Gas, Lloyds of London among others of internal combustion engine technology. (cont'd.) (bio cont'd.) At Cummins he was directly involved

  10. Proceedings of the ASME 2009 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference

    E-Print Network [OSTI]

    Rhoads, Jeffrey F.

    Proceedings of the ASME 2009 International Design Engineering Technical Conferences & Computers bandpass filters based on cyclically-coupled, closed-chain resonator configurations and specifically exhibit improved ripple metrics, reduced frequency dependence Address all correspondence to this author

  11. Coal combustion science

    SciTech Connect (OSTI)

    Hardesty, D.R. (ed.); Baxter, L.L.; Fletcher, T.H.; Mitchell, R.E.

    1990-11-01T23:59:59.000Z

    The objective of this activity is to support the Office of Fossil Energy in executing research on coal combustion science. This activity consists of basic research on coal combustion that supports both the Pittsburgh Energy Technology Center (PETC) Direct Utilization Advanced Research and Technology Development Program, and the International Energy Agency (IEA) Coal Combustion Science Project. Specific tasks include: coal devolatilization, coal char combustion, and fate of mineral matter during coal combustion. 91 refs., 40 figs., 9 tabs.

  12. High Pressure Shock Tube Studies of Fuel Combustion Engineering The high-pressure single-pulse shock tube is shown in Figure 8 (rated at 5 to 1000 atm,

    E-Print Network [OSTI]

    Ben-Arie, Jezekiel

    High Pressure Shock Tube Studies of Fuel Combustion Engineering The high-pressure single and oxidative degradation of various components in order to identify the products as guides to the combustion

  13. International Journal of Reliability, Quality and Safety Engineering World Scientific Publishing Company

    E-Print Network [OSTI]

    Koopman, Philip

    International Journal of Reliability, Quality and Safety Engineering World Scientific Publishing of Reliability, Quality and Safety Engineering World Scientific Publishing Company 2 Likewise, application Engineering and The Institute for Complex Engineered Systems Carnegie Mellon University, 5000 Forbes Avenue

  14. Design and Experimental Implementation of an Electromagnetic Engine Valve Drive

    E-Print Network [OSTI]

    Parlikar, T.A.

    In conventional internal combustion engines, engine valve displacements are fixed relative to crankshaft position. If these valves were actuated as a variable function of crankshaft angle, significant improvements in fuel ...

  15. Generic risk insights for Westinghouse and Combustion Engineering pressurized water reactors

    SciTech Connect (OSTI)

    Travis, R.; Taylor, J.; Fresco, A. (Brookhaven National Lab., Upton, NY (USA)); Chung, J. (Nuclear Regulatory Commission, Washington, DC (USA))

    1990-11-01T23:59:59.000Z

    A methodology has been developed to extract generic risk-based information from probabilistic risk assessments (PRAs) of Westinghouse and Combustion Engineering (CE) pressurized water reactors (PWRs) and apply the insights gained to Westinghouse and Ce plants have not been subjected to a PRA. The available PRAs (five Westinghouse plants and one CE plant) were examined to identify the most probable, i.e., dominant accident sequences at each plant. The goal was to include all sequences which represented at least 80% of core damage frequency. If the same plant specific dominant accident sequence appeared within this boundary in at least two plant PRAs, the sequence was considered to be a representative sequence. Eleven sequences met this definition. From these sequences, the most important component failures and human errors that contributed to each sequence have been prioritized. Guidance is provided to prioritize the representative sequences and modify selected basic events that have been shown to be sensitive to the plant specific design or operating variations of the contributing PRAs. This risk-based guidance can be used for utility and NRC activities including operator training maintenance, design review, and inspections.

  16. Apparatus and filtering systems relating to combustors in combustion turbine engines

    DOE Patents [OSTI]

    Johnson, Thomas Edward (Greer, SC); Zuo, Baifang (Simpsonville, SC); Stevenson, Christian Xavier (Inman, SC)

    2012-03-27T23:59:59.000Z

    A combustor for a combustion turbine engine that includes: a chamber defined by an outer wall and forming a channel between windows defined through the outer wall toward a forward end of the chamber and at least one fuel injector positioned toward an aft end of the chamber; and a multilayer screen filter comprising at least two layers of screen over at least a portion of the windows and at least one layer of screen over the remaining portion of the windows. The windows include a forward end and a forward portion, and an aft end and an aft portion. The multilayer screen filter is positioned over the windows such that, in operation, a supply of compressed air entering the chamber through the windows passes through at least one layer of screen. The multilayer screen filter is configured such that the aft portion of the windows include at least two layers of screen, and the forward portion of the windows includes one less layer of screen than the aft portion of the windows.

