National Library of Energy BETA

Sample records for interindustry forecasting project

  1. Inter-Industry Diffusion of Technology That Results

    E-Print Network [OSTI]

    April 2003 Inter-Industry Diffusion of Technology That Results From ATP Projects ADVANCED TECHNOLOGY PROGRAMADVANCED TECHNOLOGY PROGRAM NIST GCR 03-848 National Institute of Standards and Technology Funding Joel Popkin #12;NIST GCR 03-848 Inter-Industry Diffusion of Technology That Results From ATP

  2. Solar Forecast Improvement Project

    Office of Energy Efficiency and Renewable Energy (EERE)

    For the Solar Forecast Improvement Project (SFIP), the Earth System Research Laboratory (ESRL) is partnering with the National Center for Atmospheric Research (NCAR) and IBM to develop more...

  3. Wind Forecast Improvement Project Southern Study Area Final Report...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Forecast Improvement Project Southern Study Area Final Report Wind Forecast Improvement Project Southern Study Area Final Report Wind Forecast Improvement Project Southern Study...

  4. Modelling Inter-Industry Material Flows

    E-Print Network [OSTI]

    CIEEDAC Modelling Inter-Industry Material Flows: A review of methodologies For Natural Resources Canada By Maggie Tisdale CIEEDAC Energy and Materials Research Group School of Resource and Environmental .................................................................................................. 2 2.2. INDIRECT EFFECTS

  5. The Wind Forecast Improvement Project (WFIP): A Public/Private...

    Office of Environmental Management (EM)

    The Wind Forecast Improvement Project (WFIP): A PublicPrivate Partnership for Improving Short Term Wind Energy Forecasts and Quantifying the Benefits of Utility Operations The...

  6. Forecasting potential project risks through leading indicators to project outcome 

    E-Print Network [OSTI]

    Choi, Ji Won

    2007-09-17

    for the degree of MASTER OF SCIENCE May 2007 Major Subject: Civil Engineering FORECASTING POTENTIAL PROJECT RISKS THROUGH LEADING INDICATORS TO PROJECT OUTCOME A Thesis by JI WON CHOI... Guikema Head of Department, David Rosowsky May 2007 Major Subject: Civil Engineering iii ABSTRACT Forecasting Potential Project Risks through Leading Indicators to Project Outcome. (May 2007) Ji Won Choi, B.S., Han-Yang University...

  7. Project Profile: Forecasting and Influencing Technological Progress...

    Energy Savers [EERE]

    R&D translates into improved performance and reduced costs for energy technologies. Motivation Technological forecasts, which plot the anticipated performance and costs of...

  8. Next Generation Short-Term Forecasting of Wind Power Overview of the ANEMOS Project.

    E-Print Network [OSTI]

    Boyer, Edmond

    1 Next Generation Short-Term Forecasting of Wind Power ­ Overview of the ANEMOS Project. G outperform current state-of-the-art methods, for onshore and offshore wind power forecasting. Advanced and evaluation at a local, regional and national scale. Finally, the project demonstrates the value of wind

  9. Short-term Forecasting of Offshore Wind Farm Production Developments of the Anemos Project

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Short-term Forecasting of Offshore Wind Farm Production ­ Developments of the Anemos Project J to the large dimensions of offshore wind farms, their electricity production must be known well in advance networks) models were calibrated on power data from two offshore wind farms: Tunoe and Middelgrunden

  10. Short-term Forecasting of Offshore Wind Farm Production Developments of the Anemos Project

    E-Print Network [OSTI]

    Heinemann, Detlev

    for the sum of on- and offshore production in Germany with a total capacity of 50GW would benefit fromShort-term Forecasting of Offshore Wind Farm Production ­ Developments of the Anemos Project J , R. A. Brownsword5 , I. Waldl6 1 ForWind ­ Center for Wind Energy Research, Institute of Physics

  11. Project Profile: Forecasting and Influencing Technological Progress in

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing Tool FitsProject Develops Student-Stakeholders ProjectBaseload CSP Plants |

  12. Solar Forecasting

    Broader source: Energy.gov [DOE]

    On December 7, 2012, DOE announced $8 million to fund two solar projects that are helping utilities and grid operators better forecast when, where, and how much solar power will be produced at U.S....

  13. The Wind Forecast Improvement Project (WFIP): A Public/Private Partnership for Improving Short Term Wind Energy Forecasts and Quantifying the Benefits of Utility Operations. The Southern Study Area, Final Report

    SciTech Connect (OSTI)

    Freedman, Jeffrey M.; Manobianco, John; Schroeder, John; Ancell, Brian; Brewster, Keith; Basu, Sukanta; Banunarayanan, Venkat; Hodge, Bri-Mathias; Flores, Isabel

    2014-04-30

    This Final Report presents a comprehensive description, findings, and conclusions for the Wind Forecast Improvement Project (WFIP) -- Southern Study Area (SSA) work led by AWS Truepower (AWST). This multi-year effort, sponsored by the Department of Energy (DOE) and National Oceanographic and Atmospheric Administration (NOAA), focused on improving short-term (15-minute - 6 hour) wind power production forecasts through the deployment of an enhanced observation network of surface and remote sensing instrumentation and the use of a state-of-the-art forecast modeling system. Key findings from the SSA modeling and forecast effort include: 1. The AWST WFIP modeling system produced an overall 10 - 20% improvement in wind power production forecasts over the existing Baseline system, especially during the first three forecast hours; 2. Improvements in ramp forecast skill, particularly for larger up and down ramps; 3. The AWST WFIP data denial experiments showed mixed results in the forecasts incorporating the experimental network instrumentation; however, ramp forecasts showed significant benefit from the additional observations, indicating that the enhanced observations were key to the model systems’ ability to capture phenomena responsible for producing large short-term excursions in power production; 4. The OU CAPS ARPS simulations showed that the additional WFIP instrument data had a small impact on their 3-km forecasts that lasted for the first 5-6 hours, and increasing the vertical model resolution in the boundary layer had a greater impact, also in the first 5 hours; and 5. The TTU simulations were inconclusive as to which assimilation scheme (3DVAR versus EnKF) provided better forecasts, and the additional observations resulted in some improvement to the forecasts in the first 1 - 3 hours.

  14. Waste generation forecast for DOE-ORO`s Environmental Restoration OR-1 Project: FY 1995-FY 2002, September 1994 revision

    SciTech Connect (OSTI)

    Not Available

    1994-12-01

    A comprehensive waste-forecasting task was initiated in FY 1991 to provide a consistent, documented estimate of the volumes of waste expected to be generated as a result of U.S. Department of Energy-Oak Ridge Operations (DOE-ORO) Environmental Restoration (ER) OR-1 Project activities. Continual changes in the scope and schedules for remedial action (RA) and decontamination and decommissioning (D&D) activities have required that an integrated data base system be developed that can be easily revised to keep pace with changes and provide appropriate tabular and graphical output. The output can then be analyzed and used to drive planning assumptions for treatment, storage, and disposal (TSD) facilities. The results of this forecasting effort and a description of the data base developed to support it are provided herein. The initial waste-generation forecast results were compiled in November 1991. Since the initial forecast report, the forecast data have been revised annually. This report reflects revisions as of September 1994.

  15. Wind Power Forecasting Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Operations Call 2012 Retrospective Reports 2012 Retrospective Reports 2011 Smart Grid Wind Integration Wind Integration Initiatives Wind Power Forecasting Wind Projects Email...

  16. Energy consumption and expenditure projections by population group on the basis of the annual energy outlook 1999 forecast

    SciTech Connect (OSTI)

    Poyer, D.A.; Balsley, J.H.

    2000-01-07

    This report presents an analysis of the relative impact of the base-case scenario used in Annual Energy Outlook 1999 on different population groups. Projections of energy consumption and expenditures, as well as energy expenditure as a share of income, from 1996 to 2020 are given. The projected consumption of electricty, natural gas, distillate fuel, and liquefied petroleum gas during this period is also reported for each population group. In addition, this report compares the findings of the Annual Energy Outlook 1999 report with the 1998 report. Changes in certain indicators and information affect energy use forecasts, and these effects are analyzed and discussed.

  17. An Intelligent Solar Powered Battery Buffered EV Charging Station with Solar Electricity Forecasting and EV Charging Load Projection Functions

    E-Print Network [OSTI]

    Zhao, Hengbing; Burke, Andrew

    2014-01-01

    power source from inherent intermittent solar PV power.B. Solar PV Electricity Forecasting Fig. 1. Charging stationForecasting Power Output of Solar Photovoltaic System Using

  18. Wind Energy Management System EMS Integration Project: Incorporating Wind Generation and Load Forecast Uncertainties into Power Grid Operations

    SciTech Connect (OSTI)

    Makarov, Yuri V.; Huang, Zhenyu; Etingov, Pavel V.; Ma, Jian; Guttromson, Ross T.; Subbarao, Krishnappa; Chakrabarti, Bhujanga B.

    2010-01-01

    The power system balancing process, which includes the scheduling, real time dispatch (load following) and regulation processes, is traditionally based on deterministic models. Since the conventional generation needs time to be committed and dispatched to a desired megawatt level, the scheduling and load following processes use load and wind and solar power production forecasts to achieve future balance between the conventional generation and energy storage on the one side, and system load, intermittent resources (such as wind and solar generation), and scheduled interchange on the other side. Although in real life the forecasting procedures imply some uncertainty around the load and wind/solar forecasts (caused by forecast errors), only their mean values are actually used in the generation dispatch and commitment procedures. Since the actual load and intermittent generation can deviate from their forecasts, it becomes increasingly unclear (especially, with the increasing penetration of renewable resources) whether the system would be actually able to meet the conventional generation requirements within the look-ahead horizon, what the additional balancing efforts would be needed as we get closer to the real time, and what additional costs would be incurred by those needs. To improve the system control performance characteristics, maintain system reliability, and minimize expenses related to the system balancing functions, it becomes necessary to incorporate the predicted uncertainty ranges into the scheduling, load following, and, in some extent, into the regulation processes. It is also important to address the uncertainty problem comprehensively by including all sources of uncertainty (load, intermittent generation, generators’ forced outages, etc.) into consideration. All aspects of uncertainty such as the imbalance size (which is the same as capacity needed to mitigate the imbalance) and generation ramping requirement must be taken into account. The latter unique features make this work a significant step forward toward the objective of incorporating of wind, solar, load, and other uncertainties into power system operations. Currently, uncertainties associated with wind and load forecasts, as well as uncertainties associated with random generator outages and unexpected disconnection of supply lines, are not taken into account in power grid operation. Thus, operators have little means to weigh the likelihood and magnitude of upcoming events of power imbalance. In this project, funded by the U.S. Department of Energy (DOE), a framework has been developed for incorporating uncertainties associated with wind and load forecast errors, unpredicted ramps, and forced generation disconnections into the energy management system (EMS) as well as generation dispatch and commitment applications. A new approach to evaluate the uncertainty ranges for the required generation performance envelope including balancing capacity, ramping capability, and ramp duration has been proposed. The approach includes three stages: forecast and actual data acquisition, statistical analysis of retrospective information, and prediction of future grid balancing requirements for specified time horizons and confidence levels. Assessment of the capacity and ramping requirements is performed using a specially developed probabilistic algorithm based on a histogram analysis, incorporating all sources of uncertainties of both continuous (wind and load forecast errors) and discrete (forced generator outages and start-up failures) nature. A new method called the “flying brick” technique has been developed to evaluate the look-ahead required generation performance envelope for the worst case scenario within a user-specified confidence level. A self-validation algorithm has been developed to validate the accuracy of the confidence intervals.

  19. Projecting net incomes for Texas crop producers: an application of probabilistic forecasting 

    E-Print Network [OSTI]

    Eggerman, Christopher Ryan

    2006-10-30

    Agricultural policy changes directly affect the economic viability of Texas crop producers because government payments make up a significant portion of their net farm income (NFI). NFI projections benefit producers, ...

  20. Waste Generation Forecast for DOE-ORO`s Environmental Restoration OR-1 Project: FY 1994--FY 2001. Environmental Restoration Program, September 1993 Revision

    SciTech Connect (OSTI)

    Not Available

    1993-12-01

    This Waste Generation Forecast for DOE-ORO`s Environmental Restoration OR-1 Project. FY 1994--FY 2001 is the third in a series of documents that report current estimates of the waste volumes expected to be generated as a result of Environmental Restoration activities at Department of Energy, Oak Ridge Operations Office (DOE-ORO), sites. Considered in the scope of this document are volumes of waste expected to be generated as a result of remedial action and decontamination and decommissioning activities taking place at these sites. Sites contributing to the total estimates make up the DOE-ORO Environmental Restoration OR-1 Project: the Oak Ridge K-25 Site, the Oak Ridge National Laboratory, the Y-12 Plant, the Paducah Gaseous Diffusion Plant, the Portsmouth Gaseous Diffusion Plant, and the off-site contaminated areas adjacent to the Oak Ridge facilities (collectively referred to as the Oak Ridge Reservation Off-Site area). Estimates are available for the entire fife of all waste generating activities. This document summarizes waste estimates forecasted for the 8-year period of FY 1994-FY 2001. Updates with varying degrees of change are expected throughout the refinement of restoration strategies currently in progress at each of the sites. Waste forecast data are relatively fluid, and this document represents remediation plans only as reported through September 1993.

  1. The Wind Forecast Improvement Project (WFIP). A Public/Private Partnership for Improving Short Term Wind Energy Forecasts and Quantifying the Benefits of Utility Operations -- the Northern Study Area

    SciTech Connect (OSTI)

    Finley, Cathy

    2014-04-30

    This report contains the results from research aimed at improving short-range (0-6 hour) hub-height wind forecasts in the NOAA weather forecast models through additional data assimilation and model physics improvements for use in wind energy forecasting. Additional meteorological observing platforms including wind profilers, sodars, and surface stations were deployed for this study by NOAA and DOE, and additional meteorological data at or near wind turbine hub height were provided by South Dakota State University and WindLogics/NextEra Energy Resources over a large geographical area in the U.S. Northern Plains for assimilation into NOAA research weather forecast models. The resulting improvements in wind energy forecasts based on the research weather forecast models (with the additional data assimilation and model physics improvements) were examined in many different ways and compared with wind energy forecasts based on the current operational weather forecast models to quantify the forecast improvements important to power grid system operators and wind plant owners/operators participating in energy markets. Two operational weather forecast models (OP_RUC, OP_RAP) and two research weather forecast models (ESRL_RAP, HRRR) were used as the base wind forecasts for generating several different wind power forecasts for the NextEra Energy wind plants in the study area. Power forecasts were generated from the wind forecasts in a variety of ways, from very simple to quite sophisticated, as they might be used by a wide range of both general users and commercial wind energy forecast vendors. The error characteristics of each of these types of forecasts were examined and quantified using bulk error statistics for both the local wind plant and the system aggregate forecasts. The wind power forecast accuracy was also evaluated separately for high-impact wind energy ramp events. The overall bulk error statistics calculated over the first six hours of the forecasts at both the individual wind plant and at the system-wide aggregate level over the one year study period showed that the research weather model-based power forecasts (all types) had lower overall error rates than the current operational weather model-based power forecasts, both at the individual wind plant level and at the system aggregate level. The bulk error statistics of the various model-based power forecasts were also calculated by season and model runtime/forecast hour as power system operations are more sensitive to wind energy forecast errors during certain times of year and certain times of day. The results showed that there were significant differences in seasonal forecast errors between the various model-based power forecasts. The results from the analysis of the various wind power forecast errors by model runtime and forecast hour showed that the forecast errors were largest during the times of day that have increased significance to power system operators (the overnight hours and the morning/evening boundary layer transition periods), but the research weather model-based power forecasts showed improvement over the operational weather model-based power forecasts at these times.

  2. Forecasting Prices andForecasting Prices and Congestion forCongestion for

    E-Print Network [OSTI]

    Tesfatsion, Leigh

    Goal: Design nodal price and grid congestion forecasting tools for market operators and market Traders To facilitate scenario-conditioned planning Price forecasting for Market Participants (MPs) To manage short for portfolio management by power market participants Conclusion #12;Project OverviewProject Overview Project

  3. Energy consumption and expenditure projections by income quintile on the basis of the Annual Energy Outlook 1997 forecast

    SciTech Connect (OSTI)

    Poyer, D.A.; Allison, T.

    1998-03-01

    This report presents an analysis of the relative impacts of the base-case scenario used in the Annual Energy Outlook 1997, published by the US Department of Energy, Energy Information Administration, on income quintile groups. Projected energy consumption and expenditures, and projected energy expenditures as a share of income, for the period 1993 to 2015 are reported. Projected consumption of electricity, natural gas, distillate fuel, and liquefied petroleum gas over this period is also reported for each income group. 33 figs., 11 tabs.

  4. Solar forecasting review

    E-Print Network [OSTI]

    Inman, Richard Headen

    2012-01-01

    and forecasting of solar radiation data: a review,”forecasting of solar- radiation data,” Solar Energy, vol.sequences of global solar radiation data for isolated sites:

  5. STAFF FORECAST: AVERAGE RETAIL ELECTRICITY PRICES

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION STAFF FORECAST: AVERAGE RETAIL ELECTRICITY PRICES 2005 TO 2018 Mignon Marks Principal Author Mignon Marks Project Manager David Ashuckian Manager ELECTRICITY ANALYSIS OFFICE Sylvia Bender Acting Deputy Director ELECTRICITY SUPPLY DIVISION B.B. Blevins Executive Director

  6. New product forecasting in volatile markets

    E-Print Network [OSTI]

    Baldwin, Alexander (Alexander Lee)

    2014-01-01

    Forecasting demand for limited-life cycle products is essentially projecting an arc trend of demand growth and decline over a relatively short time horizon. When planning for a new limited-life product, many marketing and ...

  7. Contract/Project Management

    Office of Environmental Management (EM)

    Contract and Project Management Performance Metrics and Targets 1 ContractProject Management Primary Performance Metrics FY 2011 Target FY 2011 Actual & Forecast FY 2011...

  8. Contract/Project Management

    Office of Environmental Management (EM)

    and Project Management Improvement Performance Metrics and Targets 1 ContractProject Management Primary Performance Metrics FY 2011 Target FY 2011 Forecast FY 2011 Pre- &...

  9. Contract/Project Management

    Broader source: Energy.gov (indexed) [DOE]

    Contract and Project Management Performance Metrics and Targets 1 ContractProject Management Primary Performance Metrics FY 2010 Target FY 2010 Forecast FY 2010 Pre- &...

  10. Contract/Project Management

    Energy Savers [EERE]

    and Project Management Improvement Performance Metrics and Targets 1 ContractProject Management Performance Metric FY 2012 Target FY 2012 Forecast FY 2012 Pre- & Post-CAP...

  11. Contract/Project Management

    Energy Savers [EERE]

    Third Quarter Overall Contract and Project Management Improvement Performance Metrics and Targets 1 ContractProject Management Performance Metric FY 2012 Target FY 2012 Forecast...

  12. Improving Inventory Control Using Forecasting

    E-Print Network [OSTI]

    Balandran, Juan

    2005-12-16

    and encouragement. I am very grateful to Lucille and Michael Hobbs for their friendship, understanding and financial support. Finally, thank you to Tom Decker, Pat Jackson and Brian Zellar for all their contributions and hard work on this project... below: 1. Na?ve 2. Linear Regression 3. Moving Average 4. Exponential 5. Double exponential The na?ve forecasting method assumes that more recent data values are the best predictors of future values. The model is ? t+1 = Y t . Where ? t...

  13. Ramp Forecasting Performance from Improved Short-Term Wind Power Forecasting: Preprint

    SciTech Connect (OSTI)

    Zhang, J.; Florita, A.; Hodge, B. M.; Freedman, J.

    2014-05-01

    The variable and uncertain nature of wind generation presents a new concern to power system operators. One of the biggest concerns associated with integrating a large amount of wind power into the grid is the ability to handle large ramps in wind power output. Large ramps can significantly influence system economics and reliability, on which power system operators place primary emphasis. The Wind Forecasting Improvement Project (WFIP) was performed to improve wind power forecasts and determine the value of these improvements to grid operators. This paper evaluates the performance of improved short-term wind power ramp forecasting. The study is performed for the Electric Reliability Council of Texas (ERCOT) by comparing the experimental WFIP forecast to the current short-term wind power forecast (STWPF). Four types of significant wind power ramps are employed in the study; these are based on the power change magnitude, direction, and duration. The swinging door algorithm is adopted to extract ramp events from actual and forecasted wind power time series. The results show that the experimental short-term wind power forecasts improve the accuracy of the wind power ramp forecasting, especially during the summer.

  14. Solar forecasting review

    E-Print Network [OSTI]

    Inman, Richard Headen

    2012-01-01

    2.1.2 European Solar Radiation Atlas (ESRA)2.4 Evaluation of Solar Forecasting . . . . . . . . .2.4.1 Solar Variability . . . . . . . . . . . . .

  15. Forecasting Water Quality & Biodiversity

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Forecasting Water Quality & Biodiversity March 25, 2015 Cross-cutting Sustainability Platform Review Principle Investigator: Dr. Henriette I. Jager Organization: Oak Ridge National...

  16. THE DESIRE TO ACQUIRE: FORECASTING THE EVOLUTION OF HOUSEHOLD

    E-Print Network [OSTI]

    THE DESIRE TO ACQUIRE: FORECASTING THE EVOLUTION OF HOUSEHOLD ENERGY SERVICES by Steven Groves BASc of Research Project: The Desire to Acquire: Forecasting the Evolution of Household Energy Services Report No, and gasoline. A fixed effects panel model was used to examine the relationship of demand for energy

  17. Fuel Price Forecasts INTRODUCTION

    E-Print Network [OSTI]

    Fuel Price Forecasts INTRODUCTION Fuel prices affect electricity planning in two primary ways and water heating, and other end-uses as well. Fuel prices also influence electricity supply and price turbines. This second effect is the primary use of the fuel price forecast for the Council's Fifth Power

  18. Weather Forecasting Spring 2014

    E-Print Network [OSTI]

    Hennon, Christopher C.

    ATMS 350 Weather Forecasting Spring 2014 Professor : Dr. Chris Hennon Office : RRO 236C Phone : 232 of atmospheric physics and the ability to include this understanding into modern numerical weather prediction agencies, forecast tools, numerical weather prediction models, model output statistics, ensemble

  19. ENERGY DEMAND FORECAST METHODS REPORT

    E-Print Network [OSTI]

    ....................................................................................................1-16 Energy Consumption Data...............................................1-15 Data Sources for Energy Demand Forecasting ModelsCALIFORNIA ENERGY COMMISSION ENERGY DEMAND FORECAST METHODS REPORT Companion Report

  20. Improving the Accuracy of Solar Forecasting Funding Opportunity

    Broader source: Energy.gov [DOE]

    Through the Improving the Accuracy of Solar Forecasting Funding Opportunity, DOE is funding solar projects that are helping utilities, grid operators, solar power plant owners, and other...

  1. Comparison of AEO 2010 Natural Gas Price Forecast to NYMEX Futures Prices

    E-Print Network [OSTI]

    Bolinger, Mark A.

    2010-01-01

    approach to evaluating price risk would be to use suchthe base-case natural gas price forecast, but to alsorange of different plausible price projections, using either

  2. Comparison of AEO 2009 Natural Gas Price Forecast to NYMEX Futures Prices

    E-Print Network [OSTI]

    Bolinger, Mark

    2009-01-01

    range of different plausible price projections, using eitherthat renewables can provide price certainty over even longerof AEO 2009 Natural Gas Price Forecast to NYMEX Futures

  3. Issues in midterm analysis and forecasting 1998

    SciTech Connect (OSTI)

    1998-07-01

    Issues in Midterm Analysis and Forecasting 1998 (Issues) presents a series of nine papers covering topics in analysis and modeling that underlie the Annual Energy Outlook 1998 (AEO98), as well as other significant issues in midterm energy markets. AEO98, DOE/EIA-0383(98), published in December 1997, presents national forecasts of energy production, demand, imports, and prices through the year 2020 for five cases -- a reference case and four additional cases that assume higher and lower economic growth and higher and lower world oil prices than in the reference case. The forecasts were prepared by the Energy Information Administration (EIA), using EIA`s National Energy Modeling System (NEMS). The papers included in Issues describe underlying analyses for the projections in AEO98 and the forthcoming Annual Energy Outlook 1999 and for other products of EIA`s Office of Integrated Analysis and Forecasting. Their purpose is to provide public access to analytical work done in preparation for the midterm projections and other unpublished analyses. Specific topics were chosen for their relevance to current energy issues or to highlight modeling activities in NEMS. 59 figs., 44 tabs.

  4. Improving automotive battery sales forecast

    E-Print Network [OSTI]

    Bulusu, Vinod

    2015-01-01

    Improvement in sales forecasting allows firms not only to respond quickly to customers' needs but also to reduce inventory costs, ultimately increasing their profits. Sales forecasts have been studied extensively to improve ...

  5. Appendix A: Fuel Price Forecast Introduction..................................................................................................................................... 1

    E-Print Network [OSTI]

    Appendix A: Fuel Price Forecast Introduction................................................................................................................................. 3 Price Forecasts ............................................................................................................................ 5 U.S. Natural Gas Commodity Prices

  6. Demand Forecast INTRODUCTION AND SUMMARY

    E-Print Network [OSTI]

    Demand Forecast INTRODUCTION AND SUMMARY A 20-year forecast of electricity demand is a required in electricity demand is, of course, crucial to determining the need for new electricity resources and helping of any forecast of electricity demand and developing ways to reduce the risk of planning errors

  7. Consensus Coal Production Forecast for

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    Consensus Coal Production Forecast for West Virginia 2009-2030 Prepared for the West Virginia Summary 1 Recent Developments 2 Consensus Coal Production Forecast for West Virginia 10 Risks References 27 #12;W.Va. Consensus Coal Forecast Update 2009 iii List of Tables 1. W.Va. Coal Production

  8. METEOROLOGICAL Weather and Forecasting

    E-Print Network [OSTI]

    Rutledge, Steven

    AMERICAN METEOROLOGICAL SOCIETY Weather and Forecasting EARLY ONLINE RELEASE This is a preliminary microbursts than in many previously documented microbursts. Alignment of Doppler radar data to reports of wind-related damage to electrical power infrastructure in Phoenix allowed a comparison of microburst wind damage

  9. METEOROLOGICAL Weather and Forecasting

    E-Print Network [OSTI]

    Collett Jr., Jeffrey L.

    AMERICAN METEOROLOGICAL SOCIETY Weather and Forecasting EARLY ONLINE RELEASE This is a preliminary and interpretation of information from National Weather Service watches and warnings by10 decision makers such an outlier to the regional severe weather climatology. An analysis of the synoptic and13 mesoscale

  10. UWIG Forecasting Workshop -- Albany (Presentation)

    SciTech Connect (OSTI)

    Lew, D.

    2011-04-01

    This presentation describes the importance of good forecasting for variable generation, the different approaches used by industry, and the importance of validated high-quality data.

  11. Wind Forecasting Improvement Project | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'S FUTURE. regulatorsEnergyDepartmentEnergyWideWind

  12. Wind Power Forecasting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking WithTelecentricNCubicthe FOIA?ResourceMeasurement BuoyForecasting Sign

  13. FORECASTING THE ROLE OF RENEWABLES IN HAWAII

    E-Print Network [OSTI]

    Sathaye, Jayant

    2013-01-01

    s economy. Demand Forecasts The three energy futures wereto meet the forecast demand in each energy futurE2. e e1£~energy saved through improved appliance efficiencies. Also icit in our demand forecasts

  14. Price forecasting for notebook computers 

    E-Print Network [OSTI]

    Rutherford, Derek Paul

    1997-01-01

    of individual features are estimated. A time series analysis is used to forecast and can be used, for example, to forecast (1) notebook computer price at introduction, and (2) rate of price erosion for a notebook's life cycle. Results indicate that this approach...

  15. Economic Evaluation of Short-Term Wind Power Forecasts in ERCOT: Preliminary Results; Preprint

    SciTech Connect (OSTI)

    Orwig, K.; Hodge, B. M.; Brinkman, G.; Ela, E.; Milligan, M.; Banunarayanan, V.; Nasir, S.; Freedman, J.

    2012-09-01

    Historically, a number of wind energy integration studies have investigated the value of using day-ahead wind power forecasts for grid operational decisions. These studies have shown that there could be large cost savings gained by grid operators implementing the forecasts in their system operations. To date, none of these studies have investigated the value of shorter-term (0 to 6-hour-ahead) wind power forecasts. In 2010, the Department of Energy and National Oceanic and Atmospheric Administration partnered to fund improvements in short-term wind forecasts and to determine the economic value of these improvements to grid operators, hereafter referred to as the Wind Forecasting Improvement Project (WFIP). In this work, we discuss the preliminary results of the economic benefit analysis portion of the WFIP for the Electric Reliability Council of Texas. The improvements seen in the wind forecasts are examined, then the economic results of a production cost model simulation are analyzed.

  16. Multivariate Forecast Evaluation And Rationality Testing

    E-Print Network [OSTI]

    Komunjer, Ivana; OWYANG, MICHAEL

    2007-01-01

    Economy, 95(5), 1062—1088. MULTIVARIATE FORECASTS Chaudhuri,Notion of Quantiles for Multivariate Data,” Journal of thePress, United Kingdom. MULTIVARIATE FORECASTS Kirchgässner,

  17. Watt-Sun: A Multi-Scale, Multi-Model, Machine-Learning Solar Forecasting Technology

    Broader source: Energy.gov [DOE]

    As part of this project, new solar forecasting technology will be developed that leverages big data processing, deep machine learning, and cloud modeling integrated in a universal platform with an...

  18. Performances of an experimental platform dedicated to European pollution forecast based on the CHIMERE

    E-Print Network [OSTI]

    Menut, Laurent

    Performances of an experimental platform dedicated to European pollution forecast based du Climat et de l'Environnement - LSCE/IPSL The GEMS european project is dedicated to the definition

  19. CCPP-ARM Parameterization Testbed Model Forecast Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Klein, Stephen

    2008-01-15

    Dataset contains the NCAR CAM3 (Collins et al., 2004) and GFDL AM2 (GFDL GAMDT, 2004) forecast data at locations close to the ARM research sites. These data are generated from a series of multi-day forecasts in which both CAM3 and AM2 are initialized at 00Z every day with the ECMWF reanalysis data (ERA-40), for the year 1997 and 2000 and initialized with both the NASA DAO Reanalyses and the NCEP GDAS data for the year 2004. The DOE CCPP-ARM Parameterization Testbed (CAPT) project assesses climate models using numerical weather prediction techniques in conjunction with high quality field measurements (e.g. ARM data).

  20. CCPP-ARM Parameterization Testbed Model Forecast Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Klein, Stephen

    Dataset contains the NCAR CAM3 (Collins et al., 2004) and GFDL AM2 (GFDL GAMDT, 2004) forecast data at locations close to the ARM research sites. These data are generated from a series of multi-day forecasts in which both CAM3 and AM2 are initialized at 00Z every day with the ECMWF reanalysis data (ERA-40), for the year 1997 and 2000 and initialized with both the NASA DAO Reanalyses and the NCEP GDAS data for the year 2004. The DOE CCPP-ARM Parameterization Testbed (CAPT) project assesses climate models using numerical weather prediction techniques in conjunction with high quality field measurements (e.g. ARM data).

  1. Value of Wind Power Forecasting

    SciTech Connect (OSTI)

    Lew, D.; Milligan, M.; Jordan, G.; Piwko, R.

    2011-04-01

    This study, building on the extensive models developed for the Western Wind and Solar Integration Study (WWSIS), uses these WECC models to evaluate the operating cost impacts of improved day-ahead wind forecasts.

  2. Downscaling Extended Weather Forecasts for Hydrologic Prediction

    SciTech Connect (OSTI)

    Leung, Lai-Yung R.; Qian, Yun

    2005-03-01

    Weather and climate forecasts are critical inputs to hydrologic forecasting systems. The National Center for Environmental Prediction (NCEP) issues 8-15 days outlook daily for the U.S. based on the Medium Range Forecast (MRF) model, which is a global model applied at about 2? spatial resolution. Because of the relatively coarse spatial resolution, weather forecasts produced by the MRF model cannot be applied directly to hydrologic forecasting models that require high spatial resolution to represent land surface hydrology. A mesoscale atmospheric model was used to dynamically downscale the 1-8 day extended global weather forecasts to test the feasibility of hydrologic forecasting through this model nesting approach. Atmospheric conditions of each 8-day forecast during the period 1990-2000 were used to provide initial and boundary conditions for the mesoscale model to produce an 8-day atmospheric forecast for the western U.S. at 30 km spatial resolution. To examine the impact of initialization of the land surface state on forecast skill, two sets of simulations were performed with the land surface state initialized based on the global forecasts versus land surface conditions from a continuous mesoscale simulation driven by the NCEP reanalysis. Comparison of the skill of the global and downscaled precipitation forecasts in the western U.S. showed higher skill for the downscaled forecasts at all precipitation thresholds and increasingly larger differences at the larger thresholds. Analyses of the surface temperature forecasts show that the mesoscale forecasts generally reduced the root-mean-square error by about 1.5 C compared to the global forecasts, because of the much better resolved topography at 30 km spatial resolution. In addition, initialization of the land surface states has large impacts on the temperature forecasts, but not the precipitation forecasts. The improvements in forecast skill using downscaling could be potentially significant for improving hydrologic forecasts for managing river basins.

  3. Weather forecasting : the next generation : the potential use and implementation of ensemble forecasting

    E-Print Network [OSTI]

    Goto, Susumu

    2007-01-01

    This thesis discusses ensemble forecasting, a promising new weather forecasting technique, from various viewpoints relating not only to its meteorological aspects but also to its user and policy aspects. Ensemble forecasting ...

  4. Advanced Numerical Weather Prediction Techniques for Solar Irradiance Forecasting : : Statistical, Data-Assimilation, and Ensemble Forecasting

    E-Print Network [OSTI]

    Mathiesen, Patrick James

    2013-01-01

    weather prediction solar irradiance forecasts in the US.2013: Review of solar irradiance forecasting methods and asatellite-derived irradiances: Description and validation.

  5. Voluntary Green Power Market Forecast through 2015

    SciTech Connect (OSTI)

    Bird, L.; Holt, E.; Sumner, J.; Kreycik, C.

    2010-05-01

    Various factors influence the development of the voluntary 'green' power market--the market in which consumers purchase or produce power from non-polluting, renewable energy sources. These factors include climate policies, renewable portfolio standards (RPS), renewable energy prices, consumers' interest in purchasing green power, and utilities' interest in promoting existing programs and in offering new green options. This report presents estimates of voluntary market demand for green power through 2015 that were made using historical data and three scenarios: low-growth, high-growth, and negative-policy impacts. The resulting forecast projects the total voluntary demand for renewable energy in 2015 to range from 63 million MWh annually in the low case scenario to 157 million MWh annually in the high case scenario, representing an approximately 2.5-fold difference. The negative-policy impacts scenario reflects a market size of 24 million MWh. Several key uncertainties affect the results of this forecast, including uncertainties related to growth assumptions, the impacts that policy may have on the market, the price and competitiveness of renewable generation, and the level of interest that utilities have in offering and promoting green power products.

  6. Assessment of the possibility of forecasting future natural gas curtailments

    SciTech Connect (OSTI)

    Lemont, S.

    1980-01-01

    This study provides a preliminary assessment of the potential for determining probabilities of future natural-gas-supply interruptions by combining long-range weather forecasts and natural-gas supply/demand projections. An illustrative example which measures the probability of occurrence of heating-season natural-gas curtailments for industrial users in the southeastern US is analyzed. Based on the information on existing long-range weather forecasting techniques and natural gas supply/demand projections enumerated above, especially the high uncertainties involved in weather forecasting and the unavailability of adequate, reliable natural-gas projections that take account of seasonal weather variations and uncertainties in the nation's energy-economic system, it must be concluded that there is little possibility, at the present time, of combining the two to yield useful, believable probabilities of heating-season gas curtailments in a form useful for corporate and government decision makers and planners. Possible remedial actions are suggested that might render such data more useful for the desired purpose in the future. The task may simply require the adequate incorporation of uncertainty and seasonal weather trends into modeling systems and the courage to report projected data, so that realistic natural gas supply/demand scenarios and the probabilities of their occurrence will be available to decision makers during a time when such information is greatly needed.

