National Library of Energy BETA

Sample records for interface desktop application

  1. LCCP Desktop Application v1.0 Engineering Reference

    SciTech Connect (OSTI)

    Beshr, Mohamed; Aute, Vikrant

    2014-04-01

    This Life Cycle Climate Performance (LCCP) Desktop Application Engineering Reference is divided into three parts. The first part of the guide, consisting of the LCCP objective, literature review, and mathematical background, is presented in Sections 2-4. The second part of the guide (given in Sections 5-10) provides a description of the input data required by the LCCP desktop application, including each of the input pages (Application Information, Load Information, and Simulation Information) and details for interfacing the LCCP Desktop Application with the VapCyc and EnergyPlus simulation programs. The third part of the guide (given in Section 11) describes the various interfaces of the LCCP code.

  2. Performance Application Programming Interface

    Energy Science and Technology Software Center (OSTI)

    2005-10-31

    PAPI is a programming interface designed to provide the tool designer and application engineer with a consistent interface and methodology for use of the performance counter hardware found in most major microprocessors. PAPI enables software engineers to see, in near real time, the relation between software performance and processor events. This release covers the hardware dependent implementation of PAPI version 3 for the IBM BlueGene/L (BG/L) system.

  3. Remote Desktop | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Remote Desktop Use a remote desktop connection to access your work computer from home. Using Remote Desktop to Connect to Your Work Computer With Remote Desktop, you can have...

  4. Property:User Interface | Open Energy Information

    Open Energy Info (EERE)

    Process Engineering Co-Simulator (APECS) + Desktop Application + Agriculture and Land Use National Greenhouse Gas Inventory Software + Desktop Application + AgrometShell + Desktop...

  5. Application Programming Interface | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commercial Buildings » Analysis Tools » Building Performance Database » Application Programming Interface Application Programming Interface While the BPD platform offers various browser-based analysis tools, third parties can also access the database through an Application Programming Interface (API). Using the API, users can query the same analytical tools available through the web interface, without compromising the security or anonymity of the database. The API enables the sharing of

  6. Application Program Interface for Engineering and Scientific Applications

    Energy Science and Technology Software Center (OSTI)

    2001-10-18

    An Application Program Interface (API) for engineering and scientific applications. This system allows application developers to write to a single uniform interface, obtaining access to all solvers in the Trilinos framwork. This includes linear solvers, eigensolvers, non-linear solvers, and time-dependent solvers.

  7. Commercial Building Energy Asset Scoring Tool Application Programming Interface

    Broader source: Energy.gov [DOE]

    slides from June 14, 2013 webinar on the commercial building energy asset scoring tool application programming interface

  8. Human-computer interface incorporating personal and application domains

    DOE Patents [OSTI]

    Anderson, Thomas G.

    2004-04-20

    The present invention provides a human-computer interface. The interface includes provision of an application domain, for example corresponding to a three-dimensional application. The user is allowed to navigate and interact with the application domain. The interface also includes a personal domain, offering the user controls and interaction distinct from the application domain. The separation into two domains allows the most suitable interface methods in each: for example, three-dimensional navigation in the application domain, and two- or three-dimensional controls in the personal domain. Transitions between the application domain and the personal domain are under control of the user, and the transition method is substantially independent of the navigation in the application domain. For example, the user can fly through a three-dimensional application domain, and always move to the personal domain by moving a cursor near one extreme of the display.

  9. Human-computer interface incorporating personal and application domains

    DOE Patents [OSTI]

    Anderson, Thomas G. (Albuquerque, NM)

    2011-03-29

    The present invention provides a human-computer interface. The interface includes provision of an application domain, for example corresponding to a three-dimensional application. The user is allowed to navigate and interact with the application domain. The interface also includes a personal domain, offering the user controls and interaction distinct from the application domain. The separation into two domains allows the most suitable interface methods in each: for example, three-dimensional navigation in the application domain, and two- or three-dimensional controls in the personal domain. Transitions between the application domain and the personal domain are under control of the user, and the transition method is substantially independent of the navigation in the application domain. For example, the user can fly through a three-dimensional application domain, and always move to the personal domain by moving a cursor near one extreme of the display.

  10. Thermal Performance and Reliability of Bonded Interfaces for Power Electronics Packaging Applications (Presentation)

    SciTech Connect (OSTI)

    Devoto, D.

    2013-07-01

    This presentation discusses the thermal performance and reliability of bonded interfaces for power electronics packaging applications.

  11. CS2SAT Desktop Tool

    Energy Science and Technology Software Center (OSTI)

    2006-03-15

    The Idaho National Laboratory (INL) has developed a Control System Cyber Security Self-Assessment Tool (CS2SAT) desktop tool that provides a repeatable and systematic approach for control system users to assess the cyber security posture of their control system networks. The tool assists users in identifying the cyber security parameters of their systems and then offers security objectives, in the form of requirements, for improving the security of their specific network. Each requirement is linked tomore » a series of associated recommendations for compliance dependent upon the desired level of security protection. Each requirement is supported by links to the original standards document and recommendations are supported by links to whitepapers and other help documents. Package also includes two back-end supporting codes: CS2SAT Requirements Matrix and Control System Security Information System.« less

  12. Environmental Effects of Hydrokinetic Turbines on Fish: Desktop...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Environmental Effects of Hydrokinetic Turbines on Fish: Desktop and Laboratory Flume Studies Environmental Effects of Hydrokinetic Turbines on Fish: Desktop and Laboratory Flume ...

  13. High Performance Computing - Power Application Programming Interface Specification.

    SciTech Connect (OSTI)

    Laros, James H.,; Kelly, Suzanne M.; Pedretti, Kevin; Grant, Ryan; Olivier, Stephen Lecler; Levenhagen, Michael J.; DeBonis, David

    2014-08-01

    Measuring and controlling the power and energy consumption of high performance computing systems by various components in the software stack is an active research area [13, 3, 5, 10, 4, 21, 19, 16, 7, 17, 20, 18, 11, 1, 6, 14, 12]. Implementations in lower level software layers are beginning to emerge in some production systems, which is very welcome. To be most effective, a portable interface to measurement and control features would significantly facilitate participation by all levels of the software stack. We present a proposal for a standard power Application Programming Interface (API) that endeavors to cover the entire software space, from generic hardware interfaces to the input from the computer facility manager.

  14. Thermal Interface Materials for Power Electronics Applications: Preprint

    SciTech Connect (OSTI)

    Narumanchi, S.; Mihalic, M.; Kelly, K.; Eesley, G.

    2008-07-01

    The thermal resistance of the thermal interface material layer greatly affects the maximum temperature of the power electronics.

  15. Operational Plan and Desktop Reference for the Disability Employment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program | Department of Energy Operational Plan and Desktop Reference for the Disability Employment Program Operational Plan and Desktop Reference for the Disability Employment Program The Department of Energy's Plan and Desktop Reference for hiring individuals with disabilities. PDF icon Final-SOP-Disability-Employment-FY14.pdf Responsible Contacts Donna Friend HUMAN RESOURCES SPECIALIST E-mail donna.friend@hq.doe.dov Phone 202-586-5880 More Documents & Publications Operational Plan and

  16. Regulatory and Permitting Information Desktop Toolkit (Fact Sheet)

    SciTech Connect (OSTI)

    Young, K.

    2014-04-01

    Overview of DOE's Regulatory and Permitting Information Desktop (RAPID) Toolkit project, providing information on where to go to view documents and who to contact to get involved.

  17. OpenSHMEM Application Programming Interface, v1.0 Final

    SciTech Connect (OSTI)

    Kuehn, Jeffery A; Chapman, Barbara; Curtis, Anthony R; Mauricio, Ricardo; Pophale, Swaroop; Nanjegowda, Ramachandra; Banerjee, Amrita; Feind, Karl; Poole, Stephen W; Smith, Lauren

    2012-01-01

    This document defines the elements of the OpenSHMEM Application Programming Interface. The purpose of the OpenSHMEM API is to provide programmers with a standard interface for writing parallel programs using C, C++ and Fortran with one-sided communication.

  18. GREEN SUPERCOMPUTING IN A DESKTOP BOX

    SciTech Connect (OSTI)

    HSU, CHUNG-HSING; FENG, WU-CHUN; CHING, AVERY

    2007-01-17

    The computer workstation, introduced by Sun Microsystems in 1982, was the tool of choice for scientists and engineers as an interactive computing environment for the development of scientific codes. However, by the mid-1990s, the performance of workstations began to lag behind high-end commodity PCs. This, coupled with the disappearance of BSD-based operating systems in workstations and the emergence of Linux as an open-source operating system for PCs, arguably led to the demise of the workstation as we knew it. Around the same time, computational scientists started to leverage PCs running Linux to create a commodity-based (Beowulf) cluster that provided dedicated computer cycles, i.e., supercomputing for the rest of us, as a cost-effective alternative to large supercomputers, i.e., supercomputing for the few. However, as the cluster movement has matured, with respect to cluster hardware and open-source software, these clusters have become much more like their large-scale supercomputing brethren - a shared (and power-hungry) datacenter resource that must reside in a machine-cooled room in order to operate properly. Consequently, the above observations, when coupled with the ever-increasing performance gap between the PC and cluster supercomputer, provide the motivation for a 'green' desktop supercomputer - a turnkey solution that provides an interactive and parallel computing environment with the approximate form factor of a Sun SPARCstation 1 'pizza box' workstation. In this paper, they present the hardware and software architecture of such a solution as well as its prowess as a developmental platform for parallel codes. In short, imagine a 12-node personal desktop supercomputer that achieves 14 Gflops on Linpack but sips only 185 watts of power at load, resulting in a performance-power ratio that is over 300% better than their reference SMP platform.

  19. Enhancing the human-computer interface of power system applications

    SciTech Connect (OSTI)

    Azevedo, G.P. de; Souza, C.S. de; Feijo, B.

    1995-12-31

    This paper examines a topic of increasing importance: the interpretation of the massive amount of data available to power system engineers. The solutions currently adopted in the presentation of data in graphical interfaces are discussed. It is demonstrated that the representations of electric diagrams can be considerably enhanced through the adequate exploitation of resources available in full-graphics screens and the use of basic concepts from human-factors research. Enhanced representations of electric diagrams are proposed and tested. The objective is to let the user see the behavior of the system, allowing for better interpretation of program data and results and improving user`s productivity.

  20. Enhancing the human-computer interface of power system applications

    SciTech Connect (OSTI)

    Azevedo, G.P. de; Souza, C.S. de; Feijo, B.

    1996-05-01

    This paper examines a topic of increasing importance: the interpretation of the massive amount of data available to power system engineers. The solutions currently adopted in the presentation of data in graphical interfaces are discussed. It is demonstrated that the representations of electric diagrams can be considerably enhanced through the adequate exploitation of resources available in full-graphics screens and the use of basic concepts from human-factors research. Enhanced representations of electric diagrams are proposed and tested. The objective is to let the user ``see`` the behavior of the system, allowing for better interpretation of program data and results and improving user`s productivity.

  1. ATHENA desktop human "body" reduces need for animal drug tests

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ATHENA, the Desktop Human "Body" Each organ component will be about the size of a smartphone screen, and the whole ATHENA "body" of interconnected organs would fit neatly on a...

  2. Operational Plan and Desktop Reference for the Veterans Employment Program

    Energy Savers [EERE]

    | Department of Energy Operational Plan and Desktop Reference for the Veterans Employment Program Operational Plan and Desktop Reference for the Veterans Employment Program DOE Guide to the President's Initiative for Veterans Employment. Includes: Department-wide policies and procedures, goals and objectives, DVAAP, information on veterans' preference and special hiring authorities, procedures for use of vocational rehabilitation programs, sources for finding veterans, and links to websites.

  3. Visual Information for the Desktop, version 1.0

    Energy Science and Technology Software Center (OSTI)

    2006-03-29

    VZIN integrates visual analytics capabilities into popular desktop tools to aid a user in searching and understanding an information space. VZIN allows users to Drag-Drop-Visualize-Explore-Organize information within tools such as Microsoft Office, Windows Explorer, Excel, and Outlook. VZIN is tailorable to specific client or industry requirements. VZIN follows the desktop metaphors so that advanced analytical capabilities are available with minimal user training.

  4. AUTHENTICATED SENSOR INTERFACE DEVICE FOR JOINT USE SAFEGUARDS APPLICATIONS - CONCEPTS AND CHALLENGES

    SciTech Connect (OSTI)

    Poland, R.; Drayer, R.; Wilson, J.

    2013-08-12

    This paper will discuss the key features of the Authenticated Sensor Interface Device that collectively provide the ability to share data among a number of parties while ensuring the authentication of data and protecting both the operators and the IAEAs interests. The paper will also discuss the development of the prototype, the initial testing with an accountancy scale, and future plans and challenges to implementation into the joint use and remote monitoring applications. As nuclear fuel cycle technology becomes more prevalent throughout the world and the capacity of plants increases, limited resources of the IAEA are being stretched near a breaking point. A strategy is to increase efficiency in safeguards monitoring using joint use equipment that will provide the facility operator process data while also providing the IAEA key safeguards data. The data, however, must be authenticated and validated to ensure the data have not been tampered with. The Authenticated Sensor Interface Device provides the capability to share data and can be a valuable component in the IAEAs ability to collect accountancy data from scales in Uranium conversion and enrichment plants, as well as nuclear fuel fabrication plants. Likewise, the Authenticated Sensor Interface Device can be configured to accept a diverse array of input signals, ranging from analog voltage, to current, to digital interfaces and more. These modular capabilities provide the ability to collect authenticated, joint-use, data streams from various process monitoring sensors.

  5. RoboCon: Operator interface for robotic applications. Final report: RoboCon electrical interfacing -- system architecture, and Interfacing NDDS and LabView

    SciTech Connect (OSTI)

    Schempf, H.

    1998-04-30

    The first appendix contains detailed specifications of the electrical interfacing employed in Robocon. This includes all electrical signals and power requirement descriptions up to and including the interface entry points for external robots and systems. The reader is first presented with an overview of the overall Robocon electrical system, followed by sub-sections describing each module in detail. The appendices contain listings of power requirements and the electrical connectors and cables used, followed by an overall electrical system diagram. Custom electronics employed are also described. The Network Data Delivery Service (NDDS) is a real-time dissemination communications architecture which allows nodes on a network to publish data and subscribe to data published by other nodes while remaining anonymous. The second appendix explains how to facilitate a seamless interface between NDDS and LabView and provides sample source code used to implement an NDDS consumer which writes a string to a socket.

  6. Investigation of the GaN-on-GaAs interface for vertical power device applications

    SciTech Connect (OSTI)

    Mreke, Janina Uren, Michael J.; Kuball, Martin; Novikov, Sergei V.; Foxon, C. Thomas; Hosseini Vajargah, Shahrzad; Wallis, David J.; Humphreys, Colin J.; Haigh, Sarah J.; Al-Khalidi, Abdullah; Wasige, Edward; Thayne, Iain

    2014-07-07

    GaN layers were grown onto (111) GaAs by molecular beam epitaxy. Minimal band offset between the conduction bands for GaN and GaAs materials has been suggested in the literature raising the possibility of using GaN-on-GaAs for vertical power device applications. I-V and C-V measurements of the GaN/GaAs heterostructures however yielded a rectifying junction, even when both sides of the junction were heavily doped with an n-type dopant. Transmission electron microscopy analysis further confirmed the challenge in creating a GaN/GaAs Ohmic interface by showing a large density of dislocations in the GaN layer and suggesting roughening of the GaN/GaAs interface due to etching of the GaAs by the nitrogen plasma, diffusion of nitrogen or melting of Ga into the GaAs substrate.

  7. T-573: Windows Remote Desktop Client DLL Loading Error Lets Remote Users Execute Arbitrary Code

    Broader source: Energy.gov [DOE]

    A vulnerability was reported in Windows Remote Desktop Client. A remote user can cause arbitrary code to be executed on the target user's system.

  8. Interface composition between Fe{sub 3}O{sub 4} nanoparticles and GaAs for spintronic applications

    SciTech Connect (OSTI)

    Hihath, Sahar; Kiehl, Richard A.; Benthem, Klaus van

    2014-08-28

    Recent interest in spintronic applications has necessitated the study of magnetic materials in contact with semiconductor substrates; importantly, the structure and composition of these interfaces can influence both device functionality and the magnetic properties. Nanoscale ferromagnet/semiconductor structures are of particular interest. In this study, the interface structure between a monolayer of ferromagnetic magnetite (Fe{sub 3}O{sub 4}) nanoparticles and a GaAs substrate was studied using cross-sectional transmission electron microscopy techniques. It was found that a continuous amorphous oxide interface layer separates the nanoparticles from the GaAs substrate, and that iron diffused into the interface layer forming a compositional gradient. Electron energy-loss near-edge fine structures of the O K absorption edge revealed that the amorphous oxide is composed of γ-Fe{sub 2}O{sub 3} directly underneath the Fe{sub 3}O{sub 4} nanoparticles, followed by a solid solution of Ga{sub 2}O{sub 3} and FeO and mostly Ga{sub 2}O{sub 3} when approaching the buckled oxide/substrate interface. Real-space density functional theory calculations of the dynamical form factor confirmed the experimental observations. The implication of the findings on the optimization of these structures for spin injection is discussed.

  9. Regulatory and Permitting Information Desktop (RAPID) Toolkit (Poster)

    SciTech Connect (OSTI)

    Young, K. R.; Levine, A.

    2014-09-01

    The Regulatory and Permitting Information Desktop (RAPID) Toolkit combines the former Geothermal Regulatory Roadmap, National Environmental Policy Act (NEPA) Database, and other resources into a Web-based tool that gives the regulatory and utility-scale geothermal developer communities rapid and easy access to permitting information. RAPID currently comprises five tools - Permitting Atlas, Regulatory Roadmap, Resource Library, NEPA Database, and Best Practices. A beta release of an additional tool, the Permitting Wizard, is scheduled for late 2014. Because of the huge amount of information involved, RAPID was developed in a wiki platform to allow industry and regulatory agencies to maintain the content in the future so that it continues to provide relevant and accurate information to users. In 2014, the content was expanded to include regulatory requirements for utility-scale solar and bulk transmission development projects. Going forward, development of the RAPID Toolkit will focus on expanding the capabilities of current tools, developing additional tools, including additional technologies, and continuing to increase stakeholder involvement.

  10. Environmental Effects of Hydrokinetic Turbines on Fish: Desktop and Laboratory Flume Studies

    Broader source: Energy.gov [DOE]

    This collection of three reports describes desktop and laboratory flume studies that provide information to support assessment of the potential for injury and mortality of fish that encounter hydrokinetic turbines of various designs installed in tidal and river environments.

  11. Unique Methodologies for Nano/Micro Manufacturing Job Training Via Desktop

    Office of Scientific and Technical Information (OSTI)

    Supercomputer Modeling and Simulation (Technical Report) | SciTech Connect Unique Methodologies for Nano/Micro Manufacturing Job Training Via Desktop Supercomputer Modeling and Simulation Citation Details In-Document Search Title: Unique Methodologies for Nano/Micro Manufacturing Job Training Via Desktop Supercomputer Modeling and Simulation Authors: Kimball, Clyde ; Karonis, Nicholas ; Lurio, Laurence ; Piot, Philippe ; Xiao, Zhili ; Glatz, Andreas ; Pohlman, Nicholas ; Hou, Minmei ; Demir,

  12. Quadrupole transitions near an interface: General theory and application to an atom inside a planar cavity

    SciTech Connect (OSTI)

    Klimov, V.V.; Ducloy, M.

    2005-10-15

    Quadrupole radiation of an atom in an arbitrary environment is investigated within classical as well as quantum electrodynamical approaches. Analytical expressions for decay rates are obtained in terms of the Green's function of Maxwell equations. The equivalence of both approaches is shown. General expressions are applied to analyze the quadrupole decay rate of an atom placed between two half spaces with arbitrary dielectric constant. It is shown that in the case where the atom is close to the surface, the total decay rate is inversely proportional to the fifth power of distance between an atom and a plane interface.

  13. Application programming interface document for the modernized Transient Reactor Analysis Code (TRAC-M)

    SciTech Connect (OSTI)

    Mahaffy, J. [Pennsylvania State Univ., University Park, PA (United States); Boyack, B.E.; Steinke, R.G. [Los Alamos National Lab., NM (United States)

    1998-05-01

    The objective of this document is to ease the task of adding new system components to the Transient Reactor Analysis Code (TRAC) or altering old ones. Sufficient information is provided to permit replacement or modification of physical models and correlations. Within TRAC, information is passed at two levels. At the upper level, information is passed by system-wide and component-specific data modules at and above the level of component subroutines. At the lower level, information is passed through a combination of module-based data structures and argument lists. This document describes the basic mechanics involved in the flow of information within the code. The discussion of interfaces in the body of this document has been kept to a general level to highlight key considerations. The appendices cover instructions for obtaining a detailed list of variables used to communicate in each subprogram, definitions and locations of key variables, and proposed improvements to intercomponent interfaces that are not available in the first level of code modernization.

  14. Electrolytes at Solid-Water Interfaces: Theoretical Studies for Practical Applications

    SciTech Connect (OSTI)

    Striolo, Alberto

    2013-09-23

    The goal of this research program was to determine how a solid substrate affects structure and dynamics of aqueous electrolyte solutions. From fundamental observations, we seek to improve practical applications. Of particular interest at the project inset were carbon nanotube separation, electric double layer capacitors, and water desalination. As time progresses, we became interested in sub-surface water transport and fate, and in hydraulic fracturing. We employed an arsenal of techniques based on atomistic molecular dynamics simulations. We validated our methods using experimental data, to propose practical improvements. Some experiments were conducted in house. We established valuable collaborations with experienced scientists at National Laboratories to provide information not attainable with our in-house resources.

  15. System Advisor Model (SAM) | Open Energy Information

    Open Energy Info (EERE)

    Resource assessment Resource Type: Case studiesexamples, Dataset, Guidemanual, Training materials, Softwaremodeling tools, Video User Interface: Desktop Application...

  16. ATHENA desktop human "body" could reduce need for animal drug tests

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ATHENA could reduce need for animal drug tests ATHENA desktop human "body" could reduce need for animal drug tests ATHENA project team is developing four human organ constructs that are based on a significantly miniaturized platform. March 26, 2014 Los Alamos National Laboratory scientist Rashi Iyer leads the ATHENA organ project. Los Alamos National Laboratory scientist Rashi Iyer leads the ATHENA organ project. Contact Nancy Ambrosiano Communications Office (505) 667-0471 Email

  17. Profile Interface Generator

    Energy Science and Technology Software Center (OSTI)

    2013-11-09

    The Profile Interface Generator (PIG) is a tool for loosely coupling applications and performance tools. It enables applications to write code that looks like standard C and Fortran functions calls, without requiring that applications link to specific implementations of those function calls. Performance tools can register with PIG in order to listen to only the calls that give information they care about. This interface reduces the build and configuration burden on application developers and allowsmore » semantic instrumentation to live in production codes without interfering with production runs.« less

  18. Application of scanning angle Raman spectroscopy for determining the location of buried polymer interfaces with tens of nanometer precision

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Damin, Craig A.; Nguyen, Vy H. T.; Niyibizi, Auguste S.; Smith, Emily A.

    2015-02-11

    Near-infrared scanning angle (SA) Raman spectroscopy was utilized to determine the interface location in bilayer films (a stack of two polymer layers) of polystyrene (PS) and polycarbonate (PC). Finite-difference-time-domain (FDTD) calculations of the sum square electric field (SSEF) for films with total bilayer thicknesses of 1200–3600 nm were used to construct models for simultaneously measuring the film thickness and the location of the buried interface between the PS and PC layers. Samples with total thicknesses of 1320, 1890, 2300, and 2750 nm and varying PS/PC interface locations were analyzed using SA Raman spectroscopy. Comparing SA Raman spectroscopy and optical profilometrymore » measurements, the average percent difference in the total bilayer thickness was 2.0% for films less than ~2300 nm thick. The average percent difference in the thickness of the PS layer, which reflects the interface location, was 2.5% when the PS layer was less than ~1800 nm. The SA Raman spectroscopy has been shown to be a viable, non-destructive method capable of determining the total bilayer thickness and buried interface location for bilayer samples consisting of thin polymer films with comparable indices of refraction.« less

  19. Novel Nanostructured Interface Solution for Automotive Thermoelectric

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Modules Application | Department of Energy Nanostructured Interface Solution for Automotive Thermoelectric Modules Application Novel Nanostructured Interface Solution for Automotive Thermoelectric Modules Application Presents nanostructured thermal/electrical interface tapeŽ concept involving carbon nanotube and metal nanowire films to improve thermomechanical cycling behavior of automotive TEGs PDF icon asheghi.pdf More Documents & Publications Thermoelectrics Partnership: Automotive

  20. Locating interfaces in vertically-layered materials and determining concentrations in mixed materials utilizing acoustic-impedance measurements. [Patent application

    DOE Patents [OSTI]

    Not Available

    1981-06-10

    Measurement of the relative and actual value of acoustic characteristic impedances of an unknown substance, location of the interfaces of vertically-layered materials, and the determination of the concentration of a first material mixed in a second material are presented. A highly damped ultrasonic pulse is transmitted into one side of a reference plate, such as a tank wall, where the other side of the reference plate is in physical contact with the medium to be measured. The amplitude of a return signal, which is the reflection of the transmitted pulse from the interface between the other side of the reference plate and the medium, is measured. The amplitude value indicates the acoustic characteristic impedance of the substance relative to that of the reference plate or relative to that of other tested materials. Discontinuities in amplitude with repeated measurements for various heights indicate the location of interfaces in vertically-layered materials. Standardization techniques permit the relative acoustic characteristic impedance of a substance to be converted to an actual value. Calibration techniques for mixtures permit the amplitude to be converted to the concentration of a first material mixed in a second material.

  1. TSF Interface Package

    Energy Science and Technology Software Center (OSTI)

    2004-03-01

    A collection of packages of classes for interfacing to sparse and dense matrices, vectors and graphs, and to linear operators. TSF (via TSFCore, TSFCoreUtils and TSFExtended) provides the application programmer interface to any number of solvers, linear algebra libraries and preconditioner packages, providing also a sophisticated technique for combining multiple packages to solve a single problem. TSF provides a collection of abstract base classes that define the interfaces to abstract vector, matrix and linear soeratormore » objects. By using abstract interfaces, users of TSF are not limiting themselves to any one concrete library and can in fact easily combine multiple libraries to solve a single problem.« less

  2. Thermochemical Interface

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (BETO) Project Peer Review 1.3.4.101 Thermochemical Interface PNNL-SA-109025 DATE MARCH 24, 2015 TECHNOLOGY AREA REVIEW: ALGAE DAN ANDERSON DOUG ELLIOTT, ANDY SCHMIDT, KARL ALBRECHT, JON MAGNUSON PACIFIC NORTHWEST NATIONAL LABORATORY This presentation does not contain any proprietary, confidential, or otherwise restricted information Goal Statement Develop emerging technologies and data at the conversion interface of algal biofuels production focused on hydrothermal liquefaction (HTL) * Initial

  3. Improvements in fast-response flood modeling: desktop parallel computing and domain tracking

    SciTech Connect (OSTI)

    Judi, David R; Mcpherson, Timothy N; Burian, Steven J

    2009-01-01

    It is becoming increasingly important to have the ability to accurately forecast flooding, as flooding accounts for the most losses due to natural disasters in the world and the United States. Flood inundation modeling has been dominated by one-dimensional approaches. These models are computationally efficient and are considered by many engineers to produce reasonably accurate water surface profiles. However, because the profiles estimated in these models must be superimposed on digital elevation data to create a two-dimensional map, the result may be sensitive to the ability of the elevation data to capture relevant features (e.g. dikes/levees, roads, walls, etc...). Moreover, one-dimensional models do not explicitly represent the complex flow processes present in floodplains and urban environments and because two-dimensional models based on the shallow water equations have significantly greater ability to determine flow velocity and direction, the National Research Council (NRC) has recommended that two-dimensional models be used over one-dimensional models for flood inundation studies. This paper has shown that two-dimensional flood modeling computational time can be greatly reduced through the use of Java multithreading on multi-core computers which effectively provides a means for parallel computing on a desktop computer. In addition, this paper has shown that when desktop parallel computing is coupled with a domain tracking algorithm, significant computation time can be eliminated when computations are completed only on inundated cells. The drastic reduction in computational time shown here enhances the ability of two-dimensional flood inundation models to be used as a near-real time flood forecasting tool, engineering, design tool, or planning tool. Perhaps even of greater significance, the reduction in computation time makes the incorporation of risk and uncertainty/ensemble forecasting more feasible for flood inundation modeling (NRC 2000; Sayers et al. 2000).

  4. Environmental Effects of Hydrokinetic Turbines on Fish: Desktop and Laboratory Flume Studies

    SciTech Connect (OSTI)

    Jacobson, Paul T.; Amaral, Stephen V.; Castro-Santos, Theodore; Giza, Dan; Haro, Alexander J.; Hecker, George; McMahon, Brian; Perkins, Norman; Pioppi, Nick

    2012-12-31

    This collection of three reports describes desktop and laboratory flume studies that provide information to support assessment of the potential for injury and mortality of fish that encounter hydrokinetic turbines of various designs installed in tidal and river environments. Behavioral responses to turbine exposure also are investigated to support assessment of the potential for disruptions to upstream and downstream movements of fish. The studies: (1) conducted an assessment of potential injury mechanisms using available data from studies with conventional hydro turbines; (2) developed theoretical models for predicting blade strike probabilities and mortality rates; and (3) performed flume testing with three turbine designs and several fish species and size groups in two laboratory flumes to estimate survival rates and document fish behavior. The project yielded three reports which this document comprises. The three constituent documents are addressed individually below Fish Passage Through Turbines: Application of Conventional Hydropower Data to Hydrokinetic Technologies Fish passing through the blade sweep of a hydrokinetic turbine experience a much less harsh physical environment than do fish entrained through conventional hydro turbines. The design and operation of conventional turbines results in high flow velocities, abrupt changes in flow direction, relatively high runner rotational and blade speeds, rapid and significant changes in pressure, and the need for various structures throughout the turbine passageway that can be impacted by fish. These conditions generally do not occur or are not significant factors for hydrokinetic turbines. Furthermore, compared to conventional hydro turbines, hydrokinetic turbines typically produce relatively minor changes in shear, turbulence, and pressure levels from ambient conditions in the surrounding environment. Injuries and mortality from mechanical injuries will be less as well, mainly due to low rotational speeds and strike velocities, and an absence of structures that can lead to grinding or abrasion injuries. Additional information is needed to rigorously assess the nature and magnitude of effects on individuals and populations, and to refine criteria for design of more fish-friendly hydrokinetic turbines. Evaluation of Fish Injury and Mortality Associated with Hydrokinetic Turbines Flume studies exposed fish to two hydrokinetic turbine designs to determine injury and survival rates and to assess behavioral responses. Also, a theoretical model developed for predicting strike probability and mortality of fish passing through conventional hydro turbines was adapted for use with hydrokinetic turbines and applied to the two designs evaluated during flume studies. The flume tests were conducted with the Lucid spherical turbine (LST), a Darrieus-type (cross flow) turbine, and the Welka UPG, an axial flow propeller turbine. Survival rates for rainbow trout tested with the LST were greater than 98% for both size groups and approach velocities evaluated. Turbine passage survival rates for rainbow trout and largemouth bass tested with the Welka UPG were greater than 99% for both size groups and velocities evaluated. Injury rates of turbine-exposed fish were low with both turbines and generally comparable to control fish. Video observations of the LST demonstrated active avoidance of turbine passage by a large proportion fish despite being released about 25 cm upstream of the turbine blade sweep. Video observations from behavior trials indicated few if any fish pass through the turbines when released farther upstream. The theoretical predictions for the LST indicated that strike mortality would begin to occur at an ambient current velocity of about 1.7 m/s for fish with lengths greater than the thickness of the leading edge of the blades. As current velocities increase above 1.7 m/s, survival was predicted to decrease for fish passing through the LST, but generally remained high (greater than 90%) for fish less than 200 mm in length. Strike mortality was not predicted to occur during passage through a Welka UPG turbine at ambient current velocities less than about 2.5 m/s. Survival and Behavior of Juvenile Atlantic Salmon and Adult American Shad on Exposure to a Hydrokinetic Turbine This report describes a series of experiments designed to measure the effect of exposure to a full-scale, vertical axis hydrokinetic turbine on downstream migrating juvenile Atlantic salmon and upstream migrating adult American shad. Studies were performed in a large-scale, open-channel flume, and all individuals approached the turbine under volitional control. No injuries were observed, and there was no measurable increase in mortality associated with turbine passage. Exposure to the turbine elicited behavioral responses from both species, however, with salmon passing primarily over the downrunning blades. Shad movement was impeded in the presence of the device, as indicated by fewer attempts of shorter duration and reduced distance of ascent up the flume. More work should be performed in both laboratory and field conditions to determine the extent to which observed effects are likely to influence fish in riverine environments. Analysis is needed to assess the potential for multiple units to lead to greater mortality rates or impacts on fish movements and migrations. Additionally, future research should focus on expanding the existing data by developing better estimates of encounter and avoidance probabilities.

  5. Interface-assisted molecular spintronics

    SciTech Connect (OSTI)

    Raman, Karthik V.

    2014-09-15

    Molecular spintronics, a field that utilizes the spin state of organic molecules to develop magneto-electronic devices, has shown an enormous scientific activity for more than a decade. But, in the last couple of years, new insights in understanding the fundamental phenomena of molecular interaction on magnetic surfaces, forming a hybrid interface, are presenting a new pathway for developing the subfield of interface-assisted molecular spintronics. The recent exploration of such hybrid interfaces involving carbon based aromatic molecules shows a significant excitement and promise over the previously studied single molecular magnets. In the above new scenario, hybridization of the molecular orbitals with the spin-polarized bands of the surface creates new interface states with unique electronic and magnetic character. This study opens up a molecular-genome initiative in designing new handles to functionalize the spin dependent electronic properties of the hybrid interface to construct spin-functional tailor-made devices. Through this article, we review this subject by presenting a fundamental understanding of the interface spin-chemistry and spin-physics by taking support of advanced computational and spectroscopy tools to investigate molecular spin responses with demonstration of new interface phenomena. Spin-polarized scanning tunneling spectroscopy is favorably considered to be an important tool to investigate these hybrid interfaces with intra-molecular spatial resolution. Finally, by addressing some of the recent findings, we propose novel device schemes towards building interface tailored molecular spintronic devices for applications in sensor, memory, and quantum computing.

  6. Audit of Desktop Computer Acquisitions at the Idaho National Engineering and Environmental Laboratory, WR-B-97-07

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AUDIT OF DESKTOP COMPUTER ACQUISITIONS AT THE IDAHO NATIONAL ENGINEERING AND ENVIRONMENTAL LABORATORY The Office of Inspector General wants to make the distribution of its reports as customer friendly and cost effective as possible. Therefore, this report will be available electronically through the Internet at the following alternative addresses: Department of Energy Headquarters Gopher gopher.hr.doe.gov Department of Energy Headquarters Anonymous FTP vm1.hqadmin.doe.gov Department of Energy

  7. Regional Energy Deployment System (ReEDS) | Open Energy Information

    Open Energy Info (EERE)

    NREL Sector: Energy Topics: Pathways analysis, Resource assessment Resource Type: Softwaremodeling tools User Interface: Desktop Application Website: www.nrel.gov...

  8. ERCOT Wind Scraper | Open Energy Information

    Open Energy Info (EERE)

    Wind Resource Type: Softwaremodeling tools User Interface: Desktop Application Website: web.ecs.baylor.edufacultygrady OpenEI Keyword(s): Community Generated ERCOT Wind Scraper...

  9. OpenBarter | Open Energy Information

    Open Energy Info (EERE)

    Interface: Desktop Application, Website Website: olivierch.github.ioopenBarter Cost: Free OpenEI Keyword(s): International Language: English References: openbarter1...

  10. AgrometShell | Open Energy Information

    Open Energy Info (EERE)

    User Interface: Desktop Application Website: www.hoefsloot.comagrometshell.htm Cost: Free AgrometShell Screenshot References: AgrometShell1 Logo: AgrometShell "Software for...

  11. Radiance: Synthetic Imaging System | Open Energy Information

    Open Energy Info (EERE)

    tools User Interface: Desktop Application Website: radsite.lbl.govradiance Cost: Free References: Radiance1 Logo: RADIANCE RADIANCE is a highly accurate ray-tracing...

  12. BEopt | Open Energy Information

    Open Energy Info (EERE)

    modeling tools User Interface: Desktop Application Website: beopt.nrel.gov Cost: Free OpenEI Keyword(s): EERE tool, BEopt BEopt Screenshot References: BEopt Website 1...

  13. Web Service Interface (API)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    How It Works Who's Using OSCARS? OSCARS and Future Tech OSCARS Standard and Open Grid Forum OSCARS Developers Community Web Browser Interface (WBUI) Web Service Interface (API) ...

  14. Web Browser Interface (WBUI)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    How It Works Who's Using OSCARS? OSCARS and Future Tech OSCARS Standard and Open Grid Forum OSCARS Developers Community Web Browser Interface (WBUI) Web Service Interface (API) ...

  15. Application

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Application Searchable Application Supplemental Information

  16. T-602: BlackBerry Enterprise Server Input Validation Flaw in BlackBerry Web Desktop Manager Permits Cross-Site Scripting Attacks

    Broader source: Energy.gov [DOE]

    The BlackBerry Web Desktop Manager not properly filter HTML code from user-supplied input before displaying the input. A remote user can cause arbitrary scripting code to be executed by the target user's browser. The code will originate from the site running the BlackBerry Web Desktop Manager software and will run in the security context of that site. As a result, the code will be able to access the target user's cookies (including authentication cookies), if any, associated with the site, access data recently submitted by the target user via web form to the site, or take actions on the site acting as the target user.

  17. Mineralogy of the hardpan formation processes in the interface between sulfide-rich sludge and fly ash: Applications for acid mine drainage mitigation

    SciTech Connect (OSTI)

    Perez-Lopez, R.; Nieto, J.M.; Alvarez-Valero, A.M.; De Almodovar, G.R.

    2007-11-15

    In the present study, experiments in non-saturated leaching columns were conducted to characterize the neoformed phases that precipitate at the interface between two waste residues having different chemical characteristics: an acid mine drainage producer residue (i.e., pyritic sludge) and an acidity neutralizer residue (i.e., coal combustion fly ash). A heating source was placed on top of one of the columns to accelerate oxidation and precipitation of newly formed phases, and thus, to observe longer-scale processes. When both residues are deposited together, the resulting leachates are characterized by alkaline pH, and low sulfate and metal concentrations. Two mechanisms help to improve the quality of the leachates. Over short-time scales, the leaching of pyrite at high pH (as a consequence of fly ash addition) favors the precipitation of ferrihydrite, encapsulating the pyrite grains and attenuating the oxidation process. Over longer time scales, a hardpan is promoted at the interface between both residues due to the precipitation of ferrihydrite, jarosite, and a Ca phase-gypsum or aragonite, depending on carbonate ion activity. Geochemical modeling of leachates using PHREEQC software predicted supersaturation in the observed minerals. The development of a relatively rigid crust at the interface favors the isolation of the mining waste from weathering processes, helped by the cementation of fly ash owing to aragonite precipitation, which ensures total isolation and neutralization of the mine residues.

  18. Web Browser Interface (WBUI)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Browser Interface (WBUI) Engineering Services The Network OSCARS How It Works Who's Using OSCARS? OSCARS and Future Tech OSCARS Standard and Open Grid Forum OSCARS Developers Community Web Browser Interface (WBUI) Web Service Interface (API) Read More... Fasterdata IPv6 Network Network Performance Tools The ESnet Engineering Team Contact Us Technical Assistance: 1 800-33-ESnet (Inside US) 1 800-333-7638 (Inside US) 1 510-486-7600 (Globally) 1 510-486-7607 (Globally) Report Network Problems:

  19. Web Service Interface (API)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Service Interface (API) Engineering Services The Network OSCARS How It Works Who's Using OSCARS? OSCARS and Future Tech OSCARS Standard and Open Grid Forum OSCARS Developers Community Web Browser Interface (WBUI) Web Service Interface (API) Read More... Fasterdata IPv6 Network Network Performance Tools The ESnet Engineering Team Contact Us Technical Assistance: 1 800-33-ESnet (Inside US) 1 800-333-7638 (Inside US) 1 510-486-7600 (Globally) 1 510-486-7607 (Globally) Report Network Problems:

  20. M-16-02, Category Management Policy 15-1: Improving the Acquisition and Management of Common Information Technology: Laptops and Desktops

    Energy Savers [EERE]

    OFFICE OF MANAGEMENT AND BUDGET WASHINGTON , D. C . 2.0503 October 16, 2015 M-16-02 MEMORANDUM FOR THE HEADS OF DEPARTMENTS AND AGENCIES FROM: Anne E. Rung Administrator t Tony Scott United State SUBJECT: Category Management Policy 15-1: Improving the Acquisition and Management of Common Information Technology: Laptops and Desktops The Federal Government spends over $50 billion a year on hardware, software, telecommunications, IT security, and IT professional services through tens ofthousands

  1. Interface colloidal robotic manipulator

    DOE Patents [OSTI]

    Aronson, Igor; Snezhko, Oleksiy

    2015-08-04

    A magnetic colloidal system confined at the interface between two immiscible liquids and energized by an alternating magnetic field dynamically self-assembles into localized asters and arrays of asters. The colloidal system exhibits locomotion and shape change. By controlling a small external magnetic field applied parallel to the interface, structures can capture, transport, and position target particles.

  2. Operator interface for vehicles

    DOE Patents [OSTI]

    Bissontz, Jay E

    2015-03-10

    A control interface for drivetrain braking provided by a regenerative brake and a non-regenerative brake is implemented using a combination of switches and graphic interface elements. The control interface comprises a control system for allocating drivetrain braking effort between the regenerative brake and the non-regenerative brake, a first operator actuated control for enabling operation of the drivetrain braking, and a second operator actuated control for selecting a target braking effort for drivetrain braking. A graphic display displays to an operator the selected target braking effort and can be used to further display actual braking effort achieved by drivetrain braking.

  3. TRANSIMS Interface Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    transims TRANSIMS Interface Development TRACC RESEARCH Computational Fluid Dynamics Computational Structural Mechanics Transportation Systems Modeling TRANSIMS Studio (Figure 1) has been developed by TRACC for the TRANSIMS community as part of the TRANSIMS Open Source project. It provides an integrated development environment (IDE) for TRANSIMS by combining a number of components that work seamlessly with each other. The visible part of the IDE is the graphical user interface (GUI) that allows

  4. Transportation Storage Interface | Department of Energy

    Office of Environmental Management (EM)

    Storage Interface Transportation Storage Interface Regulation of Future Extended Storage and Transportation. PDF icon Transportation Storage Interface More Documents & Publications...

  5. User interface for a tele-operated robotic hand system

    DOE Patents [OSTI]

    Crawford, Anthony L

    2015-03-24

    Disclosed here is a user interface for a robotic hand. The user interface anchors a user's palm in a relatively stationary position and determines various angles of interest necessary for a user's finger to achieve a specific fingertip location. The user interface additionally conducts a calibration procedure to determine the user's applicable physiological dimensions. The user interface uses the applicable physiological dimensions and the specific fingertip location, and treats the user's finger as a two link three degree-of-freedom serial linkage in order to determine the angles of interest. The user interface communicates the angles of interest to a gripping-type end effector which closely mimics the range of motion and proportions of a human hand. The user interface requires minimal contact with the operator and provides distinct advantages in terms of available dexterity, work space flexibility, and adaptability to different users.

  6. Commercial Building Energy Asset Scoring Tool Application Programming...

    Broader source: Energy.gov (indexed) [DOE]

    14, 2013 webinar on the commercial building energy asset scoring tool application programming interface Application Programming Interface Webinar More Documents & Publications...

  7. USER INTERFACE FOR A TELE-OPERATED ROBOTIC HAND SYSTEM

    Energy Innovation Portal (Marketing Summaries) [EERE]

    2015-04-27

    A user interface for the teleoperation of a robotic hand. The user interface conducts a calibration procedure to determine a user’s applicable physiological dimensions and applies the physiological dimensions and a specific fingertip location to treat the user’s finger as a two link three degree-of-freedom serial linkage, in order to determine angles of interest through reverse kinematics. The user interface communicates the angles of interest to a gripping-type end effector...

  8. An interface tracking model for droplet electrocoalescence.

    SciTech Connect (OSTI)

    Erickson, Lindsay Crowl

    2013-09-01

    This report describes an Early Career Laboratory Directed Research and Development (LDRD) project to develop an interface tracking model for droplet electrocoalescence. Many fluid-based technologies rely on electrical fields to control the motion of droplets, e.g. microfluidic devices for high-speed droplet sorting, solution separation for chemical detectors, and purification of biodiesel fuel. Precise control over droplets is crucial to these applications. However, electric fields can induce complex and unpredictable fluid dynamics. Recent experiments (Ristenpart et al. 2009) have demonstrated that oppositely charged droplets bounce rather than coalesce in the presence of strong electric fields. A transient aqueous bridge forms between approaching drops prior to pinch-off. This observation applies to many types of fluids, but neither theory nor experiments have been able to offer a satisfactory explanation. Analytic hydrodynamic approximations for interfaces become invalid near coalescence, and therefore detailed numerical simulations are necessary. This is a computationally challenging problem that involves tracking a moving interface and solving complex multi-physics and multi-scale dynamics, which are beyond the capabilities of most state-of-the-art simulations. An interface-tracking model for electro-coalescence can provide a new perspective to a variety of applications in which interfacial physics are coupled with electrodynamics, including electro-osmosis, fabrication of microelectronics, fuel atomization, oil dehydration, nuclear waste reprocessing and solution separation for chemical detectors. We present a conformal decomposition finite element (CDFEM) interface-tracking method for the electrohydrodynamics of two-phase flow to demonstrate electro-coalescence. CDFEM is a sharp interface method that decomposes elements along fluid-fluid boundaries and uses a level set function to represent the interface.

  9. Advanced Power Electronic Interfaces for Distributed Energy Systems Part 1: Systems and Topologies

    SciTech Connect (OSTI)

    Kramer, W.; Chakraborty, S.; Kroposki, B.; Thomas, H.

    2008-03-01

    This report summarizes power electronic interfaces for DE applications and the topologies needed for advanced power electronic interfaces. It focuses on photovoltaic, wind, microturbine, fuel cell, internal combustion engine, battery storage, and flywheel storage systems.

  10. Photochemistry at Interfaces

    SciTech Connect (OSTI)

    Eisenthal, Kenneth B

    2015-02-24

    We have advanced our capabilities to investigate ultrafast excited state dynamics at a liquid interface using a pump to excite molecules to higher electronic states and then probe the subsequent time evolution of the interfacial molecules with femtosecond time delayed vibrational SFG.

  11. the EXFOR interface

    Energy Science and Technology Software Center (OSTI)

    2011-03-10

    The x4i package is an interface to the EXFOR nuclear data library. It simplifies retrieval of EXFOR entries and can automatically parse them, allowing one to extract cross-section (and other) data in a simple, plot-able format. x4i also understands and can parse the entire reaction string, allowing one to build a strategy for processing the data

  12. Ge Interface Engineering with Ozone-oxidation for Low Interface State Density

    SciTech Connect (OSTI)

    Kuzum, Duygu; Krishnamohan, T.; Pethe, Abhijit J.; Okyay, Ali, K.; Oshima, Yasuhiro; Sun, Yun; McVittie, Jim P.; Pianetta, Piero A.; McIntyre, Paul C.; Saraswat, Krishna C.; /Stanford U., CIS

    2008-06-02

    Passivation of Ge has been a critical issue for Ge MOS applications in future technology nodes. In this letter, we introduce ozone-oxidation to engineer Ge/insulator interface. Interface states (D{sub it}) values across the bandgap and close to conduction bandedge were extracted using conductance technique at low temperatures. D{sub it} dependency on growth conditions was studied. Minimum D{sub it} of 3 x 10{sup 11} cm{sup -2} V{sup -1} was demonstrated. Physical quality of the interface was investigated through Ge 3d spectra measurements. We found that the interface and D{sub it} is strongly affected by the distribution of oxidation states and quality of the suboxide.

  13. Ultracapacitor/battery electronic interface development. Final report

    SciTech Connect (OSTI)

    King, R.D.; Salasoo, L.; Schwartz, J.; Cardinal, M.

    1998-06-30

    A flexible, highly efficient laboratory proof-of-concept Ultracapacitor/Battery Interface power electronic circuit with associated controls was developed on a cost-shared contract funded by the US Department of Energy (DOE), the New York State Energy Research and Development Authority (NYSERDA), and the General Electric Company (GE). This power electronic interface translates the varying dc voltage on an ultracapacitor with bi-directional power flow to the dc bus of an inverter-supplied ac propulsion system in an electric vehicle application. In a related application, the electronic interface can also be utilized to interface a low-voltage battery to a dc bus of an inverter supplied ac propulsion system. Variations in voltage for these two intended applications occur (1) while extracting energy (discharge) or supplying energy (charge) to an ultracapacitor, and (2) while extracting energy (discharge) or supplying energy (charge) to a low-voltage battery. The control electronics of this interface is designed to be operated as a stand-alone unit acting in response to an external power command. However, the interface unit`s control is not configured to provide any of the vehicle system control functions associated with load leveling or power splitting between the propulsion battery and the ultracapacitor in an electric or hybrid vehicle application. A system study/preliminary design effort established the functional specification of the interface unit, including voltage, current, and power ratings, to meet the program objectives and technical goals for the development of a highly efficient ultracapacitor/battery electronic interface unit; and performed a system/application study of a hybrid-electric transit bus including an ultracapacitor and appropriate electronic interface. The maximum power capability of the ultracapacitor/battery electronic interface unit is 25 kW.

