National Library of Energy BETA

Sample records for interconnected photovoltaic cells

  1. Series interconnected photovoltaic cells and method for making same

    DOE Patents [OSTI]

    Albright, S.P.; Chamberlin, R.R.; Thompson, R.A.

    1995-01-31

    A novel photovoltaic module and method for constructing the same are disclosed. The module includes a plurality of photovoltaic cells formed on a substrate and laterally separated by interconnection regions. Each cell includes a bottom electrode, a photoactive layer and a top electrode layer. Adjacent cells are connected in electrical series by way of a conductive-buffer line. The buffer line is also useful in protecting the bottom electrode against severing during downstream layer cutting processes. 11 figs.

  2. Series interconnected photovoltaic cells and method for making same

    DOE Patents [OSTI]

    Albright, Scot P. (El Paso, TX); Chamberlin, Rhodes R. (El Paso, TX); Thompson, Roger A. (Littleton, CO)

    1995-01-01

    A novel photovoltaic module (10) and method for constructing the same are disclosed. The module (10) includes a plurality of photovoltaic cells (12) formed on a substrate (14) and laterally separated by interconnection regions (15). Each cell (12) includes a bottom electrode (16), a photoactive layer (18) and a top electrode layer (20). Adjacent cells (12) are connected in electrical series by way of a conductive-buffer line (22). The buffer line (22) is also useful in protecting the bottom electrode (16) against severing during downstream layer cutting processes.

  3. Solar cell array interconnects

    DOE Patents [OSTI]

    Carey, P.G.; Thompson, J.B.; Colella, N.J.; Williams, K.A.

    1995-11-14

    Electrical interconnects are disclosed for solar cells or other electronic components using a silver-silicone paste or a lead-tin (Pb-Sn) no-clean fluxless solder cream, whereby the high breakage of thin (<6 mil thick) solar cells using conventional solder interconnect is eliminated. The interconnects of this invention employs copper strips which are secured to the solar cells by a silver-silicone conductive paste which can be used at room temperature, or by a Pb-Sn solder cream which eliminates undesired residue on the active surfaces of the solar cells. Electrical testing using the interconnects of this invention has shown that no degradation of the interconnects developed under high current testing, while providing a very low contact resistance value. 4 figs.

  4. Solar cell array interconnects

    DOE Patents [OSTI]

    Carey, Paul G. (Mountain View, CA); Thompson, Jesse B. (Brentwood, CA); Colella, Nicolas J. (Livermore, CA); Williams, Kenneth A. (Livermore, CA)

    1995-01-01

    Electrical interconnects for solar cells or other electronic components using a silver-silicone paste or a lead-tin (Pb-Sn) no-clean fluxless solder cream, whereby the high breakage of thin (<6 mil thick) solar cells using conventional solder interconnect is eliminated. The interconnects of this invention employs copper strips which are secured to the solar cells by a silver-silicone conductive paste which can be used at room temperature, or by a Pb-Sn solder cream which eliminates undesired residue on the active surfaces of the solar cells. Electrical testing using the interconnects of this invention has shown that no degradation of the interconnects developed under high current testing, while providing a very low contact resistance value.

  5. Photovoltaic Systems Interconnected onto Secondary Network Distribution Systems – Success Stories

    Broader source: Energy.gov [DOE]

    This report examines six case studies of photovoltaic (PV) systems integrated into secondary network systems. The six PV systems were chosen for evaluation because they are interconnected to secondary network systems located in four major Solar America Cities.

  6. Fuel cell system with interconnect

    DOE Patents [OSTI]

    Goettler, Richard; Liu, Zhien

    2015-08-11

    The present invention includes a fuel cell system having a plurality of adjacent electrochemical cells formed of an anode layer, a cathode layer spaced apart from the anode layer, and an electrolyte layer disposed between the anode layer and the cathode layer. The fuel cell system also includes at least one interconnect, the interconnect being structured to conduct free electrons between adjacent electrochemical cells. Each interconnect includes a primary conductor embedded within the electrolyte layer and structured to conduct the free electrons.

  7. Fuel cell system with interconnect

    SciTech Connect (OSTI)

    Liu, Zhien; Goettler, Richard

    2015-09-29

    The present invention includes a fuel cell system having a plurality of adjacent electrochemical cells formed of an anode layer, a cathode layer spaced apart from the anode layer, and an electrolyte layer disposed between the anode layer and the cathode layer. The fuel cell system also includes at least one interconnect, the interconnect being structured to conduct free electrons between adjacent electrochemical cells. Each interconnect includes a primary conductor embedded within the electrolyte layer and structured to conduct the free electrons.

  8. Fuel cell system with interconnect

    DOE Patents [OSTI]

    Goettler, Richard; Liu, Zhien

    2015-03-10

    The present invention includes a fuel cell system having a plurality of adjacent electrochemical cells formed of an anode layer, a cathode layer spaced apart from the anode layer, and an electrolyte layer disposed between the anode layer and the cathode layer. The fuel cell system also includes at least one interconnect, the interconnect being structured to conduct free electrons between adjacent electrochemical cells. Each interconnect includes a primary conductor embedded within the electrolyte layer and structured to conduct the free electrons.

  9. Electroluminescence in photovoltaic cell

    E-Print Network [OSTI]

    Petraglia, Antonio; 10.1088/0031-9120/46/5/F01

    2011-01-01

    Here we propose two methods to get electroluminescence images from photovoltaic cells in a school or home lab.

  10. Photovoltaic Cell Performance Basics

    Broader source: Energy.gov [DOE]

    Photovoltaic (PV), or solar cells use the energy in sunlight to produce electricity. However, the amount of electricity produced depends on the quality of the light available and the performance of the PV cell.

  11. Photovoltaic solar cell

    DOE Patents [OSTI]

    Nielson, Gregory N; Cruz-Campa, Jose Luis; Okandan, Murat; Resnick, Paul J

    2014-05-20

    A photovoltaic solar cell for generating electricity from sunlight is disclosed. The photovoltaic solar cell comprises a plurality of spaced-apart point contact junctions formed in a semiconductor body to receive the sunlight and generate the electricity therefrom, the plurality of spaced-apart point contact junctions having a first plurality of regions having a first doping type and a second plurality of regions having a second doping type. In addition, the photovoltaic solar cell comprises a first electrical contact electrically connected to each of the first plurality of regions and a second electrical contact electrically connected to each of the second plurality of regions, as well as a passivation layer covering major surfaces and sidewalls of the photovoltaic solar cell.

  12. Photovoltaic solar cell

    DOE Patents [OSTI]

    Nielson, Gregory N; Okandan, Murat; Cruz-Campa, Jose Luis; Resnick, Paul J

    2013-11-26

    A photovoltaic solar cell for generating electricity from sunlight is disclosed. The photovoltaic solar cell comprises a plurality of spaced-apart point contact junctions formed in a semiconductor body to receive the sunlight and generate the electicity therefrom, the plurality of spaced-apart point contact junctions having a first plurality of regions having a first doping type and a second plurality of regions having a second doping type. In addition, the photovoltaic solar cell comprises a first electrical contact electrically connected to each of the first plurality of regions and a second electrical contact electrically connected to each of the second plurality of regions, as well as a passivation layer covering major surfaces and sidewalls of the photovoltaic solar cell.

  13. Double interconnection fuel cell array

    DOE Patents [OSTI]

    Draper, R.; Zymboly, G.E.

    1993-12-28

    A fuel cell array is made, containing number of tubular, elongated fuel cells which are placed next to each other in rows (A, B, C, D), where each cell contains inner electrodes and outer electrodes, with solid electrolyte between the electrodes, where the electrolyte and outer electrode are discontinuous, having two portions, and providing at least two opposed discontinuities which contain at least two oppositely opposed interconnections contacting the inner electrode, each cell having only three metallic felt electrical connectors which contact surrounding cells, where each row is electrically connected to the other. 5 figures.

  14. Double interconnection fuel cell array

    DOE Patents [OSTI]

    Draper, Robert (Churchill Boro, PA); Zymboly, Gregory E. (Murrysville, PA)

    1993-01-01

    A fuel cell array (10) is made, containing number of tubular, elongated fuel cells (12) which are placed next to each other in rows (A, B, C, D), where each cell contains inner electrodes (14) and outer electrodes (18 and 18'), with solid electrolyte (16 and 16') between the electrodes, where the electrolyte and outer electrode are discontinuous, having two portions, and providing at least two opposed discontinuities which contain at least two oppositely opposed interconnections (20 and 20') contacting the inner electrode (14), each cell (12) having only three metallic felt electrical connectors (22) which contact surrounding cells, where each row is electrically connected to the other.

  15. A State-Level Comparison of Processes and Timelines for Distributed Photovoltaic Interconnection in the United States

    SciTech Connect (OSTI)

    Ardani, K.; Davidson, C.; Margolis, R.; Nobler, E.

    2015-01-01

    This report presents results from an analysis of distributed photovoltaic (PV) interconnection and deployment processes in the United States.

  16. Cascade solar cell having conductive interconnects

    DOE Patents [OSTI]

    Borden, Peter G. (Menlo Park, CA); Saxena, Ram R. (Saratoga, CA)

    1982-10-26

    Direct ohmic contact between the cells in an epitaxially grown cascade solar cell is obtained by means of conductive interconnects formed through grooves etched intermittently in the upper cell. The base of the upper cell is directly connected by the conductive interconnects to the emitter of the bottom cell. The conductive interconnects preferably terminate on a ledge formed in the base of the upper cell.

  17. Flexible interconnects for fuel cell stacks

    DOE Patents [OSTI]

    Lenz, David J.; Chung, Brandon W.; Pham, Ai Quoc

    2004-11-09

    An interconnect that facilitates electrical connection and mechanical support with minimal mechanical stress for fuel cell stacks. The interconnects are flexible and provide mechanically robust fuel cell stacks with higher stack performance at lower cost. The flexible interconnects replace the prior rigid rib interconnects with flexible "fingers" or contact pads which will accommodate the imperfect flatness of the ceramic fuel cells. Also, the mechanical stress of stacked fuel cells will be smaller due to the flexibility of the fingers. The interconnects can be one-sided or double-sided.

  18. Changing photovoltaic array interconnections to reduce mismatch losses: a case study

    E-Print Network [OSTI]

    Boyer, Edmond

    Changing photovoltaic array interconnections to reduce mismatch losses: a case study D. Picault*, B.grenoble-inp.fr ; seddik.bacha@ g2elab.grenoble-inp.fr Abstract- Partial shading of photovoltaic (PV) modules can affect schemes are presented. I. INTRODUCTION The global photovoltaic market has tremendously increased this past

  19. Thin film photovoltaic cell

    DOE Patents [OSTI]

    Meakin, John D. (Newark, DE); Bragagnolo, Julio (Newark, DE)

    1982-01-01

    A thin film photovoltaic cell having a transparent electrical contact and an opaque electrical contact with a pair of semiconductors therebetween includes utilizing one of the electrical contacts as a substrate and wherein the inner surface thereof is modified by microroughening while being macro-planar.

  20. Photovoltaic solar cell

    DOE Patents [OSTI]

    Nielson, Gregory N.; Gupta, Vipin P.; Okandan, Murat; Watts, Michael R.

    2015-09-08

    A photovoltaic solar concentrator is disclosed with one or more transverse-junction solar cells (also termed point contact solar cells) and a lens located above each solar cell to concentrate sunlight onto the solar cell to generate electricity. Piezoelectric actuators tilt or translate each lens to track the sun using a feedback-control circuit which senses the electricity generated by one or more of the solar cells. The piezoelectric actuators can be coupled through a displacement-multiplier linkage to provide an increased range of movement of each lens. Each lens in the solar concentrator can be supported on a frame (also termed a tilt plate) having three legs, with the movement of the legs being controlled by the piezoelectric actuators.

  1. Graphite-based photovoltaic cells

    DOE Patents [OSTI]

    Lagally, Max (Madison, WI); Liu, Feng (Salt Lake City, UT)

    2010-12-28

    The present invention uses lithographically patterned graphite stacks as the basic building elements of an efficient and economical photovoltaic cell. The basic design of the graphite-based photovoltaic cells includes a plurality of spatially separated graphite stacks, each comprising a plurality of vertically stacked, semiconducting graphene sheets (carbon nanoribbons) bridging electrically conductive contacts.

  2. Photovoltaic cell assembly

    DOE Patents [OSTI]

    Beavis, Leonard C. (Albuquerque, NM); Panitz, Janda K. G. (Edgewood, NM); Sharp, Donald J. (Albuquerque, NM)

    1990-01-01

    A photovoltaic assembly for converting high intensity solar radiation into lectrical energy in which a solar cell is separated from a heat sink by a thin layer of a composite material which has excellent dielectric properties and good thermal conductivity. This composite material is a thin film of porous Al.sub.2 O.sub.3 in which the pores have been substantially filled with an electrophoretically-deposited layer of a styrene-acrylate resin. This composite provides electrical breakdown strengths greater than that of a layer consisting essentially of Al.sub.2 O.sub.3 and has a higher thermal conductivity than a layer of styrene-acrylate alone.

  3. Interband Cascade Photovoltaic Cells

    SciTech Connect (OSTI)

    Yang, Rui Q.; Santos, Michael B.; Johnson, Matthew B.

    2014-09-24

    In this project, we are performing basic and applied research to systematically investigate our newly proposed interband cascade (IC) photovoltaic (PV) cells [1]. These cells follow from the great success of infrared IC lasers [2-3] that pioneered the use of quantum-engineered IC structures. This quantum-engineered approach will enable PV cells to efficiently convert infrared radiation from the sun or other heat source, to electricity. Such cells will have important applications for more efficient use of solar energy, waste-heat recovery, and power beaming in combination with mid-infrared lasers. The objectives of our investigations are to: achieve extensive understanding of the fundamental aspects of the proposed PV structures, develop the necessary knowledge for making such IC PV cells, and demonstrate prototype working PV cells. This research will focus on IC PV structures and their segments for utilizing infrared radiation with wavelengths from 2 to 5 ?m, a range well suited for emission by heat sources (1,000-2,000 K) that are widely available from combustion systems. The long-term goal of this project is to push PV technology to longer wavelengths, allowing for relatively low-temperature thermal sources. Our investigations address material quality, electrical and optical properties, and their interplay for the different regions of an IC PV structure. The tasks involve: design, modeling and optimization of IC PV structures, molecular beam epitaxial growth of PV structures and relevant segments, material characterization, prototype device fabrication and testing. At the end of this program, we expect to generate new cutting-edge knowledge in the design and understanding of quantum-engineered semiconductor structures, and demonstrate the concepts for IC PV devices with high conversion efficiencies.

  4. Utility-Interconnected Photovoltaic Systems STEVENS III,JOHN...

    Office of Scientific and Technical Information (OSTI)

    STEVENS III,JOHN W.; BONN,RUSSELL H.; GINN,JERRY W.; GONZALEZ,SIGIFREDO; KERN,GREG 14 SOLAR ENERGY; 24 POWER TRANSMISSION AND DISTRIBUTION; INTERCONNECTED POWER SYSTEMS;...

  5. Charge transport in hybrid nanorod-polymer composite photovoltaic cells

    E-Print Network [OSTI]

    Huynh, Wendy U.; Dittmer, Janke J.; Teclemariam, Nerayo; Milliron, Delia; Alivisatos, A. Paul; Barnham, Keith W.J.

    2002-01-01

    circuit diagram for a photovoltaic cell under illumination.devices such as photovoltaic cells and light-emitting-Polymer Composite Photovoltaic Cells Wendy U. Huynh ‡ ,

  6. Interconnection of bundled solid oxide fuel cells

    DOE Patents [OSTI]

    Brown, Michael; Bessette, II, Norman F; Litka, Anthony F; Schmidt, Douglas S

    2014-01-14

    A system and method for electrically interconnecting a plurality of fuel cells to provide dense packing of the fuel cells. Each one of the plurality of fuel cells has a plurality of discrete electrical connection points along an outer surface. Electrical connections are made directly between the discrete electrical connection points of adjacent fuel cells so that the fuel cells can be packed more densely. Fuel cells have at least one outer electrode and at least one discrete interconnection to an inner electrode, wherein the outer electrode is one of a cathode and and anode and wherein the inner electrode is the other of the cathode and the anode. In tubular solid oxide fuel cells the discrete electrical connection points are spaced along the length of the fuel cell.

  7. Formed photovoltaic module busbars

    DOE Patents [OSTI]

    Rose, Douglas; Daroczi, Shan; Phu, Thomas

    2015-11-10

    A cell connection piece for a photovoltaic module is disclosed herein. The cell connection piece includes an interconnect bus, a plurality of bus tabs unitarily formed with the interconnect bus, and a terminal bus coupled with the interconnect bus. The plurality of bus tabs extend from the interconnect bus. The terminal bus includes a non-linear portion.

  8. Electrical isolation of component cells in monolithically interconnected modules

    DOE Patents [OSTI]

    Wanlass, Mark W. (Golden, CO)

    2001-01-01

    A monolithically interconnected photovoltaic module having cells which are electrically connected which comprises a substrate, a plurality of cells formed over the substrate, each cell including a primary absorber layer having a light receiving surface and a p-region, formed with a p-type dopant, and an n-region formed with an n-type dopant adjacent the p-region to form a single pn-junction, and a cell isolation diode layer having a p-region, formed with a p-type dopant, and an n-region formed with an n-type dopant adjacent the p-region to form a single pn-junction, the diode layer intervening the substrate and the absorber layer wherein the absorber and diode interfacial regions of a same conductivity type orientation, the diode layer having a reverse-breakdown voltage sufficient to prevent inter-cell shunting, and each cell electrically isolated from adjacent cells with a vertical trench trough the pn-junction of the diode layer, interconnects disposed in the trenches contacting the absorber regions of adjacent cells which are doped an opposite conductivity type, and electrical contacts.

  9. Monolithically interconnected GaAs solar cells: A new interconnection technology for high voltage solar cell output

    SciTech Connect (OSTI)

    Dinetta, L.C.; Hannon, M.H.

    1995-10-01

    Photovoltaic linear concentrator arrays can benefit from high performance solar cell technologies being developed at AstroPower. Specifically, these are the integration of thin GaAs solar cell and epitaxial lateral overgrowth technologies with the application of monolithically interconnected solar cell (MISC) techniques. This MISC array has several advantages which make it ideal for space concentrator systems. These are high system voltage, reliable low cost monolithically formed interconnections, design flexibility, costs that are independent of array voltage, and low power loss from shorts, opens, and impact damage. This concentrator solar cell will incorporate the benefits of light trapping by growing the device active layers over a low-cost, simple, PECVD deposited silicon/silicon dioxide Bragg reflector. The high voltage-low current output results in minimal 12R losses while properly designing the device allows for minimal shading and resistance losses. It is possible to obtain open circuit voltages as high as 67 volts/cm of solar cell length with existing technology. The projected power density for the high performance device is 5 kW/m for an AMO efficiency of 26% at 1 5X. Concentrator solar cell arrays are necessary to meet the power requirements of specific mission platforms and can supply high voltage power for electric propulsion systems. It is anticipated that the high efficiency, GaAs monolithically interconnected linear concentrator solar cell array will enjoy widespread application for space based solar power needs. Additional applications include remote man-portable or ultra-light unmanned air vehicle (UAV) power supplies where high power per area, high radiation hardness and a high bus voltage or low bus current are important. The monolithic approach has a number of inherent advantages, including reduced cost per interconnect and increased reliability of array connections. There is also a high potential for a large number of consumer products.

  10. Promises and problems with metallic interconnects for reduced temperature solid oxide fuel cells

    E-Print Network [OSTI]

    Hou, Peggy Y.; Huang, Keqin; Bakker, Wate T.

    1999-01-01

    METALLIC INTERCONNECTS FOR REDUCED TEMPERATURE SOLID OXIDE FUELto fuel cell stacks with multiple metallic interconnects.

  11. Photovoltaic cell and production thereof

    DOE Patents [OSTI]

    Narayanan, Srinivasamohan (Gaithersburg, MD); Kumar, Bikash (Bangalore, IN)

    2008-07-22

    An efficient photovoltaic cell, and its process of manufacture, is disclosed wherein the back surface p-n junction is removed from a doped substrate having an oppositely doped emitter layer. A front surface and edges and optionally the back surface periphery are masked and a back surface etch is performed. The mask is not removed and acts as an anti-reflective coating, a passivating agent, or both. The photovoltaic cell retains an untextured back surface whether or not the front is textured and the dopant layer on the back surface is removed to enhance the cell efficiency. Optionally, a back surface field is formed.

  12. Photovoltaic cells employing zinc phosphide

    DOE Patents [OSTI]

    Barnett, Allen M. (Newark, DE); Catalano, Anthony W. (Wilmington, DE); Dalal, Vikram L. (Newark, DE); Masi, James V. (Wilbraham, MA); Meakin, John D. (Newark, DE); Hall, Robert B. (Newark, DE)

    1984-01-01

    A photovoltaic cell having a zinc phosphide absorber. The zinc phosphide can be a single or multiple crystal slice or a thin polycrystalline film. The cell can be a Schottky barrier, heterojunction or homojunction device. Methods for synthesizing and crystallizing zinc phosphide are disclosed as well as a method for forming thin films.

  13. Cost-Effectivenessof PhotovoltaicGenerationIn A Transmission-Constrained Load Area of An InterconnectedSystem

    E-Print Network [OSTI]

    Gross, George

    Abstract: Electric power systems of today are experiencing a difficulty of constrained transmission lines, present electric system networks are experiencing the difficulty of constrained transmission lines: Photovoltaic Generation, Power System Economics, Dispersed Generation, Transmission-Constrained Interconnected

  14. Improved photovoltaic cells and electrodes

    DOE Patents [OSTI]

    Skotheim, T.A.

    1983-06-29

    Improved photovoltaic cells and electrodes for use therein, particularly electrodes employing amorphous silicon or polyacetylene coating are produced by a process which includes filling pinholes or porous openings in the coatings by electrochemical oxidation of selected monomers to deposit insulating polymer in the openings.

  15. Electrochemical photovoltaic cells and electrodes

    DOE Patents [OSTI]

    Skotheim, Terje A. (East Patchogue, NY)

    1984-01-01

    Improved electrochemical photovoltaic cells and electrodes for use therein, particularly electrodes employing amorphous silicon or polyacetylene coating are produced by a process which includes filling pinholes or porous openings in the coatings by electrochemical oxidation of selected monomers to deposit insulating polymer in the openings.

  16. State-Level Comparison of Processes and Timelines for Distributed Photovoltaic Interconnection in the United States

    SciTech Connect (OSTI)

    Ardani, K.; Davidson, C.; Margolis, R.; Nobler, E.

    2015-01-01

    This report presents results from an analysis of distributed photovoltaic (PV) interconnection and deployment processes in the United States. Using data from more than 30,000 residential (up to 10 kilowatts) and small commercial (10-50 kilowatts) PV systems, installed from 2012 to 2014, we assess the range in project completion timelines nationally (across 87 utilities in 16 states) and in five states with active solar markets (Arizona, California, New Jersey, New York, and Colorado).

  17. Photovoltaic cell efficiency at elevated temperatures

    E-Print Network [OSTI]

    Ray, Katherine Leung

    2010-01-01

    In order to determine what type of photovoltaic solar cell could best be used in a thermoelectric photovoltaic hybrid power generator, we tested the change in efficiency due to higher temperatures of three types of solar ...

  18. Producing thin film photovoltaic modules with high integrity interconnects and dual layer contacts

    DOE Patents [OSTI]

    Jansen, Kai W. (Lawrenceville, NJ); Maley, Nagi (Exton, PA)

    2001-01-01

    High performance photovoltaic modules are produced with improved interconnects by a special process. Advantageously, the photovoltaic modules have a dual layer back (rear) contact and a front contact with at least one layer. The front contact and the inner layer of the back contact can comprise a transparent conductive oxide. The outer layer of the back contact can comprise a metal or metal oxide. The front contact can also have a dielectric layer. In one form, the dual layer back contact comprises a zinc oxide inner layer and an aluminum outer layer and the front contact comprises a tin oxide inner layer and a silicon dioxide dielectric outer layer. One or more amorphous silicon-containing thin film semiconductors can be deposited between the front and back contacts. The contacts can be positioned between a substrate and an optional superstrate. During production, the transparent conductive oxide layer of the front contact is scribed by a laser, then the amorphous silicon-containing semiconductors and inner layer of the dual layer back contact are simultaneously scribed and trenched (drilled) by the laser and the trench is subsequently filled with the same metal as the outer layer of the dual layer back contact to provide a superb mechanical and electrical interconnect between the front contact and the outer layer of the dual layer back contact. The outer layer of the dual layer back contact can then be scribed by the laser. For enhanced environmental protection, the photovoltaic modules can be encapsulated.

  19. Producing thin film photovoltaic modules with high integrity interconnects and dual layer contacts

    DOE Patents [OSTI]

    Jansen, Kai W. (Lawrenceville, NJ); Maley, Nagi (Exton, PA)

    2000-01-01

    High performance photovoltaic modules are produced with improved interconnects by a special process. Advantageously, the photovoltaic modules have a dual layer back (rear) contact and a front contact with at least one layer. The front contact and the inner layer of the back contact can comprise a transparent conductive oxide. The outer layer of the back contact can comprise a metal or metal oxide. The front contact can also have a dielectric layer. In one form, the dual layer back contact comprises a zinc oxide inner layer and an aluminum outer layer and the front contact comprises a tin oxide inner layer and a silicon dioxide dielectric outer layer. One or more amorphous silicon-containing thin film semiconductors can be deposited between the front and back contacts. The contacts can be positioned between a substrate and an optional superstrate. During production, the transparent conductive oxide layer of the front contact is scribed by a laser, then the amorphous silicon-containing semiconductors and inner layer of the dual layer back contact are simultaneously scribed and trenched (drilled) by the laser and the trench is subsequently filled with the same metal as the outer layer of the dual layer back contact to provide a superb mechanical and electrical interconnect between the front contact and the outer layer of the dual layer back contact. The outer layer of the dual layer back contact can then be scribed by the laser. For enhanced environmental protection, the photovoltaic modules can be encapsulated.

  20. Thin film photovoltaic cells

    DOE Patents [OSTI]

    Rothwarf, Allen (Philadelphia, PA)

    1981-01-01

    A solar cell has as its transparent electrical contact a grid made from a non-noble metal by providing a layer of copper oxide between the transparent electrical contact and the absorber-generator.

  1. EXPERIMENTS with PHOTOVOLTAIC CELLS for high school science students

    E-Print Network [OSTI]

    Oregon, University of

    EXPERIMENTS with PHOTOVOLTAIC CELLS for high school science students By Dick Erickson ­ Pleasant Activity ­ Testing Photovoltaic Cells ..........................5 Expected Observations: ........................................................................................................8 II. LAB ACTIVITY - TESTING PHOTOVOLTAIC CELLS ..................................9 BEFORE YOU START

  2. Photovoltaic nanocrystal scintillators hybridized on Si solar cells

    E-Print Network [OSTI]

    Demir, Hilmi Volkan

    Photovoltaic nanocrystal scintillators hybridized on Si solar cells for enhanced conversion on solar cells to enhance photovoltaic device parameters including spectral responsivity, open circuit@bilkent.edu.tr Abstract: We propose and demonstrate semiconductor nanocrystal based photovoltaic scintillators integrated

  3. Quantum well multijunction photovoltaic cell

    DOE Patents [OSTI]

    Chaffin, Roger J. (Albuquerque, NM); Osbourn, Gordon C. (Albuquerque, NM)

    1987-01-01

    A monolithic, quantum well, multilayer photovoltaic cell comprises a p-n junction comprising a p-region on one side and an n-region on the other side, each of which regions comprises a series of at least three semiconductor layers, all p-type in the p-region and all n-type in the n-region; each of said series of layers comprising alternating barrier and quantum well layers, each barrier layer comprising a semiconductor material having a first bandgap and each quantum well layer comprising a semiconductor material having a second bandgap when in bulk thickness which is narrower than said first bandgap, the barrier layers sandwiching each quantum well layer and each quantum well layer being sufficiently thin that the width of its bandgap is between said first and second bandgaps, such that radiation incident on said cell and above an energy determined by the bandgap of the quantum well layers will be absorbed and will produce an electrical potential across said junction.

  4. Quantum well multijunction photovoltaic cell

    DOE Patents [OSTI]

    Chaffin, R.J.; Osbourn, G.C.

    1983-07-08

    A monolithic, quantum well, multilayer photovoltaic cell comprises a p-n junction comprising a p-region on one side and an n-region on the other side, each of which regions comprises a series of at least three semiconductor layers, all p-type in the p-region and all n-type in the n-region; each of said series of layers comprising alternating barrier and quantum well layers, each barrier layer comprising a semiconductor material having a first bandgap and each quantum well layer comprising a semiconductor material having a second bandgap when in bulk thickness which is narrower than said first bandgap, the barrier layers sandwiching each quantum well layer and each quantum well layer being sufficiently thin that the width of its bandgap is between said first and second bandgaps, such that radiation incident on said cell and above an energy determined by the bandgap of the quantum well layers will be absorbed and will produce an electrical potential across said junction.

  5. Low-Cost Photovoltaics: Luminescent Solar Concentrators And Colloidal Quantum Dot Solar Cells

    E-Print Network [OSTI]

    Leow, Shin Woei

    2014-01-01

    using front-facing photovoltaic cell luminescent solarwith front-facing photovoltaic cells using weighted Montefor tandem photovoltaic cells,” Thin Solid Films, vol. 516,

  6. Nanopillar Photovoltaics: Photon Management and Junction Engineering for Next-Generation Solar Cells

    E-Print Network [OSTI]

    Mariani, Giacomo

    2013-01-01

    for efficient photovoltaic cells, Nat. Nanotechnol. 6, 568-for efficient photovoltaic cells, Nat. Nanotechnol. 6, 568-trapping in thin-film photovoltaic cells, Opt. Express 8,

  7. Rational Design and Preparation of Organic Semiconductors for use in Field Effect Transistors and Photovoltaic Cells

    E-Print Network [OSTI]

    Mauldin, Clayton Edward

    2010-01-01

    Effect Transistors and Photovoltaic Cells By Clayton EdwardEffect Transistors and Photovoltaic Cells By Clayton Edwardin thin film organic photovoltaic cells (OPVs) is presented.

  8. Valuing the Time-Varying Electricity Production of Solar Photovoltaic Cells

    E-Print Network [OSTI]

    Borenstein, Severin

    2005-01-01

    Production of Solar Photovoltaic Cells Severin BorensteinProduction of Solar Photovoltaic Cells Severin Borenstein 1concerns is so- lar photovoltaic cells (PVs), which capture

  9. Rational Design and Preparation of Organic Semiconductors for use in Field Effect Transistors and Photovoltaic Cells

    E-Print Network [OSTI]

    Mauldin, Clayton Edward

    2010-01-01

    in thin film organic photovoltaic cells (OPVs) is presented.Effect Transistors and Photovoltaic Cells By Clayton EdwardEffect Transistors and Photovoltaic Cells By Clayton Edward

  10. Tandem junction amorphous semiconductor photovoltaic cell

    DOE Patents [OSTI]

    Dalal, Vikram L. (Newark, DE)

    1983-01-01

    A photovoltaic stack comprising at least two p.sup.+ i n.sup.+ cells in optical series, said cells separated by a transparent ohmic contact layer(s), provides a long optical path for the absorption of photons while preserving the advantageous field-enhanced minority carrier collection arrangement characteristic of p.sup.+ i n.sup.+ cells.

  11. Tandem junction amorphous semiconductor photovoltaic cell

    DOE Patents [OSTI]

    Dalal, V.L.

    1983-06-07

    A photovoltaic stack comprising at least two p[sup +]i n[sup +] cells in optical series, said cells separated by a transparent ohmic contact layer(s), provides a long optical path for the absorption of photons while preserving the advantageous field-enhanced minority carrier collection arrangement characteristic of p[sup +]i n[sup +] cells. 3 figs.

  12. Interconnect

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation CurrentHenryInhibitingInteractive Jobs Interactive Jobs To run anInterconnect

  13. CMOS Photovoltaic-cell Layout Configurations for Harvesting Microsystems

    E-Print Network [OSTI]

    Rincon-Mora, Gabriel A.

    CMOS Photovoltaic-cell Layout Configurations for Harvesting Microsystems Rajiv Damodaran Prabha, and radiation, photovoltaic (PV) systems are appealing options. Still, chip-sized CMOS PV cells produce only well in substrate cell are better. Index Terms--Ambient light energy, harvester, CMOS photovoltaic (PV

  14. Photovoltaic cells made from conjugated polymers infiltrated into mesoporous titania

    E-Print Network [OSTI]

    McGehee, Michael

    Photovoltaic cells made from conjugated polymers infiltrated into mesoporous titania Kevin M photovoltaic cells by infiltrating the conjugated polymer regioregular poly 3-hexylthiophene into films for electrons to travel to an electrode after electron transfer has occurred. The photovoltaic cells have

  15. Photovoltaic Measurements in Single-Nanowire Silicon Solar Cells

    E-Print Network [OSTI]

    Atwater, Harry

    Photovoltaic Measurements in Single-Nanowire Silicon Solar Cells Michael D. Kelzenberg, Daniel B-voltage measurements were made under simulated Air Mass 1.5 global illumination. Photovoltaic spectral response work by our group has shown that macroscopic Si wire arrays (>1 cm2 in area) suitable for photovoltaic

  16. PHOTOVOLTAIC PROPERTIES OF AU-MEROCYANINE-TiO2 SANDWICH CELLS. I. DARK ELECTRICAL PROPERTIES AND TRANSIENT EFFECT

    E-Print Network [OSTI]

    Skotheim, T.

    2010-01-01

    used in making the photovoltaic cells. Figure 2. Diagram oforganic compounds in photovoltaic cells. It lies more in thecalled a dye-sensitized photovoltaic cell. Dye sensitization

  17. Dye Sensitized Tandem Photovoltaic Cells

    SciTech Connect (OSTI)

    Barber, Greg D.

    2009-12-21

    This work provided a new way to look at photoelectrochemical cells and their performance. Although thought of as low efficiency, a the internal efficiency of a 9% global efficiency dye sensitized solar cell is approximately equal to an 18% efficient silicon cell when each is compared to their useful spectral range. Other work undertaken with this contract also reported the first growth oriented titania and perovskite columns on a transparent conducting oxide. Other work has shown than significant performance enhancement in the performance of dye sensitized solar cells can be obtained through the use of coupling inverse opal photonic crystals to the nanocrystalline dye sensitized solar cell. Lastly, a quick efficient method was developed to bond titanium foils to transparent conducting oxide substrates for anodization.

  18. Thermal response of photovoltaic cell to laser beam irradiation

    E-Print Network [OSTI]

    Yuan, Yu-Chen

    2014-01-01

    This paper firstly presents the concept of using dual laser beam to irradiate the photovoltaic cell, so as to investigate the temperature dependency of the efficiency of long distance energy transmission. Next, the model on the multiple reflection and absorption of any monochromatic light in multilayer structure has been established, and the heat generation in photovoltaic cell has been interpreted in this work. Then, the finite element model has been set up to calculate the temperature of photovoltaic cell subjected to laser irradiation. Finally, the effect of temperature elevation on the efficiency and reliability of photovoltaic cell has been discussed to provide theoretical references for designing the light-electricity conversion system.

  19. PHOTOVOLTAIC PROPERTIES OF METAL-MEROCYANINE-TiO2 SANDWICH CELLS

    E-Print Network [OSTI]

    Skotheim, Terje Asbjorn

    2011-01-01

    used in making the photovoltaic cells. Figure 3. Diagram ofused in making the photovoltaic cells. HO HO ,5 di -t rt.organic compounds in photovoltaic cells. It lies more in the

  20. High-efficiency photovoltaic cells

    DOE Patents [OSTI]

    Yang, H.T.; Zehr, S.W.

    1982-06-21

    High efficiency solar converters comprised of a two cell, non-lattice matched, monolithic stacked semiconductor configuration using optimum pairs of cells having bandgaps in the range 1.6 to 1.7 eV and 0.95 to 1.1 eV, and a method of fabrication thereof, are disclosed. The high band gap subcells are fabricated using metal organic chemical vapor deposition (MOCVD), liquid phase epitaxy (LPE) or molecular beam epitaxy (MBE) to produce the required AlGaAs layers of optimized composition, thickness and doping to produce high performance, heteroface homojunction devices. The low bandgap subcells are similarly fabricated from AlGa(As)Sb compositions by LPE, MBE or MOCVD. These subcells are then coupled to form a monolithic structure by an appropriate bonding technique which also forms the required transparent intercell ohmic contact (IOC) between the two subcells. Improved ohmic contacts to the high bandgap semiconductor structure can be formed by vacuum evaporating to suitable metal or semiconductor materials which react during laser annealing to form a low bandgap semiconductor which provides a low contact resistance structure.

  1. PHOTOVOLTAIC PROPERTIES OF AU-MEROCYANINE-TiO2 SANDWICH CELLS. II. PROPERTIES OF ILLUMINATED CELLS AND EFFECTS OF DOPING WITH ELECTRON ACCEPTORS

    E-Print Network [OSTI]

    Skotheim, T.