  7. Massachusetts state airport system plan forecasts.

    E-Print Network [OSTI]

    Mathaisel, Dennis F. X.

    This report is a first step toward updating the forecasts contained in the 1973 Massachusetts State System Plan. It begins with a presentation of the forecasting techniques currently available; it surveys and appraises the ...

  8. Management Forecast Quality and Capital Investment Decisions

    E-Print Network [OSTI]

    Goodman, Theodore H.

    Corporate investment decisions require managers to forecast expected future cash flows from potential investments. Although these forecasts are a critical component of successful investing, they are not directly observable ...

  9. Forecasting consumer products using prediction markets

    E-Print Network [OSTI]

    Trepte, Kai

    2009-01-01

    Prediction Markets hold the promise of improving the forecasting process. Research has shown that Prediction Markets can develop more accurate forecasts than polls or experts. Our research concentrated on analyzing Prediction ...

  10. FORECASTING THE ROLE OF RENEWABLES IN HAWAII

    E-Print Network [OSTI]

    Sathaye, Jayant

    2013-01-01

    FORECASTING THE ROLE OF RENEWABLES IN HAWAII Jayant SathayeFORECASTING THE ROLF OF RENEWABLES IN HAWAII J Sa and Henrythe Conservation Role of Renewables November 18, 1980 Page 2

  11. NATIONAL AND GLOBAL FORECASTS WEST VIRGINIA PROFILES AND FORECASTS

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    income 7 Figure 1.14: United States inflation Rate 8 Figure 1.15: Select United States interest Rates 8 2014 TABLE OF CONTENTS EXECUTiVE SUMMARY 1 CHAPTER 1: THE UNiTED STATES ECONOMY 3 Recent Trends Forecast Summary 2 CHAPTER 1: THE UNiTED STATES ECONOMY Figure 1.1: United States Real GDP Growth 3 Figure

  12. Modeling and Forecasting Electric Daily Peak Loads

    E-Print Network [OSTI]

    Abdel-Aal, Radwan E.

    for the same data. Two methods are described for forecasting daily peak loads up to one week ahead through, including generator unit commitment, hydro-thermal coordination, short-term maintenance, fuel allocation forecasting accuracies. STLF forecasting covers the daily peak load, total daily energy, and daily load curve

  13. Consensus Coal Production And Price Forecast For

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    Consensus Coal Production And Price Forecast For West Virginia: 2011 Update Prepared for the West December 2011 © Copyright 2011 WVU Research Corporation #12;#12;W.Va. Consensus Coal Forecast Update 2011 i Table of Contents Executive Summary 1 Recent Developments 3 Consensus Coal Production And Price Forecast

  14. Forecasting phenology under global warming

    E-Print Network [OSTI]

    Silander Jr., John A.

    Forecasting phenology under global warming Ine´s Iba´n~ez1,*, Richard B. Primack2, Abraham J in phenology. Keywords: climate change; East Asia, global warming; growing season, hierarchical Bayes; plant is shifting, and these shifts have been linked to recent global warming (Parmesan & Yohe 2003; Root et al

  15. LOAD FORECASTING Eugene A. Feinberg

    E-Print Network [OSTI]

    Feinberg, Eugene A.

    , regression, artificial intelligence. 1. Introduction Accurate models for electric power load forecasting to make important decisions including decisions on pur- chasing and generating electric power, load for different operations within a utility company. The natures 269 #12;270 APPLIED MATHEMATICS FOR POWER SYSTEMS

  16. Reconstruction of the Past and Forecast of the Future European and British Ice Sheets and Associated Sea–Level Change 

    E-Print Network [OSTI]

    Hagdorn, Magnus K M

    The aim of this project is to improve our understanding of the past European and British ice sheets as a basis for forecasting their future. The behaviour of these ice sheets is investigated by simulating them using a ...

  17. PowerProjections2003(FPavgusing8-03water)(avgalloc)II.PDF

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2:49 PM Average Hydro Forecast - Depletions capped in 2009 Customer allocations set to average generation forecast WY Net Gen Total Firm Project Use Total Load Purch @ Load AHP...

  18. Cloudnet Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Hogan, Robin

    2008-01-15

    Cloudnet is a research project supported by the European Commission. This project aims to use data obtained quasi-continuously for the development and implementation of cloud remote sensing synergy algorithms. The use of active instruments (lidar and radar) results in detailed vertical profiles of important cloud parameters which cannot be derived from current satellite sensing techniques. A network of three already existing cloud remote sensing stations (CRS-stations) will be operated for a two year period, activities will be co-ordinated, data formats harmonised and analysis of the data performed to evaluate the representation of clouds in four major european weather forecast models.

  19. Cloudnet Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Hogan, Robin

    Cloudnet is a research project supported by the European Commission. This project aims to use data obtained quasi-continuously for the development and implementation of cloud remote sensing synergy algorithms. The use of active instruments (lidar and radar) results in detailed vertical profiles of important cloud parameters which cannot be derived from current satellite sensing techniques. A network of three already existing cloud remote sensing stations (CRS-stations) will be operated for a two year period, activities will be co-ordinated, data formats harmonised and analysis of the data performed to evaluate the representation of clouds in four major european weather forecast models.

  20. Forecasting wind speed financial return

    E-Print Network [OSTI]

    D'Amico, Guglielmo; Prattico, Flavio

    2013-01-01

    The prediction of wind speed is very important when dealing with the production of energy through wind turbines. In this paper, we show a new nonparametric model, based on semi-Markov chains, to predict wind speed. Particularly we use an indexed semi-Markov model that has been shown to be able to reproduce accurately the statistical behavior of wind speed. The model is used to forecast, one step ahead, wind speed. In order to check the validity of the model we show, as indicator of goodness, the root mean square error and mean absolute error between real data and predicted ones. We also compare our forecasting results with those of a persistence model. At last, we show an application of the model to predict financial indicators like the Internal Rate of Return, Duration and Convexity.

  1. Optimal combined wind power forecasts using exogeneous variables

    E-Print Network [OSTI]

    Optimal combined wind power forecasts using exogeneous variables Fannar ¨Orn Thordarson Kongens to the Klim wind farm using three WPPT forecasts based on different weather forecasting systems. It is shown of the thesis is combined wind power forecasts using informations from meteorological forecasts. Lyngby, January

  2. Weather Forecasts are for Wimps: Why Water Resource Managers Do Not Use Climate Forecasts

    E-Print Network [OSTI]

    Rayner, Steve; Lach, Denise; Ingram, Helen

    2005-01-01

    and Winter, S. G. : 1960, Weather Information and EconomicThe ENSO Signal 7, 4–6. WEATHER FORECASTS ARE FOR WIMPSWEATHER FORECASTS ARE FOR WIMPS ? : WHY WATER RESOURCE

  3. Development of a next-generation regional weather research and forecast model.

    SciTech Connect (OSTI)

    Michalakes, J.; Chen, S.; Dudhia, J.; Hart, L.; Klemp, J.; Middlecoff, J.; Skamarock, W.

    2001-02-05

    The Weather Research and Forecast (WRF) project is a multi-institutional effort to develop an advanced mesoscale forecast and data assimilation system that is accurate, efficient, and scalable across a range of scales and over a host of computer platforms. The first release, WRF 1.0, was November 30, 2000, with operational deployment targeted for the 2004-05 time frame. This paper provides an overview of the project and current status of the WRF development effort in the areas of numerics and physics, software and data architecture, and single-source parallelism and performance portability.

  4. The Preservation of Physical Fashion Forecasts

    E-Print Network [OSTI]

    Kosztowny, Alexander John

    2015-01-01

    schools and their libraries, which use trend forecastingin archives and libraries would be that the trend forecastsin a library or archive, not exclusively to trend forecasts.

  5. Promotional forecasting in the grocery retail business

    E-Print Network [OSTI]

    Koottatep, Pakawkul

    2006-01-01

    Predicting customer demand in the highly competitive grocery retail business has become extremely difficult, especially for promotional items. The difficulty in promotional forecasting has resulted from numerous internal ...

  6. Funding Opportunity Announcement for Wind Forecasting Improvement...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    that take place in complex terrain, this funding opportunity will improve foundational weather models by developing short-term wind forecasts for use by industry professionals,...

  7. Upcoming Funding Opportunity for Wind Forecasting Improvement...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    processes that take place in complex terrain, this funding would improve foundational weather models by developing short-term wind forecasts for use by industry professionals,...

  8. Wholesale Electricity Price Forecast This appendix describes the wholesale electricity price forecast of the Fifth Northwest Power

    E-Print Network [OSTI]

    to the electricity price forecast. This resource mix is used to forecast the fuel consumption and carbon dioxide (CO2Wholesale Electricity Price Forecast This appendix describes the wholesale electricity price forecast of the Fifth Northwest Power Plan. This forecast is an estimate of the future price of electricity

  9. 1Bureau of Meteorology | Water Information > INFORMATION SHEET 6 > Flood Forecasting and Warning Services Flood Forecasting

    E-Print Network [OSTI]

    Greenslade, Diana

    SHEET 6 1Bureau of Meteorology | Water Information > INFORMATION SHEET 6 > Flood Forecasting and Warning Services Flood Forecasting and Warning Services The Bureau of Meteorology (the Bureau) is responsible for providing an effective flood forecasting and warning service in each Australian state

  10. NREL: Transmission Grid Integration - Forecasting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines lightGeospatial ToolkitSMARTS -BeingFuture forForecasting NREL researchers

  11. Forecast Energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA Jump to:ofEnia SpAFlex Fuels Energy JumpVyncke Jump to:Forecast

  12. Forecasting Market Demand for New Telecommunications Services: An Introduction

    E-Print Network [OSTI]

    Parsons, Simon

    Forecasting Market Demand for New Telecommunications Services: An Introduction Peter Mc in demand forecasting for new communication services. Acknowledgments: The writing of this paper commenced employers or consultancy clients. KEYWORDS: Demand Forecasting, New Product Marketing, Telecommunica- tions

  13. Dynamic Filtering and Mining Triggers in Mesoscale Meteorology Forecasting

    E-Print Network [OSTI]

    Plale, Beth

    Dynamic Filtering and Mining Triggers in Mesoscale Meteorology Forecasting Nithya N. Vijayakumar {rramachandran, xli}@itsc.uah.edu Abstract-- Mesoscale meteorology forecasting as a data driven application Triggers, Data Mining, Stream Processing, Meteorology Forecasting I. INTRODUCTION Mesoscale meteorologists

  14. Combining Spatial Statistical and Ensemble Information in Probabilistic Weather Forecasts

    E-Print Network [OSTI]

    Raftery, Adrian

    Combining Spatial Statistical and Ensemble Information in Probabilistic Weather Forecasts VERONICA ensembles that generates calibrated probabilistic forecast products for weather quantities at indi- vidual perturbation (GOP) method, and extends BMA to generate calibrated probabilistic forecasts of whole weather

  15. Nonparametric models for electricity load forecasting

    E-Print Network [OSTI]

    Genève, Université de

    Electricity consumption is constantly evolving due to changes in people habits, technological innovations1 Nonparametric models for electricity load forecasting JANUARY 23, 2015 Yannig Goude, Vincent at University Paris-Sud 11 Orsay. His research interests are electricity load forecasting, more generally time

  16. INTELLIGENT HANDLING OF WEATHER FORECASTS Stephan Kerpedjiev

    E-Print Network [OSTI]

    , discourse and semantic. They are based on a conceptual model underlying weather forecasts as well situations represented in the form of texts in NL, weather maps, data tables or combined information objectsINTELLIGENT HANDLING OF WEATHER FORECASTS Stephan Kerpedjiev I n s t i t u t e of Mathematics Acad

  17. Smooth Calibration, Leaky Forecasts, and Finite Recall

    E-Print Network [OSTI]

    Hart, Sergiu

    Smooth Calibration, Leaky Forecasts, and Finite Recall Sergiu Hart October 2015 SERGIU HART c 2015 ­ p. #12;Smooth Calibration, Leaky Forecasts, and Finite Recall Sergiu Hart Center for the Study of Rationality Dept of Mathematics Dept of Economics The Hebrew University of Jerusalem hart@huji.ac.il http://www.ma.huji.ac.il/hart

  18. Multivariate Time Series Forecasting in Incomplete Environments

    E-Print Network [OSTI]

    Roberts, Stephen

    Multivariate Time Series Forecasting in Incomplete Environments Technical Report PARG 08-03 Seung of Oxford December 2008 #12;Seung Min Lee and Stephen J. Roberts Technical Report PARG 08-03 Multivariate missing observations and forecasting future values in incomplete multivariate time series data. We study

  19. Weather and Forecasting EARLY ONLINE RELEASE

    E-Print Network [OSTI]

    Weather and Forecasting EARLY ONLINE RELEASE This is a preliminary PDF of the author, Guangzhou 510301, China9 2. State Key Laboratory of Severe Weather, Chinese Academy of Meteorological10, China20 21 22 23 24 Submitted to Weather and Forecasting25 2014. 12. 2826 27 Corresponding author: Dr

  20. Weather and Forecasting EARLY ONLINE RELEASE

    E-Print Network [OSTI]

    Johnson, Richard H.

    Weather and Forecasting EARLY ONLINE RELEASE This is a preliminary PDF of the author Fort Collins, Colorado7 October 20128 (submitted to Weather and Forecasting)9 1 Corresponding author address: Rebecca D. Adams-Selin, HQ Air Force Weather Agency 16th Weather Squadron, 101 Nelson Dr., Offutt

  1. Earthquake Forecast via Neutrino Tomography

    E-Print Network [OSTI]

    Bin Wang; Ya-Zheng Chen; Xue-Qian Li

    2011-03-29

    We discuss the possibility of forecasting earthquakes by means of (anti)neutrino tomography. Antineutrinos emitted from reactors are used as a probe. As the antineutrinos traverse through a region prone to earthquakes, observable variations in the matter effect on the antineutrino oscillation would provide a tomography of the vicinity of the region. In this preliminary work, we adopt a simplified model for the geometrical profile and matter density in a fault zone. We calculate the survival probability of electron antineutrinos for cases without and with an anomalous accumulation of electrons which can be considered as a clear signal of the coming earthquake, at the geological region with a fault zone, and find that the variation may reach as much as 3% for $\\bar \

  2. Short Mountain Landfill gas recovery project

    SciTech Connect (OSTI)

    Not Available

    1992-05-01

    The Bonneville Power Administration (BPA), a Federal power marketing agency, has statutory responsibilities to supply electrical power to its utility, industrial, and other customers in the Pacific Northwest. BPA's latest load/resource balance forecast, projects the capability of existing resources to satisfy projected Federal system loads. The forecast indicates a potential resource deficit. The underlying need for action is to satisfy BPA customers' demand for electrical power.

  3. Forecasting Random Walks Under Drift Instability

    E-Print Network [OSTI]

    Pesaran, M Hashem; Pick, Andreas

    will yield a biased forecast but will continue to have the least variance. On the other hand a forecast based on the sub-sample {yTi , yTi+1, . . . , yT }, where Ti > 1 is likely to have a lower bias but could be inefficient due to a higher variance... approach considered in Pesaran and Timmermann (2007) is to use different sub-windows to forecast and then average the outcomes, either by means of cross-validated weights or by simply using equal weights. To this end consider the sample {yTi , yTi+1...

  4. 1993 Solid Waste Reference Forecast Summary

    SciTech Connect (OSTI)

    Valero, O.J.; Blackburn, C.L. [Westinghouse Hanford Co., Richland, WA (United States); Kaae, P.S.; Armacost, L.L.; Garrett, S.M.K. [Pacific Northwest Lab., Richland, WA (United States)

    1993-08-01

    This report, which updates WHC-EP-0567, 1992 Solid Waste Reference Forecast Summary, (WHC 1992) forecasts the volumes of solid wastes to be generated or received at the US Department of Energy Hanford Site during the 30-year period from FY 1993 through FY 2022. The data used in this document were collected from Westinghouse Hanford Company forecasts as well as from surveys of waste generators at other US Department of Energy sites who are now shipping or plan to ship solid wastes to the Hanford Site for disposal. These wastes include low-level and low-level mixed waste, transuranic and transuranic mixed waste, and nonradioactive hazardous waste.

  5. Distribution of Wind Power Forecasting Errors from Operational Systems (Presentation)

    SciTech Connect (OSTI)

    Hodge, B. M.; Ela, E.; Milligan, M.

    2011-10-01

    This presentation offers new data and statistical analysis of wind power forecasting errors in operational systems.

  6. Wind-Wave Probabilistic Forecasting based on Ensemble

    E-Print Network [OSTI]

    Wind-Wave Probabilistic Forecasting based on Ensemble Predictions Maxime FORTIN Kongens Lyngby 2012.imm.dtu.dk IMM-PhD-2012-86 #12;Summary Wind and wave forecasts are of a crucial importance for a number weather forecasts and do not take any possible correlation into ac- count. Since wind and wave forecasts

  7. Metrics for Evaluating the Accuracy of Solar Power Forecasting (Presentation)

    SciTech Connect (OSTI)

    Zhang, J.; Hodge, B.; Florita, A.; Lu, S.; Hamann, H.; Banunarayanan, V.

    2013-10-01

    This presentation proposes a suite of metrics for evaluating the performance of solar power forecasting.

  8. Univariate Modeling and Forecasting of Monthly Energy Demand Time Series

    E-Print Network [OSTI]

    Abdel-Aal, Radwan E.

    Univariate Modeling and Forecasting of Monthly Energy Demand Time Series Using Abductive and Neural networks, Neural networks, Modeling, Forecasting, Energy demand, Time series forecasting, Power system demand time series based only on data for six years to forecast the demand for the seventh year. Both

  9. Traffic congestion forecasting model for the INFORM System. Final report

    SciTech Connect (OSTI)

    Azarm, A.; Mughabghab, S.; Stock, D.

    1995-05-01

    This report describes a computerized traffic forecasting model, developed by Brookhaven National Laboratory (BNL) for a portion of the Long Island INFORM Traffic Corridor. The model has gone through a testing phase, and currently is able to make accurate traffic predictions up to one hour forward in time. The model will eventually take on-line traffic data from the INFORM system roadway sensors and make projections as to future traffic patterns, thus allowing operators at the New York State Department of Transportation (D.O.T.) INFORM Traffic Management Center to more optimally manage traffic. It can also form the basis of a travel information system. The BNL computer model developed for this project is called ATOP for Advanced Traffic Occupancy Prediction. The various modules of the ATOP computer code are currently written in Fortran and run on PC computers (pentium machine) faster than real time for the section of the INFORM corridor under study. The following summarizes the various routines currently contained in the ATOP code: Statistical forecasting of traffic flow and occupancy using historical data for similar days and time (long term knowledge), and the recent information from the past hour (short term knowledge). Estimation of the empirical relationships between traffic flow and occupancy using long and short term information. Mechanistic interpolation using macroscopic traffic models and based on the traffic flow and occupancy forecasted (item-1), and the empirical relationships (item-2) for the specific highway configuration at the time of simulation (construction, lane closure, etc.). Statistical routine for detection and classification of anomalies and their impact on the highway capacity which are fed back to previous items.

  10. Comparison of AEO 2010 Natural Gas Price Forecast to NYMEX Futures Prices

    SciTech Connect (OSTI)

    Bolinger, Mark A.; Wiser, Ryan H.

    2010-01-04

    On December 14, 2009, the reference-case projections from Annual Energy Outlook 2010 were posted on the Energy Information Administration's (EIA) web site. We at LBNL have, in the past, compared the EIA's reference-case long-term natural gas price forecasts from the AEO series to contemporaneous natural gas prices that can be locked in through the forward market, with the goal of better understanding fuel price risk and the role that renewables can play in itigating such risk. As such, we were curious to see how the latest AEO reference-case gas price forecast compares to the NYMEX natural gas futures strip. This brief memo presents our findings.

  11. REVISED CALIFORNIA ENERGY DEMAND FORECAST 20122022

    E-Print Network [OSTI]

    relatively high economic/demographic growth, relatively low electricity and natural gas rates REVISED CALIFORNIA ENERGY DEMAND FORECAST 20122022 Volume 1: Statewide Electricity Demand Bill Junker Manager DEMAND ANALYSIS OFFICE Sylvia Bender Deputy Director ELECTRICITY SUPPLY ANALYSIS

  12. REVISED CALIFORNIA ENERGY DEMAND FORECAST 20122022

    E-Print Network [OSTI]

    relatively high economic/demographic growth, relatively low electricity and natural gas rates REVISED CALIFORNIA ENERGY DEMAND FORECAST 20122022 Volume 2: Electricity Demand by Utility OFFICE Sylvia Bender Deputy Director ELECTRICITY SUPPLY ANALYSIS DIVISION Robert P

  13. CALIFORNIA ENERGY DEMAND 20122022 FINAL FORECAST

    E-Print Network [OSTI]

    /demographic growth, relatively low electricity and natural gas rates, and relatively low efficiency program CALIFORNIA ENERGY DEMAND 20122022 FINAL FORECAST Volume 1: Statewide Electricity Manager Bill Junker Manager DEMAND ANALYSIS OFFICE Sylvia Bender Deputy Director ELECTRICITY SUPPLY

  14. CALIFORNIA ENERGY DEMAND 20142024 FINAL FORECAST

    E-Print Network [OSTI]

    incorporates relatively high economic/demographic growth, relatively low electricity and natural gas rates CALIFORNIA ENERGY DEMAND 20142024 FINAL FORECAST Volume 2: Electricity Demand Sylvia Bender Deputy Director ELECTRICITY SUPPLY ANALYSIS DIVISION Robert P. Oglesby Executive

  15. CALIFORNIA ENERGY DEMAND 20142024 REVISED FORECAST

    E-Print Network [OSTI]

    high economic/demographic growth, relatively low electricity and natural gas rates, and relatively low CALIFORNIA ENERGY DEMAND 20142024 REVISED FORECAST Volume 2: Electricity Demand Manager DEMAND ANALYSIS OFFICE Sylvia Bender Deputy Director ELECTRICITY SUPPLY ANALYSIS DIVISION

  16. CALIFORNIA ENERGY DEMAND 20122022 FINAL FORECAST

    E-Print Network [OSTI]

    incorporates relatively high economic/demographic growth, relatively low electricity and natural gas rates CALIFORNIA ENERGY DEMAND 20122022 FINAL FORECAST Volume 2: Electricity Demand OFFICE Sylvia Bender Deputy Director ELECTRICITY SUPPLY ANALYSIS DIVISION Robert P

  17. CALIFORNIA ENERGY DEMAND 20142024 FINAL FORECAST

    E-Print Network [OSTI]

    relatively high economic/demographic growth, relatively low electricity and natural gas rates CALIFORNIA ENERGY DEMAND 2014­2024 FINAL FORECAST Volume 1: Statewide Electricity Demand Gough Office Manager DEMAND ANALYSIS OFFICE Sylvia Bender Deputy Director ELECTRICITY SUPPLY ANALYSIS

  18. Text-Alternative Version LED Lighting Forecast

    Broader source: Energy.gov [DOE]

    The DOE report Energy Savings Forecast of Solid-State Lighting in General Illumination Applications estimates the energy savings of LED white-light sources over the analysis period of 2013 to 2030....

  19. Load Forecast For use in Resource Adequacy

    E-Print Network [OSTI]

    forecast of 4) Calculate Hourly Load Allocation Factor s for each day for 2019 For use in RA analysis as a function ofthe load for electricity in the region as a function of cyclical, weather and economic variables

  20. Wind Speed Forecasting for Power System Operation 

    E-Print Network [OSTI]

    Zhu, Xinxin

    2013-07-22

    In order to support large-scale integration of wind power into current electric energy system, accurate wind speed forecasting is essential, because the high variation and limited predictability of wind pose profound challenges to the power system...

  1. Testing Competing High-Resolution Precipitation Forecasts

    E-Print Network [OSTI]

    Gilleland, Eric

    Testing Competing High-Resolution Precipitation Forecasts Eric Gilleland Research Prediction Comparison Test D1 D2 D = D1 ­ D2 copyright NCAR 2013 Loss Differential Field #12;Spatial Prediction Comparison Test Introduced by Hering and Genton

  2. Potential Economic Value of Seasonal Hurricane Forecasts

    E-Print Network [OSTI]

    Emanuel, Kerry Andrew

    This paper explores the potential utility of seasonal Atlantic hurricane forecasts to a hypothetical property insurance firm whose insured properties are broadly distributed along the U.S. Gulf and East Coasts. Using a ...

  3. Nambe Pueblo Water Budget and Forecasting model.

    SciTech Connect (OSTI)

    Brainard, James Robert

    2009-10-01

    This report documents The Nambe Pueblo Water Budget and Water Forecasting model. The model has been constructed using Powersim Studio (PS), a software package designed to investigate complex systems where flows and accumulations are central to the system. Here PS has been used as a platform for modeling various aspects of Nambe Pueblo's current and future water use. The model contains three major components, the Water Forecast Component, Irrigation Scheduling Component, and the Reservoir Model Component. In each of the components, the user can change variables to investigate the impacts of water management scenarios on future water use. The Water Forecast Component includes forecasting for industrial, commercial, and livestock use. Domestic demand is also forecasted based on user specified current population, population growth rates, and per capita water consumption. Irrigation efficiencies are quantified in the Irrigated Agriculture component using critical information concerning diversion rates, acreages, ditch dimensions and seepage rates. Results from this section are used in the Water Demand Forecast, Irrigation Scheduling, and the Reservoir Model components. The Reservoir Component contains two sections, (1) Storage and Inflow Accumulations by Categories and (2) Release, Diversion and Shortages. Results from both sections are derived from the calibrated Nambe Reservoir model where historic, pre-dam or above dam USGS stream flow data is fed into the model and releases are calculated.

  4. Intra-hour Direct Normal Irradiance solar forecasting using genetic programming

    E-Print Network [OSTI]

    Queener, Benjamin Daniel

    2012-01-01

    guideline for Solar Power Forecasting Performance . . 46 viof forecasting techniques for solar power production with noand A. Pavlovski, “Solar power forecasting performance

  5. A high-resolution, cloud-assimilating numerical weather prediction model for solar irradiance forecasting

    E-Print Network [OSTI]

    Mathiesen, Patrick; Collier, Craig; Kleissl, Jan

    2013-01-01

    of the WRF model solar irradiance forecasts in Andalusia (Beyer, H. , 2009.    Irradiance forecasting for the power dependent probabilistic irradiance  forecasts for coastal 

  6. Mathematics Of Ice To Aid Global Warming Forecasts Mathematics Of Ice To Aid Global Warming Forecasts

    E-Print Network [OSTI]

    Golden, Kenneth M.

    Mathematics Of Ice To Aid Global Warming Forecasts Mathematics Of Ice To Aid Global Warming forecasts of how global warming will affect polar icepacks. See also: Earth & Climate q Global Warming q the effects of climate warming, and its presence greatly reduces solar heating of the polar oceans." "Sea ice

  7. An Interindustry Model of El Paso and Hudspeth Counties, Texas 

    E-Print Network [OSTI]

    Coffman, W. S.; Beattie, B. R.; Jones, L. L.; Adams, J. W.

    1976-01-01

    Model of El Paso and Hudspeth Counties, Texas W.S. Coffman B.R. Beattie L.L. Jones J.W. Adams Texas Water Resources Institute Texas A&M University ...

  8. 1994 Solid waste forecast container volume summary

    SciTech Connect (OSTI)

    Templeton, K.J.; Clary, J.L.

    1994-09-01

    This report describes a 30-year forecast of the solid waste volumes by container type. The volumes described are low-level mixed waste (LLMW) and transuranic/transuranic mixed (TRU/TRUM) waste. These volumes and their associated container types will be generated or received at the US Department of Energy Hanford Site for storage, treatment, and disposal at Westinghouse Hanford Company`s Solid Waste Operations Complex (SWOC) during a 30-year period from FY 1994 through FY 2023. The forecast data for the 30-year period indicates that approximately 307,150 m{sup 3} of LLMW and TRU/TRUM waste will be managed by the SWOC. The main container type for this waste is 55-gallon drums, which will be used to ship 36% of the LLMW and TRU/TRUM waste. The main waste generator forecasting the use of 55-gallon drums is Past Practice Remediation. This waste will be generated by the Environmental Restoration Program during remediation of Hanford`s past practice sites. Although Past Practice Remediation is the primary generator of 55-gallon drums, most waste generators are planning to ship some percentage of their waste in 55-gallon drums. Long-length equipment containers (LECs) are forecasted to contain 32% of the LLMW and TRU/TRUM waste. The main waste generator forecasting the use of LECs is the Long-Length Equipment waste generator, which is responsible for retrieving contaminated long-length equipment from the tank farms. Boxes are forecasted to contain 21% of the waste. These containers are primarily forecasted for use by the Environmental Restoration Operations--D&D of Surplus Facilities waste generator. This waste generator is responsible for the solid waste generated during decontamination and decommissioning (D&D) of the facilities currently on the Surplus Facilities Program Plan. The remaining LLMW and TRU/TRUM waste volume is planned to be shipped in casks and other miscellaneous containers.

  9. Short-term energy outlook quarterly projections. First quarter 1994

    SciTech Connect (OSTI)

    Not Available

    1994-02-07

    The Energy Information Administration (EIA) prepares quarterly, short- term energy supply, demand, and price projections for publication in February, May, August, and November in the Short-Term Energy Outlook (Outlook). An annual supplement analyzes the performance of previous forecasts, compares recent cases with those of other forecasting services, and discusses current topics related to the short-term energy markets.

  10. Wind Forecast Improvement Project Southern Study Area Final Report |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing ToolInternationalReport FY2014 -Energy Costs by IncreasingWholeWind Energy

  11. Funding Opportunity Announcement for Wind Forecasting Improvement Project

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015ExecutiveFluorescentDanKathyEnergydetails to austeniteof Energyin

  12. Upcoming Funding Opportunity for Wind Forecasting Improvement Project in

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics And Statistics » USAJobs Search USAJobs Search The jobsFelixContracts |University

  13. Calibrated Probabilistic Mesoscale Weather Field Forecasting: The Geostatistical Output Perturbation

    E-Print Network [OSTI]

    Raftery, Adrian

    Calibrated Probabilistic Mesoscale Weather Field Forecasting: The Geostatistical Output. This is typically not feasible for mesoscale weather prediction carried out locally by organizations without by simulating realizations of the geostatistical model. The method is applied to 48-hour mesoscale forecasts

  14. New directions for forecasting air travel passenger demand

    E-Print Network [OSTI]

    Garvett, Donald Stephen

    1974-01-01

    While few will disagree that sound forecasts are an essential prerequisite to rational transportation planning and analysis, the making of these forecasts has become a complex problem with the broadening of the scope and ...

  15. Generalized Cost Function Based Forecasting for Periodically Measured Nonstationary Traffic

    E-Print Network [OSTI]

    Zeng, Yong - Department of Mathematics and Statistics, University of Missouri

    1 Generalized Cost Function Based Forecasting for Periodically Measured Nonstationary Traffic true value. However, such a forecast- ing function is not directly applicable for applications potentially result in insufficient allocation of bandwidth leading to short term data loss. To facilitate

  16. The effect of multinationality on management earnings forecasts 

    E-Print Network [OSTI]

    Runyan, Bruce Wayne

    2005-08-29

    This study examines the relationship between a firm??s degree of multinationality and its managers?? earnings forecasts. Firms with a high degree of multinationality are subject to greater uncertainty regarding earnings forecasts due...

  17. Market perceptions of efficiency and news in analyst forecast errors 

    E-Print Network [OSTI]

    Chevis, Gia Marie

    2004-11-15

    Financial analysts are considered inefficient when they do not fully incorporate relevant information into their forecasts. In this dissertation, I investigate differences in the observable efficiency of analysts' earnings forecasts between firms...

  18. DOE Releases Latest Report on Energy Savings Forecast of Solid...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Latest Report on Energy Savings Forecast of Solid-State Lighting DOE Releases Latest Report on Energy Savings Forecast of Solid-State Lighting September 12, 2014 - 2:06pm Addthis...

  19. U.S. Regional Demand Forecasts Using NEMS and GIS

    E-Print Network [OSTI]

    Cohen, Jesse A.; Edwards, Jennifer L.; Marnay, Chris

    2005-01-01

    Forecasts Using NEMS and GIS National Climatic Data Center.with Changing Boundaries." Use of GIS to Understand Socio-Forecasts Using NEMS and GIS Appendix A. Map Results Gallery

  20. OPERATIONAL EARTHQUAKE FORECASTING State of Knowledge and Guidelines for Utilization

    E-Print Network [OSTI]

    .................................................................................................................................... 323 II. SCIENCE OF EARTHQUAKE FORECASTING AND PREDICTION 325 A. Definitions and Concepts....................................................................................................................................... 325 B. Research on Earthquake PredictabilityOPERATIONAL EARTHQUAKE FORECASTING State of Knowledge and Guidelines for Utilization Report

  1. Wind power forecasting in U.S. electricity markets.

    SciTech Connect (OSTI)

    Botterud, A.; Wang, J.; Miranda, V.; Bessa, R. J.; Decision and Information Sciences; INESC Porto

    2010-04-01

    Wind power forecasting is becoming an important tool in electricity markets, but the use of these forecasts in market operations and among market participants is still at an early stage. The authors discuss the current use of wind power forecasting in U.S. ISO/RTO markets, and offer recommendations for how to make efficient use of the information in state-of-the-art forecasts.

  2. Wind power forecasting in U.S. Electricity markets

    SciTech Connect (OSTI)

    Botterud, Audun; Wang, Jianhui; Miranda, Vladimiro; Bessa, Ricardo J.

    2010-04-15

    Wind power forecasting is becoming an important tool in electricity markets, but the use of these forecasts in market operations and among market participants is still at an early stage. The authors discuss the current use of wind power forecasting in U.S. ISO/RTO markets, and offer recommendations for how to make efficient use of the information in state-of-the-art forecasts. (author)

  3. The impact of forecasted energy price increases on low-income consumers

    SciTech Connect (OSTI)

    Eisenberg, Joel F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2005-10-31

    The Department of Energy’s Energy Information Administration (EIA) recently released its short term forecast for residential energy prices for the winter of 2005-2006. The forecast indicates significant increases in fuel costs, particularly for natural gas, propane, and home heating oil, for the year ahead. In the following analysis, the Oak Ridge National Laboratory has integrated the EIA price projections with the Residential Energy Consumption Survey (RECS) for 2001 in order to project the impact of these price increases on the nation’s low-income households by primary heating fuel type, nationally and by Census Region. The statistics are intended for the use of policymakers in the Department of Energy’s Weatherization Assistance Program and elsewhere who are trying to gauge the nature and severity of the problems that will be faced by eligible low-income households during the 2006 fiscal year.