  14. Understanding and Design of Polymer Device Interfaces

    SciTech Connect (OSTI)

    Kahn, Antoine

    2015-10-26

    The research performed under grant DE-FG02-04ER46165 between May 2008 and April 2011 focused on the understanding and control of interfaces of organic semiconductors in general, and polymer interfaces more specifically. This work was a joined effort by three experimentalists and a theoretician. Emphasis was placed on the determination of the electronic structure of these interfaces, i.e. the relative energy position of molecular levels across these interfaces. From these electronic structures depend the injection, extraction and transport of charge carriers into, from and across, respectively, all (opto)electronic devices made of these semiconductors. A significant fraction of our work focused on ways to modify and optimize interfaces, for example via chemical doping of the semiconductors to reduce interface energy barriers or via deposition of ultra-thin work function-reducing polymer or self-assembled monolayers of dipolar molecules. Another significant fraction of our work was devoted to exploring alternate and unconventional interface formation methods, in particular the soft-contact lamination of both metal contacts and polymer overlayers on top of polymer films. These methods allowed us to better understand the impact of hot metal atom evaporation on a soft organic surface, as well as the key mechanisms that control the energetics of polymer/polymer heterojunctions. Finally, a significant fraction of the research was directed to understanding the electronic structure of buried polymer heterojunctions, in particular within donor/acceptor blends of interest in organic photovoltaic applications. The work supported by this grant resulted in 17 publications in some of the best peer-reviewed journals of the field, as well as numerous presentations at US and international conferences.

  15. Finite Element Interface to Linear Solvers

    Energy Science and Technology Software Center (OSTI)

    2005-03-18

    Sparse systems of linear equations arise in many engineering applications, including finite elements, finite volumes, and others. The solution of linear systems is often the most computationally intensive portion of the application. Depending on the complexity of problems addressed by the application, there may be no single solver capable of solving all of the linear systems that arise. This motivates the desire to switch an application from one solver librwy to another, depending on themoreproblem being solved. The interfaces provided by solver libraries differ greatly, making it difficult to switch an application code from one library to another. The amount of library-specific code in an application Can be greatly reduced by having an abstraction layer between solver libraries and the application, putting a common "face" on various solver libraries. One such abstraction layer is the Finite Element Interface to Linear Solvers (EEl), which has seen significant use by finite element applications at Sandia National Laboratories and Lawrence Livermore National Laboratory.less

  16. Thyra Abstract Interface Package

    Energy Science and Technology Software Center (OSTI)

    2005-09-01

    Thrya primarily defines a set of abstract C++ class interfaces needed for the development of abstract numerical atgorithms (ANAs) such as iterative linear solvers, transient solvers all the way up to optimization. At the foundation of these interfaces are abstract C++ classes for vectors, vector spaces, linear operators and multi-vectors. Also included in the Thyra package is C++ code for creating concrete vector, vector space, linear operator, and multi-vector subclasses as well as other utilitiesmore » to aid in the development of ANAs. Currently, very general and efficient concrete subclass implementations exist for serial and SPMD in-core vectors and multi-vectors. Code also currently exists for testing objects and providing composite objects such as product vectors.« less

  17. Popeye Project: ROV interfaces

    SciTech Connect (OSTI)

    Scates, C.R.; Hickok, D.D.; Hernandez, D.A.

    1997-04-01

    The Popeye Project in the Gulf of Mexico helped advance the technology and standardization of ROV interfaces for deepwater subsea production systems. Some of the many successful ROV operations during installation and completion were {open_quotes}first-of-it`s-kind{close_quotes} activities-enabled by many technical advances. The use and reliance upon ROV systems for support of deepwater drilling and installation operations significantly increased in the past 10 years. Shell Offshore Inc.`s (SOI) confidence in this increased capability was an important factor in many of the design decisions which characterized the innovative system. Technology advancements, which depended on effective ROV intervention, were implemented with no significant difficulties. These advancements, in particular the flying leads and seabed position methods, are available to the industry for other deepwater subsea systems. In addition, several Popeye ROV interfaces have helped advance the subsea standardization initiative; e.g., hot stabs, torque-tool end effectors, and paint color.

  18. Transportation Storage Interface

    Office of Environmental Management (EM)

    of Future Extended Storage and Transportation Transportation-Storage Interface James Rubenstone Office of Nuclear Material Safety and Safeguards U.S. Nuclear Regulatory Commission National Transportation Stakeholders Forum May 2012 ♦ Knoxville, Tennessee Overview * Changing policy environment * Regulatory framework-current and future * Extended storage and transportation-technical information needs * Next Steps 2 Current Policy Environment * U.S. national policy for disposition of spent

  19. Virtual button interface

    DOE Patents [OSTI]

    Jones, Jake S. (Albuquerque, NM)

    1999-01-01

    An apparatus and method of issuing commands to a computer by a user interfacing with a virtual reality environment. To issue a command, the user directs gaze at a virtual button within the virtual reality environment, causing a perceptible change in the virtual button, which then sends a command corresponding to the virtual button to the computer, optionally after a confirming action is performed by the user, such as depressing a thumb switch.

  20. Virtual button interface

    DOE Patents [OSTI]

    Jones, J.S.

    1999-01-12

    An apparatus and method of issuing commands to a computer by a user interfacing with a virtual reality environment are disclosed. To issue a command, the user directs gaze at a virtual button within the virtual reality environment, causing a perceptible change in the virtual button, which then sends a command corresponding to the virtual button to the computer, optionally after a confirming action is performed by the user, such as depressing a thumb switch. 4 figs.

  1. Standard interface file handbook

    SciTech Connect (OSTI)

    Shapiro, A.; Huria, H.C. )

    1992-10-01

    This handbook documents many of the standard interface file formats that have been adopted by the US Department of Energy to facilitate communications between and portability of, various large reactor physics and radiation transport software packages. The emphasis is on those files needed for use of the VENTURE/PC diffusion-depletion code system. File structures, contents and some practical advice on use of the various files are provided.

  2. Thermochemical Feedstock Interface

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Office (BETO) Project Peer Review Thermochemical Feedstock Interface March 23, 2015 Daniel Carpenter (WBS 2.2.1.304) National Renewable Energy Laboratory Daniel Howe (WBS 2.2.1.305) Pacific Northwest National Laboratory Tyler Westover - Idaho National Laboratory This presentation does not contain any proprietary, confidential, or otherwise restricted information 2 | Bioenergy Technologies Office eere.energy.gov GOAL: Understand the effects of feedstock composition on thermochemical conversion

  3. Visapult: A Prototype Remote and Distributed Visualization Application and

    Office of Scientific and Technical Information (OSTI)

    Framework (Conference) | SciTech Connect Conference: Visapult: A Prototype Remote and Distributed Visualization Application and Framework Citation Details In-Document Search Title: Visapult: A Prototype Remote and Distributed Visualization Application and Framework We describe an approach used for implementing a highly efficient and scalable method for direct volume rendering. Our approach uses a pipelined-parallel decomposition composed of parallel computers and commodity desktop hardware.

  4. Human-computer interface including haptically controlled interactions

    DOE Patents [OSTI]

    Anderson, Thomas G.

    2005-10-11

    The present invention provides a method of human-computer interfacing that provides haptic feedback to control interface interactions such as scrolling or zooming within an application. Haptic feedback in the present method allows the user more intuitive control of the interface interactions, and allows the user's visual focus to remain on the application. The method comprises providing a control domain within which the user can control interactions. For example, a haptic boundary can be provided corresponding to scrollable or scalable portions of the application domain. The user can position a cursor near such a boundary, feeling its presence haptically (reducing the requirement for visual attention for control of scrolling of the display). The user can then apply force relative to the boundary, causing the interface to scroll the domain. The rate of scrolling can be related to the magnitude of applied force, providing the user with additional intuitive, non-visual control of scrolling.

  5. Capillary zone electrophoresis-mass spectrometer interface

    DOE Patents [OSTI]

    D`Silva, A.

    1996-08-06

    A device for providing equal electrical potential between two loci unconnected by solid or liquid electrical conductors is provided. The device comprises a first electrical conducting terminal, a second electrical conducting terminal connected to the first terminal by a rigid dielectric structure, and an electrically conducting gas contacting the first and second terminals. This device is particularly suitable for application in the electrospray ionization interface between a capillary zone electrophoresis apparatus and a mass spectrometer. 1 fig.

  6. Visapult: A Prototype Remote and Distributed Visualization Application...

    Office of Scientific and Technical Information (OSTI)

    Our approach uses a pipelined-parallel decomposition composed of parallel computers and commodity desktop hardware. With our approach, desktop interactivity is divorced from the ...

  7. Laparoscopic simulation interface

    DOE Patents [OSTI]

    Rosenberg, Louis B.

    2006-04-04

    A method and apparatus for providing high bandwidth and low noise mechanical input and output for computer systems. A gimbal mechanism provides two revolute degrees of freedom to an object about two axes of rotation. A linear axis member is coupled to the gimbal mechanism at the intersection of the two axes of rotation. The linear axis member is capable of being translated along a third axis to provide a third degree of freedom. The user object is coupled to the linear axis member and is thus translatable along the third axis so that the object can be moved along all three degrees of freedom. Transducers associated with the provided degrees of freedom include sensors and actuators and provide an electromechanical interface between the object and a digital processing system. Capstan drive mechanisms transmit forces between the transducers and the object. The linear axis member can also be rotated about its lengthwise axis to provide a fourth degree of freedom, and, optionally, a floating gimbal mechanism is coupled to the linear axis member to provide fifth and sixth degrees of freedom to an object. Transducer sensors are associated with the fourth, fifth, and sixth degrees of freedom. The interface is well suited for simulations of medical procedures and simulations in which an object such as a stylus or a joystick is moved and manipulated by the user.

  8. Multiple network interface core apparatus and method

    DOE Patents [OSTI]

    Underwood, Keith D. (Albuquerque, NM); Hemmert, Karl Scott (Albuquerque, NM)

    2011-04-26

    A network interface controller and network interface control method comprising providing a single integrated circuit as a network interface controller and employing a plurality of network interface cores on the single integrated circuit.

  9. Understanding Interfaces in Metal-Graphitic Hybrid Nanostructures

    SciTech Connect (OSTI)

    Ding, Mengning; Tang, Yifan; Star, Alexander

    2013-01-03

    Metalgraphitic interfaces formed between metal nanoparticles (MNPs) and carbon nanotubes (CNTs) or graphene play an important role in the properties of such hybrid nanostructures. This Perspective summarizes different types of interfaces that exist within the metalcarbon nanoassemblies and discusses current efforts on understanding and modeling the interfacial conditions and interactions. Characterization of the metalgraphitic interfaces is described here, including microscopy, spectroscopy, electrochemical techniques, and electrical measurements. Recent studies on these nanohybrids have shown that the metalgraphitic interfaces play critical roles in both controlled assembly of nanoparticles and practical applications of nanohybrids in chemical sensors and fuel cells. Better understanding, design, and manipulation of metalgraphitic interfaces could therefore become the new frontier in the research of MNP/CNT or MNP/graphene hybrid systems.

  10. Human-computer interface

    DOE Patents [OSTI]

    Anderson, Thomas G.

    2004-12-21

    The present invention provides a method of human-computer interfacing. Force feedback allows intuitive navigation and control near a boundary between regions in a computer-represented space. For example, the method allows a user to interact with a virtual craft, then push through the windshield of the craft to interact with the virtual world surrounding the craft. As another example, the method allows a user to feel transitions between different control domains of a computer representation of a space. The method can provide for force feedback that increases as a user's locus of interaction moves near a boundary, then perceptibly changes (e.g., abruptly drops or changes direction) when the boundary is traversed.

  11. MARKet ALlocation (MARKAL) | Open Energy Information

    Open Energy Info (EERE)

    Interface: Desktop Application ComplexityEase of Use: Moderate Website: iea-etsap.orgwebMarkal.asp Cost: Paid OpenEI Keyword(s): EERE tool References: MARKAL website1...

  12. OpenStudio | Open Energy Information

    Open Energy Info (EERE)

    modeling tools User Interface: Desktop Application Website: openstudio.nrel.gov Cost: Free OpenStudio Screenshot References: EnergyPlus: OpenStudio1 OpenStudio YouTube2 Logo:...

  13. GridLab Power Distribution System Simulation | Open Energy Information

    Open Energy Info (EERE)

    Pathways analysis User Interface: Desktop Application Website: www.gridlabd.org Cost: Free OpenEI Keyword(s): EERE tool Language: English References: GridLAB-D Simulation...

  14. MOBILE6 Vehicle Emission Modeling Software | Open Energy Information

    Open Energy Info (EERE)

    tools User Interface: Desktop Application Website: www.epa.govomsm6.htm Cost: Free References: http:www.epa.govomsm6.htm MOBILE6 is an emission factor model for...

  15. LEDS Toolkit and Framework | Open Energy Information

    Open Energy Info (EERE)

    User Interface: Website, Desktop Application Website: en.openei.orgappsLEDS Cost: Free UN Region: Central Asia, Eastern Asia, South-Eastern Asia, "Pacific" is not in the list...

  16. Universal programming interface with concurrent access

    Energy Science and Technology Software Center (OSTI)

    2004-10-07

    There exist a number of devices with a positioning nature of operation, such as mechanical linear stages, temperature controllers, or filterwheels with discrete state, and most of them have different programming interfaces. The Universal Positioner software suggests the way to handle all of them is with a single approach, whereby a particular hardware driver is created from the template and by translating the actual commands used by the hardware to and from the universal programmingmore » interface. The software contains the universal API module itself, the demo simulation of hardware, and the front-end programs to help developers write their own software drivers along with example drivers for actual hardware controllers. The software allows user application programs to call devices simultaneously without race conditions (multitasking and concurrent access). The template suggested in this package permits developers to integrate various devices easily into their applications using the same API. The drivers can be stacked; i.e., they can call each other via the same interface.« less

  17. Visual Interface for Materials Simulations

    Energy Science and Technology Software Center (OSTI)

    2004-08-01

    VIMES (Visual Inteface for Materials Simulations) is a graphical user interface (GUI) for pre- and post-processing alomistic materials science calculations. The code includes tools for building and visualizing simple crystals, supercells, and surfaces, as well as tools for managing and modifying the input to Sandia materials simulations codes such as Quest (Peter Schultz, SNL 9235) and Towhee (Marcus Martin, SNL 9235). It is often useful to have a graphical interlace to construct input for materialsmore » simulations codes and to analyze the output of these programs. VIMES has been designed not only to build and visualize different materials systems, but also to allow several Sandia codes to be easier to use and analyze. Furthermore. VIMES has been designed to be reasonably easy to extend to new materials programs. We anticipate that users of Sandia materials simulations codes will use VIMCS to simplify the submission and analysis of these simulations. VIMES uses standard OpenGL graphics (as implemented in the Python programming language) to display the molecules. The algorithms used to rotate, zoom, and pan molecules are all standard applications using the OpenGL libraries. VIMES uses the Marching Cubes algorithm for isosurfacing 3D data such as molecular orbitals or electron densities around the molecules.« less

  18. Interface effect in coupled quantum wells

    SciTech Connect (OSTI)

    Hao, Ya-Fei

    2014-06-28

    This paper intends to theoretically investigate the effect of the interfaces on the Rashba spin splitting of two coupled quantum wells. The results show that the interface related Rashba spin splitting of the two coupled quantum wells is both smaller than that of a step quantum well which has the same structure with the step quantum well in the coupled quantum wells. And the influence of the cubic Dresselhaus spin-orbit interaction of the coupled quantum wells is larger than that of a step quantum well. It demonstrates that the spin relaxation time of the two coupled quantum wells will be shorter than that of a step quantum well. As for the application in the spintronic devices, a step quantum well may be better than the coupled quantum wells, which is mentioned in this paper.

  19. Garden Banks 388 ROV interface systems

    SciTech Connect (OSTI)

    Granhaug, O.; Brewster, D.; Soliah, J.; Dubea, C.

    1995-12-31

    ROV systems integration has become an important part of the planning and implementation of deep water field development. This paper provides an overview of the GB 388 subsea development project and describes the ROV interface systems in use on the various subsea production components. The paper continues with an account of the purpose-built ROV system developed for the project. Finally, the paper describes in some detail the specialized ROV tooling and intervention systems that have been developed to assist in the installation, operation and maintenance of the subsea production equipment. The subsea intervention solutions developed for the GB 388 development project have direct application to all deep water field development projects. ROV interface systems are an integral part of current and future subsea completion technology.

  20. Nanoparticle Assemblies at Fluid Interfaces

    SciTech Connect (OSTI)

    Russell, Thomas P.

    2015-03-10

    A systematic study of the structure and dynamics of nanoparticles (NP) and NP-surfactants was performed. The ligands attached to both the NPs and NP-surfactants dictate the manner in which the nanoscopic materials assemble at fluid interfaces. Studies have shown that a single layer of the nanoscpic materials form at the interface to reduce the interactions between the two immiscible fluids. The shape of the NP is, also, important, where for spherical particles, a disordered, liquid-like monolayer forms, and, for nanorods, ordered domains at the interface is found and, if the monolayers are compressed, the orientation of the nanorods with respect to the interface can change. By associating end-functionalized polymers to the NPs assembled at the interface, NP-surfactants are formed that increase the energetic gain in segregating each NP at the interface which allows the NP-surfactants to jam at the interface when compressed. This has opened the possibility of structuring the two liquids by freezing in shape changes of the liquids.

  1. Rayleigh-Taylor instability at spherical interfaces between viscous fluids: Fluid/vacuum interface

    SciTech Connect (OSTI)

    Terrones, Guillermo; Carrara, Mark D.

    2015-05-01

    For a spherical interface of radius R separating two different homogeneous regions of incompressible viscous fluids under the action of a radially directed acceleration, we perform a linear stability analysis in terms of spherical surface harmonics Y n to derive the dispersion relation. The instability behavior is investigated by computing the growth rates and the most-unstable modes as a function of the spherical harmonic degree n. This general methodology is applicable to the entire parameter space spanned by the Atwood number, the viscosity ratio, and the dimensionless number B = (αRΡ²2/μ²²/³ R (where αR, Ρ2 and μ2 are the local radial acceleration at the interface, and the density and viscosity of the denser overlying fluid, respectively). While the mathematical formulation here is general, this paper focuses on instability that arises at a spherical viscous fluid/vacuum interface as there is a great deal to be learned from the effects of one-fluid viscosity and sphericity alone. To quantify and understand the effect that curvature and radial accelerationhave on the Rayleigh-Taylor instability, a comparison of the growth rates, under homologous driving conditions, between the planar and spherical interfaces is performed. The derived dispersion relation for the planar interface accounts for an underlying finite fluid region of thickness L and normal acceleration αR. Under certain conditions, the development of the most-unstable modes at a spherical interface can take place via the superposition of two adjacent spherical harmonics Yn and Yn+1. This bimodality in the evolution of disturbances in the linear regime does not have a counterpart in the planar configuration where the most-unstable modes are associated with a unique wave number.

  2. Accurate gradient approximation for complex interface problems in 3D by an improved coupling interface method

    SciTech Connect (OSTI)

    Shu, Yu-Chen, E-mail: ycshu@mail.ncku.edu.tw [Department of Mathematics, National Cheng Kung University, Tainan 701, Taiwan (China); Mathematics Division, National Center for Theoretical Sciences (South), Tainan 701, Taiwan (China); Chern, I-Liang, E-mail: chern@math.ntu.edu.tw [Department of Applied Mathematics, National Chiao Tung University, Hsin Chu 300, Taiwan (China); Department of Mathematics, National Taiwan University, Taipei 106, Taiwan (China); Mathematics Division, National Center for Theoretical Sciences (Taipei Office), Taipei 106, Taiwan (China); Chang, Chien C., E-mail: mechang@iam.ntu.edu.tw [Institute of Applied Mechanics, National Taiwan University, Taipei 106, Taiwan (China); Department of Mathematics, National Taiwan University, Taipei 106, Taiwan (China)

    2014-10-15

    Most elliptic interface solvers become complicated for complex interface problems at those exceptional points where there are not enough neighboring interior points for high order interpolation. Such complication increases especially in three dimensions. Usually, the solvers are thus reduced to low order accuracy. In this paper, we classify these exceptional points and propose two recipes to maintain order of accuracy there, aiming at improving the previous coupling interface method [26]. Yet the idea is also applicable to other interface solvers. The main idea is to have at least first order approximations for second order derivatives at those exceptional points. Recipe 1 is to use the finite difference approximation for the second order derivatives at a nearby interior grid point, whenever this is possible. Recipe 2 is to flip domain signatures and introduce a ghost state so that a second-order method can be applied. This ghost state is a smooth extension of the solution at the exceptional point from the other side of the interface. The original state is recovered by a post-processing using nearby states and jump conditions. The choice of recipes is determined by a classification scheme of the exceptional points. The method renders the solution and its gradient uniformly second-order accurate in the entire computed domain. Numerical examples are provided to illustrate the second order accuracy of the presently proposed method in approximating the gradients of the original states for some complex interfaces which we had tested previous in two and three dimensions, and a real molecule ( (1D63)) which is double-helix shape and composed of hundreds of atoms.

  3. Rayleigh-Taylor instability at spherical interfaces between viscous fluids: Fluid/vacuum interface

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Terrones, Guillermo; Carrara, Mark D.

    2015-05-01

    For a spherical interface of radius R separating two different homogeneous regions of incompressible viscous fluids under the action of a radially directed acceleration, we perform a linear stability analysis in terms of spherical surface harmonics Y n to derive the dispersion relation. The instability behavior is investigated by computing the growth rates and the most-unstable modes as a function of the spherical harmonic degree n. This general methodology is applicable to the entire parameter space spanned by the Atwood number, the viscosity ratio, and the dimensionless number B = (αRΡ²2/μ²²)¹/³ R (where αR, Ρ2 and μ2 are the localmore » radial acceleration at the interface, and the density and viscosity of the denser overlying fluid, respectively). While the mathematical formulation here is general, this paper focuses on instability that arises at a spherical viscous fluid/vacuum interface as there is a great deal to be learned from the effects of one-fluid viscosity and sphericity alone. To quantify and understand the effect that curvature and radial accelerationhave on the Rayleigh-Taylor instability, a comparison of the growth rates, under homologous driving conditions, between the planar and spherical interfaces is performed. The derived dispersion relation for the planar interface accounts for an underlying finite fluid region of thickness L and normal acceleration αR. Under certain conditions, the development of the most-unstable modes at a spherical interface can take place via the superposition of two adjacent spherical harmonics Yn and Yn+1. This bimodality in the evolution of disturbances in the linear regime does not have a counterpart in the planar configuration where the most-unstable modes are associated with a unique wave number.« less

  4. OpenEI Community - interface

    Open Energy Info (EERE)

    at www.bhfs.com BHFS and are starting to develop mock-ups for the new and improved GRR web interface. We are thrilled to have had so much feedback and input from all of...

  5. Sandia ATM SONET Interface Logic

    Energy Science and Technology Software Center (OSTI)

    1994-07-21

    SASIL is used to program the EPLD's (Erasable Programmable Logic Devices) and PAL's (Programmable Array Logic) that make up a large percentage of the Sandia ATM SONET Interface (OC3 version) for the INTEL Paragon.

  6. Extending the POSIX I/O interface: a parallel file system perspective.

    SciTech Connect (OSTI)

    Vilayannur, M.; Lang, S.; Ross, R.; Klundt, R.; Ward, L.; Mathematics and Computer Science; VMWare, Inc.; SNL

    2008-12-11

    The POSIX interface does not lend itself well to enabling good performance for high-end applications. Extensions are needed in the POSIX I/O interface so that high-concurrency HPC applications running on top of parallel file systems perform well. This paper presents the rationale, design, and evaluation of a reference implementation of a subset of the POSIX I/O interfaces on a widely used parallel file system (PVFS) on clusters. Experimental results on a set of micro-benchmarks confirm that the extensions to the POSIX interface greatly improve scalability and performance.

  7. Dead Reckoning Pedometer Graphical User Interface

    Energy Science and Technology Software Center (OSTI)

    2003-04-26

    The Dead Reckoning Pedometer Graphical User Interface (DRP GUI) software is tasked with maturing the technology described in a WSRC patent application. This patent application describes an electronic navigation system that records human foot movements, in three dimensions, for the purpose of determining position, distance, and speed of a walking person. The simiplest form of the apparatus consists of a magnetometer (an instrument that measures magnetic field strength) on one foot and a small permanentmore » magnet on another foot with pressure sensors on each foot. When a person takes a step, the foot will hit the ground and produce a signal on the pressure sensor. This will trigger a reading of the magnetometer so that the relative position of one foot to the other can be calculated. This same process is repeated for each step. The DRP could be very useful for tracking emergency personnel such as firemen, policemen, and paramedics when they travel within a building. Technologies such as global positioning systems to not work within buildings. The goal of the DRP GUI V1.0.0 software is to provide a three-dimensional graphical user interface that will allow WSRC to demonstrate the DRP concepts to potential patent licensees. It is hoped that a partnership will allow WSRC and another company to further develop the DRP technology and software into a commercial product.« less

  8. Carbon NanoFiber Systems for Tissue Interfacing - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Materials Advanced Materials Find More Like This Return to Search Carbon NanoFiber Systems for Tissue Interfacing Platform Technology for Electrophysiological Interfacing and for Drug and Gene Delivery Oak Ridge National Laboratory Contact ORNL About This Technology Technology Marketing Summary Scientists at ORNL have created vertically aligned carbon nano?fibers (VACNF) that are well suited for cell and tissue interfacing applications, such as electrophysiological stimulus and

  9. Nanofluidic interfaces in microfluidic networks

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Millet, Larry J.; Doktycz, Mitchel John; Retterer, Scott T.

    2015-09-24

    The integration of nano- and microfluidic technologies enables the construction of tunable interfaces to physical and biological systems across relevant length scales. The ability to perform chemical manipulations of miniscule sample volumes is greatly enhanced through these technologies and extends the ability to manipulate and sample the local fluidic environments at subcellular, cellular and community or tissue scales. Here we describe the development of a flexible surface micromachining process for the creation of nanofluidic channel arrays integrated within SU-8 microfluidic networks. The use of a semi-porous, silicon rich, silicon nitride structural layer allows rapid release of the sacrificial silicon dioxidemore » during the nanochannel fabrication. Nanochannel openings that form the interface to biological samples are customized using focused ion beam milling. The compatibility of these interfaces with on-chip microbial culture is demonstrated.« less

  10. PinBus Interface Design

    SciTech Connect (OSTI)

    Hammerstrom, Donald J.; Adgerson, Jewel D.; Sastry, Chellury; Pratt, Richard M.; Pratt, Robert G.

    2009-12-30

    On behalf of the U.S. Department of Energy, PNNL has explored and expanded upon a simple control interface that might have merit for the inexpensive communication of smart grid operational objectives (demand response, for example) to small electric end-use devices and appliances. The approach relies on bi-directional communication via the electrical voltage states of from one to eight shared interconnection pins. The name PinBus has been suggested and adopted for the proposed interface protocol. The protocol is defined through the presentation of state diagrams and the pins functional definitions. Both simulations and laboratory demonstrations are being conducted to demonstrate the elegance and power of the suggested approach. PinBus supports a very high degree of interoperability across its interfaces, allowing innumerable pairings of devices and communication protocols and supporting the practice of practically any smart grid use case.

  11. Multi-robot control interface

    DOE Patents [OSTI]

    Bruemmer, David J. (Idaho Falls, ID); Walton, Miles C. (Idaho Falls, ID)

    2011-12-06

    Methods and systems for controlling a plurality of robots through a single user interface include at least one robot display window for each of the plurality of robots with the at least one robot display window illustrating one or more conditions of a respective one of the plurality of robots. The user interface further includes at least one robot control window for each of the plurality of robots with the at least one robot control window configured to receive one or more commands for sending to the respective one of the plurality of robots. The user interface further includes a multi-robot common window comprised of information received from each of the plurality of robots.

  12. Fluorescent fluid interface position sensor

    DOE Patents [OSTI]

    Weiss, Jonathan D.

    2004-02-17

    A new fluid interface position sensor has been developed, which is capable of optically determining the location of an interface between an upper fluid and a lower fluid, the upper fluid having a larger refractive index than a lower fluid. The sensor functions by measurement, of fluorescence excited by an optical pump beam which is confined within a fluorescent waveguide where that waveguide is in optical contact with the lower fluid, but escapes from the fluorescent waveguide where that waveguide is in optical contact with the upper fluid.

  13. ATHENA, the Desktop Human "Body"

    SciTech Connect (OSTI)

    Iyer, Rashi; Harris, Jennifer

    2014-09-29

    Creating surrogate human organs, coupled with insights from highly sensitive mass spectrometry technologies, a new project is on the brink of revolutionizing the way we screen new drugs and toxic agents. ATHENA, the Advanced Tissue-engineered Human Ectypal Network Analyzer project team, is developing four human organ constructs - liver, heart, lung and kidney - that are based on a significantly miniaturized platform. Each organ component will be about the size of a smartphone screen, and the whole ATHENA "body" of interconnected organs would fit neatly on a desk. "By developing this 'homo minutus,' we are stepping beyond the need for animal or Petri dish testing: There are huge benefits in developing drug and toxicity analysis systems that can mimic the response of actual human organs," said Rashi Iyer, a senior scientist at Los Alamos National Laboratory, the lead laboratory on the five-year, $19 million multi-institutional effort. The project is supported by the Defense Threat Reduction Agency (DTRA). Some 40 percent of pharmaceuticals fail their clinical trials, Iyer noted, and there are thousands of chemicals whose effects on humans are simply unknown. Providing a realistic, cost-effective and rapid screening system such as ATHENA with high-throughput capabilities could provide major benefits to the medical field, screening more accurately and offering a greater chance of clinical trial success.

  14. ATHENA, the Desktop Human "Body"

    ScienceCinema (OSTI)

    Iyer, Rashi; Harris, Jennifer

    2015-01-05

    Creating surrogate human organs, coupled with insights from highly sensitive mass spectrometry technologies, a new project is on the brink of revolutionizing the way we screen new drugs and toxic agents. ATHENA, the Advanced Tissue-engineered Human Ectypal Network Analyzer project team, is developing four human organ constructs - liver, heart, lung and kidney - that are based on a significantly miniaturized platform. Each organ component will be about the size of a smartphone screen, and the whole ATHENA "body" of interconnected organs would fit neatly on a desk. "By developing this 'homo minutus,' we are stepping beyond the need for animal or Petri dish testing: There are huge benefits in developing drug and toxicity analysis systems that can mimic the response of actual human organs," said Rashi Iyer, a senior scientist at Los Alamos National Laboratory, the lead laboratory on the five-year, $19 million multi-institutional effort. The project is supported by the Defense Threat Reduction Agency (DTRA). Some 40 percent of pharmaceuticals fail their clinical trials, Iyer noted, and there are thousands of chemicals whose effects on humans are simply unknown. Providing a realistic, cost-effective and rapid screening system such as ATHENA with high-throughput capabilities could provide major benefits to the medical field, screening more accurately and offering a greater chance of clinical trial success.

  15. Implementing virtual reality interfaces for the geosciences

    SciTech Connect (OSTI)

    Bethel, W.; Jacobsen, J.; Austin, A.; Lederer, M.; Little, T.

    1996-06-01

    For the past few years, a multidisciplinary team of computer and earth scientists at Lawrence Berkeley National Laboratory has been exploring the use of advanced user interfaces, commonly called {open_quotes}Virtual Reality{close_quotes} (VR), coupled with visualization and scientific computing software. Working closely with industry, these efforts have resulted in an environment in which VR technology is coupled with existing visualization and computational tools. VR technology may be thought of as a user interface. It is useful to think of a spectrum, ranging the gamut from command-line interfaces to completely immersive environments. In the former, one uses the keyboard to enter three or six-dimensional parameters. In the latter, three or six-dimensional information is provided by trackers contained either in hand-held devices or attached to the user in some fashion, e.g. attached to a head-mounted display. Rich, extensible and often complex languages are a vehicle whereby the user controls parameters to manipulate object position and location in a virtual world, but the keyboard is the obstacle in that typing is cumbersome, error-prone and typically slow. In the latter, the user can interact with these parameters by means of motor skills which are highly developed. Two specific geoscience application areas will be highlighted. In the first, we have used VR technology to manipulate three-dimensional input parameters, such as the spatial location of injection or production wells in a reservoir simulator. In the second, we demonstrate how VR technology has been used to manipulate visualization tools, such as a tool for computing streamlines via manipulation of a {open_quotes}rake.{close_quotes} The rake is presented to the user in the form of a {open_quotes}virtual well{close_quotes} icon, and provides parameters used by the streamlines algorithm.

  16. EnergyPlus Graphical User Interface

    Energy Science and Technology Software Center (OSTI)

    2011-01-04

    LBNL, Infosys Technologies and Digital Alchemy are developing a free, comprehensive graphical user interface (GUI) that will enable EnergyPlus to be used more easily and effectively by building designers and other professionals, facilitating its widespread adoption. User requirements have been defined through a series of practitioner workshops. A new schematic editor for HVAC systems will be combined with different building envelope geometry generation tools and IFC-based BIM import and export. LBNL and Digital Alchemy havemore » generated a detailed function requirements specification, which is being implemented in software by Infosys, LBNL and and Digital Alchemy. LBNL and practitioner subcontractors will develop a comprehensive set of templates and libraries and will perform extensive testing of the GUI before it is released in Q3 2011. It is planned to use an Open Platfom approach, in which a comprehensive set of well documented Application Programming Interfaces (API's) would be provided to facilitate both the development of third party contributions to the official, standard GUI and the development of derivative works.« less

  17. Technique for converting non-conforming hexahedral-to-hexahedral interfaces into conforming interfaces

    DOE Patents [OSTI]

    Staten, Matthew L.; Shepherd, Jason F.; Ledoux, Frank; Shimada, Kenji; Merkley, Karl G.; Carbonera, Carlos

    2013-03-05

    A technique for conforming an interface between a first mesh and a second mesh is disclosed. A first interface surface in the first mesh and a second interface surface in the second mesh residing along the interface are identified. The first and second interface surfaces are initially non-conforming along the interface. Chords within the first and second interface surfaces that fall within a threshold separation distance of each other are paired. Sheets having chords that reside within the first or second interface surfaces are recursively inserted into or extracted from one or both of the first and second meshes until all remaining chords within the first interface surface are paired with corresponding chords in the second interface surface and all remaining chords within the second interface surface are paired with corresponding chords in the first interface surface.

  18. Geophysical subsurface imaging and interface identification.

    SciTech Connect (OSTI)

    Pendley, Kevin; Bochev, Pavel Blagoveston; Day, David Minot; Robinson, Allen Conrad; Weiss, Chester Joseph

    2005-09-01

    Electromagnetic induction is a classic geophysical exploration method designed for subsurface characterization--in particular, sensing the presence of geologic heterogeneities and fluids such as groundwater and hydrocarbons. Several approaches to the computational problems associated with predicting and interpreting electromagnetic phenomena in and around the earth are addressed herein. Publications resulting from the project include [31]. To obtain accurate and physically meaningful numerical simulations of natural phenomena, computational algorithms should operate in discrete settings that reflect the structure of governing mathematical models. In section 2, the extension of algebraic multigrid methods for the time domain eddy current equations to the frequency domain problem is discussed. Software was developed and is available in Trilinos ML package. In section 3 we consider finite element approximations of De Rham's complex. We describe how to develop a family of finite element spaces that forms an exact sequence on hexahedral grids. The ensuing family of non-affine finite elements is called a van Welij complex, after the work [37] of van Welij who first proposed a general method for developing tangentially and normally continuous vector fields on hexahedral elements. The use of this complex is illustrated for the eddy current equations and a conservation law problem. Software was developed and is available in the Ptenos finite element package. The more popular methods of geophysical inversion seek solutions to an unconstrained optimization problem by imposing stabilizing constraints in the form of smoothing operators on some enormous set of model parameters (i.e. ''over-parametrize and regularize''). In contrast we investigate an alternative approach whereby sharp jumps in material properties are preserved in the solution by choosing as model parameters a modest set of variables which describe an interface between adjacent regions in physical space. While still over-parametrized, this choice of model space contains far fewer parameters than before, thus easing the computational burden, in some cases, of the optimization problem. And most importantly, the associated finite element discretization is aligned with the abrupt changes in material properties associated with lithologic boundaries as well as the interface between buried cultural artifacts and the surrounding Earth. In section 4, algorithms and tools are described that associate a smooth interface surface to a given triangulation. In particular, the tools support surface refinement and coarsening. Section 5 describes some preliminary results on the application of interface identification methods to some model problems in geophysical inversion. Due to time constraints, the results described here use the GNU Triangulated Surface Library for the manipulation of surface meshes and the TetGen software library for the generation of tetrahedral meshes.

  19. First-principles approach to calculating energy level alignment at aqueous semiconductor interfaces

    SciTech Connect (OSTI)

    Kharche, Neerav; Muckerman, James T.; Hybertsen, Mark S.

    2014-10-21

    A first-principles approach is demonstrated for calculating the relationship between an aqueous semiconductor interface structure and energy level alignment. The physical interface structure is sampled using density functional theory based molecular dynamics, yielding the interface electrostatic dipole. The GW approach from many-body perturbation theory is used to place the electronic band edge energies of the semiconductor relative to the occupied 1b? energy level in water. The application to the specific cases of nonpolar (1010 ) facets of GaN and ZnO reveals a significant role for the structural motifs at the interface, including the degree of interface water dissociation and the dynamical fluctuations in the interface Zn-O and O-H bond orientations. These effects contribute up to 0.5 eV.

  20. First-principles approach to calculating energy level alignment at aqueous semiconductor interfaces

    SciTech Connect (OSTI)

    Kharche, Neerav; Muckerman, James T.; Hybertsen, Mark S.

    2014-10-21

    A first-principles approach is demonstrated for calculating the relationship between an aqueous semiconductor interface structure and energy level alignment. The physical interface structure is sampled using density functional theory based molecular dynamics, yielding the interface electrostatic dipole. The GW approach from many-body perturbation theory is used to place the electronic band edge energies of the semiconductor relative to the occupied 1b? energy level in water. The application to the specific cases of nonpolar (1010 ) facets of GaN and ZnO reveals a significant role for the structural motifs at the interface, including the degree of interface water dissociation and the dynamical fluctuations in the interface Zn-O and O-H bond orientations. As a result, these effects contribute up to 0.5 eV.

  1. First-principles approach to calculating energy level alignment at aqueous semiconductor interfaces

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kharche, Neerav; Muckerman, James T.; Hybertsen, Mark S.

    2014-10-21

    A first-principles approach is demonstrated for calculating the relationship between an aqueous semiconductor interface structure and energy level alignment. The physical interface structure is sampled using density functional theory based molecular dynamics, yielding the interface electrostatic dipole. The GW approach from many-body perturbation theory is used to place the electronic band edge energies of the semiconductor relative to the occupied 1b₁ energy level in water. The application to the specific cases of nonpolar (101¯0 ) facets of GaN and ZnO reveals a significant role for the structural motifs at the interface, including the degree of interface water dissociation and themore » dynamical fluctuations in the interface Zn-O and O-H bond orientations. As a result, these effects contribute up to 0.5 eV.« less

  2. Interface Control Document for the Interface between the Central Solenoid Insert Coil and the Test Facility

    SciTech Connect (OSTI)

    Smirnov, Alexandre; Martovetsky, Nicolai N; Nunoya, Yoshihiko

    2011-06-01

    This document provides the interface definition and interface control between the Central Solenoid Insert Coil and the Central Solenoid Model Coil Test Facility in Japan.

  3. Vibrational spectroscopy of water interfaces

    SciTech Connect (OSTI)

    Du, Q.

    1994-12-01

    The second order nonlinear optical processes of second harmonic generation and sum frequency generation are powerful and versatile tools for studying all kinds of surfaces. They possess unusual surface sensitivity due to the symmetry properties of the second order nonlinear susceptibility. The technique of infrared-visible sum frequency generation (SFG) is particularly attractive because it offers a viable way to do vibrational spectroscopy on any surfaces accessible to light with submonolayer sensitivity. In this thesis, the author applies SFG to study a number of important water interfaces. At the air/water interface, hydrophobic solid/water and liquid/water interfaces, it was found that approximately 25% of surface water molecules have one of their hydrogen pointing away from the liquid water. The large number of unsatisfied hydrogen bonds contributes significantly to the large interfacial energy of the hydrophobic surfaces. At the hydrophilic fused quartz/water interface and a fatty acid monolayer covered water surface, the structure and orientation of surface water molecules are controlled by the hydrogen bonding of water molecules with the surface OH groups and the electrostatic interaction with the surface field from the ionization of surface groups. A change of pH value in the bulk water can significantly change the relative importance of the two interactions and cause a drastic change in orientation of the surface water molecules. SFG has also been applied to study the tribological response of some model lubricant films. Monolayers of Langmuir-Blodgett films were found to disorder orientationaly under mildly high pressure and recover promptly upon removal of the applied pressure.

  4. INL Multi-Robot Control Interface

    Energy Science and Technology Software Center (OSTI)

    2005-03-30

    The INL Multi-Robot Control Interface controls many robots through a single user interface. The interface includes a robot display window for each robot showing the robot’s condition. More than one window can be used depending on the number of robots. The user interface also includes a robot control window configured to receive commands for sending to the respective robot and a multi-robot common window showing information received from each robot.

  5. Novel Nanostructured Interface Solution for Automotive Thermoelectric...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presents nanostructured thermalelectrical interface tape concept involving carbon nanotube and metal nanowire films to improve thermomechanical cycling behavior of automotive ...

  6. Computational Spectroscopy of Heterogeneous Interfaces | Argonne Leadership

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Computing Facility Complex interfaces between nanoparticles and a solvent Complex interfaces between nanoparticles and a solvent. N. Brawand, University of Chicago Computational Spectroscopy of Heterogeneous Interfaces PI Name: Giulia Galli PI Email: gagalli@uchicago.edu Institution: University of Chicago Allocation Program: INCITE Allocation Hours at ALCF: 150 Million Year: 2016 Research Domain: Materials Science The interfaces between solids, nanoparticles and liquids play a fundamental

  7. Film bonded fuel cell interface configuration

    DOE Patents [OSTI]

    Kaufman, Arthur (West Orange, NJ); Terry, Peter L. (Chatham, NJ)

    1985-01-01

    An improved interface configuration for use between adjacent elements of a fuel cell stack. The interface is impervious to gas and liquid and provides resistance to corrosion by the electrolyte of the fuel cell. A multi-layer arrangement for the interface provides bridging electrical contact with a hot-pressed resin filling the void space.

  8. Surface rheology and interface stability.

    SciTech Connect (OSTI)

    Yaklin, Melissa A.; Cote, Raymond O.; Moffat, Harry K.; Grillet, Anne Mary; Walker, Lynn; Koehler, Timothy P.; Reichert, Matthew D.; Castaneda, Jaime N.; Mondy, Lisa Ann; Brooks, Carlton, F.

    2010-11-01

    We have developed a mature laboratory at Sandia to measure interfacial rheology, using a combination of home-built, commercially available, and customized commercial tools. An Interfacial Shear Rheometer (KSV ISR-400) was modified and the software improved to increase sensitivity and reliability. Another shear rheometer, a TA Instruments AR-G2, was equipped with a du Nouey ring, bicone geometry, and a double wall ring. These interfacial attachments were compared to each other and to the ISR. The best results with the AR-G2 were obtained with the du Nouey ring. A Micro-Interfacial Rheometer (MIR) was developed in house to obtain the much higher sensitivity given by a smaller probe. However, it was found to be difficult to apply this technique for highly elastic surfaces. Interfaces also exhibit dilatational rheology when the interface changes area, such as occurs when bubbles grow or shrink. To measure this rheological response we developed a Surface Dilatational Rheometer (SDR), in which changes in surface tension with surface area are measured during the oscillation of the volume of a pendant drop or bubble. All instruments were tested with various surfactant solutions to determine the limitations of each. In addition, foaming capability and foam stability were tested and compared with the rheology data. It was found that there was no clear correlation of surface rheology with foaming/defoaming with different types of surfactants, but, within a family of surfactants, rheology could predict the foam stability. Diffusion of surfactants to the interface and the behavior of polyelectrolytes were two subjects studied with the new equipment. Finally, surface rheological terms were added to a finite element Navier-Stokes solver and preliminary testing of the code completed. Recommendations for improved implementation were given. When completed we plan to use the computations to better interpret the experimental data and account for the effects of the underlying bulk fluid.

  9. The Effect of Polarizability for the Understanding the Molecular Structure of Aqueous Interfaces

    SciTech Connect (OSTI)

    Wick, Collin D.; Kuo, I-F W.; Mundy, Christopher J.; Dang, Liem X.

    2007-11-01

    A review is presented on recent progress of the application of molecular dynamics simulation methods with the inclusion of polarizability for the understanding of aqueous interfaces. Comparisons among a variety of models, including Car-Parinello simulations, for the modeling of neat air-water interfaces are given. These results are used to describe the effect of polarizability on modeling the microscopic structure of the neat air-water interface, including comparisons with recent spectroscopic studies. Also, the understanding of the contribution of polarization to the electrostatic potential across the air-water interface is elucidated. Finally, the importance of polarizability for understanding anion transfer across an organic-water interface is shown. This work was performed at Pacific Northwest National Laboratory (PNNL) under the auspices of the Division of Chemical Sciences, Office of Basic Energy Sciences, U.S. Department of Energy. PNNL is operated by Battelle.

  10. Conduction at a ferroelectric interface

    SciTech Connect (OSTI)

    Marshall, Matthew S. J.; Malashevich, Andrei; Disa, Ankit S.; Han, Myung -Geun; Chen, Hanghui; Zhu, Yimei; Ismail-Beigi, Sohrab; Walker, Frederick J.; Ahn, Charles H.

    2014-11-05

    Typical logic elements utilizing the field effect rely on the change in carrier concentration due to the field in the channel region of the device. Ferroelectric-field-effect devices provide a nonvolatile version of this effect due to the stable polarization order parameter in the ferroelectric. In this study, we describe an oxide/oxide ferroelectric heterostructure device based on (001)-oriented PbZr??.?Ti?.?O?-LaNiO? where the dominant change in conductivity is a result of a significant mobility change in the interfacial channel region. The effect is confined to a few atomic layers at the interface and is reversible by switching the ferroelectric polarization. More interestingly, in one polarization state, the field effect induces a 1.7 eV shift of the interfacial bands to create a new conducting channel in the interfacial PbO layer of the ferroelectric.

  11. Conduction at a ferroelectric interface

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Marshall, Matthew S. J.; Malashevich, Andrei; Disa, Ankit S.; Han, Myung -Geun; Chen, Hanghui; Zhu, Yimei; Ismail-Beigi, Sohrab; Walker, Frederick J.; Ahn, Charles H.

    2014-11-05

    Typical logic elements utilizing the field effect rely on the change in carrier concentration due to the field in the channel region of the device. Ferroelectric-field-effect devices provide a nonvolatile version of this effect due to the stable polarization order parameter in the ferroelectric. In this study, we describe an oxide/oxide ferroelectric heterostructure device based on (001)-oriented PbZr₀̣.₂Ti₀.₈O₃-LaNiO₃ where the dominant change in conductivity is a result of a significant mobility change in the interfacial channel region. The effect is confined to a few atomic layers at the interface and is reversible by switching the ferroelectric polarization. More interestingly, inmore » one polarization state, the field effect induces a 1.7 eV shift of the interfacial bands to create a new conducting channel in the interfacial PbO layer of the ferroelectric.« less

  12. Conduction at a ferroelectric interface

    SciTech Connect (OSTI)

    Marshall, Matthew S. J.; Malashevich, Andrei; Disa, Ankit S.; Han, Myung-Guen; Chen, Hanghui; Zhu, Yimei; Ismail-Beigi, Sohrab; Walker, Frederick J.; Ahn, Charles H.

    2014-11-05

    Typical logic elements utilizing the field effect rely on the change in carrier concentration due to the field in the channel region of the device. Ferroelectric-field-effect devices provide a nonvolatile version of this effect due to the stable polarization order parameter in the ferroelectric. In this work, we describe an oxide/ oxide ferroelectric heterostructure device based on (001)-oriented PbZr??.?Ti?.?O?-LaNiO? where the dominant change in conductivity is a result of a significant mobility change in the interfacial channel region. The effect is confined to a few atomic layers at the interface and is reversible by switching the ferroelectric polarization. More interestingly, in one polarization state, the field effect induces a 1.7-eV shift of the interfacial bands to create a new conducting channel in the interfacial PbO layer of the ferroelectric.

