Powered by Deep Web Technologies
Note: This page contains sample records for the topic "interest rates disposable" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Historical Interest Rates  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Current and Historical Interest Rates Current and Historical Interest Rates The table lists interest rates, from the project's inception through the present, for all projects with repayment supervised by the CRSP MC. The latest available interest rate is used for all future interest rate calculations. The Amistad-Falcon, Collbran, Provo River, and Rio Grande Projects are all assigned the average daily "Yield Rate" calculated by the U.S. Treasury, on an annual basis, for Treasury bonds having terms of 15 years or more remaining to maturity. The calculated yield rate is rounded to the nearest one-eighth of one percent. The yield rate is based upon the bond's interest rate, as well as its market value. The Colorado River Storage Project and its participating projects, Dolores and Seedskadee, are assigned the average daily "Coupon Rate," annualized for the same U.S. Treasury bonds used in "Yield Rate" calculations. The coupon rate is the interest rate that the bond carries upon its face.

2

Energy Efficiency Interest Rate Reduction Program  

Broader source: Energy.gov [DOE]

The Alaska Housing Finance Corporation (AHFC) offers interest rate reductions to home buyers purchasing new and existing homes with 5 Star and 5 Star Plus energy ratings. All homes constructed on...

3

Average Interest Rate for Treasury Securities | Data.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Average Interest Rate for Treasury Securities Average Interest Rate for Treasury Securities Consumer Data Apps Challenges Resources About Blogs Let's Talk Feedback Consumer You are here Data.gov » Communities » Consumer » Data Average Interest Rate for Treasury Securities Dataset Summary Description This dataset shows the average interest rates for U.S Treasury securities for the most recent month compared with the same month of the previous year. The data is broken down by the various marketable and non-marketable securities. The summary page for the data provides links for monthly reports from 2001 through the current year. Average Interest Rates are calculated on the total unmatured interest-bearing debt. The average interest rates for total marketable, total non-marketable and total interest-bearing debt do not include the U.S. Treasury Inflation-Protected Securities.

4

April 2004. The Interest Rate, Learning, and Inventory Investment  

E-Print Network [OSTI]

confirm our predictions and show a highly significant long-run relationship between inventoriesApril 2004. The Interest Rate, Learning, and Inventory Investment Louis J. Maccini Bartholomew@ccs.carleton.ca [JEL Classification: E22. Keywords: Inventories, Interest Rates, Learning] We thank Heidi Portuondo

Niebur, Ernst

5

Term Structure of Interest Rates with Consumption Commitments  

E-Print Network [OSTI]

Term Structure of Interest Rates with Consumption Commitments J. C. Duan Risk Management Institute Abstract We study the term structure of interest rates in the presence of consumption commitments using and develop computation methods. Examples are ana- lyzed to illustrate the effect of consumption commitments

Zhu, Qiji Jim

6

Testing the shape of EMU term structure of interest rates  

Science Journals Connector (OSTI)

The creation of EMU raises the question whether the common monetary policy has the same impact in all member countries. We analyse the convergence of interest rates in four major EMU countries from 1999 to 2007. We suggest to test the convergence of the interest rates with the full term structure of interest rates with both univariate and multivariate inference. The results show that the curvature component is statistically equal in all years and the level and slope components are statistically equal only in the early years of the EMU if we consider the four countries. If we consider Germany, France and Spain, the level and slope factors are statistically equal in all the sample period. In conclusion, a unique monetary policy affects mainly in the curvature of the term structure but it is not enough to ensure a unique yield curve in the Euro area.

Elisabet Ruiz-Dotras; Catalina Bolance-Losilla; Hortensia Fontanals-Albiol

2010-01-01T23:59:59.000Z

7

Low-Interest Rates Entice Philadelphians to Reach for the Stars  

Broader source: Energy.gov [DOE]

For many Philadelphia area residents, getting a loan for home energy efficiency improvements is a no brainer when it's offered at a 0.99% fixed interest rate. EnergyWorks in Philadelphia is using...

8

Review Paper. Interestrate termstructure pricing models: a review  

Science Journals Connector (OSTI)

...complex trader will enter a transaction with...Interest-rate term-structure pricing...evolution of the term structure of volatilities...More generally, the search for greater and greater...products. In broad terms, however, some...and issuers in search of `advantageous...

2004-01-01T23:59:59.000Z

9

Interest Rate Swap Policy Approved by the Colorado School of Mines Board of Trustees,  

E-Print Network [OSTI]

forth a policy governing the use by the School of interest rate swap transactions for the purpose or planned debt. By using swaps in a prudent manner, the School can take advantage of market opportunities instruments, and the School shall not enter into swap transactions for speculative purposes. This policy shall

10

Hedging interest rate risk with strip and rollover, and duration hedging strategies  

E-Print Network [OSTI]

quarters' (8 - 20) futures contracts requirements. In each subsequent quarter, the entire hedge will be rolled over less the number of contracts which were necessary for the previous periods hedge. A summary of TBFC transactions is presented in Table 1... interest rate risk without placing any additional financial stress on their borrowers. Three hedging strategies are developed for use with T-Bill futures contracts and are evaluated on their effectiveness in reducing the variance between the expected...

Thompson, William J.

1990-01-01T23:59:59.000Z

11

Energy Disposal and Thermal Rate Constants for the OH + HBr and OH + DBr Reactions: Quasiclassical Trajectory Calculations on an Accurate Potential Energy Surface  

Science Journals Connector (OSTI)

Energy Disposal and Thermal Rate Constants for the OH + HBr and OH + DBr Reactions: Quasiclassical Trajectory Calculations on an Accurate Potential Energy Surface ... We report reaction cross sections, energy disposal, and rate constants for the OH + HBr ? Br + H2O and OH + DBr ? Br + HDO reactions from quasiclassical trajectory calculations using an ab initio potential energy surface [A. ...

Antonio Gustavo Sampaio de Oliveira-Filho; Fernando Rei Ornellas; Joel M Bowman

2014-11-03T23:59:59.000Z

12

Does legal service advertising serve the public's interest? A study of lawyer ratings and advertising practices  

Science Journals Connector (OSTI)

This article takes objective data on the quality of lawyers from two rating services and cross-tabulates the data with whether or not the lawyer advertises. The tested hypothesis that there is no ... a lawyer and...

Gene W. Murdock; John White

1985-06-01T23:59:59.000Z

13

Septage Disposal, Licensure (Montana)  

Broader source: Energy.gov [DOE]

This statute describes licensing requirements for septage disposal, and addresses land disposal and processing facilities.

14

Waste disposal package  

DOE Patents [OSTI]

This is a claim for a waste disposal package including an inner or primary canister for containing hazardous and/or radioactive wastes. The primary canister is encapsulated by an outer or secondary barrier formed of a porous ceramic material to control ingress of water to the canister and the release rate of wastes upon breach on the canister. 4 figs.

Smith, M.J.

1985-06-19T23:59:59.000Z

15

22 - Radioactive waste disposal  

Science Journals Connector (OSTI)

Publisher Summary This chapter discusses the disposal of radioactive wastes that arise from a great variety of sources, including the nuclear fuel cycle, beneficial uses of isotopes, and radiation by institutions. Spent fuel contains uranium, plutonium, and highly radioactive fission products. The spent fuel is accumulating, awaiting the development of a high-level waste repository. It is anticipated that a multi-barrier system involving packaging and geologic media will provide protection of the public over the centuries. The favored method of disposal is in a mined cavity deep underground. In some countries, reprocessing the fuel assemblies permits recycling of materials and disposal of smaller volumes of solidified waste. Transportation of wastes is done by casks and containers designed to withstand severe accidents. Low-level wastes come from research and medical procedures and from a variety of activation and fission sources at a reactor site. They generally can be given near-surface burial. Isotopes of special interest are cobalt-60 and cesium-137. Transuranic wastes are being disposed of in the Waste Isolation Pilot Plant. Decommissioning of reactors in the future will contribute a great deal of low-level radioactive waste.

Raymond L. Murray

2001-01-01T23:59:59.000Z

16

20 - Nuclear Waste Disposal  

Science Journals Connector (OSTI)

Disposal options are outlined, including geological and near-surface disposal. Alternative disposal options are briefly considered. The multi-barrier system is described, including the natural geological barrier and the engineered barrier system. The roles of both EBS and NGB are discussed. Worldwide disposal experience is reviewed and acceptance criteria for disposal are analysed.

M.I. Ojovan; W.E. Lee

2014-01-01T23:59:59.000Z

17

Converter waste disposal study  

SciTech Connect (OSTI)

The importance of waste management and disposal issues to the converting and print industries is demonstrated by the high response rate to a survey of US and Canadian converters and printers. The 30-item questionnaire measured the impact of reuse, recycling, source reduction, incineration, and landfilling on incoming raw-material packaging, process scrap, and waste inks, coatings, and adhesives. The results indicate that significant amounts of incoming packaging materials are reused in-house or through supplier take-back programs. However, there is very little reuse of excess raw materials and process scrap, suggesting the need for greater source reduction within these facilities as the regulatory climate becomes increasingly restrictive.

Schultz, R.B. (RBS Technologies, Inc., Skokie, IL (United States))

1993-07-01T23:59:59.000Z

18

Chapter 22 - Radioactive Waste Disposal  

Science Journals Connector (OSTI)

Publisher Summary This chapter discusses safe disposal of radioactive waste in order to provide safety to workers and the public. Radioactive wastes arise from a great variety of sources, including the nuclear fuel cycle, and from beneficial uses of isotopes and radiation by institutions. Spent fuel contains uranium, plutonium, and highly radioactive fission products. In the United States spent fuel is accumulating, awaiting the development of a high-level waste repository. A multi-barrier system involving packaging and geological media will provide protection of the public over the centuries the waste must be isolated. The favored method of disposal is in a mined cavity deep underground. In other countries, reprocessing the fuel assemblies permits recycling of materials and disposal of smaller volumes of solidified waste. Transportation of wastes is by casks and containers designed to withstand severe accidents. Low-level wastes (LLWs) come from research and medical procedures and from a variety of activation and fission sources at a reactor site. They generally can be given near-surface burial. Isotopes of special interest are cobalt-60 and cesium-137. Transuranic wastes are being disposed of in the Waste Isolation Pilot Plant. Establishment of regional disposal sites by interstate compacts has generally been unsuccessful in the United States. Decontamination of defense sites will be long and costly. Decommissioning of reactors in the future will contribute a great deal of low-level radioactive waste.

Raymond L. Murray

2009-01-01T23:59:59.000Z

19

Waste Disposal | Department of Energy  

Office of Environmental Management (EM)

Disposal Waste Disposal Trucks transport debris from Oak Ridges cleanup sites to the onsite CERCLA disposal area, the Environmental Management Waste Management Facility....

20

RATES  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Planning & Projects Planning & Projects Power Marketing Rates You are here: SN Home page > Power Marketing > RATES Rates and Repayment Services Rates Current Rates Power Revenue Requirement Worksheet (FY 2014) (Oct 2013 - Sep 2014) (PDF - 30K) PRR Notification Letter (Sep 27, 2013) (PDF - 959K) FY 2012 FP% True-Up Calculations(PDF - 387K) Variable Resource Scheduling Charge FY12-FY16 (October 1, 2012) PRR Forecast FY14-FY17 (May 23, 2013) (PDF - 100K) Forecasted Transmission Rates (May 2013) (PDF - 164K) Past Rates 2013 2012 2011 2010 2009 Historical CVP Transmission Rates (April 2013) (PDF - 287K) Rate Schedules Power - CV-F13 - CPP-2 Transmission - CV-T3 - CV-NWT5 - PACI-T3 - COTP-T3 - CV-TPT7 - CV-UUP1 Ancillary - CV-RFS4 - CV-SPR4 - CV-SUR4 - CV-EID4 - CV-GID1 Federal Register Notices - CVP, COTP and PACI

Note: This page contains sample records for the topic "interest rates disposable" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

RATES  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Marketing > RATES Marketing > RATES RATES Current Rates Past Rates 2006 2007 2008 2009 2010 2011 2012 Rates Schedules Power CV-F13 CPP-2 Transmissions CV-T3 CV-NWT5 PACI-T3 COTP-T3 CV-TPT7 CV-UUP1 Ancillary CV-RFS4 CV-SPR4 CV-SUR4 CV-EID4 CV-GID1 Future and Other Rates SNR Variable Resource Scheduling Charge FY12-FY16 (October 1, 2012) SNR Rates Process Calendar (PDF - 171K) Procedures Informal Process Transmission Action Items List (PDF - 144K) Power Action Item List updated on 4-27-10 (PDF - 155K) Power Action Item List (Quick links to relevant documents) Formal Process Rates Brochure (01/11/2011) (PDF - 900K) Appendix A - Federal Register Notice (01/03/2011) (PDF - 8000K) Appendix B - Central Valley Project Power Repayment Study (PDF - 22,322K) Appendix C - Development of the CVP Cost of Service Study (PDF - 2038K)

22

slc_disposal.cdr  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Disposal Disposal Site This fact sheet provides information about the Uranium Mill Tailings Radiation Control Act of 1978 Title I disposal site at Salt Lake City, Utah. This site is managed by the U.S. Department of Energy Office of Legacy Management. Salt Lake City, Utah, Disposal Site ENERGY Office of Legacy Management U.S. DEPARTMENT OF Site Description and History Regulatory Setting The Salt Lake Disposal Site is located approximately 81 miles west of Salt Lake City and 2.5 miles south of Interstate 80 on the eastern edge of the Great Salt Lake Desert. The disposal cell is adjacent to Energy Solutions, Inc., a commercial low-level radioactive materials disposal site. The surrounding area is sparsely populated, and the nearest residences are at least 15 miles from the site. Vegetation in the area is sparse and typical of semiarid low shrubland. The disposal cell encapsulates about

23

Waste Disposal (Illinois)  

Broader source: Energy.gov [DOE]

This article lays an outline of waste disposal regulations, permits and fees, hazardous waste management and underground storage tank requirements.

24

RATES  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

RATES RATES Rates Document Library SNR Rates Process Calendar (PDF - 171K) Procedures Informal Process Transmission Action Items List (PDF - 144K) Power Action Item List updated on 4-27-10 (PDF - 155K) Power Action Item List (Quick links to relevant documents) Formal Process Rates Brochure (01/11/2011) (PDF - 900K) Appendix A - Federal Register Notice (01/03/2011) (PDF - 8000K) Appendix B - Central Valley Project Power Repayment Study (PDF - 22,322K) Appendix C - Development of the CVP Cost of Service Study (PDF - 2038K) Appendix D - Western Transmission System Facilities Map (PDF - 274K) Appendix E - Estimated FY12 FP and BR Customer (PDF - 1144K) Appendix F - Forecasted Replacements and Additions FY11 - FY16 (PDF - 491K) Appendix G - Definitions (PDF - 1758K) Appendix H - Acronyms (PDF - 720K)

25

Interest Real and Nominal Project Evaluation Methods  

E-Print Network [OSTI]

in the value of money measured by its purchasing power. ­ Weighted average price escalation rate for various And Effective Rates · If m = # of compounding periods per year and m > 1, then the effective interest rate, ie*m; and · the effective interest rate ie is given by (1 ) 1m ei i #12;03-2 The effective interest rate increases

Boisvert, Jeff

26

Tritium waste disposal technology in the US  

SciTech Connect (OSTI)

Tritium waste disposal methods in the US range from disposal of low specific activity waste along with other low-level waste in shallow land burial facilities, to disposal of kilocurie amounts in specially designed triple containers in 65' deep augered holes located in an aird region of the US. Total estimated curies disposed of are 500,000 in commercial burial sites and 10 million curies in defense related sites. At three disposal sites in humid areas, tritium has migrated into the ground water, and at one arid site tritium vapor has been detected emerging from the soil above the disposal area. Leaching tests on tritium containing waste show that tritium in the form of HTO leaches readily from most waste forms, but that leaching rates of tritiated water into polymer impregnated concrete are reduced by as much as a factor of ten. Tests on improved tritium containment are ongoing. Disposal costs for tritium waste are 7 to 10 dollars per cubic foot for shallow land burial of low specific activity tritium waste, and 10 to 20 dollars per cubic foot for disposal of high specific activity waste. The cost of packaging the high specific activity waste is 150 to 300 dollars per cubic foot. 18 references.

Albenesius, E.L.; Towler, O.A.

1983-01-01T23:59:59.000Z

27

Material Disposal Areas  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Material Disposal Areas Material Disposal Areas Material Disposal Areas Material Disposal Areas, also known as MDAs, are sites where material was disposed of below the ground surface in excavated pits, trenches, or shafts. Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email Material Disposal Areas at LANL The following are descriptions and status updates of each MDA at LANL. To view a current fact sheet on the MDAs, click on LA-UR-13-25837 (pdf). MDA A MDA A is a Hazard Category 2 nuclear facility comprised of a 1.25-acre, fenced, and radiologically controlled area situated on the eastern end of Delta Prime Mesa. Delta Prime Mesa is bounded by Delta Prime Canyon to the north and Los Alamos Canyon to the south.

28

Disposal Information - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Email Page | Print Print Page |Text Increase Font Size Decrease Font Size Disposal of Radioactive Waste at Hanford The Hanford Site operates lined, RCRA Subtitle C land...

29

Optimizing High Level Waste Disposal  

SciTech Connect (OSTI)

If society is ever to reap the potential benefits of nuclear energy, technologists must close the fuel-cycle completely. A closed cycle equates to a continued supply of fuel and safe reactors, but also reliable and comprehensive closure of waste issues. High level waste (HLW) disposal in borosilicate glass (BSG) is based on 1970s era evaluations. This host matrix is very adaptable to sequestering a wide variety of radionuclides found in raffinates from spent fuel reprocessing. However, it is now known that the current system is far from optimal for disposal of the diverse HLW streams, and proven alternatives are available to reduce costs by billions of dollars. The basis for HLW disposal should be reassessed to consider extensive waste form and process technology research and development efforts, which have been conducted by the United States Department of Energy (USDOE), international agencies and the private sector. Matching the waste form to the waste chemistry and using currently available technology could increase the waste content in waste forms to 50% or more and double processing rates. Optimization of the HLW disposal system would accelerate HLW disposition and increase repository capacity. This does not necessarily require developing new waste forms, the emphasis should be on qualifying existing matrices to demonstrate protection equal to or better than the baseline glass performance. Also, this proposed effort does not necessarily require developing new technology concepts. The emphasis is on demonstrating existing technology that is clearly better (reliability, productivity, cost) than current technology, and justifying its use in future facilities or retrofitted facilities. Higher waste processing and disposal efficiency can be realized by performing the engineering analyses and trade-studies necessary to select the most efficient methods for processing the full spectrum of wastes across the nuclear complex. This paper will describe technologies being evaluated at Idaho National Laboratory and the facilities weve designed to evaluate options and support optimization.

Dirk Gombert

2005-09-01T23:59:59.000Z

30

Disposal of boiler ash  

SciTech Connect (OSTI)

As more boilers are converted from oil to solid fuels such as coal, the quantity of ash requiring disposal will increase dramatically. The factors associated with the development of land disposal systems for ash landfills are presented, including ash characterization, site selection procedures, design parameters, and costs.

Atwell, J.S.

1981-08-01T23:59:59.000Z

31

Municipal Sludge disposal economics  

Science Journals Connector (OSTI)

Municipal Sludge disposal economics ... Atmospheric emissions of elements on particles from the Parkway sewage-sludge incinerator ... Atmospheric emissions of elements on particles from the Parkway sewage-sludge incinerator ...

Jerry Jones; David Bomberger, Jr.; F Lewis; Joel Jacknow

1977-01-01T23:59:59.000Z

32

Hazardous Waste Disposal Sites (Iowa)  

Broader source: Energy.gov [DOE]

These sections contain information on fees and monitoring relevant to operators of hazardous waste disposal sites.

33

Disposal of Rocky Flats residues as waste  

SciTech Connect (OSTI)

Work is underway at the Rocky Flats Plant to evaluate alternatives for the removal of a large inventory of plutonium-contaminated residues from the plant. One alternative under consideration is to package the residues as transuranic wastes for ultimate shipment to the Waste Isolation Pilot Plant. Current waste acceptance criteria and transportation regulations require that approximately 1000 cubic yards of residues be repackaged to produce over 20,000 cubic yards of WIPP certified waste. The major regulatory drivers leading to this increase in waste volume are the fissile gram equivalent, surface radiation dose rate, and thermal power limits. In the interest of waste minimization, analyses have been conducted to determine, for each residue type, the controlling criterion leading to the volume increase, the impact of relaxing that criterion on subsequent waste volume, and the means by which rules changes may be implemented. The results of this study have identified the most appropriate changes to be proposed in regulatory requirements in order to minimize the costs of disposing of Rocky Flats residues as transuranic wastes.

Dustin, D.F.; Sendelweck, V.S. [EG and G Rocky Flats, Inc., Golden, CO (United States). Rocky Flats Plant; Rivera, M.A. [Lamb Associates, Inc., Rockville, MD (United States)

1993-03-01T23:59:59.000Z

34

Disposal of Rocky Flats residues as waste  

SciTech Connect (OSTI)

Work is underway at the Rocky Flats Plant to evaluate alternatives for the removal of a large inventory of plutonium-contaminated residues from the plant. One alternative under consideration is to package the residues as transuranic wastes for ultimate shipment to the Waste Isolation Pilot Plant. Current waste acceptance criteria and transportation regulations require that approximately 1000 cubic yards of residues be repackaged to produce over 20,000 cubic yards of WIPP certified waste. The major regulatory drivers leading to this increase in waste volume are the fissile gram equivalent, surface radiation dose rate, and thermal power limits. In the interest of waste minimization, analyses have been conducted to determine, for each residue type, the controlling criterion leading to the volume increase, the impact of relaxing that criterion on subsequent waste volume, and the means by which rules changes may be implemented. The results of this study have identified the most appropriate changes to be proposed in regulatory requirements in order to minimize the costs of disposing of Rocky Flats residues as transuranic wastes.

Dustin, D.F.; Sendelweck, V.S. (EG and G Rocky Flats, Inc., Golden, CO (United States). Rocky Flats Plant); Rivera, M.A. (Lamb Associates, Inc., Rockville, MD (United States))

1993-01-01T23:59:59.000Z

35

Hanford Landfill Reaches 15 Million Tons Disposed - Waste Disposal Mark  

Broader source: Energy.gov (indexed) [DOE]

Landfill Reaches 15 Million Tons Disposed - Waste Disposal Landfill Reaches 15 Million Tons Disposed - Waste Disposal Mark Shows Success Cleaning Up River Corridor Hanford Landfill Reaches 15 Million Tons Disposed - Waste Disposal Mark Shows Success Cleaning Up River Corridor July 9, 2013 - 12:00pm Addthis Media Contacts Cameron Hardy, DOE, (509) 376-5365 Cameron.Hardy@rl.doe.gov Mark McKenna, WCH, (509) 372-9032 media@wch-rcc.com RICHLAND, Wash. - The U.S. Department of Energy (DOE) and its contractors have disposed of 15 million tons of contaminated material at the Environmental Restoration Disposal Facility (ERDF) since the facility began operations in 1996. Removing contaminated material and providing for its safe disposal prevents contaminants from reaching the groundwater and the Columbia River. ERDF receives contaminated soil, demolition debris, and solid waste from

36

disposal_cell.cdr  

Office of Legacy Management (LM)

With the With the April 24, 1997, ceremonial ground-breaking for disposal facility construction, the Weldon Spring Site Remedial Action Project (WSSRAP) moved into the final stage of cleanup, treatment, and disposal of uranium- processing wastes. The cleanup of the former uranium- refining plant consisted of three primary operations: Demolition and removal of remaining concrete pads and foundations that supported the 44 structures and buildings on site Treatment of selected wastes Permanent encapsulation of treated and untreated waste in an onsite engineered disposal facility In September l993, a Record of Decision (ROD) was signed by the U.S. Environmental Protection Agency (EPA) and the U.S. Department of Energy (DOE), with concurrence by the Missouri Department of Natural

37

NNSS Waste Disposal Proves Vital Resource for DOE Complex | Department of  

Broader source: Energy.gov (indexed) [DOE]

NNSS Waste Disposal Proves Vital Resource for DOE Complex NNSS Waste Disposal Proves Vital Resource for DOE Complex NNSS Waste Disposal Proves Vital Resource for DOE Complex March 20, 2013 - 12:00pm Addthis The Area 5 Radioactive Waste Management Site The Area 5 Radioactive Waste Management Site Like most LLW, RTGs disposed of at the NNSS were handled without any special equipment or clothing because of the relatively low dose rate levels. Like most LLW, RTGs disposed of at the NNSS were handled without any special equipment or clothing because of the relatively low dose rate levels. An irradiator from Sandia National Laboratory was disposed of at the RWMS in September 2012. An irradiator from Sandia National Laboratory was disposed of at the RWMS in September 2012. The Area 5 Radioactive Waste Management Site Like most LLW, RTGs disposed of at the NNSS were handled without any special equipment or clothing because of the relatively low dose rate levels.

38

Radioactive waste disposal package  

DOE Patents [OSTI]

A radioactive waste disposal package comprising a canister for containing vitrified radioactive waste material and a sealed outer shell encapsulating the canister. A solid block of filler material is supported in said shell and convertible into a liquid state for flow into the space between the canister and outer shell and subsequently hardened to form a solid, impervious layer occupying such space.

Lampe, Robert F. (Bethel Park, PA)

1986-01-01T23:59:59.000Z

39

Vehicle for carrying an object of interest  

DOE Patents [OSTI]

A vehicle for carrying an object of interest across a supporting surface including a frame having opposite first and second ends; a first pair of wheels fixedly mounted on the first end of the frame; a second pair of wheels pivotally mounted on the second end of the frame; and a pair of motors borne by the frame, each motor disposed in driving relation relative to one of the pairs of wheels, the motors propelling the vehicle across the supporting surface. 8 figs.

Zollinger, W.T.; Ferrante, T.A.

1998-10-13T23:59:59.000Z

40

Nuclear Waste Disposal Plan Drafted  

Science Journals Connector (OSTI)

Nuclear Waste Disposal Plan Drafted ... Of all the issues haunting nuclear power plants, that of disposing of the radioactive wastes and spent nuclear fuel they generate has been the most vexing. ...

1984-01-09T23:59:59.000Z

Note: This page contains sample records for the topic "interest rates disposable" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Implicit interest indicators  

Science Journals Connector (OSTI)

Recommender systems provide personalized suggestions about items that users will find interesting. Typically, recommender systems require a user interface that can ``intelligently'' determine the interest of a user and use this information to make suggestions. ...

Mark Claypool; Phong Le; Makoto Wased; David Brown

2001-01-01T23:59:59.000Z

42

Disposable Electrochemical Immunosensor Diagnosis Device Based...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Disposable Electrochemical Immunosensor Diagnosis Device Based on Nanoparticle Probe and Immunochromatographic Strip. Disposable Electrochemical Immunosensor Diagnosis Device Based...

43

Radioactive waste material disposal  

DOE Patents [OSTI]

The invention is a process for direct conversion of solid radioactive waste, particularly spent nuclear fuel and its cladding, if any, into a solidified waste glass. A sacrificial metal oxide, dissolved in a glass bath, is used to oxidize elemental metal and any carbon values present in the waste as they are fed to the bath. Two different modes of operation are possible, depending on the sacrificial metal oxide employed. In the first mode, a regenerable sacrificial oxide, e.g., PbO, is employed, while the second mode features use of disposable oxides such as ferric oxide. 3 figs.

Forsberg, C.W.; Beahm, E.C.; Parker, G.W.

1995-10-24T23:59:59.000Z

44

Radioactive waste material disposal  

DOE Patents [OSTI]

The invention is a process for direct conversion of solid radioactive waste, particularly spent nuclear fuel and its cladding, if any, into a solidified waste glass. A sacrificial metal oxide, dissolved in a glass bath, is used to oxidize elemental metal and any carbon values present in the waste as they are fed to the bath. Two different modes of operation are possible, depending on the sacrificial metal oxide employed. In the first mode, a regenerable sacrificial oxide, e.g., PbO, is employed, while the second mode features use of disposable oxides such as ferric oxide.

Forsberg, Charles W. (155 Newport Dr., Oak Ridge, TN 37830); Beahm, Edward C. (106 Cooper Cir., Oak Ridge, TN 37830); Parker, George W. (321 Dominion Cir., Knoxville, TN 37922)

1995-01-01T23:59:59.000Z

45

The incandescent disposal system  

SciTech Connect (OSTI)

The electrotechnology device being introduced to the low-level waste market is an Incandescent Disposal System (IDS) for volume reduction and vitrification. The process changes the composition of the waste material, usually long molecular chains, into simple molecules and elements. It renders the volume of low-level wastes to a manageable solid vitrified residue, carbon black, and a water discharge. The solid material, which has been vitrified if silica is introduced into the waste stream, is an ideal inert filler. The carbon black is non-leaching and is readily available for vitrification as it comes out of the IDS.

Smith, R.G.

1996-03-01T23:59:59.000Z

46

Ethics- Conflicting Financial Interests  

Broader source: Energy.gov [DOE]

Suppose I don't own any shares of stock. Do I still have to think about financial conflicts of interest?

47

Making private interests public  

Science Journals Connector (OSTI)

... votes to two to require that any scientist who accepts a research contract from a private corporation must declare to the university whether he or she has a financial interest in ... the regulations would permit a scientist to keep confidential his or her stakes in a private company interested in the same area of research if the research were funded by a ...

David Dickson

1982-02-04T23:59:59.000Z

48

Land disposal of water treatment plant sludge -- A feasibility analysis  

SciTech Connect (OSTI)

In this study, the following alternative disposal methods for the Buffalo Pound Water Treatment Sludge were evaluated: landfilling, discharge into sanitary sewers, long-term lagooning, use in manufacturing, co-composting, alum recovery and land application. Land application was chosen at the best disposal alternative. Preliminary design resulted in a 1% dry alum sludge loading rate (25 tonnes/ha), requiring 35 ha over a nine-year period and a phosphorus fertilizer supplement of about 50kg/ha.

Viraraghavan, T.; Multon, L.M.; Wasylenchuk, E.J.

1998-07-01T23:59:59.000Z

49

Pioneering Nuclear Waste Disposal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

18 18 19 T he WIPP's first waste receipt, 11 years later than originally planned, was a monumental step forward in the safe management of nuclear waste. Far from ending, however, the WIPP story has really just begun. For the next 35 years, the DOE will face many challenges as it manages a complex shipment schedule from transuranic waste sites across the United States and continues to ensure that the repository complies with all regulatory requirements. The DOE will work to maintain the highest level of safety in waste handling and trans- portation. Coordination with sites Disposal operations require coordination with sites that will ship transuranic waste to the WIPP and include periodic certification of waste characterization and handling practices at those facilities. During the WIPP's

50

Pioneering Nuclear Waste Disposal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 2 3 T he journey to the WIPP began nearly 60 years before the first barrels of transuranic waste arrived at the repository. The United States produced the world's first sig- nificant quantities of transuranic material during the Manhattan Project of World War II in the early 1940s. The government idled its plutonium- producing reactors and warhead manu- facturing plants at the end of the Cold War and scheduled most of them for dismantlement. However, the DOE will generate more transuranic waste as it cleans up these former nuclear weapons facilities. The WIPP is a cor- nerstone of the effort to clean up these facilities by providing a safe repository to isolate transuranic waste in disposal rooms mined out of ancient salt beds, located 2,150 feet below ground. The need for the WIPP

51

Laboratory Waste Disposal HAZARDOUS GLASS  

E-Print Network [OSTI]

Laboratory Waste Disposal HAZARDOUS GLASS Items that could cut or puncture skin or trash- can without any treatment. Hazardous Glass and Plastic: Items that can puncture, cut or scratch if disposed of in normal trash containers. Pasteur pipettes Other pipettes and tips (glass or plastic) Slides and cover

Sheridan, Jennifer

52

Safer Transportation and Disposal of Remote Handled Transuranic Waste - 12033  

SciTech Connect (OSTI)

Since disposal of remote handled (RH) transuranic (TRU) waste at the Waste Isolation Pilot Plant (WIPP) began in 2007, the Department of Energy (DOE) has had difficulty meeting the plans and schedule for disposing this waste. PECOS Management Services, Inc. (PECOS) assessed the feasibility of proposed alternate RH-TRU mixed waste containerisation concepts that would enhance the transportation rate of RH-TRU waste to WIPP and increase the utilization of available WIPP space capacity for RH-TRU waste disposal by either replacing or augmenting current and proposed disposal methods. In addition engineering and operational analyses were conducted that addressed concerns regarding criticality, heat release, and worker exposure to radiation. The results of the analyses showed that the concept, development, and use of a concrete pipe based design for an RH-TRU waste shipping and disposal container could be potentially advantageous for disposing a substantial quantity of RHTRU waste at WIPP in the same manner as contact-handled RH waste. Additionally, this new disposal method would eliminate the hazard associated with repackaging this waste in other containers without the requirement for NRC approval for a new shipping container. (authors)

Rojas, Vicente; Timm, Christopher M.; Fox, Jerry V. [PECOS Management Services, Inc., Albuquerque, NM (United States)

2012-07-01T23:59:59.000Z

53

Unreviewed Disposal Question Evaluation: Waste Disposal In Engineered Trench #3  

SciTech Connect (OSTI)

Because Engineered Trench #3 (ET#3) will be placed in the location previously designated for Slit Trench #12 (ST#12), Solid Waste Management (SWM) requested that the Savannah River National Laboratory (SRNL) determine if the ST#12 limits could be employed as surrogate disposal limits for ET#3 operations. SRNL documented in this Unreviewed Disposal Question Evaluation (UDQE) that the use of ST#12 limits as surrogates for the new ET#3 disposal unit will provide reasonable assurance that Department of Energy (DOE) 435.1 performance objectives and measures (USDOE, 1999) will be protected. Therefore new ET#3 inventory limits as determined by a Special Analysis (SA) are not required.

Hamm, L. L.; Smith, F. G. III; Flach, G. P.; Hiergesell, R. A.; Butcher, B. T.

2013-07-29T23:59:59.000Z

54

Long-Term Surveillance Plan for the Collins Ranch Disposal Site...  

Office of Legacy Management (LM)

whether the land and interests are owned by the United States and details h o w long-term care of the disposal site will be carried out. It is based on the DOE's Guidance for...

55

Recommendation 212: Evaluate additional storage and disposal...  

Office of Environmental Management (EM)

212: Evaluate additional storage and disposal options Recommendation 212: Evaluate additional storage and disposal options The ORSSAB encourages DOE to evaluate additional storage...

56

Transmittal Memo for Disposal Authorization Statement | Department...  

Office of Environmental Management (EM)

Disposal Facility Federal Review Group (LFRG) has conducted a review of the Savannah River Site (SRS) Saltstone Disposal Facility (SDF) 2009 performance assessment (PA) in...

57

ADMINISTRATIVE RECORDS SCHEDULE 4: PROPERTY DISPOSAL RECORDS...  

Broader source: Energy.gov (indexed) [DOE]

4: PROPERTY DISPOSAL RECORDS (Revision 2) ADMINISTRATIVE RECORDS SCHEDULE 4: PROPERTY DISPOSAL RECORDS (Revision 2) These records pertain to the sales by agencies of real and...

58

PROPERTY DISPOSAL RECORDS | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

PROPERTY DISPOSAL RECORDS PROPERTY DISPOSAL RECORDS These records pertain to the sales by agencies of real and personal property surplus to the needs of the Government PROPERTY...

59

Optimization of Waste Disposal - 13338  

SciTech Connect (OSTI)

From 2009 through 2011, remediation of areas of a former fuel cycle facility used for government contract work was conducted. Remediation efforts were focused on building demolition, underground pipeline removal, contaminated soil removal and removal of contaminated sediments from portions of an on-site stream. Prior to conducting the remediation field effort, planning and preparation for remediation (including strategic planning for waste characterization and disposal) was conducted during the design phase. During the remediation field effort, waste characterization and disposal practices were continuously reviewed and refined to optimize waste disposal practices. This paper discusses strategic planning for waste characterization and disposal that was employed in the design phase, and continuously reviewed and refined to optimize efficiency. (authors)

Shephard, E.; Walter, N.; Downey, H. [AMEC E and I, Inc., 511 Congress Street, Suite 200, Portland, ME 04101 (United States)] [AMEC E and I, Inc., 511 Congress Street, Suite 200, Portland, ME 04101 (United States); Collopy, P. [AMEC E and I, Inc., 9210 Sky Park Court, Suite 200, San Diego, CA 92123 (United States)] [AMEC E and I, Inc., 9210 Sky Park Court, Suite 200, San Diego, CA 92123 (United States); Conant, J. [ABB Inc., 5 Waterside Crossing, Windsor, CT 06095 (United States)] [ABB Inc., 5 Waterside Crossing, Windsor, CT 06095 (United States)

2013-07-01T23:59:59.000Z

60

DCO Operations Interesting Statistics  

E-Print Network [OSTI]

DCO Operations Interesting Statistics 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 Chart by: HANDS DOWN SOFTWARE, www.handsdownsoftware.com 1.00 0.95 0.90 0.85 0.80 0.75 0.70 0.65 0.60 0 is annotated with the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE

Note: This page contains sample records for the topic "interest rates disposable" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Gas, Heat, Water, Sewerage Collection and Disposal, and Street Railway  

Broader source: Energy.gov (indexed) [DOE]

Gas, Heat, Water, Sewerage Collection and Disposal, and Street Gas, Heat, Water, Sewerage Collection and Disposal, and Street Railway Companies (South Carolina) Gas, Heat, Water, Sewerage Collection and Disposal, and Street Railway Companies (South Carolina) < Back Eligibility Agricultural Commercial Construction Industrial Installer/Contractor Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Utility Program Info State South Carolina Program Type Generating Facility Rate-Making Siting and Permitting Provider South Carolina Public Service Commission This legislation applies to public utilities and entities furnishing natural gas, heat, water, sewerage, and street railway services to the public. The legislation addresses rates and services, exemptions, investigations, and records. Article 4 (58-5-400 et seq.) of this

62

Upgraded Coal Interest Group  

SciTech Connect (OSTI)

The Upgraded Coal Interest Group (UCIG) is an EPRI 'users group' that focuses on clean, low-cost options for coal-based power generation. The UCIG covers topics that involve (1) pre-combustion processes, (2) co-firing systems and fuels, and (3) reburn using coal-derived or biomass-derived fuels. The UCIG mission is to preserve and expand the economic use of coal for energy. By reducing the fuel costs and environmental impacts of coal-fired power generation, existing units become more cost effective and thus new units utilizing advanced combustion technologies are more likely to be coal-fired.

Evan Hughes

2009-01-08T23:59:59.000Z

63

Tank Waste Disposal Program redefinition  

SciTech Connect (OSTI)

The record of decision (ROD) (DOE 1988) on the Final Environmental Impact Statement, Hanford Defense High-Level, Transuranic and Tank Wastes, Hanford Site, Richland Washington identifies the method for disposal of double-shell tank waste and cesium and strontium capsules at the Hanford Site. The ROD also identifies the need for additional evaluations before a final decision is made on the disposal of single-shell tank waste. This document presents the results of systematic evaluation of the present technical circumstances, alternatives, and regulatory requirements in light of the values of the leaders and constitutents of the program. It recommends a three-phased approach for disposing of tank wastes. This approach allows mature technologies to be applied to the treatment of well-understood waste forms in the near term, while providing time for the development and deployment of successively more advanced pretreatment technologies. The advanced technologies will accelerate disposal by reducing the volume of waste to be vitrified. This document also recommends integration of the double-and single-shell tank waste disposal programs, provides a target schedule for implementation of the selected approach, and describes the essential elements of a program to be baselined in 1992.

Grygiel, M.L.; Augustine, C.A.; Cahill, M.A.; Garfield, J.S.; Johnson, M.E.; Kupfer, M.J.; Meyer, G.A.; Roecker, J.H. [Westinghouse Hanford Co., Richland, WA (United States); Holton, L.K.; Hunter, V.L.; Triplett, M.B. [Pacific Northwest Lab., Richland, WA (United States)

1991-10-01T23:59:59.000Z

64

Sludge utilization and disposal in Virginia  

SciTech Connect (OSTI)

This state-of-the-art study was initiated to determine the problem issues, present knowledge about the issues, and additional research needs in the area of land disposal of municipal sewage sludge. Three questionnaires were developed to survey technically oriented professional, county extension agents, and Virginia NPDES permit holders to obtain these groups' views on problems and deficiencies needing further investigation. Another phase of the study was to conduct an extensive review of the literature on the subject of land application of sewage sludge. Listings of pertinent literature relating to land application with specific interest toward potentially toxic metals, pathogens, nitrogen, and phosphorus were obtained and reviewed. Additional research is needed in the following areas: a method that accurately estimates metal availability within the soil; a method to determine the potential for a disease outbreak from controlled application of treated municipal sewage sludge; a more precise method of N-balancing; the impact of P loading on water quality.

Martens, D.C.; McCart, G.D.; Reneau, R.B. Jr; Simpson, T.W.; Ban-Kiat, T.

1982-10-01T23:59:59.000Z

65

RSSC RADIOACTIVE WASTE DISPOSAL 08/2011 7-1 RADIOACTIVE WASTE DISPOSAL  

E-Print Network [OSTI]

RSSC RADIOACTIVE WASTE DISPOSAL 08/2011 7-1 CHAPTER 7 RADIOACTIVE WASTE DISPOSAL PAGE I. Radioactive Waste Disposal ............................................................................................ 7-2 II. Radiation Control Technique #2 Instructions for Preparation of Radioactive Waste

Slatton, Clint

66

Disposable telemetry cable deployment system  

DOE Patents [OSTI]

A disposable telemetry cable deployment system for facilitating information retrieval while drilling a well includes a cable spool adapted for insertion into a drill string and an unarmored fiber optic cable spooled onto the spool cable and having a downhole end and a stinger end. Connected to the cable spool is a rigid stinger which extends through a kelly of the drilling apparatus. A data transmission device for transmitting data to a data acquisition system is disposed either within or on the upper end of the rigid stinger.

Holcomb, David Joseph (Sandia Park, NM)

2000-01-01T23:59:59.000Z

67

Electrochemical Apparatus with Disposable and Modifiable Parts  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electrochemical Apparatus with Disposable and Modifiable Parts Electrochemical Apparatus with Disposable and Modifiable Parts Electrochemical Apparatus with Disposable and Modifiable Parts The invention also includes electrochemical apparatus that can interface with optical instrumentation. If the working electrode is transparent, light from an optical fiber may be directed through the working electrode and into a cuvette. July 3, 2013 Electrochemical Apparatus with Disposable and Modifiable Parts Available for thumbnail of Feynman Center (505) 665-9090 Email Electrochemical Apparatus with Disposable and Modifiable Parts Applications: Electrochemical experiments in solution Electrochemical experiments on surfaces Bulk electrolysis experiments Fuel cells Corrosion studies Academic Labs Teaching and research Benefits: Incorporates disposable, commercially available cuvettes

68

Rates & Repayment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Environmental Review-NEPA Financial Data Operations Planning & Projects Power Marketing Rates Rate Adjustments Transmission Ancillary Services Rates WAPA-137 Rate Order Environmental Review-NEPA Financial Data Operations Planning & Projects Power Marketing Rates Rate Adjustments Transmission Ancillary Services Rates WAPA-137 Rate Order Rates and Repayment Services Rates Current and Historical Rate Information Collbran Power Rates CRSP Power Rates CRSP Transmission System Rates CRSP Management Center interest rates Falcon-Amistad Power Rates Provo River Power Rates Rio Grande Power Rates Seedskadee Power Rates SLCA/IP Power Rates Rate Schedules & Supplemental Rate Information Current Rates for Firm Power, Firm & Non-firm Transmission Service, & Ancillary Services Current Transmission & Ancillary Services Rates Tariffs Components of the SLCA/IP Existing Firm Power Rate Cost Recovery Charge (CRC) Page MOA Concerning the Upper Colorado River Basin

69

Long-term surveillance plan for the Collins Ranch Disposal Site, Lakeview, Oregon. Revision 2  

SciTech Connect (OSTI)

This long-term surveillance plan (LTSP) for the Lakeview, Oregon, Uranium Mill Tailings Remedial Action (UMTRA) Project disposal site describes the surveillance activities for the Lakeview (Collins Ranch) disposal cell, which will be referred to as the Collins Ranch disposal cell throughout this document. The US Department of Energy (DOE) will carry out these activities to ensure that the disposal cell continues to function as designed. This final LTSP was prepared as a requirement for acceptance under the US Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive materials. This LTSP documents whether the land and interests are owned by the United States or an Indian tribe, and details how the long-term care of the disposal site will be carried out. It is based on the DOE`s Guidance for Implementing the UMTRA Project Long-term Surveillance Program (DOE, 1992a).

Not Available

1993-12-01T23:59:59.000Z

70

Disposal Practices at the Nevada Test Site 2008 | Department...  

Broader source: Energy.gov (indexed) [DOE]

Disposal Practices at the Nevada Test Site 2008 Disposal Practices at the Nevada Test Site 2008 Full Document and Summary Versions are available for download Disposal Practices at...

71

New Facility Will Test Disposal Cell Cover Renovation | Department...  

Broader source: Energy.gov (indexed) [DOE]

Services Ecosystem Management Team New Facility Will Test Disposal Cell Cover Renovation New Facility Will Test Disposal Cell Cover Renovation New Facility Will Test Disposal...

72

Spent Fuel Disposal Trust Fund (Maine)  

Broader source: Energy.gov [DOE]

Any licensee operating a nuclear power plant in this State shall establish a segregated Spent Nuclear Fuel Disposal Trust Fund in accordance with this subchapter for the eventual disposal of spent...

73

Deep Borehole Disposal Research: Demonstration Site Selection...  

Office of Environmental Management (EM)

Site Selection Guidelines, Borehole Seals Design, and RD&D Needs The U.S. Department of Energy has been investigating deep borehole disposal as one alternative for the disposal...

74

Municipal solid waste disposal in Portugal  

SciTech Connect (OSTI)

In recent years municipal solid waste (MSW) disposal has been one of the most important environmental problems for all of the Portuguese regions. The basic principles of MSW management in Portugal are: (1) prevention or reduction, (2) reuse, (3) recovery (e.g., recycling, incineration with heat recovery), and (4) polluter-pay principle. A brief history of legislative trends in waste management is provided herein as background for current waste management and recycling activities. The paper also presents and discusses the municipal solid waste management in Portugal and is based primarily on a national inquiry carried out in 2003 and directed to the MSW management entities. Additionally, the MSW responsibility and management structure in Portugal is presented, together with the present situation of production, collection, recycling, treatment and elimination of MSW. Results showed that 96% of MSW was collected mixed (4% was separately collected) and that 68% was disposed of in landfill, 21% was incinerated at waste-to-energy plants, 8% was treated at organic waste recovery plants and 3% was delivered to sorting. The average generation rate of MSW was 1.32 kg/capita/day.