  4. Managerial Career Concerns and Earnings Forecasts SARAH SHAIKH

    E-Print Network [OSTI]

    Tipple, Brett

    's aversion to risk, I find that a CEO is less likely to issue an earnings forecast in periods of stricter non is more pronounced for a CEO who has greater concern for his reputation, faces more risk in forecasting the provision of earnings forecasts. Literature has long recognized that the labor market provides distinct

  5. Forecasting Market Demand for New Telecommunications Services: An Introduction

    E-Print Network [OSTI]

    McBurney, Peter

    Forecasting Market Demand for New Telecommunications Services: An Introduction Peter Mc to redress this situation by presenting a discussion of the issues involved in demand forecasting for new or consultancy clients. KEYWORDS: Demand Forecasting, New Product Marketing, Telecommunica­ tions Services. 1 #12

  6. Neural Network forecasts of the tropical Pacific sea surface temperatures

    E-Print Network [OSTI]

    Hsieh, William

    Neural Network forecasts of the tropical Pacific sea surface temperatures Aiming Wu, William W Tang Jet Propulsion Laboratory, Pasadena, CA, USA Neural Networks (in press) December 11, 2005 title: Forecast of sea surface temperature 1 #12;Neural Network forecasts of the tropical Pacific sea

  7. Managing Wind Power Forecast Uncertainty in Electric Brandon Keith Mauch

    E-Print Network [OSTI]

    i Managing Wind Power Forecast Uncertainty in Electric Grids Brandon Keith Mauch Co Paulina Jaramillo Doctor Paul Fischbeck 2012 #12;ii #12;iii Managing Wind Power Forecast Uncertainty generated from wind power is both variable and uncertain. Wind forecasts provide valuable information

  8. Forecasting Uncertainty Related to Ramps of Wind Power Production

    E-Print Network [OSTI]

    Boyer, Edmond

    Forecasting Uncertainty Related to Ramps of Wind Power Production Arthur Bossavy, Robin Girard - The continuous improvement of the accuracy of wind power forecasts is motivated by the increasing wind power. This paper presents two methods focusing on forecasting large and sharp variations in power output of a wind

  9. SOLAR IRRADIANCE FORECASTING FOR THE MANAGEMENT OF SOLAR ENERGY SYSTEMS

    E-Print Network [OSTI]

    Heinemann, Detlev

    SOLAR IRRADIANCE FORECASTING FOR THE MANAGEMENT OF SOLAR ENERGY SYSTEMS Detlev Heinemann Oldenburg in irradiance forecasting have been presented more than twenty years ago (Jensenius and Cotton, 1981), when or progress with respect to the development of solar irradiance forecasting methods. Heck and Takle (1987

  10. Choosing Words in Computer-Generated Weather Forecasts

    E-Print Network [OSTI]

    Reiter, Ehud

    to communicate numeric weather data. A corpus-based analysis of how humans write forecasts showed that there wereTime- Mousam weather-forecast generator to use consistent data-to-word rules, which avoided words which were weather forecast texts from numerical weather pre- diction data (SumTime-Mousam in fact is used

  11. Probabilistic Wind Vector Forecasting Using Ensembles and Bayesian Model Averaging

    E-Print Network [OSTI]

    Raftery, Adrian

    Probabilistic Wind Vector Forecasting Using Ensembles and Bayesian Model Averaging J. MCLEAN 2011, in final form 26 May 2012) ABSTRACT Probabilistic forecasts of wind vectors are becoming critical with univariate quantities, statistical approaches to wind vector forecasting must be based on bivariate

  12. Accuracy of near real time updates in wind power forecasting

    E-Print Network [OSTI]

    Heinemann, Detlev

    Accuracy of near real time updates in wind power forecasting with regard to different weather October 2007 #12;EMS/ECAM 2007 ­ Nadja Saleck Outline · Study site · Wind power forecasting - method #12;EMS/ECAM 2007 ­ Nadja Saleck Wind power forecast data observed wind power input (2004 ­ 2006

  13. Probabilistic Wind Speed Forecasting Using Ensembles and Bayesian Model Averaging

    E-Print Network [OSTI]

    Raftery, Adrian

    Probabilistic Wind Speed Forecasting Using Ensembles and Bayesian Model Averaging J. Mc in the context of wind power, where under- forecasting and overforecasting carry different financial penal- ties, calibrated and sharp probabilistic forecasts can help to make wind power a more financially competitive alter

  14. Forecasting Building Occupancy Using Sensor Network James Howard

    E-Print Network [OSTI]

    Hoff, William A.

    Forecasting Building Occupancy Using Sensor Network Data James Howard Colorado School of Mines@mines.edu ABSTRACT Forecasting the occupancy of buildings can lead to signif- icant improvement of smart heating throughout a building, we perform data mining to forecast occupancy a short time (i.e., up to 60 minutes

  15. Weather Forecasting -Predicting Performance for Streaming Video over Wireless LANs

    E-Print Network [OSTI]

    Claypool, Mark

    Weather Forecasting - Predicting Performance for Streaming Video over Wireless LANs Mingzhe Li, "weather forecasts" are created such that selected wireless LAN performance indicators might be used to evaluate the effec- tiveness of individual weather forecasts. The paper evaluates six distinct weather

  16. Weather Forecasting Predicting Performance for Streaming Video over Wireless LANs

    E-Print Network [OSTI]

    Claypool, Mark

    Weather Forecasting ­ Predicting Performance for Streaming Video over Wireless LANs Mingzhe Li, ``weather forecasts'' are created such that selected wireless LAN performance indicators might be used to evaluate the e#ec­ tiveness of individual weather forecasts. The paper evaluates six distinct weather

  17. AUTOMATION OF ENERGY DEMAND FORECASTING Sanzad Siddique, B.S.

    E-Print Network [OSTI]

    Povinelli, Richard J.

    AUTOMATION OF ENERGY DEMAND FORECASTING by Sanzad Siddique, B.S. A Thesis submitted to the Faculty OF ENERGY DEMAND FORECASTING Sanzad Siddique, B.S. Marquette University, 2013 Automation of energy demand of the energy demand forecasting are achieved by integrating nonlinear transformations within the models

  18. Preprints, 15th AMS Conference on Weather Analysis and Forecasting

    E-Print Network [OSTI]

    Doswell III, Charles A.

    ) models have substantially improved forecast skill. Recent and planned changes along these lines (e to delivering two kinds of weather products. The first is a day-to-day forecast of weather elements, e by the private sector. Improvements in automated techniques for the forecasting of basic weather elements

  19. Influences of soil moisture and vegetation on convective precipitation forecasts

    E-Print Network [OSTI]

    Robock, Alan

    Influences of soil moisture and vegetation on convective precipitation forecasts over the United and vegetation on 30 h convective precipitation forecasts using the Weather Research and Forecasting model over, the complete removal of vegetation produced substantially less precipitation, while conversion to forest led

  20. Advanced Numerical Weather Prediction Techniques for Solar Irradiance Forecasting : : Statistical, Data-Assimilation, and Ensemble Forecasting

    E-Print Network [OSTI]

    Mathiesen, Patrick James

    2013-01-01

    of Solar 2011, American Solar Energy Society, Raleigh, NC.Description and validation. Solar Energy, 73 (5), 307-317.forecast database. Solar Energy, Perez, R. , S. Kivalov, J.

  1. Online short-term solar power forecasting

    SciTech Connect (OSTI)

    Bacher, Peder; Madsen, Henrik [Informatics and Mathematical Modelling, Richard Pedersens Plads, Technical University of Denmark, Building 321, DK-2800 Lyngby (Denmark); Nielsen, Henrik Aalborg [ENFOR A/S, Lyngsoe Alle 3, DK-2970 Hoersholm (Denmark)

    2009-10-15

    This paper describes a new approach to online forecasting of power production from PV systems. The method is suited to online forecasting in many applications and in this paper it is used to predict hourly values of solar power for horizons of up to 36 h. The data used is 15-min observations of solar power from 21 PV systems located on rooftops in a small village in Denmark. The suggested method is a two-stage method where first a statistical normalization of the solar power is obtained using a clear sky model. The clear sky model is found using statistical smoothing techniques. Then forecasts of the normalized solar power are calculated using adaptive linear time series models. Both autoregressive (AR) and AR with exogenous input (ARX) models are evaluated, where the latter takes numerical weather predictions (NWPs) as input. The results indicate that for forecasts up to 2 h ahead the most important input is the available observations of solar power, while for longer horizons NWPs are the most important input. A root mean square error improvement of around 35% is achieved by the ARX model compared to a proposed reference model. (author)

  2. Issues in midterm analysis and forecasting, 1996

    SciTech Connect (OSTI)

    1996-08-01

    This document consists of papers which cover topics in analysis and modeling that underlie the Annual Energy Outlook 1996. Topics include: The Potential Impact of Technological Progress on U.S. Energy Markets; The Outlook for U.S. Import Dependence; Fuel Economy, Vehicle Choice, and Changing Demographics, and Annual Energy Outlook Forecast Evaluation.

  3. Forecasting Hot Water Consumption in Residential Houses

    E-Print Network [OSTI]

    MacDonald, Mark

    and technological advancement in energy-intensive applications are causing fast electric energy consumption growth and consumption of electricity [8], as long as there is no significant correlation between intermittent energyArticle Forecasting Hot Water Consumption in Residential Houses Linas Gelazanskas * and Kelum A

  4. GENETIC ALGORITHM FORECASTING FOR TELECOMMUNICATIONS PRODUCTS

    E-Print Network [OSTI]

    Havlicek, Joebob

    available economic indicators such as Disposable Personal Income and New Housing Starts as independent exhibiting maximal fitness achieved RMS forecast errors below the the average two-week sales figure. 1 (Holland, 1975), (Packard, 1990), (Koza, 1992), (Bäck, et al., 1997), (Mitchell, 1998). For example, Meyer

  5. GOES Aviation Products Aviation Weather Forecasting

    E-Print Network [OSTI]

    Kuligowski, Bob

    GOES Aviation Products · The GOES aviation forecast products are based on energy measured in different characteristics #12;GOES Aviation Products Quiz · What is a geostationary satellite? · What generates energy received by the satellite in the visible band? · What generates energy received by the satellite

  6. Solar Forecasting System and Irradiance Variability Characterization

    E-Print Network [OSTI]

    solar forecasting system based on numerical weather prediction plus satellite and ground-based data.1 Photovoltaic Systems: Report 3 Development of data base allowing managed access to statewide PV and insolation Based Data 13 Summary 14 References 14 #12;List of Figures Figure Number and Title Page # 1. Topography

  7. Segmenting Time Series for Weather Forecasting

    E-Print Network [OSTI]

    Reiter, Ehud

    summarisation. We found three alternative ways in which we could model data summarisation. One approach is based turbines. In the domain of meteorology, time series data produced by numerical weather prediction (NWP) models is summarised as weather forecast texts. In the domain of gas turbines, sensor data from

  8. "FLIGHT PLAN" FORECASTS SEATTLE/TACOMA AND

    E-Print Network [OSTI]

    ASSESSMENT OF THE "FLIGHT PLAN" FORECASTS FOR SEATTLE/TACOMA AND REGIONAL AIRPORTS TOGETHER 1. Introduction 5 2. Airport Planning Process 7 Traditional Master Planning Application to Seattle/Tacoma. Uncertainty about Capacity 27 A Fuzzy Concept Assessment Factors Application to Seattle/Tacoma 7. Assessment

  9. Forecast Technical Document Felling and Removals

    E-Print Network [OSTI]

    of local investment and business planning. Timber volume production will be estimated at sub. Planning of operations. Control of the growing stock. Wider reporting (under UKWAS). The calculation fellings and removals are handled in the 2011 Production Forecast system. Tom Jenkins Robert Matthews Ewan

  10. Forecasting Turbulent Modes with Nonparametric Diffusion Models

    E-Print Network [OSTI]

    Tyrus Berry; John Harlim

    2015-01-27

    This paper presents a nonparametric diffusion modeling approach for forecasting partially observed noisy turbulent modes. The proposed forecast model uses a basis of smooth functions (constructed with the diffusion maps algorithm) to represent probability densities, so that the forecast model becomes a linear map in this basis. We estimate this linear map by exploiting a previously established rigorous connection between the discrete time shift map and the semi-group solution associated to the backward Kolmogorov equation. In order to smooth the noisy data, we apply diffusion maps to a delay embedding of the noisy data, which also helps to account for the interactions between the observed and unobserved modes. We show that this delay embedding biases the geometry of the data in a way which extracts the most predictable component of the dynamics. The resulting model approximates the semigroup solutions of the generator of the underlying dynamics in the limit of large data and in the observation noise limit. We will show numerical examples on a wide-range of well-studied turbulent modes, including the Fourier modes of the energy conserving Truncated Burgers-Hopf (TBH) model, the Lorenz-96 model in weakly chaotic to fully turbulent regimes, and the barotropic modes of a quasi-geostrophic model with baroclinic instabilities. In these examples, forecasting skills of the nonparametric diffusion model are compared to a wide-range of stochastic parametric modeling approaches, which account for the nonlinear interactions between the observed and unobserved modes with white and colored noises.

  11. Stochastic Weather Generator Based Ensemble Streamflow Forecasting

    E-Print Network [OSTI]

    Stochastic Weather Generator Based Ensemble Streamflow Forecasting by Nina Marie Caraway B of Civil Engineering 2012 #12;This thesis entitled: Stochastic Weather Generator Based Ensemble Streamflow mentioned discipline. #12;iii Caraway, Nina Marie (M.S., Civil Engineering) Stochastic Weather Generator

  12. Nuclear Engineering and Design 236 (2006) 16411647 Basic factors to forecast maintenance cost and failure processes for

    E-Print Network [OSTI]

    Popova, Elmira

    2006-01-01

    Nuclear Engineering and Design 236 (2006) 1641­1647 Basic factors to forecast maintenance cost and failure processes for nuclear power plants Elmira Popovaa,, Wei Yub, Ernie Keec, Alice Sunc, Drew Project Nuclear Operating Company, P.O. Box 289, Wadsworth, TX 77483, USA Received 4 July 2005; received

  13. Characterization and Simulation of ECBM: History Matching of Forecasting CO2 Sequestration in Marshal County, West Virginia.

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    that is capable of matching the methane production history and forecast field potential capacity for CO2 injection characterization and simulation process focused on natural gas production and subsequent CO2 injection) are the subject of this pilot CO2 sequestration project. Methane is produced from both coal seams; however CO2

  14. A 110-Day Ensemble Forecasting Scheme for the Major River Basins of Bangladesh: Forecasting Severe Floods of 200307*

    E-Print Network [OSTI]

    Webster, Peter J.

    A 1­10-Day Ensemble Forecasting Scheme for the Major River Basins of Bangladesh: Forecasting Severe of the Brahmaputra and Ganges Rivers as they flow into Bangladesh; it has been operational since 2003. The Bangladesh points of the Ganges and Brahmaputra into Bangladesh. Forecasts with 1­10-day horizons are presented

  15. Operational forecasting based on a modified Weather Research and Forecasting model

    SciTech Connect (OSTI)

    Lundquist, J; Glascoe, L; Obrecht, J

    2010-03-18

    Accurate short-term forecasts of wind resources are required for efficient wind farm operation and ultimately for the integration of large amounts of wind-generated power into electrical grids. Siemens Energy Inc. and Lawrence Livermore National Laboratory, with the University of Colorado at Boulder, are collaborating on the design of an operational forecasting system for large wind farms. The basis of the system is the numerical weather prediction tool, the Weather Research and Forecasting (WRF) model; large-eddy simulations and data assimilation approaches are used to refine and tailor the forecasting system. Representation of the atmospheric boundary layer is modified, based on high-resolution large-eddy simulations of the atmospheric boundary. These large-eddy simulations incorporate wake effects from upwind turbines on downwind turbines as well as represent complex atmospheric variability due to complex terrain and surface features as well as atmospheric stability. Real-time hub-height wind speed and other meteorological data streams from existing wind farms are incorporated into the modeling system to enable uncertainty quantification through probabilistic forecasts. A companion investigation has identified optimal boundary-layer physics options for low-level forecasts in complex terrain, toward employing decadal WRF simulations to anticipate large-scale changes in wind resource availability due to global climate change.

  16. Short Mountain Landfill Gas Recovery Project : Stage 1 Environmental Assessment.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    1992-05-01

    The Bonneville Power Administration (BPA), a Federal power marketing agency, has statutory responsibilities to supply electrical power to its utility, industrial, and other customers in the Pacific Northwest. BPA`s latest load/resource balance forecast, projects the capability of existing resources to satisfy projected Federal system loads. The forecast indicates a potential resource deficit. The underlying need for action is to satisfy BPA customers` demand for electrical power.

  17. Forecastability as a Design Criterion in Wind Resource Assessment: Preprint

    SciTech Connect (OSTI)

    Zhang, J.; Hodge, B. M.

    2014-04-01

    This paper proposes a methodology to include the wind power forecasting ability, or 'forecastability,' of a site as a design criterion in wind resource assessment and wind power plant design stages. The Unrestricted Wind Farm Layout Optimization (UWFLO) methodology is adopted to maximize the capacity factor of a wind power plant. The 1-hour-ahead persistence wind power forecasting method is used to characterize the forecastability of a potential wind power plant, thereby partially quantifying the integration cost. A trade-off between the maximum capacity factor and the forecastability is investigated.

  18. Short-term energy outlook. Quarterly projections, Third quarter 1995

    SciTech Connect (OSTI)

    NONE

    1995-08-02

    The Energy Information Administration (EIA) prepares quarterly, short-term energy supply, demand, and price projections for publication in February, May, August, and November in the Short-Term Energy Outlook (Outlook). An annual supplement analyzes the performance of previous forecasts, compares recent projections with those of other forecasting services, and discusses current topics related to the short-term energy markets. The forecast period for this issue of the Outlook extends from the third quarter of 1995 through the fourth quarter of 1996. Values for the second quarter of 1995, however, are preliminary EIA estimates.

  19. Combinatorial Evolution and Forecasting of Communication Protocol ZigBee

    E-Print Network [OSTI]

    Levin, Mark Sh; Kistler, Rolf; Klapproth, Alexander

    2012-01-01

    The article addresses combinatorial evolution and forecasting of communication protocol for wireless sensor networks (ZigBee). Morphological tree structure (a version of and-or tree) is used as a hierarchical model for the protocol. Three generations of ZigBee protocol are examined. A set of protocol change operations is generated and described. The change operations are used as items for forecasting based on combinatorial problems (e.g., clustering, knapsack problem, multiple choice knapsack problem). Two kinds of preliminary forecasts for the examined communication protocol are considered: (i) direct expert (expert judgment) based forecast, (ii) computation of the forecast(s) (usage of multicriteria decision making and combinatorial optimization problems). Finally, aggregation of the obtained preliminary forecasts is considered (two aggregation strategies are used).

  20. ISSN 1670-8539 M.Sc. PROJECT REPORT

    E-Print Network [OSTI]

    Karlsson, Brynjar

    ISSN 1670-8539 M.Sc. PROJECT REPORT Þór Sigurðsson Master of Science Computer Science May 2011 ENSEMBLE FORECASTS #12;#12;Project Report Committee: Ari Kristinn Jónsson, Supervisor Rector, Reykjavik, Reykjavik University Project report submitted to the School of Computer Science at Reykjavík University

  1. Forecasting hotspots using predictive visual analytics approach

    DOE Patents [OSTI]

    Maciejewski, Ross; Hafen, Ryan; Rudolph, Stephen; Cleveland, William; Ebert, David

    2014-12-30

    A method for forecasting hotspots is provided. The method may include the steps of receiving input data at an input of the computational device, generating a temporal prediction based on the input data, generating a geospatial prediction based on the input data, and generating output data based on the time series and geospatial predictions. The output data may be configured to display at least one user interface at an output of the computational device.

  2. Two techniques for forecasting clear air turbulence 

    E-Print Network [OSTI]

    Arbeiter, Randolph George

    1977-01-01

    result in only mild annoyance or discomfort (air sickness) to crew and passengers. As it becomes moderate, difficulty may be experienced in moving about inside the airplane and the crew may momentarily lose control. Severe CAT can result in injury... successfully used by the Air Force Clobal Heather Central (Barnett, 1970) for oper" tional forecasting on a day-to-day basis. Furthermore, its usefulness 1' or supersonic aircraft in the stratosphere v;as successfully demonstrated by Scoggins et H. (1975...

  3. Baseline and Target Values for PV Forecasts: Toward Improved Solar Power Forecasting: Preprint

    SciTech Connect (OSTI)

    Zhang, Jie; Hodge, Bri-Mathias; Lu, Siyuan; Hamann, Hendrik F.; Lehman, Brad; Simmons, Joseph; Campos, Edwin; Banunarayanan, Venkat

    2015-08-05

    Accurate solar power forecasting allows utilities to get the most out of the solar resources on their systems. To truly measure the improvements that any new solar forecasting methods can provide, it is important to first develop (or determine) baseline and target solar forecasting at different spatial and temporal scales. This paper aims to develop baseline and target values for solar forecasting metrics. These were informed by close collaboration with utility and independent system operator partners. The baseline values are established based on state-of-the-art numerical weather prediction models and persistence models. The target values are determined based on the reduction in the amount of reserves that must be held to accommodate the uncertainty of solar power output. forecasting metrics. These were informed by close collaboration with utility and independent system operator partners. The baseline values are established based on state-of-the-art numerical weather prediction models and persistence models. The target values are determined based on the reduction in the amount of reserves that must be held to accommodate the uncertainty of solar power output.

  4. Solar Wind Forecasting with Coronal Holes

    E-Print Network [OSTI]

    S. Robbins; C. J. Henney; J. W. Harvey

    2007-01-09

    An empirical model for forecasting solar wind speed related geomagnetic events is presented here. The model is based on the estimated location and size of solar coronal holes. This method differs from models that are based on photospheric magnetograms (e.g., Wang-Sheeley model) to estimate the open field line configuration. Rather than requiring the use of a full magnetic synoptic map, the method presented here can be used to forecast solar wind velocities and magnetic polarity from a single coronal hole image, along with a single magnetic full-disk image. The coronal hole parameters used in this study are estimated with Kitt Peak Vacuum Telescope He I 1083 nm spectrograms and photospheric magnetograms. Solar wind and coronal hole data for the period between May 1992 and September 2003 are investigated. The new model is found to be accurate to within 10% of observed solar wind measurements for its best one-month periods, and it has a linear correlation coefficient of ~0.38 for the full 11 years studied. Using a single estimated coronal hole map, the model can forecast the Earth directed solar wind velocity up to 8.5 days in advance. In addition, this method can be used with any source of coronal hole area and location data.

  5. A survey on wind power ramp forecasting.

    SciTech Connect (OSTI)

    Ferreira, C.; Gama, J.; Matias, L.; Botterud, A.; Wang, J.

    2011-02-23

    The increasing use of wind power as a source of electricity poses new challenges with regard to both power production and load balance in the electricity grid. This new source of energy is volatile and highly variable. The only way to integrate such power into the grid is to develop reliable and accurate wind power forecasting systems. Electricity generated from wind power can be highly variable at several different timescales: sub-hourly, hourly, daily, and seasonally. Wind energy, like other electricity sources, must be scheduled. Although wind power forecasting methods are used, the ability to predict wind plant output remains relatively low for short-term operation. Because instantaneous electrical generation and consumption must remain in balance to maintain grid stability, wind power's variability can present substantial challenges when large amounts of wind power are incorporated into a grid system. A critical issue is ramp events, which are sudden and large changes (increases or decreases) in wind power. This report presents an overview of current ramp definitions and state-of-the-art approaches in ramp event forecasting.

  6. Global disease monitoring and forecasting with Wikipedia

    SciTech Connect (OSTI)

    Generous, Nicholas; Fairchild, Geoffrey; Deshpande, Alina; Del Valle, Sara Y.; Priedhorsky, Reid; Salathé, Marcel

    2014-11-13

    Infectious disease is a leading threat to public health, economic stability, and other key social structures. Efforts to mitigate these impacts depend on accurate and timely monitoring to measure the risk and progress of disease. Traditional, biologically-focused monitoring techniques are accurate but costly and slow; in response, new techniques based on social internet data, such as social media and search queries, are emerging. These efforts are promising, but important challenges in the areas of scientific peer review, breadth of diseases and countries, and forecasting hamper their operational usefulness. We examine a freely available, open data source for this use: access logs from the online encyclopedia Wikipedia. Using linear models, language as a proxy for location, and a systematic yet simple article selection procedure, we tested 14 location-disease combinations and demonstrate that these data feasibly support an approach that overcomes these challenges. Specifically, our proof-of-concept yields models with up to 0.92, forecasting value up to the 28 days tested, and several pairs of models similar enough to suggest that transferring models from one location to another without re-training is feasible. Based on these preliminary results, we close with a research agenda designed to overcome these challenges and produce a disease monitoring and forecasting system that is significantly more effective, robust, and globally comprehensive than the current state of the art.

  7. Global disease monitoring and forecasting with Wikipedia

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Generous, Nicholas; Fairchild, Geoffrey; Deshpande, Alina; Del Valle, Sara Y.; Priedhorsky, Reid; Salathé, Marcel

    2014-11-13

    Infectious disease is a leading threat to public health, economic stability, and other key social structures. Efforts to mitigate these impacts depend on accurate and timely monitoring to measure the risk and progress of disease. Traditional, biologically-focused monitoring techniques are accurate but costly and slow; in response, new techniques based on social internet data, such as social media and search queries, are emerging. These efforts are promising, but important challenges in the areas of scientific peer review, breadth of diseases and countries, and forecasting hamper their operational usefulness. We examine a freely available, open data source for this use: accessmore »logs from the online encyclopedia Wikipedia. Using linear models, language as a proxy for location, and a systematic yet simple article selection procedure, we tested 14 location-disease combinations and demonstrate that these data feasibly support an approach that overcomes these challenges. Specifically, our proof-of-concept yields models with up to 0.92, forecasting value up to the 28 days tested, and several pairs of models similar enough to suggest that transferring models from one location to another without re-training is feasible. Based on these preliminary results, we close with a research agenda designed to overcome these challenges and produce a disease monitoring and forecasting system that is significantly more effective, robust, and globally comprehensive than the current state of the art.« less

  8. Metrics for Evaluating the Accuracy of Solar Power Forecasting: Preprint

    SciTech Connect (OSTI)

    Zhang, J.; Hodge, B. M.; Florita, A.; Lu, S.; Hamann, H. F.; Banunarayanan, V.

    2013-10-01

    Forecasting solar energy generation is a challenging task due to the variety of solar power systems and weather regimes encountered. Forecast inaccuracies can result in substantial economic losses and power system reliability issues. This paper presents a suite of generally applicable and value-based metrics for solar forecasting for a comprehensive set of scenarios (i.e., different time horizons, geographic locations, applications, etc.). In addition, a comprehensive framework is developed to analyze the sensitivity of the proposed metrics to three types of solar forecasting improvements using a design of experiments methodology, in conjunction with response surface and sensitivity analysis methods. The results show that the developed metrics can efficiently evaluate the quality of solar forecasts, and assess the economic and reliability impact of improved solar forecasting.

  9. The Commission Forecast 1992 Report: Important Resource Planning Issues 

    E-Print Network [OSTI]

    Adib, P.

    1992-01-01

    FORECAST 1992 REPORT: IMPORTANT RESOURCE PLANNING ISSUES PARVIZ ADIB MANAGER, ECONOMIC ANALYSIS SECTION ELECTRIC DIVISION PUBLIC UTILITY COMMISSION OF TEXAS ABSTRACT There is a general agreement among experts in the electric utility industry... there are many important issues in the preparation of a utility's electric resource plan, the Commission staff will address a few important ones in the next Commission Forecast Report (Forecast '92). In particular, the Commission staff will insure...

  10. Wind Power Forecasting Error Distributions: An International Comparison; Preprint

    SciTech Connect (OSTI)

    Hodge, B. M.; Lew, D.; Milligan, M.; Holttinen, H.; Sillanpaa, S.; Gomez-Lazaro, E.; Scharff, R.; Soder, L.; Larsen, X. G.; Giebel, G.; Flynn, D.; Dobschinski, J.

    2012-09-01

    Wind power forecasting is expected to be an important enabler for greater penetration of wind power into electricity systems. Because no wind forecasting system is perfect, a thorough understanding of the errors that do occur can be critical to system operation functions, such as the setting of operating reserve levels. This paper provides an international comparison of the distribution of wind power forecasting errors from operational systems, based on real forecast data. The paper concludes with an assessment of similarities and differences between the errors observed in different locations.

  11. The Rationality of EIA Forecasts under Symmetric and Asymmetric Loss

    E-Print Network [OSTI]

    Auffhammer, Maximilian

    2005-01-01

    function. The forecasts of oil, coal and gas prices as wellforecasts for natural gas consumption, electricity sales, coal and electricity prices,

  12. Forecasting Dangerous Inmate Misconduct: An Applications of Ensemble Statistical Procedures

    E-Print Network [OSTI]

    Richard A. Berk; Brian Kriegler; Jong-Ho Baek

    2011-01-01

    Forecasting Dangerous Inmate Misconduct: An Applications ofof Term Length more dangerous than other inmates servingIV beds or moving less dangerous Level IV inmates to Level

  13. Forecasting Dangerous Inmate Misconduct: An Applications of Ensemble Statistical Procedures

    E-Print Network [OSTI]

    Berk, Richard; Kriegler, Brian; Baek, Jong-Ho

    2005-01-01

    Forecasting Dangerous Inmate Misconduct: An Applications ofof Term Length more dangerous than other inmates servingIV beds or moving less dangerous Level IV inmates to Level

  14. Electric Grid - Forecasting system licensed | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electric Grid - Forecasting system licensed Location Based Technologies has signed an agreement to integrate and market an Oak Ridge National Laboratory technology that provides...

  15. Ramping Effect on Forecast Use: Integrated Ramping (Presentation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the shift from ramping. * the benefits - better use of forecast values (load or net load) - reduce the amount of variability that the regulation reserve must accommodate...

  16. Ensemble Solar Forecasting Statistical Quantification and Sensitivity Analysis: Preprint

    SciTech Connect (OSTI)

    Cheung, WanYin; Zhang, Jie; Florita, Anthony; Hodge, Bri-Mathias; Lu, Siyuan; Hamann, Hendrik F.; Sun, Qian; Lehman, Brad

    2015-12-08

    Uncertainties associated with solar forecasts present challenges to maintain grid reliability, especially at high solar penetrations. This study aims to quantify the errors associated with the day-ahead solar forecast parameters and the theoretical solar power output for a 51-kW solar power plant in a utility area in the state of Vermont, U.S. Forecasts were generated by three numerical weather prediction (NWP) models, including the Rapid Refresh, the High Resolution Rapid Refresh, and the North American Model, and a machine-learning ensemble model. A photovoltaic (PV) performance model was adopted to calculate theoretical solar power generation using the forecast parameters (e.g., irradiance, cell temperature, and wind speed). Errors of the power outputs were quantified using statistical moments and a suite of metrics, such as the normalized root mean squared error (NRMSE). In addition, the PV model's sensitivity to different forecast parameters was quantified and analyzed. Results showed that the ensemble model yielded forecasts in all parameters with the smallest NRMSE. The NRMSE of solar irradiance forecasts of the ensemble NWP model was reduced by 28.10% compared to the best of the three NWP models. Further, the sensitivity analysis indicated that the errors of the forecasted cell temperature attributed only approximately 0.12% to the NRMSE of the power output as opposed to 7.44% from the forecasted solar irradiance.

  17. Weather-based yield forecasts developed for 12 California crops

    E-Print Network [OSTI]

    Lobell, David; Cahill, Kimberly Nicholas; Field, Christopher

    2006-01-01

    RESEARCH ARTICLE Weather-based yield forecasts developed fordepend largely on the weather, measurements from existingpredictions. We developed weather-based models of statewide

  18. Nuclear Theory Helps Forecast Neutron Star Temperatures | U.S...

    Office of Science (SC) Website

    Nuclear Theory Helps Forecast Neutron Star Temperatures Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Funding Opportunities Nuclear...

  19. EIA lowers forecast for summer gasoline prices

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural GasNatural GasEIA lowers forecast for summer gasoline prices

  20. Motivation Methods Model configuration Results Forecasting Summary & Outlook Retrieving direct and diffuse radiation with the

    E-Print Network [OSTI]

    Heinemann, Detlev

    Motivation Methods Model configuration Results Forecasting Summary & Outlook 1/ 14 Retrieving. 17, 2015 #12;Motivation Methods Model configuration Results Forecasting Summary & Outlook 2/ 14 Motivation Sky Imager based shortest-term solar irradiance forecasts for local solar energy applications

  1. ECMWF analyses and forecasts of 500 mb synoptic-scale activity during wintertime blocking 

    E-Print Network [OSTI]

    Matson, David Michael

    1993-01-01

    An observational study of 500 mb atmospheric blocking is conducted based on an European Centre for Medium-Range Weather Forecasts (ECMWF) wintertime analysis and forecast dataset during dynamic extended range forecasting ...

  2. Comparison of AEO 2005 natural gas price forecast to NYMEX futures prices

    E-Print Network [OSTI]

    Bolinger, Mark; Wiser, Ryan

    2004-01-01

    revisions to the EIA’s natural gas price forecasts in AEOsolely on the AEO 2005 natural gas price forecasts willComparison of AEO 2005 Natural Gas Price Forecast to NYMEX

  3. Comparison of AEO 2010 Natural Gas Price Forecast to NYMEX Futures Prices

    E-Print Network [OSTI]

    Bolinger, Mark A.

    2010-01-01

    to estimate the base-case natural gas price forecast, but toComparison of AEO 2010 Natural Gas Price Forecast to NYMEXs reference-case long-term natural gas price forecasts from

  4. Reducing the demand forecast error due to the bullwhip effect in the computer processor industry

    E-Print Network [OSTI]

    Smith, Emily (Emily C.)

    2010-01-01

    Intel's current demand-forecasting processes rely on customers' demand forecasts. Customers do not revise demand forecasts as demand decreases until the last minute. Intel's current demand models provide little guidance ...

  5. Comparison of AEO 2005 natural gas price forecast to NYMEX futures prices

    E-Print Network [OSTI]

    Bolinger, Mark; Wiser, Ryan

    2004-01-01

    revisions to the EIA’s natural gas price forecasts in AEOon the AEO 2005 natural gas price forecasts will likely onceComparison of AEO 2005 Natural Gas Price Forecast to NYMEX

  6. Comparison of AEO 2010 Natural Gas Price Forecast to NYMEX Futures Prices

    E-Print Network [OSTI]

    Bolinger, Mark A.

    2010-01-01

    to estimate the base-case natural gas price forecast, but toComparison of AEO 2010 Natural Gas Price Forecast to NYMEXcase long-term natural gas price forecasts from the AEO

  7. HOW ACCURATE ARE WEATHER MODELS IN ASSISTING AVALANCHE FORECASTERS? M. Schirmer, B. Jamieson

    E-Print Network [OSTI]

    Jamieson, Bruce

    HOW ACCURATE ARE WEATHER MODELS IN ASSISTING AVALANCHE FORECASTERS? M. Schirmer, B. Jamieson and decision makers strongly rely on Numerical Weather Prediction (NWP) models, for example on the forecasted on forecasted precipitation. KEYWORDS: Numerical weather prediction models, validation, precipitation 1

  8. Revised 1997 Retail Electricity Price Forecast Principal Author: Ben Arikawa

    E-Print Network [OSTI]

    Revised 1997 Retail Electricity Price Forecast March 1998 Principal Author: Ben Arikawa Electricity 1997 FORE08.DOC Page 1 CALIFORNIA ENERGY COMMISSION ELECTRICITY ANALYSIS OFFICE REVISED 1997 RETAIL ELECTRICITY PRICE FORECAST Introduction The Electricity Analysis Office of the California Energy Commission

  9. Using Neural Networks to Forecast Stock Market Prices Ramon Lawrence

    E-Print Network [OSTI]

    Lawrence, Ramon

    Using Neural Networks to Forecast Stock Market Prices Ramon Lawrence Department of Computer Science on the application of neural networks in forecasting stock market prices. With their ability to discover patterns in nonlinear and chaotic systems, neural networks offer the ability to predict market directions more

  10. Impact of PV forecasts uncertainty in batteries management in microgrids

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Impact of PV forecasts uncertainty in batteries management in microgrids Andrea Michiorri Arthur-based battery schedule optimisation in microgrids in presence of network constraints. We examine a specific case production forecast algorithm is used in combination with a battery schedule optimisation algorithm. The size

  11. Forecasting Hot Water Consumption in Dwellings Using Artifitial Neural Networks

    E-Print Network [OSTI]

    MacDonald, Mark

    electricity consumption in time. This paper investigates the ability on Artificial Neural Networks to predict shift electric energy. Keywords--Hot Water Consumption; Forecasting; Artifitial Neural Networks; SmartForecasting Hot Water Consumption in Dwellings Using Artifitial Neural Networks Linas Gelazanskas

  12. Draft for Public Comment Appendix A. Demand Forecast

    E-Print Network [OSTI]

    in the forecast of electricity consumption for those years has been less than one half of a percent. Figure A-1 forecast of electricity demand is a required component of the Council's Northwest Regional Conservation and Electric Power Plan.1 Understanding growth in electricity demand is, of course, crucial to determining

  13. TRANSPORTATION ENERGY FORECASTS FOR THE 2007 INTEGRATED ENERGY

    E-Print Network [OSTI]

    of transportation fuel and crude oil import requirements. The transportation energy demand forecasts make. The transportation fuel and crude oil import requirement assessments build on assumptions about California crude oil forecasts, transportation energy, gasoline, diesel, jet fuel, crude oil production, fuel imports, crude oil

  14. A Deep Hybrid Model for Weather Forecasting Aditya Grover

    E-Print Network [OSTI]

    Horvitz, Eric

    @microsoft.com ABSTRACT Weather forecasting is a canonical predictive challenge that has depended primarily on model-based methods. We ex- plore new directions with forecasting weather as a data- intensive challenge that involves the joint statistics of a set of weather-related vari- ables. We show how the base model can be enhanced

  15. Hydrological Forecasting Improvements Primary Investigator: Thomas Croley -NOAA GLERL (Emeritus)

    E-Print Network [OSTI]

    multiple data streams in a near-real-time manner and incorporate them into the AHPS data base, run for matching weather forecasts with historical data, and prepare extensive forecasts of hydrology probabilities maximum use of all available information and be based on efficient and true hydrological process models

  16. DEEP COMPREHENSION, GENERATION AND TRANSLATION OF WEATHER FORECASTS (WEATHRA)

    E-Print Network [OSTI]

    in a data base and graphic representation with tile standard meteorological icons on a map, e.g. iconsDEEP COMPREHENSION, GENERATION AND TRANSLATION OF WEATHER FORECASTS (WEATHRA) by BENGT SIGURD, Sweden E-mail: linglund@gemini.ldc.lu.se FAX:46-(0)46 104210 Introduction and abstract Weather forecasts

  17. Scenario Generation for Price Forecasting in Restructured Wholesale Power Markets

    E-Print Network [OSTI]

    Tesfatsion, Leigh

    markets could aid in the design of appropriate price forecasting tools for such markets. Scenario1 Scenario Generation for Price Forecasting in Restructured Wholesale Power Markets Qun Zhou, restructured wholesale power markets, scenario generation, ARMA model, moment-matching method I. INTRODUCTION

  18. Probabilistic forecasting of solar flares from vector magnetogram data

    E-Print Network [OSTI]

    Barnes, Graham

    Probabilistic forecasting of solar flares from vector magnetogram data G. Barnes,1 K. D. Leka,1 E to solar flare forecasting, adapted to provide the probability that a measurement belongs to either group, the groups in this case being solar active regions which produced a flare within 24 hours and those

  19. Viability, Development, and Reliability Assessment of Coupled Coastal Forecasting Systems 

    E-Print Network [OSTI]

    Singhal, Gaurav

    2012-10-19

    Real-time wave forecasts are critical to a variety of coastal and offshore opera- tions. NOAA’s global wave forecasts, at present, do not extend into many coastal regions of interest. Even after more than two decades of the historical Exxon Valdez...