    2010-01-01

    the photovoltaic efficiencies of a sandwich cell made bythe cells are too heavily doped, the photovoltaic propertiesPHOTOVOLTAIC PROPERTIES OF AU-MEROCYANINE-TiO SANDWICH CELLS

  2. Performance of Utility Interconnected Photovoltaic Inverters Operating Beyond Typical Modes of Operation

    E-Print Network [OSTI]

    distributed energy resource (DER) systems now represents a significant part of the renewable generation mix to grow this may not be the case. In California, the largest US PV renewable market, the FY12 installed year, the interconnection standards are allowing distributed energy resource equipment to provide

  3. Organic photovoltaic cells with controlled polarization sensitivity

    SciTech Connect (OSTI)

    Awartani, Omar; O'Connor, Brendan T., E-mail: btoconno@ncsu.edu [Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Kudenov, Michael W. [Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States)

    2014-03-03

    In this study, we demonstrate linearly polarized organic photovoltaic cells with a well-controlled level of polarization sensitivity. The polarized devices were created through the application of a large uniaxial strain to the bulk heterojunction poly(3-hexylthiophene):Phenyl-C61-butyric acid methyl ester (P3HT:PCBM) film and printing the plastically deformed active layer onto a PEDOT:PSS and indium tin oxide coated glass substrate. The P3HT:PCBM layer is processed such that it is able to accommodate high strains (over 100%) without fracture. After printing the strained films, thermal annealing is used to optimize solar cell performance while maintaining polarization sensitivity. A dichroic ratio and short circuit current ratio of ?6.1 and ?1.6 were achieved, respectively.

  4. Hybrid window layer for photovoltaic cells

    DOE Patents [OSTI]

    Deng, Xunming (Syvania, OH)

    2010-02-23

    A novel photovoltaic solar cell and method of making the same are disclosed. The solar cell includes: at least one absorber layer which could either be a lightly doped layer or an undoped layer, and at least a doped window-layers which comprise at least two sub-window-layers. The first sub-window-layer, which is next to the absorber-layer, is deposited to form desirable junction with the absorber-layer. The second sub-window-layer, which is next to the first sub-window-layer, but not in direct contact with the absorber-layer, is deposited in order to have transmission higher than the first-sub-window-layer.

  5. Hybrid window layer for photovoltaic cells

    DOE Patents [OSTI]

    Deng, Xunming (Syvania, OH); Liao, Xianbo (Toledo, OH); Du, Wenhui (Toledo, OH)

    2011-10-04

    A novel photovoltaic solar cell and method of making the same are disclosed. The solar cell includes: at least one absorber layer which could either be a lightly doped layer or an undoped layer, and at least a doped window-layers which comprise at least two sub-window-layers. The first sub-window-layer, which is next to the absorber-layer, is deposited to form desirable junction with the absorber-layer. The second sub-window-layer, which is next to the first sub-window-layer, but not in direct contact with the absorber-layer, is deposited in order to have transmission higher than the first-sub-window-layer.

  6. Hybrid window layer for photovoltaic cells

    DOE Patents [OSTI]

    Deng, Xunming (Sylvania, OH); Liao, Xianbo (Toledo, OH); Du, Wenhui (Toledo, OH)

    2011-02-01

    A novel photovoltaic solar cell and method of making the same are disclosed. The solar cell includes: at least one absorber layer which could either be a lightly doped layer or an undoped layer, and at least a doped window-layers which comprise at least two sub-window-layers. The first sub-window-layer, which is next to the absorber-layer, is deposited to form desirable junction with the absorber-layer. The second sub-window-layer, which is next to the first sub-window-layer, but not in direct contact with the absorber-layer, is deposited in order to have transmission higher than the first-sub-window-layer.

  7. PHOTOVOLTAIC PROPERTIES OF METAL-MEROCYANINE-TiO2 SANDWICH CELLS

    E-Print Network [OSTI]

    Skotheim, Terje Asbjorn

    2011-01-01

    67 3.6 Photovoltaic Action Spectrum . . . . 3.7dye used in making the photovoltaic cells. Figure 3. Diagramused in making the photovoltaic cells. HO HO ,5 di -t rt.

  8. Catalytic bipolar interconnection plate for use in a fuel cell

    DOE Patents [OSTI]

    Lessing, P.A.

    1996-03-05

    A bipolar interconnection plate is described for use between adjacent fuel cell units in a stacked fuel cell assembly. Each plate is manufactured from an intermetallic composition, examples of which include NiAl or Ni{sub 3}Al which can catalyze steam reforming of hydrocarbons. Distributed within the intermetallic structure of the plate is a ceramic filler composition. The plate includes a first side with gas flow channels therein and a second side with fuel flow channels therein. A protective coating is applied to the first side, with exemplary coatings including strontium-doped or calcium-doped lanthanum chromite. To produce the plate, Ni and Al powders are combined with the filler composition, compressed at a pressure of about 10,000--30,000 psi, and heated to about 600--1000 C. The coating is then applied to the first side of the completed plate using liquid injection plasma deposition or other deposition techniques. 6 figs.

  9. Utility-Interconnected Photovoltaic Systems: Evaluating the Rationale for the Utility-Accessible External Disconnect Switch

    SciTech Connect (OSTI)

    Coddington, M.; Margolis, R.M.; Aabakken, J.

    2008-01-01

    The utility-accessible alternating current (AC) external disconnect switch (EDS) for distributed generators, including photovoltaic (PV) systems, is a hardware feature that allows a utility?s employees to manually disconnect a customer-owned generator from the electricity grid. This paper examines the utility-accessible EDS debate in the context of utility-interactive PV systems for residential and small commercial installations. It also evaluates the rationale for EDS requirements.

  10. Solid oxide fuel cell with single material for electrodes and interconnect

    DOE Patents [OSTI]

    McPheeters, Charles C. (Naperville, IL); Nelson, Paul A. (Wheaton, IL); Dees, Dennis W. (Downers Grove, IL)

    1994-01-01

    A solid oxide fuel cell having a plurality of individual cells. A solid oxide fuel cell has an anode and a cathode with electrolyte disposed therebetween, and the anode, cathode and interconnect elements are comprised of substantially one material.

  11. Valuing the Time-Varying Electricity Production of Solar Photovoltaic Cells

    E-Print Network [OSTI]

    Borenstein, Severin

    2005-01-01

    photovoltaic cells remain a relatively expensive way to generate electricity, but with increasing natural gas prices

  12. EELE408 Photovoltaics Lecture 11: Solar Cell Parameters

    E-Print Network [OSTI]

    Kaiser, Todd J.

    1 EELE408 Photovoltaics Lecture 11: Solar Cell Parameters Dr. Todd J. Kaiser tjkaiser@ece.montana.edu Department of Electrical and Computer Engineering Montana State University - Bozeman Solar Cell Parameters circuit current is the current through the cell when the voltage across the cell is zero (the solar cell

  13. EELE408 Photovoltaics Lecture 10 Solar Cell Operation

    E-Print Network [OSTI]

    Kaiser, Todd J.

    of the number of carriers collected by the solar cell to the number of photons of a given energy incident energy is not utilized by the solar cell and instead goes to heating the solar cell 12 solar cell1 EELE408 Photovoltaics Lecture 10 Solar Cell Operation Dr. Todd J. Kaiser tjkaiser

  14. Semitransparent Organic Photovoltaic Cells with Laminated Top Electrode

    E-Print Network [OSTI]

    Cui, Yi

    efficiencies is the use of multijunction cell archi- tectures where several individual cells with different, or when the energy gaps of the materials are not ideal. In multijunction architectures in which the cellsSemitransparent Organic Photovoltaic Cells with Laminated Top Electrode Jung-Yong Lee, Steve T

  15. Process for mounting a protection diode on a vertical multijunction photovoltaic cell structure and photovoltaic cells obtained

    SciTech Connect (OSTI)

    Arnould, J.

    1982-09-07

    In a stack of diodes forming a vertical multijunction photovoltaic cell, an inversely connected diode is firmly secured to this stack with possible insertion of a intermediate wafer made from a conducting material.

  16. The interconnection of photovoltaic power systems with the utility grid: An overview for utility engineers

    SciTech Connect (OSTI)

    Wills, R.H.

    1994-06-01

    Utility-interactive (UI) photovoltaic power systems mounted on residences and commercial buildings are likely to become a small, but important source of electric generation in the next century. This is a new concept in utility power production--a change from large-scale central generation to small-scale dispersed generation. As such, it requires a re-examination of many existing standards and practices to enable the technology to develop and emerge into the marketplace. Much work has been done over the last 20 years to identify and solve the potential problems associated with dispersed power generation systems. This report gives an overview of these issues and also provides a guide to applicable codes, standards and other related documents. The main conclusion that can be drawn from this work is that there are no major technical barriers to the implementation of dispersed PV generating systems. While more technical research is needed in some specific areas, the remaining barriers are fundamentally price and policy.

  17. EELE408 Photovoltaics Lecture 16: Silicon Solar Cell Fabrication Techniques

    E-Print Network [OSTI]

    Kaiser, Todd J.

    1 EELE408 Photovoltaics Lecture 16: Silicon Solar Cell Fabrication Techniques Dr. Todd J. Kaiser - Bozeman Screen Printed Solar Cells · Starting wafer is about 0.5 mm thick and 10 x 10 cm2. The wafer is p-type and lightly doped with Boron (1016/cm3) 2 Screen Printed Solar Cells · Saw Damage Etch ­ The starting wafer

  18. EELE408 Photovoltaics Lecture 13: Solar Cell Design I

    E-Print Network [OSTI]

    Kaiser, Todd J.

    · Commercial cost of manufacture · Research highest efficiency w/o regard to expense 2 Si Solar Cell Efficiency1 EELE408 Photovoltaics Lecture 13: Solar Cell Design I Dr. Todd J. Kaiser tjkaiser@ece.montana.edu Department of Electrical and Computer Engineering Montana State University - Bozeman Solar Cell Design

  19. Laminated photovoltaic modules using back-contact solar cells

    DOE Patents [OSTI]

    Gee, James M. (Albuquerque, NM); Garrett, Stephen E. (Albuquerque, NM); Morgan, William P. (Albuquerque, NM); Worobey, Walter (Albuquerque, NM)

    1999-09-14

    Photovoltaic modules which comprise back-contact solar cells, such as back-contact crystalline silicon solar cells, positioned atop electrically conductive circuit elements affixed to a planar support so that a circuit capable of generating electric power is created. The modules are encapsulated using encapsulant materials such as EVA which are commonly used in photovoltaic module manufacture. The module designs allow multiple cells to be electrically connected in a single encapsulation step rather than by sequential soldering which characterizes the currently used commercial practices.

  20. Effects of molecular interface modification in hybrid organic-inorganic photovoltaic cells

    E-Print Network [OSTI]

    McGehee, Michael

    Effects of molecular interface modification in hybrid organic-inorganic photovoltaic cells Chiatzun in hybrid TiO2/regioregular poly 3-hexylthiophene P3HT photovoltaic cells. By employing a series of para in the field of organic photovoltaic PV cells1­7 and dye-sensitized solar cells DSSCs Refs. 7­10 as part

  1. Simulation of the Buxton-Clarke Model for Organic Photovoltaic Cells

    E-Print Network [OSTI]

    Jerome, Joseph W.

    Simulation of the Buxton-Clarke Model for Organic Photovoltaic Cells J.W. Jerome Department 02912 USA Abstract--Modeling of organic photovoltaic (OPV) cells can be achieved by adaptation of drift

  2. Photovoltaic cells fabricated by electrophoretic deposition of CdSe nanocrystals

    E-Print Network [OSTI]

    Smith, Nathanael J.

    Photovoltaic cells fabricated by electrophoretic deposition of CdSe nanocrystals Nathanael J. Smith Electrophoretic deposition was used to deposit CdSe nanocrystals on TiO2 for use in photovoltaic cells formed. A solar cell constructed using electrophoretic deposition exhibited a photovoltaic response from

  3. Graphene-based photovoltaic cells for near-field thermal energy conversion

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Graphene-based photovoltaic cells for near-field thermal energy conversion Riccardo Messina to a photovoltaic cell can be largely enhanced because of the contribution of evanescent photons, in particular important source of energy. By approaching a photovoltaic (PV) cell3 in proximity of a thermal emitter

  4. Conjugated Polymer Photovoltaic Cells Kevin M. Coakley and Michael D. McGehee*

    E-Print Network [OSTI]

    McGehee, Michael

    Conjugated Polymer Photovoltaic Cells Kevin M. Coakley and Michael D. McGehee* Department semiconductors for photovoltaic cells because they are strong absorbers and can be deposited on flexible to create, transport, and store electricity. For photovoltaic (PV) cells to gain widespread ac- ceptance

  5. Solid oxide fuel cell with single material for electrodes and interconnect

    DOE Patents [OSTI]

    McPheeters, C.C.; Nelson, P.A.; Dees, D.W.

    1994-07-19

    A solid oxide fuel cell is described having a plurality of individual cells. A solid oxide fuel cell has an anode and a cathode with electrolyte disposed there between, and the anode, cathode and interconnect elements are comprised of substantially one material. 9 figs.

  6. Superlattice doped layers for amorphous silicon photovoltaic cells

    DOE Patents [OSTI]

    Arya, Rajeewa R. (Doylestown, PA)

    1988-01-12

    Superlattice doped layers for amorphous silicon photovoltaic cells comprise a plurality of first and second lattices of amorphous silicon alternatingly formed on one another. Each of the first lattices has a first optical bandgap and each of the second lattices has a second optical bandgap different from the first optical bandgap. A method of fabricating the superlattice doped layers also is disclosed.

  7. EELE408 Photovoltaics Lecture 14: Solar Cell Design 2

    E-Print Network [OSTI]

    Kaiser, Todd J.

    1 EELE408 Photovoltaics Lecture 14: Solar Cell Design 2 Dr. Todd J. Kaiser tjkaiser ­ Resistive losses in the emitter ­ Resistive losses in the metal top contact ­ Shading losses from the metal by the fabrication technology 17 width height RatioAspect Low Aspect Ratio High Aspect Ratio Shading Losses · Caused

  8. Back contact to film silicon on metal for photovoltaic cells

    DOE Patents [OSTI]

    Branz, Howard M.; Teplin, Charles; Stradins, Pauls

    2013-06-18

    A crystal oriented metal back contact for solar cells is disclosed herein. In one embodiment, a photovoltaic device and methods for making the photovoltaic device are disclosed. The photovoltaic device includes a metal substrate with a crystalline orientation and a heteroepitaxial crystal silicon layer having the same crystal orientation of the metal substrate. A heteroepitaxial buffer layer having the crystal orientation of the metal substrate is positioned between the substrate and the crystal silicon layer to reduce diffusion of metal from the metal foil into the crystal silicon layer and provide chemical compatibility with the heteroepitaxial crystal silicon layer. Additionally, the buffer layer includes one or more electrically conductive pathways to electrically couple the crystal silicon layer and the metal substrate.

  9. DFTand k.p modellingof the phase transitions of lead and tin halideperovskites for photovoltaic cells

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    DFTand k.p modellingof the phase transitions of lead and tin halideperovskites for photovoltaic Rennes, UMR 6226, 35042 Rennes, France KeywordsPerovskite, photovoltaic, first-principles calculations, k these hybrid semiconductor photovoltaic cells(HSPC) maydiffer from the one of dye-sensitized solar cells (DSSC

  10. EEC 289-L Photovoltaics and Solar Cells 3 Units Winter Quarter (Alternate Years)

    E-Print Network [OSTI]

    California at Davis, University of

    EEC 289-L Photovoltaics and Solar Cells 3 Units ­ Winter Quarter (Alternate Years) Prerequisite, and third-generation photovoltaics and solar cells, including design, fabrication technology, and grid physics of photovoltaics a. Device operation and performance metrics b. Properties of solar radiation c

  11. 4765Federal Register / Vol. 77, No. 20 / Tuesday, January 31, 2012 / Notices 1 See Crystalline Silicon Photovoltaic Cells,

    E-Print Network [OSTI]

    Silicon Photovoltaic Cells, Whether or Not Assembled Into Modules, From the People's Republic of China

  12. PHOTOVOLTAIC PROPERTIES OF AU-MEROCYANINE-TiO2 SANDWICH CELLS. I. DARK ELECTRICAL PROPERTIES AND TRANSIENT EFFECT

    E-Print Network [OSTI]

    Skotheim, T.

    2010-01-01

    Journal of Chemical Physics PHOTOVOLTAIC PROPERTIES OF AU-W-7405-ENG-48 j'\\:::) Photovoltaic Properties of Au-dye used in making the photovoltaic cells. Figure 2. Diagram

  13. Fabrication and characterization of combined metallic nanogratings and ITO electrodes for organic photovoltaic cells

    E-Print Network [OSTI]

    Schreiber, Frank

    photovoltaic cells D.A. Gollmer a,,1 , F. Walter a,1 , C. Lorch a , J. Novák a,b , R. Banerjee a , J. Dieterle Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500 Brno, Czech Republic c Organic photovoltaics GISAXS a b s t r a c t Organic photovoltaic devices are interesting alternatives

  14. MODEL AND OPTIMIZATION OF ORGANIC PHOTOVOLTAIC CELLS Amelia McNamara

    E-Print Network [OSTI]

    -layer photovoltaic system was reported in 1958 [9], the topic did not catch much attention until a conjugated polymer photovoltaic system is very different from the inorganic case. Unlike the three dimensional lattices cells may not be applied to organic photovoltaic system. Instead, some new approaches modeling

  15. Decreasing Soft Costs for Solar Photovoltaics by Improving the Interconnection Process. A Case Study of Pacific Gas and Electric

    SciTech Connect (OSTI)

    Ardani, Kristen; Margolis, Robert

    2015-09-01

    As of the end of 2014, Pacific Gas and Electric (PG&E) had connected over 130,000 DG PV systems in its service territory, more than any other utility in the U.S. In this case study, we examine how PG&E achieved a faster, more efficient interconnection approval process despite rising application volumes.

  16. Decreasing Soft Costs for Solar Photovoltaics by Improving the Interconnection Process. A Case Study of Pacific Gas and Electric

    SciTech Connect (OSTI)

    Ardani, Kristen; Margolis, Robert

    2015-09-01

    In this case study, we examine how PG&E achieved a faster, more efficient interconnection approval process despite rising application volumes. Our goal is to draw insights from PG&E's experience that can help to inform decision making at other utilities across the U.S. that may face similar trajectories for DG PV market growth.

  17. Method of bonding an interconnection layer on an electrode of an electrochemical cell

    DOE Patents [OSTI]

    Pal, U.B.; Isenberg, A.O.; Folser, G.R.

    1992-01-14

    An electrochemical cell containing an air electrode, contacting electrolyte and electronically conductive interconnection layer, and a fuel electrode, has the interconnection layer attached by: (A) applying a thin, closely packed, discrete layer of LaCrO[sub 3] particles, doped with an element selected from the group consisting of Ca, Sr, Co, Ba, Mg and their mixtures on a portion of the air electrode, and then (B) electrochemical vapor depositing a dense skeletal structure between and around the doped LaCrO[sub 3] particles. 2 figs.

  18. Comment on "Analysis of quantum coherent semiconductor quantum dot p-i-n junction photovoltaic cells"

    E-Print Network [OSTI]

    Scully, Marlan O

    2010-01-01

    This is a comment on PRL paper by A.P. Kirk "Analysis of quantum coherent semiconductor quantum dot p-i-n junction photovoltaic cells"

  19. Photovoltaic Silicon Cell Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy Bills andOrder 422.1, CONDUCTCriticalEnergySilicon Cell Basics

  20. Enhanced Photovoltaic Performance of Nanostructured Hybrid Solar Cell Using Highly Oriented TiO2 Nanotubes

    E-Print Network [OSTI]

    Cao, Guozhong

    -called third generation of solar cells including dye-sensitized solar cells, DSCs2,3 and organic phoEnhanced Photovoltaic Performance of Nanostructured Hybrid Solar Cell Using Highly Oriented TiO2- tovoltaics, OPVs.4-6 OPVs or polymer-based photovoltaic devices can be processed from solution and have

  1. Photovoltaic Cell Basics | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested PartiesBuilding energy codesPhiladelhia Gas WorksAugustthe 2014 WashingtonCell

  2. Laterally inherently thin amorphous-crystalline silicon heterojunction photovoltaic cell

    SciTech Connect (OSTI)

    Chowdhury, Zahidur R. Kherani, Nazir P.

    2014-12-29

    This article reports on an amorphous-crystalline silicon heterojunction photovoltaic cell concept wherein the heterojunction regions are laterally narrow and distributed amidst a backdrop of well-passivated crystalline silicon surface. The localized amorphous-crystalline silicon heterojunctions consisting of the laterally thin emitter and back-surface field regions are precisely aligned under the metal grid-lines and bus-bars while the remaining crystalline silicon surface is passivated using the recently proposed facile grown native oxide–plasma enhanced chemical vapour deposited silicon nitride passivation scheme. The proposed cell concept mitigates parasitic optical absorption losses by relegating amorphous silicon to beneath the shadowed metallized regions and by using optically transparent passivation layer. A photovoltaic conversion efficiency of 13.6% is obtained for an untextured proof-of-concept cell illuminated under AM 1.5 global spectrum; the specific cell performance parameters are V{sub OC} of 666?mV, J{sub SC} of 29.5?mA-cm{sup ?2}, and fill-factor of 69.3%. Reduced parasitic absorption, predominantly in the shorter wavelength range, is confirmed with external quantum efficiency measurement.

  3. Design & Fabrication of a High-Voltage Photovoltaic Cell

    SciTech Connect (OSTI)

    Felder, Jennifer; /North Carolina State U. /SLAC

    2012-09-05

    Silicon photovoltaic (PV) cells are alternative energy sources that are important in sustainable power generation. Currently, applications of PV cells are limited by the low output voltage and somewhat low efficiency of such devices. In light of this fact, this project investigates the possibility of fabricating high-voltage PV cells on float-zone silicon wafers having output voltages ranging from 50 V to 2000 V. Three designs with different geometries of diffusion layers were simulated and compared in terms of metal coverage, recombination, built-in potential, and conduction current density. One design was then chosen and optimized to be implemented in the final device design. The results of the simulation serve as a feasibility test for the design concept and provide supportive evidence of the effectiveness of silicon PV cells as high-voltage power supplies.

  4. Effect of interconnect creep on long-term performance of SOFC of one cell stacks

    SciTech Connect (OSTI)

    Liu, Wenning N.; Sun, Xin; Khaleel, Mohammad A.

    2008-02-01

    Creep deformation becomes relevant for a material when the operating temperature is near or exceeds half of its melting temperature (in degrees of Kelvin). The operating temperatures for most of the solid oxide fuel cells (SOFC) under development in the SECA program are around 1073oK. High temperature ferritic alloys are potential candidates as interconnect (IC) materials and spacers due to their low cost and CTE compatibility with other SOFC components. Since the melting temperature of most stainless steel is around 1800oK, possible creep deformation of IC under the typical cell operating temperature should not be neglected. In this paper, the effects of interconnect creep behavior on stack geometry change and stress redistribution of different cell components are predicted and summarized. The goal of the study is to investigate the performance of the fuel cell stack by obtaining the fuel and air channel geometry changes due to creep of the ferritic stainless steel interconnect, therefore indicating possible SOFC performance change under long term operations. IC creep models were incorporated into SOFC-MP and Mentat FC, and finite element analyses were performed to quantify the deformed configuration of the SOFC stack under the long term steady state operating temperature. It is found that creep behavior of the ferritic stainless steel IC contributes to narrowing of both the fuel and the air flow channels. In addition, stress re-distribution of the cell components suggests the need for a compliant sealing material that also relaxes at operating temperature.

  5. Charge separation in organic photovoltaic cells

    E-Print Network [OSTI]

    Giazitzidis, Paraskevas; Bisquert, Juan; Vikhrenko, Vyacheslav S

    2014-01-01

    We consider a simple model for the geminate electron-hole separation process in organic photovoltaicssss cells, in order to illustrate the influence of dimensionality of conducting channels on the efficiency of the process. The Miller-Abrahams expression for the transition rates between nearest neighbor sites was used for simulating random walks of the electron in the Coulomb field of the hole. The non-equilibrium kinetic Monte Carlo simulation results qualitatively confirm the equilibrium estimations, although quantitatively the efficiency of the higher dimensional systems is less pronounced. The lifetime of the electron prior to recombination is approximately equal to the lifetime prior to dissociation. Their values indicate that electrons perform long stochastic walks before they are captured by the collector or recombined. The non-equilibrium free energy considerably differs from the equilibrium one. The efficiency of the separation process decreases with increasing the distance to the collector, and this...

  6. Phase 1 - Evaluation of a Functional Interconnect System for Solid Oxide Fuel Cells

    SciTech Connect (OSTI)

    James M. Rakowski

    2006-09-30

    This project is focused on evaluating the suitability of materials and complex multi-materials systems for use as solid oxide fuel cell interconnects. ATI Allegheny Ludlum has generated promising results for interconnect materials which incorporate modified surfaces. Methods for producing these surfaces include cladding, which permits the use of novel materials, and modifications via unique thermomechanical processing, which allows for the modification of materials chemistry. The University of Pittsburgh is assisting in this effort by providing use of their in-place facilities for dual atmosphere testing and ASR measurements, along with substantial work to characterize post-exposure specimens. Carnegie Mellon is testing interconnects for chromia scale spallation resistance using macro-scale and nano-scale indentation tests. Chromia spallation can increase electrical resistance to unacceptable levels and interconnect systems must be developed that will not experience spallation within 40,000 hours at operating temperatures. Spallation is one of three interconnect failure mechanisms, the others being excessive growth of the chromia scale (increasing electrical resistance) and scale evaporation (which can poison the cathode). The goal of indentation fracture testing at Carnegie Mellon is to accelerate the evaluation of new interconnect systems (by inducing spalls at after short exposure times) and to use fracture mechanics to understand mechanisms leading to premature interconnect failure by spallation. Tests include bare alloys from ATI and coated systems from DOE Laboratories and industrial partners, using ATI alloy substrates. West Virginia University is working towards developing a cost-effective material for use as a contact material in the cathode chamber of the SOFC. Currently materials such as platinum are well suited for this purpose, but are cost-prohibitive. For the solid-oxide fuel cell to become a commercial reality it is imperative that lower cost components be developed. Based on the results obtained to date, it appears that sterling silver could be an inexpensive, dependable candidate for use as a contacting material in the cathode chamber of the solid-oxide fuel cell. Although data regarding pure silver samples show a lower rate of thickness reduction, the much lower cost of sterling silver makes it an attractive alternative for use in SOFC operation.

  7. Electric characteristics of germanium Vertical Multijunction (VMJ) photovoltaic cells under high intensity illumination

    SciTech Connect (OSTI)

    Unishkov, V.A.

    1997-03-01

    This paper presents the results of the performance evaluation of Vertical Multijunction (VMJ) germanium (Ge) photovoltaic (PV) cells. Vertical Multijunction Germanium Photovoltaic cells offer several advantages for Thermophotovoltaic (TPV) applications such as high intensity light conversion, low series resistance, more efficient coupling to lower temperature sources, high output voltage, simplified heat rejection system as well as potentially simple fabrication technology and low cost photovoltaic converter device. {copyright} {ital 1997 American Institute of Physics.}

  8. Photovoltaic cell with light trapping for enhanced efficiency

    DOE Patents [OSTI]

    Brener, Igal; Fofang, Nche Tumasang; Luk, Ting S.

    2015-11-19

    The efficiency of a photovoltaic cell is enhanced by light trapping using Mie-scattering nanostructures. In one embodiment, an array of nanocylinders is formed on the front surface of a silicon film to enhance forward scattering into the film, and an array of nanocylinders is formed on the back surface to enhance backscattering so that more light is absorbed within the silicon film. In an alternate embodiment, a mirror layer is formed on the back surface of the silicon film to reflect light within the film back toward the front-surface nanocylinder array.

  9. Semiconductor Quantum Dots and Quantum Dot Arrays and Applications of Multiple Exciton Generation to Third-Generation Photovoltaic Solar Cells

    E-Print Network [OSTI]

    George, Steven C.

    to Third-Generation Photovoltaic Solar Cells A. J. Nozik,*,, M. C. Beard, J. M. Luther, M. Law,§ R. J) is presently attracting a great level of interest.15-23 Such QD-based devices used as photovoltaic cells

  10. Harvesting Circuits for Miniaturized Photovoltaic Cells Rajiv Damodaran Prabha, Gabriel A. Rincn-Mora, and Suhwan Kim

    E-Print Network [OSTI]

    Rincon-Mora, Gabriel A.

    Harvesting Circuits for Miniaturized Photovoltaic Cells Rajiv Damodaran Prabha, Gabriel A. Rincón is microscale photovoltaic (PV) cells only produce 1 and 100 µW/mm2 for artificial and solar lighting, so tiny photovoltaic (PV) cells constrains power to below 100 µW/mm2 , which parasitic components

  11. Plasmon-enhanced polymer photovoltaic cells based on large aspect ratio gold nanorods and the related working mechanism

    E-Print Network [OSTI]

    Xiong, Qihua

    Plasmon-enhanced polymer photovoltaic cells based on large aspect ratio gold nanorods-to-electrical conversion performances in polymer photovoltaic cells. Totally different improvement factors in short AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4880575] Organic photovoltaic (OPV) cells

  12. Enhanced external quantum efficiency in an organic photovoltaic cell via singlet fission exciton sensitizer

    E-Print Network [OSTI]

    Reusswig, Philip David

    We demonstrate bilayer organic photovoltaic cells that incorporate a singlet exciton fission sensitizer layer to increase the external quantum efficiency (EQE). This solar cell architecture is realized by pairing the singlet ...

  13. Bipolar plating of metal contacts onto oxide interconnection for solid oxide electrochemical cell

    DOE Patents [OSTI]

    Isenberg, A.O.

    1987-03-10

    Disclosed is a method of forming an adherent metal deposit on a conducting layer of a tube sealed at one end. The tube is immersed with the sealed end down into an aqueous solution containing ions of the metal to be deposited. An ionically conducting aqueous fluid is placed inside the tube and a direct current is passed from a cathode inside the tube to an anode outside the tube. Also disclosed is a multi-layered solid oxide fuel cell tube which consists of an inner porous ceramic support tube, a porous air electrode covering the support tube, a non-porous electrolyte covering a portion of the air electrode, a non-porous conducting interconnection covering the remaining portion of the electrode, and a metal deposit on the interconnection. 1 fig.

  14. Bipolar plating of metal contacts onto oxide interconnection for solid oxide electrochemical cell

    DOE Patents [OSTI]

    Isenberg, Arnold O. (Forest Hills Boro, PA)

    1987-01-01

    Disclosed is a method of forming an adherent metal deposit on a conducting layer of a tube sealed at one end. The tube is immersed with the sealed end down into an aqueous solution containing ions of the metal to be deposited. An ionically conducting aqueous fluid is placed inside the tube and a direct current is passed from a cathode inside the tube to an anode outside the tube. Also disclosed is a multi-layered solid oxide fuel cell tube which consists of an inner porous ceramic support tube, a porous air electrode covering the support tube, a non-porous electrolyte covering a portion of the air electrode, a non-porous conducting interconnection covering the remaining portion of the electrode, and a metal deposit on the interconnection.

  15. Amorphous Silicon-Carbon Nanostructure Photovoltaic Devices

    E-Print Network [OSTI]

    Schriver, Maria Christine

    2012-01-01

    cells: An overview. Progress in Photovoltaics: Research andnanoparticles. Progress in Photovoltaics, 19( 3):260–265,

  16. Photovoltaic Technology Basics

    Broader source: Energy.gov [DOE]

    Photovoltaic (PV) materials and devices convert sunlight into electrical energy, and PV cells are commonly known as solar cells. Photovoltaics can literally be translated as light-electricity.

  17. Abstract--Environmentally friendly technologies such as photovoltaics and fuel cells are DC sources. In the current power

    E-Print Network [OSTI]

    Tolbert, Leon M.

    Abstract--Environmentally friendly technologies such as photovoltaics and fuel cells are DC sources in pollution [1]. The most well-known green technologies include photovoltaics and wind turbines. Although fuel, fuel cells and photovoltaics, produce direct current (DC). Currently, power system infrastructures

  18. EELE408 Photovoltaics Lecture 20: Photovoltaic Systems

    E-Print Network [OSTI]

    Kaiser, Todd J.

    1 EELE408 Photovoltaics Lecture 20: Photovoltaic Systems Dr. Todd J. Kaiser tjkaiser into the grid 2 Application Areas 3 Photovoltaic System Basics · Photovoltaic Systems ­ Cell Panel Array · 6. Determine battery size for recommended reserve time Photovoltaic System Design Block Diagram Ph

  19. Tubular solid oxide fuel cells with porous metal supports and ceramic interconnections

    DOE Patents [OSTI]

    Huang, Kevin (Export, PA); Ruka, Roswell J. (Pittsburgh, PA)

    2012-05-08

    An intermediate temperature solid oxide fuel cell structure capable of operating at from 600.degree. C. to 800.degree. C. having a very thin porous hollow elongated metallic support tube having a thickness from 0.10 mm to 1.0 mm, preferably 0.10 mm to 0.35 mm, a porosity of from 25 vol. % to 50 vol. % and a tensile strength from 700 GPa to 900 GPa, which metallic tube supports a reduced thickness air electrode having a thickness from 0.010 mm to 0.2 mm, a solid oxide electrolyte, a cermet fuel electrode, a ceramic interconnection and an electrically conductive cell to cell contact layer.

  20. Fundamental Studies of the Durability of Materials for Interconnects in Solid Oxide Fuel Cells

    SciTech Connect (OSTI)

    Frederick S. Pettit; Gerald H. Meier

    2006-06-30

    Ferritic stainless steels are a leading candidate material for use as an SOFC interconnect, but have the problem of forming volatile chromia species that lead to cathode poisoning. This project has focused both on optimization of ferritic alloys for SOFC applications and evaluating the possibility of using alternative materials. The initial efforts involved studying the oxidation behavior of a variety of chromia-forming ferritic stainless steels in the temperature range 700-900 C in atmospheres relevant to solid oxide fuel cell operation. The alloys exhibited a wide variety of oxidation behavior based on composition. A method for reducing the vaporization is to add alloying elements that lead to the formation of a thermally grown oxide layer over the protective chromia. Several commercial steels form manganese chromate on the surface. This same approach, combined with observations of TiO{sub 2} overlayer formation on the chromia forming, Ni-based superalloy IN 738, has resulted in the development of a series of Fe-22 Cr-X Ti alloys (X=0-4 wt%). Oxidation testing has indicated that this approach results in significant reduction in chromia evaporation. Unfortunately, the Ti also results in accelerated chromia scale growth. Fundamental thermo-mechanical aspects of the durability of solid oxide fuel cell (SOFC) interconnect alloys have also been investigated. A key failure mechanism for interconnects is the spallation of the chromia scale that forms on the alloy, as it is exposed to fuel cell environments. Indentation testing methods to measure the critical energy release rate (Gc) associated with the spallation of chromia scale/alloy systems have been evaluated. This approach has been used to evaluate the thermomechanical stability of chromia films as a function of oxidation exposure. The oxidation of pure nickel in SOFC environments was evaluated using thermogravimetric analysis (TGA) to determine the NiO scaling kinetics and a four-point probe was used to measure the area-specific resistance (ASR) to estimate the electrical degradation of the interconnect. In addition to the baseline study of pure nickel, steps were taken to decrease the ASR through alloying and surface modifications. Finally, high conductivity composite systems, consisting of nickel and silver, were studied. These systems utilize high conductivity silver pathways through nickel while maintaining the mechanical stability that a nickel matrix provides.

  1. Enhanced absorption of thin-film photovoltaic cells using an optical cavity

    E-Print Network [OSTI]

    Hsu, Wei-Chun

    We show via numerical simulations that the absorption and solar energy conversion efficiency of a thin-film photovoltaic (PV) cell can be significantly enhanced by embedding it into an optical cavity. A reflective ...

  2. IEEE JOURNAL OF PHOTOVOLTAICS, VOL. 2, NO. 2, APRIL 2012 123 Gallium Arsenide Solar Cell Absorption

    E-Print Network [OSTI]

    Grandidier, Jonathan

    the cost of a solar cell compared with first-generation solar cells, usually at the expense of efficiencyIEEE JOURNAL OF PHOTOVOLTAICS, VOL. 2, NO. 2, APRIL 2012 123 Gallium Arsenide Solar Cell Absorption flat gallium arsenide solar cell, we show that it is possible to modify the flow of light and enhance

  3. Method of forming a plasma sprayed interconnection layer on an electrode of an electrochemical cell

    DOE Patents [OSTI]

    Spengler, Charles J. (Murrysville, PA); Folser, George R. (Lower Burrell, PA); Vora, Shailesh D. (Monroeville, PA); Kuo, Lewis (Monroeville, PA); Richards, Von L. (Anyola, IN)

    1995-01-01

    A dense, substantially gas-tight, electrically conductive interconnection layer is formed on an air electrode structure of an electrochemical cell by (A) providing an electrode surface; (B) forming on a selected portion of the electrode surface, a layer of doped LaCrO.sub.3 particles doped with an element selected from Ca, Sr, Ba, Mg, Co, Ni, Al and mixtures thereof by plasma spraying doped LaCrO.sub.3 powder, preferably compensated with chromium as Cr.sub.2 O.sub.3 and/or dopant element, preferably by plasma arc spraying; and, (C) heating the doped and compensated LaCrO.sub.3 layer to about 1100.degree. C. to 1300.degree. C. to provide a dense, substantially gas-tight, substantially hydration-free, electrically conductive interconnection material bonded to the electrode surface. A solid electrolyte layer can be applied to the unselected portion of the air electrode, and a fuel electrode can be applied to the solid electrolyte, to provide an electrochemical cell.

  4. Method of forming a plasma sprayed interconnection layer on an electrode of an electrochemical cell

    DOE Patents [OSTI]

    Spengler, C.J.; Folser, G.R.; Vora, S.D.; Kuo, L.; Richards, V.L.