  17. Standard technical specifications: Combustion engineering plants. Volume 1, Revision 1: Specifications

    SciTech Connect (OSTI)

    NONE

    1995-04-01T23:59:59.000Z

    This report documents the results of the combined effort of the NRC and the industry to produce improved Standard Technical Specifications (STS), Revision 1 for Combustion Engineering Plants. The changes reflected in Revision 1 resulted from the experience gained from license amendment applications to convert to these improved STS or to adopt partial improvements to existing technical specifications. This NUREG is the result of extensive public technical meetings and discussions between the Nuclear Regulatory Commission (NRC) staff and various nuclear power plant licensees, Nuclear Steam Supply System (NSSS) Owners Groups, NSSS vendors, and the Nuclear Energy Institute (NEI). The improved STS were developed based on the criteria in the Final Commission Policy Statement on Technical Specifications Improvements for Nuclear Power Reactors, dated July 22, 1993. The improved STS will be used as the basis for individual nuclear power plant licensees to develop improved plant-specific technical specifications. This report contains three volumes. Volume 1 contains the Specifications for all chapters and sections of the improved STS. Volume 2 contains the Bases for Chapters 2.0 and 3.0, and Sections 3.1--3.3 of the improved STS. Volume 3 contains the Bases for Sections 3.4--3.9 of the improved STS.

  18. Combustion Engineering Integrated Coal Gasification Combined Cycle Repowering Project: Clean Coal Technology Program

    SciTech Connect (OSTI)

    Not Available

    1992-03-01T23:59:59.000Z

    On February 22, 1988, DOE issued Program Opportunity Notice (PON) Number-DE-PS01-88FE61530 for Round II of the CCT Program. The purpose of the PON was to solicit proposals to conduct cost-shared ICCT projects to demonstrate technologies that are capable of being commercialized in the 1990s, that are more cost-effective than current technologies, and that are capable of achieving significant reduction of SO[sub 2] and/or NO[sub x] emissions from existing coal burning facilities, particularly those that contribute to transboundary and interstate pollution. The Combustion Engineering (C-E) Integrated Coal Gasification Combined Cycle (IGCC) Repowering Project was one of 16 proposals selected by DOE for negotiation of cost-shared federal funding support from among the 55 proposals that were received in response to the PON. The ICCT Program has developed a three-level strategy for complying with the National Environmental Policy Act (NEPA) that is consistent with the President's Council on Environmental Quality regulations implementing NEPA (40 CFR 1500-1508) and the DOE guidelines for compliance with NEPA (10 CFR 1021). The strategy includes the consideration of programmatic and project-specific environmental impacts during and subsequent to the reject selection process.

  19. Initial Evaluation of Engine Combustion Network Injectors with X-Ray Diagnostics

    SciTech Connect (OSTI)

    Kastengren, A.; Powell, C.F.; Tilocco, F.Z.; Fezzaa, K.

    2012-09-10T23:59:59.000Z

    A significant hurdle in the understanding of diesel sprays is the sensitivity of such sprays to the detailed geometry of the spray nozzle. This sensitivity hampers the comparison of results from spray measurements by different research groups, even if the groups measure nozzles with the same nominal geometry. Moreover, these differences make the comparison and validation of different diagnostic techniques problematic. To remove this source of uncertainty from diesel spray measurements, a collaboration of several research groups has formed to measure a common set of injectors under identical conditions under the auspices of Sandia National Laboratorys Engine Combustion Network. The current work describes the initial measurement of these injectors and the sprays created by these injectors using the x-ray diagnostics available at the Advanced Photon Source. X-ray phase-enhanced imaging is used to perform time-resolved, in situ measurements of injector pintle motion. In addition to these measurements, x-ray radiography measurements of the sprays from these injectors will be performed to better understand the near-nozzle fuel mass distribution in these sprays.

  20. Vehicle Technologies Office Merit Review 2015: Spray Combustion Cross-Cut Engine Research

    Broader source: Energy.gov [DOE]

    Presentation given by Sandia National Laboratories at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about spray combustion...