  20. Human Trajectory Forecasting In Indoor Environments Using Geometric Context

    E-Print Network [OSTI]

    . In addressing this problem, we have built a model to estimate the occupancy behavior of humans based enhancement in the accuracy of trajectory forecasting by incorporating the occupancy behavior model. Keywords Trajectory forecasting, human occupancy behavior, 3D ge- ometric context 1. INTRODUCTION Given a human

  1. CALIFORNIA ENERGY DEMAND 2008-2018 STAFF REVISED FORECAST

    E-Print Network [OSTI]

    . Mitch Tian prepared the peak demand forecast. Ted Dang prepared the historic energy consumption data Office. Andrea Gough ran the summary energy model and supervised data preparation. Glen Sharp prepared models. Both the staff revised energy consumption and peak forecasts are slightly higher than

  2. Calibrated Probabilistic Forecasting at the Stateline Wind Energy Center

    E-Print Network [OSTI]

    Washington at Seattle, University of

    Calibrated Probabilistic Forecasting at the Stateline Wind Energy Center: The Regime at wind energy sites are becoming paramount. Regime-switching space-time (RST) models merge meteorological forecast regimes at the wind energy site and fits a conditional predictive model for each regime

  3. MAINTENANCE, UPGRADE AND VERIFICATION OF OPERATIONAL FORECASTS OF

    E-Print Network [OSTI]

    MAINTENANCE, UPGRADE AND VERIFICATION OF OPERATIONAL FORECASTS OF CLOUD COVER AND WATER VAPOUR Purchase Order 58311/ODG/99/8362/GWI/LET #12;i PREFACE Starting in August 1998, operational forecasts satellite imagery from the Co-operative Institute for Research in the Atmosphere (CIRA) and upper

  4. Adaptive Energy Forecasting and Information Diffusion for Smart Power Grids

    E-Print Network [OSTI]

    Hwang, Kai

    1 Adaptive Energy Forecasting and Information Diffusion for Smart Power Grids Yogesh Simmhan. One of the characteristic applications of Smart Grids is demand response optimization (DR). The goal of DR is to use the power consumption time series data to reliable forecast the future consumption

  5. Airplanes Aloft as a Sensor Network for Wind Forecasting

    E-Print Network [OSTI]

    Horvitz, Eric

    Airplanes Aloft as a Sensor Network for Wind Forecasting Ashish Kapoor, Zachary Horvitz, Spencer for observing weather phenomena at a continental scale. We focus specifically on the problem of wind forecasting with the sensed winds. The experiments show the promise of using airplane in flight as a large-scale sensor

  6. Classification of Commodity Price Forecast With Random Forests and Bayesian

    E-Print Network [OSTI]

    Freitas, Nando de

    on the sentiment of price39 forecasts and reports for commodities such as gold, natural gas or most commonly oil or natural gas can impact everything from the21 critical business decisions made within nationsClassification of Commodity Price Forecast Sentiment With Random Forests and Bayesian Optimization

  7. Solar irradiance forecasting at multiple time horizons and novel methods to evaluate uncertainty

    E-Print Network [OSTI]

    Marquez, Ricardo

    2012-01-01

    114 Solar Irradiance And Power Output Variabilityand L. Bangyin. Online 24-h solar power forecasting based onNielsen. Online short-term solar power forecasting. Solar

  8. A high-resolution, cloud-assimilating numerical weather prediction model for solar irradiance forecasting

    E-Print Network [OSTI]

    Mathiesen, Patrick; Collier, Craig; Kleissl, Jan

    2013-01-01

    of numerical weather prediction solar irradiance forecasts numerical weather prediction model for solar irradiance weather prediction for intra?day solar  forecasting in the 

  9. Building Electricity Load Forecasting via Stacking Ensemble Learning Method with Moving Horizon Optimization

    E-Print Network [OSTI]

    Burger, Eric M.; Moura, Scott J.

    2015-01-01

    K. W. Yau, “Predicting electricity energy con- sumption: Afor building-level electricity load forecasts,” Energy andannealing algorithms in electricity load forecasting,”

  10. Sixth Northwest Conservation and Electric Power Plan Appendix A: Fuel Price Forecast

    E-Print Network [OSTI]

    Sixth Northwest Conservation and Electric Power Plan Appendix A: Fuel Price Forecast Introduction................................................................................................................................. 3 Price Forecasts ............................................................................................................................ 5 U.S. Natural Gas Commodity Prices

  11. Uncertainty Reduction in Power Generation Forecast Using Coupled Wavelet-ARIMA

    SciTech Connect (OSTI)

    Hou, Zhangshuan; Etingov, Pavel V.; Makarov, Yuri V.; Samaan, Nader A.

    2014-10-27

    In this paper, we introduce a new approach without implying normal distributions and stationarity of power generation forecast errors. In addition, it is desired to more accurately quantify the forecast uncertainty by reducing prediction intervals of forecasts. We use automatically coupled wavelet transform and autoregressive integrated moving-average (ARIMA) forecasting to reflect multi-scale variability of forecast errors. The proposed analysis reveals slow-changing “quasi-deterministic” components of forecast errors. This helps improve forecasts produced by other means, e.g., using weather-based models, and reduce forecast errors prediction intervals.

  12. Comparison of AEO 2009 Natural Gas Price Forecast to NYMEX Futures Prices

    E-Print Network [OSTI]

    Bolinger, Mark

    2009-01-01

    Comparison of AEO 2009 Natural Gas Price Forecast to NYMEXcase long-term natural gas price forecasts from theto contemporaneous natural gas prices that can be locked in

  13. Comparison of AEO 2008 Natural Gas Price Forecast to NYMEX Futures Prices

    E-Print Network [OSTI]

    Bolinger, Mark

    2008-01-01

    Comparison of AEO 2008 Natural Gas Price Forecast to NYMEXcase long-term natural gas price forecasts from theto contemporaneous natural gas prices that can be locked in

  14. Comparison of AEO 2006 Natural Gas Price Forecast to NYMEX Futures Prices

    E-Print Network [OSTI]

    Bolinger, Mark; Wiser, Ryan

    2005-01-01

    Comparison of AEO 2006 Natural Gas Price Forecast to NYMEXcase long-term natural gas price forecasts from theto contemporaneous natural gas prices that can be locked in

  15. Comparison of AEO 2007 Natural Gas Price Forecast to NYMEX Futures Prices

    E-Print Network [OSTI]

    Bolinger, Mark; Wiser, Ryan

    2006-01-01

    Comparison of AEO 2007 Natural Gas Price Forecast to NYMEXcase long-term natural gas price forecasts from theto contemporaneous natural gas prices that can be locked in

  16. Evaluation of numerical weather prediction for intra-day solar forecasting in the continental United States

    E-Print Network [OSTI]

    Mathiesen, Patrick; Kleissl, Jan

    2011-01-01

    to  predict daily solar radiation.   Agriculture and Forest and Chuo, S.   2008.  Solar radiation forecasting using Short?term forecasting of solar radiation:   A statistical 

  17. Wind Energy Forecasting: A Collaboration of the National Center for Atmospheric Research (NCAR) and Xcel Energy

    SciTech Connect (OSTI)

    Parks, K.; Wan, Y. H.; Wiener, G.; Liu, Y.

    2011-10-01

    The focus of this report is the wind forecasting system developed during this contract period with results of performance through the end of 2010. The report is intentionally high-level, with technical details disseminated at various conferences and academic papers. At the end of 2010, Xcel Energy managed the output of 3372 megawatts of installed wind energy. The wind plants span three operating companies1, serving customers in eight states2, and three market structures3. The great majority of the wind energy is contracted through power purchase agreements (PPAs). The remainder is utility owned, Qualifying Facilities (QF), distributed resources (i.e., 'behind the meter'), or merchant entities within Xcel Energy's Balancing Authority footprints. Regardless of the contractual or ownership arrangements, the output of the wind energy is balanced by Xcel Energy's generation resources that include fossil, nuclear, and hydro based facilities that are owned or contracted via PPAs. These facilities are committed and dispatched or bid into day-ahead and real-time markets by Xcel Energy's Commercial Operations department. Wind energy complicates the short and long-term planning goals of least-cost, reliable operations. Due to the uncertainty of wind energy production, inherent suboptimal commitment and dispatch associated with imperfect wind forecasts drives up costs. For example, a gas combined cycle unit may be turned on, or committed, in anticipation of low winds. The reality is winds stayed high, forcing this unit and others to run, or be dispatched, to sub-optimal loading positions. In addition, commitment decisions are frequently irreversible due to minimum up and down time constraints. That is, a dispatcher lives with inefficient decisions made in prior periods. In general, uncertainty contributes to conservative operations - committing more units and keeping them on longer than may have been necessary for purposes of maintaining reliability. The downside is costs are higher. In organized electricity markets, units that are committed for reliability reasons are paid their offer price even when prevailing market prices are lower. Often, these uplift charges are allocated to market participants that caused the inefficient dispatch in the first place. Thus, wind energy facilities are burdened with their share of costs proportional to their forecast errors. For Xcel Energy, wind energy uncertainty costs manifest depending on specific market structures. In the Public Service of Colorado (PSCo), inefficient commitment and dispatch caused by wind uncertainty increases fuel costs. Wind resources participating in the Midwest Independent System Operator (MISO) footprint make substantial payments in the real-time markets to true-up their day-ahead positions and are additionally burdened with deviation charges called a Revenue Sufficiency Guarantee (RSG) to cover out of market costs associated with operations. Southwest Public Service (SPS) wind plants cause both commitment inefficiencies and are charged Southwest Power Pool (SPP) imbalance payments due to wind uncertainty and variability. Wind energy forecasting helps mitigate these costs. Wind integration studies for the PSCo and Northern States Power (NSP) operating companies have projected increasing costs as more wind is installed on the system due to forecast error. It follows that reducing forecast error would reduce these costs. This is echoed by large scale studies in neighboring regions and states that have recommended adoption of state-of-the-art wind forecasting tools in day-ahead and real-time planning and operations. Further, Xcel Energy concluded reduction of the normalized mean absolute error by one percent would have reduced costs in 2008 by over $1 million annually in PSCo alone. The value of reducing forecast error prompted Xcel Energy to make substantial investments in wind energy forecasting research and development.

  18. Comparison of Wind Power and Load Forecasting Error Distributions: Preprint

    SciTech Connect (OSTI)

    Hodge, B. M.; Florita, A.; Orwig, K.; Lew, D.; Milligan, M.

    2012-07-01

    The introduction of large amounts of variable and uncertain power sources, such as wind power, into the electricity grid presents a number of challenges for system operations. One issue involves the uncertainty associated with scheduling power that wind will supply in future timeframes. However, this is not an entirely new challenge; load is also variable and uncertain, and is strongly influenced by weather patterns. In this work we make a comparison between the day-ahead forecasting errors encountered in wind power forecasting and load forecasting. The study examines the distribution of errors from operational forecasting systems in two different Independent System Operator (ISO) regions for both wind power and load forecasts at the day-ahead timeframe. The day-ahead timescale is critical in power system operations because it serves the unit commitment function for slow-starting conventional generators.

  19. Project Year Project Team

    E-Print Network [OSTI]

    Gray, Jeffrey J.

    Project Year 2001 Project Team Faculty: Grace Brush, Geography & Environmental Engineering, Whiting School of Engineering Fellow: Dan Bain, Geography & Environmental Engineering, Whiting School. Through this project, the team proposes to develop a variety of resources: a set of general, web

  20. Short-Term Energy Outlook Model Documentation: Macro Bridge Procedure to Update Regional Macroeconomic Forecasts with National Macroeconomic Forecasts

    Reports and Publications (EIA)

    2010-01-01

    The Regional Short-Term Energy Model (RSTEM) uses macroeconomic variables such as income, employment, industrial production and consumer prices at both the national and regional1 levels as explanatory variables in the generation of the Short-Term Energy Outlook (STEO). This documentation explains how national macroeconomic forecasts are used to update regional macroeconomic forecasts through the RSTEM Macro Bridge procedure.

  1. Solid Waste Integrated Forecast Technical (SWIFT) Report FY2001 to FY2046 Volume 1

    SciTech Connect (OSTI)

    BARCOT, R.A.

    2000-08-31

    This report provides up-to-date life cycle information about the radioactive solid waste expected to be managed by Hanford's Waste Management (WM) Project from onsite and offsite generators. It includes: an overview of Hanford-wide solid waste to be managed by the WM Project; program-level and waste class-specific estimates; background information on waste sources; and comparisons to previous forecasts and other national data sources. This report does not include: waste to be managed by the Environmental Restoration (EM-40) contractor (i.e., waste that will be disposed of at the Environmental Restoration Disposal Facility (ERDF)); waste that has been received by the WM Project to date (i.e., inventory waste); mixed low-level waste that will be processed and disposed by the River Protection Program; and liquid waste (current or future generation). Although this report currently does not include liquid wastes, they may be added as information becomes available.

  2. Solid waste integrated forecast technical (SWIFT) report: FY1997 to FY 2070, Revision 1

    SciTech Connect (OSTI)

    Valero, O.J.; Templeton, K.J.; Morgan, J.

    1997-01-07

    This web site provides an up-to-date report on the radioactive solid waste expected to be managed by Hanford's Waste Management (WM) Project from onsite and offsite generators. It includes: an overview of Hanford-wide solid waste to be managed by the WM Project; program-level and waste class-specific estimates; background information on waste sources; and comparisons with previous forecasts and with other national data sources. This web site does not include: liquid waste (current or future generation); waste to be managed by the Environmental Restoration (EM-40) contractor (i.e., waste that will be disposed of at the Environmental Restoration Disposal Facility (ERDF)); or waste that has been received by the WM Project to date (i.e., inventory waste). The focus of this web site is on low-level mixed waste (LLMW), and transuranic waste (both non-mixed and mixed) (TRU(M)). Some details on low-level waste and hazardous waste are also provided. Currently, this web site is reporting data th at was requested on 10/14/96 and submitted on 10/25/96. The data represent a life cycle forecast covering all reported activities from FY97 through the end of each program's life cycle. Therefore, these data represent revisions from the previous FY97.0 Data Version, due primarily to revised estimates from PNNL. There is some useful information about the structure of this report in the SWIFT Report Web Site Overview.

  3. Projected Regional Impacts of Appliance Efficiency Standards for the U.S. Residential Sector

    E-Print Network [OSTI]

    Koomey, J.G.

    2010-01-01

    D O E . 1996a. Annual Energy Outlook 1996, with ProjectionsELA) 1996 Annual Energy Outlook (AEO) (US D O E 1996a).1055.1 Joules. The Annual Energy Outlook (1996) forecast for

  4. Development and testing of improved statistical wind power forecasting methods.

    SciTech Connect (OSTI)

    Mendes, J.; Bessa, R.J.; Keko, H.; Sumaili, J.; Miranda, V.; Ferreira, C.; Gama, J.; Botterud, A.; Zhou, Z.; Wang, J. (Decision and Information Sciences); (INESC Porto)

    2011-12-06

    Wind power forecasting (WPF) provides important inputs to power system operators and electricity market participants. It is therefore not surprising that WPF has attracted increasing interest within the electric power industry. In this report, we document our research on improving statistical WPF algorithms for point, uncertainty, and ramp forecasting. Below, we provide a brief introduction to the research presented in the following chapters. For a detailed overview of the state-of-the-art in wind power forecasting, we refer to [1]. Our related work on the application of WPF in operational decisions is documented in [2]. Point forecasts of wind power are highly dependent on the training criteria used in the statistical algorithms that are used to convert weather forecasts and observational data to a power forecast. In Chapter 2, we explore the application of information theoretic learning (ITL) as opposed to the classical minimum square error (MSE) criterion for point forecasting. In contrast to the MSE criterion, ITL criteria do not assume a Gaussian distribution of the forecasting errors. We investigate to what extent ITL criteria yield better results. In addition, we analyze time-adaptive training algorithms and how they enable WPF algorithms to cope with non-stationary data and, thus, to adapt to new situations without requiring additional offline training of the model. We test the new point forecasting algorithms on two wind farms located in the U.S. Midwest. Although there have been advancements in deterministic WPF, a single-valued forecast cannot provide information on the dispersion of observations around the predicted value. We argue that it is essential to generate, together with (or as an alternative to) point forecasts, a representation of the wind power uncertainty. Wind power uncertainty representation can take the form of probabilistic forecasts (e.g., probability density function, quantiles), risk indices (e.g., prediction risk index) or scenarios (with spatial and/or temporal dependence). Statistical approaches to uncertainty forecasting basically consist of estimating the uncertainty based on observed forecasting errors. Quantile regression (QR) is currently a commonly used approach in uncertainty forecasting. In Chapter 3, we propose new statistical approaches to the uncertainty estimation problem by employing kernel density forecast (KDF) methods. We use two estimators in both offline and time-adaptive modes, namely, the Nadaraya-Watson (NW) and Quantilecopula (QC) estimators. We conduct detailed tests of the new approaches using QR as a benchmark. One of the major issues in wind power generation are sudden and large changes of wind power output over a short period of time, namely ramping events. In Chapter 4, we perform a comparative study of existing definitions and methodologies for ramp forecasting. We also introduce a new probabilistic method for ramp event detection. The method starts with a stochastic algorithm that generates wind power scenarios, which are passed through a high-pass filter for ramp detection and estimation of the likelihood of ramp events to happen. The report is organized as follows: Chapter 2 presents the results of the application of ITL training criteria to deterministic WPF; Chapter 3 reports the study on probabilistic WPF, including new contributions to wind power uncertainty forecasting; Chapter 4 presents a new method to predict and visualize ramp events, comparing it with state-of-the-art methodologies; Chapter 5 briefly summarizes the main findings and contributions of this report.

  5. U.S. Regional Demand Forecasts Using NEMS and GIS

    SciTech Connect (OSTI)

    Cohen, Jesse A.; Edwards, Jennifer L.; Marnay, Chris

    2005-07-01

    The National Energy Modeling System (NEMS) is a multi-sector, integrated model of the U.S. energy system put out by the Department of Energy's Energy Information Administration. NEMS is used to produce the annual 20-year forecast of U.S. energy use aggregated to the nine-region census division level. The research objective was to disaggregate this regional energy forecast to the county level for select forecast years, for use in a more detailed and accurate regional analysis of energy usage across the U.S. The process of disaggregation using a geographic information system (GIS) was researched and a model was created utilizing available population forecasts and climate zone data. The model's primary purpose was to generate an energy demand forecast with greater spatial resolution than what is currently produced by NEMS, and to produce a flexible model that can be used repeatedly as an add-on to NEMS in which detailed analysis can be executed exogenously with results fed back into the NEMS data flow. The methods developed were then applied to the study data to obtain residential and commercial electricity demand forecasts. The model was subjected to comparative and statistical testing to assess predictive accuracy. Forecasts using this model were robust and accurate in slow-growing, temperate regions such as the Midwest and Mountain regions. Interestingly, however, the model performed with less accuracy in the Pacific and Northwest regions of the country where population growth was more active. In the future more refined methods will be necessary to improve the accuracy of these forecasts. The disaggregation method was written into a flexible tool within the ArcGIS environment which enables the user to output the results in five year intervals over the period 2000-2025. In addition, the outputs of this tool were used to develop a time-series simulation showing the temporal changes in electricity forecasts in terms of absolute, per capita, and density of demand.

  6. Science and Engineering of an Operational Tsunami Forecasting System

    SciTech Connect (OSTI)

    Gonzalez, Frank

    2009-04-06

    After a review of tsunami statistics and the destruction caused by tsunamis, a means of forecasting tsunamis is discussed as part of an overall program of reducing fatalities through hazard assessment, education, training, mitigation, and a tsunami warning system. The forecast is accomplished via a concept called Deep Ocean Assessment and Reporting of Tsunamis (DART). Small changes of pressure at the sea floor are measured and relayed to warning centers. Under development is an international modeling network to transfer, maintain, and improve tsunami forecast models.

  7. Science and Engineering of an Operational Tsunami Forecasting System

    ScienceCinema (OSTI)

    Gonzalez, Frank

    2010-01-08

    After a review of tsunami statistics and the destruction caused by tsunamis, a means of forecasting tsunamis is discussed as part of an overall program of reducing fatalities through hazard assessment, education, training, mitigation, and a tsunami warning system. The forecast is accomplished via a concept called Deep Ocean Assessment and Reporting of Tsunamis (DART). Small changes of pressure at the sea floor are measured and relayed to warning centers. Under development is an international modeling network to transfer, maintain, and improve tsunami forecast models.

  8. Comparison of AEO 2007 Natural Gas Price Forecast to NYMEX FuturesPrices

    SciTech Connect (OSTI)

    Bolinger, Mark; Wiser, Ryan

    2006-12-06

    On December 5, 2006, the reference case projections from 'Annual Energy Outlook 2007' (AEO 2007) were posted on the Energy Information Administration's (EIA) web site. We at LBNL have, in the past, compared the EIA's reference case long-term natural gas price forecasts from the AEO series to contemporaneous natural gas prices that can be locked in through the forward market, with the goal of better understanding fuel price risk and the role that renewables play in mitigating such risk (see, for example, http://eetd.lbl.gov/ea/EMS/reports/53587.pdf or http://eetd.lbl.gov/ea/ems/reports/54751.pdf). As such, we were curious to see how the latest AEO gas price forecast compares to the NYMEX natural gas futures strip. This brief memo presents our findings. As a refresher, our past work in this area has found that over the past six years, forward natural gas contracts (with prices that can be locked in--e.g., gas futures, swaps, and physical supply) have traded at a premium relative to contemporaneous long-term reference case gas price forecasts from the EIA. As such, we have concluded that, over the past six years at least, levelized cost comparisons of fixed-price renewable generation with variable-price gas-fired generation that have been based on AEO natural gas price forecasts (rather than forward prices) have yielded results that are 'biased' in favor of gas-fired generation, presuming that long-term price stability is valued. In this memo we simply update our past analysis to include the latest long-term gas price forecast from the EIA, as contained in AEO 2007. For the sake of brevity, we do not rehash information (on methodology, potential explanations for the premiums, etc.) contained in our earlier reports on this topic; readers interested in such information are encouraged to download that work from http://eetd.lbl.gov/ea/EMS/reports/53587.pdf or http://eetd.lbl.gov/ea/ems/reports/54751.pdf. As was the case in the past six AEO releases (AEO 2001-AEO 2006), we once again find that the AEO 2007 reference case gas price forecast falls well below where NYMEX natural gas futures contracts were trading at the time the EIA finalized its gas price forecast. Specifically, the NYMEX-AEO 2007 premium is $0.73/MMBtu levelized over five years. In other words, on average, one would have had to pay $0.73/MMBtu more than the AEO 2007 reference case natural gas price forecast in order to lock in natural gas prices over the coming five years and thereby replicate the price stability provided intrinsically by fixed-price renewable generation (or other forms of generation whose costs are not tied to the price of natural gas). Fixed-price generation (like certain forms of renewable generation) obviously need not bear this added cost, and moreover can provide price stability for terms well in excess of five years.

  9. Comparison of AEO 2006 Natural Gas Price Forecast to NYMEX FuturesPrices

    SciTech Connect (OSTI)

    Bolinger, Mark; Wiser, Ryan

    2005-12-19

    On December 12, 2005, the reference case projections from ''Annual Energy Outlook 2006'' (AEO 2006) were posted on the Energy Information Administration's (EIA) web site. We at LBNL have in the past compared the EIA's reference case long-term natural gas price forecasts from the AEO series to contemporaneous natural gas prices that can be locked in through the forward market, with the goal of better understanding fuel price risk and the role that renewables play in mitigating such risk (see, for example, http://eetd.lbl.gov/ea/EMS/reports/53587.pdf or http://eetd.lbl.gov/ea/ems/reports/54751.pdf). As such, we were curious to see how the latest AEO gas price forecast compares to the NYMEX natural gas futures strip. This brief memo presents our findings. As a refresher, our past work in this area has found that over the past five years, forward natural gas contracts (with prices that can be locked in--e.g., gas futures, swaps, and physical supply) have traded at a premium relative to contemporaneous long-term reference case gas price forecasts from the EIA. As such, we have concluded that, over the past five years at least, levelized cost comparisons of fixed-price renewable generation with variable price gas-fired generation that have been based on AEO natural gas price forecasts (rather than forward prices) have yielded results that are ''biased'' in favor of gas-fired generation, presuming that long-term price stability is valued. In this memo we simply update our past analysis to include the latest long-term gas price forecast from the EIA, as contained in AEO 2006. For the sake of brevity, we do not rehash information (on methodology, potential explanations for the premiums, etc.) contained in our earlier reports on this topic; readers interested in such information are encouraged to download that work from http://eetd.lbl.gov/ea/EMS/reports/53587.pdf or http://eetd.lbl.gov/ea/ems/reports/54751.pdf. As was the case in the past five AEO releases (AEO 2001-AEO 2005), we once again find that the AEO 2006 reference case gas price forecast falls well below where NYMEX natural gas futures contracts were trading at the time the EIA finalized its gas price forecast. In fact, the NYMEX-AEO 2006 reference case comparison yields by far the largest premium--$2.3/MMBtu levelized over five years--that we have seen over the last six years. In other words, on average, one would have had to pay $2.3/MMBtu more than the AEO 2006 reference case natural gas price forecast in order to lock in natural gas prices over the coming five years and thereby replicate the price stability provided intrinsically by fixed-price renewable generation (or other forms of generation whose costs are not tied to the price of natural gas). Fixed-price generation (like certain forms of renewable generation) obviously need not bear this added cost, and moreover can provide price stability for terms well in excess of five years.

  10. Comparison of AEO 2005 natural gas price forecast to NYMEX futures prices

    SciTech Connect (OSTI)

    Bolinger, Mark; Wiser, Ryan

    2004-12-13

    On December 9, the reference case projections from ''Annual Energy Outlook 2005 (AEO 2005)'' were posted on the Energy Information Administration's (EIA) web site. As some of you may be aware, we at LBNL have in the past compared the EIA's reference case long-term natural gas price forecasts from the AEO series to contemporaneous natural gas prices that can be locked in through the forward market, with the goal of better understanding fuel price risk and the role that renewables play in mitigating such risk. As such, we were curious to see how the latest AEO gas price forecast compares to the NYMEX natural gas futures strip. This brief memo presents our findings. As a refresher, our past work in this area has found that over the past four years, forward natural gas contracts (e.g., gas futures, swaps, and physical supply) have traded at a premium relative to contemporaneous long-term reference case gas price forecasts from the EIA. As such, we have concluded that, over the past four years at least, levelized cost comparisons of fixed-price renewable generation with variable price gas-fired generation that have been based on AEO natural gas price forecasts (rather than forward prices) have yielded results that are ''biased'' in favor of gas-fired generation (presuming that long-term price stability is valued). In this memo we simply update our past analysis to include the latest long-term gas price forecast from the EIA, as contained in AEO 2005. For the sake of brevity, we do not rehash information (on methodology, potential explanations for the premiums, etc.) contained in our earlier reports on this topic; readers interested in such information are encouraged to download that work from http://eetd.lbl.gov/ea/EMS/reports/53587.pdf or, more recently (and briefly), http://eetd.lbl.gov/ea/ems/reports/54751.pdf. As was the case in the past four AEO releases (AEO 2001-AE0 2004), we once again find that the AEO 2005 reference case gas price forecast falls well below where NYMEX natural gas futures contracts were trading at the time the EIA finalized its gas price forecast. In fact, the NYMEXAEO 2005 reference case comparison yields by far the largest premium--$1.11/MMBtu levelized over six years--that we have seen over the last five years. In other words, on average, one would have to pay $1.11/MMBtu more than the AEO 2005 reference case natural gas price forecast in order to lock in natural gas prices over the coming six years and thereby replicate the price stability provided intrinsically by fixed-price renewable generation. Fixed-price renewables obviously need not bear this added cost, and moreover can provide price stability for terms well in excess of six years.

  11. CloudCast: Cloud Computing for Short-term Mobile Weather Forecasts

    E-Print Network [OSTI]

    Shenoy, Prashant

    of Massachusetts Amherst Abstract--Since today's weather forecasts only cover large regions every few hours algorithm for generating accurate short-term weather forecasts. We study CloudCast's design space, which One useful application is mobile weather forecasting, which provides hour-to-hour forecasts

  12. Smard Grid Software Applications for Distribution Network Load Forecasting Eugene A. Feinberg, Jun Fei

    E-Print Network [OSTI]

    Feinberg, Eugene A.

    of the distribution network. Keywords: load forecasting, feeder, transformer, load pocket, SmartGrid I. INTRODUCTION

  13. Solar irradiance forecasting at multiple time horizons and novel methods to evaluate uncertainty

    E-Print Network [OSTI]

    Marquez, Ricardo

    2012-01-01

    Solar irradiance data . . . . . . . . . . . . .Irradiance . . . . . . . . . . . . . . . . . . . . . . . . . . .4 Forecasting Solar Irradiance With GOES-West Satellite

  14. Ensemble Kalman Filter Data Assimilation in a 1D Numerical Model Used for Fog Forecasting

    E-Print Network [OSTI]

    Ensemble Kalman Filter Data Assimilation in a 1D Numerical Model Used for Fog Forecasting SAMUEL RE, a need exists for accurate and updated fog and low-cloud forecasts. Couche Brouillard Eau Liquide (COBEL for the very short-term forecast of fog and low clouds. This forecast system assimilates local observations

  15. Bias Correction and Bayesian Model Averaging for Ensemble Forecasts of Surface Wind Direction

    E-Print Network [OSTI]

    Raftery, Adrian

    Bias Correction and Bayesian Model Averaging for Ensemble Forecasts of Surface Wind Direction LE proposes an effective bias correction technique for wind direction forecasts from numerical weather forecasts. These techniques are applied to 48-h forecasts of surface wind direction over the Pacific

  16. Development and Demonstration of Advanced Forecasting, Power and Environmental Planning and Management Tools and Best Practices

    Office of Energy Efficiency and Renewable Energy (EERE)

    Development and Demonstration of Advanced Forecasting, Power and Environmental Planning and Management Tools and Best Practices

  17. Solar irradiance forecasting at multiple time horizons and novel methods to evaluate uncertainty

    E-Print Network [OSTI]

    Marquez, Ricardo

    2012-01-01

    Solar irradiance data . . . . . . . . . . . . .Accuracy . . . . . . . . . . . . . . . . . Solar Resourcev Uncertainty In Solar Resource: Forecasting

  18. USING BOX-JENKINS MODELS TO FORECAST FISHERY DYNAMICS: IDENTIFICATION, ESTIMATION, AND CHECKING

    E-Print Network [OSTI]

    ~ is illustrated by developing a model that makes monthly forecasts of skipjack tuna, Katsuwonus pelamis, catches

  19. Improved forecasts of extreme weather events by future space borne Doppler wind lidar

    E-Print Network [OSTI]

    Marseille, Gert-Jan

    of forecast failures, in particular those with large socio economic impact. Forecast failures of high- impact on their ability to improve meteorological analyses and subsequently reduce the probability of forecast failures true atmospheric state. This was generated by the European Centre for Medium-Range Weather Forecasts

  20. Annual energy outlook 1995, with projections to 2010

    SciTech Connect (OSTI)

    1995-01-01

    The Annual Energy Outlook 1995 (AEO95) presents the midterm energy forecasts of the Energy Information Administration (EIA). This year`s report presents projections and analyses of energy supply, demand, and prices through 2010, based on results from the National Energy Modeling System (NEMS). Quarterly forecasts of energy supply and demand for 1995 and 1996 are published in the Short-Term Energy Outlook (February 1995). Forecast tables for the five cases examined in the AEO95 are provided in Appendixes A through C. Appendix A gives historical data and forecasts for selected years from 1992 through 2010 for the reference case. Appendix B presents two additional cases, which assume higher and lower economic growth than the reference case. Appendix C presents two cases that assume higher and lower world oil prices. Appendix D presents a summary of the forecasts in units of oil equivalence. Appendix E presents a summary of household energy expenditures. Appendix F provides detailed comparisons of the AEO95 forecasts with those of other organizations. Appendix G briefly describes NEMS and the major AEO95 forecast assumptions. Appendix H presents a stand-alone high electricity demand case. Appendix 1 provides a table of energy conversion factors and a table of metric conversion factors. 89 figs., 23 tabs.

  1. Solar Trackers Market Forecast | OpenEI Community

    Open Energy Info (EERE)

    Solar Trackers Market Forecast Home John55364's picture Submitted by John55364(100) Contributor 12 May, 2015 - 03:54 Solar Trackers Market - Global Industry Analysis, Size, Share,...

  2. Grid-scale Fluctuations and Forecast Error in Wind Power

    E-Print Network [OSTI]

    G. Bel; C. P. Connaughton; M. Toots; M. M. Bandi

    2015-03-29

    The fluctuations in wind power entering an electrical grid (Irish grid) were analyzed and found to exhibit correlated fluctuations with a self-similar structure, a signature of large-scale correlations in atmospheric turbulence. The statistical structure of temporal correlations for fluctuations in generated and forecast time series was used to quantify two types of forecast error: a timescale error ($e_{\\tau}$) that quantifies the deviations between the high frequency components of the forecast and the generated time series, and a scaling error ($e_{\\zeta}$) that quantifies the degree to which the models fail to predict temporal correlations in the fluctuations of the generated power. With no $a$ $priori$ knowledge of the forecast models, we suggest a simple memory kernel that reduces both the timescale error ($e_{\\tau}$) and the scaling error ($e_{\\zeta}$).

