National Library of Energy BETA

Sample records for interim storage site

  1. Canister Storage Building and Interim Storage Area - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Canister Storage Building and Interim Storage Area About Us About Hanford Cleanup Hanford History Hanford Site Wide Programs Contact Us 100 Area 118-K-1 Burial Ground 200 Area 222-S Laboratory 242-A Evaporator 300 Area 324 Building 325 Building 400 Area/Fast Flux Test Facility 618-10 and 618-11 Burial Grounds 700 Area B Plant B Reactor C Reactor Canister Storage Building and Interim Storage Area Canyon Facilities Cold Test Facility D and DR Reactors Effluent Treatment Facility Environmental

  2. Wayne Interim Storage Site annual environmental report for calendar year 1991, Wayne, New Jersey. [Wayne Interim Storage Site

    SciTech Connect (OSTI)

    1992-09-01

    This document describes the envirormental monitoring program at the Wayne Interim Storage Site (WISS) and surrounding area, implementation of the program, and monitoring results for 1991. Environmental monitoring of WISS and surrounding area began in 1984 when Congress added the site to the US Department of Energy's (DOE) Formerly Utilized Sites Remedial Action Program (FUSRAP). FUSRAP is a DOE program to decontaminate or otherwise control sites where residual radioactive materials remain from the early years of the nation's atomic energy program or from commercial operations causing conditions that Congress has authorized DOE to remedy. WISS is a National Priorities List site. The environmental monitoring program at WISS includes sampling networks for radon and thoron concentrations in air; external gamma radiation exposure; and radium-226, radium-228, thorium-232, and total uranium concentrations in surface water, sediment, and groundwater. Several nonradiological parameters are also measured in groundwater. Monitoring results are compared with applicable Environmental Protection Agency standards, DOE derived concentration guides, dose limits, and other requirements in DOE orders. Environmental standards are established to protect public health and the environment.

  3. Hazelwood Interim Storage Site annual environmental report for calendar year 1991, Hazelwood, Missouri. [Hazelwood Interim Storage Site

    SciTech Connect (OSTI)

    Not Available

    1992-09-01

    This document describes the environmental monitoring program at the Hazelwood Interim Storage Site (HISS) and surrounding area, implementation of the program, and monitoring results for 1991. Environmental monitoring of HISS began in 1984 when the site was assigned to the US Department of Energy (DOE) as part of the decontamination research and development project authorized by Congress under the 1984 Energy and Water Development Appropriations Act. DOE placed responsibility for HISS under the Formerly Utilized Sites Remedial Action Program (FUSRAP), a DOE program to decontaminate or otherwise control sites where residual radioactive materials remain from the early years of the nation's atomic energy program or from commercial operations causing conditions that Congress has authorized DOE to remedy. The environmental monitoring program at HISS includes sampling networks for radon concentrations in air; external gamma radiation exposure; and radium-226, thorium-230, and total uranium concentrations in surface water, sediment, and groundwater. Additionally, several nonradiological parameters are measured in groundwater. Monitoring results are compared with applicable Environmental Protection Agency standards, DOE derived concentration guides (DCGs), dose limits, and other requirements in DOE orders. Environmental standards and DCGs are established to protect public health and the environment.

  4. Finding of no significant impact. Consolidation and interim storage of special nuclear material at Rocky Flats Environmental Technology Site

    SciTech Connect (OSTI)

    1995-06-01

    The Department of Energy (DOE) has prepared an environmental assessment (EA), DOE/EA -- 1060, for the consolidation, processing, and interim storage of Category I and II special nuclear material (SNM) in Building 371 at the Rocky Flats Environmental Technology Site (hereinafter referred to as Rocky Flats or Site), Golden, Colorado. The scope of the EA included alternatives for interim storage including the no action alternative, the construction of a new facility for interim storage at Rocky Flats, and shipment to other DOE facilities for interim storage.

  5. Lessons learned from the Siting Process of an Interim Storage Facility in Spain - 12024

    SciTech Connect (OSTI)

    Lamolla, Meritxell Martell

    2012-07-01

    On 29 December 2009, the Spanish government launched a site selection process to host a centralised interim storage facility for spent fuel and high-level radioactive waste. It was an unprecedented call for voluntarism among Spanish municipalities to site a controversial facility. Two nuclear municipalities, amongst a total of thirteen municipalities from five different regions, presented their candidatures to host the facility in their territories. For two years the government did not make a decision. Only in November 30, 2011, the new government elected on 20 November 2011 officially selected a non-nuclear municipality, Villar de Canas, for hosting this facility. This paper focuses on analysing the factors facilitating and hindering the siting of controversial facilities, in particular the interim storage facility in Spain. It demonstrates that involving all stakeholders in the decision-making process should not be underestimated. In the case of Spain, all regional governments where there were candidate municipalities willing to host the centralised interim storage facility, publicly opposed to the siting of the facility. (author)

  6. Hazelwood Interim Storage Site annual site environmental report: Calendar year 1986

    SciTech Connect (OSTI)

    Not Available

    1987-06-01

    During 1986, the environmental monitoring program was continued at the Hazelwood Interim Storage Site (HISS), a US Department of Energy (DOE) facility located in the City of Hazelwood, Missouri. Originally known as the Cotter Corporation site on Latty Avenue in Hazelwood, the HISS is presently used for the storage of soils contaminated with residual radioactive material. As part of the decontamination research and development project authorized by Congress under the 1984 Energy and Water Appropriations Act, remedial action and environmental monitoring program are being conducted at the site and at vicinity properties by Bechtel National, Inc., Project Management Contractor for FUSRAP. The monitoring program at the HISS measures radon gas concentrations in air; external gamma radiation levels; and uranium, radium, and thorium concentrations in surface water, groundwater, and sediment. To verify that the site is in compliance with the DOE radiation protection standard (100 mrem/yr) and assess its potential effect on public health, the radiation dose was calculated for the maximally exposed individual. Based on the scenario described in this report, the maximally exposed individual at the HISS would receive an annual external exposure approximately equivalent to 2% of the DOE radiation protection standard of 100 mrem/yr. This exposure is less than the exposure a person would receive during a round-trip flight from New York to Los Angeles. The cumulative dose to the population within an 80-km (50-mi) radius of the HISS that would result from radioactive materials present at the site would be indistinguishable from the dose that the same population would receive from naturally occurring radioactive sources. Results of the 1986 monitoring show that the HISS is in compliance with the DOE radiation protection standard. 11 refs., 6 figs., 10 tabs.

  7. Hazelwood interim storage site: Annual site environmental report, Hazelwood, Missouri, Calendar Year 1988

    SciTech Connect (OSTI)

    Not Available

    1989-04-01

    The monitoring program at Hazelwood Interim Storage Site (HISS) measures radon concentrations in air; external gamma radiation levels; and uranium, radium, and thorium, concentrations in surface water, groundwater and sediment. To verify that the site is in compliance with the DOE radiation protection standard (100 mrem/yr) and assess its potential effect or public health, the radiation dose was calculated for a hypothetical maximally exposed individual. Based on the scenario described in this report, this hypothetical individual at HISS would receive an annual external exposure approximately equivalent to 1 percent of the DOE radiation protection standard. This exposure is less than the exposure a person receives during a flight from New York to Los Angeles (because of the greater amounts of cosmic radiation at higher altitudes). The cumulative dose to the population within an 80-km (50-mi) radius of HISS that results from radioactive materials present at the site is indistinguishable from the dose that the same population receives from naturally occurring radioactive sources. The results of 1988 monitoring show that HISS is in compliance with the DOE radiation protection standard. 15 refs., 16 figs., 13 tabs.

  8. Maywood Interim Storage Site environmental report for calendar year 1989, Maywood, New Jersey

    SciTech Connect (OSTI)

    Not Available

    1990-05-01

    The environmental monitoring program, which began in 1984, was continued in 1989 at the Maywood Interim Storage Site (MISS), a US Department of Energy (DOE) facility located in the Borough of Maywood and the Township of Rochelle Park, New Jersey. MISS is currently used for storage of soils contaminated with low-level radioactivity. MISS is part of the Formerly Utilized Sites Remedial Action Program (FUSRAP), a DOE program to identify and decontaminate or otherwise control sites where residual radioactive materials are present. The monitoring program at MISS measures thoron and radon concentrations in air; external gamma radiation levels; and thorium, uranium, and radium concentrations in surface water, groundwater, and sediment. Additionally, several nonradiological parameters are measured in groundwater. The radiation dose was calculated for a hypothetical maximally exposed individual to verify that the site is in compliance with the DOE radiation protection standard (100 mrem/yr) and to assess its potential effects on public health. This report presents the results of the environmental monitoring program conducted at the US Department of Energy's (DOE) Maywood Interim Storage Site (MISS) during calendar year 1989. Environmental monitoring began at MISS in 1984. 19 refs., 23 figs., 14 tabs.

  9. Hazelwood Interim Storage Site: Annual site environment report, Calendar year 1985

    SciTech Connect (OSTI)

    Not Available

    1986-11-01

    The Hazelwood Interim Storage Site (HISS) is presently used for the storage of low-level radioactively contaminated soils. Monitoring results show that the HISS is in compliance with DOE Derived Concentration Guides (DCGs) and radiation protection standards. During 1985, annual average radon concentrations ranged from 10 to 23% of the DCG. The highest external dose rate at the HISS was 287 mrem/yr. The measured background dose rate for the HISS area is 99 mrem/yr. The highest average annual concentration of uranium in surface water monitored in the vicinity of the HISS was 0.7% of the DOE DCG; for /sup 226/Ra it was 0.3% of the applicable DCG, and for /sup 230/Th it was 1.7%. In groundwater, the highest annual average concentration of uranium was 12% of the DCG; for /sup 226/Ra it was 3.6% of the applicable DCG, and for /sup 230/Th it was 1.8%. While there are no concentration guides for stream sediments, the highest concentration of total uranium was 19 pCi/g, the highest concentration of /sup 226/Ra was 4 pCi/g, and the highest concentration of /sup 230/Th was 300 pCi/g. Radon concentrations, external gamma dose rates, and radionuclide concentrations in groundwater at the site were lower than those measured in 1984; radionuclide concentrations in surface water were roughly equivalent to 1984 levels. For sediments, a meaningful comparison with 1984 concentrations cannot be made since samples were obtained at only two locations and were only analyzed for /sup 230/Th. The calculated radiation dose to the maximally exposed individual at the HISS, considering several exposure pathways, was 5.4 mrem, which is 5% of the radiation protection standard.

  10. Hazelwood Interim Storage Site environmental monitoring summary, Hazelwood, Missouri, calendar year 1984

    SciTech Connect (OSTI)

    Not Available

    1985-07-01

    The Hazelwood Interim Storage Site (HISS) is located at 9200 Latty Avenue, Hazelwood, Missouri. The property on which the HISS is situated is owned by the Jarboe Realty and Investment Company and is leased to Futura Coatings, Inc. Radiological surveys in 1977 and 1982 indicated uranium and thorium contamination and elevated radiation levels in the soil on this property and several others in the immediate vicinity. As part of the research and development program authorized by Congress under the 1984 Energy and Water Appropriations Act, Bechtel National, Inc. (BNI) is conducting remedial action on-site and at the vicinity properties. The work is being performed as part of the US Department of Energy (DOE) Formerly Utilized Sites Remedial Action Program (FUSRAP). Jarboe Realty and Investment Company has agreed to permit DOE to store contaminated material from the FY 1984 and 1985 Latty Avenue cleanup on its property. The contaminated material will be added to the existing pile created during the earlier site cleanup. The pile will then be covered to prevent erosion or migration of contamination. The property will be maintained as the HISS by DOE until final disposition for these materials is determined. BNI is conducting a surveillance monitoring program at the HISS during the interim storage period to detect potential migration of contaminants from the storage pile via air, water, and sediment. This summary provides these monitoring data for calendar year 1984. 6 refs., 4 tabs.

  11. Interim Safe Storage of Plutonium Production Reactors at the US DOE Hanford Site - 13438

    SciTech Connect (OSTI)

    Schilperoort, Daryl L.; Faulk, Darrin

    2013-07-01

    Nine plutonium production reactors located on DOE's Hanford Site are being placed into an Interim Safe Storage (ISS) period that extends to 2068. The Environmental Impact Statement (EIS) for ISS [1] was completed in 1993 and proposed a 75-year storage period that began when the EIS was finalized. Remote electronic monitoring of the temperature and water level alarms inside the safe storage enclosure (SSE) with visual inspection inside the SSE every 5 years are the only planned operational activities during this ISS period. At the end of the ISS period, the reactor cores will be removed intact and buried in a landfill on the Hanford Site. The ISS period allows for radioactive decay of isotopes, primarily Co-60 and Cs-137, to reduce the dose exposure during disposal of the reactor cores. Six of the nine reactors have been placed into ISS by having an SSE constructed around the reactor core. (authors)

  12. The design of a Phase I non site-specific Centralized Interim Storage Facility

    SciTech Connect (OSTI)

    Stringer, J.; Kane, D.

    1997-10-28

    The Department of Energy (DOE), Office of Civilian Radioactive Waste Management (OCRWM) recently completed a Topical Safety Analysis Report (TSAR) for a Phase 1 non site specific Centralized Interim Storage Facility (CISF). The TSAR will be used in licensing the CISF when and if a site is designated. The combined Phase 1 and Phase 2 CISF will provide federal storage capability for 40,000 metric tons of uranium (MTU) Spent Nuclear Fuel (SNF) under the oversight of the DOE. The Phase 1 TSAR was submitted to the NRC on May 1, 1997 and is currently under review having been docketed on June 10, 1997. This paper generally describes the Phase 1 CISF design and its operations as presented in the CISF TSAR.

  13. Formerly Utilized Sites Remedial Action Program (FUSRAP) Hazelwood Interim Storage Site annual site environmental report. Calendar year 1985. [FUSRAP

    SciTech Connect (OSTI)

    Not Available

    1986-04-01

    The Hazelwood Interim Storage Site (HISS) is presently used for the storage of low-level radioactively contaminated soils. Monitoring results show that the HISS is in compliance with DOE concentration guides and radiation protection standards. Derived Concentration Guides (DCGs) represent the concentrations of radionuclides in air or water that would limit the radiation dose to 100 mrem/y. The applicable limits have been revised since the 1984 environmental monitoring report was published. The limits applied in 1984 were based on a radiation protection standard of 500 mrem/y; the limits applied for 1985 are based on a standard of 100 mrem/y. The HISS is part of the Formerly Utilized Sites Remedial Action Program (FUSRAP), a DOE program to decontaminate or otherwise control sites where low-level radioactive contamination remains from the early years of the nation's atomic energy program. To determine whether the site is in compliance with DOE standards, environmental measurements are expressed as percentages of the applicable DCG, while the calculated doses to the public are expressed as percentages of the applicable radiation protection standard. The monitoring program at the HISS measures uranium, radium, and thorium concentrations in surface water, groundwater, and sediment; radon gas concentrations in air; and external gamma radiation exposure rates. Potential radiation doses to the public are also calculated. The HISS was designated for remedial action under FUSRAP because radioactivity above applicable limits was found to exist at the site and its vicinity. Elevated levels of radiation still exist in areas where remedial action has not yet been completed.

  14. Hazelwood Interim Storage Site environmental report for calendar year 1989, Hazelwood, Missouri

    SciTech Connect (OSTI)

    Not Available

    1990-05-01

    The environmental monitoring program, begun in 1984, was continued during 1989 at the Hazelwood Interim Storage Site (HISS), a US Department of Energy (DOE) facility located in the City of Hazelwood, Missouri. HISS is currently used for storage of soils contaminated with residual radioactive material. HISS is part of the Formerly Utilized Sites Remedial Action Program (FUSRAP), a DOE program to decontaminate or otherwise control sites where residual radioactive material remains from the early years of the nation's atomic energy program or from commercial operations causing conditions that Congress has authorized DOE to remedy. The monitoring program at HISS measures radon concentrations in air; external gamma radiation levels; and uranium, radium, and thorium concentrations in surface water, groundwater, and sediment. Additionally, several nonradiological parameters are measured in groundwater. To verify that the site is in compliance with the DOE radiation protection standard (100 mrem/yr) and assess its potential effect on public health, the radiation dose was calculated for a hypothetical maximally exposed individual. This report presents the findings of the environmental monitoring conducted at HISS during calendar year 1989. 19 refs., 14 figs., 13 tabs.

  15. Environmental surveillance results for 1994 for the Hazelwood Interim Storage Site. FUSRAP technical memorandum Number 140-95-011

    SciTech Connect (OSTI)

    Szojka, S.

    1995-06-01

    This report presents analytical results and an interpretation of the results for samples collected as part of the 1994 environmental surveillance program for the Hazelwood Interim Storage Site (HISS) for the interim storage of radiologically contaminated soils. The discussion provides a comparative analysis of local background conditions and applicable regulatory criteria to results reported for external gamma radiation and for samples from the media investigated (air, surface water, sediment, groundwater, and stormwater). Results from the 1994 environmental surveillance program at HISS indicate that Department of Energy (DOE) guidelines were not exceeded for the calculated airborne particulate dose or for the monitored constituents.

  16. Hazelwood Interim Storage Site annual environmental report for calendar year 1990, Hazelwood, Missouri

    SciTech Connect (OSTI)

    Not Available

    1991-08-01

    Environmental monitoring of the US Department of Energy's (DOE) Hazelwood Interim Storage Site (HISS) and surrounding area began in 1984. This document describes the environmental monitoring program, the program's implementation, and the monitoring results for 1990. HISS was assigned to DOE as part of the decontamination research and development project authorized by Congress under the 1984 Energy and Water Appropriations Act. DOE placed responsibility for HISS under the Formerly Utilized Sites Remedial Action Program, a DOE program to decontaminate or otherwise control sites where residual radioactive materials remain from the early years of the nation's atomic energy program or from commercial operations causing conditions that Congress has authorized DOE to remedy. Environmental monitoring programs have been established at DOE-managed sites to confirm adherence to DOE environmental protection policies; to monitor the potential effects of site operations on human health and the environment; and to ensure compliance with legal and regulatory requirements imposed by federal, state, and local agencies. Environmental monitoring programs are developed and implemented on a site-specific basis to reflect facility characteristics, applicable regulations, hazard potential, quantities and concentrations of materials released, extent and use of affected land and water, and local public interest or concern.

  17. Environmental monitoring plan for the Niagara Falls Storage Site and the Interim Waste Containment Facility

    SciTech Connect (OSTI)

    Not Available

    1986-04-01

    As part of the US Department of Energy's (DOE) Surplus Facility Management Program (SFMP), the Niagara Falls Storage Site (NFSS) is undergoing remedial action. Vicinity properties adjacent to and near the site are being cleaned up as part of DOE's Formerly Utilized Sites Remedial Action Program (FUSRAP). These programs are a DOE effort to clean up low-level radioactive waste resulting from the early days of the nation's atomic energy program. Radioactively contaminated waste from these remedial action activities are being stored at the NFSS in an interim waste containment facility (IWCF). When the remedial actions and IWCF are completed in 1986, activities at the site will be limited to waste management. The monitoring program was prepared in accordance with DOE Order 5484.1 and is designed to determine the contribution of radioactivity from the site to the environs and to demonstrate compliance with applicable criteria. Major elements of this program will also supplement other monitoring requirements including the performance monitoring system for the IWCF and the closure/post-closure plan. Emphasis will be directed toward the sampling and analysis of groundwater, surface water, air and sediment for parameters which are known to be present in the material stored at the site. The monitoring program will employ a phased approach whereby the first 5 years of data will be evaluated, and the program will be reviewed and modified as necessary. 17 refs., 10 figs., 3 tabs.

  18. Hazelwood Interim Storage Site environmental surveillance report for calendar year 1993

    SciTech Connect (OSTI)

    Not Available

    1994-06-01

    This report summarizes the results of environmental surveillance activities conducted at the Hazelwood Interim Storage Site (HISS) during calendar year 1993. It includes an overview of site operations, the basis for monitoring for radioactive and non-radioactive parameters, summaries of environmental program at HISS, a summary of the results, and the calculated hypothetical radiation dose to the offsite population. Environmental surveillance activities were conducted in accordance with the site environmental monitoring plan, which describes the rationale and design criteria for the surveillance program, the frequency of sampling and analysis, specific sampling and analysis procedures, and quality assurance requirements. The US Department of Energy (DOE) began environmental monitoring of HISS in 1984, when the site was assigned to DOE by Congress through the energy and Water Development Appropriations Act and subsequent to DOE`s Formerly Utilized Sites Remediation Action Program (FUSRAP). Contamination at HISS originated from uranium processing work conducted at Mallinckrodt Chemical Works at the St. Louis Downtown Site (SLDS) from 1942 through 1957.

  19. Hazelwood Interim Storage Site environmental report for calendar year 1992, 9200 Latty Avenue, Hazelwood, Missouri

    SciTech Connect (OSTI)

    Not Available

    1993-05-01

    This report describes the environmental surveillance program at the Hazelwood Interim storage Site (HISS) and surrounding area, provides the results for 1992, and discusses applicable environmental standards and requirements with which the results were compared. HISS is located in eastern Missouri in the City of Hazelwood (St. Louis County) and occupies approximately 2.2 ha (5.5 acres). Environmental monitoring of HISS began in 1984 when the site was assigned to the US Department of Energy (DOE) as part of the decontamination research and development project authorized by Congress under the 1984 Energy and Water Development Appropriations Act. DOE placed responsibility for HISS under the Formerly Utilized Sites Remedial Action Program (FUSRAP), which was established to identify and decontaminate or otherwise control sites where residual radioactive materials remain from the early years of the nation`s atomic energy program or from commercial operations causing conditions that Congress has authorized DOE to remedy. In 1992 there were no environmental occurrences or unplanned contaminant releases as defined in DOE requirements and in the Superfund Amendment and Reauthorization Act (SARA) Title III of CERCLA.

  20. Hazelwood Interim Storage Site annual environmental report for calendar year 1991, Hazelwood, Missouri

    SciTech Connect (OSTI)

    Not Available

    1992-09-01

    This document describes the environmental monitoring program at the Hazelwood Interim Storage Site (HISS) and surrounding area, implementation of the program, and monitoring results for 1991. Environmental monitoring of HISS began in 1984 when the site was assigned to the US Department of Energy (DOE) as part of the decontamination research and development project authorized by Congress under the 1984 Energy and Water Development Appropriations Act. DOE placed responsibility for HISS under the Formerly Utilized Sites Remedial Action Program (FUSRAP), a DOE program to decontaminate or otherwise control sites where residual radioactive materials remain from the early years of the nation`s atomic energy program or from commercial operations causing conditions that Congress has authorized DOE to remedy. The environmental monitoring program at HISS includes sampling networks for radon concentrations in air; external gamma radiation exposure; and radium-226, thorium-230, and total uranium concentrations in surface water, sediment, and groundwater. Additionally, several nonradiological parameters are measured in groundwater. Monitoring results are compared with applicable Environmental Protection Agency standards, DOE derived concentration guides (DCGs), dose limits, and other requirements in DOE orders. Environmental standards and DCGs are established to protect public health and the environment.

  1. Environmental surveillance results for 1995 for the Hazelwood Interim Storage Site

    SciTech Connect (OSTI)

    McCague, J.C.

    1996-06-01

    This memorandum presents and interprets analytical results and measurements obtained as part of the 1995 environmental surveillance program for the Hazelwood Interim Storage Site (HISS) under the Formerly Utilized Sites Remedial Action Program (FUSRAP). The discussion provides a comparative analysis of average historical background conditions and applicable regulatory criteria to the 1995 results reported for external gamma radiation and for samples from the media investigated (air, surface water, sediment, groundwater, and stormwater). Results from the 1995 environmental surveillance program at HISS indicate that, with the exception of thorium-230 in streambed sediment, applicable US Department of Energy (DOE) guidelines were not exceeded for any measured parameter or for any dose calculated for potentially exposed members of the general public. In the absence of sediment guidelines, DOE soil guidelines serve as a standard of comparison for data obtained from stream bed sediment; two samples from downstream locations contained concentrations of thorium-230 that exceeded DOE soil guidelines. All stormwater sample results were in compliance with permit-specified limits. Other radioactive materials include radium 226 and natural uranium.

  2. Interim storage study report

    SciTech Connect (OSTI)

    Rawlins, J.K.

    1998-02-01

    High-level radioactive waste (HLW) stored at the Idaho Chemical Processing Plant (ICPP) in the form of calcine and liquid and liquid sodium-bearing waste (SBW) will be processed to provide a stable waste form and prepare the waste to be transported to a permanent repository. Because a permanent repository will not be available when the waste is processed, the waste must be stored at ICPP in an Interim Storage Facility (ISF). This report documents consideration of an ISF for each of the waste processing options under consideration.

  3. Colonie Interim Storage Site annual site environmental report for calendar year 1989, Colonie, New York

    SciTech Connect (OSTI)

    Not Available

    1990-05-01

    IN 1984, Congress assigned the cleanup of the National Lead (NL) Industries site in Colonie, New York, to the Department of Energy (DOE) as part of a decontamination research and development project under the 1984 Energy and Water Appropriations Act. DOE then included the site in the Formerly Utilized Sites Remedial Action Program (FUSRAP), an existing DOE program to decontaminate or otherwise control sites where residual radioactive materials remain for the early years of the nation's atomic energy program. DOE instituted an environmental monitoring program at the site in 1984. Results are presented annually in reports such as this. Under FUSRAP, the first environmental monitoring report for this site presented data for calendar year 1984. This report presents the findings of the environmental monitoring program conducted during calendar year 1989. 16 refs., 17 figs., 14 tabs.

  4. Safe interim storage of Hanford tank wastes, draft environmental impact statement, Hanford Site, Richland, Washington

    SciTech Connect (OSTI)

    Not Available

    1994-07-01

    This Draft EIS is prepared pursuant to the National Environmental Policy Act (NEPA) and the Washington State Environmental Policy Act (SEPA). DOE and Ecology have identified the need to resolve near-term tank safety issues associated with Watchlist tanks as identified pursuant to Public Law (P.L.) 101-510, Section 3137, ``Safety Measures for Waste Tanks at Hanford Nuclear Reservation,`` of the National Defense Authorization Act for Fiscal Year 1991, while continuing to provide safe storage for other Hanford wastes. This would be an interim action pending other actions that could be taken to convert waste to a more stable form based on decisions resulting from the Tank Waste Remediation System (TWRS) EIS. The purpose for this action is to resolve safety issues concerning the generation of unacceptable levels of hydrogen in two Watchlist tanks, 101-SY and 103-SY. Retrieving waste in dilute form from Tanks 101-SY and 103-SY, hydrogen-generating Watchlist double shell tanks (DSTs) in the 200 West Area, and storage in new tanks is the preferred alternative for resolution of the hydrogen safety issues.

  5. EIS-0212: Safe Interim Storage of Hanford Tank Wastes, Hanford Site, Richland, WA

    Office of Energy Efficiency and Renewable Energy (EERE)

    This environmental impact statement asseses Department of Energy and Washington State Department of Ecology maintanence of safe storage of high-level radioactive wastes currently stored in the older single-shell tanks, the Watchlist Tank 101-SY, and future waste volumes associated with tank farm and other Hanford facility operations, including a need to provide a modern safe, reliable, and regulatory-compliant replacement cross-site transfer capability. The purpose of this action is to prevent uncontrolled releases to the environment by maintaining safe storage of high-level tank wastes.

  6. Report on the performance monitoring system for the interim waste containment at the Niagara Falls Storage Site, Lewiston, New York

    SciTech Connect (OSTI)

    Not Available

    1985-10-01

    The Niagara Falls Storage Site (NFSS) is an interim storage site for low-level radioactive waste, established by the US Department of Energy (DOE) at Lewiston, New York. The waste containment structure for encapsulating low-level radioactive waste at the NFSS has been designed to minimize infiltration of rainfall, prevent pollution of groundwater, preclude formation of leachate, and prevent radon emanation. Accurately determining the performance of the main engineered elements of the containment structure will be important in establishing confidence in the ability of the structure to retain the wastes. For this purpose, a waste containment performance monitoring system has been developed to verify that these elements are functioning as intended. The key objective of the performance monitoring system is the early detection of trends that could be indicative of weaknesses developing in the containment structure so that corrective action can be taken before the integrity of the structure is compromised. Consequently, subsurface as well as surface monitoring techniques will be used. After evaluating several types of subsurface instrumentation, it was determined that vibrating wire pressure transducers, in combination with surface monitoring techniques, would satisfactorily monitor the parameters of concern, such as water accumulation inside the containment facility, waste settlement, and shrinkage of the clay cover. Surface monitoring will consist of topographic surveys based on predetermined gridlines, walkover surveys, and aerial photography to detect vegetative stress or other changes not evident at ground level. This report details the objectives of the performance monitoring system, identifies the elements of the containment design whose performance will be monitored, describes the monitoring system recommended, and outlines the costs associated with the monitoring system. 5 refs., 4 figs., 3 tabs.

  7. Environmental audit of the Maywood Site: Formerly Utilized Sites Remedial Action Program, Maywood Interim Storage Site vicinity properties

    SciTech Connect (OSTI)

    Not Available

    1990-12-01

    This report presents the results of the Environmental Audit of the Maywood Site managed by the Formerly Utilized Sites Remedial Action Program (FUSRAP). The Audit was carried out from November 7 through 16, 1990. The Audit Team found overall technical competence and knowledge of management and staff to be excellent. This applies to DOE as well as to Bechtel National, Incorporated (BNI). In particular, there was excellent knowledge of federal, state, and local environmental regulations, as well as analysis for applicability of these regulations to FUSRAP. Project management of the Maywood Site is also excellent. BNI and DOE project staff have made frequent contact with members of the community, and all removal actions and remedial investigation activities have been planned, scheduled, and accomplished with competence and attention to total quality principles. To date, all actions taken for the Maywood Site cleanup have been completed ahead of schedule and on or under budget. Weakness noted include self-assessment efforts by DOE, failure to fully implement DOE Order requirements throughout the program, and some discrepancies in formally documenting and reviewing procedures. 7 figs., 10 tabs.