  13. Flexible feature interface for multimedia sources

    DOE Patents [OSTI]

    Coffland, Douglas R. (Livermore, CA)

    2009-06-09

    A flexible feature interface for multimedia sources system that includes a single interface for the addition of features and functions to multimedia sources and for accessing those features and functions from remote hosts. The interface utilizes the export statement: export "C" D11Export void FunctionName(int argc, char ** argv,char * result, SecureSession *ctrl) or the binary equivalent of the export statement.

  14. Nanobio Interfaces Capabilities | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanobio Interfaces Capabilities Synthesis Synthesis of metal oxide, semiconducting, metallic, and magnetic nanoparticles Self-assembly of monodisperse nanoparticles into two- and...

  15. Interface Induced Carbonate Mineralization: A Fundamental Geochemical...

    Office of Scientific and Technical Information (OSTI)

    aragonite, dolomite, crystal nucleation, crystallization, interface, catalysis, EBSD, XRD, TEM Authors: Xu, Huifang ; Zhou, Mo ; Zhang, Fangfu ; Konishi, Hiromi ; Shen, Zhizhang ...

  16. Computational Design of Interfaces for Photovoltaics | Argonne...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Computational Design of Interfaces for Photovoltaics PI Name: Noa Marom PI Email: nmarom@tulane.edu Institution: Tulane University Allocation Program: ALCC Allocation Hours at...

  17. Interface Induced Carbonate Mineralization: A Fundamental Geochemical

    Office of Scientific and Technical Information (OSTI)

    Interface Induced Carbonate Mineralization: A Fundamental Geochemical Process Relevant to Carbon Sequestration Teng, H. Henry PI, The George Washington University PI, The George...

  18. Administering truncated receive functions in a parallel messaging interface

    DOE Patents [OSTI]

    Archer, Charles J; Blocksome, Michael A; Ratterman, Joseph D; Smith, Brian E

    2014-12-09

    Administering truncated receive functions in a parallel messaging interface (`PMI`) of a parallel computer comprising a plurality of compute nodes coupled for data communications through the PMI and through a data communications network, including: sending, through the PMI on a source compute node, a quantity of data from the source compute node to a destination compute node; specifying, by an application on the destination compute node, a portion of the quantity of data to be received by the application on the destination compute node and a portion of the quantity of data to be discarded; receiving, by the PMI on the destination compute node, all of the quantity of data; providing, by the PMI on the destination compute node to the application on the destination compute node, only the portion of the quantity of data to be received by the application; and discarding, by the PMI on the destination compute node, the portion of the quantity of data to be discarded.

  19. Sum-Frequency Generation from Chiral Media and Interfaces

    SciTech Connect (OSTI)

    Ji, Na

    2006-02-13

    Sum frequency generation (SFG), a second-order nonlinear optical process, is electric-dipole forbidden in systems with inversion symmetry. As a result, it has been used to study chiral media and interfaces, systems intrinsically lacking inversion symmetry. This thesis describes recent progresses in the applications of and new insights into SFG from chiral media and interfaces. SFG from solutions of chiral amino acids is investigated, and a theoretical model explaining the origin and the strength of the chiral signal in electronic-resonance SFG spectroscopy is discussed. An interference scheme that allows us to distinguish enantiomers by measuring both the magnitude and the phase of the chiral SFG response is described, as well as a chiral SFG microscope producing chirality-sensitive images with sub-micron resolution. Exploiting atomic and molecular parity nonconservation, the SFG process is also used to solve the Ozma problems. Sum frequency vibrational spectroscopy is used to obtain the adsorption behavior of leucine molecules at air-water interfaces. With poly(tetrafluoroethylene) as a model system, we extend the application of this surface-sensitive vibrational spectroscopy to fluorine-containing polymers.

  20. Gold-titania interface toughening and thermal conductance enhancement using an organophosphonate nanolayer

    SciTech Connect (OSTI)

    Chow, Philippe K.; O'Brien, Peter; Ramanath, Ganpati; Cardona Quintero, Y.; Ramprasad, R.; Hubert Mutin, P.; Lane, Michael

    2013-05-20

    We demonstrate that a mercaptan-terminated organophosphonate nanolayer at gold-titania interfaces can give rise to two- to three-fold enhancement in the interfacial fracture toughness and thermal conductance. Electron spectroscopy reveals that interfacial delamination occurs at the metal-molecule interface near the gold-sulfur bonds, consistent with density functional theory calculations of bond energies. Qualitative correlation between interfacial fracture toughness and bond energies suggest that organophosphonate nanolayers are resilient to humidity-induced degradation. These results, and the versatility of organophosphonates as surface functionalization agents for technologically relevant materials, unlock uncharted avenues for molecular engineering of interfaces in materials and devices for a variety of applications.

  1. Structural modifications due to interface chemistry at metal-nitride interfaces

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yadav, S. K.; Shao, S.; Wang, J.; Liu, X. -Y.

    2015-11-27

    Based on accurate first principles density functional theory (DFT) calculations, an unusual phenomenon of interfacial structural modifications, due to the interface chemistry influence is identified at two metal-nitride interfaces with strong metal-nitrogen affinity, Al/TiN {111} and Al/VN {111} interfaces. It is shown that at such interfaces, a faulted stacking structure is energetically preferred on the Al side of the interface. And both intrinsic and extrinsic stacking fault energies in the vicinity Al layers are negligibly small. However, such phenomenon does not occur in Pt/TiN and Pt/VN interfaces because of the weak Pt-N affinity. As a result, corresponding to structural energiesmore » of metal-nitride interfaces, the linear elasticity analysis predicts characteristics of interfacial misfit dislocations at metal-nitride interfaces.« less

  2. Structural modifications due to interface chemistry at metal-nitride interfaces

    SciTech Connect (OSTI)

    Yadav, S. K.; Shao, S.; Wang, J.; Liu, X. -Y.

    2015-11-27

    Based on accurate first principles density functional theory (DFT) calculations, an unusual phenomenon of interfacial structural modifications, due to the interface chemistry influence is identified at two metal-nitride interfaces with strong metal-nitrogen affinity, Al/TiN {111} and Al/VN {111} interfaces. It is shown that at such interfaces, a faulted stacking structure is energetically preferred on the Al side of the interface. And both intrinsic and extrinsic stacking fault energies in the vicinity Al layers are negligibly small. However, such phenomenon does not occur in Pt/TiN and Pt/VN interfaces because of the weak Pt-N affinity. As a result, corresponding to structural energies of metal-nitride interfaces, the linear elasticity analysis predicts characteristics of interfacial misfit dislocations at metal-nitride interfaces.

  3. Shunt attachment and method for interfacing current collection systems

    DOE Patents [OSTI]

    Denney, P.E.; Iyer, N.C.; Hannan, W.F. III.

    1992-12-08

    A composite brush to shunt attachment wherein a volatile component of a composite but mostly metallic brush, used for current collection purposes, does not upon welding or brazing, adversely affect the formation of the interfacial bond with a conductive shunt which carries the current from the zone of the brush. The brush to shunt attachment for a brush material of copper-graphite composite and a shunt of copper, or substituting silver for copper as an alternative, is made through a hot isostatic pressing (HIP). The HIP process includes applying high pressure and temperature simultaneously at the brush to shunt interface, after it has been isolated or canned in a metal casing in which the air adjacent to the interface has been evacuated and the interfacial area has been sealed before the application of pressure and temperature. 6 figs.

  4. Shunt attachment and method for interfacing current collection systems

    DOE Patents [OSTI]

    Denney, Paul E. (State College, PA); Iyer, Natraj C. (Columbia, SC); Hannan, III, William F. (Monroeville Boro, PA)

    1992-01-01

    A composite brush to shunt attachment wherein a volatile component of a composite but mostly metallic brush, used for current collection purposes, does not upon welding or brazing, adversely affect the formation of the interfacial bond with a conductive shunt which carries the current from the zone of the brush. The brush to shunt attachment for a brush material of copper-graphite composite and a shunt of copper, or substituting silver for copper as an alternative, is made through a hot isostatic pressing (HIP). The HIP process includes applying high pressure and temperature simultaneously at the brush to shunt interface, after it has been isolated or canned in a metal casing in which the air adjacent to the interface has been evacuated and the interfacial area has been sealed before the application of pressure and temperature.

  5. Graphical user interface for image acquisition and processing

    DOE Patents [OSTI]

    Goldberg, Kenneth A. (Berkeley, CA)

    2002-01-01

    An event-driven GUI-based image acquisition interface for the IDL programming environment designed for CCD camera control and image acquisition directly into the IDL environment where image manipulation and data analysis can be performed, and a toolbox of real-time analysis applications. Running the image acquisition hardware directly from IDL removes the necessity of first saving images in one program and then importing the data into IDL for analysis in a second step. Bringing the data directly into IDL creates an opportunity for the implementation of IDL image processing and display functions in real-time. program allows control over the available charge coupled device (CCD) detector parameters, data acquisition, file saving and loading, and image manipulation and processing, all from within IDL. The program is built using IDL's widget libraries to control the on-screen display and user interface.

  6. Interface Induced Carbonate Mineralization: A Fundamental Geochemical

    Office of Scientific and Technical Information (OSTI)

    Process Relevant to Carbon Sequestration (Technical Report) | SciTech Connect Interface Induced Carbonate Mineralization: A Fundamental Geochemical Process Relevant to Carbon Sequestration Citation Details In-Document Search Title: Interface Induced Carbonate Mineralization: A Fundamental Geochemical Process Relevant to Carbon Sequestration Mica, biotite, muscovite, diopside, tremolite, ultramafic rock, hematite, Ca-Mg-carbonate, calcite, aragonite, dolomite, crystal nucleation,

  7. FASTPLOT: An interface to Microsoft{reg_sign} FORTRAN graphics

    SciTech Connect (OSTI)

    Ward, R.C.

    1994-03-01

    Interface routines to the Microsoft{reg_sign} FORTRAN graphics library (GRAPHICS.LIB) are provided to facilitate development of graphics codes. These routines are collected into the FASTPLOT library (FASTPLOT.LIB). The FASTPLOT routines simplified the development of applications utilizing graphics and add capabilities not available in GRAPHICS.LIB such as plotting histograms, splines, symbols, and error bars. Specifically, these routines were utilized in the development of the mortality data viewing code, MORTVIEW, for the US Environmental Protection Agency. Routines for color imaging, developed for use with the X-ray Computer Tomography (XCT) imaging code, and examples are also provided in the FASTPLOT library. Many example uses of FASTPLOT.LIB are contained in this document to facilitate applications development. The FASTPLOT.LIB library, source, and applications programs are supplied on the accompanying FASTPLOT diskette.

  8. Sigma: Web Retrieval Interface for Nuclear Reaction Data

    SciTech Connect (OSTI)

    Pritychenko,B.; Sonzogni, A.A.

    2008-06-24

    The authors present Sigma, a Web-rich application which provides user-friendly access in processing and plotting of the evaluated and experimental nuclear reaction data stored in the ENDF-6 and EXFOR formats. The main interface includes browsing using a periodic table and a directory tree, basic and advanced search capabilities, interactive plots of cross sections, angular distributions and spectra, comparisons between evaluated and experimental data, computations between different cross section sets. Interactive energy-angle, neutron cross section uncertainties plots and visualization of covariance matrices are under development. Sigma is publicly available at the National Nuclear Data Center website at www.nndc.bnl.gov/sigma.

  9. Anomalous magnetic behavior at the graphene/Co interface

    SciTech Connect (OSTI)

    Mandal, Sumit; Saha, Shyamal K., E-mail: cnssks@iacs.res.in [Department of Materials Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032 (India)

    2014-07-14

    An intensive theoretical study on the interaction between graphene and transition metal atom has been carried out; however, its experimental verification is still lacking. To explore the theoretical prediction of antiferromagnetic coupling due to charge transfer between graphene and cobalt, epitaxial layer of cobalt is grown on graphene surface. Predicted antiferromagnetic interaction with Neel temperature (T{sub N}???32?K) which anomalously shifts to higher temperature (34?K) and becomes more prominent under application of magnetic field of 1 T is reported. Lowering of magnetoresistance as a consequence of this antiferromagnetic coupling at the interface is also observed.

  10. Advanced Power Electronics Interfaces for Distributed Energy Workshop Summary: August 24, 2006, Sacramento, California

    SciTech Connect (OSTI)

    Treanton, B.; Palomo, J.; Kroposki, B.; Thomas, H.

    2006-10-01

    The Advanced Power Electronics Interfaces for Distributed Energy Workshop, sponsored by the California Energy Commission Public Interest Energy Research program and organized by the National Renewable Energy Laboratory, was held Aug. 24, 2006, in Sacramento, Calif. The workshop provided a forum for industry stakeholders to share their knowledge and experience about technologies, manufacturing approaches, markets, and issues in power electronics for a range of distributed energy resources. It focused on the development of advanced power electronic interfaces for distributed energy applications and included discussions of modular power electronics, component manufacturing, and power electronic applications.

  11. Thermal Performance and Reliability Characterization of Bonded Interface Materials (BIMs): Preprint

    SciTech Connect (OSTI)

    DeVoto, D.; Paret, P.; Mihalic, M.; Narumanchi, S.; Bar-Cohen, A.; Matin, K.

    2014-08-01

    Thermal interface materials are an important enabler for low thermal resistance and reliable electronics packaging for a wide array of applications. There is a trend towards bonded interface materials (BIMs) because of their potential for low thermal resistivity (< 1 mm2K/W). However, BIMs induce thermomechanical stresses in the package and can be prone to failures and integrity risks. Deteriorated interfaces can result in high thermal resistance in the package and degradation and/or failure of the electronics. DARPA's Thermal Management Technologies program has addressed this challenge, supporting the development of mechanically-compliant, low resistivity nano-thermal interface (NTI) materials. In this work, we describe the testing procedure and report the results of NREL's thermal performance and reliability characterization of an initial sample of four different NTI-BIMs.

  12. LaTiO₃/KTaO₃ interfaces: A new two-dimensional electron gas system

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zou, K.; Ismail-Beigi, Sohrab; Kisslinger, Kim; Shen, Xuan; Su, Dong; Walker, F. J.; Ahn, C. H.

    2015-03-01

    We report a new 2D electron gas (2DEG) system at the interface between a Mott insulator, LaTiO₃, and a band insulator, KTaO₃. For LaTiO₃/KTaO₃ interfaces, we observe metallic conduction from 2 K to 300 K. One serious technological limitation of SrTiO₃-based conducting oxide interfaces for electronics applications is the relatively low carrier mobility (0.5-10 cm²/V s) of SrTiO₃ at room temperature. By using KTaO₃, we achieve mobilities in LaTiO₃/KTaO₃ interfaces as high as 21 cm²/V s at room temperature, over a factor of 3 higher than observed in doped bulk SrTiO₃. By density functional theory, we attribute the higher mobilitymore » in KTaO₃ 2DEGs to the smaller effective mass for electrons in KTaO₃.« less

  13. Film bonded fuel cell interface configuration

    DOE Patents [OSTI]

    Kaufman, Arthur (West Orange, NJ); Terry, Peter L. (Chatham, NJ)

    1989-01-01

    The present invention relates to improved elements for use in fuel cell stacks, and more particularly, to a stack having a corrosion-resistant, electrally conductive, fluid-impervious interface member therein.

  14. From corrosion to batteries: Electrochemical interface studies...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    From corrosion to batteries: Electrochemical interface studies Thursday, October 18, 2012 - 11:00am SSRL, Bldg. 137, Rm 226 Dr. Frank Uwe Renner Max-Planck-Institut fr...

  15. 5.0 INTERFACE OF REGULATORY AUTHORITIES

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5-1 5.0 INTERFACE OF REGULATORY AUTHORITIES 5.1 REGULATORY PROGRAMS The RCRA, CERCLA, and State Dangerous Waste Program overlap in many areas. In general, CERCLA was created by...

  16. Proton storage ring: man/machine interface

    SciTech Connect (OSTI)

    Lander, R.F.; Clout, P.N.

    1985-01-01

    The human interface of the Proton Storage Ring Control System at Los Alamos is described in some detail, together with the software environment in which operator interaction programs are written. Some examples of operator interaction programs are given.

  17. REMSView Validation Application - Version 3.1 | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3.1 Validation Application has been updated as of 392010. The application is a Java application and can be run on any computer system that can run Java. The interface is a...

  18. Interface Induced Carbonate Mineralization: A Fundamental Geochemical

    Office of Scientific and Technical Information (OSTI)

    Process Relevant to Carbon Sequestration (Technical Report) | SciTech Connect Interface Induced Carbonate Mineralization: A Fundamental Geochemical Process Relevant to Carbon Sequestration Citation Details In-Document Search Title: Interface Induced Carbonate Mineralization: A Fundamental Geochemical Process Relevant to Carbon Sequestration We have approached the long-standing geochemical question why anhydrous high-Mg carbonate minerals (i.e., magnesite and dolomite) cannot be formed at

  19. NETL Research: Energy and Water Interface

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water and Energy Interface Water and energy are inextricably linked. Because thermoelectric generation and fossil fuel extraction can impact water resources, it is critically important to protect U.S. water supplies while providing the energy needed to power the nation in the 21st century. Through integrated water and energy-related activities, the U.S. Department of Energy/National Energy Technology Laboratory (DOE/NETL) Water-Energy Interface program has attempted to address this challenge

  20. Integration of Advanced Materials and Interfaces for Durable...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Materials and Interfaces for Durable Thermoelectric Automobile Exhaust Waste Heat Harvesting Devices Integration of Advanced Materials and Interfaces for Durable ...

  1. Mobile interfaces: Liquids as a perfect structural material for...

    Office of Scientific and Technical Information (OSTI)

    Mobile interfaces: Liquids as a perfect structural material for multifunctional, antifouling surfaces Prev Next Title: Mobile interfaces: Liquids as a perfect structural ...

  2. Advanced Thermal Interface Materials (TIMs) for Power Electronics...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermal Interface Materials (TIMs) for Power Electronics Advanced Thermal Interface Materials (TIMs) for Power Electronics 2009 DOE Hydrogen Program and Vehicle Technologies ...

  3. XOP : a graphical user interface for spectral calculations and...

    Office of Scientific and Technical Information (OSTI)

    XOP : a graphical user interface for spectral calculations and x-ray optics utilities. Citation Details In-Document Search Title: XOP : a graphical user interface for spectral...

  4. Level-2 Milestone 4468: Lorenz Simulation Interface Beta Release...

    Office of Scientific and Technical Information (OSTI)

    Level-2 Milestone 4468: Lorenz Simulation Interface Beta Release Citation Details In-Document Search Title: Level-2 Milestone 4468: Lorenz Simulation Interface Beta Release You...

  5. Aggregate Remote Memory Copy Interface

    Energy Science and Technology Software Center (OSTI)

    2006-02-23

    The purpose of the Aggregate Remote Memory Copy (ARMCI) library is to provide a general- purpose, efficient, and Widely portable remote memory access (RMA) operations (one-sided communication) optimized for Contiguous and noncontiguous (strided, scatter/gather, I/O vector) data transfers. In addition, ARMCI includes a set of atomic and mutual exclusion operations. The development ARMCI is driven by the need to support the global-addres space communication model in context of distributed regular or irregular distributed data structures,more » communication libraries, and compilers. ARMCI is a standalone system that could be used to support user-level libraries and applications that use MPI or PVM.« less

  6. Commercial Building Energy Asset Scoring Tool Application Programming...

    Broader source: Energy.gov (indexed) [DOE]

    Application Programming Interface NORA WANG GEOFF ELLIOTT JUSTIN ALMQUIST EDWARD ELLIS Pacific Northwest National Laboratory JUNE 14, 2013 Commercial Building Energy Asset Score...

  7. Adsorption of polymer chains at penetrable interfaces

    SciTech Connect (OSTI)

    Gerasimchuk, I. V.; Sommer, J.-U.; Gerasimchuk, V. S.

    2011-03-15

    We investigate the problem of adsorption (localization) of polymer chains in the system of two penetrable interfaces within the mean-field approximation. The saturation of the polymer system in the limit case of zero bulk concentration is studied. We find the exact solution of this mean-field polymer adsorption problem that opens the possibility to treat various localization problems for polymer chains in such environments using appropriate boundary conditions. The exact solution is controlled by a single scaling variable that describes the coupling between the interfaces due to the polymer chains. We obtain a nonmonotonic behavior of the amount of adsorbed polymers as a function of the distance between the interfaces. This leads to a high-energy and a low-energy phase for the double layer with respect to the amount of polymers localized. At the saturation point, we find the total energy of the system and determine the force acting between the interfaces to be strictly attractive and to monotonically decay to zero when the interface distance increases.

  8. NREL's Controllable Grid Interface for Testing Renewable Energy Technologies (Presentation)

    SciTech Connect (OSTI)

    Gevorgian, V.

    2014-09-01

    This presentation is an overview of NREL's Controllable Grid Interface capabilities for testing renewable energy technologies.

  9. Interface for liquid chromatograph-mass spectrometer

    DOE Patents [OSTI]

    Andresen, Brian D. (Pleasanton, CA); Fought, Eric R. (Livermore, CA)

    1989-01-01

    A moving belt interface for real-time, high-performance liquid chromatograph (HPLC)/mass spectrometer (MS) analysis which strips away the HPLC solvent as it emerges from the end of the HPLC column and leaves a residue suitable for mass-spectral analysis. The interface includes a portable, stand-alone apparatus having a plural stage vacuum station, a continuous ribbon or belt, a drive train magnetically coupled to an external drive motor, a calibrated HPLC delivery system, a heated probe tip and means located adjacent the probe tip for direct ionization of the residue on the belt. The interface is also capable of being readily adapted to fit any mass spectrometer.

  10. Interface for liquid chromatograph-mass spectrometer

    DOE Patents [OSTI]

    Andresen, B.D.; Fought, E.R.

    1989-09-19

    A moving belt interface is described for real-time, high-performance liquid chromatograph (HPLC)/mass spectrometer (MS) analysis which strips away the HPLC solvent as it emerges from the end of the HPLC column and leaves a residue suitable for mass-spectral analysis. The interface includes a portable, stand-alone apparatus having a plural stage vacuum station, a continuous ribbon or belt, a drive train magnetically coupled to an external drive motor, a calibrated HPLC delivery system, a heated probe tip and means located adjacent the probe tip for direct ionization of the residue on the belt. The interface is also capable of being readily adapted to fit any mass spectrometer. 8 figs.

  11. Computational Investigations of Solid-Liquid Interfaces

    SciTech Connect (OSTI)

    Mark Asta

    2011-08-31

    In a variety of materials synthesis and processing contexts, atomistic processes at heterophase interfaces play a critical role governing defect formation, growth morphologies, and microstructure evolution. Accurate knowledge of interfacial structure, free energies, mobilities and segregation coefficients are critical for predictive modeling of microstructure evolution, yet direct experimental measurement of these fundamental interfacial properties remains elusive in many cases. In this project first-principles calculations were combined with molecular-dynamics (MD) and Monte-Carlo (MC) simulations, to investigate the atomic-scale structural and dynamical properties of heterophase interfaces, and the relationship between these properties and the calculated thermodynamic and kinetic parameters that influence the evolution of phase transformation structures at nanometer to micron length scales. The topics investigated in this project were motivated primarily by phenomena associated with solidification processing of metals and alloys, and the main focus of the work was thus on solid-liquid interfaces and high-temperature grain boundaries. Additional efforts involved first-principles calculations of coherent solid-solid heterophase interfaces, where a close collaboration with researchers at the National Center for Electron Microscopy was undertaken to understand the evolution of novel core-shell precipitate microstructures in aluminum alloys.

  12. TMACS Test Procedure TP011: Panalarm Interface

    SciTech Connect (OSTI)

    Seghers, R.; Washburn, S.J.

    1994-05-24

    The TMACS Software Test Procedures translate the project`s acceptance criteria into test steps. The TMACS Test Plan (WHC-SD-WM-TP-148) is fulfilled when all Test Cases are approved. This Test Procedure tests the TMACS Panalarm Interface functions.

  13. The Web Interface Template System (WITS), a software developer`s tool

    SciTech Connect (OSTI)

    Lauer, L.J.; Lynam, M.; Muniz, T.

    1995-11-01

    The Web Interface Template System (WITS) is a tool for software developers. WITS is a three-tiered, object-oriented system operating in a Client/Server environment. This tool can be used to create software applications that have a Web browser as the user interface and access a Sybase database. Development, modification, and implementation are greatly simplified because the developer can change and test definitions immediately, without writing or compiling any code. This document explains WITS functionality, the system structure and components of WITS, and how to obtain, install, and use the software system.

  14. Performance and Reliability of Bonded Interfaces for High-Temperature Packaging (Presentation)

    SciTech Connect (OSTI)

    Devoto, D.

    2014-11-01

    The thermal performance and reliability of sintered-silver is being evaluated for power electronics packaging applications. This will be experimentally accomplished by the synthesis of large-area bonded interfaces between metalized substrates that will be subsequently subjected to thermal cycles. A finite element model of crack initiation and propagation in these bonded interfaces will allow for the interpretation of degradation rates by a crack-velocity (V)-stress intensity factor (K) analysis. The experiment is outlined, and the modeling approach is discussed.

  15. Design Analysis Kit for Optimization and Terascale Applications 6.0

    Energy Science and Technology Software Center (OSTI)

    2015-10-19

    Sandia's Dakota software (available at http://dakota.sandia.gov) supports science and engineering transformation through advanced exploration of simulations. Specifically it manages and analyzes ensembles of simulations to provide broader and deeper perspective for analysts and decision makers. This enables them to: (1) enhance understanding of risk, (2) improve products, and (3) assess simulation credibility. In its simplest mode, Dakota can automate typical parameter variation studies through a generic interface to a computational model. However, Dakota also deliversmore » advanced parametric analysis techniques enabling design exploration, optimization, model calibration, risk analysis, and quantification of margins and uncertainty with such models. It directly supports verification and validation activities. The algorithms implemented in Dakota aim to address challenges in performing these analyses with complex science and engineering models from desktop to high performance computers.« less

  16. Resolving and measuring diffusion in complex interfaces: Exploring new capabilities

    SciTech Connect (OSTI)

    Alam, Todd M.

    2015-09-01

    This exploratory LDRD targeted the use of a new high resolution spectroscopic diffusion capabilities developed at Sandia to resolve transport processes at interfaces in heterogeneous polymer materials. In particular, the combination of high resolution magic angle spinning (HRMAS) nuclear magnetic resonance (NMR) spectroscopy with pulsed field gradient (PFG) diffusion experiments were used to directly explore interface diffusion within heterogeneous polymer composites, including measuring diffusion for individual chemical species in multi-component mixtures. Several different types of heterogeneous polymer systems were studied using these HRMAS NMR diffusion capabilities to probe the resolution limitations, determine the spatial length scales involved, and explore the general applicability to specific heterogeneous systems. The investigations pursued included a) the direct measurement of the diffusion for poly(dimethyl siloxane) polymer (PDMS) on nano-porous materials, b) measurement of penetrant diffusion in additive manufactures (3D printed) processed PDMS composites, and c) the measurement of diffusion in swollen polymers/penetrant mixtures within nano-confined aluminum oxide membranes. The NMR diffusion results obtained were encouraging and allowed for an improved understanding of diffusion and transport processes at the molecular level, while at the same time demonstrating that the spatial heterogeneity that can be resolved using HRMAS NMR PFG diffusion experiment must be larger than ~?m length scales, expect for polymer transport within nanoporous carbons where additional chemical resolution improves the resolvable heterogeneous length scale to hundreds of nm.

  17. A proposal for a user-level, message passing interface in a distributed memory environment

    SciTech Connect (OSTI)

    Dongarra, J.J. |; Hempel, R.; Hey, A.J.G.; Walker, D.W.

    1993-02-01

    This paper describes Message Passing Interface 1 (MPI1), a proposed library interface standard for supporting point-to-point message passing. The intended standard will be provided with Fortran 77 and C interfaces, and will form the basis of a standard high level communication environment featuring collective communication and data distribution transformations. The standard proposed here provides blocking, nonblocking, and synchronized message passing between pairs of processes, with message selectivity by source process and message type. Provision is made for noncontiguous messages. Context control provides a convenient means of avoiding message selectivity conflicts between different phases of an application. The ability to form and manipulate process groups permits task parallelism to be exploited, and is a useful abstraction in controlling certain types of collective communication.

  18. PinBus Interface for Interoperable, Grid-Responsive Devices

    SciTech Connect (OSTI)

    Hammerstrom, Donald J.

    2009-12-02

    A very simple appliance interface was suggested by this author and his co-authors during Grid-Interop 2007. The approach was based on a successful collaboration between utilities, a major appliance manufacture, and the manufacturer of a load control module during the U.S. Department of Energys Grid Friendly Appliance project. The suggested approach was based on the assumption that demand-response objectives could be effectively communicated to and from many small electrical loads like appliances by simply agreeing on the meaning of the binary states of several shared connector pins. It was argued that this approach could pave the way for a wave of demand-response-ready appliances and greatly reduced expenses for utilities future demand-response programs. The approach could be supported by any of the many competing serial communication protocols and would be generally applicable to most end-use devices.

  19. Capillary electrophoresis electrospray ionization mass spectrometry interface

    DOE Patents [OSTI]

    Smith, Richard D. (Richland, WA); Severs, Joanne C. (Hayward, CA)

    1999-01-01

    The present invention is an interface between a capillary electrophoresis separation capillary end and an electrospray ionization mass spectrometry emitter capillary end, for transporting an anolyte sample from a capillary electrophoresis separation capillary to a electrospray ionization mass spectrometry emitter capillary. The interface of the present invention has: (a) a charge transfer fitting enclosing both of the capillary electrophoresis capillary end and the electrospray ionization mass spectrometry emitter capillary end; (b) a reservoir containing an electrolyte surrounding the charge transfer fitting; and (c) an electrode immersed into the electrolyte, the electrode closing a capillary electrophoresis circuit and providing charge transfer across the charge transfer fitting while avoiding substantial bulk fluid transfer across the charge transfer fitting. Advantages of the present invention have been demonstrated as effective in providing high sensitivity and efficient analyses.

  20. Virtual Desktop Infrastructure (VDI) and Citrix Workplace

    Broader source: Energy.gov [DOE]

    For questions or concerns related to VDI or Workplace, contact the EITS Service Desk at 301-903-2500.

  1. DART - Desktop Analysis and Reporting Tool

    Energy Science and Technology Software Center (OSTI)

    2013-03-27

    DART provides tools and processes for analyzing data, identifying configuration issues and hardward failures, and reporting results/findings to administrative as well as maintenance individuals.

  2. Combined electrophoresis-electrospray interface and method

    DOE Patents [OSTI]

    Smith, R.D.; Udseth, H.R.; Barinaga, C.J.

    1995-06-13

    An improvement to the system and method is disclosed for analyzing molecular constituents of a composition sample that comprises improvements to an electrospray ionization source for interfacing to mass spectrometers and other detection devices. The improvement consists of establishing a unique electrical circuit pattern and nozzle configuration, a metallic coated and conical shaped capillary outlet, coupled with sizing of the capillary to obtain maximum sensitivity. 10 figs.

  3. VMS software for the Jorway-411 interface

    SciTech Connect (OSTI)

    Dorries, T.; Moore, C.; Pordes, R.; White, V.

    1987-05-01

    This report describes a Software Package used to access CAMAC through the Jorway-411 Interface, for use on VAX/VMS systems. The software can be used to access parallel and/or serial CAMAC branch highways, and multiple Jorways may be connected to the VAX UNIBUS or MicroVax QBUS. The software available includes a VAX/VMS device driver for the JORWAY-411 and support routines and programs that access the driver. The software is accompanied by extensive documentation.

  4. Microsoft PowerPoint - Interface_Pstrak

    Office of Environmental Management (EM)

    Activities Related to Storage of Spent Nuclear Fuel David W. Pstrak Division of Spent Fuel Storage and Transportation Office of Nuclear Material Safety and Safeguards U.S. Nuclear Regulatory Commission NTSF Session: Interface Between Storage and Transportation May 14, 2014 Overview * Storage of Spent Nuclear Fuel * Extended Storage * Waste Confidence Current Status * Yucca Mountain Update * Summary Storage of Spent Nuclear Fuel Storage of Spent Nuclear Fuel Storage of Spent Nuclear Fuel Storage

  5. A Simple and Efficient Diffuse Interface Method for Compressible Two-Phase Flows

    SciTech Connect (OSTI)

    Ray A. Berry; Richard Saurel; Fabien Petitpas

    2009-05-01

    In nuclear reactor safety and optimization there are key issues that rely on in-depth understanding of basic two-phase flow phenomena with heat and mass transfer. For many reasons, to be discussed, there is growing interest in the application of two-phase flow models to provide diffuse, but nevertheless resolved, simulation of interfaces between two immiscible compressible fluids diffuse interface method (DIM). Because of its ability to dynamically create interfaces and to solve interfaces separating pure media and mixtures for DNS-like (Direct Numerical Simulation) simulations of interfacial flows, we examine the construction of a simple, robust, fast, and accurate numerical formulation for the 5-equation Kapila et al. [1] reduced two-phase model. Though apparently simple, the Kapila et al. model contains a volume fraction differential transport equation containing a nonlinear, non-conservative term which poses serious computational challenges. To circumvent the difficulties encountered with the single velocity and single pressure Kapila et al. [1] multiphase flow model, a 6-equation relaxation hyperbolic model is built to solve interface problems with compressible fluids. In this approach, pressure non-equilibrium is first restored, followed by a relaxation to an asymptotic solution which is convergent to the solutions of the Kapila et al. reduced model. The apparent complexity introduced with this extended hyperbolic model actually leads to considerable simplifications regarding numerical resolution, and the various ingredients used by this method are general enough to consider future extensions to problems involving complex physics.

  6. Systems and methods for monitoring a solid-liquid interface

    DOE Patents [OSTI]

    Stoddard, Nathan G; Lewis, Monte A.; Clark, Roger F

    2013-06-11

    Systems and methods are provided for monitoring a solid-liquid interface during a casting process. The systems and methods enable determination of the location of a solid-liquid interface during the casting process.

  7. Advanced Thermal Interface Materials (TIMs) for Power Electronics |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Thermal Interface Materials (TIMs) for Power Electronics Advanced Thermal Interface Materials (TIMs) for Power Electronics 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon ape_10_narumanchi.pdf More Documents & Publications Thermal Performance and Reliability of Bonded Interfaces Thermal Performance and Reliability of Bonded Interfaces Vehicle Technologies Office:

  8. Dynamics and pattern selection at the crystal-melt interface

    SciTech Connect (OSTI)

    Cummins, H.Z.

    1990-01-01

    This report discusses: light scattering at the crystal-melt interface; morphological instability and pattern selection; and sidebranching.

  9. Electronic Structure of Buried Interfaces - Oral Presentation

    SciTech Connect (OSTI)

    Porter, Zachary

    2015-08-25

    In the electronics behind computer memory storage, the speed and size are dictated by the performance of permanent magnets inside devices called read heads. Complicated magnets made of stacked layers of thin films can be engineered to have properties that yield more energy storage and faster switching times compared to conventional iron or cobalt magnets. The reason is that magnetism is a result of subtle interactions amongst electrons; just how neurons come together on large scales to make cat brains and dog brains, ensembles of electrons interact and become ferromagnets and paramagnets. These interactions make magnets too difficult to study in their entirety, so I focus on the interfaces between layers, which are responsible for the coupling materials physicists hope to exploit to produce next-generation magnets. This project, I study a transition metal oxide material called LSCO, Lanthanum Cobaltite, which can be a paramagnet or a ferromagnet depending on how you tweak the electronic structure. It exhibits an exciting behavior: its sum is greater than the sum of its parts. When another similar material called a LSMO, Lanthanum Manganite, is grown on top of it, their interface has a different type of magnetism from the LSCO or the LSMO! I hope to explain this by demonstrating differently charged ions in the interface. The typical method for quantifying this is x-ray absorption, but all conventional techniques look at every layer simultaneously, averaging the interfaces and the LSCO layers that we want to characterize separately. Instead, I must use a new reflectivity technique, which tracks the intensity of reflected x-rays at different angles, at energies near the absorption peaks of certain elements, to track changes in the electronic structure of the material. The samples were grown by collaborators at the Takamura group at U.C. Davis and probed with this “resonant reflectivity” technique on Beamline 2-1 at the Stanford Synchrotron Radiation Lightsource. This project was funded by the Department of Energy and supported by the SLAC National Accelerator Laboratory. Preliminary results suggest that different ionic charges are indeed responsible for the different magnetic properties at the interface, which is promising because charge is easy to control. Once scientists understand how to tune the magnetic properties of materials like LSCO and LSMO, industries get closer to designing the magnets that will soon revolutionize consumer electronics.

  10. Phase-field investigation on the non-equilibrium interface dynamics of rapid alloy solidification

    SciTech Connect (OSTI)

    Choi, Jeong

    2011-08-15

    The research program reported here is focused on critical issues that represent conspicuous gaps in current understanding of rapid solidification, limiting our ability to predict and control microstructural evolution (i.e. morphological dynamics and microsegregation) at high undercooling, where conditions depart significantly from local equilibrium. More specifically, through careful application of phase-field modeling, using appropriate thin-interface and anti-trapping corrections and addressing important details such as transient effects and a velocity-dependent (i.e. adaptive) numerics, the current analysis provides a reasonable simulation-based picture of non-equilibrium solute partitioning and the corresponding oscillatory dynamics associated with single-phase rapid solidification and show that this method is a suitable means for a self-consistent simulation of transient behavior and operating point selection under rapid growth conditions. Moving beyond the limitations of conventional theoretical/analytical treatments of non-equilibrium solute partitioning, these results serve to substantiate recent experimental findings and analytical treatments for single-phase rapid solidification. The departure from the equilibrium solid concentration at the solid-liquid interface was often observed during rapid solidification, and the energetic associated non-equilibrium solute partitioning has been treated in detail, providing possible ranges of interface concentrations for a given growth condition. Use of these treatments for analytical description of specific single-phase dendritic and cellular operating point selection, however, requires a model for solute partitioning under a given set of growth conditions. Therefore, analytical solute trapping models which describe the chemical partitioning as a function of steady state interface velocities have been developed and widely utilized in most of the theoretical investigations of rapid solidification. However, these solute trapping models are not rigorously verified due to the difficulty in experimentally measuring under rapid growth conditions. Moreover, since these solute trapping models include kinetic parameters which are difficult to directly measure from experiments, application of the solute trapping models or the associated analytic rapid solidification model is limited. These theoretical models for steady state rapid solidification which incorporate the solute trapping models do not describe the interdependency of solute diffusion, interface kinetics, and alloy thermodynamics. The phase-field approach allows calculating, spontaneously, the non-equilibrium growth effects of alloys and the associated time-dependent growth dynamics, without making the assumptions that solute partitioning is an explicit function of velocity, as is the current convention. In the research described here, by utilizing the phase-field model in the thin-interface limit, incorporating the anti-trapping current term, more quantitatively valid interface kinetics and solute diffusion across the interface are calculated. In order to sufficiently resolve the physical length scales (i.e. interface thickness and diffusion boundary length), grid spacings are continually adjusted in calculations. The full trajectories of transient planar growth dynamics under rapid directional solidification conditions with different pulling velocities are described. As a validation of a model, the predicted steady state conditions are consistent with the analytic approach for rapid growth. It was confirmed that rapid interface dynamics exhibits the abrupt acceleration of the planar front when the effect of the non-equilibrium solute partitioning at the interface becomes signi ficant. This is consistent with the previous linear stability analysis for the non-equilibrium interface dynamics. With an appropriate growth condition, the continuous oscillation dynamics was able to be simulated using continually adjusting grid spacings. This oscillatory dynamics including instantaneous jump of interface velocities are consistent

  11. Process for making film-bonded fuel cell interfaces

    DOE Patents [OSTI]

    Kaufman, Arthur (West Orange, NJ); Terry, Peter L. (Chatham, NJ)

    1990-07-03

    An improved interface configuration for use between adjacent elements of a fuel cell stack. The interface is impervious to gas and liquid and provides resistance to corrosion by the electrolyte of the fuel cell. A multi-layer arrangement for the interface provides bridging electrical contact with a hot-pressed resin filling the void space.

  12. REMSView Validation Application- Version 3.1

    Broader source: Energy.gov [DOE]

    The REMSView 3.1 Validation Application has been updated as of 3/9/2010. The application is a Java application and can be run on any computer system that can run Java. The interface is a standard windows format.

  13. Fluid Interface Reactions, Structures and Transport

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Publication List For The Fluid Interface Reactions, Structures and Transport (FIRST) Energy Frontier Research Center * = Solely Supported by the FIRST Center ** = Not Solely Supported by the FIRST Center *Achtyl, J.L.; Unocic, R.R.; Xu, L.; Yu, C.; Raju, M.; Zhang, W.; Sacci, R.L.; Vlassiouk, I.V.; Fulvio P.F.; Ganesh, P.; Wesolowski, D.J.; Dai, S.; van Duin, A.C.T.; Neurock, M.; Geiger, F.M. Aqueous Proton Transfer across Single Layer Graphene. Nat. Comm. 2015, 6, 6539, [10.1038/ncomms7539]. *

  14. ANALOG I/O MODULE TEST SYSTEM BASED ON EPICS CA PROTOCOL AND ACTIVEX CA INTERFACE

    SciTech Connect (OSTI)

    YENG,YHOFF,L.

    2003-10-13

    Analog input (ADC) and output (DAC) modules play a substantial role in device level control of accelerator and large experiment physics control system. In order to get the best performance some features of analog modules including linearity, accuracy, crosstalk, thermal drift and so on have to be evaluated during the preliminary design phase. Gain and offset error calibration and thermal drift compensation (if needed) may have to be done in the implementation phase as well. A natural technique for performing these tasks is to interface the analog VO modules and GPIB interface programmable test instruments with a computer, which can complete measurements or calibration automatically. A difficulty is that drivers of analog modules and test instruments usually work on totally different platforms (vxworks VS Windows). Developing new test routines and drivers for testing instruments under VxWorks (or any other RTOS) platform is not a good solution because such systems have relatively poor user interface and developing such software requires substantial effort. EPICS CA protocol and ActiveX CA interface provide another choice, a PC and LabVIEW based test system. Analog 110 module can be interfaced from LabVIEW test routines via ActiveX CA interface. Test instruments can be controlled via LabVIEW drivers, most of which are provided by instrument vendors or by National Instruments. Labview also provides extensive data analysis and process functions. Using these functions, users can generate powerful test routines very easily. Several applications built for Spallation Neutron Source (SNS) Beam Loss Monitor (BLM) system are described in this paper.

  15. Mechanical interface having multiple grounded actuators

    DOE Patents [OSTI]

    Martin, Kenneth M. (Palo Alto, CA); Levin, Mike D. (Sunnyvale, CA); Rosenberg, Louis B. (Pleasanton, CA)

    1998-01-01

    An apparatus and method for interfacing the motion of a user-manipulable object with a computer system includes a user object physically contacted or grasped by a user. A 3-D spatial mechanism is coupled to the user object, such as a stylus or a medical instrument, and provides three degrees of freedom to the user object. Three grounded actuators provide forces in the three degrees of freedom. Two of the degrees of freedom are a planar workspace provided by a closed-loop linkage of members, and the third degree of freedom is rotation of the planar workspace provided by a rotatable carriage. Capstan drive mechanisms transmit forces between actuators and the user object and include drums coupled to the carriage, pulleys coupled to grounded actuators, and flexible cables transmitting force between the pulleys and the drums. The flexibility of the cable allows the drums to rotate with the carriage while the pulleys and actuators remain fixed to ground. The interface also may include a floating gimbal mechanism coupling the linkage to the user object. The floating gimbal mechanism includes rotatably coupled gimbal members that provide three degrees of freedom to the user object and capstan mechanisms coupled between sensors and the gimbal members for providing enhanced sensor resolution.

  16. Human-system Interfaces for Automatic Systems

    SciTech Connect (OSTI)

    OHara, J.M.; Higgins,J.; Fleger, S.; Barnes V.

    2010-11-07

    Automation is ubiquitous in modern complex systems, and commercial nuclear- power plants are no exception. Automation is applied to a wide range of functions including monitoring and detection, situation assessment, response planning, and response implementation. Automation has become a 'team player' supporting personnel in nearly all aspects of system operation. In light of its increasing use and importance in new- and future-plants, guidance is needed to conduct safety reviews of the operator's interface with automation. The objective of this research was to develop such guidance. We first characterized the important HFE aspects of automation, including six dimensions: levels, functions, processes, modes, flexibility, and reliability. Next, we reviewed literature on the effects of all of these aspects of automation on human performance, and on the design of human-system interfaces (HSIs). Then, we used this technical basis established from the literature to identify general principles for human-automation interaction and to develop review guidelines. The guidelines consist of the following seven topics: automation displays, interaction and control, automation modes, automation levels, adaptive automation, error tolerance and failure management, and HSI integration. In addition, our study identified several topics for additional research.

  17. Heart Interface Corporation | Open Energy Information

    Open Energy Info (EERE)

    Washington State Zip: 98032 Sector: Solar, Vehicles Product: Manufacturers of power inverters for remoted solar powered residences, vehicles and marine applications. Bought by...

  18. Atomic arrangement at ZnTe/CdSe interfaces determined by high resolution scanning transmission electron microscopy and atom probe tomography

    SciTech Connect (OSTI)

    Bonef, Bastien; Rouvire, Jean-Luc; Jouneau, Pierre-Henri; Bellet-Amalric, Edith; Grard, Lionel; Mariette, Henri; Andr, Rgis; Bougerol, Catherine; Grenier, Adeline

    2015-02-02

    High resolution scanning transmission electron microscopy and atom probe tomography experiments reveal the presence of an intermediate layer at the interface between two binary compounds with no common atom, namely, ZnTe and CdSe for samples grown by Molecular Beam Epitaxy under standard conditions. This thin transition layer, of the order of 1 to 3 atomic planes, contains typically one monolayer of ZnSe. Even if it occurs at each interface, the direct interface, i.e., ZnTe on CdSe, is sharper than the reverse one, where the ZnSe layer is likely surrounded by alloyed layers. On the other hand, a CdTe-like interface was never observed. This interface knowledge is crucial to properly design superlattices for optoelectronic applications and to master band-gap engineering.

  19. Straddle Carrier Interface and Dispatching System

    Energy Science and Technology Software Center (OSTI)

    2012-09-13

    SCIDS is the Data Dispatching and Transfer Point (DDTP) component of a straddle carrier-based radiation detection system developed for the DOE Megaports Initiative for scanning shipping containers in transshipment ports. Its purpose is to communicate with a Radiation Detection Straddle Carrier (RDSC) developed by Detector Networks International, sending commands to the RDSC and receiving sensor data from the RDSC. Incoming sensor and status data from the RDSC is forwarded to a back-end data storage andmore » display system that is external to SCIDS. SCIDS provides a graphical user interface for port operations personnel that displays location and status of the RDSC and status of each container in the port, and accepts commands from the operator directing the scanning operations of the RDSC.« less

  20. Facility Interface Capability Assessment (FICA) summary report

    SciTech Connect (OSTI)

    Viebrock, J.M.; Mote, N.; Pope, R.B.

    1992-05-01

    The Office of Civilian Radioactive Waste Management (OCRWM) is responsible for developing the Civilian Radioactive Waste Management System (CRWMS) to accept spent nuclear fuel from the commercial facilities. In support of the development of the CRWMS, OCRWM sponsored the Facility Interface Capability Assessment (FICA) project. The objective of this project was to assess the capability of each commercial facility to handle various spent nuclear fuel shipping casks. The purpose of this report is to summarize the results of the facility assessments completed within the FICA project. The project was conducted in two phases. During Phase I, the data items required to complete the facility assessments were identified and the data base for the project was created. During Phase II, visits were made to 122 facilities on 76 sites to collect data and information, the data base was updated, and assessments of the cask-handling capabilities at each facility were performed.

  1. Corrosion protected, multi-layer fuel cell interface

    DOE Patents [OSTI]

    Feigenbaum, Haim (Ramat Ilan, IL); Pudick, Sheldon (Sayreville, NJ); Wang, Chiu L. (Edison, NJ)

    1986-01-01

    An improved interface configuration for use between adjacent elements of a fuel cell stack. The interface is impervious to gas and liquid and provides resistance to corrosion by the electrolyte of the fuel cell. The multi-layer configuration for the interface comprises a non-cupreous metal-coated metallic element to which is film-bonded a conductive layer by hot pressing a resin therebetween. The multi-layer arrangement provides bridging electrical contact.

  2. Interface for Parallel I/O from Componentized Visualization Algorithms

    Energy Science and Technology Software Center (OSTI)

    2008-09-16

    The software is an interface layer over file I/O with features specifically designed for efficient parallel reads and writes. The interface provides multiple concrete implementations that easily allow the replacement of one interface with another. This feature allows a reader or writer implementation to work independently of whether parallel file I/O is available or desired. The software also contains extensions to some readers to allow it to use the file I/O functionality.

