Sample records for interfaces cxs applied

  1. Selecting and Applying Interfacings

    E-Print Network [OSTI]

    2006-05-01T23:59:59.000Z

    Selecting and using interfacing correctly is an important component of garment construction. The various types of interfacing are described and methods of applying them are discussed in detail....

  2. Natural language interface and database issues in applying expert systems to power systems

    SciTech Connect (OSTI)

    Rumpel, D.; Krost, G. (Univ. of Duisburg Gesamthochschule, Elektrische Anlagen und Netze, 4100 Duisburg 1 (DE))

    1992-05-01T23:59:59.000Z

    Applying expert systems (ES's) to power system operation means imbedding them in an existing environment which consists of computational facilities (SCADA, EMS) on one side, and the operating staff on the other side. To that aim, an interface between process data and ES data is required. Further, for an unambiguous and clear information exchange with, and good acceptance by , the operators and approximate natural language dialog of the ES is desirable. In this paper, several approaches to these problems are described.

  3. A Home Ignition Assessment Model Applied to Structures in the Wildland-Urban Interface

    SciTech Connect (OSTI)

    Biswas, Kaushik [ORNL; Werth, David [Savannah River National Laboratory, Aiken, SC; Gupta, Narendra [Savannah River National Laboratory, Aiken, SC

    2013-01-01T23:59:59.000Z

    The issue of exterior fire threat to buildings, from either wildfires in the wildland-urban interface or neighboring structure fires, is critically important. To address this, theWildfire Ignition Resistant Home Design (WIRHD) program was initiated. The WIRHD program developed a tool, theWildFIREWizard, that will allow homeowners to estimate the external fire threat to their homes based on specific features and characteristics of the homes and yards. The software then makes recommendations to reduce the threat. The inputs include the structural and material features of the home and information about any ignition sources or flammable objects in its immediate vicinity, known as the home ignition zone. The tool comprises an ignition assessment model that performs explicit calculations of the radiant and convective heating of the building envelope from the potential ignition sources. This article describes a series of material ignition and flammability tests that were performed to calibrate and/or validate the ignition assessment model. The tests involved exposing test walls with different external siding types to radiant heating and/or direct flame contact.The responses of the test walls were used to determine the conditions leading to melting, ignition, or any other mode of failure of the walls. Temperature data were used to verify the model predictions of temperature rises and ignition times of the test walls.

  4. Apply

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProductsAlternative FuelsSanta3Appliance andApplicationBerkeleyAppliedApply

  5. Electron Spectrometer: XPS with Laser Interface | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    with Laser Interface Electron Spectrometer: XPS with Laser Interface This ultrahigh vacuum machine can be applied as a routine means for analyzing the structure and chemical...

  6. Tailoring for Today All About… Patern Selection - Fabric Selection - Contemporary Techniques - Fusible Interfacings - Finishing Tips.

    E-Print Network [OSTI]

    Field, Barbara

    1983-01-01T23:59:59.000Z

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Applying Interfacing and Padding . . . . . . . . . . . . . . . . . . . . . . 5 Taping the Roll Line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Steam Pressing... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Fusible Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Applying Interfacing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Pad Stitching Substitute...

  7. User Interfaces 1 Command Line Interfaces

    E-Print Network [OSTI]

    Verschelde, Jan

    User Interfaces 1 Command Line Interfaces getting arguments of the command line a command line 2013 1 / 39 #12;User Interfaces 1 Command Line Interfaces getting arguments of the command line a command line interface to store points fitting points with polyfit of numpy 2 Encapsulation by Object

  8. User interfaces to expert systems

    SciTech Connect (OSTI)

    Agarwal, A.; Emrich, M.L.

    1988-10-01T23:59:59.000Z

    Expert Systems are becoming increasingly popular in environments where the user is not well versed in computers or the subject domain. They offer expert advice and can also explain their lines of reasoning. As these systems are applied to highly technical areas, they become complex and large. Therefore, User Systems Interfaces (USIs) become critical. This paper discusses recent technologies that can be applied to improved user communication. In particular, bar menus/graphics, mouse interfaces, touch screens, and voice links will be highlighted. Their applications in the context of SOFTMAN (The Software Manager Apprentice) a knowledge-based system are discussed. 18 refs., 2 figs.

  9. CX-009315: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Enhancement of SOFC Cathode Electrochemical Performance Using Multi-Phase Interfaces CX(s) Applied: A9 Date: 08/30/2012 Location(s): Wisconsin Offices(s): National Energy Technology Laboratory

  10. CX-009316: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Enhancement of SOFC Cathode Electrochemical Performance Using Multi-Phase Interfaces CX(s) Applied: B3.6 Date: 08/30/2012 Location(s): Massachusetts Offices(s): National Energy Technology Laboratory

  11. CX-009317: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Enhancement of SOFC Cathode Electrochemical Performance Using Multi-Phase Interfaces CX(s) Applied: B3.6 Date: 08/30/2012 Location(s): Washington Offices(s): National Energy Technology Laboratory

  12. Chemical dynamics and bonding at gas/semiconductor and oxide/semiconductor interfaces

    E-Print Network [OSTI]

    Bishop, Sarah R.

    2010-01-01T23:59:59.000Z

    applied to alternative semiconductor materials to determinephase oxides and semiconductor surfaces. Both experimentalunderstanding of the oxide/semiconductor interface. The

  13. Web Service Interface (API)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    OSCARS and Future Tech OSCARS Standard and Open Grid Forum OSCARS Developers Community Web Browser Interface (WBUI) Web Service Interface (API) Read More... Fasterdata IPv6...

  14. Web Browser Interface (WBUI)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    OSCARS and Future Tech OSCARS Standard and Open Grid Forum OSCARS Developers Community Web Browser Interface (WBUI) Web Service Interface (API) Read More... Fasterdata IPv6...

  15. Novel method for the prediction of an interface bonding species at alumina/metal interfaces

    SciTech Connect (OSTI)

    Yoshitake, Michiko, E-mail: yoshitake.michiko@nims.go.jp; Yagyu, Shinjiro [National Institute for Materials Science, 3-13, Sakura, Tsukuba 305-0003 (Japan); Chikyow, Toyohiro [National Institute for Materials Science, 1-1, Namiki, Tsukuba 305-0044 (Japan)

    2014-03-15T23:59:59.000Z

    Interface bonding between alumina and various metals is discussed from the viewpoint of chemical thermodynamics. A method to predict the interface bonding species at an alumina/metal interface under equilibrium conditions is proposed by using the concept of chemical equilibrium for interface termination. The originality of this method is in the way a simple estimation of the interface binding energy, which is generally applicable to most metals, is developed. The effectiveness of this method is confirmed by careful examination of the experimental results. Comparison of the predicted and experimentally observed interface terminations reveals that the proposed method agrees well with the reported results. The method uses only basic quantities of pure elements and the formation enthalpy of oxides. Therefore, it can be applied to most metals in the periodic table and is useful for screening materials in the quest to develop interfaces with particular functions.

  16. Web Interface Call Simulator

    E-Print Network [OSTI]

    Ernst, Damien

    Web Interface Call Simulator Stage Description Web Interface for VoIP Call Simulator Net) Version 1.0 ­ 3/09/2012 Page 1 of 6 #12;Web Interface Call Simulator Version 1.0 ­ 3/09/2012 Page 2 of 6 #12;Web Interface Call Simulator Document Control Version Date Notes 1.0 25/8/2012 Reviewed

  17. NONLINEAR OPTICS AT INTERFACES

    E-Print Network [OSTI]

    Chen, Chenson K.

    2010-01-01T23:59:59.000Z

    N. Bloembergen, Nonlinear Optics (W. A. Benjamin, 1977) p.Research Division NONLINEAR OPTICS AT INTERFACES Chenson K.ED LBL-12084 NONLINEAR OPTICS AT INTERFACES Chenson K. Chen

  18. Landfill liner interface strengths from torsional-ring-shear tests

    SciTech Connect (OSTI)

    Stark, T.D. (Univ. of Illinois, Urbana, IL (United States)); Poeppel, A.R. (Langan Engineering Associates, Inc., New York, NY (United States))

    1994-03-01T23:59:59.000Z

    A torsional-ring-shear apparatus and test procedure are described for measuring soil/geosynthetic and geosynthetic/geosynthetic interface strengths. Typical interface strengths are presented for a double-composite liner system and the relevancy of ring-shear strengths is illustrated using the slope failure at the Kettleman Hills Waste Repository, Kettleman City, Calif. The results of undrained ring-shear tests show that for a clay/geomembrane interface: (1) interface strength depends on plasticity and compaction water content of the clay, and the applied normal stress; (2) interface strengths measured with the torsional-ring-shear apparatus are in excellent agreement with back-calculated field strengths; and (3) peak and residual interface failure envelopes are nonlinear, and the nonlinearity should be modeled in stability analyses instead of as a combination of cohesion and friction angle. Design recommendations for interface strengths and stability analyses are also presented.

  19. Brain-Computer Interfaces

    E-Print Network [OSTI]

    Aggarwal, Khushbu

    2009-01-01T23:59:59.000Z

    I \\ November 16, 2008). CNN. ’Brain’ in a dish ?ies ?ightREFERENCES Adams, Ray. Brain Computer Interfaces: Psychologyaccessed Biever, Celeste. Brain cells in a dish ?y ?ghter

  20. Smart Interfaces superhydrophobe Oberflchen

    E-Print Network [OSTI]

    Kohlenbach, Ulrich

    forschen 24 Smart Interfaces ­ superhydrophobe Oberflächen Superhydrophobe, selbstreinigende-Silica-Hybridteilchen ermöglichen, lang- zeitstabile superhydrophobe Oberflächen einfach herzustellen. Smart Interfaces unten). Blattes runter. Neben der Struktur auf der Mikro- meter-Skala muss das Material, aus dem die

  1. SRS Interface Input

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Interface Input 1. MOA's: The contractor has no MOA's in effect at the Tritium Operations (SRTO) level. 2. AIP's: The contractor has no AIP's in effect at the SRTO level. 3....

  2. Surface rheology and interface stability.

    SciTech Connect (OSTI)

    Yaklin, Melissa A.; Cote, Raymond O.; Moffat, Harry K.; Grillet, Anne Mary; Walker, Lynn; Koehler, Timothy P.; Reichert, Matthew D. (Carnegie Mellon University, Pittsburgh, PA); Castaneda, Jaime N.; Mondy, Lisa Ann; Brooks, Carlton, F.

    2010-11-01T23:59:59.000Z

    We have developed a mature laboratory at Sandia to measure interfacial rheology, using a combination of home-built, commercially available, and customized commercial tools. An Interfacial Shear Rheometer (KSV ISR-400) was modified and the software improved to increase sensitivity and reliability. Another shear rheometer, a TA Instruments AR-G2, was equipped with a du Nouey ring, bicone geometry, and a double wall ring. These interfacial attachments were compared to each other and to the ISR. The best results with the AR-G2 were obtained with the du Nouey ring. A Micro-Interfacial Rheometer (MIR) was developed in house to obtain the much higher sensitivity given by a smaller probe. However, it was found to be difficult to apply this technique for highly elastic surfaces. Interfaces also exhibit dilatational rheology when the interface changes area, such as occurs when bubbles grow or shrink. To measure this rheological response we developed a Surface Dilatational Rheometer (SDR), in which changes in surface tension with surface area are measured during the oscillation of the volume of a pendant drop or bubble. All instruments were tested with various surfactant solutions to determine the limitations of each. In addition, foaming capability and foam stability were tested and compared with the rheology data. It was found that there was no clear correlation of surface rheology with foaming/defoaming with different types of surfactants, but, within a family of surfactants, rheology could predict the foam stability. Diffusion of surfactants to the interface and the behavior of polyelectrolytes were two subjects studied with the new equipment. Finally, surface rheological terms were added to a finite element Navier-Stokes solver and preliminary testing of the code completed. Recommendations for improved implementation were given. When completed we plan to use the computations to better interpret the experimental data and account for the effects of the underlying bulk fluid.

  3. An interface tracking model for droplet electrocoalescence.

    SciTech Connect (OSTI)

    Erickson, Lindsay Crowl

    2013-09-01T23:59:59.000Z

    This report describes an Early Career Laboratory Directed Research and Development (LDRD) project to develop an interface tracking model for droplet electrocoalescence. Many fluid-based technologies rely on electrical fields to control the motion of droplets, e.g. microfluidic devices for high-speed droplet sorting, solution separation for chemical detectors, and purification of biodiesel fuel. Precise control over droplets is crucial to these applications. However, electric fields can induce complex and unpredictable fluid dynamics. Recent experiments (Ristenpart et al. 2009) have demonstrated that oppositely charged droplets bounce rather than coalesce in the presence of strong electric fields. A transient aqueous bridge forms between approaching drops prior to pinch-off. This observation applies to many types of fluids, but neither theory nor experiments have been able to offer a satisfactory explanation. Analytic hydrodynamic approximations for interfaces become invalid near coalescence, and therefore detailed numerical simulations are necessary. This is a computationally challenging problem that involves tracking a moving interface and solving complex multi-physics and multi-scale dynamics, which are beyond the capabilities of most state-of-the-art simulations. An interface-tracking model for electro-coalescence can provide a new perspective to a variety of applications in which interfacial physics are coupled with electrodynamics, including electro-osmosis, fabrication of microelectronics, fuel atomization, oil dehydration, nuclear waste reprocessing and solution separation for chemical detectors. We present a conformal decomposition finite element (CDFEM) interface-tracking method for the electrohydrodynamics of two-phase flow to demonstrate electro-coalescence. CDFEM is a sharp interface method that decomposes elements along fluid-fluid boundaries and uses a level set function to represent the interface.

  4. Unsaturated geotechnics applied to geoenvironmental engineering problems involving geosynthetics

    E-Print Network [OSTI]

    Zornberg, Jorge G.

    such as geotextiles and geosynthetic clay liners (GCLs) with particular focus on capillary barriers, liner performanceUnsaturated geotechnics applied to geoenvironmental engineering problems involving geosynthetics Available online 15 February 2013 Keywords: Capillary break Desiccation Flow Geosynthetics Interface shear

  5. Detachment Energies of Spheroidal Particles from Fluid-Fluid Interfaces

    E-Print Network [OSTI]

    Gary B. Davies; Timm Krüger; Peter V. Coveney; Jens Harting

    2014-10-28T23:59:59.000Z

    The energy required to detach a single particle from a fluid-fluid interface is an important parameter for designing certain soft materials, for example, emulsions stabilised by colloidal particles, colloidosomes designed for targeted drug delivery, and bio-sensors composed of magnetic particles adsorbed at interfaces. For a fixed particle volume, prolate and oblate spheroids attach more strongly to interfaces because they have larger particle-interface areas. Calculating the detachment energy of spheroids necessitates the difficult measurement of particle-liquid surface tensions, in contrast with spheres, where the contact angle suffices. We develop a simplified detachment energy model for spheroids which depends only on the particle aspect ratio and the height of the particle centre of mass above the fluid-fluid interface. We use lattice Boltzmann simulations to validate the model and provide quantitative evidence that the approach can be applied to simulate particle-stabilized emulsions, and highlight the experimental implications of this validation.

  6. Human-computer interface including haptically controlled interactions

    DOE Patents [OSTI]

    Anderson, Thomas G.

    2005-10-11T23:59:59.000Z

    The present invention provides a method of human-computer interfacing that provides haptic feedback to control interface interactions such as scrolling or zooming within an application. Haptic feedback in the present method allows the user more intuitive control of the interface interactions, and allows the user's visual focus to remain on the application. The method comprises providing a control domain within which the user can control interactions. For example, a haptic boundary can be provided corresponding to scrollable or scalable portions of the application domain. The user can position a cursor near such a boundary, feeling its presence haptically (reducing the requirement for visual attention for control of scrolling of the display). The user can then apply force relative to the boundary, causing the interface to scroll the domain. The rate of scrolling can be related to the magnitude of applied force, providing the user with additional intuitive, non-visual control of scrolling.

  7. Control and ultrasonic actuation of a gas-liquid interface in a microfluidic chip

    E-Print Network [OSTI]

    Jie Xu; Daniel Attinger

    2009-12-15T23:59:59.000Z

    This article describes the design and manufacturing of a microfluidic chip, allowing for the actuation of a gas-liquid interface and of the neighboring fluid. A first way to control the interface motion is to apply a pressure difference across it. In this case, the efficiency of three different micro-geometries at anchoring the interface is compared. Also, the critical pressures needed to move the interface are measured and compared to theoretical result. A second way to control the interface motion is by ultrasonic excitation. When the excitation is weak, the interface exhibits traveling waves, which follow a dispersion equation. At stronger ultrasonic levels, standing waves appear on the interface, with frequencies that are half integer multiple of the excitation frequency. An associated microstreaming flow field observed in the vicinity of the interface is characterized. The meniscus and associated streaming flow have the potential to transport particles and mix reagents.

  8. Interfaces Module March 28, 2013

    E-Print Network [OSTI]

    Rhoads, James

    the design solution for the physical interface o Kind of like a ConOps to the IRD · Explicitly identify

  9. Standard interface file handbook

    SciTech Connect (OSTI)

    Shapiro, A.; Huria, H.C. (Cincinnati Univ., OH (United States))

    1992-10-01T23:59:59.000Z

    This handbook documents many of the standard interface file formats that have been adopted by the US Department of Energy to facilitate communications between and portability of, various large reactor physics and radiation transport software packages. The emphasis is on those files needed for use of the VENTURE/PC diffusion-depletion code system. File structures, contents and some practical advice on use of the various files are provided.

  10. Virtual button interface

    DOE Patents [OSTI]

    Jones, Jake S. (Albuquerque, NM)

    1999-01-01T23:59:59.000Z

    An apparatus and method of issuing commands to a computer by a user interfacing with a virtual reality environment. To issue a command, the user directs gaze at a virtual button within the virtual reality environment, causing a perceptible change in the virtual button, which then sends a command corresponding to the virtual button to the computer, optionally after a confirming action is performed by the user, such as depressing a thumb switch.

  11. Virtual button interface

    DOE Patents [OSTI]

    Jones, J.S.

    1999-01-12T23:59:59.000Z

    An apparatus and method of issuing commands to a computer by a user interfacing with a virtual reality environment are disclosed. To issue a command, the user directs gaze at a virtual button within the virtual reality environment, causing a perceptible change in the virtual button, which then sends a command corresponding to the virtual button to the computer, optionally after a confirming action is performed by the user, such as depressing a thumb switch. 4 figs.

  12. Novel Nanostructured Interface Solution for Automotive Thermoelectric...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nanostructured Interface Solution for Automotive Thermoelectric Modules Application Novel Nanostructured Interface Solution for Automotive Thermoelectric Modules Application...

  13. Web Browser Interface (WBUI)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsing Maps1DOETHE FUTUREBrowser Interface (WBUI)

  14. Web Service Interface (API)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsing Maps1DOETHE FUTUREBrowser Interface

  15. Laparoscopic simulation interface

    DOE Patents [OSTI]

    Rosenberg, Louis B.

    2006-04-04T23:59:59.000Z

    A method and apparatus for providing high bandwidth and low noise mechanical input and output for computer systems. A gimbal mechanism provides two revolute degrees of freedom to an object about two axes of rotation. A linear axis member is coupled to the gimbal mechanism at the intersection of the two axes of rotation. The linear axis member is capable of being translated along a third axis to provide a third degree of freedom. The user object is coupled to the linear axis member and is thus translatable along the third axis so that the object can be moved along all three degrees of freedom. Transducers associated with the provided degrees of freedom include sensors and actuators and provide an electromechanical interface between the object and a digital processing system. Capstan drive mechanisms transmit forces between the transducers and the object. The linear axis member can also be rotated about its lengthwise axis to provide a fourth degree of freedom, and, optionally, a floating gimbal mechanism is coupled to the linear axis member to provide fifth and sixth degrees of freedom to an object. Transducer sensors are associated with the fourth, fifth, and sixth degrees of freedom. The interface is well suited for simulations of medical procedures and simulations in which an object such as a stylus or a joystick is moved and manipulated by the user.

  16. A Pedagogical Interface for Authoring Adaptive e-Learning Courses

    E-Print Network [OSTI]

    Lau, W. H. Nynson

    to support adaptive e-learning course authoring for different types of students. They require teachers with its learning style type. When delivering a course, predefined rules and conditions are appliedA Pedagogical Interface for Authoring Adaptive e-Learning Courses Christopher Watson1 Frederick W

  17. Materials and interfaces for catalysis, separation, storage, and environmental applications

    E-Print Network [OSTI]

    Li, Mo

    Materials and interfaces for catalysis, separation, storage, and environmental applications collaborative effort in cutting-edge fundamental and applied research to discover and develop polymeric' problems such as inexpensive CO2 capture, energy-efficient and high-performance catalysis and separations

  18. Warping to Enhance 3D User Interfaces Bruce H. Thomas

    E-Print Network [OSTI]

    Thomas, Bruce

    animation to the interface itself--to enhance or augment the effectiveness of human interaction applied to an object, and the animation effects may augment visual cues for constraints. For virtual Cartoon animation techniques have previously been used to enhance the illusion of direct manipulation in 2

  19. Atomic and Electronic Structure of Polar Oxide Interfaces

    SciTech Connect (OSTI)

    Gajdardziska-Josifovska, Marija [University of Wisconsin Milwaukee] [University of Wisconsin Milwaukee

    2014-01-17T23:59:59.000Z

    In this project we developed fundamental understanding of atomic and electronic mechanisms for stabilization of polar oxide interfaces. An integrated experimental and theoretical methodology was used to develop knowledge on this important new class of ionic materials with limited dimensionality, with implications for multiple branches of the basic and applied energy sciences.

  20. Human-computer interface

    DOE Patents [OSTI]

    Anderson, Thomas G.

    2004-12-21T23:59:59.000Z

    The present invention provides a method of human-computer interfacing. Force feedback allows intuitive navigation and control near a boundary between regions in a computer-represented space. For example, the method allows a user to interact with a virtual craft, then push through the windshield of the craft to interact with the virtual world surrounding the craft. As another example, the method allows a user to feel transitions between different control domains of a computer representation of a space. The method can provide for force feedback that increases as a user's locus of interaction moves near a boundary, then perceptibly changes (e.g., abruptly drops or changes direction) when the boundary is traversed.

  1. Charge transfer kinetics at the solid–solid interface in porous electrodes

    E-Print Network [OSTI]

    Bai, Peng

    Interfacial charge transfer is widely assumed to obey the Butler–Volmer kinetics. For certain liquid–solid interfaces, the Marcus–Hush–Chidsey theory is more accurate and predictive, but it has not been applied to porous ...

  2. Surface and Interface Control on Photochemically Initiated Immobilizat...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Interface Control on Photochemically Initiated Immobilization . Surface and Interface Control on Photochemically Initiated Immobilization . Abstract: Surface and interface...

  3. Micro-engineered cathode interface studies

    SciTech Connect (OSTI)

    Doshi, R.; Kueper, T.; Nagy, Z.; Krumpelt, M.