  8. System Specification for Immobilized High-Level Waste Interim Storage

    SciTech Connect (OSTI)

    CALMUS, R.B.

    2000-12-27

    This specification establishes the system-level functional, performance, design, interface, and test requirements for Phase 1 of the IHLW Interim Storage System, located at the Hanford Site in Washington State. The IHLW canisters will be produced at the Hanford Site by a Selected DOE contractor. Subsequent to storage the canisters will be shipped to a federal geologic repository.

  9. Wayne Interim Storage Site environmental report for calendar year 1992, 868 Black Oak Ridge Road, Wayne, New Jersey. Formerly Utilized Sites Remedial Action Program (FUSRAP)

    SciTech Connect (OSTI)

    Not Available

    1993-05-01

    This report describes the environmental surveillance program at the Wayne Interim Storage Site (WISS) and provides the results for 1992. The fenced, site, 32 km (20 mi) northwest of Newark, New Jersey, was used between 1948 and 1971 for commercial processing of monazite sand to separate natural radioisotopes - predominantly thorium. Environmental surveillance of WISS began in 1984 in accordance with Department of Energy (DOE) Order 5400.1 when Congress added the site to DOE`s Formerly Utilized Sites Remedial Action Program (FUSRAP). The environmental surveillance program at WISS includes sampling networks for radon and thoron in air; external gamma radiation exposure; radium-226, radium-228, thorium-230, thorium-232, total uranium, and several chemicals in surface water and sediment; and total uranium, radium-226, radium-228, thorium-230, thorium-232, and organic and inorganic chemicals in groundwater. Monitoring results are compared with applicable Environmental Protection Agency (EPA) and state standards, DOE derived concentration guides (DCGs), dose limits, and other DOE requirements. This monitoring program assists in fulfilling the DOE policy of measuring and monitoring effluents from DOE activities and calculating hypothetical doses. Results for environmental surveillance in 1992 show that the concentrations of all radioactive and most chemical contaminants were below applicable standards.

  10. Report on interim storage of spent nuclear fuel

    SciTech Connect (OSTI)

    Not Available

    1993-04-01

    The report on interim storage of spent nuclear fuel discusses the technical, regulatory, and economic aspects of spent-fuel storage at nuclear reactors. The report is intended to provide legislators state officials and citizens in the Midwest with information on spent-fuel inventories, current and projected additional storage requirements, licensing, storage technologies, and actions taken by various utilities in the Midwest to augment their capacity to store spent nuclear fuel on site.

  11. Design review report FFTF interim storage cask

    SciTech Connect (OSTI)

    Scott, P.L.

    1995-01-03

    Final Design Review Report for the FFTF Interim Storage Cask. The Interim Storage Cask (ISC) will be used for long term above ground dry storage of FFTF irradiated fuel in Core Component Containers (CCC)s. The CCC has been designed and will house assemblies that have been sodium washed in the IEM Cell. The Solid Waste Cask (SWC) will transfer a full CCC from the IEM Cell to the RSB Cask Loading Station where the ISC will be located to receive it. Once the loaded ISC has been sealed at the RSB Cask Loading Station, it will be transferred by facility crane to the DSWC Transporter. After the ISC has been transferred to the Interim Storage Area (ISA), which is yet to be designed, a mobile crane will be used to place the ISC in its final storage location.

  12. U.S. Department of Energy Provides Report to Congress on the Demonstration of the Interim Storage of Spent Nuclear Fuel from Decommissioned Nuclear Power Reactor Sites

    Broader source: Energy.gov [DOE]

    Washington D.C. - The U.S. Department of Energy (DOE) today released its Report to Congress on the Demonstration of the Interim Storage of Spent Nuclear Fuel from Decommissioned Nuclear Power...

  13. Permitting plan for the high-level waste interim storage

    SciTech Connect (OSTI)

    Deffenbaugh, M.L.

    1997-04-23

    This document addresses the environmental permitting requirements for the transportation and interim storage of solidified high-level waste (HLW) produced during Phase 1 of the Hanford Site privatization effort. Solidified HLW consists of canisters containing vitrified HLW (glass) and containers that hold cesium separated during low-level waste pretreatment. The glass canisters and cesium containers will be transported to the Canister Storage Building (CSB) in a U.S. Department of Energy (DOE)-provided transportation cask via diesel-powered tractor trailer. Tri-Party Agreement (TPA) Milestone M-90 establishes a new major milestone, and associated interim milestones and target dates, governing acquisition and/or modification of facilities necessary for: (1) interim storage of Tank Waste Remediation Systems (TWRS) immobilized HLW (IHLW) and other canistered high-level waste forms; and (2) interim storage and disposal of TWRS immobilized low-activity tank waste (ILAW). An environmental requirements checklist and narrative was developed to identify the permitting path forward for the HLW interim storage (HLWIS) project (See Appendix B). This permitting plan will follow the permitting logic developed in that checklist.

  14. Burn site groundwater interim measures work plan.

    SciTech Connect (OSTI)

    Witt, Jonathan L.; Hall, Kevin A.

    2005-05-01

    This Work Plan identifies and outlines interim measures to address nitrate contamination in groundwater at the Burn Site, Sandia National Laboratories/New Mexico. The New Mexico Environment Department has required implementation of interim measures for nitrate-contaminated groundwater at the Burn Site. The purpose of interim measures is to prevent human or environmental exposure to nitrate-contaminated groundwater originating from the Burn Site. This Work Plan details a summary of current information about the Burn Site, interim measures activities for stabilization, and project management responsibilities to accomplish this purpose.

  15. Realization of the German Concept for Interim Storage of Spent Nuclear Fuel - Current Situation and Prospects

    SciTech Connect (OSTI)

    Thomauske, B. R.

    2003-02-25

    The German government has determined a phase out of nuclear power. With respect to the management of spent fuel it was decided to terminate transports to reprocessing plants by 2005 and to set up interim storage facilities on power plant sites. This paper gives an overview of the German concept for spent fuel management focused on the new on-site interim storage concept and the applied interim storage facilities. Since the end of the year 1998, the utilities have applied for permission of on-site interim storage in 13 storage facilities and 5 storage areas; one application for the interim storage facility Stade was withdrawn due to the planned final shut down of Stade nuclear power plant in autumn 2003. In 2001 and 2002, 3 on-site storage areas and 2 on-site storage facilities for spent fuel were licensed by the Federal Office for Radiation Protection (BfS). A main task in 2002 and 2003 has been the examination of the safety and security of the planned interim storage facilities and the verification of the licensing prerequisites. In the aftermath of September 11, 2001, BfS has also examined the attack with a big passenger airplane. Up to now, these aircraft crash analyses have been performed for three on-site interim storage facilities; the fundamental results will be presented. It is the objective of BfS to conclude the licensing procedures for the applied on-site interim storage facilities in 2003. With an assumed construction period for the storage buildings of about two years, the on-site interim storage facilities could then be available in the year 2005.

  16. 105-H Reactor Interim Safe Storage Project Final Report

    SciTech Connect (OSTI)

    E.G. Ison

    2008-11-08

    The following information documents the decontamination and decommissioning of the 105-H Reactor facility, and placement of the reactor core into interim safe storage. The D&D of the facility included characterization, engineering, removal of hazardous and radiologically contaminated materials, equipment removal, decontamination, demolition of the structure, and restoration of the site. The ISS work also included construction of the safe storage enclosure, which required the installation of a new roofing system, power and lighting, a remote monitoring system, and ventilation components.

  17. Conceptual design report for immobilized high-level waste interim storage facility (Phase 1)

    SciTech Connect (OSTI)

    Burgard, K.C.

    1998-06-02

    The Hanford Site Canister Storage Building (CSB Bldg. 212H) will be utilized to interim store Phase 1 HLW products. Project W-464, Immobilized High-Level Waste Interim Storage, will procure an onsite transportation system and retrofit the CSB to accommodate the Phase 1 HLW products. The Conceptual Design Report establishes the Project W-464 technical and cost basis.

  18. Design report for the interim waste containment facility at the Niagara Falls Storage Site. [Surplus Facilities Management Program

    SciTech Connect (OSTI)

    Not Available

    1986-05-01

    Low-level radioactive residues from pitchblende processing and thorium- and radium-contaminated sand, soil, and building rubble are presently stored at the Niagara Falls Storage Site (NFSS) in Lewiston, New York. These residues and wastes derive from past NFSS operations and from similar operations at other sites in the United States conducted during the 1940s by the Manhattan Engineer District (MED) and subsequently by the Atomic Energy Commission (AEC). The US Department of Energy (DOE), successor to MED/AEC, is conducting remedial action at the NFSS under two programs: on-site work under the Surplus Facilities Managemnt Program and off-site cleanup of vicinity properties under the Formerly Utilized Sites Remedial Action Program. On-site remedial action consists of consolidating the residues and wastes within a designated waste containment area and constructing a waste containment facility to prevent contaminant migration. The service life of the system is 25 to 50 years. Near-term remedial action construction activities will not jeopardize or preclude implementation of any other remedial action alternative at a later date. Should DOE decide to extend the service life of the system, the waste containment area would be upgraded to provide a minimum service life of 200 years. This report describes the design for the containment system. Pertinent information on site geology and hydrology and on regional seismicity and meteorology is also provided. Engineering calculations and validated computer modeling studies based on site-specific and conservative parameters confirm the adequacy of the design for its intended purposes of waste containment and environmental protection.

  19. Technical bases for interim storage of spent nuclear fuel

    SciTech Connect (OSTI)

    Johnson, A.B. Jr.

    1981-06-01

    The experience base for water storage of spent nuclear fuel has evolved since 1943. The technology base includes licensing documentation, standards, technology studies, pool operator experience, and documentation from public hearings. That base reflects a technology which is largely successful and mundane. It projects probable satisfactory water storage of spent water reactor fuel for several decades. Interim dry storage of spent water reactor fuel is not yet licensed in the US, but a data base and documentation have developed. There do not appear to be technological barriers to interim dry storage, based on demonstrations with irradiated fuel. Water storage will continue to be a part of spent fuel management at reactors. Whether dry storage becomes a prominent interim fuel management option depends on licensing and economic considerations. National policies will strongly influence how long the spent fuel remains in interim storage and what its final disposition will be.

  20. Hazelwood Interim Storage Site, Hazelwood, Missouri: Annual site environmental report, Calendar year 1987: Formerly Utilized Sites Remedial Action Program (FUSRAP). [FUSRAP

    SciTech Connect (OSTI)

    Not Available

    1988-04-01

    The monitoring program at the HISS measures radon concentrations in air; external gamma radiation levels; and uranium, radium, and thorium concentrations in surface water, groundwater, and sediment. To verify that the site is in compliance with the DOE radiation protection standard (100 mrem/yr) and assess its potential effect on public health, the radiation dose was calculated for the maximally exposed individual. Based on the scenario described in this report, the maximally exposed individual at the HISS would receive an annual external exposure approximately equivalent to 1 percent of the DOE radiation protection standard of 100 mrem/yr. This exposure is less than the exposure a person would receive during a round-trip flight from New York to Los Angeles (because of the greater amounts of cosmic radiation at higher altitudes). The cumulative dose to the population within an 80-km (50-mi) radius of the HISS that would result from radioactive materials present at the site would be indistinguishable from the dose that the same population would receive from naturally occurring radioactive sources. The results of 1987 monitoring show that the HISS is in compliance with the DOE radiation protection standard. 12 refs., 6 figs., 11 tabs.

  1. Report on interim storage of spent nuclear fuel. Midwestern high-level radioactive waste transportation project

    SciTech Connect (OSTI)

    Not Available

    1993-04-01

    The report on interim storage of spent nuclear fuel discusses the technical, regulatory, and economic aspects of spent-fuel storage at nuclear reactors. The report is intended to provide legislators state officials and citizens in the Midwest with information on spent-fuel inventories, current and projected additional storage requirements, licensing, storage technologies, and actions taken by various utilities in the Midwest to augment their capacity to store spent nuclear fuel on site.

  2. Probabilistic Performance Assessment: SCC of SNF Interim Storage...

    Office of Scientific and Technical Information (OSTI)

    Probabilistic Performance Assessment: SCC of SNF Interim Storage Canisters C. Bryan1, C. ... Effect of Initial Heat Load Two alternative cases run, with 4 kW and 10 kW heat ...

  3. Final Environmental Impact Statement Safe Interim Storage Of...

    Office of Environmental Management (EM)

    ... SIS Safe Interim Storage SO2 Sulfur dioxide SR State ... East Area using the same methods described for the ... the 200 East Area thereby reducing the likelihood of waste ...

  4. TWRS HLW interim storage facility search and evaluation

    SciTech Connect (OSTI)

    Calmus, R.B., Westinghouse Hanford

    1996-05-16

    The purpose of this study was to identify and provide an evaluation of interim storage facilities and potential facility locations for the vitrified high-level waste (HLW) from the Phase I demonstration plant and Phase II production plant. In addition, interim storage facilities for solidified separated radionuclides (Cesium and Technetium) generated during pretreatment of Phase I Low-Level Waste Vitrification Plant feed was evaluated.

  5. Annex D-200 Area Interim Storage Area Final Safety Analysis Report [FSAR] [Section 1 & 2

    SciTech Connect (OSTI)

    CARRELL, R D

    2002-07-16

    The 200 Area Interim Storage Area (200 Area ISA) at the Hanford Site provides for the interim storage of non-defense reactor spent nuclear fuel (SNF) housed in aboveground dry cask storage systems. The 200 Area ISA is a relatively simple facility consisting of a boundary fence with gates, perimeter lighting, and concrete and gravel pads on which to place the dry storage casks. The fence supports safeguards and security and establishes a radiation protection buffer zone. The 200 Area ISA is nominally 200,000 ft{sup 2} and is located west of the Canister Storage Building (CSB). Interim storage at the 200 Area ISA is intended for a period of up to 40 years until the materials are shipped off-site to a disposal facility. This Final Safety Analysis Report (FSAR) does not address removal from storage or shipment from the 200 Area ISA. Three different SNF types contained in three different dry cask storage systems are to be stored at the 200 Area ISA, as follows: (1) Fast Flux Test Facility Fuel--Fifty-three interim storage casks (ISC), each holding a core component container (CCC), will be used to store the Fast Flux Test Facility (FFTF) SNF currently in the 400 Area. (2) Neutron Radiography Facility (NRF) TRIGA'--One Rad-Vault' container will store two DOT-6M3 containers and six NRF TRIGA casks currently stored in the 400 Area. (3) Commercial Light Water Reactor Fuel--Six International Standards Organization (ISO) containers, each holding a NAC-I cask4 with an inner commercial light water reactor (LWR) canister, will be used for commercial LWR SNF from the 300 Area. An aboveground dry cask storage location is necessary for the spent fuel because the current storage facilities are being shut down and deactivated. The spent fuel is being transferred to interim storage because there is no permanent repository storage currently available.

  6. Interim Storage of Plutonium in Existing Facilities

    SciTech Connect (OSTI)

    Woodsmall, T.D.

    1999-05-10

    'In this era of nuclear weapons disarmament and nonproliferation treaties, among many problems being faced by the Department of Energy is the safe disposal of plutonium. There is a large stockpile of plutonium at the Rocky Flats Environmental Technology Center and it remains politically and environmentally strategic to relocate the inventory closer to a processing facility. Savannah River Site has been chosen as the final storage location, and the Actinide Packaging and Storage Facility (APSF) is currently under construction for this purpose. With the ability of APSF to receive Rocky Flats material an estimated ten years away, DOE has decided to use the existing reactor building in K-Area of SRS as temporary storage to accelerate the removal of plutonium from Rocky Flats. There are enormous cost savings to the government that serve as incentive to start this removal as soon as possible, and the KAMS project is scheduled to receive the first shipment of plutonium in January 2000. The reactor building in K-Area was chosen for its hardened structure and upgraded seismic qualification, both resulting from an effort to restart the reactor in 1991. The KAMS project has faced unique challenges from Authorization Basis and Safety Analysis perspectives. Although modifying a reactor building from a production facility to a storage shelter is not technically difficult, the nature of plutonium has caused design and safety analysis engineers to make certain that the design of systems, structures and components included will protect the public, SRS workers, and the environment. A basic overview of the KAMS project follows. Plutonium will be measured and loaded into DOT Type-B shipping packages at Rocky Flats. The packages are 35-gallon stainless steel drums with multiple internal containment boundaries. DOE transportation vehicles will be used to ship the drums to the KAMS facility at SRS. They will then be unloaded, stacked and stored in specific locations throughout the

  7. Report to Congress on Plan for Interim Storage of Spent Nuclear...

    Office of Environmental Management (EM)

    RW-0596 Report to Congress on the Demonstration of the Interim Storage of Spent Nuclear ... D.C. Report to Congress on the Demonstration of the Interim Storage of Spent ...

  8. Engineering evaluation/cost analysis-environmental assessment for the proposed decontamination of properties in the vicinity of the Hazelwood Interim Storage Site, Hazelwood, Missouri

    SciTech Connect (OSTI)

    Picel, M.H.; Peterson, J.M. . Environmental Assessment and Information Sciences Div.); Williams, M.J. )

    1992-03-01

    The US Department of Energy (DOE), under its Formerly Utilized Sites Remedial Action Program (FUSRAP), is implementing a cleanup program for three groups of properties in the St. Louis, Missouri, area. None of the properties is owned by DOE, but each property contains radioactive residues from federal uranium-processing activities conducted at the SLDS during and after World War II. This engineering evaluation/cost analysis (EE/CA) report has been prepared to support the interim cleanup measures for the contaminated properties in the Hazelwood and Berkeley, Missouri area. The near-term cleanup measures that may be necessary at the vicinity properties are evaluated in the main body of this report. Because of the range of active land uses in the Hazelwood and Berkeley areas and because of the extent of contamination on public and private properties, the potential exists for disturbance and spreading of soil contamination. Specifically, implementation of the proposed action would allow DOE to remove, transport, and safely store contaminated soils from properties where other activities (not involving DOE) are likely to result in either spreading contamination or otherwise complicating ultimate cleanup measures.

  9. Engineering evaluation/cost analysis for the proposed decontamination of properties in the vicinity of the Hazelwood Interim Storage Site, Hazelwood, Missouri -- environment assessment

    SciTech Connect (OSTI)

    Picel, M.H.; Peterson, J.M. . Environmental Assessment and Information Sciences Div.); Williams, M.J. )

    1991-05-01

    The US Department of Energy (DOE), under its Formerly Utilized Sites Remedial Action Program (FUSRAP), is implementing a cleanup program for three groups of properties in the St. Louis, Missouri, area. None of the properties is owned by DOE, but each property contains radioactive residues from federal uranium-processing activities conducted at the SLDS during and after World War II. This engineering evaluation/cost analysis (EE/CA) report has been prepared to support the interim cleanup measures for the contaminated properties in the Hazelwood and Berkeley, Missouri area. The near-term cleanup measures that may be necessary at the vicinity properties are evaluated in the main body of this report. Because of the range of active land uses in the Hazelwood and Berkeley areas and because of the extent of contamination on public and private properties, the potential exists for disturbance and spreading of soil contamination. Specifically, implementation of the proposed action would allow DOE to remove, transport, and safely store contaminated soils from properties where other activities (not involving DOE) are likely to result in either spreading contamination or otherwise complicating ultimate cleanup measures. 25 refs., 4 figs., 6 tabs.

  10. Engineering evaluation/cost analysis-environmental assessment for the proposed decontamination of properties in the vicinity of the Hazelwood Interim Storage Site, Hazelwood, Missouri. Revision 1

    SciTech Connect (OSTI)

    Picel, M.H.; Peterson, J.M.; Williams, M.J.

    1992-03-01

    The US Department of Energy (DOE), under its Formerly Utilized Sites Remedial Action Program (FUSRAP), is implementing a cleanup program for three groups of properties in the St. Louis, Missouri, area. None of the properties is owned by DOE, but each property contains radioactive residues from federal uranium-processing activities conducted at the SLDS during and after World War II. This engineering evaluation/cost analysis (EE/CA) report has been prepared to support the interim cleanup measures for the contaminated properties in the Hazelwood and Berkeley, Missouri area. The near-term cleanup measures that may be necessary at the vicinity properties are evaluated in the main body of this report. Because of the range of active land uses in the Hazelwood and Berkeley areas and because of the extent of contamination on public and private properties, the potential exists for disturbance and spreading of soil contamination. Specifically, implementation of the proposed action would allow DOE to remove, transport, and safely store contaminated soils from properties where other activities (not involving DOE) are likely to result in either spreading contamination or otherwise complicating ultimate cleanup measures.

  11. Method of preparing nuclear wastes for tansportation and interim storage

    DOE Patents [OSTI]

    Bandyopadhyay, Gautam (Naperville, IL); Galvin, Thomas M. (Darien, IL)

    1984-01-01

    Nuclear waste is formed into a substantially water-insoluble solid for temporary storage and transportation by mixing the calcined waste with at least 10 weight percent powdered anhydrous sodium silicate to form a mixture and subjecting the mixture to a high humidity environment for a period of time sufficient to form cementitious bonds by chemical reaction. The method is suitable for preparing an interim waste form from dried high level radioactive wastes.

  12. Northeast Site Non-Aqueous Phase Liquids Interim Measures Progress...

    Office of Legacy Management (LM)

    Northeast Site Non-Aqueous Phase Liquids Interim Measures Progress Report April 2003 Grand Junction Office U.S. Department of Energy Work Performed Under DOE Contract No. for the ...

  13. The Time Needed to Implement the Blue Ribbon Commission Recommendation on Interim Storage - 13124

    SciTech Connect (OSTI)

    Voegele, Michael D.; Vieth, Donald

    2013-07-01

    legislation to the floor of the Senate, overcoming existing House support for Yucca Mountain; 3. Change the longstanding focus of Congress from disposal to storage; 4. Change the funding concepts embodied in the Nuclear Waste Policy Act to allow the Nuclear Waste fund to be used to pay for interim storage; 5. Reverse the Congressional policy not to give states or tribes veto or consent authority, and to reserve to Congress the authority to override a state or tribal disapproval; 6. Promulgate interim storage facility siting regulations to reflect the new policies after such changes to policy and law; 7. Complete already underway changes to storage and transportation regulations, possibly incorporating changes to reflect changes to waste disposal law; 8. Promulgate new repository siting regulations if the interim storage facility is to support repository development; 9. Identify volunteer sites, negotiate agreements, and get Congressional approval for negotiated benefits packages; 10. Design, License and develop the interim storage facility. The time required to accomplish these ten items depends on many factors. The estimate developed assumes that certain of the items must be completed before other items are started; given past criticisms of the current program, such an assumption appears appropriate. Estimated times for completion of individual items are based on historical precedent. (authors)

  14. Report to Congress on Plan for Interim Storage of Spent Nuclear Fuel from

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Decommissioned Reactors | Department of Energy Report to Congress on Plan for Interim Storage of Spent Nuclear Fuel from Decommissioned Reactors Report to Congress on Plan for Interim Storage of Spent Nuclear Fuel from Decommissioned Reactors Report to Congress on Plan for Interim Storage of Spent Nuclear Fuel from Decommissioned Reactors (229.88 KB) More Documents & Publications Information Request, "THE REPORT TO THE PRESIDENT AND THE CONGRESS BY THE SECRETARY OF ENERGY ON THE

  15. Report to Congress on Plan for Interim Storage of Spent Nuclear...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nuclear Fuel from Decommissioned Reactors Report to Congress on Plan for Interim Storage of Spent Nuclear Fuel from Decommissioned Reactors PDF icon Report to Congress on Plan ...

  16. Safe Advantage on Dry Interim Spent Nuclear Fuel Storage

    SciTech Connect (OSTI)

    Romanato, L.S.

    2008-07-01

    This paper aims to present the advantages of dry cask storage in comparison with the wet storage (cooling water pools) for SNF. When the nuclear fuel is removed from the core reactor, it is moved to a storage unit and it wait for a final destination. Generally, the spent nuclear fuel (SNF) remains inside water pools within the reactors facility for the radioactive activity decay. After some period of time in pools, SNF can be sent to a definitive deposition in a geological repository and handled as radioactive waste or to reprocessing facilities, or still, wait for a future solution. Meanwhile, SNF remains stored for a period of time in dry or wet facilities, depending on the method adopted by the nuclear power plant or other plans of the country. Interim storage, up to 20 years ago, was exclusively wet and if the nuclear facility had to be decommissioned another storage solution had to be found. At the present time, after a preliminary cooling of the SNF elements inside the water pool, the elements can be stored in dry facilities. This kind of storage does not need complex radiation monitoring and it is safer then wet one. Casks, either concrete or metallic, are safer, especially on occurrence of earthquakes, like that occurred at Kashiwazaki-Kariwa nuclear power plant, in Japan on July 16, 2007. (authors)

  17. Monticello Mill Tailings Site Operable Unit Ill Interim Remedial Action

    Office of Legacy Management (LM)

    Site Operable Unit Ill Interim Remedial Action Mark Perfxmed Under DOE Contrici No. DE-AC13-96CJ873.35 for th3 U.S. De[:ar!menf of Energy app~oveJioi'ptiL#ic re1ease;dCinWlionis Unlimilra' This page intentionally left blank Monticello Mill Tailings Site Operable Unit I11 Interim Remedial Action Annual Status Report August 1999 Prepared for U.S. Department of Energy Albuquerque Operations Office Grand Junction Office Project Number MSG-035-0011-00-000 Document Number Q0017700 Work Performed Under

  18. SNF Interim Storage Canister Corrosion and Surface Environment Investigations

    SciTech Connect (OSTI)

    Bryan, Charles R.; Enos, David G.

    2015-09-01

    This progress report describes work being done at Sandia National Laboratories (SNL) to assess the localized corrosion performance of container/cask materials used in the interim storage of spent nuclear fuel (SNF). Of particular concern is stress corrosion cracking (SCC), by which a through-wall crack could potentially form in a canister outer wall over time intervals that are shorter than possible dry storage times. In order for SCC to occur, three criteria must be met. A corrosive environment must be present on the canister surface, the metal must susceptible to SCC, and sufficient tensile stress to support SCC must be present through the entire thickness of the canister wall. SNL is currently evaluating the potential for each of these criteria to be met.

  19. Criticality safety evaluation for long term storage of FFTF fuel in interim storage casks

    SciTech Connect (OSTI)

    Richard, R.F.

    1995-05-11

    It has been postulated that a degradation phenomenon, referred to as ``hot cell rot``, may affect irradiated FFTF mixed plutonium-uranium oxide (MOX) fuel during dry interim storage. ``Hot cell rot`` refers to a variety of phenomena that degrade fuel pin cladding during exposure to air and inert gas environments. It is thought to be a form of caustic stress corrosion cracking or environmentally assisted cracking. Here, a criticality safety analysis was performed to address the effect of the ``hot cell rot`` phenomenon on the long term storage of irradiated FFTF fuel in core component containers. The results show that seven FFTF fuel assemblies or six Ident-69 pin containers stored in core component containers within interim storage casks will remain safely subcritical.

  20. NIAGARA FALLS STORAGE SITE

    Office of Legacy Management (LM)

    :i" _,, ' _~" ORISE 95/C-70 :E : i:; :' l,J : i.: RADIOLOGICAL SURVEY Op BUILDINGS 401, ' 403, AND ' m HITTMAN BUILDING $ <,' 2:. NIAGARA FALLS STORAGE SITE I .~~ ; " LEWISTON, ' NEW YORK : f? j:,:i I ,.J- ;b f" /: Li _e.*. ~,, I ,,~, ,:,,;:, Prepared by T. .I. Vitkus i,c Environmental Survey and Site Assessment Program Energy/Environment Systems Division ;>::; Oak Ridge Institute for Science and Education .,:, "Oak Ridge, Temressee 37831-0117 .F P ., ? :_ &,d

  1. Idaho Waste Vitrification Facilities Project Vitrified Waste Interim Storage Facility

    SciTech Connect (OSTI)

    Bonnema, Bruce Edward

    2001-09-01

    This feasibility study report presents a draft design of the Vitrified Waste Interim Storage Facility (VWISF), which is one of three subprojects of the Idaho Waste Vitrification Facilities (IWVF) project. The primary goal of the IWVF project is to design and construct a treatment process system that will vitrify the sodium-bearing waste (SBW) to a final waste form. The project will consist of three subprojects that include the Waste Collection Tanks Facility, the Waste Vitrification Facility (WVF), and the VWISF. The Waste Collection Tanks Facility will provide for waste collection, feed mixing, and surge storage for SBW and newly generated liquid waste from ongoing operations at the Idaho Nuclear Technology and Engineering Center. The WVF will contain the vitrification process that will mix the waste with glass-forming chemicals or frit and turn the waste into glass. The VWISF will provide a shielded storage facility for the glass until the waste can be disposed at either the Waste Isolation Pilot Plant as mixed transuranic waste or at the future national geological repository as high-level waste glass, pending the outcome of a Waste Incidental to Reprocessing determination, which is currently in progress. A secondary goal is to provide a facility that can be easily modified later to accommodate storage of the vitrified high-level waste calcine. The objective of this study was to determine the feasibility of the VWISF, which would be constructed in compliance with applicable federal, state, and local laws. This project supports the Department of Energys Environmental Management missions of safely storing and treating radioactive wastes as well as meeting Federal Facility Compliance commitments made to the State of Idaho.