  3. Network Bandwidth Utilization Forecast Model on High Bandwidth Network

    SciTech Connect (OSTI)

    Yoo, Wucherl; Sim, Alex

    2014-07-07

    With the increasing number of geographically distributed scientific collaborations and the scale of the data size growth, it has become more challenging for users to achieve the best possible network performance on a shared network. We have developed a forecast model to predict expected bandwidth utilization for high-bandwidth wide area network. The forecast model can improve the efficiency of resource utilization and scheduling data movements on high-bandwidth network to accommodate ever increasing data volume for large-scale scientific data applications. Univariate model is developed with STL and ARIMA on SNMP path utilization data. Compared with traditional approach such as Box-Jenkins methodology, our forecast model reduces computation time by 83.2percent. It also shows resilience against abrupt network usage change. The accuracy of the forecast model is within the standard deviation of the monitored measurements.

  4. Forecasting and Risk Analysis in Supply Chain Management

    E-Print Network [OSTI]

    Hilmola, Olli-Pekka

    Forecasting is an underestimated field of research in supply chain management. Recently advanced methods are coming into use. Initial results are encouraging, but often require changes in policies for collaboration and ...

  5. PRELIMINARY CALIFORNIA ENERGY DEMAND FORECAST 2012-2022

    E-Print Network [OSTI]

    low electricity and natural gas rates, and relatively low efficiency program and self Deputy Director ELECTRICITY SUPPLY ANALYSIS DIVISION Robert Oglesby Executive Director DISCLAIMER Staff for electric vehicles. #12;ii #12;iii ABSTRACT The Preliminary California Energy Demand Forecast 2012

  6. Optimally Controlling Hybrid Electric Vehicles using Path Forecasting

    E-Print Network [OSTI]

    Kolmanovsky, Ilya V.

    The paper examines path-dependent control of Hybrid Electric Vehicles (HEVs). In this approach we seek to improve HEV fuel economy by optimizing charging and discharging of the vehicle battery depending on the forecasted ...

  7. Multidimensional approaches to performance evaluation of competing forecasting models 

    E-Print Network [OSTI]

    Xu, Bing

    2009-01-01

    The purpose of my research is to contribute to the field of forecasting from a methodological perspective as well as to the field of crude oil as an application area to test the performance of my methodological contributions ...

  8. Grid-scale Fluctuations and Forecast Error in Wind Power

    E-Print Network [OSTI]

    Bel, G; Toots, M; Bandi, M M

    2015-01-01

    The fluctuations in wind power entering an electrical grid (Irish grid) were analyzed and found to exhibit correlated fluctuations with a self-similar structure, a signature of large-scale correlations in atmospheric turbulence. The statistical structure of temporal correlations for fluctuations in generated and forecast time series was used to quantify two types of forecast error: a timescale error ($e_{\\tau}$) that quantifies the deviations between the high frequency components of the forecast and the generated time series, and a scaling error ($e_{\\zeta}$) that quantifies the degree to which the models fail to predict temporal correlations in the fluctuations of the generated power. With no $a$ $priori$ knowledge of the forecast models, we suggest a simple memory kernel that reduces both the timescale error ($e_{\\tau}$) and the scaling error ($e_{\\zeta}$).

  9. Optimally controlling hybrid electric vehicles using path forecasting

    E-Print Network [OSTI]

    Katsargyri, Georgia-Evangelina

    2008-01-01

    Hybrid Electric Vehicles (HEVs) with path-forecasting belong to the class of fuel efficient vehicles, which use external sensory information and powertrains with multiple operating modes in order to increase fuel economy. ...

  10. Mesoscale predictability and background error convariance estimation through ensemble forecasting 

    E-Print Network [OSTI]

    Ham, Joy L

    2002-01-01

    Over the past decade, ensemble forecasting has emerged as a powerful tool for numerical weather prediction. Not only does it produce the best estimate of the state of the atmosphere, it also could quantify the uncertainties ...

  11. Forecasting and strategic inventory placement for gas turbine aftermarket spares

    E-Print Network [OSTI]

    Simmons, Joshua T. (Joshua Thomas)

    2007-01-01

    This thesis addresses the problem of forecasting demand for Life Limited Parts (LLPs) in the gas turbine engine aftermarket industry. It is based on work performed at Pratt & Whitney, a major producer of turbine engines. ...

  12. Dispersion in analysts' forecasts: does it make a difference? 

    E-Print Network [OSTI]

    Adut, Davit

    2004-09-30

    Financial analysts are an important group of information intermediaries in the capital markets. Their reports, including both earnings forecasts and stock recommendations, are widely transmitted and have a significant impact on stock prices (Womack...

  13. Radiation fog forecasting using a 1-dimensional model 

    E-Print Network [OSTI]

    Peyraud, Lionel

    2001-01-01

    weather patterns known to be favorable for producing fog and once it has formed, to state that it will persist unless the pattern changes. Unfortunately, while such methods have shown some success, many times they have led weather forecasters astray...

  14. Pressure Normalization of Production Rates Improves Forecasting Results 

    E-Print Network [OSTI]

    Lacayo Ortiz, Juan Manuel

    2013-08-07

    reliable production forecasting technique suited to interpret unconventional wells in specific situations such as unstable operating conditions, limited availability of production data (short production history) and high-pressure, rate-restricted wells...

  15. Forecasting Stock Market Volatility: Evidence from Fourteen Countries. 

    E-Print Network [OSTI]

    Balaban, Ercan; Bayar, Asli; Faff, Robert

    2002-01-01

    This paper evaluates the out-of-sample forecasting accuracy of eleven models for weekly and monthly volatility in fourteen stock markets. Volatility is defined as within-week (within-month) standard deviation of continuously ...

  16. Adaptive sampling and forecasting with mobile sensor networks

    E-Print Network [OSTI]

    Choi, Han-Lim

    2009-01-01

    This thesis addresses planning of mobile sensor networks to extract the best information possible out of the environment to improve the (ensemble) forecast at some verification region in the future. To define the information ...

  17. FINAL DEMAND FORECAST FORMS AND INSTRUCTIONS FOR THE 2007

    E-Print Network [OSTI]

    ......................................................................... 11 3. Demand Side Management (DSM) Program Impacts................................... 13 4. Demand Sylvia Bender Manager DEMAND ANALYSIS OFFICE Scott W. Matthews Chief Deputy Director B.B. Blevins Forecast Methods and Models ....................................................... 14 5. Demand-Side

  18. Use of Data Denial Experiments to Evaluate ESA Forecast Sensitivity Patterns

    SciTech Connect (OSTI)

    Zack, J; Natenberg, E J; Knowe, G V; Manobianco, J; Waight, K; Hanley, D; Kamath, C

    2011-09-13

    The overall goal of this multi-phased research project known as WindSENSE is to develop an observation system deployment strategy that would improve wind power generation forecasts. The objective of the deployment strategy is to produce the maximum benefit for 1- to 6-hour ahead forecasts of wind speed at hub-height ({approx}80 m). In this phase of the project the focus is on the Mid-Columbia Basin region which encompasses the Bonneville Power Administration (BPA) wind generation area shown in Figure 1 that includes Klondike, Stateline, and Hopkins Ridge wind plants. The Ensemble Sensitivity Analysis (ESA) approach uses data generated by a set (ensemble) of perturbed numerical weather prediction (NWP) simulations for a sample time period to statistically diagnose the sensitivity of a specified forecast variable (metric) for a target location to parameters at other locations and prior times referred to as the initial condition (IC) or state variables. The ESA approach was tested on the large-scale atmospheric prediction problem by Ancell and Hakim 2007 and Torn and Hakim 2008. ESA was adapted and applied at the mesoscale by Zack et al. (2010a, b, and c) to the Tehachapi Pass, CA (warm and cools seasons) and Mid-Colombia Basin (warm season only) wind generation regions. In order to apply the ESA approach at the resolution needed at the mesoscale, Zack et al. (2010a, b, and c) developed the Multiple Observation Optimization Algorithm (MOOA). MOOA uses a multivariate regression on a few select IC parameters at one location to determine the incremental improvement of measuring multiple variables (representative of the IC parameters) at various locations. MOOA also determines how much information from each IC parameter contributes to the change in the metric variable at the target location. The Zack et al. studies (2010a, b, and c), demonstrated that forecast sensitivity can be characterized by well-defined, localized patterns for a number of IC variables such as 80-m wind speed and vertical temperature difference. Ideally, the data assimilation scheme used in the experiments would have been based upon an ensemble Kalman filter (EnKF) that was similar to the ESA method used to diagnose the Mid-Colombia Basin sensitivity patterns in the previous studies. However, the use of an EnKF system at high resolution is impractical because of the very high computational cost. Thus, it was decided to use the three-dimensional variational analysis data assimilation that is less computationally intensive and more economically practical for generating operational forecasts. There are two tasks in the current project effort designed to validate the ESA observational system deployment approach in order to move closer to the overall goal: (1) Perform an Observing System Experiment (OSE) using a data denial approach which is the focus of this task and report; and (2) Conduct a set of Observing System Simulation Experiments (OSSE) for the Mid-Colombia basin region. The results of this task are presented in a separate report. The objective of the OSE task involves validating the ESA-MOOA results from the previous sensitivity studies for the Mid-Columbia Basin by testing the impact of existing meteorological tower measurements on the 0- to 6-hour ahead 80-m wind forecasts at the target locations. The testing of the ESA-MOOA method used a combination of data assimilation techniques and data denial experiments to accomplish the task objective.

  19. Forecasting the probability of forest fires in Northeast Texas 

    E-Print Network [OSTI]

    Wadleigh, Stuart Allen

    1972-01-01

    FORECASTING THE PROBABILITY OF FOREST FIRES IN NORTHEAST TEXAS A Thesis by STUART ALLEN WADLEIGH Submit ted to the Graduate College of Texas ASM University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE... December 1972 Major Subject: Meteorology FORECASTING THE PROBABILITY OF FOREST FIRES IN NORTHEAST TEXAS A Thesis by STUART ALLEN WADLEIGH Approved as to style and content by: ( irman of ee) (Head of Depar nt) (Member) (Member) December 1972 c...

  20. Point-trained models in a grid environment: Transforming a potato late blight risk forecast for use with the National Digital Forecast Database

    E-Print Network [OSTI]

    Douches, David S.

    Point-trained models in a grid environment: Transforming a potato late blight risk forecast for use with the National Digital Forecast Database Kathleen Baker a, , Paul Roehsner a , Thomas Lake b , Douglas Rivet

  1. Weather-based forecasts of California crop yields

    SciTech Connect (OSTI)

    Lobell, D B; Cahill, K N; Field, C B

    2005-09-26

    Crop yield forecasts provide useful information to a range of users. Yields for several crops in California are currently forecast based on field surveys and farmer interviews, while for many crops official forecasts do not exist. As broad-scale crop yields are largely dependent on weather, measurements from existing meteorological stations have the potential to provide a reliable, timely, and cost-effective means to anticipate crop yields. We developed weather-based models of state-wide yields for 12 major California crops (wine grapes, lettuce, almonds, strawberries, table grapes, hay, oranges, cotton, tomatoes, walnuts, avocados, and pistachios), and tested their accuracy using cross-validation over the 1980-2003 period. Many crops were forecast with high accuracy, as judged by the percent of yield variation explained by the forecast, the number of yields with correctly predicted direction of yield change, or the number of yields with correctly predicted extreme yields. The most successfully modeled crop was almonds, with 81% of yield variance captured by the forecast. Predictions for most crops relied on weather measurements well before harvest time, allowing for lead times that were longer than existing procedures in many cases.

  2. Comparison of Bottom-Up and Top-Down Forecasts: Vision Industry Energy Forecasts with ITEMS and NEMS 

    E-Print Network [OSTI]

    Roop, J. M.; Dahowski, R. T

    2000-01-01

    Comparisons are made of energy forecasts using results from the Industrial module of the National Energy Modeling System (NEMS) and an industrial economic-engineering model called the Industrial Technology and Energy Modeling System (ITEMS), a model...

  3. California Energy Demand Scenario Projections to 2050

    E-Print Network [OSTI]

    McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

    2008-01-01

    2006-2016: Staff energy demand forecast (Revised SeptemberCEC (2005b) Energy demand forecast methods report.California energy demand 2003-2013 forecast. California

  4. Residential sector end-use forecasting with EPRI-Reeps 2.1: Summary input assumptions and results

    SciTech Connect (OSTI)

    Koomey, J.G.; Brown, R.E.; Richey, R.

    1995-12-01

    This paper describes current and projected future energy use by end-use and fuel for the U.S. residential sector, and assesses which end-uses are growing most rapidly over time. The inputs to this forecast are based on a multi-year data compilation effort funded by the U.S. Department of Energy. We use the Electric Power Research Institute`s (EPRI`s) REEPS model, as reconfigured to reflect the latest end-use technology data. Residential primary energy use is expected to grow 0.3% per year between 1995 and 2010, while electricity demand is projected to grow at about 0.7% per year over this period. The number of households is expected to grow at about 0.8% per year, which implies that the overall primary energy intensity per household of the residential sector is declining, and the electricity intensity per household is remaining roughly constant over the forecast period. These relatively low growth rates are dependent on the assumed growth rate for miscellaneous electricity, which is the single largest contributor to demand growth in many recent forecasts.

  5. Value of Probabilistic Weather Forecasts: Assessment by Real-Time Optimization of Irrigation Scheduling

    SciTech Connect (OSTI)

    Cai, Ximing; Hejazi, Mohamad I.; Wang, Dingbao

    2011-09-29

    This paper presents a modeling framework for real-time decision support for irrigation scheduling using the National Oceanic and Atmospheric Administration's (NOAA's) probabilistic rainfall forecasts. The forecasts and their probability distributions are incorporated into a simulation-optimization modeling framework. In this study, modeling irrigation is determined by a stochastic optimization program based on the simulated soil moisture and crop water-stress status and the forecasted rainfall for the next 1-7 days. The modeling framework is applied to irrigated corn in Mason County, Illinois. It is found that there is ample potential to improve current farmers practices by simply using the proposed simulation-optimization framework, which uses the present soil moisture and crop evapotranspiration information even without any forecasts. It is found that the values of the forecasts vary across dry, normal, and wet years. More significant economic gains are found in normal and wet years than in dry years under the various forecast horizons. To mitigate drought effect on crop yield through irrigation, medium- or long-term climate predictions likely play a more important role than short-term forecasts. NOAA's imperfect 1-week forecast is still valuable in terms of both profit gain and water saving. Compared with the no-rain forecast case, the short-term imperfect forecasts could lead to additional 2.4-8.5% gain in profit and 11.0-26.9% water saving. However, the performance of the imperfect forecast is only slightly better than the ensemble weather forecast based on historical data and slightly inferior to the perfect forecast. It seems that the 1-week forecast horizon is too limited to evaluate the role of the various forecast scenarios for irrigation scheduling, which is actually a seasonal decision issue. For irrigation scheduling, both the forecast quality and the length of forecast time horizon matter. Thus, longer forecasts might be necessary to evaluate the role of forecasts for irrigation scheduling in a more effective way.

  6. Results from the Second Forum on the Future Role of the Human in the Forecast Process. Part II: Cognitive Psychological Aspects of Expert Weather Forecasters

    E-Print Network [OSTI]

    Schultz, David

    : Cognitive Psychological Aspects of Expert Weather Forecasters NEIL A. STUART* NOAA/National Weather Service of Applied Research Associates, Fairborn, Ohio In Preparation for Submission to Forecasters Forum, Weather and Forecasting 30 June 2006 Corresponding author address: Neil A. Stuart, National Weather Service, 10009 General

  7. Forecasting the 2013–2014 influenza season using Wikipedia

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hickmann, Kyle S.; Fairchild, Geoffrey; Priedhorsky, Reid; Generous, Nicholas; Hyman, James M.; Deshpande, Alina; Del Valle, Sara Y.; Salathé, Marcel

    2015-05-14

    Infectious diseases are one of the leading causes of morbidity and mortality around the world; thus, forecasting their impact is crucial for planning an effective response strategy. According to the Centers for Disease Control and Prevention (CDC), seasonal influenza affects 5% to 20% of the U.S. population and causes major economic impacts resulting from hospitalization and absenteeism. Understanding influenza dynamics and forecasting its impact is fundamental for developing prevention and mitigation strategies. We combine modern data assimilation methods with Wikipedia access logs and CDC influenza-like illness (ILI) reports to create a weekly forecast for seasonal influenza. The methods are appliedmore »to the 2013-2014 influenza season but are sufficiently general to forecast any disease outbreak, given incidence or case count data. We adjust the initialization and parametrization of a disease model and show that this allows us to determine systematic model bias. In addition, we provide a way to determine where the model diverges from observation and evaluate forecast accuracy. Wikipedia article access logs are shown to be highly correlated with historical ILI records and allow for accurate prediction of ILI data several weeks before it becomes available. The results show that prior to the peak of the flu season, our forecasting method produced 50% and 95% credible intervals for the 2013-2014 ILI observations that contained the actual observations for most weeks in the forecast. However, since our model does not account for re-infection or multiple strains of influenza, the tail of the epidemic is not predicted well after the peak of flu season has passed.« less

  8. Forecasting the 2013–2014 influenza season using Wikipedia

    SciTech Connect (OSTI)

    Hickmann, Kyle S.; Fairchild, Geoffrey; Priedhorsky, Reid; Generous, Nicholas; Hyman, James M.; Deshpande, Alina; Del Valle, Sara Y.; Salathé, Marcel

    2015-05-14

    Infectious diseases are one of the leading causes of morbidity and mortality around the world; thus, forecasting their impact is crucial for planning an effective response strategy. According to the Centers for Disease Control and Prevention (CDC), seasonal influenza affects 5% to 20% of the U.S. population and causes major economic impacts resulting from hospitalization and absenteeism. Understanding influenza dynamics and forecasting its impact is fundamental for developing prevention and mitigation strategies. We combine modern data assimilation methods with Wikipedia access logs and CDC influenza-like illness (ILI) reports to create a weekly forecast for seasonal influenza. The methods are applied to the 2013-2014 influenza season but are sufficiently general to forecast any disease outbreak, given incidence or case count data. We adjust the initialization and parametrization of a disease model and show that this allows us to determine systematic model bias. In addition, we provide a way to determine where the model diverges from observation and evaluate forecast accuracy. Wikipedia article access logs are shown to be highly correlated with historical ILI records and allow for accurate prediction of ILI data several weeks before it becomes available. The results show that prior to the peak of the flu season, our forecasting method produced 50% and 95% credible intervals for the 2013-2014 ILI observations that contained the actual observations for most weeks in the forecast. However, since our model does not account for re-infection or multiple strains of influenza, the tail of the epidemic is not predicted well after the peak of flu season has passed.

  9. AVLIS: a technical and economic forecast

    SciTech Connect (OSTI)

    Davis, J.I.; Spaeth, M.L.

    1986-01-01

    The AVLIS process has intrinsically large isotopic selectivity and hence high separative capacity per module. The critical components essential to achieving the high production rates represent a small fraction (approx.10%) of the total capital cost of a production facility, and the reference production designs are based on frequent replacement of these components. The specifications for replacement frequencies in a plant are conservative with respect to our expectations; it is reasonable to expect that, as the plant is operated, the specifications will be exceeded and production costs will continue to fall. Major improvements in separator production rates and laser system efficiencies (approx.power) are expected to occur as a natural evolution in component improvements. With respect to the reference design, such improvements have only marginal economic value, but given the exigencies of moving from engineering demonstration to production operations, we continue to pursue these improvements in order to offset any unforeseen cost increases. Thus, our technical and economic forecasts for the AVLIS process remain very positive. The near-term challenge is to obtain stable funding and a commitment to bring the process to full production conditions within the next five years. If the funding and commitment are not maintained, the team will disperse and the know-how will be lost before it can be translated into production operations. The motivation to preserve the option for low-cost AVLIS SWU production is integrally tied to the motivation to maintain a competitive nuclear option. The US industry can certainly survive without AVLIS, but our tradition as technology leader in the industry will certainly be lost.

  10. Survey of Variable Generation Forecasting in the West: August 2011 - June 2012

    SciTech Connect (OSTI)

    Porter, K.; Rogers, J.

    2012-04-01

    This report surveyed Western Interconnection Balancing Authorities regarding their implementation of variable generation forecasting, the lessons learned to date, and recommendations they would offer to other Balancing Authorities who are considering variable generation forecasting. Our survey found that variable generation forecasting is at an early implementation stage in the West. Eight of the eleven Balancing Authorities interviewed began forecasting in 2008 or later. It also appears that less than one-half of the Balancing Authorities in the West are currently utilizing variable generation forecasting, suggesting that more Balancing Authorities in the West will engage in variable generation forecasting should more variable generation capacity be added.

  11. The extended Baryon Oscillation Spectroscopic Survey (eBOSS): a cosmological forecast

    E-Print Network [OSTI]

    Zhao, Gong-Bo; Ross, Ashley J; Shandera, Sarah; Percival, Will J; Dawson, Kyle S; Kneib, Jean-Paul; Myers, Adam D; Brownstein, Joel R; Comparat, Johan; Delubac, Timothée; Gao, Pengyuan; Hojjati, Alireza; Koyama, Kazuya; McBride, Cameron K; Meza, Andrés; Newman, Jeffrey A; Palanque-Delabrouille, Nathalie; Pogosian, Levon; Prada, Francisco; Rossi, Graziano; Schneider, Donald P; Seo, Hee-Jong; Tao, Charling; Wang, Dandan; Yèche, Christophe; Zhang, Hanyu; Zhang, Yuecheng; Zhou, Xu; Zhu, Fangzhou; Zou, Hu

    2015-01-01

    We present a science forecast for the eBOSS survey, part of the SDSS-IV project, which is a spectroscopic survey using multiple tracers of large-scale structure, including luminous red galaxies (LRGs), emission line galaxies (ELGs) and quasars (both as a direct probe of structure and through the Ly-$\\alpha$ forest). Focusing on discrete tracers, we forecast the expected accuracy of the baryonic acoustic oscillation (BAO), the redshift-space distortion (RSD) measurements, the $f_{\\rm NL}$ parameter quantifying the primordial non-Gaussianity, the dark energy and modified gravity parameters. We also use the line-of-sight clustering in the Ly-$\\alpha$ forest to constrain the total neutrino mass. We find that eBOSS LRGs ($0.60.6$), ELGs ($0.6

  12. Annual energy outlook 1994: With projections to 2010

    SciTech Connect (OSTI)

    Not Available

    1994-01-01

    The Annual Energy Outlook 1994 (AEO94) presents the midterm energy forecasts of the Energy Information Administration (EIA). This year`s report presents projects and analyses of energy supply, demand, and prices through 2010, based for the first time on results from the National Energy Modeling System (NEMS). NEMS is the latest in a series of computer-based energy modeling systems used over the past 2 decades by EIA and its predecessor organization, the Federal Energy Administration, to analyze and forecast energy consumption and supply in the midterm period (about 20 years). Quarterly forecasts of energy supply and demand for 1994 and 1995 are published in the Short-Term Energy Outlook (February 1994). Forecast tables for 2000, 2005, and 2010 for each of the five scenarios examined in the AEO94 are provided in Appendices A through E. The five scenarios include a reference case and four additional cases that assume higher and lower economic growth and higher and lower world oil prices. Appendix F provides detailed comparisons of the AEO94 forecasts with those of other organizations. Appendix G briefly described the NEMS and the major AEO94 forecast assumptions. Appendix H summarizes the key results for the five scenarios.

  13. DOE “Discovery Across Texas” Project 

    E-Print Network [OSTI]

    Holloway, M.

    2011-01-01

    -years ? Team: 17 companies participating thus far ? Phases: ? Planning and NEPA compliance ? Design and installation ? Demonstration and analysis 2 Project Overview ? Goal: ? Demonstrate the use of new and emerging technologies for wind integration... Illinois 1,848 587 6 Minnesota 1,818 677 7 New York 1,274 95 8 Colorado 1,248 552 9 Indiana 1,238 99 10 Source: American Wind Association State Total Wind Power Capacities (MW) 5 Forecasted 2013 High Wind Week Generation by Fuel Type 6 Context...

  14. NREL: Transmission Grid Integration - Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines lightGeospatial ToolkitSMARTS -BeingFuture forForecastingPotentialProjects

  15. Impacts of Improved Day-Ahead Wind Forecasts on Power Grid Operations: September 2011

    SciTech Connect (OSTI)

    Piwko, R.; Jordan, G.

    2011-11-01

    This study analyzed the potential benefits of improving the accuracy (reducing the error) of day-ahead wind forecasts on power system operations, assuming that wind forecasts were used for day ahead security constrained unit commitment.

  16. Status of Centralized Wind Power Forecasting in North America: May 2009-May 2010

    SciTech Connect (OSTI)

    Porter, K.; Rogers, J.

    2010-04-01

    Report surveys grid wind power forecasts for all wind generators, which are administered by utilities or regional transmission organizations (RTOs), typically with the assistance of one or more wind power forecasting companies.

  17. Comparison of AEO 2007 Natural Gas Price Forecast to NYMEX Futures Prices

    E-Print Network [OSTI]

    Bolinger, Mark; Wiser, Ryan

    2006-01-01

    Comparison of AEO 2007 Natural Gas Price Forecast to NYMEXs reference case long-term natural gas price forecasts fromAEO series to contemporaneous natural gas prices that can be

  18. Comparison of AEO 2009 Natural Gas Price Forecast to NYMEX Futures Prices

    E-Print Network [OSTI]

    Bolinger, Mark

    2009-01-01

    Comparison of AEO 2009 Natural Gas Price Forecast to NYMEXs reference-case long-term natural gas price forecasts fromAEO series to contemporaneous natural gas prices that can be

  19. Comparison of AEO 2006 Natural Gas Price Forecast to NYMEX Futures Prices

    E-Print Network [OSTI]

    Bolinger, Mark; Wiser, Ryan

    2005-01-01

    Comparison of AEO 2006 Natural Gas Price Forecast to NYMEXs reference case long-term natural gas price forecasts fromAEO series to contemporaneous natural gas prices that can be

  20. Comparison of AEO 2008 Natural Gas Price Forecast to NYMEX Futures Prices

    E-Print Network [OSTI]

    Bolinger, Mark

    2008-01-01

    late January 2008, extend its natural gas futures strip anComparison of AEO 2008 Natural Gas Price Forecast to NYMEXs reference-case long-term natural gas price forecasts from

  1. Comparison of AEO 2005 natural gas price forecast to NYMEX futures prices

    E-Print Network [OSTI]

    Bolinger, Mark; Wiser, Ryan

    2004-01-01

    the AEO 2005 reference case oil price forecast and NYMEX oibasis-adjusted NYMEX crude oil futures con tracts fo r 2010more than the reference case oil price forecast for that

  2. Forecasting 65+ travel : an integration of cohort analysis and travel demand modeling

    E-Print Network [OSTI]

    Bush, Sarah, 1973-

    2003-01-01

    Over the next 30 years, the Boomers will double the 65+ population in the United States and comprise a new generation of older Americans. This study forecasts the aging Boomers' travel. Previous efforts to forecast 65+ ...

  3. ESTIMATING POTENTIAL SEVERE WEATHER SOCIETAL IMPACTS USING PROBABILISTIC FORECASTS ISSUED BY THE NWS STORM PREDICTION CENTER

    E-Print Network [OSTI]

    effort to estimate potential severe weather societal impacts based on a combination of probabilistic forecasts and high resolution population data. For equal severe weather threat, events that occur over1 ESTIMATING POTENTIAL SEVERE WEATHER SOCIETAL IMPACTS USING PROBABILISTIC FORECASTS ISSUED

  4. Generating day-of-operation probabilistic capacity scenarios from weather forecasts

    E-Print Network [OSTI]

    Buxi, Gurkaran

    2012-01-01

    0400Z on the 18 th the wind is forecast at 15Knots blowingforecast for the day for the quarter-hour period , representing the windthe forecast is valid. The TAF predicts the wind speed, wind

  5. Earnings Management Pressure on Audit Clients: Auditor Response to Analyst Forecast Signals 

    E-Print Network [OSTI]

    Newton, Nathan J.

    2013-06-26

    This study investigates whether auditors respond to earnings management pressure created by analyst forecasts. Analyst forecasts create an important earnings target for management, and professional standards direct auditors to consider how...

  6. Error growth in poor ECMWF forecasts over the contiguous United States 

    E-Print Network [OSTI]

    Modlin, Norman Ray

    1993-01-01

    Successive improvements to the European Center for Medium-range Weather Forecasting model have resulted in improved forecast performance over the Contiguous United States (CONUS). While the overall performance of the model ...

  7. Improving Groundwater Predictions Utilizing Seasonal Precipitation Forecasts from General Circulation Models

    E-Print Network [OSTI]

    Arumugam, Sankar

    Improving Groundwater Predictions Utilizing Seasonal Precipitation Forecasts from General. The research reported in this paper evaluates the potential in developing 6-month-ahead groundwater Surface Temperature forecasts. Ten groundwater wells and nine streamgauges from the USGS Groundwater

  8. A supply forecasting model for Zimbabwe's corn sector: a time series and structural analysis 

    E-Print Network [OSTI]

    Makaudze, Ephias

    1993-01-01

    Board's financial resource needs. Thus, the corn supply forecasts are important information used by the government for contingency planning, decision-making, policy-formulation and implementation. As such, the need for accurate forecasts is obvious...

  9. Application of the Stretched Exponential Production Decline Model to Forecast Production in Shale Gas Reservoirs 

    E-Print Network [OSTI]

    Statton, James Cody

    2012-07-16

    . This study suggests a type curve is most useful when 24 months or less is available to forecast. The SEPD model generally provides more conservative forecasts and EUR estimates than Arps' model with a minimum decline rate of 5%....

  10. Distributed quantitative precipitation forecasts combining information from radar and numerical weather prediction model outputs

    E-Print Network [OSTI]

    Ganguly, Auroop Ratan

    2002-01-01

    Applications of distributed Quantitative Precipitation Forecasts (QPF) range from flood forecasting to transportation. Obtaining QPF is acknowledged to be one of the most challenging areas in hydrology and meteorology. ...

  11. Comparison of AEO 2007 Natural Gas Price Forecast to NYMEX Futures Prices

    E-Print Network [OSTI]

    Bolinger, Mark; Wiser, Ryan

    2006-01-01

    Figure 9: Two Alternative Price Forecasts (denoted by openComparison of AEO 2007 Natural Gas Price Forecast toNYMEX Futures Prices Date: December 6, 2006 Introduction On

  12. Solar irradiance forecasting at multiple time horizons and novel methods to evaluate uncertainty

    E-Print Network [OSTI]

    Marquez, Ricardo

    2012-01-01

    and forecasting of solar radiation data: a review. Int. J.beam and global solar radiation data. Solar Energy , 81:768–forecasting of solar radiation data: a review. International

  13. Central Wind Power Forecasting Programs in North America by Regional Transmission Organizations and Electric Utilities

    SciTech Connect (OSTI)

    Porter, K.; Rogers, J.

    2009-12-01

    The report addresses the implementation of central wind power forecasting by electric utilities and regional transmission organizations in North America.

  14. RESEARCH PROJECT USING SNOW TELEMETRY (SNOTEL) DATA TO MODEL STREAMFLOW

    E-Print Network [OSTI]

    Anderson, Charles W.

    RESEARCH PROJECT USING SNOW TELEMETRY (SNOTEL) DATA TO MODEL STREAMFLOW: A CASE STUDY OF THREE Laituri Mazdak Arabi #12;ii © 2012 David C. Deitemeyer #12;iii ABSTRACT USING SNOW TELEMETRY (SNOTEL) DATA snow measurements in the Western United States is instrumental in the successful forecasting of water

  15. Short-term energy outlook. Quarterly projections, second quarter 1996

    SciTech Connect (OSTI)

    NONE

    1996-04-01

    The Energy Information Administration prepares quarterly, short-term energy supply, demand, and price projections. The forecasts in this issue cover the second quarter of 1996 through the fourth quarter of 1997. Changes to macroeconomic measures by the Bureau of Economic Analysis have been incorporated into the STIFS model used.

  16. AOML Hurricane Underwater Gliders A project funded by the Disaster

    E-Print Network [OSTI]

    AOML Hurricane Underwater Gliders A project funded by the Disaster Relief Appropriations Act known towards helping improve hurricane forecast Hurricane Gonzalo IR-NHC: CIMSS IR-NHC: CIMSS Tropical Storm dissolved oxygen Strategy: because underwater gliders are fully operational under hurricane wind conditions

  17. Data-driven spectral decomposition and forecasting of ergodic dynamical systems

    E-Print Network [OSTI]

    Giannakis, Dimitrios

    2015-01-01

    We develop a framework for dimension reduction, mode decomposition, and nonparametric forecasting of data generated by ergodic dynamical systems. This framework is based on a representation of the Koopman group of unitary operators in a smooth orthonormal basis of the L2 space of the dynamical system, acquired from time-ordered data through the diffusion maps algorithm. Using this representation, we compute Koopman eigenfunctions through a regularized advection-diffusion operator, and employ these eigenfunctions in dimension reduction maps with projectible dynamics and high smoothness for the given observation modality. In systems with pure point spectra, we construct a decomposition of the generator of the Koopman group into mutually commuting vector fields, which we reconstruct in data space through a representation of the pushforward map in the Koopman eigenfunction basis. We also use a special property of this basis, namely that the basis elements evolve as simple harmonic oscillators, to build nonparamet...

  18. Managing Wind Power Forecast Uncertainty in Electric Grids Submitted in partial fulfillment of the requirements for

    E-Print Network [OSTI]

    Instituto de Sistemas e Robotica

    Managing Wind Power Forecast Uncertainty in Electric Grids Submitted in partial fulfillment;iii Abstract Electricity generated from wind power is both variable and uncertain. Wind forecasts prices. Wind power forecast errors for aggregated wind farms are often modeled with Gaussian

  19. Short-Term Load Forecasting at the Local Level using Smart Meter Data

    E-Print Network [OSTI]

    Tronci, Enrico

    ]; electric vehicle integration [8]; and microgrid and virtual power plant applications [7], [11]. In addition, forecast uncertainty, power demand. I. INTRODUCTION Short-Term Load Forecasting (STLF) is the forecasting is considered to be critical for power system operation, particularly for energy balancing, energy market

  20. Analysis of Variability and Uncertainty in Wind Power Forecasting: An International Comparison: Preprint

    SciTech Connect (OSTI)

    Zhang, J.; Hodge, B. M.; Gomez-Lazaro, E.; Lovholm, A. L.; Berge, E.; Miettinen, J.; Holttinen, H.; Cutululis, N.; Litong-Palima, M.; Sorensen, P.; Dobschinski, J.

    2013-10-01

    One of the critical challenges of wind power integration is the variable and uncertain nature of the resource. This paper investigates the variability and uncertainty in wind forecasting for multiple power systems in six countries. An extensive comparison of wind forecasting is performed among the six power systems by analyzing the following scenarios: (i) wind forecast errors throughout a year; (ii) forecast errors at a specific time of day throughout a year; (iii) forecast errors at peak and off-peak hours of a day; (iv) forecast errors in different seasons; (v) extreme forecasts with large overforecast or underforecast errors; and (vi) forecast errors when wind power generation is at different percentages of the total wind capacity. The kernel density estimation method is adopted to characterize the distribution of forecast errors. The results show that the level of uncertainty and the forecast error distribution vary among different power systems and scenarios. In addition, for most power systems, (i) there is a tendency to underforecast in winter; and (ii) the forecasts in winter generally have more uncertainty than the forecasts in summer.

  1. Forecasting the Hourly Ontario Energy Price by Multivariate Adaptive Regression Splines

    E-Print Network [OSTI]

    Cañizares, Claudio A.

    for forecasting the Spanish electricity market prices. On the other hand, ARIMA, dynamic regression and transfer been used to forecast the Spanish market prices [7], [9], Californian market prices [9], Leipzig power have been used for forecasting the Spanish and Californian market prices [11] and the PJM market prices

  2. Quality Assessment of the Cobel-Isba Numerical Forecast System of Fog and Low Clouds

    E-Print Network [OSTI]

    Quality Assessment of the Cobel-Isba Numerical Forecast System of Fog and Low Clouds THIERRY BERGOT Abstract--Short-term forecasting of fog is a difficult issue which can have a large societal impact. Fog of the life cycle of fog (onset, development and dissipation) up to +6 h. The error on the forecast onset

  3. Atmospheric Environment 39 (2005) 13731382 A hierarchical Bayesian model to estimate and forecast ozone

    E-Print Network [OSTI]

    Irwin, Mark E.

