Sample records for interconnect region electricity

  1. Perforation patterned electrical interconnects

    DOE Patents [OSTI]

    Frey, Jonathan

    2014-01-28T23:59:59.000Z

    This disclosure describes systems and methods for increasing the usable surface area of electrical contacts within a device, such as a thin film solid state device, through the implementation of electrically conductive interconnects. Embodiments described herein include the use of a plurality of electrically conductive interconnects that penetrate through a top contact layer, through one or more multiple layers, and into a bottom contact layer. The plurality of conductive interconnects may form horizontal and vertical cross-sectional patterns. The use of lasers to form the plurality of electrically conductive interconnects from reflowed layer material further aids in the manufacturing process of a device.

  2. Reliability of Electrical Interconnects (Presentation)

    SciTech Connect (OSTI)

    Devoto, D.

    2014-06-01T23:59:59.000Z

    This presentation discusses the status of NREL's research on the reliability of electrical interconnects.

  3. Process for electrically interconnecting electrodes

    DOE Patents [OSTI]

    Carey, Paul G. (Mountain View, CA); Thompson, Jesse B. (Brentwood, CA); Colella, Nicolas J. (Livermore, CA); Williams, Kenneth A. (Livermore, CA)

    2002-01-01T23:59:59.000Z

    Electrical interconnects for solar cells or other electronic components using a silver-silicone paste or a lead-tin (Pb--Sn) no-clean fluxless solder cream, whereby the high breakage of thin (<6 mil thick) solar cells using conventional solder interconnect is eliminated. The interconnects of this invention employs copper strips which are secured to the solar cells by a silver-silicone conductive paste which can be used at room temperature, or by a Pb--Sn solder cream which eliminates undesired residue on the active surfaces of the solar cells. Electrical testing using the interconnects of this invention has shown that no degradation of the interconnects developed under high current testing, while providing a very low contact resistance value.

  4. Renewable Generation and Interconnection to the Electrical Grid...

    Broader source: Energy.gov (indexed) [DOE]

    Generation and Interconnection to the Electrical Grid in Southern California Renewable Generation and Interconnection to the Electrical Grid in Southern California Presentation...

  5. 10 Year Transmission Plan for the Western Electricity Interconnection Released

    Broader source: Energy.gov [DOE]

    The Western Electricity Coordinating Council (WECC) announced the release of its first 10-Year Regional Transmission Plan (Plan) for the Western Interconnection. The Office of Electricity Delivery and Energy Reliability awarded WECC a $14.5 million grant under the American Recovery and Reinvestment Act to expand on its transmission planning activities.

  6. Electric power from offshore wind via synoptic-scale interconnection

    E-Print Network [OSTI]

    Firestone, Jeremy

    Electric power from offshore wind via synoptic-scale interconnection Willett Kemptona,1 , Felipe M regional estimate, Kempton et al. (2) calculated that two-thirds of the offshore wind power off the U in the U.S. Atlantic region is already underway. Fig. 1 shows as black squares offshore wind developments

  7. Release Resistant Electrical Interconnections For Mems Devices

    DOE Patents [OSTI]

    Peterson, Kenneth A. (Albuquerque, NM); Garrett, Stephen E. (Albuquerque, NM); Reber, Cathleen A. (Corrales, NM)

    2005-02-22T23:59:59.000Z

    A release resistant electrical interconnection comprising a gold-based electrical conductor compression bonded directly to a highly-doped polysilicon bonding pad in a MEMS, IMEMS, or MOEMS device, without using any intermediate layers of aluminum, titanium, solder, or conductive adhesive disposed in-between the conductor and polysilicon pad. After the initial compression bond has been formed, subsequent heat treatment of the joint above 363 C creates a liquid eutectic phase at the bondline comprising gold plus approximately 3 wt % silicon, which, upon re-solidification, significantly improves the bond strength by reforming and enhancing the initial bond. This type of electrical interconnection is resistant to chemical attack from acids used for releasing MEMS elements (HF, HCL), thereby enabling the use of a "package-first, release-second" sequence for fabricating MEMS devices. Likewise, the bond strength of an Au--Ge compression bond may be increased by forming a transient liquid eutectic phase comprising Au-12 wt % Ge.

  8. Flip chip electrical interconnection by selective electroplating and bonding

    E-Print Network [OSTI]

    Lin, Liwei

    the interconnection and device substrates to en- hance the ion diffusion during the final electroplating and bondingFlip chip electrical interconnection by selective electroplating and bonding L.-W. Pan, P. Yuen, L of flip-chip, selective elec- troplating and bonding. The electrical interconnection lines are built

  9. Electrical isolation of component cells in monolithically interconnected modules

    SciTech Connect (OSTI)

    Wanlass, Mark W. (Golden, CO)

    2001-01-01T23:59:59.000Z

    A monolithically interconnected photovoltaic module having cells which are electrically connected which comprises a substrate, a plurality of cells formed over the substrate, each cell including a primary absorber layer having a light receiving surface and a p-region, formed with a p-type dopant, and an n-region formed with an n-type dopant adjacent the p-region to form a single pn-junction, and a cell isolation diode layer having a p-region, formed with a p-type dopant, and an n-region formed with an n-type dopant adjacent the p-region to form a single pn-junction, the diode layer intervening the substrate and the absorber layer wherein the absorber and diode interfacial regions of a same conductivity type orientation, the diode layer having a reverse-breakdown voltage sufficient to prevent inter-cell shunting, and each cell electrically isolated from adjacent cells with a vertical trench trough the pn-junction of the diode layer, interconnects disposed in the trenches contacting the absorber regions of adjacent cells which are doped an opposite conductivity type, and electrical contacts.

  10. High-temperature quenching of electrical resistance in graphene interconnects

    E-Print Network [OSTI]

    assuming a current density j=3.9 MA/cm2 and a resistivity =2.2 cm. The self- heating problem is aggravated scale structures.3,4 One of the approaches to mitigate the self-heating prob- lem is to incorporateHigh-temperature quenching of electrical resistance in graphene interconnects Q. Shao, G. Liu, D

  11. Vibration control in plates by uniformly distributed PZT actuators interconnected via electric networks

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    improve the performances of piezoelectric actuation. internal resonance / equivalent circuits 1Vibration control in plates by uniformly distributed PZT actuators interconnected via electric vibrations of plates by means of a set of electrically-interconnected piezoelectric actuators is described

  12. PJM Interconnection (Multiple States)

    Broader source: Energy.gov [DOE]

    PJM (originally Pennsylvania, Jersey, Maryland) Interconnection is a Regional Transmission Organization (RTO) that coordinates the movement of wholesale electricity in all or parts of Delaware,...