  1. Light Duty Efficient, Clean Combustion

    SciTech Connect (OSTI)

    Donald Stanton

    2010-12-31T23:59:59.000Z

    Cummins has successfully completed the Light Duty Efficient Clean Combustion (LDECC) cooperative program with DoE. This program was established in 2007 in support of the Department of Energy's Vehicles Technologies Advanced Combustion and Emissions Control initiative to remove critical barriers to the commercialization of advanced, high efficiency, emissions compliant internal combustion (IC) engines for light duty vehicles. Work in this area expanded the fundamental knowledge of engine combustion to new regimes and advanced the knowledge of fuel requirements for these diesel engines to realize their full potential. All of the following objectives were met with fuel efficiency improvement targets exceeded: (1) Improve light duty vehicle (5000 lb. test weight) fuel efficiency by 10.5% over today's state-of-the-art diesel engine on the FTP city drive cycle; (2) Develop and design an advanced combustion system plus aftertreatment system that synergistically meets Tier 2 Bin 5 NOx and PM emissions standards while demonstrating the efficiency improvements; (3) Maintain power density comparable to that of current conventional engines for the applicable vehicle class; and (4) Evaluate different fuel components and ensure combustion system compatibility with commercially available biofuels. Key accomplishments include: (1) A 25% improvement in fuel efficiency was achieved with the advanced LDECC engine equipped with a novel SCR aftertreatment system compared to the 10.5% target; (2) An 11% improvement in fuel efficiency was achieved with the advanced LDECC engine and no NOx aftertreamtent system; (3) Tier 2 Bin 5 and SFTP II emissions regulations were met with the advanced LDECC engine equipped with a novel SCR aftertreatment system; (4) Tier 2 Bin 5 emissions regulations were met with the advanced LDECC engine and no NOx aftertreatment, but SFTP II emissions regulations were not met for the US06 test cycle - Additional technical barriers exist for the no NOx aftertreatment engine; (5) Emissions and efficiency targets were reached with the use of biodiesel. A variety of biofuel feedstocks (soy, rapeseed, etc.) was investigated; (6) The advanced LDECC engine with low temperature combustion was compatible with commercially available biofuels as evaluated by engine performance testing and not durability testing; (7) The advanced LDECC engine equipped with a novel SCR aftertreatment system is the engine system architecture that is being further developed by the Cummins product development organization. Cost reduction and system robustness activities have been identified for future deployment; (8) The new engine and aftertreatment component technologies are being developed by the Cummins Component Business units (e.g. fuel system, turbomachinery, aftertreatment, electronics, etc.) to ensure commercial viability and deployment; (9) Cummins has demonstrated that the technologies developed for this program are scalable across the complete light duty engine product offerings (2.8L to 6.7L engines); and (10) Key subsystems developed include - sequential two stage turbo, combustions system for low temperature combustion, novel SCR aftertreatment system with feedback control, and high pressure common rail fuel system. An important element of the success of this project was leveraging Cummins engine component technologies. Innovation in component technology coupled with system integration is enabling Cummins to move forward with the development of high efficiency clean diesel products with a long term goal of reaching a 40% improvement in thermal efficiency for the engine plus aftertreatment system. The 40% improvement is in-line with the current light duty vehicle efficiency targets set by the 2010 DoE Vehicle Technologies MYPP and supported through co-operative projects such as the Cummins Advanced Technology Powertrains for Light-Duty Vehicles (ATP-LD) started in 2010.

  2. Light Duty Efficient, Clean Combustion

    SciTech Connect (OSTI)