    2005-01-01

    conditional on observed (or forecasted) meteorology including temperature, humidity, pressure, and wind speed, defining the spatial­temporal extent of episodes of dangerous air quality, forecasting urban and areaAtmospheric Environment 39 (2005) 1373­1382 A hierarchical Bayesian model to estimate and forecast

  4. A Comparison of Bayesian and Conditional Density Models in Probabilistic Ozone Forecasting

    E-Print Network [OSTI]

    Hsieh, William

    A Comparison of Bayesian and Conditional Density Models in Probabilistic Ozone Forecasting Song Cai to provide predictive distributions of daily maximum surface level ozone concentrations. Five forecast models forecasts for extreme events, namely poor air quality events defined as having ozone concentration 82 ppb

  5. Ozone ensemble forecast with machine learning Vivien Mallet,1,2

    E-Print Network [OSTI]

    Mallet, Vivien

    Ozone ensemble forecast with machine learning algorithms Vivien Mallet,1,2 Gilles Stoltz,3; published 13 March 2009. [1] We apply machine learning algorithms to perform sequential aggregation of ozone forecasts. The latter rely on a multimodel ensemble built for ozone forecasting with the modeling system

  6. Bias reduction in the Sea Surface Temperature (SST) forecasts based on GOES satellite data

    E-Print Network [OSTI]

    Kurapov, Alexander

    Bias reduction in the Sea Surface Temperature (SST) forecasts based on GOES satellite data Based on comparisons with infrared (GOES) and microwave (AMSE-R) satellite data, our coastal ocean forecast model set circulation model and satellite data helps to improve forecasting of ocean conditions (esp. currents and SST

  7. Short Term Electricity Price Forecasting in the Nordic Region Anders Lund Eriksrud

    E-Print Network [OSTI]

    Lavaei, Javad

    Short Term Electricity Price Forecasting in the Nordic Region Anders Lund Eriksrud May 11, 2014 Abstract This paper presents a survey of electricity price forecasting for the Nordic region, and performs that time series models more appropriate for forecasting electricity prices, compared to machine learning

  8. Influence of Spikes in the Short-term Electricity Price Forecasting

    E-Print Network [OSTI]

    Friedl, Herwig

    Influence of Spikes in the Short-term Electricity Price Forecasting Vika Koban, Milos Pantos of electricity price under normal conditions with the spike time series caused by extreme conditions in order to obtain a better forecast of the spot price. Short term electricity price forecasting has become

  9. Detrending Daily Natural Gas Consumption Series to Improve Short-Term Forecasts

    E-Print Network [OSTI]

    Povinelli, Richard J.

    Detrending Daily Natural Gas Consumption Series to Improve Short-Term Forecasts Ronald H. Brown1 that allows long-term natural gas demand signals to be used effect- ively to generate high quality short-term natural gas demand forecasting models. Short data sets in natural gas forecasting inadequately represent

  10. Large-scale Probabilistic Forecasting in Energy Systems using Sparse Gaussian Conditional Random Fields

    E-Print Network [OSTI]

    Kolter, J. Zico

    in a wide range of energy systems, including forecasting demand, renewable generation, and electricityLarge-scale Probabilistic Forecasting in Energy Systems using Sparse Gaussian Conditional Random demonstrated that in the context of electrical demand and wind power, probabilistic forecasts can offer

  11. Application of a new phenomenological coronal mass ejection model to space weather forecasting

    E-Print Network [OSTI]

    Howard, Tim

    to space weather forecasting T. A. Howard1 and S. J. Tappin2 Received 15 October 2009; revised 27 April with the Earth. Hence the model can be used for space weather forecasting. We present a preliminary evaluation to fully validate it for integration with existing tools for space weather forecasting. Citation: Howard, T

  12. Reprinted from: Proceedings, International Workshop on Observations/Forecasting of Meso-scale Severe Weather and

    E-Print Network [OSTI]

    Doswell III, Charles A.

    -scale Severe Weather and Technology of Reduction of Relevant Disasters (Tokyo, Japan), 22-26 February 1993, 181 on the ingredients for particular severe weather events, a focus is provided for the forecasting process of forecasters is discussed also, as a necessary component in a balanced approach to weather forecasting

  13. Solar Energy Market Forecast | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS ReportEurope GmbH JumpSlough HeatMccoyProject-Energy

  14. Production Forecast, Analysis and Simulation of Eagle Ford Shale Oil 

    E-Print Network [OSTI]

    Alotaibi, Basel Z S Z J

    2014-12-02

    is to generate field-wide production forecast of the Eagle Ford Shale (EFS). This study considered oil production of the EFS only. More than 6 thousand oil wells were put online in the EFS basin between 2008 and December 2013. The method started by generating...

  15. Optimal Bidding Strategies for Wind Power Producers with Meteorological Forecasts

    E-Print Network [OSTI]

    Garulli, Andrea

    profiles, raise major challenges to wind power integration into the electricity grid. In this work we studyOptimal Bidding Strategies for Wind Power Producers with Meteorological Forecasts Antonio that the inherent variability in wind power generation and the related difficulty in predicting future generation

  16. Forecasting stock prices using Genetic Programming and Chance Discovery

    E-Print Network [OSTI]

    Fernandez, Thomas

    finance. GAs are algorithms that emulate evolution and natural selection to solve a problem. A populationForecasting stock prices using Genetic Programming and Chance Discovery Alma Lilia Garcia to financial problems. In particular, the use of Genetic Algorithms (GAs), for financial purposes, has

  17. Power Forecasting for Plug-in Electric Vehicles

    E-Print Network [OSTI]

    Lavaei, Javad

    Power Forecasting for Plug-in Electric Vehicles with Statistic Simulations Guangbin Li (gl2423) #12 of the most heated-discussed issues. Energy shortage and environment pollution are the main bottleneck the tradeoff between energy supply and environment pollution. As the international oil price was continuously

  18. Solar Resource and Forecasting QuestionnaireSolar Resource and Forecasting QuestionnaireSolar Resource and Forecasting QuestionnaireSolar Resource and Forecasting Questionnaire As someone who is familiar with solar energy issues, we hope that you will tak

    E-Print Network [OSTI]

    Islam, M. Saif

    is familiar with solar energy issues, we hope that you will take a few moments to answer this short survey on your needs for information on solar energy resources and forecasting. This survey is conducted with the California Solar Energy Collaborative (CSEC) and the California Solar Initiative (CSI) our objective

  19. Utilize cloud computing to support dust storm forecasting Qunying Huanga

    E-Print Network [OSTI]

    Chen, Songqing

    storm forecasting operational system should support a disruptive fashion by scaling up to enable high to save energy and costs. With the capability of providing a large, elastic, and virtualized pool and property damages since 1995 (Figure 1). Deaths and injuries are usually caused by car accidents, because

  20. Weather forecast-based optimization of integrated energy systems.

    SciTech Connect (OSTI)

    Zavala, V. M.; Constantinescu, E. M.; Krause, T.; Anitescu, M.

    2009-03-01

    In this work, we establish an on-line optimization framework to exploit detailed weather forecast information in the operation of integrated energy systems, such as buildings and photovoltaic/wind hybrid systems. We first discuss how the use of traditional reactive operation strategies that neglect the future evolution of the ambient conditions can translate in high operating costs. To overcome this problem, we propose the use of a supervisory dynamic optimization strategy that can lead to more proactive and cost-effective operations. The strategy is based on the solution of a receding-horizon stochastic dynamic optimization problem. This permits the direct incorporation of economic objectives, statistical forecast information, and operational constraints. To obtain the weather forecast information, we employ a state-of-the-art forecasting model initialized with real meteorological data. The statistical ambient information is obtained from a set of realizations generated by the weather model executed in an operational setting. We present proof-of-concept simulation studies to demonstrate that the proposed framework can lead to significant savings (more than 18% reduction) in operating costs.

  1. MET 416: TROPICAL ANALYSIS AND FORECASTING Spring Semester 2013

    E-Print Network [OSTI]

    current (nowcasting) and expected weather, using all available real-time operational weather data Exam 4/9 Summer trade-wind weather based on HaRP 4/11-16 Large-scale influences, Diurnal cycle to the development of tropical storm systems and mesoscale weather. Lectures will include a forecasting perspective

  2. A Hierarchical Pattern Learning Framework for Forecasting Extreme Weather Events

    E-Print Network [OSTI]

    Ding, Wei

    . Frequent pattern-based data representations have been used in various studies for abstracting climaticA Hierarchical Pattern Learning Framework for Forecasting Extreme Weather Events Dawei Wang, Wei@cs.umb.edu Abstract--Extreme weather events, like extreme rainfalls, are severe weather hazards and also the triggers

  3. ARM Processes and Their Modeling and Forecasting Methodology Benjamin Melamed

    E-Print Network [OSTI]

    Chapter 73 ARM Processes and Their Modeling and Forecasting Methodology Benjamin Melamed Abstract The class of ARM (Autoregressive Modular) processes is a class of stochastic processes, defined by a non- linear autoregressive scheme with modulo-1 reduction and additional transformations. ARM processes

  4. TRANSPORTATION ENERGY FORECASTS FOR THE 2007 INTEGRATED ENERGY

    E-Print Network [OSTI]

    /Individuals Providing Comments California Natural Gas Vehicle Coalition/ Mike Eaves League of Women VotersCALIFORNIA ENERGY COMMISSION TRANSPORTATION ENERGY FORECASTS FOR THE 2007 INTEGRATED ENERGY POLICY AND TRANSPORTATION DIVISION B. B. Blevins Executive Director DISCLAIMER This report was prepared by a California

  5. Detecting and Forecasting Economic Regimes in Automated Exchanges

    E-Print Network [OSTI]

    Ketter, Wolfgang

    Detecting and Forecasting Economic Regimes in Automated Exchanges Wolfgang Ketter , John Collins. of Mgmt., Erasmus University Dept. of Computer Science and Engineering, University of Minnesota Dept,gini,schrater}@cs.umn.edu, agupta@csom.umn.edu Abstract We present basic building blocks of an agent that can use observable market

  6. Detecting and Forecasting Economic Regimes in Automated Exchanges

    E-Print Network [OSTI]

    Ketter, Wolfgang

    Detecting and Forecasting Economic Regimes in Automated Exchanges Wolfgang Ketter # , John Collins, Rotterdam Sch. of Mgmt., Erasmus University + Dept. of Computer Science and Engineering, University wketter@rsm.nl, {jcollins,gini,schrater}@cs.umn.edu, agupta@csom.umn.edu Abstract We present basic

  7. URBAN OZONE CONCENTRATION FORECASTING WITH ARTIFICIAL NEURAL NETWORK IN CORSICA

    E-Print Network [OSTI]

    Boyer, Edmond

    Perceptron; Ozone concentration. 1. Introduction Tropospheric ozone is a major air pollution problem, both, Ajaccio, France, e-mail: balu@univ-corse.fr Abstract: Atmospheric pollutants concentration forecasting is an important issue in air quality monitoring. Qualitair Corse, the organization responsible for monitoring air

  8. Review of Wind Energy Forecasting Methods for Modeling Ramping Events

    SciTech Connect (OSTI)

    Wharton, S; Lundquist, J K; Marjanovic, N; Williams, J L; Rhodes, M; Chow, T K; Maxwell, R

    2011-03-28

    Tall onshore wind turbines, with hub heights between 80 m and 100 m, can extract large amounts of energy from the atmosphere since they generally encounter higher wind speeds, but they face challenges given the complexity of boundary layer flows. This complexity of the lowest layers of the atmosphere, where wind turbines reside, has made conventional modeling efforts less than ideal. To meet the nation's goal of increasing wind power into the U.S. electrical grid, the accuracy of wind power forecasts must be improved. In this report, the Lawrence Livermore National Laboratory, in collaboration with the University of Colorado at Boulder, University of California at Berkeley, and Colorado School of Mines, evaluates innovative approaches to forecasting sudden changes in wind speed or 'ramping events' at an onshore, multimegawatt wind farm. The forecast simulations are compared to observations of wind speed and direction from tall meteorological towers and a remote-sensing Sound Detection and Ranging (SODAR) instrument. Ramping events, i.e., sudden increases or decreases in wind speed and hence, power generated by a turbine, are especially problematic for wind farm operators. Sudden changes in wind speed or direction can lead to large power generation differences across a wind farm and are very difficult to predict with current forecasting tools. Here, we quantify the ability of three models, mesoscale WRF, WRF-LES, and PF.WRF, which vary in sophistication and required user expertise, to predict three ramping events at a North American wind farm.

  9. A comparison study of data assimilation algorithms for ozone forecasts

    E-Print Network [OSTI]

    Mallet, Vivien

    A comparison study of data assimilation algorithms for ozone forecasts Lin Wu,1,2 V. Mallet,1,2 M assimilation schemes with the aim of designing suitable assimilation algorithms for short- range ozone but stable systems with high uncertainties (e.g., over 20% for ozone daily peaks (Hanna et al., 1998; Mallet

  10. 1. Introduction Users of weather forecasts, particularly paying cus-

    E-Print Network [OSTI]

    1. Introduction Users of weather forecasts, particularly paying cus- tomers, are operating within Kingdom out of a total budget of approximately £140 million for winter road maintenance. It is difficult rely on a simple set of statistics provided by the weather service providers. The current guidance

  11. Forecasting Hourly Electricity Load Profile Using Neural Networks

    E-Print Network [OSTI]

    Koprinska, Irena

    Forecasting Hourly Electricity Load Profile Using Neural Networks Mashud Rana and Irena Koprinska--We present INN, a new approach for predicting the hourly electricity load profile for the next day from a time series of previous electricity loads. It uses an iterative methodology to make the predictions

  12. Journey data based arrival forecasting for bicycle hire schemes

    E-Print Network [OSTI]

    Imperial College, London

    Journey data based arrival forecasting for bicycle hire schemes Marcel C. Guenther and Jeremy T. The global emergence of city bicycle hire schemes has re- cently received a lot of attention of future bicycle migration trends, as these assist service providers to ensure availability of bicycles

  13. Numerical Weather Forecasting at the Savannah River Site

    SciTech Connect (OSTI)

    Buckley, R.L.

    1999-01-26

    Facilities such as the Savannah River Site (SRS), which contain the potential for hazardous atmospheric releases, rely on the predictive capabilities of dispersion models to assess possible emergency response actions. The operational design in relation to domain size and forecast time is presented, along with verification of model results over extended time periods with archived surface observations.

  14. Forecasting Hospital Bed Availability Using Simulation and Neural Networks

    E-Print Network [OSTI]

    Kuhl, Michael E.

    Forecasting Hospital Bed Availability Using Simulation and Neural Networks Matthew J. Daniels, NY 14623 Elisabeth Hager Hager Consulting Pittsford, NY 14534 Abstract The availability of beds is a critical factor for decision-making in hospitals. Bed availability (or alternatively the bed occupancy

  15. FORECASTING SOLAR RADIATION PRELIMINARY EVALUATION OF AN APPROACH

    E-Print Network [OSTI]

    Perez, Richard R.

    a limited evaluation of its performance against ground-measured and satellite-derived irradiances in AlbanyFORECASTING SOLAR RADIATION -- PRELIMINARY EVALUATION OF AN APPROACH BASED UPON THE NATIONAL NREL, 1617 Cole Blvd. Golden, CO 80841 stephen_wilcox@nrel.gov Antoine Zelenka Meteosuisse

  16. Cloudy Computing: Leveraging Weather Forecasts in Energy Harvesting Sensor Systems

    E-Print Network [OSTI]

    Shenoy, Prashant

    Cloudy Computing: Leveraging Weather Forecasts in Energy Harvesting Sensor Systems Navin Sharma,gummeson,irwin,shenoy}@cs.umass.edu Abstract--To sustain perpetual operation, systems that harvest environmental energy must carefully regulate their usage to satisfy their demand. Regulating energy usage is challenging if a system's demands

  17. Leveraging Weather Forecasts in Renewable Energy Navin Sharmaa,

    E-Print Network [OSTI]

    Shenoy, Prashant

    Leveraging Weather Forecasts in Renewable Energy Systems Navin Sharmaa, , Jeremy Gummesonb , David, Binghamton, NY 13902 Abstract Systems that harvest environmental energy must carefully regulate their us- age to satisfy their demand. Regulating energy usage is challenging if a system's demands are not elastic, since

  18. Short-Term Solar Energy Forecasting Using Wireless Sensor Networks

    E-Print Network [OSTI]

    Cerpa, Alberto E.

    Short-Term Solar Energy Forecasting Using Wireless Sensor Networks Stefan Achleitner, Tao Liu an advantage for output power prediction. Solar Energy Prediction System Our prediction model is based variability of more then 100 kW per minute. For practical usage of solar energy, predicting times of high

  19. Use of wind power forecasting in operational decisions.

    SciTech Connect (OSTI)

    Botterud, A.; Zhi, Z.; Wang, J.; Bessa, R.J.; Keko, H.; Mendes, J.; Sumaili, J.; Miranda, V.

    2011-11-29

    The rapid expansion of wind power gives rise to a number of challenges for power system operators and electricity market participants. The key operational challenge is to efficiently handle the uncertainty and variability of wind power when balancing supply and demand in ths system. In this report, we analyze how wind power forecasting can serve as an efficient tool toward this end. We discuss the current status of wind power forecasting in U.S. electricity markets and develop several methodologies and modeling tools for the use of wind power forecasting in operational decisions, from the perspectives of the system operator as well as the wind power producer. In particular, we focus on the use of probabilistic forecasts in operational decisions. Driven by increasing prices for fossil fuels and concerns about greenhouse gas (GHG) emissions, wind power, as a renewable and clean source of energy, is rapidly being introduced into the existing electricity supply portfolio in many parts of the world. The U.S. Department of Energy (DOE) has analyzed a scenario in which wind power meets 20% of the U.S. electricity demand by 2030, which means that the U.S. wind power capacity would have to reach more than 300 gigawatts (GW). The European Union is pursuing a target of 20/20/20, which aims to reduce greenhouse gas (GHG) emissions by 20%, increase the amount of renewable energy to 20% of the energy supply, and improve energy efficiency by 20% by 2020 as compared to 1990. Meanwhile, China is the leading country in terms of installed wind capacity, and had 45 GW of installed wind power capacity out of about 200 GW on a global level at the end of 2010. The rapid increase in the penetration of wind power into power systems introduces more variability and uncertainty in the electricity generation portfolio, and these factors are the key challenges when it comes to integrating wind power into the electric power grid. Wind power forecasting (WPF) is an important tool to help efficiently address this challenge, and significant efforts have been invested in developing more accurate wind power forecasts. In this report, we document our work on the use of wind power forecasting in operational decisions.

  20. CALIFORNIA ENERGY DEMAND 2008-2018 STAFF REVISED FORECAST

    E-Print Network [OSTI]

    the natural gas price projections. #12;ii #12;i Table of Contents Executive Summary COMMISSION Lynn Marshall Tom Gorin Principal Authors Lynn Marshall Project Manager Sylvia Bender Manager data. Tom Gorin prepared the demographic projections. Chris Kavalec developed the projections

  1. Assessing forecast uncertainties in a VECX model for Switzerland: an exercise in forecast combination across models and observation windows

    E-Print Network [OSTI]

    Assenmacher-Wesche, Katrin; Pesaran, M. Hashem

    horizons of up to eight quarters ahead since this is the rele- vant time horizon for central banks when setting interest rates. Table 6 shows the RMSFE, the bias and the hit rate of forecasts based on the VECX*(2,2) model for the longest estimation window...

  2. Short-term energy outlook. Quarterly projections, Third quarter 1994

    SciTech Connect (OSTI)

    Not Available

    1994-08-02

    The Energy Information Administration (EIA) prepares quarterly, short-term energy supply, demand, and price projections for publication in February, May, August, and November in the Short-Term Energy Outlook (Outlook). An annual supplement analyzes the performance of previous forecasts, compares recent cases with those of other forecasting services, and discusses current topics related to the short-term energy markets. (See Short-Term Energy Outlook Annual Supplement, DOE/EIA-0202). The feature article for this issue is Demand, Supply and Price Outlook for Reformulated Gasoline, 1995.

  3. Assessment and added value estimation of an ensemble approach with a focus on global radiation forecasts

    E-Print Network [OSTI]

    Bouallegue, Zied Ben

    2015-01-01

    The assessment of the high-resolution ensemble weather prediction system COSMO-DE-EPS is achieved with the perspective of using it for renewable energy applications. The performance of the ensemble forecast is explored focusing on global radiation, the main weather variable affecting solar power production, and on quantile forecasts, key probabilistic products for the energy sector. First, the ability of the ensemble system to capture and resolve the observation variability is assessed. Secondly, the potential benefit of the ensemble forecasting strategy compared to a single forecast approach is quantitatively estimated. A new metric called ensemble added value is proposed, aiming at a fair comparison of an ensemble forecast with a single forecast, when optimized to the users' needs. Hourly mean forecasts are verified against pyranometer measurements over verification periods covering 2013. The results show in particular that the added value of the ensemble approach is season-dependent and increases with the ...

  4. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Calibrated Probabilistic Mesoscale Weather Field Forecasting: The Geostatist...

    E-Print Network [OSTI]

    Raftery, Adrian

    permission. Calibrated Probabilistic Mesoscale Weather Field Forecasting: The Geostatist... Yulia Gel; Adrian

  5. Project Year Project Team

    E-Print Network [OSTI]

    Gray, Jeffrey J.

    & Sciences Project Title Visualize Physical Principles with Virtual Lab Modules Audience Undergraduate provide easy access to digital information, but don't provide experience with right- hand screws, electric of the last generation of physics students. The result is that today's students don't have an intuitive

  6. Project Year Project Title

    E-Print Network [OSTI]

    Gray, Jeffrey J.

    . Pedagogical Issue One of the challenges in teaching the Introduction to Computer Music course is the lack flow and practices. These resources will provide an online space through which students will be able piece of this project will be an animated studio walkthrough requiring user interaction and providing

  7. Annual energy outlook 1999, with projections to 2020

    SciTech Connect (OSTI)

    1998-12-01

    The Annual Energy Outlook 1999 (AEO99) presents midterm forecasts of energy supply, demand, and prices through 2020 prepared by the Energy Information Administration (EIA). The projections are based on results from EIA`s National Energy Modeling System (NEMS). The report begins with an Overview summarizing the AEO99 reference case. The next section, Legislation and Regulations, describes the assumptions made with regard to laws that affect energy markets and discusses evolving legislative and regulatory issues. Issues in Focus discusses current energy issues--the economic decline in East Asia, growth in demand for natural gas, vehicle emissions standards, competitive electricity pricing, renewable portfolio standards, and carbon emissions. It is followed by the analysis of energy market trends. The analysis in AEO99 focuses primarily on a reference case and four other cases that assume higher and lower economic growth and higher and lower world oil prices than in the reference case. Forecast tables for these cases are provided in Appendixes A through C. Appendixes D and E present a summary of the reference case forecasts in units of oil equivalence and household energy expenditures. The AEO99 projections are based on Federal, State, and local laws and regulations in effect on July 1, 1998. Pending legislation and sections of existing legislation for which funds have not been appropriated are not reflected in the forecasts. Historical data used for the AEOI99 projections were the most current available as of July 31, 1998, when most 1997 data but only partial 1998 data were available.

  8. Short and Long-Term Perspectives: The Impact on Low-Income Consumers of Forecasted Energy Price Increases in 2008 and A Cap & Trade Carbon Policy in 2030

    SciTech Connect (OSTI)

    Eisenberg, Joel Fred [ORNL

    2008-01-01

    The Department of Energy's Energy Information Administration (EIA) recently released its short-term forecast for residential energy prices for the winter of 2007-2008. The forecast indicates increases in costs for low-income consumers in the year ahead, particularly for those using fuel oil to heat their homes. In the following analysis, the Oak Ridge National Laboratory has integrated the EIA price projections with the Residential Energy Consumption Survey (RECS) for 2001 in order to project the impact of these price increases on the nation's low-income households by primary heating fuel type, nationally and by Census Region. The report provides an update of bill estimates provided in a previous study, "The Impact Of Forecasted Energy Price Increases On Low-Income Consumers" (Eisenberg, 2005). The statistics are intended for use by policymakers in the Department of Energy's Weatherization Assistance Program and elsewhere who are trying to gauge the nature and severity of the problems that will be faced by eligible low-income households during the 2008 fiscal year. In addition to providing expenditure forecasts for the year immediately ahead, this analysis uses a similar methodology to give policy makers some insight into one of the major policy debates that will impact low-income energy expenditures well into the middle decades of this century and beyond. There is now considerable discussion of employing a cap-and-trade mechanism to first limit and then reduce U.S. emissions of carbon into the atmosphere in order to combat the long-range threat of human-induced climate change. The Energy Information Administration has provided an analysis of projected energy prices in the years 2020 and 2030 for one such cap-and-trade carbon reduction proposal that, when integrated with the RECS 2001 database, provides estimates of how low-income households will be impacted over the long term by such a carbon reduction policy.

  9. SOLID WASTE INTEGRATED FORECAST TECHNICAL (SWIFT) REPORT FY2005 THRU FY2035 2005.0 VOLUME 2

    SciTech Connect (OSTI)

    BARCOT, R.A.

    2005-08-17

    This report provides up-to-date life cycle information about the radioactive solid waste expected to be managed by Hanford's Waste Management (WM) Project from onsite and offsite generators. It includes: (1) an overview of Hanford-wide solid waste to be managed by the WM Project; (2) multi-level and waste class-specific estimates; (3) background information on waste sources; and (4) comparisons to previous forecasts and other national data sources. The focus of this report is low-level waste (LLW), mixed low-level waste (MLLW), and transuranic waste, both non-mixed and mixed (TRU(M)). Some details on hazardous waste are also provided, however, this information is not considered comprehensive. This report includes data requested in December, 2004 with updates through March 31,2005. The data represent a life cycle forecast covering all reported activities from FY2005 through the end of each program's life cycle and are an update of the previous FY2004.1 data version.

  10. Accounting for fuel price risk: Using forward natural gas prices instead of gas price forecasts to compare renewable to natural gas-fired generation

    SciTech Connect (OSTI)

    Bolinger, Mark; Wiser, Ryan; Golove, William

    2003-08-13

    Against the backdrop of increasingly volatile natural gas prices, renewable energy resources, which by their nature are immune to natural gas fuel price risk, provide a real economic benefit. Unlike many contracts for natural gas-fired generation, renewable generation is typically sold under fixed-price contracts. Assuming that electricity consumers value long-term price stability, a utility or other retail electricity supplier that is looking to expand its resource portfolio (or a policymaker interested in evaluating different resource options) should therefore compare the cost of fixed-price renewable generation to the hedged or guaranteed cost of new natural gas-fired generation, rather than to projected costs based on uncertain gas price forecasts. To do otherwise would be to compare apples to oranges: by their nature, renewable resources carry no natural gas fuel price risk, and if the market values that attribute, then the most appropriate comparison is to the hedged cost of natural gas-fired generation. Nonetheless, utilities and others often compare the costs of renewable to gas-fired generation using as their fuel price input long-term gas price forecasts that are inherently uncertain, rather than long-term natural gas forward prices that can actually be locked in. This practice raises the critical question of how these two price streams compare. If they are similar, then one might conclude that forecast-based modeling and planning exercises are in fact approximating an apples-to-apples comparison, and no further consideration is necessary. If, however, natural gas forward prices systematically differ from price forecasts, then the use of such forecasts in planning and modeling exercises will yield results that are biased in favor of either renewable (if forwards < forecasts) or natural gas-fired generation (if forwards > forecasts). In this report we compare the cost of hedging natural gas price risk through traditional gas-based hedging instruments (e.g., futures, swaps, and fixed-price physical supply contracts) to contemporaneous forecasts of spot natural gas prices, with the purpose of identifying any systematic differences between the two. Although our data set is quite limited, we find that over the past three years, forward gas prices for durations of 2-10 years have been considerably higher than most natural gas spot price forecasts, including the reference case forecasts developed by the Energy Information Administration (EIA). This difference is striking, and implies that resource planning and modeling exercises based on these forecasts over the past three years have yielded results that are biased in favor of gas-fired generation (again, presuming that long-term stability is desirable). As discussed later, these findings have important ramifications for resource planners, energy modelers, and policy-makers.

  11. Oceanic stochastic parametrizations in a seasonal forecast system

    E-Print Network [OSTI]

    Andrejczuk, M; Juricke, S; Palmer, T N; Weisheimer, A; Zanna, L

    2015-01-01

    We study the impact of three stochastic parametrizations in the ocean component of a coupled model, on forecast reliability over seasonal timescales. The relative impacts of these schemes upon the ocean mean state and ensemble spread are analyzed. The oceanic variability induced by the atmospheric forcing of the coupled system is, in most regions, the major source of ensemble spread. The largest impact on spread and bias came from the Stochastically Perturbed Parametrization Tendency (SPPT) scheme - which has proven particularly effective in the atmosphere. The key regions affected are eddy-active regions, namely the western boundary currents and the Southern Ocean. However, unlike its impact in the atmosphere, SPPT in the ocean did not result in a significant decrease in forecast error. Whilst there are good grounds for implementing stochastic schemes in ocean models, our results suggest that they will have to be more sophisticated. Some suggestions for next-generation stochastic schemes are made.

  12. Numerical Weather Forecasting at the Savannah River Site

    SciTech Connect (OSTI)

    Buckley, R.L. [Westinghouse Savannah River Company, AIKEN, SC (United States)

    1998-11-01

    Weather forecasts at the Savannah River Site (SRS) are important for applications to emergency response. The fate of accidentally-released radiological materials and toxic chemicals can be determined by providing wind and turbulence input to atmospheric transport models. This operation has been routinely performed at SRS using the WIND System, a system of computer models and monitors which collect data from towers situated throughout the SRS. However, the information provided to these models is spatially homogeneous (in one or two dimensions) with an elementary forecasting capability. This paper discusses the use of an advanced three-dimensional prognostic numerical model to provide space and time-dependent meteorological data for use in the WIND System dispersion models. The extensive meteorological data collection at SRS serves as a ground truth for further model development as well as for use in other applications.

  13. Weather Forecast Data an Important Input into Building Management Systems 

    E-Print Network [OSTI]

    Poulin, L.

    2013-01-01

    Implementation and Operational Services Section Canadian Meteorological Centre, Dorval, Qc National Prediction Operations Division ICEBO 2013, Montreal, Qc October 10 2013 Version 2013-09-27 Weather Forecast Data An Important Input into Building..., Martin Fradette Environment Canada RPN ? Recherche en Pr?vision num?rique Dr. Wei Yu, Dr. Paul Vaillancourt, Dr. Sylvie Leroyer Natural Resources Canada ? Canmet Energy Dr. Jos? A. Candanedo Overview ? Building management and weather information...

  14. Algorithms for bispectra: forecasting, optimal analysis, and simulation

    E-Print Network [OSTI]

    Kendrick M. Smith; Matias Zaldarriaga

    2011-11-08

    We propose a factorizability ansatz for angular bispectra which permits fast algorithms for forecasting, analysis, and simulation, yet is general enough to encompass many interesting CMB bispectra. We describe a suite of general algorithms which apply to any bispectrum which can be represented in factorizable form. First, we present algorithms for Fisher matrix forecasts and the related problem of optimizing the factorizable representation, giving a Fisher forecast for Planck as an example. We show that the CMB can give independent constraints on the amplitude of primordial bispectra of both local and equilateral shape as well as those created by secondary anisotropies. We also show that the ISW-lensing bispectrum should be detected by Planck and could bias estimates of the local type of non-Gaussianity if not properly accounted for. Second, we implement a bispectrum estimator which is fully optimal in the presence of sky cuts and inhomogeneous noise, extends the generality of fast estimators which have been limited to a few specific forms of the bispectrum, and improves the running time of existing implementations by several orders of magnitude. Third, we give an algorithm for simulating random, weakly non-Gaussian maps with prescribed power spectrum and factorizable bispectrum.

  15. Towards a Science of Tumor Forecast for Clinical Oncology

    SciTech Connect (OSTI)

    Yankeelov, Tom; Quaranta, Vito; Evans, Katherine J; Rericha, Erin

    2015-01-01

    We propose that the quantitative cancer biology community make a concerted effort to apply the methods of weather forecasting to develop an analogous theory for predicting tumor growth and treatment response. Currently, the time course of response is not predicted, but rather assessed post hoc by physical exam or imaging methods. This fundamental limitation of clinical oncology makes it extraordinarily difficult to select an optimal treatment regimen for a particular tumor of an individual patient, as well as to determine in real time whether the choice was in fact appropriate. This is especially frustrating at a time when a panoply of molecularly targeted therapies is available, and precision genetic or proteomic analyses of tumors are an established reality. By learning from the methods of weather and climate modeling, we submit that the forecasting power of biophysical and biomathematical modeling can be harnessed to hasten the arrival of a field of predictive oncology. With a successful theory of tumor forecasting, it should be possible to integrate large tumor specific datasets of varied types, and effectively defeat cancer one patient at a time.

  16. Numerical weather forecasting at the Savannah River Site

    SciTech Connect (OSTI)

    Buckley, R.L. [Westinghouse Savannah River Site, Aiken, SC (United States)

    1998-12-31

    Weather forecasts at the Savannah River Site (SRS) are important for applications to emergency response. The fate of accidentally released radiological materials and toxic chemicals can be determined by providing wind and turbulence input to atmospheric transport models. This operation has been routinely performed at SRS using the WIND system, a system of computer models and monitors that collects data from towers situated throughout the SRS. However, the information provided to these models is spatially homogeneous (in one or two dimensions) with an elementary forecasting capability. This paper discusses the use of an advanced three-dimensional prognostic numerical model to provide space- and time-dependent meteorological data for use in the WIND system dispersion models. The extensive meteorological data collection at SRS serves as a ground truth for further model development as well as for use in other applications. A prognostic mesoscale model, the regional atmospheric modeling system (RAMS), is used to provide these forecasts. Use of RAMS allows for incorporation of mesoscale features such as the sea breeze, which has been shown to affect local weather conditions. This paper discusses the mesoscale model and its configuration for the operational simulation, as well as an application using a dispersion model at the SRS.

  17. Value of medium range weather forecasts in the improvement of seasonal hydrologic prediction skill

    SciTech Connect (OSTI)

    Shukla, Shraddhanand; Voisin, Nathalie; Lettenmaier, D. P.

    2012-08-15

    We investigated the contribution of medium range weather forecasts with lead times up to 14 days to seasonal hydrologic prediction skill over the Conterminous United States (CONUS). Three different Ensemble Streamflow Prediction (ESP)-based experiments were performed for the period 1980-2003 using the Variable Infiltration Capacity (VIC) hydrology model to generate forecasts of monthly runoff and soil moisture (SM) at lead-1 (first month of the forecast period) to lead-3. The first experiment (ESP) used a resampling from the retrospective period 1980-2003 and represented full climatological uncertainty for the entire forecast period. In the second and third experiments, the first 14 days of each ESP ensemble member were replaced by either observations (perfect 14-day forecast) or by a deterministic 14-day weather forecast. We used Spearman rank correlations of forecasts and observations as the forecast skill score. We estimated the potential and actual improvement in baseline skill as the difference between the skill of experiments 2 and 3 relative to ESP, respectively. We found that useful runoff and SM forecast skill at lead-1 to -3 months can be obtained by exploiting medium range weather forecast skill in conjunction with the skill derived by the knowledge of initial hydrologic conditions. Potential improvement in baseline skill by using medium range weather forecasts, for runoff (SM) forecasts generally varies from 0 to 0.8 (0 to 0.5) as measured by differences in correlations, with actual improvement generally from 0 to 0.8 of the potential improvement. With some exceptions, most of the improvement in runoff is for lead-1 forecasts, although some improvement in SM was achieved at lead-2.

  18. Project Controls

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28

    Project controls are systems used to plan, schedule, budget, and measure the performance of a project/program. The cost estimation package is one of the documents that is used to establish the baseline for project controls. This chapter gives a brief description of project controls and the role the cost estimation package plays.