  3. Research Update: Interface-engineered oxygen octahedral tilts in perovskite

    Office of Scientific and Technical Information (OSTI)

    oxide heterostructures (Journal Article) | SciTech Connect Research Update: Interface-engineered oxygen octahedral tilts in perovskite oxide heterostructures Citation Details In-Document Search Title: Research Update: Interface-engineered oxygen octahedral tilts in perovskite oxide heterostructures Interface engineering of structural distortions is a key for exploring the functional properties of oxide heterostructures and superlattices. In this paper, we report on our comprehensive

  4. Theoretical and experimental studies of electrified interfaces relevant to

    Office of Scientific and Technical Information (OSTI)

    energy storage. (Technical Report) | SciTech Connect Technical Report: Theoretical and experimental studies of electrified interfaces relevant to energy storage. Citation Details In-Document Search Title: Theoretical and experimental studies of electrified interfaces relevant to energy storage. Advances in technology for electrochemical energy storage require increased understanding of electrolyte/electrode interfaces, including the electric double layer structure, and processes involved in

  5. Reactor User Interface Technology Development Roadmaps for a High Temperature Gas-Cooled Reactor Outlet Temperature of 750 degrees C

    SciTech Connect (OSTI)

    Ian Mckirdy

    2010-12-01

    This report evaluates the technology readiness of the interface components that are required to transfer high-temperature heat from a High Temperature Gas-Cooled Reactor (HTGR) to selected industrial applications. This report assumes that the HTGR operates at a reactor outlet temperature of 750°C and provides electricity and/or process heat at 700°C to conventional process applications, including the production of hydrogen.

  6. Microsoft Word - Improved Interfaces and Decision Support_FINAL...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... the speed and effectiveness of the human-machine interface. * Virtual reality environments ... algorithm then compares those signals to words and phrases from a pre-set ...

  7. Basic research needs and opportunities on interfaces in solar materials

    SciTech Connect (OSTI)

    Czanderna, A.W.; Gottschall, R.J.

    1981-04-01

    The workshop on research needs and recommended research programs on interfaces in solar energy conversion devices was held June 30-July 3, 1980. The papers deal mainly with solid-solid, solid-liquid, and solid-gas interfaces, sometimes involving multilayer solid-solid interfaces. They deal mainly with instrumental techniques of studying these interfaces so they can be optimized, so they can be fabricated with quality control and so changes with time can be forecast. The latter is required because a long lifetime (20 yrs is suggested) is necessary for economic reasons. Fifteen papers have been entered individually into EDB and ERA. (LTN)

  8. Targeting diverse protein-protein interaction interfaces with...

    Office of Scientific and Technical Information (OSTI)

    Targeting diverse protein-protein interaction interfaces with -peptides derived from the Z-domain scaffold Citation Details In-Document Search Title: Targeting diverse ...

  9. Interface design principles for high-performance organic semiconductor...

    Office of Scientific and Technical Information (OSTI)

    Title: Interface design principles for high-performance organic semiconductor devices Organic solar cells (OSCs) are a promising cost-effective candidate in next generation ...

  10. Structure, defects, and strain in silicon-silicon oxide interfaces

    SciTech Connect (OSTI)

    Kova?evi?, Goran Pivac, Branko

    2014-01-28

    The structure of the interfaces between silicon and silicon-oxide is responsible for proper functioning of MOSFET devices while defects in the interface can deteriorate this function and lead to their failure. In this paper we modeled this interface and characterized its defects and strain. MD simulations were used for reconstructing interfaces into a thermodynamically stable configuration. In all modeled interfaces, defects were found in the form of three-coordinated silicon atom, five coordinated silicon atom, threefold-coordinated oxygen atom, or displaced oxygen atom. Three-coordinated oxygen atom can be created if dangling bonds on silicon are close enough. The structure and stability of three-coordinated silicon atoms (P{sub b} defect) depend on the charge as well as on the electric field across the interface. The negatively charged P{sub b} defect is the most stable one, but the electric field resulting from the interface reduces that stability. Interfaces with large differences in periodic constants of silicon and silicon oxide can be stabilized by buckling of silicon layer. The mechanical stress resulted from the interface between silicon and silicon oxide is greater in the silicon oxide layer. Ab initio modeling of clusters representing silicon and silicon oxide shows about three time larger susceptibility to strain in silicon oxide than in silicon if exposed to the same deformation.

  11. Interface Surprises May Motivate Novel Oxide Electronic Devices

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Often one string takes others with it." Borisevich led a project that made a surprising discovery: intrinsic electric fields can drive oxygen diffusion at interfaces in engineered ...

  12. Laboratoire de Physique des Interfaces et Couches Minces LPICM...

    Open Energy Info (EERE)

    Laboratoire de Physique des Interfaces et Couches Minces (LPICM) Place: Palaiseau, France Zip: 91128 Sector: Carbon Product: Research department of the Ecole Polytechnique in...

  13. User interface in ORACLE for the Worldwide Household Goods Information System for Transportation Modernization (WHIST-MOD)

    SciTech Connect (OSTI)

    James, T. ); Loftis, J. )

    1990-07-01

    The Directorate of Personal Property of the Military Traffic Management Command (MTMC) requested that Oak Ridge National laboratory (ORNL) design a prototype decision support system, the Worldwide Household Goods Information System for Transportation Modernization (WHIST-MOD). This decision support system will automate current tasks and provide analysis tools for evaluating the Personal Property Program, predicting impacts to the program, and planning modifications to the program to meet the evolving needs of military service members and the transportation industry. The system designed by ORNL consists of three application modules: system dictionary applications, data acquisition and administration applications, and user applications. The development of the user applications module is divided into two phases. Round 1 is the data selection front-end interface, and Round 2 is the output or back-end interface. This report describes the prototyped front-end interface for the user application module. It discusses user requirements and the prototype design. The information contained in this report is the product of in-depth interviews with MTMC staff, prototype meetings with the users, and the research and design work conducted at ORNL. 18 figs., 2 tabs.

  14. Data communications in a parallel active messaging interface of a parallel computer

    DOE Patents [OSTI]

    Archer, Charles J; Blocksome, Michael A; Ratterman, Joseph D; Smith, Brian E

    2013-11-12

    Data communications in a parallel active messaging interface (`PAMI`) of a parallel computer composed of compute nodes that execute a parallel application, each compute node including application processors that execute the parallel application and at least one management processor dedicated to gathering information regarding data communications. The PAMI is composed of data communications endpoints, each endpoint composed of a specification of data communications parameters for a thread of execution on a compute node, including specifications of a client, a context, and a task, the compute nodes and the endpoints coupled for data communications through the PAMI and through data communications resources. Embodiments function by gathering call site statistics describing data communications resulting from execution of data communications instructions and identifying in dependence upon the call cite statistics a data communications algorithm for use in executing a data communications instruction at a call site in the parallel application.

  15. Feedback-based, muLti-dimensional Interface as a General Human-Computer Tech.

    Energy Science and Technology Software Center (OSTI)

    2002-05-13

    FLIGHT is a 3D human-computer interface and application development software that can be used by both end users and programmers. It is based on advanced feedback and a multi-dimensional nature that more closely resembles real life interactions. The software uses a craft metaphor and allows multimodal feedback for advanced tools and navigation techniques. Overall, FLIGHT is a software that is based on the principle that as the human-computer interface is strengthened through the use ofmore » more intuitive inputs and more effective feedback, the computer itself will be for more valuable. FLIGHT has been used to visualize scientific data sets in 3D graphics at Sandia National Laboratories.« less

  16. Renewable Electric Plant Information System user interface manual: Paradox 7 Runtime for Windows

    SciTech Connect (OSTI)

    1996-11-01

    The Renewable Electric Plant Information System (REPiS) is a comprehensive database with detailed information on grid-connected renewable electric plants in the US. The current version, REPiS3 beta, was developed in Paradox for Windows. The user interface (UI) was developed to facilitate easy access to information in the database, without the need to have, or know how to use, Paradox for Windows. The UI is designed to provide quick responses to commonly requested sorts of the database. A quick perusal of this manual will familiarize one with the functions of the UI and will make use of the system easier. There are six parts to this manual: (1) Quick Start: Instructions for Users Familiar with Database Applications; (2) Getting Started: The Installation Process; (3) Choosing the Appropriate Report; (4) Using the User Interface; (5) Troubleshooting; (6) Appendices A and B.

  17. Sandia National Labs: PCNSC: Departments: Surface and Interface Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Home About Us Departments Radiation, Nano Materials, & Interface Sciences > Radiation & Solid Interactions > Nanomaterials Sciences > Surface & Interface Sciences Semiconductor & Optical Sciences Energy Sciences Small Science Cluster Business Office News Partnering Research Carlos Gutierrez Carlos Gutierrez Manager Resources Department Folder 01114 Sharepoint Visit Our Labs Grest Group Nanorheology Research (514 KB PDF) Interfacial Force Microscopy Group (701 KB PDF)

  18. Identification of fluids and an interface between fluids

    DOE Patents [OSTI]

    Lee, D.O.; Wayland, J.R. Jr.

    1988-03-10

    Complex impedance measured over a predefined frequency range is used to determine the identity of different oils in a column. The location of an interface between the oils is determined from the percent frequency effects of the complex impedance measured across the interface. 4 figs.

  19. Enzyme Activity and Biomolecule Templating at Liquid and Solid Interfaces

    SciTech Connect (OSTI)

    Harvey W. Blanch

    2004-12-01

    There are two main components of this research program. The first involves studies of the adsorption and catalytic activity of proteins at fluid-fluid and fluid-solid interfaces; the second employs biological macromolecules as templates at the solid-liquid interface for controlled crystallization of inorganic materials, to provide materials with specific functionality.

  20. Thermal Performance and Reliability of Bonded Interfaces | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon ape028_devoto_2012_o.pdf More Documents & Publications Reliability of Bonded Interfaces Thermal Performance and Reliability of Bonded Interfaces Thermal Performance and Reliability

  1. Open-split interface for mass spectrometers

    DOE Patents [OSTI]

    Diehl, John W.

    1991-01-01

    An open-split interface includes a connector body having four leg members projecting therefrom within a single plane, the first and third legs being coaxial and the second and fourth legs being coaxial. A tubular aperture extends through the first and third legs and a second tubular aperture extends through the second and fourth legs, connecting at a juncture within the center of the connector body. A fifth leg projects from the connector body and has a third tubular aperture extending therethrough to the juncture of the first and second tubular apertures. A capillary column extends from a gas chromatograph into the third leg with its end adjacent the juncture. A flow restrictor tube extends from a mass spectrometer through the first tubular aperture in the first and third legs and into the capillary columnm end, so as to project beyond the end of the third leg within the capillary column. An annular gap between the tube and column allows excess effluent to pass to the juncture. A pair of short capillary columns extend from separate detectors into the second tubular aperture in the second and fourth legs, and are oriented with their ends spaced slightly from the first capillary column end. A sweep flow tube is mounted in the fifth leg so as to supply a helium sweep flow to the juncture.

  2. Safety and Security Interface Technology Initiative

    SciTech Connect (OSTI)

    Dr. Michael A. Lehto; Kevin J. Carroll; Dr. Robert Lowrie

    2007-05-01

    Safety and Security Interface Technology Initiative Mr. Kevin J. Carroll Dr. Robert Lowrie, Dr. Micheal Lehto BWXT Y12 NSC Oak Ridge, TN 37831 865-576-2289/865-241-2772 carrollkj@y12.doe.gov Work Objective. Earlier this year, the Energy Facility Contractors Group (EFCOG) was asked to assist in developing options related to acceleration deployment of new security-related technologies to assist meeting design base threat (DBT) needs while also addressing the requirements of 10 CFR 830. NNSA NA-70, one of the working group participants, designated this effort the Safety and Security Interface Technology Initiative (SSIT). Relationship to Workshop Theme. Supporting Excellence in Operations Through Safety Analysis, (workshop theme) includes security and safety personnel working together to ensure effective and efficient operations. One of the specific workshop elements listed in the call for papers is Safeguards/Security Integration with Safety. This paper speaks directly to this theme. Description of Work. The EFCOG Safety Analysis Working Group (SAWG) and the EFCOG Security Working Group formed a core team to develop an integrated process involving both safety basis and security needs allowing achievement of the DBT objectives while ensuring safety is appropriately considered. This effort garnered significant interest, starting with a two day breakout session of 30 experts at the 2006 Safety Basis Workshop. A core team was formed, and a series of meetings were held to develop that process, including safety and security professionals, both contractor and federal personnel. A pilot exercise held at Idaho National Laboratory (INL) in mid-July 2006 was conducted as a feasibility of concept review. Work Results. The SSIT efforts resulted in a topical report transmitted from EFCOG to DOE/NNSA in August 2006. Elements of the report included: Drivers and Endstate, Control Selections Alternative Analysis Process, Terminology Crosswalk, Safety Basis/Security Documentation Integration, Configuration Control, and development of a shared tool box of information/successes. Specific Benefits. The expectation or end state resulting from the topical report and associated implementation plan includes: (1) A recommended process for handling the documentation of the security and safety disciplines, including an appropriate change control process and participation by all stakeholders. (2) A means to package security systems with sufficient information to help expedite the flow of that system through the process. In addition, a means to share successes among sites, to include information and safety basis to the extent such information is transportable. (3) Identification of key security systems and associated essential security elements being installed and an arrangement for the sites installing these systems to host an appropriate team to review a specific system and determine what information is exportable. (4) Identification of the security systems essential elements and appropriate controls required for testing of these essential elements in the facility. (5) The ability to help refine and improve an agreed to control set at the manufacture stage.

  3. Facility Interface Capability Assessment (FICA) project report

    SciTech Connect (OSTI)

    Pope, R.B.; MacDonald, R.R.; Viebrock, J.M.; Mote, N.

    1995-09-01

    The US Department of Energy`s (DOE) Office of Civilian Radioactive Waste Management (OCRWM) is responsible for developing the Civilian Radioactive Waste Management System (CRWMS) to accept spent nuclear fuel from commercial facilities. The objective of the Facility Interface Capability Assessment (FICA) project was to assess the capability of each commercial spent nuclear fuel (SNF) storage facility, at which SNF is stored, to handle various SNF shipping casks. The purpose of this report is to present and analyze the results of the facility assessments completed within the FICA project. During Phase 1, the data items required to complete the facility assessments were identified and the database for the project was created. During Phase 2, visits were made to 122 facilities on 76 sites to collect data and information, the database was updated, and assessments of the cask-handling capabilities at each facility were performed. Each assessment of cask-handling capability contains three parts: the current capability of the facility (planning base); the potential enhanced capability if revisions were made to the facility licensing and/or administrative controls; and the potential enhanced capability if limited physical modifications were made to the facility. The main conclusion derived from the planning base assessments is that the current facility capabilities will not allow handling of any of the FICA Casks at 49 of the 122 facilities evaluated. However, consideration of potential revisions and/or modifications showed that all but one of the 49 facilities could be adapted to handle at least one of the FICA Casks. For this to be possible, facility licensing, administrative controls, and/or physical aspects of the facility would need to be modified.

  4. Thermostat Interface and Usability: A Survey

    SciTech Connect (OSTI)

    Meier, Alan; Peffer, Therese; Pritoni, Marco; Aragon, Cecilia

    2010-09-04

    This report investigates the history of thermostats to better understand the context and legacy regarding the development of this important tool, as well as thermostats' relationships to heating, cooling, and other environmental controls. We analyze the architecture, interfaces, and modes of interaction used by different types of thermostats. For over sixty years, home thermostats have translated occupants' temperature preferences into heating and cooling system operations. In this position of an intermediary, the millions of residential thermostats control almost half of household energy use, which corresponds to about 10percent of the nation's total energy use. Thermostats are currently undergoing rapid development in response to emerging technologies, new consumer and utility demands, and declining manufacturing costs. Energy-efficient homes require more careful balancing of comfort, energy consumption, and health. At the same time, new capabilities will be added to thermostats, including scheduling, control of humidity and ventilation, responsiveness to dynamic electricity prices, and the ability to join communication networks inside homes. Recent studies have found that as many as 50percent of residential programmable thermostats are in permanent"hold" status. Other evaluations found that homes with programmable thermostats consumed more energy than those relying on manual thermostats. Occupants find thermostats cryptic and baffling to operate because manufacturers often rely on obscure, and sometimes even contradictory, terms, symbols, procedures, and icons. It appears that many people are unable to fully exploit even the basic features in today's programmable thermostats, such as setting heating and cooling schedules. It is important that people can easily, reliably, and confidently operate thermostats in their homes so as to remain comfortable while minimizing energy use.

  5. Three-dimensional local ALE-FEM method for fluid flow in domains containing moving boundaries/objects interfaces

    SciTech Connect (OSTI)

    Carrington, David Bradley; Monayem, A. K. M.; Mazumder, H.; Heinrich, Juan C.

    2015-03-05

    A three-dimensional finite element method for the numerical simulations of fluid flow in domains containing moving rigid objects or boundaries is developed. The method falls into the general category of Arbitrary Lagrangian Eulerian methods; it is based on a fixed mesh that is locally adapted in the immediate vicinity of the moving interfaces and reverts to its original shape once the moving interfaces go past the elements. The moving interfaces are defined by separate sets of marker points so that the global mesh is independent of interface movement and the possibility of mesh entanglement is eliminated. The results is a fully robust formulation capable of calculating on domains of complex geometry with moving boundaries or devises that can also have a complex geometry without danger of the mesh becoming unsuitable due to its continuous deformation thus eliminating the need for repeated re-meshing and interpolation. Moreover, the boundary conditions on the interfaces are imposed exactly. This work is intended to support the internal combustion engines simulator KIVA developed at Los Alamos National Laboratories. The model's capabilities are illustrated through application to incompressible flows in different geometrical settings that show the robustness and flexibility of the technique to perform simulations involving moving boundaries in a three-dimensional domain.

  6. GraSPI (Graphical Structured Packing Interface)

    Energy Science and Technology Software Center (OSTI)

    2004-06-10

    GraSPI is a collection of macros (computer programs) written to work in concert with Fluent Inc. software GAMBIT and FLUENT for modeling and design of structured packing columns used in the chemical industry (the application focus is in distillation but other applications such as gas absorbers, and other chemical contactors can also be analyzed). GraSPI is an accessory to GAMBIT and FLUENT that drives the process of complex geometry creation, domain setup, and mesh generation.more » In addition, GraSPI manages automatic flow analysis in the aforementioned domain via either serial or parallel computing using FLUENT. A library of typical commercial structured packing elements is included in GraSPI, so is the capability for user-defined creation of new packings.« less

  7. Interface structure for hub and mass attachment in flywheel rotors

    DOE Patents [OSTI]

    Deteresa, S.J.; Groves, S.E.

    1998-06-02

    An interface structure is described for hub and mass attachment in flywheel rotors. The interface structure efficiently transmits high radial compression forces and withstands both large circumferential elongation and local stresses generated by mass-loading and hub attachments. The interface structure is comprised of high-strength fiber, such as glass and carbon, woven into an angle pattern which is about 45{degree} with respect to the rotor axis. The woven fiber is bonded by a ductile matrix material which is compatible with and adheres to the rotor material. This woven fiber is able to elongate in the circumferential direction to match the rotor growth during spinning. 2 figs.

  8. Interface structure for hub and mass attachment in flywheel rotors

    DOE Patents [OSTI]

    Deteresa, Steven J. (Livermore, CA); Groves, Scott E. (Brentwood, CA)

    1998-06-02

    An interface structure for hub and mass attachment in flywheel rotors. The interface structure efficiently transmits high radial compression forces and withstands both large circumferential elongation and local stresses generated by mass-loading and hub attachments. The interface structure is comprised of high-strength fiber, such as glass and carbon, woven into an angle pattern which is about 45.degree. with respect to the rotor axis. The woven fiber is bonded by a ductile matrix material which is compatible with and adheres to the rotor material. This woven fiber is able to elongate in the circumferential direction to match the rotor growth during spinning.

  9. Automated identification and indexing of dislocations in crystal interfaces

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Stukowski, Alexander; Bulatov, Vasily V.; Arsenlis, Athanasios

    2012-10-31

    Here, we present a computational method for identifying partial and interfacial dislocations in atomistic models of crystals with defects. Our automated algorithm is based on a discrete Burgers circuit integral over the elastic displacement field and is not limited to specific lattices or dislocation types. Dislocations in grain boundaries and other interfaces are identified by mapping atomic bonds from the dislocated interface to an ideal template configuration of the coherent interface to reveal incompatible displacements induced by dislocations and to determine their Burgers vectors. Additionally, the algorithm generates a continuous line representation of each dislocation segment in the crystal andmore » also identifies dislocation junctions.« less

  10. Application Monitoring Archives - Nercenergy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Application Monitoring

  11. Calculation of the Naval Long and Short Waste Package Three-Dimensional Thermal Interface Temperatures

    SciTech Connect (OSTI)

    H. Marr

    2006-10-25

    The purpose of this calculation is to evaluate the thermal performance of the Naval Long and Naval Short spent nuclear fuel (SNF) waste packages (WP) in the repository emplacement drift. The scope of this calculation is limited to the determination of the temperature profiles upon the surfaces of the Naval Long and Short SNF waste package for up to 10,000 years of emplacement. The temperatures on the top of the outside surface of the naval canister are the thermal interfaces for the Naval Nuclear Propulsion Program (NNPP). The results of this calculation are intended to support Licensing Application design activities.

  12. Spin Coherence at the Nanoscale: Polymer Surfaces and Interfaces

    SciTech Connect (OSTI)

    Epstein, Arthur J.

    2013-09-10

    Breakthrough results were achieved during the reporting period in the areas of organic spintronics. (A) For the first time the giant magnetic resistance (GMR) was observed in spin valve with an organic spacer. Thus we demonstrated the ability of organic semiconductors to transport spin in GMR devices using rubrene as a prototype for organic semiconductors. (B) We discovered the electrical bistability and spin valve effect in a ferromagnet /organic semiconductor/ ferromagnet heterojunction. The mechanism of switching between conducting phases and its potential applications were suggested. (C) The ability of V(TCNE)x to inject spin into organic semiconductors such as rubrene was demonstrated for the first time. The mechanisms of spin injection and transport from and into organic magnets as well through organic semiconductors were elucidated. (D) In collaboration with the group of OSU Prof. Johnston-Halperin we reported the successful extraction of spin polarized current from a thin film of the organic-based room temperature ferrimagnetic semiconductor V[TCNE]x and its subsequent injection into a GaAs/AlGaAs light-emitting diode (LED). Thus all basic steps for fabrication of room temperature, light weight, flexible all organic spintronic devices were successfully performed. (E) A new synthesis/processing route for preparation of V(TCNE)x enabling control of interface and film thicknesses at the nanoscale was developed at OSU. Preliminary results show these films are higher quality and what is extremely important they are substantially more air stable than earlier prepared V(TCNE)x. In sum the breakthrough results we achieved in the past two years form the basis of a promising new technology, Multifunctional Flexible Organic-based Spintronics (MFOBS). MFOBS technology enables us fabrication of full function flexible spintronic devices that operate at room temperature.

  13. Scattering from a fault interface in the Coso geothermal field...

    Open Energy Info (EERE)

    of the half space. The S-wave velocity, 3.25 kms, agrees with independently derived 1-D models in this area. The large amplitude, vertical impedance contrast interface coincides...

  14. Synthesis of metal silicide at metal/silicon oxide interface...

    Office of Scientific and Technical Information (OSTI)

    A platinum silicide, -Ptsub 2Si, was successfully formed at the platinumsilicon oxide interface under 25-200 keV electron irradiation. This is of interest since any platinum ...

  15. Interface with the Defense Nuclear Facilities Safety Board

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1996-12-30

    The manual defines the process DOE will use to interface with the Defense Nuclear Facilities Safety Board and its staff. Canceled by DOE M 140.1-1A. Does not cancel other directives.

  16. Interface Ferroelectric Transition near the Gap-Opening Temperature...

    Office of Scientific and Technical Information (OSTI)

    Interface Ferroelectric Transition near the Gap-Opening Temperature in a Single-Unit-Cell FeSe Film Grown on Nb-DopedSrTiO3Substrate Citation Details In-Document Search This...

  17. Active Labor Unions Interfacing with DOE – June 2014

    Broader source: Energy.gov [DOE]

    This information book provides an overview of what has been learned through the interface with representative labor unions and related stakeholders as well as accomplishments and current efforts to address any identified areas of concern.

  18. Miscibility gap closure, interface morphology, and phase microstructur...

    Office of Scientific and Technical Information (OSTI)

    Miscibility gap closure, interface morphology, and phase microstructure of 3D LixFePO4 nanoparticles from surface wetting and coherency strain Citation Details In-Document Search ...

  19. Interface Ferroelectric Transition near the Gap-Opening Temperature...

    Office of Scientific and Technical Information (OSTI)

    Title: Interface Ferroelectric Transition near the Gap-Opening Temperature in a Single-Unit-Cell FeSe Film Grown on Nb-Doped SrTiO 3 Substrate Authors: Cui, Y.-T. ; Moore, R. G. ; ...

  20. Interface with the Defense Nuclear Facilities Safety Board

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-01-26

    This Manual presents the process the Department of Energy will use to interface with the Defense Nuclear Facilities Safety Board (DNFSB) and its staff. Cancels DOE M 140.1-1.

  1. SSRL Web Interface FAQ as of April 6, 2011

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Web Interface FAQ as of April 6, 2011 1) What version of Excel do I require to use the Spreadsheet? The spreadsheet was created in Excel 2007, but is compatible with Excel 97-2003. ...

  2. Interface with the Defense Nuclear Facilities Safety Board

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-03-30

    This Manual presents the process the Department of Energy will use to interface with the Defense Nuclear Facilities Safety Board (DNFSB) and its staff. Supersedes DOE M 140.1-1A.

  3. Hydroxide Anion at the Air-Water Interface (Journal Article)...

    Office of Scientific and Technical Information (OSTI)

    Title: Hydroxide Anion at the Air-Water Interface Here we use first-principles molecular dynamics simulations, in which the forces are obtained "on the fly" from electronic...

  4. Interface design principles for high-performance organic semiconductor devices

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Nie, Wanyi; Gupta, Gautam; Crone, Brian K.; Liu, Feilong; Smith, Darryl L.; Ruden, P. Paul; Kuo, Cheng -Yu; Tsai, Hsinhan; Wang, Hsing -Lin; Li, Hao; et al

    2015-03-23

    Organic solar cells (OSCs) are a promising cost-effective candidate in next generation photovoltaic technology. However, a critical bottleneck for OSCs is the electron/hole recombination loss through charge transfer state at the interface, which greatly limits the power conversion efficiency. W. Nie, A. Mohite, and co-workers demonstrate a simple strategy of suppressing the recombination rate by inserting a spacer layer at the donor-acceptor interface, resulting in a dramatic increase in power conversion efficiency.

  5. Mobile interfaces: Liquids as a perfect structural material for

    Office of Scientific and Technical Information (OSTI)

    multifunctional, antifouling surfaces (Journal Article) | DOE PAGES Mobile interfaces: Liquids as a perfect structural material for multifunctional, antifouling surfaces « Prev Next » Title: Mobile interfaces: Liquids as a perfect structural material for multifunctional, antifouling surfaces × You are accessing a document from the Department of Energy's (DOE) Public Access Gateway for Energy & Science (PAGES). This site is a product of DOE's Office of Scientific and Technical

  6. In situ determination of lithium ion cathode/electrolyte interface

    Office of Scientific and Technical Information (OSTI)

    thickness and composition as a function of charge. (Journal Article) | SciTech Connect Journal Article: In situ determination of lithium ion cathode/electrolyte interface thickness and composition as a function of charge. Citation Details In-Document Search Title: In situ determination of lithium ion cathode/electrolyte interface thickness and composition as a function of charge. Abstract not provided. Authors: Jungjohann, Katherine Leigh Publication Date: 2014-01-01 OSTI Identifier: 1140750

  7. PROJECT PROFILE: Addressing Soiling: From Interface Chemistry to

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Practicality | Department of Energy Addressing Soiling: From Interface Chemistry to Practicality PROJECT PROFILE: Addressing Soiling: From Interface Chemistry to Practicality Funding Opportunity: SuNLaMP SunShot Subprogram: Photovoltaics Location: National Renewable Energy Laboratory, Golden, CO Amount Awarded: $6,000,000 Natural soiling is responsible for about 4% output power loss and may be adding one cent per kilowatt hour to the levelized cost of energy (LCOE) depending on the site.

  8. PROJECT PROFILE: Interface Science and Engineering for Reliable, High

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficiency CdTe | Department of Energy Interface Science and Engineering for Reliable, High Efficiency CdTe PROJECT PROFILE: Interface Science and Engineering for Reliable, High Efficiency CdTe Funding Opportunity: SuNLaMP SunShot Subprogram: Photovoltaics Location: National Renewable Energy Laboratory, Golden, CO Amount Awarded: $4,900,000 While crystalline silicon accounted for two thirds of the PV market in 2014, cadmium telluride (CdTe) photovoltaic (PV) modules are becoming increasingly

  9. Investigations of electrode interface and architecture | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy electrode interface and architecture Investigations of electrode interface and architecture 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon es_36_dudney.pdf More Documents & Publications Investigations of Cathode Architecture using Graphite Fibers Studies on High Voltage Lithium Rich MNC Composite Cathodes In-Situ Electron Microscopy of Electrical Energy Storage

  10. Sheathless interface for coupling capillary electrophoresis with mass spectrometry

    SciTech Connect (OSTI)

    Wang, Chenchen; Tang, Keqi; Smith, Richard D.

    2014-06-17

    A sheathless interface for coupling capillary electrophoresis (CE) with mass spectrometry is disclosed. The sheathless interface includes a separation capillary for performing CE separation and an emitter capillary for electrospray ionization. A portion of the emitter capillary is porous or, alternatively, is coated to form an electrically conductive surface. A section of the emitter capillary is disposed within the separation capillary, forming a joint. A metal tube, containing a conductive liquid, encloses the joint.

  11. Friction in surface micromachined interfaces. (Conference) | SciTech

    Office of Scientific and Technical Information (OSTI)

    Connect Friction in surface micromachined interfaces. Citation Details In-Document Search Title: Friction in surface micromachined interfaces. No abstract prepared. Authors: de Boer, Maarten Pieter Publication Date: 2005-08-01 OSTI Identifier: 969592 Report Number(s): SAND2005-5095C TRN: US201001%%715 DOE Contract Number: AC04-94AL85000 Resource Type: Conference Resource Relation: Conference: Proposed for presentation at the Kavli Institute for Theoretical Physics Conference on Friction,

  12. Miscibility gap closure, interface morphology, and phase microstructure of

    Office of Scientific and Technical Information (OSTI)

    3D LixFePO4 nanoparticles from surface wetting and coherency strain (Journal Article) | SciTech Connect Miscibility gap closure, interface morphology, and phase microstructure of 3D LixFePO4 nanoparticles from surface wetting and coherency strain Citation Details In-Document Search Title: Miscibility gap closure, interface morphology, and phase microstructure of 3D LixFePO4 nanoparticles from surface wetting and coherency strain Authors: Welland, Michael J. ; Heinonen, Olle ; Karpeyev,

  13. 120-Channel, Chronically Implantable, Wireless, Polymer Neural Interface

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect 120-Channel, Chronically Implantable, Wireless, Polymer Neural Interface Citation Details In-Document Search Title: 120-Channel, Chronically Implantable, Wireless, Polymer Neural Interface Authors: Tooker, A ; Shah, K ; Tolosa, V ; Sheth, H ; Felix, S ; Delima, T ; Pannu, S Publication Date: 2012-05-09 OSTI Identifier: 1083257 Report Number(s): LLNL-PROC-557232 DOE Contract Number: W-7405-ENG-48 Resource Type: Conference Resource Relation: Conference: Presented

  14. T-703: Cisco Unified Communications Manager Open Query Interface Lets

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Remote Users Obtain Database Contents | Department of Energy 703: Cisco Unified Communications Manager Open Query Interface Lets Remote Users Obtain Database Contents T-703: Cisco Unified Communications Manager Open Query Interface Lets Remote Users Obtain Database Contents August 26, 2011 - 3:45pm Addthis PROBLEM: A vulnerability was reported in Cisco Unified Communications Manager. A remote user can obtain database contents PLATFORM: Cisco Unified Communications Manager 6.x, 7.x, 8.0, 8.5

  15. Interface Surprises May Motivate Novel Oxide Electronic Devices

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Interface Surprises May Motivate Novel Oxide Electronic Devices Interface Surprises May Motivate Novel Oxide Electronic Devices NERSC Helps Corroborate Two Distinct Mechanisms in Ferroelectric Material September 23, 2014 Contact: Dawn Levy, levyd@ornl.gov,+1 865.576.6448 Complex oxides have long tantalized the materials science community for their promise in next-generation energy and information technologies. Complex oxide crystals combine oxygen atoms with assorted metals to produce unusual

  16. 15.07.15 RH Interface Engineering - JCAP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Interface Engineering for Stable, High-Performance Photoanodes Zhou, X. et al. Interface Engineering of the Photoelectrochemical Performance of Ni-Oxide-Coated n-Si Photoanodes by Atomic-Layer Deposition of Ultrathin Films of Cobalt Oxide. Energy & Environmental Science, DOI: 10.1039/C5EE01687H (2015). Scientific Achievement We demonstrated that interfacial transition-metal oxide layers provide a route to stable, high-performance photoanodes for oxygen evolution in contact with aqueous 1 M

  17. Conduction Along Magnetic Interfaces Could Improve Memory Devices

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Conduction Along Magnetic Interfaces Could Improve Memory Devices Conduction Along Magnetic Interfaces Could Improve Memory Devices Print Thursday, 04 February 2016 15:54 Researchers all over the globe have been working hard on new memory storage devices that are faster, more stable, and can be made smaller than flash memory, which is approaching its fundamental limit on size, largely set by semiconductor physics. An international team of researchers has provided the first evidence that this

  18. Molecular Design of Branched and Binary Molecules at Ordered Interfaces

    SciTech Connect (OSTI)

    Kirsten Larson Genson

    2005-12-27

    This study examined five different branched molecular architectures to discern the effect of design on the ability of molecules to form ordered structures at interfaces. Photochromic monodendrons formed kinked packing structures at the air-water interface due to the cross-sectional area mismatch created by varying number of alkyl tails and the hydrophilic polar head group. The lower generations formed orthorhombic unit cell with long range ordering despite the alkyl tails tilted to a large degree. Favorable interactions between liquid crystalline terminal groups and the underlying substrate were observed to compel a flexible carbosilane dendrimer core to form a compressed elliptical conformation which packed stagger within lamellae domains with limited short range ordering. A twelve arm binary star polymer was observed to form two dimensional micelles at the air-water interface attributed to the higher polystyrene block composition. Linear rod-coil molecules formed a multitude of packing structures at the air-water interface due to the varying composition. Tree-like rod-coil molecules demonstrated the ability to form one-dimensional structures at the air-water interface and at the air-solvent interface caused by the preferential ordering of the rigid rod cores. The role of molecular architecture and composition was examined and the influence chemically competing fragments was shown to exert on the packing structure. The amphiphilic balance of the different molecular series exhibited control on the ordering behavior at the air-water interface and within bulk structures. The shell nature and tail type was determined to dictate the preferential ordering structure and molecular reorganization at interfaces with the core nature effect secondary.

  19. An Experiment to Tame the Plasma Material Interface

    SciTech Connect (OSTI)

    Goldston, R J; Menard, J E; Allain, J P; Brooks, J N; Canik, J M; Doerner, R; Fu, G; Gates, D A; Gentile, C A; Harris, J H; Hassanein, A; Gorelenkov, N N; Kaita, R; Kaye, S M; Kotschenreuther, M; Kramer, G J; Kugel, H W; Maingi, R; Mahajan, S M; Majeski, R; Neumeyer, C L; Nygren, R E; Ono, M; Owen, L W; Ramakrishnan, S; Rognlien, T D; Ruzic, D N; Ryutov, D D; Sabbagh, S A; Skinner, C H; Soukhanovskii, V A; Stevenson, T N; Ulrickson, M A; Valanju, P M; Woolley, R D

    2009-01-08

    The plasma material interface in Demo will be more challenging than that in ITER, due to requirements for approximately four times higher heat flux from the plasma and approximately five times higher average duty factor. The scientific and technological solutions employed in ITER may not extrapolate to Demo. The key questions to be resolved for Demo and the resulting key requirements for an experiment to 'tame the plasma material interface' are analyzed. A possible design point for such an experiment is outlined.

  20. Spin Coherence at the Nanoscale: Polymer Surfaces and Interfaces (Technical

    Office of Scientific and Technical Information (OSTI)

    Report) | SciTech Connect Spin Coherence at the Nanoscale: Polymer Surfaces and Interfaces Citation Details In-Document Search Title: Spin Coherence at the Nanoscale: Polymer Surfaces and Interfaces Breakthrough results were achieved during the reporting period in the areas of organic spintronics. (A) For the first time the giant magnetic resistance (GMR) was observed in spin valve with an organic spacer. Thus we demonstrated the ability of organic semiconductors to transport spin in GMR

  1. Theoretical and experimental studies of electrified interfaces relevant to

    Office of Scientific and Technical Information (OSTI)

    energy storage. (Technical Report) | SciTech Connect Technical Report: Theoretical and experimental studies of electrified interfaces relevant to energy storage. Citation Details In-Document Search Title: Theoretical and experimental studies of electrified interfaces relevant to energy storage. × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public

  2. USER INTERFACE FOR A TELE-OPERATED ROBOTIC HAND SYSTEM - Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    This Technology Technology Marketing Summary A user interface for the teleoperation of a robotic hand. The user interface conducts a calibration procedure to determine a user's...

  3. Interfacial Behavior of Polymers: Using Interfaces to Manipulate Polymers

    SciTech Connect (OSTI)

    Russell, Thomas P.

    2015-02-26

    The self-assembly of block copolymers into arrays of nanoscopic domains with areal densities approaching 10 terbit/in2 offer tremendous promise for the fabrication of ultrahigh density storage devices, batteries and other energy relevant devices. Interfacial interactions play a key role in dictating the orientation and ordering of these self-assembling materials. We have investigated the use of preferential and neutral solvents to overcome interfacial interactions and to rapid accelerate the dynamics of these materials, since the high molecular weight of the polymers significantly slows diffusion processes. Using a tailor-made chamber, we have introduced solvent vapor annealing (SVA) where solvent with a well-defined vapor pressures sells the copolymer film, enabling control over the solvent content in the film and, therefore, the thermodynamics governing the microphase separation of the copolymer, the interactions with the substrate and air interfaces and the dynamics. This tailor-made chamber also allows us to perform in situ grazing incidence x-ray scattering studies where the copolymer films can be characterized on the nanoscopic level over macroscopic distances. The methodologies developed in our laboratories are now used in numerous laboratories world-wide. We have found that arrays of block copolymer microdomains with perfect orientational order can be achieved over macroscopic areas using the SVA processes but the translational order is perturbed during the film drying process. As the copolymer film is swollen, the confinement of the film to the substrate introduces a frustration to the ordering of the microdomains. After equilibrium is achieved, when the swollen films are brought very close to the ordering transition, near perfect ordering is achieved. However, upon removal of the solvent, the confinement of the film to the substrate introduces translational disorder. We have investigated the influence of the rate of solvent removal and have found that most rapid solvent removal process drives the copolymer film to below its glass transition temperature, freezing in the lateral order. We have quantitatively described the ordering and the parameters influencing the disruption of the ordering in these studies. We have also used e-beam lithography to generate shallow trench patterns on planar surface where the topographic patterning provides an additional constraint on the self-assembly of the block copolymer. The pitches of the trenches were varied while the depth and the trench width of patterns were maintained by constant at 89 and 30nm, respectively. Unidirectional PS-b-PEO line patterns over large area on the shallow trench patterns were obtained by solvent vapor annealing. We extended the solvent annealing process to an in-line coating process using a mini-slot die coater developed in our laboratories. This coater uses minimal materials with operating parameters that can mimic actual industrial processing on a roll-to-roll line. Most important, with this mini-slot die coater, it could also characterize the structure of the film using grazing incidence x-ray scattering. Using the fundamental characterization of the ordering of the block copolymers, we could optimize the coating conditions to enhance lateral ordering of block copolymer in a well-defined manner. The structures produced in this process are directly transferable to flexible electronics where the arrays of block copolymer microdomains can be used for the fabrication of nanostructured components. We have also controlled the orientation of BCP microdomains at the air and substrate interfaces by manipulating the interfacial interactions with selective solvents. This has enabled us to generate nanoporous membranes where the size of the pores is dictated by the size of the bloc copolymer microdomains. We have produced robust nanoporous membranes that can tolerate high pressures and have high throughput using thick films of block copolymers. Exceptional size selectivity has been achieved. The membranes are tolerant against acid and base washing and can be prepared over large areas. These membranes are finding applications in a water-purification and separations processes.

  4. Reactive Surfaces and Interfaces utilizing 2-Vinyl-4,4-Dimethylazlactone (VDMA): An Example of ??Click?? Chemistry

    SciTech Connect (OSTI)

    Messman, Jamie M; Kilbey, II, S Michael; Lokitz, Bradley S; Hinestrosa Salazar, Juan Pablo; Ankner, John Francis

    2009-01-01

    Creating polymer-modified interfaces decorated with biologically-relevant materials V so-called bio-interfaces V with precise control over the nanoscale structure and properties is of increasing technological importance for a large number of advanced materials applications, including adaptive and/or lubricious biomaterial coatings, electro-actuators (synthetic muscles), biosensors with amplified response, coatings for stealth drug delivery, supports for enzymatic catalysts, protein or antibody arrays, and high affinity separation agents. The ability to design and decorate interfaces with biologically-relevant molecules and understand synthesis-structure-function relationships remains a significant challenge. The overarching objective of this research program is to investigate the polymerization and functionalization of a new class of polymeric materials that are capable of serving as a versatile platform from which bio-interfaces for specific applications can be created and evaluated. Stimuli-responsive (co)polymers containing vinyl dimethyl azlactone (VDMA) have been prepared using free radical polymerization techniques (controlled and conventional). Subsequent immobilization of biomolecules (e.g., dansylcadaverine, N ,N -bis(carboxymethyl)-L-lysine hydrate) on PVDMA-containing surface scaffolds affords bio-interfaces. Reaction of nucleophiles with the azlactone moiety proceeds rapidly, quantitatively, and in the absence of byproducts, which are essential criteria governing the click-type nature of this procedure. The conversion of these materials into polyelectrolytes and bioconjugates can be monitored in real-time using infrared spectroscopy. Additionally, pVDMA polymers prepared using reversible addition fragmentation chain transfer (RAFT) polymerization are the basis for creating polymer brushes by a grafting to approach. We will describe how compositional differences and changes in molecular weight affect the solubility and responsiveness of pVDMA-based polymers and surface layers when functionalized with various biomolecules.

  5. Redirection of the spherical expanding shock wave on the interface with plasma

    SciTech Connect (OSTI)

    Markhotok, A.; Popovic, S.

    2014-02-15

    We study a strong spherical expanding shock wave interacting with the finite-gradient interface between neutral cold gas and weakly ionized plasma. We want to see how the interaction with the interface can alter the shock structure compared to the case of its free propagation through the media with the exponentially varying density. From our comparative calculations based on the 2D model, we found substantial difference in the shock structure including strong deformation of the shock front followed with its gradual flattening and the redirection in its propagation. There are a number of factors that can be used to control this phenomenon in order to strengthen or lessen the effect. The calculations can be made on any scale, limited with the requirement for the shock wave to be strong. The study points at the possibility in certain applications to avoid the shock wave with its redirection rather than attenuation. The results can be applicable to optimization of the energy deposition into the supersonic flux, the drag reduction in hypersonic flight, in the detonation theory, and combustion through the control of the ignition conditions, and for environmental improvements through sonic boom reduction. Cartesian coordinates were used in order to visualize the phenomenon.

  6. Standardized ROV and diver interfaces will bring surge in subsea capabilities

    SciTech Connect (OSTI)

    Baugh, B.F.

    1989-05-01

    Standardization and new developments in subsea interfaces, or profiles, for remotely operated vehicles (ROV's) or divers promise a new generation of subsea capabilities. Progress in subsea systems comes from the development of several individual components. ROV/diver interface profiles are a critical component in this chain of developments. ROV's are also of particular importance because these unmanned submarines provide low-cost flexibility in deep water applications. The development of standardized profiles, which means basic size and shapes, for intervention will affect subsea completion and drilling systems, emergency safety valves (ESV), and any other subsea installation. As an example of their importance, standardized profiles could help keep some offshore fires from becoming full-fledged disasters, such as the one at the Piper-Alpha platform in the North Sea. Pipeline riser valves in such cases could be closed by ROV's to prevent the pipelines from feeding the fire. Standardized profiles to accomplish this and other subsea tasks are available in the public domain for immediate application.

  7. High-performance parallel interface to synchronous optical network gateway

    DOE Patents [OSTI]

    St. John, W.B.; DuBois, D.H.

    1996-12-03

    Disclosed is a system of sending and receiving gateways interconnects high speed data interfaces, e.g., HIPPI interfaces, through fiber optic links, e.g., a SONET network. An electronic stripe distributor distributes bytes of data from a first interface at the sending gateway onto parallel fiber optics of the fiber optic link to form transmitted data. An electronic stripe collector receives the transmitted data on the parallel fiber optics and reforms the data into a format effective for input to a second interface at the receiving gateway. Preferably, an error correcting syndrome is constructed at the sending gateway and sent with a data frame so that transmission errors can be detected and corrected in a real-time basis. Since the high speed data interface operates faster than any of the fiber optic links the transmission rate must be adapted to match the available number of fiber optic links so the sending and receiving gateways monitor the availability of fiber links and adjust the data throughput accordingly. In another aspect, the receiving gateway must have sufficient available buffer capacity to accept an incoming data frame. A credit-based flow control system provides for continuously updating the sending gateway on the available buffer capacity at the receiving gateway. 7 figs.

  8. High-performance parallel interface to synchronous optical network gateway

    DOE Patents [OSTI]

    St. John, Wallace B. (Los Alamos, NM); DuBois, David H. (Los Alamos, NM)

    1996-01-01

    A system of sending and receiving gateways interconnects high speed data interfaces, e.g., HIPPI interfaces, through fiber optic links, e.g., a SONET network. An electronic stripe distributor distributes bytes of data from a first interface at the sending gateway onto parallel fiber optics of the fiber optic link to form transmitted data. An electronic stripe collector receives the transmitted data on the parallel fiber optics and reforms the data into a format effective for input to a second interface at the receiving gateway. Preferably, an error correcting syndrome is constructed at the sending gateway and sent with a data frame so that transmission errors can be detected and corrected in a real-time basis. Since the high speed data interface operates faster than any of the fiber optic links the transmission rate must be adapted to match the available number of fiber optic links so the sending and receiving gateways monitor the availability of fiber links and adjust the data throughput accordingly. In another aspect, the receiving gateway must have sufficient available buffer capacity to accept an incoming data frame. A credit-based flow control system provides for continuously updating the sending gateway on the available buffer capacity at the receiving gateway.

  9. Hydrated goethite ([alpha]-FeOOH) (1 0 0 ) interface structure: Ordered water and surface functional groups

    SciTech Connect (OSTI)

    Ghose, Sanjit K.; Waychunas, Glenn A.; Trainor, Thomas P.; Eng, Peter J.

    2010-03-16

    Goethite({alpha}-FeOOH), an abundant and highly reactive iron oxyhydroxide mineral, has been the subject of numerous studies of environmental interface reactivity. However, such studies have been hampered by the lack of experimental constraints on aqueous interface structure, and especially of the surface water molecular arrangements. Structural information of this type is crucial because reactivity is dictated by the nature of the surface functional groups and the structure or distribution of water and electrolyte at the solid-solution interface. In this study we have investigated the goethite (1 0 0) surface using surface diffraction techniques, and have determined the relaxed surface structure, the surface functional groups, and the three dimensional nature of two distinct sorbed water layers. The crystal truncation rod (CTR) results show that the interface structure consists of a double hydroxyl, double water terminated interface with significant atom relaxations. Further, the double hydroxyl terminated surface dominates with an 89% contribution having a chiral subdomain structure on the (1 0 0) cleavage faces. The proposed interface stoichiometry is ((H{sub 2}O)-(H{sub 2}O)-OH{sub 2}-OH-Fe-O-O-Fe-R) with two types of terminal hydroxyls; a bidentate (B-type) hydroxo group and a monodentate (A-type) aquo group. Using the bond-valence approach the protonation states of the terminal hydroxyls are predicted to be OH type (bidentate hydroxyl with oxygen coupled to two Fe{sup 3+} ions) and OH{sub 2} type (monodentate hydroxyl with oxygen tied to only one Fe{sup 3+}). A double layer three dimensional ordered water structure at the interface was determined from refinement of fits to the experimental data. Application of bond-valence constraints to the terminal hydroxyls with appropriate rotation of the water dipole moments allowed a plausible dipole orientation model as predicted. The structural results are discussed in terms of protonation and H-bonding at the interface, and the results provide an ideal basis for testing theoretical predictions of characteristic surface properties such as pK{sub a}, sorption equilibria, and surface water permittivity.