    Stanton, Donald W

    2011-06-03T23:59:59.000Z

    Cummins has successfully completed the Light Duty Efficient Clean Combustion (LDECC) cooperative program with DoE. This program was established in 2007 in support of the Department of Energys Vehicles Technologies Advanced Combustion and Emissions Control initiative to remove critical barriers to the commercialization of advanced, high efficiency, emissions compliant internal combustion (IC) engines for light duty vehicles. Work in this area expanded the fundamental knowledge of engine combustion to new regimes and advanced the knowledge of fuel requirements for these diesel engines to realize their full potential. All of the following objectives were met with fuel efficiency improvement targets exceeded: 1. Improve light duty vehicle (5000 lb. test weight) fuel efficiency by 10.5% over todays state-ofthe- art diesel engine on the FTP city drive cycle 2. Develop & design an advanced combustion system plus aftertreatment system that synergistically meets Tier 2 Bin 5 NOx and PM emissions standards while demonstrating the efficiency improvements. 3. Maintain power density comparable to that of current conventional engines for the applicable vehicle class. 4. Evaluate different fuel components and ensure combustion system compatibility with commercially available biofuels. Key accomplishments include: ? A 25% improvement in fuel efficiency was achieved with the advanced LDECC engine equipped with a novel SCR aftertreatment system compared to the 10.5% target ? An 11% improvement in fuel efficiency was achieved with the advanced LDECC engine and no NOx aftertreamtent system ? Tier 2 Bin 5 and SFTP II emissions regulations were met with the advanced LDECC engine equipped with a novel SCR aftertreatment system ? Tier 2 Bin 5 emissions regulations were met with the advanced LDECC engine and no NOx aftertreatment, but SFTP II emissions regulations were not met for the US06 test cycle Additional technical barriers exist for the no NOx aftertreatment engine ? Emissions and efficiency targets were reached with the use of biodiesel. A variety of biofuel feedstocks (soy, rapeseed, etc.) was investigated. ? The advanced LDECC engine with low temperature combustion was compatible with commercially available biofuels as evaluated by engine performance testing and not durability testing. ? The advanced LDECC engine equipped with a novel SCR aftertreatment system is the engine system architecture that is being further developed by the Cummins product development organization. Cost reduction and system robustness activities have been identified for future deployment. ? The new engine and aftertreatment component technologies are being developed by the Cummins Component Business units (e.g. fuel system, turbomachinery, aftertreatment, electronics, etc.) to ensure commercial viability and deployment ? Cummins has demonstrated that the technologies developed for this program are scalable across the complete light duty engine product offerings (2.8L to 6.7L engines) ? Key subsystems developed include sequential two stage turbo, combustions system for low temperature combustion, novel SCR aftertreatment system with feedback control, and high pressure common rail fuel system An important element of the success of this project was leveraging Cummins engine component technologies. Innovation in component technology coupled with system integration is enabling Cummins to move forward with the development of high efficiency clean diesel products with a long term goal of reaching a 40% improvement in thermal efficiency for the engine plus aftertreatment system. The 40% improvement is in-line with the current light duty vehicle efficiency targets set by the 2010 DoE Vehicle Technologies MYPP and supported through co-operative projects such as the Cummins Advanced Technology Powertrains for Light- Duty Vehicles (ATP-LD) started in 2010.

  3. Evaluation of alternate-fuels performance in an external combustion system. Final report

    SciTech Connect (OSTI)

    Battista, R.A.; Connelly, M.

    1985-12-01T23:59:59.000Z

    As the economic attractiveness of many alternate fuels increases relative to gasoline, the viability of any future automotive power plant may soon depend on the ease with which these alternate fuels can be utilized. It is generally assumed that external-combustion engines are more tolerant of alternate fuels than internal-combustion engines. This study attempted to verify that assumption. The purpose of the Alternate-Fuels Performance Evaluation Program was to evaluate and compare the impact of burning six different liquids fuels in an external-combustion system. Testing was conducted in the automotive Stirling engine (ASE) combustion performance rig, which duplicates the external heat system (EHS) of a Stirling engine. The program expanded the range of fuels evaluated over previous studies conducted at Mechanical Technology Incorporated (MTI). The specific objective was to determine the optimal combustion stoichiometry considering the performance parameters of combustion efficiency, temperature profile, exhaust emissions, and burner wall temperature. 14 refs., 34 figs., 6 tabs.

  4. A computational investigation of diesel and biodiesel combustion and NOx formation in a light-duty compression ignition engine

    SciTech Connect (OSTI)

    Wang, Zihan; Srinivasan, Kalyan K.; Krishnan, Sundar R.; Som, Sibendu

    2012-04-24T23:59:59.000Z

    Diesel and biodiesel combustion in a multi-cylinder light duty diesel engine were simulated during a closed cycle (from IVC to EVO), using a commercial computational fluid dynamics (CFD) code, CONVERGE, coupled with detailed chemical kinetics. The computational domain was constructed based on engine geometry and compression ratio measurements. A skeletal n-heptane-based diesel mechanism developed by researchers at Chalmers University of Technology and a reduced biodiesel mechanism derived and validated by Luo and co-workers were applied to model the combustion chemistry. The biodiesel mechanism contains 89 species and 364 reactions and uses methyl decanoate, methyl-9- decenoate, and n-heptane as the surrogate fuel mixture. The Kelvin-Helmholtz and Rayleigh-Taylor (KH-RT) spray breakup model for diesel and biodiesel was calibrated to account for the differences in physical properties of the fuels which result in variations in atomization and spray development characteristics. The simulations were able to capture the experimentally observed pressure and apparent heat release rate trends for both the fuels over a range of engine loads (BMEPs from 2.5 to 10 bar) and fuel injection timings (from 0???° BTDC to 10???° BTDC), thus validating the overall modeling approach as well as the chemical kinetic models of diesel and biodiesel surrogates. Moreover, quantitative NOx predictions for diesel combustion and qualitative NOx predictions for biodiesel combustion were obtained with the CFD simulations and the in-cylinder temperature trends were correlated to the NOx trends."