    1995-06-20

    A dense, substantially gas-tight, electrically conductive interconnection layer is formed on an air electrode structure of an electrochemical cell by (A) providing an electrode surface; (B) forming on a selected portion of the electrode surface, a layer of doped LaCrO{sub 3} particles doped with an element selected from Ca, Sr, Ba, Mg, Co, Ni, Al and mixtures thereof by plasma spraying doped LaCrO{sub 3} powder, preferably compensated with chromium as Cr{sub 2}O{sub 3} and/or dopant element, preferably by plasma arc spraying; and, (C) heating the doped and compensated LaCrO{sub 3} layer to about 1100 C to 1300 C to provide a dense, substantially gas-tight, substantially hydration-free, electrically conductive interconnection material bonded to the electrode surface. A solid electrolyte layer can be applied to the unselected portion of the air electrode, and a fuel electrode can be applied to the solid electrolyte, to provide an electrochemical cell. 6 figs.

  5. Method of forming a leak proof plasma sprayed interconnection layer on an electrode of an electrochemical cell

    DOE Patents [OSTI]

    Kuo, Lewis J. H. (Monroeville, PA); Vora, Shailesh D. (Monroeville, PA)

    1995-01-01

    A dense, substantially gas-tight, electrically conductive interconnection layer is formed on an electrode structure of an electrochemical cell by: (A) providing an electrode structure; (B) forming on a selected portion of the electrode surface, an interconnection layer having the general formula La.sub.1-x M.sub.x Cr.sub.1-y N.sub.y O.sub.3, where M is a dopant selected from the group of Ca, Sr, Ba, and mixtures thereof, and where N is a dopant selected from the group of Mg, Co, Ni, Al, and mixtures thereof, and where x and y are each independently about 0.075-0.25, by thermally spraying, preferably plasma arc spraying, a flux added interconnection spray powder, preferably agglomerated, the flux added powder comprising flux particles, preferably including dopant, preferably (CaO).sub.12. (Al.sub.2 O.sub.3).sub.7 flux particles including Ca and Al dopant, and LaCrO.sub.3 interconnection particles, preferably undoped LaCrO.sub.3, to form a dense and substantially gas-tight interconnection material bonded to the electrode structure by a single plasma spraying step; and, (C) heat treating the interconnection layer at from about 1200.degree. to 1350.degree. C. to further densify and heal the micro-cracks and macro-cracks of the thermally sprayed interconnection layer. The result is a substantially gas-tight, highly doped, electrically conductive interconnection material bonded to the electrode structure. The electrode structure can be an air electrode, and a solid electrolyte layer can be applied to the unselected portion of the air electrode, and further a fuel electrode can be applied to the solid electrolyte, to form an electrochemical cell for generation of electrical power.

  6. Method of forming a leak proof plasma sprayed interconnection layer on an electrode of an electrochemical cell

    DOE Patents [OSTI]

    Kuo, L.J.H.; Vora, S.D.

    1995-02-21

    A dense, substantially gas-tight, electrically conductive interconnection layer is formed on an electrode structure of an electrochemical cell by: (A) providing an electrode structure; (B) forming on a selected portion of the electrode surface, an interconnection layer having the general formula La{sub 1{minus}x}M{sub x}Cr{sub 1{minus}y}N{sub y}O{sub 3}, where M is a dopant selected from the group of Ca, Sr, Ba, and mixtures thereof, and where N is a dopant selected from the group of Mg, Co, Ni, Al, and mixtures thereof, and where x and y are each independently about 0.075--0.25, by thermally spraying, preferably plasma arc spraying, a flux added interconnection spray powder, preferably agglomerated, the flux added powder comprising flux particles, preferably including dopant, preferably (CaO){sub 12}(Al{sub 2}O{sub 3}){sub 7} flux particles including Ca and Al dopant, and LaCrO{sub 3} interconnection particles, preferably undoped LaCrO{sub 3}, to form a dense and substantially gas-tight interconnection material bonded to the electrode structure by a single plasma spraying step; and (C) heat treating the interconnection layer at from about 1,200 to 1,350 C to further densify and heal the micro-cracks and macro-cracks of the thermally sprayed interconnection layer. The result is a substantially gas-tight, highly doped, electrically conductive interconnection material bonded to the electrode structure. The electrode structure can be an air electrode, and a solid electrolyte layer can be applied to the unselected portion of the air electrode, and further a fuel electrode can be applied to the solid electrolyte, to form an electrochemical cell for generation of electrical power. 4 figs.

  7. Three-Dimensional Analysis of Solid Oxide Fuel Cell Ni-YSZ Anode Interconnectivity James R. Wilson,a

    E-Print Network [OSTI]

    Kalies, William D.

    of interconnectivity of solid-oxide fuel cell (SOFC) electrode phases. The method was applied to the three cell (SOFC) electrode performance have often been limited by the lack of quantitative data describing + 2e- , (1) that occurs in an SOFC anode, as an example. The H2 and H2O exist in pores, the ions

  8. Interconnection Panel

    Broader source: Energy.gov [DOE]

    Presentation—given at at the Fall 2012 Federal Utility Partnership Working Group (FUPWG) meeting—discusses the interconnection panel, including an overview of the generation interconnection process (GIP), and interconnection agreements and their terms.

  9. EELE408 Photovoltaics Lecture 17 Photovoltaic Modules

    E-Print Network [OSTI]

    Kaiser, Todd J.

    1 EELE408 Photovoltaics Lecture 17 Photovoltaic Modules Dr. Todd J. Kaiser tjkaiser with the lowest output · Cells usually matched to each other · Shaded cell acts like poor cell ­ Significantly

  10. Development of Ni1-xCoxO as the cathode/interconnect contact for solid oxide fuel cells

    SciTech Connect (OSTI)

    Lu, Zigui; Xia, Guanguang; Templeton, Joshua D.; Li, Xiaohong S.; Nie, Zimin; Yang, Zhenguo; Stevenson, Jeffry W.

    2011-06-01

    A new type of material, Ni1-xCoxO, was developed for solid oxide fuel cell (SOFC) cathode/interconnect contact applications. The phase structure, coefficient of thermal expansion, sintering behavior, electrical property, and mechanical bonding strength of these materials were evaluated against the requirements of the SOFC cathode/interconnect contact. A dense cathode/interconnect contact layer was developed through reaction sintering from Ni and Co metal powders. An area specific resistance (ASR) as low as 5.5 mohm.cm2 was observed after 1000 h exposure in air at 800 °C for the LSM/Ni0.33Co0.67O/AISI441 assembly. Average mechanical strengths of 6.8 and 5.0 MPa were obtained for the cathode/contact/cathode and interconnect/contact/interconnect structures, respectively. The significantly low ASR was probably due to the dense structure and therefore improved electrical conductivity of the Ni0.33Co0.67O contact and the good bonding of the interfaces between the contact and the cathode, and between the contact and the interconnect.

  11. Photovoltaic solar concentrator

    DOE Patents [OSTI]

    Nielson, Gregory N.; Cruz-Campa, Jose Luis; Okandan, Murat; Resnick, Paul J.; Sanchez, Carlos Anthony; Clews, Peggy J.; Gupta, Vipin P.

    2015-09-08

    A process including forming a photovoltaic solar cell on a substrate, the photovoltaic solar cell comprising an anchor positioned between the photovoltaic solar cell and the substrate to suspend the photovoltaic solar cell from the substrate. A surface of the photovoltaic solar cell opposite the substrate is attached to a receiving substrate. The receiving substrate may be bonded to the photovoltaic solar cell using an adhesive force or a metal connecting member. The photovoltaic solar cell is then detached from the substrate by lifting the receiving substrate having the photovoltaic solar cell attached thereto and severing the anchor connecting the photovoltaic solar cell to the substrate. Depending upon the type of receiving substrate used, the photovoltaic solar cell may be removed from the receiving substrate or remain on the receiving substrate for use in the final product.

  12. Lithium Ion Cell Development for Photovoltaic Energy Storage Applications

    SciTech Connect (OSTI)

    Susan Babinec

    2012-02-08

    The overall project goal is to reduce the cost of home and neighborhood photovoltaic storage systems by reducing the single largest cost component â?? the energy storage cells. Solar power is accepted as an environmentally advantaged renewable power source. Its deployment in small communities and integrated into the grid, requires a safe, reliable and low cost energy storage system. The incumbent technology of lead acid cells is large, toxic to produce and dispose of, and offer limited life even with significant maintenance. The ideal PV storage battery would have the safety and low cost of lead acid but the performance of lithium ion chemistry. Present lithium ion batteries have the desired performance but cost and safety remain the two key implementation barriers. The purpose of this project is to develop new lithium ion cells that can meet PVES cost and safety requirements using A123Systems phosphate-based cathode chemistries in commercial PHEV cell formats. The cost target is a cell design for a home or neighborhood scale at <$25/kWh. This DOE program is the continuation and expansion of an initial MPSC (Michigan Public Service Commission) program towards this goal. This program further pushes the initial limits of some aspects of the original program â?? even lower cost anode and cathode actives implemented at even higher electrode loadings, and as well explores new avenues of cost reduction via new materials â?? specifically our higher voltage cathode. The challenge in our materials development is to achieve parity in the performance metrics of cycle life and high temperature storage, and to produce quality materials at the production scale. Our new cathode material, M1X, has a higher voltage and so requires electrolyte reformulation to meet the high temperature storage requirements. The challenge of thick electrode systems is to maintain adequate adhesion and cycle life. The composite separator has been proven in systems having standard loading electrodes; the challenge with this material will be to maintain proven performance when this composite is coated onto a thicker electrode; as well the high temperature storage must meet application requirements. One continuing program challenge was the lack of specific performance variables for this PV application and so the low power requirements of PHEV/EV transportation markets were again used.

  13. Degradation of solid oxide fuel cell metallic interconnects in fuels containing sulfur

    SciTech Connect (OSTI)

    Ziomek-Moroz, M.; Hawk, Jeffrey A.

    2005-01-01

    Hydrogen is the main fuel for all types of fuel cells except direct methanol fuel cells. Hydrogen can be generated from all manner of fossil fuels, including coal, natural gas, diesel, gasoline, other hydrocarbons, and oxygenates (e.g., methanol, ethanol, butanol, etc.). Impurities in the fuel can cause significant performance problems and sulfur, in particular, can decrease the cell performance of fuel cells, including solid oxide fuel cells (SOFC). In the SOFC, the high (800-1000°C) operating temperature yields advantages (e.g., internal fuel reforming) and disadvantages (e.g., material selection and degradation problems). Significant progress in reducing the operating temperature of the SOFC from ~1000 şC to ~750 şC may allow less expensive metallic materials to be used for interconnects and as balance of plant (BOP) materials. This paper provides insight on the material performance of nickel, ferritic steels, and nickel-based alloys in fuels containing sulfur, primarily in the form of H2S, and seeks to quantify the extent of possible degradation due to sulfur in the gas stream.

  14. Statistical Methods for Enhanced Metrology in Semiconductor/Photovoltaic Manufacturing

    E-Print Network [OSTI]

    Zeng, Dekong

    2012-01-01

    modeling method for photovoltaic cells. ” in Proc. IEEE 35thlosses in solar photovoltaic cell networks. ” Energy 32:Modeling of Solar Cell Variability Photovoltaic (PV) cells

  15. The Market Value and Cost of Solar Photovoltaic Electricity Production

    E-Print Network [OSTI]

    Borenstein, Severin

    2008-01-01

    Production of Solar Photovoltaic Cells”, Center for theconcerns is solar photovoltaic cells (PVs), which captureProduction of Solar Photovoltaic Cells Solar PV cells

  16. Photovoltaic Cell Having A P-Type Polycrystalline Layer With Large Crystals

    DOE Patents [OSTI]

    Albright, Scot P. (Lakewood, CO); Chamberlin, Rhodes R. (El Paso, TX)

    1996-03-26

    A photovoltaic cell has an n-type polycrystalline layer and a p-type polycrystalline layer adjoining the n-type polycrystalline layer to form a photovoltaic junction. The p-type polycrystalline layer comprises a substantially planar layer portion having relatively large crystals adjoining the n-type polycrystalline layer. The planar layer portion includes oxidized impurities which contribute to obtainment of p-type electrical properties in the planar layer portion.

  17. Photovoltaic module with light reflecting backskin

    DOE Patents [OSTI]

    Gonsiorawski, Ronald C. (Danvers, MA)

    2007-07-03

    A photovoltaic module comprises electrically interconnected and mutually spaced photovoltaic cells that are encapsulated by a light-transmitting encapsulant between a light-transparent front cover and a back cover, with the back cover sheet being an ionomer/nylon alloy embossed with V-shaped grooves running in at least two directions and coated with a light reflecting medium so as to provide light-reflecting facets that are aligned with the spaces between adjacent cells and oriented so as to reflect light falling in those spaces back toward said transparent front cover for further internal reflection onto the solar cells, whereby substantially all of the reflected light will be internally reflected from said cover sheet back to the photovoltaic cells, thereby increasing the current output of the module. The internal reflector improves power output by as much as 67%.

  18. Method for fabricating pixelated silicon device cells

    DOE Patents [OSTI]

    Nielson, Gregory N.; Okandan, Murat; Cruz-Campa, Jose Luis; Nelson, Jeffrey S.; Anderson, Benjamin John

    2015-08-18

    A method, apparatus and system for flexible, ultra-thin, and high efficiency pixelated silicon or other semiconductor photovoltaic solar cell array fabrication is disclosed. A structure and method of creation for a pixelated silicon or other semiconductor photovoltaic solar cell array with interconnects is described using a manufacturing method that is simplified compared to previous versions of pixelated silicon photovoltaic cells that require more microfabrication steps.

  19. EH AND S ANALYSIS OF DYE-SENSITIZED PHOTOVOLTAIC SOLAR CELL PRODUCTION.

    SciTech Connect (OSTI)

    BOWERMAN,B.; FTHENAKIS,V.

    2001-10-01

    Photovoltaic solar cells based on a dye-sensitized nanocrystalline titanium dioxide photoelectrode have been researched and reported since the early 1990's. Commercial production of dye-sensitized photovoltaic solar cells has recently been reported in Australia. In this report, current manufacturing methods are described, and estimates are made of annual chemical use and emissions during production. Environmental, health and safety considerations for handling these materials are discussed. This preliminary EH and S evaluation of dye-sensitized titanium dioxide solar cells indicates that some precautions will be necessary to mitigate hazards that could result in worker exposure. Additional information required for a more complete assessment is identified.

  20. PERFORMANCE OF CdSe TETRAPODS-GOLD AS NANOSTRUCTURE ELECTROCHEMICAL MATERIALS IN PHOTOVOLTAIC CELLS

    E-Print Network [OSTI]

    Natelson, Douglas

    PERFORMANCE OF CdSe TETRAPODS-GOLD AS NANOSTRUCTURE ELECTROCHEMICAL MATERIALS IN PHOTOVOLTAIC CELLS antenna arrays are assembled by coating on CdSe tetrapod templates; the rectifying barrier is formed and reduce the costs associated with conventional solar cells, including multi-bandgap materials [5

  1. Method for producing textured substrates for thin-film photovoltaic cells

    DOE Patents [OSTI]

    Lauf, Robert J. (Oak Ridge, TN)

    1994-01-01

    The invention pertains to the production of ceramic substrates used in the manufacture of thin-film photovoltaic cells used for directly converting solar energy to electrical energy. Elongated ribbon-like sheets of substrate precursor containing a mixture of ceramic particulates, a binder, and a plasticizer are formed and then while green provided with a mechanically textured surface region used for supporting the thin film semiconductor of the photovoltaic cell when the sheets of the substrate precursor are subsequently cut into substrate-sized shapes and then sintered. The textured surface pattern on the substrate provides enhanced light trapping and collection for substantially increasing the solar energy conversion efficiency of thin-film photovoltaic cells.

  2. Method for producing textured substrates for thin-film photovoltaic cells

    DOE Patents [OSTI]

    Lauf, Robert J. (Oak Ridge, TN)

    1996-01-01

    The invention pertains to the production of ceramic substrates used in the manufacture of thin-film photovoltaic cells used for directly converting solar energy to electrical energy. Elongated ribbon-like sheets of substrate precursor containing a mixture of ceramic particulates, a binder, and a plasticizer are formed and then while green provided with a mechanically textured surface region used for supporting the thin film semiconductor of the photovoltaic cell when the sheets of the substrate precursor are subsequently cut into substrate-sized shapes and then sintered. The textured surface pattern on the substrate provides enhanced light trapping and collection for substantially increasing the, solar energy conversion efficiency of thin-film photovoltaic cells.

  3. Method for producing textured substrates for thin-film photovoltaic cells

    DOE Patents [OSTI]

    Lauf, R.J.

    1994-04-26

    The invention pertains to the production of ceramic substrates used in the manufacture of thin-film photovoltaic cells used for directly converting solar energy to electrical energy. Elongated ribbon-like sheets of substrate precursor containing a mixture of ceramic particulates, a binder, and a plasticizer are formed and then while green provided with a mechanically textured surface region used for supporting the thin film semiconductor of the photovoltaic cell when the sheets of the substrate precursor are subsequently cut into substrate-sized shapes and then sintered. The textured surface pattern on the substrate provides enhanced light trapping and collection for substantially increasing the solar energy conversion efficiency of thin-film photovoltaic cells. 4 figures.

  4. Method for producing textured substrates for thin-film photovoltaic cells

    DOE Patents [OSTI]

    Lauf, R.J.

    1996-04-02

    The invention pertains to the production of ceramic substrates used in the manufacture of thin-film photovoltaic cells used for directly converting solar energy to electrical energy. Elongated ribbon-like sheets of substrate precursor containing a mixture of ceramic particulates, a binder, and a plasticizer are formed and then while green provided with a mechanically textured surface region used for supporting the thin film semiconductor of the photovoltaic cell when the sheets of the substrate precursor are subsequently cut into substrate-sized shapes and then sintered. The textured surface pattern on the substrate provides enhanced light trapping and collection for substantially increasing the, solar energy conversion efficiency of thin-film photovoltaic cells. 4 figs.

  5. Low-Cost Photovoltaics: Luminescent Solar Concentrators And Colloidal Quantum Dot Solar Cells

    E-Print Network [OSTI]

    Leow, Shin Woei

    2014-01-01

    J. Nozik, “Third Generation Photovoltaics based on Multiple8].Applications in third generation photovoltaics have the

  6. Efficient solution-processed infrared photovoltaic cells: Planarized all-inorganic bulk heterojunction devices via inter-quantum-dot bridging

    E-Print Network [OSTI]

    Sargent, Edward H. "Ted"

    Efficient solution-processed infrared photovoltaic cells: Planarized all-inorganic bulk-processed photovoltaics. The authors demonstrate quantum size-effect tuning of device band gaps relevant to multijunction solar cells. © 2007 American Institute of Physics. DOI: 10.1063/1.2735674 Low-cost, large-area solar

  7. Broadband perfect light trapping in the thinnest monolayer graphene-MoS$_{2}$ photovoltaic cell

    E-Print Network [OSTI]

    Wu, Yun-Beng; Wang, Tong-Biao; Deng, Xin-Hua; Liu, Jiang-Tao

    2015-01-01

    The light absorption of a monolayer graphene-molybdenum disulfide photovoltaic (GM-PV) cell in a wedge-shaped microcavity with a spectrum-splitting structure is investigated theoretically. The GM-PV cell, which is three times thinner than the traditional photovoltaic cell, exhibits up to 98\\% light absorptivity in a wide wavelength range. This rate exceeds the fundamental limit of nanophotonic light trapping in solar cells. The effects of defect layer thickness, GM-PV cell position in the microcavity, incident angle, and lens aberration on the light absorption rate of the GM-PV cell is explored. Regardless of errors, the GM-PV cell can still achieve at least 90\\% light absorptivity with the current technology. Our proposal provides different methods to design light-trapping structures and apply spectrum-splitting systems.

  8. Statistical Methods for Enhanced Metrology in Semiconductor/Photovoltaic Manufacturing

    E-Print Network [OSTI]

    Zeng, Dekong

    2012-01-01

    and Simulation of Photovoltaic Arrays. ” IEEE Trans. PowerSolar Cell Variability Photovoltaic (PV) cells manufacturedmodeling method for photovoltaic cells. ” in Proc. IEEE 35th

  9. Structure-Function Relationships in Semiconducting Polymers for Organic Photovoltaics

    E-Print Network [OSTI]

    Kavulak, David Fredric Joel

    2010-01-01

    film transistors 1-4 and photovoltaic cells. 5-9 Among thesePhotovoltaic Cell .the materials, all photovoltaic cells operate on the basic

  10. Fabrication and Characterization of Organic/Inorganic Photovoltaic Devices

    E-Print Network [OSTI]

    Guvenc, Ali Bilge

    2012-01-01

    Diodes, Photodiodes, and Photovoltaic Cells, Applied Physicsprocessable polymer photovoltaic cells by self-organizationand their influence on photovoltaic cells, Solar Energy

  11. Efficiency enhancement of luminescent solar concentrations for photovoltaic technologies

    E-Print Network [OSTI]

    Wang, Chunhua

    2011-01-01

    the manufacturing of solar cells and photovoltaic arrays hasfor providing us Photovoltaic cells, lumines- cent materialsthe currently available photovoltaic cells. The property of

  12. Interconnection Standards

    Broader source: Energy.gov [DOE]

    West Virginia's interconnection standards include two levels of review. The qualifications and application fees for each level are as follows:...

  13. NREL Certifies First All-Quantum-Dot Photovoltaic Cell; Demonstrates Stability, Performance (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-02-01

    Researchers at the National Renewable Energy Laboratory (NREL) have certified the first all-quantum-dot photovoltaic cell, which was based on lead sulfide and demonstrated reasonable quantum dot solar cell performance for an initial efficiency measurement along with good stability. The certified open-circuit voltage of the quantum dot cell is greater than that possible from bulk lead sulfide because of quantum confinement.

  14. Solid oxide fuel cell with internal reforming, catalyzed interconnect for use therewith, and methods

    SciTech Connect (OSTI)

    Liu, Di-Jia; Guan, Jie; Minh, Nguyen

    2010-06-08

    A catalyzed interconnect for an SOFC electrically connects an anode and an anodic current collector and comprises a metallic substrate, which provides space between the anode and anodic current collector for fuel gas flow over at least a portion of the anode, and a catalytic coating on the metallic substrate comprising a catalyst for catalyzing hydrocarbon fuel in the fuel gas to hydrogen rich reformate. An SOFC including the catalyzed anodic inter-connect, a method for operating an SOFC, and a method for making a catalyzed anodic interconnect are also disclosed.

  15. Design and Synthesis of Plasmonic Core/Shell Nanorods for Light Trapping in Organic Photo-Voltaics, Non-Linear Optics and Photo-Thermal Tumor Therapy

    E-Print Network [OSTI]

    Jankovic, Vladan

    2013-01-01

    photodiodes, and photovoltaic cells." Applied Physics2-Layer Organic Photovoltaic Cell." Applied Physics Letters1995). "Polymer Photovoltaic Cells: Enhanced Efficiencies

  16. Low-Cost Photovoltaics: Luminescent Solar Concentrators And Colloidal Quantum Dot Solar Cells

    E-Print Network [OSTI]

    Leow, Shin Woei

    2014-01-01

    Organic Solar Concentrators for Photovoltaics,” Science,Polymer Photovoltaics for Solar Energy Conversion,” Adv.solar concentrators for building integrated photovoltaics,”

  17. Low-Cost Photovoltaics: Luminescent Solar Concentrators And Colloidal Quantum Dot Solar Cells

    E-Print Network [OSTI]

    Leow, Shin Woei

    2014-01-01

    for building integrated photovoltaics,” 2013, vol. 8821, pp.of building integrated photovoltaics,” Sol. Energy, vol. 85,of building-integrated photovoltaics,” Energy, vol. 26, no.

  18. Low-Cost Photovoltaics: Luminescent Solar Concentrators And Colloidal Quantum Dot Solar Cells

    E-Print Network [OSTI]

    Leow, Shin Woei

    2014-01-01

    concentrators for building integrated photovoltaics,” 2013,the performance of building integrated photovoltaics,” Sol.evaluation of building-integrated photovoltaics,” Energy,

  19. 24th European Photovoltaic Solar Energy Conference, Hamburg, Germany, Sept. 2009 THE BURIED EMITTER SOLAR CELL CONCEPT

    E-Print Network [OSTI]

    24th European Photovoltaic Solar Energy Conference, Hamburg, Germany, Sept. 2009 1 THE BURIED­efficient #12;24th European Photovoltaic Solar Energy Conference, Hamburg, Germany, Sept. 2009 2 industrial EMITTER SOLAR CELL CONCEPT: INTERDIGITATED BACK-JUNCTION STRUCUTRE WITH VIRTUALLY 100% EMITTER COVERAGE

  20. Exploration of alloy 441 chemistry for solid oxide fuel cell interconnect application

    SciTech Connect (OSTI)

    Paul D. Jablonski; Christopher J. Cowen; John S. Sears

    2010-02-01

    Alloy 441 stainless steel (UNS S 44100) is being considered for application as an SOFC interconnect material. There are several advantages to the selection of this alloy over other iron-based or nickel-based alloys: first and foremost alloy 441ss is a production alloy which is both low in cost and readily available. Second, the coefficient of thermal expansion (CTE) more closely matches the CTE of the adjoining ceramic components of the fuel cell. Third, this alloy forms the Laves phase at typical SOFC operating temperatures of 600–800 °C. It is thought that the Laves phase preferentially consumes the Si present in the alloy microstructure. As a result it has been postulated that the long-term area specific resistance (ASR) performance degradation often seen with other ferritic stainless steels, which is associated with the formation of electrically resistive Si-rich oxide subscales, may be avoidable with alloy 441ss. In this paper we explore the physical metallurgy of alloy 441, combining computational thermodynamics with experimental verification, and discuss the results with regards to Laves phase formation under SOFC operating conditions. We show that the incorporation of the Laves phase into the microstructure cannot in itself remove sufficient Si from the ferritic matrix in order to completely avoid the formation of Si-rich oxide subscales. However, the thickness, morphology, and continuity of the Si-rich subscale that forms in this alloy is modified in comparison to non-Laves forming ferritic stainless steel alloys and therefore may not be as detrimental to long-term SOFC performance.

  1. Exploration of alloy 441 chemistry for solid oxide fuel cell interconnect application

    SciTech Connect (OSTI)

    Jablonski PD, Cowen CJ, Sears JS

    2010-02-01

    Alloy 441 stainless steel (UNS S 44100) is being considered for application as an SOFC interconnect material. There are several advantages to the selection of this alloy over other iron-based or nickel-based alloys: first and foremost alloy 441ss is a production alloy which is both low in cost and readily available. Second, the coefficient of thermal expansion (CTE) more closely matches the CTE of the adjoining ceramic components of the fuel cell. Third, this alloy forms the Laves phase at typical SOFC operating temperatures of 600–800 ?C. It is thought that the Laves phase preferentially consumes the Si present in the alloy microstructure. As a result it has been postulated that the long-term area specific resistance (ASR) performance degradation often seen with other ferritic stainless steels, which is associated with the formation of electrically resistive Si-rich oxide subscales, may be avoidable with alloy 441ss. In this paper we explore the physical metallurgy of alloy 441, combining computational thermodynamics with experimental verification, and discuss the results with regards to Laves phase formation under SOFC operating conditions. We show that the incorporation of the Laves phase into the microstructure cannot in itself remove sufficient Si from the ferritic matrix in order to completely avoid the formation of Si-rich oxide subscales. However, the thickness, morphology, and continuity of the Si-rich subscale that forms in this alloy is modified in comparison to non-Laves forming ferritic stainless steel alloys and therefore may not be as detrimental to long-term SOFC performance

  2. Fabrication and Characterization of Organic/Inorganic Photovoltaic Devices

    E-Print Network [OSTI]

    Guvenc, Ali Bilge

    2012-01-01

    Third generation photovoltaics: solar cells for 2020 andfor use in organic photovoltaics, Solar Energy Materials andSolar cell efficiency tables (Version 27), Progress in Photovoltaics

  3. EEE 565 Solar Cells Course Objective: To introduce the basic concepts of the operation of photovoltaic devices, the

    E-Print Network [OSTI]

    Zhang, Junshan

    ) Heterojunction Solar Cells (1 week) 6) Multi-junction Solar Cells (1 week) 7) Light Management (1 week) 8EEE 565 Solar Cells Fall 2013 Course Objective: To introduce the basic concepts of the operation solar cell technologies, and how they are integrated into solar cell systems. Topics: 1) Photovoltaic

  4. Interconnection Guidelines

    Broader source: Energy.gov [DOE]

    Rocky Mountain Power (PacifiCorp) has developed an interconnection application for net metering. All other electric utilities in Wyoming -- investor-owned utilities and rural electric associations...

  5. Interconnection Guidelines

    Broader source: Energy.gov [DOE]

    The state's utilities independently developed interconnection agreements for distributed generation (DG) prior to the ACC's ongoing proceeding to establish statewide standards. The Salt River...

  6. Thin film heterojunction photovoltaic cells and methods of making the same

    DOE Patents [OSTI]

    Basol, Bulent M. (Los Angeles, CA); Tseng, Eric S. (Los Angeles, CA); Rod, Robert L. (Los Angeles, CA)

    1983-06-14

    A method of fabricating a thin film heterojunction photovoltaic cell which comprises depositing a film of a near intrinsic or n-type semiconductor compound formed of at least one of the metal elements of Class II B of the Periodic Table of Elements and at least tellurium and then heating said film at a temperature between about 250.degree. C. and 500.degree. C. for a time sufficient to convert said film to a suitably low resistivity p-type semiconductor compound. Such film may be deposited initially on the surface of an n-type semiconductor substrate. Alternatively, there may be deposited on the converted film a layer of n-type semiconductor compound different from the film semiconductor compound. The resulting photovoltaic cell exhibits a substantially increased power output over similar cells not subjected to the method of the present invention.

  7. SIXTH QUARTERLY REPORT OF RESEARCH ON CuxS - (Cd,Zn)S PHOTOVOLTAIC SOLAR ENERGY CONVERTERS

    E-Print Network [OSTI]

    Chin, B.L.

    2011-01-01

    for use in experimental photovoltaic cells. Hall mobilityvacuum method for photovoltaic cell fabrication" However,

  8. Thermal Management of Solar Cells

    E-Print Network [OSTI]

    Saadah, Mohammed Ahmed

    2013-01-01

    D. Mills, "Cooling of photovoltaic cells under concentratedelectric performance of a photovoltaic cells by cooling andof Photovoltaic Solar Cell A photovoltaic cell is a

  9. Oscar Wilkie BE in Photovoltaics

    E-Print Network [OSTI]

    New South Wales, University of

    Oscar Wilkie BE in Photovoltaics and solar EnErgy EnginEEring What dO PhOtOvOltaics engineers dO? Photovoltaics engineering focuses on the manufacture and use of photovoltaic solar cells to generate electricity with an increased need for specialised photovoltaics engineers and there are constantly new opportunities arising

  10. Approaching 10% Conversion Efficiency Using Tandem Organic Photovoltaic Cells with Enhanced Optical Coupling: Final Report, October 2004 - December 2007

    SciTech Connect (OSTI)

    Forrest, S.

    2008-08-01

    To find routes to achieving nearly 10% power conversion efficiency based on a new generation of organic photovoltaic cells using vapor-deposited, small-molecular-weight organic materials.

  11. High-efficiency solution processable polymer photovoltaic cells by

    E-Print Network [OSTI]

    . Polymer solar cells have shown potential to harness solar energy in a cost-effective way. Significant as a promising cost-effective alternative to silicon-based solar cells1­3 . Some of the important advantages of these so-called `plastic' solar cells include low cost of fabrication, ease of processing, mechanical

  12. EEE 565 Solar Cells Course Objective: To introduce the basic concepts of the operation of photovoltaic devices, the

    E-Print Network [OSTI]

    Zhang, Junshan

    EEE 565 Solar Cells Fall 2012 Course Objective: To introduce the basic concepts of the operation solar cell technologies, and how they are integrated into solar cell systems. Topics: 1) Photovoltaic/Optical Properties (2 weeks) 3) pn Junctions and Device Physics(1 week) 4) Homojunction Solar Cells (2 weeks) 5

  13. Graphene-based photovoltaic cells for near-field thermal energy conversion

    E-Print Network [OSTI]

    Riccardo Messina; Philippe Ben-Abdallah

    2012-07-05

    Thermophotovoltaic devices are energy-conversion systems generating an electric current from the thermal photons radiated by a hot body. In far field, the efficiency of these systems is limited by the thermodynamic Schockley-Queisser limit corresponding to the case where the source is a black body. On the other hand, in near field, the heat flux which can be transferred to a photovoltaic cell can be several orders of magnitude larger because of the contribution of evanescent photons. This is particularly true when the source supports surface polaritons. Unfortunately, in the infrared where these systems operate, the mismatch between the surface-mode frequency and the semiconductor gap reduces drastically the potential of this technology. Here we show that graphene-based hybrid photovoltaic cells can significantly enhance the generated power paving the way to a promising technology for an intensive production of electricity from waste heat.

  14. Light-splitting photovoltaic system utilizing two dual-junction solar cells

    SciTech Connect (OSTI)

    Xiong, Kanglin; Yang, Hui; Lu, Shulong; Dong, Jianrong; Zhou, Taofei; Wang, Rongxin; Jiang, Desheng

    2010-12-15

    There are many difficulties limiting the further development of monolithic multi-junction solar cells, such as the growth of lattice-mismatched material and the current matching constraint. As an alternative approach, the light-splitting photovoltaic system is investigated intensively in different aspects, including the energy loss mechanism and the choice of energy bandgaps of solar cells. Based on the investigation, a two-dual junction system has been implemented employing lattice-matched GaInP/GaAs and InGaAsP/InGaAs cells grown epitaxially on GaAs and InP substrates, respectively. (author)

  15. Photovoltaic Polycrystalline Thin-Film Cell Basics | Department...

    Broader source: Energy.gov (indexed) [DOE]

    cells can usually be manufactured in a large-area process, which can be an automated, continuous production process. Finally, they can be deposited on flexible substrate...

  16. Thin film photovoltaic device and process of manufacture

    DOE Patents [OSTI]

    Albright, Scot P. (Lakewood, CO); Chamberlin, Rhodes (El Paso, TX)

    1999-02-09

    Provided is a thin film photovoltaic device and a method of manufacturing the device. The thin film photovoltaic device comprises a film layer having particles which are smaller than about 30 microns in size held in an electrically insulating matrix material to reduce the potential for electrical shorting through the film layer. The film layer may be provided by depositing preformed particles onto a surrogate substrate and binding the particles in a film-forming matrix material to form a flexible sheet with the film layer. The flexible sheet may be separated from the surrogate substrate and cut into flexible strips. A plurality of the flexible strips may be located adjacent to and supported by a common supporting substrate to form a photovoltaic module having a plurality of electrically interconnected photovoltaic cells.

  17. Thin film photovoltaic device and process of manufacture

    DOE Patents [OSTI]

    Albright, Scot P. (Lakewood, CO); Chamberlin, Rhodes (El Paso, TX)

    1997-10-07

    Provided is a thin film photovoltaic device and a method of manufacturing the device. The thin film photovoltaic device comprises a film layer having particles which are smaller than about 30 microns in size held in an electrically insulating matrix material to reduce the potential for electrical shorting through the film layer. The film layer may be provided by depositing preformed particles onto a surrogate substrate and binding the particles in a film-forming matrix material to form a flexible sheet with the film layer. The flexible sheet may be separated from the surrogate substrate and cut into flexible strips. A plurality of the flexible strips may be located adjacent to and supported by a common supporting substrate to form a photovoltaic module having a plurality of electrically interconnected photovoltaic cells.

  18. Thin film photovoltaic device and process of manufacture

    DOE Patents [OSTI]

    Albright, S.P.; Chamberlin, R.

    1999-02-09

    Provided is a thin film photovoltaic device and a method of manufacturing the device. The thin film photovoltaic device comprises a film layer having particles which are smaller than about 30 microns in size held in an electrically insulating matrix material to reduce the potential for electrical shorting through the film layer. The film layer may be provided by depositing preformed particles onto a surrogate substrate and binding the particles in a film-forming matrix material to form a flexible sheet with the film layer. The flexible sheet may be separated from the surrogate substrate and cut into flexible strips. A plurality of the flexible strips may be located adjacent to and supported by a common supporting substrate to form a photovoltaic module having a plurality of electrically interconnected photovoltaic cells. 13 figs.

  19. Thin film photovoltaic device and process of manufacture

    DOE Patents [OSTI]

    Albright, S.P.; Chamberlin, R.

    1997-10-07

    Provided is a thin film photovoltaic device and a method of manufacturing the device. The thin film photovoltaic device comprises a film layer having particles which are smaller than about 30 microns in size held in an electrically insulating matrix material to reduce the potential for electrical shorting through the film layer. The film layer may be provided by depositing preformed particles onto a surrogate substrate and binding the particles in a film-forming matrix material to form a flexible sheet with the film layer. The flexible sheet may be separated from the surrogate substrate and cut into flexible strips. A plurality of the flexible strips may be located adjacent to and supported by a common supporting substrate to form a photovoltaic module having a plurality of electrically interconnected photovoltaic cells. 13 figs.