  10. Gate-control efficiency and interface state density evaluated from capacitance-frequency-temperature mapping for GaN-based metal-insulator-semiconductor devices

    SciTech Connect (OSTI)

    Shih, Hong-An; Kudo, Masahiro; Suzuki, Toshi-kazu

    2014-11-14

    We present an analysis method for GaN-based metal-insulator-semiconductor (MIS) devices by using capacitance-frequency-temperature (C-f-T) mapping to evaluate the gate-control efficiency and the interface state density, both exhibiting correlations with the linear-region intrinsic transconductance. The effectiveness of the method was exemplified by application to AlN/AlGaN/GaN MIS devices to elucidate the properties of AlN-AlGaN interfaces depending on their formation processes. Using the C-f-T mapping, we extract the gate-bias-dependent activation energy with its derivative giving the gate-control efficiency, from which we evaluate the AlN-AlGaN interface state density through the Lehovec equivalent circuit in the DC limit. It is shown that the gate-control efficiency and the interface state density have correlations with the linear-region intrinsic transconductance, all depending on the interface formation processes. In addition, we give characterization of the AlN-AlGaN interfaces by using X-ray photoelectron spectroscopy, in relation with the results of the analysis.

  11. Performance-Driven Interface Contract Enforcement for Scientific Components

    SciTech Connect (OSTI)

    Dahlgren, T L

    2007-10-01

    Performance-driven interface contract enforcement research aims to improve the quality of programs built from plug-and-play scientific components. Interface contracts make the obligations on the caller and all implementations of the specified methods explicit. Runtime contract enforcement is a well-known technique for enhancing testing and debugging. However, checking all of the associated constraints during deployment is generally considered too costly from a performance stand point. Previous solutions enforced subsets of constraints without explicit consideration of their performance implications. Hence, this research measures the impacts of different interface contract sampling strategies and compares results with new techniques driven by execution time estimates. Results from three studies indicate automatically adjusting the level of checking based on performance constraints improves the likelihood of detecting contract violations under certain circumstances. Specifically, performance-driven enforcement is better suited to programs exercising constraints whose costs are at most moderately expensive relative to normal program execution.

  12. Science at the interface : grain boundaries in nanocrystalline metals.

    SciTech Connect (OSTI)

    Rodriguez, Mark Andrew; Follstaedt, David Martin; Knapp, James Arthur; Brewer, Luke N.; Holm, Elizabeth Ann; Foiles, Stephen Martin; Hattar, Khalid M.; Clark, Blythe B.; Olmsted, David L.; Medlin, Douglas L.

    2009-09-01

    Interfaces are a critical determinant of the full range of materials properties, especially at the nanoscale. Computational and experimental methods developed a comprehensive understanding of nanograin evolution based on a fundamental understanding of internal interfaces in nanocrystalline nickel. It has recently been shown that nanocrystals with a bi-modal grain-size distribution possess a unique combination of high-strength, ductility and wear-resistance. We performed a combined experimental and theoretical investigation of the structure and motion of internal interfaces in nanograined metal and the resulting grain evolution. The properties of grain boundaries are computed for an unprecedented range of boundaries. The presence of roughening transitions in grain boundaries is explored and related to dramatic changes in boundary mobility. Experimental observations show that abnormal grain growth in nanograined materials is unlike conventional scale material in both the level of defects and the formation of unfavored phases. Molecular dynamics simulations address the origins of some of these phenomena.

  13. Mold Heating and Cooling Pump Package Operator Interface Controls Upgrade

    SciTech Connect (OSTI)

    Josh A. Salmond

    2009-08-07

    The modernization of the Mold Heating and Cooling Pump Package Operator Interface (MHC PP OI) consisted of upgrading the antiquated single board computer with a proprietary operating system to off-the-shelf hardware and off-the-shelf software with customizable software options. The pump package is the machine interface between a central heating and cooling system that pumps heat transfer fluid through an injection or compression mold base on a local plastic molding machine. The operator interface provides the intelligent means of controlling this pumping process. Strict temperature control of a mold allows the production of high quality parts with tight tolerances and low residual stresses. The products fabricated are used on multiple programs.

  14. Nanoparticles at liquid interfaces: Rotational dynamics and angular locking

    SciTech Connect (OSTI)

    Razavi, Sepideh; Kretzschmar, Ilona; Koplik, Joel; Colosqui, Carlos E.

    2014-01-07

    Nanoparticles with different surface morphologies that straddle the interface between two immiscible liquids are studied via molecular dynamics simulations. The methodology employed allows us to compute the interfacial free energy at different angular orientations of the nanoparticle. Due to their atomistic nature, the studied nanoparticles present both microscale and macroscale geometrical features and cannot be accurately modeled as a perfectly smooth body (e.g., spheres and cylinders). Under certain physical conditions, microscale features can produce free energy barriers that are much larger than the thermal energy of the surrounding media. The presence of these energy barriers can effectively lock the particle at specific angular orientations with respect to the liquid-liquid interface. This work provides new insights on the rotational dynamics of Brownian particles at liquid interfaces and suggests possible strategies to exploit the effects of microscale features with given geometric characteristics.

  15. Fiber optics interface for a dye laser oscillator and method

    DOE Patents [OSTI]

    Johnson, Steve A. (Tracy, CA); Seppala, Lynn G. (Pleasanton, CA)

    1986-01-01

    A dye laser oscillator in which one light beam is used to pump a continuous tream of dye within a cooperating dye chamber for producing a second, different beam is generally disclosed herein along with a specific arrangement including an optical fiber and a fiber optics interface for directing the pumping beam into the dye chamber. The specific fiber optics interface illustrated includes three cooperating lenses which together image one particular dimension of the pumping beam into the dye chamber from the output end of the optical fiber in order to insure that the dye chamber is properly illuminated by the pumping beam.

  16. Pulsed particle beam vacuum-to-air interface

    DOE Patents [OSTI]

    Cruz, G.E.; Edwards, W.F.

    1987-06-18

    A vacuum-to-air interface is provided for a high-powered, pulsed particle beam accelerator. The interface comprises a pneumatic high speed gate valve, from which extends a vacuum-tight duct, that terminates in an aperture. Means are provided for periodically advancing a foil strip across the aperture at the repetition rate of the particle pulses. A pneumatically operated hollow sealing band urges foil strip, when stationary, against and into the aperture. Gas pressure means periodically lift off and separate foil strip from aperture, so that it may be readily advanced. 5 figs.

  17. Molecular Structure and Ion Transport near Electrode-Electrolyte Interfaces

    Office of Scientific and Technical Information (OSTI)

    in Lithium-Ion Batteries (Conference) | SciTech Connect Molecular Structure and Ion Transport near Electrode-Electrolyte Interfaces in Lithium-Ion Batteries Citation Details In-Document Search Title: Molecular Structure and Ion Transport near Electrode-Electrolyte Interfaces in Lithium-Ion Batteries Authors: Lordi, V ; Ong, M T ; Verners, O ; van Duin, A ; Draeger, E W ; Pask, J E Publication Date: 2014-11-03 OSTI Identifier: 1178394 Report Number(s): LLNL-CONF-663739 DOE Contract Number:

  18. Molecular Structure and Ion Transport near Electrode-Electrolyte Interfaces

    Office of Scientific and Technical Information (OSTI)

    in Lithium-Ion Batteries (Conference) | SciTech Connect Molecular Structure and Ion Transport near Electrode-Electrolyte Interfaces in Lithium-Ion Batteries Citation Details In-Document Search Title: Molecular Structure and Ion Transport near Electrode-Electrolyte Interfaces in Lithium-Ion Batteries × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a

  19. Chronic, Multi-Contact, Neural Interface for Deep Brain Stimulation

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Chronic, Multi-Contact, Neural Interface for Deep Brain Stimulation Citation Details In-Document Search Title: Chronic, Multi-Contact, Neural Interface for Deep Brain Stimulation Authors: Tooker, A C ; Madsen, T E ; Crowell, A ; Shah, K G ; Felix, S H ; Mayberg, H S ; Pannu, S S ; Rainnie, D G ; Tolosa, V M Publication Date: 2013-09-30 OSTI Identifier: 1108838 Report Number(s): LLNL-CONF-644462 DOE Contract Number: W-7405-ENG-48 Resource Type: Conference

  20. Fiber optics interface for a dye laser oscillator and method

    DOE Patents [OSTI]

    Johnson, S.A.; Seppala, L.G.

    1984-06-13

    A dye laser oscillator in which one light beam is used to pump a continuous stream of dye within a cooperating dye chamber for producing a second, different beam is generally disclosed herein along with a specific arrangement including an optical fiber and a fiber optics interface for directing the pumping beam into the dye chamber. The specific fiber optics interface illustrated includes three cooperating lenses which together image one particular dimension of the pumping beam into the dye chamber from the output end of the optical fiber in order to insure that the dye chamber is properly illuminated by the pumping beam.

  1. Targeting diverse protein-protein interaction interfaces with

    Office of Scientific and Technical Information (OSTI)

    α/β-peptides derived from the Z-domain scaffold (Journal Article) | SciTech Connect Targeting diverse protein-protein interaction interfaces with α/β-peptides derived from the Z-domain scaffold Citation Details In-Document Search Title: Targeting diverse protein-protein interaction interfaces with α/β-peptides derived from the Z-domain scaffold Peptide-based agents derived from well-defined scaffolds offer an alternative to antibodies for selective and high-affinity recognition of

  2. Interface conditions of two-shot molded parts

    SciTech Connect (OSTI)

    Kisslinger, Thomas; Bruckmoser, Katharina Resch, Katharina; Lucyshyn, Thomas E-mail: guenter.langecker@unileoben.ac.at; Langecker, Guenter Ruediger E-mail: guenter.langecker@unileoben.ac.at; Holzer, Clemens

    2014-05-15

    The focus of this work is on interfaces of two-shot molded parts. It is well known that e.g. material combination, process parameters and contact area structures show significant effects on the bond strength of multi-component injection molded parts. To get information about the bond strength at various process parameter settings and material combinations a test mold with core back technology was used to produce two-component injection molded tensile test specimens. At the core back process the different materials are injected consecutively, so each component runs through the whole injection molding cycle (two-shot process). Due to this consecutive injection molding processes, a cold interface is generated. This is defined as overmolding of a second melt to a solidified polymer preform. Strong interest lies in the way the interface conditions change during the adhesion formation between the individual components. Hence the interface conditions were investigated by computed tomography and Raman spectroscopy. By analyzing these conditions the understanding of the adhesion development during the multi-component injection molding was improved.

  3. On the interface instability during rapid evaporation in microgravity

    SciTech Connect (OSTI)

    Juric, D.

    1997-05-01

    The rapid evaporation of a superheated liquid (vapor explosion) under microgravity conditions is studied by direct numerical simulation. The time-dependent Navier-Stokes and energy equations coupled to the interface dynamics are solved using a two-dimensional finite-difference/front-tracking method. Large interface deformations, topology change, latent heat, surface tension and unequal material properties between the liquid and vapor phases are included in the simulations. A comparison of numerical results to the exact solution of a one-dimensional test problem shows excellent agreement. For the two-dimensional rapid evaporation problem, the vapor volume growth rate and unstable interface dynamics are studied for increasing levels of initial liquid superheat. As the superheat is increased the liquid-vapor interface experiences increasingly unstable energetic growth. These results indicate that heat transfer plays a very important role in the instability mechanism leading to vapor explosions. It is suggested that the Mullins-Sekerka instability could play a role in the instability initiation mechanism.

  4. From corrosion to batteries: Electrochemical interface studies | Stanford

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Synchrotron Radiation Lightsource From corrosion to batteries: Electrochemical interface studies Thursday, October 18, 2012 - 11:00am SSRL, Bldg. 137, Rm 226 Dr. Frank Uwe Renner Max-Planck-Institut für Eisenforschung GmbH

  5. TMACS Test Procedure TP008: SACS Interface. Revision 5

    SciTech Connect (OSTI)

    Washburn, S.J.

    1994-05-31

    The TMACS Software Project Test Procedures translate the project`s acceptance criteria into test steps. Software releases are certified when the affected Test Procedures are successfully performed and the customers authorize installation of these changes. This Test Procedure tests the TMACS SACS Interface functions.

  6. T-547: Microsoft Windows Human Interface Device (HID) Vulnerability

    Broader source: Energy.gov [DOE]

    Microsoft Windows does not properly warn the user before enabling additional Human Interface Device (HID) functionality over USB, which allows user-assisted attackers to execute arbitrary programs via crafted USB data, as demonstrated by keyboard and mouse data sent by malware on a Smartphone that the user connected to the computer.

  7. Ternary superlattice boosting interface-stabilized magnetic chirality

    SciTech Connect (OSTI)

    Chen, Gong; Schmid, Andreas K.; N'Diaye, Alpha T.; Wu, Yizheng

    2015-02-09

    In cobalt-nickel multilayers grown on iridium surfaces, magnetic homo-chirality can be stabilized by Dzyaloshinskii-Moriya interactions (DMI) at the interface with the substrate. When thickness of the multilayers is increased beyond threshold values, then non-chiral bulk properties exceed interface contributions and this type of chirality vanishes. Here, we use spin-polarized low energy electron microscopy to measure these thickness thresholds, and we determine estimates of the strength of the DMI from the measurements. Even though the same 5d heavy metal is used as a substrate, a remarkably large variation is found between the two 3d magnets: our results indicate that the strength of the DMI at Co/Ir interfaces is three times larger than at Ni/Ir interfaces. We show how this finding provides ways to extend interfacial-DMI stabilization of domain wall chirality to 3d/5d/3d ternary multilayers such as [Ni/Ir/Co]{sub n}. Such strategies may extend chirality-control to larger film thickness and a wider range of substrates, which may be useful for designing new spintronics devices.

  8. Shasta/Mustique subsea equipment platform interface and operability

    SciTech Connect (OSTI)

    Jefferies, A.T.; Loegering, C.; Steib, D.; Schlater, D.

    1996-12-31

    The economic benefits of all inclusive systems engineering approach is now recognized in the offshore industry. Nowhere is this more evident than in the area of deepwater subsea tiebacks to existing facilities. This type of development requires effective management of the interfaces between personnel on the existing facility and the new project team, the interfaces between the new subsea facilities and the existing platform, and the interface of the new operating procedures with the existing platform daily routine. A second factor in the economic viability of many of these projects is the need to minimize operating costs by avoiding the need for subsea system repair intervention. An operability analysis focusing on the subsea system and platform interface engineering was used on the Hardy projects to address the concerns with the potential for interventions. With minimum operating costs as a primary goal, Hardy encouraged participation from both host platform operating groups from the outset of both projects. This cooperation was critical since both projects were planned to more than double the throughput for both host platforms without adding platform operating personnel. The approach of operator involvement also ensured a safe, reliable, and economic transition between the installation and operating phases of the developments.

  9. Developing A Laser Shockwave Model For Characterizing Diffusion Bonded Interfaces

    SciTech Connect (OSTI)

    James A. Smith; Jeffrey M. Lacy; Barry H. Rabin

    2014-07-01

    12. Other advances in QNDE and related topics: Preferred Session Laser-ultrasonics Developing A Laser Shockwave Model For Characterizing Diffusion Bonded Interfaces 41st Annual Review of Progress in Quantitative Nondestructive Evaluation Conference QNDE Conference July 20-25, 2014 Boise Centre 850 West Front Street Boise, Idaho 83702 James A. Smith, Jeffrey M. Lacy, Barry H. Rabin, Idaho National Laboratory, Idaho Falls, ID ABSTRACT: The US National Nuclear Security Agency has a Global Threat Reduction Initiative (GTRI) which is assigned with reducing the worldwide use of high-enriched uranium (HEU). A salient component of that initiative is the conversion of research reactors from HEU to low enriched uranium (LEU) fuels. An innovative fuel is being developed to replace HEU. The new LEU fuel is based on a monolithic fuel made from a U-Mo alloy foil encapsulated in Al-6061 cladding. In order to complete the fuel qualification process, the laser shock technique is being developed to characterize the clad-clad and fuel-clad interface strengths in fresh and irradiated fuel plates. The Laser Shockwave Technique (LST) is being investigated to characterize interface strength in fuel plates. LST is a non-contact method that uses lasers for the generation and detection of large amplitude acoustic waves to characterize interfaces in nuclear fuel plates. However the deposition of laser energy into the containment layer on specimens surface is intractably complex. The shock wave energy is inferred from the velocity on the backside and the depth of the impression left on the surface from the high pressure plasma pulse created by the shock laser. To help quantify the stresses and strengths at the interface, a finite element model is being developed and validated by comparing numerical and experimental results for back face velocities and front face depressions with experimental results. This paper will report on initial efforts to develop a finite element model for laser shock.

  10. GLAMM: Genome-Linked Application for Metabolic Maps

    SciTech Connect (OSTI)

    Bates, John; Chivian, Dylan; Arkin, Adam

    2011-05-29

    The Genome-Linked Application for Metabolic Maps (GLAMM) is a unified web interface for visualizing metabolic networks, reconstructing metabolic networks from annotated genome data, visualizing experimental data in the context of metabolic networks, and investigating the construction of novel, transgenic pathways. This simple, user-friendly interface is tightly integrated with the comparative genomics tools of MicrobesOnline. GLAMM is available for free to the scientific community at glamm.lbl.gov.

  11. A cohesive law for interfaces in graphene/hexagonal boron nitride heterostructure

    SciTech Connect (OSTI)

    Zhang, Chenxi; Lou, Jun; Song, Jizhou

    2014-04-14

    Graphene/hexagonal boron nitride (h-BN) heterostructure has showed great potential to improve the performance of graphene device. We have established the cohesive law for interfaces between graphene and monolayer or multi-layer h-BN based on the van der Waals force. The cohesive energy and cohesive strength are given in terms of area density of atoms on corresponding layers, number of layers, and parameters in the van der Waals force. It is found that the cohesive law in the graphene/multi-layer h-BN is dominated by the three h-BN layers which are closest to the graphene. The approximate solution is also obtained to simplify the expression of cohesive law. These results are very useful to study the deformation of graphene/h-BN heterostructure, which may have significant impacts on the performance and reliability of the graphene devices especially in the areas of emerging applications such as stretchable electronics.

  12. A thermodynamically consistent, damage-dependent, interface debonding model for composites

    SciTech Connect (OSTI)

    Johnson, J.N.; Clements, B.E.; Addessio, F.L.; Williams, T.O.

    1998-12-31

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The ability to design composite materials and analyze processing procedures relies on the availability of constitutive models that describe their dynamic response accurately. The strength, damage evolution, and failure of interfaces within composites often dominate their macroscopic performance but are not well characterized. The design of such composites for particular applications requires adequate knowledge of interfacial characteristics. Given the large number of potential loading scenarios that an engineering composite can be subjected to, it is obviously beneficial to have reliable and accurate theoretical methods for their quantitative treatment in numerical calculation. This project addresses the fundamental aspects of interfacial debonding in composites, and examines the basic behavior in practical situations.

  13. Endpoint-based parallel data processing in a parallel active messaging interface of a parallel computer

    DOE Patents [OSTI]

    Archer, Charles J; Blocksome, Michael E; Ratterman, Joseph D; Smith, Brian E

    2014-02-11

    Endpoint-based parallel data processing in a parallel active messaging interface ('PAMI') of a parallel computer, the PAMI composed of data communications endpoints, each endpoint including a specification of data communications parameters for a thread of execution on a compute node, including specifications of a client, a context, and a task, the compute nodes coupled for data communications through the PAMI, including establishing a data communications geometry, the geometry specifying, for tasks representing processes of execution of the parallel application, a set of endpoints that are used in collective operations of the PAMI including a plurality of endpoints for one of the tasks; receiving in endpoints of the geometry an instruction for a collective operation; and executing the instruction for a collective opeartion through the endpoints in dependence upon the geometry, including dividing data communications operations among the plurality of endpoints for one of the tasks.

  14. Endpoint-based parallel data processing in a parallel active messaging interface of a parallel computer

    DOE Patents [OSTI]

    Archer, Charles J.; Blocksome, Michael A.; Ratterman, Joseph D.; Smith, Brian E.

    2014-08-12

    Endpoint-based parallel data processing in a parallel active messaging interface (`PAMI`) of a parallel computer, the PAMI composed of data communications endpoints, each endpoint including a specification of data communications parameters for a thread of execution on a compute node, including specifications of a client, a context, and a task, the compute nodes coupled for data communications through the PAMI, including establishing a data communications geometry, the geometry specifying, for tasks representing processes of execution of the parallel application, a set of endpoints that are used in collective operations of the PAMI including a plurality of endpoints for one of the tasks; receiving in endpoints of the geometry an instruction for a collective operation; and executing the instruction for a collective operation through the endpoints in dependence upon the geometry, including dividing data communications operations among the plurality of endpoints for one of the tasks.

  15. Data communications in a parallel active messaging interface of a parallel computer

    DOE Patents [OSTI]

    Archer, Charles J; Blocksome, Michael A; Ratterman, Joseph D; Smith, Brian E

    2014-02-11

    Data communications in a parallel active messaging interface ('PAMI') or a parallel computer, the parallel computer including a plurality of compute nodes that execute a parallel application, the PAMI composed of data communications endpoints, each endpoint including a specification of data communications parameters for a thread of execution of a compute node, including specification of a client, a context, and a task, the compute nodes and the endpoints coupled for data communications instruction, the instruction characterized by instruction type, the instruction specifying a transmission of transfer data from the origin endpoint to a target endpoint and transmitting, in accordance witht the instruction type, the transfer data from the origin endpoin to the target endpoint.

  16. Processing communications events in parallel active messaging interface by awakening thread from wait state

    DOE Patents [OSTI]

    Archer, Charles J; Blocksome, Michael A; Ratterman, Joseph D; Smith, Brian E

    2013-10-22

    Processing data communications events in a parallel active messaging interface (`PAMI`) of a parallel computer that includes compute nodes that execute a parallel application, with the PAMI including data communications endpoints, and the endpoints are coupled for data communications through the PAMI and through other data communications resources, including determining by an advance function that there are no actionable data communications events pending for its context, placing by the advance function its thread of execution into a wait state, waiting for a subsequent data communications event for the context; responsive to occurrence of a subsequent data communications event for the context, awakening by the thread from the wait state; and processing by the advance function the subsequent data communications event now pending for the context.

  17. Data communications in a parallel active messaging interface of a parallel computer

    DOE Patents [OSTI]

    Archer, Charles J; Blocksome, Michael A; Ratterman, Joseph D; Smith, Brian E

    2013-10-29

    Data communications in a parallel active messaging interface (`PAMI`) of a parallel computer, the parallel computer including a plurality of compute nodes that execute a parallel application, the PAMI composed of data communications endpoints, each endpoint including a specification of data communications parameters for a thread of execution on a compute node, including specifications of a client, a context, and a task, the compute nodes and the endpoints coupled for data communications through the PAMI and through data communications resources, including receiving in an origin endpoint of the PAMI a data communications instruction, the instruction characterized by an instruction type, the instruction specifying a transmission of transfer data from the origin endpoint to a target endpoint and transmitting, in accordance with the instruction type, the transfer data from the origin endpoint to the target endpoint.

  18. Designing Biological Systems for Sustainability and Programmed Environmental Interface (2011 JGI User Meeting)

    ScienceCinema (OSTI)

    Silver, Pam [Harvard University

    2011-06-03

    The U.S. Department of Energy Joint Genome Institute (JGI) invited scientists interested in the application of genomics to bioenergy and environmental issues, as well as all current and prospective users and collaborators, to attend the annual DOE JGI Genomics of Energy & Environment Meeting held March 22-24, 2011 in Walnut Creek, Calif. The emphasis of this meeting was on the genomics of renewable energy strategies, carbon cycling, environmental gene discovery, and engineering of fuel-producing organisms. The meeting features presentations by leading scientists advancing these topics. Pam Silver of Harvard University gives a presentation on "Designing Biological Systems for Sustainability and Programmed Environmental Interface" at the 6th annual Genomics of Energy & Environment Meeting on March 23, 2011

  19. Optical position sensor for determining the interface between a clear and an opaque fluid

    DOE Patents [OSTI]

    Weiss, Jonathan D. (Albuquerque, NM)

    2006-05-23

    An inexpensive, optical position sensor for measuring a position or length, x, along a one-dimensional curvilinear, coordinate system. The sensor can be used, for example, to determine the position of an interface between a clear and an opaque fluid (such as crude oil and water). In one embodiment, the sensor utilizes the principle of dual-fluorescence, where a primary fiber emits primary fluorescent light and a parallel secondary fiber collects a portion of the primary fluorescent light that is not blocked by the opaque fluid. This, in turn, excites secondary fluorescence in the secondary fiber at a longer wavelength. A light detector measures the intensity of secondary fluorescence emitted from an end of the secondary fiber, which is used to calculate the unknown position or length, x. Side-emitting fibers can be used in place of, or in addition to, fluorescent fibers. The all-optical sensor is attractive for applications involving flammable liquids.

  20. Designing Biological Systems for Sustainability and Programmed Environmental Interface (2011 JGI User Meeting)

    SciTech Connect (OSTI)

    Silver, Pam [Harvard University] [Harvard University

    2011-03-23

    The U.S. Department of Energy Joint Genome Institute (JGI) invited scientists interested in the application of genomics to bioenergy and environmental issues, as well as all current and prospective users and collaborators, to attend the annual DOE JGI Genomics of Energy & Environment Meeting held March 22-24, 2011 in Walnut Creek, Calif. The emphasis of this meeting was on the genomics of renewable energy strategies, carbon cycling, environmental gene discovery, and engineering of fuel-producing organisms. The meeting features presentations by leading scientists advancing these topics. Pam Silver of Harvard University gives a presentation on "Designing Biological Systems for Sustainability and Programmed Environmental Interface" at the 6th annual Genomics of Energy & Environment Meeting on March 23, 2011

  1. Experimental and Theoretical Studies of Liquid-Solid and Liquid-Vapor Interfaces of Metals and Alloys, Grant DE-FG02-06ER46321

    SciTech Connect (OSTI)

    Rice, Stuart

    2012-09-27

    The research supported by ER46321 was designed to understand in microscopic detail the structures of the interfaces between liquid metals and alloys and solid media. The system chosen for study, because of detailed knowledge of the structure of the corresponding liquid alloy-vapor interface, was the interface between a Si crystal and a dilute alloy of Pb in Ga. Experimental study of the Si:PbGa interface was anticipated to be very difficult; it requires preparation of an interface between a liquid metal and a solid surface that is flat to better than a nanometer on the scale length of the x-ray coherence, alignment of the x-ray beam and the surface in the sub-micro radian regime, and the use of high energy x-rays to penetrate the window and reach the interface without disastrous loss of intensity. The experimental design was subject to compromises forced by the limit to the highest x-ray energy available at the ChemMatCARS beam-line, namely 30 keV, which reduced the scattered signal relative to what can be obtained with higher x-ray energy. Although considerable progress was achieved during the support period and its no-cost extension, the difficulties encountered prevented completion of the studies and the data collected are incomplete. These data hint at the existence of unexpected structural features of the interface, in particular that Pb dimers play an important role in the interfacial structure. These data provide a different picture of the interface from the pentagonal structure inferred to be present in the interface between pure Pb and Si 001 (Nature 408, 839 (2000)), but much like the Ga dimers in the interface between liquid Ga and the 100 face of diamond (Nature 390, 379 (1997), J. Chem. Phys. 123, 104703 (2005)). However, during the latter part of the support period significant progress was made in the theoretical description of the liquid metal-crystal interface. In particular, stimulated by the results of an experimental study of the interface between liquid Hg and the reconstructed (0001) face of sapphire, we developed an extension of the self-consistent quantum Monte Carlo scheme previously used to study the structure of the liquid metal-vapor interface. The calculated density distribution is in very good agreement with that inferred from the experimental data. We conclude, contrary to the original interpretation offered by Tamam et al (J. Phys. Chem. Lett. 2010, I, 1041-1045), thast to account for the difference in structure between the liquid Hg-vapor and liquid Hg-reconstructed (0001) Al{sub 2}O{sub 3} interfaces it is not necessary to assume there is charge transfer from the Hg to the Al{sub 2}O{sub 3}. Rather, the available experimental data are adequately reproduced when the van der Waals interaction of the Al and O atoms with Hg atoms and the exclusion of the electron density from the Al{sub 2}O{sub 3} via repulsion of the electrons from the closed shells of the ions in the solid are accounted for. We believe this interpretation will be applicable to a wide range of liquid metal-crystal interfaces.

  2. Recommending personally interested contents by text mining, filtering, and interfaces

    DOE Patents [OSTI]

    xu, Songhua

    2015-11-05

    A personalized content recommendation system includes a client interface device configured to monitor a user's information data stream. A collaborative filter remote from the client interface device generates automated predictions about the interests of the user. A database server stores personal behavioral profiles and user's preferences based on a plurality of monitored past behaviors and an output of the collaborative user personal interest inference engine. A programmed personal content recommendation server filters items in an incoming information stream with the personal behavioral profile and identifies only those items of the incoming information stream that substantially matches the personal behavioral profile. The identified personally relevant content is then recommended to the user following some priority that may consider the similarity between the personal interest matches, the context of the user information consumption behaviors that may be shown by the user's content consumption mode.

  3. Recommending personally interested contents by text mining, filtering, and interfaces

    DOE Patents [OSTI]

    Xu, Songhua

    2015-10-27

    A personalized content recommendation system includes a client interface device configured to monitor a user's information data stream. A collaborative filter remote from the client interface device generates automated predictions about the interests of the user. A database server stores personal behavioral profiles and user's preferences based on a plurality of monitored past behaviors and an output of the collaborative user personal interest inference engine. A programmed personal content recommendation server filters items in an incoming information stream with the personal behavioral profile and identifies only those items of the incoming information stream that substantially matches the personal behavioral profile. The identified personally relevant content is then recommended to the user following some priority that may consider the similarity between the personal interest matches, the context of the user information consumption behaviors that may be shown by the user's content consumption mode.

  4. Improved coal-interface detector. Final technical report, December 1981

    SciTech Connect (OSTI)

    Roe, K.C.; Wittmann, R.C.

    1981-12-01

    In many underground coal mines a specified thickness of coal is required to be left in the roof as the coal is mined to maintain roof stability and prevent exposure of the overburden to air that might cause it to deteriorate. Determining the thickness of the coal left in the roof during mining is important for safety reasons and to maximize profit to the mine operators. The system (FM/CW radar) described in this report calculates the coal thickness from the time delay measurements of electromagnetic waves reflected from the bottom and top surfaces of the roof coal. This report describes the theory, design, construction and testing of an electromagnetic coal interface detector. An above ground test facility constructed to evaluate the coal interface detector is also described.

  5. Pulsed particle beam vacuum-to-air interface

    DOE Patents [OSTI]

    Cruz, Gilbert E. (Pleasanton, CA); Edwards, William F. (Livermore, CA)

    1988-01-01

    A vacuum-to-air interface (10) is provided for a high-powered, pulsed particle beam accelerator. The interface comprises a pneumatic high speed gate valve (18), from which extends a vacuum-tight duct (26), that termintes in an aperture (28). Means (32, 34, 36, 38, 40, 42, 44, 46, 48) are provided for periodically advancing a foil strip (30) across the aperture (28) at the repetition rate of the particle pulses. A pneumatically operated hollow sealing band (62) urges foil strip (30), when stationary, against and into the aperture (28). Gas pressure means (68, 70) periodically lift off and separate foil strip (30) from aperture (28), so that it may be readily advanced.

  6. The Portals 4.0 network programming interface.

    SciTech Connect (OSTI)

    Barrett, Brian W.; Brightwell, Ronald Brian; Pedretti, Kevin Thomas Tauke; Wheeler, Kyle Bruce; Hemmert, Karl Scott; Riesen, Rolf E.; Underwood, Keith Douglas; Maccabe, Arthur Bernard; Hudson, Trammell B.

    2012-11-01

    This report presents a specification for the Portals 4.0 network programming interface. Portals 4.0 is intended to allow scalable, high-performance network communication between nodes of a parallel computing system. Portals 4.0 is well suited to massively parallel processing and embedded systems. Portals 4.0 represents an adaption of the data movement layer developed for massively parallel processing platforms, such as the 4500-node Intel TeraFLOPS machine. Sandia's Cplant cluster project motivated the development of Version 3.0, which was later extended to Version 3.3 as part of the Cray Red Storm machine and XT line. Version 4.0 is targeted to the next generation of machines employing advanced network interface architectures that support enhanced offload capabilities.

  7. The portals 4.0.1 network programming interface.

    SciTech Connect (OSTI)

    Barrett, Brian W.; Brightwell, Ronald Brian; Pedretti, Kevin Thomas Tauke; Wheeler, Kyle Bruce; Hemmert, Karl Scott; Riesen, Rolf E.; Underwood, Keith Douglas; Maccabe, Arthur Bernard; Hudson, Trammell B.

    2013-04-01

    This report presents a specification for the Portals 4.0 network programming interface. Portals 4.0 is intended to allow scalable, high-performance network communication between nodes of a parallel computing system. Portals 4.0 is well suited to massively parallel processing and embedded systems. Portals 4.0 represents an adaption of the data movement layer developed for massively parallel processing platforms, such as the 4500-node Intel TeraFLOPS machine. Sandia's Cplant cluster project motivated the development of Version 3.0, which was later extended to Version 3.3 as part of the Cray Red Storm machine and XT line. Version 4.0 is targeted to the next generation of machines employing advanced network interface architectures that support enhanced offload capabilities. 3

  8. Laser shockwave technique for characterization of nuclear fuel plate interfaces

    SciTech Connect (OSTI)

    Perton, M.; Levesque, D.; Monchalin, J.-P.; Lord, M. [National Research Council Canada, 75 de Mortagne Blvd, Boucherville, Quebec, J4B 6Y4 (Canada); Smith, J. A.; Rabin, B. H. [Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-6188 (United States)

    2013-01-25

    The US National Nuclear Security Agency is tasked with minimizing the worldwide use of high-enriched uranium. One aspect of that effort is the conversion of research reactors to monolithic fuel plates of low-enriched uranium. The manufacturing process includes hot isostatic press bonding of an aluminum cladding to the fuel foil. The Laser Shockwave Technique (LST) is here evaluated for characterizing the interface strength of fuel plates using depleted Uranium/Mo foils. LST is a non-contact method that uses lasers for the generation and detection of large amplitude acoustic waves and is therefore well adapted to the quality assurance of this process. Preliminary results show a clear signature of well-bonded and debonded interfaces and the method is able to classify/rank the bond strength of fuel plates prepared under different HIP conditions.

  9. Laser Shockwave Technique For Characterization Of Nuclear Fuel Plate Interfaces

    SciTech Connect (OSTI)

    James A. Smith; Barry H. Rabin; Mathieu Perton; Daniel Lvesque; Jean-Pierre Monchalin; Martin Lord

    2012-07-01

    The US National Nuclear Security Agency is tasked with minimizing the worldwide use of high-enriched uranium. One aspect of that effort is the conversion of research reactors to monolithic fuel plates of low-enriched uranium. The manufacturing process includes hot isostatic press bonding of an aluminum cladding to the fuel foil. The Laser Shockwave Technique (LST) is here evaluated for characterizing the interface strength of fuel plates using depleted Uranium/Mo foils. LST is a non-contact method that uses lasers for the generation and detection of large amplitude acoustic waves and is therefore well adapted to the quality assurance of this process. Preliminary results show a clear signature of well-bonded and debonded interfaces and the method is able to classify/rank the bond strength of fuel plates prepared under different HIP conditions.

  10. Micro-cooler enhancements by barrier interface analysis

    SciTech Connect (OSTI)

    Stephen, A.; Dunn, G. M.; Glover, J.; Oxley, C. H.; Bajo, M. Montes; Kuball, M.; Cumming, D. R. S.; Khalid, A.

    2014-02-15

    A novel gallium arsenide (GaAs) based micro-cooler design, previously analysed both experimentally and by an analytical Heat Transfer (HT) model, has been simulated using a self-consistent Ensemble Monte Carlo (EMC) model for a more in depth analysis of the thermionic cooling in the device. The best fit to the experimental data was found and was used in conjunction with the HT model to estimate the cooler-contact resistance. The cooling results from EMC indicated that the cooling power of the device is highly dependent on the charge distribution across the leading interface. Alteration of this charge distribution via interface extensions on the nanometre scale has shown to produce significant changes in cooler performance.

  11. High-performance parallel interface to synchronous optical network gateway

    DOE Patents [OSTI]

    St. John, Wallace B. (Los Alamos, NM); DuBois, David H. (Los Alamos, NM)

    1998-08-11

    A digital system provides sending and receiving gateways for HIPPI interfaces. Electronic logic circuitry formats data signals and overhead signals in a data frame that is suitable for transmission over a connecting fiber optic link. Multiplexers route the data and overhead signals to a framer module. The framer module allocates the data and overhead signals to a plurality of 9-byte words that are arranged in a selected protocol. The formatted words are stored in a storage register for output through the gateway.

  12. Video Game Device Haptic Interface for Robotic Arc Welding

    SciTech Connect (OSTI)

    Corrie I. Nichol; Milos Manic

    2009-05-01

    Recent advances in technology for video games have made a broad array of haptic feedback devices available at low cost. This paper presents a bi-manual haptic system to enable an operator to weld remotely using the a commercially available haptic feedback video game device for the user interface. The system showed good performance in initial tests, demonstrating the utility of low cost input devices for remote haptic operations.

  13. Biochemical Feedstock Interface Presentation for BETO 2015 Project Peer Review

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Feedstock Interface BETO 2015 Project Peer Review March 23, 2015 Washington D.C. Nick Nagle Allison Ray Garold Gresham National Renewable Energy Laboratory Idaho National Laboratory This presentation does not contain any proprietary, confidential, or otherwise restricted information WBS 2.2.1.100, 2.2.1.101, & 2.2.1.102 2 | Bioenergy Technologies Office Goal Statement Goal: * Understand the impact of feedstock logistics & preprocessing on blend conversion performance Relevance to BETO

  14. Applicant Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Applicant Information General Information for Applicants Bringing together top, space science students with internationally recognized researchers at Los Alamos in an educational...

  15. Multilayer films with sharp, stable interfaces for use in EUV and soft X-ray application

    DOE Patents [OSTI]

    Barbee, Jr., Troy W.; Bajt, Sasa

    2002-01-01

    The reflectivity and thermal stability of Mo/Si (molybdenum/silicon) multilayer films, used in soft x-ray and extreme ultraviolet region, is enhanced by deposition of a thin layer of boron carbide (e.g., B.sub.4 C) between alternating layers of Mo and Si. The invention is useful for reflective coatings for soft X-ray and extreme ultraviolet optics, multilayer for masks, coatings for other wavelengths and multilayers for masks that are more thermally stable than pure Mo/Si multilayers

  16. Home Energy Scoring Tools (website) and Application Programming Interfaces, APIs (aka HEScore)

    Energy Science and Technology Software Center (OSTI)

    2012-05-01

    A web-based residential energy rating tool with APIs that runs the LBNL website: Provides customized estimates of residential energy use and energy bills based on building description information provided by the user. Energy use is estimated using engineering models developed at LBNL. Space heating and cooling use is based on the DOE-2. 1E building simulation model. Other end-users (water heating, appliances, lighting, and misc. equipment) are based on engineering models developed by LBNL.

  17. A thermodynamically consistent discontinuous Galerkin formulation for interface separation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Versino, Daniele; Mourad, Hashem M.; Dávila, Carlos G.; Addessio, Francis L.

    2015-07-31

    Our paper describes the formulation of an interface damage model, based on the discontinuous Galerkin (DG) method, for the simulation of failure and crack propagation in laminated structures. The DG formulation avoids common difficulties associated with cohesive elements. Specifically, it does not introduce any artificial interfacial compliance and, in explicit dynamic analysis, it leads to a stable time increment size which is unaffected by the presence of stiff massless interfaces. This proposed method is implemented in a finite element setting. Convergence and accuracy are demonstrated in Mode I and mixed-mode delamination in both static and dynamic analyses. Significantly, numerical resultsmore » obtained using the proposed interface model are found to be independent of the value of the penalty factor that characterizes the DG formulation. By contrast, numerical results obtained using a classical cohesive method are found to be dependent on the cohesive penalty stiffnesses. The proposed approach is shown to yield more accurate predictions pertaining to crack propagation under mixed-mode fracture because of the advantage. Furthermore, in explicit dynamic analysis, the stable time increment size calculated with the proposed method is found to be an order of magnitude larger than the maximum allowable value for classical cohesive elements.« less

  18. Exotic exchange bias at epitaxial ferroelectric-ferromagnetic interfaces

    SciTech Connect (OSTI)

    Paul, Amitesh Reitinger, Christoph; Kreuzpaintner, Wolfgang; Böni, Peter; Autieri, Carmine; Sanyal, Biplab; Jutimoosik, Jaru; Yimnirun, Rattikorn; Bern, Francis; Esquinazi, Pablo; Korelis, Panagiotis

    2014-07-14

    Multiferroics in spintronics have opened up opportunities for future technological developments, particularly in the field of ferroelectric (FE)-ferromagnetic (FM) oxide interfaces with functionalities. We find strong exchange bias shifts (up to 84 Oe) upon field cooling in metal-oxide (Fe/BaTiO{sub 3}) films combining FM and FE layers. The saturation magnetic moment of the FM layer is also significantly higher than in bulk (3.0 ± 0.2 μ{sub B}/atom) and the reversal mechanism occurs via a domain nucleation process. X-ray absorption spectroscopy at the Fe K-edge and Ba L3-edge indicate presence of few monolayers of antiferromagnetic FeO at the interface without the formation of any BaFeO{sub 3} layer. Polarized neutron reflectometry corroborates with our magnetization data as we perform depth profiling of the magnetic and structural densities in these bilayers. Our first principles density functional calculations support the formation of antiferromagnetic FeO layers at the interface along with an enhancement of Fe magnetic moments in the inner ferromagnetic layers.

  19. Developing a laser shockwave model for characterizing diffusion bonded interfaces

    SciTech Connect (OSTI)

    Lacy, Jeffrey M. Smith, James A. Rabin, Barry H.

    2015-03-31

    The US National Nuclear Security Agency has a Global Threat Reduction Initiative (GTRI) with the goal of reducing the worldwide use of high-enriched uranium (HEU). A salient component of that initiative is the conversion of research reactors from HEU to low enriched uranium (LEU) fuels. An innovative fuel is being developed to replace HEU in high-power research reactors. The new LEU fuel is a monolithic fuel made from a U-Mo alloy foil encapsulated in Al-6061 cladding. In order to support the fuel qualification process, the Laser Shockwave Technique (LST) is being developed to characterize the clad-clad and fuel-clad interface strengths in fresh and irradiated fuel plates. LST is a non-contact method that uses lasers for the generation and detection of large amplitude acoustic waves to characterize interfaces in nuclear fuel plates. However, because the deposition of laser energy into the containment layer on a specimen's surface is intractably complex, the shock wave energy is inferred from the surface velocity measured on the backside of the fuel plate and the depth of the impression left on the surface by the high pressure plasma pulse created by the shock laser. To help quantify the stresses generated at the interfaces, a finite element method (FEM) model is being utilized. This paper will report on initial efforts to develop and validate the model by comparing numerical and experimental results for back surface velocities and front surface depressions in a single aluminum plate representative of the fuel cladding.

  20. Contrasting Behavior of GaP(001) and InP(001) at the Interface...

    Office of Scientific and Technical Information (OSTI)

    at the Interface with Water Citation Details In-Document Search Title: Contrasting Behavior of GaP(001) and InP(001) at the Interface with Water Authors: Wood, B C ; ...

  1. Performance and Reliability of Bonded Interfaces for High-Temperature Packaging (Presentation)

    SciTech Connect (OSTI)

    Devoto, D.

    2014-06-01

    This presentation reviews the status of the performance and reliability of bonded interfaces for high-temperature packaging.

  2. Interface control document between PUREX Plant Transition and Solid Waste Disposal Division

    SciTech Connect (OSTI)

    Carlson, A.B.

    1995-09-01

    The interfacing responsibilities regarding solid waste management are described for the Solid Waste Disposal Division and the PUREX Transition Organization.

  3. T-631: Cisco XR 12000 Series Shared Port Adapters Interface Processor...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3.9.1, 3.9.2, 4.0.0, 4.0.1, 4.0.2, or 4.1.0 and has a SPA interface processor installed. ... an IPv4 address configured on any of the SPA interface processor interfaces. reference ...

  4. Performance and Reliability of Interface Materials for Automotive Power Electronics (Presentation)

    SciTech Connect (OSTI)

    Narumanchi, S.; DeVoto, D.; Mihalic, M.; Paret, P.

    2013-07-01

    Thermal management and reliability are important because excessive temperature can degrade the performance, life, and reliability of power electronics and electric motors. Advanced thermal management technologies enable keeping temperature within limits; higher power densities; and lower cost materials, configurations and systems. Thermal interface materials, bonded interface materials and the reliability of bonded interfaces are discussed in this presentation.

  5. A study on nondestructive evaluation technique by the use of interface guided waves on shrink fit structure

    SciTech Connect (OSTI)

    Lee, Jaesun; Cho, Younho; Park, Jun-Pil; Rose, Joseph L.; Huh, Hyung; Park, Keun-Bae; Kim, Dong-Ok

    2014-02-18

    Guided wave was widely studied for plate and pipe due to the great application area. Guided wave has advantage on long distance inspection for an inaccessible area and apart from transducer. Quite often shrink fit structures were found in nuclear power facilities. In this paper, two pipes were designed with perfect shrink fit condition for Stainless Steel 316. The displacement distribution was calculated with boundary condition. The interface wave propagation pattern was analyzed by the numerical modeling. The experimental results show a possibility of weld delamination and defect detection.

  6. Final report: Compiled MPI. Cost-Effective Exascale Application Development

    Office of Scientific and Technical Information (OSTI)

    (Technical Report) | SciTech Connect report: Compiled MPI. Cost-Effective Exascale Application Development Citation Details In-Document Search Title: Final report: Compiled MPI. Cost-Effective Exascale Application Development This is the final report on Compiled MPI: Cost-Effective Exascale Application Development, and summarizes the results under this project. The project investigated runtime enviroments that improve the performance of MPI (Message-Passing Interface) programs; work at

  7. NONLINEAR FORCE PROFILE USED TO INCREASE THE PERFORMANCE OF A HAPTIC USER INTERFACE FOR TELEOPERATING A ROBOTIC HAND

    SciTech Connect (OSTI)

    Anthony L. Crawford

    2012-07-01

    MODIFIED PAPER TITLE AND ABSTRACT DUE TO SLIGHTLY MODIFIED SCOPE: TITLE: Nonlinear Force Profile Used to Increase the Performance of a Haptic User Interface for Teleoperating a Robotic Hand Natural movements and force feedback are important elements in using teleoperated equipment if complex and speedy manipulation tasks are to be accomplished in hazardous environments, such as hot cells, glove boxes, decommissioning, explosives disarmament, and space. The research associated with this paper hypothesizes that a user interface and complementary radiation compatible robotic hand that integrates the human hand’s anthropometric properties, speed capability, nonlinear strength profile, reduction of active degrees of freedom during the transition from manipulation to grasping, and just noticeable difference force sensation characteristics will enhance a user’s teleoperation performance. The main contribution of this research is in that a system that concisely integrates all these factors has yet to be developed and furthermore has yet to be applied to a hazardous environment as those referenced above. In fact, the most prominent slave manipulator teleoperation technology in use today is based on a design patented in 1945 (Patent 2632574) [1]. The robotic hand/user interface systems of similar function as the one being developed in this research limit their design input requirements in the best case to only complementing the hand’s anthropometric properties, speed capability, and linearly scaled force application relationship (e.g. robotic force is a constant, 4 times that of the user). In this paper a nonlinear relationship between the force experienced between the user interface and the robotic hand was devised based on property differences of manipulation and grasping activities as they pertain to the human hand. The results show that such a relationship when subjected to a manipulation task and grasping task produces increased performance compared to the traditional linear scaling techniques used by other systems. Key Words: Teleoperation, Robotic Hand, Robotic Force Scaling

  8. Human-System Interfaces (HSIs) in Small Modular Reactors (SMRs)

    SciTech Connect (OSTI)

    Jacques V Hugo

    2014-10-01

    This book chapter describes the considerations for the selection of advanced humansystem interfaces (HSIs) for the new generation of nuclear power plants. The chapter discusses the technologies that will be needed to support highly automated nuclear power plants, while minimising demands for numbers of operational staff, reducing human error and improving plant efficiency and safety. Special attention is paid to the selection and deployment of advanced technologies in nuclear power plants (NPPs). The chapter closes with an examination of how technologies are likely to develop over the next 1015 years and how this will affect design choices for the nuclear industry.

  9. Field Deployable Tritium Assay System Host Graphical User Interface Software

    Energy Science and Technology Software Center (OSTI)

    1998-05-12

    The FDTASHOST software is a Graphical User Interface for the Field Deployable Tritium Assay System (FDTAS - Invention Disclosure SRS-96-09-091 has been submitted). The program runs on the Host computer which is located in the Laboratory and connected to the FDTAS remote field system via a modem over a phone line. The operator receives status information and messages from the Remote system. The operator can enter in commands to be executed by the remote systemmore » using the mouse and a pull down menu.« less

  10. Human Reliability Analysis for Digital Human-Machine Interfaces

    SciTech Connect (OSTI)

    Ronald L. Boring

    2014-06-01

    This paper addresses the fact that existing human reliability analysis (HRA) methods do not provide guidance on digital human-machine interfaces (HMIs). Digital HMIs are becoming ubiquitous in nuclear power operations, whether through control room modernization or new-build control rooms. Legacy analog technologies like instrumentation and control (I&C) systems are costly to support, and vendors no longer develop or support analog technology, which is considered technologically obsolete. Yet, despite the inevitability of digital HMI, no current HRA method provides guidance on how to treat human reliability considerations for digital technologies.