  13. Gold-based electrical interconnections for microelectronic devices

    DOE Patents [OSTI]

    Peterson, Kenneth A. (Albuquerque, NM); Garrett, Stephen E. (Albuquerque, NM); Reber, Cathleen A. (Corrales, NM); Watson, Robert D. (Tijeras, NM)

    2002-01-01T23:59:59.000Z

    A method of making an electrical interconnection from a microelectronic device to a package, comprising ball or wedge compression bonding a gold-based conductor directly to a silicon surface, such as a polysilicon bonding pad in a MEMS or IMEMS device, without using layers of aluminum or titanium disposed in-between the conductor and the silicon surface. After compression bonding, optional heating of the bond above 363 C. allows formation of a liquid gold-silicon eutectic phase containing approximately 3% (by weight) silicon, which significantly improves the bond strength by reforming and enhancing the initial compression bond. The same process can be used for improving the bond strength of Au--Ge bonds by forming a liquid Au-12Ge eutectic phase.

  14. WHAT IS A NETWORK? (Gas and Electricity) A complex, interconnected group or

    E-Print Network [OSTI]

    Wright, Francis

    WHAT IS A NETWORK? (Gas and Electricity) A complex, interconnected group or system Electricity and Gas: A system used to distribute electricity and gas around the world/certain area, by compromising to minimise costs and generate the most electricity and gas as possible, which maximises profits

  15. Renewable Generation and Interconnection to the Electrical Grid in Southern California

    Broader source: Energy.gov [DOE]

    Presentation covers the topic of "Renewable Generation and Interconnection to the Electrical Grid in Southern California," given at the Spring 2010 Federal Utility Partnership Working Group (FUPWG) meeting in Providence, Rhode Island.

  16. Interconnection Standards

    Broader source: Energy.gov [DOE]

    New Jersey's interconnection standards apply statewide to all electric distribution utilities, but not to the small number of municipal utilities and electric cooperatives in the state. The rules,...

  17. Analysis of electric vehicle interconnection with commercial building microgrids

    E-Print Network [OSTI]

    Stadler, Michael

    2011-01-01T23:59:59.000Z

    Judy Lai, and Vincent Battaglia: “The added economic andMarnay, and Vincent Battaglia: “Plug-in Electric Vehicle

  18. Analysis of electric vehicle interconnection with commercial building microgrids

    SciTech Connect (OSTI)

    Stadler, Michael; Mendes, Goncalo; Marnay, Chris; M& #233; gel, Olivier; Lai, Judy

    2011-04-01T23:59:59.000Z

    The outline of this presentation is: (1) global concept of microgrid and electric vehicle (EV) modeling; (2) Lawrence Berkeley National Laboratory's Distributed Energy Resources Customer Adoption Model (DER-CAM); (3) presentation summary - how does the number of EVs connected to the building change with different optimization goals (cost versus CO{sub 2}); (3) ongoing EV modeling for California: the California commercial end-use survey (CEUS) database, objective: 138 different typical building - EV connections and benefits; (4) detailed analysis for healthcare facility: optimal EV connection at a healthcare facility in southern California; and (5) conclusions. Conclusions are: (1) EV Charging/discharging pattern mainly depends on the objective of the building (cost versus CO{sub 2}); (2) performed optimization runs show that stationary batteries are more attractive than mobile storage when putting more focus on CO{sub 2} emissions. Why? Stationary storage is available 24 hours a day for energy management - more effective; (3) stationary storage will be charged by PV, mobile only marginally; (4) results will depend on the considered region and tariff - final work will show the results for 138 different buildings in nine different climate zones and three major utility service territories.

  19. Interconnection Guidelines

    Broader source: Energy.gov [DOE]

    The Missouri Public Service Commission (PSC) adopted administrative rules for investor-owned utilities that included simplified interconnection standards, and electric cooperatives and municipal ...

  20. Interconnection Guidelines

    Broader source: Energy.gov [DOE]

    Interconnected customers must comply with all relevant national standards, including those established by the Institute of Electrical and Electronic Engineers (IEEE), Underwriters Laboratories (U...

  1. Interconnection Standards

    Broader source: Energy.gov [DOE]

    In April 2008, Kentucky enacted legislation which required the Kentucky Public Service Commission (PSC) to develop interconnection and net metering guidelines for all retail electric suppliers...

  2. Analysis of electric vehicle interconnection with commercial building microgrids

    E-Print Network [OSTI]

    Stadler, Michael

    2011-01-01T23:59:59.000Z

    USA http://eetd.lbl.gov/EA/EMP/emp-pubs.html The work described in this paper was funded by the Office of Electricity

  3. Electrically interconnected assemblies of microscale device components by printing and molding

    E-Print Network [OSTI]

    Rogers, John A.

    of the underlying aspects and application to representative systems in photovoltaics and solid state lighting approaches for assembly and electrical interconnection of micro/nanoscale devices into functional systems, and photovoltaics can be formed with assemblies of micro/nanoscale components or material ele- ments to achieve

  4. Revised Record of Decision for the Electrical Interconnection of the Summit/Westward Project

    SciTech Connect (OSTI)

    N /A

    2004-10-21T23:59:59.000Z

    The Bonneville Power Administration (BPA) has decided to amend its July 25, 2003, Record of Decision (ROD) regarding the proposed Summit/Westward Project (Project) to offer contract terms for an optional interconnection of this Project into the Federal Columbia River Transmission System (FCRTS). Under this optional interconnection plan, BPA would integrate electric power from the Project into the FCRTS at a point adjacent to Clatskanie People's Utility District (CPUD) existing Wauna Substation. In order to deliver power to this location, CPUD would develop a new substation (Bradbury Substation) at a site near the Project and a new 230-kV transmission line from there to CPUD's Wauna Substation, which is already connected to the FCRTS. As part of this revised decision, BPA will facilitate CPUD development of the Bradbury-Wauna transmission line by allowing joint use of BPA right-of-way. This will involve reconstructing a section of BPA's 115-kV Allston-Astoria No. 1 transmission line from single-circuit H-frame wood-pole design to double-circuit single metal pole design. Terms of BPA participation in CPUD's development of the Bradbury-Wauna transmission line will be documented in a Construction Agreement. This optional interconnection plan is in addition to BPA's previous offer for interconnection of the Project at BPA's Allston Substation, as documented in the July 25, 2003, ROD. As with the initial interconnection plan, the decision to offer terms to interconnect the Project through the optional interconnection plan is consistent with BPA's Business Plan Final Environmental Impact Statement (BP EIS) (DOE/EIS-0183, June 1995), and the Business Plan Record of Decision (BP ROD, August 1995). This decision thus is similarly tiered to the Business Plan ROD.

  5. Monolithic interconnected module with a tunnel junction for enhanced electrical and optical performance

    DOE Patents [OSTI]

    Murray, Christopher S. (Bethel Park, PA); Wilt, David M. (Bay Village, OH)

    2000-01-01T23:59:59.000Z

    An improved thermophotovoltaic (TPV) n/p/n device is provided. Monolithic Interconnected Modules (MIMS), semiconductor devices converting infrared radiation to electricity, have been developed with improved electrical and optical performance. The structure is an n-type emitter on a p-type base with an n-type lateral conduction layer. The incorporation of a tunnel junction and the reduction in the amount of p-type material used results in negligible parasitic absorption, decreased series resistance, increased voltage and increased active area. The novel use of a tunnel junction results in the potential for a TPV device with efficiency greater than 24%.