Magrinho, Alexandre [Mechanical Engineering Department, Escola Superior de Tecnologia de Setubal, Campus IPS, Estefanilha, Setubal (Portugal); Didelet, Filipe [Mechanical Engineering Department, Escola Superior de Tecnologia de Setubal, Campus IPS, Estefanilha, Setubal (Portugal); Semiao, Viriato [Mechanical Engineering Department, Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisbon (Portugal)]. E-mail: ViriatoSemiao@ist.utl.pt

2006-07-01T23:59:59.000Z

75

Generic Argillite/Shale Disposal Reference Case  

E-Print Network [OSTI]

of eastern Devonian gas shale: Society of PetroleumShale Disposal Reference Case August 2014 Borehole activity: Oil and gas

Zheng, Liange

2014-01-01T23:59:59.000Z

76

Long-term surveillance plan for the Mexican Hat disposal site, Mexican Hat, Utah  

SciTech Connect (OSTI)

This plan describes the long-term surveillance activities for the Uranium Mill Tailings Remedial Action (UMTRA) Project disposal site at Mexican Hat, Utah. The US Department of Energy (DOE) will carry out these activities to ensure that the disposal site continues to function as designed. This long-term surveillance plan (LTSP) was prepared as a requirement for acceptance under the US Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive material (RRM). This LTSPC documents the land ownership interests and details how the long-term care of the disposal site will be accomplished.

NONE

1996-01-01T23:59:59.000Z

77

Environmental waste disposal contracts awarded  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Environmental contracts awarded locally Environmental contracts awarded locally Environmental waste disposal contracts awarded locally Three small businesses with offices in Northern New Mexico awarded nuclear waste clean-up contracts. April 3, 2012 Worker moves drums of transuranic (TRU) waste at a staging area A worker stages drums of transuranic waste at Los Alamos National Laboratory's Technical Area 54. the Lap ships such drums to the U.S. Department of Energy's Waste Isolation Pilot Plant (WIPP) in Southern New Mexico. The Lab annually averages about 120 shipments of TRU waste to WIPP. Contact Small Business Office (505) 667-4419 Email "They will be valuable partners in the Lab's ability to dispose of the waste safely and efficiently." Small businesses selected for environmental work at LANL

78

Interest Theory Richard C. Penney Purdue University  

E-Print Network [OSTI]

We recommend the TI BA II Plus, either the solar or battery version. We will discuss some of ... When we state an interest rate we will always mean a ...... When a company buys an asset, say a computer, the value of the asset of course declines...

2007-09-19T23:59:59.000Z

79

DOE Selects Two Contractors for Multiple-Award Waste Disposal Contract |  

Broader source: Energy.gov (indexed) [DOE]

Two Contractors for Multiple-Award Waste Disposal Two Contractors for Multiple-Award Waste Disposal Contract DOE Selects Two Contractors for Multiple-Award Waste Disposal Contract April 12, 2013 - 12:00pm Addthis Media Contact Bill Taylor, 803-952-8564 Bill.Taylor@srs.gov Cincinnati - The U.S. Department of Energy (DOE) awarded two fixed price unit rate Indefinite Delivery/Indefinite Quantity (ID/IQ) multiple-award contracts for the permanent disposal of Low-Level Waste (LLW) and Mixed-Low Level Waste (MLLW) today to EnergySolutions, LLC and Waste Control Specialists, LLC. The goal of these contracts is to establish a vehicle that allows DOE sites to place timely, competitive and cost-effective task orders for the permanent disposal of: Class A, B, and C LLW and MLLW 11e(2) byproduct material Technology Enhanced Naturally Occurring Radioactive Material

80

DOE SPENT NUCLEAR FUEL DISPOSAL CONTAINER  

SciTech Connect (OSTI)

The DOE Spent Nuclear Fuel Disposal Container (SNF DC) supports the confinement and isolation of waste within the Engineered Barrier System of the Mined Geologic Disposal System (MGDS). Disposal containers are loaded and sealed in the surface waste handling facilities, transferred to the underground through the access mains, and emplaced in emplacement drifts. The DOE Spent Nuclear Fuel Disposal Container provides long term confinement of DOE SNF waste, and withstands the loading, transfer, emplacement, and retrieval loads and environments. The DOE SNF Disposal Containers provide containment of waste for a designated period of time, and limit radionuclide release thereafter. The disposal containers maintain the waste in a designated configuration, withstand maximum handling and rockfall loads, limit the individual waste canister temperatures after emplacement. The disposal containers also limit the introduction of moderator into the disposal container during the criticality control period, resist corrosion in the expected repository environment, and provide complete or limited containment of waste in the event of an accident. Multiple disposal container designs may be needed to accommodate the expected range of DOE Spent Nuclear Fuel. The disposal container will include outer and inner barrier walls and outer and inner barrier lids. Exterior labels will identify the disposal container and contents. Differing metal barriers will support the design philosophy of defense in depth. The use of materials with different failure mechanisms prevents a single mode failure from breaching the waste package. The corrosion-resistant inner barrier and inner barrier lid will be constructed of a high-nickel alloy and the corrosion-allowance outer barrier and outer barrier lid will be made of carbon steel. The DOE Spent Nuclear Fuel Disposal Containers interface with the emplacement drift environment by transferring heat from the waste to the external environment and by protecting the DOE waste canisters and their contents from damage/degradation by the external environment. The disposal containers also interface with the SNF by limiting access of moderator and oxidizing agents to the waste. The disposal containers interface with the Ex-Container System's emplacement drift disposal container supports. The disposal containers interface with the Canister Transfer System, Waste Emplacement System, Disposal Container Handling System, and Waste Package Remediation System during loading, handling, transfer, emplacement and remediation of the disposal container.

F. Habashi

1998-06-26T23:59:59.000Z

Note: This page contains sample records for the topic "interest rates disposable" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

On the geometry of the term structure of interest rates  

Science Journals Connector (OSTI)

...r, Y ) V. Now fix (r , Y ) V. By induction of the preceding argument and proposition...fields, X0, . . . , Xd : U Rn . The generator of a Rn -valued It^o diffusion Zt...where Lt denotes the (time-dependent) generator of the process Zt on K and f D(K...

2004-01-01T23:59:59.000Z

82

Credit-Based Interest Rate Spread for Title XVII  

Broader source: Energy.gov (indexed) [DOE]

to service the borrower's debt obligations over the life of the loan guarantee, including transactions that have long-term power purchase agreements, and are not subject to...

83

Statistical testing and estimation in continuous time interest rate models  

E-Print Network [OSTI]

. In such a case, the power of the test does not tend to one in spite of large sample sizes. On the other hand, the consistent nonparametric tests avoid this problem. To test the correctness of a parametric model, say, Yi = l(xti ;?) + ei, we can consider.... In practice, we use ^i in lieu of ei, where ^i = Yi ? l(xti ; ^) is a residual, and ^ is 11 an OLS estimator of ? and Yi is a response variable. Using the leave one out kernel estimator 1nh Pnj6=i ^jk(xtj ?xtih ), the test statistic stems from the following...

Kim, Myung Suk

2006-10-30T23:59:59.000Z

84

Interest Rate Stabilization vs. Monetary Control: Another Reconciliation  

E-Print Network [OSTI]

value of a unit of cash reserves and tend to deplete their private reserves too fast. The consequence in the literature on central banking. The real-bills doctrine advocates for adjustments of the stock of money of regulatory requirements and for a tight monitoring of the banks' balance sheets in order to keep under

Gabrieli, John

85

Long-Term Performance of Uranium Tailings Disposal Cells - 13340  

SciTech Connect (OSTI)

Recently, there has been interest in the performance and evolution of Uranium Mill Tailings Remedial Action (UMTRA) Project disposal cell covers because some sites are not compliant with groundwater standards. Field observations of UMTRA disposal cells indicate that rock covers tend to become vegetated and that saturated conductivities in the upper portion of radon barriers may increase due to freeze/thaw cycles and biointrusion. This paper describes the results of modeling that addresses whether these potential changes and transient drainage of moisture in the tailings affect overall performance of the disposal cells. A numerical unsaturated/saturated 3-dimensional flow model was used to simulate whether increases in saturated conductivities in radon barriers with rock covers affect the overall performance of the disposal cells using field data from the Shiprock, NM, UMTRA site. A unique modeling approach allowed simulation with daily climatic conditions to determine changes in moisture and moisture flux from the disposal cell. Modeling results indicated that increases in the saturated conductivity at the top of radon barrier do not influence flux from the tailings with time because the tailings behave similar hydraulically to the radon barrier. The presence of a thin layer of low conductivity material anywhere in the cover or tailings restricts flux in the worst case to the saturated conductivity of that material. Where materials are unsaturated at depth within the radon barrier of tailings slimes, conductivities are typically less than 10{sup -8} centimeters per second. If the low conductivity layer is deep within the disposal cell, its saturated properties are less likely to change with time. The significance of this modeling is that operation and maintenance of the disposal cells can be minimized if they are allowed to progress to a natural condition with some vegetation and soil genesis. Because the covers and underlying tailings have a very low saturated hydraulic conductivity after transient drainage, eventually the amount of moisture leaving the tailings has a negligible effect on groundwater quality. Although some of the UMTRA sites are not in compliance with the groundwater standards, the explanation may be legacy contamination from mining, or earlier higher fluxes from the tailings or unlined processing ponds. Investigation of other legacy sources at the UMTRA sites may help explain persistent groundwater contamination. (authors)

Bostick, Kent; Daniel, Anamary; Pill, Ken [Professional Project Services, Inc., 1100 Bethel Valley Road, Oak Ridge, TN, 37922 (United States)] [Professional Project Services, Inc., 1100 Bethel Valley Road, Oak Ridge, TN, 37922 (United States); Tachiev, Georgio; Noosai, Nantaporn; Villamizar, Viviana [Florida International University, 10555 W. Flagler St., EC 2100, Miami FL, 33174 (United States)] [Florida International University, 10555 W. Flagler St., EC 2100, Miami FL, 33174 (United States)

2013-07-01T23:59:59.000Z

86

Financial Conflict of Interest Information Financial Conflict of Interest Information  

E-Print Network [OSTI]

requires that sponsored travel be included in the disclosure, regardless of value. This does not, however their disclosure within 30 days of the occurrence of a new reportable financial interest(s). In order to maintain University, requires mandatory Training for all "Investigators" meaning "the project director or principal

Raina, Ramesh

87

Career Interest | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

of oneself. As you begin to plan for your career, this Learning Module introduces five free career interest assessmentsurveys. To return back to the Leadership Development...

88

Long-term surveillance plan for the Falls City Disposal Site, Falls City, Texas  

SciTech Connect (OSTI)

This long-term surveillance plan (LTSP) for the Uranium Mill Tailings Remedial Action (UMTRA) Project Falls City disposal site, Falls City, Texas, describes the surveillance activities for the disposal site. DOE will carry out these activities to ensure that the disposal cell continues to function as designed. This LTSP was prepared as a requirement for acceptance under the US Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive materials. This LTSP documents whether the land and interests are owned by the United States and details how long-term care of the disposal site will be carried out. It is based on the DOE`s Guidance for Implementing the UMTRA Project Long-term Surveillance Program (DOE, 1992a).

NONE

1995-06-01T23:59:59.000Z

89

Long-term Surveillance Plan for the Falls City Disposal Site, Falls City, Texas. Revision 1  

SciTech Connect (OSTI)

This long-term surveillance plan (LTSP) for the Uranium Mill Tailings Remedial Action (UMTRA) Project Falls City disposal site, Falls City, Texas, describes the surveillance activities for the disposal site. The US Department of Energy (DOE) will carry out these activities to ensure that the disposal cell continues to function as designed. This LTSP was prepared as a requirement for acceptance under the US Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive materials. This LTSP documents whether the land and interests are owned by the United States and details how long-term care of the disposal site will be carried out. It is based on the DOE`s Guidance for Implementing the UMTRA Project Long-term Surveillance Program (DOE, 1992a).

NONE

1995-08-01T23:59:59.000Z

90

Long-term surveillance plan for the Collins Ranch disposal site, Lakeview, Oregon  

SciTech Connect (OSTI)

This long-term surveillance plan (LTSP) for the Uranium Mill Tailings Remedial Action (UMTRA) Project Collins Ranch disposal site, Lakeview, Oregon, describes the surveillance activities for the disposal cell. The U.S. Department of Energy (DOE) will carry out these activities to ensure that the disposal cell continues to function as designed. This final LTSP was prepared as a requirement for acceptance under the U.S. Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive materials. This LTSP documents whether the land and interests are owned by the United States and details how long-term care of the disposal site will be carried out. It is based on the DOE`s Guidance for Implementing the UMTRA Project Long-term Surveillance Program (DOE, 1992a).

Not Available

1994-08-01T23:59:59.000Z

91

Interested Parties - Myriant | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Myriant.pdf More Documents & Publications Interested Parties - Myriant Interested Parties - NRG Energy Interested Parties - 1603 Program Discussion...

92

Interested Parties - Siemens | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Siemens Interested Parties - Siemens GCHarrisSiemens.PDF More Documents & Publications Interested Parties - Myriant Interested Parties - Patrick Murphy...

93

Enhancements to Generic Disposal System Modeling Capabilities...  

Broader source: Energy.gov (indexed) [DOE]

disposal system modeling and analysis capability that takes advantage of high-performance computing (HPC) environments to simulate the important multi-physics phenomena and...

94

Environmental Restoration Disposal Facility - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Receiving and Processing Facility Waste Sampling and Characterization Facility Waste Treatment Plant Environmental Restoration Disposal Facility Email Email Page | Print Print...

95

Operational Issues at the Environmental Restoration Disposal...  

Broader source: Energy.gov (indexed) [DOE]

Disposal Facility at Idaho National Laboratory Environmental Management Waste Management Facility (EMWMF) at Oak Ridge Briefing: Summary and Recommendations of EM Landfill Workshop...

96

Interested Parties - MEMA | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

MEMA Interested Parties - MEMA 08-14-10MEMA.pdf More Documents & Publications Interested Parties - Chrystler Interested Parties - Smith Dawson & Andrews Interested Parties - NYU...

97

Interested Parties - MIT | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Interested Parties - MIT ARLobbyist9-16.pdf More Documents & Publications Interested Parties - Morgan Wright Interested Parties - Patrick Murphy Interested Parties - Nextfuels...

98

Interested Parties - Morgan Wright | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Morgan Wright Interested Parties - Morgan Wright LobbyistDisclosure.pdf More Documents & Publications Interested Parties - MIT Interested Parties - Patrick Murphy Interested...

99

Interested Parties - Xtreme Power | Department of Energy  

Energy Savers [EERE]

Xtreme Power Interested Parties - Xtreme Power 09-14-10XtremePower.pdf More Documents & Publications Interested Parties - XtremePower Interested Parties - Myriant Interested...

100

Interest Group Survival: Shared Interests Versus Competition for Resources  

E-Print Network [OSTI]

Population ecology theory on interest group populations is examined to determine the implications for group membership levels in the states. Using the assumptions of the competitive exclusion principle, it is hypothesized ...

Haider-Markel, Donald P.

1997-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "interest rates disposable" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Used Fuel Disposition Campaign Disposal  

Broader source: Energy.gov (indexed) [DOE]

Campaign Disposal Research and Development Roadmap Prepared for U.S. Department of Energy Used Fuel Disposition Campaign September 2012 FCR&D-USED-2011-000065 REV 1 DISCLAIMER This information was prepared as an account of work sponsored by an agency of the U.S. Government. Neither the U.S. Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness, of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. References herein to any specific commercial product, process, or service by trade name, trade mark, manufacturer, or

102

14 - Lubricant use and disposal  

Science Journals Connector (OSTI)

Abstract: Criteria are defined for optimum machine-specific selection of conventional, high-performance and specialty lubricants. Lubrication consolidation is indicated as a means of rationalisation of inventories. Intended use of lubricants may be compromised by oxidation, water and air contamination, additive depletion and accumulation of contaminants, including wear debris, and biological degradation. Strategic oil analysis is described from simple in-shop sensory inspections to primary on-site standard testing and more comprehensive secondary testing methods as an operational maintenance tool for machine and lubricant condition monitoring to estimate remaining lubricant life time and prevent premature machine failure. The disposal of spent lubricants, including waste oil legislation and management, and re-refining technologies, are discussed.

Jan C.J. Bart; Emanuele Gucciardi; Stefano Cavallaro

2013-01-01T23:59:59.000Z

103

Special Analysis: Revision of Saltstone Vault 4 Disposal Limits (U)  

SciTech Connect (OSTI)

New disposal limits have been computed for Vault 4 of the Saltstone Disposal Facility based on several revisions to the models in the existing Performance Assessment and the Special Analysis issued in 2002. The most important changes are the use of a more rigorous groundwater flow and transport model, and consideration of radon emanation. Other revisions include refinement of the aquifer mesh to more accurately model the footprint of the vault, a new plutonium chemistry model accounting for the different transport properties of oxidation states III/IV and V/VI, use of variable infiltration rates to simulate degradation of the closure system, explicit calculation of gaseous releases and consideration of the effects of settlement and seismic activity on the vault structure. The disposal limits have been compared with the projected total inventory expected to be disposed in Vault 4. The resulting sum-of-fractions of the 1000-year disposal limits is 0.2, which indicates that the performance objectives and requirements of DOE 435.1 will not be exceeded. This SA has not altered the conceptual model (i.e., migration of radionuclides from the Saltstone waste form and Vault 4 to the environment via the processes of diffusion and advection) of the Saltstone PA (MMES 1992) nor has it altered the conclusions of the PA (i.e., disposal of the proposed waste in the SDF will meet DOE performance measures). Thus a PA revision is not required and this SA serves to update the disposal limits for Vault 4. In addition, projected doses have been calculated for comparison with the performance objectives laid out in 10 CFR 61. These doses are 0.05 mrem/year to a member of the public and 21.5 mrem/year to an inadvertent intruder in the resident scenario over a 10,000-year time-frame, which demonstrates that the 10 CFR 61 performance objectives will not be exceeded. This SA supplements the Saltstone PA and supersedes the two previous SAs (Cook et al. 2002; Cook and Kaplan 2003).

Cook, J

2005-05-26T23:59:59.000Z

104

WASTE DISPOSAL WORKSHOPS: ANTHRAX CONTAMINATED WASTE  

E-Print Network [OSTI]

WASTE DISPOSAL WORKSHOPS: ANTHRAX CONTAMINATED WASTE January 2010 Prepared for the Interagency left intentionally blank.] #12;Prepared for the U.S. Department of Energy PNNL-SA-69994 under Contract DE-AC05-76RL01830 Waste Disposal Workshops: Anthrax-Contaminated Waste AM Lesperance JF Upton SL

105

Asset Management Equipment Disposal Form -Refrigerant Recovery  

E-Print Network [OSTI]

enters the waste stream with the charge intact (e.g., motor vehicle air conditioners, refrigeratorsAsset Management Equipment Disposal Form - Refrigerant Recovery Safe Disposal Requirements Under refrigeration, cold storage warehouse refrigeration, chillers, and industrial process refrigeration) has to have

Sin, Peter

106

Title II Disposal Sites Annual Report  

Broader source: Energy.gov [DOE]

This report presents the results of long-term surveillance and maintenance activities conducted by the DOE Office of Legacy Management in 2013 at six uranium mill tailings disposal sites reclaimed under Title II of the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978. These activities verified that the UMTRCA Title II disposal sites remain in compliance with license requirements.

107

Generic Argillite/Shale Disposal Reference Case  

SciTech Connect (OSTI)

Radioactive waste disposal in a deep subsurface repository hosted in clay/shale/argillite is a subject of widespread interest given the desirable isolation properties, geochemically reduced conditions, and widespread geologic occurrence of this rock type (Hansen 2010; Bianchi et al. 2013). Bianchi et al. (2013) provides a description of diffusion in a clay-hosted repository based on single-phase flow and full saturation using parametric data from documented studies in Europe (e.g., ANDRA 2005). The predominance of diffusive transport and sorption phenomena in this clay media are key attributes to impede radionuclide mobility making clay rock formations target sites for disposal of high-level radioactive waste. The reports by Hansen et al. (2010) and those from numerous studies in clay-hosted underground research laboratories (URLs) in Belgium, France and Switzerland outline the extensive scientific knowledge obtained to assess long-term clay/shale/argillite repository isolation performance of nuclear waste. In the past several years under the UFDC, various kinds of models have been developed for argillite repository to demonstrate the model capability, understand the spatial and temporal alteration of the repository, and evaluate different scenarios. These models include the coupled Thermal-Hydrological-Mechanical (THM) and Thermal-Hydrological-Mechanical-Chemical (THMC) models (e.g. Liu et al. 2013; Rutqvist et al. 2014a, Zheng et al. 2014a) that focus on THMC processes in the Engineered Barrier System (EBS) bentonite and argillite host hock, the large scale hydrogeologic model (Bianchi et al. 2014) that investigates the hydraulic connection between an emplacement drift and surrounding hydrogeological units, and Disposal Systems Evaluation Framework (DSEF) models (Greenberg et al. 2013) that evaluate thermal evolution in the host rock approximated as a thermal conduction process to facilitate the analysis of design options. However, the assumptions and the properties (parameters) used in these models are different, which not only make inter-model comparisons difficult, but also compromise the applicability of the lessons learned from one model to another model. The establishment of a reference case would therefore be helpful to set up a baseline for model development. A generic salt repository reference case was developed in Freeze et al. (2013) and the generic argillite repository reference case is presented in this report. The definition of a reference case requires the characterization of the waste inventory, waste form, waste package, repository layout, EBS backfill, host rock, and biosphere. This report mainly documents the processes in EBS bentonite and host rock that are potentially important for performance assessment and properties that are needed to describe these processes, with brief description other components such as waste inventory, waste form, waste package, repository layout, aquifer, and biosphere. A thorough description of the generic argillite repository reference case will be given in Jov Colon et al. (2014).

Zheng, Liange; Jov& #233; Colon, Carlos; Bianchi, Marco; Birkholzer, Jens

2014-08-08T23:59:59.000Z

108

COMMISSION REPORT PUBLIC INTEREST ENERGY  

E-Print Network [OSTI]

transmission or distribution of electricity generated from renewable energy resources · Advanced electricity, clean energy, energy infrastructure, electric vehicles, Governor Brown's Clean Energy Jobs Plan The California Energy Commission manages public interest energy research for electric and natural gas research

109

Sustainability Community Special Interest Group  

E-Print Network [OSTI]

Sustainability Community Special Interest Group Meeting, CHI 2012 Eli Blevis, Yue Pan, & David: Weather Effects #12;Discussion Catalyst: Social Sustainability #12;Discussion Catalyst: Barriers & Brick Catalyst: Education #12;Discussion Catalyst: Cultural Factors #12;Discussion Catalyst: Finding Our Way #12

Blevis, Eli

110

Land Management and Disposal | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Land Management and Disposal Land Management and Disposal Land Management and Disposal Land Management and Disposal 42 USC 2201(g), Section 161(g), of the AEA 42 USC Section 2224, Section 174 DOE, July 2004, Real Property Desk Guide Requirements: Document Title P.L. 83-703 (68 Stat. 919), Section 161g Grants Special Authority as Required in the Act to Acquire, Sell, Dispose, etc., of Real Property in Furtherance of the Department's Mission (Under the Atomic Energy Act of 1954) P.L. 95-91, 91 Stat. 578 (Sections 302 and 347) Department of Energy Organizational Act of 1977, Delegated Authority for Real Property P.L. 106-580 Federal Property and Administrative Services Act of 1949, As Amended P.L. 105-85 Federal Property and Administrative Services Act of 1949, As Amended 10 CFR 770 Transfer of Real Property at Defense Nuclear Facilities for Economic Development

111

Disposal configuration options for future uses of greater confinement disposal at the Nevada Test Site  

SciTech Connect (OSTI)

The US Department of Energy (DOE) is responsible for disposing of a variety of radioactive and mixed wastes, some of which are considered special-case waste because they do not currently have a clear disposal option. The DOE`s Nevada Field Office contracted with Sandia National Laboratories to investigate the possibility of disposing of some of this special-case waste at the Nevada Test Site (NTS). As part of this investigation, a review of a near-surface and subsurface disposal options that was performed to develop alternative disposal configurations for special-case waste disposal at the NTS. The criteria for the review included (1) configurations appropriate for disposal at the NTS; (2) configurations for disposal of waste at least 100 ft below the ground surface; (3) configurations for which equipment and technology currently exist; and (4) configurations that meet the special requirements imposed by the nature of special-case waste. Four options for subsurface disposal of special-case waste are proposed: mined consolidated rock, mined alluvium, deep pits or trenches, and deep boreholes. Six different methods for near-surface disposal are also presented: earth-covered tumuli, above-grade concrete structures, trenches, below-grade concrete structures, shallow boreholes, and hydrofracture. Greater confinement disposal (GCD) in boreholes at least 100 ft deep, similar to that currently practiced at the GCD facility at the Area 5 Radioactive Waste Management Site at the NTS, was retained as the option that met the criteria for the review. Four borehole disposal configurations are proposed with engineered barriers that range from the native alluvium to a combination of gravel and concrete. The configurations identified will be used for system analysis that will be performed to determine the disposal configurations and wastes that may be suitable candidates for disposal of special-case wastes at the NTS.

Price, L. [Science Applications International Corp., Albuquerque, NM (United States)

1994-09-01T23:59:59.000Z

112

Low-Level Waste Disposal Facility Federal Review Group Manual...  

Office of Environmental Management (EM)

Low-Level Waste Disposal Facility Federal Review Group Manual Low-Level Waste Disposal Facility Federal Review Group Manual This Revision 3 of the Low-Level Waste Disposal Facility...

113

Long-term surveillance plan for the Lowman, Idaho, Disposal site. Revision 1  

SciTech Connect (OSTI)

The long-term surveillance plan (LTSP) for the Lowman, Idaho, Uranium Mill Tailings Remedial Action (UMTRA) Project disposal site describes the surveillance activities for the Lowman disposal site, which will be referred to as the Lowman site throughout this document. The US Department of Energy (DOE) will carry out these activities to ensure that the disposal cell continues to function as designed. The radioactive sands at the Lowman site were stabilized on the site. This final LTSP is being submitted to the US Nuclear Regulatory Commission (NRC) as a requirement for issuance of a general license for custody and long-term care for the disposal site. The general license requires that the disposal cell be cared for in accordance with the provisions of this LTSP. The LTSP documents whether the land and interests are owned by the United States or a state, and describes, in detail, how the long-term care of the disposal site will be carried out through the UMTRA Project long-term surveillance program. The Lowman, Idaho, LTSP is based on the DOE`s Guidance for Implementing the UMTRA Project Long-term Surveillance Program, (DOE, 1992).

Not Available

1994-04-01T23:59:59.000Z

114

Long-term surveillance plan for the Lowman, Idaho, disposal site  

SciTech Connect (OSTI)

The long-term surveillance plan (LTSP) for the Lowman, Idaho, Uranium Mill Tailings Remedial Action (UMTRA) Project disposal site describes the surveillance activities for the Lowman disposal cell. The US Department of Energy (DOE) will carry out these activities to ensure that the disposal cell continues to function as designed. This preliminary final LTSP is being submitted to the US Nuclear Regulatory Commission (NRC) as a requirement for issuance of a general license for custody and long-term care for the disposal site. The general license requires that the disposal cell be cared for in accordance with the provisions of this LTSP. The LTSP documents whether the land and interests are owned by the United States or an Indian tribe, and describes, in detail, how the long-term care of the disposal site will be carried out through the UMTRA Project long-term surveillance program. The Lowman, Idaho, LTSP is based on the DOE`s Guidance for Implementing the UMTRA Project Long-term Surveillance Program, (DOE, 1992).

Not Available

1993-09-01T23:59:59.000Z

115

Conflict of Interest (COI) Conflict of Interest Coordinator  

E-Print Network [OSTI]

. · Administrators and the COI coordinator have the responsibility of creating both an environment and the conditions Engineering Phone: 7 ­ 2777 Email: dwhand@mtu.edu Taken from Michigan Tech Faculty Handbook #12;Conflict responsibilities at the University) Taken from Michigan Tech Faculty Handbook #12;Conflict of Interest (COI

116

Salt caverns for oil field waste disposal.  

SciTech Connect (OSTI)

Salt caverns used for oil field waste disposal are created in salt formations by solution mining. When created, caverns are filled with brine. Wastes are introduced into the cavern by pumping them under low pressure. Each barrel of waste injected to the cavern displaces a barrel of brine to the surface. The brine is either used for drilling mud or is disposed of in an injection well. Figure 8 shows an injection pump used at disposal cavern facilities in west Texas. Several types of oil field waste may be pumped into caverns for disposal. These include drilling muds, drill cuttings, produced sands, tank bottoms, contaminated soil, and completion and stimulation wastes. Waste blending facilities are constructed at the site of cavern disposal to mix the waste into a brine solution prior to injection. Overall advantages of salt cavern disposal include a medium price range for disposal cost, large capacity and availability of salt caverns, limited surface land requirement, increased safety, and ease of establishment of individual state regulations.

Veil, J.; Ford, J.; Rawn-Schatzinger, V.; Environmental Assessment; RMC, Consultants, Inc.

2000-07-01T23:59:59.000Z

117

Interests Diffusion in Social Networks  

E-Print Network [OSTI]

Understanding cultural phenomena on Social Networks (SNs) and exploiting the implicit knowledge about their members is attracting the interest of different research communities both from the academic and the business side. The community of complexity science is devoting significant efforts to define laws, models, and theories, which, based on acquired knowledge, are able to predict future observations (e.g. success of a product). In the mean time, the semantic web community aims at engineering a new generation of advanced services by defining constructs, models and methods, adding a semantic layer to SNs. In this context, a leapfrog is expected to come from a hybrid approach merging the disciplines above. Along this line, this work focuses on the propagation of individual interests in social networks. The proposed framework consists of the following main components: a method to gather information about the members of the social networks; methods to perform some semantic analysis of the Domain of Interest; a p...

D'Agostino, Gregorio; De Nicola, Antonio; Tucci, Salvatore

2015-01-01T23:59:59.000Z

118

Horizontal interest in industrial purchasing  

Science Journals Connector (OSTI)

Markets are becoming very complex and dynamic and in such an environment, firms can no longer merely focus their attention on key relationships in their downstream and upstream markets, but instead need to constantly monitor and make sense of the market around them. One area within these markets, that has been rather neglected within the current purchasing research are the other buyers in the market. The purpose of the present study is to examine the forms of horizontal interest in purchasing. The paper aims to answer the question: What are the forms of horizontal interest and how can these be incorporated into the functions of industrial purchasing? The paper applies theoretical knowledge and reports on an empirical case study conducted to address the question. As a result, a two-dimensional typology of the forms of horizontal interest and implications for industrial purchasing are presented.

Pauliina Ulkuniemi

2012-01-01T23:59:59.000Z

119

DOE Awards Task Order for Disposal of Los Alamos National Lab Waste |  

Broader source: Energy.gov (indexed) [DOE]

DOE Awards Task Order for Disposal of Los Alamos National Lab Waste DOE Awards Task Order for Disposal of Los Alamos National Lab Waste DOE Awards Task Order for Disposal of Los Alamos National Lab Waste November 13, 2013 - 12:00pm Addthis Media Contact Bill Taylor, 803-952-8564 bill.taylor@srs.gov Cincinnati - The Department of Energy (DOE) today awarded a task order in support of the Los Alamos National Laboratory Legacy Waste Project to Waste Control Specialists (WCS) of Andrews, Texas under the Environmental Management (EM) Low-Level and Mixed Low-Level Waste Disposal Indefinite Delivery/Indefinite Quantity (ID/IQ) Master Contract. This is a fixed-price task order based on pre-established rates with a $2,225,140 value and has a one-year performance period. The work to be performed under this task order includes the receipt and

120

International Collaboration Activities in Different Geologic Disposal Environments  

Broader source: Energy.gov [DOE]

This report describes the current status of international collaboration regarding geologic disposal research in the Used Fuel Disposition (UFD) Campaign. To date, UFDs International Disposal R...

Note: This page contains sample records for the topic "interest rates disposable" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Used Fuel Disposition Campaign Disposal Research and Development...  

Broader source: Energy.gov (indexed) [DOE]

related to storage, transportation and disposal of used nuclear fuel (UNF) and high level nuclear waste (HLW) generated by existing and future nuclear fuel cycles. The disposal of...

122

A novel nanoparticle-based disposable electrochemical immunosensor...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

nanoparticle-based disposable electrochemical immunosensor for diagnosis of exposure to toxic organophosphorus agents. A novel nanoparticle-based disposable electrochemical...

123

Changes in Vegetation at the Monticello, Utah, Disposal Site...  

Broader source: Energy.gov (indexed) [DOE]

Monticello, Utah, Disposal Cell Cover Monitoring the Performance of an Alternative Landfill Cover at the Monticello, Utah, Uranium Mill Tailings Disposal Site Monitoring the...

124

EIS-0200: Managing Treatment, Storage, and Disposal of Radioactive...  

Broader source: Energy.gov (indexed) [DOE]

00: Managing Treatment, Storage, and Disposal of Radioactive and Hazardous Waste EIS-0200: Managing Treatment, Storage, and Disposal of Radioactive and Hazardous Waste SUMMARY This...

125

Interested Parties - 1603 Program Discussion | Department of...  

Broader source: Energy.gov (indexed) [DOE]

1603 Program Discussion Interested Parties - 1603 Program Discussion weekswagle.pdf More Documents & Publications Interested Parties - Myriant Interested Parties - NRG Energy...

126

Interested Parties - Energy Solutions | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

- Energy Solutions EnergySolutions.pdf More Documents & Publications Interested Parties - NRG Energy Interested Parties - Myriant Interested Parties - 1603 Program Discussion...

127

Communications from Interested Parties | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

September 17, 2009 Interested Parties - Organization for International Investment September 16, 2009 Interested Parties - MIT September 8, 2009 Interested Parties - Nuclear Energy...

128

Communications from Interested Parties | Department of Energy  

Energy Savers [EERE]

September 14, 2010 Interested Parties - Xtreme Power September 3, 2010 Interested Parties - Smith Dawson & Andrews August 10, 2010 Interested Parties - MEMA previous 1 2 3 4 5 next...

129

Interested Parties - Chrystler | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Parties - Chrystler 06-22-10Chrystler.pdf More Documents & Publications Interested Parties - Smith Dawson & Andrews Interested Parties - Myriant Interested Parties - Dow Chemical...

130

Decreasing Utility Contract Interest through Annual Payments | Department  

Broader source: Energy.gov (indexed) [DOE]

Decreasing Utility Contract Interest through Annual Payments Decreasing Utility Contract Interest through Annual Payments Decreasing Utility Contract Interest through Annual Payments October 7, 2013 - 2:23pm Addthis Federal agencies can leverage annual payments to get the best value from utility energy service contracts by decreasing total interest paid. Annual payments allow Federal agencies to pay for an entire fiscal year (12 months) of payments in advance. This method is attractive to finance companies and may also fit Federal budget and funding constraints, saving a substantial amount of interest expense. Savings are generated because financing is amortized faster and less interest accrues over the term of the project funding. It is important to note that the interest rate used for a monthly amortization is lower than that used for an annual amortization

131

The Salt Defense Disposal Investigations (SDDI)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Salt Defense Disposal Investigations (SDDI) Salt Defense Disposal Investigations (SDDI) will utilize a newly mined Underground Research Lab (URL) in WIPP to perform a cost effective, proof-of-principle field test of the emplacement of heat-generating radioactive waste and validate modeling efforts. The goals of the SDDI Thermal Test are to: * Demonstrate a proof-of-principle concept for in-drift disposal in salt. * Investigate, in a specific emplacement concept, the response of the salt to heat. * Develop a full-scale response for run-of- mine (ROM) salt. * Develop a validated coupled process model for disposal of heat-generating wastes in salt. * Evaluate the environmental conditions of the

132

Acquisition, Use, and Disposal of Real Estate  

Broader source: Energy.gov (indexed) [DOE]

Chapter 17.3 (March 2011) Chapter 17.3 (March 2011) 1 Acquisition, Use, and Disposal of Real Estate References DEAR 917.74 - Acquisition, Use, and Disposal of Real Estate DOE Directives DOE Order 413.3B, Program and Project Management for the Acquisition of Capital Assets, or current version DOE Order 430.1B, Real Property Asset Management, or current version Overview This section provides internal Departmental information and DOE and NNSA points of contact for issues dealing with real estate acquisition, use, and disposal for cost reimbursement and fixed price contracts when in performance of the contract, the contractor will acquire or proposes to acquire use of real property. Background DEAR Subpart 917.74 - Acquisition, Use, and Disposal of Real Estate provides the policy and

133

Policy Issues in Nuclear Waste Disposal  

Science Journals Connector (OSTI)

The Congressional Research Service, in an issue brief on nuclear waste disposal, compactly described a common assessment when it noted that nuclear waste has sometimes been called the Achilles heel of the nu...

2005-01-01T23:59:59.000Z

134

A disposable, self-administered electrolyte test  

E-Print Network [OSTI]

This thesis demonstrates the novel concept that it is possible to make a disposable, self-administered electrolyte test to be introduced to the general consumer market. Although ion specific electrodes have been used to ...

Prince, Ryan, 1977-

2003-01-01T23:59:59.000Z

135

Available Options for Waste Disposal [and Discussion  

Science Journals Connector (OSTI)

...vitrified high-activity waste in properly selected deep...alternatives to present projects of waste disposal, but rather as...benefits will be different. Long-term storage of either spent fuel or vitrified waste, although not an alternative...

1986-01-01T23:59:59.000Z

136

US nuclear waste: Widespread problem of disposal  

Science Journals Connector (OSTI)

... individual states in the United States to develop facilities for disposal of low-level radioactive waste produced by ... produced by nuclear reactors, industry and biomdical research and treatment. The federal Low-Level ...

Christopher Earl

1984-07-19T23:59:59.000Z

137

Assessment of Preferred Depleted Uranium Disposal Forms  

SciTech Connect (OSTI)

The Department of Energy (DOE) is in the process of converting about 700,000 metric tons (MT) of depleted uranium hexafluoride (DUF6) containing 475,000 MT of depleted uranium (DU) to a stable form more suitable for long-term storage or disposal. Potential conversion forms include the tetrafluoride (DUF4), oxide (DUO2 or DU3O8), or metal. If worthwhile beneficial uses cannot be found for the DU product form, it will be sent to an appropriate site for disposal. The DU products are considered to be low-level waste (LLW) under both DOE orders and Nuclear Regulatory Commission (NRC) regulations. The objective of this study was to assess the acceptability of the potential DU conversion products at potential LLW disposal sites to provide a basis for DOE decisions on the preferred DU product form and a path forward that will ensure reliable and efficient disposal.

Croff, A.G.; Hightower, J.R.; Lee, D.W.; Michaels, G.E.; Ranek, N.L.; Trabalka, J.R.

2000-06-01T23:59:59.000Z

138

CSMRI Bagged Soil Disposal Summary Report  

E-Print Network [OSTI]

.......................................................................................................................... 1 4. Landfill Acceptance and Equipment Appendix G Daily GPS Coordinants of Disposal Location at BFI Foothills Landfill Appendix H Ambient Landfill (Stoller 2005a). After review of the dose assessment report, the CDPHE approved shipment

139

Disposable Bioreactors: Maturation into Pharmaceutical Glycoprotein Manufacturing  

Science Journals Connector (OSTI)

To summarise: the range of disposable bioreactors available on the market offers flexible, cost efficient and time-saving solutions from early process development to large-scale production. Table 1 gives an overv...

Ren Brecht

2010-01-01T23:59:59.000Z

140

Pesticide fate in an aboveground disposal system  

E-Print Network [OSTI]

PESTICIDE FATE IN AN ABOVEGROUND DISPOSAL SYSTEM A Thesis by BRIAN RICHARD VANDERGLAS Submitted to the Graduate College of Texas A 8 M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May 'l988... Major Subject: Soil Science PESTICIDE FATE IN AN ABOVEGROUND DISPOSAL SYSTEM A Thesis by BRIAN RICHARD VANDERGLAS Approved as to style and content by: K. W. Brown (Chair of Committee) John M. Sweeten (Member) Jack D. Price (Member) E. C. A...

Vanderglas, Brian Richard

2012-06-07T23:59:59.000Z

Note: This page contains sample records for the topic "interest rates disposable" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Title I Disposal Sites Annual Report  

Broader source: Energy.gov [DOE]

This report presents the results of long-term surveillance and maintenance activities conducted by the U.S. Department of Energy (DOE) Office of Legacy Management (LM) in 2013 at 19 uranium mill tailings disposal sites established under Title I of the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978. These activities verified that the UMTRCA Title I disposal sites remain in compliance with license requirements.

142

Interested Parties - Pittsburgh Green Innovators | Department...  

Broader source: Energy.gov (indexed) [DOE]

Pittsburgh Green Innovators Interested Parties - Pittsburgh Green Innovators Attachment to Registered Lobbyist Disclosure Form: R More Documents & Publications Interested Parties -...

143

Interested Parties - Organization for International Investment...  

Broader source: Energy.gov (indexed) [DOE]

Organization for International Investment Interested Parties - Organization for International Investment PI.pdf More Documents & Publications Interested Parties - Morgan Wright...

144

Wind Power Excites Utility Interest  

Science Journals Connector (OSTI)

...rated at 200 kilowatts peak power output in Clayton, N.M...megawatts (2000 kilowatts) peak power output, is undergoing initial...output fed into the grid of the Bonneville Power Administration. Boeing estimates its machine...

R. JEFFREY SMITH

1980-02-15T23:59:59.000Z

145

Long-term surveillance plan for the Mexican Hat Disposal Site, Mexican Hat, Utah  

SciTech Connect (OSTI)

This plan describes the long-term surveillance activities for the Uranium Mill Tailings Remedial Action (UMTRA) Project disposal site at Mexican Hat, Utah. The U.S. Department of Energy (DOE) will carry out these activities to ensure that the disposal site continues to function as designed. This long-term surveillance plan (LTSP) was prepared as a requirement for acceptance under the U.S. Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive material (RRM). This LTSP (based on the DOE`s Guidance for Implementing the UMTRA Project Long-term Surveillance Program), documents the land ownership interests and details how the long-term care of the disposal site will be accomplished.

NONE

1996-02-01T23:59:59.000Z

146

Clean Cities: National Clean Fleets Partner: Advanced Disposal Services  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced Advanced Disposal Services to someone by E-mail Share Clean Cities: National Clean Fleets Partner: Advanced Disposal Services on Facebook Tweet about Clean Cities: National Clean Fleets Partner: Advanced Disposal Services on Twitter Bookmark Clean Cities: National Clean Fleets Partner: Advanced Disposal Services on Google Bookmark Clean Cities: National Clean Fleets Partner: Advanced Disposal Services on Delicious Rank Clean Cities: National Clean Fleets Partner: Advanced Disposal Services on Digg Find More places to share Clean Cities: National Clean Fleets Partner: Advanced Disposal Services on AddThis.com... Goals & Accomplishments Partnerships National Clean Fleets Partnership National Parks Initiative Electric Vehicle Infrastructure Training Program Advanced Vehicle Technology Competitions

147

Generic Disposal System Modeling, Fiscal Year 2011 Progress Report |  

Broader source: Energy.gov (indexed) [DOE]

Disposal System Modeling, Fiscal Year 2011 Progress Report Disposal System Modeling, Fiscal Year 2011 Progress Report Generic Disposal System Modeling, Fiscal Year 2011 Progress Report The UFD Campaign is developing generic disposal system models (GDSM) of different disposal environments and waste form options. Currently, the GDSM team is investigating four main disposal environment options: mined repositories in three geologic media (salt, clay, and granite) and the deep borehole concept in crystalline rock (DOE 2010d). Further developed the individual generic disposal system (GDS) models for salt, granite, clay, and deep borehole disposal environments. GenericDisposalSystModelFY11.pdf More Documents & Publications Integration of EBS Models with Generic Disposal System Models TSPA Model Development and Sensitivity Analysis of Processes Affecting

148

Radiological performance assessment for the E-Area Vaults Disposal Facility  

SciTech Connect (OSTI)

The E-Area Vaults (EAVs) located on a 200 acre site immediately north of the current LLW burial site at Savannah River Site will provide a new disposal and storage site for solid, low-level, non-hazardous radioactive waste. The EAV Disposal Facility will contain several large concrete vaults divided into cells. Three types of structures will house four designated waste types. The Intermediate Level Non-Tritium Vaults will receive waste radiating greater than 200 mR/h at 5 cm from the outer disposal container. The Intermediate Level Tritium Vaults will receive waste with at least 10 Ci of tritium per package. These two vaults share a similar design, are adjacent, share waste handling equipment, and will be closed as one facility. The second type of structure is the Low Activity Waste Vaults which will receive waste radiating less than 200 mR/h at 5 cm from the outer disposal container and containing less than 10 Ci of tritium per package. The third facility, the Long Lived Waste Storage Building, provides covered, long term storage for waste containing long lived isotopes. Two additional types of disposal are proposed: (1) trench disposal of suspect soil, (2) naval reactor component disposal. To evaluate the long-term performance of the EAVs, site-specific conceptual models were developed to consider: (1) exposure pathways and scenarios of potential importance; (2) potential releases from the facility to the environment; (3) effects of degradation of engineered features; (4) transport in the environment; (5) potential doses received from radionuclides of interest in each vault type.

Cook, J.R.; Hunt, P.D. [Westinghouse Savannah River Co., Aiken, SC (United States)

1994-04-15T23:59:59.000Z

149

NRC Monitoring of Salt Waste Disposal at the Savannah River Site - 13147  

SciTech Connect (OSTI)

As part of monitoring required under Section 3116 of the Ronald W. Reagan National Defense Authorization Act for Fiscal Year 2005 (NDAA), the NRC staff reviewed an updated DOE performance assessment (PA) for salt waste disposal at the Saltstone Disposal Facility (SDF). The NRC staff concluded that it has reasonable assurance that waste disposal at the SDF meets the 10 CFR 61 performance objectives for protection of individuals against intrusion (chap.61.42), protection of individuals during operations (chap.61.43), and site stability (chap.61.44). However, based on its evaluation of DOE's results and independent sensitivity analyses conducted with DOE's models, the NRC staff concluded that it did not have reasonable assurance that DOE's disposal activities at the SDF meet the performance objective for protection of the general population from releases of radioactivity (chap.61.41) evaluated at a dose limit of 0.25 mSv/yr (25 mrem/yr) total effective dose equivalent (TEDE). NRC staff also concluded that the potential dose to a member of the public is expected to be limited (i.e., is expected to be similar to or less than the public dose limit in chap.20.1301 of 1 mSv/yr [100 mrem/yr] TEDE) and is expected to occur many years after site closure. The NRC staff used risk insights gained from review of the SDF PA, its experience monitoring DOE disposal actions at the SDF over the last 5 years, as well as independent analysis and modeling to identify factors that are important to assessing whether DOE's disposal actions meet the performance objectives. Many of these factors are similar to factors identified in the NRC staff's 2005 review of salt waste disposal at the SDF. Key areas of interest continue to be waste form and disposal unit degradation, the effectiveness of infiltration and erosion controls, and estimation of the radiological inventory. Based on these factors, NRC is revising its plan for monitoring salt waste disposal at the SDF in coordination with South Carolina Department of Health and Environmental Control (SCDHEC). DOE has completed or begun additional work related to salt waste disposal to address these factors. NRC staff continues to evaluate information related to the performance of the SDF and has been working with DOE and SCDHEC to resolve NRC staff's technical concerns. (authors)

Pinkston, Karen E.; Ridge, A. Christianne; Alexander, George W.; Barr, Cynthia S.; Devaser, Nishka J.; Felsher, Harry D. [U.S. Nuclear Regulatory Commission (United States)] [U.S. Nuclear Regulatory Commission (United States)

2013-07-01T23:59:59.000Z

150

Oil field waste disposal in salt caverns: An information website  

SciTech Connect (OSTI)

Argonne National Laboratory has completed the construction of a Website for the US Department of Energy (DOE) that provides detailed information on salt caverns and their use for disposing of nonhazardous oil field wastes (NOW) and naturally occurring radioactive materials (NORM). Specific topics in the Website include the following: descriptions of salt deposits and salt caverns within the US, salt cavern construction methods, potential types of wastes, waste emplacement, regulatory issues, costs, carcinogenic and noncarcinogenic human health risks associated with postulated cavern release scenarios, new information on cavern disposal (e.g., upcoming meetings, regulatory issues, etc.), other studies supported by the National Petroleum Technology Office (NPTO) (e.g., considerations of site location, cavern stability, development issues, and bedded salt characterization in the Midland Basin), and links to other associated Web sites. In addition, the Website allows downloadable access to reports prepared on the topic that were funded by DOE. Because of the large quantities of NOW and NORM wastes generated annually by the oil industry, information presented on this Website is particularly interesting and valuable to project managers, regulators, and concerned citizens.