  11. Methods and systems for monitoring a solid-liquid interface

    DOE Patents [OSTI]

    Stoddard, Nathan G. (Gettysburg, PA); Clark, Roger F. (Frederick, MD); Kary, Tim (Union Bridge, MD)

    2010-07-20

    Methods and systems are provided for monitoring a solid-liquid interface, including providing a vessel configured to contain an at least partially melted material; detecting radiation reflected from a surface of a liquid portion of the at least partially melted material that is parallel with the liquid surface; measuring a disturbance on the surface; calculating at least one frequency associated with the disturbance; and determining a thickness of the liquid portion based on the at least one frequency, wherein the thickness is calculated based on.times. ##EQU00001## where g is the gravitational constant, w is the horizontal width of the liquid, and f is the at least one frequency.

  12. Interactions at glass-ceramic to metal interfaces

    SciTech Connect (OSTI)

    Knorovsky, G.A.; Brow, R.K.; Watkins, R.D.; Loehman, R.E.

    1990-01-01

    Advanced pyrotechnic components can be fabricated from Ni-based superalloys with hermetic seals to high expansion lithium-silicate glass ceramics (LSGC). Prior studies have characterized the interfacial reactions in these systems necessary for good chemical bonding. Similar reactions occur when LSGCs are bonded to 300-series stainless steel except that these seals debond on cooling to room temperature. Cr-depletion (from {approximately}18 wt % to {approximately}5 wt %) from the steel interface cases an fcc-to-bcc phase transition that expands the interfacial grains and decreases their thermal expansion coefficient, putting the LSGC into tension, causing the seal to fail. 9 refs., 5 figs., 1 tab.

  13. Photovoltaics Program: utility interface southwest regional workshop proceedings

    SciTech Connect (OSTI)

    1981-04-01

    This was the first of a series of regional workshops that will focus on the photovoltaic and utility interface, and the use of photovoltaics as a cogeneration option by utilities. The needs and constraints of the utilities are defined and an understanding is established of the capabilities and limitations of photovoltaic systems as an alternative electricity generation option by utilities. Utilities' viewpoints regarding large-scale central systems and small-scale, interconnected, distributed systems are given. The Public Utility Regulatory Policies Act and other economic, legislative, and regulatory factors affecting photovoltaic systems are discussed. Current status of photovoltaic systems with respect to the Department of Energy Photovoltaic Program is given. (LEW)

  14. Operational Plan and Desktop Reference- Disability Employment Program

    Broader source: Energy.gov [DOE]

    DOE hiring increased during Recovery Act years and returned to normal rates during FY11 and FY12. This, combined with budgetary impacts resulted in a larger than normal reduction of total hires...

  15. /home/cadams/Desktop/moneyPlotStandard.pdf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 (eV 2 m ∆ 1 - 10 1 10 2 10 2 χ ∆ Significance 0 2 4 6 8 10 12 14 16 18 20 signal along the LSND 99% CL ν Sensitivity to 3+1 σ 5 σ 3 90% CL Full SBN Program LAr1-ND, T600 LAr1-ND, MicroBooNE

  16. V-093: Symantec PGP Desktop Buffer Overflows Let Local Users...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Secure Mobility Client Heap Overflow Lets Local Users Gain Elevated Privileges V-066: Adobe AcrobatReader Multiple Flaws Lets Remote Users Execute Arbitrary Code and Local Users...

  17. Operational Plan and Desktop Reference- Veterans Employment Initiative

    Broader source: Energy.gov [DOE]

    “Honoring our sacred trust with America’s Veterans means doing all we can to help them find work when they come home so they never feel as if the American Dream they fought to defend is out of...

  18. Environmental Effects of Hydrokinetic Turbines on Fish: Desktop...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... physiological statehealth of the fish, and ... North American Journal of Fisheries Sciences 21:947-955. Lin, F., ... Prepared for Public Utility District No. 2 of Grant ...

  19. U. S. Department of Energy Operational Plan and Desktop Reference

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Inserted for reference. 84 - Diabetes Roughly same as new code. Inserted for reference. 86 - Pulmonary or respiratory conditions (e.g., tuberculosis, asthma, emphysema, etc.) ...

  20. Interface characterization of epitaxial Fe/MgO/Fe magnetic tunnel junctions

    SciTech Connect (OSTI)

    Wang, Shouguo; Ward, R. C. C.; Zhang, Xiaoguang; Kohn, A.; Ma, Q. L.; Zhang, J.; Liu, H. F.; Han, Prof. X. F.

    2012-01-01

    Following predictions by first-principles theory of huge tunnel magnetoresistance (TMR) effect in epitaxial Fe/MgO/Fe magnetic tunnel junctions (MTJs), measured magnetoresistance (MR) ratio about 200% at room temperature (RT) have been reported in MgO-based epitaxial MTJs. Recently, MR ratio of about 600% has been reported at RT in MgO-based amorphous MTJs with core structure of CoFeB/MgO/CoFeB grown by magnetron sputtering with amorphous CoFeB layers. The sputtered CoFeB/MgO/CoFeB MTJs shows a great potential application in spintronic devices. Although epitaxial structure will probably not be used in devices, it remains an excellent model system to compare theoretical calculations with experimental results and to enhance our understanding of the spin dependent tunneling. Both theoretical calculations and experimental results clearly indicate that the interfacial structure plays a crucial role on coherent tunneling across single crystalMgO barrier, especially in epitaxial MgO-based MTJs grown by molecular beam epitaxy (MBE). Surface X-ray diffraction, Auger electron spectroscopy, X-ray absorption spectra, and X-ray magnetic circular dichroism have been used for interface characterization. However, no consistent viewpoint has been reached, and this is still an open issue. In this article, recent studies on the interface characterization in MgO-based epitaxial MTJs will be introduced, with a focus on research by X-ray photoelectron spectroscopy, high resolution transmission electron microscopy, and spin dependent tunneling spectroscopy.

  1. Laser applications

    SciTech Connect (OSTI)

    Edelson, M.C. )

    1989-11-01

    The breadth of current applications of laser technology is described. It is used as the basis for extrapolating to future application in such activities as AVLIS, SIS, ICP-MS, and RIMs.

  2. Liquid chromatography/Fourier transform IR spectrometry interface flow cell

    DOE Patents [OSTI]

    Johnson, Charles C.; Taylor, Larry T.

    1986-01-01

    A zero dead volume (ZDV) microbore high performance liquid chromatography (.mu.HPLC)/Fourier transform infrared (FTIR) interface flow cell includes an IR transparent crystal having a small diameter bore therein through which a sample liquid is passed. The interface flow cell further includes a metal holder in combination with a pair of inner, compressible seals for directly coupling the thus configured spectrometric flow cell to the outlet of a .mu.HPLC column end fitting to minimize the transfer volume of the effluents exiting the .mu.HPLC column which exhibit excellent flow characteristics due to the essentially unencumbered, open-flow design. The IR beam passes transverse to the sample flow through the circular bore within the IR transparent crystal, which is preferably comprised of potassium bromide (KBr) or calcium fluoride (CaF.sub.2), so as to minimize interference patterns and vignetting encountered in conventional parallel-plate IR cells. The long IR beam pathlength and lensing effect of the circular cross-section of the sample volume in combination with the refractive index differences between the solvent and the transparent crystal serve to focus the IR beam in enhancing sample detection sensitivity by an order of magnitude.

  3. Liquid chromatography/Fourier transform IR spectrometry interface flow cell

    DOE Patents [OSTI]

    Johnson, C.C.; Taylor, L.T.

    1985-01-04

    A zero dead volume (ZDV) microbore high performance liquid chromatography (..mu.. HPLC)/Fourier transform infrared (FTIR) interface flow cell includes an IR transparent crystal having a small diameter bore therein through which a sample liquid is passed. The interface flow cell further includes a metal holder in combination with a pair of inner, compressible seals for directly coupling the thus configured spectrometric flow cell to the outlet of a ..mu.. HPLC column end fitting to minimize the transfer volume of the effluents exiting the ..mu.. HPLC column which exhibit excellent flow characteristics due to the essentially unencumbered, open-flow design. The IR beam passes transverse to the sample flow through the circular bore within the IR transparent crystal, which is preferably comprised of potassium bromide (KBr) or calcium fluoride (CaF/sub 2/), so as to minimize interference patterns and vignetting encountered in conventional parallel-plate IR cells. The long IR beam pathlength and lensing effect of the circular cross-section of the sample volume in combination with the refractive index differences between the solvent and the transparent crystal serve to focus the IR beam in enhancing sample detection sensitivity by an order of magnitude.

  4. Interface module for transverse energy input to dye laser modules

    DOE Patents [OSTI]

    English, R.E. Jr.; Johnson, S.A.

    1994-10-11

    An interface module for transverse energy input to dye laser modules is provided particularly for the purpose of delivering enhancing transverse energy beams in the form of illumination bar to the lasing zone of a dye laser device, in particular to a dye laser amplifier. The preferred interface module includes an optical fiber array having a plurality of optical fibers arrayed in a co-planar fashion with their distal ends receiving coherent laser energy from an enhancing laser source, and their proximal ends delivered into a relay structure. The proximal ends of the optical fibers are arrayed so as to be coplanar and to be aimed generally at a common point. The transverse energy beam array delivered from the optical fiber array is acted upon by an optical element array to produce an illumination bar which has a cross section in the form of a elongated rectangle at the position of the lasing window. The illumination bar is selected to have substantially uniform intensity throughout. 5 figs.

  5. Interface module for transverse energy input to dye laser modules

    DOE Patents [OSTI]

    English, Jr., Ronald E.; Johnson, Steve A.

    1994-01-01

    An interface module (10) for transverse energy input to dye laser modules is provided particularly for the purpose of delivering enhancing transverse energy beams (36) in the form of illumination bar (54) to the lasing zone (18) of a dye laser device, in particular to a dye laser amplifier (12). The preferred interface module (10) includes an optical fiber array (30) having a plurality of optical fibers (38) arrayed in a co-planar fashion with their distal ends (44) receiving coherent laser energy from an enhancing laser source (46), and their proximal ends (4) delivered into a relay structure (3). The proximal ends (42) of the optical fibers (38) are arrayed so as to be coplanar and to be aimed generally at a common point. The transverse energy beam array (36) delivered from the optical fiber array (30) is acted upon by an optical element array (34) to produce an illumination bar (54) which has a cross section in the form of a elongated rectangle at the position of the lasing window (18). The illumination bar (54) is selected to have substantially uniform intensity throughout.

  6. Guidance for Human-system Interfaces to Automatic Systems

    SciTech Connect (OSTI)

    O'Hara, J.M.; Higgins, J.; Stephen Fleger; Valerie Barnes

    2010-09-27

    Automation is ubiquitous in modern complex systems, and commercial nuclear- power plants are no exception. Automation is applied to a wide range of functions, including monitoring and detection, situation assessment, response planning, and response implementation. Automation has become a 'team player' supporting personnel in nearly all aspects of system operation. In light of its increasing use and importance in new- and future-plants, guidance is needed to conduct safety reviews of the operator's interface with automation. The objective of this research was to develop such guidance. We first characterized the important HFE aspects of automation, including six dimensions: Levels, functions, processes, modes, flexibility, and reliability. Next, we reviewed literature on the effects of all of these aspects of automation on human performance, and on the design of human-system interfaces (HSIs). Then, we used this technical basis established from the literature to identify general principles for human-automation interaction and to develop review guidelines. The guidelines consist of the following seven topics: Automation displays, interaction and control, automation modes, automation levels, adaptive automation, error tolerance and failure management, and HSI integration.

  7. Control Board Digital Interface Input Devices Touchscreen, Trackpad, or Mouse?

    SciTech Connect (OSTI)

    Thomas A. Ulrich; Ronald L. Boring; Roger Lew

    2015-08-01

    The authors collaborated with a power utility to evaluate input devices for use in the human system interface (HSI) for a new digital Turbine Control System (TCS) at a nuclear power plant (NPP) undergoing a TCS upgrade. A standalone dynamic software simulation of the new digital TCS and a mobile kiosk were developed to conduct an input device study to evaluate operator preference and input device effectiveness. The TCS software presented the anticipated HSI for the TCS and mimicked (i.e., simulated) the turbine systems responses to operator commands. Twenty-four licensed operators from the two nuclear power units participated in the study. Three input devices were tested: a trackpad, mouse, and touchscreen. The subjective feedback from the survey indicates the operators preferred the touchscreen interface. The operators subjectively rated the touchscreen as the fastest and most comfortable input device given the range of tasks they performed during the study, but also noted a lack of accuracy for selecting small targets. The empirical data suggest the mouse input device provides the most consistent performance for screen navigation and manipulating on screen controls. The trackpad input device was both empirically and subjectively found to be the least effective and least desired input device.

  8. Renewal Application

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Renewal Individual Permit Renewal Application The Permit expires March 31, 2014 and existing permit conditions will be in effect until a new permit is issued. The Permittees submitted a renewal application to EPA on March 27, 2014. Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email Individual Permit Renewal Application February 10, 2015 NPDES Permit No. NM0030759, Supplemental Information for Permit Renewal Application

  9. Reactive MD Simulations of Electrochemical Oxide Interfaces at...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    force field-will demonstrate the potential of electrical field application for ceramics processing. This integrated simulation-experimental protocol will determine the way...

  10. An Annotated Reference Guide to the Finite-Element Interface Specification Version 1.0

    SciTech Connect (OSTI)

    Alan B. Williams; Ivan J. Otero; Kyran D. Mish; Lee M. Tayor; Robert L. Clay

    1999-04-01

    The Finite-Element Interface (FEI) specification provides a layered abstraction that permits finite-element analysis codes to utilize various linear-algebra solution packages with minimal concern for the internal details of the solver modules. Alternatively, this interface can be viewed as a way for solver developers to provide solution services to finite-element clients without having to embed finite-element abstractions within their solver libraries. The purpose of this document is to provide some level of documentation between the bare interface specification itself, which consists only of C/C++ header files, and the full documentation suite that supports the interface definition by providing considerable detail as to its design and implementation. This document primarily provides the ''how'' of calling the interface member functions, so that programmers can readily learn how to utilize the interface implementation without having to consider all the details contained in the interface's definition, design, and motivation. The interface specification is presented three times in this document, each time with an increasing level of detail. The first presentation provides a general overview of the calling sequence, in order to acquaint the programmer with a basic introduction to how the interface is used to ''train'' the underlying solver software on the particular finite-element problem that is to be solved. The second pass through the interface definition provides considerable detail on each method, including specific considerations as to the structure of the underlying data, and an exposition of potential pitfalls that may occur as a byproduct of either the finite-element modeling process, or of the use of the associated interface implementation. Finally, a third description of the interface is given implicitly via the discussion of sample problems that provide concrete examples of the use of the finite-element interface.

  11. Microfluidic hubs, systems, and methods for interface fluidic modules

    SciTech Connect (OSTI)

    Bartsch, Michael S; Claudnic, Mark R; Kim, Hanyoup; Patel, Kamlesh D; Renzi, Ronald F; Van De Vreugde, James L

    2015-01-27

    Embodiments of microfluidic hubs and systems are described that may be used to connect fluidic modules. A space between surfaces may be set by fixtures described herein. In some examples a fixture may set substrate-to-substrate spacing based on a distance between registration surfaces on which the respective substrates rest. Fluidic interfaces are described, including examples where fluid conduits (e.g. capillaries) extend into the fixture to the space between surfaces. Droplets of fluid may be introduced to and/or removed from microfluidic hubs described herein, and fluid actuators may be used to move droplets within the space between surfaces. Continuous flow modules may be integrated with the hubs in some examples.

  12. Graphical User Interface Color Display Animation Interaction Tool

    Energy Science and Technology Software Center (OSTI)

    1999-10-05

    The Nuclear Plant Analyzer (NPA) is a highly flexible graphical user interface for displaying the results of a calculation, typically generated by RELAP5 or other code. This display consists of one or more picture, called masks, that mimic the host code input. This mask can be animated to display user-specified code output information mapped as colors, dials, moving arrows, etc., on the mask. The user can also interact with the control systems of the hostmore » input file as the execution progresses, thereby controlling aspects of the calculation. The Computer Visual System (CVS) creates, edits, and animates the the masks for use in the NPA.« less

  13. Methods and systems for monitoring a solid-liquid interface

    DOE Patents [OSTI]

    Stoddard, Nathan G. (Gettysburg, PA); Clark, Roger F. (Frederick, MD)

    2011-10-04

    Methods and systems are provided for monitoring a solid-liquid interface, including providing a vessel configured to contain an at least partially melted material; detecting radiation reflected from a surface of a liquid portion of the at least partially melted material; providing sound energy to the surface; measuring a disturbance on the surface; calculating at least one frequency associated with the disturbance; and determining a thickness of the liquid portion based on the at least one frequency, wherein the thickness is calculated based on L=(2m-1)v.sub.s/4f, where f is the frequency where the disturbance has an amplitude maximum, v.sub.s is the speed of sound in the material, and m is a positive integer (1, 2, 3, . . . ).

  14. Quantitative characterization of arc discharge as vacuum interface

    SciTech Connect (OSTI)

    Huang, S.; Zhu, K.; Lu, Y. R.; Wang, S. Z.; Hershcovitch, A.; Yang, L.; Zhang, X. Y.

    2014-12-19

    An arc discharge with channel diameters of 3 mm and 6 mm and lengths between 30mm and 60mm was experimentally investigated for its potential to function as plasma window, i.e., interface vacuum regions of different pressures. In this study, electron temperature of the plasma channel measured spectroscopically varied in the range of 7000K to 15000K, increasing with discharge current while decreasing with gas flow rate. The plasma window had a slightly positive I-V characteristics over the whole range of investigated current 30A70 A. Measurements of pressure separation capability, which were determined by input current, gas flow rate, discharge channel diameter, and length, were well explained by viscosity effect and thermal-block effect. The experimental results of global parameters including temperature, gas flow rate, and voltage had a good agreement with the simulation results calculated by an axis-symmetry Fluent-based magneto-hydrodynamic model.

  15. Interface engineering for efficient fullerene-free organic solar cells

    SciTech Connect (OSTI)

    Shivanna, Ravichandran; Narayan, K. S. E-mail: narayan@jncasr.ac.in; Rajaram, Sridhar E-mail: narayan@jncasr.ac.in

    2015-03-23

    We demonstrate the role of zinc oxide (ZnO) morphology and addition of an acceptor interlayer to achieve high efficiency fullerene-free bulk heterojunction inverted organic solar cells. Nanopatterning of the ZnO buffer layer enhances the effective light absorption in the active layer, and the insertion of a twisted perylene acceptor layer planarizes and decreases the electron extraction barrier. Along with an increase in current homogeneity, the reduced work function difference and selective transport of electrons prevent the accumulation of charges and decrease the electron-hole recombination at the interface. These factors enable an overall increase of efficiency to 4.6%, which is significant for a fullerene-free solution-processed organic solar cell.

  16. The characterization of metal/ceramic interfaces using specular neutron reflection

    SciTech Connect (OSTI)

    Xiao, P.; Derby, B.; Webster, J.; Penfold, J.

    1997-01-01

    The authors have characterized the chemical composition of three interfaces between metals and a sapphire (Al{sub 2}O{sub 3}) single crystal using specular neutron reflection. The interfaces are Sn/sapphire, Sn/sapphire containing a thin, {approximately}20 nm, Ti interlayer and an interface between sapphire and a Ti-containing Ag-Cu eutectic active braze alloy. The authors have evaluated the neutron reflection results using a multilayer model of the interface. The technique is extremely sensitive to the presence of Ti at the interface being probed because of the negative neutron scattering length of Ti compared with the positive scattering lengths of the other elements present in the systems. The analysis of the data revealed a thin, {approximately}70 nm, titanium suboxide layer t the sapphire/active braze alloy interface, consistent with observations made using other techniques.

  17. X-ray Studies of the Interface Between Two Polar Liquids: Neat and with Electrolytes

    SciTech Connect (OSTI)

    Luo, G.; Malkova, S.; Pingali, S.V.; Schultz, D.; Lin, B.; Meron, M.; Graber, T.; Gebhardt, J.; Vanysek, P.; Schlossman, M.L.

    2010-11-30

    We demonstrate the use of X-ray reflectivity to probe the electron density profile normal to the interface between two polar liquids. Measurements of the interfacial width at the neat nitrobenzene/water and the neat water/2-heptanone interfaces are presented. These widths are consistent with predictions from capillary wave theory that describe thermal interfacial fluctuations determined by the tension and bending rigidity of the interface. Variation of the temperature of the water/nitrobenzene interface from 25 C to 55 C indicates that the role of the bending rigidity decreases with increasing temperature. X-ray reflectivity measurements of the electrified interface between an aqueous solution of BaCl{sub 2} and a nitrobenzene solution of TBATPB demonstrate the sensitivity of these measurements to the electrolyte distribution at the interface. A preliminary analysis of these data illustrates the inadequacy of the simplest, classical Gouy-Chapman theory of the electrolyte distribution.

  18. New Technique Gives a Deeper Look into the Chemistry of Interfaces

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Technique Gives a Deeper Look into the Chemistry of Interfaces New Technique Gives a Deeper Look into the Chemistry of Interfaces Print Monday, 23 February 2015 10:48 A new technique developed at the ALS offers sub-nanometer depth resolution of every chemical element to be found at heterogeneous interfaces, such as those in batteries and fuel cells. The technique, Standing-Wave Ambient-Pressure Photoelectron Spectroscopy (SWAPPS), combines standing-wave photoelectron spectroscopy (SWPS) with

  19. Synthesis of metal silicide at metal/silicon oxide interface by electronic

    Office of Scientific and Technical Information (OSTI)

    excitation (Journal Article) | SciTech Connect Synthesis of metal silicide at metal/silicon oxide interface by electronic excitation Citation Details In-Document Search Title: Synthesis of metal silicide at metal/silicon oxide interface by electronic excitation The synthesis of metal silicide at the metal/silicon oxide interface by electronic excitation was investigated using transmission electron microscopy. A platinum silicide, α-Pt{sub 2}Si, was successfully formed at the

  20. Thrust 1: Structure and Dynamics of Simple Fluid-Solid Interfaces (Peter T. Cumm

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thrust 1: Structure and Dynamics of Simple Fluid-Solid Interfaces (Peter T. Cummings, Vanderbilt University, Thrust Leader). This thrust integrate multiscale computational modeling and novel experimental probes of interfacial fluid properties at 'simple' interfaces, such as planar, cylindrical, and spherical surfaces, parallel slit and cylindrical pores, etc. which can be rigorously modeled with the minimum incorporation of simplifying approximations and assumptions. Such simple interfaces are

  1. Applicant Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Applicant Information General Information for Applicants Bringing together top, space science students with internationally recognized researchers at Los Alamos in an educational and collaborative atmosphere. Contacts Director Misa Cowee Email Administrative Assistant Mary Wubbena Email Request more information Email Acceptance into the program Application packages are reviewed by a panel of experts and acceptance into the program is based primarily on the student's academic record, list of

  2. Simergy: Practitioner-Oriented Graphical User Interface for EnergyPlus...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lawrence Berkeley National Laboratory Contact LBL About This Technology Technology Marketing Summary Simergy is a graphical user interface (GUI) for the DOE building energy...

  3. Ultrasonic fluid densitometer having liquid/wedge and gas/wedge interfaces

    DOE Patents [OSTI]

    Greenwood, Margaret S.

    2000-01-01

    The present invention is an ultrasonic liquid densitometer that uses a material wedge having two sections, one with a liquid/wedge interface and another with a gas/wedge interface. It is preferred that the wedge have an acoustic impedance that is near the acoustic impedance of the liquid, specifically less than a factor of 11 greater than the acoustic impedance of the liquid. Ultrasonic signals are internally reflected within the material wedge. Density of a liquid is determined by immersing the wedge into the liquid and measuring reflections of ultrasound at the liquid/wedge interface and at the gas/wedge interface.

  4. Progress on H5Part: A Portable High Performance Parallel DataInterface...

    Office of Scientific and Technical Information (OSTI)

    Performance Parallel DataInterface for Electromagnetics Simulations Citation Details In-Document Search Title: Progress on H5Part: A Portable High Performance Parallel ...

  5. NREL Controllable Grid Interface for Testing MW-Scale Wind Turbine

    Office of Scientific and Technical Information (OSTI)

    Controllable Grid Interface for Testing MW-Scale Wind Turbine Generators (Poster) McDade, M.; Gevorgian, V.; Wallen, R.; Erdman, W. 17 WIND ENERGY WIND TURBINE TESTING;...

  6. X-ray micro-diffraction studies of heterogeneous interfaces between...

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Search Results Journal Article: X-ray micro-diffraction studies of heterogeneous interfaces between cementitious materials and geological formations Citation ...

  7. End-System Network Interface Controller for 100 Gb/s Wide Area Networks: Final Report

    SciTech Connect (OSTI)

    Wen, Jesse

    2013-08-30

    In recent years, network bandwidth requirements have scaled multiple folds, pushing the need for the development of data exchange mechanisms at 100 Gb/s and beyond. High performance computing, climate modeling, large-scale storage, and collaborative scientific research are examples of applications that can greatly benefit by leveraging high bandwidth capabilities of the order of 100 Gb/s. Such requirements and advances in IEEE Ethernet standards, Optical Transport Unit4 (OTU4), and host-system interconnects demand a network infrastructure supporting throughput rates of the order of 100 Gb/s with a single wavelength. To address such a demand Acadia Optronics in collaboration with the University of New Mexico, proposed and developed a end-system Network Interface Controller (NIC) for the 100Gbps WANs. Acadia’s 100G NIC employs an FPGA based system with a high-performance processor interconnect (PCIe 3.0) and a high capacity optical transmission link (CXP) to provide data transmission at the rate of 100 Gbps.

  8. Computational Studies of [Bmim][PF6]/n-Alcohol Interfaces with Many-Body Potentials

    SciTech Connect (OSTI)

    Chang, Tsun-Mei; Dang, Liem X.

    2014-09-04

    In this paper, we present the results from molecular-dynamics simulations of the equilibrium properties of liquid/liquid interfaces of room temperature ionic liquid [bmim][PF6] and simple alcohols (i.e., methanol, 1-butanol, and 1-hexanol) at room temperature. Polarizable potential models are employed to describe the interactions among species. Results from our simulations show stable interfaces between the ionic liquid and n-alcohols, and we found that the interfacial widths decrease from methanol to 1-butanol systems, and then increase for 1-hexanol interfaces. Angular distribution analysis reveals that the interface induces a strong orientational order of [bmim] and n-alcohol molecules near the interface, with [bmim] extending its butyl group into the alcohol phase while the alcohol has the OH group pointing into the ion liquid region, which is consistent with the recent sum-frequency-generation experiments. We found the interface to have a significant influence on the dynamics of ionic liquids and n-alcohols. The orientational autocorrelation functions illustrate that [bmim] rotate more freely near the interface than in the bulk, while the rotation of n-alcohol is hindered at the interface. Additionally, the time scale associated with the diffusion along the interfacial direction is found to be faster for [bmim] but slowed down for n-alcohols approaching the interface. We also calculate the dipole moment of n-alcohols as a function of the distance normal to the interface. We found that, even though methanol and 1-butanol have different dipole moments in bulk phase, they reach a similar value at the interface. This work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. Pacific Northwest National Laboratory is a multiprogram national laboratory operated for the Department of Energy by Battelle. The calculations were carried out using computer resources provided by the Office of Basic Energy Sciences.

  9. Interface and process for enhanced transmission of non-circular ion beams between stages at unequal pressure

    DOE Patents [OSTI]

    Tang, Keqi (Richland, WA); Shvartsburg, Alexandre A. (Richland, WA); Smith, Richard D. (Richland, WA)

    2008-03-04

    The invention discloses a new interface with non-circular conductance limit aperture(s) useful for effective transmission of non-circular ion beams between stages with different gas pressure. In particular, the invention provides an improved coupling of field asymmetric waveform ion mobility spectrometry (FAIMS) analyzers of planar or side-to-side geometry to downstream stages such as mass spectrometry or ion mobility spectrometry. In this case, the non-circular aperture is rectangular; other geometries may be optimum in other applications. In the preferred embodiment, the non-circular aperture interface is followed by an electrodynamic ion funnel that may focus wide ion beams of any shape into tight circular beams with virtually no losses. The jet disrupter element of the funnel may also have a non-circular geometry, matching the shape of arriving ion beam. The improved sensitivity of planar FAIMS/MS has been demonstrated in experiments using a non-contiguous elongated aperture but other embodiments (e.g., with a contiguous slit aperture) may be preferable, especially in conjunction with an ion funnel operated at high pressures.

  10. A low thermal impact annealing process for SiO{sub 2}-embedded Si nanocrystals with optimized interface quality

    SciTech Connect (OSTI)

    Hiller, Daniel Gutsch, Sebastian; Hartel, Andreas M.; Zacharias, Margit; Lper, Philipp; Gebel, Thoralf

    2014-04-07

    Silicon nanocrystals (Si NCs) for 3rd generation photovoltaics or optoelectronic applications can be produced by several industrially compatible physical or chemical vapor deposition technologies. A major obstacle for the integration into a fabrication process is the typical annealing to form and crystallize these Si quantum dots (QDs) which involves temperatures ?1100??C for 1?h. This standard annealing procedure allows for interface qualities that correspond to more than 95% dangling bond defect free Si NCs. We study the possibilities to use rapid thermal annealing (RTA) and flash lamp annealing to crystallize the Si QDs within seconds or milliseconds at high temperatures. The Si NC interface of such samples exhibits huge dangling bond defect densities which makes them inapplicable for photovoltaics or optoelectronics. However, if the RTA high temperature annealing is combined with a medium temperature inert gas post-annealing and a H{sub 2} passivation, luminescent Si NC fractions of up to 90% can be achieved with a significantly reduced thermal load. A new figure or merit, the relative dopant diffusion length, is introduced as a measure for the impact of a Si NC annealing procedure on doping profiles of device structures.

  11. The high level programmer and user interface of the NSLS control system

    SciTech Connect (OSTI)

    Tang, Y.N.; Smith, J.D.; Sathe, S.

    1993-07-01

    This paper presents the major components of the high level software in the NSLS upgraded control system. Both programmer and user interfaces are discussed. The use of the high-speed work stations, fast network communications, UNIX system, X-window and Motif have greatly changed and improved these interfaces.

  12. Misfit strain driven cation inter-diffusion across an epitaxial multiferroic thin film interface

    SciTech Connect (OSTI)

    Sankara Rama Krishnan, P. S.; Munroe, Paul; Nagarajan, V.; Morozovska, Anna N.; Eliseev, Eugene A.; Ramasse, Quentin M.; Kepaptsoglou, Demie; Liang, Wen-I.; Chu, Ying-Hao

    2014-02-07

    Cation intermixing at functional oxide interfaces remains a highly controversial area directly relevant to interface-driven nanoelectronic device properties. Here, we systematically explore the cation intermixing in epitaxial (001) oriented multiferroic bismuth ferrite (BFO) grown on a (001) lanthanum aluminate (LAO) substrate. Aberration corrected dedicated scanning transmission electron microscopy and electron energy loss spectroscopy reveal that the interface is not chemically sharp, but with an intermixing of ?2?nm. The driving force for this process is identified as misfit-driven elastic strain. Landau-Ginzburg-Devonshire-based phenomenological theory was combined with the Sheldon and Shenoy formula in order to understand the influence of boundary conditions and depolarizing fields arising from misfit strain between the LAO substrate and BFO film. The theory predicts the presence of a strong potential gradient at the interface, which decays on moving into the bulk of the film. This potential gradient is significant enough to drive the cation migration across the interface, thereby mitigating the misfit strain. Our results offer new insights on how chemical roughening at oxide interfaces can be effective in stabilizing the structural integrity of the interface without the need for misfit dislocations. These findings offer a general formalism for understanding cation intermixing at highly strained oxide interfaces that are used in nanoelectronic devices.

  13. In situ Probing of Solid-Electrolyte Interfaces with Nonlinear Coherent Vibrational Spectroscopy

    SciTech Connect (OSTI)

    Mukherjee, Prabuddha; Lagutchev, Alexei; Dlott, Dana D.

    2012-01-01

    Vibrational sum-frequency generation spectroscopy (SFG) is used for in situ probing of molecular vibrations at interfaces associated with solid-electrolyte interphases (SEI) in systems relevant to lithium-ion batteries. SFG is interface-selective and can suppress nonresonant signals from metal electrodes. Two interfaces were observed: the electrode-SEI interface and the electrolyte-SEI interface. The SEI was formed on Au or Cu by potential cycling from 2.0 V0.2 V (vs. Li/Li+) in ethylene carbonate (EC) and LiClO? in tetrahydrofuran (THF). Li deposition occurs on Au but not on Cu. SFG of the electrolyte-SEI interface with Cu shows EC transitions whose intensities oscillate during potential cycling. The smaller oscillations are attributed to EC potential-dependent reorientation; the larger to an optical interference effect associated with the SEI layer thickness. The larger EC interference oscillations seen on Cu are absent on Au because the SEI on Au is thicker and more opaque. Lithium ethylene dicarbonate (LiEDC) and possibly ethylene oxide are observed at the electrode-SEI interface. This interfacial structure varies little after the first cycle of SEI formation. THF is also observed at the electrode interface with a degree of mobility that increases during the first few four potential cycles and then levels off.

  14. Identification of fluids and an interface between fluids by measuring complex impedance

    DOE Patents [OSTI]

    Lee, David O.; Wayland, Jr., James R.

    1989-01-01

    Complex impedance measured over a predefined frequency range is used to determine the identity of different oils in a column. The location of an interface between the oils is determined from the percent frequency effects of the complex impedance measured across the interface.

  15. Identification of fluids and an interface between fluids by measuring complex impedance

    DOE Patents [OSTI]

    Lee, D.O.; Wayland, J.R. Jr.

    1989-12-05

    Complex impedance measured over a predefined frequency range is used to determine the identity of different oils in a column. The location of an interface between the oils is determined from the percent frequency effects of the complex impedance measured across the interface. 5 figs.

  16. Utilizing interfaces: One-step forward for rational design of heterogeneous catalysts

    SciTech Connect (OSTI)

    Kim H. Y.

    2013-06-20

    As far as heterogeneous catalysts are a composite material, physicochemical properties of the interfaces between individual components should be extensively studied for rational design of catalysts with desired properties. Here, I will present recent computational achievements in following three heterogeneous catalysts where the interface between composing materials plays a critical role

  17. Mathematics and biology: The interface, challenges and opportunities

    SciTech Connect (OSTI)

    Levin, S.A. )

    1992-06-01

    The interface between mathematics and biology has long been a rich area of research, with mutual benefit to each supporting discipline. Traditional areas of investigation, such as population genetics, ecology, neurobiology, and 3-D reconstructions, have flourished, despite a rather meager environment for the funding of such work. In the past twenty years, the kind and scope of such interactions between mathematicians and biologists have changed dramatically, reaching out to encompass areas of both biology and mathematics that previously had not benefited. At the same time, with the closer integration of theory and experiment, and the increased reliance on high-speed computation, the costs of such research grew, though not the opportunities for funding. The perception became reinforced, both within the research community and at funding agencies, that although these interactions were expanding, they were not doing so at the rate necessary to meet the opportunities and needs. A workshop was held in Washington, DC, between April 28 and May 3, 1990 which drew together a broadly based group of researchers to synthesize conclusions from a group of working papers and extended discussions. The result is the report presented here, which we hope will provide a guide and stimulus to research in mathematical and computational biology for at least the next decade. The report identifies a number of grand challenges, representing a broad consensus among the participants.

  18. Development of output user interface software to support analysis

    SciTech Connect (OSTI)

    Wahanani, Nursinta Adi Natsir, Khairina Hartini, Entin

    2014-09-30

    Data processing software packages such as VSOP and MCNPX are softwares that has been scientifically proven and complete. The result of VSOP and MCNPX are huge and complex text files. In the analyze process, user need additional processing like Microsoft Excel to show informative result. This research develop an user interface software for output of VSOP and MCNPX. VSOP program output is used to support neutronic analysis and MCNPX program output is used to support burn-up analysis. Software development using iterative development methods which allow for revision and addition of features according to user needs. Processing time with this software 500 times faster than with conventional methods using Microsoft Excel. PYTHON is used as a programming language, because Python is available for all major operating systems: Windows, Linux/Unix, OS/2, Mac, Amiga, among others. Values that support neutronic analysis are k-eff, burn-up and mass Pu{sup 239} and Pu{sup 241}. Burn-up analysis used the mass inventory values of actinide (Thorium, Plutonium, Neptunium and Uranium). Values are visualized in graphical shape to support analysis.

  19. Automated two-dimensional interface for capillary gas chromatography

    DOE Patents [OSTI]

    Strunk, M.R.; Bechtold, W.E.

    1996-02-20

    A multidimensional gas chromatograph (GC) system is disclosed which has wide bore capillary and narrow bore capillary GC columns in series and has a novel system interface. Heart cuts from a high flow rate sample, separated by a wide bore GC column, are collected and directed to a narrow bore GC column with carrier gas injected at a lower flow compatible with a mass spectrometer. A bimodal six-way valve is connected with the wide bore GC column outlet and a bimodal four-way valve is connected with the narrow bore GC column inlet. A trapping and retaining circuit with a cold trap is connected with the six-way valve and a transfer circuit interconnects the two valves. The six-way valve is manipulated between first and second mode positions to collect analyte, and the four-way valve is manipulated between third and fourth mode positions to allow carrier gas to sweep analyte from a deactivated cold trap, through the transfer circuit, and then to the narrow bore GC capillary column for separation and subsequent analysis by a mass spectrometer. Rotary valves have substantially the same bore width as their associated columns to minimize flow irregularities and resulting sample peak deterioration. The rotary valves are heated separately from the GC columns to avoid temperature lag and resulting sample deterioration. 3 figs.

  20. Description of waste pretreatment and interfacing systems dynamic simulation model

    SciTech Connect (OSTI)

    Garbrick, D.J.; Zimmerman, B.D.

    1995-05-01

    The Waste Pretreatment and Interfacing Systems Dynamic Simulation Model was created to investigate the required pretreatment facility processing rates for both high level and low level waste so that the vitrification of tank waste can be completed according to the milestones defined in the Tri-Party Agreement (TPA). In order to achieve this objective, the processes upstream and downstream of the pretreatment facilities must also be included. The simulation model starts with retrieval of tank waste and ends with vitrification for both low level and high level wastes. This report describes the results of three simulation cases: one based on suggested average facility processing rates, one with facility rates determined so that approximately 6 new DSTs are required, and one with facility rates determined so that approximately no new DSTs are required. It appears, based on the simulation results, that reasonable facility processing rates can be selected so that no new DSTs are required by the TWRS program. However, this conclusion must be viewed with respect to the modeling assumptions, described in detail in the report. Also included in the report, in an appendix, are results of two sensitivity cases: one with glass plant water recycle steams recycled versus not recycled, and one employing the TPA SST retrieval schedule versus a more uniform SST retrieval schedule. Both recycling and retrieval schedule appear to have a significant impact on overall tank usage.

  1. Quantitative characterization of arc discharge as vacuum interface

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Huang, S.; Zhu, K.; Lu, Y. R.; Wang, S. Z.; Hershcovitch, A.; Yang, L.; Zhang, X. Y.

    2014-12-19

    An arc discharge with channel diameters of 3 mm and 6 mm and lengths between 30mm and 60mm was experimentally investigated for its potential to function as plasma window, i.e., interface vacuum regions of different pressures. In this study, electron temperature of the plasma channel measured spectroscopically varied in the range of 7000K to 15000K, increasing with discharge current while decreasing with gas flow rate. The plasma window had a slightly positive I-V characteristics over the whole range of investigated current 30A–70 A. Measurements of pressure separation capability, which were determined by input current, gas flow rate, discharge channel diameter,more » and length, were well explained by viscosity effect and “thermal-block” effect. The experimental results of global parameters including temperature, gas flow rate, and voltage had a good agreement with the simulation results calculated by an axis-symmetry Fluent-based magneto-hydrodynamic model.« less

  2. Automated two-dimensional interface for capillary gas chromatography

    DOE Patents [OSTI]

    Strunk, Michael R. (Albuquerque, NM); Bechtold, William E. (Albuquerque, NM)

    1996-02-20

    A multidimensional gas chromatograph (GC) system having wide bore capillary and narrow bore capillary GC columns in series and having a novel system interface. Heart cuts from a high flow rate sample, separated by a wide bore GC column, are collected and directed to a narrow bore GC column with carrier gas injected at a lower flow compatible with a mass spectrometer. A bimodal six-way valve is connected with the wide bore GC column outlet and a bimodal four-way valve is connected with the narrow bore GC column inlet. A trapping and retaining circuit with a cold trap is connected with the six-way valve and a transfer circuit interconnects the two valves. The six-way valve is manipulated between first and second mode positions to collect analyte, and the four-way valve is manipulated between third and fourth mode positions to allow carrier gas to sweep analyte from a deactivated cold trap, through the transfer circuit, and then to the narrow bore GC capillary column for separation and subsequent analysis by a mass spectrometer. Rotary valves have substantially the same bore width as their associated columns to minimize flow irregularities and resulting sample peak deterioration. The rotary valves are heated separately from the GC columns to avoid temperature lag and resulting sample deterioration.

  3. Preliminary studies of tunnel interface response modeling using test data from underground storage facilities.

    SciTech Connect (OSTI)

    Sobolik, Steven Ronald; Bartel, Lewis Clark

    2010-11-01

    In attempting to detect and map out underground facilities, whether they be large-scale hardened deeply-buried targets (HDBT's) or small-scale tunnels for clandestine border or perimeter crossing, seismic imaging using reflections from the tunnel interface has been seen as one of the better ways to both detect and delineate tunnels from the surface. The large seismic impedance contrast at the tunnel/rock boundary should provide a strong, distinguishable seismic response, but in practice, such strong indicators are often lacking. One explanation for the lack of a good seismic reflection at such a strong contrast boundary is that the damage caused by the tunneling itself creates a zone of altered seismic properties that significantly changes the nature of this boundary. This report examines existing geomechanical data that define the extent of an excavation damage zone around underground tunnels, and the potential impact on rock properties such as P-wave and S-wave velocities. The data presented from this report are associated with sites used for the development of underground repositories for the disposal of radioactive waste; these sites have been excavated in volcanic tuff (Yucca Mountain) and granite (HRL in Sweden, URL in Canada). Using the data from Yucca Mountain, a numerical simulation effort was undertaken to evaluate the effects of the damage zone on seismic responses. Calculations were performed using the parallelized version of the time-domain finitedifference seismic wave propagation code developed in the Geophysics Department at Sandia National Laboratories. From these numerical simulations, the damage zone does not have a significant effect upon the tunnel response, either for a purely elastic case or an anelastic case. However, what was discovered is that the largest responses are not true reflections, but rather reradiated Stoneley waves generated as the air/earth interface of the tunnel. Because of this, data processed in the usual way may not correctly image the tunnel. This report represents a preliminary step in the development of a methodology to convert numerical predictions of rock properties to an estimation of the extent of rock damage around an underground facility and its corresponding seismic velocity, and the corresponding application to design a testing methodology for tunnel detection.

  4. IS-321-312-001 TEP-to-HTEP manifold interface sheet

    SciTech Connect (OSTI)

    Willms, R Scott; Carlson, Bryan J; Coons, James E; Kubic, William L

    2008-01-01

    The Tokamak Exhaust Processing System (TEP) receives hydrogen-like and air-like gas streams from the High Tritium Exhaust Processing (HTEP) manifold. Gases from the torus roughing pump are pumped into the HTEP manifold before entering TEP. This interface sheet describes the TEP-HTEP material stream interface, both the physical elements that make up the interface as well as the gas streams that will flow through the interface. The functions of this interface are to: Provide a physical connection for the transport of hydrogen-like and air-like gases from the HTEP manifold to TEP. Provide seals to prevent the unncessary release of tritium to the surrounding environment. Provide valves that can be actuated to stop or prevent the flow of gas into TEP.

  5. Influence of interface mobility on the evolution of Austenite-Martensite grain assemblies during annealing

    SciTech Connect (OSTI)

    Clarke, Amy J; Santofimia, Maria J; Speer, John G; Zhao, L; Sietsma, Jilt

    2009-01-01

    The quenching and partitioning (Q&P) process is a new heat treatment for the creation of advanced high-strength steels. This treatment consists of an initial partial or full austenitization, followed by a quench to form a controlled amount of martensite and an annealing step to partition carbon atoms from the martensite to the austenite. In this work, the microstructural evolution during annealing of martensite-austenite grain assemblies has been analyzed by means of a modeling approach that considers the influence of martensite-austenite interface migration on the kinetics of carbon partitioning. Carbide precipitation is precluded in the model, and three different assumptions about interface mobility are considered, ranging from a completely immobile interface to the relatively high mobility of an incoherent ferrite-austenite interface. Simulations indicate that different interface mobilities lead to profound differences in the evolution of microstructure that is predicted during annealing.

  6. Ridefinders Application

    Energy Savers [EERE]

    application to the U.S. Department of Energy (DOE) Employee Transportation Coordinator, Room 7A-156, Forrestal. U.S. Department of Energy Privacy Act Statement Check all...

  7. Structural and phonon transmission study of Ge-Au-Ge eutectically bonded interfaces

    SciTech Connect (OSTI)

    Knowlton, W.B. |

    1995-07-01

    This thesis presents a structural analysis and phonon transparency investigation of the Ge-Au-Ge eutectic bond interface. Interface development was intended to maximize the interfacial ballistic phonon transparency to enhance the detection of the dark matter candidate WIMPs. The process which was developed provides an interface which produces minimal stress, low amounts of impurities, and insures Ge lattice continuity through the interface. For initial Au thicknesses of greater than 1,000 {angstrom} Au per substrate side, eutectic epitaxial growth resulted in a Au dendritic structure with 95% cross sectional and 90% planar Au interfacial area coverages. In sections in which Ge bridged the interface, lattice continuity across the interface was apparent. Epitaxial solidification of the eutectic interface with initial Au thicknesses < 500 A per substrate side produced Au agglomerations thereby reducing the Au planar interfacial area coverage to as little as 30%. The mechanism for Au coalescence was attributed to lateral diffusion of Ge and Au in the liquid phase during solidification. Phonon transmission studies were performed on eutectic interfaces with initial Au thicknesses of 1,000 {angstrom}, 500 {angstrom}, and 300 {angstrom} per substrate side. Phonon imaging of eutectically bonded samples with initial Au thicknesses of 300 {angstrom}/side revealed reproducible interfacial percent phonon transmissions from 60% to 70%. Line scan phonon imaging verified the results. Phonon propagation TOF spectra distinctly showed the predominant phonon propagation mode was ballistic. This was substantiated by phonon focusing effects apparent in the phonon imaging data. The degree of interface transparency to phonons and resulting phonon propagation modes correlate with the structure of the interface following eutectic solidification. Structural studies of samples with initial Au thickness of 1,000 {angstrom}/side appear to correspond with the phonon transmission study.

  8. AN INTERFACE REGION IMAGING SPECTROGRAPH FIRST VIEW ON SOLAR SPICULES

    SciTech Connect (OSTI)

    Pereira, T. M. D.; De Pontieu, B.; Carlsson, M.; Hansteen, V.; Tarbell, T. D.; Lemen, J.; Title, A.; Boerner, P.; Hurlburt, N.; Wülser, J. P.; Martínez-Sykora, J.; Kleint, L.; Golub, L.; McKillop, S.; Reeves, K. K.; Saar, S.; Testa, P.; Tian, H.; Jaeggli, S.; Kankelborg, C.

    2014-09-01

    Solar spicules have eluded modelers and observers for decades. Since the discovery of the more energetic type II, spicules have become a heated topic but their contribution to the energy balance of the low solar atmosphere remains unknown. Here we give a first glimpse of what quiet-Sun spicules look like when observed with NASA's recently launched Interface Region Imaging Spectrograph (IRIS). Using IRIS spectra and filtergrams that sample the chromosphere and transition region, we compare the properties and evolution of spicules as observed in a coordinated campaign with Hinode and the Atmospheric Imaging Assembly. Our IRIS observations allow us to follow the thermal evolution of type II spicules and finally confirm that the fading of Ca II H spicules appears to be caused by rapid heating to higher temperatures. The IRIS spicules do not fade but continue evolving, reaching higher and falling back down after 500-800 s. Ca II H type II spicules are thus the initial stages of violent and hotter events that mostly remain invisible in Ca II H filtergrams. These events have very different properties from type I spicules, which show lower velocities and no fading from chromospheric passbands. The IRIS spectra of spicules show the same signature as their proposed disk counterparts, reinforcing earlier work. Spectroheliograms from spectral rasters also confirm that quiet-Sun spicules originate in bushes from the magnetic network. Our results suggest that type II spicules are indeed the site of vigorous heating (to at least transition region temperatures) along extensive parts of the upward moving spicular plasma.