    1997-08-01T23:59:59.000Z

    The aim of this work is to increase the performance of the cathode in solid oxide fuel cells (SOFCs) operating at 1,000 C by decreasing the polarization resistance from 0.2 {Omega}-cm{sup 2} at 300 mA/cm{sup 2}. Decreased polarization resistance will allow operation at higher current densities. This work is in support of the Westinghouse tubular SOFC technology using YSZ electrolyte and strontium doped lanthanum manganite (LSM) cathode. As a result of work performed last year at Argonne National Laboratory and information derived from the literature, the limitations at the cathode/electrolyte interface can be classified into two main areas. First, the ionic conductivity of the LSM cathode material is low which limits the reaction zone to an area very close to the interface, while the rest of the cathode thickness acts essentially as current collector with channels for gas access. Second, the electronic conductivity in YSZ is very low which limits the reaction zone to areas that are the boundaries between LSM and YSZ rather than the YSZ surface away from LSM at the interface. Possible solutions to this problem being pursued are: (1) introducing an ionic conducting YSZ phase in LSM to form a porous two-phase mixture of LSM and YSZ; (2) applying a thin interlayer between the electrolyte and the cathode where the interlayer has high ionic and electronic conductivity and high catalytic activity for reduction of O{sub 2}; (3) increasing the ionic conductivity in the LSM by suitable doping; and (4) increasing the electronic conductivity in the electrolyte by doping or by depositing an appropriate mixed conducting layer on the YSZ before applying the cathode.

  4. Films of bacteria at interfaces: three stages of behaviour

    E-Print Network [OSTI]

    Liana Vaccari; Daniel Allan; Nima Sharifi-Mood; Aayush Singh; Robert Leheny; Kathleen Stebe

    2015-03-25T23:59:59.000Z

    Bacterial attachment to a fluid interface can lead to the formation of a film with physicochemical properties that evolve with time. We study the time evolution of interface (micro)mechanics for interfaces between oil and bacterial suspensions by following the motion of colloidal probes trapped by capillarity to determine the interface microrheology. Initially, active bacteria at and near the interface drive superdiffusive motion of the colloidal probes. Over timescales of minutes, the bacteria form a viscoelastic film which we discuss as a quasi-two-dimensional, active, glassy system. To study late stage mechanics of the film, we use pendant drop elastometry. The films, grown over tens of hours on oil drops, are expanded and compressed by changing the drop volume. For small strains, by modeling the films as 2D Hookean solids, we estimate the film elastic moduli, finding values similar to those reported in the literature for the bacteria themselves. For large strains, the films are highly hysteretic. Finally, from wrinkles formed on highly compressed drops, we estimate film bending energies. The dramatic restructuring of the interface by such robust films has broad implications, e.g. in the study of active colloids, in understanding the community dynamics of bacteria, and in applied settings including bioremediation.

  5. CollageMachine: Model of ``Interface Ecology''

    E-Print Network [OSTI]

    Mohri, Mehryar

    CollageMachine: Model of ``Interface Ecology'' By Andruid Kerne dissertation submitted partial addresses browsing creatively, been co­developed with the metadisciplinary framework interface ecology, in addition inside them, open process without definite bounds. a metadiscipline, interface ecology brings

  6. Novel fluctuations at constrained interfaces

    E-Print Network [OSTI]

    Abhishek Chaudhuri

    2006-01-25T23:59:59.000Z

    In this study we try to answer the qustion : What happens when explicit constraints are introduced such that the low energy, long wavelength modes of a system are unavailable ? This question has assumed some importance in recent years due to the advent of nano technology and the growing use of nanometer scale devices and structures. In a small system, the size limits the scale of the fluctuations and makes it imperative for us to understand how the response of the system is altered in such a situation. In this thesis, this question is answered for the special case of interfacial fluctuations in two dimensions (2d). The energy of an interface between two phases in equilibrium is invariant with respect to translations perpendicular to the plane (or line in 2d) of the interface. We study the consequence of breaking this symmetry explicity using an external field gradient. One expects that since low energy excitations are suppressed, the interface would be flat and inert at all times. We show that surprisingly there are novel fluctuations and phenomena associated with such constrained interfaces which have static as well as dynamic consequences. The Ising interface on a square lattice is shown to undergo a multitude of structural transitions as a function of velocity and the orientation. Liquid solid interfaces show coherent addition and removal of atomic layers providing novel mechanisms of stress relaxation in a nanosized single crystal without defects. We study momentum and energy transfer across the liquid solid interface in the presence of this ``layering'' transition.

  7. Interfacing to the Programmer's Apprentice

    E-Print Network [OSTI]

    Pitman, Kent

    In this paper, we discuss the design of a user interface to the Knowledge Based Editor (KBE), a prototype implementation of the Programmer's Apprentice. Although internally quite sophisticated, the KBE hides most of its ...

  8. General Relativity at an interface

    E-Print Network [OSTI]

    Juan G. Diaz Ochoa

    2006-08-19T23:59:59.000Z

    In this work a simple toy model for a free interface between bulk phases in space and time is presented, derived from the balance equations for extensive thermodynamic variables of Meinhold-Heerlein. In this case the free interface represents geodesics in the space-time, allowing the derivation of the Einstein's equations for gravitational fields. The effect of the balance equation is examined and a simple expression for cold dark matter is derived. The thermodynamically meaning of this model is also discussed.

  9. HOUSING GUARANTEE Apply Online

    E-Print Network [OSTI]

    Mease, Kenneth D.

    THE UCI HOUSING GUARANTEE Apply Online 1 Log in to your MyAdmission account via the tab of Admission fee. 3 Complete the Online Housing Application and pay the $20 non-refundable fee. Freshmen apply for the residence halls. Transfer students apply for Arroyo Vista theme houses and on-campus apartments. Students 25

  10. Hybrid user interfaces : design guidelines and implementation examples

    E-Print Network [OSTI]

    Ahn, Sehyun

    2006-01-01T23:59:59.000Z

    A hybrid user interface is a new type of computer user interface that achieves high usability by combining features of graphical user interfaces and command line interfaces. The main goal of a hybrid user interface is to ...

  11. Human-system Interfaces for Automatic Systems

    SciTech Connect (OSTI)

    OHara, J.M.; Higgins,J. (BNL); Fleger, S.; Barnes V. (NRC)

    2010-11-07T23:59:59.000Z

    Automation is ubiquitous in modern complex systems, and commercial nuclear- power plants are no exception. Automation is applied to a wide range of functions including monitoring and detection, situation assessment, response planning, and response implementation. Automation has become a 'team player' supporting personnel in nearly all aspects of system operation. In light of its increasing use and importance in new- and future-plants, guidance is needed to conduct safety reviews of the operator's interface with automation. The objective of this research was to develop such guidance. We first characterized the important HFE aspects of automation, including six dimensions: levels, functions, processes, modes, flexibility, and reliability. Next, we reviewed literature on the effects of all of these aspects of automation on human performance, and on the design of human-system interfaces (HSIs). Then, we used this technical basis established from the literature to identify general principles for human-automation interaction and to develop review guidelines. The guidelines consist of the following seven topics: automation displays, interaction and control, automation modes, automation levels, adaptive automation, error tolerance and failure management, and HSI integration. In addition, our study identified several topics for additional research.

  12. Applying Semantic Web Technologies to Knowledge Sharing in Aerospace Engineering

    E-Print Network [OSTI]

    Ciravegna, Fabio

    Applying Semantic Web Technologies to Knowledge Sharing in Aerospace Engineering A.-S. Dadzie , R. This paper details an integrated methodology to optimise Knowledge reuse and sharing, illustrated with a use of Knowledge from legacy documents via automated means, or directly in systems interfacing with Knowledge

  13. PinBus Interface Design

    SciTech Connect (OSTI)

    Hammerstrom, Donald J.; Adgerson, Jewel D.; Sastry, Chellury; Pratt, Richard M.; Pratt, Robert G.

    2009-12-30T23:59:59.000Z

    On behalf of the U.S. Department of Energy, PNNL has explored and expanded upon a simple control interface that might have merit for the inexpensive communication of smart grid operational objectives (demand response, for example) to small electric end-use devices and appliances. The approach relies on bi-directional communication via the electrical voltage states of from one to eight shared interconnection pins. The name PinBus has been suggested and adopted for the proposed interface protocol. The protocol is defined through the presentation of state diagrams and the pins’ functional definitions. Both simulations and laboratory demonstrations are being conducted to demonstrate the elegance and power of the suggested approach. PinBus supports a very high degree of interoperability across its interfaces, allowing innumerable pairings of devices and communication protocols and supporting the practice of practically any smart grid use case.

  14. Multi-robot control interface

    DOE Patents [OSTI]

    Bruemmer, David J. (Idaho Falls, ID); Walton, Miles C. (Idaho Falls, ID)

    2011-12-06T23:59:59.000Z

    Methods and systems for controlling a plurality of robots through a single user interface include at least one robot display window for each of the plurality of robots with the at least one robot display window illustrating one or more conditions of a respective one of the plurality of robots. The user interface further includes at least one robot control window for each of the plurality of robots with the at least one robot control window configured to receive one or more commands for sending to the respective one of the plurality of robots. The user interface further includes a multi-robot common window comprised of information received from each of the plurality of robots.

  15. Applied Computer Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science and Innovation Computing CCS Division CCS-7 Applied Computer Science Innovative co-design of applications, algorithms, and architectures in order to enable...

  16. Apply early! Limited enrollment.

    E-Print Network [OSTI]

    volcano. Experience the culture and history of Hawaii, and the impact of human activitiesApply early! Limited enrollment. Environmental Science in the Hawaiian Islands Observe, research

  17. Fluorescent fluid interface position sensor

    DOE Patents [OSTI]

    Weiss, Jonathan D.

    2004-02-17T23:59:59.000Z

    A new fluid interface position sensor has been developed, which is capable of optically determining the location of an interface between an upper fluid and a lower fluid, the upper fluid having a larger refractive index than a lower fluid. The sensor functions by measurement, of fluorescence excited by an optical pump beam which is confined within a fluorescent waveguide where that waveguide is in optical contact with the lower fluid, but escapes from the fluorescent waveguide where that waveguide is in optical contact with the upper fluid.

  18. Technique for converting non-conforming hexahedral-to-hexahedral interfaces into conforming interfaces

    DOE Patents [OSTI]

    Staten, Matthew L.; Shepherd, Jason F.; Ledoux, Frank; Shimada, Kenji; Merkley, Karl G.; Carbonera, Carlos

    2013-03-05T23:59:59.000Z

    A technique for conforming an interface between a first mesh and a second mesh is disclosed. A first interface surface in the first mesh and a second interface surface in the second mesh residing along the interface are identified. The first and second interface surfaces are initially non-conforming along the interface. Chords within the first and second interface surfaces that fall within a threshold separation distance of each other are paired. Sheets having chords that reside within the first or second interface surfaces are recursively inserted into or extracted from one or both of the first and second meshes until all remaining chords within the first interface surface are paired with corresponding chords in the second interface surface and all remaining chords within the second interface surface are paired with corresponding chords in the first interface surface.

  19. Interface Compilation: Steps toward Compiling Program Interfaces as Languages

    E-Print Network [OSTI]

    Engler, Dawson

    systems, programmers are limited to writing code, while the power to transform the code has been reserved Magik gives to programmers enables a broad class of optimization and code transformations. This paper's data structures and internally), operations on this state (defined by the interface's procedures

  20. INTRODUCTION APPLIED GEOPHYSICS

    E-Print Network [OSTI]

    Merriam, James

    GEOL 384.3 INTRODUCTION TO APPLIED GEOPHYSICS OUTLINE INTRODUCTION TO APPLIED GEOPHYSICS GEOL 384 unknowns; the ones we don't know we don't know. And if one looks throughout the history of geophysics he didn't really say geophysics. He said, " ... our country and other free countries ...". But I am

  1. Simulation of the degradation of a concrete/clay interface: influence of temperature, unsaturated conditions and porosity variations

    E-Print Network [OSTI]

    Burnol, A.; Dupros, F.; Spycher, N.; Xu, T.; Gaucher, E.C.

    2008-01-01T23:59:59.000Z

    SIMULATION OF THE DEGRADATION OF A CONCRETE/CLAY INTERFACE:transport models applied to degradation of a concrete/clayused by the simulation of degradation of the concrete/clay

  2. Molecular dynamics simulation of complex molecules at interfaces: dendritic surfactants in clay and amyloid peptides near lipid bilayers

    E-Print Network [OSTI]

    Han, Kunwoo

    2009-06-02T23:59:59.000Z

    We apply a molecular dynamics (MD) simulation technique to complex molecules at interfaces. Partitioning of dendritic surfactants into clay gallery and Ab protein behavior near hydrated lipids are chosen for the purpose. Using a full atomistic model...

  3. Kuali Financial System Implementation Collector Interface Meeting

    E-Print Network [OSTI]

    Stephens, Graeme L.

    Kuali Financial System Implementation Collector Interface Meeting December 17, 2008 Presenters of the Kuali Financial System (KFS) Collector Interface Format Differences from FRS Answer your questions #12 Collector File collector

  4. Advanced Power Electronic Interfaces for Distributed

    E-Print Network [OSTI]

    Advanced Power Electronic Interfaces for Distributed Energy Systems Part 2: Modeling, Development Electronic Interfaces for Distributed Energy Systems Part 2: Modeling, Development, and Experimental, and Experimental Evaluation of Advanced Control Functions for Single-Phase Utility-Connected Inverter S

  5. Essays in applied microeconomics

    E-Print Network [OSTI]

    Aron-Dine, Aviva

    2012-01-01T23:59:59.000Z

    This dissertation consists of three chapters on topics in applied microeconomics. In the first chapter. I investigate whether voters are more likely to support additional spending on local public services when they perceive ...

  6. Engineering and Applied

    E-Print Network [OSTI]

    Stowell, Michael

    > Computer Science > Electrical, Computer, and Energy Engineering > Mechanical Engineering 11, Computational Science and Engineering, Energy Systems and Environmental Sustainability, Materials ScienceCollege of Engineering and Applied Science Contact Robert H. Davis, Engineering Dean 303

  7. Applying for Research Awards

    E-Print Network [OSTI]

    ... 53.22 KB APPLYING FOR RESEARCH AWARDS The Eastern Bird Banding Association seeks applicants for its annual $500 research awards in aid of research using banding techniques or bird banding data. ...

  8. Atomistic modeling of dislocation-interface interactions

    SciTech Connect (OSTI)

    Wang, Jian [Los Alamos National Laboratory; Valone, Steven M [Los Alamos National Laboratory; Beyerlein, Irene J [Los Alamos National Laboratory; Misra, Amit [Los Alamos National Laboratory; Germann, T. C. [Los Alamos National Laboratory

    2011-01-31T23:59:59.000Z

    Using atomic scale models and interface defect theory, we first classify interface structures into a few types with respect to geometrical factors, then study the interfacial shear response and further simulate the dislocation-interface interactions using molecular dynamics. The results show that the atomic scale structural characteristics of both heterophases and homophases interfaces play a crucial role in (i) their mechanical responses and (ii) the ability of incoming lattice dislocations to transmit across them.

  9. Compacted Soil Liner Interface Strength Importance

    E-Print Network [OSTI]

    Case Study Compacted Soil Liner Interface Strength Importance Timothy D. Stark, F.ASCE1 ; Hangseok interface is not the geomembrane (GM)/compacted low-permeability soil liner (LPSL) but a soil­soil interface placing the cover soil from bottom to top. DOI: 10.1061/(ASCE)GT.1943-5606 .0000556. © 2012 American

  10. Web Interfaces 1 Python Scripts in Browsers

    E-Print Network [OSTI]

    Verschelde, Jan

    Web Interfaces 1 Python Scripts in Browsers the web server Apache processing forms with Python scripts Python code to write HTML 2 Web Interfaces for the Determinant dynamic interactive forms passing, 28 October 2013 Scientific Software (MCS 507 L-27) web interfaces 28 October 2013 1 / 42 #12;Web

  11. Adaptive Brain-Computer Interface Passive brain-computer interfaces are designed to use

    E-Print Network [OSTI]

    Boetticher, Gary D.

    Adaptive Brain-Computer Interface Abstract Passive brain-computer interfaces are designed to use brain activity as an additional input, allowing the adaptation of the interface in real time according to the user's mental state. While most current brain computer interface research (BCI) is designed for direct

  12. Heat transfer in soft nanoscale interfaces: the influence of interface curvature

    E-Print Network [OSTI]

    Kjelstrup, Signe

    Heat transfer in soft nanoscale interfaces: the influence of interface curvature Anders Lervik transient non-equilibrium molecular-dynamics simulations, heat-transfer through nanometer-scale interfaces processes. We show that the modeling of heat transfer across a nanodroplet/fluid interface requires

  13. Water Dynamics at Rough Interfaces

    E-Print Network [OSTI]

    Markus Rosenstihl; Kerstin Kämpf; Felix Klameth; Matthias Sattig; Michael Vogel

    2014-07-21T23:59:59.000Z

    We use molecular dynamics computer simulations and nuclear magnetic resonance experiments to investigate the dynamics of water at interfaces of molecular roughness and low mobility. We find that, when approaching such interfaces, the structural relaxation of water, i.e., the $\\alpha$ process, slows down even when specific attractive interactions are absent. This prominent effect is accompanied by a smooth transition from Vogel to Arrhenius temperature dependence and by a growing importance of jump events. Consistently, at protein surfaces, deviations from Arrhenius behavior are weak when free water does not exist. Furthermore, in nanoporous silica, a dynamic crossover of liquid water occurs when a fraction of solid water forms near 225 K and, hence, the liquid dynamics changes from bulk-like to interface-dominated. At sufficiently low temperatures, water exhibits a quasi-universal $\\beta$ process, which is characterized by an activation energy of $E_a\\!=\\!0.5$ eV and involves anisotropic reorientation about large angles. As a consequence of its large amplitude, the faster $\\beta$ process destroys essentially all orientational correlation, rendering observation of a possible slower $\\alpha$ process difficult in standard experiments. Nevertheless, we find indications for the existence of structural relaxation down to a glass transition of interfacial water near 185 K. Hydrated proteins show a highly restricted backbone motion with an amplitude, which decreases upon cooling and vanishes at comparable temperatures, providing evidence for a high relevance of water rearrangements in the hydration shell for secondary protein relaxations.

  14. Information Science, Computing, Applied Math

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science, Computing, Applied Math science-innovationassetsimagesicon-science.jpg Information Science, Computing, Applied Math National security depends on science and...

  15. Plastic flow in solids with interfaces

    E-Print Network [OSTI]

    Anurag Gupta; David Steigmann

    2011-11-25T23:59:59.000Z

    A non-equilibrium theory of isothermal and diffusionless evolution of incoherent interfaces within a plastically deforming solid is developed. The irreversible dynamics of the interface are driven by its normal motion, incoherency (slip and misorientation), and an intrinsic plastic flow; and purely by plastic deformation in the bulk away from the interface. Using the continuum theory for defect distribution (in bulk and over the interface) we formulate a general kinematical framework, derive relevant balance laws and jump conditions, and prescribe a thermodynamically consistent constitutive/kinetic structure for interface evolution.

  16. Shunt attachment and method for interfacing current collection systems

    DOE Patents [OSTI]

    Denney, P.E.; Iyer, N.C.; Hannan, W.F. III.

    1992-12-08T23:59:59.000Z

    A composite brush to shunt attachment wherein a volatile component of a composite but mostly metallic brush, used for current collection purposes, does not upon welding or brazing, adversely affect the formation of the interfacial bond with a conductive shunt which carries the current from the zone of the brush. The brush to shunt attachment for a brush material of copper-graphite composite and a shunt of copper, or substituting silver for copper as an alternative, is made through a hot isostatic pressing (HIP). The HIP process includes applying high pressure and temperature simultaneously at the brush to shunt interface, after it has been isolated or canned in a metal casing in which the air adjacent to the interface has been evacuated and the interfacial area has been sealed before the application of pressure and temperature. 6 figs.

  17. Shunt attachment and method for interfacing current collection systems

    DOE Patents [OSTI]

    Denney, Paul E. (State College, PA); Iyer, Natraj C. (Columbia, SC); Hannan, III, William F. (Monroeville Boro, PA)

    1992-01-01T23:59:59.000Z

    A composite brush to shunt attachment wherein a volatile component of a composite but mostly metallic brush, used for current collection purposes, does not upon welding or brazing, adversely affect the formation of the interfacial bond with a conductive shunt which carries the current from the zone of the brush. The brush to shunt attachment for a brush material of copper-graphite composite and a shunt of copper, or substituting silver for copper as an alternative, is made through a hot isostatic pressing (HIP). The HIP process includes applying high pressure and temperature simultaneously at the brush to shunt interface, after it has been isolated or canned in a metal casing in which the air adjacent to the interface has been evacuated and the interfacial area has been sealed before the application of pressure and temperature.

  18. Band gap engineering at a semiconductor - crystalline oxide interface

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Moghadam, Jahangir-Moghadam; Shen, Xuan; Chrysler, Matthew; Ahmadi-Majlan, Kamyar; Su, Dong; Ngai, Joseph H.

    2015-03-01T23:59:59.000Z

    The epitaxial growth of crystalline oxides on semiconductors provides a pathway to introduce new functionalities to semiconductor devices. Key to integrating the functionalities of oxides onto semiconductors is controlling the band alignment at interfaces between the two materials. Here we apply principles of band gap engineering traditionally used at heterojunctions between conventional semiconductors to control the band offset between a single crystalline oxide and a semiconductor. Reactive molecular beam epitaxy is used to realize atomically abrupt and structurally coherent interfaces between SrZrxTi1-xO? and Ge, in which the band gap of the former is enhanced with Zr content x. We presentmore »structural and electrical characterization of SrZrxTi1-xO?-Ge heterojunctions and demonstrate a type-I band offset can be achieved. These results demonstrate that band gap engineering can be exploited to realize functional semiconductor crystalline oxide heterojunctions.« less

  19. Curved and diffuse interface effects on the nuclear surface tension

    E-Print Network [OSTI]

    V. M. Kolomietz; S. V. Lukyanov; A. I. Sanzhur

    2012-01-30T23:59:59.000Z

    We redefine the surface tension coefficient for a nuclear Fermi-liquid drop with a finite diffuse layer. Following Gibbs-Tolman concept, we introduce the equimolar radius R_e of sharp surface droplet at which the surface tension is applied and the radius of tension surface R_s which provides the minimum of the surface tension coefficient \\sigma. This procedure allows us to derive both the surface tension and the corresponding curvature correction (Tolman length) correctly for the curved and diffuse interface. We point out that the curvature correction depends significantly on the finite diffuse interface. This fact is missed in traditional nuclear considerations of curvature correction to the surface tension. We show that Tolman's length \\xi is negative for nuclear Fermi-liquid drop. The value of the Tolman length is only slightly sensitive to the Skyrme force parametrization and equals \\xi=-0.36 fm.

  20. SUSTAINABILITY WHO CAN APPLY

    E-Print Network [OSTI]

    FUNDED BY CALL FOR SUSTAINABILITY RESEARCH STUDENT WHO CAN APPLY Undergraduate and graduate Participate in the Global Change & Sustainability Center's Research Symposium; attend workshops with faculty or publish in the U's student-run sustainability publication to be released in May 2014. Are you conducting

  1. Applied Microbiology and Biotechnology

    E-Print Network [OSTI]

    Alvarez-Cohen, Lisa

    1 23 Applied Microbiology and Biotechnology ISSN 0175-7598 Appl Microbiol Biotechnol DOI 10.1007/s-Cohen #12;1 23 Your article is protected by copyright and all rights are held exclusively by Springer in electronic repositories. If you wish to self-archive your article, please use the accepted manuscript version

  2. Tension applied through the Dam1 complex promotes microtubule elongation: a direct mechanism for length control in

    E-Print Network [OSTI]

    Davis, Trisha N.