Tomasko, D.; Veil, J. A.

1999-12-10T23:59:59.000Z

151

Tritiated wastewater treatment and disposal evaluation for 1995  

SciTech Connect (OSTI)

A second annual summary and analysis of potential processes for the mitigation of tritium contained in process effluent, ground water and stored waste is presented. It was prepared to satisfy the Hanford Federal Facility and Consent Order (Tri-Party Agreement) Milestone M-26-05B. Technologies with directed potential for separation of tritium at present environmental levels are organized into two groups. The first group consists of four processes that have or are undergoing significant development. Of these four, the only active project is the development of membrane separation technology at the Pacific Northwest Laboratory (PNL). Although research is progressing, membrane separation does not present a near term option for the mitigation of tritium. A second grouping of five early stage projects gives an indication of the breadth of interest in low level tritium separation. If further developed, two of these technologies might prove to be candidates for a separation process. At the present, there continues to be no known commercially available process for the practical reduction of the tritium burden in process effluent. Material from last year`s report regarding the occurrence, regulation and management of tritium is updated and included in the appendices of this report. The use of the State Approved Land Disposal Site (SALDS) for disposal of tritiated effluent from the 200 Area Effluent Treatment Facility (ETF) begins in the fall of 1995. This is the most significant event impacting tritium in the environment at the Hanford Site this coming year.

Allen, W.L. [Westinghouse Hanford Co., Richland, WA (United States)

1995-08-01T23:59:59.000Z

152

The environmental biogeochemistry of chelating agents and recommendations for the disposal of chelated radioactive wastes  

Science Journals Connector (OSTI)

Chelating agents are used in nuclear decontamination operations because they form very selective and strong complexes with numerous radionuclides. However, if environmentally-persistent chelated wastes are disposed of without pretreatment to eliminate the chelating agents, increased radionuclide migration rates from the disposal sites may occur. The environmental chemistry of the three most common aminopolycarboxylic acid chelating agents, NTA (nitrilotriacetic acid), EDTA (ethylenediaminetetraacetic acid), and DTPA (diethylenetriaminepentaacetic acid) is reviewed. This review includes information on their persistence in the environment, as well as their tendency to form complexes with actinides. Data on the sorption of chelated actinides by geologic substrates and on the uptake of chelated actinides by plants are also presented. Increased solubility and/or migration of radionuclides by chelating agents used in decontamination operations have been observed at two different radioactive waste burial grounds. EDTA was found to be promoting the migration of 6OCo and possibly other radionuclides from liquid waste disposal sites at Oak Ridge National Laboratory (1). Recently EDTA has again been identified in radioactive wastes-this time in trench waters containing from 60016,100 pCi 238Pu per liter from solid waste burial grounds in Maxey Flats, Kentucky (2). These observations at Oak Ridge and Maxey Flats suggest that the practice of disposing chelated radioactive wastes should be reevaluated. Three different technical options for disposing chelated low-level radioactive wastes are proposed: 1. [1] Bind the solidified chelated waste in some kind of solid matrix that has a slow leach rate and bury the waste in a dry disposal site. 2. [2] Substitute biodegradable chelating agents in the decontamination reagent for the chelating agents that are persistent in the environment. 3. [3] Chemically or thermally degrade the chelating agents in the waste prior to disposal. The relative advantages and disadvantages of each of these options are discussed. We feel that surprisingly little attention has been given to an obvious procedure for the disposal of chelated radioactive wastes: chemically or thermally degrading the chelating agent prior to disposal. Any of the above three options might in fact be a satisfactory approach to the disposal of chelated wastes. However, we suggest that the burial of chelating agents such as EDTA be avoided and that option [3] be given more consideration.

Jeffrey L. Means; Carl A. Alexander

1981-01-01T23:59:59.000Z

153

Microsoft Word - SRSSaltWasteDisposal.doc  

Broader source: Energy.gov (indexed) [DOE]

Salt Waste Disposal - References - §3116 Determination (RWR NDAA of 2005) Salt Waste Disposal - References - §3116 Determination (RWR NDAA of 2005) Doc. No. Filename Title Main Document References 1. 2005 RWR DAA §3116 NDAA.pdf "Ronald W. Regan National Defense Authorization Act for FY 2005," Section 3116, 2004. 2. CBU-PIT-2004-00024 CBU-PIT-2004-00024.pdf Ledbetter, L. S., CBU-PIT-2004-00024, 12/01/04 - December Monthly WCS Curie and Volume Inventory Report," Revision 0, December 9, 2004. 3. CBU-PIT-2005-00031 CBU-PIT-2005-00031.pdf Rios-Armstrong, M. A., CBU-PIT-2005-00031, "Decontaminated Salt Solution Volume to be transferred to the Saltstone Disposal Facility from Salt Treatment and Disposition Activities," Revision 0, February 13, 2005.

154

Qualifying radioactive waste forms for geologic disposal  

SciTech Connect (OSTI)

We have developed a phased strategy that defines specific program-management activities and critical documentation for producing radioactive waste forms, from pyrochemical processing of spent nuclear fuel, that will be acceptable for geologic disposal by the US Department of Energy. The documentation of these waste forms begins with the decision to develop the pyroprocessing technology for spent fuel conditioning and ends with production of the last waste form for disposal. The need for this strategy is underscored by the fact that existing written guidance for establishing the acceptability for disposal of radioactive waste is largely limited to borosilicate glass forms generated from the treatment of aqueous reprocessing wastes. The existing guidance documents do not provide specific requirements and criteria for nonstandard waste forms such as those generated from pyrochemical processing operations.

Jardine, L.J. [Lawrence Livermore National Lab., CA (United States); Laidler, J.J.; McPheeters, C.C. [Argonne National Lab., IL (United States)

1994-09-01T23:59:59.000Z

155

APS Research Fuels Engineering Interest  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5th, 2003 5th, 2003 APS Research Fuels Engineering Interest Award-winning research on the characteristics of fuel sprays from injectors is one of the featured articles in the May 2003 issue of Mechanical Engineering and on the Web site of that magazine. The studies, carried out at APS's X-ray Operation and Research beamline 1-BM and the Cornell High Energy Synchrotron Source, revealed startling new information about fuel sprays, including the presence of a shockwave as the spray leaves the injector nozzle. Entitled "Penetrating Vision," the article in Mechanical Engineering, by associate editor John DeGaspari, notes that "an investigative technique using x-rays is causing engine designers to sit up and take notice." In the article, Scott Parrish, General Motors R&D senior research engineer, notes

156

Risk assessment of nonhazardous oil-field waste disposal in salt caverns.  

SciTech Connect (OSTI)

Salt caverns can be formed in underground salt formations incidentally as a result of mining or intentionally to create underground chambers for product storage or waste disposal. For more than 50 years, salt caverns have been used to store hydrocarbon products. Recently, concerns over the costs and environmental effects of land disposal and incineration have sparked interest in using salt caverns for waste disposal. Countries using or considering using salt caverns for waste disposal include Canada (oil-production wastes), Mexico (purged sulfates from salt evaporators), Germany (contaminated soils and ashes), the United Kingdom (organic residues), and the Netherlands (brine purification wastes). In the US, industry and the regulatory community are pursuing the use of salt caverns for disposal of oil-field wastes. In 1988, the US Environmental Protection Agency (EPA) issued a regulatory determination exempting wastes generated during oil and gas exploration and production (oil-field wastes) from federal hazardous waste regulations--even though such wastes may contain hazardous constituents. At the same time, EPA urged states to tighten their oil-field waste management regulations. The resulting restrictions have generated industry interest in the use of salt caverns for potentially economical and environmentally safe oil-field waste disposal. Before the practice can be implemented commercially, however, regulators need assurance that disposing of oil-field wastes in salt caverns is technically and legally feasible and that potential health effects associated with the practice are acceptable. In 1996, Argonne National Laboratory (ANL) conducted a preliminary technical and legal evaluation of disposing of nonhazardous oil-field wastes (NOW) into salt caverns. It investigated regulatory issues; the types of oil-field wastes suitable for cavern disposal; cavern design and location considerations; and disposal operations, closure and remediation issues. It determined that if caverns are sited and designed well, operated carefully, closed properly, and monitored routinely, they could, from technical and legal perspectives, be suitable for disposing of oil-field wastes. On the basis of these findings, ANL subsequently conducted a preliminary risk assessment on the possibility that adverse human health effects (carcinogenic and noncarcinogenic) could result from exposure to contaminants released from the NOW disposed of in salt caverns. The methodology for the risk assessment included the following steps: identifying potential contaminants of concern; determining how humans could be exposed to these contaminants; assessing contaminant toxicities; estimating contaminant intakes; and estimating human cancer and noncancer risks. To estimate exposure routes and pathways, four postclosure cavern release scenarios were assessed. These were inadvertent cavern intrusion, failure of the cavern seal, failure of the cavern through cracks, failure of the cavern through leaky interbeds, and partial collapse of the cavern roof. Assuming a single, generic, salt cavern and generic oil-field wastes, potential human health effects associated with constituent hazardous substances (arsenic, benzene, cadmium, and chromium) were assessed under each of these scenarios. Preliminary results provided excess cancer risk and hazard index (for noncancer health effects) estimates that were well within the EPA target range for acceptable exposure risk levels. These results lead to the preliminary conclusion that from a human health perspective, salt caverns can provide an acceptable disposal method for nonhazardous oil-field wastes.

Elcock, D.

1998-03-10T23:59:59.000Z

157

Electrochemical apparatus comprising modified disposable rectangular cuvette  

DOE Patents [OSTI]

Electrochemical apparatus includes a disposable rectangular cuvette modified with at least one hole through a side and/or the bottom. Apparatus may include more than one cuvette, which in practice is a disposable rectangular glass or plastic cuvette modified by drilling the hole(s) through. The apparatus include two plates and some means of fastening one plate to the other. The apparatus may be interfaced with a fiber optic or microscope objective, and a spectrometer for spectroscopic studies. The apparatus are suitable for a variety of electrochemical experiments, including surface electrochemistry, bulk electrolysis, and flow cell experiments.

Dattelbaum, Andrew M; Gupta, Gautam; Morris, David E

2013-09-10T23:59:59.000Z

158

Generic Deep Geologic Disposal Safety Case | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Deep Geologic Disposal Safety Case Deep Geologic Disposal Safety Case Generic Deep Geologic Disposal Safety Case The Generic Deep Geologic Disposal Safety Case presents generic information that is of use in understanding potential deep geologic disposal options in the U.S. for used nuclear fuel (UNF) from reactors and high-level radioactive waste (HLW). Potential disposal options include mined disposal in a variety of geologic media (e.g., salt, shale, granite), and deep borehole disposal in basement rock. The Generic Safety Case is intended to be a source of information to provide answers to questions that may arise as the U.S. works to develop strategies to dispose of current and future inventories of UNF and HLW. DOE is examining combinations of generic geologic media and facility designs that could potentially support

159

The disposal of orphan wastes using the greater confinement disposal concept  

SciTech Connect (OSTI)

In the United States, radioactive wastes are conventionally classified as high-level wastes, transuranic wastes, or low-level wastes. Each of these types of wastes, by law, has a ``home`` for their final disposal; i.e., high-level wastes are destined for disposal at the proposed repository at Yucca Mountain, transuranic waste for the proposed Waste Isolation Pilot Plant, and low-level waste for shallow-land disposal sites. However, there are some radioactive wastes within the United States Department of Energy (DOE) complex that do not meet the criteria established for disposal of either high-level waste, transuranic waste, or low-level waste. The former are called ``special-case`` or ``orphan`` wastes. This paper describes an ongoing project sponsored by the DOE`s Nevada Operations Office for the disposal of orphan wastes at the Radioactive Waste Management Site at Area 5 of the Nevada Test Site using the greater confinement disposal (GCD) concept. The objectives of the GCD project are to evaluate the safety of the site for disposal of orphan wastes by assessing compliance with pertinent regulations through performance assessment, and to examine the feasibility of this disposal concept as a cost-effective, safe alternative for management of orphan wastes within the DOE complex. Decisions on the use of GCD or other alternate disposal concepts for orphan wastes can be expected to be addressed in a Programmatic Environmental Impact Statement being prepared by DOE. The ultimate decision to use GCD will require a Record of Decision through the National Environmental Policy Act (NEPA) process. 20 refs., 3 figs., 2 tabs.

Bonano, E.J.; Chu, M.S.Y.; Price, L.L.; Conrad, S.H. [Sandia National Labs., Albuquerque, NM (USA); Dickman, P.T. [Department of Energy, Las Vegas, NV (USA). Nevada Operations Office

1991-02-01T23:59:59.000Z

160

detonation rate  

Science Journals Connector (OSTI)

detonation rate, detonation velocity, velocity of detonation, V.O.D., detonating velocity, rate of detonation, detonating rate ? Detonationsgeschwindigkeit f

2014-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "interest rates disposable" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Status of UFD Campaign International Activities in Disposal Research |  

Broader source: Energy.gov (indexed) [DOE]

Status of UFD Campaign International Activities in Disposal Status of UFD Campaign International Activities in Disposal Research Status of UFD Campaign International Activities in Disposal Research Several international organizations have made significant progress in the characterization and performance evaluation of other disposal design options and host rock characteristics (clay/shale, granite), most of which were very different from those studied in the United States. The DOE recognizes that close international collaboration is a beneficial and cost effective strategy for advancing disposal science. This report describes the active collaboration opportunities available to U.S. researchers, and presents specific cooperative research activities that have been recently initiated within DOE's disposal research program.

162

On-Site Disposal Facility Inspection Report  

Office of Legacy Management (LM)

72.1 0614 On-Site Disposal Facility Inspection Report June 2014 6319-D6320 8972.2 0614 East Face Cell 1 West Face Cell 1 6319D-6322 6319D-6346 8972.3 0614 North Face Cell 1...

163

Low-level-waste-disposal methodologies  

SciTech Connect (OSTI)

This report covers the followng: (1) history of low level waste disposal; (2) current practice at the five major DOE burial sites and six commercial sites with dominant features of these sites and radionuclide content of major waste types summarized in tables; (3) site performance with performance record on burial sites tabulated; and (4) proposed solutions. Shallow burial of low level waste is a continuously evolving practice, and each site has developed its own solutions to the handling and disposal of unusual waste forms. There are no existing national standards for such disposal. However, improvements in the methodology for low level waste disposal are occurring on several fronts. Standardized criteria are being developed by both the Nuclear Regulatory Commission (NRC) and by DOE. Improved techniques for shallow burial are evolving at both commercial and DOE facilities, as well as through research sponsored by NRC, DOE, and the Environmental Protection Agency. Alternatives to shallow burial, such as deeper burial or the use of mined cavities is also being investigated by DOE.

Wheeler, M.L.; Dragonette, K.

1981-01-01T23:59:59.000Z

164

COUEB N T ED Safe Disposal of  

E-Print Network [OSTI]

COUEB N T ED Safe Disposal of Household Chemicals: Protect Yourself and Your Community see inside Minutes The 2010 census asks 10 questions that most households can answer in 10 minutes! You will be asked the name, age, gender, race, ethnic group (if Hispanic), and relationship of all persons living at your

Liskiewicz, Maciej

165

System-Level Logistics for Dual Purpose Canister Disposal  

SciTech Connect (OSTI)

The analysis presented in this report investigated how the direct disposal of dual purpose canisters (DPCs) may be affected by the use of standard transportation aging and disposal canisters (STADs), early or late start of the repository, and the repository emplacement thermal power limits. The impacts were evaluated with regard to the availability of the DPCs for emplacement, achievable repository acceptance rates, additional storage required at an interim storage facility (ISF) and additional emplacement time compared to the corresponding repackaging scenarios, and fuel age at emplacement. The result of this analysis demonstrated that the biggest difference in the availability of UNF for emplacement between the DPC-only loading scenario and the DPCs and STADs loading scenario is for a repository start date of 2036 with a 6 kW thermal power limit. The differences are also seen in the availability of UNF for emplacement between the DPC-only loading scenario and the DPCs and STADs loading scenario for the alternative with a 6 kW thermal limit and a 2048 start date, and for the alternatives with a 10 kW thermal limit and 2036 and 2048 start dates. The alternatives with disposal of UNF in both DPCs and STADs did not require additional storage, regardless of the repository acceptance rate, as compared to the reference repackaging case. In comparison to the reference repackaging case, alternatives with the 18 kW emplacement thermal limit required little to no additional emplacement time, regardless of the repository start time, the fuel loading scenario, or the repository acceptance rate. Alternatives with the 10 kW emplacement thermal limit and the DPCs and STADs fuel loading scenario required some additional emplacement time. The most significant decrease in additional emplacement time occurred in the alternative with the 6 kW thermal limit and the 2036 repository starting date. The average fuel age at emplacement ranges from 46 to 88 years. The maximum fuel age at emplacement ranges from 81 to 146 years. The difference in the average and maximum age of fuel at emplacement between the DPC-only and the DPCs and STADs fuel loading scenarios becomes less significant as the repository thermal limit increases and as the repository start date increases. In general, the role of STADs is to store young (30 year or younger) high burnup (45 GWD/MTU or higher) fuel. Recommendations for future study include detailed evaluation of the feasible alternatives with regard to the costs and factors not considered in this analysis, such as worker dose, dose to members of the public, and economic benefits to host entities. It is also recommended to conduct an additional analysis to evaluate the assumption regarding the transportability and disposability of DPCs for the next iteration of the direct disposal of DPCs study.

Kalinina, Elena A.

2014-06-03T23:59:59.000Z

166

DOE - Office of Legacy Management -- Burro Canyon Disposal Cell...  

Office of Legacy Management (LM)

materials from the Slick RockOld North Continent site and the Slick RockUnion Carbide site were disposed of in this dedicated disposal cell. The Department of Energys...

167

INNOVATIVE DISPOSAL PRACTICES AT THE NEVADA TEST SITE TO MEET...  

National Nuclear Security Administration (NNSA)

Innovative Disposal Practices at the Nevada Test Site to Meet Its Low-Level Waste Generators' Future Disposal Needs E.F. Di Sanza, J.T. Carilli U.S. Department of Energy National...

168

Strategy for the Management and Disposal of Used Nuclear Fuel...  

Broader source: Energy.gov (indexed) [DOE]

Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level...

169

Maintenance Guide for DOE Low-Level Waste Disposal Facility ...  

Office of Environmental Management (EM)

Guide for DOE Low-Level Waste Disposal Facility Maintenance Guide for U.S. Department of Energy Low-Level Waste Disposal Facility Performance Assessments and Composite Analyses...

170

Nuclear Waste Disposal: Can the Geologist Guarantee Isolation?  

Science Journals Connector (OSTI)

...to check whether waste disposal really does need an almost...been reported recently at Maxey Flats (Kentucky) (26...radioactive waste burial site, inside a fractured rock...effect of the geological disposal is to con-centrate 3530...

G. de Marsily; E. Ledoux; A. Barbreau; J. Margat

1977-08-05T23:59:59.000Z

171

SUBAQUEOUS DISPOSAL OF MILL TAILINGS  

SciTech Connect (OSTI)

A study of mill tailings and sulfide minerals was carried out in order to understand their behavior under subaqueous conditions. A series of electrochemical experiments, namely, cyclic voltammetry, electrochemical impedance spectroscopy and galvanic coupling tests were carried out in artificial seawater and in pH 6.8 buffer solutions with chloride and ferric salts. Two mill tailings samples, one from the Kensington Mine, Alaska, and the other from the Holden Mine, Washington, were studied along with pyrite, galena, chalcopyrite and copper-activated sphalerite. SEM analysis of mill tailings revealed absence of sulfide minerals from the Kensington Mine mill tailings, whereas the Holden Mine mill tailings contained approximately 8% pyrite and 1% sphalerite. In order to conduct electrochemical tests, carbon matrix composite (CMC) electrodes of mill tailings, pyrite and galena were prepared and their feasibility was established by conducting a series of cyclic voltammetry tests. The cyclic voltammetry experiments carried out in artificial seawater and pH 6.8 buffer with chloride salts showed that chloride ions play an important role in the redox processes of sulfide minerals. For pyrite and galena, peaks were observed for the formation of chloride complexes, whereas pitting behavior was observed for the CMC electrodes of the Kensington Mine mill tailings. The electrochemical impedance spectroscopy conducted in artificial seawater provided with the Nyquist plots of pyrite and galena. The Nyquist plots of pyrite and galena exhibited an inert range of potential indicating a slower rate of leaching of sulfide minerals in marine environments. The galvanic coupling experiments were carried out to study the oxidation of sulfide minerals in the absence of oxygen. It was shown that in the absence of oxygen, ferric (Fe3+) ions might oxidize the sulfide minerals, thereby releasing undesirable oxidation products in the marine environment. The source of Fe{sup 3{minus}} ions may be attributed to iron-bearing sulfide (and oxide) minerals present in the mill tailings. However, the concentration of available Fe{sup 3{minus}} ions can be reduced by the precipitation of insoluble ferric hydroxides (Fe(OH ){sub 3}) by seawater due to its near neutral pH. In such case, the oxidation of a sulfide mineral is inhibited due to the absence of an oxidizing agent (viz. oxygen and/or Fe{sup 3+} ions). The experiments carried out in this study provided a better understanding of behavior of sulfide minerals and mill tailings in subaqueous conditions and may be useful for further investigation of sulfide minerals and mill tailings in other environments.

Neeraj K. Mendiratta; Roe-Hoan Yoon; Paul Richardson

1999-09-03T23:59:59.000Z

172

Acceptance of Classified Excess Components for Disposal at Area 5  

SciTech Connect (OSTI)

This slide-show discusses weapons dismantlement and disposal, issues related to classified waste and their solutions.

Poling, Jeanne [National Security Technologies, LLC (United States); Saad, Max [Sandia National Lab., NM (United States)

2012-04-09T23:59:59.000Z

173

Transportation, Aging and Disposal Canister System Performance Specification: Revision 1  

Broader source: Energy.gov [DOE]

This document provides specifications for selected system components of the Transportation, Aging and Disposal (TAD) canister-based system.

174

Disposability Assessment: Aluminum-Based Spent Nuclear Fuel Forms  

SciTech Connect (OSTI)

This report provides a technical assessment of the Melt-Dilute and Direct Al-SNF forms in disposable canisters with respect to meeting the requirements for disposal in the Mined Geologic Disposal System (MGDS) and for interim dry storage in the Treatment and Storage Facility (TSF) at SRS.

Vinson, D.W.

1998-11-06T23:59:59.000Z

175

Landfill Disposal of CCA-Treated Wood with Construction and  

E-Print Network [OSTI]

Landfill Disposal of CCA-Treated Wood with Construction and Demolition (C&D) Debris: Arsenic phased out of many residential uses in the United States, the disposal of CCA-treated wood remains. Catastrophic events have also led to the concentrated disposal of CCA-treated wood, often in unlined landfills

Florida, University of

176

US DOE-EM On-Site Disposal Cell Working Group - Fostering Communication On Performance Assessment Challenges  

SciTech Connect (OSTI)

On-site disposal cells are in use and being considered at several U.S. Department of Energy (USDOE) sites as the final disposition for large amounts of waste associated with cleanup of contaminated areas and facilities. These facilities are typically developed with regulatory oversight from States and/or the US Environmental Protection Agency (USEPA) in addition to USDOE. The facilities are developed to meet design standards for disposal of hazardous waste as well as the USDOE performance based standards for disposal of radioactive waste. The involvement of multiple and different regulators for facilities across separate sites has resulted in some differences in expectations for performance assessments and risk assessments (PA/RA) that are developed for the disposal facilities. The USDOE-EM Office of Site Restoration formed a working group to foster improved communication and sharing of information for personnel associated with these Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) disposal cells and work towards more consistent assumptions, as appropriate, for technical and policy considerations related to performance and risk assessments in support of a Record of Decision and Disposal Authorization Statement. The working group holds teleconferences, as needed, focusing on specific topics of interest. The topics addressed to date include an assessment of the assumptions used for performance assessments and risk assessments (PA/RAs) for on-site disposal cells, requirements and assumptions related to assessment of inadvertent intrusion, DOE Manual 435.1-1 requirements, and approaches for consideration of the long-term performance of liners and covers in the context of PAs. The working group has improved communication among the staff and oversight personnel responsible for onsite disposal cells and has provided a forum to identify and resolve common concerns.

Seitz, Roger R. [Savannah River Site (SRS), Aiken, SC (United States); Suttora, Linda C. [U.S. Department of Energy, Office of Site Restoration, Germantown, MD (United States); Phifer, Mark [Savannah River Site (SRS), Aiken, SC (United States)

2014-03-01T23:59:59.000Z

177

Long-term surveillance plan for the Bodo Canyon Disposal Site, Durango, Colorado. Revision 1  

SciTech Connect (OSTI)

This long-term surveillance plan (LTSP) for the Uranium Mill Tailings Remedial Act on (UMTRA) Project Bodo Canyon disposal site at Durango, Colorado, describes the surveillance activities for the disposal site. The US Department of Energy (DOE) will carry out these activities to ensure that the disposal call continues to function as designed This LTSP was prepared as a requirement for DOE acceptance under the US Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive materials (RRM) from processing uranium ore. This LTSP documents that the land and interests are owned by the United States and details how long-term care of the disposal site will be carried out. It is based on the DOE`s Guidance for Implementing the UMTRA Project Long-term Surveillance Program (DOE, 1992a). Following the introduction, contents of this report include the following: site final condition; site drawings and photographs; permanent site surveillance features; ground water monitoring; annual site inspections; unscheduled inspections; custodial maintenance; corrective action; record keeping and reporting requirements; emergency notification and reporting; quality assurance; personal health and safety; list of contributions; and references.

NONE

1995-11-01T23:59:59.000Z

178

Chapter 8 - Coal Combustion Residue Disposal Options  

Science Journals Connector (OSTI)

Abstract Coal combustion residues (CCRs) are presently regulated as solid waste (Subtitle D) under the Resource Conservation Recovery Act. Such classification promotes beneficial use by end-users i.e. mitigating excessive liability. According to the US Environmental Protection agency (USEPA), about 131million tons of coal combustion residualsincluding 71million tons of fly ash, 20million tons of bottom ash and boiler slag, and 40million tons of flue gas desulfurization (FGD) materialwere generated in the US in 2007. Of this, approximately 36% was disposed of in landfills, 21% was disposed of in surface impoundments, 38% was beneficially reused, and 5% was used as minefill. Stringent regulation, as Subtitle C (hazardous waste), would impose a perceived liability upon end-users; greatly reducing beneficial use opportunities. Mandatory use of synthetic linerswould not have prevented dike wall failure and fails to consider inherent engineering characteristics of CCRs.

Richard W. Goodwin

2014-01-01T23:59:59.000Z

179

COMPLETION OF THE TRANSURANIC GREATER CONFINEMENT DISPOSAL BOREHOLE PERFORMANCE ASSESSMENT FOR THE NEVADA TEST SITE  

SciTech Connect (OSTI)

Classified transuranic material that cannot be shipped to the Waste Isolation Pilot Plant in New Mexico is stored in Greater Confinement Disposal boreholes in the Area 5 Radioactive Waste Management Site on the Nevada Test Site. A performance assessment was completed for the transuranic inventory in the boreholes and submitted to the Transuranic Waste Disposal Federal Review Group. The performance assessment was prepared by Sandia National Laboratories on behalf of the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office using an iterative methodology that assessed radiological releases from the intermediate depth disposal configuration against the regulatory requirements of the 1985 version of 40 CFR 191 of the U.S. Environmental Protection Agency. The transuranic materials are stored at 21 to 37 m depth (70 to 120 ft) in large diameter boreholes constructed in the unsaturated alluvial deposits of Frenchman Flat. Hydrologic processes that affect long- term isolation of the radionuclides are dominated by extremely slow upward rates of liquid/vapor advection and diffusion; there is no downward pathway under current climatic conditions and there is no recharge to groundwater under future ''glacial'' climatic conditions. A Federal Review Team appointed by the Transuranic Waste Disposal Federal Review Group reviewed the Greater Confinement Disposal performance assessment and found that the site met the majority of the regulatory criteria of the 1985 and portions of the 1993 versions of 40 CFR 191. A number of technical and procedural issues required development of supplemental information that was incorporated into a final revision of the performance assessment. These issues include inclusion of radiological releases into the complementary cumulative distribution function for the containment requirements associated with drill cuttings from inadvertent human intrusion, verification of mathematical models used in the performance assessment, inclusion of dose calculations from collocated low-level waste in the boreholes for the individual protection requirements, further assessments of engineered barriers and conditions associated with the assurance requirements, and expansion of documentation provided for assessing the groundwater protection requirements. The Transuranic Waste Disposal Federal Review Group approved the performance assessment for Greater Confinement Disposal boreholes in 2001 and did not approve the Application of the Assurance Requirements. Remaining issues concerned with engineered barriers and the multiple aspects of the Assurance Requirements will be resolved at the time of closure of the Area 5 Radioactive Waste Management Site. This is the first completion and acceptance of a performance assessment for transuranic materials under the U.S. Department of Energy self-regulation. The Greater Confinement Disposal boreholes are only the second waste disposal configuration to meet the safety regulatory requirements of 40 CFR 191.

Colarusso, Angela; Crowe, Bruce; Cochran, John R.

2003-02-27T23:59:59.000Z

180

Technical and philosophical aspects of ocean disposal  

E-Print Network [OSTI]

Di sposai . Geological aspects Physical aspects Chemical aspects Biological aspects CHAPTER II. TECHNICAL ASPECTS OF OCEAN DISPOSAL Types of Waste Materials. Dredged materiais. Industrial wastes, DomestIc sewage wa tes Solid wastes Radloact..., can reduce the passage of light through the water column and cause damaging effects to the marine ecosystem. Each of five major oceans has pronounced gyral, or circular current motion (Fiaure 1. 1). The North Atlantic current system is comprised...

Zapatka, Marchi Charisse

1976-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "interest rates disposable" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Geochemical aspects of radioactive waste disposal  

SciTech Connect (OSTI)

The book addresses various topics related to the geochemistry of waste disposal: natural radioactivity, kinds of radioactive waste, details of possible disposal sites, low-level waste, uranium mill tailing, natural analogs, waste forms, and engineered barriers. Emphasis throughout is on the importance of natural analogs, the behavior of elements resembling those to be put in a waste repository as they occur in natural situations where the temperature, pressure, and movement of ground water are similar to those expected near a repository. The author is convinced that conclusions drawn from the study of analog elements are directly applicable to predictions about radionuclide behavior, and that the observed near-immobility of most of these elements in comparable geologic environments is good evidence that radioactive waste can be disposed of underground with negligible effects on the biosphere. Much of his own research has been in this area, and the best parts of the book are the descriptions of his work on trace elements in the salt minerals at the Waste Isolation Pilot Plant in southeastern New Mexico, on the movement of radionuclides and their daughter elements from the famous Precambrian reactor at Oklahoma in Gabon, and on the distribution of analog elements in rocks near the contacts of igneous intrusions.

Brookins, D.G.

1984-01-01T23:59:59.000Z

182

Utility Wind Interest Group | Open Energy Information  

Open Energy Info (EERE)

Wind Interest Group Wind Interest Group Jump to: navigation, search Name Utility Wind Interest Group Place Reston, Virginia Zip VI 20195 Sector Wind energy Product The Utility Wind Interest Group (UWIG) is a non-profit corporation whose mission is to accelerate the appropriate integration of wind power into the electric system. References Utility Wind Interest Group[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Wind Interest Group is a company located in Reston, Virginia . References ↑ "Utility Wind Interest Group" Retrieved from "http://en.openei.org/w/index.php?title=Utility_Wind_Interest_Group&oldid=352690" Categories: Clean Energy Organizations

183

Other Purdue Web points of Interest  

E-Print Network [OSTI]

Other Purdue Web points of interest. Purdue University Home Page --- Schedule of Classes Graduate School Agronomy Computer Science --- CS & E...

184

Innovative Technique Accelerates Waste Disposal at Idaho Site | Department  

Broader source: Energy.gov (indexed) [DOE]

Innovative Technique Accelerates Waste Disposal at Idaho Site Innovative Technique Accelerates Waste Disposal at Idaho Site Innovative Technique Accelerates Waste Disposal at Idaho Site May 15, 2013 - 12:00pm Addthis A product drum of mixed low-level waste is lowered into a high-density polyethylene macro-pack. A product drum of mixed low-level waste is lowered into a high-density polyethylene macro-pack. Macro-packs from the Idaho site are shown here safely and compliantly disposed. Macro-packs from the Idaho site are shown here safely and compliantly disposed. A product drum of mixed low-level waste is lowered into a high-density polyethylene macro-pack. Macro-packs from the Idaho site are shown here safely and compliantly disposed. IDAHO FALLS, Idaho - An innovative treatment and disposal technique is enabling the Idaho site to accelerate shipments of legacy nuclear waste for

185

DOE Applauds Opening of Historic Disposal Facility | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Applauds Opening of Historic Disposal Facility Applauds Opening of Historic Disposal Facility DOE Applauds Opening of Historic Disposal Facility June 6, 2013 - 12:00pm Addthis The Waste Control Specialists Federal Waste Disposal Facility in Andrews, Texas. The Waste Control Specialists Federal Waste Disposal Facility in Andrews, Texas. ANDREWS, Texas - DOE officials participated in an event today to celebrate the opening of the first commercial disposal facility of its kind. EM Senior Advisor Dave Huizenga and several other federal, state and local officials attended the event at Waste Control Specialists (WCS) in Andrews and witnessed the first container being placed in the new state-of-the-art facility. WCS is a waste processing and disposal company. "I am proud to be here today to celebrate this historic event. We

186

Innovative Technique Accelerates Waste Disposal at Idaho Site | Department  

Broader source: Energy.gov (indexed) [DOE]

Innovative Technique Accelerates Waste Disposal at Idaho Site Innovative Technique Accelerates Waste Disposal at Idaho Site Innovative Technique Accelerates Waste Disposal at Idaho Site May 15, 2013 - 12:00pm Addthis A product drum of mixed low-level waste is lowered into a high-density polyethylene macro-pack. A product drum of mixed low-level waste is lowered into a high-density polyethylene macro-pack. Macro-packs from the Idaho site are shown here safely and compliantly disposed. Macro-packs from the Idaho site are shown here safely and compliantly disposed. A product drum of mixed low-level waste is lowered into a high-density polyethylene macro-pack. Macro-packs from the Idaho site are shown here safely and compliantly disposed. IDAHO FALLS, Idaho - An innovative treatment and disposal technique is enabling the Idaho site to accelerate shipments of legacy nuclear waste for

187

DOE Applauds Opening of Historic Disposal Facility | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

DOE Applauds Opening of Historic Disposal Facility DOE Applauds Opening of Historic Disposal Facility DOE Applauds Opening of Historic Disposal Facility June 6, 2013 - 12:00pm Addthis The Waste Control Specialists Federal Waste Disposal Facility in Andrews, Texas. The Waste Control Specialists Federal Waste Disposal Facility in Andrews, Texas. ANDREWS, Texas - DOE officials participated in an event today to celebrate the opening of the first commercial disposal facility of its kind. EM Senior Advisor Dave Huizenga and several other federal, state and local officials attended the event at Waste Control Specialists (WCS) in Andrews and witnessed the first container being placed in the new state-of-the-art facility. WCS is a waste processing and disposal company. "I am proud to be here today to celebrate this historic event. We

188

Microsoft Word - DisposalInSaltDifferentThanDisposalInWIPP.doc  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

DOE Issues Statement Concerning Debates Over DOE Issues Statement Concerning Debates Over Waste Disposal in Salt CARLSBAD, N.M., July 24, 2009 - The U.S. Department of Energy and its Carlsbad Field Office recognize and respect the long history that led to the current regulations that govern operations at the Waste Isolation Pilot Plant (WIPP). The WIPP is authorized to ship and dispose of transuranic (TRU) waste that was created by U.S. defense programs. TRU waste is a category of waste strictly defined by legislation and legal agreements. The WIPP mission includes the safe disposal of two types of defense-related TRU waste, contact-handled (CH) and remote-handled (RH). Both consist of tools, rags, protective clothing, sludges, soil and other materials contaminated with radioactive

189

Hillslope erosion at the Maxey Flats radioactive waste disposal site, northeastern Kentucky. Water Resources Investigation  

SciTech Connect (OSTI)

Maxey Flats, a disposal site for low-level radioactive waste, is on a plateau that rises 300 to 400 feet above the surrounding valleys in northeastern Kentucky. Hillslope gradients average 30 to 40 percent on three sides of the plateau. The shortest distance from a hillslope to a burial trench is 140 feet on the west side of the site. The report presents the results of a 2-year study of slope erosion processes at the Maxey Flats disposal site, and comments on the long-term integrity of the burial trenches with respect to slope retreat. Thus, the report is of much broader scope in terms of earth-surface processes than the period of data collection would suggest. As such, the discussion and emphasis is placed on infrequent, large-magnitude events that are known to occur over the time scale of interest but have not been specifically documented at the site.

Carey, W.P.; Lyverse, M.A.; Hupp, C.R.

1990-01-01T23:59:59.000Z

190

Review of Yucca Mountain Disposal Criticality Studies  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE), Office of Civilian Radioactive Waste Management, submitted a license application for construction authorization of a deep geologic repository at Yucca Mountain, Nevada, in June of 2008. The license application is currently under review by the U.S. Nuclear Regulatory Commission. However,on March 3, 2010 the DOE filed a motion requesting withdrawal of the license application. With the withdrawal request and the development of the Blue Ribbon Commission to seek alternative strategies for disposing of spent fuel, the status of the proposed repository at Yucca Mountain is uncertain. What is certain is that spent nuclear fuel (SNF) will continue to be generated and some long-lived components of the SNF will eventually need a disposition path(s). Strategies for the back end of the fuel cycle will continue to be developed and need to include the insights from the experience gained during the development of the Yucca Mountain license application. Detailed studies were performed and considerable progress was made in many key areas in terms of increased understanding of relevant phenomena and issues regarding geologic disposal of SNF. This paper reviews selected technical studies performed in support of the disposal criticality analysis licensing basis and the use of burnup credit. Topics include assembly misload analysis, isotopic and criticality validation, commercial reactor critical analyses, loading curves, alternative waste package and criticality control studies, radial burnup data and effects, and implementation of a conservative application model in the criticality probabilistic evaluation as well as other information that is applicable to operations regarding spent fuel outside the reactor. This paper summarizes the work and significant accomplishments in these areas and provides a resource for future, related activities.

Scaglione, John M [ORNL] [ORNL; Wagner, John C [ORNL] [ORNL

2011-01-01T23:59:59.000Z

191

BNL Gas Storage Achievements, Research Capabilities, Interests...  

Broader source: Energy.gov (indexed) [DOE]

BNL Gas Storage Achievements, Research Capabilities, Interests, and Project Team Metal hydride gas storage Cryogenic gas storage Compressed gas storage Adsorbed gas storage...

192

Summary - Disposal Practices at the Nevada Test Site  

Broader source: Energy.gov (indexed) [DOE]

Nevada Test Site, NV Nevada Test Site, NV EM Project: Area 5 LLRW & MLLW Disposal ETR Report Date: July 2008 ETR-14 United States Department of Energy Office of Environmental Management (DOE-EM) External Technical Review of Disposal Practices at the Nevada Test Site Why DOE-EM Did This Review Radioactively contaminated materials from the Nevada Test Site (NTS), other DOE facilities and other federal agencies are disposed of at NTS at two low-level radioactive waste (LLRW) management sites: Areas 3 and 5. Disposal operations at Area 3 have been discontinued, but the facility is available for future disposal. The anticipated closure date for Area 3 is 2027. Area 5 is operating and will be expanded to accept future wastes. LLRW and mixed low-level radioactive waste (MLLW) are disposed of in Area 5 in shallow

193

DOE - Office of Legacy Management -- Maryland Disposal Site - MD 05  

Office of Legacy Management (LM)

Maryland Disposal Site - MD 05 Maryland Disposal Site - MD 05 FUSRAP Considered Sites Site: MARYLAND DISPOSAL SITE (MD.05 ) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Baltimore - Vicinity , Maryland MD.05-1 Evaluation Year: 1989 MD.05-1 Site Operations: Proposed disposal site - never developed. MD.05-1 Site Disposition: Eliminated Radioactive Materials Handled: None Indicated Primary Radioactive Materials Handled: None Indicated Radiological Survey(s): None Indicated Site Status: Eliminated from consideration under FUSRAP Also see Documents Related to MARYLAND DISPOSAL SITE MD.05-1 - Report (DOE/OR/20722-131 Revision 0); Site Plan for the Maryland Disposal Site; April 1989 Historical documents may contain links which are no longer valid or to

194

Deep Borehole Disposal Research: Demonstration Site Selection Guidelines,  

Broader source: Energy.gov (indexed) [DOE]

Deep Borehole Disposal Research: Demonstration Site Selection Deep Borehole Disposal Research: Demonstration Site Selection Guidelines, Borehole Seals Design, and RD&D Needs Deep Borehole Disposal Research: Demonstration Site Selection Guidelines, Borehole Seals Design, and RD&D Needs The U.S. Department of Energy has been investigating deep borehole disposal as one alternative for the disposal of spent nuclear fuel and other radioactive waste forms, along with research and development for mined repositories in salt, granite, and clay, as part of the used fuel disposition (UFD) campaign. The deep borehole disposal concept consists of drilling a borehole on the order of 5,000 m deep, emplacing waste canisters in the lower part of the borehole, and sealing the upper part of the borehole with bentonite and concrete seals. A reference design of the

195

Summary - Idaho CERCLA Disposal Facility (ICDF) at Idaho National Laboratory  

Broader source: Energy.gov (indexed) [DOE]

INL, Idaho INL, Idaho EM Project: Idaho CERCLA Disposal Facility ETR Report Date: December 2007 ETR-10 United States Department of Energy Office of Environmental Management (DOE-EM) External Technical Review of Idaho CERCLA Disposal Facility (ICDF) At Idaho National Laboratory (INL) Why DOE-EM Did This Review The Idaho CERCLA Disposal Facility (ICDF) is a land disposal facility that is used to dispose of LLW and MLW generated from remedial activities at the Idaho National Laboratory (INL). Components of the ICDF include a landfill that is used for disposal of solid waste, an evaporation pond that is used to manage leachate from the landfill and other aqueous wastes (8.3 million L capacity), and a staging and treatment facility. The ICDF is located near the southwest

196

LANL completes excavation of 1940s waste disposal site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

LANL completes excavation LANL completes excavation LANL completes excavation of 1940s waste disposal site The excavation removed about 43,000 cubic yards of contaminated debris and soil from the six-acre site. September 22, 2011 Workers sample contents of LANL's Material Disposal Area B (MDA-B) before excavation Workers sample contents of LANL's Material Disposal Area B (MDA-B) before excavation. Contact Colleen Curran Communicatons Office (505) 664-0344 Email LOS ALAMOS, New Mexico, September 22, 2011-Los Alamos National Laboratory has completed excavation of its oldest waste disposal site, Material Disposal Area B (MDA-B). The excavation removed about 43,000 cubic yards of contaminated debris and soil from the six-acre site. MDA-B was used from 1944-48 as a waste disposal site for Manhattan Project and Cold War-era research and

197

Used Fuel Disposition Campaign Disposal Research and Development Roadmap |  

Broader source: Energy.gov (indexed) [DOE]

Used Fuel Disposition Campaign Disposal Research and Development Used Fuel Disposition Campaign Disposal Research and Development Roadmap Used Fuel Disposition Campaign Disposal Research and Development Roadmap The U.S. Department of Energy Office of Nuclear Energy (DOE-NE), Office of Fuel Cycle Technology (OFCT) has established the Used Fuel Disposition Campaign (UFDC) to conduct the research and development (R&D) activities related to storage, transportation and disposal of used nuclear fuel (UNF) and high level nuclear waste (HLW). The Mission of the UFDC is To identify alternatives and conduct scientific research and technology development to enable storage, transportation and disposal of used nuclear fuel and wastes generated by existing and future nuclear fuel cycles. The U.S. has, for the past twenty-plus years, focused efforts on disposing

198

Low-Level Radioactive Waste Disposal Act (Pennsylvania) | Department of  

Broader source: Energy.gov (indexed) [DOE]

Low-Level Radioactive Waste Disposal Act (Pennsylvania) Low-Level Radioactive Waste Disposal Act (Pennsylvania) Low-Level Radioactive Waste Disposal Act (Pennsylvania) < Back Eligibility Utility Commercial Investor-Owned Utility State/Provincial Govt Municipal/Public Utility Local Government Rural Electric Cooperative Transportation Program Info State Pennsylvania Program Type Environmental Regulations Provider Pennsylvania Department of Environmental Protection This act provides a comprehensive strategy for the siting of commercial low-level waste compactors and other waste management facilities, and to ensure the proper transportation, disposal and storage of low-level radioactive waste. Commercial incineration of radioactive wastes is prohibited. Licenses are required for low-level radioactive waste disposal facilities not licensed to accept low-level radioactive waste. Disposal at

199

Used Fuel Disposition Campaign Disposal Research and Development Roadmap |  

Broader source: Energy.gov (indexed) [DOE]

Disposal Research and Development Disposal Research and Development Roadmap Used Fuel Disposition Campaign Disposal Research and Development Roadmap The U.S. Department of Energy Office of Nuclear Energy (DOE-NE), Office of Fuel Cycle Technology (OFCT) has established the Used Fuel Disposition Campaign (UFDC) to conduct the research and development (R&D) activities related to storage, transportation and disposal of used nuclear fuel (UNF) and high level nuclear waste (HLW). The Mission of the UFDC is To identify alternatives and conduct scientific research and technology development to enable storage, transportation and disposal of used nuclear fuel and wastes generated by existing and future nuclear fuel cycles. The U.S. has, for the past twenty-plus years, focused efforts on disposing

200

Disposal Practices at the Nevada Test Site 2008  

Broader source: Energy.gov (indexed) [DOE]

Area 5 LLRW & MLLW Disposal Area 5 LLRW & MLLW Disposal ETR Report Date: July 2008 ETR-14 United States Department of Energy Office of Environmental Management (DOE-EM) External Technical Review of Disposal Practices at the Nevada Test Site Why DOE-EM Did This Review Radioactively contaminated materials from the Nevada Test Site (NTS), other DOE facilities and other federal agencies are disposed of at NTS at two low-level radioactive waste (LLRW) management sites: Areas 3 and 5. Disposal operations at Area 3 have been discontinued, but the facility is available for future disposal. The anticipated closure date for Area 3 is 2027. Area 5 is operating and will be expanded to accept future wastes. LLRW and mixed low-level radioactive

Note: This page contains sample records for the topic "interest rates disposable" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Mixed waste disposal facilities at the Savannah River Site  

SciTech Connect (OSTI)

The Savannah River Site (SRS) is a key installation of the US Department of Energy (DOE). The site is managed by DOE's Savannah River Field Office and operated under contract by the Westinghouse Savannah River Company (WSRC). The Site's waste management policies reflect a continuing commitment to the environment. Waste minimization, recycling, use of effective pre-disposal treatments, and repository monitoring are high priorities at the site. One primary objective is to safely treat and dispose of process wastes from operations at the site. To meet this objective, several new projects are currently being developed, including the M-Area Waste Disposal Project (Y-Area) which will treat and dispose of mixed liquid wastes, and the Hazardous Waste/Mixed Waste Disposal Facility (HW/MWDF), which will store, treat, and dispose of solid mixed and hazardous wastes. This document provides a description of this facility and its mission.