  5. Fuel Effects on Combustion and Emissions of a Direct-Inection Diesel Engine Operating at Moderate to High Engine Speed and Load

    SciTech Connect (OSTI)

    Szybist, James P [ORNL; Szymkowicz, Patrick G. [General Motors Corporation; Northrop, William F [General Motors Corporation

    2012-01-01T23:59:59.000Z

    It is advantageous to increase the specific power output of diesel engines and to operate them at higher load for a greater portion of a driving cycle to achieve better thermal efficiency and thus reduce vehicle fuel consumption. Such operation is limited by excessive smoke formation at retarded injection timing and high rates of cylinder pressure rise at more advanced timing. Given this window of operation, it is desired to understand the influence of fuel properties such that optimum combustion performance and emissions can be retained over the range of fuels commonly available in the marketplace. It has been shown in previous studies that varying cetane number (CN) of diesel fuel has little effect on ignition delay at high engine load due to the domination of high cylinder temperature on ignition kinetics. The work here experimentally confirms that finding but also shows that emissions and combustion performance vary according to fuel reactivity. Data are examined from a direct-injection single cylinder research engine for eight common diesel fuels including soy-based biodiesel blends at two high load operating points with no exhaust gas recirculation (EGR) and at a moderate load with four levels of EGR. It is shown in the work that at high engine load where combustion is controlled by mixing processes, CN and other fuel properties have little effect on engine performance, although lower CN fuels produce a small increase in noise, smoke and CO emissions. Biodiesel blends increase NOX emissions and decreases CO and smoke emissions at high load, but otherwise have little effect on performance. At moderate load, higher CN fuels are more tolerant to EGR due to their better chemical reactivity at retarded injection timing, but all fuels produce comparable thermal efficiency at advanced combustion phasing regardless of EGR. In contrast to the high load conditions, there was no increase in NOX emissions for biodiesel at the moderate load condition. It is concluded that although higher CN does not significantly alter ignition delay at moderate to high loads it has a dominant influence on the acceptable injection timing range. Apart from CN effects, fuel oxygen content plays an independent role in reducing some emissions. It is therefore recommended that compensation for fuel ignitability and oxygen content be included in combustion control strategies to optimize emissions and performance of future diesel engines.

  6. Optical investigation of the combustion behaviour inside the engine operating in HCCI mode and using alternative diesel fuel

    SciTech Connect (OSTI)

    Mancaruso, E.; Vaglieco, B.M. [Istituto Motori - CNR, Via Marconi, 8, 80125 Napoli (Italy)

    2010-04-15T23:59:59.000Z

    In order to understand the effect of both the new homogeneous charge compression ignition (HCCI) combustion process and the use of biofuel, optical measurements were carried out into a transparent CR diesel engine. Rape seed methyl ester was used and tests with several injection pressures were performed. OH and HCO radical were detected and their evolutions were analyzed during the whole combustion. Moreover, soot concentration was measured by means the two colour pyrometry method. The reduction of particulate emission with biodiesel as compared to the diesel fuel was noted. Moreover, this effect resulted higher increasing the injection pressure. In the case of RME the oxidation of soot depends mainly from O{sub 2} content of fuel and OH is responsible of the NO formation in the chamber as it was observed for NO{sub x} exhaust emission. Moreover, it was investigated the evolution of HCO and CO into the cylinder. HCO was detected at the start of combustion. During the combustion, HCO oxidizes due to the increasing temperature and it produces CO. Both fuels have similar trend, the highest concentrations are detected for low injection pressure. This effect is more evident for the RME fuel. (author)

  7. Numerical investigation of high-pressure combustion in rocket engines using Flamelet/Progress-variable models

    E-Print Network [OSTI]

    Coclite, A; De Palma, P; Pascazio, G

    2015-01-01T23:59:59.000Z

    The present paper deals with the numerical study of high pressure LOx/H2 or LOx/hydrocarbon combustion for propulsion systems. The present research effort is driven by the continued interest in achieving low cost, reliable access to space and more recently, by the renewed interest in hypersonic transportation systems capable of reducing time-to-destination. Moreover, combustion at high pressure has been assumed as a key issue to achieve better propulsive performance and lower environmental impact, as long as the replacement of hydrogen with a hydrocarbon, to reduce the costs related to ground operations and increase flexibility. The current work provides a model for the numerical simulation of high- pressure turbulent combustion employing detailed chemistry description, embedded in a RANS equations solver with a Low Reynolds number k-omega turbulence model. The model used to study such a combustion phenomenon is an extension of the standard flamelet-progress-variable (FPV) turbulent combustion model combined ...