    Tension applied through the Dam1 complex promotes microtubule elongation: a direct mechanism tension to a model of the kinetochore-microtubule interface composed of the yeast Dam1 complex11-13 bound

  3. High Performance Thermal Interface Technology Overview

    E-Print Network [OSTI]

    R. Linderman; T. Brunschwiler; B. Smith; B. Michel

    2008-01-07T23:59:59.000Z

    An overview on recent developments in thermal interfaces is given with a focus on a novel thermal interface technology that allows the formation of 2-3 times thinner bondlines with strongly improved thermal properties at lower assembly pressures. This is achieved using nested hierarchical surface channels to control the particle stacking with highly particle-filled materials. Reliability testing with thermal cycling has also demonstrated a decrease in thermal resistance after extended times with longer overall lifetime compared to a flat interface.

  4. Flexible feature interface for multimedia sources

    DOE Patents [OSTI]

    Coffland, Douglas R. (Livermore, CA)

    2009-06-09T23:59:59.000Z

    A flexible feature interface for multimedia sources system that includes a single interface for the addition of features and functions to multimedia sources and for accessing those features and functions from remote hosts. The interface utilizes the export statement: export "C" D11Export void FunctionName(int argc, char ** argv,char * result, SecureSession *ctrl) or the binary equivalent of the export statement.

  5. Moment of Fluid Interface Reconstruction with Filaments

    SciTech Connect (OSTI)

    Jemison, Matthew B. [Los Alamos National Laboratory

    2012-08-15T23:59:59.000Z

    A moving system made up of multiple fluids (e.g. air and water) may be defined by an evolving interface with a changing topology. MOF uses a piecewise linear interface reconstruction to numerically model deforming boundaries. Given a volume fraction V and reference centroid x for a material in cell {Omega}, we seek to find an interface {Gamma} that exactly captures V and minimizes error in x. This differs from Volume of Fluid methods.

  6. FY 1990 Applied Sciences Branch annual report

    SciTech Connect (OSTI)

    Keyes, B.M.; Dippo, P.C. [eds.

    1991-11-01T23:59:59.000Z

    The Applied Sciences Branch actively supports the advancement of DOE/SERI goals for the development and implementation of the solar photovoltaic technology. The primary focus of the laboratories is to provide state-of-the-art analytical capabilities for materials and device characterization and fabrication. The branch houses a comprehensive facility which is capable of providing information on the full range of photovoltaic components. A major objective of the branch is to aggressively pursue collaborative research with other government laboratories, universities, and industrial firms for the advancement of photovoltaic technologies. Members of the branch disseminate research findings to the technical community in publications and presentations. This report contains information on surface and interface analysis, materials characterization, development, electro-optical characterization module testing and performance, surface interactions and FTIR spectroscopy.

  7. Elastic Wave Behavior Across Linear Slip Interfaces

    E-Print Network [OSTI]

    Schoenberg, M.

    plane waves incident at arbitrary angles upon a plane linear slip interface are computed ... Also included in these sections is an analysis ... ish, Ut is of the form.

  8. Contested Material Interface Shows Mixing | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    EMSL, scientists from the Pacific Northwest National Laboratory and University College London have shown that intermixing occurs at the interface of two perovskites - lanthanum...

  9. Applied ALARA techniques

    SciTech Connect (OSTI)

    Waggoner, L.O.

    1998-02-05T23:59:59.000Z

    The presentation focuses on some of the time-proven and new technologies being used to accomplish radiological work. These techniques can be applied at nuclear facilities to reduce radiation doses and protect the environment. The last reactor plants and processing facilities were shutdown and Hanford was given a new mission to put the facilities in a safe condition, decontaminate, and prepare them for decommissioning. The skills that were necessary to operate these facilities were different than the skills needed today to clean up Hanford. Workers were not familiar with many of the tools, equipment, and materials needed to accomplish:the new mission, which includes clean up of contaminated areas in and around all the facilities, recovery of reactor fuel from spent fuel pools, and the removal of millions of gallons of highly radioactive waste from 177 underground tanks. In addition, this work has to be done with a reduced number of workers and a smaller budget. At Hanford, facilities contain a myriad of radioactive isotopes that are 2048 located inside plant systems, underground tanks, and the soil. As cleanup work at Hanford began, it became obvious early that in order to get workers to apply ALARA and use hew tools and equipment to accomplish the radiological work it was necessary to plan the work in advance and get radiological control and/or ALARA committee personnel involved early in the planning process. Emphasis was placed on applying,ALARA techniques to reduce dose, limit contamination spread and minimize the amount of radioactive waste generated. Progress on the cleanup has,b6en steady and Hanford workers have learned to use different types of engineered controls and ALARA techniques to perform radiological work. The purpose of this presentation is to share the lessons learned on how Hanford is accomplishing radiological work.

  10. Tracking of Multiple Faces for Human-Computer Interfaces and Virtual Environments

    E-Print Network [OSTI]

    Beimel, Amos

    Tracking of Multiple Faces for Human-Computer Interfaces and Virtual Environments Fu Jie Huang present a tracking software library based on this algorithm. This library can be applied to human-computer based on statistical color modeling and the deformable template. We then expand the algorithm to track

  11. Trust Sensor Interface for Improving Reliability of EMG-based User Intent Recognition

    E-Print Network [OSTI]

    Sun, Yan Lindsay

    ) trust evaluation that dynamically evaluates the reliability of EMG sensors. Based on the output in disturbances. Each time when a disturbance is detected on an EMG sensor, the trust evaluation module is appliedTrust Sensor Interface for Improving Reliability of EMG-based User Intent Recognition Yuhong Liu

  12. Two--Phase Flow Problems in Porous Media for Sharp Interface Problems

    E-Print Network [OSTI]

    Cirpka, Olaf Arie

    . A control volume finite element method (CVFEM) is applied to the solution of the governing equations using hand by sharp interfaces between different fluids, such as these problems occur e.g. by DNAPL infiltration or saltwater intrusion. For the simulation of such processes, a two--dimensional model for two

  13. Message Passing Interface for Python 1 the Message Passing Interface (MPI)

    E-Print Network [OSTI]

    Verschelde, Jan

    Message Passing Interface for Python 1 the Message Passing Interface (MPI) MPI and MPI for Python, and gather processing numpy arrays 3 Probing for Messages nonblocking communications MCS 507 Lecture 38 L-38) MPI for Python 22 November 2013 1 / 37 #12;Message Passing Interface for Python 1 the Message

  14. The Toom Interface Via Coupling

    E-Print Network [OSTI]

    Nick Crawford; Wojciech de Roeck

    2015-01-20T23:59:59.000Z

    We consider a one dimensional interacting particle system which describes the effective interface dynamics of the two dimensional Toom model at low temperature and noise. We prove a number of basic properties of this model. First we consider the dynamics on a half open finite interval $[1, N)$, bounding the mixing time from above by $2N$. Then we consider the model defined on the integers. Due to infinite range interaction, this is a non-Feller process that we can define starting from product Bernoulli measures with density $p \\in (0, 1)$, but not from arbitrary measures. We show, under a modest technical condition, that the only possible invariant measures are those product Bernoulli measures. We further show that the unique stationary measure on $[-k, \\infty)$ converges weakly to a product Bernoulli measure on $\\Z$ as $k \\rightarrow \\infty$.

  15. Conduction at a ferroelectric interface

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Marshall, Matthew S. J.; Malashevich, Andrei; Disa, Ankit S.; Han, Myung-Guen; Chen, Hanghui; Zhu, Yimei; Ismail-Beigi, Sohrab; Walker, Frederick J.; Ahn, Charles H.

    2014-11-01T23:59:59.000Z

    Typical logic elements utilizing the field effect rely on the change in carrier concentration due to the field in the channel region of the device. Ferroelectric-field-effect devices provide a nonvolatile version of this effect due to the stable polarization order parameter in the ferroelectric. In this work, we describe an oxide/ oxide ferroelectric heterostructure device based on (001)-oriented PbZr??.?Ti?.?O?-LaNiO? where the dominant change in conductivity is a result of a significant mobility change in the interfacial channel region. The effect is confined to a few atomic layers at the interface and is reversible by switching the ferroelectric polarization. More interestingly,more »in one polarization state, the field effect induces a 1.7-eV shift of the interfacial bands to create a new conducting channel in the interfacial PbO layer of the ferroelectric.« less

  16. Conduction at a ferroelectric interface

    SciTech Connect (OSTI)

    Marshall, Matthew S. J. [Yale Univ., New Haven, CT (United States); Malashevich, Andrei [Yale Univ., New Haven, CT (United States); Disa, Ankit S. [Yale Univ., New Haven, CT (United States); Han, Myung-Guen [Brookhaven National Lab. (BNL), Upton, NY (United States); Chen, Hanghui [Yale Univ., New Haven, CT (United States); Zhu, Yimei [Brookhaven National Lab. (BNL), Upton, NY (United States); Ismail-Beigi, Sohrab [Yale Univ., New Haven, CT (United States); Walker, Frederick J. [Yale Univ., New Haven, CT (United States); Ahn, Charles H. [Yale Univ., New Haven, CT (United States);

    2014-11-01T23:59:59.000Z

    Typical logic elements utilizing the field effect rely on the change in carrier concentration due to the field in the channel region of the device. Ferroelectric-field-effect devices provide a nonvolatile version of this effect due to the stable polarization order parameter in the ferroelectric. In this work, we describe an oxide/ oxide ferroelectric heterostructure device based on (001)-oriented PbZr??.?Ti?.?O?-LaNiO? where the dominant change in conductivity is a result of a significant mobility change in the interfacial channel region. The effect is confined to a few atomic layers at the interface and is reversible by switching the ferroelectric polarization. More interestingly, in one polarization state, the field effect induces a 1.7-eV shift of the interfacial bands to create a new conducting channel in the interfacial PbO layer of the ferroelectric.

  17. Glass Transition, Cooperativity and Interfaces

    E-Print Network [OSTI]

    Salez, Thomas; Dalnoki-Veress, Kari; Raphaël, Elie; Forrest, James A

    2015-01-01T23:59:59.000Z

    We introduce a minimal theory of glass formation based on the physical ideas of molecular crowding and resultant cooperative motion, and address the effects of free interfaces on dynamics. First, we obtain a simple scaling expression for the diverging number of particles taking part in bulk cooperative relaxation as the system approaches kinetic arrest, and in doing so provide a robust derivation of the Adam and Gibbs description of cooperative dynamics. Then, by including thermal expansivity of the material, the Vogel-Fulcher-Tammann relation is derived. Moreover, we predict a temperature-dependent expression for the cooperative length $\\xi$ of bulk relaxation, and explore the influence of sample boundaries on the glassy dynamics when the system size becomes comparable to $\\xi$. The theory is in full agreement with measurements of the glass transition temperature of thin polystyrene films. This agreement comes with two adjustable parameters, the critical interparticle distance and the Vogel temperature. Alth...

  18. Interface dynamics for layered structures

    E-Print Network [OSTI]

    Takao Ohta; David Jasnow

    1997-07-17T23:59:59.000Z

    We investigate dynamics of large scale and slow deformations of layered structures. Starting from the respective model equations for a non-conserved system, a conserved system and a binary fluid, we derive the interface equations which are a coupled set of equations for deformations of the boundaries of each domain. A further reduction of the degrees of freedom is possible for a non-conserved system such that internal motion of each domain is adiabatically eliminated. The resulting equation of motion contains only the displacement of the center of gravity of domains, which is equivalent to the phase variable of a periodic structure. Thus our formulation automatically includes the phase dynamics of layered structures. In a conserved system and a binary fluid, however, the internal motion of domains turns out to be a slow variable in the long wavelength limit because of concentration conservation. Therefore a reduced description only involving the phase variable is not generally justified.

  19. Nanofluidics, from bulk to interfaces

    E-Print Network [OSTI]

    Lyderic Bocquet; Elisabeth Charlaix

    2009-09-03T23:59:59.000Z

    Nanofluidics has emerged recently in the footsteps of microfluidics, following the quest of scale reduction inherent to nanotechnologies. By definition, nanofluidics explores transport phenomena of fluids at the nanometer scales. Why is the nanometer scale specific ? What fluid properties are probed at nanometric scales ? In other words, why 'nanofluidics' deserves its own brand name ? In this critical review, we will explore the vast manifold of length scales emerging for the fluid behavior at the nanoscales, as well as the associated mechanisms and corresponding applications. We will in particular explore the interplay between bulk and interface phenomena. The limit of validity of the continuum approaches will be discussed, as well as the numerous surface induced effects occuring at these scales, from hydrodynamic slippage to the various electro-kinetic phenomena originating from the couplings between hydrodynamics and electrostatics. An enlightening analogy between ion transport in nanochannels and transport in doped semi-conductors will be discussed.

  20. A simple OASIS interface E. Maisonnave

    E-Print Network [OSTI]

    A simple OASIS interface for CESM E. Maisonnave TR/CMGC/11/63 #12;#12;Index Strategy............................................................................................. 7 Annex 1: OASIS3 interface implementation on CESM..................................... 9 Annex 2. Taking advantage of the IS-ENES OASIS Dedicated User Support program, a COSMO/CLM coupling framework has

  1. OASIS4 coupling interface implementation on ETHZ'

    E-Print Network [OSTI]

    OASIS4 coupling interface implementation on ETHZ' land-atmosphere coupled model E. Maisonnave WN 9 2010 at ETH, Zürich(Switzerland), I implement and validate an OASIS4 interface for a regional) and a land scheme (CLM, NCAR) model have been coupled with OASIS4, at low resolution on a MPP scalar machine

  2. Internal and Interface Shear Strength of

    E-Print Network [OSTI]

    Zornberg, Jorge G.

    1 Internal and Interface Shear Strength of Geosynthetic Clay Liners (GCLs): Additional Data by John Liners (GCLs): Additional Data Geosynthetic Clay Liners (GCLs) are prefabricated geocomposite materials., Zornberg, Jorge G., and Swan, Jr., Robert H. Internal and Interface Shear Strength of Geosynthetic Clay

  3. Model Checking User Interfaces Abigail Cauchi

    E-Print Network [OSTI]

    Pace, Gordon J.

    Model Checking User Interfaces Abigail Cauchi Dept of Computer Science University of Malta acau0004@um.edu.mt Gordon Pace Dept of Computer Science University of Malta gordon.pace@um.edu.mt Sandro Spina Dept of Computer Science University of Malta sandro.spina@um.edu.mt Abstract User interfaces

  4. Application of LBB to a nozzle-pipe interface

    SciTech Connect (OSTI)

    Yu, Y.J.; Sohn, G.H.; Kim, Y.J. [and others

    1997-04-01T23:59:59.000Z

    Typical LBB (Leak-Before-Break) analysis is performed for the highest stress location for each different type of material in the high energy pipe line. In most cases, the highest stress occurs at the nozzle and pipe interface location at the terminal end. The standard finite element analysis approach to calculate J-Integral values at the crack tip utilizes symmetry conditions when modeling near the nozzle as well as away from the nozzle region to minimize the model size and simplify the calculation of J-integral values at the crack tip. A factor of two is typically applied to the J-integral value to account for symmetric conditions. This simplified analysis can lead to conservative results especially for small diameter pipes where the asymmetry of the nozzle-pipe interface is ignored. The stiffness of the residual piping system and non-symmetries of geometry along with different material for the nozzle, safe end and pipe are usually omitted in current LBB methodology. In this paper, the effects of non-symmetries due to geometry and material at the pipe-nozzle interface are presented. Various LBB analyses are performed for a small diameter piping system to evaluate the effect a nozzle has on the J-integral calculation, crack opening area and crack stability. In addition, material differences between the nozzle and pipe are evaluated. Comparison is made between a pipe model and a nozzle-pipe interface model, and a LBB PED (Piping Evaluation Diagram) curve is developed to summarize the results for use by piping designers.

  5. Interface physics in microporous media : LDRD final report.

    SciTech Connect (OSTI)

    Yaklin, Melissa A.; Knutson, Chad E.; Noble, David R.; Aragon, Alicia R.; Chen, Ken Shuang; Giordano, Nicholas J. (Purdue University, West Lafayette, IN); Brooks, Carlton, F.; Pyrak-Nolte, Laura J. (Purdue University, West Lafayette, IN); Liu, Yihong (Purdue University, West Lafayette, IN)

    2008-09-01T23:59:59.000Z

    This document contains a summary of the work performed under the LDRD project entitled 'Interface Physics in Microporous Media'. The presence of fluid-fluid interfaces, which can carry non-zero stresses, distinguishes multiphase flows from more readily understood single-phase flows. In this work the physics active at these interfaces has been examined via a combined experimental and computational approach. One of the major difficulties of examining true microporous systems of the type found in filters, membranes, geologic media, etc. is the geometric uncertainty. To help facilitate the examination of transport at the pore-scale without this complication, a significant effort has been made in the area of fabrication of both two-dimensional and three-dimensional micromodels. Using these micromodels, multiphase flow experiments have been performed for liquid-liquid and liquid-gas systems. Laser scanning confocal microscopy has been utilized to provide high resolution, three-dimensional reconstructions as well as time resolved, two-dimensional reconstructions. Computational work has focused on extending lattice Boltzmann (LB) and finite element methods for probing the interface physics at the pore scale. A new LB technique has been developed that provides over 100x speed up for steady flows in complex geometries. A new LB model has been developed that allows for arbitrary density ratios, which has been a significant obstacle in applying LB to air-water flows. A new reduced order model has been developed and implemented in finite element code for examining non-equilibrium wetting in microchannel systems. These advances will enhance Sandia's ability to quantitatively probe the rich interfacial physics present in microporous systems.

  6. Intelligent interface for design and simulation

    SciTech Connect (OSTI)

    Draisin, W.; Peter, E.

    1986-01-01T23:59:59.000Z

    We are developing a system composed of intelligent interfaces, expert systems, and databases that uses artificial intelligence techniques to simplify the use of large simulation codes and to help design complicated physical devices. The simulation codes are used in analyzing and designing weapons, and the devices are themselves parts of weapon systems. From a designer's point of view, the simulation process is the same no matter what is being simulated. In the course of developing two intelligent interfaces for the design of nuclear weapons, we have found that data-driven programming is a useful technique for implementing an open-ended user interface to assist the designer. We discuss the simulation process as it is done now and as it could be done with intelligent interfaces. We then discuss the use of data-driven programming in a database environment to support an interface for an arbitrary number of simulation codes. 3 figs.

  7. APS/123-QED Probing Interface Elastic Nonlinearity Applying Nonlinear Resonance Ultrasound

    E-Print Network [OSTI]

    loosening of rivets, widely used in aeronautics. For example, the combination of thermography and ultra- sound, which causes heating of flawed rivets by dissi- pation. Then, thermography is used to detect

  8. Indirect Boundary Element Method applied to fluidsolid interfaces A. Rodriguez-Castellanos a,n

    E-Print Network [OSTI]

    Martin, Roland

    a Instituto Mexicano del Petro´leo, ingenieri´a civil, Eje Central La´zaro Ca´rdenas 152, Gustavo A Madero, Me´xico D.F., Me´xico b Instituto Polite´cnico Nacional, Unidad Profesional ESIA Zacatenco, Me´xico D.F., Me´xico c Instituto de Ingenieri´a, UNAM, Circuito Escolar S/N, Coyoaca´n, Me´xico D.F., Me´xico d Instituto

  9. Thermodynamic and morphological transitions in crystalline and soft material interfaces

    E-Print Network [OSTI]

    Tang, Ming, Ph. D. Massachusetts Institute of Technology

    2008-01-01T23:59:59.000Z

    Interfaces are defects present in all materials. Interface transitions are characterized by abrupt changes in interface structure, chemistry and/or morphology under suitable conditions. They exist in many material systems ...

  10. Direct Manipulation for Comprehensible, Predictable and Controllable User Interfaces

    E-Print Network [OSTI]

    Golbeck, Jennifer

    Direct Manipulation for Comprehensible, Predictable and Controllable User Interfaces Ben that are comprehensible, predictable and controllable. Direct manipulation interfaces are seen as more likely candidates Research University of Maryland, College Park, MD 20742 Abstract: Direct manipulation user interfaces have

  11. Improved performance of railcar/rail truck interface components

    E-Print Network [OSTI]

    Story, Brett Alan

    2009-05-15T23:59:59.000Z

    The objective of this research is to improve the railcar/rail truck interface by developing a low maintenance bearing interface with a favorable friction coefficient. Friction and wear at the center bowl/center plate bearing interface cause high...

  12. Improved performance of railcar/rail truck interface components 

    E-Print Network [OSTI]

    Story, Brett Alan

    2009-05-15T23:59:59.000Z

    The objective of this research is to improve the railcar/rail truck interface by developing a low maintenance bearing interface with a favorable friction coefficient. Friction and wear at the center bowl/center plate bearing interface cause high...

  13. School of Applied Technology School of Applied Technology

    E-Print Network [OSTI]

    Heller, Barbara

    School of Applied Technology School of Applied Technology Daniel F. and Ada L. Rice Campus Illinois Institute of Technology 201 E. Loop Road Wheaton, IL 60187 630.682.6000 www.iit.edu/applied tech/ Dean and Academic Director, Information Technology and Management Programs: C. Robert Carlson Director of Operations

  14. School of Applied Technology School of Applied Technology

    E-Print Network [OSTI]

    Heller, Barbara

    School of Applied Technology School of Applied Technology Daniel F. and Ada L. Rice Campus Illinois Institute of Technology 201 E. Loop Road Wheaton, IL 60187 630.682.6000 www.iit.edu/applied tech/ Dean Technology and Management Programs: Mazin Safar Director, Marketing & Development: Scott Pfeiffer Director

  15. Capillary migration of microdisks on curved interfaces

    E-Print Network [OSTI]

    Lu Yao; Nima Sharifi-Mood; Iris B. Liu; Kathleen J. Stebe

    2014-12-23T23:59:59.000Z

    The capillary energy landscape for particles on curved fluid interfaces is strongly influenced by the particle wetting conditions. Contact line pinning has now been widely reported for colloidal particles, but its implications in capillary interactions have not been addressed. Here, we present experiment and analysis for disks with pinned contact lines on curved fluid interfaces. In experiment, we study microdisk migration on a host interface with zero mean curvature; the microdisks have contact lines pinned at their sharp edges and are sufficiently small that gravitational effects are negligible. The disks migrate away from planar regions toward regions of steep curvature with capillary energies inferred from the dissipation along particle trajectories which are linear in the deviatoric curvature. We derive the curvature capillary energy for an interface with arbitrary curvature, and discuss each contribution to the expression. By adsorbing to a curved interface, a particle eliminates a patch of fluid interface and perturbs the surrounding interface shape. Analysis predicts that perfectly smooth, circular disks do not migrate, and that nanometric deviations from a planar circular, contact line, like those around a weakly roughened planar disk, will drive migration with linear dependence on deviatoric curvature, in agreement with experiment.

  16. PFP Interface identification and management planning guide

    SciTech Connect (OSTI)

    SINCLAIR, J.C.

    1999-05-20T23:59:59.000Z

    The purpose of-this planning guide is to present the process used to identify, document, and control PFP Stabilization and Deactivation Project interfaces. Revisions to this document will include, as attachments, the most recent version of the Project Interface Management List. A preliminary Interface Management List is included in Appendix A. This document is intended be a Project owned management tool. As such, this document will periodically require revisions resulting from improvements of the information, processes, and techniques as now described. For most revisions that suggest improved processes, PFP management approval is all that will be required.