Wells, M.N.; Bailey, L.L.

1991-01-01T23:59:59.000Z

202

Mixed waste disposal facilities at the Savannah River Site  

SciTech Connect (OSTI)

The Savannah River Site (SRS) is a key installation of the US Department of Energy (DOE). The site is managed by DOE`s Savannah River Field Office and operated under contract by the Westinghouse Savannah River Company (WSRC). The Site`s waste management policies reflect a continuing commitment to the environment. Waste minimization, recycling, use of effective pre-disposal treatments, and repository monitoring are high priorities at the site. One primary objective is to safely treat and dispose of process wastes from operations at the site. To meet this objective, several new projects are currently being developed, including the M-Area Waste Disposal Project (Y-Area) which will treat and dispose of mixed liquid wastes, and the Hazardous Waste/Mixed Waste Disposal Facility (HW/MWDF), which will store, treat, and dispose of solid mixed and hazardous wastes. This document provides a description of this facility and its mission.

Wells, M.N.; Bailey, L.L.

1991-12-31T23:59:59.000Z

203

Low-Level Radioactive Waste Disposal Regional Facility Act (Pennsylvania) |  

Broader source: Energy.gov (indexed) [DOE]

Low-Level Radioactive Waste Disposal Regional Facility Act Low-Level Radioactive Waste Disposal Regional Facility Act (Pennsylvania) Low-Level Radioactive Waste Disposal Regional Facility Act (Pennsylvania) < Back Eligibility Utility Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Program Info State Pennsylvania Program Type Environmental Regulations Fees This act establishes a low-level radioactive waste disposal regional facility siting fund that requires nuclear power reactor constructors and operators to pay to the Department of Environmental Resources funds to be utilized for disposal facilities. This act ensures that nuclear facilities and the Department comply with the Low-Level Radioactive Disposal Act. The regional facility siting fund is used for reimbursement of expenses

204

Reactor Pressure Vessel Head Packaging & Disposal  

SciTech Connect (OSTI)

Reactor Pressure Vessel (RPV) Head replacements have come to the forefront due to erosion/corrosion and wastage problems resulting from the susceptibility of the RPV Head alloy steel material to water/boric acid corrosion from reactor coolant leakage through the various RPV Head penetrations. A case in point is the recent Davis-Besse RPV Head project, where detailed inspections in early 2002 revealed significant wastage of head material adjacent to one of the Control Rod Drive Mechanism (CRDM) nozzles. In lieu of making ASME weld repairs to the damaged head, Davis-Besse made the decision to replace the RPV Head. The decision was made on the basis that the required weld repair would be too extensive and almost impractical. This paper presents the packaging, transport, and disposal considerations for the damaged Davis-Besse RPV Head. It addresses the requirements necessary to meet Davis Besse needs, as well as the regulatory criteria, for shipping and burial of the head. It focuses on the radiological characterization, shipping/disposal package design, site preparation and packaging, and the transportation and emergency response plans that were developed for the Davis-Besse RPV Head project.

Wheeler, D. M.; Posivak, E.; Freitag, A.; Geddes, B.

2003-02-26T23:59:59.000Z

205

Iraq nuclear facility dismantlement and disposal project  

SciTech Connect (OSTI)

The Al Tuwaitha nuclear complex near Baghdad contains a significant number of nuclear facilities from Saddam Hussein's dictatorship. Because of past military operations, lack of upkeep and looting there is now an enormous radioactive waste problem at Al Tuwaitha. Al Tuwaitha contains uncharacterised radioactive wastes, yellow cake, sealed radioactive sources, and contaminated metals. The current security situation in Iraq hampers all aspects of radioactive waste management. Further, Iraq has never had a radioactive waste disposal facility, which means that ever increasing quantities of radioactive waste and material must be held in guarded storage. The Iraq Nuclear Facility Dismantlement and Disposal Program (the NDs Program) has been initiated by the U.S. Department of State (DOS) to assist the Government of Iraq (GOI) in eliminating the threats from poorly controlled radioactive materials, while building human capacities so that the GOI can manage other environmental cleanups in their country. The DOS has funded the International Atomic Energy Agency (IAEA) to provide technical assistance to the GOI via a Technical Cooperation Project. Program coordination will be provided by the DOS, consistent with U.S. and GOI policies, and Sandia National Laboratories will be responsible for coordination of participants and for providing waste management support. Texas Tech University will continue to provide in-country assistance, including radioactive waste characterization and the stand-up of the Iraq Nuclear Services Company. The GOI owns the problems in Iraq and will be responsible for the vast majority of the implementation of the NDs Program. (authors)

Cochran, J.R.; Danneels, J. [Sandia National Laboratories, Albuquerque, NM (United States); Kenagy, W.D. [U.S. Department of State, Bureau of International Security and Nonproliferation, Office of Nuclear Energy, Safety and Security, Washington, DC (United States); Phillips, C.J.; Chesser, R.K. [Center for Environmental Radiation Studies, Texas Tech University, Lubbock, TX (United States)

2007-07-01T23:59:59.000Z

206

Rate Schedules  

Broader source: Energy.gov [DOE]

One of the major responsibilities of Southeastern is to design, formulate, and justify rate schedules. Repayment studies prepared by the agency determine revenue requirements and appropriate rate...

207

Current Doctoral Students' Interests and Photographs Angela Kaiser Angela Kaiser's research interests  

E-Print Network [OSTI]

national perspectives on social justice. Rebecca Wiersma Rebecca Wiersma's primary research interests

Cinabro, David

208

Will new disposal regulations undo decades of progress?  

SciTech Connect (OSTI)

In 1980, the Belville Amendments to RCRA instructed EPA to 'conduct a detailed and comprehensive study and submit a report' to Congress on the 'adverse effects on human health and the environment, if any, of the disposal and utilization' of coal ash. In both 1988 and 1999, EPA submitted reports to Congress and recommended coal ash should not be regulated as hazardous waste. After the failure of a Tennesse power plant's coal ash disposal facility, EPA will be proposing new disposal regulations.

Ward, J. [John Ward Inc. (United States)

2009-07-01T23:59:59.000Z

209

Remedial Action and Waste Disposal Conduct of OperationsMatrix  

SciTech Connect (OSTI)

This Conduct of Operations (CONOPS) matrix incorporates the Environmental Restoration Disposal Facility (ERDF) CONOPS matrix (BHI-00746, Rev. 0). The ERDF CONOPS matrix has been expanded to cover all aspects of the RAWD project. All remedial action and waste disposal (RAWD) operations, including waste remediation, transportation, and disposal at the ERDF consist of construction-type activities as opposed to nuclear power plant-like operations. In keeping with this distinction, the graded approach has been applied to the developmentof this matrix.

M. A. Casbon.

1999-05-24T23:59:59.000Z

210

Commercial low-level radioactive waste disposal in the US  

SciTech Connect (OSTI)

Why are 11 states attempting to develop new low-level radioactive waste disposal facilities? Why is only on disposal facility accepting waste nationally? What is the future of waste disposal? These questions are representative of those being asked throughout the country. This paper attempts to answer these questions in terms of where we are, how we got there, and where we might be going.

Smith, P.

1995-10-01T23:59:59.000Z

211

Selected biological investigations on deep sea disposal of industrial wastes  

E-Print Network [OSTI]

found at an actual disposal site with respect to waste dilution with time. This technique was incorporated into the standard 96-hour bioassay test to afford a means of obtaining preliminary information regarding the bioaccumulation of each waste... with time from the 16 ocean dispose 1 study by Ball (1973) Laboratory dilution setup used to simulate conditions found at an actual disposal site with regard to waste dilution. 18 20 CHAPTER I INTRODUCTION Until recently man haS considered...

Page, Sandra Lea

2012-06-07T23:59:59.000Z

212

System design for disposal of tritium at TFTR  

SciTech Connect (OSTI)

The Tokamak Fusion Test Reactor (TFTR) has cleanup systems which convert tritium gas to the oxide form and absorb it on molecular sieve beds. These beds are regenerated by transferring their moisture content to disposable sieve beds. Preparing this sieve for disposal can be awkward and hazardous. Monitoring the tritium and moisture content of the disposable sieve is not straightforward. Modifications to the regeneration system at the TFTR are being made to address these concerns and others relating to maintainability.

Tuohy, J.M.; Cherdack, R.; Lacy, N.H.

1988-09-01T23:59:59.000Z

213

Dredged and Fill Material Disposal (North Dakota) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Dredged and Fill Material Disposal (North Dakota) Dredged and Fill Material Disposal (North Dakota) Dredged and Fill Material Disposal (North Dakota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State North Dakota Program Type Siting and Permitting This chapter provides regulations for the disposal of dredged and fill

214

Hazardous Waste Treatment, Storage and Disposal Facilities (TSDF...  

Open Energy Info (EERE)

Treatment, Storage and Disposal Facilities (TSDF) Guidance Jump to: navigation, search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - GuideHandbook:...

215

South Carolina Radioactive Waste Transportation and Disposal Act (South Carolina)  

Broader source: Energy.gov [DOE]

The Department of Health and Environmental Control is responsible for regulating the transportation of radioactive waste, with some exceptions, into or within the state for storage, disposal, or...

216

Depleted uranium storage and disposal trade study: Summary report  

SciTech Connect (OSTI)

The objectives of this study were to: identify the most desirable forms for conversion of depleted uranium hexafluoride (DUF6) for extended storage, identify the most desirable forms for conversion of DUF6 for disposal, evaluate the comparative costs for extended storage or disposal of the various forms, review benefits of the proposed plasma conversion process, estimate simplified life-cycle costs (LCCs) for five scenarios that entail either disposal or beneficial reuse, and determine whether an overall optimal form for conversion of DUF6 can be selected given current uncertainty about the endpoints (specific disposal site/technology or reuse options).

Hightower, J.R.; Trabalka, J.R.

2000-02-01T23:59:59.000Z

217

Canister design for deep borehole disposal of nuclear waste .  

E-Print Network [OSTI]

??The objective of this thesis was to design a canister for the disposal of spent nuclear fuel and other high-level waste in deep borehole repositories (more)

Hoag, Christopher Ian.

2006-01-01T23:59:59.000Z

218

Fees For Disposal Of Hazardous Waste Or Substances (Alabama)  

Broader source: Energy.gov [DOE]

The article lists annual payments to be made to counties, restrictions on disposal of hazardous waste, additional fees collected by counties and penalties.

219

The Hazardous Waste/Mixed Waste Disposal Facility  

SciTech Connect (OSTI)

The Hazardous Waste/Mixed Waste Disposal Facility (HW/MWDF) will provide permanent Resource Conservation and Recovery Act (RCRA) permitted storage, treatment, and disposal for hazardous and mixed waste generated at the Department of Energy's (DOE) Savannah River Site (SRS) that cannot be disposed of in existing or planned SRS facilities. Final design is complete for Phase I of the project, the Disposal Vaults. The Vaults will provide RCRA permitted, above-grade disposal capacity for treated hazardous and mixed waste generated at the SRS. The RCRA Part B Permit application was submitted upon approval of the Permit application, the first Disposal Vault is scheduled to be operational in mid 1994. The technical baseline has been established for Phase II, the Treatment Building, and preliminary design work has been performed. The Treatment Building will provide RCRA permitted treatment processes to handle a variety of hazardous and mixed waste generated at SRS in preparation for disposal. The processes will treat wastes for disposal in accordance with the Environmental Protection Agency's (EPA's) Land Disposal Restrictions (LDR). A RCRA Part B Permit application has not yet been submitted to SCDHEC for this phase of the project. The Treatment Building is currently scheduled to be operational in late 1996.

Bailey, L.L.

1991-01-01T23:59:59.000Z

220

The Hazardous Waste/Mixed Waste Disposal Facility  

SciTech Connect (OSTI)

The Hazardous Waste/Mixed Waste Disposal Facility (HW/MWDF) will provide permanent Resource Conservation and Recovery Act (RCRA) permitted storage, treatment, and disposal for hazardous and mixed waste generated at the Department of Energy`s (DOE) Savannah River Site (SRS) that cannot be disposed of in existing or planned SRS facilities. Final design is complete for Phase I of the project, the Disposal Vaults. The Vaults will provide RCRA permitted, above-grade disposal capacity for treated hazardous and mixed waste generated at the SRS. The RCRA Part B Permit application was submitted upon approval of the Permit application, the first Disposal Vault is scheduled to be operational in mid 1994. The technical baseline has been established for Phase II, the Treatment Building, and preliminary design work has been performed. The Treatment Building will provide RCRA permitted treatment processes to handle a variety of hazardous and mixed waste generated at SRS in preparation for disposal. The processes will treat wastes for disposal in accordance with the Environmental Protection Agency`s (EPA`s) Land Disposal Restrictions (LDR). A RCRA Part B Permit application has not yet been submitted to SCDHEC for this phase of the project. The Treatment Building is currently scheduled to be operational in late 1996.

Bailey, L.L.

1991-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "interest rates disposable" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Erosion Control and Revegetation at DOE's Lowman Disposal Site...  

Office of Environmental Management (EM)

Site, Lowman, Idaho More Documents & Publications Title I Disposal Sites Annual Report Long-Term Surveillance and Maintenance Program 2003 Report Revegetation of the Rocky Flats...

222

Disposal Practices at the Savannah River Site | Department of...  

Office of Environmental Management (EM)

Site More Documents & Publications Compilation of ETR Summaries Disposal Practices at the Nevada Test Site 2008 Briefing: DOE EM ITR Landfill Assessment Project Lessons Learned...

223

Solid Waste Disposal Facilities (Massachusetts) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Solid Waste Disposal Facilities (Massachusetts) Solid Waste Disposal Facilities (Massachusetts) Solid Waste Disposal Facilities (Massachusetts) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative State/Provincial Govt Transportation Tribal Government Utility Program Info State Massachusetts Program Type Siting and Permitting Provider Department of Environmental Protection These sections articulate rules for the maintenance and operation of solid waste disposal facilities, as well as site assignment procedures. Applications for site assignment will be reviewed by the Massachusetts Department of Environmental Protection as well as the Department of Public

224

Deep Geologic Nuclear Waste Disposal - No New Taxes - 12469  

SciTech Connect (OSTI)

To some, the perceived inability of the United States to dispose of high-level nuclear waste justifies a moratorium on expansion of nuclear power in this country. Instead, it is more an example of how science yields to social pressure, even on a subject as technical as nuclear waste. Most of the problems, however, stem from confusion on the part of the public and their elected officials, not from a lack of scientific knowledge. We know where to put nuclear waste, how to put it there, how much it will cost, and how well it will work. And it's all about the geology. The President's Blue Ribbon Commission on America's Nuclear Future has drafted a number of recommendations addressing nuclear energy and waste issues (BRC 2011) and three recommendations, in particular, have set the stage for a new strategy to dispose of high-level nuclear waste and to manage spent nuclear fuel in the United States: 1) interim storage for spent nuclear fuel, 2) resumption of the site selection process for a second repository, and 3) a quasi-government entity to execute the program and take control of the Nuclear Waste Fund in order to do so. The first two recommendations allow removal and storage of spent fuel from reactor sites to be used in the future, and allows permanent disposal of actual waste, while the third controls cost and administration. The Nuclear Waste Policy Act of 1982 (NPWA 1982) provides the second repository different waste criteria, retrievability, and schedule, so massive salt returns as the candidate formation of choice. The cost (in 2007 dollars) of disposing of 83,000 metric tons of heavy metal (MTHM) high-level waste (HLW) is about $ 83 billion (b) in volcanic tuff, $ 29 b in massive salt, and $ 77 b in crystalline rock. Only in salt is the annual revenue stream from the Nuclear Waste Fund more than sufficient to accomplish this program without additional taxes or rate hikes. The cost is determined primarily by the suitability of the geologic formation, i.e., how well it performs on its own for millions of years with little engineering assistance from humans. It is critical that the states most affected by this issue (WA, SC, ID, TN, NM and perhaps others) develop an independent multi-state agreement in order for a successful program to move forward. Federal approval would follow. Unknown to most, the United States has a successful operating deep permanent geologic nuclear repository for high and low activity waste, called the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico. Its success results from several factors, including an optimal geologic and physio-graphic setting, a strong scientific basis, early regional community support, frequent interactions among stakeholders at all stages of the process, long-term commitment from the upper management of the U.S. Department of Energy (DOE) over several administrations, strong New Mexico State involvement and oversight, and constant environmental monitoring from before nuclear waste was first emplaced in the WIPP underground (in 1999) to the present. WIPP is located in the massive bedded salts of the Salado Formation, whose geological, physical, chemical, redox, thermal, and creep-closure properties make it an ideal formation for long-term disposal, long-term in this case being greater than 200 million years. These properties also mean minimal engineering requirements as the rock does most of the work of isolating the waste. WIPP has been operating for twelve years, and as of this writing, has disposed of over 80,000 m{sup 3} of nuclear weapons waste, called transuranic or TRU waste (>100 nCurie/g but <23 Curie/1000 cm{sup 3}) including some high activity waste from reprocessing of spent fuel from old weapons reactors. All nuclear waste of any type from any source can be disposed in this formation better, safer and cheaper than in any other geologic formation. At the same time, it is critical that we complete the Yucca Mountain license application review so as not to undermine the credibility of the Nuclear Regulatory Commission and the scientific commun

Conca, James [RJLee Group, Inc., Pasco WA 509.205.7541 (United States); Wright, Judith [UFA Ventures, Inc., Richland, WA (United States)

2012-07-01T23:59:59.000Z

225

PUBLIC INTEREST DISCLOSURE (PID) POLICY AND PROCEDURES  

E-Print Network [OSTI]

i PUBLIC INTEREST DISCLOSURE (PID) POLICY AND PROCEDURES #12;PUBLIC INTEREST DISCLOSURE POLICY AND PROCEDURES 2 Contents 1. AUTHORISATION OF PROCEDURES 3 2. INTRODUCTION 3 2.1. Statement of commitment 3 2.2. Relationship to other Bureau policies 4 2.3. Application of procedures 4 3. RESPONSIBILITIES AND OBLIGATIONS 4

Greenslade, Diana

226

Industrial & Systems Engineering Areas of Engineering Interests  

E-Print Network [OSTI]

Industrial & Systems Engineering Areas of Engineering Interests The Department of Industrial and Systems Engineering understands our students may work as Industrial Engineers in other engineering industries, and to help prepare them for these careers, the ISE Areas of Interest was formulated. The courses

Berdichevsky, Victor

227

Rates - WAPA-137 Rate Order  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

WAPA-137 Rate Order WAPA-137 Rate Order 2009 CRSP Management Center Customer Rates Second Step Presentation from the June 25, 2009, Customer Meeting Handout Materials from the June 25, 2009, Customer Meeting Customer Comment Letters ATEA CREDA Farmington ITCA AMPUA Rate Adjustment Information The second step of WAPA-137 SLCA/IP Firm Power, CRSP Transmission and Ancillary Services rate adjustment. FERC Approval of Rate Order No. WAPA-137 Notice Of Filing for Rate Order No. WAPA-137 Published Final FRN for Rate Order No. WAPA-137 Letter to Customers regarding the published Notice of Extension of Public Process for Rate Order No. WAPA-137 Published Extension of Public Process for Rate Order No. WAPA-137 FRN Follow-up Public Information and Comment Forum Flier WAPA-137 Customer Meetings and Rate Adjustment Schedule

228

Tracking Multiple Topics for Finding Interesting Articles  

SciTech Connect (OSTI)

We introduce multiple topic tracking (MTT) for iScore to better recommend news articles for users with multiple interests and to address changes in user interests over time. As an extension of the basic Rocchio algorithm, traditional topic detection and tracking, and single-pass clustering, MTT maintains multiple interest profiles to identify interesting articles for a specific user given user-feedback. Focusing on only interesting topics enables iScore to discard useless profiles to address changes in user interests and to achieve a balance between resource consumption and classification accuracy. iScore is able to achieve higher quality results than traditional methods such as the Rocchio algorithm. We identify several operating parameters that work well for MTT. Using the same parameters, we show that MTT alone yields high quality results for recommending interesting articles from several corpora. The inclusion of MTT improves iScore's performance by 25% in recommending news articles from the Yahoo! News RSS feeds and the TREC11 adaptive filter article collection. And through a small user study, we show that iScore can still perform well when only provided with little user feedback.

Pon, R K; Cardenas, A F; Buttler, D J; Critchlow, T J

2008-01-03T23:59:59.000Z

229

Tracking Multiple Topics for Finding Interesting Articles  

SciTech Connect (OSTI)

We introduce multiple topic tracking (MTT) for iScore to better recommend news articles for users with multiple interests and to address changes in user interests over time. As an extension of the basic Rocchio algorithm, traditional topic detection and tracking, and single-pass clustering, MTT maintains multiple interest profiles to identify interesting articles for a specific user given user-feedback. Focusing on only interesting topics enables iScore to discard useless profiles to address changes in user interests and to achieve a balance between resource consumption and classification accuracy. Also by relating a topic's interestingness to an article's interestingness, iScore is able to achieve higher quality results than traditional methods such as the Rocchio algorithm. We identify several operating parameters that work well for MTT. Using the same parameters, we show that MTT alone yields high quality results for recommending interesting articles from several corpora. The inclusion of MTT improves iScore's performance by 9% to 14% in recommending news articles from the Yahoo! News RSS feeds and the TREC11 adaptive filter article collection. And through a small user study, we show that iScore can still perform well when only provided with little user feedback.

Pon, R K; Cardenas, A F; Buttler, D J; Critchlow, T J

2007-02-15T23:59:59.000Z

230

The siting dilemma: Low-level radioactive waste disposal in the United States  

SciTech Connect (OSTI)

The 1980 Low-Level Radioactive Waste Policy Act ushered in a new era in low-level waste disposal; one with vastly increased state responsibilities. By a 1985 amendment, states were given until January 1993 to fulfill their mandate. In this dissertation, their progress is reviewed. The focus then turns to one particularly intractable problem: that of finding technically and socially acceptable sites for new disposal facilities. Many lament the difficulty of siting facilities that are intended to benefit the public at large but are often locally unwanted. Many label local opposition as purely self-interested; as simply a function of the NIMBY (Not In My Backyard) syndrome. Here, it is argued that epithets such as NIMBY are unhelpful. Instead, to lay the groundwork for widely acceptable solutions to siting conflicts, deeper understanding is needed of differing values on issues concerning authority, trust, risk, and justice. This dissertation provides a theoretical and practical analysis of those issues as they pertain to siting low-level waste disposal facilities and, by extension, other locally unwanted facilities.

English, M.R.

1991-01-01T23:59:59.000Z

231

Sorting and disposal of hazardous laboratory Radioactive waste  

E-Print Network [OSTI]

Sorting and disposal of hazardous laboratory waste Radioactive waste Solid radioactive waste or in a Perspex box. Liquid radioactive waste collect in a screw-cap plastic bottle, ½ or 1 L size. Place bottles in a tray to avoid spill Final disposal of both solid and radioactive waste into the yellow barrel

Maoz, Shahar

232

1 INSTRODUCTION In the concept of geological radioactive waste disposal,  

E-Print Network [OSTI]

1 INSTRODUCTION In the concept of geological radioactive waste disposal, argillite is being of the radioactive waste disposal, the host rock will be subjected to various thermo-hydro-mechanical loadings, thermal solicitation comes from the heat emitting from the radioactive waste packages. On one hand

Boyer, Edmond

233

A model approach to radioactive waste disposal at Sellafield  

E-Print Network [OSTI]

A model approach to radioactive waste disposal at Sellafield R. 5. Haszeldine* and C. Mc of the great environmentalproblems of our age is the safe disposal of radioactive waste for geological time periods. Britain is currently investigating a potential site for underground burial of waste, near

Haszeldine, Stuart

234

User Guide for Disposal of Unwanted Items and Electronic Waste  

E-Print Network [OSTI]

is the Recycle department at 502-6808 o For more information on the UCSF Sustainability program visit: http://sustainability.ucsf.edu/stay_informed/recycling_resources consulting support Ensuring proper reuse, recycle, or disposal Maintaining regulatory and policy compliance metal and wood o Waste/trash management o Recycle, reuse or disposal of materials D&S does not process o

Mullins, Dyche

235

Assessment of microbial processes on gas production at radioactive low-level waste disposal sites  

SciTech Connect (OSTI)

Factors controlling gaseous emanations from low level radioactive waste disposal sites are assessed. Importance of gaseous fluxes of methane, carbon dioxide, and possible hydrogen from the site, stems from the inclusion of tritium and/or carbon-14 into the elemental composition of these compounds. In that the primary source of these gases is the biodegradation of organic components of the waste material, primary emphasis of the study involved an examination of the biochemical pathways producing methane, carbon dioxide, and hydrogen, and the environmental parameters controlling the activity of the microbial community involved. Initial examination of the data indicates that the ecosystem is anaerobic. As the result of the complexity of the pathway leading to methane production, factors such as substrate availability, which limit the initial reaction in the sequence, greatly affect the overall rate of methane evolution. Biochemical transformations of methane, hydrogen and carbon dioxide as they pass through the soil profile above the trench are discussed. Results of gas studies performed at three commercial low level radioactive waste disposal sites are reviewed. Methods used to obtain trench and soil gas samples are discussed. Estimates of rates of gas production and amounts released into the atmosphere (by the GASFLOW model) are evaluated. Tritium and carbon-14 gaseous compounds have been measured in these studies; tritiated methane is the major radionuclide species in all disposal trenches studied. The concentration of methane in a typical trench increases with the age of the trench, whereas the concentration of carbon dioxide is similar in all trenches.

Weiss, A.J.; Tate, R.L. III; Colombo, P.

1982-05-01T23:59:59.000Z

236

Conflict of Interest and Nondisclosure Acknowledgement  

Broader source: Energy.gov (indexed) [DOE]

Conflict of Interest and Nondisclosure Acknowledgement Conflict of Interest and Nondisclosure Acknowledgement This acknowledgement must be completed by individuals prior to receiving applications or other related information pertaining to, and participation in, the merit review process. The acknowledgement provides for each reviewer to understand conflict of interest and nondisclosure requirements associated with their participation in the merit review. Individuals with a conflict of interest may not participate in the merit review process or use or disclose information obtained during the merit review process, unless DOE has decided that there is acceptable mitigation of the identified conflict. In anticipation of my participating as a reviewer for the Department of Energy, I, ______________________________ (Print Name), acknowledge the following:

237

Conflict of interest over Harvard drug  

Science Journals Connector (OSTI)

... an unusually candid statement released last week by Harvard Medical School, Dean Daniel C. Tosteson acknowledged that a "significant conflict of interest occurred" in a drug study undertaken by ...

Seth Shulman

1988-10-27T23:59:59.000Z

238

Solid waste disposal options: an optimum disposal model for the management of municipal solid waste  

E-Print Network [OSTI]

and compostable material was generally burned in backyards. In 1970, the Clean Air Act was passed restricting the burning of leaves and other yard waste. ' These wastes were then disposed in landfills. As landfills reached capacity, commu- nities composted... separation pro- grams because of their "throw-away" mentality. " ~ln in r ttgtt Incineration is the controlled burning of the combustible fraction of solid waste. The first electrical generating station in the United States that was fueled by solid waste...

Haney, Brenda Ann

2012-06-07T23:59:59.000Z

239

Recognition and representation of user interest  

E-Print Network [OSTI]

OF SCIENCE Approved by: Chair of Committee, Frank Shipman Committee Members, Richard Furuta Takashi Yamauchi Head of Department, Valerie E. Taylor December 2005 Major Subject: Computer Science iii ABSTRACT Recognition and Representation of User Interest.... (December 2005) Rajiv Ravindranath Badi, B.E., Bangalore University, Bangalore, India Chair of Advisory Committee: Dr. Frank Shipman With the growth of the internet and other media of communication, locating infor- mation on the topic of interest is less a...

Badi, Rajiv Ravindranath

2007-04-25T23:59:59.000Z

240

2009 Performance Assessment for the Saltstone Disposal Facility |  

Broader source: Energy.gov (indexed) [DOE]

Performance Assessment for the Saltstone Disposal Facility Performance Assessment for the Saltstone Disposal Facility 2009 Performance Assessment for the Saltstone Disposal Facility This Performance Assessment (PA) for the Savannah River Site (SRS) was prepared to support the operation and eventual closure of the Saltstone Disposal Facility (SDF). This PA was prepared to demonstrate compliance with the pertinent requirements of the United States Department of Energy (DOE) Order 435.1, Change 1, Radioactive Waste Management, Chapter IV, and Title 10, of the Code of Federal Regulations (CFR) Part 61, Licensing Requirements for Land Disposal of Radioactive Waste, Subpart C as required by the Ronald W. Reagan National Defense Authorization Act (NDAA) for Fiscal Year 2005, Section 3116. [DOE O 435.1-1, 10 CFR 61, NDAA_3116]

Note: This page contains sample records for the topic "interest rates disposable" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Used Fuel Disposition Campaign Disposal Research and Development Roadmap  

Broader source: Energy.gov (indexed) [DOE]

Disposal Research and Development Disposal Research and Development Roadmap Rev. 01 Used Fuel Disposition Campaign Disposal Research and Development Roadmap Rev. 01 The U.S. Department of Energy Office of Nuclear Energy (DOE-NE), Office of Fuel Cycle Technology (OFCT) has established the Used Fuel Disposition Campaign (UFDC) to conduct the research and development (R&D) activities related to storage, transportation and disposal of used nuclear fuel (UNF) and high level nuclear waste (HLW) generated by existing and future nuclear fuel cycles. The disposal of SNF and HLW in a range of geologic media has been investigated internationally. Considerable progress has been made in the U.S and other nations, but gaps in knowledge still exist. This document provides an evaluation and prioritization of R&D opportunities

242

DOE - Office of Legacy Management -- Cheney Disposal Cell - 008  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cheney Disposal Cell - 008 Cheney Disposal Cell - 008 FUSRAP Considered Sites Site: Cheney Disposal Cell (008) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: All of the uranium mill tailings and other residual radioactive materials from the former Grand Junction uranium mill site were disposed of in this dedicated disposal cell. The cell is authorized to remain open until 2003 to accept any additional byproduct materials from Title I UMTRA sites and the Monticello, Utah site; e.g. materials from additional vicinity properties that may be identified. The Department of Energy¿s Grand Junction Office is responsible for Long Term Surveillance and Maintenance

243

Summary - Disposal Practices at the Savannah River Site  

Broader source: Energy.gov (indexed) [DOE]

ETR-19 United States Department of Energy Office of Environmental Management (DOE-EM) External Technical Review of the Disposal Practices at the Savannah River Site Why DOE-EM Did This Review Disposal operations have been ongoing at the Savannah River Site (SRS) for over 50 years. Active disposal in E-Area, is near the center of the site. Although a wide range of wastes are being managed at the SRS, only low level radioactive wastes (LLRW) are disposed of on site. Wastes are disposed of in unlined slit and engineered trenches, and in low activity waste and intermediate level vaults. Some wastes are isolated in place with grout and all wastes will be covered with a cap that includes a hydraulic barrier to limit precipitation infiltration. The objective of this review was to

244

Low-Level Waste Disposal Facility Federal Review Group Manual  

Broader source: Energy.gov (indexed) [DOE]

LEVEL WASTE DISPOSAL FACILITY FEDERAL REVIEW GROUP MANUAL REVISION 3 JUNE 2008 (This page intentionally left blank) Low-Level JVllsfe Disposal Fllcili~l' Federal Review Group il1allUlli Revision 3, June 200S Concurrence The Low-Level Waste Disposal Facility Federal Review Group Manual, Revision 3, is approved for use as of the most recent date below. Date Chair, Low-Level Waste Disposal Federal Review Group Andrew WalJo, 1II Deputy Director, Otlice of Nuclear Safety, Quality Assurance, and Environment Department of Energy OHlce of Health, Safety, and Security e C. WilJiams Associate Administrator for Infrastructure and Environment National Nuclear Security Administration Low-Level 'Vaste Disposal Facility Federal Review Group J1aJll/ai

245

NNSA Reaches LEU Disposal Milestone | National Nuclear Security  

National Nuclear Security Administration (NNSA)

Reaches LEU Disposal Milestone | National Nuclear Security Reaches LEU Disposal Milestone | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Our History > NNSA Timeline > NNSA Reaches LEU Disposal Milestone NNSA Reaches LEU Disposal Milestone November 08, 2004 Aiken, SC NNSA Reaches LEU Disposal Milestone The National Nuclear Security Administration's reached an important

246

OAK RIDGE CERCLA DISPOSAL FACILITY ACHIEVES SAFETY MILESTONE | Department  

Broader source: Energy.gov (indexed) [DOE]

OAK RIDGE CERCLA DISPOSAL FACILITY ACHIEVES SAFETY MILESTONE OAK RIDGE CERCLA DISPOSAL FACILITY ACHIEVES SAFETY MILESTONE OAK RIDGE CERCLA DISPOSAL FACILITY ACHIEVES SAFETY MILESTONE December 1, 2010 - 12:00pm Addthis OAK RIDGE CERCLA DISPOSAL FACILITY ACHIEVES SAFETY MILESTONE Oak Ridge, TN - The Environmental Management Waste Management Facility (EMWMF) provides the onsite disposal capability for the majority of cleanup-generated wastes on the Oak Ridge Reservation. EMWMF has continued a long-standing pattern of safe, complaint operations with 3,000 days without a lost workday case since operations commenced on May 28, 2002. The EMWMF has placed 1.5 million tons of waste and fill in the facility. The EMWMF receives waste from many Oak Ridge cleanup projects, including American Recovery and Reinvestment Act-funded projects, multiple

247

Drilling Waste Management Fact Sheet: Offsite Disposal at Commercial  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Commercial Disposal Facilities Commercial Disposal Facilities Fact Sheet - Commercial Disposal Facilities Although drilling wastes from many onshore wells are managed at the well site, some wastes cannot be managed onsite. Likewise, some types of offshore drilling wastes cannot be discharged, so they are either injected underground at the platform (not yet common in the United States) or are hauled back to shore for disposal. According to an American Petroleum Institute waste survey, the exploration and production segment of the U.S. oil and gas industry generated more than 360 million barrels (bbl) of drilling wastes in 1985. The report estimates that 28% of drilling wastes are sent to offsite commercial facilities for disposal (Wakim 1987). A similar American Petroleum Institute study conducted ten years later found that the volume of drilling waste had declined substantially to about 150 million bbl.

248

Research, Development, and Demonstration Roadmap for Deep Borehole Disposal  

Broader source: Energy.gov (indexed) [DOE]

Research, Development, and Demonstration Roadmap for Deep Borehole Research, Development, and Demonstration Roadmap for Deep Borehole Disposal Research, Development, and Demonstration Roadmap for Deep Borehole Disposal This roadmap is intended to advance deep borehole disposal (DBD) from its current conceptual status to potential future deployment as a disposal system for spent nuclear fuel (SNF) and high-level waste (HLW). The objectives of the DBD RD&D roadmap include providing the technical basis for fielding a DBD demonstration project, defining the scientific research activities associated with site characterization and postclosure safety, as well as defining the engineering demonstration activities associated with deep borehole drilling, completion, and surrogate waste canister emplacement. Research, Development, and Demonstration Roadmap for Deep Borehole Disposal

249

Recharge Data Package for the 2005 Integrated Disposal Facility Performance Assessment  

SciTech Connect (OSTI)

Pacific Northwest National Laboratory assisted CH2M Hill Hanford Group, Inc., (CHG) by providing estimates of recharge rates for current conditions and long-term scenarios involving disposal in the Integrated Disposal Facility (IDF). The IDF will be located in the 200 East Area at the Hanford Site and will receive several types of waste including immobilized low-activity waste. The recharge estimates for each scenario were derived from lysimeter and tracer data collected by the IDF PA Project and from modeling studies conducted for the project. Recharge estimates were provided for three specific site features (the surface barrier; possible barrier side slopes; and the surrounding soil) and four specific time periods (pre-Hanford; Hanford operations; surface barrier design life; post-barrier design life). CHG plans to conduct a performance assessment of the latest IDF design and call it the IDF 2005 PA; this recharge data package supports the upcoming IDF 2005 PA.

Fayer, Michael J.; Szecsody, Jim E.

2004-06-30T23:59:59.000Z

250

Rate schedule  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Firm Power Service Provided by Rate/Charges Firm Power Service Provided by Rate/Charges Rate/Charges Effective Through (or until superceded) Firm Sales (SLIP-F9) Composite Rate SLIP 29.62 mills/kWh 9/30/2015 Demand Charge SLIP $5.18/kW-month 9/30/2015 Energy Charge SLIP 12.19 mills/kWh 9/30/2015 Cost Recovery Charge (CRC) SLIP 0 mills/kWh 9/30/2015 Transmission Service Provided by Current Rates effective10/12 - 9/15 (or until superceded) Rate Schedule Effective Through Firm Point-to-Point Transmission (SP-PTP7) CRSP $1.14 per kW-month $13.69/kW-year $0.00156/kW-hour $0.04/kW-day $0.26/kW-week 10/1/2008-9/30/2015 Network Integration Transmission (SP-NW3) CRSP see rate schedule 10/1/2008-9/30/2015 Non-Firm Point-to-Point Transmission (SP-NFT6) CRSP see rate schedule 10/1/2008-9/30/2015 Ancillary Services Provided by Rate Rate Schedule

251

QUESTIONS BY AREA OF INTEREST : AOI #4  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

QUESTIONS BY AREA OF INTEREST : AOI #4 QUESTIONS BY AREA OF INTEREST : AOI #4 Q4. How does the application process work? We are getting conflicting information with the Federal Stimulus money that we need to go through the Clean Cities Coalitions. Do they need to be the applicants? Or can they just be partners in our project? Same with the Transit Authorities..originally we did not need them to be a partner; however, new information states we need to have both the Clean Cities Coalitions and local Transit Authority as participants/applicants? A. For Areas of Interest #1-3, there are no restrictions to eligibility for apply for funds. While it is not mandatory that the applicant be a Clean Cities coalition (designated or non-designated), it is strongly encouraged that teams include one or more Clean Cities

252

Selection of a method for disposing of leachate grout  

SciTech Connect (OSTI)

A major component of the selected remedy for the remediation of the Maxey Flats Disposal Site (MFDS) is the removal, solidification, and on-site disposal of an estimated 3000000 gal of trench leachate. The Record of Decision (ROD) and its predecessor, the Maxey Flats Feasibility Study Report, proposed as a representative process option that the trench leachate be solidified in the form of large (8 x 8 x 4 ft) concrete blocks and disposed of in trenches. The U.S. Environmental Protection Agency (EPA) had recent experience with this method when solidifying and disposing of {approximately}300000 gal of leachate that was stored in above-ground tanks at the MFDS. The EPA experience proved the capability of a U.S. Nuclear Regulatory Commission (NRC)-approved grout mix to satisfy the requirements of 10CFR61.55-56 for the Class-A liquid waste at the site, i.e., the leachate. However, a technical evaluation of the overall solidification/disposal process implemented by the EPA identified some steps that should be improved if this method is to be implemented safely and efficiently for the solidification and disposal of trench leachate as part of the remedial action. In the light of the EPA experience, the present study modified the option proposed in the ROD to make it more workable. This study also evaluated other methods, including three methods for above grade disposal.

Cockrell, R.G.

1994-12-31T23:59:59.000Z

253

The Forward-Bias Puzzle: A Solution Based on Covered Interest Parity  

E-Print Network [OSTI]

My solution is based on covered interest parity (CIP).CIP implies: (1) Forward rates are not rational expectationsthe form of violations of the CIP condition. The size of CIP

Pippenger, John E

2009-01-01T23:59:59.000Z

254

On-Site Disposal Facility Inspection Report  

Office of Legacy Management (LM)

8947.1 8947.1 09/13 On-Site Disposal Facility Inspection Report September 2013 6319-D6242 8947.2 09/13 East Face Cell 1 West Face Cell 1 6319D-6208 6319D-6231 8947.3 09/13 North Face Cell 1 North Drainage (looking west) 6319D-6206 6319D-6205 8947.4 09/13 East Face Cell 2 West Face Cell 2 6319D-6230 6319D-6209 8947.5 09/13 East Face Cell 3 West Face Cell 3 6319D-6229 6319D-6210 8947.6 09/13 East Face Cell 4 West Face Cell 4 6319D-6227 6319D-62111 8947.7 09/13 East Face Cell 5 West Face Cell 5 6319D-6226 6319D-6213 8947.8 09/13 East Face Cell 6 6319D-6214 6319D-6225 West Face Cell 6 8947.9 09/13 East Face Cell 7 6319D-6215 6319D-6223 West Face Cell 7 8947.10 09/13 East Face Cell 8 6319D-6217 6319D-6220 West Face Cell 8 8947.11 09/13 South Face Cell 8 6319D-6219 6319D-6218 South Drainage (looking west) 8947.12 09/13

255

Fluorescent ballast and lamp disposal issues  

SciTech Connect (OSTI)

All around the world, governments, utility companies, and private businesses are attempting to reduce the amount of energy consumed. In the US alone, new economic strategies and programs are being created to facilitate this process. For instance, the recent enactment of the National Energy Policy Act, the Environmental Protection Agency`s (EPA) Green Lights Program, and a surge of utility involvement in Demand Side Management (DSM) Commercial/Industrial Direct Install and Rebate Programs. Many of these problems target commercial/industrial lighting system retrofits as one of the most cost effective avenues for reducing the consumption of energy. Due to this trend, hundreds of millions of lighting ballasts and lamps are being discarded. The benefits of these programs result in enormous reductions in fossil fuels (and subsequent carbon dioxide, sulfur dioxide, and nitrogen oxide emissions) required to generate the displaced electricity. Throughout the US, however, there is an increasing concern for the environmental impacts surrounding the accelerated disposal of both lighting ballasts and lamps. Regulations initially established were for a one by one, retirement (failure) process rather than promoted obsolescence and forced retirement of lamp groups or entire systems (truckloads of old technologies). Recognizing this trend and the potential negative environmental effects, federal, state, and local regulators are reevaluating the impacts and are being asked to promulgate policies to specifically address this situation.

Leishman, D.L. [Alta Resource Management Services, Inc., Springfield, MA (United States)

1996-12-01T23:59:59.000Z

256

Rules and Regulations for the Disposal of Low-Level Radioactive Waste (Nebraska)  

Broader source: Energy.gov [DOE]

These regulations, promulgated by the Department of Environmental Quality, contain provisions pertaining to the disposal of low-level radioactive waste, disposal facilities, and applicable fees.

257

Introduction to DOE Order 435.1 Low Level Radioactive Waste Disposal...  

Broader source: Energy.gov (indexed) [DOE]

Introduction to DOE Order 435.1 Low Level Radioactive Waste Disposal Requirements Introduction to DOE Order 435.1 Low Level Radioactive Waste Disposal Requirements Christine...

258

Systems engineering programs for geologic nuclear waste disposal  

SciTech Connect (OSTI)

The design sequence and system programs presented begin with general approximate solutions that permit inexpensive analysis of a multitude of possible wastes, disposal media, and disposal process properties and configurations. It then continues through progressively more precise solutions as parts of the design become fixed, and ends with repository and waste form optimization studies. The programs cover both solid and gaseous waste forms. The analytical development, a program listing, a users guide, and examples are presented for each program. Sensitivity studies showing the effects of disposal media and waste form thermophysical properties and repository layouts are presented as examples.

Klett, R. D.; Hertel, Jr., E. S.; Ellis, M. A.

1980-06-01T23:59:59.000Z

259

Analysis of alternatives for immobilized low activity waste disposal  

SciTech Connect (OSTI)

This report presents a study of alternative disposal system architectures and implementation strategies to provide onsite near-surface disposal capacity to receive the immobilized low-activity waste produced by the private vendors. The analysis shows that a flexible unit strategy that provides a suite of design solutions tailored to the characteristics of the immobilized low-activity waste will provide a disposal system that best meets the program goals of reducing the environmental, health, and safety impacts; meeting the schedule milestones; and minimizing the life-cycle cost of the program.

Burbank, D.A.

1997-10-28T23:59:59.000Z

260

Demilitarization and disposal technologies for conventional munitions and energetic materials  

SciTech Connect (OSTI)

Technologies for the demilitarization and disposal of conventional munitions and energetic materials are presented. A hazard separation system has been developed to remove hazardous subcomponents before processing. Electronic component materials separation processes have been developed that provide for demilitarization as well as the efficient recycling of materials. Energetic materials demilitarization and disposal using plasma arc and molten metal technologies are currently being investigated. These regulatory compliant technologies will allow the recycling of materials and will also provide a waste form suitable for final disposal.

Lemieux, A.A.; Wheelis, W.T.; Blankenship, D.M.

1994-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "interest rates disposable" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Interested Parties - AFL-CIO | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Parties - AFL-CIO 20091015104114.pdf More Documents & Publications Interested Parties - Myriant Interested Parties - NRG Energy Interested Parties - 1603 Program Discussion...

262

Interested Parties - United Auto Workers | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

United Auto Workers Interested Parties - United Auto Workers UAW.pdf More Documents & Publications Interested Parties - BlueGreen Alliance Interested Parties - Myriant...

263

Processing Personal Health Data in Legitimate Interest  

E-Print Network [OSTI]

: excluding data from the National Health Insurance Fund database related to unsubsidized care events, medical diagnosis, the provision of care or treatment or the management of health-care services, and whereProcessing Personal Health Data in Legitimate Interest ,,Infocommunication technologies

Alexin, Zoltán

264

Finding Regions of Interest on Toroidal Meshes  

SciTech Connect (OSTI)

Fusion promises to provide clean and safe energy, and a considerable amount of research effort is underway to turn this aspiration intoreality. This work focuses on a building block for analyzing data produced from the simulation of microturbulence in magnetic confinementfusion devices: the task of efficiently extracting regions of interest. Like many other simulations where a large amount of data are produced,the careful study of ``interesting'' parts of the data is critical to gain understanding. In this paper, we present an efficient approach forfinding these regions of interest. Our approach takes full advantage of the underlying mesh structure in magnetic coordinates to produce acompact representation of the mesh points inside the regions and an efficient connected component labeling algorithm for constructingregions from points. This approach scales linearly with the surface area of the regions of interest instead of the volume as shown with bothcomputational complexity analysis and experimental measurements. Furthermore, this new approach is 100s of times faster than a recentlypublished method based on Cartesian coordinates.