  6. Analysis of drought impacts on electricity production in the Western and Texas interconnections of the United States.

    SciTech Connect (OSTI)

    Harto, C. B.; Yan, Y. E.; Demissie, Y. K.; Elcock, D.; Tidwell, V. C.; Hallett, K.; Macknick, J.; Wigmosta, M. S.; Tesfa, T. K. (Environmental Science Division); (Sandia National Laboratory); (National Renewable Energy Laboratory); (Pacific Northwest National Laboratory)

    2012-02-09T23:59:59.000Z

    Electricity generation relies heavily on water resources and their availability. To examine the interdependence of energy and water in the electricity context, the impacts of a severe drought to assess the risk posed by drought to electricity generation within the western and Texas interconnections has been examined. The historical drought patterns in the western United States were analyzed, and the risk posed by drought to electricity generation within the region was evaluated. The results of this effort will be used to develop scenarios for medium- and long-term transmission modeling and planning efforts by the Western Electricity Coordination Council (WECC) and the Electric Reliability Council of Texas (ERCOT). The study was performed in response to a request developed by the Western Governors Association in conjunction with the transmission modeling teams at the participating interconnections. It is part of a U.S. Department of Energy-sponsored, national laboratory-led research effort to develop tools related to the interdependency of energy and water as part of a larger interconnection-wide transmission planning project funded under the American Recovery and Reinvestment Act. This study accomplished three main objectives. It provided a thorough literature review of recent studies of drought and the potential implications for electricity generation. It analyzed historical drought patterns in the western United States and used the results to develop three design drought scenarios. Finally, it quantified the risk to electricity generation for each of eight basins for each of the three drought scenarios and considered the implications for transmission planning. Literature on drought impacts on electricity generation describes a number of examples where hydroelectric generation capacity has been limited because of drought but only a few examples of impact on thermoelectric generation. In all documented cases, shortfalls of generation were met by purchasing power from the market, albeit at higher prices. However, sufficient excess generation and transmission must be available for this strategy to work. Although power purchase was the most commonly discussed drought mitigation strategy, a total of 12 response strategies were identified in the literature, falling into four main categories: electricity supply, electricity demand response, alternative water supplies, and water demand response. Three hydrological drought scenarios were developed based on a literature review and historical data analysis. The literature review helped to identify key drought parameters and data on drought frequency and severity. Historical hydrological drought data were analyzed for the western United States to identify potential drought correlations and estimate drought parameters. The first scenario was a West-wide drought occurring in 1977; it represented a severe drought in five of the eight basins in the study area. A second drought scenario was artificially defined by selecting the conditions from the 10th-percentile drought year for each individual basin; this drought was defined in this way to allow more consistent analysis of risk to electricity generation in each basin. The final scenario was based upon the current low-flow hydro modeling scenario defined by WECC, which uses conditions from the year 2001. These scenarios were then used to quantify the risk to electricity generation in each basin. The risk calculations represent a first-order estimate of the maximum amount of electricity generation that might be lost from both hydroelectric and thermoelectric sources under a worst-case scenario. Even with the conservative methodology used, the majority of basins showed a limited amount of risk under most scenarios. The level of risk in these basins is likely to be amenable to mitigation by known strategies, combined with existing reserve generation and transmission capacity. However, the risks to the Pacific Northwest and Texas Basins require further study. The Pacific Northwest is vulnerable because of its heavy reliance on hydroelectri

  7. Interconnection Guidelines

    Broader source: Energy.gov [DOE]

    Wyoming's net-metering law includes basic interconnection requirements for systems up to 25 kilowatts (kW) in capacity that generate electricity using solar, wind, hydropower or biomass resources....

  8. Oxidation Resistant, Cr Retaining, Electrically Conductive Coatings on Metallic Alloys for SOFC Interconnects

    SciTech Connect (OSTI)

    Vladimir Gorokhovsky

    2008-03-31T23:59:59.000Z

    This report describes significant results from an on-going, collaborative effort to enable the use of inexpensive metallic alloys as interconnects in planar solid oxide fuel cells (SOFCs) through the use of advanced coating technologies. Arcomac Surface Engineering, LLC, under the leadership of Dr. Vladimir Gorokhovsky, is investigating filtered-arc and filtered-arc plasma-assisted hybrid coating deposition technologies to promote oxidation resistance, eliminate Cr volatility, and stabilize the electrical conductivity of both standard and specialty steel alloys of interest for SOFC metallic interconnect (IC) applications. Arcomac has successfully developed technologies and processes to deposit coatings with excellent adhesion, which have demonstrated a substantial increase in high temperature oxidation resistance, stabilization of low Area Specific Resistance values and significantly decrease Cr volatility. An extensive matrix of deposition processes, coating compositions and architectures was evaluated. Technical performance of coated and uncoated sample coupons during exposures to SOFC interconnect-relevant conditions is discussed, and promising future directions are considered. Cost analyses have been prepared based on assessment of plasma processing parameters, which demonstrate the feasibility of the proposed surface engineering process for SOFC metallic IC applications.

  9. WECC releases its first-ever transmission plan for the Western Interconnection

    Broader source: Energy.gov [DOE]

    The Western Electricity Coordinating Council (WECC) announced the release of its first 10-Year Regional Transmission Plan (Plan) for the Western Interconnection.

  10. OE State and Regional Electricity Policy Assistance Program ...

    Energy Savers [EERE]

    OE State and Regional Electricity Policy Assistance Program OE State and Regional Electricity Policy Assistance Program The Office of Electricity Delivery and Energy Reliability...

  11. IEEE 1547 and 2030 Standards for Distributed Energy Resources Interconnection and Interoperability with the Electricity Grid

    SciTech Connect (OSTI)

    Basso, T.

    2014-12-01T23:59:59.000Z

    Public-private partnerships have been a mainstay of the U.S. Department of Energy and the National Renewable Energy Laboratory (DOE/NREL) approach to research and development. These partnerships also include technology development that enables grid modernization and distributed energy resources (DER) advancement, especially renewable energy systems integration with the grid. Through DOE/NREL and industry support of Institute of Electrical and Electronics Engineers (IEEE) standards development, the IEEE 1547 series of standards has helped shape the way utilities and other businesses have worked together to realize increasing amounts of DER interconnected with the distribution grid. And more recently, the IEEE 2030 series of standards is helping to further realize greater implementation of communications and information technologies that provide interoperability solutions for enhanced integration of DER and loads with the grid. For these standards development partnerships, for approximately $1 of federal funding, industry partnering has contributed $5. In this report, the status update is presented for the American National Standards IEEE 1547 and IEEE 2030 series of standards. A short synopsis of the history of the 1547 standards is first presented, then the current status and future direction of the ongoing standards development activities are discussed.