  2. Immobilized low-activity waste interim storage facility, Project W-465 conceptual design report

    SciTech Connect (OSTI)

    Pickett, W.W.

    1998-03-02

    This report outlines the design and total estimated cost to modify the four unused grout vaults for the remote handling and interim storage of immobilized low-activity waste (ILAW).

  3. N Reactor Placed In Interim Safe Storage: Largest Hanford Reactor Cocooning Project Now Complete

    Broader source: Energy.gov [DOE]

    RICHLAND, WASH. – The U.S. Department of Energy’s (DOE’s) River Corridor contractor, Washington Closure Hanford, has completed placing N Reactor in interim safe storage, a process also known as “cocooning.”

  4. DQO Summary Report for 105-N/109-N Interim Safe Storage Project Waste Characterization

    SciTech Connect (OSTI)

    T. A. Lee

    2005-09-15

    The DQO summary report provides the results of the DQO process completed for waste characterization activities for the 105-N/109-N Reactor Interim Safe Storage Project including decommission, deactivate, decontaminate, and demolish activities for six associated buildings.

  5. Considerations of the effects of high winds on a low-level radioactive interim storage pile

    SciTech Connect (OSTI)

    Smith, D.E. )

    1991-11-01

    On Wednesday, March 27, 1991, the St. Louis area experienced high winds that damaged a synthetic cover of a low-level radioactive waste storage pile at the US Department of Energy's (DOE's) Hazelwood Interim Storage Site (HISS) in Hazelwood, Missouri. Winds in the St. Louis area at the time of the incident were reported to be 35 mi/h with gusts up to 50 mi/h. Tornado warnings were in effect at the time. The purpose of this summary is to analyze the effects of uplift forces on a synthetic pile cover because of high winds. Consideration is given to anchoring the synthetic cover, type and placement of ballast on the pile, and the type of synthetic membranes best suited to this application. Discussion also includes the emergency procedures used in responding to the incident.

  6. Final Environmental Impact Statement Safe Interim Storage Of Hanford Tank Wastes

    Office of Environmental Management (EM)

    Summary-1995.html[6/27/2011 12:58:00 PM] FINAL ENVIRONMENTAL IMPACT STATEMENT SAFE INTERIM STORAGE OF HANFORD TANK WASTES SUMMARY The Safe Interim Storage of Hanford Tank Wastes Environmental Impact Statement has been prepared according to requirements of the National Environmental Policy Act and the Washington State Environmental Policy Act. In accordance with these Acts, a Draft Environmental Impact Statement was issued on August 5, 1994, (DOE 1994) and it was revised in response to public,

  7. Waste Encapsulation and Storage Facility - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    300 Area 324 Building 325 Building 400 AreaFast Flux Test Facility 618-10 and 618-11 Burial Grounds 700 Area B Plant B Reactor C Reactor Canister Storage Building and Interim ...

  8. Interim storage of dismantled nuclear weapon components at the U.S. Department of Energy Pantex Plant

    SciTech Connect (OSTI)

    Guidice, S.J.; Inlow, R.O.

    1995-12-31

    Following the events of 1989 and the subsequent cessation of production of new nuclear weapons by the US, the mission of the Department of Energy (DOE) Nuclear Weapons Complex has shifted from production to dismantlement of retired weapons. The sole site in the US for accomplishing the dismantlement mission is the DOE Pantex Plant near Amarillo, Texas. Pending a national decision on the ultimate storage and disposition of nuclear components form the dismantled weapons, the storage magazines within the Pantex Plant are serving as the interim storage site for pits--the weapon plutonium-bearing component. The DOE has stipulated that Pantex will provide storage for up to 12,000 pits pending a Record of Decision on a comprehensive site-wide Environmental Impact Statement in November 1996.

  9. 1986 Federal Interim Storage fee study: a technical and economic analysis

    SciTech Connect (OSTI)

    Not Available

    1986-09-01

    JAI examined alternative methods for structuring charges for federal interim storage (FIS) services and concluded that the combined interests of the Department and the users would be best served, and costs most appropriately recovered, by a two-part fee involving an Initial Payment upon execution of a contract for FIS services followed by a Final Payment upon delivery of the spent fuel to the Department. The Initial Payment would be an advance payment covering the pro rata share of preoperational costs, including (1) the capital costs of the required transfer facilities and storage area, (2) development costs, (3) government administrative costs including storage fund management, (4) impact aid payments made in accordance with Section 136(e) of the Act, and (5) module costs (i.e., storage casks, drywells or silos). The Final Payment would be made at the time of delivery of the spent fuel to the Department and would be calculated to cover the sum of the following: (1) any under- or over-estimation in the costs used to calculate the Initial Payment of the fee (including savings due to rod consolidation), and (2) the total estimated cost of operation and decommissioning of the FIS facilities (including government administrative costs, storage fund management and impact aid). The module costs were included in the Initial Payment to preclude the possible need to obtain appropriations for federal funds to support the purchase of the modules in advance of receipt of the Final Payment. Charges for the transport of spent fuel from the reactor site to FIS facilities would be separately assessed at actual cost since these will be specific to each reactor site and destination.

  10. Immobilized High Level Waste (HLW) Interim Storage Alternative Generation and analysis and Decision Report 2nd Generation Implementing Architecture

    SciTech Connect (OSTI)

    CALMUS, R.B.

    2000-09-14

    Two alternative approaches were previously identified to provide second-generation interim storage of Immobilized High-Level Waste (IHLW). One approach was retrofit modification of the Fuel and Materials Examination Facility (FMEF) to accommodate IHLW. The results of the evaluation of the FMEF as the second-generation IHLW interim storage facility and subsequent decision process are provided in this document.

  11. ADDENDUM TO ACTION DESCRIPTION MEMORANDUM NIAGARA FALLS STORAGE SITE

    Office of Legacy Management (LM)

    ADDENDUM TO ACTION DESCRIPTION MEMORANDUM NIAGARA FALLS STORAGE SITE PROPOSED INTERIM REMEDIAL ACTIONS FOR FY 1983-85 ACCELERATED PROGRAM (1984 VICINITY PROPERTIES CLEANUP) Prepared by Environmental Research Division Argonne National Laboratory Argonne, Illinois July 1984 Prepared for U.S. Department of Energy Oak Ridge Operations Technical Services Division Oak Ridge, Tennessee CONTENTS Page SUMMARY OF PROPOSED ACTION AND RELATED ACTIVITIES ........... 1 HISTORY AND ENVIRONMENTAL SETTING

  12. BWR Spent Nuclear Fuel Integrity Research and Development Survey for UKABWR Spent Fuel Interim Storage

    SciTech Connect (OSTI)

    Bevard, Bruce Balkcom; Mertyurek, Ugur; Belles, Randy; Scaglione, John M.

    2015-10-01

    The objective of this report is to identify issues and support documentation and identify and detail existing research on spent fuel dry storage; provide information to support potential R&D for the UKABWR (United Kingdom Advanced Boiling Water Reactor) Spent Fuel Interim Storage (SFIS) Pre-Construction Safety Report; and support development of answers to questions developed by the regulator. Where there are gaps or insufficient data, Oak Ridge National Laboratory (ORNL) has summarized the research planned to provide the necessary data along with the schedule for the research, if known. Spent nuclear fuel (SNF) from nuclear power plants has historically been stored on site (wet) in spent fuel pools pending ultimate disposition. Nuclear power users (countries, utilities, vendors) are developing a suite of options and set of supporting analyses that will enable future informed choices about how best to manage these materials. As part of that effort, they are beginning to lay the groundwork for implementing longer-term interim storage of the SNF and the Greater Than Class C (CTCC) waste (dry). Deploying dry storage will require a number of technical issues to be addressed. For the past 4-5 years, ORNL has been supporting the U.S. Department of Energy (DOE) in identifying these key technical issues, managing the collection of data to be used in issue resolution, and identifying gaps in the needed data. During this effort, ORNL subject matter experts (SMEs) have become expert in understanding what information is publicly available and what gaps in data remain. To ensure the safety of the spent fuel under normal and frequent conditions of wet and subsequent dry storage, intact fuel must be shown to: 1.Maintain fuel cladding integrity; 2.Maintain its geometry for cooling, shielding, and subcriticality; 3.Maintain retrievability, and damaged fuel with pinhole or hairline cracks must be shown not to degrade further. Where PWR (pressurized water reactor) information is

  13. EA-1120: Solid Residues Treatment, Repackaging and Storage at the Rocky Flats Environmental Technology Site, Golden, Colorado

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of the proposal to stabilize, if necessary, and/or repackage the residues for safe interim storage at the Site while awaiting the completion and opening...

  14. DOUBLE TRACKS Test Site interim corrective action plan

    SciTech Connect (OSTI)

    1996-06-01

    The DOUBLE TRACKS site is located on Range 71 north of the Nellis Air Force Range, northwest of the Nevada Test Site (NTS). DOUBLE TRACKS was the first of four experiments that constituted Operation ROLLER COASTER. On May 15, 1963, weapons-grade plutonium and depleted uranium were dispersed using 54 kilograms of trinitrotoluene (TNT) explosive. The explosion occurred in the open, 0.3 m above the steel plate. No fission yield was detected from the test, and the total amount of plutonium deposited on the ground surface was estimated to be between 980 and 1,600 grams. The test device was composed primarily of uranium-238 and plutonium-239. The mass ratio of uranium to plutonium was 4.35. The objective of the corrective action is to reduce the potential risk to human health and the environment and to demonstrate technically viable and cost-effective excavation, transportation, and disposal. To achieve these objectives, Bechtel Nevada (BN) will remove soil with a total transuranic activity greater then 200 pCI/g, containerize the soil in ``supersacks,`` transport the filled ``supersacks`` to the NTS, and dispose of them in the Area 3 Radioactive Waste Management Site. During this interim corrective action, BN will also conduct a limited demonstration of an alternative method for excavation of radioactive near-surface soil contamination.

  15. Hanford Tank Farm interim storage phase probabilistic risk assessment outline

    SciTech Connect (OSTI)

    Not Available

    1994-05-19

    This report is the second in a series examining the risks for the high level waste (HLW) storage facilities at the Hanford Site. The first phase of the HTF PSA effort addressed risks from Tank 101-SY, only. Tank 101-SY was selected as the initial focus of the PSA because of its propensity to periodically release (burp) a mixture of flammable and toxic gases. This report expands the evaluation of Tank 101-SY to all 177 storage tanks. The 177 tanks are arranged into 18 farms and contain the HLW accumulated over 50 years of weapons material production work. A centerpiece of the remediation activity is the effort toward developing a permanent method for disposing of the HLW tank`s highly radioactive contents. One approach to risk based prioritization is to perform a PSA for the whole HLW tank farm complex to identify the highest risk tanks so that remediation planners and managers will have a more rational basis for allocating limited funds to the more critical areas. Section 3 presents the qualitative identification of generic initiators that could threaten to produce releases from one or more tanks. In section 4 a detailed accident sequence model is developed for each initiating event group. Section 5 defines the release categories to which the scenarios are assigned in the accident sequence model and presents analyses of the airborne and liquid source terms resulting from different release scenarios. The conditional consequences measured by worker or public exposure to radionuclides or hazardous chemicals and economic costs of cleanup and repair are analyzed in section 6. The results from all the previous sections are integrated to produce unconditional risk curves in frequency of exceedance format.

  16. REVIEW OF FAST FLUX TEST FACILITY (FFTF) FUEL EXPERIMENTS FOR STORAGE IN INTERIM STORAGE CASKS (ISC)

    SciTech Connect (OSTI)

    CHASTAIN, S.A.

    2005-10-24

    Appendix H, Section H.3.3.10.11 of the Final Safety Analysis Report (FSAR), provides the limits to be observed for fueled components authorized for storage in the Fast Flux Test Facility (FFTF) spent fuel storage system. Currently, the authorization basis allows standard driver fuel assemblies (DFA), as described in the FSAR Chapter 17, Section 17.5.3.1, to be stored provided decay power per assembly is {le} 250 watts, post-irradiation time is four years minimum, average assembly burn-up is 150,000 MWD/MTHM maximum and the pre-irradiation enrichment is 29.3% maximum (per H.3.3.10.11). In addition, driver evaluation (DE), core characterizer assemblies (CCA), and run-to-cladding-breach (RTCB) assemblies are included based on their similarities to a standard DFA. Ident-69 pin containers with fuel pins from these DFAs can also be stored. Section H.3.3.10.11 states that fuel types outside the specification criteria above will be addressed on a case-by-case basis. There are many different types of fuel and blanket experiments that were irradiated in the FFTF which now require offload to the spent fuel storage system. Two reviews were completed for a portion of these special type fuel components to determine if placement into the Core Component Container (CCC)/Interim Storage Cask (ISC) would require any special considerations or changes to the authorization basis. Project mission priorities coupled with availability of resources and analysts prevented these evaluations from being completed as a single effort. Areas of review have included radiological accident release consequences, radiological shielding adequacy, criticality safety, thermal limits, confinement, and stress. The results of these reviews are available in WHC-SD-FF-RPT-005, Rev. 0 and 1, ''Review of FFTF Fuel Experiments for Storage at ISA'', (Reference I), which subsequently allowed a large portion of these components to be included in the authorization basis (Table H.3.3-21). The report also identified

  17. Statement of work for conceptual design of solidified high-level waste interim storage system project (phase I)

    SciTech Connect (OSTI)

    Calmus, R.B., Westinghouse Hanford

    1996-12-17

    The U.S. Department of Energy (DOE) has embarked upon a course to acquire Hanford Site tank waste treatment and immobilization services using privatized facilities. This plan contains a two phased approach. Phase I is a ``proof-of-principle/commercial demonstration- scale`` effort and Phase II is a full-scale production effort. In accordance with the planned approach, interim storage (IS) and disposal of various products from privatized facilities are to be DOE furnished. The path forward adopted for Phase I solidification HLW IS entails use of Vaults 2 and 3 in the Spent Nuclear Fuel Canister Storage Building, to be located in the Hanford Site 200 East Area. This Statement of Work describes the work scope to be performed by the Architect-Engineer to prepare a conceptual design for the solidified HLW IS System.

  18. Description of a Multipurpose Processing and Storage Complex for the Hanford Site`s radioactive material

    SciTech Connect (OSTI)

    Nyman, D.H.; Wolfe, B.A.; Hoertkorn, T.R.

    1993-05-01

    The mission of the US Department of Energy`s (DOE) Hanford Site has changed from defense nuclear materials production to that of waste management/disposal and environmental restoration. ne Multipurpose Processing and Storage Complex (MPSC) is being designed to process discarded waste tank internal hardware contaminated with mixed wastes, failed melters from the vitrification plant, and other Hanford Site high-level solid waste. The MPSC also will provide interim storage of other radioactive materials (irradiated fuel, canisters of vitrified high-level waste [HLW], special nuclear material [SNM], and other designated radioactive materials).

  19. Interim UFD Storage and Transportation - Transportation Working Group Report

    SciTech Connect (OSTI)

    Maheras, Steven J.; Ross, Steven B.

    2011-03-30

    The Used Fuel Disposition (UFD) Transportation Task commenced in October 2010. As its first task, Pacific Northwest National Laboratory (PNNL) compiled a draft list of structures, systems, and components (SSCs) of transportation systems and their possible degradation mechanisms during very long term storage (VLTS). The list of SSCs and the associated degradation mechanisms [known as features, events, and processes (FEPs)] were based on the list of SSCs and degradation mechanisms developed by the UFD Storage Task (Stockman et al. 2010)

  20. Operations and Maintenance Concept Plan for the Immobilized High Level Waste (IHLW) Interim Storage Facility

    SciTech Connect (OSTI)

    JANIN, L.F.

    2000-08-30

    This O&M Concept looks at the future operations and maintenance of the IHLW/CSB interim storage facility. It defines the overall strategy, objectives, and functional requirements for the portion of the building to be utilized by Project W-464. The concept supports the tasks of safety basis planning, risk mitigation, alternative analysis, decision making, etc. and will be updated as required to support the evolving design.

  1. INTERIM STORAGE AND LONG TERM DISPOSAL OF RESEARCH REACTOR SPENT FUEL

    SciTech Connect (OSTI)

    Vinson, D

    2006-08-22

    Aluminum clad research reactor spent nuclear fuel (SNF) is currently being consolidated in wet storage basins (pools). Approximately 20 metric tons (heavy metal) of aluminum-based spent nuclear fuel (Al-SNF) is being consolidated for treatment, packaging, interim storage, and preparation for ultimate disposal in a geologic repository. The storage and disposal of Al-SNF are subject to requirements that provide for safety and acceptable radionuclide release. The options studied for interim storage of SNF include wet storage and dry storage. Two options have also been studied to develop the technical basis for the qualification and repository disposal of aluminum spent fuel. The two options studied include Direct Disposal and Melt-Dilute treatment. The implementation of these options present relative benefits and challenges. Both the Direct Disposal and the Melt-Dilute treatment options have been developed and their technical viability assessed. Adaptation of the melt-dilute technology for the treatment of spent fuel offers the benefits of converting the spent fuel into a proliferation resistant form and/or significantly reducing the volume of the spent fuel. A Mobile Melt-Dilute system concept has emerged to realize these benefits and a prototype system developed. The application of the melt-dilute technology for the treatment of legacy nuclear materials has been evaluated and also offers the promise for the safe disposal of these materials.

  2. COMPLETION OF THE FIRST INTEGRATED SPENT NUCLEAR FUEL TRANSSHIPMENT/INTERIM STORAGE FACILITY IN NW RUSSIA

    SciTech Connect (OSTI)

    Dyer, R.S.; Barnes, E.; Snipes, R.L.; Hoeibraaten, S.; Gran, H.C.; Foshaug, E.; Godunov, V.

    2003-02-27

    Northwest and Far East Russia contain large quantities of unsecured spent nuclear fuel (SNF) from decommissioned submarines that potentially threaten the fragile environments of the surrounding Arctic and North Pacific regions. The majority of the SNF from the Russian Navy, including that from decommissioned nuclear submarines, is currently stored in on-shore and floating storage facilities. Some of the SNF is damaged and stored in an unstable condition. Existing Russian transport infrastructure and reprocessing facilities cannot meet the requirements for moving and reprocessing this amount of fuel. Additional interim storage capacity is required. Most of the existing storage facilities being used in Northwest Russia do not meet health and safety, and physical security requirements. The United States and Norway are currently providing assistance to the Russian Federation (RF) in developing systems for managing these wastes. If these wastes are not properly managed, they could release significant concentrations of radioactivity to these sensitive environments and could become serious global environmental and physical security issues. There are currently three closely-linked trilateral cooperative projects: development of a prototype dual-purpose transport and storage cask for SNF, a cask transshipment interim storage facility, and a fuel drying and cask de-watering system. The prototype cask has been fabricated, successfully tested, and certified. Serial production is now underway in Russia. In addition, the U.S. and Russia are working together to improve the management strategy for nuclear submarine reactor compartments after SNF removal.

  3. Classification methodology for tritiated waste requiring interim storage

    SciTech Connect (OSTI)

    Cana, D.; Dall'ava, D.

    2015-03-15

    Fusion machines like the ITER experimental research facility will use tritium as fuel. Therefore, most of the solid radioactive waste will result not only from activation by 14 MeV neutrons, but also from contamination by tritium. As a consequence, optimizing the treatment process for waste containing tritium (tritiated waste) is a major challenge. This paper summarizes the studies conducted in France within the framework of the French national plan for the management of radioactive materials and waste. The paper recommends a reference program for managing this waste based on its sorting, treatment and packaging by the producer. It also recommends setting up a 50-year temporary storage facility to allow for tritium decay and designing future disposal facilities using tritiated radwaste characteristics as input data. This paper first describes this waste program and then details an optimized classification methodology which takes into account tritium decay over a 50-year storage period. The paper also describes a specific application for purely tritiated waste and discusses the set-up expected to be implemented for ITER decommissioning waste (current assumption). Comparison between this optimized approach and other viable detritiation techniques will be drawn. (authors)

  4. OVERVIEW OF CRITERIA FOR INTERIM WET & DRY STORAGE OF RESEARCH REACTOR SPENT NUCLEAR FUEL

    SciTech Connect (OSTI)

    Sindelar, R.; Vinson, D.; Iyer, N.; Fisher, D.

    2010-11-03

    Following discharge from research reactors, spent nuclear fuel may be stored 'wet' in water pools or basins, or it may be stored 'dry' in various configurations including non-sealed or sealed containers until retrieved for ultimate disposition. Interim safe storage practices are based on avoiding degradation to the fuel that would impact functions related to safety. Recommended practices including environmental controls with technical bases, are outlined for wet storage and dry storage of aluminum-clad, aluminum-based research reactor fuel. For wet storage, water quality must be maintained to minimize corrosion degradation of aluminum fuel. For dry storage, vented canister storage of aluminum fuel readily provides a safe storage configuration. For sealed dry storage, drying must be performed so as to minimize water that would cause additional corrosion and hydrogen generation. Consideration must also be given to the potential for radiolytically-generated hydrogen from the bound water in the attendant oxyhydroxides on aluminum fuel from reactor operation for dry storage systems.

  5. Niagara Falls Storage Site, Lewiston, New York: geologic report

    SciTech Connect (OSTI)

    Not Available

    1984-06-01

    This report is one of a series of engineering and environmental reports planned for the US Department of Energy's properties at Niagara Falls, New York. It describes the essential geologic features of the Niagara Falls Storage Site. It is not intended to be a definitive statement of the engineering methods and designs required to obtain desired performance features for any permanent waste disposal at the site. Results are presented of a geological investigation that consisted of two phases. Phase 1 occurred during July 1982 and included geologic mapping, geophysical surveys, and a limited drilling program in the vicinity of the R-10 Dike, planned for interim storage of radioactive materials. Phase 2, initiated in December 1982, included excavation of test pits, geophysical surveys, drilling, observation well installation, and field permeability testing in the South Dike Area, the Northern Disposal Area, and the K-65 Tower Area.

  6. Technical Competencies for the Safe Interim Storage and Management of 233U at U.S. Department of Energy Facilities

    SciTech Connect (OSTI)

    Campbell, D.O.; Krichinsky, A.M.; Laughlin, S.S.; Van Essen, D.C.; Yong, L.K.

    1999-02-17

    Uranium-233 (with concomitant {sup 232}U) is a man-made fissile isotope of uranium with unique nuclear characteristics which require high-integrity alpha containment biological shielding, and remote handling. The special handling considerations and the fact that much of the {sup 233}U processing and large-scale handling was performed over a decade ago underscore the importance of identifying the people within the DOE complex who are currently working with or have worked with {sup 233}U. The availability of these key personnel is important in ensuring safe interim storage, management and ultimate disposition of {sup 233}U at DOE facilities. Significant programs are ongoing at several DOE sites with actinides. The properties of these actinide materials require many of the same types of facilities and handling expertise as does {sup 233}U.

  7. Northeast Site Non-Aqueous Phase Liquids Interim Measures Progress Report April through June 2003

    Office of Legacy Management (LM)

    7-TAC GJO-PIN 13.5.1-1 U.S. Department of Energy Work Performed Under DOE Contract No. for the U.S. Department of Energy DE-AC13-02GJ79491 Approved for public release; distribution is unlimited. Pinellas Environmental Restoration Project Northeast Site Non-Aqueous Phase Liquids Interim Measures Progress Report April Through June 2003 July 2003 N0063400 GJO- 2003- 467- TAC GJO-PIN 13.5.1-1 Pinellas Environmental Restoration Project Northeast Site Non-Aqueous Phase Liquids Interim Measures

  8. Northeast Site Non-Aqueous Phase Liquids Interim Measures Progress...

    Office of Legacy Management (LM)

    5 Figure 3. Energy Balance......7 Figure 7. Treatment System Process Flow Diagram ... sent from there to the LNAPL and DNAPL waste storage tanks. ...

  9. Effectiveness of interim remedial actions at a radioactive waste facility

    SciTech Connect (OSTI)

    Devgun, J.S.; Beskid, N.J.; Peterson, J.M.; Seay, W.M.; McNamee, E.; USDOE Oak Ridge Operations Office, TN; Bechtel National, Inc., Oak Ridge, TN )

    1989-01-01

    Over the past eight years, several interim remedial actions have been taken at the Niagara Falls Storage Site (NFSS), primarily to reduce radon and gamma radiation exposures and to consolidate radioactive waste into a waste containment facility. Interim remedial actions have included capping of vents, sealing of pipes, relocation of the perimeter fence (to limit radon risk), transfer and consolidation of waste, upgrading of storage buildings, construction of a clay cutoff wall (to limit the potential groundwater transport of contaminants), treatment and release of contaminated water, interim use of a synthetic liner, and emplacement of an interim clay cap. An interim waste containment facility was completed in 1986. 6 refs., 3 figs.

  10. EA-0995: Drum Storage Facility for Interim Storage of Materials Generated by Environmental Restoration Operations, Golden, Colorado

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of the proposal to construct and operate a drum storage facility at the U.S. Department of Energy's Rocky Flats Environmental Technology Site in Golden,...

  11. Filling the gaps in meteorological continuous data measured at FLUXNET sites with ERA-Interim reanalysis

    SciTech Connect (OSTI)

    Vuichard, N.

    2015-07-13

    In this study, exchanges of carbon, water and energy between the land surface and the atmosphere are monitored by eddy covariance technique at the ecosystem level. Currently, the FLUXNET database contains more than 500 registered sites, and up to 250 of them share data (free fair-use data set). Many modelling groups use the FLUXNET data set for evaluating ecosystem models' performance, but this requires uninterrupted time series for the meteorological variables used as input. Because original in situ data often contain gaps, from very short (few hours) up to relatively long (some months) ones, we develop a new and robust method for filling the gaps in meteorological data measured at site level. Our approach has the benefit of making use of continuous data available globally (ERA-Interim) and a high temporal resolution spanning from 1989 to today. These data are, however, not measured at site level, and for this reason a method to downscale and correct the ERA-Interim data is needed. We apply this method to the level 4 data (L4) from the La Thuile collection, freely available after registration under a fair-use policy. The performance of the developed method varies across sites and is also function of the meteorological variable. On average over all sites, applying the bias correction method to the ERA-Interim data reduced the mismatch with the in situ data by 10 to 36 %, depending on the meteorological variable considered. In comparison to the internal variability of the in situ data, the root mean square error (RMSE) between the in situ data and the unbiased ERA-I (ERA-Interim) data remains relatively large (on average over all sites, from 27 to 76 % of the standard deviation of in situ data, depending on the meteorological variable considered). The performance of the method remains poor for the wind speed field, in particular regarding its capacity to conserve a standard deviation similar to the one measured at FLUXNET stations.

  12. Design requirements document for Project W-465, immobilized low-activity waste interim storage

    SciTech Connect (OSTI)

    Burbank, D.A.

    1998-05-19

    The scope of this Design Requirements Document (DRD) is to identify the functions and associated requirements that must be performed to accept, transport, handle, and store immobilized low-activity waste (ILAW) produced by the privatized Tank Waste Remediation System (TWRS) treatment contractors. The functional and performance requirements in this document provide the basis for the conceptual design of the TWRS ILAW Interim Storage facility project and provides traceability from the program level requirements to the project design activity. Technical and programmatic risk associated with the TWRS planning basis are discussed in the Tank Waste Remediation System Decisions and Risk Assessment (Johnson 1994). The design requirements provided in this document will be augmented by additional detailed design data documented by the project.

  13. Verification of maximum impact force for interim storage cask for the Fast Flux Testing Facility

    SciTech Connect (OSTI)

    Chen, W.W.; Chang, S.J.

    1996-06-01

    The objective of this paper is to perform an impact analysis of the Interim Storage Cask (ISC) of the Fast Flux Test Facility (FFTF) for a 4-ft end drop. The ISC is a concrete cask used to store spent nuclear fuels. The analysis is to justify the impact force calculated by General Atomics (General Atomics, 1994) using the ILMOD computer code. ILMOD determines the maximum force developed by the concrete crushing which occurs when the drop energy has been absorbed. The maximum force, multiplied by the dynamic load factor (DLF), was used to determine the maximum g-level on the cask during a 4-ft end drop accident onto the heavily reinforced FFTF Reactor Service Building`s concrete surface. For the analysis, this surface was assumed to be unyielding and the cask absorbed all the drop energy. This conservative assumption simplified the modeling used to qualify the cask`s structural integrity for this accident condition.

  14. Interim long-term surveillance plan for the Cheney disposal site near, Grand Junction, Colorado

    SciTech Connect (OSTI)

    1997-08-01

    This interim long-term surveillance plan (LTSP) describes the U.S. Department of Energy`s (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Cheney Disposal Site in Mesa County near Grand Junction, Colorado. This LSTP describes the long-term surveillance program the DOE will implement to ensure the Cheney disposal site performs as designed and is cared for in a manner that protects the public health and safety and the environment. Before each disposal site is licensed for custody and long-term care, the Nuclear Regulatory Commission (NRC) requires the DOE to submit such a site-specific LTSP.