Wu, Kesheng; Sinha, Rishi R; Jones, Chad; Ethier, Stephane; Klasky, Scott; Ma, Kwan-Liu; Shoshani, Arie; Winslett, Marianne

2011-02-09T23:59:59.000Z

265

Nathaniel Joseph Fisch Current Professional Interests  

E-Print Network [OSTI]

fusion, lasers, propulsion, waste remediation, and astrophysics. University Education MIT DepartmentNathaniel Joseph Fisch Current Professional Interests Plasma physics with applications to nuclear, AE and IBW Studies for Controlling Fusion a Particles, co-advisor) D. Clark *03 (LLNL, Raman Laser

266

Ground-water flow and transport modeling of the NRC-licensed waste disposal facility, West Valley, New York  

SciTech Connect (OSTI)

This report describes a simulation study of groundwater flow and radionuclide transport from disposal at the NRC licensed waste disposal facility in West Valley, New York. A transient, precipitation driven, flow model of the near-surface fractured till layer and underlying unweathered till was developed and calibrated against observed inflow data into a recently constructed interceptor trench for the period March--May 1990. The results suggest that lateral flow through the upper, fractured till layer may be more significant than indicated by previous, steady state flow modeling studies. A conclusive assessment of the actual magnitude of lateral flow through the fractured till could however not be made. A primary factor contributing to this uncertainty is the unknown contribution of vertical infiltration through the interceptor trench cap to the total trench inflow. The second part of the investigation involved simulation of the migration of Sr-90, Cs-137 and Pu-239 from the one of the fuel hull disposal pits. A first-order radionuclide leach rate with rate coefficient of 10{sup {minus}6}/day was assumed to describe radionuclide release into the disposal pit. The simulations indicated that for wastes buried below the fractured till zone, no significant migration would occur. However, under the assumed conditions, significant lateral migration could occur for radionuclides present in the upper, fractured till zone. 23 refs., 68 figs., 12 tabs.

Kool, J.B.; Wu, Y.S. (HydroGeoLogic, Inc., Herndon, VA (United States))

1991-10-01T23:59:59.000Z

267

Assessment of radioactive wastes from a DCLL fusion reactor: Disposal in El Cabril facility  

Science Journals Connector (OSTI)

Abstract Under the Spanish Breeding Blanket Technology Programme TECNO_FUS a conceptual design of a DCLL (Dual-Coolant LithiumLead) blanket-based reactor is being revised. The dually cooled breeding zone is composed of He/LiPb and SiC as material of the liquid metal flow channel inserts. Structural materials are ferritic-martensitic steel (Eurofer) for the blanket and austenitic steel (SS316LN) for the vacuum vessel (VV) and the cryostat. In this work, radioactive wastes are assessed in order to determine if they can be disposed as low and intermediate level radioactive waste (LILW) in the Spanish near surface disposal facility of El Cabril. Also, unconditional clearance and recycling waste management options are studied. The neutron transport calculations have been performed with MCNPX code, while the ACAB code is used for calculations of the inventory of activation products and for activation analysis, in terms of waste management ratings for the options considered. Results show that the total amount of the cryostat can be disposed in El Cabril joined to the outer layer of both VV and channel inserts, whereas only concrete-made biological shield can be managed through clearance and none of the steels can be recycled. Those results are compared with those corresponding to French regulation, showing similar conclusions.

Raquel Garca; Juan Pablo Cataln; Javier Sanz

2014-01-01T23:59:59.000Z

268

Integrated process for coalbed brine disposal  

SciTech Connect (OSTI)

A brine disposal process is described that converts the brine stream of a coalbed gas producing site into clean water for agricultural use, combustion products and water vapor that can be released into the atmosphere and dry solids that can be recycled for industrial consumption. The process uses a reverse osmosis unit, a submerged combustion evaporator and a pulse combustion dryer. Pretreatment of the brine feedstream is necessary to prevent fouling of the membranes of the reverse osmosis unit and to separate from the brine stream hazardous metal and other constituents that may make the permeate from the reverse osmosis unit unsuitable for agricultural or other use. A chemical modeling code is used to calculate the saturation states of solids that may precipitate and foul the reverse osmosis membranes. Sodium carbonate is added to the brine to precipitate carbonates of Ba, Ca, Mg and Sr prior to filtration, acidification, and passage into the reverse osmosis unit. Optimization of the process in terms of types and amounts of additives is possible with analysis using the modeling code. The minimum amounts of additives to prevent scaling are calculated. In a typical operation, a brine feedstream of 1,000 m{sup 3}/day (6,290 bpd) that may have a total dissolved salt concentration (TDS) of 7,000 ppm will be separated into a permeate stream of 750 m{sup 3}/day (4,718 bpd) with a TDS of 400 ppm and a concentrated brine stream of 250 m{sup 3}/day (1,573 bpd) with a TDS of 26,800 ppm. The submerged combustion evaporator will concentrate this latter stream to a concentration of 268,000 ppm and reduce the volume to 25 m{sup 3}/day (158 bpd). The pulse combustion dryer can dry the concentrated brine mixture to a low moisture salt. Energy costs to operate the reverse osmosis unit are primarily the pumping costs.

Brandt, H. [AQUATECH Services, Inc., Fair Oaks, CA (United States)]|[California Univ., Davis, CA (United States). Dept. of Mechanical Engineering; Bourcier, W.L.; Jackson, K.J. [Lawrence Livermore National Lab., CA (United States)

1994-03-01T23:59:59.000Z

269

A Critical Step Toward Sustainable Nuclear Fuel Disposal | Department of  

Broader source: Energy.gov (indexed) [DOE]

A Critical Step Toward Sustainable Nuclear Fuel Disposal A Critical Step Toward Sustainable Nuclear Fuel Disposal A Critical Step Toward Sustainable Nuclear Fuel Disposal January 26, 2012 - 2:30pm Addthis Secretary Chu Secretary Chu Former Secretary of Energy The Blue Ribbon Commission on America's Nuclear Future was formed at the direction of the President to conduct a comprehensive review of polices for managing the back end of the nuclear fuel cycle. If we are going to ensure that the United States remains at the forefront of nuclear safety and security, non-proliferation, and nuclear energy technology we must develop an effective strategy and workable plan for the safe and secure management and disposal of used nuclear fuel and nuclear waste. That is why I asked General Scowcroft and Representative Hamilton to draw on their

270

Repository Reference Disposal Concepts and Thermal Load Management Analysis  

Broader source: Energy.gov (indexed) [DOE]

Repository Reference Disposal Concepts and Thermal Load Management Repository Reference Disposal Concepts and Thermal Load Management Analysis Repository Reference Disposal Concepts and Thermal Load Management Analysis A disposal concept consists of three parts: waste inventory (7 waste types examined), geologic setting (e.g., clay/shale, salt, crystalline, other sedimentary), and the engineering concept of operations (range of generic operational concepts examined). Two major categories for waste package emplacement modes are identified: 1) "open" where extended ventilation can remove heat for many years following waste emplacement underground; and 2) "enclosed" modes for clay/shale and salt media where waste packages are emplaced in direct or close contact with natural or engineered materials which may have temperature limits that constrain thermal

271

Solid Waste Disposal, Hazardous Waste Management Act, Underground Storage  

Broader source: Energy.gov (indexed) [DOE]

Disposal, Hazardous Waste Management Act, Underground Disposal, Hazardous Waste Management Act, Underground Storage Act (Tennessee) Solid Waste Disposal, Hazardous Waste Management Act, Underground Storage Act (Tennessee) < Back Eligibility Agricultural Commercial Construction Developer Fuel Distributor Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Municipal/Public Utility Nonprofit Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Tribal Government Utility Program Info State Tennessee Program Type Environmental Regulations Siting and Permitting Provider Tennessee Department Of Environment and Conservation The Solid Waste Disposal Laws and Regulations are found in Tenn. Code 68-211. These rules are enforced and subject to change by the Public Waste Board (PWB), which is established by the Division of Solid and Hazardous

272

Disposing of nuclear waste in a salt bed  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Disposing of nuclear waste in a salt bed Disposing of nuclear waste in a salt bed 1663 Los Alamos science and technology magazine Latest Issue:November 2013 All Issues » submit Disposing of nuclear waste in a salt bed Decades' worth of transuranic waste from Los Alamos is being laid to rest at the Waste Isolation Pilot Plant in southeastern New Mexico March 25, 2013 Disposing of nuclear waste in a salt bed Depending on the impurities embedded within it, the salt from WIPP can be anything from a reddish, relatively opaque rock to a clear crystal like the one shown here. Ordinary salt effectively seals transuranic waste in a long-term repository Transuranic waste, made of items such as lab coats and equipment that have been contaminated by radioactive elements heavier than uranium, is being shipped from the Los Alamos National Laboratory to a long-term storage

273

Repository Reference Disposal Concepts and Thermal Load Management Analysis  

Broader source: Energy.gov (indexed) [DOE]

Repository Reference Disposal Concepts and Thermal Load Management Repository Reference Disposal Concepts and Thermal Load Management Analysis Repository Reference Disposal Concepts and Thermal Load Management Analysis A disposal concept consists of three parts: waste inventory (7 waste types examined), geologic setting (e.g., clay/shale, salt, crystalline, other sedimentary), and the engineering concept of operations (range of generic operational concepts examined). Two major categories for waste package emplacement modes are identified: 1) "open" where extended ventilation can remove heat for many years following waste emplacement underground; and 2) "enclosed" modes for clay/shale and salt media where waste packages are emplaced in direct or close contact with natural or engineered materials which may have temperature limits that constrain thermal

274

Disposal Systems Evaluations and Tool Development - Engineered Barrier  

Broader source: Energy.gov (indexed) [DOE]

Disposal Systems Evaluations and Tool Development - Engineered Disposal Systems Evaluations and Tool Development - Engineered Barrier System (EBS) Evaluation Disposal Systems Evaluations and Tool Development - Engineered Barrier System (EBS) Evaluation The engineered barrier system (EBS) plays a key role in the long-term isolation of nuclear waste in geological repository environments. This report focuses on the progress made in the evaluation of EBS design concepts, assessment of clay phase stability at repository-relevant conditions, thermodynamic database development for cement and clay phases, and THMC coupled phenomena along with the development of tools and methods to examine these processes. This report also documents the advancements of the Disposal System Evaluation Framework (DSEF) for the development of

275

Integration of EBS Models with Generic Disposal System Models | Department  

Broader source: Energy.gov (indexed) [DOE]

Integration of EBS Models with Generic Disposal System Models Integration of EBS Models with Generic Disposal System Models Integration of EBS Models with Generic Disposal System Models This report summarizes research activities on engineered barrier system (EBS) model integration with the generic disposal system model (GDSM), and used fuel degradation and radionuclide mobilization (RM) in support of the EBS evaluation and tool development within the Used Fuel Disposition campaign. This report addresses: predictive model capability for used nuclear fuel degradation based on electrochemical and thermodynamic principles, radiolysis model to evaluate the U(VI)-H2O-CO2 system, steps towards the evaluation of uranium alteration products, discussion of instant release fraction (IRF) of radionuclides from the nuclear fuel, and

276

Integration of EBS Models with Generic Disposal System Models | Department  

Broader source: Energy.gov (indexed) [DOE]

Integration of EBS Models with Generic Disposal System Models Integration of EBS Models with Generic Disposal System Models Integration of EBS Models with Generic Disposal System Models This report summarizes research activities on engineered barrier system (EBS) model integration with the generic disposal system model (GDSM), and used fuel degradation and radionuclide mobilization (RM) in support of the EBS evaluation and tool development within the Used Fuel Disposition campaign. This report addresses: predictive model capability for used nuclear fuel degradation based on electrochemical and thermodynamic principles, radiolysis model to evaluate the U(VI)-H2O-CO2 system, steps towards the evaluation of uranium alteration products, discussion of instant release fraction (IRF) of radionuclides from the nuclear fuel, and

277

Southwestern Low-Level Radioactive Waste Disposal Compact (South Dakota) |  

Broader source: Energy.gov (indexed) [DOE]

Southwestern Low-Level Radioactive Waste Disposal Compact (South Southwestern Low-Level Radioactive Waste Disposal Compact (South Dakota) Southwestern Low-Level Radioactive Waste Disposal Compact (South Dakota) < Back Eligibility Utility Investor-Owned Utility Industrial Construction Municipal/Public Utility Rural Electric Cooperative Fuel Distributor Program Info State South Dakota Program Type Siting and Permitting Provider Southwestern Low-Level Radioactive Waste Commission This legislation authorizes the state's entrance into the Southwestern Low-Level Radioactive Waste Disposal Compact, which provides for the cooperative management of low-level radioactive waste. The Compact is administered by a commission, which can regulate and impose fees on in-state radioactive waste generators. The states of Arizona, California,

278

Shell keeps its options open for disposing of Brent Spar  

Science Journals Connector (OSTI)

... Brent Spar, may lead to similar disposal of 50 deep-water oil installations in UK offshore waters that are next in line for decommissioning, Johnston says. "No one knows ... this would have on the marine environment."

Ehsan Masood

1995-08-03T23:59:59.000Z

279

Waste Disposal Site and Radioactive Waste Management (Iowa)  

Broader source: Energy.gov [DOE]

This section describes the considerations of the Commission in determining whether to approve the establishment and operation of a disposal site for nuclear waste. If a permit is issued, the...

280

Proof of Proper Solid Waste Disposal (West Virginia)  

Broader source: Energy.gov [DOE]

This rule provides guidance to persons occupying a residence or operating a business establishment in this state regarding the approved method of providing proof of proper solid waste disposal to...

Note: This page contains sample records for the topic "interest rates disposable" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Burning Chemical Waste Disposal Site: Investigation, Assessment and Rehabilitation  

Science Journals Connector (OSTI)

A series of underground fires on a site previously used for disposal of chemical wastes from the nylon industry was causing a nuisance and restricting the commercial development of the site and adjacent areas....

D. L. Barry; J. M. Campbell; E. H. Jones

1990-01-01T23:59:59.000Z

282

A microelectronic design for low-cost disposable chemical sensors  

E-Print Network [OSTI]

This thesis demonstrates the novel concept and design of integrated microelectronics for a low-cost disposable chemical sensor. The critical aspects of this chemical sensor are the performance of the microelectronic chip ...

Laval, Stuart S. (Stuart Sean), 1980-

2004-01-01T23:59:59.000Z

283

Figure ES2. Annual Indices of Real Disposable Income, Vehicle...  

U.S. Energy Information Administration (EIA) Indexed Site

ES2 Figure ES2. Annual Indices of Real Disposable Income, Vehicle-Miles Traveled, Consumer Price Index (CPI-U), and Real Average Retail Gasoline Price, 1978-2004, 1985100...

284

Nuclear Waste Disposal: Yucca Blowup Theory Bombs, Says Study  

Science Journals Connector (OSTI)

...leaked into the storage area, the depleted uranium would quickly saturate it, making...disposing of the 400,000 tons of depleted uranium left over from the arms race...andotherbranches ofthe Public Health Service must demonstrate that...

Gary Taubes

1996-03-22T23:59:59.000Z

285

Canister design for deep borehole disposal of nuclear waste  

E-Print Network [OSTI]

The objective of this thesis was to design a canister for the disposal of spent nuclear fuel and other high-level waste in deep borehole repositories using currently available and proven oil, gas, and geothermal drilling ...

Hoag, Christopher Ian

2006-01-01T23:59:59.000Z

286

Design and Installation of a Disposal Cell Cover Field Test ...  

Broader source: Energy.gov (indexed) [DOE]

through March 3, 2011, Phoenix, Arizona. C.H. Benson, W.J. Waugh, W.H. Albright, G.M. Smith, R.P. Bush Design and Installation of a Disposal Cell Cover Field Test More Documents...

287

Draft Environmental Impact Statement for the Disposal of Greater...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Friday, February 18, 2011 Draft Environmental Impact Statement for the Disposal of Greater-Than-Class C Low-Level Radioactive Waste and GTCC-Like Waste WASHINGTON The...

288

Disposable Bioreactors for Inoculum Production and Protein Expression  

Science Journals Connector (OSTI)

Table 1 summarizes the disposable bioreactors available on the market today for animal cells and culture volumes from 2.5 mL up to 500 L. If traditional ...

Regine Eibl; Dieter Eibl

2007-01-01T23:59:59.000Z

289

Salt disposal of heat-generating nuclear waste.  

SciTech Connect (OSTI)

This report summarizes the state of salt repository science, reviews many of the technical issues pertaining to disposal of heat-generating nuclear waste in salt, and proposes several avenues for future science-based activities to further the technical basis for disposal in salt. There are extensive salt formations in the forty-eight contiguous states, and many of them may be worthy of consideration for nuclear waste disposal. The United States has extensive experience in salt repository sciences, including an operating facility for disposal of transuranic wastes. The scientific background for salt disposal including laboratory and field tests at ambient and elevated temperature, principles of salt behavior, potential for fracture damage and its mitigation, seal systems, chemical conditions, advanced modeling capabilities and near-future developments, performance assessment processes, and international collaboration are all discussed. The discussion of salt disposal issues is brought current, including a summary of recent international workshops dedicated to high-level waste disposal in salt. Lessons learned from Sandia National Laboratories' experience on the Waste Isolation Pilot Plant and the Yucca Mountain Project as well as related salt experience with the Strategic Petroleum Reserve are applied in this assessment. Disposal of heat-generating nuclear waste in a suitable salt formation is attractive because the material is essentially impermeable, self-sealing, and thermally conductive. Conditions are chemically beneficial, and a significant experience base exists in understanding this environment. Within the period of institutional control, overburden pressure will seal fractures and provide a repository setting that limits radionuclide movement. A salt repository could potentially achieve total containment, with no releases to the environment in undisturbed scenarios for as long as the region is geologically stable. Much of the experience gained from United States repository development, such as seal system design, coupled process simulation, and application of performance assessment methodology, helps define a clear strategy for a heat-generating nuclear waste repository in salt.

Leigh, Christi D. (Sandia National Laboratories, Carlsbad, NM); Hansen, Francis D.

2011-01-01T23:59:59.000Z

290

Hillslope erosion at the Maxey Flats Radioactive Waste Disposal Site, northeastern Kentucky  

SciTech Connect (OSTI)

Maxey Flats, a disposal site for low level radioactive waste, is on a plateau that rises 300 to 400 ft above the surrounding valleys in northeastern Kentucky. Rates of hillslope retreat were determined through a combination of direct erosion measurements during the 2-year study and through dendrogeomorphic techniques. Rates of hillslope retreats were determined through a combination of direction erosion measurements during the 2-year study and through dendrogeomorphic techniques. Rates of hillslope retreat determined from dendrogeomorphic evidence rate from 3.8 to 9.1 in/century, so that time to exposure of the trenches ranges from 35,000 to 65,000 years. The minimum estimate of 35,000 years is for the most actively eroding southern slope. Throughout tens of thousands of years, the rate of hillslope retreat is determined more by the occurrence of infrequent extreme events such as slope failure than by the continuous processes of slope wash observed in this study. These slope failures cause as much erosion in one event as hundreds or even thousands of years of slope wash. Periods of tens of thousands of years are also sufficiently long for significant changes in climate and tectonic activity to occur. Rates of erosion observed during this 2-year study are highly unlikely to be indicative of rates averaged over periods of tens of thousands of years during which many extreme events can occur. Thus, the long-term geomorphic stability of the Maxey Flats disposal site will be highly dependent upon the magnitude and frequency of extreme erosive events and upon trends in climate change and tectonic activity.

Carey, W.P., Lyverse, M.A.; Hupp, C.R.

1990-01-01T23:59:59.000Z

291

Geological Disposal Concept Selection Aligned with a Voluntarism Process - 13538  

SciTech Connect (OSTI)

The UK's Radioactive Waste Management Directorate (RWMD) is currently at a generic stage in its implementation programme. The UK site selection process is a voluntarist process and, as yet, no communities have decided to participate. RWMD has set out a process to describe how a geological disposal concept would be selected for the range of higher activity wastes in the UK inventory, including major steps and decision making points, aligned with the stages of the UK site selection process. A platform of information is being developed on geological disposal concepts at various stages of implementation internationally and, in order to build on international experience, RWMD is developing its approach to technology transfer. The UK has a range of different types of higher activity wastes with different characteristics; therefore a range of geological disposal concepts may be needed. In addition to identifying key aspects for considering the compatibility of different engineered barrier systems for different types of waste, RWMD is developing a methodology to determine minimum separation distances between disposal modules in a co-located geological disposal facility. RWMD's approach to geological disposal concept selection is intended to be flexible, recognising the long term nature of the project. RWMD is also committed to keeping alternative radioactive waste management options under review; an approach has been developed and periodic reviews of alternative options will be published. (authors)

Crockett, Glenda; King, Samantha [Nuclear Decommissioning Authority, Building 587, Curie Avenue, Harwell Oxford, Didcot, Oxfordshire, OX11 0RH (United Kingdom)] [Nuclear Decommissioning Authority, Building 587, Curie Avenue, Harwell Oxford, Didcot, Oxfordshire, OX11 0RH (United Kingdom)

2013-07-01T23:59:59.000Z

292

Conflict of Interest and Nondisclosure Acknowledgement  

Broader source: Energy.gov (indexed) [DOE]

Conflict of Interest and Nondisclosure Acknowledgement Conflict of Interest and Nondisclosure Acknowledgement In anticipation of my participating in providing advisory and support services for the Department of Energy under Contract Number [INSERT LABORATORY CONTRACT NUMBER], I, ______________________________ (Print Name), acknowledge the following: (a) I understand that during the course of performing merit and/or peer review services under this contract, I may obtain access to confidential or proprietary business, technical, or financial information belonging to the Government or other entities, including but not limited to Department plans, policies, reports, studies, financial plans, internal data protected by the Privacy Act of 1974 (5 U.S.C. 552a), data which has not been released or otherwise made available to the public,

293

University of Delaware Laboratory Chemical Waste Disposal Guide ALL CHEMICAL WASTE MUST BE DISPOSED OF THROUGH THE  

E-Print Network [OSTI]

experiments and procedures Non-Returnable gas cylinders Batteries Spent solvents, Stains, Strippers, Thinners, Fertilizers Formaldehyde and Formalin Solutions Mercury containing items (other heavy metals) Liquid OR SMALL CONTAINERS IMPORTANT: DO NOT DISPOSE OF REACTIVE, AIR SENSITIVE, OR OXIDIZER SAMPLES

Firestone, Jeremy

294

Sustainable Disposal Cell Covers: Legacy Management Practices, Improvements, and Long-Term Performance  

Broader source: Energy.gov [DOE]

Sustainable Disposal Cell Covers: Legacy Management Practices, Improvements, and Long-Term Performance

295

Analysis of environmental regulations governing the disposal of geothermal wastes in California  

SciTech Connect (OSTI)

Federal and California regulations governing the disposal of sludges and liquid wastes associated with the production of electricity from geothermal resources were evaluated. Current disposal practices, near/far term disposal requirements, and the potential for alternate disposal methods or beneficial uses for these materials were determined. 36 refs., 3 figs., 15 tabs. (ACR)

Royce, B.A.

1985-09-01T23:59:59.000Z

296

Waste disposal technology transfer matching requirement clusters for waste disposal facilities in China  

SciTech Connect (OSTI)

Highlights: Black-Right-Pointing-Pointer We outline the differences of Chinese MSW characteristics from Western MSW. Black-Right-Pointing-Pointer We model the requirements of four clusters of plant owner/operators in China. Black-Right-Pointing-Pointer We examine the best technology fit for these requirements via a matrix. Black-Right-Pointing-Pointer Variance in waste input affects result more than training and costs. Black-Right-Pointing-Pointer For China technology adaptation and localisation could become push, not pull factors. - Abstract: Even though technology transfer has been part of development aid programmes for many decades, it has more often than not failed to come to fruition. One reason is the absence of simple guidelines or decision making tools that help operators or plant owners to decide on the most suitable technology to adopt. Practical suggestions for choosing the most suitable technology to combat a specific problem are hard to get and technology drawbacks are not sufficiently highlighted. Western counterparts in technology transfer or development projects often underestimate or don't sufficiently account for the high investment costs for the imported incineration plant; the differing nature of Chinese MSW; the need for trained manpower; and the need to treat flue gas, bunker leakage water, and ash, all of which contain highly toxic elements. This article sets out requirements for municipal solid waste disposal plant owner/operators in China as well as giving an attribute assessment for the prevalent waste disposal plant types in order to assist individual decision makers in their evaluation process for what plant type might be most suitable in a given situation. There is no 'best' plant for all needs and purposes, and requirement constellations rely on generalisations meaning they cannot be blindly applied, but an alignment of a type of plant to a type of owner or operator can realistically be achieved. To this end, a four-step approach is suggested and a technology matrix is set out to ease the choice of technology to transfer and avoid past errors. The four steps are (1) Identification of plant owner/operator requirement clusters; (2) Determination of different municipal solid waste (MSW) treatment plant attributes; (3) Development of a matrix matching requirement clusters to plant attributes; (4) Application of Quality Function Deployment Method to aid in technology localisation. The technology transfer matrices thus derived show significant performance differences between the various technologies available. It is hoped that the resulting research can build a bridge between technology transfer research and waste disposal research in order to enhance the exchange of more sustainable solutions in future.

Dorn, Thomas, E-mail: thomas.dorn@uni-rostock.de [University of Rostock, Faculty of Agricultural and Environmental Sciences, Department Waste Management, Justus-v.-Liebig-Weg 6, 18059 Rostock (Germany); Nelles, Michael, E-mail: michael.nelles@uni-rostock.de [University of Rostock, Faculty of Agricultural and Environmental Sciences, Department Waste Management, Justus-v.-Liebig-Weg 6, 18059 Rostock (Germany); Flamme, Sabine, E-mail: flamme@fh-muenster.de [University of Applied Sciences Muenster, Corrensstrasse 25, 48149 Muenster (Germany); Jinming, Cai [Hefei University of Technology, 193 Tunxi Road, 230009 Hefei (China)

2012-11-15T23:59:59.000Z

297

Gasification combined cycle: Carbon dioxide recovery, transport, and disposal  

SciTech Connect (OSTI)

The objective of the project is to develop engineering evaluations of technologies for the capture, use, and disposal of carbon dioxide (CO{sub 2}). This project emphasizes CO{sub 2}-capture technologies combined with integrated gasification combined-cycle (IGCC) power systems. Complementary evaluations address CO{sub 2} transportation, CO{sub 2} use, and options for the long-term sequestering of unused CO{sub 2}. Commercially available CO{sub 2}-capture technology is providing a performance and economic baseline against which to compare innovative technologies. The intent is to provide the CO{sub 2} budget, or an {open_quotes}equivalent CO{sub 2}{close_quotes} budget, associated with each of the individual energy-cycle steps, in addition to process design capital and operating costs. The value used for the {open_quotes}equivalent CO{sub 2}{close_quotes} budget is 1 kg of CO{sub 2} per kilowatt-hour (electric). The base case is a 458-MW IGCC system that uses an air-blown Kellogg-Rust-Westinghouse agglomerating fluidized-bed gasifier, Illinois No. 6 bituminous coal feed, and in-bed sulfur removal. Mining, feed preparation, and conversion result in a net electric power production of 454 MW, with a CO{sub 2} release rate of 0.835 kg/kWhe. Two additional life-cycle energy balances for emerging technologies were considered: (1) high-temperature CO{sub 2} separation with calcium- or magnesium-based sorbents, and (2) ambient-temperature facilitated-transport polymer membranes for acid-gas removal.

Doctor, R.D.; Molburg, J.C.; Thimmapuram, P.R.; Berry, G.F.; Livengood, C.D.

1994-09-01T23:59:59.000Z

298

Disposal of oil field wastes into salt caverns: Feasibility, legality, risk, and costs  

SciTech Connect (OSTI)

Salt caverns can be formed through solution mining in the bedded or domal salt formations that are found in many states. Salt caverns have traditionally been used for hydrocarbon storage, but caverns have also been used to dispose of some types of wastes. This paper provides an overview of several years of research by Argonne National Laboratory on the feasibility and legality of using salt caverns for disposing of oil field wastes, the risks to human populations from this disposal method, and the cost of cavern disposal. Costs are compared between the four operating US disposal caverns and other commercial disposal options located in the same geographic area as the caverns. Argonne`s research indicates that disposal of oil field wastes into salt caverns is feasible and legal. The risk from cavern disposal of oil field wastes appears to be below accepted safe risk thresholds. Disposal caverns are economically competitive with other disposal options.

Veil, J.A. [Argonne National Lab., Washington, DC (United States). Water Policy Program

1997-10-01T23:59:59.000Z

299

Status of the WAND (Waste Assay for Nonradioactive Disposal) project as of July 1997  

SciTech Connect (OSTI)

The WAND (Waste Assay for Nonradioactive Disposal) system can scan thought-to-be-clean, low-density waste (mostly paper and plastics) to determine whether the levels of any contaminant radioactivity are low enough to justify their disposal in normal public landfills or similar facilities. Such a screening would allow probably at least half of the large volume of low-density waste now buried at high cost in LANL`s Rad Waste Landfill (Area G at Technical Area 54) to be disposed of elsewhere at a much lower cost. The WAND System consists of a well-shielded bank of six 5-in.-diam. phoswich scintillation detectors; a mechanical conveyor system that carries a 12-in.-wide layer of either shredded material or packets of paper sheets beneath the bank of detectors; the electronics needed to process the outputs of the detectors; and a small computer to control the whole system and to perform the data analysis. WAND system minimum detectable activities (MDAs) for point sources range from {approximately}20 dps for {sup 241}Am to approximately 10 times that value for {sup 239}Pu, with most other nuclides of interest being between those values, depending upon the emission probabilities of the radiations emitted (usually gamma rays and/or x-rays). The system can also detect beta particles that have energies {ge}100 keV, but it is not easy to define an MDA based on beta radiation detection because of the greater absorption of beta particles relative to photons in low Z-materials. The only radioactive nuclides not detectable by the WAND system are pure alpha emitters and very-low-energy beta emitters. At this time, operating procedures and quality assurance procedures are in place and training materials are available to operators. The system is ready to perform useful work; however, it would be both possible and desirable to upgrade the electronic components and the analysis algorithms.

Arnone, G.J.; Foster, L.A.; Foxx, C.L.; Hagan, R.C.; Martin, E.R.; Myers, S.C.; Parker, J.L.

1998-03-01T23:59:59.000Z

300

Second performance assessment iteration of the Greater Confinement Disposal facility at the Nevada Test Site  

SciTech Connect (OSTI)

The Greater Confinement Disposal (GCD) facility was established in Area 5 at the Nevada Test Site for containment of waste inappropriate for shallow land burial. Some transuranic (TRU) waste has been disposed of at the GCD facility, and compliance of this disposal system with EPA regulation 40 CFR 191 must be evaluated. We have adopted an iterative approach in which performance assessment results guide site data collection, which in turn influences the parameters and models used in performance assessment. The first iteration was based upon readily available data, and indicated that the GCD facility would likely comply with 40 CFR 191 and that the downward flux of water through the vadose zone (recharge) had a major influence on the results. Very large recharge rates, such as might occur under a cooler, wetter climate, could result in noncompliance. A project was initiated to study recharge in Area 5 by use of three environmental tracers. The recharge rate is so small that the nearest groundwater aquifer will not be contaminated in less than 10,000 years. Thus upward liquid diffusion of radionuclides remained as the sole release pathway. This second assessment iteration refined the upward pathway models and updated the parameter distributions based upon new site information. A new plant uptake model was introduced to the upward diffusion pathway; adsorption and erosion were also incorporated into the model. Several modifications were also made to the gas phase radon transport model. Plutonium solubility and sorption coefficient distributions were changed based upon new information, and on-site measurements were used to update the moisture content distributions. The results of the assessment using these models indicate that the GCD facility is likely to comply with all sections of 40 CFR 191 under undisturbed conditions.

Baer, T.A.; Emery, J.N. [GRAM, Inc., Albuquerque, NM (United States); Price, L.L. [Science Applications International Corp., Albuquerque, NM (United States); Olague, N.E. [Sandia National Labs., Albuquerque, NM (United States)

1994-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "interest rates disposable" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Interest networks : understanding the influence of interesting people in an organization  

E-Print Network [OSTI]

This thesis applies network theory to firms, their employees, and various aspects of the employees to understand diversity within an industry at both the firm-level and employee-level. We hypothesize that the interest ...

Ma, Julia Shuhong

2012-01-01T23:59:59.000Z

302

What Covered Interest Parity Implies about the Theory of Uncovered Interest Parity.  

E-Print Network [OSTI]

covered interest parity (CIP) implies that the theory canSection 3 describes what covered CIP implies about UIP.role of risk premiums when CIP holds. Section 5 uses Sarno

Pippenger, John

2012-01-01T23:59:59.000Z

303

Uncanistered Spent Nuclear fuel Disposal Container System Description Document  

SciTech Connect (OSTI)

The Uncanistered Spent Nuclear Fuel (SNF) Disposal Container System supports the confinement and isolation of waste within the Engineered Barrier System of the Monitored Geologic Repository (MGR). Disposal containers are loaded with intact uncanistered assemblies and/or individually canistered SNF assemblies and sealed in the surface waste handling facilities, transferred to the underground through the access drifts, and emplaced in the emplacement drifts. The Uncanistered SNF Disposal Container provides long-term confinement of the commercial SNF placed inside, and withstands the loading, transfer, emplacement, and retrieval loads and environments. The Uncanistered SNF Disposal Container System provides containment of waste for a designated period of time, and limits radionuclide release. The disposal container maintains the waste in a designated configuration, withstands maximum handling and rockfall loads, limits the individual SNF assembly temperatures after emplacement, limits the introduction of moderator into the disposal container during the criticality control period, resists corrosion in the expected handling and repository environments, and provides containment of waste in the event of an accident. Multiple boiling water reactor (BWR) and pressurized water reactor (PWR) disposal container designs are needed to accommodate the expected range of spent fuel assemblies and provide long-term confinement of the commercial SNF. The disposal container will include outer and inner cylinder walls, outer cylinder lids (two on the top, one on the bottom), inner cylinder lids (one on the top, one on the bottom), and an internal metallic basket structure. Exterior labels will provide a means by which to identify the disposal container and its contents. The two metal cylinders, in combination with the cladding, Emplacement Drift System, drip shield, and natural barrier, will support the design philosophy of defense-in-depth. The use of materials with different properties prevents a single mode failure from breaching the waste package. The inner cylinder and inner cylinder lids will be constructed of stainless steel and the outer cylinder and outer cylinder lid will be made of high-nickel alloy. The basket will assist criticality control, provide structural support, and improve heat transfer. The Uncanistered SNF Disposal Container System interfaces with the emplacement drift environment and internal waste by transferring heat from the SNF to the external environment and by protecting the SFN assemblies and their contents from damage/degradation by the external environment. The system also interfaces with the SFN by limiting access of moderator and oxidizing agents of the SFN. The waste package interfaces with the Emplacement Drift System's emplacement drift pallets upon which the wasted packages are placed. The disposal container interfaces with the Assembly Transfer System, Waste Emplacement/Retrieval System, Disposal Container Handling System, and Waste Package Remediation System during loading, handling, transfer, emplacement and retrieval of the disposal container/waste package.

NONE

2000-10-12T23:59:59.000Z

304

Unique method of ash disposal can benefit marine life  

SciTech Connect (OSTI)

As more communities turn to waste-to-energy facilities to help solve their solid waste disposal problems, the amount of ash created by these facilities increases. Incineration of solid waste produces particulate residues which are often rich in lead, cadmium, copper, and zinc because of the concentration which occurs as a result of reduction. It has been shown that such metals can sometimes be leached from ash residues, giving rise to special concerns that incineration ashes be disposed of in an environmentally acceptable manner. In urban coastal areas where landfills are few and increasingly distant, ocean disposal of stabilized incineration residues (SIR) may provide an acceptable alternative to current landfill practices. In May 1985, a research program was initiated at the Marine Sciences Research Center to examine the feasibility of utilizing SIR for artificial reef construction in the ocean. Results of these studies showed that particulate incineration residues could be combined with cement to form a solid block possessing physical properties necessary for ocean disposal. The stabilized residues were subjected to regulatory extraction protocols, and in no instance did the metal concentrations in the leachates exceed the regulatory limits for toxicity. Bioassays revealed no adverse effects on the phytoplankton communities exposed to elutriate concentrations higher than could be encountered under normal disposal conditions. The success of the laboratory studies resulted in securing the necessary permits for the placement of an artificial habitat constructed using SIR in coastal wasters. Results from this program are described.

Roethel, F.J.; Breslin, V.T. (State Univ. of New York, Stony Brook (USA))

1988-10-01T23:59:59.000Z

305

Forecasting the Standard & Poor's 500 stock index futures price: interest rates, dividend yields, and cointegration  

E-Print Network [OSTI]

Daily Standard & Poor's 500 stock index cash and futures prices are studies in a cointegration framework using Johansen's maximum likelihood procedure. To account for the time varying relationship(basis) between the two markets, a theoretical...

Fritsch, Roger Erwin

1997-01-01T23:59:59.000Z

306

Monetary Policy, Nominal Interest Rates, and Long-horizon Inflation Uncertainty  

E-Print Network [OSTI]

of the countries examined in this paper (the United2 Kingdom and Canada) and only in the latter part of the historical period I examine. seem clear that the nature of the market imperfections will affect the nature of the objective. Price, and possibly inflation... at similar times in the early and late 1970s, and downward shocks in the mid-1980s. This is of course unsurprising given what we know about the history of oil and other commodity prices. (iii) Whilst the impulses were similar in all countries, the responses...

Wright, Stephen M

2004-06-16T23:59:59.000Z

307

EM Plan Accelerates Uranium-233 Disposal, Saves Taxpayers Half Billion  

Broader source: Energy.gov (indexed) [DOE]

EM Plan Accelerates Uranium-233 Disposal, Saves Taxpayers Half EM Plan Accelerates Uranium-233 Disposal, Saves Taxpayers Half Billion Dollars EM Plan Accelerates Uranium-233 Disposal, Saves Taxpayers Half Billion Dollars August 1, 2012 - 12:00pm Addthis For more than 50 years, the uranium-233 (U-233) supply has been stored at the Oak Ridge National Laboratory’s (ORNL) Building 3019. The facility, located near the center of the ORNL campus, is owned by EM and one of the nation’s few repositories for U-233 and other special nuclear materials dating back to the Manhattan Project. For more than 50 years, the uranium-233 (U-233) supply has been stored at the Oak Ridge National Laboratory's (ORNL) Building 3019. The facility, located near the center of the ORNL campus, is owned by EM and one of the nation's few repositories for U-233 and other special nuclear materials

308

Laboratory to demolish excavation enclosures at Material Disposal Area B  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Excavation Enclosures At MDA B Excavation Enclosures At MDA B Laboratory to demolish excavation enclosures at Material Disposal Area B near DP Road Pre-demolition activities are beginning this week and the work should be completed by the end of March 2013. November 1, 2012 The Laboratory plans to demolish the enclosures used to safely excavate and clean up the Lab's oldest waste disposal site near DP Road in Los Alamos. The Laboratory plans to demolish the enclosures used to safely excavate and clean up the Lab's oldest waste disposal site near DP Road in Los Alamos. Contact Communications Office (505) 667-7000 "We look forward to the day we officially turn the property over for the benefit of our community." Work is beginning this week LOS ALAMOS, New Mexico, November 1, 2012-Los Alamos National Laboratory

309

EIS-0200: Managing Treatment, Storage, and Disposal of Radioactive and  

Broader source: Energy.gov (indexed) [DOE]

00: Managing Treatment, Storage, and Disposal of Radioactive 00: Managing Treatment, Storage, and Disposal of Radioactive and Hazardous Waste EIS-0200: Managing Treatment, Storage, and Disposal of Radioactive and Hazardous Waste SUMMARY This EIS evaluates the potential environmental and cost impacts of strategic managment alternatives for managing five types of radioactive and hazardous wastes that have resulted and will continue to result from nuclear defense and research activities at a variety of sites around the United States. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD July 7, 2011 EIS-0200-SA-03: Supplement Analysis Treatment of Transuranic Waste at the Idaho National Laboratory, Carlsbad Field Office March 7, 2008 EIS-0200: Amendment to the Record of Decision Treatment and Storage of Transuranic Waste

310

Laboratory to demolish excavation enclosures at Material Disposal Area B  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Excavation enclosures at MDA B Excavation enclosures at MDA B Laboratory to demolish excavation enclosures at Material Disposal Area B near DP road Pre-demolition activities are beginning this week and the work should be completed by the end of March 2013. November 1, 2012 The Laboratory plans to demolish the enclosures used to safely excavate and clean up the Lab's oldest waste disposal site near DP Road in Los Alamos. The Laboratory plans to demolish the enclosures used to safely excavate and clean up the Lab's oldest waste disposal site near DP Road in Los Alamos. Contact Colleen Curran Communications Office (505) 664-0344 Email "We look forward to the day we officially turn the property over for the benefit of our community." Work is beginning this week LOS ALAMOS, New Mexico, November 1, 2012-Los Alamos National Laboratory

311

EIS-0200: Managing Treatment, Storage, and Disposal of Radioactive and  

Broader source: Energy.gov (indexed) [DOE]

EIS-0200: Managing Treatment, Storage, and Disposal of Radioactive EIS-0200: Managing Treatment, Storage, and Disposal of Radioactive and Hazardous Waste EIS-0200: Managing Treatment, Storage, and Disposal of Radioactive and Hazardous Waste SUMMARY Final Waste Management Programmatic Environmental Impact Statement examines the potential environmental and cost impacts of strategic managment alternatives for managing five types of radioactive and hazardous wastes that have resulted and will continue to result from nuclear defense and research activities at a variety of sites around the United States. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD July 7, 2011 EIS-0200-SA-03: Supplement Analysis Treatment of Transuranic Waste at the Idaho National Laboratory, Carlsbad Field Office March 7, 2008

312

Laboratory to demolish excavation enclosures at Material Disposal Area B  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Excavation Enclosures At MDA B Excavation Enclosures At MDA B Laboratory to demolish excavation enclosures at Material Disposal Area B near DP Road Pre-demolition activities are beginning this week and the work should be completed by the end of March 2013. November 1, 2012 The Laboratory plans to demolish the enclosures used to safely excavate and clean up the Lab's oldest waste disposal site near DP Road in Los Alamos. The Laboratory plans to demolish the enclosures used to safely excavate and clean up the Lab's oldest waste disposal site near DP Road in Los Alamos. Contact Communications Office (505) 667-7000 "We look forward to the day we officially turn the property over for the benefit of our community." Work is beginning this week LOS ALAMOS, New Mexico, November 1, 2012-Los Alamos National Laboratory

313

EM's Richland Operations Office Celebrates Disposal Achievement in 2013 |  

Broader source: Energy.gov (indexed) [DOE]

EM's Richland Operations Office Celebrates Disposal Achievement EM's Richland Operations Office Celebrates Disposal Achievement in 2013 EM's Richland Operations Office Celebrates Disposal Achievement in 2013 December 24, 2013 - 12:00pm Addthis Workers sample a well used to monitor groundwater at the Hanford site. Workers sample a well used to monitor groundwater at the Hanford site. Workers separate a glove box for removal from Hanford’s Plutonium Finishing Plant. Workers separate a glove box for removal from Hanford's Plutonium Finishing Plant. Workers sample a well used to monitor groundwater at the Hanford site. Workers separate a glove box for removal from Hanford's Plutonium Finishing Plant. RICHLAND, Wash. - EM's Richland Operations Office's 2013 accomplishments ranged from cleaning up buildings and waste sites to treating a record

314

EM Plan Accelerates Uranium-233 Disposal, Saves Taxpayers Half Billion  

Broader source: Energy.gov (indexed) [DOE]

EM Plan Accelerates Uranium-233 Disposal, Saves Taxpayers Half EM Plan Accelerates Uranium-233 Disposal, Saves Taxpayers Half Billion Dollars EM Plan Accelerates Uranium-233 Disposal, Saves Taxpayers Half Billion Dollars August 1, 2012 - 12:00pm Addthis For more than 50 years, the uranium-233 (U-233) supply has been stored at the Oak Ridge National Laboratory’s (ORNL) Building 3019. The facility, located near the center of the ORNL campus, is owned by EM and one of the nation’s few repositories for U-233 and other special nuclear materials dating back to the Manhattan Project. For more than 50 years, the uranium-233 (U-233) supply has been stored at the Oak Ridge National Laboratory's (ORNL) Building 3019. The facility, located near the center of the ORNL campus, is owned by EM and one of the nation's few repositories for U-233 and other special nuclear materials

315

Crystalline ceramics: Waste forms for the disposal of weapons plutonium  

SciTech Connect (OSTI)

At present, there are three seriously considered options for the disposition of excess weapons plutonium: (i) incorporation, partial burn-up and direct disposal of MOX-fuel; (ii) vitrification with defense waste and disposal as glass ``logs``; (iii) deep borehole disposal (National Academy of Sciences Report, 1994). The first two options provide a safeguard due to the high activity of fission products in the irradiated fuel and the defense waste. The latter option has only been examined in a preliminary manner, and the exact form of the plutonium has not been identified. In this paper, we review the potential for the immobilization of plutonium in highly durable crystalline ceramics apatite, pyrochlore, monazite and zircon. Based on available data, we propose zircon as the preferred crystalline ceramic for the permanent disposition of excess weapons plutonium.

Ewing, R.C.; Lutze, W. [New Mexico Univ., Albuquerque, NM (United States); Weber, W.J. [Pacific Northwest Lab., Richland, WA (United States)

1995-05-01T23:59:59.000Z

316

Earth melter and method of disposing of feed materials  

SciTech Connect (OSTI)

An apparatus, and method of operating the apparatus, wherein a feed material is converted into a glassified condition for subsequent use or disposal. The apparatus is particularly useful for disposal of hazardous or noxious waste materials which are otherwise either difficult or expensive to dispose of. The apparatus is preferably constructed by excavating a melt zone in a quantity of soil or rock, and lining the melt zone with a back fill material if refractory properties are needed. The feed material is fed into the melt zone and, preferably, combusted to an ash, whereupon the heat of combustion is used to melt the ash to a molten condition. Electrodes may be used to maintain the molten feed material in a molten condition, and to maintain homogeneity of the molten materials.

Chapman, Christopher C. (Richland, WA)

1994-01-01T23:59:59.000Z

317

Subproject L-045H 300 Area Treated Effluent Disposal Facility  

SciTech Connect (OSTI)

The study focuses on the project schedule for Project L-045H, 300 Area Treated Effluent Disposal Facility. The 300 Area Treated Effluent Disposal Facility is a Department of Energy subproject of the Hanford Environmental Compliance Project. The study scope is limited to validation of the project schedule only. The primary purpose of the study is to find ways and means to accelerate the completion of the project, thereby hastening environmental compliance of the 300 Area of the Hanford site. The 300 Area'' has been utilized extensively as a laboratory area, with a diverse array of laboratory facilities installed and operational. The 300 Area Process Sewer, located in the 300 Area on the Hanford Site, collects waste water from approximately 62 sources. This waste water is discharged into two 1500 feet long percolation trenches. Current environmental statutes and policies dictate that this practice be discontinued at the earliest possible date in favor of treatment and disposal practices that satisfy applicable regulations.