  17. Electrode/electrolyte interface. A status report

    SciTech Connect (OSTI)

    Bard, A.J. (Univ. of Texas, Austin (United States)); Abruna, H.D. (Cornell Univ., Ithaca, NY (United States)); Chidsey, C.E. (Stanford Univ., CA (United States)); Faulkner, L.R. (Univ. of Illinois, Urbana-Champaign (United States)); Feldberg, S.W. (Brookhaven National Lab., Upton, NY (United States)); Itaya, Kingo (Tohoku Univ., Sendai (Japan)); Majda, M. (Univ. of California, Berkeley (United States)); Melroy, O. (IBM Almaden Research Center, San Jose, CA (United States)); Murray, R.W. (Univ. of North Carolina, Chapel Hill (United States)); Porter, M.D. (Iowa State Univ., Ames (United States)); Soriaga, M.P. (Texas A M Univ., College Station (United States)); White, H.S. (Univ. of Utah, Salt Lake City (United States))

    1993-07-15T23:59:59.000Z

    This is a report of a workshop on the [open quotes]state of the art[close quotes] and potential future directions in the study of the electrode/electrolyte interface. Recent advances in experimental capabilities of characterizing the structure of the interface, e.g., through the use of such techniques as scanning tunneling microscopy and X-ray methods, are described. New approaches to studies of interfacial dynamics and materials aspects of the electrode/electrolyte interface are also discussed. 346 refs., 17 figs.

  18. Ionic Liquid-Enhanced Solid State Electrolyte Interface (SEI...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Liquid-Enhanced Solid State Electrolyte Interface (SEI) for Lithium Sulfur Batteries. Ionic Liquid-Enhanced Solid State Electrolyte Interface (SEI) for Lithium Sulfur Batteries....

  19. SVG for Automotive User Interfaces Dr. Sbastien Boisgrault

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ................................................................................................................. 1 EDONA and Human-Machine Interface Design for the Automotive Industry1 SVG for Automotive User Interfaces Dr. Sébastien Boisgérault .................................................................................................... 7 SVG standards for automotive HMI modeling

  20. Water Structure at Hematite-Water Interfaces. | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Structure at Hematite-Water Interfaces. Water Structure at Hematite-Water Interfaces. Abstract: The atomic-level structure of water at mineral surfaces is an important controlling...

  1. Integration of Advanced Materials and Interfaces for Durable...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Materials and Interfaces for Durable Thermoelectric Automobile Exhaust Waste Heat Harvesting Devices Integration of Advanced Materials and Interfaces for Durable...

  2. Interface-induced magnetism in perovskite quantum wells

    E-Print Network [OSTI]

    Jackson, Clayton A; Stemmer, Susanne

    2013-01-01T23:59:59.000Z

    INTERFACE-INDUCED MAGNETISM IN PEROVSKITE . . . PHYSICALR) (2013) Interface-induced magnetism in perovskite quantumelectron gases, and magnetism can all be found in a single

  3. Advanced Thermal Interface Materials (TIMs) for Power Electronics...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Interface Materials (TIMs) for Power Electronics Advanced Thermal Interface Materials (TIMs) for Power Electronics 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual...

  4. Is the Calcite-Water Interface Understood? Direct Comparisons...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Is the Calcite-Water Interface Understood? Direct Comparisons of Molecular Dynamics Simulations with Specular X-ray Reflectivity Is the Calcite-Water Interface Understood? Direct...

  5. Applied inductive learning Louis Wehenkel

    E-Print Network [OSTI]

    Wehenkel, Louis

    problems 20 2.3.1 Classes 20 2.3.2 Types of classi cation problems 20 2.3.3 Learning and test sets 21 2Applied inductive learning Louis Wehenkel University of Li`ege Faculty of Applied Sciences Course;#12;APPLIED INDUCTIVE LEARNING COURSE NOTES : OCTOBER 2000 LOUIS A. WEHENKEL University of Li#12;ege

  6. Applied inductive learning Louis Wehenkel

    E-Print Network [OSTI]

    Wehenkel, Louis

    .3.2 Types of classification problems 20 2.3.3 Learning and test sets 21 2.3.4 Decision or classificationApplied inductive learning Louis Wehenkel University of Liâ??ege Faculty of Applied Sciences Courseâ??e'' #12; #12; APPLIED INDUCTIVE LEARNING COURSE NOTES : OCTOBER 2000 LOUIS A. WEHENKEL University of Li

  7. Journal of Applied Ecology 2004

    E-Print Network [OSTI]

    Holl, Karen

    Journal of Applied Ecology 2004 41, 922­933 © 2004 British Ecological Society Blackwell Publishing-scale, Sacramento River, succession, vegetation Journal of Applied Ecology (2004) 41, 922­933 Introduction More than@ucsc.edu). #12;923 Riparian forest restoration © 2004 British Ecological Society, Journal of Applied Ecology, 41

  8. Journal of Applied Ecology 2002

    E-Print Network [OSTI]

    Holl, Karen

    Journal of Applied Ecology 2002 39, 960­970 © 2002 British Ecological Society Blackwell Science- tion, succession. Journal of Applied Ecology (2002) 39, 960­970 Introduction Efforts to reclaim@ucsc.edu). #12;961 Vegetation on reclaimed mines © 2002 British Ecological Society, Journal of Applied Ecology

  9. Applying Mathematics.... ... to catch criminals

    E-Print Network [OSTI]

    O'Leary, Michael

    Applying Mathematics.... ... to catch criminals Mike O'Leary Department of Mathematics Towson University Stevenson University Kappa Mu Epsion 2008 Mike O'Leary (Towson University) Applying mathematics Department Mike O'Leary (Towson University) Applying mathematics to catch criminals September 10, 2008 2 / 42

  10. Emergent Phenomena at Oxide Interfaces

    SciTech Connect (OSTI)

    Hwang, H.Y.

    2012-02-16T23:59:59.000Z

    Transition metal oxides (TMOs) are an ideal arena for the study of electronic correlations because the s-electrons of the transition metal ions are removed and transferred to oxygen ions, and hence the strongly correlated d-electrons determine their physical properties such as electrical transport, magnetism, optical response, thermal conductivity, and superconductivity. These electron correlations prohibit the double occupancy of metal sites and induce a local entanglement of charge, spin, and orbital degrees of freedom. This gives rise to a variety of phenomena, e.g., Mott insulators, various charge/spin/orbital orderings, metal-insulator transitions, multiferroics, and superconductivity. In recent years, there has been a burst of activity to manipulate these phenomena, as well as create new ones, using oxide heterostructures. Most fundamental to understanding the physical properties of TMOs is the concept of symmetry of the order parameter. As Landau recognized, the essence of phase transitions is the change of the symmetry. For example, ferromagnetic ordering breaks the rotational symmetry in spin space, i.e., the ordered phase has lower symmetry than the Hamiltonian of the system. There are three most important symmetries to be considered here. (i) Spatial inversion (I), defined as r {yields} -r. In the case of an insulator, breaking this symmetry can lead to spontaneous electric polarization, i.e. ferroelectricity, or pyroelectricity once the point group belongs to polar group symmetry. (ii) Time-reversal symmetry (T) defined as t {yields} -t. In quantum mechanics, the time-evolution of the wave-function {Psi} is given by the phase factor e{sup -iEt/{h_bar}} with E being the energy, and hence time-reversal basically corresponds to taking the complex conjugate of the wave-function. Also the spin, which is induced by the 'spinning' of the particle, is reversed by time-reversal. Broken T-symmetry is most naturally associated with magnetism, since the spin operator changes sign with T-operation. (iii) Gauge symmetry (G), which is associated with a change in the phase of the wave-function as {Psi} {yields} e{sup i{theta}}{Psi}. Gauge symmetry is connected to the law of charge conservation, and broken G-symmetry corresponds to superconductivity/superfluidity. To summarize, the interplay among these electronic degrees of freedom produces various forms of symmetry breaking patterns of I, T, and G, leading to novel emergent phenomena, which can appear only by the collective behavior of electrons and cannot be expected from individual electrons. Figure 1 shows this schematically by means of several representative phenomena. From this viewpoint, the interfaces of TMOs offer a unique and important laboratory because I is already broken by the structure itself, and the detailed form of broken I-symmetry can often be designed. Also, two-dimensionality usually enhances the effects of electron correlations by reducing their kinetic energy. These two features of oxide interfaces produce many novel effects and functions that cannot be attained in bulk form. Given that the electromagnetic responses are a major source of the physical properties of solids, and new gauge structures often appear in correlated electronic systems, we put 'emergent electromagnetism' at the center of Fig. 1.

  11. High Integrity Can Design Interfaces

    SciTech Connect (OSTI)

    Shaber, E.L.

    1998-08-01T23:59:59.000Z

    The National Spent Nuclear Fuel Program is chartered with facilitating the disposition of DOE-owned spent nuclear fuel to allow disposal at a geologic repository. This is done through coordination with the repository program and by assisting DOE Site owners of SNF with needed information, standardized requirements, packaging approaches, etc. The High Integrity Can (HIC) will be manufactured to provide a substitute or barrier enhancement for normal fuel geometry and cladding. The can would be nested inside the DOE standardized canister which is designed to interface with the repository waste package. The HIC approach may provide the following benefits over typical canning approaches for DOE SNF. (a) It allows ready calculation and management of criticality issues for miscellaneous. (b) It segments and further isolates damaged or otherwise problem materials from normal SNF in the repository package. (c) It provides a very long term corrosion barrier. (d) It provides an extra internal pressure barrier for particulates, gaseous fission products, hydrogen, and water vapor. (e) It delays any potential release of fission products to the repository environment. (f) It maintains an additional level of fuel geometry control during design basis accidents, rock-fall, and seismic events. (g) When seal welded, it could provide the additional containment required for shipments involving plutonium content in excess of 20 Ci. (10 CFR 71.63.b) if integrated with an appropriate cask design. Long term corrosion protection is central to the HIC concept. The material selected for the HIC (Hastelloy C-22) has undergone extensive testing for repository service. The most severe theoretical interactions between iron, repository water containing chlorides and other repository construction materials have been tested. These expected chemical species have not been shown capable of corroding the selected HIC material. Therefore, the HIC should provide a significant barrier to DOE SNF dispersal long after most commercial SNF has degraded and begun moving into the repository environment.

  12. Hybrid immersed interface-immersed boundary methods for AC dielectrophoresis

    SciTech Connect (OSTI)

    Hossan, Mohammad Robiul [School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164-2920 (United States); Department of Engineering and Physics, University of Central Oklahoma, Edmond, OK 73034-5209 (United States); Dillon, Robert [Department of Mathematics, Washington State University, Pullman, WA 99164-3113 (United States); Dutta, Prashanta, E-mail: dutta@mail.wsu.edu [School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164-2920 (United States)

    2014-08-01T23:59:59.000Z

    Dielectrophoresis, a nonlinear electrokinetic transport mechanism, has become popular in many engineering applications including manipulation, characterization and actuation of biomaterials, particles and biological cells. In this paper, we present a hybrid immersed interface–immersed boundary method to study AC dielectrophoresis where an algorithm is developed to solve the complex Poisson equation using a real variable formulation. An immersed interface method is employed to obtain the AC electric field in a fluid media with suspended particles and an immersed boundary method is used for the fluid equations and particle transport. The convergence of the proposed algorithm as well as validation of the hybrid scheme with experimental results is presented. In this paper, the Maxwell stress tensor is used to calculate the dielectrophoretic force acting on particles by considering the physical effect of particles in the computational domain. Thus, this study eliminates the approximations used in point dipole methods for calculating dielectrophoretic force. A comparative study between Maxwell stress tensor and point dipole methods for computing dielectrophoretic forces are presented. The hybrid method is used to investigate the physics of dielectrophoresis in microfluidic devices using an AC electric field. The numerical results show that with proper design and appropriate selection of applied potential and frequency, global electric field minima can be obtained to facilitate multiple particle trapping by exploiting the mechanism of negative dielectrophoresis. Our numerical results also show that electrically neutral particles form a chain parallel to the applied electric field irrespective of their initial orientation when an AC electric field is applied. This proposed hybrid numerical scheme will help to better understand dielectrophoresis and to design and optimize microfluidic devices.

  13. Activity based interfaces in online social networks

    E-Print Network [OSTI]

    Laraqui, Jawad

    2007-01-01T23:59:59.000Z

    The goal of the project is to explore how activity-based interfaces can create more meaningful experiences for the users and builders of online social networking sites. Medina, a social-networking site based on the idea ...

  14. Autonomous pedestrian interfaces for community networking

    E-Print Network [OSTI]

    Bonanni, Leonardo Amerigo, 1977-

    2003-01-01T23:59:59.000Z

    Efforts to bridge the digital divide have concentrated on community computer centers dependent on subsidy and constant supervision. This thesis considers the design of public digital interfaces that are physically and ...

  15. Film bonded fuel cell interface configuration

    DOE Patents [OSTI]

    Kaufman, Arthur (West Orange, NJ); Terry, Peter L. (Chatham, NJ)

    1989-01-01T23:59:59.000Z

    The present invention relates to improved elements for use in fuel cell stacks, and more particularly, to a stack having a corrosion-resistant, electrally conductive, fluid-impervious interface member therein.

  16. Electrical interfaces for electromechanical and energy systems

    E-Print Network [OSTI]

    Chaney, Rachel M

    2010-01-01T23:59:59.000Z

    The design, construction, and testing of a versatile robot driver circuit is described. The printed circuit board produced can be used as an interface between any two-motor robot and the R31-JP, an eight-bit microcontroller ...

  17. Vibrational sum frequency study on biological interfaces

    E-Print Network [OSTI]

    Lim, Soon Mi

    2009-06-02T23:59:59.000Z

    , which is related to molecular orientation. Since the polarizabilities of molecules in bulk phase will be canceled out, a sum frequency signal can only be generated from interfaces where the inversion symmetry is broken. Because of its interfacial...

  18. From corrosion to batteries: Electrochemical interface studies...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    From corrosion to batteries: Electrochemical interface studies Thursday, October 18, 2012 - 11:00am SSRL, Bldg. 137, Rm 226 Dr. Frank Uwe Renner Max-Planck-Institut fr...

  19. BE 780: Brain Machine Interfaces Spring 2013

    E-Print Network [OSTI]

    Vajda, Sandor

    BE 780: Brain Machine Interfaces Spring 2013 Instructor: Jason Ritt the readings for an assigned class. Homework 30% Mid-semester Report 30, code, or files of any kind. Reports and final projects must

  20. Engineering nanocarbon interfaces for electron transfer

    E-Print Network [OSTI]

    Hilmer, Andrew J. (Andrew Joseph)

    2013-01-01T23:59:59.000Z

    Electron-transfer reactions at nanometer-scale interfaces, such as those presented by single-walled carbon nanotubes (SWCNTs), are important for emerging optoelectronic and photovoltaic technologies. Electron transfer also ...

  1. GSS, a user interface specification framework

    E-Print Network [OSTI]

    Morris, John Graham

    1988-01-01T23:59:59.000Z

    composite of four boxes. 24 Figure 7. A congguration set of three advisory lights, 25 Figure 8. Three airplane icon template example. 26 Figurc 9. Image abstraction manipulation. Figure 10. Rotation about a moving origin. Figure 11. A Symbolic's dynamic... in terms of the small set of con- cepts which make up the ontology. So far, duce issues have been addressed which relate to concept development for a user inter- face ontology: 15 ~ a methodology, ~ gross user interface behavior, ~ user interface...

  2. Comparison of methods to quantify interface trap densities at dielectric/IIIV semiconductor interfaces

    E-Print Network [OSTI]

    Stemmer, Susanne

    2010-01-01T23:59:59.000Z

    high-k/III-V interface. 2 Meth- ods to determine the D it ofand capacitance based meth- ods. The dopant concentration

  3. Thermal interface conductance across a graphene/hexagonal boron nitride heterojunction

    SciTech Connect (OSTI)

    Chen, Chun-Chung; Li, Zhen; Cronin, Stephen B. [Department of Electrical Engineering, University of Southern California, Los Angeles, California 90089 (United States); Shi, Li [Department of Mechanical Engineering and Texas Materials Institute, University of Texas at Austin, Austin, Texas 78712 (United States)

    2014-02-24T23:59:59.000Z

    We measure thermal transport across a graphene/hexagonal boron nitride (h-BN) interface by electrically heating the graphene and measuring the temperature difference between the graphene and BN using Raman spectroscopy. Because the temperature of the graphene and BN are measured optically, this approach enables nanometer resolution in the cross-plane direction. A temperature drop of 60?K can be achieved across this junction at high electrical powers (14 mW). Based on the temperature difference and the applied power data, we determine the thermal interface conductance of this junction to be 7.4?×?10{sup 6}?Wm{sup ?2}K{sup ?1}, which is below the 10{sup 7}–10{sup 8}?Wm{sup ?2}K{sup ?1} values previously reported for graphene/SiO{sub 2} interface.

  4. Thermostat Interface and Usability: A Survey

    E-Print Network [OSTI]

    Meier, Alan

    2011-01-01T23:59:59.000Z

    and sensations. Applied Ergonomics, 12(1), 29-33. Boait, P.systems. Applied Ergonomics, 40(2), 165-174. Shipworth, M. ,timer/programmer. Applied Ergonomics, 13(1), 15-23. National

  5. NREL's Controllable Grid Interface for Testing Renewable Energy Technologies (Presentation)

    SciTech Connect (OSTI)

    Gevorgian, V.

    2014-09-01T23:59:59.000Z

    This presentation is an overview of NREL's Controllable Grid Interface capabilities for testing renewable energy technologies.

  6. Interface effects on multiphase flows in porous media

    SciTech Connect (OSTI)

    Zhang, Duan Z [Los Alamos National Laboratory

    2008-01-01T23:59:59.000Z

    Most models for multiphase flows in a porous medium are based on the straightforward extension of Darcy's law, in which each fluid phase is driven by its own pressure gradient. The pressure difference between the phases is thought to be an effect of surface tension and is called capillary pressure. Independent of Darcy's law, for liquid imbibition processes in a porous material, diffusion models are sometime used. In this paper, an ensemble phase averaging technique for continuous multi phase flows is applied to derive averaged equations and to examine the validity of the commonly used models. The closure for the averaged equations is quite complicated for general multiphase flows in a porous material. For flows with a small ratio of the characteristic length of the phase interfaces to the macroscopic length, the closure relations can be simplified significantly by an approximation with a second order error in the length ratio. The approximation reveals the information of the length scale separation obscured during the ensemble averaging process, and leads to an equation system similar to Darcy's law, but with additional terms. Based on interactions on phase interfaces, relations among closure quantities are studied.

  7. Guidance for Human-system Interfaces to Automatic Systems

    SciTech Connect (OSTI)

    O'Hara, J.M.; Higgins, J.; Stephen Fleger; Valerie Barnes

    2010-09-27T23:59:59.000Z

    Automation is ubiquitous in modern complex systems, and commercial nuclear- power plants are no exception. Automation is applied to a wide range of functions, including monitoring and detection, situation assessment, response planning, and response implementation. Automation has become a 'team player' supporting personnel in nearly all aspects of system operation. In light of its increasing use and importance in new- and future-plants, guidance is needed to conduct safety reviews of the operator's interface with automation. The objective of this research was to develop such guidance. We first characterized the important HFE aspects of automation, including six dimensions: Levels, functions, processes, modes, flexibility, and reliability. Next, we reviewed literature on the effects of all of these aspects of automation on human performance, and on the design of human-system interfaces (HSIs). Then, we used this technical basis established from the literature to identify general principles for human-automation interaction and to develop review guidelines. The guidelines consist of the following seven topics: Automation displays, interaction and control, automation modes, automation levels, adaptive automation, error tolerance and failure management, and HSI integration.

  8. Stoneley waves and interface stability of Bell materials in compression; Comparison with rubber

    E-Print Network [OSTI]

    Michel Destrade

    2013-04-23T23:59:59.000Z

    Two semi-infinite bodies made of prestressed, homogeneous, Bell-constrained, hyperelastic materials are perfectly bonded along a plane interface. The half-spaces have been subjected to finite pure homogeneous predeformations, with distinct stretch ratios but common principal axes, and such that the interface is a common principal plane of strain. Constant loads are applied at infinity to maintain the deformations and the influence of these loads on the propagation of small-amplitude interface (Stoneley) waves is examined. In particular, the secular equation is found and necessary and sufficient conditions to be satisfied by the stretch ratios to ensure the existence of such waves are given. As the loads vary, the Stoneley wave speed varies accordingly: the upper bound is the `limiting speed' (given explicitly), beyond which the wave amplitude cannot decay away from the interface; the lower bound is zero, where the interface might become unstable. The treatment parallels the one followed for the incompressible case and the differences due to the Bell constraint are highlighted. Finally, the analysis is specialized to specific strain energy densities and to the case where the bimaterial is uniformly deformed (that is when the stretch ratios for the upper half-space are equal to those for the lower half-space.) Numerical results are given for `simple hyperelastic Bell' materials and for `Bell's empirical model' materials, and compared to the results for neo-Hookean incompressible materials.

  9. User interface design for an automated part recognition system

    E-Print Network [OSTI]

    Avitts, Tommie Annette

    1991-01-01T23:59:59.000Z

    to the inclusion of an interface following the guidelines set forth in Human Interface Guidelines: The Apple Desktop Interface (Apple Computer, 1987) in this study. Figure 1 is a screen image showing the menu bar (top of screen) of the Menu interface designed.... , San Jacinto College; B. S. , Stephen F. Austin State University Co-Chairs of Advisory Committee: Dr. Deborah A. Mitta Dr. R. Dale Huchingson This research involved the design and usability evaluation of five user-computer interfaces developed...

  10. Adsorption of polymer chains at penetrable interfaces

    SciTech Connect (OSTI)

    Gerasimchuk, I. V., E-mail: igor.gera@gmail.com [National Academy of Sciences of Ukraine and Ministry of Education and Science of Ukraine, Institute of Magnetism (Ukraine); Sommer, J.-U. [Leibniz Institute of Polymer Research Dresden e.V. (Germany); Gerasimchuk, V. S. [National Technical University of Ukraine 'Kyiv Polytechnic Institute' (Ukraine)

    2011-03-15T23:59:59.000Z

    We investigate the problem of adsorption (localization) of polymer chains in the system of two penetrable interfaces within the mean-field approximation. The saturation of the polymer system in the limit case of zero bulk concentration is studied. We find the exact solution of this mean-field polymer adsorption problem that opens the possibility to treat various localization problems for polymer chains in such environments using appropriate boundary conditions. The exact solution is controlled by a single scaling variable that describes the coupling between the interfaces due to the polymer chains. We obtain a nonmonotonic behavior of the amount of adsorbed polymers as a function of the distance between the interfaces. This leads to a high-energy and a low-energy phase for the double layer with respect to the amount of polymers localized. At the saturation point, we find the total energy of the system and determine the force acting between the interfaces to be strictly attractive and to monotonically decay to zero when the interface distance increases.