  9. Human-system interface design review guideline -- Reviewer`s checklist: Final report. Revision 1, Volume 2

    SciTech Connect (OSTI)

    1996-06-01

    NUREG-0700, Revision 1, provides human factors engineering (HFE) guidance to the US Nuclear Regulatory Commission staff for its: (1) review of the human system interface (HSI) design submittals prepared by licensees or applications for a license or design certification of commercial nuclear power plants, and (2) performance of HSI reviews that could be undertaken as part of an inspection or other type of regulatory review involving HSI design or incidents involving human performance. The guidance consists of a review process and HFE guidelines. The document describes those aspects of the HSI design review process that are important to the identification and resolution of human engineering discrepancies that could adversely affect plant safety. Guidance is provided that could be used by the staff to review an applicant`s HSI design review process or to guide the development of an HSI design review plan, e.g., as part of an inspection activity. The document also provides detailed HFE guidelines for the assessment of HSI design implementations. NUREG-0700, Revision 1, consists of three stand-alone volumes. Volume 2 is a complete set of the guidelines contained in Volume 1, Part 2, but in a checklist format that can be used by reviewers to assemble sets of individual guidelines for use in specific design reviews. The checklist provides space for reviewers to enter guidelines evaluations and comments.

  10. Total internal reflection fluorescence spectrometer to study dynamic adsorption phenomena at liquid/liquid interfaces

    SciTech Connect (OSTI)

    Tupy, M.J.; Blanch, H.W.; Radke, C.J.

    1998-08-01

    Adsorption at oil/water interfaces affects the performance of many industrial systems including oil recovery, extraction processes, cosmetic products, and food technology. However, no technique currently available can monitor adsorption dynamics using molecularly sensitive methods. The authors have constructed a novel total internal reflection fluorescence spectrometer (TIRFS) to follow dynamic adsorption events at the oil/water interface. The TIRFS monitors changes in fluorescence intensity and fluorescence spectra over time by maintaining an optical focus on the fluid interface during adsorption and desorption processes. Kinetic adsorption phenomena are examined by altering the composition of the aqueous phase and recording surface fluorescence response without mechanically disturbing the fluid/fluid interface. The spectrometer captures changes in the fluorescence intensity over tenths of seconds and maintains optical focus for periods of days. Mass transport of fluorescing surface-active material to and from the oil/water interface is accurately modeled using the simple one-dimensional diffusion equation. The geometry designed for this apparatus can be applied to other light-based techniques studying adsorption at liquid/liquid interfaces. Here, the authors apply the TIRFS apparatus to the study of {beta}-casein adsorption and desorption at an aliphatic oil/water interface. The observed increase in interfacial fluorescence due to {beta}-casein adsorption is slower than the diffusive flux, and desorption is found to be very slow if not irreversible. The TIRF spectrum indicates interaction of sorbed {beta}-casein with the oil phase and subsequent rearrangement of the native structure.

  11. Theoretical vibrational sum-frequency generation spectroscopy of water near lipid and surfactant monolayer interfaces

    SciTech Connect (OSTI)

    Roy, S.; Gruenbaum, S. M.; Skinner, J. L.

    2014-11-14

    Understanding the structure of water near cell membranes is crucial for characterizing water-mediated events such as molecular transport. To obtain structural information of water near a membrane, it is useful to have a surface-selective technique that can probe only interfacial water molecules. One such technique is vibrational sum-frequency generation (VSFG) spectroscopy. As model systems for studying membrane headgroup/water interactions, in this paper we consider lipid and surfactant monolayers on water. We adopt a theoretical approach combining molecular dynamics simulations and phase-sensitive VSFG to investigate water structure near these interfaces. Our simulated spectra are in qualitative agreement with experiments and reveal orientational ordering of interfacial water molecules near cationic, anionic, and zwitterionic interfaces. OH bonds of water molecules point toward an anionic interface leading to a positive VSFG peak, whereas the water hydrogen atoms point away from a cationic interface leading to a negative VSFG peak. Coexistence of these two interfacial water species is observed near interfaces between water and mixtures of cationic and anionic lipids, as indicated by the presence of both negative and positive peaks in their VSFG spectra. In the case of a zwitterionic interface, OH orientation is toward the interface on the average, resulting in a positive VSFG peak.

  12. Non-random walk diffusion enhances the sink strength of semicoherent interfaces

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Vattré, A.; Jourdan, T.; Ding, H.; Marinica, M. -C.; Demkowicz, M. J.

    2016-01-29

    Clean, safe and economical nuclear energy requires new materials capable of withstanding severe radiation damage. One strategy of imparting radiation resistance to solids is to incorporate into them a high density of solid-phase interfaces capable of absorbing and annihilating radiation-induced defects. Here we show that elastic interactions between point defects and semicoherent interfaces lead to a marked enhancement in interface sink strength. Our conclusions stem from simulations that integrate first principles, object kinetic Monte Carlo and anisotropic elasticity calculations. Surprisingly, the enhancement in sink strength is not due primarily to increased thermodynamic driving forces, but rather to reduced defect migrationmore » barriers, which induce a preferential drift of defects towards interfaces. The sink strength enhancement is highly sensitive to the detailed character of interfacial stresses, suggesting that ‘super-sink’ interfaces may be designed by optimizing interface stress fields. Lastly, such interfaces may be used to create materials with unprecedented resistance to radiation-induced damage.« less

  13. Diagnostic apparatus and method for use in the alignment of one or more laser means onto a fiber optics interface

    DOE Patents [OSTI]

    Johnson, S.A.; Shannon, R.R.

    1985-01-18

    Diagnostic apparatus for use in determining the proper alignment of a plurality of laser beams onto a fiber optics interface is disclosed. The apparatus includes a lens assembly which serves two functions, first to focus a plurality of laser beams onto the fiber optics interface, and secondly to reflect and image the interface using scattered light to a monitor means. The monitor means permits indirect observation of the alignment or focusing of the laser beams onto the fiber optics interface.

  14. Dynamics and pattern selection at the crystal-melt interface. Progress report No. 4, March 1, 1989--February 28, 1990

    SciTech Connect (OSTI)

    Cummins, H.Z.

    1990-12-31

    This report discusses: light scattering at the crystal-melt interface; morphological instability and pattern selection; and sidebranching.

  15. Diagnostic apparatus and method for use in the alignment of one or more laser means onto a fiber optics interface

    DOE Patents [OSTI]

    Johnson, Steve A. (Tracy, CA); Shannon, Robert R. (Tucson, AZ)

    1987-01-01

    Diagnostic apparatus for use in determining the proper alignment of a plurality of laser beams onto a fiber optics interface is disclosed. The apparatus includes a lens assembly which serves two functions, first to focus a plurality of laser beams onto the fiber optics interface, and secondly to reflect and image the interface using scattered light to a monitor means. The monitor means permits indirect observation of the alignment or focusing of the laser beams onto the fiber optics interface.

  16. Pore-scale simulation of coupled reactive transport and dissolution in fractures and porous media using the level set interface tracking method

    SciTech Connect (OSTI)

    Hai Huang; Xiaoyi Li

    2011-01-01

    A level set simulation methodology developed for modeling coupled reactive transport and structure evolution has been applied to dissolution in fracture apertures and porous media. The coupled processes such as fluid flow, reactant transport and dissolution at the solid-liquid interfaces are handled simultaneously. The reaction-induced evolution of solid-liquid interfaces is captured using the level set method, with the advantage of representing the interface with sub-grid scale resolution. The coupled processes are simulated for several geometric models of fractures and porous media under various flow conditions and reaction rates. Quantitative relationships between permeability and porosity are obtained from some of the simulation results and compared with analytical constitutive relations (i.e., the conventional cubic law and the Carman-Kozeny law) based on simplified pore space geometries and reaction induced geometric evolutions. The drastic deviation of the simulation results from these analytical theories is explained by the development of large local concentration gradients of reactants within fracture apertures and individual pores observed in the simulation results and consequently the complex geometric evolution patterns of fracture apertures and pores due to mineral dissolution. The simulation results support the argument that traditional constitutive relations based on simplified geometries and conditions have limited applicability in predicting field scale reactive transport and that incorporation of micro-scale physics is necessary.

  17. Atomically-resolved mapping of polarization and electric fields across ferroelectric-oxide interfaces by Z-contrast imaging

    SciTech Connect (OSTI)

    Chang, Hye Jung; Kalinin, Sergei; Morozovska, A. N.; Huijben, Mark; Chu, Ying-Hao; Yu, P; Ramesh, R.; Eliseev, E. A.; Svechnikov, S. V.; Pennycook, Stephen J; Borisevich, Albina Y

    2011-01-01

    Direct atomic displacement mapping at ferroelectric interfaces by aberration corrected scanning transmission electron microscopy(STEM) (a-STEM image, b-corresponding displacement profile) is combined with Landau-Ginsburg-Devonshire theory to obtain the complete interface electrostatics in real space, including separate estimates for the polarization and intrinsic interface charge contributions.

  18. Multiferroic tunnel junctions and ferroelectric control of magnetic state at interface (invited)

    SciTech Connect (OSTI)

    Yin, Y. W.; Raju, M.; Li, Qi; Hu, W. J.; Burton, J. D.; Gruverman, A.; Tsymbal, E. Y.; Kim, Y.-M.; Borisevich, A. Y.; Pennycook, S. J.; Yang, S. M.; Noh, T. W.; Li, X. G.; Zhang, Z. D.

    2015-05-07

    As semiconductor devices reach ever smaller dimensions, the challenge of power dissipation and quantum effect place a serious limit on the future device scaling. Recently, a multiferroic tunnel junction (MFTJ) with a ferroelectric barrier sandwiched between two ferromagnetic electrodes has drawn enormous interest due to its potential applications not only in multi-level data storage but also in electric field controlled spintronics and nanoferronics. Here, we present our investigations on four-level resistance states, giant tunneling electroresistance (TER) due to interfacial magnetoelectric coupling, and ferroelectric control of spin polarized tunneling in MFTJs. Coexistence of large tunneling magnetoresistance and TER has been observed in manganite/(Ba, Sr)TiO{sub 3}/manganite MFTJs at low temperatures and room temperature four-resistance state devices were also obtained. To enhance the TER for potential logic operation with a magnetic memory, La{sub 0.7}Sr{sub 0.3}MnO{sub 3}/BaTiO{sub 3}/La{sub 0.5}Ca{sub 0.5}MnO{sub 3} /La{sub 0.7}Sr{sub 0.3}MnO{sub 3} MFTJs were designed by utilizing a bilayer tunneling barrier in which BaTiO{sub 3} is ferroelectric and La{sub 0.5}Ca{sub 0.5}MnO{sub 3} is close to ferromagnetic metal to antiferromagnetic insulator phase transition. The phase transition occurs when the ferroelectric polarization is reversed, resulting in an increase of TER by two orders of magnitude. Tunneling magnetoresistance can also be controlled by the ferroelectric polarization reversal, indicating strong magnetoelectric coupling at the interface.

  19. When soft controls get slippery: User interfaces and human error

    SciTech Connect (OSTI)

    Stubler, W.F.; O`Hara, J.M.

    1998-12-01

    Many types of products and systems that have traditionally featured physical control devices are now being designed with soft controls--input formats appearing on computer-based display devices and operated by a variety of input devices. A review of complex human-machine systems found that soft controls are particularly prone to some types of errors and may affect overall system performance and safety. This paper discusses the application of design approaches for reducing the likelihood of these errors and for enhancing usability, user satisfaction, and system performance and safety.

  20. Intermixing at the absorber-buffer layer interface in thin-film...

    Office of Scientific and Technical Information (OSTI)

    Intermixing at the absorber-buffer layer interface in thin-film solar cells: The electronic effects of point defects in Cu(In,Ga)(Se,S)sub 2 and Cusub 2ZnSn(Se,S)sub 4 ...

  1. Photovoltaic structures having a light scattering interface layer and methods of making the same

    DOE Patents [OSTI]

    Liu, Xiangxin; Compaan, Alvin D.; Paudel, Naba Raj

    2015-10-13

    Photovoltaic (PV) cell structures having an integral light scattering interface layer configured to diffuse or scatter light prior to entering a semiconductor material and methods of making the same are described.

  2. Propagation of misfit dislocations from buffer/Si interface into Si

    DOE Patents [OSTI]

    Liliental-Weber, Zuzanna; Maltez, Rogerio Luis; Morkoc, Hadis; Xie, Jinqiao

    2011-08-30

    Misfit dislocations are redirected from the buffer/Si interface and propagated to the Si substrate due to the formation of bubbles in the substrate. The buffer layer growth process is generally a thermal process that also accomplishes annealing of the Si substrate so that bubbles of the implanted ion species are formed in the Si at an appropriate distance from the buffer/Si interface so that the bubbles will not migrate to the Si surface during annealing, but are close enough to the interface so that a strain field around the bubbles will be sensed by dislocations at the buffer/Si interface and dislocations are attracted by the strain field caused by the bubbles and move into the Si substrate instead of into the buffer epi-layer. Fabrication of improved integrated devices based on GaN and Si, such as continuous wave (CW) lasers and light emitting diodes, at reduced cost is thereby enabled.

  3. Human perceptual deficits as factors in computer interface test and evaluation

    SciTech Connect (OSTI)

    Bowser, S.E.

    1992-06-01

    Issues related to testing and evaluating human computer interfaces are usually based on the machine rather than on the human portion of the computer interface. Perceptual characteristics of the expected user are rarely investigated, and interface designers ignore known population perceptual limitations. For these reasons, environmental impacts on the equipment will more likely be defined than will user perceptual characteristics. The investigation of user population characteristics is most often directed toward intellectual abilities and anthropometry. This problem is compounded by the fact that some deficits capabilities tend to be found in higher-than-overall population distribution in some user groups. The test and evaluation community can address the issue from two primary aspects. First, assessing user characteristics should be extended to include tests of perceptual capability. Secondly, interface designs should use multimode information coding.

  4. Oxidation/Reduction Reactions at the Metal Contact-TlBr Interface...

    Office of Scientific and Technical Information (OSTI)

    Title: OxidationReduction Reactions at the Metal Contact-TlBr Interface: An X-ray Photoelectron Spectroscopy Study Authors: Nelson, A J ; Swanberg, E L ; Voss, L F ; Graff, R T ; ...

  5. Oxidation/Reduction Reactions at the Metal Contact-TlBr Interface...

    Office of Scientific and Technical Information (OSTI)

    Reduction Reactions at the Metal Contact-TlBr Interface: An X-ray Photoelectron Spectroscopy Study Citation Details In-Document Search Title: OxidationReduction Reactions at...

  6. New Technique Gives a Deeper Look into the Chemistry of Interfaces

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Technique Gives a Deeper Look into the Chemistry of Interfaces Print A new technique developed at the ALS offers sub-nanometer depth resolution of every chemical element to be found at heterogeneous interfaces, such as those in batteries and fuel cells. The technique, Standing-Wave Ambient-Pressure Photoelectron Spectroscopy (SWAPPS), combines standing-wave photoelectron spectroscopy (SWPS) with high-ambient-pressure photoelectron spectroscopy (APPS). The result is a technique that enables

  7. New Technique Gives a Deeper Look into the Chemistry of Interfaces

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Technique Gives a Deeper Look into the Chemistry of Interfaces Print A new technique developed at the ALS offers sub-nanometer depth resolution of every chemical element to be found at heterogeneous interfaces, such as those in batteries and fuel cells. The technique, Standing-Wave Ambient-Pressure Photoelectron Spectroscopy (SWAPPS), combines standing-wave photoelectron spectroscopy (SWPS) with high-ambient-pressure photoelectron spectroscopy (APPS). The result is a technique that enables

  8. New Technique Gives a Deeper Look into the Chemistry of Interfaces

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Technique Gives a Deeper Look into the Chemistry of Interfaces Print A new technique developed at the ALS offers sub-nanometer depth resolution of every chemical element to be found at heterogeneous interfaces, such as those in batteries and fuel cells. The technique, Standing-Wave Ambient-Pressure Photoelectron Spectroscopy (SWAPPS), combines standing-wave photoelectron spectroscopy (SWPS) with high-ambient-pressure photoelectron spectroscopy (APPS). The result is a technique that enables

  9. New Technique Gives a Deeper Look into the Chemistry of Interfaces

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Technique Gives a Deeper Look into the Chemistry of Interfaces Print A new technique developed at the ALS offers sub-nanometer depth resolution of every chemical element to be found at heterogeneous interfaces, such as those in batteries and fuel cells. The technique, Standing-Wave Ambient-Pressure Photoelectron Spectroscopy (SWAPPS), combines standing-wave photoelectron spectroscopy (SWPS) with high-ambient-pressure photoelectron spectroscopy (APPS). The result is a technique that enables

  10. Progress on H5Part: A Portable High Performance Parallel DataInterface for

    Office of Scientific and Technical Information (OSTI)

    Electromagnetics Simulations (Conference) | SciTech Connect Progress on H5Part: A Portable High Performance Parallel DataInterface for Electromagnetics Simulations Citation Details In-Document Search Title: Progress on H5Part: A Portable High Performance Parallel DataInterface for Electromagnetics Simulations Significant problems facing all experimental andcomputationalsciences arise from growing data size and complexity. Commonto allthese problems is the need to perform efficient data I/O

  11. Attachment of second harmonic-active moiety to molecules for detection of molecules at interfaces

    DOE Patents [OSTI]

    Salafsky, Joshua S.; Eisenthal, Kenneth B.

    2005-10-11

    This invention provides methods of detecting molecules at an interface, which comprise labeling the molecules with a second harmonic-active moiety and detecting the labeled molecules at the interface using a surface selective technique. The invention also provides methods for detecting a molecule in a medium and for determining the orientation of a molecular species within a planar surface using a second harmonic-active moiety and a surface selective technique.

  12. Final Report for proposal "The Interface between Earth System Models and

    Office of Scientific and Technical Information (OSTI)

    Impacts on Society Workshop, Spring 2011 (Technical Report) | SciTech Connect SciTech Connect Search Results Technical Report: Final Report for proposal "The Interface between Earth System Models and Impacts on Society Workshop, Spring 2011 Citation Details In-Document Search Title: Final Report for proposal "The Interface between Earth System Models and Impacts on Society Workshop, Spring 2011 The creation of a new Community Earth System Model (CESM) working group, combining

  13. X-ray micro-diffraction studies of heterogeneous interfaces between

    Office of Scientific and Technical Information (OSTI)

    cementitious materials and geological formations (Journal Article) | SciTech Connect SciTech Connect Search Results Journal Article: X-ray micro-diffraction studies of heterogeneous interfaces between cementitious materials and geological formations Citation Details In-Document Search Title: X-ray micro-diffraction studies of heterogeneous interfaces between cementitious materials and geological formations Authors: Dähn, R. ; Popov, D. ; Schaub, Ph. ; Pattison, P. ; Grolimund, D. ; Mäder,

  14. Graphical user interfaces for McCellan Nuclear Radiation Center (MNRC).

    SciTech Connect (OSTI)

    Brown-VanHoozer, S. A.

    1998-08-27

    McClellan's Nuclear Radiation Center (MNRC) control console is in the process of being replaced due to spurious scrams, outdated software, and obsolete parts. The intent of the new control console is to eliminate the existing problems by installing a UNIX-based computer system with industry-standard interface software and incorporating human factors during all stages of the graphical user interface (GUI) development and control console design.

  15. New Technique Gives a Deeper Look into the Chemistry of Interfaces

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Technique Gives a Deeper Look into the Chemistry of Interfaces Print A new technique developed at the ALS offers sub-nanometer depth resolution of every chemical element to be found at heterogeneous interfaces, such as those in batteries and fuel cells. The technique, Standing-Wave Ambient-Pressure Photoelectron Spectroscopy (SWAPPS), combines standing-wave photoelectron spectroscopy (SWPS) with high-ambient-pressure photoelectron spectroscopy (APPS). The result is a technique that enables

  16. New Technique Gives a Deeper Look into the Chemistry of Interfaces

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Technique Gives a Deeper Look into the Chemistry of Interfaces Print A new technique developed at the ALS offers sub-nanometer depth resolution of every chemical element to be found at heterogeneous interfaces, such as those in batteries and fuel cells. The technique, Standing-Wave Ambient-Pressure Photoelectron Spectroscopy (SWAPPS), combines standing-wave photoelectron spectroscopy (SWPS) with high-ambient-pressure photoelectron spectroscopy (APPS). The result is a technique that enables

  17. New Technique Gives a Deeper Look into the Chemistry of Interfaces

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Technique Gives a Deeper Look into the Chemistry of Interfaces Print A new technique developed at the ALS offers sub-nanometer depth resolution of every chemical element to be found at heterogeneous interfaces, such as those in batteries and fuel cells. The technique, Standing-Wave Ambient-Pressure Photoelectron Spectroscopy (SWAPPS), combines standing-wave photoelectron spectroscopy (SWPS) with high-ambient-pressure photoelectron spectroscopy (APPS). The result is a technique that enables

  18. Final Report for proposal "The Interface between Earth System Models and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Impacts on Society Workshop, Spring 2011 (Technical Report) | SciTech Connect Technical Report: Final Report for proposal "The Interface between Earth System Models and Impacts on Society Workshop, Spring 2011 Citation Details In-Document Search Title: Final Report for proposal "The Interface between Earth System Models and Impacts on Society Workshop, Spring 2011 The creation of a new Community Earth System Model (CESM) working group, combining science-driven research with

  19. Fluid Interface Reactions, Structures and Transport Center (FIRST) | U.S.

    Office of Science (SC) Website

    DOE Office of Science (SC) Fluid Interface Reactions, Structures and Transport Center (FIRST) Energy Frontier Research Centers (EFRCs) EFRCs Home Centers EFRC External Websites Research Science Highlights News & Events Publications History Contact BES Home Centers Fluid Interface Reactions, Structures and Transport Center (FIRST) Print Text Size: A A A FeedbackShare Page FIRST Header Director David Wesolowski Lead Institution Oak Ridge National Laboratory Year Established 2009 Mission To

  20. NREL Controllable Grid Interface for Testing MW-Scale Wind Turbine

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Generators (Poster) (Conference) | SciTech Connect Conference: NREL Controllable Grid Interface for Testing MW-Scale Wind Turbine Generators (Poster) Citation Details In-Document Search Title: NREL Controllable Grid Interface for Testing MW-Scale Wind Turbine Generators (Poster) In order to understand the behavior of wind turbines experiencing grid disturbances, it is necessary to perform a series of tests and accurate transient simulation studies. The latest edition of the IEC 61400-21

  1. Microsoft Word - Improved Interfaces and Decision Support_FINAL_v2.0.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    B5: A Systems View of the Modern Grid IMPROVED INTERFACES AND DECISION SUPPORT Conducted by the National Energy Technology Laboratory for the U.S. Department of Energy Office of Electricity Delivery and Energy Reliability March 2007 Office of Electricity Delivery and Energy Reliability Page B5-1 Modern Grid Systems View: Appendix B5 v2.0 Improved Interfaces and Decision Support TABLE OF CONTENTS Executive Summary........................................................................2 Current

  2. Stability and amorphization of Cu-Nb interfaces during severe plastic

    Office of Scientific and Technical Information (OSTI)

    deformation: Molecular dynamics simulations of simple shear (Journal Article) | SciTech Connect Stability and amorphization of Cu-Nb interfaces during severe plastic deformation: Molecular dynamics simulations of simple shear Citation Details In-Document Search Title: Stability and amorphization of Cu-Nb interfaces during severe plastic deformation: Molecular dynamics simulations of simple shear Authors: Zhou, J ; Averback, R. S. ; Bellon, P. Publication Date: 2014-01-01 OSTI Identifier:

  3. XOP : a graphical user interface for spectral calculations and x-ray optics

    Office of Scientific and Technical Information (OSTI)

    utilities. (Journal Article) | SciTech Connect XOP : a graphical user interface for spectral calculations and x-ray optics utilities. Citation Details In-Document Search Title: XOP : a graphical user interface for spectral calculations and x-ray optics utilities. No abstract prepared. Authors: Dejus, R. J. ; Sanchez del Rio, M. ; XFD Publication Date: 1996-09-01 OSTI Identifier: 15003303 DOE Contract Number: W-31-109-ENG-38 Resource Type: Journal Article Resource Relation: Journal Name:

  4. An Open Port Sampling Interface for Liquid Introduction Atmospheric Pressure Ionization Mass Spectrometry

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Van Berkel, Gary J.; Kertesz, Vilmos

    2015-08-25

    RATIONALE: A simple method to introduce unprocessed samples into a solvent for rapid characterization by liquid introduction atmospheric pressure ionization mass spectrometry has been lacking. The continuous flow, self-cleaning open port sampling interface introduced here fills this void. METHODS: The open port sampling interface used a vertically aligned, co-axial tube arrangement enabling solvent delivery to the sampling end of the device through the tubing annulus and solvent aspiration down the center tube and into the mass spectrometer ionization source via the commercial APCI emitter probe. The solvent delivery rate to the interface was set to exceed the aspiration rate creatingmore » a continuous sampling interface along with a constant, self-cleaning spillover of solvent from the top of the probe. RESULTS: Using the open port sampling interface with positive ion mode APCI and a hybrid quadrupole time of flight mass spectrometer, rapid, direct sampling and analysis possibilities are exemplified with plastics, ballpoint and felt tip ink pens, skin, and vegetable oils. These results demonstrated that the open port sampling interface could be used as a simple, versatile and self-cleaning system to rapidly introduce multiple types of unprocessed, sometimes highly concentrated and complex, samples into a solvent flow stream for subsequent ionization and analysis by mass spectrometry. The basic setup presented here could be incorporated with any self-aspirating liquid introduction ionization source (e.g., ESI, APCI, APPI, ICP, etc.) or any type of atmospheric pressure sampling ready mass spectrometer system. CONCLUSIONS: The open port sampling interface provides a means to introduce and quickly analyze unprocessed solid or liquid samples with liquid introduction atmospheric pressure ionization source without fear of sampling interface or ionization source contamination.« less

  5. Engineering of silicon/HfO{sub 2} interface by variable energy proton irradiation

    SciTech Connect (OSTI)

    Maurya, Savita Maringanti, Radhakrishna; Tribedi, L. C.

    2014-08-18

    Surfaces and interfaces between materials are of paramount importance for various phenomena, such as painting a house, catalyst driven chemical reactions, intricate life processes, corrosion of materials, and fabrication of various semiconductor devices. Interface of silicon or other such substrates with any of the oxides has profound effect on the performance of metal oxide field effect transistors and other similar devices. Since a surface is an abrupt termination of a periodic crystal, surface atoms will have some unsaturated valence electrons and these unsaturated bonds at the semiconductor surface make it chemically highly reactive. Other than annealing, there is not much that can be done to manage these unsaturated bonds. This study was initiated to explore the possibility of repairing these unsaturated dangling bonds that are formed at the silicon and oxide interface during the deposition of oxide layer above silicon, by the use of proton irradiation. In order to improve the interface characteristics, we present a method to modify the interface of silicon and hafnium dioxide after its fabrication, through proton irradiation. Results of the study are promising and probably this method might be used along with other methods such as annealing to modify the interface, after its fabrication.

  6. From coherent to incoherent mismatched interfaces. A generalized continuum formulation of surface stresses

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dingreville, Rémi; Hallil, Abdelmalek; Berbenni, Stéphane

    2014-08-19

    The equilibrium of coherent and incoherent mismatched interfaces is reformulated in the context of continuum mechanics based on the Gibbs dividing surface concept. Two surface stresses are introduced: a coherent surface stress and an incoherent surface stress, as well as a transverse excess strain. Additionally, the coherent surface stress and the transverse excess strain represent the thermodynamic driving forces of stretching the interface while the incoherent surface stress represents the driving force of stretching one crystal while holding the other fixed and thereby altering the structure of the interface. These three quantities fully characterize the elastic behavior of coherent andmore » incoherent interfaces as a function of the in-plane strain, the transverse stress and the mismatch strain. The isotropic case is developed in detail and particular attention is paid to the case of interfacial thermo-elasticity. This exercise provides an insight on the physical significance of the interfacial elastic constants introduced in the formulation and illustrates the obvious coupling between the interface structure and its associated thermodynamics quantities. Finally, an example based on atomistic simulations of Cu/Cu2O interfaces is given to demonstrate the relevance of the generalized interfacial formulation and to emphasize the dependence of the interfacial thermodynamic quantities on the incoherency strain with an actual material system.« less

  7. Symmetry and lattice mismatch induced strain accommodation near and away from correlated perovskite interfaces

    SciTech Connect (OSTI)

    Vailionis, A.; Boschker, H.; Liao, Z.; Smit, J. R. A.; Rijnders, G.; Huijben, M.; Koster, G.

    2014-09-29

    Distinct MnO{sub 6} octahedral distortions near and away from the La{sub 0.67}Sr{sub 0.33}MnO{sub 3}/SrTiO{sub 3}(001) (LSMO/STO) interface are quantified using synchrotron x-ray diffraction and dynamical x-ray diffraction simulations. Three structural regions of stress accommodation throughout the film thickness were resolved: near the LSMO/STO interface, intermediate region farther from the interface, and the main layer away from the interface. The results show that within the first two unit cells stress is accommodated by the suppression of octahedral rotations in the film, leading to the expansion of the c-axis lattice parameter. Farther from the interface film structure acquires octahedral tilts similar to thicker perovskite films under tensile stress, leading to a reduced c-axis parameter. We demonstrate that these regions are related to two different strain coupling mechanisms: symmetry mismatch at the interface and lattice mismatch in the rest of the film. The findings suggest new routes for strain engineering in correlated perovskite heterostructures.

  8. Effect of moisture on the traction-separation behavior of cellulose nanocrystal interfaces

    SciTech Connect (OSTI)

    Sinko, Robert; Keten, Sinan

    2014-12-15

    Interfaces and stress transfer between cellulose nanocrystals (CNCs) dictate the mechanical properties of hierarchical cellulose materials such as neat films and nanocomposites. An interesting question that remains is how the behavior of these interfaces changes due to environmental stimuli, most notably moisture. We present analyses on the traction-separation behavior between I? CNC elementary fibrils, providing insight into how the presence of a single atomic layer of water at these interfaces can drastically change the mechanical behavior. We find that molecular water at the interface between hydrophilic CNC surfaces has a negligible effect on the tensile separation adhesion energy. However, when water cannot hydrogen bond easily to the surface (i.e., hydrophobic surface), it tends to maintain hydrogen bonds with other water molecules across the interface and form a capillary bridge that serves to increase the energy required to separate the crystals. Under shear loading, water lowers the energy barriers to sliding by reducing the atomic friction and consequently the interlayer shear modulus between crystals. Our simulations indicate that these nanoscale interfaces and physical phenomena such as interfacial adhesion, interlayer shear properties, and stick-slip friction behavior can be drastically altered by the presence of water.

  9. Applications Overview

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Applications Overview Advanced Computing and Visualization to Address National Transportation Issues Federal, regional, and state transportation research programs, as well as those from private industry, are moving toward simulation-based design and analysis for improvements in the efficiency, economics, and safety of transportation systems. Large-scale, detailed models of the systems and underlying phenomena in areas such as crashworthiness, aerodynamics, combustion, thermal management, weather

  10. Mathematical Applications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Math Mathematical Applications Mathematica Mathematica is a fully integrated environment for technical computing. It performs symbolic manipulation of equations, integrals, differential equations and almost any mathematical expression. Read More » Matlab MATLAB is a high-performance language for technical computing. It integrates computation, visualization, and programming in an easy-to-use environment where problems and solutions are expressed in familiar mathematical notation. Read More »

  11. Chemistry Applications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemistry Chemistry Applications Gaussian 09 Gaussian 09 is a connected series of programs for performing semi-empirical, density functional theory and ab initio molecular orbital calculations. Read More » GAMESS GAMESS (General Atomic and Molecular Electronic Structure System) is a general ab initio quantum chemistry package. Read More » AMBER AMBER (Assisted Model Building with Energy Refinement) is the collective name for a suite of programs designed to carry out molecular dynamics

  12. Adapting SAFT-? perturbation theory to site-based molecular dynamics simulation. II. Confined fluids and vapor-liquid interfaces

    SciTech Connect (OSTI)

    Ghobadi, Ahmadreza F.; Elliott, J. Richard

    2014-07-14

    In this work, a new classical density functional theory is developed for group-contribution equations of state (EOS). Details of implementation are demonstrated for the recently-developed SAFT-? WCA EOS and selective applications are studied for confined fluids and vapor-liquid interfaces. The acronym WCA (Weeks-Chandler-Andersen) refers to the characterization of the reference part of the third-order thermodynamic perturbation theory applied in formulating the EOS. SAFT-? refers to the particular form of statistical associating fluid theory that is applied to the fused-sphere, heteronuclear, united-atom molecular models of interest. For the monomer term, the modified fundamental measure theory is extended to WCA-spheres. A new chain functional is also introduced for fused and soft heteronuclear chains. The attractive interactions are taken into account by considering the structure of the fluid, thus elevating the theory beyond the mean field approximation. The fluctuations of energy are also included via a non-local third-order perturbation theory. The theory includes resolution of the density profiles of individual groups such as CH{sub 2} and CH{sub 3} and satisfies stoichiometric constraints for the density profiles. New molecular simulations are conducted to demonstrate the accuracy of each Helmholtz free energy contribution in reproducing the microstructure of inhomogeneous systems at the united-atom level of coarse graining. At each stage, comparisons are made to assess where the present theory stands relative to the current state of the art for studying inhomogeneous fluids. Overall, it is shown that the characteristic features of real molecular fluids are captured both qualitatively and quantitatively. For example, the average pore density deviates ?2% from simulation data for attractive pentadecane in a 2-nm slit pore. Another example is the surface tension of ethane/heptane mixture, which deviates ?1% from simulation data while the theory reproduces the excess accumulation of ethane at the interface.

  13. Photo-crystallization in a-Se layer structures: Effects of film-substrate interface-rigidity

    SciTech Connect (OSTI)

    Lindberg, G. P.; Gross, N.; Weinstein, B. A.; O'Loughlin, T.; Mishchenko, A.; Reznik, A.; Abbaszadeh, S.; Karim, K. S.; Belev, G.

    2014-11-21

    Amorphous selenium (a-Se) films deposited on rigid substrates can undergo photo-induced crystallization (PC) even at temperatures (T) well below the glass transition, T{sub g}???313?K. Substrate-generated shear strain is known to promote the PC process. In the present work, we explore the influence of different substrates (Si and glass), and different film-layer-substrate combinations, on the PC in a variety of a-Se films and film-structures. The intermediate layers (indium tin oxide and polyimide) are chosen to promote conductivity and/or to be a buffer against interface strain in structures of interest for digital imaging applications. The PC characteristics in these samples are evaluated and compared using optical microscopy, atomic-force microscopy, Raman mapping, and T-dependent Raman spectroscopy. Both the presence of a soft intermediate layer, and the thermal softening that occurs for T increasing through T{sub g}, inhibit the tendency for the onset of PC. The extensive PC mapping results in the wide range of samples studied here, as well as the suppression of PC near T{sub g} in this array of samples, strongly support the generality of this behavior. As a consequence, one may expect that the stability of a-Se films against PC can be enhanced by decreasing the rigidity of the film-substrate interface. In this regard, advanced film structures that employ flexible substrates, soft intermediate layers, and/or are designed to be operated near T{sub g} should be explored.

  14. The design of the AIE: An object-oriented application development system

    SciTech Connect (OSTI)

    Fuja, R.S.; Widing, M.A.

    1992-02-27

    Three years ago, in response to our challenging development context, the Advanced Modeling and Analysis Section designed and implemented an object-oriented environment -- the Application Interface Engine (AIE). Our prototyping requirements forced existing application development systems beyond their capabilities. Programmers at AMAS and its contractors have developed over twenty applications using AIE. Our initial experience has been very positive. AIE extends an object-oriented programming language with syntax and classes to support applications specification. This extended system improves all stages of the application engineering life cycle, from rapid prototyping to long term maintenance.

  15. Laboratory Applications

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Laboratory Applications What are contaminants normally found in hydrogen from fueling nozzle? JP Hsu SmartChemistry.com Particulates are most common found in Hydrogen - 96% hydrogen fuel contains particulates in 108 Particulate Samplings. Typical Particulate filter - 0.035mg/kg SmartChemistry.com H 2 Station X Particulate Sample Particulate Concentration at 700 Bar: 2.0 mg/kg Particulate filter after sampling, in which 4.001mg particulates are found in 2 kilogram hydrogen SmartChemistry.com H 2

  16. Application Performance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NESAP Application Porting and Performance IXPUG Performance and Debugging Tools Measuring Arithmetic Intensity Training & Tutorials Software Policies User Surveys NERSC Users Group User Announcements Help Staff Blogs Request Repository Mailing List Operations for: Passwords & Off-Hours Status 1-800-66-NERSC, option 1 or 510-486-6821 Account Support https://nim.nersc.gov accounts@nersc.gov 1-800-66-NERSC, option 2 or 510-486-8612 Consulting http://help.nersc.gov consult@nersc.gov

  17. Graphical User Interface for Simplified Neutron Transport Calculations

    SciTech Connect (OSTI)

    Schwarz, Randolph; Carter, Leland L

    2011-07-18

    A number of codes perform simple photon physics calculations. The nuclear industry is lacking in similar tools to perform simplified neutron physics shielding calculations. With the increased importance of performing neutron calculations for homeland security applications and defense nuclear nonproliferation tasks, having an efficient method for performing simple neutron transport calculations becomes increasingly important. Codes such as Monte Carlo N-particle (MCNP) can perform the transport calculations; however, the technical details in setting up, running, and interpreting the required simulations are quite complex and typically go beyond the abilities of most users who need a simple answer to a neutron transport calculation. The work documented in this report resulted in the development of the NucWiz program, which can create an MCNP input file for a set of simple geometries, source, and detector configurations. The user selects source, shield, and tally configurations from a set of pre-defined lists, and the software creates a complete MCNP input file that can be optionally run and the results viewed inside NucWiz.

  18. Friction of different monolayer lubricants in MEMs interfaces.

    SciTech Connect (OSTI)

    Carpick, Robert W. (University of Wisconsin, Madison, WI); Street, Mark D.; Ashurst, William Robert; Corwin, Alex David

    2006-01-01

    This report details results from our last year of work (FY2005) on friction in MEMS as funded by the Campaign 6 program for the Microscale Friction project. We have applied different monolayers to a sensitive MEMS friction tester called the nanotractor. The nanotractor is also a useful actuator that can travel {+-}100 {micro}m in 40 nm steps, and is being considered for several MEMS applications. With this tester, we can find static and dynamic coefficients of friction. We can also quantify deviations from Amontons' and Coulomb's friction laws. Because of the huge surface-to-volume ratio at the microscale, surface properties such as adhesion and friction can dominate device performance, and therefore such deviations are important to quantify and understand. We find that static and dynamic friction depend on the monolayer lubricant applied. The friction data can be modeled with a non-zero adhesion force, which represents a deviation from Amontons' Law. Further, we show preliminary data indicating that the adhesion force depends not only on the monolayer, but also on the normal load applied. Finally, we also observe slip deflections before the transition from static to dynamic friction, and find that they depend on the monolayer.

  19. A New Computational Paradigm in Multiscale Simulations: Application to

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Brain Blood Flow | Argonne Leadership Computing Facility A New Computational Paradigm in Multiscale Simulations: Application to Brain Blood Flow Authors: Grinberg, L., Insley, J.A., Morozov, V., Papka, M.E., Karniadakis, G.E., Fedosov, D., Kumaran, K. Interfacing atomistic-based with continuum-based simulation codes is now required in many multiscale physical and biological systems. We present the computational advances that have enabled the first multiscale simulation on 190,740 processors

  20. CUFR Tree Carbon Calculator | Open Energy Information

    Open Energy Info (EERE)

    Desktop Application Website: www.fs.fed.usccrctopicsurban-forestsctcc Cost: Free Language: English References: CUFR Tree Carbon Calculator1 Overview "The CUFR Tree Carbon...

  1. Retrofit Energy Savings Estimation Model | Open Energy Information

    Open Energy Info (EERE)

    Desktop Application Website: btech.lbl.govtoolsresemresem.htm Cost: Free Language: English References: Retrofit Energy Savings Estimation Model1 Logo: Retrofit...

  2. Non-uniform solute segregation at semi-coherent metal/oxide interfaces

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Choudhury, Samrat; Aguiar, Jeffery A.; Fluss, Michael J.; Hsiung, Luke L.; Misra, Amit; Uberuaga, Blas P.

    2015-08-26

    The properties and performance of metal/oxide nanocomposites are governed by the structure and chemistry of the metal/oxide interfaces. Here we report an integrated theoretical and experimental study examining the role of interfacial structure, particularly misfit dislocations, on solute segregation at a metal/oxide interface. We find that the local oxygen environment, which varies significantly between the misfit dislocations and the coherent terraces, dictates the segregation tendency of solutes to the interface. Depending on the nature of the solute and local oxygen content, segregation to misfit dislocations can change from attraction to repulsion, revealing the complex interplay between chemistry and structure atmore » metal/oxide interfaces. These findings indicate that the solute chemistry at misfit dislocations is controlled by the dislocation density and oxygen content. As a result, fundamental thermodynamic concepts – the Hume-Rothery rules and the Ellingham diagram – qualitatively predict the segregation behavior of solutes to such interfaces, providing design rules for novel interfacial chemistries.« less

  3. Method for reducing or eliminating interface defects in mismatched semiconductor epilayers

    DOE Patents [OSTI]

    Fitzgerald, E.A. Jr.; Ast, D.G.

    1992-10-20

    The present invention and process relates to crystal lattice mismatched semiconductor composite having a first semiconductor layer and a second semiconductor growth layer deposited thereon to form an interface wherein the growth layer can be deposited at thicknesses in excess of the critical thickness, even up to about 10[times] critical thickness. Such composite has an interface which is substantially free of interface defects. For example, the size of the growth areas in a mismatched In[sub 0.05]Ga[sub 0.95]As/(001)GaAs interface was controlled by fabricating 2-[mu]m high pillars of various lateral geometries and lateral dimensions before the epitaxial deposition of 3500 [angstrom] of In[sub 0.05]Ga[sub 0.95]As. The linear dislocation density at the interface was reduced from >5000 dislocations/cm to about zero for 25-[mu]m lateral dimensions and to less than 800 dislocations/cm for lateral dimensions as large as 100 [mu]m. The fabricated pillars control the lateral dimensions of the growth layer and block the glide of misfit dislocations with the resultant decrease in dislocation density. 7 figs.

  4. A human engineering and ergonomic evaluation of the security access panel interface

    SciTech Connect (OSTI)

    Hartney, C.; Banks, W.W.

    1995-02-01

    The purpose of this study was to empirically determine which of several security hardware interface designs produced the highest levels of end-user performance and acceptance. The FESSP Security Alarms and Monitoring Systems program area commissioned the authors study as decision support for upgrading the Argus security system`s primary user interface so that Argus equipment will support the new DOE and DoD security access badges. Twenty-two test subjects were repeatedly tested using six remote access panel (RAP) designs. Lawrence Livermore National Laboratory (LLNL) uses one of these interface designs in its security access booths. Along with the RAP B insert-style reader, the authors tested five prototype RAP variants, each with a different style of swipe badge reader, through which a badge is moved or swiped. The authors asked the untrained test subjects to use each RAP while they described how they thought they should respond so that the system would operate correctly in reading the magnetic strip on a security badge. With each RAP variant, subjects were required to make four successful card reads (swipes) in which the card reader correctly read and logged the transaction. After each trial, a subject completed a 10-item interface acceptance evaluation before approaching the next RAP. After interacting with the RAP interfaces (for a total of the six RAP trials), each subject completed a 7-item overview evaluation that compared and ranked the five experimental RAPs, using the original (RAP B) insert style as a standard.

  5. Method for reducing or eliminating interface defects in mismatched semiconductor epilayers

    DOE Patents [OSTI]

    Fitzgerald, Jr., Eugene A. (Ithaca, NY); Ast, Dieter G. (Ithaca, NY)

    1992-01-01

    The present invention and process relates to crystal lattice mismatched semiconductor composite having a first semiconductor layer and a second semiconductor growth layer deposited thereon to form an interface wherein the growth layer can be deposited at thicknesses in excess of the critical thickness, even up to about 10.times. critical thickness. Such composite has an interface which is substantially free of interface defects. For example, the size of the growth areas in a mismatched In.sub.0.05 Ga.sub.0.95 As/(001)GaAs interface was controlled by fabricating 2-.mu.m high pillars of various lateral geometries and lateral dimensions before the epitaxial deposition of 3500.ANG. of In.sub.0.05 Ga.sub.0.95 As. The linear dislocation density at the interface was reduced from >5000 dislocations/cm to about zero for 25-.mu.m lateral dimensions and to less than 800 dislocations/cm for lateral dimensions as large as 100 .mu.m. The fabricated pillars control the lateral dimensions of the growth layer and block the glide of misfit dislocations with the resultant decrease in dislocation density.

  6. Method for reducing or eliminating interface defects in mismatched semiconductor eiplayers

    DOE Patents [OSTI]

    Fitzgerald, Jr., Eugene A. (Ithaca, NY); Ast, Dieter G. (Ithaca, NY)

    1991-01-01

    The present invention and process relates to crystal lattice mismatched semiconductor composite having a first semiconductor layer and a second semiconductor growth layer deposited thereon to form an interface wherein the growth layer can be deposited at thicknesses in excess of the critical thickness, even up to about 10x critical thickness. Such composite has an interface which is substantially free of interface defects. For example, the size of the growth areas in a mismatched In.sub.0.05 Ga.sub.0.95 As/(001)GaAs interface was controlled by fabricating 2-.mu.m high pillars of various lateral geometries and lateral dimensions before the epitaxial deposition of 3500.ANG. of In.sub.0.05 Ga.sub.0.95 As. The linear dislocation density at the interface was reduced from >5000 dislocations/cm to about zero for 25-.mu.m lateral dimensions and to less than 800 dislocations/cm for lateral dimensions as large as 100 .mu.m. The fabricated pillars control the lateral dimensions of the growth layer and block the glide of misfit dislocations with the resultant decrease in dislocation density.

  7. Richtmyer-Meshkov instability on a low atwood number interface after reshock.

    SciTech Connect (OSTI)

    Weber, Chris

    2009-09-01

    The Richtmyer-Meshkov instability after reshock is investigated in shock tube experiments at the Wisconsin Shock Tube Laboratory using planar laser imaging and a new high speed interface tracking technique. The interface is a 50-50% volume fraction mixture of helium and argon stratified over pure argon. This interface has an Atwood number of 0.29 and near single mode, two-dimensional, standing wave perturbation with an average amplitude of 0.35 cm and a wavelength of 19.4 cm. The incident shock wave of Mach number 1.92 accelerates the interface before it is reshocked by a reflected Mach 1.70 shock wave. The amplitude growth after reshock is reported for variations in this initial amplitude, and several amplitude growth rate models are compared to the experimental growth rate after reshock. A new growth model is introduced, based on a model of circulation deposition calculated from one-dimensional gas dynamics parameters. This model is shown to compare well with the amplitude growth rate after reshock and the circulation over a half-wavelength of the interface after the first shock wave and after reshock.

  8. Molten Salt Test Loop (MSTL) system customer interface document.

    SciTech Connect (OSTI)

    Gill, David Dennis; Kolb, William J.; Briggs, Ronald D.

    2013-09-01

    The National Solar Thermal Test Facility at Sandia National Laboratories has a unique test capability called the Molten Salt Test Loop (MSTL) system. MSTL is a test capability that allows customers and researchers to test components in flowing, molten nitrate salt. The components tested can range from materials samples, to individual components such as flex hoses, ball joints, and valves, up to full solar collecting systems such as central receiver panels, parabolic troughs, or linear Fresnel systems. MSTL provides realistic conditions similar to a portion of a concentrating solar power facility. The facility currently uses 60/40 nitrate %E2%80%9Csolar salt%E2%80%9D and can circulate the salt at pressure up to 40 bar (600psi), temperature to 585%C2%B0C, and flow rate of 44-50kg/s(400-600GPM) depending on temperature. The purpose of this document is to provide a basis for customers to evaluate the applicability to their testing needs, and to provide an outline of expectations for conducting testing on MSTL. The document can serve as the basis for testing agreements including Work for Others (WFO) and Cooperative Research and Development Agreements (CRADA). While this document provides the basis for these agreements and describes some of the requirements for testing using MSTL and on the site at Sandia, the document is not sufficient by itself as a test agreement. The document, however, does provide customers with a uniform set of information to begin the test planning process.

  9. Interface boundary conditions for dynamic magnetization and spin wave dynamics in a ferromagnetic layer with the interface Dzyaloshinskii-Moriya interaction

    SciTech Connect (OSTI)

    Kostylev, M.