Not Available

1991-06-01T23:59:59.000Z

318

Classified Component Disposal at the Nevada National Security Site  

SciTech Connect (OSTI)

The Nevada National Security Site (NNSS) has added the capability needed for the safe, secure disposal of non-nuclear classified components that have been declared excess to national security requirements. The NNSS has worked with U.S. Department of Energy, National Nuclear Security Administration senior leadership to gain formal approval for permanent burial of classified matter at the NNSS in the Area 5 Radioactive Waste Management Complex owned by the U.S. Department of Energy. Additionally, by working with state regulators, the NNSS added the capability to dispose non-radioactive hazardous and non-hazardous classified components. The NNSS successfully piloted the new disposal pathway with the receipt of classified materials from the Kansas City Plant in March 2012.

Poling, J. [NSTec; Arnold, P. [NSTec; Saad, M. [SNL; DiSanza, F.; Cabble, K. [NNSA/NSO

2012-11-05T23:59:59.000Z

319

Idaho CERCLA Disposal Facility at Idaho National Laboratory  

Broader source: Energy.gov (indexed) [DOE]

Idaho Operations Idaho Operations Review of the Idaho CERCLA Disposal Facility (ICDF) at Idaho National Laboratory By Craig H. Benson, PhD, PE; William H. Albright, PhD; David P. Ray, PE, and John Smegal Sponsored by: The Office of Engineering and Technology (EM-20) 5 December 2007 i TABLE OF CONTENTS 1. INTRODUCTION 1 2. OBJECTIVE AND SCOPE 1 3. LINE OF INQUIRY NO. 1 2 3.1 Containerized Waste 2 3.2 Compacted Mixtures of Soil and Debris 3 3.3 Final Cover Settlement 3 3.4 Leachate Collection System and Leak Detection Zone Monitoring 4 4. LINE OF INQUIRY NO. 2 4 5. LINE OF INQUIRY NO. 3 5 6. SUMMARY OF RECOMMENDATIONS 6 7. ACKNOWLEDGEMENTS 6 FIGURES 7 1 1. INTRODUCTION The Idaho CERCLA Disposal Facility (ICDF) is a land disposal facility authorized by the US

320

Interested Parties - BlueGreen Alliance | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

BlueGreen Alliance Interested Parties - BlueGreen Alliance 09-25-10Section136ATVM.pdf More Documents & Publications Interested Parties - MEMA Interested Parties - United Auto...

Note: This page contains sample records for the topic "interest rates disposable" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Idaho CERCLA Disposal Facility Complex Waste Acceptance Criteria  

SciTech Connect (OSTI)

The Idaho Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Disposal Facility (ICDF) has been designed to accept CERCLA waste generated within the Idaho National Laboratory. Hazardous, mixed, low-level, and Toxic Substance Control Act waste will be accepted for disposal at the ICDF. The purpose of this document is to provide criteria for the quantities of radioactive and/or hazardous constituents allowable in waste streams designated for disposal at ICDF. This ICDF Complex Waste Acceptance Criteria is divided into four section: (1) ICDF Complex; (2) Landfill; (3) Evaporation Pond: and (4) Staging, Storage, Sizing, and Treatment Facility (SSSTF). The ICDF Complex section contains the compliance details, which are the same for all areas of the ICDF. Corresponding sections contain details specific to the landfill, evaporation pond, and the SSSTF. This document specifies chemical and radiological constituent acceptance criteria for waste that will be disposed of at ICDF. Compliance with the requirements of this document ensures protection of human health and the environment, including the Snake River Plain Aquifer. Waste placed in the ICDF landfill and evaporation pond must not cause groundwater in the Snake River Plain Aquifer to exceed maximum contaminant levels, a hazard index of 1, or 10-4 cumulative risk levels. The defined waste acceptance criteria concentrations are compared to the design inventory concentrations. The purpose of this comparison is to show that there is an acceptable uncertainty margin based on the actual constituent concentrations anticipated for disposal at the ICDF. Implementation of this Waste Acceptance Criteria document will ensure compliance with the Final Report of Decision for the Idaho Nuclear Technology and Engineering Center, Operable Unit 3-13. For waste to be received, it must meet the waste acceptance criteria for the specific disposal/treatment unit (on-Site or off-Site) for which it is destined.

W. Mahlon Heileson

2006-10-01T23:59:59.000Z

322

Maintenance Guide for DOE Low-Level Waste Disposal Facility  

Broader source: Energy.gov (indexed) [DOE]

4 4 G Approved: XX-XX-XX IMPLEMENTATION GUIDE for use with DOE M 435.1-1 Maintenance Guide for U.S. Department of Energy Low-Level Waste Disposal Facility Performance Assessments and Composite Analyses U.S. DEPARTMENT OF ENERGY DOE G 435.1-4 i (and ii) DRAFT XX-XX-XX LLW Maintenance Guide Revision 0, XX-XX-XX Maintenance Guide for U.S. Department of Energy Low-Level Waste Disposal Facility Performance Assessments and Composite Analyses CONTENTS 1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3.1 Objectives . . . . . . . . . . . . . . . . . . . . . . . . .

323

Monitoring Report for Uranium Mill Tailings Radiation Control Act Title II Disposal Sites  

Broader source: Energy.gov (indexed) [DOE]

Annual Site Inspection and Annual Site Inspection and Monitoring Report for Uranium Mill Tailings Radiation Control Act Title II Disposal Sites November 2012 LMS/S09415 ENERGY Legacy Management U.S. DEPARTMENT OF Sherwood, Washington, Disposal Site, 2012 Sherwood, Washington, Disposal Site, 2012 L-Bar, New Mexico, Disposal Site, 2012 L-Bar, New Mexico, Disposal Site, 2012 Bluewater, New Mexico, Disposal Site, 2012 Bluewater, New Mexico, Disposal Site, 2012 Maybell West, Colorado, Disposal Site, 2012 Maybell West, Colorado, Disposal Site, 2012 This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy,

324

Interested Parties - Smith Dawson & Andrews | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Smith Dawson & Andrews Interested Parties - Smith Dawson & Andrews 09-03-10SmithDawsonAndrews.pdf More Documents & Publications Interested Parties - ARPA-E National...

325

Relationship of inquiry-based learning elements on changes in middle school students' science, technology, engineering, and mathematics (stem) beliefs and interests  

E-Print Network [OSTI]

characteristic of this classroom. STEM interest change explained 55% of the variation in middle school students STEM belief change. Analyses indicated NSF Fellows and teachers affected the rate at which middle school students STEM beliefs and interests changed...

Degenhart, Heather Shannon

2009-05-15T23:59:59.000Z

326

Home Energy Score: Program Update for Interested Stakeholders  

Broader source: Energy.gov (indexed) [DOE]

Home Energy Score: Home Energy Score: Program Update for Interested Stakeholders Joan Glickman Senior Advisor/Program Manager U.S. Department of Energy July 23, 2012 1 eere.energy.gov DOE's objectives for the Home Energy Score Program * Strengthen the home energy improvement market * Provide an affordable and credible means for homeowners to understand - their home's energy performance, - how their home compares to others in their area, and - how to improve its efficiency. * Build on and complement existing home energy improvement efforts * Help trained workers enter the private sector energy improvement market, as Weatherization work funded by the Recovery Act ramps down 2 eere.energy.gov Better Information: Home Energy Score * Voluntary MPG rating for homes and

327

Report on waste burial charges. Escalation of decommissioning waste disposal costs at low-level waste burial facilities, Revision 4  

SciTech Connect (OSTI)

One of the requirements placed upon nuclear power reactor licensees by the U.S. Nuclear Regulatory Commission (NRC) is for the licensees to periodically adjust the estimate of the cost of decommissioning their plants, in dollars of the current year, as part of the process to provide reasonable assurance that adequate funds for decommissioning will be available when needed. This report, which is scheduled to be revised periodically, contains the development of a formula for escalating decommissioning cost estimates that is acceptable to the NRC. The sources of information to be used in the escalation formula are identified, and the values developed for the escalation of radioactive waste burial costs, by site and by year, are given. The licensees may use the formula, the coefficients, and the burial escalation factors from this report in their escalation analyses, or they may use an escalation rate at least equal to the escalation approach presented herein. This fourth revision of NUREG-1307 contains revised spreadsheet results for the disposal costs for the reference PWR and the reference BWR and the ratios of disposal costs at the Washington, Nevada, and South Carolina sites for the years 1986, 1988, 1991 and 1993, superseding the values given in the May 1993 issue of this report. Burial cost surcharges mandated by the Low-Level Radioactive Waste Policy Amendments Act of 1985 (LLRWPAA) have been incorporated into the revised ratio tables for those years. In addition, spreadsheet results for the disposal costs for the reference reactors and ratios of disposal costs at the two remaining burial sites in Washington and South Carolina for the year 1994 are provided. These latter results do not include any LLRWPAA surcharges, since those provisions of the Act expired at the end of 1992. An example calculation for escalated disposal cost is presented, demonstrating the use of the data contained in this report.

Not Available

1994-06-01T23:59:59.000Z

328

Report on waste burial charges: Escalation of decommissioning waste disposal costs at Low-Level Waste Burial facilities. Revision 5  

SciTech Connect (OSTI)

One of the requirements placed upon nuclear power reactor licensees by the US Nuclear Regulatory Commission (NRC) is for the licensees to periodically adjust the estimate of the cost of decommissioning their plants, in dollars of the current year, as part of the process to provide reasonable assurance that adequate funds for decommissioning will be available when needed. This report, which is scheduled to be revised periodically, contains the development of a formula for escalating decommissioning cost estimates that is acceptable to the NRC. The sources of information to be used in the escalation formula are identified, and the values developed for the escalation of radioactive waste burial costs, by site and by year, are given. The licensees may use the formula, the coefficients, and the burial escalation factors from this report in their escalation analyses, or they may use an escalation rate at least equal to the escalation approach presented herein. This fifth revision of NUREG-1307 contains revised spreadsheet results for the disposal costs for the reference PWR and the reference BWR and the ratios of disposal costs at the Washington, Nevada, and South Carolina sites for the years 1986, 1988, 1991, 1993, and 1994, superseding the values given in the June 1994 issue of this report. Burial cost surcharges mandated by the Low-Level Radioactive Waste Policy Amendments Act of 1985 (LLRWPAA) have been incorporated into the revised ratio tables for those years. In addition, spreadsheet results for the disposal costs for the reference reactors and ratios of disposal costs at the two remaining burial sites in Washington and South Carolina for the year 1995 are provided. These latter results do not include any LLRWPAA surcharges, since those provisions of the Act expired at the end of 1992. An example calculation for escalated disposal cost is presented, demonstrating the use of the data contained in this report.

NONE

1995-08-01T23:59:59.000Z

329

Historical Relationship Between Performance Assessment for Radioactive Waste Disposal and Other Types of Risk Assessment in the United States  

SciTech Connect (OSTI)

This paper describes the evolution of the process for assessing the hazards of a geologic disposal system for radioactive waste and, similarly, nuclear power reactors, and the relationship of this process with other assessments of risk, particularly assessments of hazards from manufactured carcinogenic chemicals during use and disposal. This perspective reviews the common history of scientific concepts for risk assessment developed to the 1950s. Computational tools and techniques developed in the late 1950s and early 1960s to analyze the reliability of nuclear weapon delivery systems were adopted in the early 1970s for probabilistic risk assessment of nuclear power reactors, a technology for which behavior was unknown. In turn, these analyses became an important foundation for performance assessment of nuclear waste disposal in the late 1970s. The evaluation of risk to human health and the environment from chemical hazards is built upon methods for assessing the dose response of radionuclides in the 1950s. Despite a shared background, however, societal events, often in the form of legislation, have affected the development path for risk assessment for human health, producing dissimilarities between these risk assessments and those for nuclear facilities. An important difference is the regulator's interest in accounting for uncertainty and the tools used to evaluate it.

RECHARD,ROBERT P.

2000-07-14T23:59:59.000Z

330

Irradiated Beryllium Disposal Workshop, Idaho Falls, ID, May 29-30, 2002  

SciTech Connect (OSTI)

In 2001, while performing routine radioactive decay heat rate calculations for beryllium reflector blocks for the Advanced Test Reactor (ATR), it became evident that there may be sufficient concentrations of transuranic isotopes to require classification of this irradiated beryllium as transuranic waste. Measurements on samples from ATR reflector blocks and further calculations confirmed that for reflector blocks and outer shim control cylinders now in the ATR canal, transuranic activities are about five times the threshold for classification. That situation implies that there is no apparent disposal pathway for this material. The problem is not unique to the ATR. The High Flux Isotope Reactor at Oak Ridge National Laboratory, the Missouri University Research Reactor at Columbia, Missouri and other reactors abroad must also deal with this issue. A workshop was held in Idaho Falls Idaho on May 29-30, 2002 to acquaint stakeholders with these findings and consider a path forward in resolving the issues attendant to disposition of irradiated material. Among the findings from this workshop were (1) there is a real potential for the US to be dependent on foreign sources for metallic beryllium within about a decade; (2) there is a need for a national policy on beryllium utilization and disposition and for a beryllium coordinating committee to be assembled to provide guidance on that policy; (3) it appears it will be difficult to dispose of this material at the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico due to issues of Defense classification, facility radioactivity inventory limits, and transportation to WIPP; (4) there is a need for a funded DOE program to seek resolution of these issues including research on processing techniques that may make this waste acceptable in an existing disposal pathway or allow for its recycle.

Longhurst, Glen Reed; Anderson, Gail; Mullen, Carlan K; West, William Howard

2002-07-01T23:59:59.000Z

331

Ministers block disposal of oil rigs at sea  

Science Journals Connector (OSTI)

... ministers last week ended three years of public controversy about the fate of disused oil rigs in the northeast Atlantic ocean. They decided that most will have to be dismantled ... all environmentalist groups. Oil companies, on the other hand, were disappointed. The UK Offshore Operators Association said the decision to outlaw deep-sea disposal of oil and gas ...

Ehsan Masood

1998-07-30T23:59:59.000Z

332

Disposal of soluble salt waste from coal gasification  

SciTech Connect (OSTI)

This paper addresses pollutants in the form of soluble salts and resource recovery in the form of water and land. A design for disposal of soluble salts has been produced. The interactions of its parameters have been shown by a process design study. The design will enable harmonious compliance with United States Public Laws 92-500 and 94-580, relating to water pollution and resource recovery. In the disposal of waste salt solutions, natural water resources need not be contaminated, because an encapsulation technique is available which will immobilize the salts. At the same time it will make useful landforms available, and water as a resource can be recovered. There is a cost minimum when electrodialysis and evaporation are combined, which is not realizable with evaporation alone, unless very low-cost thermal energy is available or unless very high-cost pretreatment for electrodialysis is required. All the processes making up the proposed disposal process are commercially available, although they are nowhere operating commercially as one process. Because of the commercial availability of the processes, the proposed process may be a candidate 'best commercially available treatment' for soluble salt disposal.

McKnight, C.E.

1980-06-01T23:59:59.000Z

333

Design of a Large Explosive Ordnance Disposal Robot  

Science Journals Connector (OSTI)

The explosive ordnance disposal robot (EOD robot) can replace man to reconnoiter, remove and deal with explosives or other dangerous articles in the dangerous environment. We design a large EOD robot which is constituted by the vehicle body, the mechanical ... Keywords: EOD robot, vehicle body, mechanical hand, vision system

Boyu Wei; Junyao Gao; Jianguo Zhu; Kejie Li

2009-10-01T23:59:59.000Z

334

Support of the Iraq nuclear facility dismantlement and disposal program  

SciTech Connect (OSTI)

Available in abstract form only. Full text of publication follows: Iraq's former nuclear facilities contain large quantities of radioactive materials and radioactive waste. The Iraq Nuclear Facility Dismantlement and Disposal Program (the Iraq NDs Program) is a new program to decontaminate and permanently dispose of radioactive wastes in Iraq. The NDs Program is led by the Government of Iraq, under International Atomic Energy Agency (IAEA) auspices, with guidance and assistance from a number of countries. The U.S. participants include Texas Tech University and Sandia National Laboratories. A number of activities are ongoing under the broad umbrella of the Iraq NDs Program: drafting a new nuclear law that will provide the legal basis for the cleanup and disposal activities; assembly and analysis of existing data; characterization of soil contamination; bringing Iraqi scientists to the world's largest symposium on radioactive waste management; touring U.S. government and private sector operating radwaste disposal facilities in the U.S., and hosting a planning workshop on the characterization and cleanup of the Al-Tuwaitha Nuclear Facility. (authors)

Coates, Roger [International Atomic Energy Agency - IAEA, Wagramer Strasse 5, P.O. Box 100 - 1400 Vienna (Austria); Cochran, John; Danneels, Jeff [Sandia National Laboratories (United States); Chesser, Ronald; Phillips, Carlton; Rogers, Brenda [Center for Environmental Radiation Studies, Texas Tech University, Lubbock, TX 79409 (United States)

2007-07-01T23:59:59.000Z

335

On-Farm Storage and Disposal of Sorghum Grain.  

E-Print Network [OSTI]

APRIL 1963 ON-FARM - STORAGE AND DISPOSAL OF SORGHUM GRAIN -- THE AGRICULTURAL AND MECHANICAL COLLEGE OF TEXAS TEXAS AGRICULTURAL EXPERIMENT STATION R. E. PATTERSON. DIRECTOR. COLLEGE ST+TION, TEXAS IN COOPERATION WITH THE U. S. DEPARTMENT... OF AGRICULTURE summary The sorghum storage space. Utilization increases resulted from an increased awareness and acceptance by feeders and millers...

Brown, Charles W.; Moore, Clarence A.

1963-01-01T23:59:59.000Z

336

Pyroprocessing oxide spent nuclear fuels for efficient disposal  

SciTech Connect (OSTI)

Pyrochemical processing as a means for conditioning spent nuclear fuels for disposal offers significant advantages over the direct disposal option. The advantages include reduction in high-level waste volume; conversion of most of the high-level waste to a low-level waste in which nearly all the transuranics (TRU) have been removed; and incorporation of the TRUs into a stable, highly radioactive waste form suitable for interim storage, ultimate destruction, or repository disposal. The lithium process has been under development at Argonne National Laboratory for use in pyrochemical conditioning of spent fuel for disposal. All of the process steps have been demonstrated in small-scale (0.5-kg simulated spent fuel) experiments. Engineering-scale (20-kg simulated spent fuel) demonstration of the process is underway, and small-scale experiments have been conducted with actual spent fuel from a light water reactor (LWR). The lithium process is simple, operates at relatively low temperatures, and can achieve high decontamination factors for the TRU elements. Ordinary materials, such as carbon steel, can be used for process containment.

McPheeters, C.C.; Pierce, R.D.; Mulcahey, T.P. [Argonne National Lab., IL (United States). Chemical Technology Div.

1994-12-31T23:59:59.000Z

337

Disposal of CCA-treated Wood: An Evaluation of  

E-Print Network [OSTI]

Disposal of CCA-treated Wood: An Evaluation of Existing and Alternative Management Options (FINAL CHARACTERISTICS OF CCA-TREATED WOOD ASH II.1 Sample Preparation 10 II.2 Laboratory Methods 15 II.3 Laboratory Results 24 CHAPTER III, SORTING TECHNOLOGIES FOR SEPARATING TREATED WOOD FROM UNTREATED WOOD III.1

Florida, University of

338

The College of Engineering Electronic Media Disposal Policy  

E-Print Network [OSTI]

The College of Engineering Electronic Media Disposal Policy COE­EMD­01 1.0 Purpose The purpose of Engineering employees, contractors, consultants, temporary personnel, and other workers responsible electronic information on the medium, such as a computer, personal hand held device, audio or video player

Demirel, Melik C.

339

Federal Energy Management Program: Decreasing Utility Contract Interest  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Decreasing Utility Decreasing Utility Contract Interest through Annual Payments to someone by E-mail Share Federal Energy Management Program: Decreasing Utility Contract Interest through Annual Payments on Facebook Tweet about Federal Energy Management Program: Decreasing Utility Contract Interest through Annual Payments on Twitter Bookmark Federal Energy Management Program: Decreasing Utility Contract Interest through Annual Payments on Google Bookmark Federal Energy Management Program: Decreasing Utility Contract Interest through Annual Payments on Delicious Rank Federal Energy Management Program: Decreasing Utility Contract Interest through Annual Payments on Digg Find More places to share Federal Energy Management Program: Decreasing Utility Contract Interest through Annual Payments on

340

DOE Affirms National Interest Electric Transmission Corridor Designations |  

Broader source: Energy.gov (indexed) [DOE]

Affirms National Interest Electric Transmission Corridor Affirms National Interest Electric Transmission Corridor Designations DOE Affirms National Interest Electric Transmission Corridor Designations DOE Affirms National Interest Electric Transmission Corridor Designations. The U.S. Department of Energy (DOE) today denied requests for rehearing of the Mid-Atlantic and the Southwest Area National Interest Electric Transmission Corridors (National Corridors) designated by DOE in October 2007 as areas of significant electricity congestion and constraint. The designation of national corridors was made in accordance with the Energy Policy Act of 2005 (EPAct). DOE Affirms National Interest Electric Transmission Corridor Designations More Documents & Publications DOE Designates Southwest Area and Mid-Atlantic Area National Interest

Note: This page contains sample records for the topic "interest rates disposable" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Preliminary Report on Dual-Purpose Canister Disposal Alternatives (FY13) |  

Broader source: Energy.gov (indexed) [DOE]

Preliminary Report on Dual-Purpose Canister Disposal Alternatives Preliminary Report on Dual-Purpose Canister Disposal Alternatives (FY13) Preliminary Report on Dual-Purpose Canister Disposal Alternatives (FY13) This report documents the first phase of a multi-year project to understand the technical feasibility and logistical implications of direct disposal of spent nuclear fuel (SNF) in existing dual-purpose canisters (DPCs) and other types of storage casks. The first phase includes a set of preliminary disposal concepts and associated technical analyses, identification of additional R&D needs, and a recommendation to proceed with the next phase of the evaluation effort. Preliminary analyses indicate that DPC direct disposal could be technically feasible, at least for certain disposal concepts. DPC disposal concepts include the salt concept, and emplacement

342

Analysis of mineral trapping for CO2 disposal in deep aquifers  

E-Print Network [OSTI]

of Mineral Trapping for CO2 Disposal in Deep Aquifers Tianfue~mail: Tianfu Xu@lbl. gov) CO2 disposal into deep aquiferspermit significant sequestration of CO2. We performed batch

Xu, Tianfu

2014-01-01T23:59:59.000Z

343

DEVELOPMENT OF DATABASE ON FECAL SLUDGE COLLECTION, TREATMENT AND DISPOSAL IN THACHIN,  

E-Print Network [OSTI]

i DEVELOPMENT OF DATABASE ON FECAL SLUDGE COLLECTION, TREATMENT AND DISPOSAL IN THACHIN, CHAOPRAYA Sludge (FS) management and lacking of data on FS collection, treatment and disposal. Nevertheless, FS

Richner, Heinz

344

Environmental Protection Problems Connected to the Disposal of Ammunition and Explosives by Open Pit Burning  

Science Journals Connector (OSTI)

At the end of its functional life time, in service ammunition has to be disposed, as welt as the war time ammunition and explosives which are still beiing recovered. Formerly the conventional way of disposing amm...

Drs N. H. A. van Ham; A. Verweij

1990-01-01T23:59:59.000Z

345

Aspects of Nuclear Waste Disposal of Use in Teaching Basic Chemistry  

Science Journals Connector (OSTI)

Aspects of Nuclear Waste Disposal of Use in Teaching Basic Chemistry ... Various aspects of nuclear waste disposal are discussed for their value in providing pedagogical examples. ... Radioactivity, Radiation, and the Chemistry of Nuclear Waste ...

Gregory R. Choppin

1994-01-01T23:59:59.000Z

346

Format and Content Guide for DOE Low-Level Waste Disposal Facility...  

Office of Environmental Management (EM)

Format and Content Guide for DOE Low-Level Waste Disposal Facility Format and Content Guide for U.S. Department of Energy Low-Level Waste Disposal Facility Performance Assessments...

347

Format and Content Guide for DOE Low-Level Waste Disposal Facility...  

Broader source: Energy.gov (indexed) [DOE]

and Content Guide for DOE Low-Level Waste Disposal Facility Closure Plans Format and Content Guide for U.S. Department of Energy Low-Level Waste Disposal Facility Closure...

348

Classification and disposal of radioactive wastes: History and legal and regulatory requirements  

SciTech Connect (OSTI)

This document discusses the laws and regulations in the United States addressing classification of radioactive wastes and the requirements for disposal of different waste classes. This review emphasizes the relationship between waste classification and the requirements for permanent disposal.

Kocher, D.C.

1990-01-01T23:59:59.000Z

349

Risk assessment involving the land disposal of animal waste on Central Texas dairies  

E-Print Network [OSTI]

with nutrient disposal on two central Texas dairies. Risks were identified by using producer and researcher knowledge to create graphic representations of the disposal systems. These representations, known as event and fault trees, were used in conjunction...

Lee, Thomas Chadwick

2012-06-07T23:59:59.000Z

350

E-Print Network 3.0 - alternative disposal options Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

within the park, up... the dredging area to the disposal site via a 10 or 12" diameter pipeline. Alternatively, if the dredgeate 12... ;EXECUTIVE SUMMARY ii was to be disposed...

351

Concept study: Use of grout vaults for disposal of long-length contaminated equipment  

SciTech Connect (OSTI)

Study considers the potential for use of grout vaults for disposal of untreated long length equipment removed from waste tanks. Looks at ways to access vaults, material handling, regulatory aspects, and advantages and disadvantages of vault disposal.

Clem, D.K.

1994-09-21T23:59:59.000Z

352

Assessment of Disposal Options for DOE-Managed High-Level Radioactive...  

Office of Environmental Management (EM)

Assessment of Disposal Options for DOE-Managed High-Level Radioactive Waste and Spent Nuclear Fuel Assessment of Disposal Options for DOE-Managed High-Level Radioactive Waste and...

353

Fusion solution to dispose of spent nuclear fuel, transuranic elements, and highly enriched uranium  

Science Journals Connector (OSTI)

The disposal of the nuclear spent fuel, the transuranic elements, and the highly enriched uranium represents a major problem under investigation by the international scientific community to identify the most promising solutions. The investigation of this paper focused on achieving the top rated solution for the problem, the elimination goal, which requires complete elimination for the transuranic elements or the highly enriched uranium, and the long-lived fission products. To achieve this goal, fusion blankets with liquid carrier, molten salts or liquid metal eutectics, for the transuranic elements and the uranium isotopes are utilized. The generated energy from the fusion blankets is used to provide revenue for the system. The long-lived fission products are fabricated into fission product targets for transmutation utilizing the neutron leakage from the fusion blankets. This paper investigated the fusion blanket designs for small fusion devices and the system requirements for such application. The results show that 334 MW of fusion power from DT plasma for 30 years with an availability factor of 0.75 can dispose of the 70,000 tons of the U.S. inventory of spent nuclear fuel generated up to the year 2015. In addition, this fusion solution eliminates the need for a geological repository site, which is a major advantage. Meanwhile, such utilization of the fusion power will provide an excellent opportunity to develop fusion energy for the future.

Yousry Gohar

2001-01-01T23:59:59.000Z

354

A statistical analysis of well production rates from UK oil and gas fields Implications for carbon capture and storage  

Science Journals Connector (OSTI)

Abstract The number of wells required to dispose of global CO2 emissions by injection into geological formations is of interest as a key indicator of feasible deployment rate, scale and cost. Estimates have largely been driven by forecasts of sustainable injection rate from mathematical modelling of the CO2 injection process. Recorded fluid production rates from oil and gas fields can be considered an observable analogue in this respect. The article presents statistics concerning Cumulative average Bulk fluid Production (CBP) rates per well for 104 oil and gas fields from the UK offshore region. The term bulk fluid production is used here to describe the composite volume of oil, gas and water produced at reservoir conditions. Overall, the following key findings are asserted: (1) CBP statistics for UK offshore oil and gas fields are similar to those observed for CO2 injection projects worldwide. (2) 50% probability of non-exceedance (PNE) for CBP for oil and gas fields without water flood is around 0.35Mt/yr/well of CO2 equivalent. (3) There is negligible correlation between reservoir transmissivity and CBP. (4) Study of net and gross CBP for water flood fields suggest a 50% PNE that brine co-production during CO2 injection could lead to a 20% reduction in the number of wells required.

Simon A. Mathias; Jon G. Gluyas; Eric J. Mackay; Ward H. Goldthorpe

2013-01-01T23:59:59.000Z

355

Disposal Activities and the Unique Waste Streams at the Nevada National Security Site (NNSS)  

SciTech Connect (OSTI)

This slide show documents waste disposal at the Nevada National Security Site. Topics covered include: radionuclide requirements for waste disposal; approved performance assessment (PA) for depleted uranium disposal; requirements; program approval; the Waste Acceptance Review Panel (WARP); description of the Radioactive Waste Acceptance Program (RWAP); facility evaluation; recent program accomplishments, nuclear facility safety changes; higher-activity waste stream disposal; and, large volume bulk waste streams.

Arnold, P.

2012-10-31T23:59:59.000Z

356

Environmental regulations and technology: use and disposal of municipal waste-water sludge  

SciTech Connect (OSTI)

The document describes the five major sludge use/disposal options currently available--land application, distribution and marketing of sludge products, land-filling, incineration, and ocean disposal--and factors influencing their selection and implementation. It also provides an initial framework for evaluating sludge use/disposal alternatives, and describes accepted and proven use/disposal technologies and Federal regulations pertinent to sludge management.

Not Available

1984-09-01T23:59:59.000Z

357

River Protection Project (RPP) Tank Waste Retrieval and Disposal Mission Technical Baseline Summary Description  

SciTech Connect (OSTI)

This document is one of the several documents prepared by Lockheed Martin Hanford Corp. to support the U. S. Department of Energy's Tank Waste Retrieval and Disposal mission at Hanford. The Tank Waste Retrieval and Disposal mission includes the programs necessary to support tank waste retrieval; waste feed, delivery, storage, and disposal of immobilized waste; and closure of the tank farms.

DOVALLE, O.R.

1999-12-29T23:59:59.000Z

358

ASSESSING GHG EMISSIONS FROM SLUDGE TREATMENT AND DISPOSAL ROUTES THE METHOD BEHIND GESTABOUES TOOL  

E-Print Network [OSTI]

ASSESSING GHG EMISSIONS FROM SLUDGE TREATMENT AND DISPOSAL ROUTES ­ THE METHOD BEHIND GESTABOUES TOOL Pradel M., Reverdy, A.L. ORBIT2012 1 Assessing GHG emissions from sludge treatment and disposal. These different disposal routes as well as the sludge treatments produce greenhouse gases (GHG). To help

Boyer, Edmond

359

New Review of Nuclear Waste Disposal Calls for Early Test in New Mexico  

Science Journals Connector (OSTI)

...WIPP spent fuel disposal demonstration...licensing and site selection could...date. Waste disposal will not be inexpen-sive...such as those at Maxey Flats, Kentucky...long-term waste disposal facili-ties...formation at the WIPP site. Satisfying...

WILLIAM D. METZ

1978-03-31T23:59:59.000Z

360

Microbial activity of trench leachates from shallow-land, low-level radioactive waste disposal sites.  

Science Journals Connector (OSTI)

...samples collected from disposal sites at Maxey Flats, Ky., and West...trenches at the disposal sites of Maxey Flats, Ky., West Valley...trench water at the Maxey Flats low-level radioactive waste disposal site, p. 747-761...

A J Francis; S Dobbs; B J Nine

1980-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "interest rates disposable" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Environmental Impact of Wastewater Disposal in the Florida Keys, Monroe County Tom Higginbotham  

E-Print Network [OSTI]

Environmental Impact of Wastewater Disposal in the Florida Keys, Monroe County Tom Higginbotham University of Florida Soil and Water Science #12;Environmental Impact of Wastewater Disposal in the Florida affecting the normally oligotrophic marine waters. Typical methods of wastewater disposal include large

Ma, Lena

362

Alternative Chemicals and Improved Disposal-End Management Practices for CCA-treated Wood  

E-Print Network [OSTI]

Alternative Chemicals and Improved Disposal-End Management Practices for CCA-treated Wood (FINAL.7 Costs 54 II.8 Feedback from Wood Treaters and Large-End Users 56 CHAPTER III, DISPOSAL.3 Resource Book for the Wood Disposal Sector 85 CHAPTER IV IV.1 Conclusion and Recommendations IV.2

Florida, University of

363

Generation, Use, Disposal, and Management Options for CCA-Treated Wood  

E-Print Network [OSTI]

Generation, Use, Disposal, and Management Options for CCA-Treated Wood May 1998 Helena Solo, INVENTORY OF CCA-TREATED WOOD IN FLORIDA II.1 Characteristics of the Florida Wood Treatment Industry in 1996 10 II.2 Generation and Disposal of Cca-treated Wood 14 II.3 Disposal Reservoirs for Cca-treated Wood

Florida, University of

364

Waste Form Release Data Package for the 2005 Integrated Disposal Facility Performance Assessment  

SciTech Connect (OSTI)

This data package documents the experimentally derived input data on the representative waste glasses; LAWA44, LAWB45, and LAWC22. This data will be used for Subsurface Transport Over Reactive Multi-phases (STORM) simulations of the Integrated Disposal Facility (IDF) for immobilized low-activity waste (ILAW). The STORM code will be used to provide the near-field radionuclide release source term for a performance assessment to be issued in July 2005. Documented in this data package are data related to 1) kinetic rate law parameters for glass dissolution, 2) alkali (Na+)-hydrogen (H+) ion exchange rate, 3) chemical reaction network of secondary phases that form in accelerated weathering tests, and 4) thermodynamic equilibrium constants assigned to these secondary phases. The kinetic rate law and Na+-H+ ion exchange rate were determined from single-pass flow-through experiments. Pressurized unsaturated flow (PUF) and product consistency (PCT) tests where used for accelerated weathering or aging of the glasses in order to determine a chemical reaction network of secondary phases that form. The majority of the thermodynamic data used in this data package were extracted from the thermody-namic database package shipped with the geochemical code EQ3/6, version 8.0. Because of the expected importance of 129I release from secondary waste streams being sent to IDF from various thermal treatment processes, parameter estimates for diffusional release and solubility-controlled release from cementitious waste forms were estimated from the available literature.

Pierce, Eric M.; McGrail, B. Peter; Rodriguez, Elsa A.; Schaef, Herbert T.; Saripalli, Prasad; Serne, R. Jeffrey; Krupka, Kenneth M.; Martin, P. F.; Baum, Steven R.; Geiszler, Keith N.; Reed, Lunde R.; Shaw, Wendy J.

2004-09-01T23:59:59.000Z

365

NDAA Section 3116 Waste Determinations with Related Disposal Performance  

Broader source: Energy.gov (indexed) [DOE]

NDAA Section NDAA Section 3116 Waste Determinations with Related Disposal Performance Assessments NDAA Section 3116 Waste Determinations with Related Disposal Performance Assessments Section 3116 of the Ronald W. Reagan National Defense Authorization Act for Fiscal Year 2005 authorizes the Secretary of Energy, in consultation with the Nuclear Regulatory Commission, to reclassify certain waste from reprocessing spent nuclear fuel from high-level waste to low-level waste if it meets the criteria set forth in Section 3116. Section 3116 is currently only applicable to Idaho National Laboratory (INL) and the Savannah River Site (SRS). The other two DOE sites with similar waste (residuals remaining after cleaning out tanks and equipment that held liquid high-level waste)

366

The Effects of CO2 Disposal on Marine Nitrification Processes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Effects of CO Effects of CO 2 Disposal on Marine Nitrification Processes Michael H. Huesemann (michael.huesemann@pnl.gov, 360-681-3618) Pacific Northwest National Laboratory - Marine Sciences Laboratory 1529 West Sequim Bay Road Sequim, WA 98382 Ann D. Skillman (ann.skillman@pnl.gov, 360-681-3649) Pacific Northwest National Laboratory - Marine Sciences Laboratory 1529 West Sequim Bay Road Sequim, WA 98382 Eric A. Crecelius (eric.crecelius@pnl.gov, 360-681-3604) Pacific Northwest National Laboratory - Marine Sciences Laboratory 1529 West Sequim Bay Road Sequim, WA 98382 Abstract In an attempt to reduce the threat of global warming, it has been proposed that the rise of atmospheric carbon dioxide concentrations be reduced by the ocean disposal of CO 2 from the flue gases of fossil fuel-fired power plants. The release of large amounts of

367

LANL demolishes first containment dome at disposal area  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

LANL Demolishes First Containment Dome LANL Demolishes First Containment Dome LANL demolishes first containment dome at disposal area It once housed thousands of drums of radioactive waste that have been shipped to the Waste Isolation Pilot Plant for disposal. September 30, 2009 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials.

368

Operational Issues at the Environmental Restoration Disposal Facility at Hanford  

Broader source: Energy.gov (indexed) [DOE]

Hanford Operations Hanford Operations Evaluating Operational Issues at the Environmental Restoration Disposal Facility at Hanford By Craig H. Benson, PhD, PE; William H. Albright, PhD; and David P. Ray, PE Sponsored by: The Office of Engineering and Technology (EM-20) 17 June 2007 i TABLE OF CONTENTS EXECUTIVE SUMMARY ii ACKNOWLEDGEMENTS iv INTRODUCTION 1 BACKGROUND 1 Environmental Restoration Disposal Facility 1 Source of Concern 2 LINES OF INQUIRY 2 1. Validate Scope of Identified Problems 2 2. Assess Contractor Evaluation of the Elevated Leachate Level on the Landfill Liner 3 3. Evaluate Adequacy of Landfill Performance in View of the Discovered Falsified Compaction Data and Potential Leachate Level Problems 4

369

Portsmouth Site Delivers First Radioactive Waste Shipment to Disposal  

Broader source: Energy.gov (indexed) [DOE]

Delivers First Radioactive Waste Shipment to Delivers First Radioactive Waste Shipment to Disposal Facility in Texas Portsmouth Site Delivers First Radioactive Waste Shipment to Disposal Facility in Texas August 27, 2013 - 12:00pm Addthis Waste management and transportation personnel worked late to complete the first shipment to WCS. Through a contract with DOE, WCS will treat and accept potentially hazardous waste that has been at the Portsmouth site for decades. Pictured (from left) are Scott Fraser, Joe Hawes, Craig Herrmann, Jim Book, John Lee, John Perry, Josh Knipp, Melissa Dunsieth, Randy Barr, Rick Williams, Janet Harris, Maureen Fischels, Cecil McCoy, Trent Eckert, Anthony Howard and Chris Ashley. Waste management and transportation personnel worked late to complete the first shipment to WCS. Through a contract with DOE, WCS will treat and

370

D11 WASTE DISPOSAL FACILITIES FOR TRANSURANIC WASTE  

Broader source: Energy.gov (indexed) [DOE]

10 CFR Ch. X (1-1-12 Edition) Pt. 1022 D11 WASTE DISPOSAL FACILITIES FOR TRANSURANIC WASTE Siting, construction or expansion, and op- eration of disposal facilities for transuranic (TRU) waste and TRU mixed waste (TRU waste also containing hazardous waste as designated in 40 CFR part 261). D12 INCINERATORS Siting, construction, and operation of in- cinerators, other than research and develop- ment incinerators or incinerators for non- hazardous solid waste (as designated in 40 CFR 261.4(b)). PART 1022-COMPLIANCE WITH FLOODPLAIN AND WETLAND EN- VIRONMENTAL REVIEW REQUIRE- MENTS Subpart A-General Sec. 1022.1 Background. 1022.2 Purpose and scope. 1022.3 Policy. 1022.4 Definitions. 1022.5 Applicability. 1022.6 Public inquiries. Subpart B-Procedures for Floodplain and

371

WIPP Reaches Milestone „ First Disposal Room Filled  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

WIPP Reaches Milestone - First Disposal Room Filled CARLSBAD, N.M., September 4, 2001 - The U.S. Department of Energy's (DOE) Carlsbad Field Office today announced that Room 7 of Panel 1 at the Waste Isolation Pilot Plant (WIPP), the first underground room used for disposal operations, has been filled to capacity with transuranic waste. The milestone was reached at about 3:30 p.m. on August 24, as Waste Handling personnel emplaced a shipment of waste from the Idaho National Engineering and Environmental Laboratory. On August 25, Underground Operations personnel completed installation of a chain link mesh barrier and cloth drape across the entrance to the room to officially declare the area "closed." The first shipment of waste, which came

372

Field study of disposed solid wastes from advanced coal processes  

SciTech Connect (OSTI)

Radian Corporation and the North Dakota Energy and Environmental Research Center (EERC) are funded to develop information to be used by private industry and government agencies for managing solid waste produced by advanced coal processes. This information will be developed by conducting several field studies on disposed wastes from these processes. Data will be collected to characterize these wastes and their interactions with the environments in which they are disposed. Three sites have been selected for the field studies: Colorado Ute's fluidized bed combustion (FBC) unit in Nucla, Colorado; Ohio Edison's limestone injection multistage burner (LIMB) retrofit in Lorain, Ohio; and Freeman United's site using waste from Midwest Grain's FBC unit in central Illinois. A fourth site is under consideration at the Dakota Gasification Company in North Dakota. The first two tasks of this project involved the development of test plans and obtaining site access.

Not Available

1990-01-01T23:59:59.000Z

373

Integrated process for coalbed brine and methane disposal  

SciTech Connect (OSTI)

This paper describes a technology and project to demonstrate and commercialize a brine disposal process for converting the brine stream of a coalbed gas producing site into clean water for agricultural use and dry solids that can be recycled for industrial consumption. The process also utilizes coalbed methane (CBM) released from coal mining for the combustion process thereby substantially reducing the potential for methane emissions to the atmosphere. The technology is ideally suited for the treatment and disposal of produced brines generated from the development of coal mines and coalbed methane resources worldwide. Over the next 10 to 15 years, market potential for brine elimination equipment and services is estimated to be in the range of $1 billion.

Byam, J.W. Jr.; Tait, J.H.; Brandt, H.

1996-12-31T23:59:59.000Z

374

Regulatory requirements affecting disposal of asbestos-containing waste  

SciTech Connect (OSTI)

Many U.S. Department of Energy (DOE) facilities are undergoing decontamination and decommissioning (D&D) activities. The performance of these activities may generate asbestos-containing waste because asbestos was formerly used in many building materials, including floor tile, sealants, plastics, cement pipe, cement sheets, insulating boards, and insulating cements. The regulatory requirements governing the disposal of these wastes depend on: (1) the percentage of asbestos in the waste and whether the waste is friable (easily crumbled or pulverized); (2) other physical and chemical characteristics of the waste; and (3) the State in which the waste is generated. This Information Brief provides an overview of the environment regulatory requirements affecting disposal of asbestos-containing waste. It does not address regulatory requirements applicable to worker protection promulgated under the Occupational Safety and Health Act (OSHAct), the Mining Safety and Health Act (MSHA), or the Toxic Substances Control Act (TSCA).

NONE

1995-11-01T23:59:59.000Z

375

Drilling Waste Management Fact Sheet: Disposal in Salt Caverns  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Salt Caverns Salt Caverns Fact Sheet - Disposal in Salt Caverns Introduction to Salt Caverns Underground salt deposits are found in the continental United States and worldwide. Salt domes are large, fingerlike projections of nearly pure salt that have risen to near the surface. Bedded salt formations typically contain multiple layers of salt separated by layers of other rocks. Salt beds occur at depths of 500 to more than 6,000 feet below the surface. Schematic Drawing click to view larger image Schematic Drawing of a Cavern in Domal Salt Schematic Drawing click to view larger image Schematic Drawing of a Cavern in Bedded Salt Salt caverns used for oil field waste disposal are created by a process called solution mining. Well drilling equipment is used to drill a hole

376

Portsmouth Site Delivers First Radioactive Waste Shipment to Disposal  

Broader source: Energy.gov (indexed) [DOE]

Portsmouth Site Delivers First Radioactive Waste Shipment to Portsmouth Site Delivers First Radioactive Waste Shipment to Disposal Facility in Texas Portsmouth Site Delivers First Radioactive Waste Shipment to Disposal Facility in Texas August 27, 2013 - 12:00pm Addthis Waste management and transportation personnel worked late to complete the first shipment to WCS. Through a contract with DOE, WCS will treat and accept potentially hazardous waste that has been at the Portsmouth site for decades. Pictured (from left) are Scott Fraser, Joe Hawes, Craig Herrmann, Jim Book, John Lee, John Perry, Josh Knipp, Melissa Dunsieth, Randy Barr, Rick Williams, Janet Harris, Maureen Fischels, Cecil McCoy, Trent Eckert, Anthony Howard and Chris Ashley. Waste management and transportation personnel worked late to complete the

377

THE ADOPTION OF STATE ELECTRICITY REGULATION: THE ROLE OF INTEREST GROUPS  

E-Print Network [OSTI]

THE ADOPTION OF STATE ELECTRICITY REGULATION: THE ROLE OF INTEREST GROUPS? Christopher R. Knittelw This paper examines the adoption of state electricity regulation around the beginning of the 20th century. I residential electricity penetration rates. These results suggest that state regulation responded to regulatory

Rothman, Daniel

378

Myth of nuclear explosions at waste disposal sites  

SciTech Connect (OSTI)

Approximately 25 years ago, an event is said to have occurred in the plains immediately west of the southern Ural mountains of the Soviet Union that is being disputed to this very day. One person says it was an explosion of nuclear wastes buried in a waste disposal site; other people say it was an above-ground test of an atomic weapon; still others suspect that an alleged contaminated area (of unknown size or even existence) is the result of a series of careless procedures. Since the event, a number of articles about the disposal-site explosion hypothesis written by a Soviet exile living in the United Kingdom have been published. Although the Soviet scientist's training and background are in the biological sciences and his knowledge of nuclear physics or chemistry is limited, people who oppose the use of nuclear energy seem to want to believe what he says without question. The work of this Soviet biologist has received wide exposure both in the United Kingdom and the United States. This report presents arguments against the disposal-site explosion hypothesis. Included are discussions of the amounts of plutonium that would be in a disposal site, the amounts of plutonium that would be needed to reach criticality in a soil-water-plutonium mixture, and experiments and theoretical calculations on the behavior of such mixtures. Our quantitative analyses show that the postulated nuclear explosion is so improbable that it is essentially impossible and can be found only in the never-never land of an active imagination. 24 references, 14 figures, 5 tables.

Stratton, W.R.

1983-10-01T23:59:59.000Z

379

Public Interest Energy Research (PIER) Program FINAL PROJECT REPORT  

E-Print Network [OSTI]

supports public interest energy research and development that will help improve the quality of life Public Interest Energy Research (PIER) Program FINAL PROJECT REPORT ENERGY Prepared for: California Energy Commission Prepared by: San Diego State Research Foundation #12

380

Disposal of Draeger Tubes at Savannah River Site  

SciTech Connect (OSTI)

The Savannah River Site (SRS) is a Department of Energy (DOE) facility located in Aiken, South Carolina that is operated by the Westinghouse Savannah River Company (WSRC). At SRS Draeger tubes are used to identify the amount and type of a particular chemical constituent in the atmosphere. Draeger tubes rely on a chemical reaction to identify the nature and type of a particular chemical constituent in the atmosphere. Disposal practices for these tubes were identified by performing a hazardous waste evaluation per the Resource Conservation and Recovery Act (RCRA). Additional investigations were conducted to provide guidance for their safe handling, storage and disposal. A list of Draeger tubes commonly used at SRS was first evaluated to determine if they contained any material that could render them as a RCRA hazardous waste. Disposal techniques for Draeger tubes that contained any of the toxic contaminants listed in South Carolina Hazardous Waste Management Regulations (SCHWMR) R.61-79. 261.24 (b) and/or contained an acid in the liquid form were addressed.