  11. APPLIED TECHNOLOGY Strategic Plan Summary

    E-Print Network [OSTI]

    Heller, Barbara

    and collaborative technology-based support for the proposed Innovation Center and the Entrepreneurship Academy. We research centers­CNR, CPI, and CSP. Establish a food safety and processing technology hub/incubator/innovationSCHOOL OF APPLIED TECHNOLOGY Strategic Plan Summary #12;School of Applied Technology Strategic Plan

  12. Implications of interface conventions for morphometric thermodynamics

    E-Print Network [OSTI]

    Andreas Reindl; Markus Bier; S. Dietrich

    2015-02-06T23:59:59.000Z

    Several model fluids in contact with planar, spherical, and cylindrical walls are investigated for small number densities within density functional theory. The dependence of the solid-fluid interfacial tension on the curvature of spherical and cylindrical walls is examined and compared with the corresponding expression derived within the framework of morphometric thermodynamics. Particular attention is paid to the implications of the choice of the interface location, which underlies the definition of the interfacial tension. We find that morphometric thermodynamics is never exact for the considered systems and that its quality as an approximation depends sensitively on the choice of the interface location.

  13. Department of Applied Mathematics Department of Applied Mathematics

    E-Print Network [OSTI]

    Heller, Barbara

    , computational mathematics, discrete applied mathematics, and stochas- tics. More detailed descriptions of Philosophy in Collegiate Mathematics Education (joint program with the Department of Mathematics and Science Education) Research Facilities The department provides students with office space equipped with computers

  14. Abstract--Rich tactile interaction with control surfaces has been compromised in the transition to touch interfaces. This

    E-Print Network [OSTI]

    Levesque, Vincent

    the ubiquitous but crude eccentric-mass vibrating motor to more expressive piezoelectric actuators [3 is missing from touch interfaces which, despite their name, leverage only the motor aspect of the sense available in consumer electronics primarily through actuators that apply vibrations either to the entire

  15. A user interface for representing physical systems across energy domains

    E-Print Network [OSTI]

    Johnson, Heather Lynn

    1990-01-01T23:59:59.000Z

    for State Transition Diagrams . . 3. 2 Object Oriented Interfaces 3. 3 Graphic Interfaces 3. 3. 1 Early Days of Graphic Interfaces 3. 3. 2 Menu Systems. . . . . . . . . . . . . . . 3. 3. 3 Icons 3. 3. 4 Examples of Graphical Interfaces 3. 4 Summary... Explanation of Interface Via Transition Diagrams 4. 2 Programming Environment 4. 2. 1 Programming Platform 4. 2. 2 Example Source Code 4. 2. 3 System Features of BoGIS 4. 3 Graphical Interface for BoGIS 4. 3. 1 Screen Layout 4. 3. 2 Icons 4. 3. 3 Using...

  16. Modeling applied to problem solving

    E-Print Network [OSTI]

    Pawl, Andrew

    We describe a modeling approach to help students learn expert problem solving. Models are used to present and hierarchically organize the syllabus content and apply it to problem solving, but students do not develop and ...

  17. IIT SCHOOL OF APPLIED TECHNOLOGY

    E-Print Network [OSTI]

    Heller, Barbara

    INDUSTRIAL TECHNOLOGY AND MANAGEMENT IIT SCHOOL OF APPLIED TECHNOLOGY PREPARING SKILLED INDIVIDUALS, INDUSTRIAL FACILITIES, SUPPLY CHAIN MANAGEMENT, SUSTAINABILITY AND MANUFACTURING TECHNOLOGY. #12;BE ONE to assess, implement, and utilize current technologies, and to learn how to manage industrial operations

  18. Sustainable FACULTY OF APPLIED SCIENCE

    E-Print Network [OSTI]

    Michelson, David G.

    Working Together Towards a Sustainable Energy Future FACULTY OF APPLIED SCIENCE Clean Energy aspects of sustainable energy solutions, and is committed to using its extensive expertise to serve, Electrical & Computer, Materials, Mechanical, Mining), the School of Architecture & Landscape Architecture

  19. Sliding Interfaces for Eddy Current Simulations

    E-Print Network [OSTI]

    Hiptmair, Ralf

    Sliding Interfaces for Eddy Current Simulations Raffael Casagrande Master Thesis Supervisor: Prof. Dr. Ralf Hiptmair Zürich, April 2013 #12;Contents Contents i 1. Introduction 1 2. Eddy Current-formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.4. The eddy current problem in a moving, solid body . . . . . . . . . . . . . 9 3. Discontinuous

  20. Exploratory Search Interfaces to Support Image Discovery

    E-Print Network [OSTI]

    Shneiderman, Ben

    Director (1983-2000), Human-Computer Interaction Lab Professor, Department of Computer Science MemberExploratory Search Interfaces to Support Image Discovery Ben Shneiderman ben@cs.umd.edu Founding;Interdisciplinary research community - Computer Science & Psychology - Information Studies & Education (www

  1. COMMUNICATION Protein Chemistry at Membrane Interfaces

    E-Print Network [OSTI]

    White, Stephen

    of hydrophobic (ÁGHÈ) and electrostatic (ÁGES) free energies. If these are simply addi- tive, then the observed free energy of binding (ÁGobs) will be given by ÁGobs ÁGHÈ ÁGES, where ÁGHÈ À sNPANP and ÁGES z suggest that hydrophobic and electrostatic binding free energies of proteins at membrane interfaces

  2. A Secure Cryptographic Token Interface Christian Cachin

    E-Print Network [OSTI]

    Cachin, Christian

    Module [26] found in many personal computers, to high-security HSMs used by the finance industry such as IBM's 4764 cryptoprocessor [18]. Two prominent token interfaces used in industry are PKCS #11 [25 of California, Los Angeles, Department of Computer Science, 3714 Boelter Hall, Los Angeles CA 90095, USA

  3. Taming the Plasma-Material Interface

    E-Print Network [OSTI]

    Demo R&D: Taming the Plasma- Material Interface Rob Goldston #12;Outline · PMI-Based Mission Risks) · National High-Power Advanced Torus Experiment (NHTX) version of PMIF #12;PMI Mission Risks - I 1 facing surface. #12;PMI Mission Risks - II 5. Steady heat and particle loads result in unacceptable power

  4. SCATTERING BY CRACKS BENEATH FLUIDSOLID INTERFACES

    E-Print Network [OSTI]

    Craster, Richard

    parameters relevant for water­metal and water­rock combinations are taken and far field scattering patterns the fluid. For line source excitation surface waves are generated that impinge upon defects near the surface with distance along the interface from its source of excitation. The light fluid loading limit is important f

  5. Internal and Interface Shear Strength of

    E-Print Network [OSTI]

    Zornberg, Jorge G.

    i Internal and Interface Shear Strength of Geosynthetic Clay Liners (GCLs) by John Scott Mc Strength of Geosynthetic Clay Liners (GCLs) Geosynthetic Clay Liners (GCLs) are prefabricated geocomposite materials used as an alternative to compacted clay liners in hydraulic barriers. They often offer hydraulic

  6. Ginzburg-Landau theory of the bcc-liquid interface kinetic coefficient

    E-Print Network [OSTI]

    Kuo-An Wu; Ching-Hao Wang; Jeffrey J. Hoyt; Alain Karma

    2014-10-25T23:59:59.000Z

    We extend the Ginzburg-Landau (GL) theory of atomically rough bcc-liquid interfaces [Wu {\\it et al.}, Phys. Rev. B \\textbf{73}, 094101 (2006)] outside of equilibrium. We use this extension to derive an analytical expression for the kinetic coefficient, which is the proportionality constant $\\mu(\\hat n)$ between the interface velocity along a direction $\\hat n$ normal to the interface and the interface undercooling. The kinetic coefficient is expressed as a spatial integral along the normal direction of a sum of gradient square terms corresponding to different nonlinear density wave profiles. Anisotropy arises naturally from the dependence of those profiles on the angles between the principal reciprocal lattice vectors $\\vec K_i$ and $\\hat n$. Values of the kinetic coefficient for the$(100)$, $(110)$ and $(111)$ interfaces are compared quantitatively to the prediction of linear Mikheev-Chernov (MC) theory [J. Cryst. Growth \\textbf{112}, 591 (1991)] and previous molecular dynamics (MD) simulation studies of crystallization kinetics for a classical model of Fe. Additional MD simulations are carried out here to compute the relaxation time of density waves in the liquid in order to make this comparison free of fit parameter. The GL theory predicts a similar expression for $\\mu$ as the MC theory but yields a better agreement with MD simulations for both its magnitude and anisotropy due to a fully nonlinear description of density wave profiles across the solid-liquid interface. GL theory is also used to derive an inverse relation between $\\mu$ and the solid-liquid interfacial free-energy. The general methodology used here to derive an expression for $\\mu(\\hat n)$ also applies to amplitude equations derived from the phase-field-crystal model, which only differ from GL theory by the choice of cubic and higher order nonlinearities in the free-energy density.

  7. CX-009420: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Additive Manufacturing Using EOSINT M280 CX(s) Applied: None applied. Date: 10/30/2012 Location(s): Missouri Offices(s): Kansas City Site Office

  8. CX-009418: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Electron Beam Melting CX(s) Applied: None applied. Date: 10/30/2012 Location(s): Missouri Offices(s): Kansas City Site Office

  9. CX-010574: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination Applied Materials - Kerf-less Crystaline-Silicon Photovoltaic: Gas to Modules CX(s) Applied: B3.6 Date: 05162013 Location(s): California,...

  10. CX-009419: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Magnetic Pulser CX(s) Applied: None applied. Date: 10/30/2012 Location(s): Missouri Offices(s): Kansas City Site Office

  11. Prescott: Engineering communication interface. October 2010 Engineering Communication Interface: An Engineering Multidisciplinary Project.

    E-Print Network [OSTI]

    Aloul, Fadi

    students from tertiary institutions with a sound knowledge of engineering theory and practice alone. Well is no longer sufficient to graduate engineering students from tertiary institutions with a sound knowledge1 Prescott: Engineering communication interface. October 2010 Engineering Communication

  12. Toward Widely-Available and Usable Multimodal Conversational Interfaces

    E-Print Network [OSTI]

    Gruenstein, Alexander

    2009-01-01T23:59:59.000Z

    Multimodal conversational interfaces, which allow humans to interact with a computer using a combination of spoken natural language and a graphical interface, offer the potential to transform the manner by which humans ...

  13. Reflective Interfaces : assisting teens with stressful situations online

    E-Print Network [OSTI]

    Jones, Birago (Birago Korayga)

    2012-01-01T23:59:59.000Z

    This thesis presents the concept of Reflective Interfaces, a novel approach to user experience design that promotes positive behavioral norms. Traditional interface design methodologies such as User Centered Design are ...

  14. Direct Manipulation for Comprehensible, Predictable and Controllable User Interfaces

    E-Print Network [OSTI]

    Shneiderman, Ben

    Direct Manipulation for Comprehensible, Predictable and Controllable User Interfaces Ben Direct manipulation user interfaces have proven their worth over two decades, but they are still in their youth. Dramatic opportunities exist to develop direct manipulation pro- gramming to create end

  15. Systems and methods for monitoring a solid-liquid interface

    DOE Patents [OSTI]

    Stoddard, Nathan G; Lewis, Monte A.; Clark, Roger F

    2013-06-11T23:59:59.000Z

    Systems and methods are provided for monitoring a solid-liquid interface during a casting process. The systems and methods enable determination of the location of a solid-liquid interface during the casting process.

  16. THE INTERFACE BETWEEN ENVIRONMENTAL ASSESSMENT AND CORPORATE RESPONSIBILITY: THE

    E-Print Network [OSTI]

    THE INTERFACE BETWEEN ENVIRONMENTAL ASSESSMENT AND CORPORATE RESPONSIBILITY: THE VICTOR DIAMOND Report No: 436 Title of Research Project: The Interface Between Environmental Assessment and Corporate: ___________________________________________ #12;iii ABSTRACT The environmental assessment and sustainable development literature recognizes

  17. Computational design of patterned interfaces using reduced order models

    E-Print Network [OSTI]

    Vattre, Aurelien

    Patterning is a familiar approach for imparting novel functionalities to free surfaces. We extend the patterning paradigm to interfaces between crystalline solids. Many interfaces have non-uniform internal structures ...

  18. 6.831 User Interface Design and Implementation, Fall 2004

    E-Print Network [OSTI]

    Miller, Robert

    6.831 introduces the principles of user interface development, focusing on three key areas: Design: How to design good user interfaces, starting with human capabilities (including the human information processor model, ...

  19. Custom power supply interface for teaching circuit design

    E-Print Network [OSTI]

    Madrigal, Ruben E. (Ruben Esteban)

    2014-01-01T23:59:59.000Z

    This thesis discusses the design and implementation of a custom power supply interface for the Pioneer mobile robot used in MIT's 6.01 course, "Introduction to Electrical Engineering and Computer Science." The interface ...

  20. Experimental investigations of solid-solid thermal interface conductance

    E-Print Network [OSTI]

    Collins, Kimberlee C. (Kimberlee Chiyoko)

    2010-01-01T23:59:59.000Z

    Understanding thermal interface conductance is important for nanoscale systems where interfaces can play a critical role in heat transport. In this thesis, pump and probe transient thermoreflectance methods are used to ...

  1. Merging physical manipulatives and digital interface in educational software

    E-Print Network [OSTI]

    Zacchi, Anna

    1999-01-01T23:59:59.000Z

    how elementary school students used physical manipulations in conjunction with the digital interface of educational software for geometry. The blending of physical manipulations and digital interface helped the students to overcome the limits...

  2. A fast enriched FEM for Poisson equations involving interfaces

    E-Print Network [OSTI]

    Huynh, Thanh Le Ngoc

    2008-01-01T23:59:59.000Z

    We develop a fast enriched finite element method for solving Poisson equations involving complex geometry interfaces by using regular Cartesian grids. The presence of interfaces is accounted for by developing suitable jump ...

  3. AIAA 010974 A Multi-Code-Coupling Interface for

    E-Print Network [OSTI]

    Stanford University

    AIAA 01­0974 A Multi-Code-Coupling Interface for Combustor/Turbomachinery Simulations Sriram 500, Reston, VA 20191­4344 #12;AIAA 01­0974 A Multi-Code-Coupling Interface for Combustor bottlenecks. This paradigm has been used to build a code coupling interface for a three-dimensional combustor

  4. A Sonically-Enhanced Interface Toolkit Stephen A. Brewster

    E-Print Network [OSTI]

    Williamson, John

    in that an interface designer without a detailed knowledge of graphic design can create an interface using a standard device-dependent and time- consuming. This is a similar problem to that faced by graphical interface designers before graphical toolkits were available. Myers [8] suggests that the use of graphical toolkits

  5. Adsorption Kinetics of Surfactants at Fluid-Fluid Interfaces

    E-Print Network [OSTI]

    Andelman, David

    Adsorption Kinetics of Surfactants at Fluid-Fluid Interfaces Haim Diamant and David Andelman School-Fluid Interfaces, Adsorption, Adsorption Kinetics, Interfacial Tension. 1 #12;Abstract We review a new theoretical approach to the kinetics of surfactant adsorption at fluid-fluid interfaces. It yields a more complete

  6. Model coupling friction and adhesion for steel-concrete interfaces

    E-Print Network [OSTI]

    Boyer, Edmond

    Model coupling friction and adhesion for steel- concrete interfaces Michel Raous Laboratoire de: In this paper the interface behaviour between steel and concrete, during pull out tests, is numerically a variable friction coefficient in order to simulate the behaviour of the steel-concrete interface during

  7. Graphical User Interface Energy Characterization for Handheld Computers

    E-Print Network [OSTI]

    Zhong, Lin

    Graphical User Interface Energy Characterization for Handheld Computers Lin Zhong and Niraj K. Jha, Low power Keywords Energy characterization, Graphical user interface, Handheld computers, Low power to its graphical user interface (GUI). Moreover, GUIs are direct users of the dis- play and also

  8. POLYMER SURFACE & INTERFACE GROUP Department of Physics, University of Guelph

    E-Print Network [OSTI]

    Dutcher, John

    POLYMER SURFACE & INTERFACE GROUP Department of Physics, University of Guelph Guelph, Ontario N1G 2W1 RESEARCH FOCUS The primary focus of our work in the Polymer Surface & Interface Group is the physics of polymer and biopolymer thin films and interfaces. Both polymer and biopolymer films are very

  9. MIXPLORATION: Rethinking the Audio Mixer Interface Mark Cartwright

    E-Print Network [OSTI]

    Pardo, Bryan

    MIXPLORATION: Rethinking the Audio Mixer Interface Mark Cartwright Northwestern University Queen Mary University of London josh.reiss@eecs.qmul.ac.uk ABSTRACT A typical audio mixer interface mixing options. In this work, we rethink the mixer interface, describing an alternative inter- face

  10. A copolymer near a selective interface: variational characterization of the free energy

    E-Print Network [OSTI]

    E. Bolthausen; F. den Hollander; A. A. Opoku

    2012-02-17T23:59:59.000Z

    In this paper we consider a two-dimensional copolymer consisting of a random concatenation of hydrophobic and hydrophilic monomers near a linear interface separating oil and water acting as solvents. The configurations of the copolymer are directed paths that can move above and below the interface. The interaction Hamiltonian, which rewards matches and penalizes mismatches of the monomers and the solvents, depends on two parameters: the interaction strength $\\beta\\geq 0$ and the interaction bias $h \\geq 0$. The quenched excess free energy per monomer $(\\beta,h) \\mapsto g^\\mathrm{que} (\\beta,h)$ has a phase transition along a quenched critical curve $\\beta \\mapsto h^\\mathrm{que}_c(\\beta)$ separating a localized phase, where the copolymer stays close to the interface, from a delocalized phase, where the copolymer wanders away from the interface. We derive a variational expression for $g^\\mathrm{que}(\\beta,h)$ by applying the quenched large deviation principle for the empirical process of words cut out from a random letter sequence according to a random renewal process. We compare this variational expression with its annealed analogue, describing the annealed excess free energy $(\\beta,h) \\mapsto g^\\mathrm{ann}(\\beta,h)$, which has a phase transition along an annealed critical curve $\\beta \\mapsto h^\\mathrm{ann}_c(\\beta)$. Our results extend to a general class of disorder distributions and directed paths. We show that $g^\\mathrm{que}(\\beta,h)0$ when $\\alpha>1$. This gap vanished when $\\alpha=1$.

  11. Chemically sensitive interfaces on SAW devices

    SciTech Connect (OSTI)

    Ricco, A.J.; Martin, S.J. [Sandia National Labs., Albuquerque, NM (United States); Crooks, R.M.; Xu, Chuanjing [Texas A and M Univ., College Station, TX (United States); Allred, R.E. [Adherent Technologies, Inc., Albuquerque, NM (United States)

    1993-11-01T23:59:59.000Z

    Using surface acoustic wave (SAW) devices, three approaches to the effective use of chemically sensitive interfaces that are not highly chemically selective have been examined: (1) molecular identification from time-resolved permeation transients; (2) using multifrequency SAW devices to determine the frequency dependence of analyte/film interactions; (3) use of an array of SAW devices bearing diverse chemically sensitive interfaces to produce a distinct response pattern for each analyte. In addition to their well-known sensitivity to mass changes (0.0035 monolayer of N{sub 2} can be measured), SAW devices respond to the mechanical and electronic properties of thin films, enhancing response information content but making a thorough understanding of the perturbation critical. Simultaneous measurement of changes in frequency and attenuation, which can provide the information necessary to determine the type of perturbation, are used as part of the above discrimination schemes.

  12. Fastbus host interface for VAX/VMS

    SciTech Connect (OSTI)

    Siskind, E.J.

    1983-02-01T23:59:59.000Z

    A list processing microprocessor controlled host interface for FASTBUS has been constructed by connection of a FASTBUS cable segment to the VAX DR-32 Device Interconnect (DDI) implemented via the DEC DR-780 channel on a VAX-11/780 system. Block transfer rates of 5.7 megabytes/second (700 ns per 32 bit longword) are achieved on VAX-11/780 systems equipped with a single MS-780 memory controller, while interleaved dual memory controller systems reach 8.0 megabytes/second (500 ns per longword) performance. The hardware and software interface should work equally well on DR-750 equipped VAX-11/750 systems (with appropriate reductions in achievable bandwidth) as well as on any future VAX systems equipped with a DDI adapter.

  13. Control of normal chirality at hexagonal interfaces

    SciTech Connect (OSTI)

    Haraldsen, Jason T [ORNL; Fishman, Randy Scott [ORNL

    2010-01-01T23:59:59.000Z

    We study the net chirality created by the Dzyaloshinkii-Moriya interaction (DMI) at the boundary between hexagonal layers of magnetic and non-magnetic materials. It is shown that another mechanism besides elastic torsion is required to understand the change in chirality observed in Dy/Y multilayers during field-cooling. The paper shows that due to the overlap between magnetic and non-magnetic atoms, interfacial steps may produce a DMI normal to the interface in magnetic heterostructures.

  14. Capillary zone electrophoresis-mass spectrometer interface

    DOE Patents [OSTI]

    D'Silva, Arthur (Ames, IA)

    1996-08-06T23:59:59.000Z

    A device for providing equal electrical potential between two loci unconnected by solid or liquid electrical conducts is provided. The device comprises a first electrical conducting terminal, a second electrical conducting terminal connected to the first terminal by a rigid dielectric structure, and an electrically conducting gas contacting the first and second terminals. This device is particularly suitable for application in the electrospray ionization interface between a capillary zone electrophoresis apparatus and a mass spectrometer.

  15. VMS software for the Jorway-411 interface

    SciTech Connect (OSTI)

    Dorries, T.; Moore, C.; Pordes, R.; White, V.

    1987-05-01T23:59:59.000Z

    This report describes a Software Package used to access CAMAC through the Jorway-411 Interface, for use on VAX/VMS systems. The software can be used to access parallel and/or serial CAMAC branch highways, and multiple Jorways may be connected to the VAX UNIBUS or MicroVax QBUS. The software available includes a VAX/VMS device driver for the JORWAY-411 and support routines and programs that access the driver. The software is accompanied by extensive documentation.

  16. Combined electrophoresis-electrospray interface and method

    DOE Patents [OSTI]

    Smith, R.D.; Udseth, H.R.; Barinaga, C.J.

    1995-06-13T23:59:59.000Z

    An improvement to the system and method is disclosed for analyzing molecular constituents of a composition sample that comprises improvements to an electrospray ionization source for interfacing to mass spectrometers and other detection devices. The improvement consists of establishing a unique electrical circuit pattern and nozzle configuration, a metallic coated and conical shaped capillary outlet, coupled with sizing of the capillary to obtain maximum sensitivity. 10 figs.

  17. Capillary zone electrophoresis-mass spectrometer interface

    DOE Patents [OSTI]

    D`Silva, A.

    1996-08-06T23:59:59.000Z

    A device for providing equal electrical potential between two loci unconnected by solid or liquid electrical conductors is provided. The device comprises a first electrical conducting terminal, a second electrical conducting terminal connected to the first terminal by a rigid dielectric structure, and an electrically conducting gas contacting the first and second terminals. This device is particularly suitable for application in the electrospray ionization interface between a capillary zone electrophoresis apparatus and a mass spectrometer. 1 fig.

  18. Sudden structural change at ati air/binary liquid interface: Sum frequency study of the air/acetonitrile-water interface

    E-Print Network [OSTI]

    Eisenthal, Kenneth B.

    Sudden structural change at ati air/binary liquid interface: Sum frequency study of the air/acetonitrile change in an air/acetonitrile-water interface as the solution composition varies; the abruptness of which and in the polarization of the signal from the acetonitrile molecules in the interface observed using infrared + visible

  19. VMS software for the Jorway-411 Interface

    SciTech Connect (OSTI)

    Dorries, T.; Moore, C.; Pordes, R.; White, V.