  20. Standard Test Methods for Electrical Performance of Nonconcentrator Terrestrial Photovoltaic Modules and Arrays Using Reference Cells

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 These test methods cover the electrical performance of photovoltaic modules and arrays under natural or simulated sunlight using a calibrated reference cell. 1.1.1 These test methods allow a reference module to be used instead of a reference cell provided the reference module has been calibrated using these test methods against a calibrated reference cell. 1.2 Measurements under a variety of conditions are allowed; results are reported under a select set of reporting conditions (RC) to facilitate comparison of results. 1.3 These test methods apply only to nonconcentrator terrestrial modules and arrays. 1.4 The performance parameters determined by these test methods apply only at the time of the test, and imply no past or future performance level. 1.5 These test methods apply to photovoltaic modules and arrays that do not contain series-connected photovoltaic multijunction devices; such module and arrays should be tested according to Test Methods E 2236. 1.6 The values stated in SI units are to be re...

  1. Global optimization of silicon photovoltaic cell front coatings

    E-Print Network [OSTI]

    Ghebrebrhan, Michael

    The front-coating (FC) of a solar cell controls its efficiency, determining admission of light into the absorbing material and potentially trapping light to enhance thin absorbers. Single-layer FC designs are well known, ...

  2. Interconnection Standards

    Broader source: Energy.gov [DOE]

    Fees for interconnection requests increase with each Level. A Level 1 request must submit $50 fee; a Level 2 request must submit a fee of $50 plus $1/kW of generator capacity; a Level 3 request m...

  3. Interconnection Guidelines

    Broader source: Energy.gov [DOE]

    Kansas adopted the Net Metering and Easy Connection Act in May 2009 (see K.S.A. 66-1263 through 66-1271), establishing interconnection guidelines and net metering for customer-owned generators.

  4. Nanopillar Photovoltaics: Photon Management and Junction Engineering for Next-Generation Solar Cells

    E-Print Network [OSTI]

    Mariani, Giacomo

    2013-01-01

    S. Heterojunction photovoltaics using GaAs nanowires andC. M. Single nanowire photovoltaics, Chem. Soc. Rev. 38, 16-nanopillar-array photovoltaics on low-cost and flexible

  5. Light trapping in a 30-nm organic photovoltaic cell for efficient carrier collection and light absorption

    E-Print Network [OSTI]

    Tsai, Cheng-Chia; Banerjee, Ashish; Osgood, Richard M; Englund, Dirk

    2012-01-01

    We describe surface patterning strategies that permit high photon-collection efficiency together with high carrier-collection efficiency in an ultra-thin planar heterojunction organic photovoltaic cell. Optimized designs reach up to 50% photon collection efficiency in a P3HT layer of only 30 nm, representing a 3- to 5-fold improvement over an unpatterned cell of the same thickness. We compare the enhancement of light confinement in the active layer with an ITO top layer for TE and TM polarized light, and demonstrate that the light absorption can increase by a factor of 2 due to a gap-plasmon mode in the active layer.

  6. Process for electrically interconnecting electrodes

    DOE Patents [OSTI]

    Carey, Paul G. (Mountain View, CA); Thompson, Jesse B. (Brentwood, CA); Colella, Nicolas J. (Livermore, CA); Williams, Kenneth A. (Livermore, CA)

    2002-01-01

    Electrical interconnects for solar cells or other electronic components using a silver-silicone paste or a lead-tin (Pb--Sn) no-clean fluxless solder cream, whereby the high breakage of thin (<6 mil thick) solar cells using conventional solder interconnect is eliminated. The interconnects of this invention employs copper strips which are secured to the solar cells by a silver-silicone conductive paste which can be used at room temperature, or by a Pb--Sn solder cream which eliminates undesired residue on the active surfaces of the solar cells. Electrical testing using the interconnects of this invention has shown that no degradation of the interconnects developed under high current testing, while providing a very low contact resistance value.

  7. Solar energy storage through the homogeneous electrocatalytic reduction of carbon dioxide : photoelectrochemical and photovoltaic approaches

    E-Print Network [OSTI]

    Sathrum, Aaron John

    2011-01-01

    electricity from photovoltaic cells to convert CO 2 intoSolar Energy Anode Photovoltaic Cell Cathode PP Mesh SpacerCoupling a Photovoltaic Solar Cell with a Homogeneous

  8. Temperature-Dependent Polarization in Field-Effect Transport and Photovoltaic Measurements of Methylammonium Lead Iodide

    E-Print Network [OSTI]

    2015-01-01

    Two-­?Layer Organic Photovoltaic Cell. Appl Phys Lett 1986,Sensitizers for Photovoltaic Cells. J Am Chem Soc 2009, 131,transistor, capacitor and photovoltaic cell measurements all

  9. Using Self-Assembly to Control Nanoscale Morphology in Semiconducting Polymers for Application in Organic Photovoltaics

    E-Print Network [OSTI]

    Ferreira, Amy Susan

    2015-01-01

    Fullerene Organic Photovoltaic Cells. Nat Commun 2013, 4. (Bulk- Heterojunction Photovoltaic Cells. Appl. Phys. Lett.C60 Heterojunction Photovoltaic Cell. Appl. Phys. Lett.

  10. Producer-Focused Life Cycle Assessment of Thin-Film Silicon Photovoltaic Systems

    E-Print Network [OSTI]

    Zhang, Teresa Weirui

    2011-01-01

    microcrystalline- silicon photovoltaic cell, B) range ofpayback of roof mounted photovoltaic cells. Boustead, I. andmicrocrystalline-silicon photovoltaic cell, B) range of

  11. Aerosol Spray Pyrolysis Synthesis of CZTS Nanostructures for Photovoltaic Applications

    E-Print Network [OSTI]

    Exarhos, Stephen

    2015-01-01

    Eventually a full photovoltaic cell can be constructed based20.8%. ” 29th European Photovoltaic Solar Energy ConferenceFilms, Thin Film Chalogenide Photovoltaic Materials (EMRS,

  12. Optical Design Considerations for High Conversion Efficiency in Photovoltaics

    E-Print Network [OSTI]

    Ganapati, Vidya

    2015-01-01

    for light trapping in photovoltaics: the supercell concept”,efficiency tables”, Progress in Photovoltaics: Research andphotovoltaic cells”, Progress in Photovoltaics: Research and

  13. Alloy Films Deposited by Electroplating as Precursors for Protective Oxide Coatings on Solid Oxide Fuel Cells Metallic Interconnect Materials

    SciTech Connect (OSTI)

    Johnson, Christopher; Gemmen, R.S.; Cross, Caleb

    2006-10-01

    The successful development of stainless steel interconnects for intermediate temperature solid oxide fuel cells (SOFC) may be the materials breakthrough that makes SOFC technology truly commercial. Many of the ferritic stainless steels, however, suffer from a relatively high area specific resistance (ASR) after long exposure times at temperature and the Cr in the native oxide can evaporate and contaminate other cell components. Conductive coatings that resist oxide scale growth and chromium evaporation may prevent both of these problems. In the present study electrochemical deposition of binary alloys followed by oxidation of the alloy to form protective and conductive oxide layers is examined. Results are presented for the deposition of Mn/Co and Fe/Ni alloys via electroplating to form a precursor for spinel oxide coating formation. Analysis of the alloy coatings is done by SEM, EDS and XRD.

  14. Periodically multilayered planar optical concentrator for photovoltaic solar cells Manuel E. Solano, Muhammad Faryad, Peter B. Monk, Thomas E. Mallouk, and Akhlesh Lakhtakia

    E-Print Network [OSTI]

    Periodically multilayered planar optical concentrator for photovoltaic solar cells Manuel E. Solano concentrator for photovoltaic solar cells Manuel E. Solano,1 Muhammad Faryad,2 Peter B. Monk,1 Thomas E-Si solar cells due to embedded nanoparticles J. Appl. Phys. 102, 093713 (2007); 10.1063/1.2809368 Surface

  15. 2011 The NEED Project P.O. Box 10101, Manassas, VA 20108 1.800.875.5029 www.NEED.org 43 How a Photovoltaic CellWorks

    E-Print Network [OSTI]

    Oregon, University of

    a Photovoltaic CellWorks Step 1 A slab (or wafer) of pure silicon is used to make a PV cell. The top of the slab electricfield PHOTONS n-type p-type p-n junction POSITIVE CHARGE NEGATIVE CHARGE SUNSTEP 3 PHOTOVOLTAIC CELLS

  16. Photovoltaic properties and morphology of organic solar cells based on liquid-crystal semiconducting polymer with additive

    SciTech Connect (OSTI)

    Suzuki, Atsushi; Zushi, Masahito; Suzuki, Hisato; Ogahara, Shinichi; Akiyama, Tsuyoshi; Oku, Takeo

    2014-02-20

    Bulk heterojunction organic solar cell based on liquid crystal semiconducting polymers of poly[9,9-dioctylfluorene-co-bithiophene] (F8T2) as p-type semiconductors and fullerenes (C{sub 60}) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) as electron donor and acceptor has been fabricated and characterized for improving photovoltaic and optical properties. The photovoltaic performance including current voltage curves in the dark and illumination of the F8T2/C{sub 60} conventional and inverted bulk heterojunction solar cells were investigated. Relationship between the photovoltaic properties and morphological behavior was focused on tuning for optimization of photo-voltaic performance under annealing condition near glass transition temperature. Additive-effect of diiodooctane (DIO) and poly(3-hexylthiophene-2,5-diyl) (P3HT) on the photovoltaic performance and optical properties was investigated. Mechanism of the photovoltaic properties of the conventional and inverted solar cells will be discussed by the experimental results.

  17. Light trapping for emission from a photovoltaic cell under normally incident monochromatic illumination

    SciTech Connect (OSTI)

    Takeda, Yasuhiko Iizuka, Hideo; Mizuno, Shintaro; Hasegawa, Kazuo; Ichikawa, Tadashi; Ito, Hiroshi; Kajino, Tsutomu; Ichiki, Akihisa; Motohiro, Tomoyoshi

    2014-09-28

    We have theoretically demonstrated a new light-trapping mechanism to reduce emission from a photovoltaic (PV) cell used for a monochromatic light source, which improves limiting conversion efficiency determined by the detailed balance. A multilayered bandpass filter formed on the surface of a PV cell has been found to prevent the light generated inside by radiative recombination from escaping the cell, resulting in a remarkable decrease of the effective solid angle for the emission. We have clarified a guide to design a suitable configuration of the bandpass filter and achieved significant reduction of the emission. The resultant gain in monochromatic conversion efficiency in the radiative limit due to the optimally designed 18-layerd bandpass filters is as high as 6% under normally incident 1064 nm illumination of 10 mW/cm˛~ 1 kW/cm˛, compared with the efficiency for the perfect anti-reflection treatment to the surface of a conventional solar cell.

  18. Fullerene C{sub 70} as a p-type donor in organic photovoltaic cells

    SciTech Connect (OSTI)

    Zhuang, Taojun; Wang, Xiao-Feng E-mail: zrhong@ucla.edu Sano, Takeshi; Kido, Junji E-mail: zrhong@ucla.edu; Hong, Ziruo E-mail: zrhong@ucla.edu; Li, Gang; Yang, Yang

    2014-09-01

    Fullerenes and their derivatives have been widely used as n-type materials in organic transistor and photovoltaic devices. Though it is believed that they shall be ambipolar in nature, there have been few direct experimental proofs for that. In this work, fullerene C{sub 70}, known as an efficient acceptor, has been employed as a p-type electron donor in conjunction with 1,4,5,8,9,11-hexaazatriphenylene hexacarbonitrile as an electron acceptor in planar-heterojunction (PHJ) organic photovoltaic (OPV) cells. High fill factors (FFs) of more than 0.70 were reliably achieved with the C{sub 70} layer even up to 100?nm thick in PHJ cells, suggesting the superior potential of fullerene C{sub 70} as the p-type donor in comparison to other conventional donor materials. The optimal efficiency of these unconventional PHJ cells was 2.83% with a short-circuit current of 5.33?mA/cm{sup 2}, an open circuit voltage of 0.72?V, and a FF of 0.74. The results in this work unveil the potential of fullerene materials as donors in OPV devices, and provide alternative approaches towards future OPV applications.

  19. Atom-probe tomographic study of interfaces of Cu{sub 2}ZnSnS{sub 4} photovoltaic cells

    SciTech Connect (OSTI)

    Tajima, S. Asahi, R.; Itoh, T.; Hasegawa, M.; Ohishi, K.; Isheim, D.; Seidman, D. N.

    2014-09-01

    The heterophase interfaces between the CdS buffer layer and the Cu{sub 2}ZnSnS{sub 4} (CZTS) absorption layers are one of the main factors affecting photovoltaic performance of CZTS cells. We have studied the compositional distributions at heterophase interfaces in CZTS cells using three-dimensional atom-probe tomography. The results demonstrate: (a) diffusion of Cd into the CZTS layer; (b) segregation of Zn at the CdS/CZTS interface; and (c) a change of oxygen and hydrogen concentrations in the CdS layer depending on the heat treatment. Annealing at 573?K after deposition of CdS improves the photovoltaic properties of CZTS cells probably because of the formation of a heterophase epitaxial junction at the CdS/CZTS interface. Conversely, segregation of Zn at the CdS/CZTS interface after annealing at a higher temperature deteriorates the photovoltaic properties.

  20. Engineering. Interconnection

    E-Print Network [OSTI]

    Aziz, Adnan

    Networks Digital System Design 9 of 19 ' & $ % Systems Analysis of a Multicomputer Node See Figure 1. Controlled by the partitioning and topology of the system Interconnection Networks Digital System Design 11' & $ % Digital System Design Adnan Aziz The University of Texas Reference: #15; Digital Systems

  1. Lab Breakthrough: Microelectronic Photovoltaics

    Broader source: Energy.gov [DOE]

    Sandia's glitter-sized photovoltaic cells are highly efficient and cost effective – the perfect combination for a game-changing technology.

  2. Concentrating Photovoltaics (Presentation)

    SciTech Connect (OSTI)

    Kurtz, S.

    2009-01-20

    Solar is growing rapidly, and the concentrating photovoltaics industry-both high- and low-concentration cell approaches-may be ready to ramp production in 2009.

  3. Controlling the Morphology of Polymer and Fullerene Blends in Organic Photovoltaics Through Sequential Processing and Self-Assembly

    E-Print Network [OSTI]

    Aguirre, Jordan C.

    2015-01-01

    The limits to organic photovoltaic cell efficiency,” MRSbulk-heterojunction photovoltaic cells,” Appl. Phys. Lett. ,fullerene organic photovoltaic cells,” Nat Commun, vol. 4,

  4. Probing Nanostructures for Photovoltaics: Using atomic force microscopy and other tools to characterize nanoscale materials for harvesting solar energy

    E-Print Network [OSTI]

    Zaniewski, Anna Monro

    2012-01-01

    literature . . . . . . 3.1.2 Photovoltaic cells based on CuConjugated polymer photovoltaic cells. Chem. Mater. , 16:for e?cient photovoltaic cells. Nature Nanotechnology, 6:

  5. ULTRATHIN FLEXIBLE CRYSTALLINE SILICON: MICROSYSTEMS ENABLED PHOTOVOLTAICS

    E-Print Network [OSTI]

    ULTRATHIN FLEXIBLE CRYSTALLINE SILICON: MICROSYSTEMS ENABLED PHOTOVOLTAICS Jose L. Cruz Photovoltaics (MEPV) is a technique to create solar cells relying on tools from the microsystems and integrated

  6. Effect of Creep of Ferritic Interconnect on Long-Term Performance of Solid Oxide Fuel Cell Stacks

    SciTech Connect (OSTI)

    Liu, Wenning N.; Sun, Xin; Khaleel, Mohammad A.

    2010-08-01

    High-temperature ferritic alloys are potential candidates as interconnect (IC) materials and spacers due to their low cost and coefficient of thermal expansion (CTE) compatibility with other components for most of the solid oxide fuel cells (SOFCs) . However, creep deformation becomes relevant for a material when the operating temperature exceeds or even is less than half of its melting temperature (in degrees of Kelvin). The operating temperatures for most of the SOFCs under development are around 1,073 K. With around 1,800 K of the melting temperature for most stainless steel, possible creep deformation of ferritic IC under the typical cell operating temperature should not be neglected. In this paper, the effects of IC creep behavior on stack geometry change and the stress redistribution of different cell components are predicted and summarized. The goal of the study is to investigate the performance of the fuel cell stack by obtaining the changes in fuel- and air-channel geometry due to creep of the ferritic stainless steel IC, therefore indicating possible changes in SOFC performance under long-term operations. The ferritic IC creep model was incorporated into software SOFC-MP and Mentat-FC, and finite element analyses were performed to quantify the deformed configuration of the SOFC stack under the long-term steady-state operating temperature. It was found that the creep behavior of the ferritic stainless steel IC contributes to narrowing of both the fuel- and the air-flow channels. In addition, stress re-distribution of the cell components suggests the need for a compliant sealing material that also relaxes at operating temperature.

  7. Nanopillar Photovoltaics: Photon Management and Junction Engineering for Next-Generation Solar Cells

    E-Print Network [OSTI]

    Mariani, Giacomo

    2013-01-01

    photovoltaics: cohesive optical and electrical investigation of the complete solarphotovoltaics represents an emerging alternative to standard solarPhotovoltaics: Photon Management and Junction Engineering for Next-Generation Solar

  8. GreyStone Power- Photovoltaic Rebate Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    GreyStone Power, an electricity cooperative in Georgia, offers a rebate for solar photovoltaic (PV) systems to members. The one-time rebate is offered for PV installations that are interconnected...

  9. Amorphous Silicon-Carbon Nanostructure Photovoltaic Devices

    E-Print Network [OSTI]

    Schriver, Maria Christine

    2012-01-01

    way to do better. A photovoltaic cell, or solar cell, is aFor this thesis, I made photovoltaic cells using a Schottkyphotovoltaic processes oc- cur in a Schottky barrier solar cell. . . . . . . . . . . . . . . . . .

  10. Synthesis and photovoltaic application of coper (I) sulfide nanocrystals

    E-Print Network [OSTI]

    Wu, Yue

    2008-01-01

    polymer hybrid photovoltaic cells. Appl. Phys. Lett. 88,S-CdS heterojunction photovoltaic cells. J. Appl. Phys. 45,photovoltaic devices, such as dye-sensitized solar cells 1-

  11. Architectures and criteria for the design of high efficiency organic photovoltaic cells

    DOE Patents [OSTI]

    Rand, Barry; Forrest, Stephen R; Pendergrast Burk, Diane

    2015-03-31

    A method for fabricating an organic photovoltaic cell includes providing a first electrode; depositing a series of at least seven layers onto the first electrode, each layer consisting essentially of a different organic semiconductor material, the organic semiconductor material of at least an intermediate layer of the sequence being a photoconductive material; and depositing a second electrode onto the sequence of at least seven layers. One of the first electrode and the second electrode is an anode and the other is a cathode. The organic semiconductor materials of the series of at least seven layers are arranged to provide a sequence of decreasing lowest unoccupied molecular orbitals (LUMOs) and a sequence of decreasing highest occupied molecular orbitals (HOMOs) across the series from the anode to the cathode.

  12. Point-focus spectral splitting solar concentrator for multiple cells concentrating photovoltaic system

    E-Print Network [OSTI]

    Maragliano, Carlo; Stefancich, Marco

    2015-01-01

    In this paper we present and experimentally validate a low-cost design of a spectral splitting concentrator for the efficient conversion of solar energy. The optical device consists of a dispersive prismatic lens made of polycarbonate designed to simultaneously concentrate the solar light and split it into its spectral components. With respect to our previous implementation, this device concentrates the light along two axes and generates a light pattern compatible with the dimensions of a set of concentrating photovoltaic cells while providing a higher concentration ratio. The mathematical framework and the constructive approach used for the design are presented and the device performance is simulated using ray-tracing software. We obtain spectral separation in the visible range within a 3x1 cm2 area and a maximum concentration of 210x for a single wavelength. The device is fabricated by injection molding and its performance is experimentally investigated. We measure an optical transmissivity above 90% in the...

  13. Effect of temperature on carrier formation efficiency in organic photovoltaic cells

    SciTech Connect (OSTI)

    Moritomo, Yutaka Yonezawa, Kouhei; Yasuda, Takeshi

    2014-08-18

    The internal quantum efficiency (?{sub IQ}) of an organic photovoltaic cell is governed by plural processes. Here, we propose that ?{sub IQ} can be experimentally decomposed into carrier formation (?{sub CF}) and carrier transfer (?{sub CT}) efficiencies. By combining femtosecond time-resolved and electrochemical spectroscopy, we clarified the effect of temperature on ?{sub CF} in a regioregular poly(3-hexylthiophene) (rr-P3HT)/[6,6]-phenyl C{sub 61}-butyric acid methyl ester blend film. We found that ?{sub CF}?(=0.55) at 80?K is the same as that (=0.55) at 300?K. The temperature insensitivity of ?{sub CF} indicates that the electron-hole pairs at the D/A interface are seldom subjected to coulombic binding energy.

  14. Nanocrystal Solar Cells

    E-Print Network [OSTI]

    Gur, Ilan

    2006-01-01

    research on organic photovoltaic cells since small molecule10 years prior (4). Photovoltaic cells with an active layerof the associated photovoltaic cells. 2.4 Charge transport

  15. Multi-crystalline II-VI based multijunction solar cells and modules

    DOE Patents [OSTI]

    Hardin, Brian E.; Connor, Stephen T.; Groves, James R.; Peters, Craig H.

    2015-06-30

    Multi-crystalline group II-VI solar cells and methods for fabrication of same are disclosed herein. A multi-crystalline group II-VI solar cell includes a first photovoltaic sub-cell comprising silicon, a tunnel junction, and a multi-crystalline second photovoltaic sub-cell. A plurality of the multi-crystalline group II-VI solar cells can be interconnected to form low cost, high throughput flat panel, low light concentration, and/or medium light concentration photovoltaic modules or devices.

  16. Updating Technical Screens for PV Interconnection: Preprint

    SciTech Connect (OSTI)

    Coddington, M.; Ellis, A.; Lynn, K.; Razon, A.; Key, T.; Kroposki, B.; Mather, B.; Hill, R.; Nicole, K.; Smith, J.

    2012-08-01

    Solar photovoltaics (PV) is the dominant type of distributed generation (DG) technology interconnected to electric distribution systems in the United States, and deployment of PV systems continues to increase rapidly. Considering the rapid growth and widespread deployment of PV systems in United States electric distribution grids, it is important that interconnection procedures be as streamlined as possible to avoid unnecessary interconnection studies, costs, and delays. Because many PV interconnection applications involve high penetration scenarios, the process needs to allow for a sufficiently rigorous technical evaluation to identify and address possible system impacts. Existing interconnection procedures are designed to balance the need for efficiency and technical rigor for all DG. However, there is an implicit expectation that those procedures will be updated over time in order to remain relevant with respect to evolving standards, technology, and practical experience. Modifications to interconnection screens and procedures must focus on maintaining or improving safety and reliability, as well as accurately allocating costs and improving expediency of the interconnection process. This paper evaluates the origins and usefulness of the capacity penetration screen, offers potential short-term solutions which could effectively allow fast-track interconnection to many PV system applications, and considers longer-term solutions for increasing PV deployment levels in a safe and reliable manner while reducing or eliminating the emphasis on the penetration screen.

  17. Sandia Energy - Sandia, Endicott Interconnect Technologies, EMCORE...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    developed glitter-sized photovoltaic (PV) cells that have the potential to achieve the cost breakthrough necessary to move solar energy into widespread, portable use. From left...

  18. Solar Junction Develops World Record Setting Concentrated Photovoltaic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Junction Develops World Record Setting Concentrated Photovoltaic Solar Cell Solar Junction Develops World Record Setting Concentrated Photovoltaic Solar Cell April 18, 2013 -...

  19. Optical spacing effect in organic photovoltaic cells incorporating a dilute acceptor layer

    SciTech Connect (OSTI)

    Menke, S. Matthew; Lindsay, Christopher D.; Holmes, Russell J. [Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455 (United States)

    2014-06-16

    The addition of spacing layers in organic photovoltaic cells (OPVs) can enhance light absorption by optimizing the spatial distribution of the incident optical field in the multilayer structure. We explore the optical spacing effect in OPVs achieved using a diluted electron acceptor layer of C{sub 60}. While optical spacing is often realized by optimizing buffer layer thickness, we find that optical spacing via dilution leads to cells with similar or enhanced photocurrent. This is observed despite a smaller quantity of absorbing molecules, suggesting a more efficient use of absorbed photons. In fact, dilution is found to concentrate optical absorption near the electron donor-acceptor interface, resulting in a marked increase in the exciton diffusion efficiency. Contrasting the use of changes in thickness to engineer optical absorption, the use of dilution does not significantly alter the overall thickness of the OPV. Optical spacing via dilution is shown to be a viable alternative to more traditional optical spacing techniques and may be especially useful in the continued optimization of next-generation, tandem OPVs where it is important to minimize competition for optical absorption between individual sub-cells.

  20. Electrical interconnect

    DOE Patents [OSTI]

    Frost, John S.; Brandt, Randolph J.; Hebert, Peter; Al Taher, Omar

    2015-10-06

    An interconnect includes a first set of connector pads, a second set of connector pads, and a continuous central portion. A first plurality of legs extends at a first angle from the continuous central portion. Each leg of the first plurality of legs is connected to a connector pad of a first set of connector pads. A second plurality of legs extends at a second angle from the continuous central portion. Each leg of the second plurality of legs is connected to a connector pad of the second set of connector pads. Gaps are defined between legs. The gaps enable movement of the first set of connector pads relative to the second set of connector pads.

  1. Performance of Utility Interconnected Photovoltaic Inverters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeeding access| DepartmentPeer ReviewRadiationAward atOptimization andAcceptanceof

  2. Photovoltaic power generation system free of bypass diodes

    DOE Patents [OSTI]

    Lentine, Anthony L.; Okandan, Murat; Nielson, Gregory N.

    2015-07-28

    A photovoltaic power generation system that includes a solar panel that is free of bypass diodes is described herein. The solar panel includes a plurality of photovoltaic sub-modules, wherein at least two of photovoltaic sub-modules in the plurality of photovoltaic sub-modules are electrically connected in parallel. A photovoltaic sub-module includes a plurality of groups of electrically connected photovoltaic cells, wherein at least two of the groups are electrically connected in series. A photovoltaic group includes a plurality of strings of photovoltaic cells, wherein a string of photovoltaic cells comprises a plurality of photovoltaic cells electrically connected in series. The strings of photovoltaic cells are electrically connected in parallel, and the photovoltaic cells are microsystem-enabled photovoltaic cells.

  3. Photovoltaic technology assessment

    SciTech Connect (OSTI)

    Backus, C.E.

    1981-01-01

    After a brief review of the history of photovoltaic devices and a discussion of the cost goals set for photovoltaic modules, the status of photovoltaic technology is assessed. Included are discussions of: current applications, present industrial production, low-cost silicon production techniques, energy payback periods for solar cells, advanced materials research and development, concentrator systems, balance-of-system components. Also discussed are some nontechnical aspects, including foreign markets, US government program approach, and industry attitudes and approaches. (LEW)

  4. Surface plasmon polariton mediated energy transfer from external antennas into organic photovoltaic cells

    E-Print Network [OSTI]

    Heidel, Timothy David

    2006-01-01

    Despite significant improvements in the performance of organic photovoltaic devices in recent years, the tradeoff between light absorption and charge separation efficiency remains pervasive; increasing light absorption by ...

  5. Interconnected semiconductor devices

    DOE Patents [OSTI]

    Grimmer, Derrick P. (White Bear Lake, MN); Paulson, Kenneth R. (North St. Paul, MN); Gilbert, James R. (St. Paul, MN)

    1990-10-23

    Semiconductor layer and conductive layer formed on a flexible substrate, divided into individual devices and interconnected with one another in series by interconnection layers and penetrating terminals.

  6. The Effects of Non-Uniform Electronic Properties on Thin Film Photovoltaics

    E-Print Network [OSTI]

    Brown, Gregory Ferguson

    2011-01-01

    Generation  Photovoltaics:  Advanced  Solar  Energy  be  achieved  through  photovoltaics  (solar  cells).    Photovoltaics     There  are  two  requirements  for  designing  a  high  efficiency  solar  

  7. Photovoltaic performance of ultra-small PbSe quantum dots

    E-Print Network [OSTI]

    Ma, Wanli

    2014-01-01

    Y; Alivisatos, AP, Photovoltaic Devices Employing TernaryPhotovoltaic performance of ultra-small PbSe quantum dotsquantum dot, solar cell, photovoltaic, quantum size effect

  8. Organic Tandem Solar Cells: Design and Formation

    E-Print Network [OSTI]

    Chen, Chun-Chao

    2015-01-01

    transparent building integrated photovoltaic facades." 2013.Building integrated photovoltaics .cells. 2.7 Building integrated photovoltaics (BIPV) Building

  9. Recent Development of SOFC Metallic Interconnect

    SciTech Connect (OSTI)

    Wu JW, Liu XB

    2010-04-01

    Interest in solid oxide fuel cells (SOFC) stems from their higher e±ciencies and lower levels of emitted pollu- tants, compared to traditional power production methods. Interconnects are a critical part in SOFC stacks, which connect cells in series electrically, and also separate air or oxygen at the cathode side from fuel at the anode side. Therefore, the requirements of interconnects are the most demanding, i:e:, to maintain high elec- trical conductivity, good stability in both reducing and oxidizing atmospheres, and close coe±cient of thermal expansion (CTE) match and good compatibility with other SOFC ceramic components. The paper reviewed the interconnect materials, and coatings for metallic interconnect materials.

  10. PHOTOVOLTAIC PROPERTIES OF AU-MEROCYANINE-TiO2 SANDWICH CELLS. II. PROPERTIES OF ILLUMINATED CELLS AND EFFECTS OF DOPING WITH ELECTRON ACCEPTORS

    E-Print Network [OSTI]

    Skotheim, T.

    2010-01-01

    Journal of Chemical Physics PHOTOVOLTAIC PROPERTIES OF AU-under Contract W-7405-ENG-48 Photovoltaic Properties of Au-been studied using photovoltaic techniques. A theoretical

  11. Microsystems Enabled Photovoltaics

    ScienceCinema (OSTI)

    Gupta, Vipin; Nielson, Greg; Okandan, Murat, Granata, Jennifer; Nelson, Jeff; Haney, Mike; Cruz-Campa, Jose Luiz

    2014-06-23

    Sandia's microsystems enabled photovoltaic advances combine mature technology and tools currently used in microsystem production with groundbreaking advances in photovoltaics cell design, decreasing production and system costs while improving energy conversion efficiency. The technology has potential applications in buildings, houses, clothing, portable electronics, vehicles, and other contoured structures.

  12. NANOCOMPOSITE ENABLED SENSITIZED SOLAR CELL

    E-Print Network [OSTI]

    Phuyal, Dibya

    2012-01-01

    by Dye-Sensitized Photovoltaic cells. Inorganic Chemistry,by Dye-Sensitized Photovoltaic Cells. Inorganic ChemistryTiO 2 solar cells: transport, recombination and photovoltaic

  13. Durability of Metallic Interconnects and Protective Coatings

    SciTech Connect (OSTI)

    Yang, Zhenguo; Stevenson, Jeffry W.

    2009-12-15

    To build up a useful voltage, a number of solid oxide fuel cells (SOFCs) are electrically connected into series in a stack via interconnects, which are placed between adjacent cells. In addition to functioning as a bi-polar electrical connector, the interconnect also acts as a separator plate that separates the fuel at the anode side of one cell from the air at the cathode side on an adjacent cell. During SOFC operation at the high temperatures, the interconnects are thus simultaneously exposed to the oxidizing air at one side and a reducing fuel that can be either hydrogen or hydrocarbon at the other. Besides, they are in contact with adjacent components, such as electrodes or electrical contacts, seals, etc. With steady reduction in SOFC operating temperatures into the low or intermediate range 600-850oC, oxidation resistant alloys are often used to construct interconnects. However, the metallic interconnects may degrade via interactions at their interfaces with surrounding environments or adjacent components, potentially affecting the stability and performance of interconnects and the SOFC stacks. Thus protection layers are applied to metallic interconnects that also intend to mitigate or prevent chromium migration into cells and the cell poisoning. This chapter provides a comprehensive review of materials for metallic interconnects, their degradation and coating protection.

  14. Interconnection networks

    DOE Patents [OSTI]

    Faber, V.; Moore, J.W.

    1988-06-20

    A network of interconnected processors is formed from a vertex symmetric graph selected from graphs GAMMA/sub d/(k) with degree d, diameter k, and (d + 1)exclamation/ (d /minus/ k + 1)exclamation processors for each d greater than or equal to k and GAMMA/sub d/(k, /minus/1) with degree d /minus/ 1, diameter k + 1, and (d + 1)exclamation/(d /minus/ k + 1)exclamation processors for each d greater than or equal to k greater than or equal to 4. Each processor has an address formed by one of the permutations from a predetermined sequence of letters chosen a selected number of letters at a time, and an extended address formed by appending to the address the remaining ones of the predetermined sequence of letters. A plurality of transmission channels is provided from each of the processors, where each processor has one less channel than the selected number of letters forming the sequence. Where a network GAMMA/sub d/(k, /minus/1) is provided, no processor has a channel connected to form an edge in a direction delta/sub 1/. Each of the channels has an identification number selected from the sequence of letters and connected from a first processor having a first extended address to a second processor having a second address formed from a second extended address defined by moving to the front of the first extended address the letter found in the position within the first extended address defined by the channel identification number. The second address is then formed by selecting the first elements of the second extended address corresponding to the selected number used to form the address permutations. 9 figs.

  15. Architectures and criteria for the design of high efficiency organic photovoltaic cells

    DOE Patents [OSTI]

    Rand, Barry; Forrest, Stephen R; Burk, Diana Pendergrast

    2015-03-24

    An organic photovoltaic cell includes an anode and a cathode, and a plurality of organic semiconductor layers between the anode and the cathode. At least one of the anode and the cathode is transparent. Each two adjacent layers of the plurality of organic semiconductor layers are in direct contact. The plurality of organic semiconductor layers includes an intermediate layer consisting essentially of a photoconductive material, and two sets of at least three layers. A first set of at least three layers is between the intermediate layer and the anode. Each layer of the first set consists essentially of a different organic semiconductor material having a higher LUMO and a higher HOMO, relative to the material of an adjacent layer of the plurality of organic semiconductor layers closer to the cathode. A second set of at least three layers is between the intermediate layer and the cathode. Each layer of the second set consists essentially of a different organic semiconductor material having a lower LUMO and a lower HOMO, relative to the material of an adjacent layer of the plurality of organic semiconductor layers closer to the anode.

  16. General method for simultaneous optimization of light trapping and carrier collection in an ultra-thin film organic photovoltaic cell

    SciTech Connect (OSTI)

    Tsai, Cheng-Chia Grote, Richard R.; Beck, Jonathan H.; Kymissis, Ioannis; Osgood, Richard M.; Englund, Dirk

    2014-07-14

    We describe a general method for maximizing the short-circuit current in thin planar organic photovoltaic (OPV) heterojunction cells by simultaneous optimization of light absorption and carrier collection. Based on the experimentally obtained complex refractive indices of the OPV materials and the thickness-dependence of the internal quantum efficiency of the OPV active layer, we analyze the potential benefits of light trapping strategies for maximizing the overall power conversion efficiency of the cell. This approach provides a general strategy for optimizing the power conversion efficiency of a wide range of OPV structures. In particular, as an experimental trial system, the approach is applied here to a ultra-thin film solar cell with a SubPc/C{sub 60} photovoltaic structure. Using a patterned indium tin oxide (ITO) top contact, the numerically optimized designs achieve short-circuit currents of 0.790 and 0.980?mA/cm{sup 2} for 30?nm and 45?nm SubPc/C{sub 60} heterojunction layer thicknesses, respectively. These values correspond to a power conversion efficiency enhancement of 78% for the 30?nm thick cell, but only of 32% for a 45?nm thick cell, for which the overall photocurrent is actually higher. Applied to other material systems, the general optimization method can elucidate if light trapping strategies can improve a given cell architecture.

  17. Step-Stress Accelerated Degradation Testing (SSADT) for Photovoltaic (PV) Devices and Cells (Presentation)

    SciTech Connect (OSTI)

    Lee, J.; Elmore, R.; Suh, C.; Jones, W.

    2010-10-01

    Presentation on step-stress accelerated degradation testing (SSADT) for photovoltaics (PV). Developed are a step-stress degradation test (SSADT) for PV reliability tests and a lifetime prediction model for PV products.

  18. Transparent, near-infrared organic photovoltaic solar cells for window and energy-scavenging applications

    E-Print Network [OSTI]

    Lunt, Richard R.

    We fabricate near-infrared absorbing organic photovoltaics that are highly transparent to visible light. By optimizing near-infrared optical-interference, we demonstrate power efficiencies of 1.3±0.1% with simultaneous ...

  19. Photovoltaics Program: utility interface southwest regional workshop proceedings

    SciTech Connect (OSTI)

    1981-04-01

    This was the first of a series of regional workshops that will focus on the photovoltaic and utility interface, and the use of photovoltaics as a cogeneration option by utilities. The needs and constraints of the utilities are defined and an understanding is established of the capabilities and limitations of photovoltaic systems as an alternative electricity generation option by utilities. Utilities' viewpoints regarding large-scale central systems and small-scale, interconnected, distributed systems are given. The Public Utility Regulatory Policies Act and other economic, legislative, and regulatory factors affecting photovoltaic systems are discussed. Current status of photovoltaic systems with respect to the Department of Energy Photovoltaic Program is given. (LEW)

  20. Three-dimensional photovoltaics

    E-Print Network [OSTI]

    Myers, Bryan

    The concept of three-dimensional (3D) photovoltaics is explored computationally using a genetic algorithm to optimize the energy production in a day for arbitrarily shaped 3D solar cells confined to a given area footprint ...