Malik, N.P.

2000-10-13T23:59:59.000Z

Note: This page contains sample records for the topic "interest rates disposable" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Pyramiding tumuli waste disposal site and method of construction thereof  

DOE Patents [OSTI]

An improved waste disposal site for the above-ground disposal of low-level nuclear waste as disclosed herein. The disposal site is formed from at least three individual waste-containing tumuli, wherein each tumuli includes a central raised portion bordered by a sloping side portion. Two of the tumuli are constructed at ground level with adjoining side portions, and a third above-ground tumulus is constructed over the mutually adjoining side portions of the ground-level tumuli. Both the floor and the roof of each tumulus includes a layer of water-shedding material such as compacted clay, and the clay layer in the roofs of the two ground-level tumuli form the compacted clay layer of the floor of the third above-ground tumulus. Each tumulus further includes a shield wall, preferably formed from a solid array of low-level handleable nuclear wate packages. The provision of such a shield wall protects workers from potentially harmful radiation when higher-level, non-handleable packages of nuclear waste are stacked in the center of the tumulus.

Golden, Martin P. (Hamburg, NY)

1989-01-01T23:59:59.000Z

382

Iraq nuclear facility dismantlement and disposal project (NDs Project).  

SciTech Connect (OSTI)

The Al Tuwaitha nuclear complex near Baghdad contains a number of facilities from Saddam Hussan's nuclear weapons program. Past military operations, lack of upkeep and looting have created an enormous radioactive waste problem at the Al Tuwaitha complex, which contains various, uncharacterized radioactive wastes, yellow cake, sealed radioactive sources, and contaminated metals that must be constantly guarded. Iraq has never had a radioactive waste disposal facility and the lack of a disposal facility means that ever increasing quantities of radioactive material must be held in guarded storage. The Iraq Nuclear Facility Dismantlement and Disposal Program (the NDs Program) has been initiated by the U.S. Department of State (DOS) to assist the Government of Iraq (GOI) in eliminating the threats from poorly controlled radioactive materials, while building human capacities so that the GOI can manage other environmental cleanups in their country. The DOS is funding the IAEA to provide technical assistance via Technical Cooperation projects. Program coordination will be provided by the DOS, consistent with GOI policies, and Sandia National Laboratories will be responsible for coordination of participants and waste management support. Texas Tech University will continue to provide in-country assistance, including radioactive waste characterization and the stand-up of the Iraq Nuclear Services Company. The GOI owns the problems in Iraq and will be responsible for implementation of the NDs Program.

Cochran, John Russell

2010-06-01T23:59:59.000Z

383

Hanford land disposal restrictions plan for mixed wastes  

SciTech Connect (OSTI)

Since the early 1940s, the Hanford Site has been involved in the production and purification of nuclear defense materials. These production activities have resulted in the generation of large quantities of liquid and solid radioactive mixed waste. This waste is subject to regulation under authority of both the Resource Conservation and Recovery Act of 1976 (RCRA) and the Atomic Energy Act. The State of Washington Department of Ecology (Ecology), the US Environmental Protection Agency (EPA), and the US Department of Energy (DOE) have entered into an agreement, the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) to bring Hanford Site Operations into compliance with dangerous waste regulations. The Tri-Party Agreement was amended to require development of the Hanford Land Disposal Restrictions Plan for Mixed Wastes (this plan) to comply with land disposal restrictions requirements for radioactive mixed waste. The Tri-Party Agreement requires, and the this plan provides, the following sections: Waste Characterization Plan, Storage Report, Treatment Report, Treatment Plan, Waste Minimization Plan, a schedule, depicting the events necessary to achieve full compliance with land disposal restriction requirements, and a process for establishing interim milestones. 34 refs., 28 figs., 35 tabs.

Not Available

1990-10-01T23:59:59.000Z

384

Modeling user multiple interests by an improved GCS approach  

Science Journals Connector (OSTI)

User interest profile is the crucial component of most personalized recommender systems. The diversity and time-dependent evolving nature of user interests are creating difficulties in constructing and maintaining a sound user profile. This paper presents ... Keywords: Growing cell structures, Recommender systems, Self-organizing map, User interest profile

Wu Lihua; Liu Lu; Li Jing; Li Zongyong

2005-11-01T23:59:59.000Z

385

Disposal of Greater-than-Class C Low-Level Radioactive Waste  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Disposal of Low-Level Radioactive Waste Disposal of Low-Level Radioactive Waste EVS prepared a draft environmental impact statement (EIS) for disposal of greater-than-Class C low-level radioactive waste (GTCC LLRW). The EVS Division prepared a draft environmental impact statement (EIS) for disposal of greater-than-Class C low-level radioactive waste (GTCC LLRW) for the DOE Office of Environmental Management. DOE is now finalizing this EIS and is including a preferred alternative. DOE intends that the final EIS will provide information to support the selection of disposal method(s) and site(s) for GTCC LLRW and GTCC-like waste. In general, GTCC LLRW is not acceptable for near-surface disposal. Typically, the waste form and disposal methods must be different from and more stringent than those specified for Class C LLRW. For GTCC LLRW, the

386

Strategy for the Management and Disposal of Used Nuclear Fuel and  

Broader source: Energy.gov (indexed) [DOE]

Strategy for the Management and Disposal of Used Nuclear Fuel and Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste The Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste is a framework for moving toward a sustainable program to deploy an integrated system capable of transporting, storing, and disposing of used nuclear fuel and high-level radioactive waste from civilian nuclear power generation, defense, national security and other activities. Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste More Documents & Publications Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste

387

Strategy for the Management and Disposal of Used Nuclear Fuel and  

Broader source: Energy.gov (indexed) [DOE]

Strategy for the Management and Disposal of Used Nuclear Fuel and Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste Issued on January 11, 2013, the Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste is a framework for moving toward a sustainable program to deploy an integrated system capable of transporting, storing, and disposing of used nuclear fuel and high-level radioactive waste from civilian nuclear power generation, defense, national security and other activities. Strategy for the Management and Disposal of Used Nuclear Fuel and High Level Radioactive Waste.pdf More Documents & Publications Strategy for the Management and Disposal of Used Nuclear Fuel and

388

Soil Segregation Methods for Reducing Transportation and Disposal Costs - 13544  

SciTech Connect (OSTI)

At Formerly Utilized Sites Remedial Action Program (FUSRAP) sites where the selected alternative for contaminated soil is excavation and off-site disposal, the most significant budget items of the remedial action are the costs for transportation and disposal of soil at an off-site facility. At these sites, the objective is to excavate and dispose of only those soils that exceed derived concentration guideline levels. In situ soil segregation using gross gamma detectors to guide the excavation is often challenging at sites where the soil contamination is overlain by clean soil or where the contaminated soil is located in isolated, subsurface pockets. In addition, data gaps are often identified during the alternative evaluation and selection process, resulting in increased uncertainty in the extent of subsurface contamination. In response, the U.S. Army Corps of Engineers, Buffalo District is implementing ex situ soil segregation methods. At the remediated Painesville Site, soils were excavated and fed through a conveyor-belt system, which automatically segregated them into above- and below-cleanup criteria discharge piles utilizing gamma spectroscopy. At the Linde Site and the Shallow Land Disposal Area (SLDA) Site, which are both in the remediation phase, soils are initially segregated during the excavation process using gross gamma detectors and then transported to a pad for confirmatory manual surveying and sampling. At the Linde Site, the ex situ soils are analyzed on the basis of a site-specific method, to establish compliance with beneficial reuse criteria that were developed for the Linde remediation. At the SLDA Site, the ex situ soils are surveyed and sampled based on Multi-Agency Radiation Survey and Site Investigation Manual (MARSSIM) final status survey guidance to demonstrate compliance with the derived concentration guideline levels. At all three sites, the ex situ soils that meet the site- specific DCGLs are retained on-site and used as backfill material. This paper describes the ex situ soil segregation methods, the considerations of each method, and the estimated cost savings from minimizing the volume of soil requiring transportation and off-site disposal. (authors)

Frothingham, David; Andrews, Shawn; Barker, Michelle; Boyle, James; Buechi, Stephen; Graham, Marc; Houston, Linda; Polek, Michael; Simmington, Robert; Spector, Harold [U.S. Army Corps of Engineers, Buffalo District, 1776 Niagara St., Buffalo, NY 14207 (United States)] [U.S. Army Corps of Engineers, Buffalo District, 1776 Niagara St., Buffalo, NY 14207 (United States); Elliott, Robert 'Dan' [U.S. Army Reserve, 812A Franklin St.,Worcester, MA 01604 (United States)] [U.S. Army Reserve, 812A Franklin St.,Worcester, MA 01604 (United States); Durham, Lisa [Argonne National Laboratory, Environmental Science Division, 9700 S. Cass Ave., Argonne, IL 60439 (United States)] [Argonne National Laboratory, Environmental Science Division, 9700 S. Cass Ave., Argonne, IL 60439 (United States)

2013-07-01T23:59:59.000Z

389

Designation of National Interest Electric Transmission Bottlenecks (NIETB)  

Broader source: Energy.gov (indexed) [DOE]

Summary of Comments Summary of Comments Designation of National Interest Electric Transmission Bottlenecks (NIETB) Summary of Comments The US Department of Energy (DOE) issued a Federal Register Notice of Inquiry [FR doc. 04-16724] on July 22, 2004, which solicited comments related to the Designation of National Interest Transmission Bottlenecks (NIETB). The 60-day comment period ended on September 21, 2004. Forty-seven comments were received in response to the Notice of Inquiry. Designation of National Interest Electric Transmission Bottlenecks (NIETB) Summary of Comments More Documents & Publications Comments to the Designation of National Interest Transmission Bottlenecks (NIETB) Notice of Inquiry Designation of National Interest Electric Transmission Bottlenecks (NIETB)

390

Stakeholder Engagement and Outreach: Native American Wind Interest Group  

Wind Powering America (EERE)

Wind Interest Group Newsletter Wind Interest Group Newsletter Wind Powering America initiated a quarterly Native American Wind Interest Group (NAWIG) Newsletter that was published from 2003 to 2009 as part of its Native American outreach plan. It presented Native American wind information, including projects, interviews with pioneers, issues, Wind Powering America activities, and related events. It was Wind Powering America's hope that this newsletter would both inform and elicit comments and input on wind development in Indian Country. Due to funding cutbacks, the newsletter is no longer in production. Native American Wind Interest Group Newsletter, Fall 2009. Native American Wind Interest Group Newsletter Fall 2009 Native American Wind Interest Group Newsletter, Spring 2009. Native American Wind Interest Group Newsletter

391

Apparatus and method for mapping an area of interest  

DOE Patents [OSTI]

An apparatus and method are provided for mapping an area of interest using polar coordinates or Cartesian coordinates. The apparatus includes a range finder, an azimuth angle measuring device to provide a heading and an inclinometer to provide an angle of inclination of the range finder as it relates to primary reference points and points of interest. A computer is provided to receive signals from the range finder, inclinometer and azimuth angle measurer to record location data and calculate relative locations between one or more points of interest and one or more primary reference points. The method includes mapping of an area of interest to locate points of interest relative to one or more primary reference points and to store the information in the desired manner. The device may optionally also include an illuminator which can be utilized to paint the area of interest to indicate both points of interest and primary points of reference during and/or after data acquisition.

Staab, Torsten A. (Los Alamos, NM) Cohen, Daniel L. (Ithaca, NY); Feller, Samuel (Fairfax, VA)

2009-12-01T23:59:59.000Z

392

Compact disposal of high-energy electron beams using passive or laser-driven plasma decelerating stage  

SciTech Connect (OSTI)

A plasma decelerating stage is investigated as a compact alternative for the disposal of high-energy beams (beam dumps). This could benefit the design of laser-driven plasma accelerator (LPA) applications that require transportability and or high-repetition-rate operation regimes. Passive and laser-driven (active) plasma-based beam dumps are studied analytically and with particle-in-cell (PIC) simulations in a 1D geometry. Analytical estimates for the beam energy loss are compared to and extended by the PIC simulations, showing that with the proposed schemes a beam can be efficiently decelerated in a centimeter-scale distance.

Bonatto, A.; Schroeder, C.B.; Vay, J.-L.; Geddes, C.R.; Benedetti, C.; Esarey and, E.; Leemans, W.P.

2014-07-13T23:59:59.000Z

393

CCA-Treated wood disposed in landfills and life-cycle trade-offs with waste-to-energy and MSW landfill disposal  

E-Print Network [OSTI]

CCA-Treated wood disposed in landfills and life-cycle trade-offs with waste-to-energy and MSW in waste-to-energy (WTE) facilities. In other countries, the predominant disposal option for wood, others have not, and the product continues to enter the waste stream from construction, demolition

Florida, University of

394

Deep borehole disposal of high-level radioactive waste.  

SciTech Connect (OSTI)

Preliminary evaluation of deep borehole disposal of high-level radioactive waste and spent nuclear fuel indicates the potential for excellent long-term safety performance at costs competitive with mined repositories. Significant fluid flow through basement rock is prevented, in part, by low permeabilities, poorly connected transport pathways, and overburden self-sealing. Deep fluids also resist vertical movement because they are density stratified. Thermal hydrologic calculations estimate the thermal pulse from emplaced waste to be small (less than 20 C at 10 meters from the borehole, for less than a few hundred years), and to result in maximum total vertical fluid movement of {approx}100 m. Reducing conditions will sharply limit solubilities of most dose-critical radionuclides at depth, and high ionic strengths of deep fluids will prevent colloidal transport. For the bounding analysis of this report, waste is envisioned to be emplaced as fuel assemblies stacked inside drill casing that are lowered, and emplaced using off-the-shelf oilfield and geothermal drilling techniques, into the lower 1-2 km portion of a vertical borehole {approx}45 cm in diameter and 3-5 km deep, followed by borehole sealing. Deep borehole disposal of radioactive waste in the United States would require modifications to the Nuclear Waste Policy Act and to applicable regulatory standards for long-term performance set by the US Environmental Protection Agency (40 CFR part 191) and US Nuclear Regulatory Commission (10 CFR part 60). The performance analysis described here is based on the assumption that long-term standards for deep borehole disposal would be identical in the key regards to those prescribed for existing repositories (40 CFR part 197 and 10 CFR part 63).

Stein, Joshua S.; Freeze, Geoffrey A.; Brady, Patrick Vane; Swift, Peter N.; Rechard, Robert Paul; Arnold, Bill Walter; Kanney, Joseph F.; Bauer, Stephen J.

2009-07-01T23:59:59.000Z

395

Design and Installation of a Disposal Cell Cover Field Test  

SciTech Connect (OSTI)

The U.S. Department of Energys Office of Legacy Management (LM) initiated a cover assessment project in September 2007 to evaluate an inexpensive approach to enhancing the hydrological performance of final covers for disposal cells. The objective is to accelerate and enhance natural processes that are transforming existing conventional covers, which rely on low-conductivity earthen barriers, into water balance covers, that store water in soil and release it as soil evaporation and plant transpiration. A low conductivity cover could be modified by deliberately blending the upper layers of the cover profile and planting native shrubs. A test facility was constructed at the Grand Junction, Colorado, Disposal Site to evaluate the proposed methodology. The test cover was constructed in two identical sections, each including a large drainage lysimeter. The test cover was constructed with the same design and using the same materials as the existing disposal cell in order to allow for a direct comparison of performance. One test section will be renovated using the proposed method; the other is a control. LM is using the lysimeters to evaluate the effectiveness of the renovation treatment by monitoring hydrologic conditions within the cover profile as well as all water entering and leaving the system. This paper describes the historical experience of final covers employing earthen barrier layers, the design and operation of the lysimeter test facility, testing conducted to characterize the as-built engineering and edaphic properties of the lysimeter soils, the calibration of instruments installed at the test facility, and monitoring data collected since the lysimeters were constructed.

Benson, C.H. [University of WisconsinMadison, Madison, Wisconsin; Waugh, W.J. [S.M. Stoller Corporation, Grand Junction, Colorado; Albright, W.H. [Desert Research Institute, Reno, Nevada; Smith, G.M. [Geo-Smith Engineering, Grand Junction, Colorado; Bush, R.P. [U.S. Department of Energy, Grand Junction, Colorado

2011-02-27T23:59:59.000Z

396

ABSORBING WIPP BRINES: A TRU WASTE DISPOSAL STRATEGY  

SciTech Connect (OSTI)

Los Alamos National Laboratory (LANL) has completed experiments involving 15 each, 250- liter experimental test containers of transuranic (TRU) heterogeneous waste immersed in two types of brine similar to those found in the underground portion of the Waste Isolation Pilot Plant (WIPP). To dispose of the waste without removing the brine from the test containers, LANL added commercially available cross-linked polyacrylate granules to absorb the 190 liters of brine in each container, making the waste compliant for shipping to the WIPP in a Standard Waste Box (SWB). Prior to performing the absorption, LANL and the manufacturer of the absorbent conducted laboratory and field tests to determine the ratio of absorbent to brine that would fully absorb the liquid. Bench scale tests indicated a ratio of 10 parts Castile brine to one part absorbent and 6.25 parts Brine A to one part absorbent. The minimum ratio of absorbent to brine was sought because headspace in the containers was limited. However, full scale testing revealed that the ratio should be adjusted to be about 15% richer in absorbent. Additional testing showed that the absorbent would not apply more than 13.8 kPa pressure on the walls of the vessel and that the absorbent would still function normally at that pressure and would not degrade in the approximately 5e-4 Sv/hr radioactive field produced by the waste. Heat generation from the absorption was minimal. The in situ absorption created a single waste stream of 8 SWBs whereas the least complicated alternate method of disposal would have yielded at least an additional 2600 liters of mixed low level liquid waste plus about two cubic meters of mixed low level solid waste, and would have resulted in higher risk of radiation exposure to workers. The in situ absorption saved $311k in a combination of waste treatment, disposal, material and personnel costs compared to the least expensive alternative and $984k compared to the original plan.

Yeamans, D. R.; Wrights, R. S.

2002-02-25T23:59:59.000Z

397

Absorbing WIPP brines : a TRU waste disposal strategy.  

SciTech Connect (OSTI)

Los Alamos National Laboratory (LANL) has completed experiments involving 15 each, 250-liter experimental test containers of transuranic (TRU) heterogeneous waste immersed in two types of brine similar to those found in the underground portion of the Waste Isolation Pilot Plant (WIPP). To dispose of the waste without removing the brine from the test containers, LANL added commercially available cross-linked polyacrylate granules to absorb the 190 liters of brine in each container, making the waste compliant for shipping to the WlPP in a Standard Waste Box (SWB). Prior to performing the absorption, LANL and the manufacturer of the absorbent conducted laboratory and field tests to determine the ratio of absorbent to brine that would fully absorb the liquid. Bench scale tests indicated a ratio of 10 parts Castile brine to one part absorbent and 6.25 parts Brine A to one part absorbent. The minimum ratio of absorbent to brine was sought because headspace in the containers was limited. However, full scale testing revealed that the ratio should be adjusted to be about 15% richer in absorbent. Additional testing showed that the absorbent would not apply more than 13.8 kPa pressure on the walls of the vessel and that the absorbent would still function normally at that pressure and would not degrade in the approximately 5e-4 Sv/hr radioactive field produced by the waste. Heat generation from the absorption was minimal. The in situ absorption created a single waste stream of 8 SWBs whereas the least complicated alternate method of disposal would have yielded at least an additional 2600 liters of mixed low level liquid waste plus about two cubic meters of mixed low level solid waste, and would have resulted in higher risk of radiation exposure to workers. The in situ absorption saved $3 1 lk in a combination of waste treatment, disposal, material and personnel costs compared to the least expensive alternative and $984k compared to the original plan.

Yeamans, D. R. (David R.); Wright, R. (Robert)

2002-01-01T23:59:59.000Z

398

Nuclear disarmament, disposal of military plutonium and international security problems  

SciTech Connect (OSTI)

One of the major issues of the current debate deals with the question: what does real nuclear disarmament actually involve? It becomes more and more obvious for many experts that it can no longer be limited to the reduction or elimination of delivery vehicles alone, but must necessarily cove the warheads and the fissile materials recovered from them, which should totally or partially be committed to peaceful use and placed under appropriate international safeguards, thus precluding their re-use for as weapons. There are various options as to how to solve the problems of disposal of fissile materials released from weapons. The optimal choice can only be made on the basis of a thorough study. This study should treat the disposal of weapon-grade plutonium and weapon-grade uranium as separate problems. The possible options for plutonium disposition currently discussed are as follows: (a) Storage in a form or under conditions not suitable for use in the production of new types of nuclear weapons. This option seems to be most natural and inevitable at the first phase, subject to determination of storage period, volume, and technology. Besides, the requirements of the international nuclear weapons nonproliferation regime could be met easily. Safe, secure, and controlled temporary storage may provide an appropriate solution of disposal of weapon-grade plutonium in the near future. (b) Energy utilization (conversion) of weapon-grade plutonium. The most efficient option of utilization of plutonium appears to be for nuclear power generation. This option does not exclude storage, but considers it as a temporary phase, which can, however, be a prolonged one: its length is determined by the political decisions made and possibilities existing to transfer plutonium for processing.

Slipchenko, V.S.; Rybatchenkov, V. [Ministry of Foreign Affairs of the Russian Federation, Moscow (Russian Federation). Arms Control and Disarmament Dept.

1995-12-31T23:59:59.000Z

399

Engineering Analysis for Disposal of Depleted Uranium Tetrafluoride (UF4)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

6 6 Engineering Analysis for Disposal of Depleted Uranium Tetrafluoride (UF 4 ) Environmental Assessment Division Argonne National Laboratory Operated by The University of Chicago, under Contract W-31-109-Eng-38, for the United States Department of Energy Argonne National Laboratory Argonne National Laboratory, with facilities in the states of Illinois and Idaho, is owned by the United States Government and operated by The University of Chicago under the provisions of a contract with the Department of Energy. This technical memorandum is a product of Argonne's Environmental Assessment Division (EAD). For information on the division's scientific and engineering activities, contact: Director, Environmental Assessment Division Argonne National Laboratory Argonne, Illinois 60439-4832

400

SENSITIVITY ANALYSIS FOR SALTSTONE DISPOSAL UNIT COLUMN DEGRADATION ANALYSES  

SciTech Connect (OSTI)

PORFLOW related analyses supporting a Sensitivity Analysis for Saltstone Disposal Unit (SDU) column degradation were performed. Previous analyses, Flach and Taylor 2014, used a model in which the SDU columns degraded in a piecewise manner from the top and bottom simultaneously. The current analyses employs a model in which all pieces of the column degrade at the same time. Information was extracted from the analyses which may be useful in determining the distribution of Tc-99 in the various SDUs throughout time and in determining flow balances for the SDUs.

Flach, G.

2014-10-28T23:59:59.000Z

Note: This page contains sample records for the topic "interest rates disposable" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Thermodynamic data management system for nuclear waste disposal performance assessment  

SciTech Connect (OSTI)

Thermodynamic property values for use in assessing the performance of a nuclear waste repository are described. More emphasis is on a computerized data base management system which facilitates use of the thermodynamic data in sensitivity analysis and other studies which critically assess the performance of disposal sites. Examples are given of critical evaluation procedures; comparison of apparent equilibrium constants calculated from the data base, with other work; and of correlations useful in estimating missing values of both free energy and enthalpy of formation for aqueous species. 49 refs., 11 figs., 6 tabs.

Phillips, S.L.; Hale, F.V.; Siegel, M.D.

1988-04-01T23:59:59.000Z

402

Regulation of geological disposal of high-level radioactive waste  

SciTech Connect (OSTI)

The Nuclear Regulatory Commission has been actively developing needed regulations over the last two years for the geological disposal of high-level radioactive waste. Technical criteria are about to be published in the form of a proposed regulation. The waste packages, underground facility, and geologic setting form the major elements of any geologic repository and the basis of a multibarrier system. Performance objectives and supporting technical criteria have been developed for each of these repository elements to provide benchmarks for scientists and engineers working in each of these major areas. 9 refs.

White, L.A.

1981-11-01T23:59:59.000Z

403

The implications of UIC and NPDES regulations on selection of disposal options for spent geothermal brine  

SciTech Connect (OSTI)

This document reviews and evaluates the various options for the disposal of geothermal wastewater with respect to the promulgated regulations for the protection of surface and groundwaters. The Clean Water Act of 1977 and the Safe Drinking Water Act Amendments are especially important when designing disposal systems for geothermal fluids. The former promulgates regulations concerning the discharge of wastewater into surface waters, while the latter is concerned with the protection of ground water aquifers through the establishment of underground injection control (UIC) programs. There is a specific category for geothermal fluid discharge if injection is to be used as a method of disposal. Prior to February 1982, the UIC regulations required geothermal power plant to use Class III wells and direct use plants to use Class V wells. More stringent regulatory requirements, including construction specification and monitoring, are imposed on the Class III wells. On February 3, 1982, the classification of geothermal injection wells was changed from a Class III to Class V on the basis that geothermal wells do not inject for the extraction of minerals or energy, but rather they are used to inject brines, from which heat has been extracted, into formations from which they were originally taken. This reclassification implies that a substantial cost reduction will be realized for geothermal fluid injection primarily because well monitoring is no longer mandatory. The Clean Water Act of 1977 provides the legal basis for regulating the discharge of liquid effluent into the nation's surface waters, through a permitting system called the National Pollution Discharge Elimination System (NPDES) Discharge quantities, rates, concentrations and temperatures are regulated by the NPDES permits. These permits systems are based upon effluent guidelines developed by EPA on an industry by industry basis. For geothermal energy industry, effluent guidelines have not been formulated and are not currently scheduled. There, are however, water quality standards that control the quantity and quality of wastewaters discharged into surface waters. These standards are established by the states in concert with EPA, and frequently result in NPDES conditions more restrictive than those based on effluent guidelines.

None

1982-07-01T23:59:59.000Z

404

Total Gamma Count Rate Analysis Method for Nondestructive Assay Characterization  

SciTech Connect (OSTI)

A new approach to nondestructively characterize waste for disposal, based on total gamma response, has been developed at the Idaho Cleanup Project by CH2M-WG Idaho, LLC and Idaho State University, and is called the total gamma count rate analysis method. The total gamma count rate analysis method measures gamma interactions that produce energetic electrons or positrons in a detector. Based on previous experience with waste assays, the radionuclide content of the waste container is then determined. This approach potentially can yield minimum detection limits of less than 10 nCi/g. The importance of this method is twofold. First, determination of transuranic activity can be made for waste containers that are below the traditional minimum detection limits. Second, waste above 10 nCi/g and below 100 nCi/g can be identified, and a potential path for disposal resolved.

Cecilia R. Hoffman; Yale D. Harker

2006-03-01T23:59:59.000Z

405

National Interest Security Company NISC Formerly Technology Management...  

Open Energy Info (EERE)

search Name: National Interest Security Company (NISC) (Formerly Technology & Management Services (TMS) Inc.) Place: Gaithersburg, Maryland Zip: 20879 Product: TMS provides...

406

Web points of interest - Department of Mathematics, Purdue University  

E-Print Network [OSTI]

Web points of interest ... JUGGLING CLUB; The Lafayette Citizens Band Home Page; Harold Boas' incredible list of math and life resources on the WEB.

407

Enhancing RESRAD-OFFSITE for Low Level Waste Disposal Facility Performance Assessment  

Broader source: Energy.gov [DOE]

Enhancing RESRAD-OFFSITE for Low Level Waste Disposal Facility Performance Assessment Charley Yu*, Argonne National Laboratory ; Emmanuel Gnanapragasam, Argonne National Laboratory; Carlos Corredor, U.S. Department of Energy; W. Alexander Williams, U.S. Department of Energy Abstract: The RESRAD-OFFSITE code was developed to evaluate the radiological dose and excess cancer risk to an individual who is exposed while located within or outside the area of initial (primary) contamination. The primary contamination, which is the source of all releases modeled by the code, is assumed to be a layer of soil. The code considers the release of contamination from the source to the atmosphere, to surface runoff, and to groundwater. The radionuclide leaching was modeled as a first order (without transport) release using radionuclide distribution coefficient and infiltration rate calculated from water balance (precipitation, surface runoff, evapotranspiration, etc.). Recently, a new source term model was added the RESRAD-OFFSITE code so that it can be applied to the evaluation of Low Level Waste (LLW) disposal facility performance assessment. This new improved source term model include (1) first order with transport, (2) equilibrium desorption (rinse) release, and (3) uniform release (constant dissolution). With these new source release options, it is possible to simulate both uncontainerized (soil) contamination and containerized (waste drums) contamination. A delay time in the source release was also added to the code. This allows modeling the LLW container degradation as a function of time. The RESRAD-OFFSITE code also allows linking to other codes using improved flux and concentration input options. Additional source release model such as diffusion release may be added later. In addition, radionuclide database with 1252 radionuclides (ICRP 107) and the corresponding dose coefficients (DCFPAK 3.02) and the Department of Energys new gender- and age-averaged Reference Person dose coefficients (DOE-STD-1196-2011) which is based on the US census data will be added to the next version of RESRAD-OFFSITE code.

408

1998 report on Hanford Site land disposal restrictions for mixed waste  

SciTech Connect (OSTI)

This report was submitted to meet the requirements of Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-26-01H. This milestone requires the preparation of an annual report that covers characterization, treatment, storage, minimization, and other aspects of managing land-disposal-restricted mixed waste at the Hanford Facility. The US Department of Energy, its predecessors, and contractors on the Hanford Facility were involved in the production and purification of nuclear defense materials from the early 1940s to the late 1980s. These production activities have generated large quantities of liquid and solid mixed waste. This waste is regulated under authority of both the Resource Conservation and Recovery Act of l976 and the Atomic Energy Act of 1954. This report covers only mixed waste. The Washington State Department of Ecology, US Environmental Protection Agency, and US Department of Energy have entered into the Tri-Party Agreement to bring the Hanford Facility operations into compliance with dangerous waste regulations. The Tri-Party Agreement required development of the original land disposal restrictions (LDR) plan and its annual updates to comply with LDR requirements for mixed waste. This report is the eighth update of the plan first issued in 1990. The Tri-Party Agreement requires and the baseline plan and annual update reports provide the following information: (1) Waste Characterization Information -- Provides information about characterizing each LDR mixed waste stream. The sampling and analysis methods and protocols, past characterization results, and, where available, a schedule for providing the characterization information are discussed. (2) Storage Data -- Identifies and describes the mixed waste on the Hanford Facility. Storage data include the Resource Conservation and Recovery Act of 1976 dangerous waste codes, generator process knowledge needed to identify the waste and to make LDR determinations, quantities stored, generation rates, location and method of storage, an assessment of storage-unit compliance status, storage capacity, and the bases and assumptions used in making the estimates.

Black, D.G.

1998-04-10T23:59:59.000Z

409

Basis for Section 3116 Determination for Salt Waste Disposal at the  

Broader source: Energy.gov (indexed) [DOE]

Basis for Section 3116 Determination for Salt Waste Disposal at the Basis for Section 3116 Determination for Salt Waste Disposal at the Savannah River Site Basis for Section 3116 Determination for Salt Waste Disposal at the Savannah River Site The Secretary of Energy is making this 3116 Determination pursuant to Section 3116 of the Ronald W. Reagan National Defense Authorization Act for Fiscal Year 2005 (NDAA) [1]. This 3116 Determination concerns the disposal of separated, solidified low-activity radioactive salt waste at the Savannah River Site (SRS) near Aiken, South Carolina. Basis for Section 3116 Determination for Salt Waste Disposal at the Savannah River Site More Documents & Publications EIS-0082-S2: Amended Record of Decision Notice of Availability of Section 3116 Determination for Salt Waste Disposal at the Savannah River Site

410

Disposal Facility Reaches 15-Million-Ton Milestone | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Disposal Facility Reaches 15-Million-Ton Milestone Disposal Facility Reaches 15-Million-Ton Milestone Disposal Facility Reaches 15-Million-Ton Milestone July 30, 2013 - 12:00pm Addthis Matt McCormick, manager of the Richland Operations Office, commends a large group of Hanford workers for the 15-million-ton milestone at a public event at the Environmental Restoration Disposal Facility. Matt McCormick, manager of the Richland Operations Office, commends a large group of Hanford workers for the 15-million-ton milestone at a public event at the Environmental Restoration Disposal Facility. RICHLAND, Wash. - EM's Environmental Restoration Disposal Facility (ERDF) - a massive landfill for low-level radioactive and hazardous waste at the Hanford site - has achieved a major cleanup milestone. Since beginning operations in 1996, workers supporting the Richland

411

GRR/Section 18-AK-c - Waste Disposal Permit Process | Open Energy  

Open Energy Info (EERE)

AK-c - Waste Disposal Permit Process AK-c - Waste Disposal Permit Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 18-AK-c - Waste Disposal Permit Process 18AKC - WasteDisposalPermitProcess (1).pdf Click to View Fullscreen Contact Agencies Alaska Department of Environmental Conservation Regulations & Policies AS 46.03.110 Waste Disposal Permit Regulations 18 AAC 60.200 et seq Triggers None specified Click "Edit With Form" above to add content 18AKC - WasteDisposalPermitProcess (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative The Alaska Department of Environmental Conservation (DEC) is responsible

412

Basis for Section 3116 Determination for Salt Waste Disposal at the  

Broader source: Energy.gov (indexed) [DOE]

Basis for Section 3116 Determination for Salt Waste Disposal at the Basis for Section 3116 Determination for Salt Waste Disposal at the Savannah River Site Basis for Section 3116 Determination for Salt Waste Disposal at the Savannah River Site The Secretary of Energy is making this 3116 Determination pursuant to Section 3116 of the Ronald W. Reagan National Defense Authorization Act for Fiscal Year 2005 (NDAA) [1]. This 3116 Determination concerns the disposal of separated, solidified low-activity radioactive salt waste at the Savannah River Site (SRS) near Aiken, South Carolina. Basis for Section 3116 Determination for Salt Waste Disposal at the Savannah River Site More Documents & Publications EIS-0082-S2: Amended Record of Decision Notice of Availability of Section 3116 Determination for Salt Waste Disposal at the Savannah River Site

413

Overview of Low-Level Waste Disposal Operations at the Nevada Test Site  

SciTech Connect (OSTI)

The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office Environmental Management Program is charged with the responsibility to carry out the disposal of on-site and off-site generated low-level radioactive waste at the Nevada Test Site. Core elements of this mission are ensuring that disposal take place in a manner that is safe and cost-effective while protecting workers, the public, and the environment. This paper focuses on giving an overview of the Nevada Test Site facilities regarding currant design of disposal. In addition, technical attributes of the facilities established through the site characterization process will be further described. An update on current waste disposal volumes and capabilities will also be provided. This discussion leads to anticipated volume projections and disposal site requirements as the Nevada Test Site disposal operations look towards the future.

DOE /Navarro

2007-02-01T23:59:59.000Z

414

Remote-Handled Low-Level Waste Disposal Project Code of Record  

SciTech Connect (OSTI)

The Remote-Handled Low-Level Waste (LLW) Disposal Project addresses an anticipated shortfall in remote-handled LLW disposal capability following cessation of operations at the existing facility, which will continue until it is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). Development of a new onsite disposal facility will provide necessary remote-handled LLW disposal capability and will ensure continuity of operations that generate remote-handled LLW. This report documents the Code of Record for design of a new LLW disposal capability. The report is owned by the Design Authority, who can authorize revisions and exceptions. This report will be retained for the lifetime of the facility.

S.L. Austad, P.E.; L.E. Guillen, P.E.; C. W. McKnight, P.E.; D. S. Ferguson, P.E.

2014-06-01T23:59:59.000Z

415

The Texas Solution to the Nation's Disposal Needs for Irradiated Hardware - 13337  

SciTech Connect (OSTI)

The closure of the disposal facility in Barnwell, South Carolina, to out-of-compact states in 2008 left commercial nuclear power plants without a disposal option for Class B and C irradiated hardware. In 2012, Waste Control Specialists LLC (WCS) opened a highly engineered facility specifically designed and built for the disposal of Class B and C waste. The WCS facility is the first Interstate Compact low-level radioactive waste disposal facility to be licensed and operated under the Low-level Waste Policy Act of 1980, as amended in 1985. Due to design requirements of a modern Low Level Radioactive Waste (LLRW) facility, traditional methods for disposal were not achievable at the WCS site. Earlier methods primarily utilized the As Low as Reasonably Achievable (ALARA) concept of distance to accomplish worker safety. The WCS method required the use of all three ALARA concepts of time, distance, and shielding to ensure the safe disposal of this highly hazardous waste stream. (authors)

Britten, Jay M. [Waste Control Specialists LLC, Andrews, TX 79714 (United States)] [Waste Control Specialists LLC, Andrews, TX 79714 (United States)

2013-07-01T23:59:59.000Z

416

Disposal of low-level and mixed low-level radioactive waste during 1990  

SciTech Connect (OSTI)

Isotopic inventories and other data are presented for low-level radioactive waste (LLW) and mixed LLW disposed (and occasionally stored) during calendar year 1990 at commercial disposal facilities and Department of Energy (DOE) sites. Detailed isotopic information is presented for the three commercial disposal facilities located near Barnwell, SC, Richland, WA, and Beatty, NV. Less information is presented for the Envirocare disposal facility located near Clive, UT, and for LLW stored during 1990 at the West Valley site. DOE disposal information is included for the Savannah River Site (including the saltstone facility), Nevada Test Site, Los Alamos National Laboratory, Idaho National Engineering Laboratory, Hanford Site, Y-12 Site, and Oak Ridge National Laboratory. Summary information is presented about stored DOE LLW. Suggestions are made about improving LLW disposal data.

Not Available

1993-08-01T23:59:59.000Z

417

Commercial disposal options for Idaho National Engineering Laboratory low-level radioactive waste  

SciTech Connect (OSTI)

The Idaho National Engineering Laboratory (INEL) is a Department of Energy (DOE)-owned, contractor-operated site. Significant quantities of low-level radioactive waste (LLW) have been generated and disposed of onsite at the Radioactive Waste Management Complex (RWMC). The INEL expects to continue generating LLW while performing its mission and as aging facilities are decommissioned. An on-going Performance Assessment process for the RWMC underscores the potential for reduced or limited LLW disposal capacity at the existing onsite facility. In order to properly manage the anticipated amount of LLW, the INEL is investigating various disposal options. These options include building a new facility, disposing the LLW at other DOE sites, using commercial disposal facilities, or seeking a combination of options. This evaluation reports on the feasibility of using commercial disposal facilities.

Porter, C.L.; Widmayer, D.A.

1995-09-01T23:59:59.000Z

418

Remote-Handled Low-Level Waste Disposal Project Code of Record  

SciTech Connect (OSTI)

The Remote-Handled Low-Level Waste (LLW) Disposal Project addresses an anticipated shortfall in remote-handled LLW disposal capability following cessation of operations at the existing facility, which will continue until it is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). Development of a new onsite disposal facility will provide necessary remote-handled LLW disposal capability and will ensure continuity of operations that generate remote-handled LLW. This report documents the Code of Record for design of a new LLW disposal capability. The report is owned by the Design Authority, who can authorize revisions and exceptions. This report will be retained for the lifetime of the facility.

S.L. Austad, P.E.; L.E. Guillen, P.E.; C. W. McKnight, P.E.; D. S. Ferguson, P.E.

2012-04-01T23:59:59.000Z

419

Remote-Handled Low-Level Waste Disposal Project Code of Record  

SciTech Connect (OSTI)

The Remote-Handled Low-Level Waste (LLW) Disposal Project addresses an anticipated shortfall in remote-handled LLW disposal capability following cessation of operations at the existing facility, which will continue until it is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). Development of a new onsite disposal facility will provide necessary remote-handled LLW disposal capability and will ensure continuity of operations that generate remote-handled LLW. This report documents the Code of Record for design of a new LLW disposal capability. The report is owned by the Design Authority, who can authorize revisions and exceptions. This report will be retained for the lifetime of the facility.

S.L. Austad, P.E.; L.E. Guillen, P.E.; C. W. McKnight, P.E.; D. S. Ferguson, P.E.

2012-06-01T23:59:59.000Z

420

Performance assessment for the class L-II disposal facility  

SciTech Connect (OSTI)

This draft radiological performance assessment (PA) for the proposed Class L-II Disposal Facility (CIIDF) on the Oak Ridge Reservation (ORR) has been prepared to demonstrate compliance with the requirements of the US Department of Energy Order 5820.2A. This PA considers the disposal of low-level radioactive wastes (LLW) over the operating life of the facility and the long-term performance of the facility in providing protection to public health and the environment. The performance objectives contained in the order require that the facility be managed to accomplish the following: (1) Protect public health and safety in accordance with standards specified in environmental health orders and other DOE orders. (2) Ensure that external exposure to the waste and concentrations of radioactive material that may be released into surface water, groundwater, soil, plants, and animals results in an effective dose equivalent (EDE) that does not exceed 25 mrem/year to a member of the public. Releases to the atmosphere shall meet the requirements of 40 CFR Pt. 61. Reasonable effort should be made to maintain releases of radioactivity in effluents to the general environment as low as reasonably achievable. (1) Ensure that the committed EDEs received by individual who inadvertently may intrude into the facility after the loss of active institutional control (100 years) will not exceed 100 mrem/year for continuous exposure of 500 mrem for a single acute exposure. (4) Protect groundwater resources, consistent with federal, state, and local requirements.

NONE

1997-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "interest rates disposable" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Low-level radioactive waste disposal facility closure  

SciTech Connect (OSTI)

Part I of this report describes and evaluates potential impacts associated with changes in environmental conditions on a low-level radioactive waste disposal site over a long period of time. Ecological processes are discussed and baselines are established consistent with their potential for causing a significant impact to low-level radioactive waste facility. A variety of factors that might disrupt or act on long-term predictions are evaluated including biological, chemical, and physical phenomena of both natural and anthropogenic origin. These factors are then applied to six existing, yet very different, low-level radioactive waste sites. A summary and recommendations for future site characterization and monitoring activities is given for application to potential and existing sites. Part II of this report contains guidance on the design and implementation of a performance monitoring program for low-level radioactive waste disposal facilities. A monitoring programs is described that will assess whether engineered barriers surrounding the waste are effectively isolating the waste and will continue to isolate the waste by remaining structurally stable. Monitoring techniques and instruments are discussed relative to their ability to measure (a) parameters directly related to water movement though engineered barriers, (b) parameters directly related to the structural stability of engineered barriers, and (c) parameters that characterize external or internal conditions that may cause physical changes leading to enhanced water movement or compromises in stability. Data interpretation leading to decisions concerning facility closure is discussed. 120 refs., 12 figs., 17 tabs.

White, G.J.; Ferns, T.W.; Otis, M.D.; Marts, S.T.; DeHaan, M.S.; Schwaller, R.G.; White, G.J. (EG and G Idaho, Inc., Idaho Falls, ID (USA))

1990-11-01T23:59:59.000Z

422

Microsoft Word - Panel 5 Disposal Operations Complete.docx  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

th th re s c th W se lo o s e U.S. D Carls Waste P.O. B Carls CARL hat disposa epository ar hipment wa "All T redit for this heir dedicat Waste Mana The W even dispo ong and can f the 6.2 m igned in 19 With d quivalent o Department bad Field Of e Isolation P Box 3090 bad, New M DOE in P LSBAD, N.M al operation re complete as emplace RU waste m s accomplis tion to perfo agement Pr WIPP unde sal rooms. n hold appr illion cubic 992, has be disposal op of about fou of Energy ffice Pilot Plant Mexico 88221 Fo E Comp anel 5 M., August 1 s in Panel 5 e. Last mo ed in the pa manageme shment," N orming thei rogram con rground is c Each disp roximately 1 feet of TRU en dispose perations in r football fie 1 or Immed pletes D of the W 15, 2011 - T 5 of the Wa nth, the fina nel, which t ent employe ational TRU

423

Annotated bibliography for the design of waste packages for geologic disposal of spent fuel and high-level waste  

SciTech Connect (OSTI)

This bibliography identifies documents that are pertinent to the design of waste packages for geologic disposal of nuclear waste. The bibliography is divided into fourteen subject categories so that anyone wishing to review the subject of leaching, for example, can turn to the leaching section and review the abstracts of reports which are concerned primarily with leaching. Abstracts are also cross referenced according to secondary subject matter so that one can get a complete list of abstracts for any of the fourteen subject categories. All documents which by their title alone appear to deal with the design of waste packages for the geologic disposal of spent fuel or high-level waste were obtained and reviewed. Only those documents which truly appear to be of interest to a waste package designer were abstracted. The documents not abstracted are listed in a separate section. There was no beginning date for consideration of a document for review. About 1100 documents were reviewed and about 450 documents were abstracted.

Wurm, K.J.; Miller, N.E.

1982-11-01T23:59:59.000Z

424

Low-Interest Loans for Customer-Side Distributed Resources | Department of  

Broader source: Energy.gov (indexed) [DOE]

Low-Interest Loans for Customer-Side Distributed Resources Low-Interest Loans for Customer-Side Distributed Resources Low-Interest Loans for Customer-Side Distributed Resources < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Nonprofit Residential Schools State Government Savings Category Commercial Heating & Cooling Manufacturing Buying & Making Electricity Alternative Fuel Vehicles Hydrogen & Fuel Cells Solar Wind Program Info Start Date 7/21/2005 State Connecticut Program Type State Loan Program Rebate Amount Varies Provider Banc of America Long-term financing is available to retail end-use customers for the installation of customer-side distributed resources. Customer-side distributed resources are defined by Conn. Gen. Stat. § 16-1 as "(A) the generation of electricity from a unit with a rating of not more than

425

Grout Long Radius Flow Testing to Support Saltstone Disposal Unit 6 Design - 13352  

SciTech Connect (OSTI)

The Saltstone Facility, located within the Savannah River Site (SRS) near Aiken, South Carolina, consists of two facility segments: The Saltstone Production Facility (SPF) and the Saltstone Disposal Facility (SDF). The SPF receives decontaminated legacy low level sodium salt waste solution that is a byproduct of prior nuclear material processing. The salt solution is mixed with cementitious materials to form a grout slurry known as 'Saltstone'. The grout is pumped to the SDF where it is placed in a Saltstone Disposal Unit (SDU) to solidify. SDU 6 is referred to as a 'mega vault' and is currently in the design stage. The conceptual design for SDU 6 is a single cell, cylindrical geometry approximately 114.3 meters in diameter by 13.1 meter high and is larger than previous cylindrical SDU designs, 45.7 meters in diameter by 7.01 meters high (30 million gallons versus 2.9 million gallons of capacity). Saltstone slurry will be pumped into the new waste disposal unit through roof openings at a projected flow rate of about 34.1 cubic meters per hour. Nine roof openings are included in the design to discharge material into the SDU with an estimated grout pour radius of 22.9 to 24.4 meters and initial drop height of 13.1 meters. The conceptual design for the new SDU does not include partitions to limit the pour radius of the grout slurry during placement other than introducing material from different pour points. This paper addresses two technical issues associated with the larger diameter of SDU 6; Saltstone flow distance in a tank 114.3 meters in diameter and quality of the grout. A long-radius flow test scaled to match the velocity of an advancing grout front was designed to address these technology gaps. The emphasis of the test was to quantify the flow distance and to collect samples to evaluate cured properties including compressive strength, porosity, density, and saturated hydraulic conductivity. Two clean cap surrogate mixes (Saltstone premix plus water) were designed to simulate slurry with the reference Saltstone rheology and a Saltstone with extra water from the process flushing operation. Long-radius flow tests were run using approximately 4.6 cubic meters of each of these mixes. In both tests the pump rate was 0.063 liters/second (1 gpm). A higher pump rate, 0.19 liters/second (3 gpm), was used in a third long-radius flow test. The angle of repose of the grout wedges increased as a function of time in all three tests. The final angles of repose were measured at 3.0 deg., 2.4 deg., and 0.72 deg.. The pump rate had the largest effect on the radial flow distance and slope of the grout surface. The slope on the pour placed at 0.19 liters/second (3 gpm) was most representative of the slope on the grout currently being pumped into SDU 2 which is estimated to be 0.7 deg. to 0.9 deg. The final grout heights at 1/3 of a meter from the discharge point were 115, 105, and 38 cm. Entrapped air (? 0.25 cm bubbles) was also observed in all of the mixes. The entrapped air appeared to be released from the flows within about 3.1 meters (10 feet) of the discharge point. The bleed water was clear but had a thin layer of floating particulates. The bleed water should be retrievable by a drain water collection system in SDU 6 assuming the system does not get clogged. Layering was observed and was attributed to intervals when the hopper was being cleaned. Heat from the hydration reactions was noticeable to the touch. (authors)

Stefanko, D.B.; Langton, C.A.; Serrato, M.G. [Savannah River National Laboratory, Savannah River Nuclear Solutions, LLC, Savannah River Site, Aiken, SC 29808 (United States)] [Savannah River National Laboratory, Savannah River Nuclear Solutions, LLC, Savannah River Site, Aiken, SC 29808 (United States); Brooks, T.E. II; Huff, T.H. [Savannah River Remediation, LLC, Savannah River Site, Aiken, SC 29808 (United States)] [Savannah River Remediation, LLC, Savannah River Site, Aiken, SC 29808 (United States)

2013-07-01T23:59:59.000Z

426

Use and disposal of waste-water sludge in Illinois. Final report  

SciTech Connect (OSTI)

The United States Environmental Protection Agency (USEPA) proposed Part 503 Rules on sludge were first published in February 1989. Part 503 proposed sludge regulations address five categories of sludge use or disposal: land application, distribution and marketing, monofills, surface disposal sites, and incineration. The report on sludge management in Illinois examines the probable effects that the proposed federal rules on use and disposal of sewage sludge will have on current practices by Illinois publicly owned treatment works outside the City of Chicago.