    1987-08-01T23:59:59.000Z

    This reports on a Software Package to access CAMAC through the Jorway-411 Interface, for use on VAX/VMS systems. The software can be used to access parallel and/or serial CAMAC branch highways, and multiple Jorways may be connected to the VAX UNIBUS or Micro Vax QBUS. The software available includes a VAX/VMS device driver for the JORWAY-411 and support routines and programs that access the driver. The software is accompanied by extensive documentation. As discussed below, several of the packages originated from other institutions and have been enhanced by the Data Acquisition Software Group at Fermilab. The software package is in widespread use at Fermilab and over 20 other sites. The software can be run on any of the UNIBUS VAX-11 family of computers using a UNIBUS Jorway-411 to interface to CAMAC, or on a Microvax-II either interfaced to CAMAC through a Q-BUS Jorway-411, or through a Microverter and UNIBUS Jorway. The package includes facilities for performing CAMAC operations remotely. The VAX on which the user runs his or her program need not be directly connected to the Jorway. Server programs allow a VAX connected via DECNET or a PDP-11 connected via a DR11-W link to be the route for accessing the CAMAC hardware.

  20. Journal of Applied Ecology 2006

    E-Print Network [OSTI]

    Thomas, Len

    Journal of Applied Ecology 2006 43, 377­384 © 2006 The Authors. Journal compilation © 2006 British Ecological Society Blackwell Publishing Ltd METHODOLOGICAL INSIGHTS Point transect sampling with traps, Etive House, Beechwood Park, Inverness IV2 3BW, UK Summary 1. The ability to monitor abundance of animal

  1. APPLIED MATHEMATICS AND SCIENTIFIC COMPUTING

    E-Print Network [OSTI]

    Rogina, Mladen

    APPLIED MATHEMATICS AND SCIENTIFIC COMPUTING Brijuni, Croatia June 23{27, 2003. y x Runge's example; Organized by: Department of Mathematics, Unversity of Zagreb, Croatia. Miljenko Maru#20;si#19;c, chairman;simir Veseli#19;c Andro Mikeli#19;c Sponsors: Ministry of Science and Technology, Croatia, CV Sistemi d

  2. Applied Sustainability Political Science 319

    E-Print Network [OSTI]

    Young, Paul Thomas

    1 Applied Sustainability Political Science 319 College of Charleston Spring 2013 Day/Time: TH 1 Address: fisherb@cofc.edu Office: 284 King Street, #206 (Office of Sustainability) Office Hours: by appt sustainability. It will focus on the development of semester-long sustainability projects, from conception

  3. California Energy Commission Apply Today!

    E-Print Network [OSTI]

    including HVAC and thermal energy storage system upgrades, stadium light conversion and a microturbineCalifornia Energy Commission Apply Today! "The College implemented all of the recommended projects Programs Office (916) 654-4147 pubprog@energy.state.ca.us "CEC financing allowed us to install many

  4. implementing bioenergy applied research & development

    E-Print Network [OSTI]

    Northern British Columbia, University of

    1 A Northern Centre for Renewable Energy implementing bioenergy applied research & development to develop local solutions to these challenges by integrating campus operations, education, and research will help the University meet its current and future energy needs, reduce or eliminate our greenhouse gas

  5. Multiscale modeling of solar cells with interface phenomena

    E-Print Network [OSTI]

    Foster, David H; Peszynska, Malgorzata; Schneider, Guenter

    2013-01-01T23:59:59.000Z

    We describe a mathematical model for heterojunctions in semiconductors which can be used, e.g., for modeling higher efficiency solar cells. The continuum model involves well-known drift-diffusion equations posed away from the interface. These are coupled with interface conditions with a nonhomogeneous jump for the potential, and Robin-like interface conditions for carrier transport. The interface conditions arise from approximating the interface region by a lower-dimensional manifold. The data for the interface conditions are calculated by a Density Functional Theory (DFT) model over a few atomic layers comprising the interface region. We propose a domain decomposition method (DDM) approach to decouple the continuum model on subdomains which is implemented in every step of the Gummel iteration. We show results for CIGS/CdS, Si/ZnS, and Si/GaAs heterojunctions.

  6. Adsorption Trajectories and Free-Energy Separatrices for Colloidal Particles in Contact with a Liquid-Liquid Interface

    E-Print Network [OSTI]

    J. de Graaf; M. Dijkstra; R. van Roij

    2010-02-18T23:59:59.000Z

    We apply the recently developed triangular tessellation technique as presented in [J. de Graaf et al., Phys. Rev. E 80, 051405 (2009)] to calculate the free energy associated with the adsorption of anisotropic colloidal particles at a flat interface. From the free-energy landscape, we analyze the adsorption process, using a simplified version of Langevin dynamics. The present result is a first step to understand the time-dependent behavior of colloids near interfaces. This study shows a wide range of adsorption trajectories, where the emphasis lies on a strong dependence of the dynamics on the orientation of the colloid at initial contact with the interface. We believe that the observed orientational dependence in our simple model can be recovered in suitable experimental systems.

  7. IMA Journal of Applied Mathematics (2006) 71, 715-739 doi:10.1093/imamat/hxh116

    E-Print Network [OSTI]

    Kondic, Lou

    2006-01-01T23:59:59.000Z

    of a compressible gas and incompressible liquid separated by an interface with large surface tension in a thin inclined channel. The flow is driven by an applied pressure drop and gravity. Following the air­water case (Zhang et al., 2002), the storage and transfer of cryogenic fluids and safety and performance issues

  8. Interface control and snow crystal growth

    E-Print Network [OSTI]

    Jessica Li; Laura P. Schaposnik

    2015-05-08T23:59:59.000Z

    The growth of snow crystals is dependent on the temperature and saturation of the environment. In the case of dendrites, Reiter's local two-dimensional model provides a realistic approach to the study of dendrite growth. In this paper we obtain a new geometric rule that incorporates interface control, a basic mechanism of crystallization that is not taken into account in the original Reiter's model. By defining two new variables, growth latency and growth direction, our improved model gives a realistic model not only for dendrite but also for plate forms.

  9. Dense optical-electrical interface module

    SciTech Connect (OSTI)

    Paul Chang

    2000-12-21T23:59:59.000Z

    The DOIM (Dense Optical-electrical Interface Modules) is a custom-designed optical data transmission module employed in the upgrade of Silicon Vertex Detector of CDF experiment at Fermilab. Each DOIM module consists of a transmitter (TX) converting electrical differential input signals to optical outputs, a middle segment of jacketed fiber ribbon cable, and a receiver (RX) which senses the light inputs and converts them back to electrical signals. The targeted operational frequency is 53 MHz, and higher rate is achievable. This article outlines the design goals, implementation methods, production test results, and radiation hardness tests of these modules.

  10. Applying to Teacher Education Program at Purdue

    E-Print Network [OSTI]

    David Drasin

    2012-12-02T23:59:59.000Z

    Apply to the Teacher Education Program (TEP). Please remember to apply to the TEP(Gate A) if you wish to officially enroll in the. Professional Education ...

  11. Pinning of polymers and interfaces by random potentials

    E-Print Network [OSTI]

    Kenneth S. Alexander; Vladas Sidoravicius

    2006-07-05T23:59:59.000Z

    We consider a polymer, with monomer locations modeled by the trajectory of a Markov chain, in the presence of a potential that interacts with the polymer when it visits a particular site 0. Disorder is introduced by, for example, having the interaction vary from one monomer to another, as a constant $u$ plus i.i.d. mean-0 randomness. There is a critical value of $u$ above which the polymer is pinned, placing a positive fraction of its monomers at 0 with high probability. This critical point may differ for the quenched, annealed and deterministic cases. We show that self-averaging occurs, meaning that the quenched free energy and critical point are nonrandom, off a null set. We evaluate the critical point for a deterministic interaction ($u$ without added randomness) and establish our main result that the critical point in the quenched case is strictly smaller. We show that, for every fixed $u\\in\\mathbb{R}$, pinning occurs at sufficiently low temperatures. If the excursion length distribution has polynomial tails and the interaction does not have a finite exponential moment, then pinning occurs for all $u\\in\\mathbb{R}$ at arbitrary temperature. Our results apply to other mathematically similar situations as well, such as a directed polymer that interacts with a random potential located in a one-dimensional defect, or an interface in two dimensions interacting with a random potential along a wall.

  12. Applied Materials | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: Energy Resources JumpAnaconda,Anza ElectricInc Jump to:Applied

  13. Used Fuel Management System Interface Analyses - 13578

    SciTech Connect (OSTI)

    Howard, Robert; Busch, Ingrid [Oak Ridge National Laboratory, P.O. Box 2008, Bldg. 5700, MS-6170, Oak Ridge, TN 37831 (United States)] [Oak Ridge National Laboratory, P.O. Box 2008, Bldg. 5700, MS-6170, Oak Ridge, TN 37831 (United States); Nutt, Mark; Morris, Edgar; Puig, Francesc [Argonne National Laboratory (United States)] [Argonne National Laboratory (United States); Carter, Joe; Delley, Alexcia; Rodwell, Phillip [Savannah River National Laboratory (United States)] [Savannah River National Laboratory (United States); Hardin, Ernest; Kalinina, Elena [Sandia National Laboratories (United States)] [Sandia National Laboratories (United States); Clark, Robert [U.S. Department of Energy (United States)] [U.S. Department of Energy (United States); Cotton, Thomas [Complex Systems Group (United States)] [Complex Systems Group (United States)

    2013-07-01T23:59:59.000Z

    Preliminary system-level analyses of the interfaces between at-reactor used fuel management, consolidated storage facilities, and disposal facilities, along with the development of supporting logistics simulation tools, have been initiated to provide the U.S. Department of Energy (DOE) and other stakeholders with information regarding the various alternatives for managing used nuclear fuel (UNF) generated by the current fleet of light water reactors operating in the United States. An important UNF management system interface consideration is the need for ultimate disposal of UNF assemblies contained in waste packages that are sized to be compatible with different geologic media. Thermal analyses indicate that waste package sizes for the geologic media under consideration by the Used Fuel Disposition Campaign may be significantly smaller than the canisters being used for on-site dry storage by the nuclear utilities. Therefore, at some point along the UNF disposition pathway, there could be a need to repackage fuel assemblies already loaded and being loaded into the dry storage canisters currently in use. The implications of where and when the packaging or repackaging of commercial UNF will occur are key questions being addressed in this evaluation. The analysis demonstrated that thermal considerations will have a major impact on the operation of the system and that acceptance priority, rates, and facility start dates have significant system implications. (authors)

  14. Interface Tensions and Perfect Wetting in the Two-Dimensional Seven-State Potts Model

    E-Print Network [OSTI]

    B. Grossmann; Sourendu Gupta

    1993-10-25T23:59:59.000Z

    We present a numerical determination of the order-disorder interface tension, \\sod, for the two-dimensional seven-state Potts model. We find $\\sod=0.0114\\pm0.0012$, in good agreement with expectations based on the conjecture of perfect wetting. We take into account systematic effects on the technique of our choice: the histogram method. Our measurements are performed on rectangular lattices, so that the histograms contain identifiable plateaus. The lattice sizes are chosen to be large compared to the physical correlation length. Capillary wave corrections are applied to our measurements on finite systems.

  15. The Confined-Deconfined Interface Tension in Quenched QCD using the Histogram Method

    E-Print Network [OSTI]

    B. Grossmann; M. L. Laursen

    1993-01-28T23:59:59.000Z

    We present results for the confinement-deconfinement interface tension $\\sigma_{cd}$ of quenched QCD. They were obtained by applying Binder's histogram method to lattices of size $L^2\\times L_z\\times L_t$ for $L_t=2$ and $L=8,10,12\\mbox{ and }14$ and various $L_z\\in [L,\\, 4\\, L]$. The use of a multicanonical algorithm and rectangular geometries have turned out to be crucial for the numerical studies. We also give an estimate for $\\sigma_{cd}$ at $L_t=4$ using published data.

  16. Surface tension of isotropic-nematic interfaces: Fundamental Measure Theory for hard spherocylinders

    E-Print Network [OSTI]

    René Wittmann; Klaus Mecke

    2014-03-10T23:59:59.000Z

    A fluid constituted of hard spherocylinders is studied using a density functional theory for non-spherical hard particles, which can be written as a function of weighted densities. This is based on an extended deconvolution of the Mayer $f$-function for arbitrarily shaped convex hard bodies in tensorial weight functions, which depend each only on the shape and orientation of a single particle. In the course of an examination of the isotropic- nematic interface at coexistence the functional is applied to anisotropic and inhomogeneous problems for the first time. We find good qualitative agreement with other theoretical predictions and also with Monte-Carlo simulations.

  17. Heat Transfer Interface for Thermo-Solar Energy - Energy Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thermal Solar Thermal Building Energy Efficiency Building Energy Efficiency Find More Like This Return to Search Heat Transfer Interface for Thermo-Solar Energy Lawrence Berkeley...

  18. accident code interfaces: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    operating systems 5 Flavour Les Houches Accord: Interfacing Flavour related Codes HEP - Experiment (arXiv) Summary: We present the Flavour Les Houches Accord (FLHA)...

  19. Linked Reactivity at Mineral-Water Interfaces Through Bulk Crystal...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at mineral-water interfaces is of fundamental importance to geochemistry, but for minerals that are natural semiconductors the pursuit of mechanistic understanding is uniquely...

  20. Structure, defects, and strain in silicon-silicon oxide interfaces

    SciTech Connect (OSTI)

    Kova?evi?, Goran, E-mail: gkova@irb.hr; Pivac, Branko [Department of Materials Physics, Rudjer Boskovic Institute, Bijeni?ka 56, P.O.B. 180, HR-10002 Zagreb (Croatia)

    2014-01-28T23:59:59.000Z

    The structure of the interfaces between silicon and silicon-oxide is responsible for proper functioning of MOSFET devices while defects in the interface can deteriorate this function and lead to their failure. In this paper we modeled this interface and characterized its defects and strain. MD simulations were used for reconstructing interfaces into a thermodynamically stable configuration. In all modeled interfaces, defects were found in the form of three-coordinated silicon atom, five coordinated silicon atom, threefold-coordinated oxygen atom, or displaced oxygen atom. Three-coordinated oxygen atom can be created if dangling bonds on silicon are close enough. The structure and stability of three-coordinated silicon atoms (P{sub b} defect) depend on the charge as well as on the electric field across the interface. The negatively charged P{sub b} defect is the most stable one, but the electric field resulting from the interface reduces that stability. Interfaces with large differences in periodic constants of silicon and silicon oxide can be stabilized by buckling of silicon layer. The mechanical stress resulted from the interface between silicon and silicon oxide is greater in the silicon oxide layer. Ab initio modeling of clusters representing silicon and silicon oxide shows about three time larger susceptibility to strain in silicon oxide than in silicon if exposed to the same deformation.

  1. The plant-soil interface: understanding dynamic interactions...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    plant-soil interface: understanding dynamic interactions in the context of environmental change Gary Stacey 1 , Ljlijana Pasa-Tolic 2 , Himadri Pakrasi 3 , David Hoyt 2 , Alice...

  2. Interface Modifications by Anion Acceptors for High Energy Lithium...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Modifications by Anion Acceptors for High Energy Lithium Ion Batteries. Interface Modifications by Anion Acceptors for High Energy Lithium Ion Batteries. Abstract: Li-rich, Mn-rich...

  3. application program interface: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 A Java Application Programming Interface to a Multimedia Enhanced Object-Oriented DBMS Computer Technologies and Information Sciences Websites Summary: A Java Application...

  4. application programming interface: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6 A Java Application Programming Interface to a Multimedia Enhanced Object-Oriented DBMS Computer Technologies and Information Sciences Websites Summary: A Java Application...

  5. Nitride semiconductor Surface and interface characterization and device design

    E-Print Network [OSTI]

    Zhang, Hongtao

    2006-01-01T23:59:59.000Z

    Lett. 80 , D. Schroder, Semiconductor Material and Devicein III-V Nitride Semiconductors: Applications and Devices ,SAN DIEGO Nitride Semiconductor Surface and Interface

  6. HCI AND SOFTWARE ENGINEERING FOR USER INTERFACE PLASTICITY

    E-Print Network [OSTI]

    Boyer, Edmond

    52 HCI AND SOFTWARE ENGINEERING FOR USER INTERFACE PLASTICITY Joëlle analysis are perceived as too demand- ing in terms of time and competence

  7. adesiva da interface: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in a landfill cap or base liner systemi Internal and Interface Shear Strength of Geosynthetic Clay Liners (GCLs) by John Scott Mc Strength of Geosynthetic Clay Liners (GCLs)...

  8. advanced user interface: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    overload and under load. First, we take a historical look at how the fields of human-computer interaction and artificial intelligence have viewed interface agent research....

  9. Human-system Interfaces to Automatic Systems: Review Guidance and Technical Basis

    SciTech Connect (OSTI)

    OHara, J.M.; Higgins, J.C.

    2010-01-31T23:59:59.000Z

    Automation has become ubiquitous in modern complex systems and commercial nuclear power plants are no exception. Beyond the control of plant functions and systems, automation is applied to a wide range of additional functions including monitoring and detection, situation assessment, response planning, response implementation, and interface management. Automation has become a 'team player' supporting plant personnel in nearly all aspects of plant operation. In light of the increasing use and importance of automation in new and future plants, guidance is needed to enable the NRC staff to conduct safety reviews of the human factors engineering (HFE) aspects of modern automation. The objective of the research described in this report was to develop guidance for reviewing the operator's interface with automation. We first developed a characterization of the important HFE aspects of automation based on how it is implemented in current systems. The characterization included five dimensions: Level of automation, function of automation, modes of automation, flexibility of allocation, and reliability of automation. Next, we reviewed literature pertaining to the effects of these aspects of automation on human performance and the design of human-system interfaces (HSIs) for automation. Then, we used the technical basis established by the literature to develop design review guidance. The guidance is divided into the following seven topics: Automation displays, interaction and control, automation modes, automation levels, adaptive automation, error tolerance and failure management, and HSI integration. In addition, we identified insights into the automaton design process, operator training, and operations.

  10. doi: 10.1098/rsif.2009.0514 , 1219-1227 first published online 17 February 201072010J. R. Soc. Interface

    E-Print Network [OSTI]

    McKane, Alan

    . Interface Andrew J. Black and Alan J. McKane dynamics of whooping cough Stochasticity in staged models: quantifying the dynamics of whooping cough Andrew J. Black and Alan J. McKane* Theoretical Physics Group of a suitable approximation, we apply the formalism to ana- lyse a model of whooping cough which includes

  11. Unified Description of Bulk and Interface-Enhanced Spin Pumping S. M. Watts, J. Grollier,* C. H. van der Wal, and B. J. van Wees

    E-Print Network [OSTI]

    van der Wal, Caspar H.

    Unified Description of Bulk and Interface-Enhanced Spin Pumping S. M. Watts, J. Grollier,* C. H in semiconductors or metals by rf magnetic field pumping. With a semiclassical model we show that a rotating applied dynamics of a ferromagnetic electrode into or out of which the spin currents flow. In spin-pumping devices

  12. CX-012313: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Chicago Office Technical Support Services Contract CX(s) Applied: A8 Date: 06/13/2014 Location(s): CX: none Offices(s): Chicago Office

  13. CX-007858: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Southwest Solar Transformation Initiative CX(s) Applied: A9, A11 Date: 01/27/2012 Location(s): California Offices(s): Golden Field Office

  14. CX-010367: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Asbestos Abatement Actions CX(s) Applied: B1.16 Date: 11/19/2012 Location(s): Tennessee, California, Virginia Offices(s): Berkeley Site Office

  15. CX-010258: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Bangladesh Meteorological Instrumentation Installation CX(s) Applied: A9 Date: 04/26/2013 Location(s): Colorado Offices(s): Golden Field Office

  16. CX-012632: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    LURR 20140456 - Salmon Creek Avenue Pathway Project CX(s) Applied: B4.9Date: 41885 Location(s): WashingtonOffices(s): Bonneville Power Administration

  17. CX-001373: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Analytical Development Tritium Support Laboratory for Mass Spectroscopy, Infrared Spectroscopy, and Raman CX(s) Applied: B3.6 Date: 03102010 Location(s): Aiken,...

  18. CX-004196: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    6: Categorical Exclusion Determination CX-004196: Categorical Exclusion Determination Infrared and Raman Spectroscopy of Biological Safety Level-1 Biological Samples CX(s) Applied:...

  19. CX-000331: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-000331: Categorical Exclusion Determination Kentucky Revision 2 - Commercial Office Building Retrofit Showcase CX(s) Applied: B1.4, B1.5,...

  20. CX-003518: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-003518: Categorical Exclusion Determination Energy from Biomass Research and Technology Transfer Program CX(s) Applied: B3.6 Date: 08232010...

  1. CX-012089: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    CX-012089: Categorical Exclusion Determination Wood Pole Testing for 20 Transmission Lines in Southern Arizona and Southern California CX(s) Applied: B3.1 Date: 04172014...

  2. CX-000815: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    0815: Categorical Exclusion Determination CX-000815: Categorical Exclusion Determination Hydrogen Technology Laboratory 140 - Chromatography, Wet Laboratory CX(s) Applied: B3.6...

  3. CX-009005: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Henderson Solar Energy Project CX(s) Applied: B5.16 Date: 08/22/2012 Location(s): Nevada Offices(s): Golden Field Office

  4. CX-011116: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Sunpath SANFAB CX(s) Applied: B5.16 Date: 08/09/2013 Location(s): Nevada Offices(s): Golden Field Office

  5. CX-012474: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Refractories/Ceramics Project CX(s) Applied: B3.6Date: 41870 Location(s): OregonOffices(s): National Energy Technology Laboratory

  6. CX-005151: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-005151: Categorical Exclusion Determination United States-China Advanced Coal Technologies Consortium - University of Wyoming CX(s) Applied: A9, A11...

  7. CX-005154: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-005154: Categorical Exclusion Determination United States-China Advanced Coal Technologies Consortium - University of Kentucky CX(s) Applied: A9, A11,...

  8. CX-005159: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-005159: Categorical Exclusion Determination United States-China Advanced Coal Technologies Consortium - Indiana Geological Survey CX(s) Applied: A9,...

  9. CX-008691: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Mason Substation Metering Replacement Project CX(s) Applied: B1.7 Date: 06/25/2012 Location(s): Washington Offices(s): Bonneville Power Administration

  10. CX-011237: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Lightspeed Networks Inc. Fiber Installation CX(s) Applied: B4.9 Date: 10/24/2013 Location(s): Oregon Offices(s): Bonneville Power Administration

  11. CX-006471: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    CX-006471: Categorical Exclusion Determination Air Awareness Campaign Electric Car Charging Station CX(s) Applied: B5.1 Date: 08042011 Location(s): Greenville, South...

  12. CX-000903: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    903: Categorical Exclusion Determination CX-000903: Categorical Exclusion Determination Smart Grid Photovoltaic Pilot CX(s) Applied: B5.1 Date: 02242010 Location(s): Illinois...

  13. CX-012015: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exclusion Determination CX-012015: Categorical Exclusion Determination Enhanced Wind Resource Assessment with Sonic Ranging and Detection at Tooele Army Depot CX(s) Applied:...

  14. CX-012110: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Categorical Exclusion Determination Defense Logistics Agency, Tracy, California, Wind Resource Assessment CX(s) Applied: A9, B3.1 Date: 05072014 Location(s): California...

  15. CX-002753: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Determination CX-002753: Categorical Exclusion Determination Gilt Edge Mine Wind Resource Assessment CX(s) Applied: B3.1 Date: 06212010 Location(s): Deadwood, South...