  1. See-through amorphous silicon solar cells with selectively transparent and conducting photonic crystal back reflectors for building integrated photovoltaics

    SciTech Connect (OSTI)

    Yang, Yang; O’Brien, Paul G.; Materials Chemistry Research Group, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6 ; Ozin, Geoffrey A. E-mail: kherani@ecf.utoronto.ca; Kherani, Nazir P. E-mail: kherani@ecf.utoronto.ca

    2013-11-25

    Thin semi-transparent hydrogenated amorphous silicon (a-Si:H) solar cells with selectively transparent and conducting photonic crystal (STCPC) back-reflectors are demonstrated. Short circuit current density of a 135?nm thick a-Si:H cell with a given STCPC back-reflector is enhanced by as much as 23% in comparison to a reference cell with an ITO film functioning as its rear contact. Concurrently, solar irradiance of 295?W/m{sup 2} and illuminance of 3480 lux are transmitted through the cell with a given STCPC back reflector under AM1.5 Global tilt illumination, indicating its utility as a source of space heating and lighting, respectively, in building integrated photovoltaic applications.

  2. Expedited Permitting Process for Solar Photovoltaic Systems (Vermont)

    Broader source: Energy.gov [DOE]

    Vermont has established an expedited permitting process for solar photovoltaic systems that are 10 kilowatts-AC (kW) or less. In order to interconnect and net meter, electric customers in Vermont...

  3. Fabrication and Characterization of Organic Solar Cells

    E-Print Network [OSTI]

    Yengel, Emre

    2010-01-01

    Diodes, Photodiodes, and Photovoltaic Cells. Applied Physicsprocessable polymer photovoltaic cells by self-organizationAJ. Polymer Photovoltaic Cells - Enhanced Efficiencies Via a

  4. Organic Tandem Solar Cells: Design and Formation

    E-Print Network [OSTI]

    Chen, Chun-Chao

    2015-01-01

    photodiodes, and photovoltaic cells,? Applied PhysicsTang, “Two-layer organic photovoltaic cell,” Applied Physicsprocessable polymer photovoltaic cells by self-organization

  5. Synthesis and photovoltaic application of coper (I) sulfide nanocrystals

    E-Print Network [OSTI]

    Wu, Yue

    2008-01-01

    CdSe quantum dots for photovoltaic devices. Nano Lett. 7,nanocrystal-polymer hybrid photovoltaic cells. Appl. Phys.Gill, W. D. , Bube, R. H. Photovoltaic Properties of Cu 2 S-

  6. 25th European Photovoltaic Solar Energy Conference, Valencia, Spain, 6-10 September 2010, 2CO.4.3 IMPACT OF LATERAL VARIATIONS ON THE SOLAR CELL EFFICIENCY

    E-Print Network [OSTI]

    yields fundamental solar cell parameters such as the energy conversion efficiency , the open circuit information about one parameter we have no information about its impact on the solar cell energy conversion25th European Photovoltaic Solar Energy Conference, Valencia, Spain, 6-10 September 2010, 2CO.4

  7. 24th European Photovoltaic Solar Energy Conference, Hamburg, Germany, Sept. 2009 HIGLY PREDICTIVE MODELLING OF ENTIRE SI SOLAR CELLS FOR INDUSTRIAL APPLICATIONS

    E-Print Network [OSTI]

    24th European Photovoltaic Solar Energy Conference, Hamburg, Germany, Sept. 2009 1 HIGLY PREDICTIVE Czochralski (Cz) silicon solar cells are assessed by means of highly predictive numerical modelling in two have simulations of industrial Si solar cells become highly predictive. Like in the analysis

  8. 19th European Photovoltaic Solar Energy Conference Pre-Print 4AV.1.45 QUANTUM EFFICIENCY OF CdTe SOLAR CELLS IN FORWARD BIAS

    E-Print Network [OSTI]

    Sites, James R.

    19th European Photovoltaic Solar Energy Conference Pre-Print 4AV.1.45 QUANTUM EFFICIENCY OF CdTe SOLAR CELLS IN FORWARD BIAS M. Gloeckler and J. R. Sites Department of Physics, Colorado State@lamar.colostate.edu ABSTRACT: When the quantum efficiency of a CdS/CdTe solar cell is measured under forward voltage

  9. Graded index and randomly oriented core-shell silicon nanowires with broadband and wide angle antireflection for photovoltaic cell applications

    E-Print Network [OSTI]

    Pignalosa, P; Qiao, L; Tseng, M; Yi, Yasha

    2011-01-01

    Antireflection with broadband and wide angle properties is important for a wide range of applications on photovoltaic cells and display. The SiOx shell layer provides a natural antireflection from air to the Si core absorption layer. In this work, we have demonstrated the random core-shell silicon nanowires with both broadband (from 400nm to 900nm) and wide angle (from normal incidence to 60\\degree) antireflection characteristics within AM1.5 solar spectrum. The graded index structure from the randomly oriented core-shell (Air/SiOx/Si) nanowires may provide a potential avenue to realize a broadband and wide angle antireflection layer.

  10. The Design and Implementation of Solar Power with Photovoltaics

    E-Print Network [OSTI]

    Lavaei, Javad

    The Design and Implementation of Solar Power with Photovoltaics E4511 Power Systems Analysis Final Project Victor Campbell vfc2106 #12;2 Table of Contents 1. Introduction 2. Solar Cells 2.1 Photovoltaic of solar energy is the design of solar, or photovoltaic, cells. Photovoltaic cells are semiconductor

  11. 282 IEEE JOURNAL OF PHOTOVOLTAICS, VOL. 5, NO. 1, JANUARY 2015 Photovoltaic Material Characterization With Steady

    E-Print Network [OSTI]

    Javey, Ali

    282 IEEE JOURNAL OF PHOTOVOLTAICS, VOL. 5, NO. 1, JANUARY 2015 Photovoltaic Material an approach to characterize the surface and bulk properties for thin films of photovoltaic mate- rials- toluminescence (PL), photovoltaic cells. I. INTRODUCTION VARIOUS characterization techniques based on photolu

  12. Thin film photovoltaic panel and method

    DOE Patents [OSTI]

    Ackerman, Bruce (El Paso, TX); Albright, Scot P. (El Paso, TX); Jordan, John F. (El Paso, TX)

    1991-06-11

    A thin film photovoltaic panel includes a backcap for protecting the active components of the photovoltaic cells from adverse environmental elements. A spacing between the backcap and a top electrode layer is preferably filled with a desiccant to further reduce water vapor contamination of the environment surrounding the photovoltaic cells. The contamination of the spacing between the backcap and the cells may be further reduced by passing a selected gas through the spacing subsequent to sealing the backcap to the base of the photovoltaic panels, and once purged this spacing may be filled with an inert gas. The techniques of the present invention are preferably applied to thin film photovoltaic panels each formed from a plurality of photovoltaic cells arranged on a vitreous substrate. The stability of photovoltaic conversion efficiency remains relatively high during the life of the photovoltaic panel, and the cost of manufacturing highly efficient panels with such improved stability is significantly reduced.

  13. Thermodynamics, Entropy, Information and the Efficiency of Solar Cells

    E-Print Network [OSTI]

    Abrams, Zeev R.

    2012-01-01

    workings of solar cells and photovoltaic power conversion tostate-of-the-art photovoltaic cells. Prog. Photovolt: Res.efficiency of an ideal photovoltaic cell with charge carrier

  14. Optimized Designs and Materials for Nanostructure Based Solar Cells

    E-Print Network [OSTI]

    Shao, Qinghui

    2009-01-01

    for concentrator photovoltaic cells (CPV) is 100 K – 200 KConcentrated Photovoltaic (CPV) cells have been demonstratedimplementing photovoltaic and photochemical cells on large

  15. Perforation patterned electrical interconnects

    DOE Patents [OSTI]

    Frey, Jonathan

    2014-01-28

    This disclosure describes systems and methods for increasing the usable surface area of electrical contacts within a device, such as a thin film solid state device, through the implementation of electrically conductive interconnects. Embodiments described herein include the use of a plurality of electrically conductive interconnects that penetrate through a top contact layer, through one or more multiple layers, and into a bottom contact layer. The plurality of conductive interconnects may form horizontal and vertical cross-sectional patterns. The use of lasers to form the plurality of electrically conductive interconnects from reflowed layer material further aids in the manufacturing process of a device.

  16. European Photovoltaic Solar Energy Conference, Valencia, Spain, 6-10 September 2010, 2DO.2.3 N-TYPE CZ-SILICON SOLAR CELLS WITH

    E-Print Network [OSTI]

    25th European Photovoltaic Solar Energy Conference, Valencia, Spain, 6-10 September 2010, 2DO.2.3 N Institute for Solar Energy Research Hamelin (ISFH), Am Ohrberg 1, 31860 Emmerthal, Germany 2 centrotherm stack to the screen-printed Al-p+ emitter surface of our solar cells, where we demonstrate a conversion

  17. 22nd European Photovoltaic Solar Energy Conference, Milan, 3-7 September 2007 Cu(InGa)Se2 THIN-FILM SOLAR CELLS

    E-Print Network [OSTI]

    22nd European Photovoltaic Solar Energy Conference, Milan, 3-7 September 2007 Cu(InGa)Se2 THIN-FILM INTRODUCTION Cu(InGa)Se2-based thin-film solar cells have high conversion-efficiencies (the laboratory record

  18. Interconnection-Wide Transmission Planning Initiative - Meeting...

    Energy Savers [EERE]

    Recovery Act Interconnection Transmission Planning Interconnection-Wide Transmission Planning Initiative - Meeting Calendars Interconnection-Wide Transmission Planning...

  19. Photovoltaic generator with a spherical imaging lens for use with a paraboloidal solar reflector

    DOE Patents [OSTI]

    Angel, Roger P

    2013-01-08

    The invention is a generator for photovoltaic conversion of concentrated sunlight into electricity. A generator according to the invention incorporates a plurality of photovoltaic cells and is intended for operation near the focus of a large paraboloidal reflector pointed at the sun. Within the generator, the entering concentrated light is relayed by secondary optics to the cells arranged in a compact, concave array. The light is delivered to the cells at high concentration, consistent with high photovoltaic conversion efficiency and low cell cost per unit power output. Light enters the generator, preferably first through a sealing window, and passes through a field lens, preferably in the form of a full sphere or ball lens centered on the paraboloid focus. This lens forms a concentric, concave and wide-angle image of the primary reflector, where the intensity of the concentrated light is stabilized against changes in the position of concentrated light entering the generator. Receiving the stabilized light are flat photovoltaic cells made in different shapes and sizes and configured in a concave array corresponding to the concave image of a given primary reflector. Photovoltaic cells in a generator are also sized and interconnected so as to provide a single electrical output that remains high and stable, despite aberrations in the light delivered to the generator caused by, for example, mispointing or bending of the primary reflector. In some embodiments, the cells are set back from the image formed by the ball lens, and part of the light is reflected onto each cell small secondary reflectors in the form of mirrors set around its perimeter.

  20. Ris Energy Report 5 Photovoltaics 6.3.1 Photovoltaics

    E-Print Network [OSTI]

    kREbs, RIsř NATIONAL LAbORATORy, DENMARk The market for photovoltaics (PV, or solar cells) has grown? Crystalline silicon remains the standard PV technology, with a market share that has increased from 85 Photovoltaics 6.3.1 less than half the market. Figure 18 shows that the cost of traditional PV technology has

  1. Long-term oxidation behavior of spinel-coated ferritic stainless steel for solid oxide fuel cell interconnect applications

    SciTech Connect (OSTI)

    Stevenson, Jeffry W.; Yang, Zhenguo; Xia, Guanguang; Nie, Zimin; Templeton, Joshua D.

    2013-06-01

    Long-term tests (>8,000 hours) indicate that AISI 441 ferritic stainless steel coated with a Mn-Co spinel protection layer is a promising candidate material system for IT-SOFC interconnect applications. While uncoated AISI 441 showed a substantial increase in area-specific electrical resistance (ASR), spinel-coated AISI 441 exhibited much lower ASR values (11-13 mOhm-cm2). Formation of an insulating silica sublayer beneath the native chromia-based scale was not observed, and the spinel coatings reduced the oxide scale growth rate and blocked outward diffusion of Cr from the alloy substrate. The structure of the scale formed under the spinel coatings during the long term tests differed from that typically observed on ferritic stainless steels after short term oxidation tests. While short term tests typically indicate a dual layer scale structure consisting of a chromia layer covered by a layer of Mn-Cr spinel, the scale grown during the long term tests consisted of a chromia matrix with discrete regions of Mn-Cr spinel distributed throughout the matrix. The presence of Ti in the chromia scale matrix and/or the presence of regions of Mn-Cr spinel within the scale may have increased the scale electrical conductivity, which would explain the fact that the observed ASR in the tests was lower than would be expected if the scale consisted of pure chromia.

  2. Non-Epitaxial Thin-Film Indium Phosphide Photovoltaics: Growth, Devices, and Cost Analysis

    E-Print Network [OSTI]

    Zheng, Maxwell S

    2015-01-01

    1 I NTRODUCTION Solar energy and photovoltaics The case forFOR III-V PHOTOVOLTAICS III-V semiconductor solar cells havesolar cell structure for large- scale photovoltaics. InP is

  3. Residential photovoltaics

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    The photovoltaics overview section of the Renewable Energy Technology Characterizations describes the technical and economic status of this emerging renewable energy option for electricity supply.

  4. In-Line Post-Process Scribing for Reducing Cell to Module Efficiency Gap in Monolithic Thin Film Photovoltaics

    E-Print Network [OSTI]

    Dongaonkar, Sourabh

    2013-01-01

    The gap between cell and module efficiency is a major challenge for all photovoltaic (PV) technologies. For monolithic thin film PV modules, a significant fraction of this gap has been attributed to parasitic shunts, and other defects, distributed across the module. In this paper, we show that it is possible to contain or isolate these shunt defects, using the state of the art laser scribing processes, after the fabrication of the series connected module is finished. We discuss three possible alternatives, and quantify the performance gains for each technique. We demonstrate that using these techniques, it is possible to recover up to 50% of the power lost to parasitic shunts, which results in 1-2% (absolute) increase in module efficiencies for typical thin film PV technologies.

  5. EELE408 Photovoltaics Lecture 01: Intro & Safety

    E-Print Network [OSTI]

    Kaiser, Todd J.

    1 EELE408 Photovoltaics Lecture 01: Intro & Safety Dr. Todd J. Kaiser tjkaiser@ece.montana.edu Department of Electrical and Computer Engineering Montana State University - Bozeman EELE408 Photovoltaics & Ventre: Photovoltaic Systems Engineering , 3E · Resources: ­ Green: Solar Cells: Operating Principles

  6. 56 IEEE JOURNAL OF PHOTOVOLTAICS, VOL. 2, NO. 1, JANUARY 2012 Metamorphic GaAsP and InGaP Solar Cells on GaAs

    E-Print Network [OSTI]

    Haller, Gary L.

    solar cells are triple-junction concentrator devices, with each junction efficiently col- lecting subcell in a multijunction de- vice. GaAs0.66 P0.34 single-junction solar cells with Eg = 1.83 eV were56 IEEE JOURNAL OF PHOTOVOLTAICS, VOL. 2, NO. 1, JANUARY 2012 Metamorphic GaAsP and InGaP Solar

  7. Predictive Modeling for Glass-Side Laser Scribing of Thin Film Photovoltaic Cells

    E-Print Network [OSTI]

    Yao, Y. Lawrence

    :F, CdTe, solar cell INTRODUCTION Thin-film solar cell is a promising technology to achieve substrates. Cadmium telluride (CdTe) is the dominant thin film solar cell material in recent years because manufacturing processes in the fabrication of thin film solar cells is monolithic cell isolation and series

  8. European Photovoltaic Solar Energy Conference, Frankfurt, Germany, 24-28 September 2012, 2AO.2.4 HIGH EFFICIENCY BACK-CONTACT BACK-JUNCTION SILICON SOLAR CELLS WITH CELL

    E-Print Network [OSTI]

    as minimizing the consumption of energy and material. The effect of the cell thickness on the solar cell27th European Photovoltaic Solar Energy Conference, Frankfurt, Germany, 24-28 September 2012, 2AO.2 Institute for Solar Energy Research Hamelin (ISFH), Am Ohrberg 1, D-31860 Emmerthal, Germany 2 Renewable

  9. Three approaches to economical photovoltaics: conformal Cu2S, organic luminescent films, and PbSe nanocrystal superlattices

    E-Print Network [OSTI]

    Carbone, Ian Anthony

    2013-01-01

    Degradation in CDS-Cu2S photovoltaic cells. Semiconductorcell with cuins2: A photovoltaic cell concept using an ex-and the the photovoltaic action in solar cell devices. The

  10. Nanopillar Photovoltaics: Photon Management and Junction Engineering for Next-Generation Solar Cells

    E-Print Network [OSTI]

    Mariani, Giacomo

    2013-01-01

    W. , Dunlop, E.D. Solar cell efficiency table (version 42),W. , Dunlop, E.D. Solar cell efficiency table (version 42),W. , Dunlop, E.D. Solar cell efficiency table (version 42),

  11. Nanopillar Photovoltaics: Photon Management and Junction Engineering for Next-Generation Solar Cells

    E-Print Network [OSTI]

    Mariani, Giacomo

    2013-01-01

    silicon nanowires as solar cells and nanoelectronic powerTowards efficient hybrid solar cells based on fully polymerSariciftci, N. S. Hybrid solar cells, Inorg. Chim. Acta 361,

  12. Nanopillar Photovoltaics: Photon Management and Junction Engineering for Next-Generation Solar Cells

    E-Print Network [OSTI]

    Mariani, Giacomo

    2013-01-01

    Towards efficient hybrid solar cells based on fully polymerS. , Sariciftci, N. S. Hybrid solar cells, Inorg. Chim. ActaY. , Warta, W. , Dunlop, E.D. Solar cell efficiency table (

  13. Nanopillar Photovoltaics: Photon Management and Junction Engineering for Next-Generation Solar Cells

    E-Print Network [OSTI]

    Mariani, Giacomo

    2013-01-01

    Towards efficient hybrid solar cells based on fully polymerSariciftci, N. S. Hybrid solar cells, Inorg. Chim. Acta 361,radial GaAs nanopillar solar cells, Nano Lett. 11, 2490-

  14. Photovoltaic Materials

    SciTech Connect (OSTI)

    Duty, C.; Angelini, J.; Armstrong, B.; Bennett, C.; Evans, B.; Jellison, G. E.; Joshi, P.; List, F.; Paranthaman, P.; Parish, C.; Wereszczak, A.

    2012-10-15

    The goal of the current project was to help make the US solar industry a world leader in the manufacture of thin film photovoltaics. The overall approach was to leverage ORNL’s unique characterization and processing technologies to gain a better understanding of the fundamental challenges for solar cell processing and apply that knowledge to targeted projects with industry members. ORNL has the capabilities in place and the expertise required to understand how basic material properties including defects, impurities, and grain boundaries affect the solar cell performance. ORNL also has unique processing capabilities to optimize the manufacturing process for fabrication of high efficiency and low cost solar cells. ORNL recently established the Center for Advanced Thin-film Systems (CATS), which contains a suite of optical and electrical characterization equipment specifically focused on solar cell research. Under this project, ORNL made these facilities available to industrial partners who were interested in pursuing collaborative research toward the improvement of their product or manufacturing process. Four specific projects were pursued with industrial partners: Global Solar Energy is a solar industry leader in full scale production manufacturing highly-efficient Copper Indium Gallium diSelenide (CIGS) thin film solar material, cells and products. ORNL worked with GSE to develop a scalable, non-vacuum, solution technique to deposit amorphous or nanocrystalline conducting barrier layers on untextured stainless steel substrates for fabricating high efficiency flexible CIGS PV. Ferro Corporation’s Electronic, Color and Glass Materials (“ECGM”) business unit is currently the world’s largest supplier of metallic contact materials in the crystalline solar cell marketplace. Ferro’s ECGM business unit has been the world's leading supplier of thick film metal pastes to the crystalline silicon PV industry for more than 30 years, and has had operational cells and modules in the field for 25 years. Under this project, Ferro leveraged world leading analytical capabilities at ORNL to characterize the paste-to-silicon interface microstructure and develop high efficiency next generation contact pastes. Ampulse Corporation is developing a revolutionary crystalline-silicon (c-Si) thin-film solar photovoltaic (PV) technology. Utilizing uniquely-textured substrates and buffer materials from the Oak Ridge National Laboratory (ORNL), and breakthroughs in Hot-Wire Chemical Vapor Deposition (HW-CVD) techniques in epitaxial silicon developed at the National Renewable Energy Laboratory (NREL), Ampulse is creating a solar technology that is tunable in silicon thickness, and hence in efficiency and economics, to meet the specific requirements of multiple solar PV applications. This project focused on the development of a high rate deposition process to deposit Si, Ge, and Si1-xGex films as an alternate to hot-wire CVD. Mossey Creek Solar is a start-up company with great expertise in the solar field. The primary interest is to create and preserve jobs in the solar sector by developing high-yield, low-cost, high-efficiency solar cells using MSC-patented and -proprietary technologies. The specific goal of this project was to produce large grain formation in thin, net-shape-thickness mc-Si wafers processed with high-purity silicon powder and ORNL's plasma arc lamp melting without introducing impurities that compromise absorption coefficient and carrier lifetime. As part of this project, ORNL also added specific pieces of equipment to enhance our ability to provide unique insight for the solar industry. These capabilities include a moisture barrier measurement system, a combined physical vapor deposition and sputtering system dedicated to cadmium-containing deposits, adeep level transient spectroscopy system useful for identifying defects, an integrating sphere photoluminescence system, and a high-speed ink jet printing system. These tools were combined with others to study the effect of defects on the performance of crystalline silicon and

  15. Comparing Germany's and California's Interconnection Processes for PV Systems (White Paper)

    SciTech Connect (OSTI)

    Tweedie, A.; Doris, E.

    2011-07-01

    Establishing interconnection to the grid is a recognized barrier to the deployment of distributed energy generation. This report compares interconnection processes for photovoltaic projects in California and Germany. This report summarizes the steps of the interconnection process for developers and utilities, the average length of time utilities take to process applications, and paperwork required of project developers. Based on a review of the available literature, this report finds that while the interconnection procedures and timelines are similar in California and Germany, differences in the legal and regulatory frameworks are substantial.

  16. High-efficiency thin-film cadmium telluride photovoltaic cells. Annual technical report, January 20, 1996--January 19, 1997

    SciTech Connect (OSTI)

    Compaan, A.D.; Bohn, R.G.; Contreras-Puente, G. [Univ. of Toledo, OH (United States)] [Univ. of Toledo, OH (United States)

    1997-08-01

    The University of Toledo photovoltaics group has been instrumental in developing rf sputtering for CDs/CdTe thin-film solar cells. During the third phase of the present contract our work focussed on efforts to determine factors which limit the efficiency in our {open_quotes}all-sputtered{close_quotes} thin-film CdTe solar cells on soda-lime glass. We find that our all-sputtered cells, which are deposited at substantially lower temperature than those by sublimation or vapor deposition, require less aggressive CdCl{sub 2} treatments than do other deposition techniques and this is presumably related to CDs/CdTe interdiffusion. The CDs/CdTe interdiffusion process has been studied by several methods, including photoluminescence and capacitance-voltage measurements. Furthermore, we have deposited special thin bilayer films on quartz and borosilicate glass. Interdiffusion in these thin bilayers have been probed by Rutherford backscattering, with collaborators at Case Western Reserve University, and grazing incidence x-ray scattering (GIXS), with collaborators at the University at Buffalo and Brookhaven National Lab. Also, in order better to understand the properties of the ternary alloy material, we used laser physical vapor deposition to prepare a series of CdS{sub x}Te{sub 1-x} films on borosilicate glass. The composition of the alloy films was determined by wavelength dispersive x-ray spectroscopy at NREL. These films are currently being investigated by us and other groups at NREL and IEC.

  17. Ligand chemistry of titania precursor affects transient photovoltaic behavior in inverted organic solar cells

    E-Print Network [OSTI]

    to inorganic solar cells, organic solar cells promise to be low cost, light weight, and possessing processing solar cells Jong Bok Kim, Seokhoon Ahn, Seok Ju Kang, Colin Nuckolls, and Yueh-Lin Loo Citation: Appl Institute of Physics. Related Articles A ferroelectric­semiconductor-coupled solar cell with tunable

  18. Micro-fluidic interconnect

    DOE Patents [OSTI]

    Okandan, Murat (Albuquerque, NM); Galambos, Paul C. (Albuquerque, NM); Benavides, Gilbert L. (Los Ranchos, NM); Hetherington, Dale L. (Albuquerque, NM)

    2006-02-28

    An apparatus for simultaneously aligning and interconnecting microfluidic ports is presented. Such interconnections are required to utilize microfluidic devices fabricated in Micro-Electromechanical-Systems (MEMS) technologies, that have multiple fluidic access ports (e.g. 100 micron diameter) within a small footprint, (e.g. 3 mm.times.6 mm). Fanout of the small ports of a microfluidic device to a larger diameter (e.g. 500 microns) facilitates packaging and interconnection of the microfluidic device to printed wiring boards, electronics packages, fluidic manifolds etc.

  19. Solid-state energy storage module employing integrated interconnect board

    DOE Patents [OSTI]

    Rouillard, Jean; Comte, Christophe; Daigle, Dominik; Hagen, Ronald A.; Knudson, Orlin B.; Morin, Andre; Ranger, Michel; Ross, Guy; Rouillard, Roger; St-Germain, Philippe; Sudano, Anthony; Turgeon, Thomas A.

    2003-11-04

    The present invention is directed to an improved electrochemical energy storage device. The electrochemical energy storage device includes a number of solid-state, thin-film electrochemical cells which are selectively interconnected in series or parallel through use of an integrated interconnect board. The interconnect board is typically disposed within a sealed housing which also houses the electrochemical cells, and includes a first contact and a second contact respectively coupled to first and second power terminals of the energy storage device. The interconnect board advantageously provides for selective series or parallel connectivity with the electrochemical cells, irrespective of electrochemical cell position within the housing. Fuses and various electrical and electromechanical devices, such as bypass, equalization, and communication devices for example, may also be mounted to the interconnect board and selectively connected to the electrochemical cells.

  20. Solid-state energy storage module employing integrated interconnect board

    DOE Patents [OSTI]

    Rouillard, Jean; Comte, Christophe; Daigle, Dominik; Hagen, Ronald A.; Knudson, Orlin B.; Morin, Andre; Ranger, Michel; Ross, Guy; Rouillard, Roger; St-Germain, Philippe; Sudano, Anthony; Turgeon, Thomas A.

    2004-09-28

    An electrochemical energy storage device includes a number of solid-state thin-film electrochemical cells which are selectively interconnected in series or parallel through use of an integrated interconnect board. The interconnect board is typically disposed within a sealed housing which also houses the electrochemical cells, and includes a first contact and a second contact respectively coupled to first and second power terminals of the energy storage device. The interconnect board advantageously provides for selective series or parallel connectivity with the electrochemical cells, irrespective of electrochemical cell position within the housing. Fuses and various electrical and electro-mechanical devices, such as bypass, equalization, and communication devices for example, may also be mounted to the interconnect board and selectively connected to the electrochemical cells.

  1. Interface and Electrode Engineering for Next-Generation Organic Photovoltaic Cells: Final Technical Report, March 2005 - August 2008

    SciTech Connect (OSTI)

    Mason, T. O.; Chang, R. P. H.; Freeman, A. J.; Marks, T. J.; Poeppelmeier, K. R.

    2008-11-01

    The objective of this project was to enable next-generation, efficient, easily manufacturable, and durable organic photovoltaics through interface and electrode engineering.

  2. Photonic Design: From Fundamental Solar Cell Physics to Computational Inverse Design

    E-Print Network [OSTI]

    Miller, Owen Dennis

    2012-01-01

    of state-of-the-art photovoltaic cells,” Progress ineffective way. Photovoltaic cells are the most promisingthe absorptivity of photovoltaic cell: the material absorp-

  3. Hybrid Solar Cells with Prescribed Nanoscale Morphologies Based on Hyperbranched Semiconductor Nanocrystals

    E-Print Network [OSTI]

    Gur, Ilan; Fromer, Neil A.; Chen, Chih-Ping; Kanaras, Antonios G.; Alivisatos, A. Paul

    2006-01-01

    bulk heterojunction photovoltaic cells. Mrs Bulletin 30, 37-A. J. Polymer Photovoltaic Cells - Enhanced Efficiencies ViaC[sub 60] heterojunction photovoltaic cell. Applied Physics

  4. Device Physics and Recombination in Polymer:Fullerene Bulk-Heterojunction Solar Cells

    E-Print Network [OSTI]

    Hawks, Steven

    2015-01-01

    Heeger, “Polymer Photovoltaic Cells - Enhanced Ef?cienciesC-60 heterojunction photovoltaic cell,” Appl. Phys. Lett. ,ef?ciency polymer photovoltaic cells using solution-based

  5. Core-Shell Nanopillar Array Solar Cells using Cadmium Sulfide Coating on Indium Phosphide Nanopillars

    E-Print Network [OSTI]

    Tu, Bor-An Clayton

    2013-01-01

    for efficient photovoltaic cells. ,” Nature Nanotechnology,Part II – Photovoltaic Cell I-V Characterization Theory andof the photovoltaic effect in the 19 th century, solar cells

  6. Investigation of the Role of Trap States in Solar Cell Reliability using Photothermal Deflection Spectroscopy

    E-Print Network [OSTI]

    Bezryadina, Anna Sergeyevna

    2012-01-01

    as coal or oil. The photovoltaic cells which constitute mostand conventional inorganic photovoltaic cells is that lightand Characterization Photovoltaic (PV) cells convert solar

  7. Multiband semiconductor compositions for photovoltaic devices...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial Technologies Solar Photovoltaic Solar Thermal Startup America Vehicles and Fuels Wind Energy Partners (27) Visual...

  8. Nanocrystal and Molecular Precursors for Photovoltaic Applications...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanocrystal and Molecular Precursors for Photovoltaic Applications The objective in this proposal is to identify factors that limit the efficiency of nanocrystal based solar cells...

  9. Passive microfluidic interconnects

    E-Print Network [OSTI]

    Jonnalagadda, Aparna S

    2005-01-01

    Equipment and procedures were developed to test two passive microfluidic interconnect rings held together by the friction forces on the contact surfaces. The second design forms fluid seals by means of thin flared rings ...

  10. PHOTOVOLTAIC PROPERTIES OF METAL-MEROCYANINE-TiO2 SANDWICH CELLS

    E-Print Network [OSTI]

    Skotheim, Terje Asbjorn

    2011-01-01

    of using organic photoconductive compounds for solar cellin inorganic solar cell technology. For organic sys- tems,solar cell technology. but this approach has rarely been pursued with organic

  11. A novel photovoltaic-module assembly system for back contact solar cells using laser soldering technique

    E-Print Network [OSTI]

    lamination foil and solders the interconnectors to the cells using a laser. Our newly developed prototype on the interconnector (e.g. Pin up Module) [8] or an insulation on the cell itself (busbarless emitter warp through) [9]. Other cell designs require a conventional ribbon or must have a special bone shaped interconnector. Thus

  12. Quantum Photonic Interconnect

    E-Print Network [OSTI]

    Jianwei Wang; Damien Bonneau; Matteo Villa; Joshua W. Silverstone; Raffaele Santagati; Shigehito Miki; Taro Yamashita; Mikio Fujiwara; Masahide Sasaki; Hirotaka Terai; Michael G. Tanner; Chandra M. Natarajan; Robert H. Hadfield; Jeremy L. O'Brien; Mark G. Thompson

    2015-09-26

    Integrated photonics has enabled much progress towards quantum technologies. Many applications, including quantum communication, sensing, and distributed and cloud quantum computing, will require coherent photonic interconnection between separate chip-based sub-systems. Large-scale quantum computing systems and architectures may ultimately require quantum interconnects to enable scaling beyond the limits of a single wafer and towards "multi-chip" systems. However, coherently interconnecting separate chips is challenging due to the fragility of these quantum states and the demanding challenges of transmitting photons in at least two media within a single coherent system. Distribution and manipulation of qubit entanglement between multiple devices is one of the most stringent requirements of the interconnected system. Here, we report a quantum photonic interconnect demonstrating high-fidelity entanglement distribution and manipulation between two separate chips, implemented using state-of-the-art silicon photonics. Path-entangled states are generated and manipulated on-chip, and distributed between the chips by interconverting between path-encoding and polarisation-encoding. We use integrated state analysers to confirm a Bell-type violation of $S$=2.638+-0.039 between two chips. With improvements in loss, this quantum interconnect will provide new levels of flexible systems and architectures for quantum technologies.

  13. Reliability of Electrical Interconnects (Presentation)

    SciTech Connect (OSTI)

    Devoto, D.

    2014-06-01

    This presentation discusses the status of NREL's research on the reliability of electrical interconnects.

  14. Standard Test Methods for Measurement of Electrical Performance and Spectral Response of Nonconcentrator Multijunction Photovoltaic Cells and Modules

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 These test methods provide special techniques needed to determine the electrical performance and spectral response of two-terminal, multijunction photovoltaic (PV) devices, both cell and modules. 1.2 These test methods are modifications and extensions of the procedures for single-junction devices defined by Test Methods E948, E1021, and E1036. 1.3 These test methods do not include temperature and irradiance corrections for spectral response and current-voltage (I-V) measurements. Procedures for such corrections are available in Test Methods E948, E1021, and E1036. 1.4 These test methods may be applied to cells and modules intended for concentrator applications. 1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and ...

  15. Photovoltaic roof heat flux

    E-Print Network [OSTI]

    Samady, Mezhgan Frishta

    2011-01-01

    Effect of building integrated photovoltaics on microclimateof a building's integrated-photovoltaics on heating a n dgaps for building- integrated photovoltaics, Solar Energy

  16. Breakthrough: micro-electronic photovoltaics

    ScienceCinema (OSTI)

    Okandan, Murat; Gupta, Vipin

    2014-06-23

    Sandia developed tiny glitter-sized photovoltaic (PV) cells that could revolutionize solar energy collection. The crystalline silicon micro-PV cells will be cheaper and have greater efficiencies than current PV collectors. Micro-PV cells require relatively little material to form well-controlled, highly efficient devices. Cell fabrication uses common microelectric and micro-electromechanical systems (MEMS) techniques.

  17. Breakthrough: micro-electronic photovoltaics

    SciTech Connect (OSTI)

    Okandan, Murat; Gupta, Vipin

    2012-04-23

    Sandia developed tiny glitter-sized photovoltaic (PV) cells that could revolutionize solar energy collection. The crystalline silicon micro-PV cells will be cheaper and have greater efficiencies than current PV collectors. Micro-PV cells require relatively little material to form well-controlled, highly efficient devices. Cell fabrication uses common microelectric and micro-electromechanical systems (MEMS) techniques.

  18. High efficiency photovoltaic device

    DOE Patents [OSTI]

    Guha, Subhendu (Troy, MI); Yang, Chi C. (Troy, MI); Xu, Xi Xiang (Findlay, OH)

    1999-11-02

    An N-I-P type photovoltaic device includes a multi-layered body of N-doped semiconductor material which has an amorphous, N doped layer in contact with the amorphous body of intrinsic semiconductor material, and a microcrystalline, N doped layer overlying the amorphous, N doped material. A tandem device comprising stacked N-I-P cells may further include a second amorphous, N doped layer interposed between the microcrystalline, N doped layer and a microcrystalline P doped layer. Photovoltaic devices thus configured manifest improved performance, particularly when configured as tandem devices.

  19. Role of polycrystallinity in CdTe and CuInSe sub 2 photovoltaic cells

    SciTech Connect (OSTI)

    Sites, J.R. )

    1991-01-01

    The polycrystalline nature of thin-film CdTe and CuInSe{sub 2} solar cells continues to be a major factor in several individual losses that limit overall cell efficiency. This report describes progress in the quantitative separation of these losses, including both measurement and analysis procedures. It also applies these techniques to several individual cells to help document the overall progress with CdTe and CuInSe{sub 2} cells. Notably, CdTe cells from Photon Energy have reduced window photocurrent losses to 1 mA/Cm{sup 2}; those from the University of South Florida have achieved a maximum power voltage of 693 mV; and CuInSe{sub 2} cells from International Solar Electric Technology have shown a hole density as high as 7 {times} 10{sup 16} cm{sup {minus}3}, implying a significant reduction in compensation. 9 refs.

  20. Temperature compensated photovoltaic array

    DOE Patents [OSTI]

    Mosher, D.M.

    1997-11-18

    A temperature compensated photovoltaic module comprises a series of solar cells having a thermally activated switch connected in parallel with several of the cells. The photovoltaic module is adapted to charge conventional batteries having a temperature coefficient differing from the temperature coefficient of the module. The calibration temperatures of the switches are chosen whereby the colder the ambient temperature for the module, the more switches that are on and form a closed circuit to short the associated solar cells. By shorting some of the solar cells as the ambient temperature decreases, the battery being charged by the module is not excessively overcharged at lower temperatures. PV module is an integrated solution that is reliable and inexpensive. 2 figs.

  1. Temperature compensated photovoltaic array

    DOE Patents [OSTI]

    Mosher, Dan Michael (Plano, TX)

    1997-11-18

    A temperature compensated photovoltaic module (20) comprised of a series of solar cells (22) having a thermally activated switch (24) connected in parallel with several of the cells (22). The photovoltaic module (20) is adapted to charge conventional batteries having a temperature coefficient (TC) differing from the temperature coefficient (TC) of the module (20). The calibration temperatures of the switches (24) are chosen whereby the colder the ambient temperature for the module (20), the more switches that are on and form a closed circuit to short the associated solar cells (22). By shorting some of the solar cells (22) as the ambient temperature decreases, the battery being charged by the module (20) is not excessively overcharged at lower temperatures. PV module (20) is an integrated solution that is reliable and inexpensive.