  12. Furnace Blower Electricity: National and Regional Savings Potential

    E-Print Network [OSTI]

    Franco, Victor; Florida Solar Energy Center

    2008-01-01T23:59:59.000Z

    Inc. Pigg, Scott. 2003. Electricity Use by New Furnaces: Astage furnaces offer national electricity savings, but withABORATORY Furnace Blower Electricity: National and Regional

  13. Record of Decision for the Electrical Interconnection of the Windy Point Wind Energy Project.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    2006-11-01T23:59:59.000Z

    The Bonneville Power Administration (BPA) has decided to offer contract terms for interconnection of 250 megawatts (MW) of power to be generated by the proposed Windy Point Wind Energy Project (Wind Project) into the Federal Columbia River Transmission System (FCRTS). Windy Point Partners, LLC (WPP) propose to construct and operate the proposed Wind Project and has requested interconnection to the FCRTS. The Wind Project will be interconnected at BPA's Rock Creek Substation, which is under construction in Klickitat County, Washington. The Rock Creek Substation will provide transmission access for the Wind Project to BPA's Wautoma-John Day No.1 500-kilovolt (kV) transmission line. BPA's decision to offer terms to interconnect the Wind Project is consistent with BPA's Business Plan Final Environmental Impact Statement (BP EIS) (DOE/EIS-0183, June 1995), and the Business Plan Record of Decision (BP ROD, August 15, 1995). This decision thus is tiered to the BP ROD.

  14. Record of Decision for the Electrical Interconnection of the COB Energy Facility (DOE/EIS-0343)

    SciTech Connect (OSTI)

    N /A

    2004-08-20T23:59:59.000Z

    The COB Energy Facility would be constructed on a site near the rural community of Bonanza, in Klamath County, Oregon. Generating components of the project would be constructed in either one or two phases, including four air-cooled combustion turbine generators fueled with natural gas, four heat recovery steam generators, and two steam turbines. Additional facilities include a new 7.2-mile-long 500-kV transmission line, a new 4.1-mile-long natural gas pipeline, a 2.8-mile-long water pipeline, a 20-acre wastewater evaporation pond or a 3,770-foot-long irrigation pipeline to deliver wastewater to a 31-acre pasture, a 4.7-acre stormwater infiltration basin, a 1.5-acre stormwater retention pond, and various tanks, buildings, exhaust stacks, parking, and storage areas. Natural gas to fuel the combustion turbines would be supplied by way of a new 4.1-mile-long, 20-inch-diameter pipeline from a Gas Transmission Northwest's Bonanza Compressor Station. The new pipeline would be constructed within private easements adjacent to or near Klamath County road rights-of-way. Although COB Energy Facility generators would use air-cooled condensers, the project would use an average of 72 gallons per minute for steam production and station service, up to a maximum of 210 gallons per minute. The source of this water would be one existing and two new wells near the project site, drawing from a deep aquifer consistent with a State of Oregon water right permit expected to be incorporated into the State energy facility site certificate. Process wastewater would either be used to irrigate pasture or held in a lined pond to evaporate. Sanitary water would be routed to an onsite septic tank then discharged to a leach field. No wastewater would be discharged to surface waters. The COB Energy Facility would interconnect to the FCRTS at Captain Jack Substation, 7.2 miles south of the project site. PERC would construct a new 500-kV transmission line from the project site to Captain Jack Substation. Part of the transmission line would cross public land managed by the Bureau of Land Management. BPA would install additional electrical equipment at Captain Jack Substation. At this time, PERC has not requested specific points of delivery.

  15. Optimal Planning and Operation of Smart Grids with Electric Vehicle Interconnection

    E-Print Network [OSTI]

    Stadler, Michael

    2012-01-01T23:59:59.000Z

    Optimal Planning and Operation of Smart Grids with ElectricOptimal Planning and Operation of Smart Grids with Electric

  16. Smart buildings with electric vehicle interconnection as buffer for local renewables?

    E-Print Network [OSTI]

    Stadler, Michael

    2012-01-01T23:59:59.000Z

    and integrated in smart buildings Is it that simple or doesN ATIONAL L ABORATORY Smart buildings with electric vehicleopportunity employer. Smart buildings with electric vehicle

  17. Smart buildings with electric vehicle interconnection as buffer for local renewables?

    E-Print Network [OSTI]

    Stadler, Michael

    2012-01-01T23:59:59.000Z

    N ATIONAL L ABORATORY Smart buildings with electric vehicleopportunity employer. Smart buildings with electric vehicleand integrated in smart buildings Is it that simple or does

  18. Lake Region Electric Cooperative- Commercial Energy Efficiency Grant Program

    Broader source: Energy.gov [DOE]

    Lake Region Electric Cooperative (LREC) offers grants to commercial customers for electric energy efficiency improvements, audits, and engineering and design assistance for new and existing...

  19. Interconnection Panel

    Broader source: Energy.gov [DOE]

    Presentation—given at at the Fall 2012 Federal Utility Partnership Working Group (FUPWG) meeting—discusses the interconnection panel, including an overview of the generation interconnection process (GIP), and interconnection agreements and their terms.

  20. Production Cost Modeling of Cogenerators in an Interconnected Electric Supply System

    E-Print Network [OSTI]

    Ragsdale, K.

    The Optimal State Electricity Supply System in Texas (OSEST) research project is part of the continuing Public Utility Commission of Texas (PUCT) effort to identify possible improvements in the production, transmission, and use of electricity...

  1. Optimal Planning and Operation of Smart Grids with Electric Vehicle Interconnection

    E-Print Network [OSTI]

    Stadler, Michael

    2012-01-01T23:59:59.000Z

    Planning and Operation of Smart Grids with Electric VehiclePlanning and Operation of Smart Grids with Electric Vehicleenergy costs at the smart grid or commercial building due to

  2. Smart buildings with electric vehicle interconnection as buffer for local renewables?

    E-Print Network [OSTI]

    Stadler, Michael

    2012-01-01T23:59:59.000Z

    Judy Lai, and Vincent Battaglia: “The added economic andMarnay, and Vincent Battaglia: “Plug-in Electric Vehicle

  3. Interconnection Standards

    Broader source: Energy.gov [DOE]

    The interconnection standards approved by the PUC also updated Nevada's net-metering policy, originally enacted in 1997. Previously, Nevada Revised Statute 704.774 addressed basic interconnection...

  4. Interconnection Standards

    Broader source: Energy.gov [DOE]

    In November 2005, the Indiana Utility Regulatory Commission (IURC) approved rules governing the interconnection of distributed generation (DG). Indiana's interconnection rules require the state's...

  5. Interconnection Standards

    Broader source: Energy.gov [DOE]

    New York first adopted uniform interconnection standards in 1999 (see history below). The Standard Interconnection Requirements (SIR) have subsequently been amended several times since, most...

  6. Lake Region Electric Cooperative | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to: navigation,working-groupsIllinois:Lake Region Electric Cooperative

  7. Solar cell array interconnects

    DOE Patents [OSTI]

    Carey, P.G.; Thompson, J.B.; Colella, N.J.; Williams, K.A.

    1995-11-14T23:59:59.000Z

    Electrical interconnects are disclosed for solar cells or other electronic components using a silver-silicone paste or a lead-tin (Pb-Sn) no-clean fluxless solder cream, whereby the high breakage of thin (<6 mil thick) solar cells using conventional solder interconnect is eliminated. The interconnects of this invention employs copper strips which are secured to the solar cells by a silver-silicone conductive paste which can be used at room temperature, or by a Pb-Sn solder cream which eliminates undesired residue on the active surfaces of the solar cells. Electrical testing using the interconnects of this invention has shown that no degradation of the interconnects developed under high current testing, while providing a very low contact resistance value. 4 figs.