  19. Log-normal distribution based EMOS models for probabilistic wind speed forecasting

    E-Print Network [OSTI]

    Baran, Sándor

    2014-01-01

    Ensembles of forecasts are obtained from multiple runs of numerical weather forecasting models with different initial conditions and typically employed to account for forecast uncertainties. However, biases and dispersion errors often occur in forecast ensembles, they are usually under-dispersive and uncalibrated and require statistical post-processing. We present an Ensemble Model Output Statistics (EMOS) method for calibration of wind speed forecasts based on the log-normal (LN) distribution, and we also show a regime-switching extension of the model which combines the previously studied truncated normal (TN) distribution with the LN. Both presented models are applied to wind speed forecasts of the eight-member University of Washington mesoscale ensemble, of the fifty-member ECMWF ensemble and of the eleven-member ALADIN-HUNEPS ensemble of the Hungarian Meteorological Service, and their predictive performances are compared to those of the TN and general extreme value (GEV) distribution based EMOS methods an...

  20. Progress report to the National Science Foundation for the period July 1, 1980 to December 31, 1981 of the project on cartel behavior and exhaustible resource supply : a case study of the world oil market

    E-Print Network [OSTI]

    International Energy Studies Program (Massachusetts Institute of Technology)

    1982-01-01

    The M.I.T. World Oil Project has been developing forecasting methods that integrate the following considerations which influence investment in oil capacity and the level of oil exports: (1) the geology and microeconomics ...

  1. Coal supply/demand, 1980 to 2000. Task 3. Resource applications industrialization system data base. Final review draft. [USA; forecasting 1980 to 2000; sector and regional analysis

    SciTech Connect (OSTI)

    Fournier, W.M.; Hasson, V.

    1980-10-10

    This report is a compilation of data and forecasts resulting from an analysis of the coal market and the factors influencing supply and demand. The analyses performed for the forecasts were made on an end-use-sector basis. The sectors analyzed are electric utility, industry demand for steam coal, industry demand for metallurgical coal, residential/commercial, coal demand for synfuel production, and exports. The purpose is to provide coal production and consumption forecasts that can be used to perform detailed, railroad company-specific coal transportation analyses. To make the data applicable for the subsequent transportation analyses, the forecasts have been made for each end-use sector on a regional basis. The supply regions are: Appalachia, East Interior, West Interior and Gulf, Northern Great Plains, and Mountain. The demand regions are the same as the nine Census Bureau regions. Coal production and consumption in the United States are projected to increase dramatically in the next 20 years due to increasing requirements for energy and the unavailability of other sources of energy to supply a substantial portion of this increase. Coal comprises 85 percent of the US recoverable fossil energy reserves and could be mined to supply the increasing energy demands of the US. The NTPSC study found that the additional traffic demands by 1985 may be met by the railways by the way of improved signalization, shorter block sections, centralized traffic control, and other modernization methods without providing for heavy line capacity works. But by 2000 the incremental traffic on some of the major corridors was projected to increase very significantly and is likely to call for special line capacity works involving heavy investment.

  2. Central Wind Forecasting Programs in North America by Regional Transmission Organizations and Electric Utilities: Revised Edition

    SciTech Connect (OSTI)

    Rogers, J.; Porter, K.

    2011-03-01

    The report and accompanying table addresses the implementation of central wind power forecasting by electric utilities and regional transmission organizations in North America. The first part of the table focuses on electric utilities and regional transmission organizations that have central wind power forecasting in place; the second part focuses on electric utilities and regional transmission organizations that plan to adopt central wind power forecasting in 2010. This is an update of the December 2009 report, NREL/SR-550-46763.

  3. Hawaii Energy Strategy: Program guide. [Contains special sections on analytical energy forecasting, renewable energy resource assessment, demand-side energy management, energy vulnerability assessment, and energy strategy integration

    SciTech Connect (OSTI)

    Not Available

    1992-09-01

    The Hawaii Energy Strategy program, or HES, is a set of seven projects which will produce an integrated energy strategy for the State of Hawaii. It will include a comprehensive energy vulnerability assessment with recommended courses of action to decrease Hawaii's energy vulnerability and to better prepare for an effective response to any energy emergency or supply disruption. The seven projects are designed to increase understanding of Hawaii's energy situation and to produce recommendations to achieve the State energy objectives of: Dependable, efficient, and economical state-wide energy systems capable of supporting the needs of the people, and increased energy self-sufficiency. The seven projects under the Hawaii Energy Strategy program include: Project 1: Develop Analytical Energy Forecasting Model for the State of Hawaii. Project 2: Fossil Energy Review and Analysis. Project 3: Renewable Energy Resource Assessment and Development Program. Project 4: Demand-Side Management Program. Project 5: Transportation Energy Strategy. Project 6: Energy Vulnerability Assessment Report and Contingency Planning. Project 7: Energy Strategy Integration and Evaluation System.

  4. Short-term energy outlook: Quarterly projections. Second quarter 1995

    SciTech Connect (OSTI)

    1995-05-02

    The Energy Information Administration (EIA) prepares quarterly, short-term energy supply, demand, and price projections for publication in February, May, August, and November in the Short-Term Energy Outlook (Outlook). An annual supplement analyzes the performance of previous forecasts, compares recent projections with those of other forecasting services, and discusses current topics related to the short-term energy markets. (See Short-Term Energy Outlook Annual Supplement, DOE/EIA-0202.) The forecast period for this issue of the Outlook extends from the second quarter of 1995 through the fourth quarter of 1996. Values for the first quarter of 1995, however, are preliminary EIA estimates (for example, some monthly values for petroleum supply and disposition are derived in part from weekly data reported in the Weekly Petroleum Status Report) or are calculated from model simulations using the latest exogenous information available (for example, electricity sales and generation are simulated using actual weather data). The historical energy data, compiled into the second quarter 1995 version of the Short-Term Integrated Forecasting System (STIFS) database, are mostly EIA data regularly published in the Monthly Energy Review, Petroleum Supply Monthly, and other EIA publications. Minor discrepancies between the data in these publications and the historical data in this Outlook are due to independent rounding. The STIFS database is archived quarterly and is available from the National Technical Information Service.

  5. www.vics.org1 2008 Voluntary Interindustry Commerce Solutions (VICS) Association September 27, 2011

    E-Print Network [OSTI]

    Lin, Xiaodong

    . Production is already past its peak in 54 of the 65 largest oil-producing countries. New oil takes more and energy. Oil contributes about 40% of global energy production, but over 95% of all transport fuel. #12 (VICS) Association Time is Up! Production growth will eventually stop and production will peak

  6. A Public-Private-Academic Partnership to Advance Solar Power Forecasting

    Broader source: Energy.gov [DOE]

    The University Corporation for Atmospheric  Research (UCAR) will develop a solar power forecasting system that advances the state of the science through cutting-edge research.

  7. Risk analysis for species introductions: forecasting population growth of Eurasian ruffe

    E-Print Network [OSTI]

    Risk analysis for species introductions: forecasting population growth of Eurasian ruffe productivity (Leung et al. 2002). Risk-analysis methodology for intentional and unintentional introductions

  8. Evaluation of numerical weather prediction for intra-day solar forecasting in the continental United States

    E-Print Network [OSTI]

    Mathiesen, Patrick; Kleissl, Jan

    2011-01-01

    Numerical Weather Prediction (NWP), Solar Forecasting  1.   to more accurate prediction of solar  irradiance, given a to create daily solar electricity predictions accurate to 

  9. Value of Improved Wind Power Forecasting in the Western Interconnection (Poster)

    SciTech Connect (OSTI)

    Hodge, B.

    2013-12-01

    Wind power forecasting is a necessary and important technology for incorporating wind power into the unit commitment and dispatch process. It is expected to become increasingly important with higher renewable energy penetration rates and progress toward the smart grid. There is consensus that wind power forecasting can help utility operations with increasing wind power penetration; however, there is far from a consensus about the economic value of improved forecasts. This work explores the value of improved wind power forecasting in the Western Interconnection of the United States.

  10. Sixth Northwest Conservation and Electric Power Plan Appendix C: Demand Forecast

    E-Print Network [OSTI]

    Sixth Northwest Conservation and Electric Power Plan Appendix C: Demand Forecast Energy Demand .............................................................. 23 Electricity Demand Growth in the West............................................................................................................................... 28 Estimating Electricity Demand in Data Centers

  11. Report of the External Expert Peer Review Panel: DOE Benefits Forecasts

    SciTech Connect (OSTI)

    2009-01-18

    A report for the FY 2007 GPRA methodology review, highlighting the views of an external expert peer review panel on DOE benefits forecasts.

  12. Skill evaluation of water supply forecasts in western Sierra Nevada and Colorado River basins

    E-Print Network [OSTI]

    Harrison, Brent

    2014-01-01

    streamflow predictions for water supply forecasting in theAn assessment of seasonal water supply outlooks in thepaper, Dept. of Hydrology and Water Resources, University of

  13. Neural network based short-term load forecasting using weather compensation

    SciTech Connect (OSTI)

    Chow, T.W.S.; Leung, C.T. [City Univ. of Hong Kong, Kowloon (Hong Kong). Dept. of Electronic Engineering] [City Univ. of Hong Kong, Kowloon (Hong Kong). Dept. of Electronic Engineering

    1996-11-01

    This paper presents a novel technique for electric load forecasting based on neural weather compensation. The proposed method is a nonlinear generalization of Box and Jenkins approach for nonstationary time-series prediction. A weather compensation neural network is implemented for one-day ahead electric load forecasting. The weather compensation neural network can accurately predict the change of actual electric load consumption from the previous day. The results, based on Hong Kong Island historical load demand, indicate that this methodology is capable of providing a more accurate load forecast with a 0.9% reduction in forecast error.

  14. Generating day-of-operation probabilistic capacity scenarios from weather forecasts

    E-Print Network [OSTI]

    Buxi, Gurkaran

    2012-01-01

    user needs for convective weather forecasts," in AmericanJ. Andrews M. Weber, "Weather Information Requirements forInt. Conf. on Aviation Weather, Paris, France. [5] NASDAC. (

  15. Plan for the Joint Ensemble Forecast System (JEFS)

    E-Print Network [OSTI]

    Mass, Clifford F.

    by the High Performance Computing Modernization Program. Phase I will produce one of the DDC project

  16. Forecast of Contracting and Subcontracting Opportunities, Fiscal year 1995

    SciTech Connect (OSTI)

    Not Available

    1995-02-01

    Welcome to the US Department of Energy`s Forecast of Contracting and Subcontracting Opportunities. This forecast, which is published pursuant to Public Low 100--656, ``Business Opportunity Development Reform Act of 1988,`` is intended to inform small business concerns, including those owned and controlled by socially and economically disadvantaged individuals, and women-owned small business concerns, of the anticipated fiscal year 1995 contracting and subcontracting opportunities with the Department of Energy and its management and operating contractors and environmental restoration and waste management contractors. This document will provide the small business contractor with advance notice of the Department`s procurement plans as they pertain to small, small disadvantaged and women-owned small business concerns.Opportunities contained in the forecast support the mission of the Department, to serve as advocate for the notion`s energy production, regulation, demonstration, conservation, reserve maintenance, nuclear weapons and defense research, development and testing, when it is a national priority. The Department`s responsibilities include long-term, high-risk research and development of energy technology, the marketing of Federal power, and maintenance of a central energy data collection and analysis program. A key mission for the Department is to identify and reduce risks, as well as manage waste at more than 100 sites in 34 states and territories, where nuclear energy or weapons research and production resulted in radioactive, hazardous, and mixed waste contamination. Each fiscal year, the Department establishes contracting goals to increase contracts to small business concerns and meet our mission objectives.

  17. Streamflow forecasting for large-scale hydrologic systems 

    E-Print Network [OSTI]

    Awwad, Haitham Munir

    1991-01-01

    Farland (Member) J esTR ao (Head of Department) May 1991 ABSTRACT Streamflow Forecasting for Large-Scale Hydrologic Systems. (May 1991) Haitham Munir Awwad, B. S. , University of Jordan Chair of Advisory Committee: Dr. Juan B. Valdes An on-line streamflow... thankful to Dr. Ralph A. Wurbs and Dr. Marshall J. McFarland for their assistance on my advisory committee. Support for this thesis by the Department of Civil Engineering through the Engineering Excellence Fund, and by the U, S. Army Corps of Engineers...

  18. Inclusion of In-Situ Velocity Measurements into the UCSD Time-Dependent Tomography to Constrain and Better-Forecast Remote-Sensing Observations

    E-Print Network [OSTI]

    Jackson, B. V.; Hick, P. P.; Bisi, M. M.; Clover, J. M.; Buffington, A.

    2010-01-01

    time”. The solar-wind velocity forecast 24 hours ahead of72-hour forecast volume using the extant solar-wind model.forecast. In-situ data have been the primary measurements available for study of solar-wind

  19. Live Webinar on the Funding Opportunity for Wind Forecasting Improvement Project in Complex Terrain

    Broader source: Energy.gov [DOE]

    On April 21, 2014 from 3:00 to 5:00 PM EST the Wind Program will hold a live webinar to provide information to potential applicants for this Funding Opportunity Announcement. There is no cost to...

  20. Energy Forecast, ForskEL (Smart Grid Project) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, AlabamaETEC GmbH JumpEllenville, NewLtd EILEnergy Datadata TypeEnergyFocus Inc

  1. The Wind Forecast Improvement Project (WFIP): A Public/Private Partnership

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram: Report15 MeetingDevelopmentDepartmentof EnergyThe SunShotTheThefor

  2. Fitting and forecasting non-linear coupled dark energy

    E-Print Network [OSTI]

    Casas, Santiago; Baldi, Marco; Pettorino, Valeria; Vollmer, Adrian

    2015-01-01

    We consider cosmological models in which dark matter feels a fifth force mediated by the dark energy scalar field, also known as coupled dark energy. Our interest resides in estimating forecasts for future surveys like Euclid when we take into account non-linear effects, relying on new fitting functions that reproduce the non-linear matter power spectrum obtained from N-body simulations. We obtain fitting functions for models in which the dark matter-dark energy coupling is constant. Their validity is demonstrated for all available simulations in the redshift range $z=0-1.6$ and wave modes below $k=10 \\text{h/Mpc}$. These fitting formulas can be used to test the predictions of the model in the non-linear regime without the need for additional computing-intensive N-body simulations. We then use these fitting functions to perform forecasts on the constraining power that future galaxy-redshift surveys like Euclid will have on the coupling parameter, using the Fisher matrix method for galaxy clustering (GC) and w...

  3. Short-Term Load Forecasting by Feed-Forward Neural Networks Saied S. Sharif1

    E-Print Network [OSTI]

    Taylor, James H.

    , Department of Electrical and Computer Engineering, University of New Brunswick, Fredericton, NB, CANADA, E3B) is presented for the hourly load forecasting of the coming days. In this approach, 24 independent networks are used for the next day load forecast. Each network is utilized for the prediction of load at a specific

  4. 6.9 A NEW APPROACH TO FIRE WEATHER FORECASTING AT THE TULSA WFO

    E-Print Network [OSTI]

    6.9 A NEW APPROACH TO FIRE WEATHER FORECASTING AT THE TULSA WFO Sarah J. Taylor* and Eric D. Howieson NOAA/National Weather Service Tulsa, Oklahoma 1. INTRODUCTION The modernization of the National then providesthemeteorologistanopportunitytoadjustmodel forecasts for local biases and terrain effects. The Tulsa, Oklahoma WFO has been a test office

  5. FORECASTING EMPLOYMENT & POPULATION IN TEXAS: An Investigation on TELUM Requirements, Assumptions, and Results, including a Study

    E-Print Network [OSTI]

    Kockelman, Kara M.

    -convex, non-linear optimization problem, which maximizes the entropy and thus the likelihood of the data and then compared with the district-based forecasts. The comparison showed some stark differences. For example distribution of low income households in Austin was completely different for district- and TAZ-based forecasts

  6. MM5 Contrail Forecasting in Alaska Martin Stuefer, Xiande Meng and Gerd Wendler

    E-Print Network [OSTI]

    Stuefer, Martin

    MM5 Contrail Forecasting in Alaska Martin Stuefer, Xiande Meng and Gerd Wendler Geophysical Institute, University of Alaska, Fairbanks 1. Abstract Fifth-generation mesoscale model (MM5) is being used air. Algorithm input data are MM5 forecasted temperature and humidity values at defined pressure

  7. Forecasting the Growth of Green Power Markets in the United States

    E-Print Network [OSTI]

    Forecasting the Growth of Green Power Markets in the United States October 2001 · NREL/TP-620-99-GO10337 October 2001 · NREL/TP-620-30101 · LBNL-48611 Forecasting the Growth of Green Power Markets, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any

  8. 1 Ozone pollution forecasting 3 Herve Cardot, Christophe Crambes and Pascal Sarda.

    E-Print Network [OSTI]

    Crambes, Christophe

    Contents 1 Ozone pollution forecasting 3 Herv´e Cardot, Christophe Crambes and Pascal Sarda. 1;1 Ozone pollution forecasting using conditional mean and conditional quantiles with functional covariates Herv´e Cardot, Christophe Crambes and Pascal Sarda. 1.1 Introduction Prediction of Ozone pollution

  9. FORECASTING OF ATLANTIC TROPICAL CYCLONES USING A KILO-MEMBER ENSEMBLE

    E-Print Network [OSTI]

    Schubert, Wayne H.

    system using an efficient multigrid barotropic vorticity equation model (MBAR). Five perturbation classes Advisor Department Head ii #12;ABSTRACT OF THESIS FORECASTING OF ATLANTIC TROPICAL CYCLONES USING A KILO forecasts. These increases have been largely driven by improved numerical weather prediction models

  10. Seasonal Sensitivity on COBEL-ISBA Local Forecast System for Fog and Low Clouds

    E-Print Network [OSTI]

    Seasonal Sensitivity on COBEL-ISBA Local Forecast System for Fog and Low Clouds STEVIE ROQUELAURE of uncertainty that lead to dispersion. Key words: Local numerical forecast system, fog and low clouds, seasonal prediction system. 1. Introduction Accurate prediction of fog and low clouds is one of the main issues

  11. FORECAST OF ATLANTIC SEASONAL HURRICANE ACTIVITY AND LANDFALL STRIKE PROBABILITY FOR 2014

    E-Print Network [OSTI]

    Connors, Daniel A.

    1 FORECAST OF ATLANTIC SEASONAL HURRICANE ACTIVITY AND LANDFALL STRIKE PROBABILITY FOR 2014 We are higher than normal, and vertical wind shear throughout the Atlantic basin has been much stronger than-period average values. (as of 31 July 2014) By Philip J. Klotzbach1 and William M. Gray2 This forecast as well

  12. Forecast of solar ejecta arrival at 1 AU from radial speed S. Dasso1,2

    E-Print Network [OSTI]

    Dasso, Sergio

    Forecast of solar ejecta arrival at 1 AU from radial speed S. Dasso1,2 , N. Gopalswamy1 and A. Lara of the major requirements to forecast the space weather conditions in the terrestrial envi- ronment. Several properties, such as the background solar wind speed, and the density of the ejecta. However, only a few

  13. Global and multi-scale features of solar wind-magnetosphere coupling: From modeling to forecasting

    E-Print Network [OSTI]

    Sitnov, Mikhail I.

    Global and multi-scale features of solar wind-magnetosphere coupling: From modeling to forecasting issue. This paper presents a data-derived model of the solar wind-magnetosphere coupling that combines of solar wind-magnetosphere coupling: From modeling to forecasting, Geophys. Res. Lett., 31, L08802, doi:10

  14. Continuous Motion Planning for Information Forecast Han-Lim Choi and Jonathan P. How

    E-Print Network [OSTI]

    Continuous Motion Planning for Information Forecast Han-Lim Choi and Jonathan P. How Abstract-- This paper addresses planning of continuous paths for mobile sensors to improve long-term forecast of the process noise. Utilizing the spatial interpolation technique to relate the sensor movement

  15. 3D cloud detection and tracking system for solar forecast using multiple sky imagers

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Peng, Zhenzhou; Yu, Dantong; Huang, Dong; Heiser, John; Yoo, Shinjae; Kalb, Paul

    2015-06-23

    We propose a system for forecasting short-term solar irradiance based on multiple total sky imagers (TSIs). The system utilizes a novel method of identifying and tracking clouds in three-dimensional space and an innovative pipeline for forecasting surface solar irradiance based on the image features of clouds. First, we develop a supervised classifier to detect clouds at the pixel level and output cloud mask. In the next step, we design intelligent algorithms to estimate the block-wise base height and motion of each cloud layer based on images from multiple TSIs. Thus, this information is then applied to stitch images together intomore »larger views, which are then used for solar forecasting. We examine the system’s ability to track clouds under various cloud conditions and investigate different irradiance forecast models at various sites. We confirm that this system can 1) robustly detect clouds and track layers, and 2) extract the significant global and local features for obtaining stable irradiance forecasts with short forecast horizons from the obtained images. Finally, we vet our forecasting system at the 32-megawatt Long Island Solar Farm (LISF). Compared with the persistent model, our system achieves at least a 26% improvement for all irradiance forecasts between one and fifteen minutes.« less

  16. A Novel Forecasting System for Solar Particle Events and Flares (FORSPEF)

    E-Print Network [OSTI]

    Anastasiadis, Anastasios

    A Novel Forecasting System for Solar Particle Events and Flares (FORSPEF) A Papaioannou1 Energetic Particles (SEPs) result from intense solar eruptive events such as solar flares and coronal mass. In this work, we present FORSPEF (Forecasting Solar Particle Events and Flares), a novel dual system, designed

  17. Impact of forecasting error on the performance of capacitated multi-item production systems

    E-Print Network [OSTI]

    Xie, Jinxing

    in manufacturing planning and control. The quality of the master production schedule (MPS) can significantly managers optimize their production plans by selecting more reasonable forecasting methods and scheduling forecasting, order entry and production planning activities on the one hand, and the detailed planning

  18. Employment Forecasts for Ohio's Primary Metals Manufacturing and Administrative and Support Services Industries

    E-Print Network [OSTI]

    Illinois at Chicago, University of

    that are outperforming the industry average. Additional research shows that the industry is reactive to manufacturingEmployment Forecasts for Ohio's Primary Metals Manufacturing and Administrative and Support, the primary metals manufacturing industry (NAICS 331000) employment in Ohio is forecasted to decline by 21

  19. Calibrated Probabilistic Forecasting at the Stateline Wind Energy Center: The Regime-Switching

    E-Print Network [OSTI]

    Genton, Marc G.

    Calibrated Probabilistic Forecasting at the Stateline Wind Energy Center: The Regime at a wind energy site and fits a conditional predictive model for each regime. Geographically dispersed was applied to 2-hour-ahead forecasts of hourly average wind speed near the Stateline wind energy center

  20. Ensemble-based air quality forecasts: A multimodel approach applied to ozone

    E-Print Network [OSTI]

    Mallet, Vivien

    Ensemble-based air quality forecasts: A multimodel approach applied to ozone Vivien Mallet1 21 September 2006. [1] The potential of ensemble techniques to improve ozone forecasts ozone-monitoring networks. We found that several linear combinations of models have the potential

  1. Analysis of Variability and Uncertainty in Wind Power Forecasting: An International Comparison (Presentation)

    SciTech Connect (OSTI)

    Zhang, J.; Hodge, B.; Miettinen, J.; Holttinen, H.; Gomez-Lozaro, E.; Cutululis, N.; Litong-Palima, M.; Sorensen, P.; Lovholm, A.; Berge, E.; Dobschinski, J.

    2013-10-01

    This presentation summarizes the work to investigate the uncertainty in wind forecasting at different times of year and compare wind forecast errors in different power systems using large-scale wind power prediction data from six countries: the United States, Finland, Spain, Denmark, Norway, and Germany.

  2. Hourly Temperature Forecasting Using Abductive Networks R. E. Abdel-Aal

    E-Print Network [OSTI]

    Abdel-Aal, Radwan E.

    Review Copy 1 Hourly Temperature Forecasting Using Abductive Networks R. E. Abdel-Aal Center temperatures, Artificial intelligence. Dr. R. E. Abdel-Aal, P. O. Box 1759, KFUPM, Dhahran 31261 Saudi Arabia e; Khotanzad, Afkhami-Rohani & Maratukulam, 1998; Sharif & Taylor, 2000; Xu & Chen, 1999). Such forecasts

  3. Biennial Assessment of the Fifth Power Plan Interim Report on Electric Price Forecasts

    E-Print Network [OSTI]

    Biennial Assessment of the Fifth Power Plan Interim Report on Electric Price Forecasts Electricity prices in the Council's Power Plan are forecast using the AURORATM Electricity Market Model of the entire prices at several pricing points in the West, four of which are in the Pacific Northwest. The one most

  4. Tiree Energy Pulse: Exploring Renewable Energy Forecasts on the Edge of the Grid

    E-Print Network [OSTI]

    MacDonald, Mark

    Tiree Energy Pulse: Exploring Renewable Energy Forecasts on the Edge of the Grid Will Simm1 , Maria energy consumption with supply, and together built a prototype renewable energy forecast display. A num local renewable energy was expected to be available, despite having no financial in- centive to do so

  5. Improving Energy Use Forecast for Campus Micro-grids using Indirect Indicators Department of Computer Science

    E-Print Network [OSTI]

    Hwang, Kai

    peak demand periods using pricing incentives. Reliable building energy forecast models can help predictImproving Energy Use Forecast for Campus Micro-grids using Indirect Indicators Saima Aman prasanna@usc.edu Abstract--The rising global demand for energy is best addressed by adopting and promoting

  6. DEGREE DAYS AND WEATHER NOTES Weather Forecast: Chance of showers and storms through

    E-Print Network [OSTI]

    Isaacs, Rufus

    1 DEGREE DAYS AND WEATHER NOTES Weather Forecast: Chance of showers and storms through Thursday by ~225. Complete weather summaries and forecasts are at available enviroweather.msu.edu GDD (from March 1.isaacslab.ent.msu.edu/blueberryscout/blueberryscout.htm Contents · Crop Stages · Weather Notes · Disease Update · Scouting the Major Diseases of Highbush

  7. Data Assimilation in Weather Forecasting: A Case Study in PDE-Constrained Optimization

    E-Print Network [OSTI]

    Nocedal, Jorge

    Data Assimilation in Weather Forecasting: A Case Study in PDE-Constrained Optimization M. Fisher J weather prediction centers to produce the initial conditions for 7- to 10-day weather fore- casts, with particular reference to the system in operation at the European Centre for Medium-Range Weather Forecasts. 1

  8. NH13A: No-source tsunami forecasting for Alaska communities

    E-Print Network [OSTI]

    Tolkova, Elena

    NH13A: No-source tsunami forecasting for Alaska communities Dmitry Nicolsky (UAF) djnicolsky://nctr.pmel.noaa.gov/ Wave trains to Alaska: direction structure (time history) tsunami source R E S P and accurate regional tsunami forecasts · A deep-ocean detector and a coastal site can be connected

  9. Towards Long-lead Forecasting of Extreme Flood Events: A Data Mining Framework for Precipitation Cluster

    E-Print Network [OSTI]

    Ding, Wei

    Towards Long-lead Forecasting of Extreme Flood Events: A Data Mining Framework for Precipitation of precipitation events occurring over from several days to several weeks. Though precise short- term forecasting of precipitation clusters can be attempted by identifying persistent atmospheric regimes that are conducive

  10. Extendedrange seasonal hurricane forecasts for the North Atlantic with a hybrid dynamicalstatistical model

    E-Print Network [OSTI]

    Webster, Peter J.

    Extendedrange seasonal hurricane forecasts for the North Atlantic with a hybrid 20 September 2010; published 9 November 2010. [1] A hybrid forecast model for seasonal hurricane between the number of seasonal hurricane and the large scale variables from ECMWF hindcasts. The increase

  11. Probabilistic Precipitation Forecast Skill as a Function of Ensemble Size and Spatial Scale in a Convection-Allowing Ensemble

    E-Print Network [OSTI]

    Xue, Ming

    Probabilistic Precipitation Forecast Skill as a Function of Ensemble Size and Spatial Scale decreases. These results appear to reflect the broadening of the forecast probability distribution function lead time. They also illustrate that efficient allocation of computing resources for convection

  12. Comment on `Testing earthquake prediction methods: "The West Pacific short-term forecast of earthquakes with magnitude MwHRV >= 5.8"' by V. G. Kossobokov

    E-Print Network [OSTI]

    Kagan, Yan Y; Jackson, David D

    2006-01-01

    tensor solutions for 1087 earthquakes, Phys. Earth Planet.and time-independent earthquake forecast models for southernKagan, 1999. Testable earthquake forecasts for 1999, Seism.

  13. Load forecasting for active distribution networks Simone Paoletti, Member, IEEE, Marco Casini, Member, IEEE, Antonio Giannitrapani, Member, IEEE,

    E-Print Network [OSTI]

    Giannitrapani, Antonello

    forecasting for distribution networks with Active Demand (AD), a new concept in smart-grids introduced within

  14. Residential Sector End-Use Forecasting with EPRI-REEPS 2.1: Summary Input Assumptions and Results

    E-Print Network [OSTI]

    Koomey, Jonathan G.

    2010-01-01

    System (REEPS 2.1) , developed by the Electric Power Research Institute (EPRI), is a forecasting model

  15. Energy Conservation Program: Data Collection and Comparison with Forecasted Unit Sales for Five Lamp Types, Notice of Data Availability

    Broader source: Energy.gov [DOE]

    Energy Conservation Program: Data Collection and Comparison with Forecasted Unit Sales for Five Lamp Types, Notice of Data Availability

  16. Navy Mobility Fuels Forecasting System report: Navy fuel production in the year 2000

    SciTech Connect (OSTI)

    Hadder, G.R.; Davis, R.M.

    1991-09-01

    The Refinery Yield Model of the Navy Mobility Fuels Forecasting System has been used to study the feasibility and quality of Navy JP-5 jet fuel and F-76 marine diesel fuel for two scenarios in the year 2000. Both scenarios account for environmental regulations for fuels produced in the US and assume that Eastern Europe, the USSR, and the People`s Republic of China have free market economies. One scenario is based on business-as-usual market conditions for the year 2000. The second scenario is similar to first except that USSR crude oil production is 24 percent lower. During lower oil production in the USSR., there are no adverse effects on Navy fuel availability, but JP-5 is generally a poorer quality fuel relative to business-as-usual in the year 2000. In comparison with 1990, there are two potential problems areas for future Navy fuel quality. The first problem is increased aromaticity of domestically produced Navy fuels. Higher percentages of aromatics could have adverse effects on storage, handling, and combustion characteristics of both JP-5 and F-76. The second, and related, problem is that highly aromatic light cycle oils are blended into F-76 at percentages which promote fuel instability. It is recommended that the Navy continue to monitor the projected trend toward increased aromaticity in JP-5 and F-76 and high percentages of light cycle oils in F-76. These potential problems should be important considerations in research and development for future Navy engines.

  17. Navy Mobility Fuels Forecasting System report: Navy fuel production in the year 2000

    SciTech Connect (OSTI)

    Hadder, G.R.; Davis, R.M.

    1991-09-01

    The Refinery Yield Model of the Navy Mobility Fuels Forecasting System has been used to study the feasibility and quality of Navy JP-5 jet fuel and F-76 marine diesel fuel for two scenarios in the year 2000. Both scenarios account for environmental regulations for fuels produced in the US and assume that Eastern Europe, the USSR, and the People's Republic of China have free market economies. One scenario is based on business-as-usual market conditions for the year 2000. The second scenario is similar to first except that USSR crude oil production is 24 percent lower. During lower oil production in the USSR., there are no adverse effects on Navy fuel availability, but JP-5 is generally a poorer quality fuel relative to business-as-usual in the year 2000. In comparison with 1990, there are two potential problems areas for future Navy fuel quality. The first problem is increased aromaticity of domestically produced Navy fuels. Higher percentages of aromatics could have adverse effects on storage, handling, and combustion characteristics of both JP-5 and F-76. The second, and related, problem is that highly aromatic light cycle oils are blended into F-76 at percentages which promote fuel instability. It is recommended that the Navy continue to monitor the projected trend toward increased aromaticity in JP-5 and F-76 and high percentages of light cycle oils in F-76. These potential problems should be important considerations in research and development for future Navy engines.

  18. Thirty-Year Solid Waste Generation Maximum and Minimum Forecast for SRS

    SciTech Connect (OSTI)

    Thomas, L.C.

    1994-10-01

    This report is the third phase (Phase III) of the Thirty-Year Solid Waste Generation Forecast for Facilities at the Savannah River Site (SRS). Phase I of the forecast, Thirty-Year Solid Waste Generation Forecast for Facilities at SRS, forecasts the yearly quantities of low-level waste (LLW), hazardous waste, mixed waste, and transuranic (TRU) wastes generated over the next 30 years by operations, decontamination and decommissioning and environmental restoration (ER) activities at the Savannah River Site. The Phase II report, Thirty-Year Solid Waste Generation Forecast by Treatability Group (U), provides a 30-year forecast by waste treatability group for operations, decontamination and decommissioning, and ER activities. In addition, a 30-year forecast by waste stream has been provided for operations in Appendix A of the Phase II report. The solid wastes stored or generated at SRS must be treated and disposed of in accordance with federal, state, and local laws and regulations. To evaluate, select, and justify the use of promising treatment technologies and to evaluate the potential impact to the environment, the generic waste categories described in the Phase I report were divided into smaller classifications with similar physical, chemical, and radiological characteristics. These smaller classifications, defined within the Phase II report as treatability groups, can then be used in the Waste Management Environmental Impact Statement process to evaluate treatment options. The waste generation forecasts in the Phase II report includes existing waste inventories. Existing waste inventories, which include waste streams from continuing operations and stored wastes from discontinued operations, were not included in the Phase I report. Maximum and minimum forecasts serve as upper and lower boundaries for waste generation. This report provides the maximum and minimum forecast by waste treatability group for operation, decontamination and decommissioning, and ER activities.

  19. Natural Gas Prices Forecast Comparison--AEO vs. Natural Gas Markets

    SciTech Connect (OSTI)

    Wong-Parodi, Gabrielle; Lekov, Alex; Dale, Larry

    2005-02-09

    This paper evaluates the accuracy of two methods to forecast natural gas prices: using the Energy Information Administration's ''Annual Energy Outlook'' forecasted price (AEO) and the ''Henry Hub'' compared to U.S. Wellhead futures price. A statistical analysis is performed to determine the relative accuracy of the two measures in the recent past. A statistical analysis suggests that the Henry Hub futures price provides a more accurate average forecast of natural gas prices than the AEO. For example, the Henry Hub futures price underestimated the natural gas price by 35 cents per thousand cubic feet (11.5 percent) between 1996 and 2003 and the AEO underestimated by 71 cents per thousand cubic feet (23.4 percent). Upon closer inspection, a liner regression analysis reveals that two distinct time periods exist, the period between 1996 to 1999 and the period between 2000 to 2003. For the time period between 1996 to 1999, AEO showed a weak negative correlation (R-square = 0.19) between forecast price by actual U.S. Wellhead natural gas price versus the Henry Hub with a weak positive correlation (R-square = 0.20) between forecasted price and U.S. Wellhead natural gas price. During the time period between 2000 to 2003, AEO shows a moderate positive correlation (R-square = 0.37) between forecasted natural gas price and U.S. Wellhead natural gas price versus the Henry Hub that show a moderate positive correlation (R-square = 0.36) between forecast price and U.S. Wellhead natural gas price. These results suggest that agencies forecasting natural gas prices should consider incorporating the Henry Hub natural gas futures price into their forecasting models along with the AEO forecast. Our analysis is very preliminary and is based on a very small data set. Naturally the results of the analysis may change, as more data is made available.

  20. Effects of the Financial Crisis on Photovoltaics: An Analysis of Changes in Market Forecasts from 2008 to 2009

    SciTech Connect (OSTI)

    Bartlett, J. E.; Margolis, R. M.; Jennings, C. E.

    2009-09-01

    To examine how the financial crisis has impacted expectations of photovoltaic production, demand and pricing over the next several years, we surveyed the market forecasts of industry analysts that had issued projections in 2008 and 2009. We find that the financial crisis has had a significant impact on the PV industry, primarily through increasing the cost and reducing the availability of investment into the sector. These effects have been more immediately experienced by PV installations than by production facilities, due to the different types and duration of investments, and thus PV demand has been reduced by a greater proportion than PV production. By reducing demand more than production, the financial crisis has accelerated previously expected PV overcapacity and resulting price declines.