  2. Photovoltaics Special Research

    E-Print Network [OSTI]

    New South Wales, University of

    1999 Photovoltaics Special Research Centre UUNNSSWW 1999 Photovoltaics Special Research Centre The University of New South Wales Centre for Photovoltaic Engineering Electrical Engineering Building contains three sections which are colour coded as follows: Red: Photovoltaics Special Research Centre End

  3. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Tribal Government Savings Category: Fuel Cells, Fuel Cells using Renewable Fuels, Photovoltaics Interconnection Standards South Dakota's interconnection standards for distributed...

  4. Low-Cost Photovoltaics: Luminescent Solar Concentrators And Colloidal Quantum Dot Solar Cells

    E-Print Network [OSTI]

    Leow, Shin Woei

    2014-01-01

    S. Lewis, “Toward Cost-Effective Solar Energy Use,” Science,D. S. Ginley, “Low-Cost Inorganic Solar Cells: From Ink Toto lowering the cost of solar electricity production with

  5. Central American electrical interconnection

    SciTech Connect (OSTI)

    Not Available

    1988-12-01

    A technical cooperation grant of $2.25 million, designed to strengthen the capacity of Central American countries to operate their regional interconnected electrical system, was announced by the Inter-American Development Bank (IDB). The grant, extended from the banks Fund for Special Operations, will help improve the capacity of the regions electric power companies to achieve economical, safe operation of the interconnected electric power systems. The funds will also be used to finance regional studies of the accords, procedures, regulations, and supervisory mechanisms for the system, as well as program development and data bases.

  6. FINAL REPORT OF RESEARCH ON CuxS/ (Cd,Zn)S PHOTOVOLTAIC SOLAR ENERGY CONVERTERS 3/77 - 9/79

    E-Print Network [OSTI]

    Chin, B.L.

    2013-01-01

    and (Cd,Zn)S/CuxS photovoltaic cells. The approach was tothe CuxS/(Cd,Zn)S photovoltaic cell in order to betterstudying CdS/CuxS photovoltaic cells, films prepared by the

  7. Defect Engineering, Cell Processing, and Modeling for High-Performance, Low-Cost Crystalline Silicon Photovoltaics

    SciTech Connect (OSTI)

    Buonassisi, Tonio

    2013-02-26

    The objective of this project is to close the efficiency gap between industrial multicrystalline silicon (mc-Si) and monocrystalline silicon solar cells, while preserving the economic advantage of low-cost, high-volume substrates inherent to mc-Si. Over the course of this project, we made significant progress toward this goal, as evidenced by the evolution in solar-cell efficiencies. While most of the benefits of university projects are diffuse in nature, several unique contributions can be traced to this project, including the development of novel characterization methods, defect-simulation tools, and novel solar-cell processing approaches mitigate the effects of iron impurities ("Impurities to Efficiency" simulator) and dislocations. In collaboration with our industrial partners, this project contributed to the development of cell processing recipes, specialty materials, and equipment that increased cell efficiencies overall (not just multicrystalline silicon). Additionally, several students and postdocs who were either partially or fully engaged in this project (as evidenced by the publication record) are currently in the PV industry, with others to follow.

  8. Interconnection-Wide Transmission Planning Initiative: Topic...

    Office of Environmental Management (EM)

    A, Interconnection-Level Analysis and Planning Interconnection-Wide Transmission Planning Initiative: Topic A, Interconnection-Level Analysis and Planning A description of the...

  9. Photovoltaic module with adhesion promoter

    DOE Patents [OSTI]

    2013-10-08

    Photovoltaic modules with adhesion promoters and methods for fabricating photovoltaic modules with adhesion promoters are described. A photovoltaic module includes a solar cell including a first surface and a second surface, the second surface including a plurality of interspaced back-side contacts. A first glass layer is coupled to the first surface by a first encapsulating layer. A second glass layer is coupled to the second surface by a second encapsulating layer. At least a portion of the second encapsulating layer is bonded directly to the plurality of interspaced back-side contacts by an adhesion promoter.

  10. Charge transport in zirconium doped anatase nanowires dye-sensitized solar cells: Trade-off between lattice strain and photovoltaic parameters

    SciTech Connect (OSTI)

    Archana, P. S.; Gupta, Arunava; Yusoff, Mashitah M.; Jose, Rajan

    2014-10-13

    Zirconium (Zr) is doped up to 5 at.?% in anatase TiO{sub 2} nanowires by electrospinning and used as working electrode in dye-sensitized solar cells. Variations observed in the photovoltaic parameters were correlated by electrochemical impedance spectroscopy, open circuit voltage decay, and X-ray diffraction measurements. Results show that homovalent substitution of Zr in TiO{sub 2} increased the chemical capacitance and electron diffusion coefficient which in turn decreased charge transport resistance and charge transit time. However, lattice strain due to size mismatch between the Zr{sup 4+} and Ti{sup 4+} ions decreased open circuit voltage and fill factor thereby setting a trade-off between doping concentration and photovoltaic properties.

  11. TFB:TPDSi2 interfacial layer usable in organic photovoltaic cells

    DOE Patents [OSTI]

    Marks, Iobin J. (Evanston, IL); Hains, Alexander W. (Evanston, IL)

    2011-02-15

    The present invention, in one aspect, relates to a solar cell. In one embodiment, the solar cell includes an anode; an active organic layer comprising an electron-donating organic material and an electron-accepting organic material; and an interfacial layer formed between the anode and active organic layer, where the interfacial layer comprises a hole-transporting polymer characterized with a hole-mobility higher than that of the electron-donating organic material in the active organic layer, and a small molecule that has a high hole-mobility and is capable of crosslinking on contact with air.

  12. NREL Center for Photovoltaics

    ScienceCinema (OSTI)

    None

    2013-05-29

    Solar cells, also called photovoltaics (PV) by solar cell scientists, convert sunlight directly into electricity. Solar cells are often used to power calculators and watches. The performance of a solar cell is measured in terms of its efficiency at turning sunlight into electricity. Only sunlight of certain energies will work efficiently to create electricity, and much of it is reflected or absorbed by the material that make up the cell. Because of this, a typical commercial solar cell has an efficiency of 15%?about one-sixth of the sunlight striking the cell generates electricity. Low efficiencies mean that larger arrays are needed, and that means higher cost. Improving solar cell efficiencies while holding down the cost per cell is an important goal of the PV industry, researchers at the National Renewable Energy Laboratory (NREL) and other U.S. Department of Energy (DOE) laboratories, and they have made significant progress. The first solar cells, built in the 1950s, had efficiencies of less than 4%. For a text version of this video visit http://www.nrel.gov/learning/re_photovoltaics_video_text.html

  13. China Solar Photovoltaic Group CNPV aka Dongying Photovoltaic...

    Open Energy Info (EERE)

    Photovoltaic Group CNPV aka Dongying Photovoltaic Power Co Ltd or China Solar PV Jump to: navigation, search Name: China Solar Photovoltaic Group (CNPV, aka Dongying Photovoltaic...

  14. STATISTICAL ANALYSIS AND STRUCTURE OPTIMIZATION OF LARGE PHOTOVOLTAIC MODULE

    E-Print Network [OSTI]

    Qiu, Qinru

    STATISTICAL ANALYSIS AND STRUCTURE OPTIMIZATION OF LARGE PHOTOVOLTAIC MODULE RATHEESH R on the output power of large Photovoltaic (PV) module by modeling each PV cell as a current source whose short. Photovoltaic (PV) is a simple and elegant method of harnessing the sun's energy. PV devices (solar cells

  15. Study of Device Physics and Active Layer Morphology in Polymer-Fullerene Based Solar Cells: The Role of Vertical Phase Segregation and Organic/Metal Interface

    E-Print Network [OSTI]

    Zhang, Guangye

    2015-01-01

    A. J. Polymer Photovoltaic Cells: Enhanced Efficiencies viaProcessable Polymer Photovoltaic Cells by Self-OrganizationEfficiency of a Polymer Photovoltaic Cell in a Diffusive

  16. Development of a High Volume Capable Process to Manufacture High Performance Photovoltaic Cells: Cooperative Research and Development Final Report, CRADA Number CRD-08-322

    SciTech Connect (OSTI)

    Geisz, J. F.

    2012-11-01

    The intent of the work is for RFMD and NREL to cooperate in the development of a commercially viable and high volume capable process to manufacture high performance photovoltaic cells, based on inverted metamorphic (IMM) GaAs technology. The successful execution of the agreement will result in the production of a PV cell using technology that is capable of conversion efficiency at par with the market at the time of release (reference 2009: 37-38%), using RFMD's production facilities. The CRADA work has been divided into three phases: (1) a foundation phase where the teams will demonstrate the manufacturing of a basic PV cell at RFMD's production facilities; (2) a technology demonstration phase where the teams will demonstrate the manufacturing of prototype PV cells using IMM technology at RFMD's production facilities, and; (3) a production readiness phase where the teams will demonstrate the capability to manufacture PV cells using IMM technology with high yields, high reliability, high reproducibility and low cost.

  17. Solid State Photovoltaic Research Branch

    SciTech Connect (OSTI)

    Not Available

    1990-09-01

    This report summarizes the progress of the Solid State Photovoltaic Research Branch of the Solar Energy Research Institute (SERI) from October 1, 1988, through September 30,l 1989. Six technical sections of the report cover these main areas of SERIs in-house research: Semiconductor Crystal Growth, Amorphous Silicon Research, Polycrystalline Thin Films, III-V High-Efficiency Photovoltaic Cells, Solid-State Theory, and Laser Raman and Luminescence Spectroscopy. Sections have been indexed separately for inclusion on the data base.

  18. Capillary interconnect device

    DOE Patents [OSTI]

    Renzi, Ronald F

    2013-11-19

    An interconnecting device for connecting a plurality of first fluid-bearing conduits to a corresponding plurality of second fluid-bearing conduits thereby providing fluid communication between the first fluid-bearing conduits and the second fluid-bearing conduits. The device includes a manifold and one or two ferrule plates that are held by compressive axial forces.

  19. Evaluation of the commercial potential of novel organic photovoltaic technologies

    E-Print Network [OSTI]

    Barr, Jonathan (Jonathan Allan)

    2005-01-01

    Photovoltaic cells based on organic semiconducting materials have the potential to compete with the more mature crystalline and thin film based photovoltaic technologies in the future primarily due to the expectation of ...

  20. Solar photovoltaic reflective trough collection structure

    DOE Patents [OSTI]

    Anderson, Benjamin J.; Sweatt, William C.; Okandan, Murat; Nielson, Gregory N.

    2015-11-19

    A photovoltaic (PV) solar concentration structure having at least two troughs encapsulated in a rectangular parallelepiped optical plastic structure, with the troughs filled with an optical plastic material, the troughs each having a reflective internal surface and approximately parabolic geometry, and the troughs each including photovoltaic cells situated so that light impinging on the optical plastic material will be concentrated onto the photovoltaic cells. Multiple structures can be connected to provide a solar photovoltaic collection system that provides portable, efficient, low-cost electrical power.

  1. Reversible concentric ring microfluidic interconnects

    E-Print Network [OSTI]

    Thompson, Mary Kathryn, 1980-

    2004-01-01

    A reversible, Chip-to-Chip microfluidic interconnect was designed for use in high temperature, high pressure applications such as chemical microreactor systems. The interconnect uses two sets of concentric, interlocking ...

  2. Photovoltaic self-assembly.

    SciTech Connect (OSTI)

    Lavin, Judith; Kemp, Richard Alan; Stewart, Constantine A.

    2010-10-01

    This late-start LDRD was focused on the application of chemical principles of self-assembly on the ordering and placement of photovoltaic cells in a module. The drive for this chemical-based self-assembly stems from the escalating prices in the 'pick-and-place' technology currently used in the MEMS industries as the size of chips decreases. The chemical self-assembly principles are well-known on a molecular scale in other material science systems but to date had not been applied to the assembly of cells in a photovoltaic array or module. We explored several types of chemical-based self-assembly techniques, including gold-thiol interactions, liquid polymer binding, and hydrophobic-hydrophilic interactions designed to array both Si and GaAs PV chips onto a substrate. Additional research was focused on the modification of PV cells in an effort to gain control over the facial directionality of the cells in a solvent-based environment. Despite being a small footprint research project worked on for only a short time, the technical results and scientific accomplishments were significant and could prove to be enabling technology in the disruptive advancement of the microelectronic photovoltaics industry.

  3. The Design of Organic Polymers and Small Molecules to Improve the Efficiency of Excitonic Solar Cells

    E-Print Network [OSTI]

    Armstrong, Paul Barber

    2010-01-01

    DSCs. Organic Polymer Photovoltaics Solar cells made fromThe harvesting of solar energy using photovoltaics has theOrganic photovoltaics (OPVs), dye sensitized solar cells (

  4. Photovoltaic commercialization: an analysis of legal issues affecting a government-accelerated solar industry

    SciTech Connect (OSTI)

    Lamm, D.

    1980-06-01

    The Photovoltaics Research, Development, and Demonstration Act of 1978 is discussed. Legal issues, including solar access, the need for performance standards, the effects of building codes on photovoltaic system use and commercialization, and manufacturer and installer performance guarantees, are examined. Electric utility policies are examined, including interconnection, and rates and legal issues affecting them. (LEW)

  5. EELE408 Photovoltaics Lecture 15 Photovoltaic Devices

    E-Print Network [OSTI]

    Kaiser, Todd J.

    1 EELE408 Photovoltaics Lecture 15 Photovoltaic Devices Dr. Todd J. Kaiser tjkaiser) · Demonstrated the photovoltaic effect · Best results with UV or blue light 2 g · Electrodes covered with light of photovoltaic effect in an all solid state device · Several decades before the effect could be explained Fritts

  6. US photovoltaic patents: 1991--1993

    SciTech Connect (OSTI)

    Pohle, L

    1995-03-01

    This document contains US patents on terrestrial photovoltaic (PV) power applications, including systems, components, and materials as well as manufacturing and support functions. The patent entries in this document were issued from 1991 to 1993. The entries were located by searching USPA, the database of the US Patent Office. The final search retrieved all patents under the class ``Batteries, Thermoelectric and Photoelectric`` and the subclasses ``Photoelectric,`` ``Testing,`` and ``Applications.`` The search also located patents that contained the words ``photovoltaic(s)`` or ``solar cell(s)`` and their derivatives. After the initial list was compiled, most of the patents on the following subjects were excluded: space photovoltaic technology, use of the photovoltaic effect for detectors, and subjects only peripherally concerned with photovoltaic. Some patents on these three subjects were included when ft appeared that those inventions might be of use in terrestrial PV power technologies.

  7. Thin film photovoltaic cells having increased durability and operating life and method for making same

    DOE Patents [OSTI]

    Barnett, Allen M. (Newark, DE); Masi, James V. (Wilmington, DE); Hall, Robert B. (Newark, DE)

    1980-12-16

    A solar cell having a copper-bearing absorber is provided with a composite transparent encapsulating layer specifically designed to prevent oxidation of the copper sulfide. In a preferred embodiment, the absorber is a layer of copper sulfide and the composite layer comprises a thin layer of copper oxide formed on the copper sulfide and a layer of encapsulating glass formed on the oxide. It is anticipated that such devices, when exposed to normal operating conditions of various terrestrial applications, can be maintained at energy conversion efficiencies greater than one-half the original conversion efficiency for periods as long as thirty years.

  8. Photovoltaic Single-Crystalline, Thin-Film Cell Basics | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy Bills andOrder 422.1, CONDUCTCriticalEnergySilicon Cell BasicsEnergy

  9. FORM EIA-63B ANNUAL PHOTOVOLTAIC CELL/MODULE SHIPMENTS REPORT INSTRUCTIONS

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural GasNatural GasEIA lowers 2015Values shown for3 CELL/MODULE

  10. Sandia Energy - Microsystems Enabled Photovoltaics (MEPV)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of microsystem-enabled photovoltaic (MEPV) cells (497 downloads) Microscale c-Si (C)PV Cells for Low-Cost Power (259 downloads) Flexible MEPV Publications Ultrablade Fabrics...

  11. Photovoltaic-thermal collectors

    DOE Patents [OSTI]

    Cox, III, Charles H. (Carlisle, MA)

    1984-04-24

    A photovoltaic-thermal solar cell including a semiconductor body having antireflective top and bottom surfaces and coated on each said surface with a patterned electrode covering less than 10% of the surface area. A thermal-absorbing surface is spaced apart from the bottom surface of the semiconductor and a heat-exchange fluid is passed between the bottom surface and the heat-absorbing surface.

  12. Inner retinal preservation in rat models of retinal degeneration implanted with subretinal photovoltaic arrays

    E-Print Network [OSTI]

    Palanker, Daniel

    photovoltaic arrays Jacob G. Light a, b , James W. Fransen c , Adewumi N. Adekunle a , Alice Adkins b , Gobinda: Retina Prosthetic Bipolar cells Amacrine cells Müller glial cells a b s t r a c t Photovoltaic arrays

  13. Screening-engineered Field-effect Photovoltaics and Synthesis, Characterization, and Applications of Carbon-based and Related Nanomaterials

    E-Print Network [OSTI]

    Regan, William Raymond

    2012-01-01

    solar cells. Progress in Photovoltaics, 10(4):271–278,Al 2 O 3 . Progress in Photovoltaics, 16(6):461–466, 2008. [

  14. Method of manufacturing a large-area segmented photovoltaic module

    DOE Patents [OSTI]

    Lenox, Carl

    2013-11-05

    One embodiment of the invention relates to a segmented photovoltaic (PV) module which is manufactured from laminate segments. The segmented PV module includes rectangular-shaped laminate segments formed from rectangular-shaped PV laminates and further includes non-rectangular-shaped laminate segments formed from rectangular-shaped and approximately-triangular-shaped PV laminates. The laminate segments are mechanically joined and electrically interconnected to form the segmented module. Another embodiment relates to a method of manufacturing a large-area segmented photovoltaic module from laminate segments of various shapes. Other embodiments relate to processes for providing a photovoltaic array for installation at a site. Other embodiments and features are also disclosed.

  15. Photovoltaic building sheathing element with anti-slide features

    DOE Patents [OSTI]

    Keenihan, James R.; Langmaid, Joseph A.; Lopez, Leonardo C.

    2015-09-08

    The present invention is premised` upon an assembly that includes at least a photovoltaic building sheathing element capable of being affixed on a building structure, the photovoltaic building sheathing element. The element including a photovoltaic cell assembly, a body portion attached to one or more portions of the photovoltaic cell assembly; and at feast a first and a second connector assembly capable of directly or indirectly electrically connecting the photovoltaic cell assembly to one or more adjoining devices; wherein the body portion includes one or more geometric features adapted to engage a vertically adjoining device before installation.

  16. Solid-state energy storage module employing integrated interconnect board

    DOE Patents [OSTI]

    Rouillard, Jean (Saint-Luc, CA); Comte, Christophe (Montreal, CA); Daigle, Dominik (St-Hyacinthe, CA); Hagen, Ronald A. (Stillwater, MN); Knudson, Orlin B. (Vadnais Heights, MN); Morin, Andre (Longueuil, CA); Ranger, Michel (Lachine, CA); Ross, Guy (Beloeil, CA); Rouillard, Roger (Beloeil, CA); St-Germain, Philippe (Outremont, CA); Sudano, Anthony (Laval, CA); Turgeon, Thomas A. (Fridley, MN)

    2000-01-01

    The present invention is directed to an improved electrochemical energy storage device. The electrochemical energy storage device includes a number of solid-state, thin-film electrochemical cells which are selectively interconnected in series or parallel through use of an integrated interconnect board. The interconnect board is typically disposed within a sealed housing which also houses the electrochemical cells, and includes a first contact and a second contact respectively coupled to first and second power terminals of the energy storage device. The interconnect board advantageously provides for selective series or parallel connectivity with the electrochemical cells, irrespective of electrochemical cell position within the housing. In one embodiment, a sheet of conductive material is processed by employing a known milling, stamping, or chemical etching technique to include a connection pattern which provides for flexible and selective interconnecting of individual electrochemical cells within the housing, which may be a hermetically sealed housing. Fuses and various electrical and electro-mechanical devices, such as bypass, equalization, and communication devices for example, may also be mounted to the interconnect board and selectively connected to the electrochemical cells.

  17. 1990 DOE/SANDIA crystalline photovoltaic technology project review meeting

    SciTech Connect (OSTI)

    Ruby, D.S.

    1990-07-01

    This document serves as the proceedings for the annual project review meeting held by Sandia's Photovoltaic Cell Research Division and Photovoltaic Technology Division. It contains information supplied by each organization making a presentation at the meeting, which was held August 7 through 9, 1990 at the Sheraton Hotel in Albuquerque, New Mexico. Sessions were held to discuss national photovoltaic programs, one-sun crystalline silicon cell research, concentrator silicon cell research, concentrator 3-5 cell research, and concentrating collector development.

  18. Photovoltaic roof heat flux

    E-Print Network [OSTI]

    Samady, Mezhgan Frishta

    2011-01-01

    designs (relatively) Photovoltaic Solar P a n e l AtmosphereCALIFORNIA, SAN DIEGO Photovoltaic Roof Heat Flux A ThesisABSTRACT OF T H E THESIS Photovoltaic Roof Heat Flux by

  19. Photovoltaics Life Cycle Analysis

    E-Print Network [OSTI]

    1 Photovoltaics Life Cycle Analysis Vasilis Fthenakis Center of Life Cycle Analysis Earth & Environmental Engineering Department Columbia University and National Photovoltaic (PV) EHS Research Center (air, water, solid) M, Q E PV array Photovoltaic modules Balance of System (BOS) (Inverters

  20. INTEGRATING PHOTOVOLTAIC SYSTEMS

    E-Print Network [OSTI]

    Delaware, University of

    INTEGRATING PHOTOVOLTAIC SYSTEMS INTO PUBLIC SECTOR PERFORMANCE CONTRACTS IN DELAWARE FINAL for Energy and Environmental Policy University of Delaware February 2006 #12;INTEGRATING PHOTOVOLTAIC..................................................................................................... 1 1.2 Photovoltaics in Performance Contracts: An Overview

  1. Amorphous Silicon-Carbon Nanostructure Photovoltaic Devices

    E-Print Network [OSTI]

    Schriver, Maria Christine

    2012-01-01

    and Photovoltaic Performance . . . . . . . . . . . . . . .Amorphous Silicon as a Photovoltaic Material 2.1.2ii Photovoltaic Model . . . . . . . . . . .

  2. High Penetration, Grid Connected Photovoltaic Technology Codes and Standards: Preprint

    SciTech Connect (OSTI)

    Basso, T. S.

    2008-05-01

    This paper reports the interim status in identifying and reviewing photovoltaic (PV) codes and standards (C&S) and related electrical activities for grid-connected, high-penetration PV systems with a focus on U.S. electric utility distribution grid interconnection.

  3. ECE 414A/514A Photovoltaic Solar Energy Systems

    E-Print Network [OSTI]

    Arizona, University of

    ECE 414A/514A Photovoltaic Solar Energy Systems Instructor: Prof. Raymond K. Kostuk Time: MWF 04, and development of photovoltaic cells and it is expected to continue into the foreseeable future. This trend to provide an introduction to the theory and operation of different types of photovoltaic devices

  4. Design and Control of an Inverter for Photovoltaic Applications

    E-Print Network [OSTI]

    Hansen, René Rydhof

    Design and Control of an Inverter for Photovoltaic Applications by Sřren Bćkhřj Kjćr Dissertation Assistant. He also taught photovoltaic systems for terrestrial- and space-applications (Power system quality, control and optimized design, for fuel cell and photovoltaic applications. He is currently

  5. MTL ANNUAL RESEARCH REPORT 2015 Energy 59 Energy: Photovoltaics, Energy

    E-Print Network [OSTI]

    Kastner, Marc A.

    MTL ANNUAL RESEARCH REPORT 2015 Energy 59 Energy: Photovoltaics, Energy Harvesting, Energy Storage........................................ 63 Ink-Jet Printing of Organic-Inorganic Halide Perovskites for Solar Photovoltaics on porous silicon or direct wafering to reduce the volume of sil- icon used in a photovoltaic cell

  6. Spring 2012 Course Offering EEE 598 Advanced Photovoltaics

    E-Print Network [OSTI]

    Zhang, Junshan

    Spring 2012 Course Offering EEE 598 Advanced Photovoltaics Professor Meng Tao Course Description: The course will cover both technical and broader issues related to photovoltaics for the production for solar energy utilization. Review of solar cell physics. Wafer silicon photovoltaic technology. Survey

  7. ORIGINAL ARTICLE Single ferroelectric-domain photovoltaic switch based

    E-Print Network [OSTI]

    Jo, Moon-Ho

    ORIGINAL ARTICLE Single ferroelectric-domain photovoltaic switch based on lateral BiFeO3 cells Ji serves as a basis for solid-state memory. This phenomenon can also yield an interesting photovoltaic imposed by the ferroelectric polarization vectors. Here, we demonstrate a single-domain photovoltaic

  8. Study of surface enhanced resonant Raman spectroscopy of chromophores on unaggregated plasmonically active nanoparticles / Surface-enhanced Raman study of the interaction of the PEDOT:PSS and P3HT/PCBM components of organic polymer solar cells with plasmonically active nanoparticles

    E-Print Network [OSTI]

    Stavytska-Barba, Marina Valeriyivna

    2012-01-01

    D. Conjugated Polymer Photovoltaic Cells. Chem. Mater. 2004,A. J. Polymer Photovoltaic Cells: Enhanced Efficiencies ViaEfficiency Polymer Photovoltaic Cells using Solution- Based

  9. Process Development for Nanostructured Photovoltaics

    SciTech Connect (OSTI)

    Elam, Jeffrey W.

    2015-01-01

    Photovoltaic manufacturing is an emerging industry that promises a carbon-free, nearly limitless source of energy for our nation. However, the high-temperature manufacturing processes used for conventional silicon-based photovoltaics are extremely energy-intensive and expensive. This high cost imposes a critical barrier to the widespread implementation of photovoltaic technology. Argonne National Laboratory and its partners recently invented new methods for manufacturing nanostructured photovoltaic devices that allow dramatic savings in materials, process energy, and cost. These methods are based on atomic layer deposition, a thin film synthesis technique that has been commercialized for the mass production of semiconductor microelectronics. The goal of this project was to develop these low-cost fabrication methods for the high efficiency production of nanostructured photovoltaics, and to demonstrate these methods in solar cell manufacturing. We achieved this goal in two ways: 1) we demonstrated the benefits of these coatings in the laboratory by scaling-up the fabrication of low-cost dye sensitized solar cells; 2) we used our coating technology to reduce the manufacturing cost of solar cells under development by our industrial partners.

  10. Photovoltaic solar concentrator

    DOE Patents [OSTI]

    Nielson, Gregory N.; Okandan, Murat; Resnick, Paul J.; Cruz-Campa, Jose Luis

    2012-12-11

    A photovoltaic solar concentrator is disclosed with one or more transverse-junction solar cells (also termed point contact solar cells) and a lens located above each solar cell to concentrate sunlight onto the solar cell to generate electricity. Piezoelectric actuators tilt or translate each lens to track the sun using a feedback-control circuit which senses the electricity generated by one or more of the solar cells. The piezoelectric actuators can be coupled through a displacement-multiplier linkage to provide an increased range of movement of each lens. Each lens in the solar concentrator can be supported on a frame (also termed a tilt plate) having three legs, with the movement of the legs being controlled by the piezoelectric actuators.

  11. Solution-processed infrared photovoltaic devices with >10% monochromatic internal quantum efficiency

    E-Print Network [OSTI]

    Sargent, Edward H. "Ted"

    tandem or multijunction solar cells.6 These first solution-cast photovoltaics operating beyond 1 m, solution-cast photovoltaics are of urgent interest to realize low-cost solar cells. Polymer, polymer

  12. Fabrication and Characterization of Organic Solar Cells

    E-Print Network [OSTI]

    Yengel, Emre

    2010-01-01

    MA. Third generation photovoltaics: solar cells for 2020 andSolar cell efficiency tables (Version 27). Prog Photovoltaics.Solar Cells Among other application areas, using graphene in organic photovoltaics

  13. Enhancement of current collection in epitaxial lift-off InAs/GaAs quantum dot thin film solar cell and concentrated photovoltaic study

    SciTech Connect (OSTI)

    Sogabe, Tomah Shoji, Yasushi; Tamayo, Efrain; Okada, Yoshitaka; Mulder, Peter; Schermer, John

    2014-09-15

    We report the fabrication of a thin film InAs/GaAs quantum dot solar cell (QD cell) by applying epitaxial lift-off (ELO) approach to the GaAs substrate. We confirmed significant current collection enhancement (?0.91?mA/cm{sup 2}) in the ELO-InAs QD cell within the wavelength range of 700?nm–900?nm when compared to the ELO-GaAs control cell. This is almost six times of the sub-GaAs bandgap current collection (?0.16?mA/cm{sup 2}) from the wavelength range of 900?nm and beyond, we also confirmed the ELO induced resonance cavity effect was able to increase the solar cell efficiency by increasing both the short circuit current and open voltage. The electric field intensity of the resonance cavity formed in the ELO film between the Au back reflector and the GaAs front contact layer was analyzed in detail by finite-differential time-domain (FDTD) simulation. We found that the calculated current collection enhancement within the wavelength range of 700?nm–900?nm was strongly influenced by the size and shape of InAs QD. In addition, we performed concentrated light photovoltaic study and analyzed the effect of intermediate states on the open voltage under varied concentrated light intensity for the ELO-InAs QD cell.

  14. PHOTOVOLTAICS SPECIAL RESEARCH

    E-Print Network [OSTI]

    New South Wales, University of

    PHOTOVOLTAICS SPECIAL RESEARCH CENTRE UNSW ANNUAL REPORT 1997 #12;PHOTOVOLTAICS SPECIAL RESEARCH CENTRE UNSW ANNUAL REPORT 1997 Photovoltaics Special Research Centre School of Electrical Engineering.labs@unsw.edu.au WWW: http://www.pv.unsw.edu.au THE UNIVERSITY OF NEW SOUTH WALES The Photovoltaics Special Research

  15. Carbon Nanomaterials: The Ideal Interconnect

    E-Print Network [OSTI]

    Carbon Nanomaterials: The Ideal Interconnect Technology for Next- Generation ICs Hong Li, Chuan Xu-generation ICs. In this research, carbon nanomaterials, with their many attractive properties, are emerging-a`-vis optical and RF interconnects, and we illustrate why carbon nanomaterials constitute the ideal intercon

  16. Solar Junction Develops World Record Setting Concentrated Photovoltaic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the company's concentrated photovoltaic technology that also set a world record for conversion efficiency. The company's cell technology relies on inexpensive lenses to magnify...

  17. Novel materials, computational spectroscopy, and multiscale simulation in nanoscale photovoltaics

    E-Print Network [OSTI]

    Bernardi, Marco, Ph. D. Massachusetts Institute of Technology

    2013-01-01

    Photovoltaic (PV) solar cells convert solar energy to electricity using combinations of semiconducting sunlight absorbers and metallic materials as electrical contacts. Novel nanoscale materials introduce new paradigms for ...

  18. Statistical Methods for Enhanced Metrology in Semiconductor/Photovoltaic Manufacturing

    E-Print Network [OSTI]

    Zeng, Dekong

    2012-01-01

    analysis. ” Solar Energy Materials and Solar Cells 91, 670–material quality in multicrystallene silicon. ” in Proceedings of the 21st European Photovoltaic Solar Energy

  19. Practical Roadmap and Limits to Nanostructured Photovoltaics

    E-Print Network [OSTI]

    Lunt, Richard R.

    The significant research interest in the engineering of photovoltaic (PV) structures at the nanoscale is directed toward enabling reductions in PV module fabrication and installation costs as well as improving cell power ...

  20. Applications of nanoimprinted structures to organic photovoltaics

    E-Print Network [OSTI]

    Flores, Eletha J

    2013-01-01

    Small-molecule organic photovoltaic cells (OPVs) have the potential to be a low-cost, flexible power conversion solution to many energy problems. These OPVs take advantage of an extremely thin active layer which enables ...

  1. Silicon cast wafer recrystallization for photovoltaic applications

    E-Print Network [OSTI]

    Hantsoo, Eerik T. (Eerik Torm)

    2008-01-01

    Current industry-standard methods of manufacturing silicon wafers for photovoltaic (PV) cells define the electrical properties of the wafer in a first step, and then the geometry of the wafer in a subsequent step. The ...

  2. Photovoltaics: New opportunities for utilities

    SciTech Connect (OSTI)

    Not Available

    1991-07-01

    This publication presents information on photovoltaics. The following topics are discussed: Residential Photovoltaics: The New England Experience Builds Confidence in PV; Austin's 300-kW Photovoltaic Power Station: Evaluating the Breakeven Costs; Residential Photovoltaics: The Lessons Learned; Photovoltaics for Electric Utility Use; Least-Cost Planning: The Environmental Link; Photovoltaics in the Distribution System; Photovoltaic Systems for the Rural Consumer; The Issues of Utility-Intertied Photovoltaics; and Photovoltaics for Large-Scale Use: Costs Ready to Drop Again.

  3. Thin film photovoltaic device

    DOE Patents [OSTI]

    Catalano, A.W.; Bhushan, M.

    1982-08-03

    A thin film photovoltaic solar cell which utilizes a zinc phosphide semiconductor is of the homojunction type comprising an n-type conductivity region forming an electrical junction with a p-type region, both regions consisting essentially of the same semiconductor material. The n-type region is formed by treating zinc phosphide with an extrinsic dopant such as magnesium. The semiconductor is formed on a multilayer substrate which acts as an opaque contact. Various transparent contacts may be used, including a thin metal film of the same chemical composition as the n-type dopant or conductive oxides or metal grids. 5 figs.

  4. Thin film photovoltaic device

    DOE Patents [OSTI]

    Catalano, Anthony W. (Wilmington, DE); Bhushan, Manjul (Wilmington, DE)

    1982-01-01

    A thin film photovoltaic solar cell which utilizes a zinc phosphide semiconductor is of the homojunction type comprising an n-type conductivity region forming an electrical junction with a p-type region, both regions consisting essentially of the same semiconductor material. The n-type region is formed by treating zinc phosphide with an extrinsic dopant such as magnesium. The semiconductor is formed on a multilayer substrate which acts as an opaque contact. Various transparent contacts may be used, including a thin metal film of the same chemical composition as the n-type dopant or conductive oxides or metal grids.

  5. Interfacial Engineering of Molecular Photovoltaics

    E-Print Network [OSTI]

    Shelton, Steven Wade

    2014-01-01

    Engineering of Molecular Photovoltaics by Steven WadeEngineering of Molecular Photovoltaics Copyright © 2014 byEngineering of Molecular Photovoltaics by Steven Wade

  6. Recycling Of Cis Photovoltaic Waste

    DOE Patents [OSTI]

    Drinkard, Jr., William F. (Charlotte, NC); Long, Mark O. (Charlotte, NC); Goozner; Robert E. (Charlotte, NC)

    1998-07-14

    A method for extracting and reclaiming metals from scrap CIS photovoltaic cells and associated photovoltaic manufacturing waste by leaching the waste with dilute nitric acid, skimming any plastic material from the top of the leaching solution, separating glass substrate from the leachate, electrolyzing the leachate to plate a copper and selenium metal mixture onto a first cathode, replacing the cathode with a second cathode, re-electrolyzing the leachate to plate cadmium onto the second cathode, separating the copper from selenium, and evaporating the depleted leachate to yield a zinc and indium containing solid.

  7. Investigation of the Role of Trap States in Solar Cell Reliability using Photothermal Deflection Spectroscopy

    E-Print Network [OSTI]

    Bezryadina, Anna Sergeyevna

    2012-01-01

    Photovoltaics, “Best Research-Cell Efficiencies,” http://en.wikipedia.org/wiki/Solar_Photovoltaics There are several advantages to photovoltaic solarSOLAR CELLS 90 5.1. Introduction to Organic Photovoltaics ..

  8. Interconnection-Wide Transmission Planning Initiative: Topic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    State Agency Input Regarding Electric Resource and Transmission Planning in the Texas Interconnection Interconnection-Wide Transmission Planning Initiative: Topic B, State Agency...

  9. Interconnection-Wide Transmission Planning Initiative: Topic...

    Office of Environmental Management (EM)

    Interconnection on Electric Resource Planning and Priorities Interconnection-Wide Transmission Planning Initiative: Topic B, Cooperation Among States in the Eastern...

  10. Interconnection-Wide Transmission Planning Initiative: Topic...

    Broader source: Energy.gov (indexed) [DOE]

    Western Interconnection under the Interconnection-Wide Transmission Planning Initiative, part of the American Recovery and Reinvestment Act. The fundamental purpose of the awards...

  11. Photovoltaic module and module arrays

    DOE Patents [OSTI]

    Botkin, Jonathan; Graves, Simon; Lenox, Carl J. S.; Culligan, Matthew; Danning, Matt

    2013-08-27

    A photovoltaic (PV) module including a PV device and a frame, The PV device has a PV laminate defining a perimeter and a major plane. The frame is assembled to and encases the laminate perimeter, and includes leading, trailing, and side frame members, and an arm that forms a support face opposite the laminate. The support face is adapted for placement against a horizontal installation surface, to support and orient the laminate in a non-parallel or tilted arrangement. Upon final assembly, the laminate and the frame combine to define a unitary structure. The frame can orient the laminate at an angle in the range of 3.degree.-7.degree. from horizontal, and can be entirely formed of a polymeric material. Optionally, the arm incorporates integral feature(s) that facilitate interconnection with corresponding features of a second, identically formed PV module.