  8. Multi-stage combustion using nitrogen-enriched air

    DOE Patents [OSTI]

    Fischer, Larry E.; Anderson, Brian L.

    2004-09-14T23:59:59.000Z

    Multi-stage combustion technology combined with nitrogen-enriched air technology for controlling the combustion temperature and products to extend the maintenance and lifetime cycles of materials in contact with combustion products and to reduce pollutants while maintaining relatively high combustion and thermal cycle efficiencies. The first stage of combustion operates fuel rich where most of the heat of combustion is released by burning it with nitrogen-enriched air. Part of the energy in the combustion gases is used to perform work or to provide heat. The cooled combustion gases are reheated by additional stages of combustion until the last stage is at or near stoichiometric conditions. Additional energy is extracted from each stage to result in relatively high thermal cycle efficiency. The air is enriched with nitrogen using air separation technologies such as diffusion, permeable membrane, absorption, and cryogenics. The combustion method is applicable to many types of combustion equipment, including: boilers, burners, turbines, internal combustion engines, and many types of fuel including hydrogen and carbon-based fuels including methane and coal.

  9. International Conference on Human-Centered Software Engineering

    E-Print Network [OSTI]

    No, Reinhold

    models in HCSE Social and organizational aspects in the software development lifecycle Human-centric software development tools User profiles and mental models User requirements and design constraints UserHCSE 2014 5th International Conference on Human-Centered Software Engineering Paderborn, Germany

  10. International weekly journal of science Molecular engineering of a

    E-Print Network [OSTI]

    Manstein, Dietmar J.

    International weekly journal of science Molecular engineering of a backwards-moving myosin motor metabolism: strategies for regulation in the heat shock response. Trends Genet. 6, 223227 (1990). 2. Yost, H1211 (2000). 10. Manley, J. M. & Tacke, R. SR proteins and splicing control. Genes Dev. 10, 15691579 (1996

  11. Cycle simulation of coal-fueled engines utilizing low heat rejection concepts

    E-Print Network [OSTI]

    Roth, John M.

    1988-01-01T23:59:59.000Z

    combustion engines has existed since the development of' the earliest engines. Caton and Rosegay (I] presented a comprehensive review of coal fired engine activities spanning the years from the late 1800's to 1983. Interest is seen to have been sustained.... n increased understanding of the coal coinbustion process in an internal combustion engine envi'ronment. Ryan and Dodge [6] studied the injection and combustion of slurries of coal, charcoal and coke in diesel fuel. Deviations between the slurry...

  12. COMBUSTION OF COAL IN AN OPPOSED FLOW DIFFUSION BURNER

    E-Print Network [OSTI]

    Chin, W.K.

    2010-01-01T23:59:59.000Z

    J.M. , liThe F1uidised Combustion of Coal," Sixteenth Sm osium {International} on Combustion, August 1976 (to beof Various Polymers Under Combustion Conditions," Fourteenth

  13. COMBUSTION SOURCES OF UNREGULATED GAS PHASE NITROGENEOUS SPECIES

    E-Print Network [OSTI]

    Matthews, Ronald D.

    2013-01-01T23:59:59.000Z

    SAE Paper 750173, 1975. L. , Fifteenth Symposium Combustion,The Combustion Institute, International Pittsburgh, on 64.chemistry of products of combustion: nitrogenous The

  14. Diesel fuel aromatic and cetane number effects on combustion and emissions from a prototype 1991 diesel engine

    SciTech Connect (OSTI)

    Sienicki, E.J.; Jass, R.E.; Slodowske, W.J.; McCarthy, C.I.; Krodel, A.L.

    1990-01-01T23:59:59.000Z

    This book reports on a prototype 1991-model diesel engine that was tested using EPA transient emissions procedures to determine the effect of fuel properties on combustion characteristics and exhaust emissions. The eleven test fuel set focused primarily on total aromatic content, multi-ring aromatic content, and cetane number, but other fuel variables were also studied. Hydrotreating was used to obtain reductions in fuel sulfur and aromatic content. Increasing cetane number and reducing aromatic content resulted in lower emissions of hydrocarbons and NO{sub x}. Particulate emission were best predicted by sulfur content, aromatic content and 90% distillation temperature. Multi-ring aromatics showed a greater significance that total aromatics on hydrocarbon and particulate emissions. combustion parameters were highly dependent on fuel cetane number.