  16. CX-002823: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    CX-002823: Categorical Exclusion Determination Nebraska College of Technical Agriculture Biomass Facility CX(s) Applied: B5.1 Date: 06242010 Location(s): Curtis, Nebraska...

  17. CX-006074: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exclusion Determination CX-006074: Categorical Exclusion Determination Bay Area Photovoltaics Consortium, Photovoltaic Manufacturing Initiative CX(s) Applied: A9 Date: 0628...

  18. CX-007549: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Harrisonville - Waste Water Treatment Plant CX(s) Applied: B5.1 Date: 01/10/2012 Location(s): Missouri Offices(s): Golden Field Office

  19. CX-007571: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Pulaski County - Wastewater CX(s) Applied: B5.1 Date: 12/29/2011 Location(s): Missouri Offices(s): Golden Field Office

  20. CX-008797: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Coal Pile Basin Project CX(s) Applied: B1.29 Date: 06/04/2012 Location(s): Tennessee Offices(s): Y-12 Site Office

  1. CX-010590: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Kalispell Shunt Cap Addition Project CX(s) Applied: B4.11 Date: 07/01/2013 Location(s): Montana Offices(s): Bonneville Power Administration

  2. CX-008234: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Whole Energy Glycerin Refinery CX(s) Applied: B5.15 Date: 04/20/2012 Location(s): Washington Offices(s): Golden Field Office

  3. CX-011564: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Excess Facilities Deactivation and Demolition CX(s) Applied: B1.23 Date: 11/05/2013 Location(s): Idaho Offices(s): Idaho Operations Office

  4. CX-012724: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Advanced Test Reactor (ATR) Electronic Message Board Installation CX(s) Applied: B1.7Date: 41830 Location(s): IdahoOffices(s): Nuclear Energy

  5. CX-002964: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination CX-002964: Categorical Exclusion Determination Wind Energy and Sustainable Energy Solutions CX(s) Applied: B3.11, A9 Date: 07092010...

  6. CX-005201: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-005201: Categorical Exclusion Determination Tall Tower Wind Energy Monitoring and Numerical Model Validation in Southern Nevada CX(s) Applied: A9,...

  7. CX-003507: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination State Energy Program American Recovery and Reinvestment Act: Solar Power Incorporated Photovoltaic Panel Manufacturing Facility CX(s) Applied: B1.31,...

  8. CX-012810: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    St. Johns-Keeler Minor Access Road Improvement CX(s) Applied: B1.3Date: 41901 Location(s): OregonOffices(s): Bonneville Power Administration

  9. CX-011368: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    High Temperature Thermal Properties CX(s) Applied: B1.31 Date: 10/23/2013 Location(s): Idaho Offices(s): Idaho Operations Office

  10. CX-011798: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Analytical Physics - Thermal Analysis CX(s) Applied: B3.6 Date: 01/30/2014 Location(s): Oregon Offices(s): National Energy Technology Laboratory

  11. CX-001724: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CX-001724: Categorical Exclusion Determination Recovery Act City of Boise Energy Efficiency and Conservation Block Grant (EECBG) CX(s) Applied: B5.1 Date: 04122010...

  12. Categorical Exclusion Determinations: Western Area PowerAdministratio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Center October 26, 2009 CX-005544: Categorical Exclusion Determination Power Rate Formula for the Provo River Project of the Western Area Power Administration CX(s) Applied:...

  13. CX-012706: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Radiochemistry Laboratory (RCL) Supply Intake Filter Housing CX(s) Applied: B2.5Date: 41858 Location(s): IdahoOffices(s): Nuclear Energy

  14. CX-008684: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Metaline Radio Station Upgrade Project CX(s) Applied: B1.19 Date: 07/11/2012 Location(s): Washington Offices(s): Bonneville Power Administration

  15. CX-009465: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination Temporal Characterization of Hydrates System Dynamics Beneath Seafloor Mounds: Integrating Time-Lapse CX(s) Applied: B3.6 Date: 10182012...

  16. CX-009462: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination Temporal Characterization of Hydrates System Dynamics Beneath Seafloor Mounds: Integrating Time-Lapse CX(s) Applied: A9, A11 Date: 1018...

  17. CX-011295: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-011295: Categorical Exclusion Determination Material Dynamics and Kinetics Lab CX(s) Applied: B3.6 Date: 10172013 Location(s): Pennsylvania...

  18. CX-009463: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination Temporal Characterization of Hydrates System Dynamics Beneath Seafloor Mounds: Integrating Time-Lapse CX(s) Applied: B3.6 Date: 10182012...

  19. CX-009464: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination Temporal Characterization of Hydrates System Dynamics beneath Seafloor Mounds: Integrating Time-Lapse CX(s) Applied: A9, A11 Date: 1018...

  20. CX-012776: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Catalyst Processing, KCP14-05 CX(s) Applied: NOT NOTEDDate: 41857 Location(s): MissouriOffices(s): Kansas City Site Office

  1. CX-008215: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Small Hydropower Research and Development Technology Project CX(s) Applied: A9 Date: 04/03/2012 Location(s): Colorado Offices(s): Golden Field Office

  2. CX-011535: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    East Grangeville Substation Sale CX(s) Applied: B1.24 Date: 11/14/2013 Location(s): Idaho Offices(s): Bonneville Power Administration

  3. CX-012233: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Shed Acquisition at Kalispell Substation CX(s) Applied: B1.24 Date: 06/09/2014 Location(s): Montana Offices(s): Bonneville Power Administration

  4. CX-012622: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Replace roofing system at 702-F CX(s) Applied: B1.3Date: 41799 Location(s): South CarolinaOffices(s): Savannah River Operations Office

  5. CX-012621: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Replace 730-2B Roof CX(s) Applied: B1.3Date: 41799 Location(s): South CarolinaOffices(s): Savannah River Operations Office

  6. CX-012433: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Computer Simulation and Prototype Construction and Testing CX(s) Applied: A9Date: 41878 Location(s): GeorgiaOffices(s): National Energy Technology Laboratory

  7. CX-010689: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Generic CX Determination for Financial Assistance Awards CX(s) Applied: Unknown Date: 07/17/2013 Location(s): Illinois Offices(s): Chicago Office

  8. Categorical Exclusion (CX) Determinations By Date | Department...

    Office of Environmental Management (EM)

    (CX) Determinations By Date Categorical Exclusion (CX) Determinations By Date August 25, 2015 CX-012469: Categorical Exclusion Determination Gas Analysis Services CX(s) Applied:...

  9. CX-010869: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Nauticas Research Program CX(s) Applied: B3.6 Date: 08/07/2013 Location(s): Illinois Offices(s): Argonne Site Office

  10. CX-012664: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    SBIR/STTR Phase 0 Outreach and Assistance Program CX(s) Applied: A8Date: 41844 Location(s): IllinoisOffices(s): Chicago Office

  11. CX-010581: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Little Shell Property Funding CX(s) Applied: B1.25 Date: 07/16/2013 Location(s): Montana Offices(s): Bonneville Power Administration

  12. CX-011252: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exclusion Determination CX-011252: Categorical Exclusion Determination Concentrating Solar Power Heat Integration for Baseload Renewable Energy Deployment CX(s) Applied: A9...

  13. CX-004374: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    74: Categorical Exclusion Determination CX-004374: Categorical Exclusion Determination Solar Electric Power for Nonsectarian Educational and Social CX(s) Applied: A9, B5.1 Date:...

  14. CX-011391: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exclusion Determination CX-011391: Categorical Exclusion Determination Municipal Complex Solar Power Project CX(s) Applied: B3.14 Date: 12102013 Location(s): New Jersey...

  15. CX-008507: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-008507: Categorical Exclusion Determination Midwest Regional Carbon Sequestration Partnership - Phase Three CX(s) Applied: B3.1, B5.3 Date: 07162012...

  16. CX-007111: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-007111: Categorical Exclusion Determination Shallow Carbon Sequestration Demonstration Project (Iatan Generating Station) CX(s) Applied: B3.1...

  17. CX-008476: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    CX-008476: Categorical Exclusion Determination Small Scale Field Test Demonstrating Carbon Dioxide Sequestration in the Arbuckle Saline Aquifer CX(s) Applied: A9, B1.15,...

  18. CX-007118: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-007118: Categorical Exclusion Determination Shallow Carbon Sequestration Demonstration Project CX(s) Applied: B3.1 Date: 10042011...

  19. CX-009326: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-009326: Categorical Exclusion Determination Midwest Regional Carbon Sequestration Partnership - Subtask 1.7 CX(s) Applied: B3.1 Date: 09282012...

  20. CX-000591: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination 25A2936 - Carbon Nanotube Membranes for Energy-Efficient Carbon Sequestration CX(s) Applied: B3.6 Date: 12152009 Location(s): California...

  1. CX-003037: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Determination CX-003037: Categorical Exclusion Determination Mercury Removal from Clean Coal Processing Air Stream CX(s) Applied: B3.6 Date: 07132010 Location(s): Butte,...

  2. CX-011165: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Heavy Mineral Separation CX(s) Applied: B3.6 Date: 08/07/2013 Location(s): South Carolina Offices(s): Savannah River Operations Office

  3. CX-012716: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    General Scientific Infrastructure Support for University of Wisconsin CX(s) Applied: B1.31Date: 41844 Location(s): WisconsinOffices(s): Nuclear Energy

  4. CX-011115: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Realization of Algae Potential CX(s) Applied: A9 Date: 08/29/2013 Location(s): New Mexico Offices(s): Golden Field Office

  5. CX-007844: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Energy Retrofits CX(s) Applied: B5.1 Date: 12/01/2011 Location(s): Rhode Island Offices(s): Energy Efficiency and Renewable Energy

  6. CX-007689: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Tech Research Corporation- Prosumer-Based Distributed Autonomous Cyber-Physical Architecture for Ultra-Reliable Green Electricity Internetworks CX(s) Applied: A9 Date: 1118...

  7. CX-000734: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    CX-000734: Categorical Exclusion Determination Detection and Production of Methane Hydrates CX(s) Applied: A9 Date: 01222010 Location(s): Stillwater, Oklahoma Office(s):...

  8. CX-000733: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    CX-000733: Categorical Exclusion Determination Detection and Production of Methane Hydrates CX(s) Applied: A9 Date: 01222010 Location(s): Austin, Texas Office(s): Fossil...

  9. CX-010941: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    CX-010941: Categorical Exclusion Determination Assessing the Response of Methane Hydrates to Environmental Change at the Svalbard Continental Margin CX(s) Applied: B3.6,...

  10. CX-007388: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exclusion Determination CX-007388: Categorical Exclusion Determination Regional Test Center Project: Solar Technology Acceleration Center (SolarTAC) CX(s) Applied: B1.15,...

  11. CX-012245: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5: Categorical Exclusion Determination CX-012245: Categorical Exclusion Determination Hydro Research Foundation University Research Awards - Carnegie Mellon CX(s) Applied: A9 Date:...

  12. CX-012253: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3: Categorical Exclusion Determination CX-012253: Categorical Exclusion Determination Hydro Research Foundation University Research Awards - OSU CX(s) Applied: A9 Date: 05272014...

  13. CX-012252: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2: Categorical Exclusion Determination CX-012252: Categorical Exclusion Determination Hydro Research Foundation University Research Awards- Cornell CX(s) Applied: A9, B3.16 Date:...

  14. CX-012254: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4: Categorical Exclusion Determination CX-012254: Categorical Exclusion Determination Hydro Research Foundation University Research Awards - Vanderbilt CX(s) Applied: A9 Date: 05...

  15. CX-003904: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    904: Categorical Exclusion Determination CX-003904: Categorical Exclusion Determination Hydro Electric Project - Snohomish Public Utility District CX(s) Applied: A9, A11, B5.1...

  16. CX-012246: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6: Categorical Exclusion Determination CX-012246: Categorical Exclusion Determination Hydro Research Foundation University Research Awards - University of Tennessee CX(s) Applied:...

  17. CX-012241: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1: Categorical Exclusion Determination CX-012241: Categorical Exclusion Determination Hydro Research Foundation University Research Awards - MIT CX(s) Applied: A9, B3.6 Date: 06...

  18. CX-011534: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Grays River Confluence Property Funding CX(s) Applied: B1.25 Date: 11/08/2013 Location(s): Washington Offices(s): Bonneville Power Administration

  19. CX-012434: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Low Cost Titanium Casting Technology CX(s) Applied: B3.6Date: 41878 Location(s): OhioOffices(s): National Energy Technology Laboratory

  20. CX-009542: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Solar Parks Project CX(s) Applied: B5.16 Date: 11/09/2012 Location(s): Florida Offices(s): Golden Field Office

  1. CX-003403: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    CX-003403: Categorical Exclusion Determination The Snake River Geothermal Drilling Project - Innovative Approaches to Geothermal Exploration CX(s) Applied: A9, B3.7...

  2. CX-002745: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    CX-002745: Categorical Exclusion Determination The Snake River Geothermal Drilling Project - Innovative Approaches to Geothermal Exploration CX(s) Applied: B3.1, A9...

  3. CX-006681: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-006681: Categorical Exclusion Determination New Drilling Location in Section 29 CX(s) Applied: B3.1 Date: 12232009 Location(s): Casper,...

  4. CX-006682: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-006682: Categorical Exclusion Determination New Drilling Location in Section 29 (Revision 1) CX(s) Applied: B3.7 Date: 06022010 Location(s):...

  5. CX-008486: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    CX-008486: Categorical Exclusion Determination Demonstration of Gas Powered Drilling Operations for Economically-Challenged Wellhead Gas and Evaluation CX(s) Applied:...

  6. CX-007941: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination Zonal Isolation Improvement for Horizontal Wells Drilling in the Marcellus Shale CX(s) Applied: A9 Date: 02152012 Location(s): Texas...

  7. CX-003888: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-003888: Categorical Exclusion Determination Improved Drilling and Fracturing Fluids for Shale Gas Reservoirs CX(s) Applied: B3.6 Date: 09102010...

  8. CX-007940: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination Zonal Isolation Improvement for Horizontal Wells Drilling in the Marcellus Shale CX(s) Applied: B3.6 Date: 02152012 Location(s): Texas...

  9. CX-005582: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination Foro Energy, Incorporated - Low-Contact Drilling Technology to Enable Economical Enhance Geothermal System Wells CX(s) Applied: B3.6,...

  10. CX-000855: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Determination CX-000855: Categorical Exclusion Determination 25A5208 - Low-contact Drilling Technology to Enable Economical Engineered Geothermal System Wells CX(s) Applied:...

  11. CX-008876: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Railroad Island Property Funding CX(s) Applied: B1.25 Date: 08/23/2012 Location(s): Oregon Offices(s): Bonneville Power Administration

  12. CX-011239: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Security Upgrades at Multiple Substations CX(s) Applied: ? Date: 10/02/2013 Location(s): Oregon, Washington Offices(s): Bonneville Power Administration

  13. CX-010739: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Golden State Solar Impact CX(s) Applied: A9, A11 Date: 08/15/2013 Location(s): California Offices(s): Golden Field Office

  14. CX-011044: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    CX-011044: Categorical Exclusion Determination High Hydrogen, Low Methane Syngas from Low Ranked Coals for Coal-to-Liquids Production CX(s) Applied: A9 Date: 0910...

  15. CX-010751: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Solar Ready 2 CX(s) Applied: A9, A11 Date: 08/15/2013 Location(s): Missouri Offices(s): Golden Field Office

  16. CX-004015: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exclusion Determination CX-004015: Categorical Exclusion Determination Arizona Balance of State- Energy Efficiency and Conservation Block Grant Wickenburg CX(s) Applied:...

  17. CX-009555: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-009555: Categorical Exclusion Determination Assisting the Tooling and Machining Industry to Become Energy Efficient CX(s) Applied: A9 Date: 12102012...

  18. CX-000835: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-000835: Categorical Exclusion Determination Wachs Cutter Tooling Station (4495) CX(s) Applied: B1.31 Date: 02112010 Location(s): Oak Ridge,...

  19. CX-012310: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Sawmill Creek Stream Bank Erosion CX(s) Applied: B1.3 Date: 06/06/2014 Location(s): Illinois Offices(s): Argonne Site Office

  20. CX-010338: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Eugene Substation Fiber Interconnection CX(s) Applied: B4.7 Date: 05/21/2013 Location(s): Oregon Offices(s): Bonneville Power Administration

  1. CX-011531: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Targhee Substation Land Acquisition CX(s) Applied: B1.24 Date: 11/05/2013 Location(s): Idaho Offices(s): Bonneville Power Administration

  2. CX-010435: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    De Moss Substation Expansion CX(s) Applied: B4.6 Date: 06/03/2013 Location(s): Oregon Offices(s): Bonneville Power Administration

  3. CX-011384: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Categorical Exclusion Determination Advanced Controls for the Multi-pod Centipod Wave Energy Converter Device CX(s) Applied: A9 Date: 12022013 Location(s): California...

  4. CX-011537: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Wanacut Creek Upper Property Funding CX(s) Applied: B1.25 Date: 11/26/2013 Location(s): Washington Offices(s): Bonneville Power Administration

  5. CX-011538: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Ninemile Creek Lower Property Funding CX(s) Applied: B1.25 Date: 11/26/2013 Location(s): Washington Offices(s): Bonneville Power Administration

  6. CX-011536: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Aeneans Creek Spring Property Funding CX(s) Applied: B1.25 Date: 11/25/2013 Location(s): Washington Offices(s): Bonneville Power Administration

  7. CX-011416: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Technology Integration Program CX(s) Applied: A9, A11 Date: 12/19/2013 Location(s): Ohio Offices(s): National Energy Technology Laboratory

  8. CX-010778: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Technology Integration Program CX(s) Applied: A9, A11 Date: 08/23/2013 Location(s): Oklahoma Offices(s): National Energy Technology Laboratory

  9. CX-012472: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Technology Integration Program CX(s) Applied: A9, A11, B3.11Date: 41873 Location(s): OhioOffices(s): National Energy Technology Laboratory

  10. CX-012038: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Deepwater Reverse-Circulation Primary Cementing CX(s) Applied: A9 Date: 04/17/2014 Location(s): Texas Offices(s): National Energy Technology Laboratory

  11. CX-010582: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Spring Creek Property Funding CX(s) Applied: B1.25 Date: 07/16/2013 Location(s): Montana Offices(s): Bonneville Power Administration

  12. CX-003706: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination Development and Demonstration of an Innovative Thermal Energy Storage System for Baseload Solar Power Generation CX(s) Applied: A9, B3.6...

  13. CX-004217: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Replacement Facets for Central Receiver Test Facility Heliostats at the National Solar Thermal Test Facility (American Recovery and Reinvestment Act Funded) CX(s) Applied:...

  14. CX-003222: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    and Reinvestment Act State Energy Program - Eastern Oregon Correctional Institution Solar Thermal CX(s) Applied: B5.1 Date: 08032010 Location(s): Pendleton, Oregon...

  15. CX-004251: Categorical Exclusion Determination | Department of...

    Energy Savers [EERE]

    CX-004251: Categorical Exclusion Determination High Yield Hybrid Cellulosic Ethanol Process Using High-Impact Feedstock for Commercialization by 2013 CX(s) Applied: A9,...

  16. CX-003208: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-003208: Categorical Exclusion Determination Michigan 85% Ethanol Fuel (E85) Infrastructure Project CX(s) Applied: B5.1 Date: 08032010 Location(s):...

  17. CX-003471: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-003471: Categorical Exclusion Determination Pennsylvania Ethanol Fuel (E85) Corridor Project - Lew's Service Center CX(s) Applied: B5.1 Date: 0823...

  18. CX-011215: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Nepese Marsh Upgrades CX(s) Applied: B2.5 Date: 10/17/2013 Location(s): Illinois Offices(s): Fermi Site Office

  19. CX-008534: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Peter Wentz Geothermal CX(s) Applied: B5.19 Date: 05/23/2012 Location(s): Pennsylvania Offices(s): Golden Field Office

  20. CX-008204: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Energize Missouri HUG Finch CX(s) Applied: B5.19 Date: 03/23/2012 Location(s): Missouri Offices(s): Golden Field Office

  1. CX-008203: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Energize Missouri HUG Demoret CX(s) Applied: B5.19 Date: 03/23/2012 Location(s): Missouri Offices(s): Golden Field Office

  2. CX-009442: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Cutters Grove, Anoka CX(s) Applied: A9, B5.19 Date: 07/31/2012 Location(s): Minnesota Offices(s): Golden Field Office

  3. CX-007836: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Building Retrofits CX(s) Applied: B5.19 Date: 01/30/2012 Location(s): Illinois Offices(s): Energy Efficiency and Renewable Energy

  4. CX-008241: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Energize Missouri HUG Teter CX(s) Applied: B5.19 Date: 05/15/2012 Location(s): Missouri Offices(s): Golden Field Office

  5. CX-008205: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Energize Missouri HUG Weaver CX(s) Applied: B5.19 Date: 03/23/2012 Location(s): Missouri Offices(s): Golden Field Office

  6. CX-010583: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Upper Jocko River Property Funding CX(s) Applied: B1.25 Date: 07/16/2013 Location(s): Montana Offices(s): Bonneville Power Administration

  7. CX-007925: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Determination CX-007925: Categorical Exclusion Determination Severe Environment Corrosion and Erosion Research Facility CX(s) Applied: B3.6 Date: 02222012 Location(s):...

  8. CX-006048: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Determination CX-006048: Categorical Exclusion Determination Severe Environmental Corrosion & Erosion Research Facility (SECERF) CX(s) Applied: B3.6 Date: 06082011...

  9. CX-006395: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination CX-006395: Categorical Exclusion Determination Corrosion Tests on Carbon Steel Exposed to Oxalic Acid and a Sludge Simulant CX(s) Applied:...

  10. CX-005801: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Determination CX-005801: Categorical Exclusion Determination Polymer Synthesis, Corrosion, and Electrochemical Tests in Lab D-0115 CX(s) Applied: B3.6 Date: 03312011...

  11. CX-006043: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination CX-006043: Categorical Exclusion Determination CorrosionElectrochemistry Laboratory CX(s) Applied: B3.6 Date: 06082011 Location(s):...

  12. CX-005861: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-005861: Categorical Exclusion Determination Pretreatment Engineering Platform (PEP) Sludge Simulant Preparation CX(s) Applied: B3.6 Date: 03172011...

  13. CX-011131: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Puget Sound Pilot Tidal Energy Project CX(s) Applied: A9 Date: 08/13/2013 Location(s): Washington Offices(s): Golden Field Office

  14. CX-012195: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Alfalfa Substation Control House Replacement CX(s) Applied: B4.11 Date: 05/02/2014 Location(s): Washington Offices(s): Bonneville Power Administration

  15. CX-008683: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Shaniko Radio Station Replacement Project CX(s) Applied: B1.19 Date: 07/11/2012 Location(s): Oregon Offices(s): Bonneville Power Administration

  16. CX-012790: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Haystack Butte Radio Site Land Acquisition CX(s) Applied: B1.24Date: 41939 Location(s): WashingtonOffices(s): Bonneville Power Administration

  17. CX-009698: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Sale of Lakeside Radio Station CX(s) Applied: B1.24 Date: 12/27/2012 Location(s): Oregon Offices(s): Bonneville Power Administration

  18. CX-012231: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Mica Peak Radio Station upgrade CX(s) Applied: B1.19 Date: 06/09/2014 Location(s): Washington Offices(s): Bonneville Power Administration

  19. CX-011190: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Alberton Communication Site Construction CX(s) Applied: B1.19 Date: 08/26/2013 Location(s): Montana Offices(s): Bonneville Power Administration

  20. CX-002138: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-002138: Categorical Exclusion Determination Waste Digester Biogas Recovery System CX(s) Applied: B5.1 Date: 04292010 Location(s): Plover, Wisconsin...