  15. Evaluation of Dynamic Behavior of Pile Foundations for Interim Storage Facilities Through Geotechnical Centrifuge Tests

    SciTech Connect (OSTI)

    Shizuo Tsurumaki; Hiroyuki Watanabe; Akira Tateishi; Kenichi Horikoshi; Shunichi Suzuki

    2002-07-01

    In Japan, there is a possibility that interim storage facilities for recycled nuclear fuel resources may be constructed on quaternary layers, rather than on hard rock. In such a case, the storage facilities need to be supported by pile foundations or spread foundations to meet the required safety level. The authors have conducted a series of experimental studies on the dynamic behavior of storage facilities supported by pile foundations. A centrifuge modeling technique was used to satisfy the required similitude between the reduced size model and the prototype. The centrifuge allows a high confining stress level equivalent to prototype deep soils to be generated (which is considered necessary for examining complex pile-soil interactions) as the soil strength and the deformation are highly dependent on the confining stress. The soil conditions were set at as experimental variables, and the results are compared. Since 2000, the Nuclear Power Engineering Corporation (NUPEC) has been conducting these research tests under the auspices on the Ministry of Economy, Trade and Industry of Japan. (authors)

  16. Interim reclamation report: Basalt Waste Isolation Project exploration shaft site

    SciTech Connect (OSTI)

    Brandt, C.A.; Rickard, W.H. Jr.; Hefty, M.G.

    1990-02-01

    In 1968, a program was started to assess the feasibility of storing Hanford Site defense waste in deep caverns constructed in basalt. This program was expanded in 1976 to include investigations of the Hanford Site as a potential location for a mined commercial nuclear waste repository. Extensive studies of the geotechnical aspects of the site were undertaken, including preparations for drilling a large diameter Exploratory Shaft. This report describes the development of the reclamation program for the Exploratory Shaft Facility, its implementation, and preliminary estimates of its success. The goal of the reclamation program is to return sites disturbed by the repository program as nearly as practicable to their original conditions using native plant species. 43 refs., 19 figs., 9 tabs.

  17. Testing in support of on-site storage of residues in the Pipe Overpack Container

    SciTech Connect (OSTI)

    Ammerman, D.J.; Bobbe, J.G.; Arviso, M.

    1997-02-01

    The disposition of the large back-log of plutonium residues at the Rocky Flats Environmental Technology Site (Rocky Flats) will require interim storage and subsequent shipment to a waste repository. Current plans call for disposal at the Waste Isolation Pilot Plant (WIPP) and the transportation to WIPP in the TRUPACT-II. The transportation phase will require the residues to be packaged in a container that is more robust than a standard 55-gallon waste drum. Rocky Flats has designed the Pipe Overpack Container to meet this need. It is desirable to use this same waste packaging for interim on-site storage in non-hardened buildings. To meet the safety concerns for this storage the Pipe Overpack Container has been subjected to a series of tests at Sandia National Laboratories in Albuquerque, New Mexico. In addition to the tests required to qualify the Pipe Overpack Container as a waste container for shipment in the TRUPACT-II several tests were performed solely for the purpose of qualifying the container for interim storage. This report will describe these tests and the packages response to the tests. 12 figs., 3 tabs.

  18. Site Visit Report, Hanford Waste Encapsulation Storage Facility...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Site Visit Report, Hanford Waste Encapsulation Storage Facility - January 2011 Site Visit Report, Hanford Waste Encapsulation Storage Facility - January 2011 January 2011 Hanford ...

  19. US Department of Energy interim mixed waste inventory report: Waste streams, treatment capacities and technologies: Volume 3, Site specific---Illinois through New York

    SciTech Connect (OSTI)

    Not Available

    1993-04-01

    The Department of Energy (DOE) has prepared this report to provide an inventory of its mixed wastes and treatment capacities and technologies in response to Section 105(a) of the Federal Facility Compliance act (FFCAct) of 1992 (Pub. L. No. 102-386). As required by the FFCAct-1992, this report provides site-specific information on DOE`s mixed waste streams and a general review of available and planned treatment facilities for mixed wastes for the following sites: Argonne National Laboratory-East; Site A/plot M in Palos Forest Preserve, Illinois; Ames Laboratory; Paducah Gaseous Diffusion Plant; Portsmouth Naval Shipyard; Kansas City Plant; University of Missouri; Weldon Springs Site, St. Charles, Missouri; Nevada Test Site; Middlesex Sampling Plant, Middlesex, New Jersey; Princeton Plasma Physics Laboratory; LANL; Sandia national laboratory; Brookhaven National Laboratory; Colonie Interim Storage Site, Colonie, New York; Knolls Atomic Power Laboratory; Knolls Atomic Power Laboratory-Kesselring Site; and West Valley Demonstration Project.

  20. Filling the gaps in meteorological continuous data measured at FLUXNET sites with ERA-Interim reanalysis

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Vuichard, N.; Papale, D.

    2015-07-13

    In this study, exchanges of carbon, water and energy between the land surface and the atmosphere are monitored by eddy covariance technique at the ecosystem level. Currently, the FLUXNET database contains more than 500 registered sites, and up to 250 of them share data (free fair-use data set). Many modelling groups use the FLUXNET data set for evaluating ecosystem models' performance, but this requires uninterrupted time series for the meteorological variables used as input. Because original in situ data often contain gaps, from very short (few hours) up to relatively long (some months) ones, we develop a new and robustmore » method for filling the gaps in meteorological data measured at site level. Our approach has the benefit of making use of continuous data available globally (ERA-Interim) and a high temporal resolution spanning from 1989 to today. These data are, however, not measured at site level, and for this reason a method to downscale and correct the ERA-Interim data is needed. We apply this method to the level 4 data (L4) from the La Thuile collection, freely available after registration under a fair-use policy. The performance of the developed method varies across sites and is also function of the meteorological variable. On average over all sites, applying the bias correction method to the ERA-Interim data reduced the mismatch with the in situ data by 10 to 36 %, depending on the meteorological variable considered. In comparison to the internal variability of the in situ data, the root mean square error (RMSE) between the in situ data and the unbiased ERA-I (ERA-Interim) data remains relatively large (on average over all sites, from 27 to 76 % of the standard deviation of in situ data, depending on the meteorological variable considered). The performance of the method remains poor for the wind speed field, in particular regarding its capacity to conserve a standard deviation similar to the one measured at FLUXNET stations.« less

  1. Blast rips Texas LPG storage site

    SciTech Connect (OSTI)

    Not Available

    1992-04-13

    This paper reports that Seminole Pipeline Co. at presstime last week had planned to reopen its 775 mile liquefied petroleum gas pipeline in South Texas by Apr. 12 after a huge explosion devastated the area around a Seminole LPG storage salt dome near Brenham, Tex., forcing the pipeline shutdown. A large fire was still burning at the storage site at presstime last week. The blast - shortly after 7 a.m. Apr. 7 - occurred at a pipeline connecting the main Seminole line with the storage facility and caused shock waves felt 130 miles away. A 5 year old boy who lived in a trailer near Seminole's LPG storage dome was killed, and 20 persons were injured.

  2. EIS-0276: Rocky Flats Plutonium Storage, Golden, Colorado

    Broader source: Energy.gov [DOE]

    This EIS analyzes DOE's proposed action to provide safe interim storage of approximately 10 metric tons of plutonium at the Rocky Flats Environmental Technology Site (RFETS).

  3. INTERIM BARRIER AT HANFORDS TY FARM TO PROTECT GROUNDWATER AT THE HANFORD SITE WASHINGTON USA

    SciTech Connect (OSTI)

    PARKER DL; HOLM MJ; HENDERSON JC; LOBER RW

    2011-01-13

    An innovative interim surface barrier was constructed as a demonstration project at the Hanford Site's TY Tank Farm. The purpose of the demonstration barrier is to stop rainwater and snowmelt from entering the soils within the tank farm and driving contamination from past leaks and spills toward the ground water. The interim barrier was constructed using a modified asphalt material with very low permeability developed by MatCon{reg_sign}. Approximately 2,400 cubic yards of fill material were added to the tank farm to create a sloped surface that will gravity drain precipitation to collection points where it will be routed through buried drain lines to an evapotranspiration basin adjacent to the farm. The evapotranspiration basin is a lined basin with a network of perforated drain lines covered with soil and planted with native grasses. The evapotranspiration concept was selected because it prevents the runoff from percolating into the soil column and also avoids potential monitoring and maintenance issues associated with standing water in a traditional evaporation pond. Because of issues associated with using standard excavation and earth moving equipment in the farm a number of alternate construction approaches were utilized to perform excavations and prepare the site for the modified asphalt.

  4. Niagara Falls Storage Site annual site environmental monitoring report. Calendar year 1985

    SciTech Connect (OSTI)

    Not Available

    1986-04-01

    During 1985, an environmental monitoring program was continued at the Niagara Falls Storage Site (NFSS), a United States Department of Energy (DOE) surplus facility located in Niagara County, New York, presently used for the interim storage of low-level radioactive residues and contaminated soils and rubble. The monitoring program is being conducted by Bechtel National, Inc. Monitoring results show that the NFSS is in compliance with DOE concentration guides and radiation protection standards. Derived Concentration Guides (DCGs) represent the concentrations of radionuclides in air or water that would limit the radiation dose to 100 mrem/yr. The applicable limits have been revised since the 1984 environmental monitoring report was published. The limits applied in 1984 were based on a radiation protection standard of 500 mrem/yr; the limits applied for the 1985 are based on a standard of 100 mrem/yr. To determine whether the site is in compliance with DOE standards, environmental measurements are expressed as percentages of the applicable DCG, while the calculated doses to the public are expressed as percentages of the applicable radiation protection standard. The monitoring program measured radon gas concentrations in air; uranium and radium concentrations in surface water, groundwater, and sediments; and external gamma dose rates. Environmental samples collected were analyzed to determine compliance with applicable standards. Potential radiation doses to the public were also calculated.

  5. 1985 Federal Interim Storage Fee Study: a technical and economic analysis

    SciTech Connect (OSTI)

    Not Available

    1985-09-01

    JAI examined alternative methods for structuring charges for FIS services and concluded that the combined interests of the Deaprtment and the users would be best served, and costs most appropriately recovered, by a two-part fee involving an Initial Payment upon execution of a contract for FIS services followed by a Final Payment upon delivery of the spent fuel to the Department. The Initial Payment would be an advance payment covering the pro rata share of preoperational costs, including (1) the capital costs of the required transfer facilities and storage area, (2) development costs, (3) government administrative costs including storage fund management, (4) impact aid payments made in accordance with section 136(e) of the Act, and (5) module costs (i.e., storage casks, drywells or silos). The Final Payment would be made at the time of delivery of the spent fuel to the Department and would be calculated to cover the sum of the following: (1) any under-or over-estimation in the costs used to calculate the Initial Payment of the fee (including savings due to rod consolidation), and (2) the total estimated cost of operation and decommissioning of the FIS facilities (including government administrative costs, storage fund management and impact aid). The module costs were included in the Initial Payment to preclude the possible need to obtain appropriations for federal funds to support the purchase of the modules in advance of receipt of the Final Payment. Charges for the transport of spent fuel from the reactor site to FIS facilities would be separately assessed at actual cost since these will be specific to each reactor site and destination.

  6. Plutonium storage criteria

    SciTech Connect (OSTI)

    Chung, D.; Ascanio, X.

    1996-05-01

    The Department of Energy has issued a technical standard for long-term (>50 years) storage and will soon issue a criteria document for interim (<20 years) storage of plutonium materials. The long-term technical standard, {open_quotes}Criteria for Safe Storage of Plutonium Metals and Oxides,{close_quotes} addresses the requirements for storing metals and oxides with greater than 50 wt % plutonium. It calls for a standardized package that meets both off-site transportation requirements, as well as remote handling requirements from future storage facilities. The interim criteria document, {open_quotes}Criteria for Interim Safe Storage of Plutonium-Bearing Solid Materials{close_quotes}, addresses requirements for storing materials with less than 50 wt% plutonium. The interim criteria document assumes the materials will be stored on existing sites, and existing facilities and equipment will be used for repackaging to improve the margin of safety.

  7. Waste Encapsulation and Storage Facility (WESF) Basis for Interim Operation (BIO)

    SciTech Connect (OSTI)

    COVEY, L.I.

    2000-11-28

    The Waste Encapsulation and Storage Facility (WESF) is located in the 200 East Area adjacent to B Plant on the Hanford Site north of Richland, Washington. The current WESF mission is to receive and store the cesium and strontium capsules that were manufactured at WESF in a safe manner and in compliance with all applicable rules and regulations. The scope of WESF operations is currently limited to receipt, inspection, decontamination, storage, and surveillance of capsules in addition to facility maintenance activities. The capsules are expected to be stored at WESF until the year 2017, at which time they will have been transferred for ultimate disposition. The WESF facility was designed and constructed to process, encapsulate, and store the extracted long-lived radionuclides, {sup 90}Sr and {sup 137}Cs, from wastes generated during the chemical processing of defense fuel on the Hanford Site thus ensuring isolation of hazardous radioisotopes from the environment. The construction of WESF started in 1971 and was completed in 1973. Some of the {sup 137}Cs capsules were leased by private irradiators or transferred to other programs. All leased capsules have been returned to WESF. Capsules transferred to other programs will not be returned except for the seven powder and pellet Type W overpacks already stored at WESF.

  8. Interim site characterization report and ground-water monitoring program for the Hanford site solid waste landfill

    SciTech Connect (OSTI)

    Fruland, R.M.; Hagan, R.A.; Cline, C.S.; Bates, D.J.; Evans, J.C.; Aaberg, R.L.

    1989-07-01

    Federal and state regulations governing the operation of landfills require utilization of ground-water monitoring systems to determine whether or not landfill operations impact ground water at the point of compliance (ground water beneath the perimeter of the facility). A detection-level ground-water monitoring system was designed, installed, and initiated at the Hanford Site Solid Waste Landfill (SWL). Chlorinated hydrocarbons were detected at the beginning of the ground-water monitoring program and continue to be detected more than 1 year later. The most probable source of the chlorinated hydrocarbons is washwater discharged to the SWL between 1985 and 1987. This is an interim report and includes data from the characterization work that was performed during well installation in 1987, such as field observations, sediment studies, and geophysical logging results, and data from analyses of ground-water samples collected in 1987 and 1988, such as field parameter measurements and chemical analyses. 38 refs., 27 figs., 8 tabs.

  9. The CASTOR-V/21 PWR spent-fuel storage cask: Testing and analyses: Interim report

    SciTech Connect (OSTI)

    Dziadosz, D.; Moore, E.V.; Creer, J.M.; McCann, R.A.; McKinnon, M.A.; Tanner, J.E.; Gilbert, E.R.; Goodman, R.L.; Schoonen, D.H.; Jensen, M.

    1986-11-01

    A performance test of a Gesellschaft fuer Nuklear Service CASTOR-V/21 pressurized water reactor (PWR) spent fuel storage cask was performed. The test was the first of a series of cask performance tests planned under a cooperative agreement between Virginia Power and the US Department of Energy. The performance test consisted of loading the CASTOR-V/21 cask with 21 PWR spent fuel assemblies from Virginia Power's Surry reactor. Cask surface and fuel assembly guide tube temperatures, and cask surface gamma and neutron dose rates were measured. Testing was performed with vacuum, nitrogen, and helium backfill environments in both vertical and horizontal cask orientations. Limited spent fuel integrity data were also obtained. Results of the performance test indicate the CASTOR-V/21 cask exhibited exceptionally good heat transfer performance which exceeded design expectations. Peak cladding temperatures with helium and nitrogen backfills in a vertical cast orientation and with helium in a horizontal orientation were less than the allowable of 380/sup 0/C with a total cask heat load of 28 kW. Significant convection heat transfer was present in vertical nitrogen and helium test runs as indicated by peak temperatures occurring in the upper regions of the fuel assemblies. Pretest temperature predictions of the HYDRA heat transfer computer program were in good agreement with test data, and post-test predictions agreed exceptionally well (25/sup 0/C) with data. Cask surface gamma and neutron dose rates were measured to be less than the design goal of 200 mrem/h. Localized peaks as high as 163 mrem/h were measured on the side of the cask, but peak dose rates of <75 mrem/h can easily be achieved with minor refinements to the gamma shielding design. From both heat transfer and shielding perspectives, the CASTOR-V/21 cask can, with minor refinements, be effectively implemented at reactor sites and central storage facilities for safe storage of spent fuel.

  10. On-Site and Bulk Hydrogen Storage | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Delivery » On-Site and Bulk Hydrogen Storage On-Site and Bulk Hydrogen Storage On-site hydrogen storage is used at central hydrogen production facilities, transport terminals, and end-use locations. Storage options today include insulated liquid tanks and gaseous storage tanks. The four types of common high pressure gaseous storage vessels are shown in the table. Type I All-metal cylinder Type II Load-bearing metal liner hoop wrapped with resin-impregnated continuous filament Type III

  11. Fresh Water Generation from Aquifer-Pressured Carbon Storage: Interim Progress Report

    SciTech Connect (OSTI)

    Aines, R D; Wolery, T J; Hao, Y; Bourcier, W L

    2009-07-22

    This project is establishing the potential for using brine pressurized by Carbon Capture and Storage (CCS) operations in saline formations as the feedstock for desalination and water treatment technologies including nanofiltration (NF) and reverse osmosis (RO). The aquifer pressure resulting from the energy required to inject the carbon dioxide provides all or part of the inlet pressure for the desalination system. Residual brine would be reinjected into the formation at net volume reduction. This process provides additional storage space (capacity) in the aquifer, reduces operational risks by relieving overpressure in the aquifer, and provides a source of low-cost fresh water to offset costs or operational water needs. Computer modeling and laboratory-scale experimentation are being used to examine mineral scaling and osmotic pressure limitations for brines typical of CCS sites. Computer modeling is being used to evaluate processes in the aquifer, including the evolution of the pressure field. This progress report deals mainly with our geochemical modeling of high-salinity brines and covers the first six months of project execution (September, 2008 to March, 2009). Costs and implementation results will be presented in the annual report. The brines typical of sequestration sites can be several times more concentrated than seawater, requiring specialized modeling codes typical of those developed for nuclear waste disposal calculations. The osmotic pressure developed as the brines are concentrated is of particular concern, as are precipitates that can cause fouling of reverse osmosis membranes and other types of membranes (e.g., NF). We have now completed the development associated with tasks (1) and (2) of the work plan. We now have a contract with Perlorica, Inc., to provide support to the cost analysis and nanofiltration evaluation. We have also conducted several preliminary analyses of the pressure effect in the reservoir in order to confirm that reservoir

  12. Site Visit Report, Hanford Waste Encapsulation Storage Facility - January

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2011 | Department of Energy Hanford Waste Encapsulation Storage Facility - January 2011 Site Visit Report, Hanford Waste Encapsulation Storage Facility - January 2011 January 2011 Hanford Waste Encapsulation Storage Facility Documented Safety Analysis results of a review conducted by the Department of Energy's Office of Health, Safety and Security (HSS) of the documented safety analysis for the Waste Encapsulation Storage Facility at DOE's Hanford Site. The review was performed from July

  13. Application of Spatial Data Modeling Systems, Geographical Information Systems (GIS), and Transportation Routing Optimization Methods for Evaluating Integrated Deployment of Interim Spent Fuel Storage Installations and Advanced Nuclear Plants

    SciTech Connect (OSTI)

    Mays, Gary T; Belles, Randy; Cetiner, Sacit M; Howard, Rob L; Liu, Cheng; Mueller, Don; Omitaomu, Olufemi A; Peterson, Steven K; Scaglione, John M

    2012-06-01

    The objective of this siting study work is to support DOE in evaluating integrated advanced nuclear plant and ISFSI deployment options in the future. This study looks at several nuclear power plant growth scenarios that consider the locations of existing and planned commercial nuclear power plants integrated with the establishment of consolidated interim spent fuel storage installations (ISFSIs). This research project is aimed at providing methodologies, information, and insights that inform the process for determining and optimizing candidate areas for new advanced nuclear power generation plants and consolidated ISFSIs to meet projected US electric power demands for the future.

  14. EIS-0220: Interim Management of Nuclear Materials at the Savannah River Site

    Office of Energy Efficiency and Renewable Energy (EERE)

    This environmental impact statement assesses the potential environmental impacts of actions necessary to manage nuclear materials at the Savannah River Site (SRS) in Aiken, South Carolina, until decisions on their ultimate disposition are made and implemented. The Department of Energy has decided to initiate actions which will stabilize certain of the SRS materials that represent environment, safety and health vulnerabilities in their current storage condition or which may represent a vulnerability within the next 10 years.

  15. Savannah River Site Interim Waste Management Program Plan FY 1991--1992

    SciTech Connect (OSTI)

    Chavis, D.M.

    1992-05-01

    The primary purpose of the Waste Management Program Plan is to provide an annual report of how Waste Management`s operations are conducted, what facilities are being used to manage wastes, what forces are acting to change current waste management systems, and what plans are in store for the coming fiscal year. In addition, this document projects activities for several years beyond the coming fiscal year in order to adequately plan for safe handling, storage, and disposal of radioactive wastes generated at the Savannah River Site and for developing technology for improved management of wastes. In this document, work descriptions and milestone schedules are current as of December 1991.

  16. Savannah River Site Interim Waste Management Program Plan FY 1991--1992

    SciTech Connect (OSTI)

    Chavis, D.M.

    1992-05-01

    The primary purpose of the Waste Management Program Plan is to provide an annual report of how Waste Management's operations are conducted, what facilities are being used to manage wastes, what forces are acting to change current waste management systems, and what plans are in store for the coming fiscal year. In addition, this document projects activities for several years beyond the coming fiscal year in order to adequately plan for safe handling, storage, and disposal of radioactive wastes generated at the Savannah River Site and for developing technology for improved management of wastes. In this document, work descriptions and milestone schedules are current as of December 1991.

  17. Environmental permits and approvals plan for high-level waste interim storage, Project W-464

    SciTech Connect (OSTI)

    Deffenbaugh, M.L.

    1998-05-28

    This report discusses the Permitting Plan regarding NEPA, SEPA, RCRA, and other regulatory standards and alternatives, for planning the environmental permitting of the Canister Storage Building, Project W-464.

  18. Niagara Falls Storage Site, Annual site environmental report, Lewiston, New York, Calendar year 1986: Surplus Facilities Management Program (SFMP)

    SciTech Connect (OSTI)

    Not Available

    1987-06-01

    During 1986, the environmental monitoring program was continued at the Niagara Falls Storage Site (NFSS), a US Department of Energy (DOE) surplus facility located in Niagara County, New York, presently used for the interim storage of radioactive residues and contaminated soils and rubble. The monitoring program is being conducted by Bechtel National, Inc. The monitoring program at the NFSS measures radon gas concentrations in air; external gamma radiation levels; and uranium and radium concentrations in surface water, groundwater, and sediment. To verify that the site is in compliance with the DOE radiation protection standard and to assess its potential effect on public health, the radiation dose was calculated for the maximally exposed individual. Based on the conservative scenario described in the report, this individual would receive an annual external exposure approximately equivalent to 6% of the DOE radiation protection standard of 100 mrem/yr. By comparison, the incremental dose received from living in a brick house versus a wooden house is 10 mrem/yr above background. The cumulative dose to the population within an 80-km (50-mi) radius of the NFSS that would result from radioactive materials present at the site would be indistinguishable from the dose that the same population would receive from naturally occurring radioactive sources. Results of the 1986 monitoring show that the NFSS is in compliance with the DOE radiation protection standard. 14 refs., 11 figs., 14 tabs.

  19. FutureGen Industrial Alliance Announces Carbon Storage Site Selection

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Process for FutureGen 2.0 | Department of Energy Industrial Alliance Announces Carbon Storage Site Selection Process for FutureGen 2.0 FutureGen Industrial Alliance Announces Carbon Storage Site Selection Process for FutureGen 2.0 October 6, 2010 - 12:00am Addthis WASHINGTON -- The FutureGen Industrial Alliance today announced details of a process that will lead to the selection of an Illinois site for the storage of carbon dioxide (CO2) collected at FutureGen 2.0, a landmark project that

  20. International Symposium on Site Characterization for CO2Geological Storage

    SciTech Connect (OSTI)

    Tsang, Chin-Fu

    2006-02-23

    Several technological options have been proposed to stabilize atmospheric concentrations of CO{sub 2}. One proposed remedy is to separate and capture CO{sub 2} from fossil-fuel power plants and other stationary industrial sources and to inject the CO{sub 2} into deep subsurface formations for long-term storage and sequestration. Characterization of geologic formations for sequestration of large quantities of CO{sub 2} needs to be carefully considered to ensure that sites are suitable for long-term storage and that there will be no adverse impacts to human health or the environment. The Intergovernmental Panel on Climate Change (IPCC) Special Report on Carbon Dioxide Capture and Storage (Final Draft, October 2005) states that ''Site characterization, selection and performance prediction are crucial for successful geological storage. Before selecting a site, the geological setting must be characterized to determine if the overlying cap rock will provide an effective seal, if there is a sufficiently voluminous and permeable storage formation, and whether any abandoned or active wells will compromise the integrity of the seal. Moreover, the availability of good site characterization data is critical for the reliability of models''. This International Symposium on Site Characterization for CO{sub 2} Geological Storage (CO2SC) addresses the particular issue of site characterization and site selection related to the geologic storage of carbon dioxide. Presentations and discussions cover the various aspects associated with characterization and selection of potential CO{sub 2} storage sites, with emphasis on advances in process understanding, development of measurement methods, identification of key site features and parameters, site characterization strategies, and case studies.

  1. EA-1146: Radioactive Waste Storage at Rocky Flats Environmental Technology Site, Golden, Colorado

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of the proposal to convert buildings at the U.S. Department of Energy Rocky Flats Environmental Technology Site from their former uses to interim waste...

  2. Niagara Falls Storage Site environmental report for calendar year 1989, Lewiston, New York

    SciTech Connect (OSTI)

    Not Available

    1990-05-01

    The environmental monitoring program, which began in 1981, was continued during 1989 at the Niagara Falls Storage Site (NFSS), a United States Department of Energy (DOE) surplus facility located in Niagara County, New York, that is currently used for interim storage of radioactive residues, contaminated soils, and rubble. The monitoring program is being conducted by Bechtel National, Inc. The monitoring program at NFSS measures radon concentrations in air; external gamma radiation levels; and uranium and radium concentrations in surface water, groundwater, and sediment. Additionally, several nonradiological parameters are measured in groundwater. To verify that the site is in compliance with the DOE radiation protection standard and to assess its potential effect on public health, the radiation dose was calculated for a hypothetical maximally exposed individual. Based on the conservative scenario described in this report, this hypothetical individual receives an annual external exposure equivalent to approximately 2 percent of the DOE radiation protection standard of 100 mrem/yr. This exposure is less than a person receives during a one-way flight from New York to Los Angeles (because of the greater amounts of cosmic radiation at higher altitudes). The cumulative dose to the population within an 80-km (50-mi) radius of NFSS that results from radioactive materials present at the site is indistinguishable from the dose that the same population receives from naturally occurring radioactive sources. Results of the 1989 monitoring show that NFSS is in compliance with applicable DOE radiation protection standards. 18 refs., 26 figs., 18 tabs.

  3. Designation Survey - Palmerton, Pa. Ore Storage Site William Bibb

    Office of Legacy Management (LM)

    Designation Survey - Palmerton, Pa. Ore Storage Site William Bibb Oak Ridge Operations Office Based on the information furnished in Aerospace's Review of the.subject site (Attachment 1) and the ORKL/RASA (Attachment 2), it Is requested that designation survey of the Palmerton Ore Storage Pennsylvania. The survey should be detailed to and subsurface data to make up for the lack of the previous AEC surveys and in keeping with ORNL/RASA group should furnish a draft survey approval prior to

  4. SPR Storage Sites | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Sites.jpg Emergency crude oil is stored in the Strategic Petroleum Reserve in salt ... the most flexible means for connecting to the Nation's commercial oil transport network. ...

  5. Analysis of dust samples collected from spent nuclear fuel interim storage containers at Hope Creek, Delaware, and Diablo Canyon, California.

    SciTech Connect (OSTI)

    Bryan, Charles R.; Enos, David George

    2014-07-01

    Potentially corrosive environments may form on the surface of spent nuclear fuel dry storage canisters by deliquescence of deposited dusts. To assess this, samples of dust were collected from in-service dry storage canisters at two near-marine sites, the Hope Creek and Diablo Canyon storage installations, and have been characterized with respect to mineralogy, chemistry, and texture. At both sites, terrestrially-derived silicate minerals, including quartz, feldspars, micas, and clays, comprise the largest fraction of the dust. Also significant at both sites were particles of iron and iron-chromium metal and oxides generated by the manufacturing process. Soluble salt phases were minor component of the Hope Creek dusts, and were compositionally similar to inland salt aerosols, rich in calcium, sulfate, and nitrate. At Diablo Canyon, however, sea-salt aerosols, occurring as aggregates of NaCl and Mg-sulfate, were a major component of the dust samples. The seasalt aerosols commonly occurred as hollow spheres, which may have formed by evaporation of suspended aerosol seawater droplets, possibly while rising through the heated annulus between the canister and the overpack. The differences in salt composition and abundance for the two sites are attributed to differences in proximity to the open ocean and wave action. The Diablo Canyon facility is on the shores of the Pacific Ocean, while the Hope Creek facility is on the shores of the Delaware River, several miles from the open ocean.

  6. Development of zinc-bromine batteries for utility energy storage. Interim report, September 1978-August 1979

    SciTech Connect (OSTI)

    Putt, R.A.