John, S.F.; Kane, D.N.; Hinesly, T.D.

1992-02-01T23:59:59.000Z

427

Siting of low-level radioactive waste disposal facilities in Texas  

E-Print Network [OSTI]

in the proper geologic environment. The object of disposal is to prevent exposure of the public to radioactive waste in potentially harmful concentrations. The most likely route for buried wastes to reach the public is through the ground- water system... disposal site for low- level radioactive waste is predictability, A disposal site should "be capable of being characterized, modeled, analyzed and monitored" ISiefken, et al. , 1982). Simplicity and homogeneity with respect to hydrogeologic conditions...

Isenhower, Daniel Bruce

2012-06-07T23:59:59.000Z

428

Savannah River Site Public and regulatory involvement in the transuranic (TRU) program and their effect on decisions to dispose of Pu-238 heat source tru waste onsite  

SciTech Connect (OSTI)

The key to successful public involvement at the Savannah River Site (SRS) has been and continues to be vigorous, up-front involvement of the public and state regulators with technical experts. The SRS Waste Management Program includes all forms of radioactive waste. All of the decisions associated with the management of these wastes are of interest to the public and successful program implementation would be impossible without including the public up-front in the program formulation. Serious problems can result if program decisions are made without public involvement, and if the public is informed after key decisions are made. This paper will describe the regulatory and public involvement program and their effects on the decisions concerning the disposal at the Savannah River Site (SRS) of heat source Pu-238 TRU waste. As can be imagined, a decision to dispose of TRU waste onsite versus shipment to the Waste Isolation Pilot Plan (WIPP) in New Mexico for disposal is of considerable interest to the stakeholders in South Carolina. The interaction between the stakeholders not only include the general public, but also the South Carolina Department of Health and Environmental Control (SCDHEC) and Region IV of the Environmental Protection Agency (EPA). The discussions, educational sessions, and negotiations include resolution of equity issues as well and moved forward to an understanding of the difficulties including risk management faced by the Ship-to- WIPP program. Once the program was better understood, the real negotiations concerning equity, safety, and risk to workers from handling Pu-238 waste could begin. This paper will also discuss the technical, regulatory, and public involvement aspects of disposal onsite that must be properly communicated if the program is to be successful. The Risk Based End State Vision Report for the Savannah River Site includes a variance that proposes on-site near surface disposal of waste from the program to produce Pu-238 heat sources for deep space probes. On-site disposal would greatly reduce the risk to workers by eliminating the need to repackage the waste in order to characterize it and ship it to the Waste Isolation Pilot Plant. Significant cost savings can also be realized. A performance assessment was completed to demonstrate that on-site disposal of this waste can be done while meeting the Department of Energy and EPA performance objectives for disposal of TRU waste in a non-WIPP location such as the SRS. This analysis provides a means of demonstrating the technical basis for this alternative to management, stakeholders and regulators. The technical analysis is required to demonstrate that the performance objectives contained in 40 CFR 191, Environmental Protection Standards for the Management and Disposal of Spent Nuclear Fuel, High-Level and Transuranic Radioactive Wastes will be met over a 10,000 year period. This paper will describe the successful results of this technical, regulatory, and public involvement program, explore why and how the accomplishments occurred, and describe the future challenges along with the road map for the future. In doing this, the TRU Ship-to-WIPP program must be described to give the readers an understanding of the technical complexities that must be communicated successfully to achieve constructive stakeholder participation and regulatory approval. (authors)

Bert Crapse, H.M. [U. S. Department of Energy, Washington (United States); Sonny, W.T. [Goldston Washington Savannah River Company (United States)

2007-07-01T23:59:59.000Z

429

Degradation Of Cementitious Materials Associated With Saltstone Disposal Units  

SciTech Connect (OSTI)

The Saltstone facilities at the DOE Savannah River Site (SRS) stabilize and dispose of low-level radioactive salt solution originating from liquid waste storage tanks at the site. The Saltstone Production Facility (SPF) receives treated salt solution and mixes the aqueous waste with dry cement, blast furnace slag, and fly ash to form a grout slurry which is mechanically pumped into concrete disposal cells that compose the Saltstone Disposal Facility (SDF). The solidified grout is termed saltstone. Cementitious materials play a prominent role in the design and long-term performance of the SDF. The saltstone grout exhibits low permeability and diffusivity, and thus represents a physical barrier to waste release. The waste form is also reducing, which creates a chemical barrier to waste release for certain key radionuclides, notably Tc-99. Similarly, the concrete shell of an SDF disposal unit (SDU) represents an additional physical and chemical barrier to radionuclide release to the environment. Together the waste form and the SDU compose a robust containment structure at the time of facility closure. However, the physical and chemical state of cementitious materials will evolve over time through a variety of phenomena, leading to degraded barrier performance over Performance Assessment (PA) timescales of thousands to tens of thousands of years. Previous studies of cementitious material degradation in the context of low-level waste disposal have identified sulfate attack, carbonation influenced steel corrosion, and decalcification (primary constituent leaching) as the primary chemical degradation phenomena of most relevance to SRS exposure conditions. In this study, degradation time scales for each of these three degradation phenomena are estimated for saltstone and concrete associated with each SDU type under conservative, nominal, and best estimate assumptions. The nominal value (NV) is an intermediate result that is more probable than the conservative estimate (CE) and more defensible than the best estimate (BE). The combined effects of multiple phenomena are then considered to determine the most limiting degradation time scale for each cementitious material. Degradation times are estimated using a combination of analytic solutions from literature and numerical simulation codes provided through the DOE Cementitious Barriers Partnership (CBP) Software Toolbox (http://cementbarriers.org). For the SDU 2 design, the roof, wall, and floor components are projected to become fully degraded under Nominal conditions at 3866, 923, and 1413 years, respectively. For SDU 4 the roof and floor are estimated to be fully degraded under Nominal conditions after 1137 and 1407 years, respectively; the wall is assumed to be fully degraded at time zero in the most recent PA simulations. Degradation of these concrete barriers generally occurs from combined sulfate attack and corrosion of embedded steel following carbonation. Saltstone is projected to degrade very slowly by decalcification, with complete degradation occurring in excess of 200,000 years for any SDU type. Complete results are provided.

Flach, G. P; Smith, F. G. III

2013-03-19T23:59:59.000Z

430

Time-aware point-of-interest recommendation  

Science Journals Connector (OSTI)

The availability of user check-in data in large volume from the rapid growing location based social networks (LBSNs) enables many important location-aware services to users. Point-of-interest (POI) recommendation is one of such services, which is to ... Keywords: location-based social networks, point-of-interest, recommendation, spatio-temporal

Quan Yuan; Gao Cong; Zongyang Ma; Aixin Sun; Nadia Magnenat- Thalmann

2013-07-01T23:59:59.000Z

431

Marcellus Shale Natural Gas Drilling Operators' Choice of Wastewater Disposal Method.  

E-Print Network [OSTI]

??As natural gas drilling in the Marcellus Shale region moves forward, the issue of wastewater disposal has risen to the forefront. In 2010, the Pennsylvania (more)

Edmundson, Caitlyn

2012-01-01T23:59:59.000Z

432

Comparison of low-level waste disposal programs of DOE and selected international countries  

SciTech Connect (OSTI)

The purpose of this report is to examine and compare the approaches and practices of selected countries for disposal of low-level radioactive waste (LLW) with those of the US Department of Energy (DOE). The report addresses the programs for disposing of wastes into engineered LLW disposal facilities and is not intended to address in-situ options and practices associated with environmental restoration activities or the management of mill tailings and mixed LLW. The countries chosen for comparison are France, Sweden, Canada, and the United Kingdom. The countries were selected as typical examples of the LLW programs which have evolved under differing technical constraints, regulatory requirements, and political/social systems. France was the first country to demonstrate use of engineered structure-type disposal facilities. The UK has been actively disposing of LLW since 1959. Sweden has been disposing of LLW since 1983 in an intermediate-depth disposal facility rather than a near-surface disposal facility. To date, Canada has been storing its LLW but will soon begin operation of Canada`s first demonstration LLW disposal facility.

Meagher, B.G. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States); Cole, L.T. [Cole and Associates (United States)

1996-06-01T23:59:59.000Z

433

Technical support document for the surface disposal of sewage sludge. Final report  

SciTech Connect (OSTI)

The document provides the technical background and justification for the U.S. Environmental Protection Agency's (EPA) final regulation (40 CFR Part 503) covering the surface disposal of sewage sludge. The document summarizes current practices in land application and presents data supporting the risk assessment methodology used to derive human health and environmental risk-based limits for contaminants in sewage sludge placed on surface disposal sites. The management practices associated with surface disposal are outlined and the different pathways by which contaminants reach highly-exposed individuals (HEIs) through surface disposal are discussed.

Not Available

1992-11-01T23:59:59.000Z

434

Operational Strategies for Low-Level Radioactive Waste Disposal Site in Egypt - 13513  

SciTech Connect (OSTI)

The ultimate aims of treatment and conditioning is to prepare waste for disposal by ensuring that the waste will meet the waste acceptance criteria of a disposal facility. Hence the purpose of low-level waste disposal is to isolate the waste from both people and the environment. The radioactive particles in low-level waste emit the same types of radiation that everyone receives from nature. Most low-level waste fades away to natural background levels of radioactivity in months or years. Virtually all of it diminishes to natural levels in less than 300 years. In Egypt, The Hot Laboratories and Waste Management Center has been established since 1983, as a waste management facility for LLW and ILW and the disposal site licensed for preoperational in 2005. The site accepts the low level waste generated on site and off site and unwanted radioactive sealed sources with half-life less than 30 years for disposal and all types of sources for interim storage prior to the final disposal. Operational requirements at the low-level (LLRW) disposal site are listed in the National Center for Nuclear Safety and Radiation Control NCNSRC guidelines. Additional procedures are listed in the Low-Level Radioactive Waste Disposal Facility Standards Manual. The following describes the current operations at the LLRW disposal site. (authors)

Mohamed, Yasser T. [Hot Laboratories and Waste Management Center, Atomic Energy Authority, 3 Ahmed El-Zomor St., El-Zohour District, Naser City, 11787, Cairo (Egypt)] [Hot Laboratories and Waste Management Center, Atomic Energy Authority, 3 Ahmed El-Zomor St., El-Zohour District, Naser City, 11787, Cairo (Egypt)

2013-07-01T23:59:59.000Z

435

Underground Injection Wells as an Option for Disposal of Shale Gas Wastewaters: Policies & Practicality.  

E-Print Network [OSTI]

that are received for injection. We recently received a new permit in VA, but it is for disposal of coalbed methane

Boyer, Elizabeth W.

436

Proposed On-Site Disposal Facility (OSDF) at the Paducah Gaseous...  

Office of Environmental Management (EM)

risks associated with worker safety and the environment (e.g., resource consumption, air pollution, air dispersal) that may be associated with exhumation and re-disposal of...

437

Coal fly ash disposal in the ocean: an alternative worth considering  

SciTech Connect (OSTI)

Chemical and biological experiments measured the solubility of 16 elements in coal fly ash and the short-term toxicity of coal fly ash to clams and phytoplankton. Of the elements studied, 10 to 60% of the As, Br, Cr, Sb, Se, Ni, Pb, and Sr dissolved within a 24-hour period. Elements which were less than 10% soluble in 24-hours included Cu, Zn, Na, La, Sc, Fe, Co and Eu. Littleneck clams (Protothaca staminea) were exposed to coal fly ash in flowing seawater for a 25-day period. At the end of the exposure Cu concentration in gills was 15 ..mu..g g/sup -1/ dry wt compared to 6 ..mu..g g/sup -1/ in control clams. Elements that were not elevated in the exposed clams were Mn, Fe, Ni, Zn, Se and As. The effects of the soluble fraction of coal fly ash on primary production was measured by /sup 14/C uptake rate on coastal phytoplankton. The addition of soluble coal fly ash material had no effect on the /sup 14/C uptake rate of phytoplankton. These measurements were made in the productive Washington shelf water during August. The literature indicates coal fly ash has a relatively low toxicity to plants and animals. Disposal methods could be designed so EPA water quality criteria levels would not be exceeded except in the immediate vicinity of the dumpsite.

Crecelius, E.A.

1981-10-01T23:59:59.000Z

438

DOE Affirms National Interest Electric Transmission Corridor Designations |  

Broader source: Energy.gov (indexed) [DOE]

Affirms National Interest Electric Transmission Corridor Affirms National Interest Electric Transmission Corridor Designations DOE Affirms National Interest Electric Transmission Corridor Designations March 6, 2008 - 11:54am Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today denied requests for rehearing of the Mid-Atlantic and the Southwest Area National Interest Electric Transmission Corridors (National Corridors) designated by DOE in October 2007 as areas of significant electricity congestion and constraint. The designation of national corridors was made in accordance with the Energy Policy Act of 2005 (EPAct). In affirming the National Corridor designations today, DOE dismissed as being without merit challenges raised by the applicants for rehearing, citing extensive data analysis conducted in its 2006 National Interest Electric Transmission

439

Waste Isolation Pilot Plant Attracts World Interest | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Waste Isolation Pilot Plant Attracts World Interest Waste Isolation Pilot Plant Attracts World Interest Waste Isolation Pilot Plant Attracts World Interest June 26, 2013 - 12:00pm Addthis Lights, Camera, Action! In May 2013, an INDIGO FILMS production crew prepares for an interview with EM's Carlsbad Field Office Chief Scientist Roger Nelson. INDIGO FILMS is producing a segment on WIPP for a program that highlights interesting, non-public locations that should air on the Travel Channel this fall. Lights, Camera, Action! In May 2013, an INDIGO FILMS production crew prepares for an interview with EM's Carlsbad Field Office Chief Scientist Roger Nelson. INDIGO FILMS is producing a segment on WIPP for a program that highlights interesting, non-public locations that should air on the Travel Channel this fall.

440

Waste Isolation Pilot Plant Attracts World Interest | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Isolation Pilot Plant Attracts World Interest Isolation Pilot Plant Attracts World Interest Waste Isolation Pilot Plant Attracts World Interest June 26, 2013 - 12:00pm Addthis Lights, Camera, Action! In May 2013, an INDIGO FILMS production crew prepares for an interview with EM's Carlsbad Field Office Chief Scientist Roger Nelson. INDIGO FILMS is producing a segment on WIPP for a program that highlights interesting, non-public locations that should air on the Travel Channel this fall. Lights, Camera, Action! In May 2013, an INDIGO FILMS production crew prepares for an interview with EM's Carlsbad Field Office Chief Scientist Roger Nelson. INDIGO FILMS is producing a segment on WIPP for a program that highlights interesting, non-public locations that should air on the Travel Channel this fall. A group of Texas A&M University nuclear engineering students shows enthusiasm for WIPP’s underground operations in May 2013.

Note: This page contains sample records for the topic "interest rates disposable" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Home Energy Score: Information for Interested Organizations | Department of  

Broader source: Energy.gov (indexed) [DOE]

Information for Interested Organizations Information for Interested Organizations Home Energy Score: Information for Interested Organizations DOE is recruiting Partners, which are commonly state and local governments, utilities, and energy efficiency non-profits, to implement the Home Energy Score as part of their existing residential programs. Partners must be able to score a minimum of 200 homes in 12 months and fulfill quality assurance requirements. If your organization is interested in becoming a Home Energy Score Partner, contact us via email at homeenergyscore@ee.doe.gov. You can find more information for partners on the Frequently Asked Questions for Partners page or in this separate printable document. See also: Information for Homeowners Information for Interested Assessors Highlights Home Energy Scoring Tool Updated

442

Chlorite Dissolution Rates  

SciTech Connect (OSTI)

Spreadsheets provides measured chlorite rate data from 100 to 300C at elevated CO2. Spreadsheet includes derived rate equation.

Carroll, Susan

2013-07-01T23:59:59.000Z

443

Chlorite Dissolution Rates  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Spreadsheets provides measured chlorite rate data from 100 to 300C at elevated CO2. Spreadsheet includes derived rate equation.

Carroll, Susan

444

Use of DOE site selection criteria for screening low-level waste disposal sites on the Oak Ridge Reservation  

SciTech Connect (OSTI)

The proposed Department of Energy (DOE) site selection criteria were applied to the Oak Ridge Reservation, and the application was evaluated to determine the criteria's usefulness in the selection of a low-level waste disposal site. The application of the criteria required the development of a methodology to provide a framework for evaluation. The methodology is composed of site screening and site characterization stages. The site screening stage relies on reconnaissance data to identify a preferred site capable of satisfying the site selection criteria. The site characterization stage relies on a detailed site investigation to determine site acceptability. The site selection criteria were applied to the DOE Oak Ridge Reservation through the site screening stage. Results of this application were similar to those of a previous siting study on the Oak Ridge Reservation. The DOE site selection criteria when coupled with the methodology that was developed were easily applied and would be adaptable to any region of interest.

Lee, D.W.; Ketelle, R.H.; Stinton, L.H.

1983-09-01T23:59:59.000Z

445

Container Approval for the Disposal of Radioactive Waste with Negligible Heat Generation in the German Konrad Repository - 12148  

SciTech Connect (OSTI)

Since the license for the Konrad repository was finally confirmed by legal decision in 2007, the Federal Institute for Radiation Protection (BfS) has been performing further planning and preparation work to prepare the repository for operation. Waste conditioning and packaging has been continued by different waste producers as the nuclear industry and federal research institutes on the basis of the official disposal requirements. The necessary prerequisites for this are approved containers as well as certified waste conditioning and packaging procedures. The Federal Institute for Materials Research and Testing (BAM) is responsible for container design testing and evaluation of quality assurance measures on behalf of BfS under consideration of the Konrad disposal requirements. Besides assessing the container handling stability (stacking tests, handling loads), design testing procedures are performed that include fire tests (800 deg. C, 1 hour) and drop tests from different heights and drop orientations. This paper presents the current state of BAM design testing experiences about relevant container types (box shaped, cylindrical) made of steel sheets, ductile cast iron or concrete. It explains usual testing and evaluation methods which range from experimental testing to analytical and numerical calculations. Another focus has been laid on already existing containers and packages. The question arises as to how they can be evaluated properly especially with respect to lack of completeness of safety assessment and fabrication documentation. At present BAM works on numerous applications for container design testing for the Konrad repository. Some licensing procedures were successfully finished in the past and BfS certified several container types like steel sheet, concrete until cast iron containers which are now available for waste packaging for final disposal. However, large quantities of radioactive wastes had been placed into interim storage using containers which are not already licensed for the Konrad repository. Safety assessment of these so-called 'old' containers is a big challenge for all parties because documentation sheets about container design testing and fabrication often contain gaps or have not yet been completed. Appropriate solution strategies are currently under development and discussion. Furthermore, BAM has successfully initiated and established an information forum, called 'ERFA QM Konrad Containers', which facilitates discussions on various issues of common interest with respect to Konrad container licensing procedures as well as the interpretation of disposal requirements under consideration of operational needs. Thus, it provides additional, valuable supports for container licensing procedures. (authors)

Voelzke, Holger; Nieslony, Gregor; Ellouz, Manel; Noack, Volker; Hagenow, Peter; Kovacs, Oliver; Hoerning, Tony [BAM Federal Institute for Materials Research and Testing, 12200 Berlin (Germany)

2012-07-01T23:59:59.000Z

446

Power Rate Cases (pbl/rates)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Choices (2003-06) Power Function Review (PFR) Firstgov Power Rate Cases BPA's wholesale power rates are set to recover its costs and repay the U.S. Treasury for the Federal...

447

Challenges dealing with depleted uranium in Germany - Reuse or disposal  

SciTech Connect (OSTI)

During enrichment large amounts of depleted Uranium are produced. In Germany every year 2.800 tons of depleted uranium are generated. In Germany depleted uranium is not classified as radioactive waste but a resource for further enrichment. Therefore since 1996 depleted Uranium is sent to ROSATOM in Russia. However it still has to be dealt with the second generation of depleted Uranium. To evaluate the alternative actions in case a solution has to be found in Germany, several studies have been initiated by the Federal Ministry of the Environment. The work that has been carried out evaluated various possibilities to deal with depleted uranium. The international studies on this field and the situation in Germany have been analyzed. In case no further enrichment is planned the depleted uranium has to be stored. In the enrichment process UF{sub 6} is generated. It is an international consensus that for storage it should be converted to U{sub 3}O{sub 8}. The necessary technique is well established. If the depleted Uranium would have to be characterized as radioactive waste, a final disposal would become necessary. For the planned Konrad repository - a repository for non heat generating radioactive waste - the amount of Uranium is limited by the licensing authority. The existing license would not allow the final disposal of large amounts of depleted Uranium in the Konrad repository. The potential effect on the safety case has not been roughly analyzed. As a result it may be necessary to think about alternatives. Several possibilities for the use of depleted uranium in the industry have been identified. Studies indicate that the properties of Uranium would make it useful in some industrial fields. Nevertheless many practical and legal questions are open. One further option may be the use as shielding e.g. in casks for transport or disposal. Possible techniques for using depleted Uranium as shielding are the use of the metallic Uranium as well as the inclusion in concrete. Another possibility could be the use of depleted uranium for the blending of High enriched Uranium (HEU) or with Plutonium to MOX-elements. (authors)

Moeller, Kai D. [Federal Office for Radiation Protection, Bundesamt fuer Strahlenschutz - BFS, Postfach 10 01 49, D-38201 Salzgitter (Germany)

2007-07-01T23:59:59.000Z

448

Financial Conflict of Interest Policy Update -8/24/2012 Financial Conflict of Interest Policy Update -August 24, 2012  

E-Print Network [OSTI]

be included in the disclosure, regardless of value. This does not, however, include travel that is included financial interest(s). In order to maintain a single system of disclosure for all grant applications "Investigators" meaning "the project director or principal Investigator and any other person, regardless of title

Raina, Ramesh

449

Options and costs for offsite disposal of oil and gas exploration and production wastes.  

SciTech Connect (OSTI)

In the United States, most of the exploration and production (E&P) wastes generated at onshore oil and gas wells are disposed of or otherwise managed at the well site. Certain types of wastes are not suitable for onsite management, and some well locations in sensitive environments cannot be used for onsite management. In these situations, operators must transport the wastes offsite for disposal. In 1997, Argonne National Laboratory (Argonne) prepared a report that identified offsite commercial disposal facilities in the United States. This information has since become outdated. Over the past year, Argonne has updated the study through contacts with state oil and gas agencies and commercial disposal companies. The new report, including an extensive database for more than 200 disposal facilities, provides an excellent reference for information about commercial disposal operations. This paper describes Argonne's report. The national study provides summaries of the types of offsite commercial disposal facilities found in each state. Data are presented by waste type and by disposal method. The categories of E&P wastes in the database include: contaminated soils, naturally occurring radioactive material (NORM), oil-based muds and cuttings, produced water, tank bottoms, and water-based muds and cuttings. The different waste management or disposal methods in the database involve: bioremediation, burial, salt cavern, discharge, evaporation, injection, land application, recycling, thermal treatment, and treatment. The database includes disposal costs for each facility. In the United States, most of the 18 billion barrels (bbl) of produced water, 149 million bbl of drilling wastes, and 21 million bbl of associated wastes generated at onshore oil and gas wells are disposed of or otherwise managed at the well site. However, under certain conditions, operators will seek offsite management options for these E&P wastes. Commercial disposal facilities are offsite businesses that accept and manage E&P wastes for a fee. Their services include waste management and disposal, transportation, cleaning of vehicles and tanks, disposal of wash water, and, in some cases, laboratory analysis. Commercial disposal facilities offer a suite of waste management methods and technologies.

Puder, M. G.; Veil, J. A.; Environmental Science Division

2007-01-01T23:59:59.000Z

450

Risk assessment of landfill disposal sites - State of the art  

SciTech Connect (OSTI)

A risk assessment process can assist in drawing a cost-effective compromise between economic and environmental costs, thereby assuring that the philosophy of 'sustainable development' is adhered to. Nowadays risk analysis is in wide use to effectively manage environmental issues. Risk assessment is also applied to other subjects including health and safety, food, finance, ecology and epidemiology. The literature review of environmental risk assessments in general and risk assessment approaches particularly regarding landfill disposal sites undertaken by the authors, reveals that an integrated risk assessment methodology for landfill gas, leachate or degraded waste does not exist. A range of knowledge gaps is discovered in the literature reviewed to date. From the perspective of landfill leachate, this paper identifies the extent to which various risk analysis aspects are absent in the existing approaches.

Butt, Talib E. [Sustainability Centre in Glasgow (SCG), George Moore Building, 70 Cowcaddens Road, Glasgow Caledonian University, Glasgow G4 0BA, Scotland (United Kingdom)], E-mail: t_e_butt@hotmail.com; Lockley, Elaine [Be Environmental Ltd. Suite 213, Lomeshaye Business Village, Turner Road, Nelson, Lancashire, BB9 7DR, England (United Kingdom); Oduyemi, Kehinde O.K. [Built and Natural Environment, Baxter Building, University of Abertay Dundee, Bell Street, Dundee DD1 1HG, Scotland (United Kingdom)], E-mail: k.oduyemi@abertay.ac.uk

2008-07-01T23:59:59.000Z

451

Reducing biosolids disposal costs using land application in forested areas  

SciTech Connect (OSTI)

Switching biosolids land application from a reclamation site to a forested site significantly reduced the cost of biosolids disposal at the Savannah River Site. Previous beneficial reuse programs focused on reclamation of existing borrow pits. While extremely beneficial, this program became very costly due to the regulatory requirements for groundwater monitoring, soil monitoring and frequent biosolids analyses. A new program was developed to reuse biosolids in forested areas where the biosolids could be used as a soil conditioner and fertilizer to enhance timber yield. The forested land application site was designed so that groundwater monitoring and soil monitoring could be eliminated while biosolids monitoring and site maintenance were minimized. Monitoring costs alone were reduced by 80%. Capital costs for site preparation were also significantly reduced since there was no longer a need for expensive groundwater monitoring wells.

Huffines, R.L.

1995-11-01T23:59:59.000Z

452

Disposal of radioactive waste from nuclear research facilities  

E-Print Network [OSTI]

Swiss radioactive wastes originate from nuclear power plants (NPP) and from medicine (e.g. radiation sources), industry (e.g. fire detectors) and research (e.g. CERN, PSI). Their conditioning, characterisation and documentation has to meet the demands given by the Swiss regulatory authorities including all information needed for a safe disposal in future repositories. For NPP wastes, arisings as well as the processes responsible for the buildup of short and long lived radionuclides are well known, and the conditioning procedures are established. The radiological inventories are determined on a routinely basis using a combined system of measurements and calculational programs. For waste from research, the situation is more complicated. The wide spectrum of different installations combined with a poorly known history of primary and secondary radiation results in heterogeneous waste sorts with radiological inventories quite different from NPP waste and difficult to measure long lived radionuclides. In order to c...

Maxeiner, H; Kolbe, E

2003-01-01T23:59:59.000Z

453

Tritiated wastewater treatment and disposal evaluation for 1994  

SciTech Connect (OSTI)

This report discusses and analyzes information and issues regarding tritium and tritium management. It was prepared in response to the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-26-05A for the evaluation of tritiated wastewater treatment and disposal. The key elements of the report are summarized as follows: Discharge of tritiated water is regulated worldwide. Differences exist in discharge limits and in regulatory philosophy from country to country and from state to state in the United States. Tritium from manmade sources is emitted into the atmosphere and discharged into the ground or directly to the oceans and to waterways that empty into the oceans. In 1989, reported worldwide emissions of tritium from nuclear power generating plants totaled almost 1,000,000 Curies (Ci).

Not Available

1994-08-01T23:59:59.000Z

454

LABORATORY EXPERIMENTS TO SIMULATE CO2 OCEAN DISPOSAL  

SciTech Connect (OSTI)

This Final Technical Report summarizes the technical accomplishments of an investigation entitled ''Laboratory Experiments to Simulate CO{sub 2} Ocean Disposal'', funded by the U.S. Department of Energy's University Coal Research Program. This investigation responds to the possibility that restrictions on greenhouse gas emissions may be imposed in the future to comply with the Framework Convention on Climate Change. The primary objective of the investigation was to obtain experimental data that can be applied to assess the technical feasibility and environmental impacts of oceanic containment strategies to limit release of carbon dioxide (CO{sub 2}) from coal and other fossil fuel combustion systems into the atmosphere. A number of critical technical uncertainties of ocean disposal of CO{sub 2} were addressed by performing laboratory experiments on liquid CO{sub 2} jet break-up into a dispersed droplet phase, and hydrate formation, under deep ocean conditions. Major accomplishments of this study included: (1) five jet instability regimes were identified that occur in sequence as liquid CO{sub 2} jet disintegration progresses from laminar instability to turbulent atomization; (2) linear regression to the data yielded relationships for the boundaries between the five instability regimes in dimensionless Ohnesorge Number, Oh, and jet Reynolds Number, Re, space; (3) droplet size spectra was measured over the full range of instabilities; (4) characteristic droplet diameters decrease steadily with increasing jet velocity (and increasing Weber Number), attaining an asymptotic value in instability regime 5 (full atomization); and (5) pre-breakup hydrate formation appears to affect the size distribution of the droplet phase primary by changing the effective geometry of the jet.

Stephen M. Masutani

1999-12-31T23:59:59.000Z

455

Field study of disposed solid wastes from advanced coal processes  

SciTech Connect (OSTI)

Radian Corporation and the North Dakota Energy and Environmental Research Center (EERC) are funded to develop information to be used by private industry and government agencies for managing solid wastes produced by advanced coal combustion processes. This information will be developed by conducting several field studies on disposed wastes from these processes. Data will be collected to characterize these wastes and their interactions with the environments in which they are disposed. Three sites were selected for the field studies: Colorado Ute's fluidized bed combustion (FBC) unit in Nucla, Colorado; Ohio Edison's limestone injection multistage burner (LIMB) retrofit in Lorain, Ohio; and Freeman United's mine site in central Illinois with wastes supplied by the nearby Midwest Grain FBC unit. During the past year, field monitoring and sampling of the four landfill test cases constructed in 1989 and 1991 has continued. Option 1 of the contract was approved last year to add financing for the fifth test case at the Freeman United site. The construction of the Test Case 5 cells is scheduled to begin in November, 1992. Work during this past year has focused on obtaining data on the physical and chemical properties of the landfilled wastes, and on developing a conceptual framework for interpreting this information. Results to date indicate that hydration reactions within the landfilled wastes have had a major impact on the physical and chemical properties of the materials but these reactions largely ceased after the first year, and physical properties have changed little since then. Conditions in Colorado remained dry and no porewater samples were collected. In Ohio, hydration reactions and increases in the moisture content of the waste tied up much of the water initially infiltrating the test cells.

Not Available

1992-01-01T23:59:59.000Z

456

Project Execution Plan for the Remote Handled Low-Level Waste Disposal Project  

SciTech Connect (OSTI)

As part of ongoing cleanup activities at the Idaho National Laboratory (INL), closure of the Radioactive Waste Management Complex (RWMC) is proceeding under the Comprehensive Environmental Response, Compensation, and Liability Act (42 USC 9601 et seq. 1980). INL-generated radioactive waste has been disposed of at RWMC since 1952. The Subsurface Disposal Area (SDA) at RWMC accepted the bulk of INLs contact and remote-handled low-level waste (LLW) for disposal. Disposal of contact-handled LLW and remote-handled LLW ion-exchange resins from the Advanced Test Reactor in the open pit of the SDA ceased September 30, 2008. Disposal of remote-handled LLW in concrete disposal vaults at RWMC will continue until the facility is full or until it must be closed in preparation for final remediation of the SDA (approximately at the end of fiscal year FY 2017). The continuing nuclear mission of INL, associated ongoing and planned operations, and Naval spent fuel activities at the Naval Reactors Facility (NRF) require continued capability to appropriately dispose of contact and remote handled LLW. A programmatic analysis of disposal alternatives for contact and remote-handled LLW generated at INL was conducted by the INL contractor in Fiscal Year 2006; subsequent evaluations were completed in Fiscal Year 2007. The result of these analyses was a recommendation to the Department of Energy (DOE) that all contact-handled LLW generated after September 30, 2008, be disposed offsite, and that DOE proceed with a capital project to establish replacement remote-handled LLW disposal capability. An analysis of the alternatives for providing replacement remote-handled LLW disposal capability has been performed to support Critical Decision-1. The highest ranked alternative to provide this required capability has been determined to be the development of a new onsite remote-handled LLW disposal facility to replace the existing remote-handled LLW disposal vaults at the SDA. Several offsite DOE and commercial disposal options exist for contact-handled LLW; however, offsite disposal options are either not currently available (i.e., commercial disposal facilities), practical, or cost-effective for all remote-handled LLW streams generated at INL. Offsite disposal of all INL and tenant-generated remote-handled waste is further complicated by issues associated with transporting highly radioactive waste in commerce; and infrastructure and processing changes at the generating facilities, specifically NRF, that would be required to support offsite disposal. The INL Remote-Handled LLW Disposal Project will develop a new remote handled LLW disposal facility to meet mission-critical, remote-handled LLW disposal needs. A formal DOE decision to proceed with the project has been made in accordance with the requirements of National Environmental Policy Act (42 USC 4321 et seq.). Remote-handled LLW is generated from nuclear programs conducted at INL, including spent nuclear fuel handling and operations at NRF and operations at the Advanced Test Reactor. Remote-handled LLW also will be generated by new INL programs and from segregation and treatment (as necessary) of remote handled scrap and waste currently stored in the Radioactive Scrap and Waste Facility at the Materials and Fuels Complex.

Danny Anderson

2014-07-01T23:59:59.000Z

457

DOE National Analytical Management Program Draws Global Interest |  

Broader source: Energy.gov (indexed) [DOE]

National Analytical Management Program Draws Global Interest National Analytical Management Program Draws Global Interest DOE National Analytical Management Program Draws Global Interest February 27, 2013 - 12:00pm Addthis Hnin Khaing focuses on her work at WIPP Laboratories near Carlsbad, New Mexico Hnin Khaing focuses on her work at WIPP Laboratories near Carlsbad, New Mexico Corey White works at WIPP Laboratories near Carlsbad, New Mexico Corey White works at WIPP Laboratories near Carlsbad, New Mexico Hnin Khaing focuses on her work at WIPP Laboratories near Carlsbad, New Mexico Corey White works at WIPP Laboratories near Carlsbad, New Mexico CARLSBAD, N.M. - The National Analytical Management Program (NAMP), which coordinates analytical services and capabilities throughout DOE, has garnered global interest. "NAMP is addressing a vital need to attain the most effective use of

458

DOE Issues Two Draft National Interest Electric Transmission Corridor  

Broader source: Energy.gov (indexed) [DOE]

Issues Two Draft National Interest Electric Transmission Issues Two Draft National Interest Electric Transmission Corridor Designations DOE Issues Two Draft National Interest Electric Transmission Corridor Designations April 26, 2007 - 10:58am Addthis WASHINGTON, DC - U.S. Department of Energy (DOE) Secretary Samuel W. Bodman today announced the issuance of two draft National Interest Electric Transmission Corridor (National Corridor) designations. The Energy Policy Act of 2005 authorizes the Secretary, based on the findings of DOE's National Electric Transmission Congestion Study (Congestion Study), to designate National Corridors. "These draft designations set us on the path to modernize our constrained and congested electric power infrastructure. They are a crucial step toward realizing President Bush's goal of a modern, more efficient electric

459

Aligning Utility Interests with Energy Efficiency Objectives: A Review of  

Open Energy Info (EERE)

Aligning Utility Interests with Energy Efficiency Objectives: A Review of Aligning Utility Interests with Energy Efficiency Objectives: A Review of Recent Efforts at Decoupling and Performance Incentives Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Aligning Utility Interests with Energy Efficiency Objectives: A Review of Recent Efforts at Decoupling and Performance Incentives Focus Area: Energy Efficiency, - Utility Topics: Policy Impacts Website: www.aceee.org/sites/default/files/publications/researchreports/u061.pd Equivalent URI: cleanenergysolutions.org/content/aligning-utility-interests-energy-eff Language: English Policies: "Financial Incentives,Regulations" is not in the list of possible values (Deployment Programs, Financial Incentives, Regulations) for this property. Regulations: Utility/Electricity Service Costs

460

Public Interest Energy Research (PIER) Program White Paper  

E-Print Network [OSTI]

Public Interest Energy Research (PIER) Program White Paper COASTAL FLOODINGPOTENTIAL PROJECTIONS: 2000­2100 A White Paper from the California Energy Commission's California Climate Change Center Prepared for: California Energy Commission Prepared by: Scripps Institution

Bromirski, Peter D.

Note: This page contains sample records for the topic "interest rates disposable" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Public Interest Energy Research (PIER) Program FINAL PROJECT REPORT  

E-Print Network [OSTI]

a transport membrane condenser for recovering both energy and water from the lowgrade waste heat streams Public Interest Energy Research (PIER) Program FINAL PROJECT REPORT ENERGY: California Energy Commission Prepared by: Gas Technology Institute #12; Prepared by: Primary Author

462

5 Building a shared interest Olinda, Milan: social innovation  

E-Print Network [OSTI]

5 Building a shared interest Olinda, Milan: social innovation between strategy and organisational in the mental health field into a broader social innovation, while at the same time fighting against social

Boyer, Edmond

463

Public Interest Energy Research (PIER) Program FINAL PROJECT REPORT  

E-Print Network [OSTI]

Public Interest Energy Research (PIER) Program FINAL PROJECT REPORT INTEGRATED GEOTHERMAL and the surface generation facilities in geothermal energy production. Please cite the report as follows, California Energy Commission, Geothermal Resources Development Account Program, CEC5002012006 #12;ii Table

464

Public Interest Energy Research (PIER) Program FINAL PROJECT REPORT  

E-Print Network [OSTI]

Geothermal Fluids. California Energy Commission, PIER Renewables Research Technologies Program. CEC5002009 Public Interest Energy Research (PIER) Program FINAL PROJECT REPORT PILOTSCALE GEOTHERMAL SILICA RECOVERY AT MAMMOTH LAKES MAY 2009 CEC5002009077 Prepared for: California

465

Public Interest Energy Research (PIER) Program FINAL PROJECT REPORT  

E-Print Network [OSTI]

, National Energy Technology Laboratory, the Western Regional Biomass Energy Program, and Yolo CountyPublic Interest Energy Research (PIER) Program FINAL PROJECT REPORT ACCELERATED ANAEROBIC COMPOSTING FOR ENERGY GENERATION AT YOLO COUNTY CENTRAL LANDFILL MAY 2012 CEC5002012063 Prepared for

466

Public Interest Energy Research (PIER) Program FINAL PROJECT REPORT  

E-Print Network [OSTI]

& SAVING ENERGY: FINAL REPORT ON INDOOR ENVIRONMENTAL QUALITY & ENERGY MONITORING IN SIXTEENPublic Interest Energy Research (PIER) Program FINAL PROJECT REPORT IMPROVING VENTILATION RELOCATABLE CLASSROOMS MAY 2012 CEC5002012075 Prepared for: California Energy Commission Prepared by

467

Public Interest Energy Research (PIER) Program FINAL PROJECT REPORT  

E-Print Network [OSTI]

LIGHTING CALIFORNIA'S FUTURE: MARKET CONNECTIONS Prepared for: California Energy Commission Research · Energy Systems Integration Lighting California's Future: Market Connections is one of nine Public Interest Energy Research (PIER) Program FINAL PROJECT REPORT

468

Review of Interests and Activities in Thermoelectric Materials...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Laboratory Army interests in thermoelectrics include integrated TE-hand-held burners for battery-replacement, waste-heat recovery on vehicles, heat-powered mobile units, and for...

469

Public Interest Energy Research (PIER) Program FINAL PROJECT REPORT  

E-Print Network [OSTI]

Public Interest Energy Research (PIER) Program FINAL PROJECT REPORT Renewable Resource/Transmission Development Scenarios Prepared for: California Energy Commission Prepared by: Center for Energy Efficiency.D. David Olsen Center for Energy Efficiency and Renewable Technologies Sacramento, California 95814

470

Public Interest Energy Research (PIER) Program FINAL PROJECT REPORT  

E-Print Network [OSTI]

Public Interest Energy Research (PIER) Program FINAL PROJECT REPORT CREATING INCENTIVES FOR ELECTRICITY PROVIDERS TO INTEGRATE DISTRIBUTED ENERGY RESOURCES NOVEMBER 2007 CEC5002008028 Prepared for: California Energy Commission Prepared by: Electric Power Research Institute (EPRI) #12; Prepared by

471

Public Interest Energy Research (PIER) Program FINAL PROJECT REPORT  

E-Print Network [OSTI]

The California Energy Commission's Geothermal Resources Development Account Geothermal Planning Projects support of geothermal resource elements, or geothermal components of energy elements, for inclusion in the localPublic Interest Energy Research (PIER) Program FINAL PROJECT REPORT STRUCTURING A DIRECT

472

Gainesville Regional Utilities- Low-Interest Energy Efficiency Loan Program  

Broader source: Energy.gov (indexed) [DOE]

Gainesville Regional Utilities- Low-Interest Energy Efficiency Loan Gainesville Regional Utilities- Low-Interest Energy Efficiency Loan Program Gainesville Regional Utilities- Low-Interest Energy Efficiency Loan Program < Back Eligibility Residential Savings Category Home Weatherization Sealing Your Home Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Design & Remodeling Windows, Doors, & Skylights Commercial Weatherization Ventilation Insulation Water Heating Solar Buying & Making Electricity Maximum Rebate $10,000 per customer within a 5 year period Program Info State Florida Program Type Utility Loan Program Rebate Amount up to $10,000 Provider Gainesville Regional Utilities Gainesville Regional Utilities (GRU) offers a six percent annual interest loan for pre-approved items including the ENERGY STAR refrigerators, high

473

Disposal of Hazardous Medical Waste Policy and Procedures Commencement Date: 27 November, 1996  

E-Print Network [OSTI]

Manipulation Advisory Committee's publication, Guidelines for the Storage, Transport and Disposal of Medical" and must comply with the Guidelines for the Storage, Transport and Disposal of Medical Waste issued of their chemical, biological or physical properties. Sharps Means objects or devices having acute rigid corners

474

Granite Recrystallization The Key to an Alternative Strategy for HLW Disposal? Fergus G.F. Gibb  

E-Print Network [OSTI]

JD, U.K. ABSTRACT An alternative strategy is proposed for the disposal of spent nuclear fuel (SNF HLWs, such as spent reactor fuel, to `cool' for a period (usually a few decades) prior to disposal potentially damaging temperature rises. Secondly, the waste contains sufficient quantities of very long lived

Sheffield, University of

475

Preliminary Closure Plan for the Immobilized Low Activity Waste (ILAW) Disposal Facility  

SciTech Connect (OSTI)

This document describes the preliminary plans for closure of the Immobilized Low-Activity Waste (ILAW) disposal facility to be built by the Office of River Protection at the Hanford site in southeastern Washington. The facility will provide near-surface disposal of up to 204,000 cubic meters of ILAW in engineered trenches with modified RCRA Subtitle C closure barriers.

BURBANK, D.A.

2000-08-31T23:59:59.000Z

476

Impacts of Shale Gas Wastewater Disposal on Water Quality in Western Pennsylvania  

E-Print Network [OSTI]

States, oil and gas wastewater is managed through recycling of the wastewater for shale gas operations of the wastewater.7 However, options for the proper disposal and management of the wastewater that is not recycledImpacts of Shale Gas Wastewater Disposal on Water Quality in Western Pennsylvania Nathaniel R

Jackson, Robert B.

477

Life-Cycle Cost Study for a Low-Level Radioactive Waste Disposal Facility in Texas  

SciTech Connect (OSTI)

This report documents the life-cycle cost estimates for a proposed low-level radioactive waste disposal facility near Sierra Blanca, Texas. The work was requested by the Texas Low-Level Radioactive Waste Disposal Authority and performed by the National Low-Level Waste Management Program with the assistance of Rogers and Associates Engineering Corporation.

B. C. Rogers; P. L. Walter (Rogers and Associates Engineering Corporation); R. D. Baird

1999-08-01T23:59:59.000Z

478

Graphene sheets fabricated from disposable paper cups as a catalyst support material for fuel cells  

E-Print Network [OSTI]

Graphene sheets fabricated from disposable paper cups as a catalyst support material for fuel cells Hong Zhao and T. S. Zhao* Disposable paper-cups are used for the formation of graphene sheets with Fe2+ as a catalyst. The proposed synthesis strategy not only enables graphene sheets to be produced in high yield

Zhao, Tianshou

479

Development of low-level radioactive waste disposal capacity in the United States - progress or stalemate?  

SciTech Connect (OSTI)

It has been fifteen years since responsibility for the disposal of commercially generated low-level radioactive waste (LLW) was shifted to the states by the United States Congress through the Low-Level Radioactive Waste Policy Act of 1980 (LLRWPA). In December 1985, Congress revisited the issue and enacted the Low-Level Radioactive Waste Policy Amendments Act of 1985 (LLRWPAA). No new disposal sites have opened yet, however, and it is now evident that disposal facility development is more complex, time-consuming, and controversial than originally anticipated. For a nation with a large nuclear power industry, the lack