  12. Photovoltaic module and module arrays

    DOE Patents [OSTI]

    Botkin, Jonathan (El Cerrito, CA); Graves, Simon (Berkeley, CA); Lenox, Carl J. S. (Oakland, CA); Culligan, Matthew (Berkeley, CA); Danning, Matt (Oakland, CA)

    2012-07-17

    A photovoltaic (PV) module including a PV device and a frame. The PV device has a PV laminate defining a perimeter and a major plane. The frame is assembled to and encases the laminate perimeter, and includes leading, trailing, and side frame members, and an arm that forms a support face opposite the laminate. The support face is adapted for placement against a horizontal installation surface, to support and orient the laminate in a non-parallel or tilted arrangement. Upon final assembly, the laminate and the frame combine to define a unitary structure. The frame can orient the laminate at an angle in the range of 3.degree.-7.degree. from horizontal, and can be entirely formed of a polymeric material. Optionally, the arm incorporates integral feature(s) that facilitate interconnection with corresponding features of a second, identically formed PV module.

  13. Graded Recombination Layers for Multijunction Photovoltaics Ghada I. Koleilat,

    E-Print Network [OSTI]

    Sargent, Edward H. "Ted"

    -matched multijunction devices, the recombination layers must allow the hole current from one cell to recombine functions in the interlayers. KEYWORDS: Multijunction photovoltaics, tandem solar cell, graded recombination layer, thermionic and tunneling transport, transparent conductive oxides Multijunction solar cells raise

  14. Multijunction photovoltaic device and fabrication method

    DOE Patents [OSTI]

    Arya, Rajeewa R. (Jamison, PA); Catalano, Anthony W. (Furlong, PA)

    1993-09-21

    A multijunction photovoltaic device includes first and second amorphous silicon PIN photovoltaic cells in a stacked arrangement. An interface layer, composed of a doped silicon compound, is disposed between the two cells and has a lower bandgap than the respective n- and p-type adjacent layers of the first and second cells. The interface layer forms an ohmic contact with the one or the adjacent cell layers of the same conductivity type, and a tunnel junction with the other of the adjacent cell layers. The disclosed device is fabricated by a glow discharge process.

  15. Reliability of Electrical Interconnects

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  16. 554 IEEE JOURNAL OF PHOTOVOLTAICS, VOL. 4, NO. 2, MARCH 2014 Light Trapping in Thin Crystalline Si Solar Cells

    E-Print Network [OSTI]

    Polman, Albert

    --Dielectric nanoparticles placed on top of a thin-film solar cell strongly enhance light absorption in the cell over a broad to the fab- rication of thin-film c-Si solar cells on glass substrates by liquid phase crystallization [1 into thin (1­100 m) crystalline Si solar cells patterned with Si nanocylinder arrays on top of the cell. We

  17. Renewable Systems Interconnection: Executive Summary

    SciTech Connect (OSTI)

    Kroposki, B.; Margolis, R.; Kuswa, G.; Torres, J.; Bower, W.; Key, T.; Ton, D.

    2008-02-01

    The U.S. Department of Energy launched the Renewable Systems Interconnection (RSI) study in 2007 to address the challenges to high penetrations of distributed renewable energy technologies. The RSI study consists of 14 additional reports.

  18. Interconnection Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICE INDUSTRIAL TECHNICAL8-02DepartmentInterconnection Resources Interconnection

  19. High voltage photovoltaic power converter

    DOE Patents [OSTI]

    Haigh, Ronald E. (Arvada, CO); Wojtczuk, Steve (Cambridge, MA); Jacobson, Gerard F. (Livermore, CA); Hagans, Karla G. (Livermore, CA)

    2001-01-01

    An array of independently connected photovoltaic cells on a semi-insulating substrate contains reflective coatings between the cells to enhance efficiency. A uniform, flat top laser beam profile is illuminated upon the array to produce electrical current having high voltage. An essentially wireless system includes a laser energy source being fed through optic fiber and cast upon the photovoltaic cell array to prevent stray electrical signals prior to use of the current from the array. Direct bandgap, single crystal semiconductor materials, such as GaAs, are commonly used in the array. Useful applications of the system include locations where high voltages are provided to confined spaces such as in explosive detonation, accelerators, photo cathodes and medical appliances.

  20. Wind/PV Generation for Frequency Regulation and Oscillation Damping in the Eastern Interconnection

    SciTech Connect (OSTI)

    Liu, Yong; Gracia, Jose R; Hadley, Stanton W; Liu, Yilu

    2013-12-01

    This report presents the control of renewable energy sources, including the variable-speed wind generators and solar photovoltaic (PV) generators, for frequency regulation and inter-area oscillation damping in the U.S. Eastern Interconnection (EI). In this report, based on the user-defined wind/PV generator electrical control model and the 16,000-bus Eastern Interconnection dynamic model, the additional controllers for frequency regulation and inter-area oscillation damping are developed and incorporated and the potential contributions of renewable energy sources to the EI system frequency regulation and inter-area oscillation damping are evaluated.

  1. Photovoltaics Informatics: Harnessing Energy Science via Data-Driven Approaches

    SciTech Connect (OSTI)

    Suh, C.; Munch, K.; Biagioni, D.; Glynn, S.; Scharf, J.; Contreras, M. A.; Perkins, J. D.; Nelson, B. P.; Jones, W. B.

    2011-01-01

    We discuss our current research focus on photovoltaic (PV) informatics, which is dedicated to functionality enhancement of solar materials through data management and data mining-aided, integrated computational materials engineering (ICME) for rapid screening and identification of multi-scale processing/structure/property/performance relationships. Our current PV informatics research ranges from transparent conducting oxides (TCO) to solar absorber materials. As a test bed, we report on examples of our current data management system for PV research and advanced data mining to improve the performance of solar cells such as CuIn{sub x}Ga{sub 1-x}Se{sub 2} (CIGS) aiming at low-cost and high-rate processes. For the PV data management, we show recent developments of a strategy for data modeling, collection and aggregation methods, and construction of data interfaces, which enable proper archiving and data handling for data mining. For scientific data mining, the value of high-dimensional visualizations and non-linear dimensionality reduction is demonstrated to quantitatively assess how process conditions or properties are interconnected in the context of the development of Al-doped ZnO (AZO) thin films as the TCO layers for CIGS devices. Such relationships between processing and property of TCOs lead to optimal process design toward enhanced performance of CIGS cells/devices.

  2. Using Self-Organization To Control Morphology in Molecular Photovoltaics

    E-Print Network [OSTI]

    in thin-film solar cells. A general understanding of how to control morphology in organic photovoltaicsUsing Self-Organization To Control Morphology in Molecular Photovoltaics Seok Ju Kang,,# Seokhoon-processed self- assembled heterojunction solar cells using dodecyloxy- substituted contorted hexabenzocoronene

  3. Development of Ceramic Interconnect Materials for SOFC

    SciTech Connect (OSTI)

    Yoon, Kyung J.; Stevenson, Jeffry W.; Marina, Olga A.

    2010-08-05

    Currently, acceptor-doped lanthanum chromite is the state-of-the-art ceramic interconnect material for high temperature solid oxide fuel cells (SOFCs) due to its fairly good electronic conductivity and chemical stability in both oxidizing and reducing atmospheres, and thermal compatibility with other cell components. The major challenge for acceptor-doped lanthanum chromite for SOFC interconnect applications is its inferior sintering behavior in air, which has been attributed to the development of a thin layer of Cr2O3 at the interparticle necks during the initial stages of sintering. In addition, lanthanum chromite is reactive with YSZ electrolyte at high temperatures, forming a highly resistive lanthanum zirconate phase (La2Zr2O7), which further complicates co-firing processes. Acceptor-doped yttrium chromite is considered to be one of the promising alternatives to acceptor-doped lanthanum chromite because it is more stable with respect to the formation of hydroxides in SOFC operating conditions, and the formation of impurity phases can be effectively avoided at co-firing temperatures. In addition, calcium-doped yttrium chromite exhibits higher mechanical strength than lanthanum chromite-based materials. The major drawback of yttrium chromite is considered to be its lower electrical conductivity than lanthanum chromite. The properties of yttrium chromites could possibly be improved and optimized by partial substitution of chromium with various transition metals. During FY10, PNNL investigated the effect of various transition metal doping on chemical stability, sintering and thermal expansion behavior, microstructure, electronic and ionic conductivity, and chemical compatibility with other cell components to develop the optimized ceramic interconnect material.

  4. Photovoltaics (Fact Sheet)

    SciTech Connect (OSTI)

    DOE Solar Energy Technologies Program

    2011-06-27

    The fact sheet summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its photovoltaics subprogram.

  5. Infiltrating Semiconducting Polymers into Self-Assembled Mesoporous Titania Films for Photovoltaic Applications**

    E-Print Network [OSTI]

    McGehee, Michael

    Infiltrating Semiconducting Polymers into Self-Assembled Mesoporous Titania Films for Photovoltaic. Introduction A promising approach for making inexpensive photovoltaic cells is to fill nanoporous titania films there have been several reports on photovoltaic cells made in this way, there have been no studies that show

  6. Amorphous silicon photovoltaic devices

    DOE Patents [OSTI]

    Carlson, David E.; Lin, Guang H.; Ganguly, Gautam

    2004-08-31

    This invention is a photovoltaic device comprising an intrinsic or i-layer of amorphous silicon and where the photovoltaic device is more efficient at converting light energy to electric energy at high operating temperatures than at low operating temperatures. The photovoltaic devices of this invention are suitable for use in high temperature operating environments.

  7. PHOTOVOLTAICS EXCELLENCE IS

    E-Print Network [OSTI]

    New South Wales, University of

    #12;THE PHOTOVOLTAICS CENTRE OF EXCELLENCE IS A CENTRE OF EXCELLENCE OF THE AUSTRALIAN RESEARCH) Photovoltaics Centre of Excellence commenced at the University of New South Wales (UNSW) on 13th June, 2003 silicon photovoltaic research on three separate fronts, as well as to apply these advances to the related

  8. Photovoltaic device and method

    DOE Patents [OSTI]

    Cleereman, Robert; Lesniak, Michael J.; Keenihan, James R.; Langmaid, Joe A.; Gaston, Ryan; Eurich, Gerald K.; Boven, Michelle L.

    2015-11-24

    The present invention is premised upon an improved photovoltaic device ("PVD") and method of use, more particularly to an improved photovoltaic device with an integral locator and electrical terminal mechanism for transferring current to or from the improved photovoltaic device and the use as a system.

  9. Photovoltaic device and method

    DOE Patents [OSTI]

    Cleereman, Robert J; Lesniak, Michael J; Keenihan, James R; Langmaid, Joe A; Gaston, Ryan; Eurich, Gerald K; Boven, Michelle L

    2015-01-27

    The present invention is premised upon an improved photovoltaic device ("PVD") and method of use, more particularly to an improved photovoltaic device with an integral locator and electrical terminal mechanism for transferring current to or from the improved photovoltaic device and the use as a system.

  10. PHOTOVOLTAICS AND COMMERCIAL BUILDINGS--

    E-Print Network [OSTI]

    Perez, Richard R.

    PHOTOVOLTAICS AND COMMERCIAL BUILDINGS-- A NATURAL MATCH A study highlighting strategic opportunities and locations for using photovoltaics to power businesses #12;SHOULD PV BE IN YOUR BUSINESS PLAN know that solar energy is environ- mentally attractive--and that photovoltaic or PV systems have made

  11. Solar energy storage through the homogeneous electrocatalytic reduction of carbon dioxide : photoelectrochemical and photovoltaic approaches

    E-Print Network [OSTI]

    Sathrum, Aaron John

    2011-01-01

    improvements, and the increasing efficiency of solar cells.improvements. Taking a look at equation 4-2 one can see that the photovoltaic solar cell

  12. Photovoltaic concentrator assembly with optically active cover

    DOE Patents [OSTI]

    Plesniak, Adam P

    2014-01-21

    A photovoltaic concentrator assembly that includes a housing that defines an internal volume and includes a rim, wherein the rim defines an opening into the internal volume, a photovoltaic cell positioned in the internal volume, and an optical element that includes an optically active body and a flange extending outward from the body, wherein the flange is sealingly engaged with the rim of the housing to enclose the internal volume.

  13. Request for Information: Photovoltaic Research and Development

    Office of Energy Efficiency and Renewable Energy (EERE)

    Manufacturing costs associated with photovoltaic module production have decreased dramatically over the past decade, but further improvements are still needed. Cell and module developments that maximize efficiency, service lifetime, and total energy output while minimizing installation material and labor costs are critical to the future of commercial photovoltaic technologies. Continued innovation in these areas will play a vital role in achieving a levelized cost of energy that is low enough to drive widespread deployment for decades to come.

  14. Photovoltaic device with increased light absorption and method for its manufacture

    DOE Patents [OSTI]

    Glatfelter, Troy (Royal Oak, MI); Vogeli, Craig (New Baltimore, MI); Call, Jon (Royal Oak, MI); Hammond, Ginger (Imlay City, MI)

    1993-07-20

    A photovoltaic cell having a light-directing optical element integrally formed in an encapsulant layer thereof. The optical element redirects light to increase the internal absorption of light incident on the photovoltaic device.

  15. U.S. Virgin Islands Establishes Interconnection Standards to Clear the Way for Grid Interconnection

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCEDInstallers/ContractorsPhotovoltaicsStateofEnergy Fuel Cell Council: The VoiceMoniz4:U.S.

  16. Accelerating Fatigue Testing for Cu Ribbon Interconnects

    Broader source: Energy.gov [DOE]

    Presented at the 2013 Photovoltaic Module Reliability Workshop; 26-27 February 2013; Denver, Colorado

  17. Oncor Energy Efficiency Programs Solar Photovoltaic and Demand Response 

    E-Print Network [OSTI]

    Tyra, K.; Hanel, J.

    2012-01-01

    Excitonic photovoltaic devices, including organic, hybrid organic/inorganic, and dye-sensitized solar cells, are attractive alternatives to conventional inorganic solar cells due to their potential for low cost and low ...

  18. Structure-Function Relationships in Semiconducting Polymers for Organic Photovoltaics

    E-Print Network [OSTI]

    Kavulak, David Fredric Joel

    2010-01-01

    C. J. Solar Energy Materials and Solar Cells 2004, 83, 273-Cyras, V. Solar Energy Materials and Solar Cells 2007, 91,solar technologies are starting to become a competitive component in the energy industry, organic photovoltaic (OPV) materials

  19. Decentalized solar photovoltaic energy systems

    SciTech Connect (OSTI)

    Krupka, M. C.

    1980-09-01

    Environmental data for decentralized solar photovoltaic systems have been generated in support of the Technology Assessment of Solar Energy Systems program (TASE). Emphasis has been placed upon the selection and use of a model residential photovoltaic system to develop and quantify the necessary data. The model consists of a reference home located in Phoenix, AZ, utilizing a unique solar cell array-roof shingle combination. Silicon solar cells, rated at 13.5% efficiency at 28/sup 0/C and 100 mW/cm/sup 2/ (AMI) insolation are used to generate approx. 10 kW (peak). An all-electric home is considered with lead-acid battery storage, dc-ac inversion and utility backup. The reference home is compared to others in regions of different insolation. Major material requirements, scaled to quad levels of end-use energy include significant quantities of silicon, copper, lead, antimony, sulfuric acid and plastics. Operating residuals generated are negligible with the exception of those from the storage battery due to a short (10-year) lifetime. A brief general discussion of other environmental, health, and safety and resource availability impacts is presented. It is suggested that solar cell materials production and fabrication may have the major environmental impact when comparing all facets of photovoltaic system usage. Fabrication of the various types of solar cell systems involves the need, handling, and transportation of many toxic and hazardous chemicals with attendant health and safety impacts. Increases in production of such materials as lead, antimony, sulfuric acid, copper, plastics, cadmium and gallium will be required should large scale usage of photovoltaic systems be implemented.

  20. U.S. Army Fort Carson Interconnection Agreement | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCEDInstallers/ContractorsPhotovoltaicsStateof Energy| Department ofAttacks ||Interconnection

  1. Use of photovoltaics for waste heat recovery

    DOE Patents [OSTI]

    Polcyn, Adam D

    2013-04-16

    A device for recovering waste heat in the form of radiated light, e.g. red visible light and/or infrared light includes a housing having a viewing window, and a photovoltaic cell mounted in the housing in a relationship to the viewing window, wherein rays of radiated light pass through the viewing window and impinge on surface of the photovoltaic cell. The housing and/or the cell are cooled so that the device can be used with a furnace for an industrial process, e.g. mounting the device with a view of the interior of the heating chamber of a glass making furnace. In this manner, the rays of the radiated light generated during the melting of glass batch materials in the heating chamber pass through the viewing window and impinge on the surface of the photovoltaic cells to generate electric current which is passed onto an electric load.

  2. US Photovoltaic Patents, 1988--1990

    SciTech Connect (OSTI)

    Not Available

    1991-12-01

    This document contains US patents on terrestrial photovoltaic (PV) power applications, including systems, components, and materials, as well as manufacturing and support functions. The patent entries in this document were issued from 1988 through 1990. The entries were located by searching USPA, the data base of the US Patent Office. The final search retrieved all patents under the class ``Batteries, Thermoelectric and Photoelectric`` and the subclasses ``Photoelectric,`` ``Testing,`` and ``Applications.`` The search also located patents that contained the words ``photovoltaic(s)`` or ``solar cell(s)`` and their derivatives. A manual search of the patents in the Solar Energy Research Institute (SERI) patent file augmented the data base search. After the initial list was compiled, most of the patents on the following subjects were excluded: space photovoltaic technology, use of the photovoltaic effect for detectors and subjects only peripherally concerned with photovoltaics. Some patents on these three subjects were included when it appeared that those inventions might be of use in terrestrial PV power technologies.

  3. US Photovoltaic Patents, 1988--1990

    SciTech Connect (OSTI)

    Not Available

    1991-12-01

    This document contains US patents on terrestrial photovoltaic (PV) power applications, including systems, components, and materials, as well as manufacturing and support functions. The patent entries in this document were issued from 1988 through 1990. The entries were located by searching USPA, the data base of the US Patent Office. The final search retrieved all patents under the class Batteries, Thermoelectric and Photoelectric'' and the subclasses Photoelectric,'' Testing,'' and Applications.'' The search also located patents that contained the words photovoltaic(s)'' or solar cell(s)'' and their derivatives. A manual search of the patents in the Solar Energy Research Institute (SERI) patent file augmented the data base search. After the initial list was compiled, most of the patents on the following subjects were excluded: space photovoltaic technology, use of the photovoltaic effect for detectors and subjects only peripherally concerned with photovoltaics. Some patents on these three subjects were included when it appeared that those inventions might be of use in terrestrial PV power technologies.

  4. Photovoltaic Powering And Control System For Electrochromic Windows

    DOE Patents [OSTI]

    Schulz, Stephen C. (Tewksbury, MA); Michalski, Lech A. (Pennington, NJ); Volltrauer, Hermann N. (Englishtown, NJ); Van Dine, John E. (Faribault, MN)

    2000-04-25

    A sealed insulated glass unit is provided with an electrochromic device for modulating light passing through the unit. The electrochromic device is controlled from outside the unit by a remote control electrically unconnected to the device. Circuitry within the unit may be magnetically controlled from outside. The electrochromic device is powered by a photovoltaic cells. The photovoltaic cells may be positioned so that at least a part of the light incident on the cell passes through the electrochromic device, providing a form of feedback control. A variable resistance placed in parallel with the electrochromic element is used to control the response of the electrochromic element to changes in output of the photovoltaic cell.

  5. Multijunction photovoltaic device and method of manufacture

    DOE Patents [OSTI]

    Arya, Rejeewa R. (Jamison, PA); Catalano, Anthony W. (Boulder, CO); Bennett, Murray (Longhorne, PA)

    1995-04-04

    A multijunction photovoltaic device includes first, second, and third amorphous silicon p-i-n photovoltaic cells in a stacked arrangement. The intrinsic layers of the second and third cells are formed of a-SiGe alloys with differing ratios of Ge such that the bandgap of the intrinsic layers respectively decrease from the first uppermost cell to the third lowermost cell. An interface layer, composed of a doped silicon compound, is disposed between the two cells and has a lower bandgap than the respective n- and p-type adjacent layers of the first and second cells. The interface layer forms an ohmic contact with the one of the adjacent cell layers of the same conductivity type, and a tunnel junction with the other of the adjacent cell layers.

  6. Reliability of copper interconnects in integrated circuits

    E-Print Network [OSTI]

    Choi, Zung-Sun

    2007-01-01

    As dimensions shrink and current densities increase, the reliability of metal interconnects becomes a serious concern. In copper interconnects, the dominant diffusion path is along the interface between the copper and the ...

  7. Optical Refrigeration for Ultra-Efficient Photovoltaics

    E-Print Network [OSTI]

    Manor, Assaf; Rotschild, Carmel

    2014-01-01

    Improving the conversion efficiency of solar energy to electricity is most important to mankind. For single-junction photovoltaic solar-cells, the Shockley-Queisser thermodynamic efficiency limit is extensively due to the heat dissipation, inherently accompanying the quantum process of electro-chemical potential generation. Concepts such as solar thermo-photovoltaics and thermo-photonics, have been suggested to harness this wasted heat, yet efficiencies exceeding the Shockley-Queisser limit have not been demonstrated due to the challenge of operating at high temperatures. Here, we present a highly efficient converter based on endothermic photoluminescence, which operates at relative low temperatures. The thermally induced blue-shifted photoluminescence of a low-bandgap absorber is coupled to a high-bandgap photovoltaic cell. The high absorber's photo-current and the high cell's voltage results in 69% maximal theoretical conversion efficiencies. We experimentally demonstrate tenfold thermal-enhancement of usef...

  8. Theory of Current Transients in Planar Semiconductor Devices: Insights and Applications to Organic Solar Cells

    E-Print Network [OSTI]

    Hawks, SA; Finck, BY; Schwartz, BJ

    2015-01-01

    conduction in organic photovoltaic cells at open-circuitin TiO 2 =dye=CuSCN photovoltaic cells explored by recombi-of TiO 2 =dye=CuSCN photovoltaic cells, J. Phys. Chem. B

  9. Solar Photovoltaic SPECIFICATION, CHECKLIST...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CHECKLIST AND GUIDE Renewable Energy Ready Home Renewable Energy Ready Home SOLAR PHOTOVOLTAIC SPECIFICATION, CHECKLIST AND GUIDE i Table of Contents About the...

  10. National Laboratory Photovoltaics Research

    Broader source: Energy.gov [DOE]

    DOE supports photovoltaic (PV) research and development and facilities at its national laboratories to accelerate progress toward achieving the SunShot Initiative's technological and economic...

  11. Photovoltaics Business Models

    SciTech Connect (OSTI)

    Frantzis, L.; Graham, S.; Katofsky, R.; Sawyer, H.

    2008-02-01

    This report summarizes work to better understand the structure of future photovoltaics business models and the research, development, and demonstration required to support their deployment.

  12. Nanoscience and Nanostructures for Photovoltaics and Solar Fuels

    E-Print Network [OSTI]

    Wu, Zhigang

    at lower cost. These approaches and applications are labeled third generation solar photon conversionNanoscience and Nanostructures for Photovoltaics and Solar Fuels Arthur J. Nozik National Renewable to enhance the power conversion efficiency of solar cells for photovoltaic and solar fuels production

  13. Outlier Detection Rules for Fault Detection in Solar Photovoltaic Arrays

    E-Print Network [OSTI]

    Lehman, Brad

    . The models must be modified due to different PV capacity, solar cell technology, or installation locationOutlier Detection Rules for Fault Detection in Solar Photovoltaic Arrays Ye Zhao, Brad Lehman Abstract-- Solar photovoltaic (PV) arrays are unique power sources that may have uncleared fault current

  14. Carbon nanotube composites for photovoltaic devices White Paper

    E-Print Network [OSTI]

    Gruner, George

    in recent years. In particular interest are so called third generation devices, that involve polymersCarbon nanotube composites for photovoltaic devices White Paper Summary In a collaborative effort into charge separated sates. Preamble Novel photovoltaic and solar cell devices have gained prominence

  15. Nanostructured Titania-Polymer Photovoltaic Devices Made Using PFPE-Based Nanomolding Techniques

    E-Print Network [OSTI]

    McGehee, Michael

    Nanostructured Titania-Polymer Photovoltaic Devices Made Using PFPE-Based Nanomolding Techniques heterojunction photovoltaic (PV) cells using a perfluoropolyether (PFPE) elastomeric mold to control the donor photovoltaic materials because they are strong light absorbers and solution pro- cessable and can be deposited

  16. Fine-grained Photovoltaic Output Prediction using a Bayesian Ensemble Prithwish Chakraborty1,2

    E-Print Network [OSTI]

    Ramakrishnan, Naren

    Fine-grained Photovoltaic Output Prediction using a Bayesian Ensemble Prithwish Chakraborty1 Increasingly, local and distributed power generation e.g., through solar (photovoltaic or PV), wind, fuel cells. However, renewable power sources such as photovoltaic (PV) arrays and wind are both variable

  17. Charge separation in nanoscale photovoltaic materials: recent insights from first-principles electronic structure theory

    E-Print Network [OSTI]

    Wu, Zhigang

    Charge separation in nanoscale photovoltaic materials: recent insights from first-scale photovoltaic materials; in particular recent theoretical/computational work based on first principles electron and hole in so-called excitonic photovoltaic cells. Emphasis is placed on theoretical results

  18. Photovoltaic effect in InSe Application to Solar Energy Conversion

    E-Print Network [OSTI]

    Boyer, Edmond

    253 Photovoltaic effect in InSe Application to Solar Energy Conversion A. Segura, J. P. Guesdon, J are reported. Photovoltaic spectra are fitted with measured values oftransport and optical parameters. In possibilities as a material for photovoltaic cells. Transport in indium selenide shows a large ani- sotropy

  19. Single and Tandem Axial p-i-n Nanowire Photovoltaic Devices

    E-Print Network [OSTI]

    Xie, Xiaoliang Sunney

    Single and Tandem Axial p-i-n Nanowire Photovoltaic Devices Thomas J. Kempa,, Bozhi Tian,, Dong Rip-i-n+-p+-i-n silicon nanowire (SiNW) photovoltaic elements. Scanning electron microscopy images of selectively etched. Finally, a novel single SiNW tandem solar cell consisting of synthetic integration of two photovoltaic

  20. Battery-assisted and Photovoltaic-sourced Switched-inductor CMOS Harvesting ChargerSupply

    E-Print Network [OSTI]

    Rincon-Mora, Gabriel A.

    Battery-assisted and Photovoltaic-sourced Switched-inductor CMOS Harvesting Charger­Supply Rajiv-scale photovoltaic (PV) cells harness a diminutive fraction of light and artificial lighting avails a small 25 mV at 10 ­ 80 kHz and with 77% ­ 89% efficiency. Index Terms--Harvester, photovoltaic (PV

  1. Cu2ZnSnS4 nanocrystals and graphene quantum dots for photovoltaics Xukai Xinab

    E-Print Network [OSTI]

    Lin, Zhiqun

    Cu2ZnSnS4 nanocrystals and graphene quantum dots for photovoltaics Jun Wang,a Xukai Xinab advances in the synthesis and utilization of CZTS nanocrystals and colloidal GQDs for photovoltaics emerged to achieve low cost, high perfor- mance photovoltaics, including organic solar cells,2­6 dye

  2. Battery Powered Electric Car, Using Photovoltaic Cells Assistance Juan Dixon, Alberto Ziga, Angel Abusleme and Daniel Soto

    E-Print Network [OSTI]

    Catholic University of Chile (Universidad Católica de Chile)

    this constraint has been overcome in many cases using advanced technologies such as fuel cells and high. However, if a particular situation is considered, in which a small-sized, high-efficiency EV operates-sized, high-efficiency EV operating at low duty cycles in a sunny, predictable environment. In this case

  3. High Performance Photovoltaic Solar Cells: Cooperative Research and Development Final Report, CRADA Number CRD-05-169

    SciTech Connect (OSTI)

    Steiner, M.

    2012-07-01

    NREL will provide certified measurements of the conversion efficiency at high concentration for several multijunction solar cells that were fabricated by Cyrium Technologies. In an earlier phase of the CRADA, Cyrium provided epitaxially-grown material and NREL processed the samples into devices and measured the performance.

  4. Materials for Solar Energy: Photovoltaics The University Center of Excellence for Photovoltaics Research and Education (UCEP) at

    E-Print Network [OSTI]

    Li, Mo

    companies in the Si PV industry with commercialization and implementation of technologies and advancementsMaterials for Solar Energy: Photovoltaics The University Center of Excellence for Photovoltaics to highly relevant industrial research, UCEP is actively engaged in developing next- generation solar cell

  5. Editorial: Photovoltaic Materials and Devices

    SciTech Connect (OSTI)

    Sopori, B.; Tan, T.; Rupnowski, P.

    2012-01-01

    As the global energy needs grow, there is increasing interest in the generation of electricity by photovoltaics (PVs) devices or solar cells - devices that convert sunlight to electricity. Solar industry has seen an enormous growth during the last decade. The sale of PV modules has exceeded 27 GW in 2011, with significant contributions to the market share from all technologies. While the silicon technology continues to have the dominant share, the other thin film technologies (CdTe, CIGS, a-Si, and organic PV) are experiencing fast growth. Increased production of silicon modules has led to a very rapid reduction in their price and remains as benchmark for other technologies. The PV industry is in full gear to commercialize new automated equipment for solar cell and module production, instrumentation for process monitoring technologies, and for implementation of other cost-reduction approaches, and extensive research continues to be carried out in many laboratories to improve the efficiency of solar cells and modules without increasing the production costs. A large variety of solar cells, which differ in the material systems used, design, PV structure, and even the principle of PV conversion, are designed to date. This special issue contains peer-reviewed papers in the recent developments in research related to broad spectrum of photovoltaic materials and devices. It contains papers on many aspects of solar cells-the growth and deposition, characterization, and new material development.

  6. Photovoltaic mechanisms in polycrystalline thin film silicon solar cells. Final report, 30 June 1979-29 June 1980

    SciTech Connect (OSTI)

    Sopori, B.L.

    1980-11-01

    The objectives of this program were: (1) to develop appropriate measurement techniques to facilitate a quantitative study of the electrical activity of structural defects and at a grain boundary (G.B.) in terms of generation-recombination, barrier height, and G.B. conductivity; (2) to characterize G.B.s in terms of physical properties such as angle of misfit and local stress, and to correlate them with the electrical activity; (3) to determine the influence of solar cell processing on the electrical behavior of structural defects and G.B.s; and (4) to evaluate polycrystalline solar cell performance based on the above study, and to compare it with the experimentally measured performance. Progress is reported in detail. (WHK)

  7. Effect of pre-oxidation and environmental aging on the seal strength of a novel high-temperature solid oxide fuel cell (SOFC) sealing glass with metallic interconnect

    SciTech Connect (OSTI)

    Chou, Y. S.; Stevenson, Jeffry W.; Singh, Prabhakar

    2008-09-15

    A novel high-temperature alkaline-earth silicate sealing glass was developed for solid oxide fuel cell (SOFC) applications. The glass was used to join two ferritic stainless steel coupons for strength evaluation. The steel coupons were pre-oxidized at elevated temperatures to promote thick oxide layers to simulate long-term exposure conditions. In addition, seals to as-received metal coupons were also tested after aging in oxidizing or reducing environments to simulate the actual SOFC environment. Room temperature tensile testing showed strength degradation when using pre-oxidized coupons, and more extensive degradation after aging in air. Fracture surface and microstructural analysis confirmed that the cause of degradation was formation of SrCrO4 at the outer sealing edges exposed to air.

  8. PROGRESS IN PHOTOVOLTAICS: RESEARCH AND APPLICATIONS Prog. Photovolt: Res. Appl. 2004; 12:3338 (DOI: 10.1002/pip.525)

    E-Print Network [OSTI]

    Romeo, Alessandro

    PROGRESS IN PHOTOVOLTAICS: RESEARCH AND APPLICATIONS Prog. Photovolt: Res. Appl. 2004; 12 INTRODUCTION T he polycrystalline CdTe/CdS thin-film solar cell is one of the most important photovoltaic,2 Recent measure- ments of the photovoltaic performance of CdTe solar cells irradiated with high

  9. Apparatus for encapsulating a photovoltaic module

    DOE Patents [OSTI]

    Albright, Scot P. (El Paso, TX); Dugan, Larry M. (Boulder, CO)

    1995-10-24

    The subject inventions concern various photovoltaic module designs to protect the module from horizontal and vertical impacts and degradation of solar cell efficiency caused by moisture. In one design, a plurality of panel supports that are positioned adjacent to the upper panel in a photovoltaic module absorb vertical forces exerted along an axis perpendicular to the upper panel. Other designs employ layers of glass and tempered glass, respectively, to protect the module from vertical impacts. A plurality of button-shaped channels is used around the edges of the photovoltaic module to absorb forces applied to the module along an axis parallel to the module and direct moisture away from the module that could otherwise penetrate the module and adversely affect the cells within the module. A spacer is employed between the upper and lower panels that has a coefficient of thermal expansion substantially equivalent to the coefficient of thermal expansion of at least one of the panels.

  10. Photovoltaics industry profile

    SciTech Connect (OSTI)

    1980-10-01

    A description of the status of the US photovoltaics industry is given. Principal end-user industries are identified, domestic and foreign market trends are discussed, and industry-organized and US government-organized trade promotion events are listed. Trade associations and trade journals are listed, and a photovoltaic product manufacturers list is included. (WHK)

  11. High open-circuit voltage small-molecule p-DTS(FBTTh 2 )2.ICBA bulk heterojunction solar cells – morphology, excited-state dynamics, and photovoltaic performance

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ko Kyaw, Aung Ko; Gehrig, Dominik; Zhang, Jie; Huang, Ye; Bazan, Guillermo C.; Laquai, Frédéric; Nguyen, Thuc -Quyen

    2014-11-27

    The photovoltaic performance of bulk heterojunction solar cells using the solution-processable small molecule donor 7,7'-(4,4-bis(2-ethylhexyl)-4H-silolo[3,2-b:4,5-b']dithiophene-2,6-diyl)bis(6-fluoro-4-(5'-hexyl-[2,2'-bithiophene]-5-yl)benzo[c][1,2,5]thiadiazole) (p-DTS(FBTTh2)2 in combination with indene-C60 bis-adduct (ICBA) as an acceptor is systematically optimized by altering the processing conditions. A high open-circuit voltage of 1 V, more than 0.2 V higher than that of a p-DTS(FBTTh2)2:PC70BM blend, is achieved. However, the power conversion efficiency remains around 5% and thus is lower than ~8% previously reported for p-DTS(FBTTh2)2:PC70BM. Transient absorption (TA) pump–probe spectroscopy over a wide spectral (Vis-NIR) and dynamic (fs to ?s) range in combination with multivariate curve resolution analysis of the TA data reveals thatmore »generation of free charges is more efficient in the blend with PC70BM as an acceptor. In contrast, blends with ICBA create more coulombically bound interfacial charge transfer (CT) states, which recombine on the sub-nanosecond timescale by geminate recombination. Furthermore, the ns to ?s charge carrier dynamics in p-DTS(FBTTh2)2:ICBA blends are only weakly intensity dependent implying a significant contribution of recombination from long-lived CT states and trapped charges, while those in p-DTS(FBTTh2)2:PC70BM decay via an intensity-dependent recombination mechanism indicating that spatially separated (free) charge carriers are observed, which can be extracted as photocurrent from the device.« less

  12. Photovoltaics Centre of Excellence The Photovoltaics Centre of Excellence

    E-Print Network [OSTI]

    New South Wales, University of

    Photovoltaics Centre of Excellence #12;The Photovoltaics Centre of Excellence is a Centre;#12;Photovoltaics involve the direct conversion of light, normally sunlight, into electricity when falling upon to its leading role in microelectronics. The Australian Research Council (ARC) Photovoltaics Centre

  13. CuInSe/sub 2/-based photoelectrochemical cells: their use in characterization of thin CuInSe/sub 2/ films, and as photovoltaic cells per se

    SciTech Connect (OSTI)

    Cahen, D.; Chen, Y.W.; Ireland, P.J.; Noufi, R.; Turner, J.A.; Rincon, C.; Bachmann, K.J.

    1984-05-01

    Photoelectrochemistry has been employed to characterize the p-CuInSe/sub 2/ component of the CdS/CuInSe/sub 2/ on-metal and a nonaqueous electrolyte containing a redox couple not specifically adsorbed onto the semiconductor, we can test the films for photovoltaic activity and obtain effective electronic properties of them, before CdS deposition, in a nondestructive manner. Electrochemical decomposition of CuInSe/sub 2/ was investigated in acetonitrile solutions to determine the mechanism of decomposition (n and p) in the dark and under illumination. Electrochemical, solution chemical and surface analyses confirmed at the light-assisted decomposition of CuInSe/sub 2/ resulted in metal ions and elemental chalcogen. On the basis of the results from the electrochemical decomposition, and studies on the solid state chemistry of the (Cu/sub 2/Se)/sub x/(In/sub 2/Se/sub 3/)/sub 1-x/ system and surface analyses, the CuInSe/sub 2//polyiodide interface was stabilized and up to 11.7% conversion efficiencies were obtained.