  8. Solar cell array interconnects

    DOE Patents [OSTI]

    Carey, Paul G. (Mountain View, CA); Thompson, Jesse B. (Brentwood, CA); Colella, Nicolas J. (Livermore, CA); Williams, Kenneth A. (Livermore, CA)

    1995-01-01T23:59:59.000Z

    Electrical interconnects for solar cells or other electronic components using a silver-silicone paste or a lead-tin (Pb-Sn) no-clean fluxless solder cream, whereby the high breakage of thin (<6 mil thick) solar cells using conventional solder interconnect is eliminated. The interconnects of this invention employs copper strips which are secured to the solar cells by a silver-silicone conductive paste which can be used at room temperature, or by a Pb-Sn solder cream which eliminates undesired residue on the active surfaces of the solar cells. Electrical testing using the interconnects of this invention has shown that no degradation of the interconnects developed under high current testing, while providing a very low contact resistance value.

  9. Optimal Planning and Operation of Smart Grids with Electric Vehicle Interconnection

    E-Print Network [OSTI]

    Stadler, Michael

    2012-01-01T23:59:59.000Z

    is limited by battery size - Heat storage is limited bybattery discharging efficiency, dimensionless electricity storagefor other non-storage technologies, $ EV battery degradation

  10. Beta Test Plan for Advanced Inverters Interconnecting Distributed Resources with Electric Power Systems

    SciTech Connect (OSTI)

    Hoke, A.; Chakraborty, S.; Basso, T.; Coddington, M.

    2014-01-01T23:59:59.000Z

    This document provides a preliminary (beta) test plan for grid interconnection systems of advanced inverter-based DERs. It follows the format and methodology/approach established by IEEE Std 1547.1, while incorporating: 1. Upgraded tests for responses to abnormal voltage and frequency, and also including ride-through. 2. A newly developed test for voltage regulation, including dynamic response testing. 3. Modified tests for unintentional islanding, open phase, and harmonics to include testing with the advanced voltage and frequency response functions enabled. Two advanced inverters, one single-phase and one three-phase, were tested under the beta test plan. These tests confirmed the importance of including tests for inverter dynamic response, which varies widely from one inverter to the next.

  11. Interconnection Standards

    Broader source: Energy.gov [DOE]

    Utah’s interconnection rules are based on the Federal Energy Regulatory Commission’s (FERC) interconnection standards for small generators, adopted in May 2005 by FERC Order 2006. Utah's rules for...

  12. Interconnection Standards

    Broader source: Energy.gov [DOE]

    Different rules govern the interconnection of distributed generation facilities in Iowa, depending on whether or not the interconnection is with a utility whose rates are regulated by the Iowa...

  13. Interconnection Standards

    Broader source: Energy.gov [DOE]

    West Virginia's interconnection standards include two levels of review. The qualifications and application fees for each level are as follows:...

  14. Lake Region Electric Cooperative- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Lake Region Electric Cooperative (LREC) offers a variety of rebates for residential customers to improve the energy efficiency of homes. Rebates are available for Energy Star refrigerators and...

  15. Smart buildings with electric vehicle interconnection as buffer for local renewables?

    SciTech Connect (OSTI)

    Stadler, Michael; Cardoso, Goncalo; DeForest, Nicholas; Donadee, Jon; Gomez, Tomaz; Lai, Judy; Marnay, Chris; Megel, Olivier; Mendes, Goncalo; Siddiqui, Afzal

    2011-05-01T23:59:59.000Z

    Some conclusions from this presentation are: (1) EV Charging/discharging pattern mainly depends on the objective of the building (cost versus CO{sub 2}); (2) performed optimization runs show that stationary batteries are more attractive than mobile storage when putting more focus on CO{sub 2} emissions because stationary storage is available 24 hours a day for energy management - it's more effective; (3) stationary storage will be charged by PV, mobile only marginally; and (4) results will depend on the considered region and tariff. Final research work will show the results for 138 different buildings in nine different climate zones and three major utility service territories.

  16. Benefit of Regional Energy Balancing Service on Wind Integration in the Western Interconnection of the United States

    SciTech Connect (OSTI)

    Milligan, M.; Kirby, B.; King, J.; Beuning, S.

    2010-01-01T23:59:59.000Z

    Interest in various wide-area balancing schemes to help integrate wind have generated significant interest. As we have shown in past work, large balancing areas not only help with wind integration, but can also increase the efficiency of operations in systems without wind. Recent work on the Western Wind and Solar Integration Study (WWSIS) has found that combining balancing over the WestConnect footprint will increase the efficiency of commitment and dispatch at wind penetrations ranging from 10-20% of annual electricity demand, and will be essential for high penetrations and small balancing areas. In addition the Northwest Wind Integration Action Plan recommended balancing area cooperation as a method to help integrate the large potential wind development. In this paper we investigate the potential impact of a proposed Energy Imbalance Service on the ability of the non-market portions of Western Electricity Coordinating Councils (WECC) United States footprint to integrate wind energy. We will utilize data adapted from the WWSIS for the Western Interconnection. The analysis uses time-synchronized wind and load data to evaluate the potential for ramp requirement reduction that could be achieved with combined operation. Chronological analysis and ramp duration analysis quantify the benefit in terms of not only the ramp sizes, but the frequency of the potentially avoided ramps that must be managed by the non-wind generation fleet. Multiple approaches that can be used to achieve these benefits will also be suggested in the paper. We also suggest other approaches that can help achieve much of the benefit of full consolidation without requiring the physical consolidation of balancing areas.

  17. Interconnection Standards

    Broader source: Energy.gov [DOE]

    The Iowa Utilities Board (IUB) adopted rules for utilities in May 2010 for the interconnection of distributed generation facilities in Iowa.

  18. Interconnection Standards

    Broader source: Energy.gov [DOE]

    Virginia has two interconnection standards: one for net-metered systems and one for systems that are not net-metered.

  19. Interconnection Standards

    Broader source: Energy.gov [DOE]

    In December 2005, the Colorado Public Utilities Commission (PUC) adopted standards for net metering and interconnection, as required by Amendment 37, a renewable-energy ballot initiative approved...

  20. Interconnection Guidelines

    Broader source: Energy.gov [DOE]

    The South Carolina Public Service Commission (PSC) adopted simplified interconnection guidelines for small distributed generation (DG) in December 2006. These guidelines address renewable-energy...

  1. Interconnection Standards

    Broader source: Energy.gov [DOE]

    In September 2007, the Washington Utilities and Transportation Commission (UTC) adopted interconnection standards for distributed generation (DG) systems up to 20 megawatts (MW) in capacity. The...

  2. Interconnection Standards

    Broader source: Energy.gov [DOE]

    The North Carolina Utilities Commission (NCUC) adopted comprehensive interconnection standards for distributed generation in June 2008. The NCUC standards, which are similar to the Federal Energy...