  15. Turbulent Combustion Luc Vervisch

    E-Print Network [OSTI]

    Kern, Michel

    ;19 "Perfect" combustion modes: Fuel + Oxidizer () Products Engines, gas turbines... Laboratory experiment1 Turbulent Combustion Modeling Luc Vervisch INSA de Rouen, IUF, CORIA-CNRS Quelques problèmes rencontrés en chimie numérique : Hydrologie - Combustion - Atmosphère 16 décembre, INRIA Rocquencourt #12

  16. Engines

    SciTech Connect (OSTI)

    Enga, B.E.

    1981-08-25T23:59:59.000Z

    This invention relates to Stirling engines and to improved methods of operation whereby catalytic oxidation of a major proportion of the fuel takes place in the external combustor. An external combustion unit of a Stirling engine comprises a catalytic combustor having a thermally stable and oxidation resistant monolith made from and/or carrying a catalytic material and including a multiplicity of flow paths for catalytic combustion of combustible gases and injected fuel. The use of a catalytic combustor in accordance with this invention enables a Stirling or other engine fitted therewith to be used in areas such as mines and underwater installations where conventional flame combustion is impracticable or is controlled by stringent regulations.

  17. MINING ENGINEERING You can count on our mining engineering co-op interns for anY

    E-Print Network [OSTI]

    Skorobogatiy, Maksim

    MINING ENGINEERING You can count on our mining engineering co-op interns for anY projects involving mine development, major excavations or site rehabilitation. + our interns have much to offer You! internships allow students to become familiar with the day-to-day operations of a mine. co-op interns can work

  18. H2 ICE Combustion | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    H2 ICE Combustion Share Description Hydrogen combustion inside a direct injection H2 engine Topic Energy Energy efficiency Vehicles Hydrogen & fuel cells Credit S. Ciatti This...

  19. Proceedings of IMECE '03 2003 ASME International Mechanical Engineering Congress and Exposition

    E-Print Network [OSTI]

    Shaver, Gregory M.

    November 15-21, 2003, Washington, D.C. USA IMECE2003-41966 CYCLE-TO-CYCLE CONTROL OF HCCI ENGINES Gregory M Compression Ignition (HCCI) represents a promising combustion strategy for future engines. When achieved by rein- ducting exhaust gas with a variable valve actuation (VVA) sys- tem, however, HCCI possesses

  20. Vehicle Technologies Office: Materials for High-Efficiency Combustion...

    Office of Environmental Management (EM)

    High-Efficiency Combustion Engines Vehicle Technologies Office: Materials for High-Efficiency Combustion Engines The Vehicle Technologies Office (VTO) is supporting work to improve...

  1. Advancement in Fuel Spray and Combustion Modeling for Compression...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advancement in Fuel Spray and Combustion Modeling for Compression Ignition Engine Applications Advancement in Fuel Spray and Combustion Modeling for Compression Ignition Engine...

  2. High-Efficiency Clean Combustion Design for Compression Ignition...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Efficiency Clean Combustion Design for Compression Ignition Engines High-Efficiency Clean Combustion Design for Compression Ignition Engines Presentation given at DEER 2006,...

  3. Particulate Produced from Advanced Combustion Operation in a...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Produced from Advanced Combustion Operation in a Compression Ignition Engine Particulate Produced from Advanced Combustion Operation in a Compression Ignition Engine Determine...

  4. 2014 Annual Merit Review Results Report - Advanced Combustion...

    Energy Savers [EERE]

    Advanced Combustion Engine Technologies 2014 Annual Merit Review Results Report - Advanced Combustion Engine Technologies Merit review of DOE Vehicle Technologies research...

  5. Hydrogen Assisted Diesel Combustion in a Common Rail Turbodiesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Assisted Diesel Combustion in a Common Rail Turbodiesel Engine Hydrogen Assisted Diesel Combustion in a Common Rail Turbodiesel Engine This study measured the effects of hydrogen...

  6. Combustion, Efficiency, and Fuel Effects in a Spark-Assisted...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combustion, Efficiency, and Fuel Effects in a Spark-Assisted HCCI Gasoline Engine Combustion, Efficiency, and Fuel Effects in a Spark-Assisted HCCI Gasoline Engine 2004 Diesel...

  7. Catalyst for Improving the Combustion Efficiency of Petroleum...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Improving the Combustion Efficiency of Petroleum Fuels in Diesel Engines Catalyst for Improving the Combustion Efficiency of Petroleum Fuels in Diesel Engines 2005 Diesel...