  14. Ultralight photovoltaic modules for unmanned aerial vehicles

    SciTech Connect (OSTI)

    Nowlan, M.J.; Maglitta, J.C.; Darkazalli, G.; Lamp, T.

    1997-12-31

    New lightweight photovoltaic modules are being developed for powering high altitude unmanned aerial vehicles (UAVs). Modified low-cost terrestrial solar cell and module technologies are being applied to minimize vehicle cost. New processes were developed for assembling thin solar cells, encapsulant films, and cover films. An innovative by-pass diode mounting approach that uses a solar cell as a heat spreader was devised and tested. Materials and processes will be evaluated through accelerated environmental testing.

  15. Planar photovoltaic solar concentrator module

    DOE Patents [OSTI]

    Chiang, C.J.

    1992-12-01

    A planar photovoltaic concentrator module for producing an electrical signal from incident solar radiation includes an electrically insulating housing having a front wall, an opposing back wall and a hollow interior. A solar cell having electrical terminals is positioned within the interior of the housing. A planar conductor is connected with a terminal of the solar cell of the same polarity. A lens forming the front wall of the housing is operable to direct solar radiation incident to the lens into the interior of the housing. A refractive optical element in contact with the solar cell and facing the lens receives the solar radiation directed into the interior of the housing by the lens and directs the solar radiation to the solar cell to cause the solar cell to generate an electrical signal. An electrically conductive planar member is positioned in the housing to rest on the housing back wall in supporting relation with the solar cell terminal of opposite polarity. The planar member is operable to dissipate heat radiated by the solar cell as the solar cell generates an electrical signal and further forms a solar cell conductor connected with the solar cell terminal to permit the electrical signal generated by the solar cell to be measured between the planar member and the conductor. 5 figs.

  16. Planar photovoltaic solar concentrator module

    DOE Patents [OSTI]

    Chiang, Clement J. (New Brunswick, NJ)

    1992-01-01

    A planar photovoltaic concentrator module for producing an electrical signal from incident solar radiation includes an electrically insulating housing having a front wall, an opposing back wall and a hollow interior. A solar cell having electrical terminals is positioned within the interior of the housing. A planar conductor is connected with a terminal of the solar cell of the same polarity. A lens forming the front wall of the housing is operable to direct solar radiation incident to the lens into the interior of the housing. A refractive optical element in contact with the solar cell and facing the lens receives the solar radiation directed into the interior of the housing by the lens and directs the solar radiation to the solar cell to cause the solar cell to generate an electrical signal. An electrically conductive planar member is positioned in the housing to rest on the housing back wall in supporting relation with the solar cell terminal of opposite polarity. The planar member is operable to dissipate heat radiated by the solar cell as the solar cell generates an electrical signal and further forms a solar cell conductor connected with the solar cell terminal to permit the electrical signal generated by the solar cell to be measured between the planar member and the conductor.

  17. Interconnecting PV on New York City's Secondary Network Distribution System

    SciTech Connect (OSTI)

    K. Anderson; M. Coddington; K. Burman; S. Hayter; B. Kroposki; and A. Watson

    2009-11-30

    The U.S. Department of Energy (DOE) has teamed with cities across the country through the Solar America Cities (SAC) partnership program to help reduce barriers and accelerate implementation of solar energy. The New York City SAC team is a partnership between the City University of New York (CUNY), the New York City Mayor s Office of Long-term Planning and Sustainability, and the New York City Economic Development Corporation (NYCEDC).The New York City SAC team is working with DOE s National Renewable Energy Laboratory (NREL) and Con Edison, the local utility, to develop a roadmap for photovoltaic (PV) installations in the five boroughs. The city set a goal to increase its installed PV capacity from1.1 MW in 2005 to 8.1 MW by 2015 (the maximum allowed in 2005). A key barrier to reaching this goal, however, is the complexity of the interconnection process with the local utility. Unique challenges are associated with connecting distributed PV systems to secondary network distribution systems (simplified to ���¢��������networks���¢������� in this report). Although most areas of the country use simpler radial distribution systems to distribute electricity, larger metropolitan areas like New York City typically use networks to increase reliability in large load centers. Unlike the radial distribution system, where each customer receives power through a single line, a network uses a grid of interconnected lines to deliver power to each customer through several parallel circuits and sources. This redundancy improves reliability, but it also requires more complicated coordination and protection schemes that can be disrupted by energy exported from distributed PV systems. Currently, Con Edison studies each potential PV system in New York City to evaluate the system s impact on the network, but this is time consuming for utility engineers and may delay the customer s project or add cost for larger installations. City leaders would like to streamline this process to facilitate faster, simpler, and less expensive distributed PV system interconnections. To assess ways to improve the interconnection process, NREL conducted a four-part study with support from DOE. The NREL team then compiled the final reports from each study into this report. In Section 1���¢��������PV Deployment Analysis for New York City���¢��������we analyze the technical potential for rooftop PV systems in the city. This analysis evaluates potential PV power production in ten Con Edison networks of various locations and building densities (ranging from high density apartments to lower density single family homes). Next, we compare the potential power production to network loads to determine where and when PV generation is most likely to exceed network load and disrupt network protection schemes. The results of this analysis may assist Con Edison in evaluating future PV interconnection applications and in planning future network protection system upgrades. This analysis may also assist other utilities interconnecting PV systems to networks by defining a method for assessing the technical potential of PV in the network and its impact on network loads. Section 2���¢��������A Briefing for Policy Makers on Connecting PV to a Network Grid���¢��������presents an overview intended for nontechnical stakeholders. This section describes the issues associated with interconnecting PV systems to networks, along with possible solutions. Section 3���¢��������Technical Review of Concerns and Solutions to PV Interconnection in New Y

  18. ANNUAL REPORT 1998 PHOTOVOLTAICS GROUP

    E-Print Network [OSTI]

    New South Wales, University of

    ANNUAL REPORT 1998 UNSW PHOTOVOLTAICS GROUP ANNUAL REPORT 1998 UNSW PHOTOVOLTAICS GROUP #12;THE UNIVERSITY OF NEW SOUTH WALES THE PHOTOVOLTAICS SPECIAL RESEARCH CENTRE IS A SPECIAL RESEARCH CENTRE OF THE AUSTRALIAN RESEARCH COUNCIL THE KEY CENTRE FOR PHOTOVOLTAIC ENGINEERING IS A KEY CENTRE OF THE AUSTRALIAN

  19. Characterization of 3D Photovoltaics

    E-Print Network [OSTI]

    Characterization of 3D Photovoltaics SEMICONDUCTORS Our goal is to provide industry with test structures and models of next-generation photovoltaics, with an initial focus on cadmium telluride (Cd (nanostructured) photovoltaic devices. Objective Impact and Customers · The U.S. Photovoltaic Industry Roadmap

  20. Laser Assisted Nanomanufacturing with Solution Processed Nanoparticles for Low-cost Electronics and Photovoltaics

    E-Print Network [OSTI]

    Pan, Heng

    2009-01-01

    Fig. 1. 1 Flexible electronics and flexible solar cells. Inof metal oxide based electronics on heat sensitive flexibleNanoparticles for Low-cost Electronics and Photovoltaics by

  1. Two-for-One Deal for Photovoltaics | U.S. DOE Office of Science...

    Office of Science (SC) Website

    Deal for Photovoltaics Process doubles photocurrent from visible sunlight in organic solar cells. Print Text Size: A A A Subscribe FeedbackShare Page Click to enlarge photo....

  2. Overcoming the Exciton Diffusion Bottleneck in Organic Photovoltaic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Overcoming the Exciton Diffusion Bottleneck in Organic Photovoltaic Cells May 20, 2009 at 3pm36-428 Russell J.Holmes Department of Chemical Engineering and Materials Science,...

  3. Detailed Performance Model for Photovoltaic Systems: Preprint

    SciTech Connect (OSTI)

    Tian, H.; Mancilla-David, F.; Ellis, K.; Muljadi, E.; Jenkins, P.

    2012-07-01

    This paper presents a modified current-voltage relationship for the single diode model. The single-diode model has been derived from the well-known equivalent circuit for a single photovoltaic cell. The modification presented in this paper accounts for both parallel and series connections in an array.

  4. Cogenerating Photovoltaic and Thermal Solar Collector

    E-Print Network [OSTI]

    Su, Xiao

    Cogenerating Photovoltaic and Thermal Solar Collector Jinny Rhee and Jim Mokri COE Faculty peak load and irradiance hours of the day #12;Design · Parabolic solar collector · GaAs PV cells · Solar Energy and Alternative Energy can contribute to the energy supply ­ Renewable, doesn't emit

  5. Interconnect

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation CurrentHenryInhibitingInteractive Jobs Interactive Jobs To run an

  6. Semiconductor Quantum Dots and Quantum Dot Arrays and Applications of Multiple Exciton Generation to Third-Generation Photovoltaic Solar Cells

    SciTech Connect (OSTI)

    Nozik, Arthur J.; Beard, Matthew C.; Luther, Joseph M.; Law, Matt; Ellingson, Randy J.; Johnson, Justin C.

    2010-10-14

    Here, we will first briefly summarize the general principles of QD synthesis using our previous work on InP as an example. Then we will focus on QDs of the IV-VI Pb chalcogenides (PbSe, PbS, and PbTe) and Si QDs because these were among the first QDs that were reported to produce multiple excitons upon absorbing single photons of appropriate energy (a process we call multiple exciton generation (MEG)). We note that in addition to Si and the Pb-VI QDs, two other semiconductor systems (III-V InP QDs(56) and II-VI core-shell CdTe/CdSe QDs(57)) were very recently reported to also produce MEG. Then we will discuss photogenerated carrier dynamics in QDs, including the issues and controversies related to the cooling of hot carriers and the magnitude and significance of MEG in QDs. Finally, we will discuss applications of QDs and QD arrays in novel quantum dot PV cells, where multiple exciton generation from single photons could yield significantly higher PV conversion efficiencies.

  7. Metallic nanostructures for optoelectronic and photovoltaic applications

    E-Print Network [OSTI]

    Lim, Swee Hoe

    2009-01-01

    enhanced performance of photovoltaic and photodetector Proc.and H. Wagner, in Photovoltaic Specialists Conference. ,for Optoelectronic and Photovoltaic Applications by Swee Hoe

  8. DISSERTATION DEVICE CHARACTERIZATION OF CADMIUM TELLURIDE PHOTOVOLTAICS

    E-Print Network [OSTI]

    Sites, James R.

    DISSERTATION DEVICE CHARACTERIZATION OF CADMIUM TELLURIDE PHOTOVOLTAICS Submitted by Russell M Reserved #12;ABSTRACT DEVICE CHARACTERIZATION OF CADMIUM TELLURIDE PHOTOVOLTAICS Thin-film photovoltaics

  9. Amorphous Silicon-Carbon Nanostructure Photovoltaic Devices

    E-Print Network [OSTI]

    Schriver, Maria Christine

    2012-01-01

    costs for installed photovoltaic systems. This graph showsOne dollar per watt photovoltaic systems workshop sum- mary,costs for installed photovoltaic systems. This graph shows

  10. Stand-alone photovoltaic (PV) powered electrochromic window

    DOE Patents [OSTI]

    Benson, D.K.; Crandall, R.S.; Deb, S.K.; Stone, J.L.

    1995-01-24

    A variable transmittance double pane window includes an electrochromic material that has been deposited on one pane of the window in conjunction with an array of photovoltaic cells deposited along an edge of the pane to produce the required electric power necessary to vary the effective transmittance of the window. A battery is placed in a parallel fashion to the array of photovoltaic cells to allow the user the ability to manually override the system when a desired transmittance is desired. 11 figures.

  11. Stand-alone photovoltaic (PV) powered electrochromic window

    DOE Patents [OSTI]

    Benson, David K. (Golden, CO); Crandall, Richard S. (Boulder, CO); Deb, Satyendra K. (Boulder, CO); Stone, Jack L. (Lakewood, CO)

    1995-01-01

    A variable transmittance double pane window includes an electrochromic material that has been deposited on one pane of the window in conjunction with an array of photovoltaic cells deposited along an edge of the pane to produce the required electric power necessary to vary the effective transmittance of the window. A battery is placed in a parallel fashion to the array of photovoltaic cells to allow the user the ability to manually override the system when a desired transmittance is desired.

  12. Electromigration of Electroplated Gold Interconnects Steve Kilgore, *

    E-Print Network [OSTI]

    Schroder, Dieter K.

    Electromigration of Electroplated Gold Interconnects Steve Kilgore, * Craig Gaw, * Haldane Henry Tempe, AZ 85287, U.S.A. ABSTRACT Electromigration tests were performed on passivated electroplated Au

  13. Metal Nitride Diffusion Barriers for Copper Interconnects 

    E-Print Network [OSTI]

    Araujo, Roy A.

    2010-01-14

    Advancements in the semiconductor industry require new materials with improved performance. With the introduction of copper as the interconnect material for integrated circuits, efficient diffusion barriers are required ...

  14. Learn More About Interconnections | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    and West to the foot of the Rockies (excluding most of Texas). All of the electric utilities in the Eastern Interconnection are electrically tied together during normal...

  15. Updating Interconnection Screens for PV System Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Abraham Ellis, Roger Hill Sandia National Laboratories Tom Key, Kristen Nicole, Jeff Smith Electric Power Research Institute Updating Interconnection Screens for PV System...

  16. SOFC Interconnect and Compressive Seal Development at PNNL

    SciTech Connect (OSTI)

    Chou, Y S.; Yang, Z Gary; Singh, Prabhakar; Stevenson, Jeffry W.; Xia, Gordon

    2005-11-01

    The development of solid oxide fuel cell (SOFC) technology represents an opportunity to achieve significant improvements in energy conversion efficiency and reduction of undesirable emissions. However, many technical challenges still need to be overcome before the utilization of the advantages of SOFC can take place. These challenges include the need for improved interconnects and seals for planar SOFC stacks. In this paper, we briefly summarize recent progress at PNNL in these two research areas.

  17. Design principles for shift current photovoltaics

    E-Print Network [OSTI]

    Cook, Ashley M; de Juan, Fernando; Moore, Joel E

    2015-01-01

    While the basic principles and limitations of conventional solar cells are well understood, relatively little attention has gone toward evaluating and maximizing the potential efficiency of photovoltaic devices based on shift currents. In this work, a sum rule approach is introduced and used to outline design principles for optimizing shift currents for photon energies near the band gap, which depend on Berry connections as well as standard band structure. Using these we identify two new classes of shift current photovoltaics, ferroelectric polymer films and orthorhombic monochalcogenides, both of which exhibit peak photoresponsivities larger than predictions for previously known photovoltaics of this type. Using physically motivated tight-binding models, the full frequency dependent response of these materials is obtained. Exploring the phase space of these models, we find photoresponsivities that can exceed $100$ mA/W. These results show that considering the microscopic origin of shift current via effective...

  18. European Photovoltaic Solar Energy Conference, Frankfurt, Germany, 24-28 September 2012, 4CO.11.4 CELL CRACKS MEASURED BY UV FLUORESCENCE IN THE FIELD

    E-Print Network [OSTI]

    27th European Photovoltaic Solar Energy Conference, Frankfurt, Germany, 24-28 September 2012, 4CO. Kunze Institute for Solar Energy Research Hamelin (ISFH), Am Ohrberg 1, D-31860 Emmerthal, Germany Tel homogenous in the PV modules. These cracks are frequently induced by crumbs or needle-shaped production

  19. Photovoltaic roof heat flux

    E-Print Network [OSTI]

    Samady, Mezhgan Frishta

    2011-01-01

    e l Atmosphere ceiling, back panel roof, exposed roof insideSAN DIEGO Photovoltaic Roof Heat Flux A Thesis submitted i no n Convection Exposed Roof Temperature Seasonal Temperature

  20. Photovoltaic decision analysis

    E-Print Network [OSTI]

    Goldman, Neil L.

    1977-01-01

    This paper is concerned with the development and implementation of a methodology that analyzes information relating to the choice between flat plate and concentrator technologies for photovoltaic development. A

  1. Crystalline Silicon Photovoltaics Research

    Broader source: Energy.gov [DOE]

    DOE supports crystalline silicon photovoltaic (PV) research and development efforts that lead to market-ready technologies. Below are a list of the projects, summary of the benefits, and discussion...

  2. Organic Photovoltaics Research

    Broader source: Energy.gov [DOE]

    DOE funds research and development projects related to organic photovoltaics (OPV) due to the unique benefits of the technology. Below is a list of the projects, summary of the benefits, and...

  3. Organic photovoltaics and concentrators

    E-Print Network [OSTI]

    Mapel, Jonathan King

    2008-01-01

    The separation of light harvesting and charge generation offers several advantages in the design of organic photovoltaics and organic solar concentrators for the ultimate end goal of achieving a lower cost solar electric ...

  4. Photovoltaic Research Facilities

    Office of Energy Efficiency and Renewable Energy (EERE)

    The U.S. Department of Energy (DOE) funds photovoltaic (PV) research and development (R&D) at its national laboratory facilities located throughout the country. To encourage further innovation,...

  5. Amonix Photovoltaic System

    Broader source: Energy.gov [DOE]

    This photograph features the Amonix and Arizona Public Service (APS) partnership to install the world’s largest utility-scale concentrating photovoltaic (CPV) power plant in 2002. Photovoltaic (PV) systems at the APS facility use a combination of technologies. The systems in the foreground are single-axis tracking flat-plate silicon systems. Shown in the upper right are three large (35 kilowatt) Amonix CPV.

  6. Photovoltaics: The next generation

    SciTech Connect (OSTI)

    Wilson, A.

    1986-08-01

    The development of photovoltaics in the United States, with a few notable exceptions, has been carried out by the oil industry. Companies such as Arco, Exxon, Mobil and Sohio have played a tremendously important role in bringing photovoltaic technology to its current state of development. Many of these companies are continuing very active programs in pv, including the investigation of new and potentially far-reaching technologies.

  7. Photovoltaic systems and applications

    SciTech Connect (OSTI)

    Not Available

    1982-01-01

    Abstracts are given of presentations given at a project review meeting held at Albuquerque, NM. The proceedings cover the past accomplishments and current activities of the Photovoltaic Systems Research, Balance-of-System Technology Development and System Application Experiments Projects at Sandia National Laboratories. The status of intermediate system application experiments and residential system analysis is emphasized. Some discussion of the future of the Photovoltaic Program in general, and the Sandia projects in particular is also presented.

  8. Photovoltaic module and interlocked stack of photovoltaic modules

    DOE Patents [OSTI]

    Wares, Brian S.

    2014-09-02

    One embodiment relates to an arrangement of photovoltaic modules configured for transportation. The arrangement includes a plurality of photovoltaic modules, each photovoltaic module including a frame. A plurality of individual male alignment features and a plurality of individual female alignment features are included on each frame. Adjacent photovoltaic modules are interlocked by multiple individual male alignment features on a first module of the adjacent photovoltaic modules fitting into and being surrounded by corresponding individual female alignment features on a second module of the adjacent photovoltaic modules. Other embodiments, features and aspects are also disclosed.

  9. Sustainability of Large Photovoltaic Deployment: Environmental Research

    E-Print Network [OSTI]

    Homes, Christopher C.

    Sustainability of Large Photovoltaic Deployment: Environmental Research Sustainability of Large Photovoltaic Deployment: Environmental ResearchEnvironmental ResearchEnvironmental Research Vasilis Fthenakis and Te from Cadmium Telluride Photovoltaic Manufacturing Scrap, Progress in Photovoltaics: Research

  10. Nanocrystal Solar Cells

    E-Print Network [OSTI]

    Gur, Ilan

    2006-01-01

    will enable optimal solar cell efficiencies in multiple bandlow cost, high efficiency hybrid solar cells. 4.6 Conclusioncosts and improving efficiencies of solar photovoltaic

  11. Advances in solar photovoltaics are urgently needed to increase the performance and reduce the cost of harvesting solar power. Solution-processed photovoltaics are cost-effective to manufacture and offer the potential for physical flexibility.

    E-Print Network [OSTI]

    Sargent, Edward H. "Ted"

    Advances in solar photovoltaics are urgently needed to increase the performance and reduce the cost of harvesting solar power. Solution-processed photovoltaics are cost-effective to manufacture and offer chemistry. In particular, we focus on dye-sensitized solar cells (DSSCs)1 , organic photovoltaics2

  12. General Services Administration Photovoltaics Project in Sacramento...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    General Services Administration Photovoltaics Project in Sacramento, California General Services Administration Photovoltaics Project in Sacramento, California Document describes a...

  13. Interdigitated photovoltaic power conversion device

    DOE Patents [OSTI]

    Ward, James Scott (Englewood, CO); Wanlass, Mark Woodbury (Golden, CO); Gessert, Timothy Arthur (Conifer, CO)

    1999-01-01

    A photovoltaic power conversion device has a top surface adapted to receive impinging radiation. The device includes at least two adjacent, serially connected cells. Each cell includes a semi-insulating substrate and a lateral conductivity layer of a first doped electrical conductivity disposed on the substrate. A base layer is disposed on the lateral conductivity layer and has the same electrical charge conductivity thereof. An emitter layer of a second doped electrical conductivity of opposite electrical charge is disposed on the base layer and forms a p-n junction therebetween. A plurality of spaced channels are formed in the emitter and base layers to expose the lateral conductivity layer at the bottoms thereof. A front contact grid is positioned on the top surface of the emitter layer of each cell. A first current collector is positioned along one outside edge of at least one first cell. A back contact grid is positioned in the channels at the top surface of the device for engagement with the lateral conductivity layer. A second current collector is positioned along at least one outside edge of at least one oppositely disposed second cell. Finally, an interdigitation mechanism is provided for serially connecting the front contact grid of one cell to the back contact grid of an adjacent cell at the top surface of the device.

  14. Interdigitated photovoltaic power conversion device

    DOE Patents [OSTI]

    Ward, J.S.; Wanlass, M.W.; Gessert, T.A.

    1999-04-27

    A photovoltaic power conversion device has a top surface adapted to receive impinging radiation. The device includes at least two adjacent, serially connected cells. Each cell includes a semi-insulating substrate and a lateral conductivity layer of a first doped electrical conductivity disposed on the substrate. A base layer is disposed on the lateral conductivity layer and has the same electrical charge conductivity thereof. An emitter layer of a second doped electrical conductivity of opposite electrical charge is disposed on the base layer and forms a p-n junction therebetween. A plurality of spaced channels are formed in the emitter and base layers to expose the lateral conductivity layer at the bottoms thereof. A front contact grid is positioned on the top surface of the emitter layer of each cell. A first current collector is positioned along one outside edge of at least one first cell. A back contact grid is positioned in the channels at the top surface of the device for engagement with the lateral conductivity layer. A second current collector is positioned along at least one outside edge of at least one oppositely disposed second cell. Finally, an interdigitation mechanism is provided for serially connecting the front contact grid of one cell to the back contact grid of an adjacent cell at the top surface of the device. 15 figs.

  15. Tevatron low-beta quadrupole triplet interconnects

    SciTech Connect (OSTI)

    Oleck, A.R.; Carson, J.A.; Koepke, K.; Sorenson, D.

    1992-04-01

    Installation of cold iron quadrupole magnets in the Low Beta (Superconducting High-Luminosity) upgrade at Fermilab required a newly designed magnet interconnect. The interconnect design and construction experience is presented. Considered are the connections carrying cryogenic fluids, beam vacuum, insulating vacuum, superconducting bus leads, their insulation and mechanical support. Details of the assembly and assembly experience are presented. 2 refs.

  16. Electronic copy available at: http://ssrn.com/abstract=2014754 Joshua M. Pearce, "Industrial Symbiosis for Very Large Scale Photovoltaic

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Symbiosis for Very Large Scale Photovoltaic Manufacturing", Renewable Energy 33, pp. 11011108, 2008. http://dx.doi.org/10.1016/j.renene.2007.07.002 Industrial Symbiosis of Very Large Scale Photovoltaic Manufacturing. Solar photovoltaic (PV) cells offer a technically sustainable solution to the projected enormous future

  17. PROGRESS IN PHOTOVOLTAICS: RESEARCH AND APPLICATIONS Prog. Photovolt: Res. Appl. 2004; 12:93111 (DOI: 10.1002/pip.527)

    E-Print Network [OSTI]

    Romeo, Alessandro

    PROGRESS IN PHOTOVOLTAICS: RESEARCH AND APPLICATIONS Prog. Photovolt: Res. Appl. 2004; 12(In,Ga)Se2; thin-films; photovoltaics; solar energy INTRODUCTION P olycrystalline thin-film solar cells the complete solar spectrum for photovoltaic power conversion. There are several chalcopyr

  18. 962 IEEE JOURNAL OF PHOTOVOLTAICS, VOL. 4, NO. 3, MAY 2014 Ultrabroadband and Wide-Angle Hybrid

    E-Print Network [OSTI]

    Bowers, John

    962 IEEE JOURNAL OF PHOTOVOLTAICS, VOL. 4, NO. 3, MAY 2014 Ultrabroadband and Wide-Angle Hybrid) are essential to realizing efficiency gains for state-of- the-art multijunction photovoltaic devices approach. Index Terms--Biomimetics, optical films, photovoltaic cells, III­V semiconductor materials. I

  19. Southern California Edison High Penetration Photovoltaic Project - Year 1

    SciTech Connect (OSTI)

    Mather, B.; Kroposki, B.; Neal, R.; Katiraei, F.; Yazdani, A.; Aguero, J. R.; Hoff, T. E.; Norris, B. L.; Parkins, A.; Seguin, R.; Schauder, C.

    2011-06-01

    This report discusses research efforts from the first year of a project analyzing the impacts of high penetration levels of photovoltaic (PV) resources interconnected onto Southern California Edison's (SCE's) distribution system. SCE will be interconnecting a total of 500 MW of commercial scale PV within their service territory by 2015. This Year 1 report describes the need for investigating high-penetration PV scenarios on the SCE distribution system; discusses the necessary PV system modeling and distribution system simulation advances; describes the available distribution circuit data for the two distribution circuits identified in the study; and discusses the additional inverter functionality that could be implemented in order to specifically mitigate some of the undesirable distribution system impacts caused by high-penetration PV installations.

  20. High efficiency thin-film multiple-gap photovoltaic device

    DOE Patents [OSTI]

    Dalal, Vikram L. (Newark, DE)

    1983-01-01

    A photovoltaic device includes at least two solar cells made from Group IV elements or their alloys in the amorphous state mounted on a substrate. The outermost or first cell has a larger bandgap than the second cell. Various techniques are utilized to improve the efficiency of the device.

  1. Recent Photovoltaic Performance Data in the USA (Presentation)

    SciTech Connect (OSTI)

    Jordan, D.

    2014-03-01

    This paper presents performance data from nearly 50,000 Photovoltaic systems totaling 1.7 Gigawatts installed capacity in the USA from 2009 to 2012. 90% of the systems performed to within 10% or better of expected performance. Only 2-4% of the data indicate issues significantly affecting the system performance. Special causes of underperformance and their impacts are delineated by reliability category. Delays and interconnections dominate project-related issues particularly in the first year, but total less than 0.5% of all systems. Hardware-related issues are dominated by inverter problems totaling less than 0.4% and underperforming modules to less than 0.1%.

  2. Keywords: Photovoltaic System, fault-tolerance, recon-figurable PV panel

    E-Print Network [OSTI]

    Pedram, Massoud

    1 Keywords: Photovoltaic System, fault-tolerance, recon- figurable PV panel Photovoltaic (PV and the advancement of PV device technologies. PV systems have been widely deployed in electric vehicles, homes, power plants, and satellites. The output power of a PV cell (also called solar cell) is dependent on the solar

  3. EIS-0485: Interconnection of the Grande Prairie Wind Farm, Holt...

    Office of Environmental Management (EM)

    5: Interconnection of the Grande Prairie Wind Farm, Holt County, Nebraska EIS-0485: Interconnection of the Grande Prairie Wind Farm, Holt County, Nebraska SUMMARY DOE's Western...

  4. Method for fabricating an interconnected array of semiconductor devices

    DOE Patents [OSTI]

    Grimmer, Derrick P. (White Bear Lake, MN); Paulson, Kenneth R. (North St. Paul, MN); Gilbert, James R. (St. Paul, MN)

    1989-10-10

    Semiconductor layer and conductive layer formed on a flexible substrate, divided into individual devices and interconnected with one another in series by interconnection layers and penetrating terminals.

  5. EA-1990: Ridgenose Solar Energy Interconnection Facility, Mohave...

    Office of Environmental Management (EM)

    EA-1990: Ridgenose Solar Energy Interconnection Facility, Mohave County, Arizona EA-1990: Ridgenose Solar Energy Interconnection Facility, Mohave County, Arizona The EA was...

  6. The regulation of internet interconnection : assessing network market power

    E-Print Network [OSTI]

    Maida, Elisabeth M. (Elisabeth Marigo)

    2013-01-01

    Interconnection agreements in the telecommunications industry have always been constrained by regulation. Internet interconnection has not received the same level of scrutiny. Recent debates regarding proposed mergers, ...

  7. Photovoltaic Subcontract Program

    SciTech Connect (OSTI)

    Surek, Thomas; Catalano, Anthony

    1993-03-01

    This report summarizes the fiscal year (FY) 1992 progress of the subcontracted photovoltaic (PV) research and development (R D) performed under the Photovoltaic Advanced Research and Development Project at the National Renewable Energy Laboratory (NREL)-formerly the Solar Energy Research Institute (SERI). The mission of the national PV program is to develop PV technology for large-scale generation of economically competitive electric power in the United States. The technical sections of the report cover the main areas of the subcontract program: the Crystalline Materials and Advanced Concepts project, the Polycrystalline Thin Films project, Amorphous Silicon Research project, the Photovoltaic Manufacturing Technology (PVMaT) project, PV Module and System Performance and Engineering project, and the PV Analysis and Applications Development project. Technical summaries of each of the subcontracted programs provide a discussion of approaches, major accomplishments in FY 1992, and future research directions.

  8. Nanowires enabling strained photovoltaics

    SciTech Connect (OSTI)

    Greil, J.; Bertagnolli, E.; Lugstein, A.; Birner, S.

    2014-04-21

    Photovoltaic nano-devices have largely been relying on charge separation in conventional p-n junctions. Junction formation via doping, however, imposes major challenges in process control. Here, we report on a concept for photovoltaic energy conversion at the nano scale without the need for intentional doping. Our approach relies on charge carrier separation in inhomogeneously strained germanium nanowires (Ge NWs). This concept utilizes the strain-induced gradient in bandgap along tapered NWs. Experimental data confirms the feasibility of strain-induced charge separation in individual vapor-liquid-solid grown Ge NW devices with an internal quantum efficiency of ?5%. The charge separation mechanism, though, is not inherently limited to a distinct material. Our work establishes a class of photovoltaic nano-devices with its opto-electronic properties engineered by size, shape, and applied strain.

  9. Technical Potential for Solar Photovoltaics

    E-Print Network [OSTI]

    Branoff, Theodore J.

    Technical Potential for Solar Photovoltaics in Illinois May 2013 #12;Authors ...................................................................................................... 1.1 Utility-Scale Solar Photovoltaic Systems in the U.S. ........................... 1.2 Previous ...................................................................................................... 3.1 Optimization Matrix for Large-Scale PV System Applications ......... 3.2 Photovoltaic

  10. On the State of the Art of Metal Interconnects for SOFC Application

    SciTech Connect (OSTI)

    Jablonski@netl.doe.gov

    2011-02-27

    One of the recent developments for Solid Oxide Fuel Cells (SOFC) is oxide component materials capable of operating at lower temperatures such as 700-800C. This lower temperature range has provided for the consideration of metallic interconnects which have several advantages over ceramic interconnects: low cost, ease in manufacturing, and high conductivity. Most metals and alloys will oxidize under both the anode and cathode conditions within an SOFC, thus a chief requirement is that the base metal oxide scale must be electrically conductive since this constitutes the majority of the electrical resistance in a metallic interconnect. Common high temperature alloys form scales that contain chrome, silicon and aluminum oxides among others. Under SOFC operating conditions chrome oxide is a semi-conductor while silicon and aluminum oxides are insulators. In this talk we will review the evolution in candidate alloys and surface modifications which constitute an engineered solution for SOFC interconnect applications.

  11. Concentrating photovoltaic solar panel

    DOE Patents [OSTI]

    Cashion, Steven A; Bowser, Michael R; Farrelly, Mark B; Hines, Braden E; Holmes, Howard C; Johnson, Jr., Richard L; Russell, Richard J; Turk, Michael F

    2014-04-15

    The present invention relates to photovoltaic power systems, photovoltaic concentrator modules, and related methods. In particular, the present invention features concentrator modules having interior points of attachment for an articulating mechanism and/or an articulating mechanism that has a unique arrangement of chassis members so as to isolate bending, etc. from being transferred among the chassis members. The present invention also features adjustable solar panel mounting features and/or mounting features with two or more degrees of freedom. The present invention also features a mechanical fastener for secondary optics in a concentrator module.

  12. Module Handbook Specialisation Photovoltaics

    E-Print Network [OSTI]

    Habel, Annegret

    solar cell Real solar cells Silicon solar cells: crystalline, multicrystalline, amorphous Cells: CdTe and CIGS technologies. Organic solar cells. Part 2: Fabrication Methods Crystal defects Theory Fabrication methods Solar cell properties Cell research and pilot productions facilities

  13. Comparative alternative materials assessment to screen toxicity hazards in the life cycle of CIGS thin film photovoltaics

    E-Print Network [OSTI]

    Eisenberg, DA; Yu, M; Lam, CW; Ogunseitan, OA; Schoenung, JM

    2013-01-01

    market supply for consumer solar panels. Although CIGS isadvocate photovoltaic (solar) panels as a sustainablesolar cells (found within solar panels) of greater than 19%

  14. Chromium Vaporization Reduction by Nickel Coatings For SOEC Interconnect Materials

    SciTech Connect (OSTI)

    Michael V. Glazoff; Sergey N. Rashkeev; J. Stephen Herring

    2014-09-01

    The vaporization of Cr-rich volatile species from interconnect materials is a major source of degradation that limits the lifetime of planar solid oxide devices systems with metallic interconnects, including Solid Oxide Electrolysis Cells, or SOECs. Some metallic coatings (Ni, Co, and Cu) significantly reduce the Cr release from interconnects and slow down the oxide scale growth on the steel substrate. To shed additional light upon the mechanisms of such protection and find a suitable coating material for ferritic stainless steel materials, we used a combination of first-principles calculations, thermodynamics, and diffusion modeling to investigate which factors determine the quality of the Ni metallic coating at stainless steel interconnector. We found that the Cr migration in Ni coating is determined by a delicate combination of the nickel oxidation, Cr diffusion, and phase transformation processes. Although the formation of Cr2O3 oxide is more exothermic than that of NiO, the kinetic rate of the chromia formation in the coating layer and its surface is significantly reduced by the low mobility of Cr in nickel oxide and in NiCr2O4 spinel. These results are in a good agreement with diffusion modeling for Cr diffusion through Ni coating layer on the ferritic 441 steel substrate.

  15. Photovoltaic Energy Conversion

    E-Print Network [OSTI]

    Glashausser, Charles

    Photovoltaic Energy Conversion Frank Zimmermann #12;Solar Electricity Generation Consumes no fuel Electrode Valence Band Conduction Band Fermi Level I- /I3 - Redox Potential Dye 1D 3D* 1D* Energy Levels Counter Electrode Valence Band Conduction Band Fermi Level I- /I3 - Redox Potential Dye 1D 3D* 1D* Energy

  16. Photovoltaics (Fact Sheet)

    SciTech Connect (OSTI)

    DOE Solar Energy Technologies Program

    2011-10-13

    DOE works with national labs, academia, and industry to support the domestic photovoltaics (PV) industry and research enterprise. SunShot aims to achieve widespread, unsubsidized cost-competitiveness through an applied research and development (R&D) portfolio spanning PV materials, devices, and manufacturing technologies.

  17. Photovoltaics (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    DOE works with national labs, academia, and industry to support the domestic photovoltaics (PV) industry and research enterprise. SunShot aims to achieve widespread, unsubsidized cost-competitiveness through an applied research and development (R&D) portfolio spanning PV materials, devices, and manufacturing technologies.

  18. Photovoltaics (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-11-01

    The U.S. Department of Energy (DOE) works with industry, academia, national laboratories, and other government agencies to advance solar photovoltaics (PV) domestically. The SunShot Initiative aims to achieve widespread, unsubsidized cost-competitiveness through an applied research and development (R&D) portfolio spanning PV materials, devices, and manufacturing technologies.

  19. Distributed Solar Interconnection Challenges and Best Practices

    Broader source: Energy.gov [DOE]

    The continued growth of the distributed solar market in the United States has spurred electric utilities, regulators, and stakeholders to consider improvements to distributed generation (DG) interconnection processes. More than 475,000 solar energy systems were interconnected in the U.S. by the end of 2013, but 1 million are expected by the end of 2017. Based on the SunShot Initiative's current trajectory, permitting, inspection, and interconnection (PII) soft costs are expected to drop from a current cost of $0.17/watt to $0.14/watt by 2020. While the actual cost metrics for utility PII are undetermined, they are real. A survey and interviews conducted by Solar Electric Power Association (SEPA) in 2014 have uncovered utility initiatives to lower the administrative costs of DG interconnection, making the process of connecting to the grid simpler and more transparent for customers.

  20. Design space exploration of photonic interconnects

    E-Print Network [OSTI]

    Sun, Chen, S.M. Massachusetts Institute of Technology

    2011-01-01

    As processors scale deep into the multi-core and many-core regimes, bandwidth and energy-efficiency of the on-die interconnect network have become paramount design issues. Recognizing potential limits of electrical ...