    1981-03-01

    The goals in the first year of study were to build and test full-size zinc-bromide cell hardware in the form of three 8-kWh submodules and to provide a cost-design study of an 80-kWh module. Supporting studies were included for developing the basic electrochemistry of the system. The program was based on technology developed during a prior contract in which the system's design simplicity, high efficiency, long cycle life, and ease of scale-up, all of which are requirements of a battery for utility application were demonstrated. The system design which evolved during that program comprised a monopolar cell stack using titanium electrodes and a microporous separator, circulation of electrolyte through both the negative and positive sides of the cell stack, and storage of electrolyte and bromine (the latter in the form of a liquid polybromide complex) externally to the cell stack. Two monopolar, 8-kWh submodules of that design were built during the present program. Despite poor electrochemical efficiencies, one of the submodules achieved over 160 deep discharge cycles in continuous hands-off automatic cycling, indicating the inherent cyclability of the system. A major design improvement was made during the program, which has proved crucial to the successful scale-up of the zinc-bromine battery - conversion from a monopolar to a bipolar cell design. The bipolar design has been shown to be superior with respect to cost, performance, and simplicity. Conversion from the monopolar to bipolar cell design was achieved at the 8-kWh submodule level with a minimal perturbation on the hardware construction and testing schedule; one bipolar submodule was built and under test within the 12-month contract period. The 80-kWh stand-alone module will comprise 10 identical 8-kWh submodules of the bipolar electrode configuration, electrolyte circulation systems (pumps, tanks, and plumbing) for both the negative and positive electrolytes, and a bromine storage system.

  7. Evaluation of Aluminum-Boron Carbide Neutron Absorbing Materials for Interim Storage of Used Nuclear Fuel

    SciTech Connect (OSTI)

    Wang, Lumin; Wierschke, Jonathan Brett

    2015-04-08

    The objective of this work was to understand the corrosion behavior of Boral® and Bortec® neutron absorbers over long-term deployment in a used nuclear fuel dry cask storage environment. Corrosion effects were accelerated by flowing humidified argon through an autoclave at temperatures up to 570°C. Test results show little corrosion of the aluminum matrix but that boron is leaching out of the samples. Initial tests performed at 400 and 570°C were hampered by reduced flow caused by the rapid build-up of solid deposits in the outlet lines. Analysis of the deposits by XRD shows that the deposits are comprised of boron trioxide and sassolite (H3BO3). The collection of boron- containing compounds in the outlet lines indicated that boron was being released from the samples. Observation of the exposed samples using SEM and optical microscopy show the growth of new phases in the samples. These phases were most prominent in Bortec® samples exposed at 570°C. Samples of Boral® exposed at 570°C showed minimal new phase formation but showed nearly the complete loss of boron carbide particles. Boron carbide loss was also significant in Boral samples at 400°C. However, at 400°C phases similar to those found in Bortec® were observed. The rapid loss of the boron carbide particles in the Boral® is suspected to inhibit the formation of the new secondary phases. However, Material samples in an actual dry cask environment would be exposed to temperatures closer to 300°C and less water than the lowest test. The results from this study conclude that at the temperature and humidity levels present in a dry cask environment, corrosion and boron leaching will have no effect on the performance of Boral® and Bortec® to maintain criticality control.

  8. Niagara Falls Storage Site Vicinity Properties in Lewiston, New York,

    Office of Legacy Management (LM)

    Niagara Falls Storage Site Vicinity Properties in Lewiston, New York, from 7983 through 7986 Depatfment of Energy Former Sites Restoration Division Oak Ridge Field Office July 7 992 I I I I I I I I I I I I I I I I I I I CONTENTS Figures .......................... Tables .......................... Abbreviations ....................... Acronyms ......................... 1.0 Introduction ..................... 2.0 Site History ..................... 3.0 Property Descriptions ................ 3.1 3.2

  9. COMMISSIONING AND START-UP TESTS OF ALPHA-CONTAMINATED SOLID WASTE SORTING, CEMENTING, AND INTERIM STORAGE FACILITIES AT BELGOPROCESS (BELGIUM)

    SciTech Connect (OSTI)

    GLIBERT, R.C.; NUYT, G.; LAMOTTE, G.; RENARD, CL.; DE GOEYSE, A.; GOETSCHALCKX, R.; GHYS, B.

    2003-02-27

    The alpha-contaminated solid waste generated in Belgium results from past activities in the fuel cycle (R & D +Reprocessing and MOX fabrication pilot plants) and present operation of BELGONUCLEAIRE's MOX fuel fabrication plant. After the main steps in the management of alpha-contaminated solid waste were established, BELGONUCLEAIRE, with the backing of BELGOPROCESS and ONDRAF/NIRAS, started the design and construction of the T & C and interim-storage facilities for this alpha waste. The accumulated solid alpha radwaste containing a mixture of combustible and non-combustible material will be sorted. After sorting, both the accumulated and recently-generated non-combustible alpha waste will be embedded in a cement matrix. The erection of the sorting and cementing units which include glove-boxes and the interim storage building for conditioned packages was completed at BELGOPROCESS, at the beginning of year 2002. Start-up operations for both facilities have been performed. Operating tests of the sorting and cementing units were completed in July 2002 and inactive operation campaigns were started in August 2002. The results of the tests and inactive campaigns are given. Overall testing of the storage building supervised by the Safety Authorities was successfully performed at the end of 202 after completion of the operating tests on the equipment. The present paper summarizes the main information collected during the tests and campaigns, some of which has led to modifications of the equipment originally installed.

  10. Monitored retrievable storage facility site screening and evaluation report

    SciTech Connect (OSTI)

    none,

    1985-05-01

    The Nuclear Waste Policy Act of 1982 directs the Department of Energy to complete a detailed study of the need for and feasibility of, and to submit to the Congress a proposal for, the construction of one or more monitored retrievable storage facilities for high level radioactive waste and spent nuclear fuel.'' The Act directs that the proposal includes site specific designs. Further, the proposal is to include, for the first such facility, at least three alternative sites and at least five alternative combinations of such proposed site and facility designs...'' as well as a recommendation of the combination among the alternatives that the Secretary deems preferable.'' An MRS Site Screening Task Force has been formed to help identify and evaluated potential MRS facility sites within a preferred region and with the application of a siting process and criteria developed by the DOE. The activities of the task force presented in this report includes: site screening (Sections 3, 4, and 5), the MRS facilities which are to be sited are described; the criteria, process and outcome of the screening process is presented; and descriptions of the candidate MRS facility sites are given, and site evaluations (Sections 6 through 9) where the rational for the site evaluations are presented, along with each evaluation and findings of the Task Force.

  11. Engineering evaluation of alternatives for the disposition of Niagara Falls Storage Site, its residues and wastes

    SciTech Connect (OSTI)

    Not Available

    1984-01-01

    The final disposition scenarios selected by DOE for assessment in this document are consistent with those stated in the Notice of Intent to prepare an Environmental Impact Statement (EIS) for the Niagara Falls Storage Site (NFSS) (DOE, 1983d) and the modifications to the alternatives resulting from the public scoping process. The scenarios are: take no action beyond interim remedial measures other than maintenance and surveillance of the NFSS; retain and manage the NFSS as a long-term waste management facility for the wastes and residues on the site; decontaminate, certify, and release the NFSS for other use, with long-term management of the wastes and residues at other DOE sites; and partially decontaminate the NFSS by removal and transport off site of only the more radioactive residues, and upgrade containment of the remaining wastes and residues on site. The objective of this document is to present to DOE the conceptual engineering, occupational radiation exposure, construction schedule, maintenance and surveillance requirements, and cost information relevant to design and implementation of each of the four scenarios. The specific alternatives within each scenario used as the basis for discussion in this document were evaluated on the bases of engineering considerations, technical feasibility, and regulatory requirements. Selected alternatives determined to be acceptable for each of the four final disposition scenarios for the NFSS were approved by DOE to be assessed and costed in this document. These alternatives are also the subject of the EIS for the NFSS currently being prepared by Argonne National Laboratory (ANL). 40 figures, 38 tables.

  12. Monitored Retrievable Storage facility site screening and evaluation report

    SciTech Connect (OSTI)

    none,

    1985-05-01

    The Nuclear Waste Policy Act of 1982 directs the Department of Energy to complete a detailed study of the need for and feasibility of, and to submit to the Congress a proposal for, the construction of one or more monitored retrievable storage facilities for high level radioactive waste and spent nuclear fuel.'' The Act directs that the proposal includes site specific designs. Further, the proposal is to include, for the first such facility, at least three alternative sites and at least five alternative combinations of such proposed sites and facility designs {hor ellipsis}'' as well as a recommendation of the combination among the alternatives that the Secretary deems preferable.'' An MRS Site Screening Task Force has been formed to help identify and evaluate potential MRS facility sites within a preferred region and with the application of a siting process and criteria developed by the DOE. The activities of the Task Force presented in this report, all site evaluations (sections 13 through 16) where the rationale for the site evaluations are presented, along with each evaluation and findings of the Task Force. This is Volume 3 of a three volume document. References are also included in this volume.

  13. Evapotranspiration Within the Groundwater Model Domain of the Tuba City, Arizona, Disposal Site Interim Report

    SciTech Connect (OSTI)

    None, None

    2015-03-01

    The revised groundwater model includes estimates of evapotranspiration (ET). The types of vegetation and the influences of ET on groundwater hydrology vary within the model domain. Some plant species within the model domain, classified as phreatophytes, survive by extracting groundwater. ET within these plant communities can result in a net discharge of groundwater if ET exceeds precipitation. Other upland desert plants within the model domain survive on meteoric water, potentially limiting groundwater recharge if ET is equivalent to precipitation. For all plant communities within the model domain, excessive livestock grazing or other disturbances can tip the balance to a net groundwater recharge. This task characterized and mapped vegetation within the groundwater model domain at the Tuba City, Arizona, Site, and then applied a remote sensing algorithm to estimate ET for each vegetation type. The task was designed to address five objectives: 1. Characterize and delineate different vegetation or ET zones within the groundwater model domain, focusing on the separation of plant communities with phreatophytes that survive by tapping groundwater and upland plant communities that are dependent on precipitation. 2. Refine a remote sensing method, developed to estimate ET at the Monument Valley site, for application at the Tuba City site. 3. Estimate recent seasonal and annual ET for all vegetation zones, separating phreatophytic and upland plant communities within the Tuba City groundwater model domain. 4. For selected vegetation zones, estimate ET that might be achieved given a scenario of limited livestock grazing. 5. Analyze uncertainty of ET estimates for each vegetation zone and for the entire groundwater model domain.

  14. Site 300 hazardous-waste-assessment project. Interim report: December 1981. Preliminary site reconnaissance and project work plan

    SciTech Connect (OSTI)

    Raber, E.; Helm, D.; Carpenter, D.; Peifer, D.; Sweeney, J.

    1982-01-20

    This document was prepared to outline the scope and objectives of the Hazardous Waste Assessment Project (HWAP) at Site 300. This project was initiated in October, 1981, to investigate the existing solid waste landfills in an effort to satisfy regulatory guidelines and assess the potential for ground-water contamination. This involves a site-specific investigation (utilizing geology, hydrology, geophysics and geochemistry) with the goal of developing an effective ground-water quality monitoring network. Initial site reconnaissance work has begun and we report the results, to date, of our geologic hydrogeologic studies. All known solid waste disposal locations are underlain by rocks of either the Late Miocene Neroly Formation or the Cierbo Formation, both of which are dominantly sandstones interbedded with shale and claystone. The existence of a regional confined (artesian) aquifer, as well as a regional water-table aquifer is postulated for Site 300. Preliminary analysis has led to an understanding of directions and depths of regional ground-water flow.

  15. Niagara Falls Storage Site environmental monitoring report. Calendar year 1983

    SciTech Connect (OSTI)

    Not Available

    1984-07-01

    During 1983, an environmental monitoring program was continued at the Niagara Falls Storage Site, a United States Department of Energy (DOE) surplus facility located in Niagara County, New York presently used for the storage of radioactive residues, contaminated soils and rubble. The monitoring program at NFSS measures radon concentrations in air, uranium and radium concentrations in surface water, groundwater, and sediments, and external gamma exposure rates. Radiation doses to the public are also calculated. Environmental samples collected are analyzed to determine compliance with applicable standards. Comparison of 1983 monitoring results with 1982 results shows a significant decrease in radon levels at almost every monitoring location. External gamma exposure rates also showed a general decrease. 9 references, 10 figures, 11 tables

  16. Interim Status of the Accelerated Site Technology Deployment Integrated Decontamination and Decommissioning Project

    SciTech Connect (OSTI)

    A. M Smith; G. E. Matthern; R. H. Meservey

    1998-11-01

    The Idaho National Engineering and Environmental Laboratory (INEEL), Fernald Environmental Management Project (FEMP), and Argonne National Laboratory - East (ANL-E) teamed to establish the Accelerated Site Technology Deployment (ASTD) Integrated Decontamination and Decommissioning (ID&D) project to increase the use of improved technologies in D&D operations. The project is making the technologies more readily available, providing training, putting the technologies to use, and spreading information about improved performance. The improved technologies are expected to reduce cost, schedule, radiation exposure, or waste volume over currently used baseline methods. They include some of the most successful technologies proven in the large-scale demonstrations and in private industry. The selected technologies are the Pipe Explorer, the GammaCam, the Decontamination Decommissioning and Remediation Optimal Planning System (DDROPS), the BROKK Demolition Robot, the Personal Ice Cooling System (PICS), the Oxy-Gasoline Torch, the Track-Mounted Shear, and the Hand-Held Shear.

  17. Decommissioning and Dismantling of Liquid Waste Storage and Liquid Waste Treatment Facility from Paldiski Nuclear Site, Estonia

    SciTech Connect (OSTI)

    Varvas, M.; Putnik, H.; Johnsson, B.

    2006-07-01

    The Paldiski Nuclear Facility in Estonia, with two nuclear reactors was owned by the Soviet Navy and was used for training the navy personnel to operate submarine nuclear reactors. After collapse of Soviet Union the Facility was shut down and handed over to the Estonian government in 1995. In co-operation with the Paldiski International Expert Reference Group (PIERG) decommission strategy was worked out and started to implement. Conditioning of solid and liquid operational waste and dismantling of contaminated installations and buildings were among the key issues of the Strategy. Most of the liquid waste volume, remained at the Facility, was processed in the frames of an Estonian-Finnish co-operation project using a mobile wastewater purification unit NURES (IVO International OY) and water was discharged prior to the site take-over. In 1999-2002 ca 120 m{sup 3} of semi-liquid tank sediments (a mixture of ion exchange resins, sand filters, evaporator and flocculation slurry), remained after treatment of liquid waste were solidified in steel containers and stored into interim storage. The project was carried out under the Swedish - Estonian co-operation program on radiation protection and nuclear safety. Contaminated installations in buildings, used for treatment and storage of liquid waste (Liquid Waste Treatment Facility and Liquid Waste Storage) were then dismantled and the buildings demolished in 2001-2004. (authors)

  18. Determination of ecologically vital groundwaters at selected sites in the Formerly Utilized Sites Remedial Action Program

    SciTech Connect (OSTI)

    Vinikour, W.S.; Yin, S.C.L.

    1989-08-01

    The US Department of Energy is classifying groundwaters at sites in its Formerly Utilized Sites Remedial Action Program (FUSRAP). Of particular concern is the potential presence of groundwaters that are highly vulnerable to contamination and that are either (1) irreplaceable sources of drinking water or (2) ecologically vital. Conditions at nine FUSRAP sites were evaluated to determine if ecologically vital groundwaters are present. The sites evaluated were Wayne Interim Storage Site, Maywood Interim Storage Site, and Middlesex Sampling Plant in New Jersey; Ashland 2 Site, Seaway Industrial Park, Colonie Interim storage Site, and Niagara Falls Storage Site in New York; and the St. Louis Airport Site and Hazelwood Interim Storage Site in Missouri. The analyses indicated that groundwaters are vulnerable to contamination at all but two of the sites -- the Ashland 2 and Seaway Industrial Park sites in New York. Groundwater discharge points were identified within a 2-mile radius (i.e., the classification review area) of all of the sites. No ecologically vital groundwater areas exist in the vicinities of any of the nine FUSRAP sites evaluated. 35 refs., 17 figs.

  19. Identifying suitable "piercement" salt domes for nuclear waste storage sites

    SciTech Connect (OSTI)

    Kehle, R.

    1980-08-01

    Piercement salt domes of the northern interior salt basins of the Gulf of Mexico are being considered as permanent storage sites for both nuclear and chemically toxic wastes. The suitable domes are stable and inactive, having reached their final evolutionary configuration at least 30 million years ago. They are buried to depths far below the level to which erosion will penetrate during the prescribed storage period and are not subject to possible future reactivation. The salt cores of these domes are themselves impermeable, permitting neither the entry nor exit of ground water or other unwanted materials. In part, a stable dome may be recognized by its present geometric configuration, but conclusive proof depends on establishing its evolutionary state. The evolutionary state of a dome is obtained by reconstructing the growth history of the dome as revealed by the configuration of sedimentary strata in a large area (commonly 3,000 square miles or more) surrounding the dome. A high quality, multifold CDP reflection seismic profile across a candidate dome will provide much of the necessary information when integrated with available subsurface control. Additional seismic profiles may be required to confirm an apparent configuration of the surrounding strata and an interpreted evolutionary history. High frequency seismic data collected in the near vicinity of a dome are also needed as a supplement to the CDP data to permit accurate depiction of the configuration of shallow strata. Such data must be tied to shallow drill hole control to confirm the geologic age at which dome growth ceased. If it is determined that a dome reached a terminal configuration many millions of years ago, such a dome is incapable of reactivation and thus constitutes a stable storage site for nuclear wastes.

  20. EIS-0283-S2: Interim Action Determination | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in H-Canyon at the Savannah River Site For more information on this project, see the project webpage: http://energy.gov/node/299815. Download Document EIS-0283-S2: Interim Action Determination (781.29 KB) More Documents & Publications EIS-0283-S2: Interim Action Determination EIS-0283-S2: Interim Action Determination EIS-0283-S2: Interim Action Determination

  1. Analysis of Dust Samples Collected from an Unused Spent Nuclear Fuel Interim Storage Container at Hope Creek, Delaware.

    SciTech Connect (OSTI)

    Bryan, Charles R.; Enos, David

    2015-03-01

    In July, 2014, the Electric Power Research Institute and industry partners sampled dust on the surface of an unused canister that had been stored in an overpack at the Hope Creek Nuclear Generating Station for approximately one year. The foreign material exclusion (FME) cover that had been on the top of the canister during storage, and a second recently - removed FME cover, were also sampled. This report summarizes the results of analyses of dust samples collected from the unused Hope Creek canister and the FME covers. Both wet and dry samples of the dust/salts were collected, using SaltSmart(TM) sensors and Scotch - Brite(TM) abrasive pads, respectively. The SaltSmart(TM) samples were leached and the leachate analyzed chemically to determine the composition and surface load per unit area of soluble salts present on the canister surface. The dry pad samples were analyzed by X-ray fluorescence and by scanning electron microscopy to determine dust texture and mineralogy; and by leaching and chemical analysis to deter mine soluble salt compositions. The analyses showed that the dominant particles on the canister surface were stainless steel particles, generated during manufacturing of the canister. Sparse environmentally - derived silicates and aluminosilicates were also present. Salt phases were sparse, and consisted of mostly of sulfates with rare nitrates and chlorides. On the FME covers, the dusts were mostly silicates/aluminosilicates; the soluble salts were consistent with those on the canister surface, and were dominantly sulfates. It should be noted that the FME covers were w ashed by rain prior to sampling, which had an unknown effect of the measured salt loads and compositions. Sulfate salts dominated the assemblages on the canister and FME surfaces, and in cluded Ca - SO4 , but also Na - SO4 , K - SO4 , and Na - Al - SO4 . It is likely that these salts were formed by particle - gas conversion reactions, either

  2. What's New - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    What's New What's New Calendar Hanford Blog Archive Search Site Feeds Site Index Weather What's New What's New Email Email Page | Print Print Page | Text Increase Font Size Decrease Font Size September 4, 2016 200 Area 400 Area/Fast Flux Test Facility Benefits and Services Canister Storage Building and Interim Storage Area Canyon Facilities Cold Test Facility Documents DOE Employment DOE Human Resources Management Division DOE ORP Purchase Card Buyers DOE Public Reading Room Hanford Natural

  3. Niagara Falls Storage Site annual environmental report for calendar year 1991, Lewiston, New York. [Niagara Falls Storage Site

    SciTech Connect (OSTI)

    Not Available

    1992-09-01

    This document describes the environmental monitoring program at the Niagara Falls Storage Site (NFSS) and surrounding area, implementation of the program, and monitoring results for 1991. Environmental monitoring at NFSS began in 1981. The site is owned by the US Department of Energy (DOE) and is assigned to the DOE Formerly Utilized Sites Remedial Action Program (FUSRAP). FUSRAP is a program to decontaminate or otherwise control sites where residual radioactive materials remain from the early years of the nation's atomic energy program or from commercial operations causing conditions that Congress has authorized DOE to remedy. The environmental monitoring program at NFSS includes sampling networks for radon concentrations in air; external gamma radiation exposure; and total uranium and radium-226 concentrations in surface water, sediments, and groundwater. Additionally, several nonradiological parameters including seven metals are routinely measured in groundwater. Monitoring results are compared with applicable Environmental Protection Agency (EPA) standards, DOE derived concentration guides (DCGs), dose limits, and other requirements in DOE orders. Environmental standards are established to protect public health and the environment.

  4. License Amendment Request for Storing Exelon Sister Nuclear Stations Class B/C LLRW in the LaSalle Station Interim Radwaste Storage Facility - 13620

    SciTech Connect (OSTI)

    Azar, Miguel; Gardner, Donald A.; Taylor, Edward R.

    2013-07-01

    Exelon Nuclear (Exelon) designed and constructed an Interim Radwaste Storage Facility (IRSF) in the mid-1980's at LaSalle County Nuclear Station (LaSalle). The facility was designed to store low-level radioactive waste (LLRW) on an interim basis, i.e., up to five years. The primary reason for the IRSF was to offset lack of disposal in case existing disposal facilities, such as the Southeast Compact's Barnwell Disposal Facility in Barnwell, South Carolina, ceased accepting radioactive waste from utilities not in the Southeast Compact. Approximately ninety percent of the Radwaste projected to be stored in the LaSalle IRSF in that period of time was Class A, with the balance being Class B/C waste. On July 1, 2008 the Barnwell Disposal Facility in the Southeast Compact closed its doors to out of- compact Radwaste, which precluded LaSalle from shipping Class B/C Radwaste to an outside disposal facility. Class A waste generated by LaSalle is still able to be disposed at the 'Envirocare of Utah LLRW Disposal Complex' in Clive, Utah. Thus the need for utilizing the LaSalle IRSF for storing Class B/C Radwaste for an extended period, perhaps life-of-plant or more became apparent. Additionally, other Exelon Midwest nuclear stations located in Illinois that did not build an IRSF heretofore also needed extended Radwaste storage. In early 2009, Exelon made a decision to forward Radwaste from the Byron Nuclear Station (Byron), Braidwood Nuclear Station (Braidwood), and Clinton Nuclear Station (Clinton) to LaSalle's IRSF. As only Class B/C Radwaste would need to be forwarded to LaSalle, the original volumetric capacity of the LaSalle IRSF was capable of handling the small number of additional expected shipments annually from the Exelon sister nuclear stations in Illinois. Forwarding Class B/C Radwaste from the Exelon sister nuclear stations in Illinois to LaSalle would require an amendment to the LaSalle Station operating license. Exelon submitted the License Amendment Request

  5. Public health assessment for St. Louis Airport, Hazelwood Interim Storage/Futura Coatings Company, St. Louis, St. Louis County, Missouri, Region 7. Cerclis No. MOD980633176. Preliminary report

    SciTech Connect (OSTI)

    Not Available

    1994-01-20

    The St. Louis Airport/Hazelwood Iterim Storage/Futura Coatings Company, a National Priorities List site, is in St. Louis County, Missouri. From 1946 to 1973, the site was used to store radioactive materials resulting from uranium processing. High levels of uranium, thorium, radium, and radon were detected in soil, groundwater, and air. The site is still being used to store radioactive materials. The Agency for Toxic Substances and Disease Registry considers the St. Louis Airport site to be an indeterminate public health hazard. Although there are emissions of radon and the presence of thorium in on-site air and off-site soils and the emission of radiation resulting from the presence of these materials is not currently considered a health hazard. At present conditions, the concentration of radon off-site is indistinguishable from background levels. However, in the past, these contaminants may have been present at levels of health concern.

  6. Plutonium Finishing Plant. Interim plutonium stabilization engineering study

    SciTech Connect (OSTI)

    Sevigny, G.J.; Gallucci, R.H.; Garrett, S.M.K.; Geeting, J.G.H.; Goheen, R.S.; Molton, P.M.; Templeton, K.J.; Villegas, A.J.; Nass, R.

    1995-08-01

    This report provides the results of an engineering study that evaluated the available technologies for stabilizing the plutonium stored at the Plutonium Finishing Plant located at the hanford Site in southeastern Washington. Further processing of the plutonium may be required to prepare the plutonium for interim (<50 years) storage. Specifically this document provides the current plutonium inventory and characterization, the initial screening process, and the process descriptions and flowsheets of the technologies that passed the initial screening. The conclusions and recommendations also are provided. The information contained in this report will be used to assist in the preparation of the environmental impact statement and to help decision makers determine which is the preferred technology to process the plutonium for interim storage.

  7. On-site waste storage assuring the success of on-site, low-level nuclear waste storage

    SciTech Connect (OSTI)

    Preston, E.L.

    1986-09-21

    Waste management has reached paramount importance in recent years. The successful management of radioactive waste is a key ingredient in the successful operation of any nuclear facility. This paper discusses the options available for on-site storage of low-level radioactive waste and those options that have been selected by the Department of Energy facilities operated by Martin Marietta Energy Systems, Inc. in Oak Ridge, Tennessee. The focus of the paper is on quality assurance (QA) features of waste management activities such as accountability and retrievability of waste materials and waste packages, retrievability of data, waste containment, safety and environmental monitoring. Technical performance and careful documentation of that performance are goals which can be achieved only through the cooperation of numerous individuals from waste generating and waste managing organizations, engineering, QA, and environmental management.

  8. COT"IPREITENS IVE RADIOLOGICAL SURVEY OFF-SITE PROPERTY P NIAGARA FALIS STORAGE SITE

    Office of Legacy Management (LM)

    COT"IPREITENS IVE RADIOLOGICAL SURVEY OFF-SITE PROPERTY P NIAGARA FALIS STORAGE SITE LEWISTON, NEW YORK Prepared for U.S. DePartment of EnergY as part of the Formerly Utilized Sites - Remedial ActLon Program J . D . B e r g e r P r o j e c t S t a f f J. Burden* w.L. Smlth* R.D. Condra T.J. Sowell J.S . Epler* G.M. S tePhens P.Iil. Frame L.B. Taus* W . 0 . H e l t o n C . F . W e a v e r R . C . G o s s l e e B . S . Z a c h a r e k d I I Prepared bY Radiological Slte Assessoent Progran

  9. Status and use of the Rocky Flats Environmental Technology Site Pipe Overpack Container for TRU waste storage and shipments

    SciTech Connect (OSTI)

    Thorp, D.T.; Geinitz, R.R.; Rivera, M.A.

    1998-03-03

    The Pipe Overpack Container was designed to optimize shipments of high plutonium content transuranic waste from Rocky Flats Environmental Technology Site (RFETS) to Waste Isolation Pilot Plant (WIPP). The container was approved for use in the TRUPACT-II shipping container by the Nuclear Regulatory Commission in February 1997. The container optimizes shipments to WIPP by increasing the TRUPACT-II criticality limit from 325 fissile grams equivalent (FGE) to 2,800 FGE and provides additional shielding for handling wastes with high americium-241 (Am-241) content. The container was subsequently evaluated and approved for storage of highly dispersible TRU wastes and residues at RFETS. Thermal evaluation of the container shows that the container will mitigate the impact of a worst case thermal event from reactive or potentially pyrophoric materials. These materials contain hazards postulated by the Defense Nuclear Facilities Safety Board for interim storage. Packaging these reactive or potentially pyrophoric residues in the container without stabilizing the materials is under consideration at RFETS. The design, testing, and evaluations used in the approvals, and the current status of the container usage, will be discussed.

  10. Evaluation of Shear Strength Threshold of Concern for Retrieval of Interim-Stored K-Basin Sludge in the Hanford Site

    SciTech Connect (OSTI)

    Onishi, Yasuo; Yokuda, Satoru T.; Schmidt, Andrew J.

    2010-11-01

    K-Basin sludge will be recovered into the Sludge Transport and Storage Containers (STSCs) and will be stored in the T Plant for interim storage (at least 10 years). Long-term sludge storage tests conducted by Pacific Northwest National Laboratory show that high uranium content K Basin sludge can self-cement and form a strong sludge with a bulk shear strength of up to 65 kPa. Some of this sludge has "paste" and "chunks" with shear strengths of approximately 3~5 kPa and 380 ~ 770 kPa, respectively. High uranium content sludge samples subjected to hydrothermal testing (e.g., 185°C, 10 h) have been observed to form agglomerates with a shear strength up to 170 kPa. After interim storage at T Plant, the sludge in the STSCs will be mobilized by water jets impinging the sludge. The objective of the evaluation was to determine the range of sludge shear strength for which there is high confidence that a water-jet retrieval system can mobilize stored K-Basin sludge from STSCs. The shear strength at which the sludge can be retrieved is defined as the "shear strength threshold of concern." If the sludge shear strength is greater than the value of the shear strength threshold of concern, a water-jet retrieval system will be unlikely to mobilize the sludge up to the container’s walls. The shear strength threshold of concern can be compared with the range of possible shear strengths of K-Basin stored sludge to determine if the current post interim-storage, water-jet retrieval method is adequate. Fourteen effective cleaning radius (ECR) models were reviewed, and their validity was examined by applying them to Hanford 241-SY-101 and 241-AZ-101 Tanks to reproduce the measured ECR produced by the mixer pumps. The validation test identified that the Powell-3 and Crowe-2 ECR models are more accurate than other ECR models reviewed. These ECR models were used to address a question as to whether the effective cleaning radius of a water jet is sufficient or if it can be readily expanded

  11. Interim Activities at Corrective Action Unit 114: Area 25 EMAD Facility, Nevada National Security Site, Nevada, for Fiscal Years 2012 and 2013

    SciTech Connect (OSTI)

    Silvas, A J

    2013-10-24

    This letter report documents interim activities that have been completed at CAU 114 in fiscal years 2012 and 2013.