  1. ENERGY-SPECIFIC SOLAR RADIATION DATA FROM MSG: CURRENT STATUS OF THE HELIOSAT-3 PROJECT

    E-Print Network [OSTI]

    Heinemann, Detlev

    ENERGY-SPECIFIC SOLAR RADIATION DATA FROM MSG: CURRENT STATUS OF THE HELIOSAT-3 PROJECT Marion Solar energy technologies such as photovoltaics, solar thermal power plants, passive solar heating and operating of solar energy systems and as basis data set for electricity load forecasting. Both long term

  2. Development and Evaluation of a Coupled Photosynthesis-Based Gas Exchange Evapotranspiration Model (GEM) for Mesoscale Weather Forecasting Applications

    E-Print Network [OSTI]

    Niyogi, Dev

    (GEM) for Mesoscale Weather Forecasting Applications DEV NIYOGI Department of Agronomy, and Department form 13 May 2008) ABSTRACT Current land surface schemes used for mesoscale weather forecast models use model (GEM) as a land surface scheme for mesoscale weather forecasting model applications. The GEM

  3. J2.6 A SPATIAL DATA MINING APPROACH FOR VERIFICATION AND UNDERSTANDING OF ENSEMBLE PRECIPITATION FORECASTING

    E-Print Network [OSTI]

    Gruenwald, Le

    FORECASTING Xuechao Yu* 1,2 and Ming Xue 2,3 1 NOAA/NWS/WDTB Cooperative Institute for Mesoscale is placed on meso- scale ensemble forecasting in recent years [e.g., the Storm and Mesoscale Ensemble complicated for mesoscale quantitative precipitation forecast (QPF), since QPF is a discontinuous field. Em

  4. Towards a Self-Configurable Weather Research and Forecasting System Khalid Saleem, S. Masoud Sadjadi, Shu-Ching Chen

    E-Print Network [OSTI]

    Chen, Shu-Ching

    Towards a Self-Configurable Weather Research and Forecasting System Khalid Saleem, S. Masoud, Miami FL {ksale002, sadjadi,chens}@cs.fiu.edu ABSTRACT Current weather forecast and visualization systems lack the scalability to support numerous customized requests for weather research and forecasting

  5. project management

    National Nuclear Security Administration (NNSA)

    3%2A en Project Management and Systems Support http:www.nnsa.energy.govaboutusouroperationsapmprojectmanagementandsystemssupport

  6. Project Complete

    Broader source: Energy.gov [DOE]

    DOE has published its Record of Decision announcing and explaining DOE’s chosen project alternative and describing any commitments for mitigating potential environmental impacts. The NEPA process...

  7. Project Construction

    Broader source: Energy.gov [DOE]

    Integrating renewable energy into Federal new construction or major renovations requires effective structuring of the construction team and project schedule. This overview discusses key construction team considerations for renewable energy as well as timing and expectations for the construction phase. The project construction phase begins after a project is completely designed and the construction documents (100%) have been issued. Construction team skills and experience with renewable energy technologies are crucial during construction, as is how the integration of renewable energy affects the project construction schedule.

  8. Research Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    projects that involve UCSD faculty members and graduate students from the structural engineering (SE), mechanical and aerospace engineering (MAE), electrical and computer...

  9. Comparison of AEO 2009 Natural Gas Price Forecast to NYMEX Futures Prices

    SciTech Connect (OSTI)

    Bolinger, Mark; Wiser, Ryan

    2009-01-28

    On December 17, 2008, the reference-case projections from Annual Energy Outlook 2009 (AEO 2009) were posted on the Energy Information Administration's (EIA) web site. We at LBNL have, in the past, compared the EIA's reference-case long-term natural gas price forecasts from the AEO series to contemporaneous natural gas prices that can be locked in through the forward market, with the goal of better understanding fuel price risk and the role that renewables can play in mitigating such risk. As such, we were curious to see how the latest AEO reference-case gas price forecast compares to the NYMEX natural gas futures strip. This brief memo presents our findings. Note that this memo pertains only to natural gas fuel price risk (i.e., the risk that natural gas prices might differ over the life of a gas-fired generation asset from what was expected when the decision to build the gas-fired unit was made). We do not take into consideration any of the other distinct attributes of gas-fired and renewable generation, such as dispatchability (or lack thereof), differences in capital costs and O&M expenses, or environmental externalities. A comprehensive comparison of different resource types--which is well beyond the scope of this memo--would need to account for differences in all such attributes, including fuel price risk. Furthermore, our analysis focuses solely on natural-gas-fired generation (as opposed to coal-fired or nuclear generation, for example), for several reasons: (1) price volatility has been more of a concern for natural gas than for other fuels used to generate power; (2) for environmental and other reasons, natural gas has, in recent years, been the fuel of choice among power plant developers; and (3) natural gas-fired generators often set the market clearing price in competitive wholesale power markets throughout the United States. That said, a more-complete analysis of how renewables mitigate fuel price risk would also need to consider coal, uranium, and other fuel prices. Finally, we caution readers about drawing inferences or conclusions based solely on this memo in isolation: to place the information contained herein within its proper context, we strongly encourage readers interested in this issue to read through our previous, more-detailed studies, available at http://eetd.lbl.gov/ea/EMS/reports/53587.pdf or http://eetd.lbl.gov/ea/ems/reports/54751.pdf.

  10. Comparison of AEO 2008 Natural Gas Price Forecast to NYMEX Futures Prices

    SciTech Connect (OSTI)

    Bolinger, Mark A; Bolinger, Mark; Wiser, Ryan

    2008-01-07

    On December 12, 2007, the reference-case projections from Annual Energy Outlook 2008 (AEO 2008) were posted on the Energy Information Administration's (EIA) web site. We at LBNL have, in the past, compared the EIA's reference-case long-term natural gas price forecasts from the AEO series to contemporaneous natural gas prices that can be locked in through the forward market, with the goal of better understanding fuel price risk and the role that renewables can play in mitigating such risk. As such, we were curious to see how the latest AEO reference-case gas price forecast compares to the NYMEX natural gas futures strip. This brief memo presents our findings. Note that this memo pertains only to natural gas fuel price risk (i.e., the risk that natural gas prices might differ over the life of a gas-fired generation asset from what was expected when the decision to build the gas-fired unit was made). We do not take into consideration any of the other distinct attributes of gas-fired and renewable generation, such as dispatchability (or lack thereof) or environmental externalities. A comprehensive comparison of different resource types--which is well beyond the scope of this memo--would need to account for differences in all such attributes, including fuel price risk. Furthermore, our analysis focuses solely on natural-gas-fired generation (as opposed to coal-fired generation, for example), for several reasons: (1) price volatility has been more of a concern for natural gas than for other fuels used to generate power; (2) for environmental and other reasons, natural gas has, in recent years, been the fuel of choice among power plant developers (though its appeal has diminished somewhat as prices have increased); and (3) natural gas-fired generators often set the market clearing price in competitive wholesale power markets throughout the United States. That said, a more-complete analysis of how renewables mitigate fuel price risk would also need to consider coal and other fuel prices. Finally, we caution readers about drawing inferences or conclusions based solely on this memo in isolation: to place the information contained herein within its proper context, we strongly encourage readers interested in this issue to read through our previous, more-detailed studies, available at http://eetd.lbl.gov/ea/EMS/reports/53587.pdf or http://eetd.lbl.gov/ea/ems/reports/54751.pdf.

  11. RESEARCH PROJECTS February 13

    E-Print Network [OSTI]

    Schenato, Luca

    RESEARCH PROJECTS FP7 February 13 #12; FP7 COOPERATION #12; INTERNATIONAL RESEARCH PROJECTS FP7 COOPERATION ENERGY PROJECT ACRONYM: EFONET PROJECT TITLE: Energy foresight network PROJECT

  12. Variable Selection and Inference for Multi-period Forecasting Problems

    E-Print Network [OSTI]

    Pesaran, M Hashem; Pick, Andreas; Timmermann, Allan

    ?t,x?t)?. Multi-period forecasts of yt can then be obtained iteratively using a conventional VAR of the form zt = µz + ( Ap(L) Bq(L) Cr(L) Ds(L) ) zt?1 + ?t, (10) where p and q are the lag order of yt and xt in the equation for yt and r and s is the lag order... , i.e. Cr(L) and Bq(L) in particular. To deal with this issue, a conditional factor-augmentation approach can be used. In this approach, the large-dimensional xt-vector is condensed into a subset of factors, fˆ t, of dimension m < M , used to summarize...

  13. The Impact of Non-Gaussianity upon Cosmological Forecasts

    E-Print Network [OSTI]

    Repp, Andrew; Carron, Julien; Wolk, Melody

    2015-01-01

    The primary science driver for 3D galaxy surveys is their potential to constrain cosmological parameters. Forecasts of these surveys' effectiveness typically assume Gaussian statistics for the underlying matter density, despite the fact that the actual distribution is decidedly non-Gaussian. To quantify the effect of this assumption, we employ an analytic expression for the power spectrum covariance matrix to calculate the Fisher information for BAO-type model surveys. We find that for typical number densities, at $k_\\mathrm{max} = 0.5 h$ Mpc$^{-1}$, Gaussian assumptions significantly overestimate the information on all parameters considered, in some cases by up to an order of magnitude. However, after marginalizing over a six-parameter set, the form of the covariance matrix (dictated by $N$-body simulations) causes the majority of the effect to shift to the "amplitude-like" parameters, leaving the others virtually unaffected. We find that Gaussian assumptions at such wavenumbers can underestimate the dark en...

  14. Information Preservation and Weather Forecasting for Black Holes

    E-Print Network [OSTI]

    S. W. Hawking

    2014-01-22

    It has been suggested [1] that the resolution of the information paradox for evaporating black holes is that the holes are surrounded by firewalls, bolts of outgoing radiation that would destroy any infalling observer. Such firewalls would break the CPT invariance of quantum gravity and seem to be ruled out on other grounds. A different resolution of the paradox is proposed, namely that gravitational collapse produces apparent horizons but no event horizons behind which information is lost. This proposal is supported by ADS-CFT and is the only resolution of the paradox compatible with CPT. The collapse to form a black hole will in general be chaotic and the dual CFT on the boundary of ADS will be turbulent. Thus, like weather forecasting on Earth, information will effectively be lost, although there would be no loss of unitarity.

  15. Review of Variable Generation Forecasting in the West: July 2013 - March 2014

    SciTech Connect (OSTI)

    Widiss, R.; Porter, K.

    2014-03-01

    This report interviews 13 operating entities (OEs) in the Western Interconnection about their implementation of wind and solar forecasting. The report updates and expands upon one issued by NREL in 2012. As in the 2012 report, the OEs interviewed vary in size and character; the group includes independent system operators, balancing authorities, utilities, and other entities. Respondents' advice for other utilities includes starting sooner rather than later as it can take time to plan, prepare, and train a forecast; setting realistic expectations; using multiple forecasts; and incorporating several performance metrics.

  16. On-line economic optimization of energy systems using weather forecast information.

    SciTech Connect (OSTI)

    Zavala, V. M.; Constantinescu, E. M.; Krause, T.; Anitescu, M.

    2009-01-01

    We establish an on-line optimization framework to exploit weather forecast information in the operation of energy systems. We argue that anticipating the weather conditions can lead to more proactive and cost-effective operations. The framework is based on the solution of a stochastic dynamic real-time optimization (D-RTO) problem incorporating forecasts generated from a state-of-the-art weather prediction model. The necessary uncertainty information is extracted from the weather model using an ensemble approach. The accuracy of the forecast trends and uncertainty bounds are validated using real meteorological data. We present a numerical simulation study in a building system to demonstrate the developments.

  17. FEBRUARY 1999 119O ' C O N N O R E T A L . Forecast Verification for Eta Model Winds Using Lake Erie

    E-Print Network [OSTI]

    FEBRUARY 1999 119O ' C O N N O R E T A L . Forecast Verification for Eta Model Winds Using Lake Forecasting System (GLCFS) can be used to validate wind forecasts for the Great Lakes using observed weather prediction step-coordinate Eta Model are able to forecast winds for the Great Lakes region, using

  18. Machine Learning Enhancement of Storm-Scale Ensemble Probabilistic Quantitative Precipitation Forecasts

    E-Print Network [OSTI]

    Xue, Ming

    Machine Learning Enhancement of Storm-Scale Ensemble Probabilistic Quantitative Precipitation uncertainty. Machine learning methods can produce calibrated probabilistic forecasts from the raw ensemble and machine learning are working to address these challenges. Numerical weather prediction (NWP) models

  19. Short-Term Load Forecasting Error Distributions and Implications for Renewable Integration Studies: Preprint

    SciTech Connect (OSTI)

    Hodge, B. M.; Lew, D.; Milligan, M.

    2013-01-01

    Load forecasting in the day-ahead timescale is a critical aspect of power system operations that is used in the unit commitment process. It is also an important factor in renewable energy integration studies, where the combination of load and wind or solar forecasting techniques create the net load uncertainty that must be managed by the economic dispatch process or with suitable reserves. An understanding of that load forecasting errors that may be expected in this process can lead to better decisions about the amount of reserves necessary to compensate errors. In this work, we performed a statistical analysis of the day-ahead (and two-day-ahead) load forecasting errors observed in two independent system operators for a one-year period. Comparisons were made with the normal distribution commonly assumed in power system operation simulations used for renewable power integration studies. Further analysis identified time periods when the load is more likely to be under- or overforecast.

  20. The Peloton Approach : forecasting and strategic planning for emerging technologies : a case for RFID

    E-Print Network [OSTI]

    Thuvara, Vineet

    2006-01-01

    The RFID industry is going through a sea of change and at different levels within the industry. Forecasts have been done on different facets of the RFID/EPC industry like the market size or the possible financial returns. ...

  1. Evaluation of numerical weather prediction for intra-day solar forecasting in the continental United States

    E-Print Network [OSTI]

    Mathiesen, Patrick; Kleissl, Jan

    2011-01-01

    and validation.   Solar Energy.   73:5, 307? Perez, R. , irradiance forecasts for solar energy applications based on using satellite data.   Solar Energy 67:1?3, 139?150.  

  2. An adaptive nonlinear MOS scheme for precipitation forecasts using neural networks

    E-Print Network [OSTI]

    Hsieh, William

    An adaptive nonlinear MOS scheme for precipitation forecasts using neural networks Yuval, William W A novel neural network (NN) based scheme performs nonlinear Model Output Statistics (MOS) for generating

  3. Time Series Methods for ForecastingElectricityMarket Pricing Zoran Obradovic Kevin Tomsovic

    E-Print Network [OSTI]

    Obradovic, Zoran

    of traditional commodities, such as,oil or agricultural products. Clearly, assessing the effectivenessTime Series Methods for ForecastingElectricityMarket Pricing Zoran Obradovic Kevin Tomsovic PO Box

  4. Testing long-term earthquake forecasts: likelihood methods and error diagrams

    E-Print Network [OSTI]

    Kagan, Yan Y

    2009-01-01

    Jackson, 1991. Long-term earthquake clustering, Geophys. J.forecast- ing of earthquakes, J. geophys. Res. , 99(B7),G. M. & Y. Y. Kagan, 1992. Earthquake prediction and its

  5. Forecasting the S&P 500 index using time series analysis and simulation methods

    E-Print Network [OSTI]

    Chan, Eric Glenn

    2009-01-01

    The S&P 500 represents a diverse pool of securities in addition to Large Caps. A range of audiences are interested in the S&P 500 forecasts including investors, speculators, economists, government and researchers. The ...

  6. Integration of Behind-the-Meter PV Fleet Forecasts into Utility...

    Broader source: Energy.gov (indexed) [DOE]

    the spatial and temporal resolution of SolarAnywhere, an online satellite-based irradiance dataset, and adding output variability and PV performance forecasts to the Web-based...

  7. Examining Information Entropy Approaches as Wind Power Forecasting Performance Metrics: Preprint

    SciTech Connect (OSTI)

    Hodge, B. M.; Orwig, K.; Milligan, M.

    2012-06-01

    In this paper, we examine the parameters associated with the calculation of the Renyi entropy in order to further the understanding of its application to assessing wind power forecasting errors.

  8. Resource Information and Forecasting Group; Electricity, Resources, & Building Systems Integration (ERBSI) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-11-01

    Researchers in the Resource Information and Forecasting group at NREL provide scientific, engineering, and analytical expertise to help characterize renewable energy resources and facilitate the integration of these clean energy sources into the electricity grid.

  9. Freeway Short-Term Traffic Flow Forecasting by Considering Traffic Volatility Dynamics and Missing Data Situations 

    E-Print Network [OSTI]

    Zhang, Yanru

    2012-10-19

    traffic managers in seeking solutions to congestion problems on urban freeways and surface streets. There is new research interest in short-term traffic flow forecasting due to recent developments in ITS technologies. Previous research involves...

  10. Using Climate Predictions in Great Lakes Hydrologic Forecasts T. E. Croley II1

    E-Print Network [OSTI]

    Lakes water levels cause extensive flooding, erosion, and damage to shorelines, shipping, and hydropower the forecasting system utility to decision makers and potential impacts in practical applications. CLIMATE EFFECTS

  11. Analysis and Synthesis of Load Forecasting Data for Renewable Integration Studies: Preprint

    SciTech Connect (OSTI)

    Steckler, N.; Florita, A.; Zhang, J.; Hodge, B. M.

    2013-11-01

    As renewable energy constitutes greater portions of the generation fleet, the importance of modeling uncertainty as part of integration studies also increases. In pursuit of optimal system operations, it is important to capture not only the definitive behavior of power plants, but also the risks associated with systemwide interactions. This research examines the dependence of load forecast errors on external predictor variables such as temperature, day type, and time of day. The analysis was utilized to create statistically relevant instances of sequential load forecasts with only a time series of historic, measured load available. The creation of such load forecasts relies on Bayesian techniques for informing and updating the model, thus providing a basis for networked and adaptive load forecast models in future operational applications.

  12. Reverse supply chain forecasting and decision modeling for improved inventory management

    E-Print Network [OSTI]

    Petersen, Brian J. (Brian Jude)

    2013-01-01

    This thesis details research performed during a six-month engagement with Verizon Wireless (VzW) in the latter half of 2012. The key outcomes are a forecasting model and decision-support framework to improve management of ...

  13. Development of Load Forecasting Procedures for the Texas A&M University System 

    E-Print Network [OSTI]

    Baltazar-Cervantes, J. C.; Lim, C.; Haberl, J. S.; Turnder, W. D.; Claridge, D. E.

    2001-01-01

    This paper reports on the effort to develop load-forecasting procedures for the Texas A&M University System (TAMUS). Such procedures are being investigated to determine if the TAMUS can benefit from the pending deregulation ...

  14. Price forecasting for U.S. cattle feeders: which technique to apply? 

    E-Print Network [OSTI]

    Hicks, Geoff Cody

    1997-01-01

    the following:1. FAPRI3. AO S5. Univariate Time Series7. Composite 2. WASDE4. Futures Market6. Multivariate Time Series The characteristics of each of the aforementioned forecast techniques are explained within the appropriate chapter. Furthermore, it should...

  15. Radar-Derived Forecasts of Cloud-to-Ground Lightning Over Houston, Texas 

    E-Print Network [OSTI]

    Mosier, Richard Matthew

    2011-02-22

    -derived Products....26 1.6 Thesis Objectives and Hypothesis...........................................................................27 2. DATA AND METHODOLOGY..................................................................................29 2.1 Radar............................................................................................42 2.4.4 Storm Cell Position Forecast............................................................................44 2.5 Lightning Correlation..............................................................................................45 2.6 CG...

  16. Comparative forecasting performance of symmetric and asymmetric conditional volatility models of an exchange rate. 

    E-Print Network [OSTI]

    Balaban, Ercan

    2002-01-01

    The relative out-of-sample forecasting quality of symmetric and asymmetric conditional volatility models of an exchange rate differs according to the symmetric and asymmetric evaluation criteria as well as a regression-based ...

  17. Comparison of Various Deterministic Forecasting Techniques in Shale Gas Reservoirs with Emphasis on the Duong Method 

    E-Print Network [OSTI]

    Joshi, Krunal Jaykant

    2012-10-19

    There is a huge demand in the industry to forecast production in shale gas reservoirs accurately. There are many methods including volumetric, Decline Curve Analysis (DCA), analytical simulation and numerical simulation. Each one of these methods...

  18. FireGrid: Forecasting Fire Dynamics to Lead the Emergency Response 

    E-Print Network [OSTI]

    Rein, Guillermo

    2007-06-19

    The predictions of future events has fascinated humanity since the beginning of history. This attraction has permeated into science and engineering, where several disciplines has emerged providing the capability to forecast ...

  19. The Potential for Integrating GIS in Activity-Based Forecasting Models

    E-Print Network [OSTI]

    McNally, Michael G.

    1997-01-01

    3" (ENTERTAINMENT) Figure 4. A GIS-based Microsimulation ofDestinations Figure 5. A GIS-based Microsimulation ofPotential for Integrating GIS in Activity Based Forecasting

  20. Comparing Price Forecast Accuracy of Natural Gas Models and Futures Markets

    E-Print Network [OSTI]

    Wong-Parodi, Gabrielle; Dale, Larry; Lekov, Alex

    2005-01-01

    index.html. Appendix A.1 Natural Gas Price Data for FuturesError STEO Error A.1 Natural Gas Price Data for Futuresof forecasts for natural gas prices as reported by the

  1. QUALIFIED FORECAST OF ENSEMBLE POWER PRODUCTION BY SPATIALLY DISPERSED GRID-CONNECTED PV SYSTEMS

    E-Print Network [OSTI]

    Heinemann, Detlev

    , Energy Meteorology Group, D-26111 Oldenburg, Germany, elke.lorenz@uni-oldenburg.de + UniversityQUALIFIED FORECAST OF ENSEMBLE POWER PRODUCTION BY SPATIALLY DISPERSED GRID- CONNECTED PV SYSTEMS Schneider° * University of Oldenburg, Institute of Physics, Energy and Semiconductor Research Laboratory

  2. Evaluation of numerical weather prediction for intra-day solar forecasting in the continental United States

    E-Print Network [OSTI]

    Mathiesen, Patrick; Kleissl, Jan

    2011-01-01

    transport and  numerical weather modeling.   J.  Applied cross correlations.    Weather and Forecasting, 8:4, 401?of radiation for numerical weather prediction and climate 

  3. Tradeoff between Investments in Infrastructure and Forecasting when Facing Natural Disaster Risk 

    E-Print Network [OSTI]

    Kim, Seong D.

    2010-07-14

    Hurricane Katrina of 2005 was responsible for at least 81 billion dollars of property damage. In planning for such emergencies, society must decide whether to invest in the ability to evacuate more speedily or in improved forecasting technology...

  4. Developing a framework for dependable demand forecasts in the consumer packaged goods industry

    E-Print Network [OSTI]

    Uriarte, Daniel Antonio

    2010-01-01

    As a consumer packaged goods company, "Company X" manufactures products "make-to-stock"; therefore, having reliable demand forecasts is fundamental for successful planning and execution. Not isolated to "Company X" or to ...

  5. WindSENSE Project Summary: FY2009-2011

    SciTech Connect (OSTI)

    Kamath, C

    2011-09-25

    Renewable resources, such as wind and solar, are providing an increasingly larger percentage of our energy needs. To successfully integrate these intermittent resources into the power grid while maintaining its reliability, we need to better understand the characteristics and predictability of the variability associated with these power generation resources. WindSENSE, a three year project at Lawrence Livermore National Laboratory, considered the problem of scheduling wind energy on the grid from the viewpoint of the control room operator. Our interviews with operators at Bonneville Power Administration (BPA), Southern California Edison (SCE), and California Independent System Operator (CaISO), indicated several challenges to integrating wind power generation into the grid. As the percentage of installed wind power has increased, the variable nature of the generation has become a problem. For example, in the Bonneville Power Administration (BPA) balancing area, the installed wind capacity has increased from 700 MW in 2006-2007 to over 1300 MW in 2008 and more than 2600 MW in 2009. To determine the amount of energy to schedule for the hours ahead, operators typically use 0-6 hour ahead forecasts, along with the actual generation in the previous hours and days. These forecasts are obtained from numerical weather prediction (NWP) simulations or based on recent trends in wind speed in the vicinity of the wind farms. However, as the wind speed can be difficult to predict, especially in a region with complex terrain, the forecasts can be inaccurate. Complicating matters are ramp events, where the generation suddenly increases or decreases by a large amount in a short time (Figure 1, right panel). These events are challenging to predict, and given their short duration, make it difficult to keep the load and the generation balanced. Our conversations with BPA, SCE, and CaISO indicated that control room operators would like (1) more accurate wind power generation forecasts for use in scheduling and (2) additional information that can be exploited when the forecasts do not match the actual generation. To achieve this, WindSENSE had two areas of focus: (1) analysis of historical data for better insights, and (2) observation targeting for improved forecasts. The goal was to provide control room operators with an awareness of wind conditions and energy forecasts so they can make well-informed scheduling decisions, especially in the case of extreme events such as ramps.

  6. Using multi-layer models to forecast gas flow rates in tight gas reservoirs 

    E-Print Network [OSTI]

    Jerez Vera, Sergio Armando

    2007-04-25

    USING MULTI-LAYER MODELS TO FORECAST GAS FLOW RATES IN TIGHT GAS RESERVOIRS A Thesis by SERGIO ARMANDO JEREZ VERA Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements... for the degree of MASTER OF SCIENCE December 2006 Major Subject: Petroleum Engineering USING MULTI-LAYER MODELS TO FORECAST GAS FLOW RATES IN TIGHT GAS RESERVOIRS A Thesis by SERGIO ARMANDO JEREZ VERA Submitted...

  7. Short-term load forecasting using generalized regression and probabilistic neural networks in the electricity market

    SciTech Connect (OSTI)

    Tripathi, M.M.; Upadhyay, K.G.; Singh, S.N.

    2008-11-15

    For the economic and secure operation of power systems, a precise short-term load forecasting technique is essential. Modern load forecasting techniques - especially artificial neural network methods - are particularly attractive, as they have the ability to handle the non-linear relationships between load, weather temperature, and the factors affecting them directly. A test of two different ANN models on data from Australia's Victoria market is promising. (author)

  8. Investigating the Correlation Between Wind and Solar Power Forecast Errors in the Western Interconnection: Preprint

    SciTech Connect (OSTI)

    Zhang, J.; Hodge, B. M.; Florita, A.

    2013-05-01

    Wind and solar power generations differ from conventional energy generation because of the variable and uncertain nature of their power output. This variability and uncertainty can have significant impacts on grid operations. Thus, short-term forecasting of wind and solar generation is uniquely helpful for power system operations to balance supply and demand in an electricity system. This paper investigates the correlation between wind and solar power forecasting errors.

  9. U.S. Department of Energy Workshop Report: Solar Resources and Forecasting

    SciTech Connect (OSTI)

    Stoffel, T.

    2012-06-01

    This report summarizes the technical presentations, outlines the core research recommendations, and augments the information of the Solar Resources and Forecasting Workshop held June 20-22, 2011, in Golden, Colorado. The workshop brought together notable specialists in atmospheric science, solar resource assessment, solar energy conversion, and various stakeholders from industry and academia to review recent developments and provide input for planning future research in solar resource characterization, including measurement, modeling, and forecasting.

  10. Impact of Improved Solar Forecasts on Bulk Power System Operations in ISO-NE: Preprint

    SciTech Connect (OSTI)

    Brancucci Martinez-Anido, C.; Florita, A.; Hodge, B. M.

    2014-09-01

    The diurnal nature of solar power is made uncertain by variable cloud cover and the influence of atmospheric conditions on irradiance scattering processes. Its forecasting has become increasingly important to the unit commitment and dispatch process for efficient scheduling of generators in power system operations. This study examines the value of improved solar power forecasting for the Independent System Operator-New England system. The results show how 25% solar power penetration reduces net electricity generation costs by 22.9%.

  11. Impact of Improved Solar Forecasts on Bulk Power System Operations in ISO-NE (Presentation)

    SciTech Connect (OSTI)

    Brancucci Martinez-Anido, C.; Florita, A.; Hodge, B.M.

    2014-11-01

    The diurnal nature of solar power is made uncertain by variable cloud cover and the influence of atmospheric conditions on irradiance scattering processes. Its forecasting has become increasingly important to the unit commitment and dispatch process for efficient scheduling of generators in power system operations. This presentation is an overview of a study that examines the value of improved solar forecasts on Bulk Power System Operations.

  12. Wind Power Forecasting Error Frequency Analyses for Operational Power System Studies: Preprint

    SciTech Connect (OSTI)

    Florita, A.; Hodge, B. M.; Milligan, M.

    2012-08-01

    The examination of wind power forecasting errors is crucial for optimal unit commitment and economic dispatch of power systems with significant wind power penetrations. This scheduling process includes both renewable and nonrenewable generators, and the incorporation of wind power forecasts will become increasingly important as wind fleets constitute a larger portion of generation portfolios. This research considers the Western Wind and Solar Integration Study database of wind power forecasts and numerical actualizations. This database comprises more than 30,000 locations spread over the western United States, with a total wind power capacity of 960 GW. Error analyses for individual sites and for specific balancing areas are performed using the database, quantifying the fit to theoretical distributions through goodness-of-fit metrics. Insights into wind-power forecasting error distributions are established for various levels of temporal and spatial resolution, contrasts made among the frequency distribution alternatives, and recommendations put forth for harnessing the results. Empirical data are used to produce more realistic site-level forecasts than previously employed, such that higher resolution operational studies are possible. This research feeds into a larger work of renewable integration through the links wind power forecasting has with various operational issues, such as stochastic unit commitment and flexible reserve level determination.

  13. PROJECT MANGEMENT PLAN EXAMPLES

    Broader source: Energy.gov (indexed) [DOE]

    accelerates the project schedule and significantly reduces the project total life cycle cost. Current Baseline (FY99 MYWP) Revised Project Baseline Project Scope: ...

  14. Nonlinear Dynamics, Magnitude-Period Formula and Forecasts on Earthquake

    E-Print Network [OSTI]

    Yi-Fang Chang

    2008-02-02

    Based on the geodynamics, an earthquake does not take place until the momentum-energy excess a faulting threshold value of rock due to the movement of the fluid layer under the rock layer and the transport and accumulation of the momentum. From the nonlinear equations of fluid mechanics, a simplified nonlinear solution of momentum corresponding the accumulation of the energy could be derived. Otherwise, a chaos equation could be obtained, in which chaos corresponds to the earthquake, which shows complexity on seismology, and impossibility of exact prediction of earthquakes. But, combining the Carlson-Langer model and the Gutenberg-Richter relation, the magnitude-period formula of the earthquake may be derived approximately, and some results can be calculated quantitatively. For example, we forecast a series of earthquakes of 2004, 2009 and 2014, especially in 2019 in California. Combining the Lorenz model, we discuss the earthquake migration to and fro. Moreover, many external causes for earthquake are merely the initial conditions of this nonlinear system.

  15. Forecasting stock market returns over multiple time horizons

    E-Print Network [OSTI]

    Kroujiline, Dimitri; Ushanov, Dmitry; Sharov, Sergey V; Govorkov, Boris

    2015-01-01

    In this paper we seek to demonstrate the predictability of stock market returns and explain the nature of this return predictability. To this end, we further develop the news-driven analytic model of the stock market derived in Gusev et al. (2015). This enables us to capture market dynamics at various timescales and shed light on mechanisms underlying certain market behaviors such as transitions between bull- and bear markets and the self-similar behavior of price changes. We investigate the model and show that the market is nearly efficient on timescales shorter than one day, adjusting quickly to incoming news, but is inefficient on longer timescales, where news may have a long-lasting nonlinear impact on dynamics attributable to a feedback mechanism acting over these horizons. Using the model, we design the prototypes of algorithmic strategies that utilize news flow, quantified and measured, as the only input to trade on market return forecasts over multiple horizons, from days to months. The backtested res...

  16. The new Athens Center applied to Space Weather Forecasting

    SciTech Connect (OSTI)

    Mavromichalaki, H.; Sarlanis, C.; Souvatzoglou, G.; Mariatos, G.; Gerontidou, M.; Plainaki, C.; Papaioannou, A.; Tatsis, S. [University of Athens, Physics Department, Section of Nuclear and Particle Physics, Zografos 15771 Athens (Greece); Belov, A.; Eroshenko, E.; Yanke, V. [IZMIRAN, Russian Academy of Science, 1420092 Moscow (Russian Federation)

    2006-08-25

    The Sun provides most of the initial energy driving space weather and modulates the energy input from sources outside the solar system, but this energy undergoes many transformations within the various components of the solar-terrestrial system, which is comprised of the solar wind, magnetosphere and radiation belts, the ionosphere, and the upper and lower atmospheres of Earth. This is the reason why an Earth's based neutron monitor network can be used in order to produce a real time forecasting of space weather phenomena.Since 2004 a fully functioned new data analysis Center in real-time is in operation in Neutron Monitor Station of Athens University (ANMODAP Center) suitable for research applications. It provides a multi sided use of twenty three neutron monitor stations distributing in all world and operating in real-time given crucial information on space weather phenomena. In particular, the ANMODAP Center can give a preliminary alert of ground level enhancements (GLEs) of solar cosmic rays which can be registered around 20 to 30 minutes before the main part of lower energy particles. Therefore these energetic solar cosmic rays provide the advantage of forth warning. Moreover, the monitoring of the precursors of cosmic rays gives a forehand estimate on that kind of events should be expected (geomagnetic storms and/or Forbush decreases)

  17. Natural Priors, CMSSM Fits and LHC Weather Forecasts

    E-Print Network [OSTI]

    Ben C Allanach; Kyle Cranmer; Christopher G Lester; Arne M Weber

    2007-07-05

    Previous LHC forecasts for the constrained minimal supersymmetric standard model (CMSSM), based on current astrophysical and laboratory measurements, have used priors that are flat in the parameter tan beta, while being constrained to postdict the central experimental value of MZ. We construct a different, new and more natural prior with a measure in mu and B (the more fundamental MSSM parameters from which tan beta and MZ are actually derived). We find that as a consequence this choice leads to a well defined fine-tuning measure in the parameter space. We investigate the effect of such on global CMSSM fits to indirect constraints, providing posterior probability distributions for Large Hadron Collider (LHC) sparticle production cross sections. The change in priors has a significant effect, strongly suppressing the pseudoscalar Higgs boson dark matter annihilation region, and diminishing the probable values of sparticle masses. We also show how to interpret fit information from a Markov Chain Monte Carlo in a frequentist fashion; namely by using the profile likelihood. Bayesian and frequentist interpretations of CMSSM fits are compared and contrasted.

  18. Forecasting long-term gas production from shale

    E-Print Network [OSTI]

    Cueto-Felgueroso, Luis

    Oil and natural gas from deep shale formations are transforming the United States economy and its energy outlook. Back in 2005, the US Energy Information Administration published projections of United States natural gas ...

  19. Short-Term Energy Carbon Dioxide Emissions Forecasts August 2009

    Reports and Publications (EIA)

    2009-01-01

    Supplement to the Short-Term Energy Outlook. Short-term projections for U.S. carbon dioxide emissions of the three fossil fuels: coal, natural gas, and petroleum.

  20. World Energy Projection System model documentation

    SciTech Connect (OSTI)

    Hutzler, M.J.; Anderson, A.T.

    1997-09-01

    The World Energy Projection System (WEPS) was developed by the Office of Integrated Analysis and Forecasting within the Energy Information Administration (EIA), the independent statistical and analytical agency of the US Department of Energy. WEPS is an integrated set of personal computer based spreadsheets containing data compilations, assumption specifications, descriptive analysis procedures, and projection models. The WEPS accounting framework incorporates projections from independently documented models and assumptions about the future energy intensity of economic activity (ratios of total energy consumption divided by gross domestic product GDP), and about the rate of incremental energy requirements met by natural gas, coal, and renewable energy sources (hydroelectricity, geothermal, solar, wind, biomass, and other renewable resources). Projections produced by WEPS are published in the annual report, International Energy Outlook. This report documents the structure and procedures incorporated in the 1998 version of the WEPS model. It has been written to provide an overview of the structure of the system and technical details about the operation of each component of the model for persons who wish to know how WEPS projections are produced by EIA.