  3. Interconnection Standards

    Broader source: Energy.gov [DOE]

    The Maine Public Utility Commission (PUC) adopted interconnection procedures in January 2010. These rules apply to all transmission and distribution utilities operating in the state and apply to...

  4. Interconnection Standards

    Broader source: Energy.gov [DOE]

    In July 2006 the District of Columbia Public Service Commission (PSC) initiated a formal inquiry into the development of uniform interconnection procedures for on-site distributed generation...

  5. Interconnection Standards

    Broader source: Energy.gov [DOE]

    The Michigan Public Service Commission (PSC) first adopted interconnection standards for distributed generation (DG) in September 2003. The original standards provided for 5 levels of...

  6. Interconnection Standards

    Broader source: Energy.gov [DOE]

    The Pennsylvania Public Utilities Commission was required to adopt interconnection standards and net-metering rules by the Alternative Energy Portfolio Standards Act of 2004.The PUC subsequently...

  7. Interconnection Standards

    Broader source: Energy.gov [DOE]

    In December 2007, the Connecticut Department of Public Utility Control (DPUC) now called the Public Utilities Regulatory Authority (PURA) approved new interconnection guidelines for distributed...

  8. Reliability of Electrical Interconnects

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  9. Interconnection Guidelines

    Broader source: Energy.gov [DOE]

    The interconnection guidelines state that the utility can require a customer to have liability insurance, if the insurance is easily available at a reasonable cost to the customer.  No external...

  10. Interconnection Standards

    Broader source: Energy.gov [DOE]

    Fees for interconnection requests increase with each Level. A Level 1 request must submit $50 fee; a Level 2 request must submit a fee of $50 plus $1/kW of generator capacity; a Level 3 request m...

  11. Interconnection Standards

    Broader source: Energy.gov [DOE]

    In February 2011, the DPU opened up a docket to examine net metering and interconnection of distributed generation. While the intent is to make changes to net metering, issues relating to interco...

  12. Interconnection Standards

    Broader source: Energy.gov [DOE]

    Oregon has three separate interconnection standards: one for net-metered systems, one for small generator facilities (non-net metered systems) and one for large generator facilities (non-net...

  13. Interconnection Guidelines

    Broader source: Energy.gov [DOE]

    Kansas adopted the Net Metering and Easy Connection Act in May 2009 (see K.S.A. 66-1263 through 66-1271), establishing interconnection guidelines and net metering for customer-owned generators. Net...

  14. Interconnection Guidelines

    Broader source: Energy.gov [DOE]

    Nebraska enacted legislation in May 2009 [http://nebraskalegislature.gov/FloorDocs/101/PDF/Final/LB436.pdf (LB 436)], establishing general rules for interconnecting and net metering systems that...

  15. Interconnection Standards

    Broader source: Energy.gov [DOE]

    NOTE: In Feb 2014, the PUC proposed changes to the State’s Alternative Energy Portfolio Standard, Interconnection, and Net-metering rules. The documents associated with the case can be accessed at...

  16. Interconnection Standards

    Broader source: Energy.gov [DOE]

    In March 2008, the Florida Public Service Commission (PSC) adopted interconnection rules for renewable-energy systems up to two megawatts (MW) in capacity. The PSC rules apply only to the state's...

  17. Interconnection Standards

    Broader source: Energy.gov [DOE]

    Vermont has adopted separate interconnection standards for net-metered energy systems that are 150 kW or less, and for all other distributed-generation (DG) systems.

  18. Updating Interconnection Screens for PV System Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Abraham Ellis, Roger Hill Sandia National Laboratories Tom Key, Kristen Nicole, Jeff Smith Electric Power Research Institute Updating Interconnection Screens for PV System...

  19. Frequency Instability Problems in North American Interconnections

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cycle CFC Constant frequency control CPS Control Performance Standards DC Direct Current EI Eastern Interconnection EIA Energy Information Agency ERCOT Electric Reliability...

  20. Estimating electric current densities in solar active regions

    E-Print Network [OSTI]

    Wheatland, M S

    2015-01-01T23:59:59.000Z

    Electric currents in solar active regions are thought to provide the energy released via magnetic reconnection in solar flares. Vertical electric current densities $J_z$ at the photosphere may be estimated from vector magnetogram data, subject to substantial uncertainties. The values provide boundary conditions for nonlinear force- free modelling of active region magnetic fields. A method is presented for estimating values of $J_z$ taking into account uncertainties in vector magnetogram field values, and minimizing $J_z^2$ across the active region. The method is demonstrated using the boundary values of the field for a force-free twisted bipole, with the addition of noise at randomly chosen locations.

  1. ELECTR-5939; No of Pages 6 Please cite this article in press as: A. Sopinka, Variable Energy Resources: VERy Interesting Implications for the Western Interconnect, Electr. J. (2013), http://dx.doi.org/10.1016/j.tej.2013.04.015

    E-Print Network [OSTI]

    Pedersen, Tom

    2013-01-01T23:59:59.000Z

    The North American bulk power system is comprised of four interconnected regions: the Western Interconnect region comprises 37 balancing authorities located across Alberta and British Columbia, known hereafter.D. at the University of Victoria. Her dissertation work focused on the economic and environmental effects of wind

  2. Interconnection Guidelines

    Broader source: Energy.gov [DOE]

    Systems must meet all performance standards established by local and national electric codes, including the National Electric Code (NEC), the Institute of Electrical and Electronic Engineers (IEEE...

  3. Electricity Advisory Committee Meeting Presentations October...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Interconnection-Wide Transmission Planning Processes Electricity Advisory Committee Meeting Presentations October 2011 - Interconnection-Wide Transmission Planning Processes Panel...

  4. Trends in Regional Electricity Demands 1995-2012

    E-Print Network [OSTI]

    to Department of Energy in EIA form 861. Council staff takes annual reported retail sales by each utility. Street lighting sales are not metered but rather estimated . 10 #12;Losses are Defined as Energy LoadsTrends in Regional Electricity Demands 1995-2012 January 29, 2014 #12;In Today's Conversation

  5. Flexible interconnects for fuel cell stacks

    DOE Patents [OSTI]

    Lenz, David J.; Chung, Brandon W.; Pham, Ai Quoc

    2004-11-09T23:59:59.000Z

    An interconnect that facilitates electrical connection and mechanical support with minimal mechanical stress for fuel cell stacks. The interconnects are flexible and provide mechanically robust fuel cell stacks with higher stack performance at lower cost. The flexible interconnects replace the prior rigid rib interconnects with flexible "fingers" or contact pads which will accommodate the imperfect flatness of the ceramic fuel cells. Also, the mechanical stress of stacked fuel cells will be smaller due to the flexibility of the fingers. The interconnects can be one-sided or double-sided.