  12. Interim Closure Activities at Corrective Action Unit 114: Area 25 EMAD Facility, Nevada National Security Site, Nevada

    SciTech Connect (OSTI)

    Boehlecke, R. F.

    2011-10-24

    This letter report documents interim activities that have been completed at CAU 114 to support ongoing access and generate information necessary to plan future closure activities. General housekeeping and cleanup of debris was conducted in the EMAD yard, cold bays, support areas of Building 3900, and postmortem cell tunnel area of the hot bay. All non-asbestos ceiling tiles and loose and broken non-friable asbestos floor tiles were removed from support galleries and office areas. Non-radiologically contaminated piping and equipment in the cold areas of the building and in the two 120-ton locomotives in the yard were tapped, characterized, drained, and verified free of contents.

  13. Closure Report for Corrective Action Unit 121: Storage Tanks and Miscellaneous Sites, Nevada Test Site, Nevada

    SciTech Connect (OSTI)

    NSTec Environmental Restoration

    2008-09-01

    Corrective Action Unit (CAU) 121 is identified in the Federal Facility Agreement and Consent Order (FFACO) (1996, as amended February 2008) as Storage Tanks and Miscellaneous Sites. CAU 121 consists of the following three Corrective Action Sites (CASs) located in Area 12 of the Nevada Test Site, which is approximately 65 miles northwest of Las Vegas, Nevada: (1) CAS 12-01-01, Aboveground Storage Tank; (2) CAS 12-01-02, Aboveground Storage Tank; and (3) CAS 12-22-26, Drums; 2 AST's. CAU 121 closure activities were conducted according to the FFACO and the Streamlined Approach for Environmental Restoration Plan for CAU 121 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, 2007). Field work took place from February through September 2008. Samples were collected to determine the path forward to close each site. Closure activities were completed as defined in the plan based on sample analytical results and site conditions. No contaminants of concern (COCs) were present at CAS 12-01-01; therefore, no further action was chosen as the corrective action alternative. As a best management practice (BMP), the empty aboveground storage tank (AST) was removed and disposed as sanitary waste. At CAS 12-01-02, polychlorinated biphenyls (PCBs) were present above the preliminary action level (PAL) in the soil beneath the AST that could possibly have originated from the AST contents. Therefore, PCBs were considered COCs, and the site was clean closed by excavating and disposing of soil containing PCBs. Approximately 5 cubic yards (yd{sup 3}) of soil were excavated and disposed as petroleum hydrocarbon PCB remediation waste, and approximately 13 yd3 of soil were excavated and disposed as PCB remediation waste. Cleanup samples were collected to confirm that the remaining soil did not contain PCBs above the PAL. Other compounds detected in the soil above PALs (i.e., total petroleum hydrocarbons [TPH] and semi-volatile organic compounds [SVOCs]) were

  14. DOE Best Practices Manual Focuses on Site Selection for CO2 Storage |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Best Practices Manual Focuses on Site Selection for CO2 Storage DOE Best Practices Manual Focuses on Site Selection for CO2 Storage January 5, 2011 - 12:00pm Addthis Washington, DC - The most promising methods for assessing potential carbon dioxide (CO2) geologic storage sites - a crucial component of Carbon Capture and Storage (CCS) technology - is the focus of the latest in a series of U.S. Department of Energy (DOE) CCS "best practices" manuals. Developed by

  15. Interim Action Determination

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Interim Action Determination Processing of Plutonium Materials from the DOE Standard 3013 Surveillance Program in H-Canyon at the Savannah River Site The Department of Energy (DOE) is preparing the Surplus Plutonium Disposition Supplemental Environmental Impact Statement (SPD SEIS, DOE/EIS-0283-S2). DOE is evaluating alternatives for disposition of non-pit plutonium that is surplus to the national security needs of the United States. Although the Deputy Secretary of Energy approved Critical

  16. Closure Report for Corrective Action Unit 134: Aboveground Storage Tanks, Nevada Test Site, Nevada

    SciTech Connect (OSTI)

    NSTec Environmental Restoration

    2009-06-30

    Corrective Action Unit (CAU) 134 is identified in the Federal Facility Agreement and Consent Order (FFACO) as “Aboveground Storage Tanks” and consists of the following four Corrective Action Sites (CASs), located in Areas 3, 15, and 29 of the Nevada Test Site: · CAS 03-01-03, Aboveground Storage Tank · CAS 03-01-04, Tank · CAS 15-01-05, Aboveground Storage Tank · CAS 29-01-01, Hydrocarbon Stain

  17. DOE - Office of Legacy Management -- Niagara Falls Storage Site...

    Office of Legacy Management (LM)

    of Engineers but will eventually transfer to the U.S. Department of Energy Office of Legacy Management. Assessment of Historical Knolls Atomic Power Laboratory Waste Storage...

  18. Targeted Health Assessment for Wastes Contained at the Niagara Falls Storage Site to Guide Planning for Remedial Action Alternatives - 13428

    SciTech Connect (OSTI)

    Busse, John; Keil, Karen; Staten, Jane; Miller, Neil; Barker, Michelle; MacDonell, Margaret; Peterson, John; Chang, Young-Soo; Durham, Lisa

    2013-07-01

    The U.S. Army Corps of Engineers (USACE) is evaluating potential remedial alternatives at the 191-acre Niagara Falls Storage Site (NFSS) in Lewiston, New York, under the Formerly Utilized Sites Remedial Action Program (FUSRAP). The Manhattan Engineer District (MED) and Atomic Energy Commission (AEC) brought radioactive wastes to the site during the 1940's and 1950's, and the U.S. Department of Energy (US DOE) consolidated these wastes into a 10-acre interim waste containment structure (IWCS) in the southwest portion of the site during the 1980's. The USACE is evaluating remedial alternatives for radioactive waste contained within the IWCS at the NFSS under the Feasibility Study phase of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) process. A preliminary evaluation of the IWCS has been conducted to assess potential airborne releases associated with uncovered wastes, particularly during waste excavation, as well as direct exposures to uncovered wastes. Key technical issues for this assessment include: (1) limitations in waste characterization data; (2) representative receptors and exposure routes; (3) estimates of contaminant emissions at an early stage of the evaluation process; (4) consideration of candidate meteorological data and air dispersion modeling approaches; and (5) estimates of health effects from potential exposures to both radionuclides and chemicals that account for recent updates of exposure and toxicity factors. Results of this preliminary health risk assessment indicate if the wastes were uncovered and someone stayed at the IWCS for a number of days to weeks, substantial doses and serious health effects could be incurred. Current controls prevent such exposures, and the controls that would be applied to protect onsite workers during remedial action at the IWCS would also effectively protect the public nearby. This evaluation provides framing context for the upcoming development and detailed evaluation of

  19. Evaluation of Final Radiological Conditions at Areas of the Niagara Falls Storage Site Remediated under the Formerly Utilized Sites Remedial Action Program

    Broader source: Energy.gov [DOE]

    Evaluation of Final Radiological Conditions at Areas of the Niagara Falls Storage Site Remediated under the Formerly Utilized Sites Remedial Action Program (March 2012)

  20. FutureGen Industrial Alliance Announces Carbon Storage Site Selection...

    Office of Environmental Management (EM)

    at FutureGen 2.0, a landmark project that will advance the deployment of carbon capture and storage technology at an Ameren Energy Resources power plant in Meredosia, Illinois. ...

  1. Geochemical information for sites contaminated with low-level radioactive wastes: I. Niagara Falls Storage Site

    SciTech Connect (OSTI)

    Seeley, F.G.; Kelmers, A.D.

    1984-11-01

    The Niagara Falls Storage Site (NFSS) became radioactively contaminated as a result of wastes that were being stored from operations carried out to recover uranium from pitchblende ore in the 1940s and 1950s. The US Department of Energy (DOE) is considering various remedial action options for the NFSS. This report describes the results of geochemical investigations performed to help provide a quantitative evaluation of the effects of various options. NFSS soil and groundwater samples were characterized; and uranium and radium sorption ratios, as well as apparent concentration limit values, were measured in site soil/groundwater systems by employing batch contact methodology. The results suggest that any uranium which is in solution in the groundwater at the NFSS may be poorly retarded due to the low uranium sorption ratio values and high solubility measured. Further, appreciable concentrations of uranium in groundwater could be attained from soluble wastes. Release of uranium via groundwater migration could be a significant release pathway. Solubilized radium would be expected to be effectively retarded by soil at the NFSS as a result of the very high radium sorption ratios observed. The addition of iron oxyhydroxide to NFSS soils resulted in much higher uranium sorption ratios. Additional field testing of this potential remedial action additive could be desirable. 10 references.

  2. USE OF HYDROGEN GETTERS FOR ENSURING SAFE STORAGE OF PLUTONIUM-BEARING MATERIALS AT THE SAVANNAH RIVER SITE

    SciTech Connect (OSTI)

    Woodsmall, T.; Hackney, B.; Traver, L.

    2010-05-20

    Plutonium oxide left over from the 3013 destructive surveillance process is ultimately disposed of as waste. Therefore, this material is not re-stabilized and packaged to meet the requirements of DOE-STD-3013. Instead, it is stored on an interim basis in compliance with the interim safe storage criteria issued by DOE in January 1996. One of the safe storage criteria requires actions to be taken to minimize the formation or accumulation of flammable gases inside the storage container. Personnel responsible for the safe storage of the material have chosen to use a polymer-based, ambient air compatible hydrogen 'getter' to prevent the formation of hydrogen gas inside the storage container and thus prevent the formation of a flammable gas mixture. This paper briefly describes the method in which the getter performs its functions. More importantly, this paper presents the results of the testing that has been performed to characterize the bounding effects of aging and demonstrate the use of the getter for long-term storage. In addition, the favorable results of a post-storage analysis of actual getter material are presented and compared with bounding predictions. To date, bounding test results have shown that after 18 months of continuous storage and 39 months of total storage at 70C, the getter is able to both recombine gaseous hydrogen and oxygen into water when oxygen is available, and irreversibly getter (i.e., scavenge) hydrogen from the vapor space when oxygen is not available, both under a CO{sub 2} environment. Further bounding testing has been deemed unnecessary, and continued post-storage testing will be conducted on a periodic basis. The first post-storage testing of deployed getter material after two years of service revealed that it still performed like new material.

  3. Geochemical information for sites contaminated with low-level radioactive wastes. III. Weldon Spring Storage Site

    SciTech Connect (OSTI)

    Seeley, F.G.; Kelmers, A.D.

    1985-02-01

    The Weldon Spring Storage Site (WSSS), which includes both the chemical site and the quarry, became radioactively contaminated as the result of wastes that were being stored from operations to recover uranium from pitchblende ores in the 1940s and 1950s. The US Department of Energy (DOE) is considering various remedial action options for the WSSS. This report describes the results of geochemical investigations carried out at Oak Ridge National Laboratory (ORNL) to support these activities and to help quantify various remedial action options. Soil and groundwater samples were characterized, and uranium and radium sorption ratios were measured in site soil/groundwater systems by batch contact methodology. Soil samples from various locations around the raffinate pits were found to contain major amounts of silica, along with illite as the primary clay constituent. Particle sizes of the five soil samples were variable (50% distribution point ranging from 12 to 81 ..mu..m); the surface areas varied from 13 to 62 m/sup 2//g. Elemental analysis of the samples showed them to be typical of sandy clay and silty clay soils. Groundwater samples included solution from Pit 3 and well water from Well D. Anion analyses showed significant concentrations of sulfate and nitrate (>350 and >7000 mg/L, respectively) in the solution from Pit 3. These anions were also present in the well water, but in lower concentrations. Uranium sorption ratios for four of the soil samples contacted with the solution from Pit 3 were moderate to high (approx. 300 to approx. 1000 mL/g). The fifth sample had a ratio of only 12 mL/g. Radium sorption ratios for the five samples were moderate to high (approx. 600 to approx. 1000 mL/g). These values indicate that soil at the WSSS may show favorable retardation of uranium and radium in the groundwater. 13 references, 13 figures, 10 tables.

  4. Energy Department Selects Projects to Demonstrate Feasibility of Producing Usable Water from CO2 Storage Sites

    Broader source: Energy.gov [DOE]

    Today, the Department of Energy (DOE) announced the selection of two projects that will test emerging enhanced water recovery (EWR) technologies for their potential to produce useable water from carbon dioxide (CO2) storage sites. The two projects were competitively selected from the five Brine Extraction Storage Test (BEST) projects awarded in September 2015.

  5. EA-1211: Relocation and Storage of Isotopic Heat Sources, Hanford Site, Richland, Washington

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts for the proposal for relocation and storage of the isotopic heat sources at the U.S. Department of Energy Hanford Site in Richland, Washington.

  6. Interim Approach to the MRS facility design

    SciTech Connect (OSTI)

    Not Available

    1992-01-01

    The purpose is to present the proposed Interim Approach to the Monitored Retrievable Storage (MRS) facility design development. This Interim Approach document fulfills the function allocated to the OCRWM-SEMP (DOE/RW-0051REVlP, March 1990, Section 5.2 Approach to the MRS Design) until the MRS section of the OCRWM-SEMP is approved. Until completion of the OCRWM-SEMP, this Interim Approach document will be approved and controlled according to the Program Change Control Procedure (DOE/RW-0223REV3P). This document discusses the general approach to Conceptual Design (CD), Title I Design, and Title II Design activities.

  7. First-Generation Risk Profiles Help Predict CO2 Storage Site Obstacles |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy First-Generation Risk Profiles Help Predict CO2 Storage Site Obstacles First-Generation Risk Profiles Help Predict CO2 Storage Site Obstacles September 18, 2012 - 1:00pm Addthis Washington, DC - In support of large-scale carbon capture, utilization and storage (CCUS) projects, a collaboration of five U.S. Department of Energy (DOE) national laboratories has completed first-generation risk profiles that, for the first time, offer a means to predict the probability of

  8. Natural phenomena evaluations of the K-25 site UF{sub 6} cylinder storage yards

    SciTech Connect (OSTI)

    Fricke, K.E.

    1996-09-15

    The K-25 Site UF{sub 6} cylinder storage yards are used for the temporary storage of UF{sub 6} normal assay cylinders and long-term storage of other UF{sub 6} cylinders. The K-25 Site UF{sub 6} cylinder storage yards consist of six on-site areas: K-1066-B, K-1066-E, K-1066-F, K-1066-J, K-1066-K and K-1066-L. There are no permanent structures erected on the cylinder yards, except for five portable buildings. The operating contractor for the K-25 Site is preparing a Safety Analysis Report (SAR) to examine the safety related aspects of the K-25 Site UF{sub 6} cylinder storage yards. The SAR preparation encompasses many tasks terminating in consequence analysis for the release of gaseous and liquid UF{sub 6}, one of which is the evaluation of natural phenomena threats, such as earthquakes, floods, and winds. In support of the SAR, the six active cylinder storage yards were evaluated for vulnerabilities to natural phenomena, earthquakes, high winds and tornados, tornado-generated missiles, floods (local and regional), and lightning. This report summarizes those studies. 30 refs.

  9. Site Characterization of Promising Geologic Formations for CO2 Storage

    Office of Energy Efficiency and Renewable Energy (EERE)

    In September 2009, the U.S. Department of Energy announced the award of 11 projects with a total project value of $75.5 million* to conduct site characterization of promising geologic formations...

  10. Hanford Site existing irradiated fuel storage facilities description

    SciTech Connect (OSTI)

    Willis, W.L.

    1995-01-11

    This document describes facilities at the Hanford Site which are currently storing spent nuclear fuels. The descriptions provide a basis for the no-action alternatives of ongoing and planned National Environmental Protection Act reviews.

  11. DOE - Office of Legacy Management -- Niagara Falls Storage Site...

    Office of Legacy Management (LM)

    This site is currently managed by the U.S. Army Corps of Engineers but will eventually transfer to the U.S. Department of Energy Office of Legacy Management. Assessment of ...

  12. CLOSURE REPORT FOR CORRECTIVE ACTION UNIT 204: STORAGE BUNKERS, NEVADA TEST SITE, NEVADA

    SciTech Connect (OSTI)

    2006-04-01

    Corrective Action Unit (CAU) 330 consists of four Corrective Action Sites (CASs) located in Areas 6, 22, and 23 of the Nevada Test Site (NTS). The unit is listed in the Federal Facility Agreement and Consent Order (FFACO, 1996) as CAU 330: Areas 6, 22, and 23 Tanks and Spill Sites. CAU 330 consists of the following CASs: CAS 06-02-04, Underground Storage Tank (UST) and Piping CAS 22-99-06, Fuel Spill CAS 23-01-02, Large Aboveground Storage Tank (AST) Farm CAS 23-25-05, Asphalt Oil Spill/Tar Release

  13. EIS-0283-S2: Amended Interim Action Determination | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Plutonium Materials from the Department of Energy Standard 3013 Surveillance Program at the Savannah River Site (Amending Interim Action Determination of 12082008) DOE is ...

  14. Niagara Falls Storage Site, environmental monitoring report for 1979 and 1980

    SciTech Connect (OSTI)

    Weidner, R.B.; Boback, M.W.

    1981-10-05

    The Niagara Falls Storage Site is a 190-acre facility located in Niagara County, New York. It is owned by the US Department of Energy (DOE) and is used for the storage of radioactive residues. This site is managed by NLO, Inc., contract operator of the DOE Feed Materials Production Center near Cincinnati, Ohio. During 1979 and 1980, water and air samples were collected at and near the storage site to provide information about radionuclides in the offsite environment. Results show that uranium and radium concentrations in ground and surface water were within DOE Guide values for uncontrolled areas. Radon-222 in air at the site west boundary exceeded the DOE Guide but offsite monitoring in the general area showed radon-222 concentrations well within the Guide.

  15. Interim Letter Report - Verification Survey of 19 Grids in the Lester Flat Area, David Witherspoon Inc. 1630 Site Knoxville, Tennessee

    SciTech Connect (OSTI)

    P.C. Weaver

    2008-10-17

    Perform verification surveys of 19 available grids located in the Lester Flat Area at the Davod Witherspoon Site. The survey grids included E11, E12, E13, F11, F12, F13, F14, F15, G15, G16, G17, H16, H17, H18, X16, X17, X18, K16, and J16.

  16. Application to ship nonmixed transuranic waste to the Nevada Test Site for interim storage. Waste Cerification Program

    SciTech Connect (OSTI)

    Not Available

    1993-12-01

    This report documents various regulations on radioactive waste processing and discusses how the Waste Isolation Pilot Plant will comply with and meet these requirements. Specific procedures are discussed concerning transuranic, metal scrap, salt block, solid, and glove box wastes.

  17. Distributed Energy Resources On-Site Optimization for Commercial Buildings with Electric and Thermal Storage Technologies

    SciTech Connect (OSTI)

    Lacommare, Kristina S H; Stadler, Michael; Aki, Hirohisa; Firestone, Ryan; Lai, Judy; Marnay, Chris; Siddiqui, Afzal

    2008-05-15

    The addition of storage technologies such as flow batteries, conventional batteries, and heat storage can improve the economic as well as environmental attractiveness of on-site generation (e.g., PV, fuel cells, reciprocating engines or microturbines operating with or without CHP) and contribute to enhanced demand response. In order to examine the impact of storage technologies on demand response and carbon emissions, a microgrid's distributed energy resources (DER) adoption problem is formulated as a mixed-integer linear program that has the minimization of annual energy costs as its objective function. By implementing this approach in the General Algebraic Modeling System (GAMS), the problem is solved for a given test year at representative customer sites, such as schools and nursing homes, to obtain not only the level of technology investment, but also the optimal hourly operating schedules. This paper focuses on analysis of storage technologies in DER optimization on a building level, with example applications for commercial buildings. Preliminary analysis indicates that storage technologies respond effectively to time-varying electricity prices, i.e., by charging batteries during periods of low electricity prices and discharging them during peak hours. The results also indicate that storage technologies significantly alter the residual load profile, which can contribute to lower carbon emissions depending on the test site, its load profile, and its adopted DER technologies.

  18. Site status monitoring report and Site Ranking Form for underground storage tank 2331-U at Building 9201-1

    SciTech Connect (OSTI)

    1996-05-01

    The purpose of this document is to present potentiometric, groundwater quality and vapor monitoring data required for site status monitoring of underground storage tank (UST) 2331-U at the Building 9201-1 Site. Site status monitoring has been conducted at the site as part of a Monitoring Only program approved by the Tennessee Department of Environment and Conservation (TDEC) based on review and approval of Site Ranking (Site Ranking Form approved May 23, 1994). This document presents the results of the fourth semiannual site status monitoring that was performed in April 1996. Site status monitoring and preparation of this report have been conducted in accordance with the requirements of TDEC Rule 1200-1-15 and the TDEC UST Reference Handbook, Second Edition (TDEC 1994) Technical Guidance Document (TGD) 007. This document is organized into three sections with two Appendices. Section 1 presents introductory information relative to the site including the regulatory initiative and a site description. Section 2 includes the results of measurement and sampling of monitoring wells GW-193, GW-657, GW-707, GW-708, GW-808, GW-809, and GW-810. Section 3 presents data from vapor monitoring conducted in subsurface utilities present at the site. Appendix A contains the original analytical laboratory results for environmental and quality control samples.

  19. Expedited approach to a carbon tetrachloride spill interim remedial action

    SciTech Connect (OSTI)

    Cowdery, C.; Primrose, A.; Uhland, J.; Castaneda, N.

    1998-07-01

    Monitored natural attenuation was selected as an interim measure for a carbon tetrachloride spill site where source removal or in situ treatment cannot currently be implemented due to the surrounding infrastructure. Rather than delay action until the site is more accessible to an interim action, this more expedited approach would support a final action. Individual Hazard Substance Site (IHSS) 118.1 is a former underground storage tank at Rocky Flats Environmental Technology Site (RFETS) that stored carbon tetrachloride for process use. Inadvertent releases associated with filling and failure of the tank system resulted in an accumulation of carbon tetrachloride in a bedrock depression around a group of former process waste tanks. Access to the source of contamination is obstructed by numerous utilities, the process waste tanks, and other components of the site infrastructure that limit the ability to conduct an effective remedial action. A preremedial field investigation was conducted in September 1997 to identify and delineate the extent of the dense nonaqueous phase liquid (DNAPL) in the subsurface. Data collected from the investigation revealed that natural processes might be limiting the migration of contaminants from the source area.

  20. Rigorous Screening Technology for Identifying Suitable CO2 Storage Sites II

    SciTech Connect (OSTI)

    George J. Koperna Jr.; Vello A. Kuuskraa; David E. Riestenberg; Aiysha Sultana; Tyler Van Leeuwen

    2009-06-01

    This report serves as the final technical report and users manual for the 'Rigorous Screening Technology for Identifying Suitable CO2 Storage Sites II SBIR project. Advanced Resources International has developed a screening tool by which users can technically screen, assess the storage capacity and quantify the costs of CO2 storage in four types of CO2 storage reservoirs. These include CO2-enhanced oil recovery reservoirs, depleted oil and gas fields (non-enhanced oil recovery candidates), deep coal seems that are amenable to CO2-enhanced methane recovery, and saline reservoirs. The screening function assessed whether the reservoir could likely serve as a safe, long-term CO2 storage reservoir. The storage capacity assessment uses rigorous reservoir simulation models to determine the timing, ultimate storage capacity, and potential for enhanced hydrocarbon recovery. Finally, the economic assessment function determines both the field-level and pipeline (transportation) costs for CO2 sequestration in a given reservoir. The screening tool has been peer reviewed at an Electrical Power Research Institute (EPRI) technical meeting in March 2009. A number of useful observations and recommendations emerged from the Workshop on the costs of CO2 transport and storage that could be readily incorporated into a commercial version of the Screening Tool in a Phase III SBIR.

  1. Environmental surveillance plan for the Department of Energy's Niagara Falls Storage Site (NFSS), Lewiston, New York

    SciTech Connect (OSTI)

    Englert, J.P.; Hinnefeld, S.L.

    1981-09-09

    The Niagara Falls Storage Site (NFSS) is a United States Department of Energy owned facility used for the storage of low-level radioactive residues. The site occupies 190 acres of the former Lake Ontario Ordnance Works and is located in the Niagara County town of Lewiston, in western New York State. The city of Niagara Falls is approximately eight (8) miles south of the NFSS. The purpose of this report is to describe environmental monitoring programs presently operated by NLO, and to suggest programs and revisions which should be implemented as a result of NLO's remedial actions at the NFSS.

  2. Hanford Site waste treatment/storage/disposal integration

    SciTech Connect (OSTI)

    MCDONALD, K.M.

    1999-02-24

    In 1998 Waste Management Federal Services of Hanford, Inc. began the integration of all low-level waste, mixed waste, and TRU waste-generating activities across the Hanford site. With seven contractors, dozens of generating units, and hundreds of waste streams, integration was necessary to provide acute waste forecasting and planning for future treatment activities. This integration effort provides disposition maps that account for waste from generation, through processing, treatment and final waste disposal. The integration effort covers generating facilities from the present through the life-cycle, including transition and deactivation. The effort is patterned after the very successful DOE Complex EM Integration effort. Although still in the preliminary stages, the comprehensive onsite integration effort has already reaped benefits. These include identifying significant waste streams that had not been forecast, identifying opportunities for consolidating activities and services to accelerate schedule or save money; and identifying waste streams which currently have no path forward in the planning baseline. Consolidation/integration of planned activities may also provide opportunities for pollution prevention and/or avoidance of secondary waste generation. A workshop was held to review the waste disposition maps, and to identify opportunities with potential cost or schedule savings. Another workshop may be held to follow up on some of the long-term integration opportunities. A change to the Hanford waste forecast data call would help to align the Solid Waste Forecast with the new disposition maps.

  3. Interpretation of brine-permeability tests of the Salado Formation at the Waste Isolation Pilot Plant site: First interim report

    SciTech Connect (OSTI)

    Beauheim, R.L. ); Saulnier, G.J. Jr.; Avis, J.D. )

    1991-08-01

    Pressure-pulse tests have been performed in bedded evaporites of the Salado Formation at the Waste Isolation Pilot Plant (WIPP) site to evaluate the hydraulic properties controlling brine flow through the Salado. Hydraulic conductivities ranging from about 10{sup {minus}14} to 10{sup {minus}11} m/s (permeabilities of about 10{sup {minus}21} to 10{sup {minus}18} m{sup 2}) have been interpreted from nine tests conducted on five stratigraphic intervals within eleven meters of the WIPP underground excavations. Tests of a pure halite layer showed no measurable permeability. Pore pressures in the stratigraphic intervals range from about 0.5 to 9.3 MPa. An anhydrite interbed (Marker Bed 139) appears to be one or more orders of magnitude more permeable than the surrounding halite. Hydraulic conductivities appear to increase, and pore pressures decrease, with increasing proximity to the excavations. These effects are particularly evident within two to three meters of the excavations. Two tests indicated the presence of apparent zero-flow boundaries about two to three meters from the boreholes. The other tests revealed no apparent boundaries within the radii of influence of the tests, which were calculated to range from about four to thirty-five meters from the test holes. The data are insufficient to determine if brine flow through evaporites results from Darcy-like flow driven by pressure gradients within naturally interconnected porosity or from shear deformation around excavations connecting previously isolated pores, thereby providing pathways for fluids at or near lithostatic pressure to be driven towards the low-pressure excavations. Future testing will be performed at greater distances from the excavations to evaluate hydraulic properties and processes beyond the range of excavation effects.

  4. DOE-Funded Project Testing Laser CO2 Monitoring at Carbon Storage Site

    Broader source: Energy.gov [DOE]

    A project that uses lasers to monitor carbon dioxide (CO2) is being analyzed as part of the U.S. Department of Energy’s (DOE) drive to improve greenhouse gas-monitoring abilities at CO2 storage sites. The project is managed by the DOE Office of Fossil Energy’s National Energy Technology Laboratory (NETL).