    2014-06-21

    In this work, we derive the interface exchange boundary conditions for the classical linear dynamics of magnetization in ferromagnetic layers with the interface Dzyaloshinskii-Moriya interaction (IDMI). We show that IDMI leads to pinning of dynamic magnetization at the interface. An unusual peculiarity of the IDMI-based pinning is that its scales as the spin-wave wave number. We incorporate these boundary conditions into an existing numerical model for the dynamics of the Damon-Eshbach spin wave in ferromagnetic films. IDMI affects the dispersion and the frequency non-reciprocity of the travelling Damon-Eshbach spin wave. For a broad range of film thicknesses L and wave numbers, the results of the numerical simulations of the spin wave dispersion are in a good agreement with a simple analytical expression, which shows that the contribution of IDMI to the dispersion scales as 1/L, similarly to the effect of other types of interfacial anisotropy. Suggestions to experimentalists how to detect the presence of IDMI in a spin wave experiment are given.

  10. Effects of graphene defect on electronic structures of its interface with organic semiconductor

    SciTech Connect (OSTI)

    Yang, Qing-Dan; Wang, Chundong; Mo, Hin-Wai; Lo, Ming-Fai; Yuen, Muk Fung; Ng, Tsz-Wai E-mail: apcslee@cityu.edu.hk; Zhang, Wen-Jun; Lee, Chun-Sing E-mail: apcslee@cityu.edu.hk; Dou, Wei-Dong; Tsang, Sai-Wing

    2015-03-30

    Electronic structures of copper hexadecafluorophthalocyanine (F{sub 16}CuPc)/graphene with different defect density were studied with ultra-violet photoelectron spectroscopy. We showed that the charge transfer interaction and charge flow direction can be interestingly tuned by controlling the defect density of graphene through time-controlled H{sub 2} plasma treatment. By increasing the treatment time of H{sub 2} plasma from 30 s to 5 min, both the interface surface dipole and the electron transporting barrier at F{sub 16}CuPc/graphene interface are significantly reduced from 0.86 to 0.56?eV and 0.71 to 0.29?eV, respectively. These results suggested that graphene's defect control is a simple approach for tuning electronic properties of organic/graphene interfaces.

  11. High resolution interface nanochemistry and structure: Final project report, December 1, 1993--February 28, 1997

    SciTech Connect (OSTI)

    Carpenter, R.W.; Lin, S.H.

    1997-02-27

    Work includes studies of interface and grain boundary chemistry and structure in silicon nitride matrix/silicon carbide whisker composites, and in monolithic silicon nitride and silicon carbide synthesized by several different methods. Off-stoichiometric, impurity, and sintering aid elemental distributions in these materials (and other ceramics) have been of great interest because of expected effects on properties but these distributions have proven very difficult to measure because the spatial resolution required is high. The authors made a number of these measurements for the first time, using techniques and instrumentation developed here. Interfaces between metals and SiC are the basis for important metal matrix composites and contacts for high temperature SiC-based solid state electronic devices. The authors have investigated ultrapure interfaces between Ti, Hf, Ti-Hf alloys, Pt, and Co and Si-terminated (0001) 6H SiC single crystals for the first time.

  12. Estimation of the curvature of an interface from a digital 2D image

    SciTech Connect (OSTI)

    Frette, O.I.; Virnovsky, G.; Silin, D.

    2008-10-15

    In this paper a method for the estimation of the curvature along a condensed phase interface is presented. In a previous paper in this journal [1] a mathematical relationship was established between this curvature and a template disk located at a given point along the interface. The portion of the computed area of the template disk covering one of the phases was shown to be asymptotically linear in the mean curvature. Instead of utilizing this relationship, an empirical approach was proposed in [1] in order to compensate for discrete uncertainties. In this paper, we show that this linear relationship can be used directly along the interface avoiding the empirical approach proposed earlier. Modifications of the algorithm are however needed, and with good data smoothing techniques, our method provides good quantitative curvature estimates.

  13. Hetero-epitaxial EuO interfaces studied by analytic electron microscopy

    SciTech Connect (OSTI)

    Mundy, Julia A.; Hodash, Daniel; Melville, Alexander; Held, Rainer; Mairoser, Thomas; Schmehl, Andreas; Muller, David A.; Kourkoutis, Lena F.; Schlom, Darrell G.

    2014-03-03

    With nearly complete spin polarization, the ferromagnetic semiconductor europium monoxide could enable next-generation spintronic devices by providing efficient ohmic spin injection into silicon. Spin injection is greatly affected by the quality of the interface between the injector and silicon. Here, we use atomic-resolution scanning transmission electron microscopy in conjunction with electron energy loss spectroscopy to directly image and chemically characterize a series of EuO|Si and EuO|YAlO{sub 3} interfaces fabricated using different growth conditions. We identify the presence of europium silicides and regions of disorder at the EuO|Si interfaces, imperfections that could significantly reduce spin injection efficiencies via spin-flip scattering.

  14. Thermal interface conductance across a graphene/hexagonal boron nitride heterojunction

    SciTech Connect (OSTI)

    Chen, Chun-Chung; Li, Zhen; Cronin, Stephen B. [Department of Electrical Engineering, University of Southern California, Los Angeles, California 90089 (United States); Shi, Li [Department of Mechanical Engineering and Texas Materials Institute, University of Texas at Austin, Austin, Texas 78712 (United States)

    2014-02-24

    We measure thermal transport across a graphene/hexagonal boron nitride (h-BN) interface by electrically heating the graphene and measuring the temperature difference between the graphene and BN using Raman spectroscopy. Because the temperature of the graphene and BN are measured optically, this approach enables nanometer resolution in the cross-plane direction. A temperature drop of 60?K can be achieved across this junction at high electrical powers (14 mW). Based on the temperature difference and the applied power data, we determine the thermal interface conductance of this junction to be 7.4??10{sup 6}?Wm{sup ?2}K{sup ?1}, which is below the 10{sup 7}10{sup 8}?Wm{sup ?2}K{sup ?1} values previously reported for graphene/SiO{sub 2} interface.

  15. Investigation on the Interface Morphologies of Explosive Welding of Inconel 625 to Steel A516 Plates

    SciTech Connect (OSTI)

    Mousavi, S. A. A. Akbari; Zareie, H. R. [School of Metallurgy and Materials Engineering, University College of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of)

    2011-01-17

    The purpose of this study is to produce composite plates by explosive cladding process. This is a process in which the controlled energy of explosives is used to create a metallic bond between two similar or dissimilar materials. The welding conditions were tailored through parallel geometry route with different operational parameters. In this investigation, a two-pronged study was adopted to establish the conditions required for producing successful solid state welding: (a) Analytical calculations to determine the weldability domain or welding window; (b) Metallurgical investigations of explosive welding experiments carried out under different explosive ratios to produce both wavy and straight interfaces. The analytical calculations confirm the experimental results. Optical microscopy studies show that a transition from a smooth to wavy interface occurs with an increase in explosive ratio. SEM studies show that the interface was outlined by characteristic sharp transition between two materials.

  16. BacNet and Analog/Digital Interfaces of the Building Controls Virtual Testbed

    SciTech Connect (OSTI)

    Nouidui, Thierry Stephane; Wetter, Michael; Li, Zhengwei; Pang, Xiufeng; Bhattachayra, Prajesh; Haves, Philip

    2011-11-01

    This paper gives an overview of recent developments in the Building Controls Virtual Test Bed (BCVTB), a framework for co-simulation and hardware-in-the- loop. First, a general overview of the BCVTB is presented. Second, we describe the BACnet interface, a link which has been implemented to couple BACnet devices to the BCVTB. We present a case study where the interface was used to couple a whole building simulation program to a building control system to assess in real-time the performance of a real building. Third, we present the ADInterfaceMCC, an analog/digital interface that allows a USB-based analog/digital converter to be linked to the BCVTB. In a case study, we show how the link was used to couple the analog/digital converter to a building simulation model for local loop control.

  17. Computational study of ion distributions at the air/liquid methanol interface

    SciTech Connect (OSTI)

    Sun, Xiuquan; Wick, Collin D.; Dang, Liem X.

    2011-06-16

    Molecular dynamic simulations with polarizable potentials were performed to systematically investigate the distribution of NaCl, NaBr, NaI, and SrCl2 at the air/liquid methanol interface. The density profiles indicated that there is no substantial enhancement of anions at the interface for the NaX systems in contrast to what was observed at the air/aqueous interface. The surfactant-like shape of the larger more polarizable halide anions is compensated by the surfactant nature of methanol itself. As a result, methanol hydroxy groups strongly interacted with one side of polarizable anions, in which their induced dipole points, and methanol methyl groups were more likely to be found near the positive pole of anion induced dipoles. Furthermore, salts were found to disrupt the surface structure of methanol, reducing the observed enhancement of methyl groups at the outer edge of the air/liquid methanol interface. With the additional of salts to methanol, the computed surface potentials increased, which is in contrast to what is observed in corresponding aqueous systems, where the surface potential decreases with the addition of salts. Both of these trends have been indirectly observed with experiments. This was found to be due to the propensity of anions for the air/water interface that is not present at the air/liquid methanol interface. This work was supported by the US Department of Energy Basic Energy Sciences' Chemical Sciences, Geosciences & Biosciences Division. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

  18. Blocking effect of crystalglass interface in lanthanum doped barium strontium titanate glassceramics

    SciTech Connect (OSTI)

    Wang, Xiangrong; Zhang, Yong; Baturin, Ivan; Liang, Tongxiang

    2013-10-15

    Graphical abstract: The blocking effect of the crystalglass interface on the carrier transport behavior in the lanthanum doped barium strontium titanate glassceramics: preparation and characterization. - Highlights: La{sub 2}O{sub 3} addition promotes the crystallization of the major crystalline phase. The Z? and M? peaks exist a significant mismatch for 0.5 mol% La{sub 2}O{sub 3} addition. The Z? and M? peaks separate obviously for 1.0 mol% La{sub 2}O{sub 3} addition. Crystallite impedance decreases while crystalglass interface impedance increases. La{sub 2}O{sub 3} addition increases blocking factor of the crystalglass interface. - Abstract: The microstructures and dielectric properties in La{sub 2}O{sub 3}-doped barium strontium titanate glassceramics have been investigated by scanning electron microscopy (SEM) and impedance spectroscopy. SEM analysis indicated that La{sub 2}O{sub 3} additive decreases the average crystallite size. Impedance spectroscopy revealed that the positions of Z? and M? peaks are close for undoped samples. When La{sub 2}O{sub 3} concentration is 0.5 mol%, the Z? and M? peaks show a significant mismatch. Furthermore, these peaks separate obviously for 1.0 mol% La{sub 2}O{sub 3} addition. With increasing La{sub 2}O{sub 3} concentration, the contribution of the crystallite impedance becomes smaller, while the contribution of the crystalglass interface impedance becomes larger. More interestingly, it was found that La{sub 2}O{sub 3} additive increases blocking factor of the crystalglass interface in the temperature range of 250450 C. This may be attributed to a decrease of activation energy of the crystallite and an increase of the crystalglass interface area.

  19. Reptation dynamics of a polymer melt near an attractive solid interface

    SciTech Connect (OSTI)

    Zheng, X.; Sauer, B.B.; Van Alsten, J.G.; Schwarz, S.A.; Rafailovich, M.H.; Sokolov, J.; Rubinstein, M. E.I. DuPont de Nemours and Company, Inc., Experimental Station, Wilmington, Delaware 19880 Physics Department, Queens College, Flushing, New York 11367 Imaging Research and Advanced Development, Eastman Kodak Company, Rochester, New York 14650 )

    1995-01-16

    The tracer diffusion coefficients [ital D][sup *] of polystyrene (PS) chains near PS melt-solid interfaces have been measured by secondary ion mass spectrometry. The [ital D][sup *] for poly(2--vinylpyridine) (PVP) and oxide (SiO) covered silicon surfaces were smaller by, respectively, [similar to]3 and [similar to]10[sup 2] than for diffusion near the vacuum interface. [ital D][sup *] scaled with degree of polymerization [ital N] as [ital N][sup [minus][proportional to

  20. Oxidation/Reduction Reactions at the Metal Contact-TlBr Interface: An X-ray

    Office of Scientific and Technical Information (OSTI)

    Photoelectron Spectroscopy Study (Conference) | SciTech Connect Conference: Oxidation/Reduction Reactions at the Metal Contact-TlBr Interface: An X-ray Photoelectron Spectroscopy Study Citation Details In-Document Search Title: Oxidation/Reduction Reactions at the Metal Contact-TlBr Interface: An X-ray Photoelectron Spectroscopy Study Authors: Nelson, A J ; Swanberg, E L ; Voss, L F ; Graff, R T ; Conway, A M ; Nikolic, R J ; Payne, S A ; Kim, H ; Cirignano, L ; Shah, K Publication Date:

  1. Probing the Silica/Polysiloxane Interface: A Solid State NMR Investigation

    Office of Scientific and Technical Information (OSTI)

    of y-Irradiated Composite Materials (Journal Article) | SciTech Connect Probing the Silica/Polysiloxane Interface: A Solid State NMR Investigation of y-Irradiated Composite Materials Citation Details In-Document Search Title: Probing the Silica/Polysiloxane Interface: A Solid State NMR Investigation of y-Irradiated Composite Materials Authors: Mayer, B P ; Chinn, S C ; Maxwell, R S ; Reimer, J A Publication Date: 2011-04-06 OSTI Identifier: 1213656 Report Number(s): LLNL-JRNL-479454 DOE

  2. Interface Ferroelectric Transition near the Gap-Opening Temperature in a

    Office of Scientific and Technical Information (OSTI)

    Single-Unit-Cell FeSe Film Grown on Nb-Doped SrTiO 3 Substrate (Journal Article) | SciTech Connect Interface Ferroelectric Transition near the Gap-Opening Temperature in a Single-Unit-Cell FeSe Film Grown on Nb-Doped SrTiO 3 Substrate Citation Details In-Document Search Title: Interface Ferroelectric Transition near the Gap-Opening Temperature in a Single-Unit-Cell FeSe Film Grown on Nb-Doped SrTiO 3 Substrate Authors: Cui, Y.-T. ; Moore, R. G. ; Zhang, A.-M. ; Tian, Y. ; Lee, J. J. ;

  3. Intermixing at the absorber-buffer layer interface in thin-film solar

    Office of Scientific and Technical Information (OSTI)

    cells: The electronic effects of point defects in Cu(In,Ga)(Se,S){sub 2} and Cu{sub 2}ZnSn(Se,S){sub 4} devices (Journal Article) | SciTech Connect Intermixing at the absorber-buffer layer interface in thin-film solar cells: The electronic effects of point defects in Cu(In,Ga)(Se,S){sub 2} and Cu{sub 2}ZnSn(Se,S){sub 4} devices Citation Details In-Document Search Title: Intermixing at the absorber-buffer layer interface in thin-film solar cells: The electronic effects of point defects in

  4. Lithium diffusion at Si-C interfaces in silicon-graphene composites

    SciTech Connect (OSTI)

    Odbadrakh, Khorgolkhuu [Joint Institute for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830 (United States); McNutt, N. W. [Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37996 (United States); Nicholson, D. M. [Computational Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830 (United States); Department of Physics, University of North Carolina, Asheville, North Carolina 28804 (United States); Rios, O. [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830 (United States); Keffer, D. J. [Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996 (United States)

    2014-08-04

    Models of intercalated Li and its diffusion in Si-Graphene interfaces are investigated using density functional theory. Results suggest that the presence of interfaces alters the energetics of Li binding and diffusion significantly compared to bare Si or Graphene surfaces. Our results show that cavities along reconstructed Si surface provide diffusion paths for Li. Diffusion barriers calculated along these cavities are significantly lower than penetration barriers to bulk Si. Interaction with Si surface results in graphene defects, creating Li diffusion paths that are confined along the cavities but have still lower barrier than in bulk Si.

  5. Zero interface tensions at the deconfining phase transition for a matrix

    Office of Scientific and Technical Information (OSTI)

    model of a SU(∞) gauge theory (Journal Article) | SciTech Connect Zero interface tensions at the deconfining phase transition for a matrix model of a SU(∞) gauge theory Citation Details In-Document Search Title: Zero interface tensions at the deconfining phase transition for a matrix model of a SU(∞) gauge theory Authors: Lin, Shu ; Pisarski, Robert D. ; Skokov, Vladimir V. Publication Date: 2013-05-02 OSTI Identifier: 1102196 Type: Publisher's Accepted Manuscript Journal Name:

  6. A comparative study of interface reconstruction methods for multi-material ALE simulations

    SciTech Connect (OSTI)

    Kucharik, Milan; Garimalla, Rao; Schofield, Samuel; Shashkov, Mikhail

    2009-01-01

    In this paper we compare the performance of different methods for reconstructing interfaces in multi-material compressible flow simulations. The methods compared are a material-order-dependent Volume-of-Fluid (VOF) method, a material-order-independent VOF method based on power diagram partitioning of cells and the Moment-of-Fluid method (MOF). We demonstrate that the MOF method provides the most accurate tracking of interfaces, followed by the VOF method with the right material ordering. The material-order-independent VOF method performs some-what worse than the above two while the solutions with VOF using the wrong material order are considerably worse.

  7. Formation of Metallic Copper Nanoparticles at the Soil-Root Interface

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Formation of Metallic Copper Nanoparticles at the Soil-Root Interface Formation of Metallic Copper Nanoparticles at the Soil-Root Interface Print Wednesday, 26 March 2008 00:00 The first commercial fungicide-the "Bordeaux mixture" of copper sulfate and lime-was used to fight downy mildew in French vineyards. The fungicide worked by catalyzing the production of free radicals that damage proteins and enzymes involved in cycling copper between Cu(I) and Cu(II) oxidation states in the

  8. Zero interface tensions at the deconfining phase transition for a matrix

    Office of Scientific and Technical Information (OSTI)

    model of a SU(∞) gauge theory (Journal Article) | DOE PAGES Zero interface tensions at the deconfining phase transition for a matrix model of a SU(∞) gauge theory « Prev Next » Title: Zero interface tensions at the deconfining phase transition for a matrix model of a SU(∞) gauge theory Authors: Lin, Shu ; Pisarski, Robert D. ; Skokov, Vladimir V. Publication Date: 2013-05-02 OSTI Identifier: 1102196 Type: Publisher's Accepted Manuscript Journal Name: Physical Review. D, Particles,

  9. T-631: Cisco XR 12000 Series Shared Port Adapters Interface Processor

    Energy Savers [EERE]

    Vulnerability | Department of Energy 31: Cisco XR 12000 Series Shared Port Adapters Interface Processor Vulnerability T-631: Cisco XR 12000 Series Shared Port Adapters Interface Processor Vulnerability May 26, 2011 - 3:35pm Addthis PROBLEM: A vulnerability was reported in Cisco IOS XR 12000. A remote user can cause denial of service conditions. PLATFORM: This vulnerability affects any device that is running Cisco IOS XR Software Releases 3.9.0, 3.9.1, 3.9.2, 4.0.0, 4.0.1, 4.0.2, or 4.1.0 and

  10. FY 06 Status of System Interface and Support Systems R&D Areas

    SciTech Connect (OSTI)

    S.R. Sherman

    2006-09-01

    This document provides a summary of research and development activities performed in the Systems Interface and Support Systems area of the DOE Nuclear Hydrogen Initiative during FY 2006. Project cost and performance data obtained from the PICS system are presented and analyzed. Brief summaries of accomplishments and references are provided. A mapping of System Interface and Support Systems technical issues versus the work performed is updated and presented. Lastly, near-term research plans are given, and a description of the new UNLV high temperature heat exchanger program structure is provided.

  11. Conformable actively multiplexed high-density surface electrode array for brain interfacing

    DOE Patents [OSTI]

    Rogers, John; Kim, Dae-Hyeong; Litt, Brian; Viventi, Jonathan

    2015-01-13

    Provided are methods and devices for interfacing with brain tissue, specifically for monitoring and/or actuation of spatio-temporal electrical waveforms. The device is conformable having a high electrode density and high spatial and temporal resolution. A conformable substrate supports a conformable electronic circuit and a barrier layer. Electrodes are positioned to provide electrical contact with a brain tissue. A controller monitors or actuates the electrodes, thereby interfacing with the brain tissue. In an aspect, methods are provided to monitor or actuate spatio-temporal electrical waveform over large brain surface areas by any of the devices disclosed herein.

  12. Interface and Electrode Engineering for Next-Generation Organic Photovoltaic Cells: Final Technical Report, March 2005 - August 2008

    SciTech Connect (OSTI)

    Mason, T. O.; Chang, R. P. H.; Freeman, A. J.; Marks, T. J.; Poeppelmeier, K. R.

    2008-11-01

    The objective of this project was to enable next-generation, efficient, easily manufacturable, and durable organic photovoltaics through interface and electrode engineering.

  13. VISMASHUP: streamlining the creation of custom visualization applications

    SciTech Connect (OSTI)

    Ahrens, James P; Santos, Emanuele; Lins, Lauro; Freire, Juliana; Silva, Cl'audio T

    2010-01-01

    Visualization is essential for understanding the increasing volumes of digital data. However, the process required to create insightful visualizations is involved and time consuming. Although several visualization tools are available, including tools with sophisticated visual interfaces, they are out of reach for users who have little or no knowledge of visualization techniques and/or who do not have programming expertise. In this paper, we propose VISMASHUP, a new framework for streamlining the creation of customized visualization applications. Because these applications can be customized for very specific tasks, they can hide much of the complexity in a visualization specification and make it easier for users to explore visualizations by manipulating a small set of parameters. We describe the framework and how it supports the various tasks a designer needs to carry out to develop an application, from mining and exploring a set of visualization specifications (pipelines), to the creation of simplified views of the pipelines, and the automatic generation of the application and its interface. We also describe the implementation of the system and demonstrate its use in two real application scenarios.

  14. Final Technical Report for the Energy Frontier Research Center Understanding Charge Separation and Transfer at Interfaces in Energy Materials (EFRC:CST)

    SciTech Connect (OSTI)

    Vanden Bout, David A.

    2015-09-14

    Our EFRC was founded with the vision of creating a broadly collaborative and synergistic program that would lead to major breakthroughs in the molecular-level understanding of the critical interfacial charge separation and charge transfer (CST) processes that underpin the function of candidate materials for organic photovoltaic (OPV) and electrical-energy-storage (EES) applications. Research in these energy contexts shares an imposing challenge: How can we understand charge separation and transfer mechanisms in the presence of immense materials complexity that spans multiple length scales? To address this challenge, our 50-member Center undertook a total of 28 coordinated research projects aimed at unraveling the CST mechanisms that occur at interfaces in these nanostructured materials. This rigorous multi-year study of CST interfaces has greatly illuminated our understanding of early-timescale processes (e.g., exciton generation and dissociation dynamics at OPV heterojunctions; control of Li+-ion charging kinetics by surface chemistry) occurring in the immediate vicinity of interfaces. Program outcomes included: training of 72 graduate student and postdoctoral energy researchers at 5 institutions and spanning 7 academic disciplines in science and engineering; publication of 94 peer-reviewed journal articles; and dissemination of research outcomes via 340 conference, poster and other presentations. Major scientific outcomes included: implementation of a hierarchical strategy for understanding the electronic communication mechanisms and ultimate fate of charge carriers in bulk heterojunction OPV materials; systematic investigation of ion-coupled electron transfer processes in model Li-ion battery electrode/electrolyte systems; and the development and implementation of 14 unique technologies and instrumentation capabilities to aid in probing sub-ensemble charge separation and transfer mechanisms.

  15. Photo-modulated thin film transistor based on dynamic charge transfer within quantum-dots-InGaZnO interface

    SciTech Connect (OSTI)

    Liu, Xiang; Yang, Xiaoxia; Liu, Mingju; Tao, Zhi; Wei, Lei Li, Chi Zhang, Xiaobing; Wang, Baoping; Dai, Qing; Nathan, Arokia

    2014-03-17

    The temporal development of next-generation photo-induced transistor across semiconductor quantum dots and Zn-related oxide thin film is reported in this paper. Through the dynamic charge transfer in the interface between these two key components, the responsibility of photocurrent can be amplified for scales of times (?10{sup 4}?A/W 450?nm) by the electron injection from excited quantum dots to InGaZnO thin film. And this photo-transistor has a broader waveband (from ultraviolet to visible light) optical sensitivity compared with other Zn-related oxide photoelectric device. Moreover, persistent photoconductivity effect can be diminished in visible waveband which lead to a significant improvement in the device's relaxation time from visible illuminated to dark state due to the ultrafast quenching of quantum dots. With other inherent properties such as integrated circuit compatible, low off-state current and high external quantum efficiency resolution, it has a great potential in the photoelectric device application, such as photodetector, phototransistor, and sensor array.

  16. Synthesis of metal silicide at metal/silicon oxide interface by electronic excitation

    SciTech Connect (OSTI)

    Lee, J.-G.; Nagase, T.; Yasuda, H.; Mori, H.

    2015-05-21

    The synthesis of metal silicide at the metal/silicon oxide interface by electronic excitation was investigated using transmission electron microscopy. A platinum silicide, ?-Pt{sub 2}Si, was successfully formed at the platinum/silicon oxide interface under 25200?keV electron irradiation. This is of interest since any platinum silicide was not formed at the platinum/silicon oxide interface by simple thermal annealing under no-electron-irradiation conditions. From the electron energy dependence of the cross section for the initiation of the silicide formation, it is clarified that the silicide formation under electron irradiation was not due to a knock-on atom-displacement process, but a process induced by electronic excitation. It is suggested that a mechanism related to the Knotek and Feibelman mechanism may play an important role in silicide formation within the solid. Similar silicide formation was also observed at the palladium/silicon oxide and nickel/silicon oxide interfaces, indicating a wide generality of the silicide formation by electronic excitation.

  17. Short-Term Metal/Organic Interface Stability Investigations of Organic Photovoltaic Devices: Preprint

    SciTech Connect (OSTI)

    Reese, M. O.; Morfa, A. J.; White, M. S.; Kopidakis, N.; Shaheen, S. E.; Rumbles, G.; Ginley, D. S.

    2008-05-01

    This paper addresses one source of degradation in OPV devices: the metal/organic interface. The basic approach was to study the completed device stability vs. the stability of the organic film itself as shown in subsequent devices fabricated from the films.

  18. Laser vaporization/ionization interface for coupling microscale separation techniques with mass spectrometry

    DOE Patents [OSTI]

    Yeung, E.S.; Chang, Y.C.

    1999-06-29

    The present invention provides a laser-induced vaporization and ionization interface for directly coupling microscale separation processes to a mass spectrometer. Vaporization and ionization of the separated analytes are facilitated by the addition of a light-absorbing component to the separation buffer or solvent. 8 figs.

  19. Apparatus and method for characterizing thin film and interfaces using an optical heat generator and detector

    DOE Patents [OSTI]

    Maris, Humphrey J (Barrington, RI); Stoner, Robert J (Duxbury, MA)

    1998-01-01

    An optical heat generation and detection system generates a first non-destructive pulsed beam of electromagnetic radiation that is directed upon a sample containing at least one interface between similar or dissimilar materials. The first pulsed beam of electromagnetic radiation, a pump beam (21a), produces a non-uniform temperature change within the sample. A second non-destructive pulsed beam of electromagnetic radiation, a probe beam (21b), is also directed upon the sample. Physical and chemical properties of the materials, and of the interface, are measured by observing changes in a transient optical response of the sample to the probe beam, as revealed by a time dependence of changes in, by example, beam intensity, direction, or state of polarization. The system has increased sensitivity to interfacial properties including defects, contaminants, chemical reactions and delaminations, as compared to conventional non-destructive, non-contact techniques. One feature of this invention is a determination of a Kapitza resistance at the interface, and the correlation of the determined Kapitza resistance with a characteristic of the interface, such as roughness, delamination, the presence of contaminants, etc.

  20. Performance and Reliability of Bonded Interfaces for High-Temperature Packaging; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    DeVoto, Douglas

    2015-06-10

    This is a technical review of the DOE VTO EDT project EDT063, Performance and Reliability of Bonded Interfaces for High-Temperature Packaging. A procedure for analyzing the reliability of sintered-silver through experimental thermal cycling and crack propagation modeling has been outlined and results have been presented.

  1. Atomic and electronic structure of the ferroelectric BaTiO{sub 3}/Ge(001) interface

    SciTech Connect (OSTI)

    Fredrickson, Kurt D.; Ponath, Patrick; Posadas, Agham B.; Demkov, Alexander A.; McCartney, Martha R.; Smith, David J.; Aoki, Toshihiro

    2014-06-16

    In this study, we demonstrate the epitaxial growth of BaTiO{sub 3} on Ge(001) by molecular beam epitaxy using a thin Zintl template buffer layer. A combination of density functional theory, atomic-resolution electron microscopy and in situ photoemission spectroscopy is used to investigate the electronic properties and atomic structure of the BaTiO{sub 3}/Ge interface. Aberration-corrected scanning transmission electron micrographs reveal that the Ge(001) 2??1 surface reconstruction remains intact during the subsequent BaTiO{sub 3} growth, thereby enabling a choice to be made between several theoretically predicted interface structures. The measured valence band offset of 2.7?eV matches well with the theoretical value of 2.5?eV based on the model structure for an in-plane-polarized interface. The agreement between the calculated and measured band offsets, which are highly sensitive to the detailed atomic arrangement, indicates that the most likely BaTiO{sub 3}/Ge(001) interface structure has been identified.

  2. Bandgap properties of diamond structure photonic crystal heterostructures with inclined and curved interfaces

    SciTech Connect (OSTI)

    Lei, Haitao; Li, Yong; Wang, Hong, E-mail: hwang@mail.xjtu.edu.cn [Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education and International Center for Dielectric Research, Xi'an Jiaotong University, Xi'an 710049 (China)

    2014-06-14

    The 3D (dimensional) diamond structure photonic crystal heterostructures with different lattice constants were prepared using rapid prototyping and gel casting with alumina. In this paper, heterostructures with inclined and curved interfaces were designed and its bandgap properties were studied. The normalized resonant intensity of electromagnetic wave in heterostructure with inclined and curved interface is stronger than that in the ordinary heterostructure without modified interface. The influence of curved interface on transmission properties of electromagnetic wave was investigated with the radius of curvature ranging from 17?mm to 37?mm at 5?mm interval. The results show that two resonant modes appear in the photonic band gap, being similar to the band gap characteristics of the photonic crystals with two defects inside. With the increasing of the radius of curvature, the resonant mode shift to higher frequency. In the structure with a radius of curvature of 32?mm, a guiding band appears in the photonic band gap. Further increase in the radius of curvature, the guiding band will split into two resonant modes again and the two resonant modes shift to lower frequencies.

  3. Apparatus and method for characterizing thin film and interfaces using an optical heat generator and detector

    DOE Patents [OSTI]

    Maris, H.J.; Stoner, R.J.

    1998-05-05

    An optical heat generation and detection system generates a first non-destructive pulsed beam of electromagnetic radiation that is directed upon a sample containing at least one interface between similar or dissimilar materials. The first pulsed beam of electromagnetic radiation, a pump beam, produces a non-uniform temperature change within the sample. A second non-destructive pulsed beam of electromagnetic radiation, a probe beam, is also directed upon the sample. Physical and chemical properties of the materials, and of the interface, are measured by observing changes in a transient optical response of the sample to the probe beam, as revealed by a time dependence of changes in, by example, beam intensity, direction, or state of polarization. The system has increased sensitivity to interfacial properties including defects, contaminants, chemical reactions and delaminations, as compared to conventional non-destructive, non-contact techniques. One feature of this invention is a determination of a Kapitza resistance at the interface, and the correlation of the determined Kapitza resistance with a characteristic of the interface, such as roughness, delamination, the presence of contaminants, etc. 31 figs.

  4. Embedded cluster metal-polymeric micro interface and process for producing the same

    DOE Patents [OSTI]

    Menezes, Marlon E. (Santa Clara, CA); Birnbaum, Howard K. (Champaign, IL); Robertson, Ian M. (Champaign, IL)

    2002-01-29

    A micro interface between a polymeric layer and a metal layer includes isolated clusters of metal partially embedded in the polymeric layer. The exposed portion of the clusters is smaller than embedded portions, so that a cross section, taken parallel to the interface, of an exposed portion of an individual cluster is smaller than a cross section, taken parallel to the interface, of an embedded portion of the individual cluster. At least half, but not all of the height of a preferred spherical cluster is embedded. The metal layer is completed by a continuous layer of metal bonded to the exposed portions of the discontinuous clusters. The micro interface is formed by heating a polymeric layer to a temperature, near its glass transition temperature, sufficient to allow penetration of the layer by metal clusters, after isolated clusters have been deposited on the layer at lower temperatures. The layer is recooled after embedding, and a continuous metal layer is deposited upon the polymeric layer to bond with the discontinuous metal clusters.

  5. Laser vaporization/ionization interface for coupling microscale separation techniques with mass spectrometry

    DOE Patents [OSTI]

    Yeung, Edward S. (Ames, IA); Chang, Yu-chen (Taichung Hsien, TW)

    1999-06-29

    The present invention provides a laser-induced vaporization and ionization interface for directly coupling microscale separation processes to a mass spectrometer. Vaporization and ionization of the separated analytes are facilitated by the addition of a light-absorbing component to the separation buffer or solvent.

  6. Charge transfer effects of ions at the liquid water/vapor interface

    SciTech Connect (OSTI)

    Soniat, Marielle; Rick, Steven W.

    2014-05-14

    Charge transfer (CT), the movement of small amounts of electron density between non-bonded pairs, has been suggested as a driving force for a variety of physical processes. Herein, we examine the effect of CT on ion adsorption to the water liquid-vapor interface. Using a CT force field for molecular dynamics, we construct a potential of mean force (PMF) for Na{sup +}, K{sup +}, Cl{sup ?}, and I{sup ?}. The PMFs were produced with respect to an average interface and an instantaneous interface. An analysis of the PMF relative to the instantaneous surface reveals that the area in which the anions experience a free energy minimum is quite narrow, and the cations feel a steeply repulsive free energy near the interface. CT is seen to have only minor effects on the overall free energy profiles. However, the long-ranged effects of ions are highlighted by the CT model. Due to CT, the water molecules at the surface become charged, even when the ion is over 15 away from the surface.

  7. STIMULUS: End-System Network Interface Controller for 100 Gb/s Wide Area Networks

    SciTech Connect (OSTI)

    Zarkesh-Ha, Payman

    2014-09-12

    The main goal of this research grant is to develop a system-level solution leveraging novel technologies that enable network communications at 100 Gb/s or beyond. University of New Mexico in collaboration with Acadia Optronics LLC has been working on this project to develop the 100 Gb/s Network Interface Controller (NIC) under this Department of Energy (DOE) grant.

  8. Optically-initiated silicon carbide high voltage switch with contoured-profile electrode interfaces

    DOE Patents [OSTI]

    Sullivan, James S.; Hawkins, Steven A.

    2012-09-04

    An improved photoconductive switch having a SiC or other wide band gap substrate material with opposing contoured profile cavities which have a contoured profile selected from one of Rogowski, Bruce, Chang, Harrison, and Ernst profiles, and two electrodes with matching contoured-profile convex interface surfaces.

  9. Uranium(IV) Interaction with Aqueous/Solid Interfaces Studied by Nonlinear Optics

    SciTech Connect (OSTI)

    Geiger, Franz

    2015-03-27

    This is the Final Technical Report for "Uranium(IV) Interaction with Aqueous/Solid Interfaces Studied by Nonlinear Optics", by Franz M. Geiger, PI, from Northwestern University, IL, USA, Grant Number SC0004101 and/or DE-PS02-ER09-07.

  10. Robust Extraction Interface for Coupling Droplet-Based and Continuous Flow Microfluidics

    SciTech Connect (OSTI)

    Sun, Xuefei; Tang, Keqi; Smith, Richard D.; Kelly, Ryan T.

    2012-03-07

    Reliable and highly efficient extraction of droplets from oil to aqueous phase is key for downstream coupling with chemical separations and nonoptical detection methods such as amperometry and mass spectrometry. This paper presents an improved interface providing robust extraction for droplet-based poly(dimethylsiloxane) (PDMS) microfluidic devices. The extraction interface consists of an array of cylindrical posts with narrow apertures in between. The aqueous flow channel into which droplets coalesced was simply and selectively modified to be hydrophilic, while the continuous oil phase flow channel that contained encapsulated aqueous droplets retained a hydrophobic surface. The different surfaces on both sides of the extraction region form a highly stable liquid interface between the two immiscible phases, allowing rapid droplet transfer to the aqueous stream. Entire droplets could be completely extracted within broad ranges of aqueous and oil flow rates (0 - 1 and 0.1 - 1 uL/min, respectively). After extraction, the droplet contents could be transported electrophoretically or by pressure-driven flow to a monolithically integrated emitter for nano-electrospray ionization mass spectrometry (nanoESI-MS) analysis. This interface should be amenable to the separation and identification of droplet contents and on-line monitoring of in-droplet reactions.

  11. Design of dynamic load-balancing tools for parallel applications

    SciTech Connect (OSTI)

    Devine, K.D.; Hendrickson, B.A.; Boman, E.G.; St. John, M.; Vaughan, C.T.

    2000-01-03

    The design of general-purpose dynamic load-balancing tools for parallel applications is more challenging than the design of static partitioning tools. Both algorithmic and software engineering issues arise. The authors have addressed many of these issues in the design of the Zoltan dynamic load-balancing library. Zoltan has an object-oriented interface that makes it easy to use and provides separation between the application and the load-balancing algorithms. It contains a suite of dynamic load-balancing algorithms, including both geometric and graph-based algorithms. Its design makes it valuable both as a partitioning tool for a variety of applications and as a research test-bed for new algorithmic development. In this paper, the authors describe Zoltan's design and demonstrate its use in an unstructured-mesh finite element application.

  12. Control of normal and abnormal bipolar resistive switching by interface junction on In/Nb:SrTiO{sub 3} interface

    SciTech Connect (OSTI)

    Sun, J.; Jia, C. H.; Li, G. Q.; Zhang, W. F.

    2012-09-24

    The resistive switching behaviors of indium (In)/Nb:SrTiO{sub 3} (NSTO) with different metal/semiconductor contacts are investigated. The In electrodes with the Schottky contacts are fabricated on NSTO surface using direct current reactive magnetron sputtering, and the fresh In is directly pressed to form the Ohmic contact. The device with one Schottky barrier displays a normal bipolar resistive switching (BRS) behavior, while the device with two Schottky barriers shows an abnormal BRS behavior. The results demonstrate that the injection and trapping or detrapping of carriers near the interface between the metal electrode and semiconductor are closely related to the resistive switching performance.

  13. X-ray photoelectron spectroscopy and ultraviolet photoelectron spectroscopy investigation of Al-related dipole at the HfO{sub 2}/Si interface

    SciTech Connect (OSTI)

    Zhu, L. Q.; Barrett, N.; Jegou, P.

    2009-01-15

    The presence of an ultrathin oxide layer at the high-k/SiO{sub 2} interface may result in an interfacial dipole related to the specific high-k dielectric used for the gate stacks. 1 nm HfO{sub 2}/x nmAl{sub 2}O{sub 3}/SiO{sub 2}/Si stacks with different x values (x=0, 0.4, 0.8, 1.2) have been prepared by atomic layer deposition. Using photoelectron spectroscopy, an Al-related interfacial dipole in the HfO{sub 2}/Al{sub 2}O{sub 3}/SiO{sub 2} gate stack has been identified. X-ray photoelectron spectroscopy analysis shows that the dipole is correlated with the formation of an interfacial Al-silicate. The dipole is located at the Al-silicate interface between Al{sub 2}O{sub 3} and SiO{sub 2}, and its strength increases with the increase in Al{sub 2}O{sub 3} thickness because of Al silicate growth. Such Al-related interfacial dipole should have potential applications in future positive metal-oxide-semiconductor devices.

  14. Tuning exchange bias in Fe/γ-Fe{sub 2}O{sub 3} core-shell nanoparticles: Impacts of interface and surface spins

    SciTech Connect (OSTI)

    Khurshid, Hafsa E-mail: phanm@usf.edu Phan, Manh-Huong E-mail: phanm@usf.edu Mukherjee, Pritish; Srikanth, Hariharan E-mail: phanm@usf.edu

    2014-02-17

    A comparative study has been performed of the exchange bias (EB) effect in Fe/γ-Fe{sub 2}O{sub 3} core-shell nanoparticles with the same thickness of the γ-Fe{sub 2}O{sub 3} shell (∼2 nm) and the diameter of the Fe core varying from 4 nm to 11 nm. Transmission electron microscopy (TEM) and high-resolution TEM confirmed the high quality of the core-shell nanostructures. A systematic analysis of magnetization versus magnetic field measurements under zero-field-cooled and field-cooled regimes using the Meiklejohn-Bean model and deconvoluting superparamagnetic and paramagnetic contribution to the total magnetic moment Langevin function shows that there exists a critical particle size (∼10 nm), above which the spins at the interface between Fe and γ-Fe{sub 2}O{sub 3} contribute primarily to the EB, but below which the surface spin effect is dominant. Our finding yields deeper insight into the collective contributions of interface and surface spins to the EB in core-shell nanoparticle systems, knowledge of which is the key to manipulating EB in magnetic nanostructures for spintronics applications.

  15. Atom-probe tomographic study of interfaces of Cu{sub 2}ZnSnS{sub 4} photovoltaic cells

    SciTech Connect (OSTI)

    Tajima, S. Asahi, R.; Itoh, T.; Hasegawa, M.; Ohishi, K.; Isheim, D.; Seidman, D. N.

    2014-09-01

    The heterophase interfaces between the CdS buffer layer and the Cu{sub 2}ZnSnS{sub 4} (CZTS) absorption layers are one of the main factors affecting photovoltaic performance of CZTS cells. We have studied the compositional distributions at heterophase interfaces in CZTS cells using three-dimensional atom-probe tomography. The results demonstrate: (a) diffusion of Cd into the CZTS layer; (b) segregation of Zn at the CdS/CZTS interface; and (c) a change of oxygen and hydrogen concentrations in the CdS layer depending on the heat treatment. Annealing at 573?K after deposition of CdS improves the photovoltaic properties of CZTS cells probably because of the formation of a heterophase epitaxial junction at the CdS/CZTS interface. Conversely, segregation of Zn at the CdS/CZTS interface after annealing at a higher temperature deteriorates the photovoltaic properties.

  16. Contact Interface Verification for DYNA3D Scenario 2: Multi-Surface Contact

    SciTech Connect (OSTI)

    McMichael, L D

    2006-05-10

    A suite of test problems has been developed to examine contact behavior within the nonlinear, three-dimensional, explicit finite element analysis (FEA) code DYNA3D (Lin, 2005). The test problems use multiple interfaces and a combination of enforcement methods to assess the basic functionality of the contact algorithms. The results from the DYNA3D analyses are compared to closed form solutions to verify the contact behavior. This work was performed as part of the Verification and Validation efforts of LLNL W Program within the NNSA's Advanced Simulation and Computing (ASC) Program. DYNA3D models the transient dynamic response of solids and structures including the interactions between disjoint bodies (parts). A wide variety of contact surfaces are available to represent the diverse interactions possible during an analysis, including relative motion (sliding), separation and gap closure (voids), and fixed relative position (tied). The problem geometry may be defined using a combination of element formulations, including one-dimensional beam and truss elements, two-dimensional shell elements, and three-dimensional solid elements. Consequently, it is necessary to consider various element interactions during contact. This report and associated test problems examine the scenario where multiple bodies interact with each other via multiple interfaces. The test problems focus on whether any ordering issues exist in the contact logic by using a combination of interface types, contact enforcement options (i.e., penalty, Lagrange, and kinematic), and element interactions within each problem. The influence of rigid materials on interface behavior is also examined. The companion report (McMichael, 2006) and associated test problems address the basic contact scenario where one contact surface exists between two disjoint bodies. The test problems are analyzed using version 5.2 (compiled on 12/22/2005) of DYNA3D. The analytical results are used to form baseline solutions for subsequent regression testing. In section 2, the test problems are presented, and the static solution is developed for two idealized systems. Section 3 describes the finite element representation of the generic problem, including the interface combinations considered. The verification criteria and expected results are presented next in section 4. Section 5 discusses the numerical results obtained from each test problem. Finally, section 6 summarizes the observed interface behavior.

  17. Endpoint-based parallel data processing with non-blocking collective instructions in a parallel active messaging interface of a parallel computer

    DOE Patents [OSTI]

    Archer, Charles J; Blocksome, Michael A; Cernohous, Bob R; Ratterman, Joseph D; Smith, Brian E

    2014-11-18

    Methods, apparatuses, and computer program products for endpoint-based parallel data processing with non-blocking collective instructions in a parallel active messaging interface (`PAMI`) of a parallel computer are provided. Embodiments include establishing by a parallel application a data communications geometry, the geometry specifying a set of endpoints that are used in collective operations of the PAMI, including associating with the geometry a list of collective algorithms valid for use with the endpoints of the geometry. Embodiments also include registering in each endpoint in the geometry a dispatch callback function for a collective operation and executing without blocking, through a single one of the endpoints in the geometry, an instruction for the collective operation.

  18. U.S. Department Of Energy Advanced Small Modular Reactor R&D Program: Instrumentation, Controls, and Human-Machine Interface (ICHMI) Pathway

    SciTech Connect (OSTI)

    Holcomb, David Eugene; Wood, Richard Thomas

    2013-01-01

    Instrumentation, controls, and human-machine interfaces (ICHMI) are essential enabling technologies that strongly influence nuclear power plant performance and operational costs. The nuclear power industry is currently engaged in a transition from traditional analog-based instrumentation, controls, and human-machine interface systems to implementations employing digital technologies. This transition has primarily occurred in an ad hoc fashion through individual system upgrades at existing plants and has been constrained by licenseability concerns. Although the recent progress in constructing new plants has spurred design of more fully digital plant-wide ICHMI systems, the experience base in the nuclear power application domain is limited. Additionally, development of advanced reactor concepts, such as Generation IV designs and small modular reactors, introduces different plant conditions (e.g., higher temperatures, different coolants, etc.) and unique plant configurations (e.g., multiunit plants with shared systems, balance of plant architectures with reconfigurable co-generation options) that increase the need for enhanced ICHMI capabilities to fully achieve industry goals related to economic competitiveness, safety and reliability, sustainability, and proliferation resistance and physical protection. As a result, significant challenges remain to be addressed to enable the nuclear power industry to complete the transition to safe and comprehensive use of modern ICHMI technology. The U.S. Department of Energy (DOE) has recognized that ICHMI research, development, and demonstration (RD&D) is needed to resolve the technical challenges that may compromise the effective and efficient utilization of modern ICHMI technology and consequently inhibit realization of the benefits offered by expanded utilization of nuclear power. Consequently, several DOE programs have substantial ICHMI RD&D elements within their respective research portfolios. This paper describes current ICHMI research in support of advanced small modular reactors. The objectives that can be achieved through execution of the defined RD&D are to provide optimal technical solutions to critical ICHMI issues, resolve technology gaps arising from the unique measurement and control characteristics of advanced reactor concepts, provide demonstration of needed technologies and methodologies in the nuclear power application domain, mature emerging technologies to facilitate commercialization, and establish necessary technical evidence and application experience to enable timely and predictable licensing. 1 Introduction Instrumentation, controls, and human-machine interfaces are essential enabling technologies that strongly influence nuclear power plant performance and operational costs. The nuclear power industry is currently engaged in a transition from traditional analog-based instrumentation, controls, and human-machine interface (ICHMI) systems to implementations employing digital technologies. This transition has primarily occurred in an ad hoc fashion through individual system upgrades at existing plants and has been constrained by licenseability concerns. Although the recent progress in constructing new plants has spurred design of more fully digital plant-wide ICHMI systems, the experience base in the nuclear power application domain is limited. Additionally, development of advanced reactor concepts, such as Generation IV designs and small modular reactors, introduces different plant conditions (e.g., higher temperatures, different coolants, etc.) and unique plant configurations (e.g., multiunit plants with shared systems, balance of plant architectures with reconfigurable co-generation options) that increase the need for enhanced ICHMI capabilities to fully achieve industry goals related to economic competitiveness, safety and reliability, sustainability, and proliferation resistance and physical protection. As a result, significant challenges remain to be addressed to enable the nuclear power industry to complete the transition to safe and comprehensive use of m

  19. Buried Interface

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Examples are giant magnetoresistance structures, spin tunnel junctions, as well as "spintronics" devices based on spin injection. A specific interfacial problem which is of ...

  20. Versioned distributed arrays for resilience in scientific applications: Global view resilience

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chien, A.; Balaji, P.; Beckman, P.; Dun, N.; Fang, A.; Fujita, H.; Iskra, K.; Rubenstein, Z.; Zheng, Z.; Schreiber, R.; et al

    2015-06-01

    Exascale studies project reliability challenges for future high-performance computing (HPC) systems. We propose the Global View Resilience (GVR) system, a library that enables applications to add resilience in a portable, application-controlled fashion using versioned distributed arrays. We describe GVR’s interfaces to distributed arrays, versioning, and cross-layer error recovery. Using several large applications (OpenMC, the preconditioned conjugate gradient solver PCG, ddcMD, and Chombo), we evaluate the programmer effort to add resilience. The required changes are small (<2% LOC), localized, and machine-independent, requiring no software architecture changes. We also measure the overhead of adding GVR versioning and show that generally overheads <2%more » are achieved. We conclude that GVR’s interfaces and implementation are flexible and portable and create a gentle-slope path to tolerate growing error rates in future systems.« less