  8. A University Consortium on High Pressure, Lean Combustion for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Pressure, Lean Combustion for Efficient and Clean IC Engines (UM - lead, MIT, UCB) A University Consortium on High Pressure, Lean Combustion for Efficient and Clean IC Engines...

  9. Computationally Efficient Modeling of High-Efficiency Clean Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Publications Computationally Efficient Modeling of High-Efficiency Clean Combustion Engines Computationally Efficient Modeling of High-Efficiency Clean Combustion Engines...

  10. Fuel Effects on Ignition and Their Impact on Advanced Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ignition and Their Impact on Advanced Combustion Engines Fuel Effects on Ignition and Their Impact on Advanced Combustion Engines Presentation given at DEER 2006, August 20-24,...

  11. 2011 Annual Merit Review Results Report - Advanced Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Combustion Engine Technologies 2011 Annual Merit Review Results Report - Advanced Combustion Engine Technologies Merit review of DOE Vehicle Technologies research...

  12. 2012 Annual Merit Review Results Report - Advanced Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Combustion Engine Technologies 2012 Annual Merit Review Results Report - Advanced Combustion Engine Technologies Merit review of DOE Vehicle Technologies research...

  13. 2013 Annual Merit Review Results Report - Advanced Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Combustion Engine Technologies 2013 Annual Merit Review Results Report - Advanced Combustion Engine Technologies Merit review of DOE Vehicle Technologies research...

  14. Hydrogen Assisted Diesel Combustion in a Common Rail Turbodiesel...

    Broader source: Energy.gov (indexed) [DOE]

    Assisted Diesel Combustion in a Common Rail Turbodiesel Engine P-3 Hydrogen Assisted Diesel Combustion in a Common Rail Turbodiesel Engine P-3 Gregory Lilik, Jos Martn...

  15. Syngas Enhanced High Efficiency Low Temperature Combustion for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Enhanced High Efficiency Low Temperature Combustion for Clean Diesel Engines Syngas Enhanced High Efficiency Low Temperature Combustion for Clean Diesel Engines A significant...

  16. Particulate Produced from Advanced Combustion Operation in a...

    Broader source: Energy.gov (indexed) [DOE]

    Produced From Advanced Combustion Operation in a Compression Ignition Engine P-1 Particulate Produced From Advanced Combustion Operation in a Compression Ignition Engine P-1...

  17. Materials Research Lab -Cooperative International Science and Engineering Internships http://www.mrl.ucsb.edu/mrl/outreach/educational/CISEI/interns09/interns09.html[5/10/12 10:14:28 AM

    E-Print Network [OSTI]

    Bigelow, Stephen

    Materials Research Lab - Cooperative International Science and Engineering Internships http For Teachers Education Contacts News Cooperative International Science and Engineering Internships Cooperative International Science and Engineering Internships(CISEI) Summer 2009 - Student Projects Student/School Mentor

  18. Materials Research Lab -Cooperative International Science and Engineering Internships http://web.mrl.ucsb.edu/mrl/outreach/educational/CISEI/interns07/interns07.html[11/8/12 1:27:00 PM

    E-Print Network [OSTI]

    Bigelow, Stephen

    Materials Research Lab - Cooperative International Science and Engineering Internships http For Teachers Education Contacts News Cooperative International Science and Engineering Internships Cooperative International Science and Engineering Internships(CISEI) Summer 2007 - Student Projects Student/School Mentor

  19. Materials Research Lab -Cooperative International Science and Engineering Internships http://www.mrl.ucsb.edu/mrl/outreach/educational/CISEI/interns08/interns08.html[5/10/12 10:11:16 AM

    E-Print Network [OSTI]

    Bigelow, Stephen

    Materials Research Lab - Cooperative International Science and Engineering Internships http Webmail #12;Materials Research Lab - Cooperative International Science and Engineering Internships http For Teachers Education Contacts News Cooperative International Science and Engineering Internships Cooperative

  20. Materials Research Lab -Cooperative International Science and Engineering Internships http://web.mrl.ucsb.edu/mrl/outreach/educational/CISEI/interns06/interns06.html[11/8/12 2:12:16 PM

    E-Print Network [OSTI]

    Bigelow, Stephen

    Materials Research Lab - Cooperative International Science and Engineering Internships http & Events Webmail #12;Materials Research Lab - Cooperative International Science and Engineering Internships For Teachers Education Contacts News Cooperative International Science and Engineering Internships Cooperative