  5. Closure Report for Corrective Action Unit 130: Storage Tanks Nevada Test Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Alfred Wickline

    2009-03-01

    This Closure Report (CR) presents information supporting the closure of Corrective Action Unit (CAU) 130: Storage Tanks, Nevada Test Site, Nevada. This CR complies with the requirements of the Federal Facility Agreement and Consent Order that was agreed to by the State of Nevada; U.S. Department of Energy (DOE), Environmental Management; U.S. Department of Defense; and DOE, Legacy Management. The corrective action sites (CASs) within CAU 130 are located within Areas 1, 7, 10, 20, 22, and 23 of the Nevada Test Site. Corrective Action Unit 130 is comprised of the following CASs: • 01-02-01, Underground Storage Tank • 07-02-01, Underground Storage Tanks • 10-02-01, Underground Storage Tank • 20-02-03, Underground Storage Tank • 20-99-05, Tar Residue • 22-02-02, Buried UST Piping • 23-02-07, Underground Storage Tank This CR provides documentation supporting the completed corrective action investigations and provides data confirming that the closure objectives for CASs within CAU 130 were met. To achieve this, the following actions were performed: • Reviewed the current site conditions, including the concentration and extent of contamination. • Implemented any corrective actions necessary to protect human health and the environment. • Properly disposed of corrective action and investigation-derived wastes. From August 4 through September 30, 2008, closure activities were performed as set forth in the Streamlined Approach for Environmental Restoration Plan for CAU 130, Storage Tanks, Nevada Test Site, Nevada. The purposes of the activities as defined during the data quality objectives process were: • Determine whether contaminants of concern (COCs) are present. • If COCs are present, determine their nature and extent, implement appropriate corrective actions, confirm that no residual contamination is present, and properly dispose of wastes. Constituents detected during the closure activities were evaluated against final action levels to identify

  6. DOE Interim Guidance on Mercury Management Procedures and Standards |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Services » Waste Management » Waste Disposition » Long-Term Management and Storage of Elemental Mercury is in the Planning Stages » DOE Interim Guidance on Mercury Management Procedures and Standards DOE Interim Guidance on Mercury Management Procedures and Standards DOE, in consultation with the USEPA and State agencies, prepared this guidance on packaging, transportation, receipt, management, and long-term storage of elemental mercury at a DOE facility or

  7. Environmental Restoration Disposal Facility - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Environmental Restoration Disposal Facility About Us About Hanford Cleanup Hanford History Hanford Site Wide Programs Contact Us 100 Area 118-K-1 Burial Ground 200 Area 222-S Laboratory 242-A Evaporator 300 Area 324 Building 325 Building 400 Area/Fast Flux Test Facility 618-10 and 618-11 Burial Grounds 700 Area B Plant B Reactor C Reactor Canister Storage Building and Interim Storage Area Canyon Facilities Cold Test Facility D and DR Reactors Effluent Treatment Facility Environmental Restoration

  8. Site status monitoring report for underground storage tank 2331-U at Building 9201-1

    SciTech Connect (OSTI)

    1996-11-01

    The purpose of this document is to present potentiometric, groundwater quality and vapor monitoring data required for site status monitoring of underground storage tank (UST) 2331-U at the Building 9201-1 Site. Site status monitoring has been conducted at the site as part of a Monitoring Only program approved by the Tennessee Department of Environment and Conservation (TDEC) based on review and approval of Site Ranking (Site Ranking Form approved May 23, 1994). This document presents the results of the fifth semiannual site status monitoring that was performed in October 1996f. Site status monitoring and preparation of this report have been conducted in accordance with the requirements of TDEC Rule 1200-1-15 and the TDEC UST Reference Handbook, Second Edition (TDEC 1994) Technical Guidance Document (TGD) 007. This document is organized into three sections with two Appendices. Section 1 presents introductory information relative to the site including the regulatory initiative and a site description. Section 2 includes the results of measurement and sampling of monitoring wells GW-193, GW-657, GW-707, GW-708, GW-808, GW-809, and GW-810. Section 3 presents data from vapor monitoring conducted in subsurface utilities present at the site. Appendix A contains the original analytical laboratory results for environmental and quality control samples.

  9. Site status monitoring report for underground storage tank 2331-U at Building 9201-1

    SciTech Connect (OSTI)

    1995-01-01

    The purpose of this document is to present potentiometric, groundwater quality and vapor monitoring data required for site status monitoring of underground storage tank (UST) 2331-U at the Building 9201-1 Site. Site status monitoring has been conducted at the site as part of a Monitoring Only program approved by the Tennessee Department of Environment and Conservation (TDEC) based on review and approval of Site Ranking (Site Ranking Form approved May 23, 1994). This document presents the results of the first semiannual site status monitoring that was performed in December 1994. Site status monitoring and preparation of this report have been conducted in accordance with the requirements of TDEC Rule 1200-1-15 and the TDEC UST Reference Handbook, Second Edition (TDEC 1994) Technical Guidance Document (TGD) 007. This document is organized into three sections. Section 1 presents introductory information relative to the site including the regulatory initiative and a site description. Section 2 includes the results of measurement and sampling of monitoring wells GW-193, GW-657, GW-707, GW-708, GW-808, GW-809, and GW-810. Section 3 presents data from vapor monitoring conducted in subsurface utilities present at the site.

  10. Site status monitoring report for underground storage tank 2331-U at Building 9201-1

    SciTech Connect (OSTI)

    1995-05-01

    The purpose of this document is to present potentiometric, groundwater quality and vapor monitoring for site status monitoring of underground storage tank (UST) 2331-U at the Building 9201-1 Site. Site status monitoring has been conducted at the site as part of a Monitoring Only program approved by the Tennessee Department of Environment and Conservation (TDEC) based on review and approval of Site Ranking (Site Ranking Form approved May 23, 1994). This document presents the results of the second semiannual site status monitoring that was performed in May 1995. Site status monitoring and preparation of this report have been conducted in accordance with the requirements of TDEC Rule 1200-1-15 and the TDEC UST Reference Handbook, Second Edition (TDEC 1994) Technical Guidance Document (TGD) 007. This document is organized into three sections. Section 1 presents introductory information relative to the site including the regulatory initiative and a site description. Section 2 includes the results of measurement and sampling of monitoring wells GW-193, GW-657, GW-707, GW-708, GW-808, GW-809, and GW-810. Section 3 presents data from vapor monitoring conducted in subsurface utilities present at the site.

  11. EIS-0283-S2: Interim Action Determination | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Disposition of Certain Plutonium Materials Stored at the Savannah River Site For more information on this project, see the project webpage: http://energy.gov/node/299815. Download Document EIS-0283-S2: Interim Action Determination (880.28 KB) More Documents & Publications EIS-0283-S2: Interim Action Determination EIS-0283-S2: Interim Action Determination EIS-0283-S2: Second Amended Notice of Intent

  12. DNFSB Recommendation 94-1 Hanford Site Integrated Stabilization Management Plan. Volume 1

    SciTech Connect (OSTI)

    McCormack, R.L.

    1995-08-01

    This document describes the plans of the Hanford Site for the safe interim storage of fissile materials. Currently, spent nuclear fuels reside in storage basins that have leaked in the past and are projected to leak in the future. Other problems in the basins include; sludge from decomposition, degraded cladding of fuel elements, and construction defects which make the basins seismically unsafe. This management plan describes the time and cost that it will take to implement a safe interim storage plan for the fissile materials.

  13. Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing ... Heavy Duty Fuels DISI Combustion HCCISCCI Fundamentals Spray Combustion Modeling ...

  14. Closure Report for Corrective Action Unit 135: Areas 25 Underground Storage Tanks, Nevada Test Site, Nevada

    SciTech Connect (OSTI)

    D. H. Cox

    2001-06-01

    Corrective Action Unit (CAU) 135, Area 25 Underground Storage Tanks, was closed in accordance with the approved Corrective Action Plan (DOE/NV, 2000). CAU 135 consists of three Corrective Action Sites (CAS). Two of these CAS's were identified in the Corrective Action Investigation Data Quality Objective meeting as being improperly identified as underground storage tanks. CAS 25-02-03 identified as the Deluge Valve Pit was actually an underground electrical vault and CAS 25-02-10 identified as an Underground Storage Tank was actually a former above ground storage tank filled with demineralized water. Both of these CAS's are recommended for a no further action closure. CAS 25-02-01 the Underground Storage Tanks commonly referred to as the Engine Maintenance Assembly and Disassembly Waste Holdup Tanks and Vault was closed by decontaminating the vault structure and conducting a radiological verification survey to document compliance with the Nevada Test Site unrestricted use release criteria. The Area 25 Underground Storage Tanks, (CAS 25-02-01), referred to as the Engine Maintenance, Assembly, and Disassembly (E-MAD) Waste Holdup Tanks and Vault, were used to receive liquid waste from all of the radioactive and cell service area drains at the E-MAD Facility. Based on the results of the Corrective Action Investigation conducted in June 1999, discussed in ''The Corrective Action Investigation Plan for Corrective Action Unit 135: Area 25 Underground Storage Tanks, Nevada Test Site, Nevada'' (DOE/NV, 199a), one sample from the radiological survey of the concrete vault interior exceeded radionuclide preliminary action levels. The analytes from the sediment samples exceeded the preliminary action levels for polychlorinated biphenyls, Resource Conservation and Recovery Act metals, total petroleum hydrocarbons as diesel-range organics, and radionuclides. The CAU 135 closure activities consisted of scabbling radiological ''hot spots'' from the concrete vault, and the drilling

  15. U Plant - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    About Us Projects & Facilities U Plant About Us About Hanford Cleanup Hanford History Hanford Site Wide Programs Contact Us 100 Area 118-K-1 Burial Ground 200 Area 222-S Laboratory 242-A Evaporator 300 Area 324 Building 325 Building 400 Area/Fast Flux Test Facility 618-10 and 618-11 Burial Grounds 700 Area B Plant B Reactor C Reactor Canister Storage Building and Interim Storage Area Canyon Facilities Cold Test Facility D and DR Reactors Effluent Treatment Facility Environmental Restoration

  16. B Plant - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plant About Us About Hanford Cleanup Hanford History Hanford Site Wide Programs Contact Us 100 Area 118-K-1 Burial Ground 200 Area 222-S Laboratory 242-A Evaporator 300 Area 324 Building 325 Building 400 Area/Fast Flux Test Facility 618-10 and 618-11 Burial Grounds 700 Area B Plant B Reactor C Reactor Canister Storage Building and Interim Storage Area Canyon Facilities Cold Test Facility D and DR Reactors Effluent Treatment Facility Environmental Restoration Disposal Facility F Reactor H Reactor

  17. B Reactor - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reactor About Us About Hanford Cleanup Hanford History Hanford Site Wide Programs Contact Us 100 Area 118-K-1 Burial Ground 200 Area 222-S Laboratory 242-A Evaporator 300 Area 324 Building 325 Building 400 Area/Fast Flux Test Facility 618-10 and 618-11 Burial Grounds 700 Area B Plant B Reactor C Reactor Canister Storage Building and Interim Storage Area Canyon Facilities Cold Test Facility D and DR Reactors Effluent Treatment Facility Environmental Restoration Disposal Facility F Reactor H

  18. 100 Area - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    00 Area About Us About Hanford Cleanup Hanford History Hanford Site Wide Programs Contact Us 100 Area 118-K-1 Burial Ground 200 Area 222-S Laboratory 242-A Evaporator 300 Area 324 Building 325 Building 400 Area/Fast Flux Test Facility 618-10 and 618-11 Burial Grounds 700 Area B Plant B Reactor C Reactor Canister Storage Building and Interim Storage Area Canyon Facilities Cold Test Facility D and DR Reactors Effluent Treatment Facility Environmental Restoration Disposal Facility F Reactor H

  19. Niagara Falls Storage Site environmental surveillance report for calendar year 1993

    SciTech Connect (OSTI)

    Not Available

    1994-06-01

    This report summarizes the results of environmental surveillance activities conducted at the Niagara Falls Storage Site (NFSS) during calendar year 1993. It includes an overview of site operations, the basis for radiological and nonradiological monitoring, a summary of the results, and the estimated dose to the offsite population. Environmental surveillance activities were conducted in accordance with the site environmental monitoring plan, which describes the rationale and design criteria for the surveillance program, the frequency of sampling and analysis, specific sampling and analysis procedures, and quality assurance requirements. NFSS is in compliance with National Emission Standards for Hazardous Air Pollutants (NESHAPs) Subpart H of the Clean Air Act as well as the requirements of the National Pollutant Discharge Elimination System (NPDES) under the Clean Water Act. Located in northwestern New York, the site covers 191 acres. From 1944 to the present, the primary use of NFSS has been storage of radioactive residues that were by-products of uranium production. Most onsite areas of residual radioactivity above regulatory guidelines were remediated during the early 1980s. Additional isolated areas of onsite contamination were remediated in 1989, and the materials were consolidated into the waste containment structure in 1991. Remediation of the site has now been completed.

  20. An economic analysis of a monitored retrievable storage site for Tennessee. Final report and appendices

    SciTech Connect (OSTI)

    Fox, W.F.; Mayo, J.W.; Hansen, L.T.; Quindry, K.E.

    1985-12-17

    The United States Department of Energy is charged with the task of identifying potential sites for a Monitored Retrievable Storage (MRS) Facility and reporting the results of its analysis to Congress by January 1986. DOE chose three finalist sites from 11 sites DOE analysts evaluated earlier. All three are in Tennessee, including two in Oak Ridge and one in Trousdale/Smith Counties. This paper is a summary of research undertaken on the economic effects of establishing the MRS facility in Tennessee. All three locations were considered in the analysis, but on some occasions attention is focused on the site preferred by DOE. The research was undertaken by the Center for Business and Economic Research (CBER), College of Business Administration, the University of Tennessee, Knoxville, under contract with the Tennessee Department of Economic and Community Development.

  1. An economic analysis of a monitored retrievable storage site for Tennessee

    SciTech Connect (OSTI)

    Fox, W.F.; Mayo, J.W.; Hansen, L.T.; Quindry, K.E.

    1985-12-17

    The United States Department of Energy is charged with the task of identifying potential sites for a Monitored Retrievable Storage (MRS) Facility and reporting the results of its analysis to Congress by January 1986. DOE chose three finalist sites from 11 sites DOE analysts evaluated earlier. All three are in Tennessee, including two in Oak Ridge and one in Trousdale/Smith Counties. This paper is a summary of research undertaken on the economic effects of establishing the MRS facility in Tennessee. All three locations were considered in the analysis, but on some occasions attention is focused on the site preferred by DOE. The research was undertaken by the Center for Business and Economic Research (CBER), College of Business Administration, the University of Tennessee, Knoxville, under contract with the Tennessee Department of Economic and Community Development.

  2. Closure Report for Corrective Action Unit 166: Storage Yards and Contaminated Materials, Nevada Test Site, Nevada

    SciTech Connect (OSTI)

    NSTec Environmental Restoration

    2009-08-01

    Corrective Action Unit (CAU) 166 is identified in the Federal Facility Agreement and Consent Order (FFACO) as 'Storage Yards and Contaminated Materials' and consists of the following seven Corrective Action Sites (CASs), located in Areas 2, 3, 5, and 18 of the Nevada Test Site: CAS 02-42-01, Condo Release Storage Yd - North; CAS 02-42-02, Condo Release Storage Yd - South; CAS 02-99-10, D-38 Storage Area; CAS 03-42-01, Conditional Release Storage Yard; CAS 05-19-02, Contaminated Soil and Drum; CAS 18-01-01, Aboveground Storage Tank; and CAS 18-99-03, Wax Piles/Oil Stain. Closure activities were conducted from March to July 2009 according to the FF ACO (1996, as amended February 2008) and the Corrective Action Plan for CAU 166 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, 2007b). The corrective action alternatives included No Further Action and Clean Closure. Closure activities are summarized. CAU 166, Storage Yards and Contaminated Materials, consists of seven CASs in Areas 2, 3, 5, and 18 of the NTS. The closure alternatives included No Further Action and Clean Closure. This CR provides a summary of completed closure activities, documentation of waste disposal, and confirmation that remediation goals were met. The following site closure activities were performed at CAU 166 as documented in this CR: (1) At CAS 02-99-10, D-38 Storage Area, approximately 40 gal of lead shot were removed and are currently pending treatment and disposal as MW, and approximately 50 small pieces of DU were removed and disposed as LLW. (2) At CAS 03-42-01, Conditional Release Storage Yard, approximately 7.5 yd{sup 3} of soil impacted with lead and Am-241 were removed and disposed as LLW. As a BMP, approximately 22 ft{sup 3} of asbestos tile were removed from a portable building and disposed as ALLW, approximately 55 gal of oil were drained from accumulators and are currently pending disposal as HW, the portable building was removed and disposed as

  3. Analysis for Eccentric Multi Canister Overpack (MCO) Drops at the Canister Storage Building (CSB) (CSB-S-0073)

    SciTech Connect (OSTI)

    HOLLENBECK, R.G.

    2000-05-08

    The Spent Nuclear Fuel (SNF) Canister Storage Building (CSB) is the interim storage facility for the K-Basin SNF at the US. Department of Energy (DOE) Hanford Site. The SNF is packaged in multi-canister overpacks (MCOs). The MCOs are placed inside transport casks, then delivered to the service station inside the CSB. At the service station, the MCO handling machine (MHM) moves the MCO from the cask to a storage tube or one of two sample/weld stations. There are 220 standard storage tubes and six overpack storage tubes in a below grade reinforced concrete vault. Each storage tube can hold two MCOs.

  4. DOE Issues Final Mercury Storage Environmental Impact Statement: Texas Site Is Preferred for Long-Term Mercury Storage

    Broader source: Energy.gov [DOE]

    WASHINGTON – The Department of Energy has prepared a Final Long-Term Management and Storage of Elemental Mercury Environmental Impact Statement to analyze the potential environmental, human health, and socioeconomic impacts of elemental mercury storage at seven locations

  5. Siting-selection study for the Soyland Power Cooperative, Inc. , compressed-air energy-storage system (CAES)

    SciTech Connect (OSTI)

    Not Available

    1982-01-01

    A method used for siting a compressed air energy storage (CAES) system using geotechnical and environmental criteria is explained using the siting of a proposed 220 MW water-compensated CAES plant in Illinois as an example. Information is included on the identification and comparative ranking of 28 geotechnically and environmental sites in Illinois, the examination of fatal flaws, e.g., mitigation, intensive studies, costly studies, permit denials, at 7 sites; and the selection of 3 sites for further geological surveying. (LCL)

  6. Design requirements document for the interim store phase I solidified high-level waste function 4.2.4.1.2

    SciTech Connect (OSTI)

    Calmus, R.B.

    1996-09-30

    The U.S. Department of Energy (DOE) has embarked upon a course to acquire Hanford site.t,,nk waste tr:atment and immobilization services using privatized facilities. This plan contains a two-phased approach. Phase I is a ``proof-of-principle/commercial demonstration-scale`` effort and Phase II is a full-scale production effort. In accordance with the planned approach, interim storage and disposal of various products from privatized facilities are to be DOE furnished. The path forward adopted for Phase I solidified high-level waste (HLW) interim storage entails use of Vaut 2 and 3 in the Hanford Site Spent Nuclear Fuels Canister Storage Building (CSB), to be located in the Hanford Site 200 East Area. This design requirements document establishes the functions, with associated requirements, allocated to the Phase I solidified HLW interim storage system. These requirements will be used as the basis for conceptual design of the CSB and supporting systems. This document will also provide the basis for preparation of a performance specification for design and construction activities necessary to achieve the overall project mission.

  7. EIS-0109: Long-Term Management of the Existing Radioactive Wastes and Residues at the Niagara Falls Storage Site

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy developed this statement to evaluate the environmental impacts of several alternatives for management and control of the radioactive wastes and residues at the Niagara Falls Storage Site, including a no action alternative, an alternative to manage wastes on site, and two off-site management alternatives.

  8. DOE - Office of Legacy Management -- Latty Avenue Site - MO 04

    Office of Legacy Management (LM)

    Latty Avenue Site - MO 04 FUSRAP Considered Sites Latty Avenue Site, MO Alternate Name(s): Futura Coatings Futura Chemical Company Facility Hazelwood Interim Storage Site (HISS) Former Cotter Site, Latty Avenue Properties Contemporary Metals Corp. Continental Mining and Milling MO.04-1 MO.04-2 MO.04-5 MO.04-6 MO.06-8 MO.06-11 Location: 9200 Latty Avenue, Hazelwood, Missouri MO.04-1 Historical Operations: Received, stored, and processed uranium residues for the AEC. Storage and processing were

  9. EA-1900: Radiological Work and Storage Building at the Knolls Atomic Power Laboratory Kesselring Site, West Milton, New York

    Broader source: Energy.gov [DOE]

    The Naval Nuclear Propulsion Program (NNPP) intent to prepare an Environmental Assessment for a radiological work and storage building at the Knolls Atomic Power Laboratory (Kesselring Site in West Milton, New York. A new facility is needed to streamline radioactive material handling and storage operations, permit demolition of aging facilities, and accommodate efficient maintenance of existing nuclear reactors.

  10. FutureGen Industrial Alliance Announces Carbon Storage Site Selection Process for FutureGen 2.0

    Broader source: Energy.gov [DOE]

    The FutureGen Industrial Alliance today announced details of a process that will lead to the selection of an Illinois site for the storage of carbon dioxide collected at FutureGen 2.0, a landmark project that will advance the deployment of carbon capture and storage technology at an Ameren Energy Resources power plant in Meredosia, Illinois.

  11. Transport and Storage Properties of CST Slurries for the Savannah River Site

    SciTech Connect (OSTI)

    Taylor, P.A.; Hewitt, J.D.; Hylton, T.D.; Kent, T.E.

    1999-04-01

    The Oak Ridge National Laboratory (ORNL) is performing tests to address issues related to the handling and storage of crystalline silicotitanate (CST) for the Savannah River Site (SRS) Defense Waste Processing Facility (DWPF) recycle treatment program. The DWPF recycle treatment program and the SRS Salt Disposition Alternatives program share many common concerns related to CST slurry transport. Therefore, the DWPF recycle treatment program scope was modified to better address the salt disposition concerns. These tests evaluated the physical and chemical compatibility of CST with the operating environments that could be experienced during treatment of the SRS high-level tank waste or DWPF recycle stream, and subsequent handling, storage, and transport of the CST.

  12. Niagara falls storage site: Annual site environmental report, Lewiston, New York, Calendar Year 1988: Surplus Facilities Management Program (SFMP)

    SciTech Connect (OSTI)

    Not Available

    1989-04-01

    The monitoring program at the Niagara Falls Storage Site (NFSS) measures radon concentrations in air; external gamma radiation levels; and uranium and radium concentrations in surface water, groundwater, and sediment. To verify that the site is in compliance with the DOE radiation protection standard and to assess its potential effect on public health, the radiation dose was calculated for a hypothetical maximally exposed individual. Based on the conservative scenario described in this report, this hypothetical individual receives an annual external exposure approximately equivalent to 6 percent of the DOE radiation protection standard of 100 mrem/yr. This exposure is less than a person receives during two round-trip flights from New York to Los Angeles (because of the greater amounts of cosmic radiation at higher altitudes). The cumulative dose to the population within an 80-km (50-mi) radius of the NFSS that results from radioactive materials present at the site is indistinguishable from the dose that the same population receives from naturally occurring radioactive sources. Results of the 1988 monitoring show that the NFSS is in compliance with applicable DOE radiation protection standards. 17 refs., 31 figs., 20 tabs.

  13. Using the Choquet integral for screening geological CO2 storage sites

    SciTech Connect (OSTI)

    Zhang, Y.

    2011-03-01

    For geological CO{sub 2} storage site selection, it is desirable to reduce the number of candidate sites through a screening process before detailed site characterization is performed. Screening generally involves defining a number of criteria which then need to be evaluated for each site. The importance of each criterion to the final evaluation will generally be different. Weights reflecting the relative importance of these criteria can be provided by experts. To evaluate a site, each criterion must be evaluated and scored, and then aggregated, taking into account the importance of the criteria. We propose the use of the Choquet integral for aggregating the scores. The Choquet integral considers the interactions among criteria, i.e. whether they are independent, complementary to each other, or partially repetitive. We also evaluate the Shapley index, which demonstrates how the importance of a given piece of information may change if it is considered by itself or together with other available information. An illustrative example demonstrates how the Choquet integral properly accounts for the presence of redundancy in two site-evaluation criteria, making the screening process more defensible than the standard weighted-average approach.

  14. Streamlined Approach for Environmental Restoration Plan for Corrective Action Unit 121: Storage Tanks and Miscellaneous Sites, Nevada Test Site, Nevada

    SciTech Connect (OSTI)

    NSTec Environmental Restoration

    2007-06-01

    This Streamlined Approach for Environmental Restoration (SAFER) Plan identifies the activities required for the closure of Corrective Action Unit (CAU) 121, Storage Tanks and Miscellaneous Sites. CAU 121 is currently listed in Appendix III of the ''Federal Facility Agreement and Consent Order'' (FFACO, 1996) and consists of three Corrective Action Sites (CASs) located in Area 12 of the Nevada Test Site (NTS): CAS 12-01-01, Aboveground Storage Tank; CAS 12-01-02, Aboveground Storage Tank; and CAS 12-22-26, Drums; 2 AST's. CASs 12-01-01 and 12-01-02 are located to the west of the Area 12 Camp, and CAS 12-22-26 is located near the U-12g Tunnel, also known as G-tunnel, in Area 12 (Figure 1). The aboveground storage tanks (ASTs) present at CASs 12-01-01 and 12-01-02 will be removed and disposed of at an appropriate facility. Soil below the ASTs will be sampled to identify whether it has been impacted with chemicals or radioactivity above action levels. If impacted soil above action levels is present, the soil will be excavated and disposed of at an appropriate facility. The CAS 12-22-26 site is composed of two overlapping areas, one where drums had formerly been stored, and the other where an AST was used to dispense diesel for locomotives used at G-tunnel. This area is located above an underground radioactive materials area (URMA), and within an area that may have elevated background radioactivity because of containment breaches during nuclear tests and associated tunnel reentry operations. CAS 12-22-26 does not include the URMA or the elevated background radioactivity. An AST that had previously been used to store liquid magnesium chloride (MgCl) was properly disposed of several years ago, and releases from this tank are not an environmental concern. The diesel AST will be removed and disposed of at an appropriate facility. Soil at the former drum area and the diesel AST area will be sampled to identify whether it has been impacted by releases, from the drums or the

  15. Niagara Falls Storage Site environmental monitoring report, Lewiston, New York, calendar year 1984

    SciTech Connect (OSTI)

    Not Available

    1985-07-01

    During 1984, an environmental monitoring program was continued at the Niagara Falls Storage Site, a United States Department of Energy (DOE) surplus facility located in Niagara County, New York, presently used for the storage of radioactive residues, contaminated soils and rubble. The monitoring program measured radon gas concentrations in air; uranium and radium concentrations in surface water, groundwater, and sediments; and external gamma exposure rates. Environmental samples collected were analyzed to determine compliance with applicable standards. Radiation doses to the public were also calculated. During 1984, annual average radon concentrations at the site boundary and exclusion area locations of the site were below the DOE Concentration Guide (CG) for uncontrolled areas. Annual average uranium and radium-226 concentrations in groundwater and surface water were below the DOE CG for release to uncontrolled areas. Sediment samples generally showed average concentrations of uranium and radium-226 lower than those measured in the past years. External gamma exposure rates were below the DOE Radiation Protection Standards. All radiation doses to the public were within DOE standards.

  16. Geochemical information for sites contaminated with low-level radioactive wastes: II. St. Louis Airport Storage Site

    SciTech Connect (OSTI)

    Seeley, F.G.; Kelmers, A.D.

    1985-01-01

    The St. Louis Airport Storage Site (SLASS) became radioactively contaminated as a result of wastes that were being stored from operations to recover uranium from pitchblende ores in the 1940s and 1950s. The US Department of Energy is considering various remedial action options for the SLASS under the Formerly Utilized Site Remedial Action Program (FUSRAP). This report describes the results of geochemical investigations, carried out to support the FUSRAP activities and to aid in quantifying various remedial action options. Soil and groundwater samples from the site were characterized, and sorption ratios for uranium and radium and apparent concentration limit values for uranium were measured in soil/groundwater systems by batch contact methodology. The uranium and radium concentrations in soil samples were significantly above background near the old contaminated surface horizon (now at the 0.3/sup -/ to 0.9/sup -/m depth); the maximum values were 1566 ..mu..g/g and 101 pCi/g, respectively. Below about the 6/sup -/m depth, the concentrations appeared to be typical of those naturally present in soils of this area (3.8 +- 1.2 ..mu..g/g and 3.1 +- 0.6 pCi/g). Uranium sorption ratios showed stratigraphic trends but were generally moderate to high (100 to 1000 L/kg). The sorption isotherm suggested an apparent uranium concentration limit of about 200 mg/L. This relatively high solubility can probably be correlated with the carbonate content of the soil/groundwater systems. The lower sorption ratio values obtained from the sorption isotherm may have resulted from changes in the experimental procedure or the groundwater used. The SLASS appears to exhibit generally favorable behavior for the retardation of uranium solubilized from waste in the site. Parametric tests were conducted to estimate the sensitivity of uranium sorption and solubility to the pH and carbonate content of the system.

  17. EIS-0283-S2: Interim Action Determination

    Broader source: Energy.gov [DOE]

    Surplus Plutonium Disposition Supplemental Environmental Impact Statement (K-Area Materials Storage (KAMS) Area Expansion at the Savannah River Site)

  18. Drilling and abandonment preparation of CO₂ storage wells – Experience from the Ketzin pilot site

    SciTech Connect (OSTI)

    Prevedel, Bernhard; Martens, Sonja; Norden, Ben; Henninges, Jan; Freifeld, Barry M.

    2014-12-31

    At Ketzin, located west of Berlin, the GFZ German Centre for Geosciences is operating Europe's largest CO₂ research storage site. This pilot site has been developed since 2004 and is comprised of one combined injection/observation well and four monitoring wells. From June 2008 to August 2013, a total of 67 kilotons of CO₂ were safely injected into the sandstone units of the Upper Triassic Stuttgart Formation in a depth between 630 to 650 m. The paper discusses the well designs and lessons learned in drilling engineering and operations. The abandonment phase started in Ketzin with the first plug cementation of the observation well Ktzi 202 shortly after shut-in of CO₂ injection. The experience with the first CO₂ well killing operation will be reviewed.

  19. Drilling and abandonment preparation of CO₂ storage wells – Experience from the Ketzin pilot site

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Prevedel, Bernhard; Martens, Sonja; Norden, Ben; Henninges, Jan; Freifeld, Barry M.