  1. CX-005444: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination Energy Efficiency and Conservation Block Grant: Electric and Hybrid Vehicle Incremental Cost Recovery CX(s) Applied: B5.1 Date: 03222011 Location(s):...

  2. CX-012189: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Microbial Laboratory Analysis CX(s) Applied: B3.12 Date: 05/06/2014 Location(s): Illinois Offices(s): Argonne Site Office

  3. CX-009423: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Relay and Switchboard Panel Replacements CX(s) Applied: B4.6 Date: 10/29/2012 Location(s): Arkansas Offices(s): Southwestern Power Administration

  4. CX-010057: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Eugene Substation Protective Relay Installation CX(s) Applied: B1.7 Date: 01/29/2013 Location(s): Oregon Offices(s): Bonneville Power Administration

  5. CX-008803: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Milling Machine Replacement Projects CX(s) Applied: B1.31 Date: 05/14/2012 Location(s): Tennessee Offices(s): Y-12 Site Office

  6. CX-011194: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Particle Physics Division Outback Garage CX(s) Applied: B1.15 Date: 09/19/2013 Location(s): Illinois Offices(s): Fermi Site Office

  7. CX-010772: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Water Security Test Bed (WSTB) CX(s) Applied: B3.6 Date: 07/17/2013 Location(s): Idaho Offices(s): Nuclear Energy

  8. CX-011679: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Antifoam Degradation Testing CX(s) Applied: B3.6 Date: 12/05/2013 Location(s): South Carolina Offices(s): Savannah River Operations Office

  9. CX-012118: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Hydro Research Foundation University Research Awards - Tufts CX(s) Applied: A9 Date: 05/21/2014 Location(s): Georgia Offices(s): Golden Field Office

  10. CX-012255: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exclusion Determination Hydro Research Foundation University Research Awards - University of Washington CX(s) Applied: A9 Date: 05272014 Location(s): Washington...

  11. CX-010951: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Automotive Technology Analysis CX(s) Applied: A8 Date: 09/17/2013 Location(s): Virginia Offices(s): National Energy Technology Laboratory

  12. CX-001416: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exclusion Determination CX-001416: Categorical Exclusion Determination Integration of Solar Energy in the City of Boston's Emergency Preparedness Infrastructure CX(s) Applied:...

  13. CX-003569: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Determination Ohio Advanced Transportation Partnership - Pike Delta York Schools Propane Vehicle Fueling Station CX(s) Applied: B5.1 Date: 08242010 Location(s): Delta, Ohio...

  14. CX-006894: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exclusion Determination Ohio Advanced Transportation PartnershipFrito Lay Cincinnati Propane Fueling Infrastructure CX(s) Applied: B5.1 Date: 09282011 Location(s): West...

  15. CX-009634: Categorical Exclusion Determination | Department of...

    Office of Environmental Management (EM)

    Exclusion Determination CX-009634: Categorical Exclusion Determination Advanced Test Reactor (ATR) Transition to Commercial Power CX(s) Applied: B2.5 Date: 12052012...

  16. CX-007358: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination Integration of the University of Oregon's Cogeneration Project CX(s) Applied: B1.7 Date: 12012011 Location(s): Oregon Offices(s):...

  17. CX-012200: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Determination of Excess Real Property CX(s) Applied: B1.36 Date: 05/01/2014 Location(s): Colorado Offices(s): Legacy Management

  18. CX-010588: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Chehalis Substation Tree Clearing CX(s) Applied: B1.3 Date: 07/02/2013 Location(s): Washington Offices(s): Bonneville Power Administration

  19. CX-008700: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Natapoc Property Funding CX(s) Applied: B1.25 Date: 06/12/2012 Location(s): Washington Offices(s): Bonneville Power Administration

  20. CX-010155: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Augspurger Radio Tower Replacement Project CX(s) Applied: B1.19 Date: 04/03/2013 Location(s): Washington Offices(s): Bonneville Power Administration

  1. CX-007866: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    SunShot Massachusetts CX(s) Applied: A9, A11 Date: 01/27/2012 Location(s): Massachusetts Offices(s): Golden Field Office

  2. CX-007856: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Sacramento Regional Energy Alliance CX(s) Applied: B5.23 Date: 01/27/2012 Location(s): California Offices(s): Golden Field Office

  3. CX-004629: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Determination CX-004629: Categorical Exclusion Determination Seneca Nation of New York Energy Efficiency and Conservation Strategies CX(s) Applied: A1, A9, A11 Date: 1026...

  4. CX-005672: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Categorical Exclusion Determination Energy Systems Integration Facility Excavation Soil Stockpile CX(s) Applied: B1.15 Date: 04122011 Location(s): Golden, Colorado...

  5. CX-008264: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Compressed Natural Gas Fueling Facility CX(s) Applied: A1 Date: 05/24/2012 Location(s): Missouri Offices(s): National Energy Technology Laboratory

  6. CX-005249: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wisconsin Clean Transportation Program - City of Milwaukee Ruby Avenue Compressed Natural Gas Infrastructure CX(s) Applied: B5.1 Date: 02152011 Location(s): Milwaukee,...

  7. CX-008468: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Compressed Natural Gas Fueling Facility CX(s) Applied: A1 Date: 06/12/2012 Location(s): Missouri Offices(s): National Energy Technology Laboratory

  8. CX-007382: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Compressed Natural Gas Manufacturing CX(s) Applied: B5.1 Date: 10/26/2011 Location(s): Wisconsin Offices(s): Golden Field Office

  9. CX-006678: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Restoration of 54-TPX-10CX(s) Applied: B6.1Date: 01/19/2010Location(s): Casper, WyomingOffice(s): RMOTC

  10. CX-012463: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Reliable SOFC Systems CX(s) Applied: A9, B3.6Date: 41877 Location(s): ConnecticutOffices(s): National Energy Technology Laboratory

  11. CX-002168: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination CX-002168: Categorical Exclusion Determination New York State Alternative Fuel Vehicle and Infrastructure Deployment CX(s) Applied: B5.1 Date:...

  12. CX-001403: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-001403: Categorical Exclusion Determination West New York Energy Efficiency Projects CX(s) Applied: B5.1 Date: 04092010 Location(s): West New...

  13. CX-009133: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination CX-009133: Categorical Exclusion Determination New York Program Year 2012 Formula Grants - State Energy Program CX(s) Applied: A9, A11 Date:...

  14. CX-001636: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Determination CX-001636: Categorical Exclusion Determination Alexandria Bay, New York, Met Tower: General Services Administration Border Station CX(s) Applied: B3.1, A9...

  15. CX-002167: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination CX-002167: Categorical Exclusion Determination New York State Alternative Fuel Vehicle and Infrastructure Deployment CX(s) Applied: B5.1 Date:...

  16. CX-006748: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination CX-006748: Categorical Exclusion Determination New York State Alternative Fuel Vehicle and Infrastructure Deployment CX(s) Applied: B5.1 Date:...

  17. CX-007020: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination CX-007020: Categorical Exclusion Determination New York State Alternative Fuel Vehicle and Infrastructure Deployment CX(s) Applied: B5.1 Date:...

  18. CX-003465: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    CX-003465: Categorical Exclusion Determination Vehicle Technologies Program Advanced Automotive Fuels Research, Development and Commercialization Cluster CX(s) Applied: A9, B2.2,...

  19. CX-005747: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Determination CX-005747: Categorical Exclusion Determination Biobased Materials Automotive Value Chain Market Development Analysis CX(s) Applied: A9 Date: 05042011...

  20. CX-006211: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination Missouri Independent Energy Efficiency Program: Henniges Automotive - Process Air Compressor Upgrades CX(s) Applied: B5.1 Date: 07182011 Location(s):...

  1. CX-009210: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Silver Butte Fiber Burial Project CX(s) Applied: B.47 Date: 08/28/2012 Location(s): Montana, Montana Offices(s): Bonneville Power Administration

  2. CX-012054: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Catalyst Synthesis CX(s) Applied: B3.6 Date: 03/18/2014 Location(s): South Carolina Offices(s): Savannah River Operations Office

  3. CX-012117: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exclusion Determination CX-012117: Categorical Exclusion Determination Fuel Cell Hybrid Walk-In Van Deployment Project CX(s) Applied: A9 Date: 05212014 Location(s):...

  4. CX-007517: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    UPF Mock Wall Project CX(s) Applied: B3.6 Date: 11/29/2011 Location(s): Tennessee Offices(s): Y-12 Site Office

  5. CX-004745: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination Acquisition of a Conservation Easement for Fish Habitat Mitigation in Okanogan County, Washington CX(s) Applied: A7 Date: 12082010...

  6. CX-003908: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    CX-003908: Categorical Exclusion Determination Fiscal Year 2010 Columbia Basin Fish Accords with Colville Confederated Tribes CX(s) Applied: B1.25 Date: 09082010...

  7. CX-012718: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Idaho State University Reactor Laboratory Modernization CX(s) Applied: B1.31Date: 41844 Location(s): IdahoOffices(s): Nuclear Energy

  8. CX-011642: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Pantex Lake Land Utilization CX(s) Applied: B1.11 Date: 11/05/2013 Location(s): Texas Offices(s): Pantex Site Office

  9. CX-011634: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Closure Turf Installation CX(s) Applied: B6.1 Date: 08/27/2013 Location(s): Texas Offices(s): Pantex Site Office

  10. CX-008545: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Solar Energy Evolution and Diffusion Studies CX(s) Applied: A9 Date: 06/19/2012 Location(s): CX: none Offices(s): Golden Field Office

  11. CX-004085: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Determination Project T-221, Hazardous Material Management and Emergency Response (HAMMER) Operations Building CX(s) Applied: B1.15 Date: 10082010 Location(s): Richmond,...

  12. CX-008535: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    King County Biogas and Nutrient Reduction CX(s) Applied: A9 Date: 05/22/2012 Location(s): Washington Offices(s): Golden Field Office

  13. CX-012247: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Determination CX-012247: Categorical Exclusion Determination Installation of Solar Photovoltaic Systems CX(s) Applied: A9, B5.16 Date: 06182014 Location(s): Wisconsin, Wisconsin...

  14. CX-008989: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    State Energy Program CX(s) Applied: A9, A11 Date: 08/27/2012 Location(s): Kansas Offices(s): Golden Field Office

  15. CX-006539: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exclusion Determination CX-006539: Categorical Exclusion Determination Boulder Wind Power Advanced Gearless Drivetrain CX(s) Applied: A9, B3.6 Date: 08252011 Location(s):...

  16. CX-009898: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exclusion Determination CX-009898: Categorical Exclusion Determination 25A1455 - CO2 Capture with Enzyme Synthetic Analogue CX(s) Applied: B3.6 Date: 12152009...

  17. CX-100018: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Determination Wind Generator Project CX(s) Applied: A9 Date: 08152014 Location(s): Michigan Offices(s): Golden Field Office Technology Office: Wind Program Award Number:...

  18. CX-009710: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-009710: Categorical Exclusion Determination Spring Creek - Wine County No. 1 Transmission Tower Relocation CX(s) Applied: B4.6 Date: 11292012...

  19. CX-012317: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    High Performance Computing Upgrades CX(s) Applied: B1.31 Date: 06/16/2014 Location(s): Idaho Offices(s): Nuclear Energy

  20. CX-003506: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    State Energy Program American Recovery and Reinvestment Act: Quantum Solar Photovoltaic Module Manufacturing Plant CX(s) Applied: B5.1 Date: 08302010 Location(s):...

  1. CX-000571: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination CX-000571: Categorical Exclusion Determination Photovoltaic Panel Installation (Building 833, TA-I) CX(s) Applied: B5.1 Date: 12102009...

  2. CX-004002: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Determination Knoxville Solar America Cites - Knox Heritage, Incorporated Solar Photovoltaic and Solar Thermal Demonstration Installation CX(s) Applied: B5.1 Date: 09202010...

  3. CX-008563: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-008563: Categorical Exclusion Determination Northeast Photovoltaic Regional Training Provider CX(s) Applied: A9, A11, B3.14 Date: 06132012...

  4. CX-000924: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    National Accreditation Certification Program for Installation and Acceptance of Photovoltaic Systems CX(s) Applied: A9 Date: 02232010 Location(s): New York Office(s): Energy...

  5. CX-004021: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Determination State Energy Program American Recovery and Reinvestment Act: Solaria Photovoltaic Manufacturing Facility CX(s) Applied: B5.1 Date: 10082010 Location(s): Fremont,...

  6. CX-007872: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-007872: Categorical Exclusion Determination Northeast Photovoltaic Regional Training Provider CX(s) Applied: A9, A11, B3.14 Date: 01272012...

  7. CX-007873: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-007873: Categorical Exclusion Determination Northeast Photovoltaic Regional Training Provider CX(s) Applied: A9, A11, B3.14 Date: 01272012...

  8. CX-009914: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Determination CX-009914: Categorical Exclusion Determination Plug & Play Solar Photovoltaic for American Homes CX(s) Applied: A9, B3.6 Date: 01282013 Location(s):...

  9. CX-000653: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Determination CX-000653: Categorical Exclusion Determination Helios - Project: Photovoltaic Crystalline Module Assembly Plant CX(s) Applied: B5.1 Date: 01272010 Location(s):...

  10. CX-007867: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-007867: Categorical Exclusion Determination Northeast Photovoltaic Regional Training Provider CX(s) Applied: A9, A11, B5.16 Date: 01272012...

  11. CX-005993: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-005993: Categorical Exclusion Determination Northeast Photovoltaic Regional Training Provider CX(s) Applied: A9, A11, B5.1 Date: 05262011...

  12. CX-010740: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    CX-010740: Categorical Exclusion Determination Integration of Behind-the-Meter Photovoltaic Fleet Forecasts into Utility Grid System Operations CX(s) Applied: A9, A11 Date:...

  13. CX-001417: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination Field Verification of High-Penetration Levels of Photovoltaic into the Distribution Grid with Advanced Power Conditioning Systems CX(s) Applied:...

  14. CX-001654: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Determination CX-001654: Categorical Exclusion Determination Burlington County Photovoltaic (PV) System CX(s) Applied: B5.1 Date: 04092010 Location(s): County of Burlington,...

  15. CX-003378: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination CX-003378: Categorical Exclusion Determination Photovoltaic Solar Cell Fabrication Alkaline Texturing Process Improvement CX(s) Applied: B3.6...

  16. CX-005385: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    CX-005385: Categorical Exclusion Determination Low Cost High Concentration Photovoltaic Power Systems for Utility Power Generation -Sandia Site CX(s) Applied: B5.1 Date:...

  17. CX-009272: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Building 94 Facade Restoration CX(s) Applied: B1.3 Date: 09/10/2012 Location(s): Pennsylvania Offices(s): National Energy Technology Laboratory

  18. CX-010578: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Celilo Converter Station Upgrades CX(s) Applied: B4.11 Date: 07/25/2013 Location(s): Oregon Offices(s): Bonneville Power Administration

  19. CX-004957: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    CX-004957: Categorical Exclusion Determination General Compression, Inc. -Fuel-Free, Ubiquitous, Compressed Air Energy Storage CX(s) Applied: B3.6 Date: 08142010...

  20. CX-011751: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination GreenLight Biosciences - Highly Productive Cell-free Bioconversion of Methane CX(s) Applied: B3.6 Date: 12122013 Location(s):...

  1. CX-006558: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Determination Geothennal Resource Development with Zero Mass Withdrawal, Engineered Free Convection, and Wellbore Energy Conversion CX(s) Applied: A9, B3.6 Date: 08242011...

  2. CX-002572: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination Manufacturing and Commercialization of Energy Efficient Generators for Small Wind Turbines CX(s) Applied: A1, B5.1 Date: 05192010...

  3. CX-010237: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Pittsburgh Green Innovators Synergy Center CX(s) Applied: A9 Date: 02/28/2013 Location(s): Pennsylvania Offices(s): Golden Field Office

  4. CX-012110: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Cowlitz Falls Fish Facility Access Agreement Extension CX(s) Applied: A2 Date: 04/02/2014 Location(s): Washington Offices(s): Bonneville Power Administration

  5. CX-004249: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CX-004249: Categorical Exclusion Determination Low Cost High Concentration Photovoltaic Power Systems for Utility Power Generation CX(s) Applied: B5.1 Date: 10142010...

  6. CX-009513: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Aquatic Invasive Mussels Monitoring CX(s) Applied: B3.1 Date: 10/15/2012 Location(s): CX: none Offices(s): Bonneville Power Administration

  7. CX-002511: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-002511: Categorical Exclusion Determination Rhode Island Green Public Buildings Initiative CX(s) Applied: A9, B5.1 Date: 05282010 Location(s):...

  8. CX-000988: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    988: Categorical Exclusion Determination CX-000988: Categorical Exclusion Determination Green Energy Works - Combined Heat and Power - Geisinger Medical Center CX(s) Applied: A9,...

  9. CX-002945: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-002945: Categorical Exclusion Determination Pennsylvania Green Energy Works Targeted Grant - Native Energy Biogas Project CX(s) Applied: B1.15,...

  10. CX-007365: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-007365: Categorical Exclusion Determination Integration of the Green Lane Energy Biogas Generator CX(s) Applied: B1.7 Date: 11172011 Location(s):...

  11. CX-008228: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination CX-008228: Categorical Exclusion Determination Hydropower Energy Resource (HyPER) Harvester CX(s) Applied: A9 Date: 04112012 Location(s):...

  12. CX-003856: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Determination CX-003856: Categorical Exclusion Determination Road Prison Geothermal Earth Coupled Heating, Ventilation and Air Conditioning (HVAC) Upgrade CX(s) Applied: B5.1...

  13. CX-002034: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Determination CX-002034: Categorical Exclusion Determination Road Prison Geothermal Earth Coupled Heating, Ventilation, and Air Conditioning Upgrade CX(s) Applied: B3.1, A9...

  14. CX-010770: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Wildland Fire Chainsaw Training CX(s) Applied: B1.2 Date: 08/01/2013 Location(s): Idaho Offices(s): Nuclear Energy

  15. CX-008341: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    A-6 Office Building CX(s) Applied: B1.15 Date: 04/19/2012 Location(s): Pennsylvania Offices(s): Naval Nuclear Propulsion Program

  16. CX-003853: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Energy Efficiency and Conservation Block Grant (EECBG) - Sherman - Geothermal Heat Pump Installation CX(s) Applied: B5.1 Date: 09072010 Location(s): Sherman, Connecticut...

  17. CX-004925: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    CX-004925: Categorical Exclusion Determination Material Methods - Phononic Heat Pump CX(s) Applied: B3.6 Date: 08132010 Location(s): Irvine, California Office(s):...

  18. CX-005651: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    State Energy Program - Renewable Energy Incentives - Ennis Residence Open Loop Heat Pump System CX(s) Applied: B5.1 Date: 04282011 Location(s): Greenwood, Delaware...

  19. CX-003717: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    CX-003717: Categorical Exclusion Determination Residential Ground Source Heat Pump Installation - Walter CX(s) Applied: B5.1 Date: 09152010 Location(s): Minnesota...

  20. CX-003715: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    CX-003715: Categorical Exclusion Determination Residential Ground Source Heat Pump Installation - Staus CX(s) Applied: B5.1 Date: 09152010 Location(s): Minnesota...

  1. CX-001512: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination Birmingham Recreation Center Ground Source Heat Pump Installation CX(s) Applied: A9, B5.1 Date: 04012010 Location(s): Birmingham,...

  2. CX-006083: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-006083: Categorical Exclusion Determination Ground Source Heat Pump Installation - Lac Qui Parle County Courthouse, Minnesota CX(s) Applied: B5.1 Date:...

  3. CX-000907: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Determination Improved Design Tools for Surface Water and Standing Column Well Heat Pump Systems CX(s) Applied: A9 Date: 02242010 Location(s): Stillwater, Oklahoma...

  4. CX-004348: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination State Energy Program Residential Ground Source Heat Pump Installations (6) CX(s) Applied: B5.1 Date: 10272010 Location(s): Prior Lake,...

  5. CX-003986: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination State Energy Program Residential Ground Source Heat Pump Installation - Korf CX(s) Applied: B5.1 Date: 09212010 Location(s): Minnesota...

  6. CX-004545: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination State Energy Program - Residential Ground Source Heat Pump Installation - Dalager CX(s) Applied: B5.1 Date: 11242010 Location(s): Minnesota...

  7. CX-004539: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination State Energy Program - Residential Ground Source Heat Pump Installation - Binford, Eric CX(s) Applied: B5.1 Date: 11242010 Location(s):...

  8. CX-006201: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Tennessee Energy Efficient Schools Initiative Schools Initiative Ground Source Heat Pump Program (Phase 2 and 3 for Lawrence Public and South Lawrence) CX(s) Applied: A9,...

  9. CX-000906: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Determination Development of Design and Simulation Tool for Hybrid Geothermal Heat Pump System CX(s) Applied: A9 Date: 02242010 Location(s): Oklahoma City, Oklahoma...

  10. CX-004376: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination City of Woodward, Oklahoma Ground Source Heat Pump Project Beyond State Template CX(s) Applied: B5.1 Date: 11012010 Location(s):...

  11. CX-011214: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Sensitive Instrument Facility CX(s) Applied: B3.6 Date: 07/10/2013 Location(s): Iowa Offices(s): Ames Site Office

  12. CX-009543: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Sopogy Subcontract CX(s) Applied: A9, B5.15 Date: 11/28/2012 Location(s): Hawaii Offices(s): Golden Field Office

  13. CX-008571: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Project Blue Energy CX(s) Applied: A9 Date: 06/20/2012 Location(s): Utah Offices(s): Golden Field Office

  14. CX-009579: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-009579: Categorical Exclusion Determination Wind Turbine Installation for Town of Drummond CX(s) Applied: B5.18 Date: 12192012 Location(s):...

  15. CX-002856: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-002856: Categorical Exclusion Determination Wind Turbine Development CX(s) Applied: B3.6, A9 Date: 07022010 Location(s): Bozeman, Montana...

  16. CX-001642: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-001642: Categorical Exclusion Determination Wind Turbine Castings Manufacturer CX(s) Applied: B5.1 Date: 04072010 Location(s): Wisconsin...

  17. CX-003230: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-003230: Categorical Exclusion Determination Wind Turbine Gearbox Remanufacturing CX(s) Applied: B2.2, B5.1 Date: 08042010 Location(s):...

  18. CX-003979: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    CX-003979: Categorical Exclusion Determination Tuscola North Plant 100 Kilowatt Wind Turbine Installation CX(s) Applied: B5.1 Date: 09222010 Location(s): Tuscola, Illinois...

  19. CX-003198: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Determination CX-003198: Categorical Exclusion Determination High Efficiency Low Cost Solar Cells (HELSOLAR) CX(s) Applied: B3.6 Date: 08042010 Location(s): California...

  20. CX-004024: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    CX-004024: Categorical Exclusion Determination Backside Contact Multijunction Solar Cells for High Concentration Applications CX(s) Applied: B3.6, B5.1 Date: 09142010...