  6. Furnace Blower Electricity: National and Regional Savings Potential

    SciTech Connect (OSTI)

    Florida Solar Energy Center; Franco, Victor; Franco, Victor; Lutz, Jim; Lekov, Alex; Gu, Lixing

    2008-05-16T23:59:59.000Z

    Currently, total electricity consumption of furnaces is unregulated, tested at laboratory conditions using the DOE test procedure, and is reported in the GAMA directory as varying from 76 kWh/year to 1,953 kWh/year. Furnace blowers account for about 80percent of the total furnace electricity consumption and are primarily used to distribute warm air throughout the home during furnace operation as well as distribute cold air during air conditioning operation. Yet the furnace test procedure does not provide a means to calculate the electricity consumption during cooling operation or standby, which account for a large fraction of the total electricity consumption. Furthermore, blower electricity consumption is strongly affected by static pressure. Field data shows that static pressure in the house distribution ducts varies widely and that the static pressure used in the test procedure as well as the calculated fan power is not representative of actual field installations. Therefore, accurate determination of the blower electricity consumption is important to address electricity consumption of furnaces and air conditioners. This paper compares the potential regional and national energy savings of two-stage brushless permanent magnet (BPM) blower motors (the blower design option with the most potential savings that is currently available in the market) to single-stage permanent split capacitor (PSC) blower motors (the most common blower design option). Computer models were used to generate the heating and cooling loads for typical homes in 16 different climates which represent houses throughout the United States. The results show that the potential savings of using BPM motors vary by region and house characteristics, and are very strongly tied to improving house distribution ducts. Savings decrease dramatically with increased duct pressure. Cold climate locations will see savings even in the high static pressure duct situations, while warm climate locations will see less savings overall and negative savings in the high static pressure duct situations. Moderate climate locations will see little or no savings.

  7. Furnace Blower Electricity: National and Regional Savings Potential

    E-Print Network [OSTI]

    Franco, Victor; Florida Solar Energy Center

    2008-01-01T23:59:59.000Z

    Currently, total electricity consumption of furnaces isthe total furnace electricity consumption and are primarilyto calculate the electricity consumption during cooling

  8. Interconnection Standards

    Broader source: Energy.gov [DOE]

    Utah requires the state's only investor-owned utility, Rocky Mountain Power (RMP), and most electric cooperatives* to offer net metering to customers who generate electricity using solar energy,...

  9. Interconnection Guidelines

    Broader source: Energy.gov [DOE]

    Missouri enacted legislation (S.B. 54) in June 2007 requiring all of the state's electric utilities -- including municipal utilities and electric cooperatives -- to offer net metering to customers...

  10. Interconnection Standards

    Broader source: Energy.gov [DOE]

    New Hampshire requires all utilities selling electricity in the state to offer net metering to customers who own or operate systems up to one megawatt (1 MW) in capacity that generate electricity...

  11. Series interconnected photovoltaic cells and method for making same

    DOE Patents [OSTI]

    Albright, S.P.; Chamberlin, R.R.; Thompson, R.A.

    1995-01-31T23:59:59.000Z

    A novel photovoltaic module and method for constructing the same are disclosed. The module includes a plurality of photovoltaic cells formed on a substrate and laterally separated by interconnection regions. Each cell includes a bottom electrode, a photoactive layer and a top electrode layer. Adjacent cells are connected in electrical series by way of a conductive-buffer line. The buffer line is also useful in protecting the bottom electrode against severing during downstream layer cutting processes. 11 figs.

  12. Central Wind Power Forecasting Programs in North America by Regional Transmission Organizations and Electric Utilities

    SciTech Connect (OSTI)

    Porter, K.; Rogers, J.

    2009-12-01T23:59:59.000Z

    The report addresses the implementation of central wind power forecasting by electric utilities and regional transmission organizations in North America.

  13. Grid-Connected Inverter Anti-Islanding Test Results for General Electric Inverter-Based Interconnection Technology

    SciTech Connect (OSTI)

    Ye, Z.; Dame, M.; Kroposki, B.

    2005-01-01T23:59:59.000Z

    This report covers testing of General Electric-proposed anti-islanding schemes. The objectives were to: (1) Validate the effectiveness of the proposed anti-islanding schemes; (2) Conduct parametric evaluation of the schemes with respect to control settings and load conditions, including controller gains, load power levels, and load quality factors; and (3) Examine the ability of the distributed resource to ride through a low-voltage condition on the utility grid.

  14. Recent Development of SOFC Metallic Interconnect

    SciTech Connect (OSTI)

    Wu JW, Liu XB

    2010-04-01T23:59:59.000Z

    Interest in solid oxide fuel cells (SOFC) stems from their higher e±ciencies and lower levels of emitted pollu- tants, compared to traditional power production methods. Interconnects are a critical part in SOFC stacks, which connect cells in series electrically, and also separate air or oxygen at the cathode side from fuel at the anode side. Therefore, the requirements of interconnects are the most demanding, i:e:, to maintain high elec- trical conductivity, good stability in both reducing and oxidizing atmospheres, and close coe±cient of thermal expansion (CTE) match and good compatibility with other SOFC ceramic components. The paper reviewed the interconnect materials, and coatings for metallic interconnect materials.

  15. Interconnected semiconductor devices

    DOE Patents [OSTI]

    Grimmer, Derrick P. (White Bear Lake, MN); Paulson, Kenneth R. (North St. Paul, MN); Gilbert, James R. (St. Paul, MN)

    1990-10-23T23:59:59.000Z

    Semiconductor layer and conductive layer formed on a flexible substrate, divided into individual devices and interconnected with one another in series by interconnection layers and penetrating terminals.

  16. Evaluating the Impact of Plug-in Hybrid Electric Vehicles on Regional Electricity Supplies

    SciTech Connect (OSTI)

    Hadley, Stanton W [ORNL

    2007-01-01T23:59:59.000Z

    Plug-in Hybrid Electric Vehicles (PHEVs) have the potential to increase the use of electricity to fuel the U.S. transportation needs. The effect of this additional demand on the electric system will depend on the amount and timing of the vehicles' periodic recharging on the grid. We used the ORCED (Oak Ridge Competitive Electricity Dispatch) model to evaluate the impact of PHEVs on the Virginia-Carolinas (VACAR) electric grid in 2018. An inventory of one million PHEVs was used and charging was begun in early evening and later at night for comparison. Different connection power levels of 1.4 kW, 2 kW, and 6 kW were used. The results include the impact on capacity requirements, fuel types, generation technologies, and emissions. Cost information such as added cost of generation and cost savings versus use of gasoline were calculated. Preliminary results of the expansion of the study to all regions of the country are also presented. The results show distinct differences in fuels and generating technologies when charging times are changed. At low specific power and late in the evening, coal was the major fuel used, while charging more heavily during peak times led to more use of combustion turbines and combined cycle plants.

  17. Benefit of Regional Energy Balancing Service on Wind Integration in the Western Interconnection of the United States: Preprint

    SciTech Connect (OSTI)

    Milligan, M.; Kirby, B.; King, J.; Beuning, S.