    2014-12-31

    At Ketzin, located west of Berlin, the GFZ German Centre for Geosciences is operating Europe's largest CO₂ research storage site. This pilot site has been developed since 2004 and is comprised of one combined injection/observation well and four monitoring wells. From June 2008 to August 2013, a total of 67 kilotons of CO₂ were safely injected into the sandstone units of the Upper Triassic Stuttgart Formation in a depth between 630 to 650 m. The paper discusses the well designs and lessons learned in drilling engineering and operations. The abandonment phase started in Ketzin with the first plug cementation ofmore » the observation well Ktzi 202 shortly after shut-in of CO₂ injection. The experience with the first CO₂ well killing operation will be reviewed.« less

  20. Corrective Action Plan for Corrective Action Unit 166: Storage Yards and Contaminated Materials, Nevada Test Site, Nevada

    SciTech Connect (OSTI)

    NSTec Environmental Restoration

    2007-10-01

    Corrective Action Unit (CAU) 166, Storage Yards and Contaminated Materials, is listed in the Federal Facility Agreement and Consent Order (FFACO) of 1996 (FFACO, 1996). CAU 166 consists of seven Corrective Action Sites (CASs) located in Areas 2, 3, 5, and 18 of the Nevada Test Site (NTS), which is located approximately 65 miles northwest of Las Vegas, Nevada (Figure 1). CAU 166 consists of the following CASs: (1) CAS 02-42-01, Cond. Release Storage Yd - North; (2) CAS 02-42-02, Cond. Release Storage Yd - South; (3) CAS 02-99-10, D-38 Storage Area; (4) CAS 03-42-01, Conditional Release Storage Yard; (5) CAS 05-19-02, Contaminated Soil and Drum; (6) CAS 18-01-01, Aboveground Storage Tank; and (7) CAS 18-99-03, Wax Piles/Oil Stain. Details of the site history and site characterization results for CAU 166 are provided in the approved Corrective Action Investigation Plan (CAIP) (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2006) and in the approved Corrective Action Decision Document (CADD) (NNSA/NSO, 2007).

  1. Niagara Falls Storage Site annual environmental report for calendar year 1991, Lewiston, New York

    SciTech Connect (OSTI)

    Not Available

    1992-09-01

    This document describes the environmental monitoring program at the Niagara Falls Storage Site (NFSS) and surrounding area, implementation of the program, and monitoring results for 1991. Environmental monitoring at NFSS began in 1981. The site is owned by the US Department of Energy (DOE) and is assigned to the DOE Formerly Utilized Sites Remedial Action Program (FUSRAP). FUSRAP is a program to decontaminate or otherwise control sites where residual radioactive materials remain from the early years of the nation`s atomic energy program or from commercial operations causing conditions that Congress has authorized DOE to remedy. The environmental monitoring program at NFSS includes sampling networks for radon concentrations in air; external gamma radiation exposure; and total uranium and radium-226 concentrations in surface water, sediments, and groundwater. Additionally, several nonradiological parameters including seven metals are routinely measured in groundwater. Monitoring results are compared with applicable Environmental Protection Agency (EPA) standards, DOE derived concentration guides (DCGs), dose limits, and other requirements in DOE orders. Environmental standards are established to protect public health and the environment.

  2. Cold Test Facility - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Projects & Facilities Cold Test Facility About Us About Hanford Cleanup Hanford History Hanford Site Wide Programs Contact Us 100 Area 118-K-1 Burial Ground 200 Area 222-S Laboratory 242-A Evaporator 300 Area 324 Building 325 Building 400 Area/Fast Flux Test Facility 618-10 and 618-11 Burial Grounds 700 Area B Plant B Reactor C Reactor Canister Storage Building and Interim Storage Area Canyon Facilities Cold Test Facility D and DR Reactors Effluent Treatment Facility Environmental

  3. Determining initial enrichment, burnup, and cooling time of pressurized-water reactor spent fuel assemblies by analyzing passive gamma spectra measured at the Clab interim-fuel storage facility in Sweden

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Favalli, Andrea; Vo, D.; Grogan, Brandon R.; Jansson, Peter; Liljenfeldt, Henrik; Mozin, Vladimir; Schwalbach, P.; Sjoland, A.; Tobin, Stephen J.; Trellue, Holly; et al

    2016-02-26

    The purpose of the Next Generation Safeguards Initiative (NGSI)–Spent Fuel (SF) project is to strengthen the technical toolkit of safeguards inspectors and/or other interested parties. The NGSI–SF team is working to achieve the following technical goals more easily and efficiently than in the past using nondestructive assay measurements of spent fuel assemblies: (1) verify the initial enrichment, burnup, and cooling time of facility declaration; (2) detect the diversion or replacement of pins; (3) estimate the plutonium mass [which is also a function of the variables in (1)]; (4) estimate the decay heat; and (5) determine the reactivity of spent fuelmore » assemblies. Since August 2013, a set of measurement campaigns has been conducted at the Central Interim Storage Facility for Spent Nuclear Fuel (Clab), in collaboration with Swedish Nuclear Fuel and Waste Management Company (SKB). One purpose of the measurement campaigns was to acquire passive gamma spectra with high-purity germanium and lanthanum bromide scintillation detectors from Pressurized Water Reactor and Boiling Water Reactor spent fuel assemblies. The absolute 137Cs count rate and the 154Eu/137Cs, 134Cs/137Cs, 106Ru/137Cs, and 144Ce/137Cs isotopic ratios were extracted; these values were used to construct corresponding model functions (which describe each measured quantity’s behavior over various combinations of burnup, cooling time, and initial enrichment) and then were used to determine those same quantities in each measured spent fuel assembly. Furthermore, the results obtained in comparison with the operator declared values, as well as the methodology developed, are discussed in detail in the paper.« less

  4. Initial results from seismic monitoring at the Aquistore CO2 storage site, Saskatchewan, Canada

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    White, D. J.; Roach, L. A.N.; Roberts, B.; Daley, T. M.

    2014-12-31

    The Aquistore Project, located near Estevan, Saskatchewan, is one of the first integrated commercial-scale CO2 storage projects in the world that is designed to demonstrate CO2 storage in a deep saline aquifer. Starting in 2014, CO2 captured from the nearby Boundary Dam coal-fired power plant will be transported via pipeline to the storage site and to nearby oil fields for enhanced oil recovery. At the Aquistore site, the CO2 will be injected into a brine-filled sandstone formation at ~3200 m depth using the deepest well in Saskatchewan. The suitability of the geological formations that will host the injected CO2 hasmore » been predetermined through 3D characterization using high-resolution 3D seismic images and deep well information. These data show that 1) there are no significant faults in the immediate area of the storage site, 2) the regional sealing formation is continuous in the area, and 3) the reservoir is not adversely affected by knolls on the surface of the underlying Precambrian basement. Furthermore, the Aquistore site is located within an intracratonic region characterized by extremely low levels of seismicity. This is in spite of oil-field related water injection in the nearby Weyburn-Midale field where a total of 656 million m3 of water have been injected since the 1960`s with no demonstrable related induced seismicity. A key element of the Aquistore research program is the further development of methods to monitor the security and subsurface distribution of the injected CO2. Toward this end, a permanent areal seismic monitoring array was deployed in 2012, comprising 630 vertical-component geophones installed at 20 m depth on a 2.5x2.5 km regular grid. This permanent array is designed to provide improved 3D time-lapse seismic imaging for monitoring subsurface CO2. Prior to the onset of CO2 injection, calibration 3D surveys were acquired in May and November of 2013. Comparison of the data from these surveys relative to the baseline 3D survey data

  5. Analysis of long-term impacts of TRU waste remaining at generator/storage sites for No Action Alternative 2

    SciTech Connect (OSTI)

    Buck, J.W.; Bagaasen, L.M.; Bergeron, M.P.; Streile, G.P.

    1997-09-01

    This report is a supplement to the Waste Isolation Pilot Plant Disposal-Phase Final Supplemental Environmental Impact Statement (SEIS-II). Described herein are the underlying information, data, and assumptions used to estimate the long-term human-health impacts from exposure to radionuclides and hazardous chemicals in transuranic (TRU) waste remaining at major generator/storage sites after loss of institutional control under No Action Alternative 2. Under No Action Alternative 2, TRU wastes would not be emplaced at the Waste Isolation Pilot Plant (WIPP) but would remain at generator/storage sites in surface or near-surface storage. Waste generated at smaller sites would be consolidated at the major generator/storage sites. Current TRU waste management practices would continue, but newly generated waste would be treated to meet the WIPP waste acceptance criteria. For this alternative, institutional control was assumed to be lost 100 years after the end of the waste generation period, with exposure to radionuclides and hazardous chemicals in the TRU waste possible from direct intrusion and release to the surrounding environment. The potential human-health impacts from exposure to radionuclides and hazardous chemicals in TRU waste were analyzed for two different types of scenarios. Both analyses estimated site-specific, human-health impacts at seven major generator/storage sites: the Hanford Site (Hanford), Idaho National Engineering and Environmental Laboratory (INEEL), Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), Oak Ridge National Laboratory (ORNL), Rocky Flats Environmental Technology Site (RFETS), and Savannah River Site (SRS). The analysis focused on these seven sites because 99 % of the estimated TRU waste volume and inventory would remain there under the assumptions of No Action Alternative 2.

  6. UK Delegation Focuses on EM’s Reactor ‘Cocooning’ Expertise During Hanford Site Tour

    Office of Energy Efficiency and Renewable Energy (EERE)

    RICHLAND, Wash. – A United Kingdom delegation recently toured Hanford Site cleanup projects, gaining insight into EM Richland Operations Office’s (RL) experience “cocooning” plutonium production reactors as the UK prepares for a similar interim safe storage for 10 commercial reactors.

  7. Niagara Falls Storage Site, Lewiston, New York: Annual site environmental report, Calendar year 1987: Formerly Utilized Sites Remedial Action Program (FUSRAP)

    SciTech Connect (OSTI)

    Not Available

    1988-04-01

    The monitoring program at the Niagara Falls Storage Site (NFSS) measures radon gas concentrations in air; external gamma radiation levels; and uranium and radium concentrations in surface water, groundwater, and sediment. To verify that the site is in compliance with the DOE radiation protection standard and to assess its potential effect on public health, the radiation dose was calculated for the maximally exposed individual. Based on the conservative scenario described in the report, this individual would receive an annual external exposure approximately equivalent to 6 percent of the DOE radiation protection standard of 100 mrem/yr. By comparison, the incremental dose received from living in a brick house versus a wooden house is 10 mrem/yr above background. The cumulative dose to the population within an 80-km (50-mi) radius of the NFSS that would result from radioactive materials present at the site would be indistinguishable from the dose that the same population would receive from naturally occurring radioactive sources. Results of the 1987 monitoring show that the NFSS is in compliance with the DOE radiation protection standard. 13 refs., 10 figs., 20 tabs.

  8. A strategy for resolving high-priority Hanford Site radioactive waste storage tank safety issues

    SciTech Connect (OSTI)

    Babad, H.; DeFigh-Price, C.; Fulton, J.C.

    1993-02-01

    High-activity radioactive waste has been stored in large underground storage tanks at the US Department of Energy`s (DOE) Hanford Site in Eastern Washington State since 1944. Since then, more than 227,000 m{sup 3} (60 Mgal) of waste have been accumulated in 177 tanks. These caustic wastes consist of many different chemicals. The waste forms include liquids, slurries, salt cakes, and sludges. A number of safety issues have been raised about these wastes, and resolution of these issues is a top priority of DOE. A Waste Tank Safety Program has been established to resolve these high-priority safety issues. This paper will deal with three of these issues. The issues described are the release of flammable vapors from single- and double-shell tanks, the existence of organic chemicals, and/or ferrocyanide ion-containing fuel-rich mixtures of nitrate and nitrite salts in single-shell tanks.

  9. Proceedings: Geotechnology workshop on compressed-air energy storage in porous media sites

    SciTech Connect (OSTI)

    Not Available

    1987-07-01

    The extensive experience of the natural gas industry with gas storage in underground porous media is directly applicable to the storage of air for compressed-air energy storage plants. In this workshop, natural gas industry representatives provided utility personnel with a basic understanding of the geology of porous media and strategies for developing air storage reservoirs.

  10. Preliminary Analysis of Grande Ronde Basalt Formation Flow Top Transmissivity as it Relates to Assessment and Site Selection Applications for Fluid/Energy Storage and Sequestration Projects

    SciTech Connect (OSTI)

    Spane, Frank A.

    2013-04-29

    Preliminary Analysis of Grande Ronde Basalt Formation Flow Top Transmissivity as it Relates to Assessment and Site Selection Applications for Fluid/Energy Storage and Sequestration Projects

  11. Niagara Falls storage site annual environmental report for calendar year 1990, Lewiston, New York

    SciTech Connect (OSTI)

    Not Available

    1991-08-01

    Environmental monitoring of the US DOE Niagara Falls Storage Site (NFSS) and surrounding area began in 1981. NFSS is part of a DOE program to decontaminate or otherwise control sites where residual radioactive materials remain from the early years of the nation's atomic energy program or from commercial, operations causing conditions the Congress has authorized DOE to remedy. Environmental monitoring systems at NFSS include sampling networks for radon concentrations in air; external gamma radiation exposure; and total uranium and radium-226 concentrations in surface water sediments, and groundwater. Additionally, several nonradiological parameters are routinely measured in groundwater. During 1990, the average ambient air radon concentration (including background) at NFSS ranged from 0.3 to 0.7 pCi/L (0.01 to 0.03 Bq/L); the maximum at any location for any quarter was 1.6 pCi/L (0.06 Bq/L). The average on-site external gamma radiation exposure level was 69 mR/yr; the average at the property line was 68 mR/yr (including background). The average background radiation level in the area was 66 mR/yr. Average annual concentrations of radium-226 and total uranium in surface water ranged from 0.4E-9 to 0.9E-9 {mu}Ci/m1 (0.02 to 0.03 Bq/L) and from 5E-9 to 9E-9 {mu}Ci/m1 (0.2 to 0.3 Bq/L), respectively. Routine analyses of groundwater samples from NFSS included the indicator parameters total organic carbon, total organic halides, pH, and specific conductivity.

  12. Interim Action Determination

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    from the surveillance program in H-Canyon as a possible alternative to storage in the Environmental Assessment for the Safeguards and Security Upgrades for Storage of ...

  13. Interim Results from a Study of the Impacts of Tin (II) Based Mercury Treatment in a Small Stream Ecosystem: Tims Branch, Savannah River Site

    SciTech Connect (OSTI)

    Looney, Brian; BryanJr., Larry; Mathews, Teresa J; Peterson, Mark J; Roy, W Kelly; Jett, Robert T; Smith, John G

    2012-03-01

    A research team is assessing the impacts of an innovative mercury treatment system in Tims Branch, a small southeastern stream. The treatment system, installed in 2007, reduces and removes inorganic mercury from water using tin(II) (stannous) chloride addition followed by air stripping. The system results in discharge of inorganic tin to the ecosystem. This screening study is based on historical information combined with measurements of contaminant concentrations in water, fish, sediment, biofilms and invertebrates. Initial mercury data indicate that first few years of mercury treatment resulted in a significant decrease in mercury concentration in an upper trophic level fish, redfin pickerel, at all sampling locations in the impacted reach. For example, the whole body mercury concentration in redfin pickerel collected from the most impacted pond decreased approximately 72% between 2006 (pre-treatment) and 2010 (post-treatment). Over this same period, mercury concentrations in the fillet of redfin pickerel in this pond were estimated to have decreased from approximately 1.45 {micro}g/g (wet weight basis) to 0.45 {micro}g/g - a decrease from 4.8x to 1.5x the current EPA guideline concentration for mercury in fillet (0.3 {micro}g/g). Thermodynamic modeling, scanning electron microscopy, and other sampling data for tin suggest that particulate tin (IV) oxides are a significant geochemical species entering the ecosystem with elevated levels of tin measured in surficial sediments and biofilms. Detectable increases in tin in sediments and biofilms extended approximately 3km from the discharge location. Tin oxides are recalcitrant solids that are relatively non-toxic and resistant to dissolution. Work continues to develop and validate methods to analyze total tin in the collected biota samples. In general, the interim results of this screening study suggest that the treatment process has performed as predicted and that the concentration of mercury in upper trophic level

  14. CHARACTERIZING DOE HANFORD SITE WASTE ENCAPSULATION STORAGE FACILITY CELLS USING RADBALL

    SciTech Connect (OSTI)

    Farfan, E.; Coleman, R.

    2011-03-31

    RadBall{trademark} is a novel technology that can locate and quantify unknown radioactive hazards within contaminated areas, hot cells, and gloveboxes. The device consists of a colander-like outer tungsten collimator that houses a radiation-sensitive polymer semi-sphere. The collimator has a number of small holes with tungsten inserts; as a result, specific areas of the polymer are exposed to radiation becoming increasingly more opaque in proportion to the absorbed dose. The polymer semi-sphere is imaged in an optical computed tomography scanner that produces a high resolution 3D map of optical attenuation coefficients. A subsequent analysis of the optical attenuation data using a reverse ray tracing or backprojection technique provides information on the spatial distribution of gamma-ray sources in a given area forming a 3D characterization of the area of interest. RadBall{trademark} was originally designed for dry deployments and several tests, completed at Savannah River National Laboratory and Oak Ridge National Laboratory, substantiate its modeled capabilities. This study involves the investigation of the RadBall{trademark} technology during four submerged deployments in two water filled cells at the DOE Hanford Site's Waste Encapsulation Storage Facility.

  15. CMM Interim Check (U)

    SciTech Connect (OSTI)

    Montano, Joshua Daniel

    2015-03-23

    Coordinate Measuring Machines (CMM) are widely used in industry, throughout the Nuclear Weapons Complex and at Los Alamos National Laboratory (LANL) to verify part conformance to design definition. Calibration cycles for CMMs at LANL are predominantly one year in length. Unfortunately, several nonconformance reports have been generated to document the discovery of a certified machine found out of tolerance during a calibration closeout. In an effort to reduce risk to product quality two solutions were proposed – shorten the calibration cycle which could be costly, or perform an interim check to monitor the machine’s performance between cycles. The CMM interim check discussed makes use of Renishaw’s Machine Checking Gauge. This off-the-shelf product simulates a large sphere within a CMM’s measurement volume and allows for error estimation. Data was gathered, analyzed, and simulated from seven machines in seventeen different configurations to create statistical process control run charts for on-the-floor monitoring.

  16. Interim explosives detection alternatives

    SciTech Connect (OSTI)

    Syler, R.P. )

    1991-01-01

    There is a general concern with insiders smuggling bomb quantities of explosives into sensitive facilities such as nuclear facilities. At this time, there is no single explosives detection device that is suitable for monitoring personnel and their packages for explosives in an operational facility environment. However, there are techniques combining available commercial technologies with procedures and threat analysis that can significantly increase the insiders risk and reduce the population of adversaries. This paper describes the available applicable explosives detection technologies and discusses the techniques that could be implemented on an interim basis. It is important that these techniques be considered, so that some interim level of security against the explosives threat can be established until more sophisticated equipment that is under development becomes available.

  17. Closure Report for Corrective Action Unit 124, Storage Tanks, Nevada Test Site, Nevada with Errata Sheet, Revision 0

    SciTech Connect (OSTI)

    Alfred Wickline

    2008-01-01

    This Closure Report (CR) presents information supporting closure of Corrective Action Unit (CAU) 124, Storage Tanks, Nevada Test Site (NTS), Nevada. This report complies with the requirements of the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the State of Nevada; U.S. Department of Energy (DOE), Environmental Management; U.S. Department of Defense; and DOE, Legacy Management (FFACO, 1996; as amended January 2007). This CR provides documentation and justification for the closure of CAU 124 without further corrective action. This justification is based on process knowledge and the results of the investigative activities conducted in accordance with the Streamlined Approach for Environmental Restoration (SAFER) Plan for Corrective Action Unit 124: Storage Tanks, Nevada Test Site, Nevada (NNSA/NSO, 2007). The SAFER Plan provides information relating to site history as well as the scope and planning of the investigation. Therefore, this information will not be repeated in this CR.

  18. Assessment of the integrity of spent fuel assemblies used in dry storage demonstrations at the Nevada Test Site

    SciTech Connect (OSTI)

    Johnson, A.B. Jr.; Dobbins, J.C.; Zaloudek, F.R.

    1987-07-01

    This report summarizes the histories of 17 Zircaloy-clad spent fuel assemblies used in dry storage tests and demonstrations at the Engine Maintenance and Disassembly (EMAD) and Climax facilities at the Nevada Test Site (NTS). The 18th assembly was shipped to the Battelle Columbus Laboratory (BCL) and remained there for extensive characterization and as a source of specimens for whole-rod and rod-segment dry storage tests. The report traces the history of the assemblies after discharge from the Turkey Point Unit 3 pressurized-water reactor (1975 and 1977) through shipment (first arrival at EMAD in December 1978), dry storage tests and demonstrations, and shipment by truck cask from EMAD to the Idaho National Engineering Laboratory (INEL) in May/June 1986. The principal objectives of this report are to assess and document the integrity of the fuel during the extensive dry storage activities at NTS and BCL, and to briefly summarize the dry storage technologies and procedures demonstrated in this program. The dry storage tests and demonstrations involved the following concepts and facilities: (1) surface drywells (EMAD); (2) deep drywells (425 m underground in the Climax granite formation); (3) concrete silo (EMAD); (4) air-cooled vault (EMAD); (5) electrically-heated module for fuel assembly thermal calibration and testing (EMAD/FAITM). 20 refs., 43 figs., 9 tabs.

  19. Site characterization of the highest-priority geologic formations for CO2 storage in Wyoming

    SciTech Connect (OSTI)

    Surdam, Ronald C.; Bentley, Ramsey; Campbell-Stone, Erin; Dahl, Shanna; Deiss, Allory; Ganshin, Yuri; Jiao, Zunsheng; Kaszuba, John; Mallick, Subhashis; McLaughlin, Fred; Myers, James; Quillinan, Scott

    2013-12-07

    This study, funded by U.S. Department of Energy National Energy Technology Laboratory award DE-FE0002142 along with the state of Wyoming, uses outcrop and core observations, a diverse electric log suite, a VSP survey, in-bore testing (DST, injection tests, and fluid sampling), a variety of rock/fluid analyses, and a wide range of seismic attributes derived from a 3-D seismic survey to thoroughly characterize the highest-potential storage reservoirs and confining layers at the premier CO2 geological storage site in Wyoming. An accurate site characterization was essential to assessing the following critical aspects of the storage site: (1) more accurately estimate the CO2 reservoir storage capacity (Madison Limestone and Weber Sandstone at the Rock Springs Uplift (RSU)), (2) evaluate the distribution, long-term integrity, and permanence of the confining layers, (3) manage CO2 injection pressures by removing formation fluids (brine production/treatment), and (4) evaluate potential utilization of the stored CO2

  20. Volpentest HAMMER Federal Training Center - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Projects & Facilities Volpentest HAMMER Federal Training Center About Us About Hanford Cleanup Hanford History Hanford Site Wide Programs Contact Us 100 Area 118-K-1 Burial Ground 200 Area 222-S Laboratory 242-A Evaporator 300 Area 324 Building 325 Building 400 Area/Fast Flux Test Facility 618-10 and 618-11 Burial Grounds 700 Area B Plant B Reactor C Reactor Canister Storage Building and Interim Storage Area Canyon Facilities Cold Test Facility D and DR Reactors Effluent Treatment Facility

  1. Referenced-site environmental document for a Monitored Retrievable Storage facility: backup waste management option for handling 1800 MTU per year

    SciTech Connect (OSTI)

    Silviera, D.J.; Aaberg, R.L.; Cushing, C.E.; Marshall, A.; Scott, M.J.; Sewart, G.H.; Strenge, D.L.

    1985-06-01

    This environmental document includes a discussion of the purpose of a monitored retrievable storage facility, a description of two facility design concepts (sealed storage cask and field drywell), a description of three reference sites (arid, warm-wet, and cold-wet), and a discussion and comparison of the impacts associated with each of the six site/concept combinations. This analysis is based on a 15,000-MTU storage capacity and a throughput rate of up to 1800 MTU per year.

  2. Feasibility study: Assess the feasibility of siting a monitored retrievable storage facility. Phase 1

    SciTech Connect (OSTI)

    King, J.W.

    1993-08-01

    The purpose of phase one of this study are: To understand the waste management system and a monitored retrievable storage facility; and to determine whether the applicant has real interest in pursuing the feasibility assessment process. Contents of this report are: Generating electric power; facts about exposure to radiation; handling storage, and transportation techniques; description of a proposed monitored retrievable storage facility; and benefits to be received by host jurisdiction.

  3. Erosion Potential of a Burn Site in the Mojave-Great Basin Transition Zone: Interim Summary of One Year of Measurements

    SciTech Connect (OSTI)

    Etyemezian, V.; Shafer, D.; Miller, J.; Kavouras, I.; Campbell, S.; DuBois, D.; King, J.; Nikolich, G.; Zitzer, S.

    2010-05-18

    A historic return interval of 100 years for large fires in deserts in the Southwest U.S. is being replaced by one where fires may reoccur as frequently as every 20 to 30 years. This increase in fires has implications for management of Soil Sub-Project Corrective Action Units (CAUs) for which the Department of Energy, National Nuclear Security Administration Nevada Site office (NNSA/NSO) has responsibility. A series of studies has been initiated at uncontaminated analog sites to better understand the possible impacts of erosion and transport by wind and water should contaminated soil sites burn over to understand technical and perceived risk they might pose to site workers and public receptors in communities around the NTS, TTR, and NTTR; and to develop recommendations for stabilization and restoration after a fire. The first of these studies was undertaken at the Jacob fire, a lightning-caused fire approximately 12 kilometers north of Hiko, Nevada, that burned approximately 200 ha between August 6-8, 2008, and is representative of a transition zone on the NTS between the Mojave and Great Basin Deserts, where the largest number of Soil Sub-Project CAUs/CASs are located.

  4. Numerical simulation of ground-water flow in the Culebra dolomite at the Waste Isolation Pilot Plant (WIPP) site: Second interim report

    SciTech Connect (OSTI)

    LaVenue, A.M.; Haug, A.; Kelley, V.A.

    1988-03-01

    This hydrogeologic modeling study has been performed as part of the regional hydrologic characterization of the Waste Isolation Pilot Plant (WIPP) Site in southeastern New Mexico. The study resulted in an estimation of the transmissivity distrubution, hydraulic potentials, flow field, and fluid densities in the Culebra Dolomite Member of the Permian Rustler Formation at the WIPP site. The three-dimensional finite-difference code SWIFT-II was employed for the numerical modeling, using variable-fluid-density and a single-porosity formulation. The modeled area includes and extends beyond the WIPP controlled zone (Zone 3). The work performed consisted of modeling the hydrogeology of the Culebra using two approaches: (1) steady-state modeling to develop the best estimate of the undisturbed head distribution, i.e., of the situation before sinking if the WIPP shafts, which began in 1981; and (2) superimposed transient modeling of local hydrologic responses to excavation of the three WIPP shafts at the center of the WIPP site, as well as to various well tests. Boundary conditions (prescribed constant fluid pressures and densities) were estimated using hydraulic-head and fluid-density data obtained from about 40 wells at and near the WIPP site. The transient modeling used the calculated steady-state freshwater heads as initial conditions. 107 refs., 112 figs., 22 tabs.

  5. Status report for inactive miscellaneous underground storage tanks at Hanford Site 200 Areas

    SciTech Connect (OSTI)

    Powers, T.B.

    1995-10-01

    The purpose of this status report is to summarize updated data and information from the FY 1994 strategy plan that is associated with inactive miscellaneous underground storage tanks (IMUSTs). Assumptions and processes to assess potential risks and operational concerns are documented in this report. Safety issue priorities are ranked based on a number of considerations. Sixty-three IMUSTs have been Identified and placed on the official IMUST list. All the tanks are associated with past Hanford Site operations. Of the 63 tanks., 19 are catch tanks, 20 are vault tanks, 3 are neutralization tanks, 8 are settling tanks, 2 are solvent makeup tanks used to store hexone, 2 are flush tanks, 3 are decontamination tanks, 1 is a diverter station, 1 is a receiver tank, 1 is an experimental tank, and 3 are waste handling tanks. It is important to proactively deal with the risks Imposed by these 63 tanks, and at the same time not jeopardize the existing commitments and schedules for mitigating and resolving identified safety issues related to the 177 SSTs and DSTS. Access controls and signs have been placed on all but the three official IMUSTs added most recently. An accelerated effort to identify authorization documents and perform unreviewed safety question (USQ) screening has been completed. According to a set of criteria consistent with the safety screening data quality objective (DQO) process, 6 IMUSTs are ranked high related to the hydrogen generation potential safety Issue, 1 is ranked high related to the ferrocyanide potential safety issue, 6 are ranked high related to the flammability potential safety issue, and 25 are ranked high related to the vapor emissions potential safety issue.

  6. 300 Area - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    300 Area 324 Building 325 Building 400 AreaFast Flux Test Facility 618-10 and 618-11 Burial Grounds 700 Area B Plant B Reactor C Reactor Canister Storage Building and Interim ...

  7. 200 Area - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    300 Area 324 Building 325 Building 400 AreaFast Flux Test Facility 618-10 and 618-11 Burial Grounds 700 Area B Plant B Reactor C Reactor Canister Storage Building and Interim ...

  8. 700 Area - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    300 Area 324 Building 325 Building 400 AreaFast Flux Test Facility 618-10 and 618-11 Burial Grounds 700 Area B Plant B Reactor C Reactor Canister Storage Building and Interim ...

  9. Tank Farms - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    300 Area 324 Building 325 Building 400 AreaFast Flux Test Facility 618-10 and 618-11 Burial Grounds 700 Area B Plant B Reactor C Reactor Canister Storage Building and Interim ...

  10. River Corridor - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    300 Area 324 Building 325 Building 400 AreaFast Flux Test Facility 618-10 and 618-11 Burial Grounds 700 Area B Plant B Reactor C Reactor Canister Storage Building and Interim ...