    2010-10-01T23:59:59.000Z

    This analysis indicates the extent to which pooled regional dispatch for matching generation to load mitigates the costs and improves associated reliability, particularly in scenarios with high penetration of variable output resources, such as wind

  18. Interconnect assembly for an electronic assembly and assembly method therefor

    DOE Patents [OSTI]

    Gerbsch, Erich William

    2003-06-10T23:59:59.000Z

    An interconnect assembly and method for a semiconductor device, in which the interconnect assembly can be used in lieu of wirebond connections to form an electronic assembly. The interconnect assembly includes first and second interconnect members. The first interconnect member has a first surface with a first contact and a second surface with a second contact electrically connected to the first contact, while the second interconnect member has a flexible finger contacting the second contact of the first interconnect member. The first interconnect member is adapted to be aligned and registered with a semiconductor device having a contact on a first surface thereof, so that the first contact of the first interconnect member electrically contacts the contact of the semiconductor device. Consequently, the assembly method does not require any wirebonds, but instead merely entails aligning and registering the first interconnect member with the semiconductor device so that the contacts of the first interconnect member and the semiconductor device make electrically contact, and then contacting the second contact of the first interconnect member with the flexible finger of the second interconnect member.

  19. Durability of Metallic Interconnects and Protective Coatings

    SciTech Connect (OSTI)

    Yang, Zhenguo; Stevenson, Jeffry W.

    2009-12-15T23:59:59.000Z

    To build up a useful voltage, a number of solid oxide fuel cells (SOFCs) are electrically connected into series in a stack via interconnects, which are placed between adjacent cells. In addition to functioning as a bi-polar electrical connector, the interconnect also acts as a separator plate that separates the fuel at the anode side of one cell from the air at the cathode side on an adjacent cell. During SOFC operation at the high temperatures, the interconnects are thus simultaneously exposed to the oxidizing air at one side and a reducing fuel that can be either hydrogen or hydrocarbon at the other. Besides, they are in contact with adjacent components, such as electrodes or electrical contacts, seals, etc. With steady reduction in SOFC operating temperatures into the low or intermediate range 600-850oC, oxidation resistant alloys are often used to construct interconnects. However, the metallic interconnects may degrade via interactions at their interfaces with surrounding environments or adjacent components, potentially affecting the stability and performance of interconnects and the SOFC stacks. Thus protection layers are applied to metallic interconnects that also intend to mitigate or prevent chromium migration into cells and the cell poisoning. This chapter provides a comprehensive review of materials for metallic interconnects, their degradation and coating protection.

  20. Design space exploration of photonic interconnects

    E-Print Network [OSTI]

    Sun, Chen, S.M. Massachusetts Institute of Technology

    2011-01-01T23:59:59.000Z

    As processors scale deep into the multi-core and many-core regimes, bandwidth and energy-efficiency of the on-die interconnect network have become paramount design issues. Recognizing potential limits of electrical ...

  1. Interconnection Standards

    Broader source: Energy.gov [DOE]

    The PUC standards generally apply to investor-owned utilities (IOUs) with 40,000 or more customers and all electric cooperatives. Municipal utilities with 5,000 customers or more are required to ...

  2. Utility Wind Integration Group Distributed Wind/Solar Interconnection Workshop

    Broader source: Energy.gov [DOE]

    This two-day workshop will answer your questions about interconnecting wind and solar plants and other distributed generation applications to electric distribution systems while providing insight...

  3. Interconnection networks

    DOE Patents [OSTI]

    Faber, V.; Moore, J.W.

    1988-06-20T23:59:59.000Z

    A network of interconnected processors is formed from a vertex symmetric graph selected from graphs GAMMA/sub d/(k) with degree d, diameter k, and (d + 1)exclamation/ (d /minus/ k + 1)exclamation processors for each d greater than or equal to k and GAMMA/sub d/(k, /minus/1) with degree d /minus/ 1, diameter k + 1, and (d + 1)exclamation/(d /minus/ k + 1)exclamation processors for each d greater than or equal to k greater than or equal to 4. Each processor has an address formed by one of the permutations from a predetermined sequence of letters chosen a selected number of letters at a time, and an extended address formed by appending to the address the remaining ones of the predetermined sequence of letters. A plurality of transmission channels is provided from each of the processors, where each processor has one less channel than the selected number of letters forming the sequence. Where a network GAMMA/sub d/(k, /minus/1) is provided, no processor has a channel connected to form an edge in a direction delta/sub 1/. Each of the channels has an identification number selected from the sequence of letters and connected from a first processor having a first extended address to a second processor having a second address formed from a second extended address defined by moving to the front of the first extended address the letter found in the position within the first extended address defined by the channel identification number. The second address is then formed by selecting the first elements of the second extended address corresponding to the selected number used to form the address permutations. 9 figs.

  4. Updating Technical Screens for PV Interconnection: Preprint

    SciTech Connect (OSTI)

    Coddington, M.; Ellis, A.; Lynn, K.; Razon, A.; Key, T.; Kroposki, B.; Mather, B.; Hill, R.; Nicole, K.; Smith, J.

    2012-08-01T23:59:59.000Z

    Solar photovoltaics (PV) is the dominant type of distributed generation (DG) technology interconnected to electric distribution systems in the United States, and deployment of PV systems continues to increase rapidly. Considering the rapid growth and widespread deployment of PV systems in United States electric distribution grids, it is important that interconnection procedures be as streamlined as possible to avoid unnecessary interconnection studies, costs, and delays. Because many PV interconnection applications involve high penetration scenarios, the process needs to allow for a sufficiently rigorous technical evaluation to identify and address possible system impacts. Existing interconnection procedures are designed to balance the need for efficiency and technical rigor for all DG. However, there is an implicit expectation that those procedures will be updated over time in order to remain relevant with respect to evolving standards, technology, and practical experience. Modifications to interconnection screens and procedures must focus on maintaining or improving safety and reliability, as well as accurately allocating costs and improving expediency of the interconnection process. This paper evaluates the origins and usefulness of the capacity penetration screen, offers potential short-term solutions which could effectively allow fast-track interconnection to many PV system applications, and considers longer-term solutions for increasing PV deployment levels in a safe and reliable manner while reducing or eliminating the emphasis on the penetration screen.

  5. Final Report on Transmission Pricing in the Western Interconnection

    SciTech Connect (OSTI)

    Douglas C. Larson; Lawrence Nordell

    2003-06-25T23:59:59.000Z

    Under this project, the Committee on Regional Electric Power Cooperation (CREPC) of the Western Interstate Energy Board developed a ''western pricing and congestion management proposal'' in order to foster efficient wholesale power markets and efficient use and expansion of the transmission grid. Drafts of this paper provided useful information to states/provinces in the Western Interconnection as Western Regional Transmission Organization (RTO) transmission pricing proposals have continued to evolve. Throughout the project there has been a gradual, but incomplete agreement on pricing systems to be used by RTOs in the West.

  6. Central Wind Forecasting Programs in North America by Regional Transmission Organizations and Electric Utilities: Revised Edition

    SciTech Connect (OSTI)

    Rogers, J.; Porter, K.

    2011-03-01T23:59:59.000Z

    The report and accompanying table addresses the implementation of central wind power forecasting by electric utilities and regional transmission organizations in North America. The first part of the table focuses on electric utilities and regional transmission organizations that have central wind power forecasting in place; the second part focuses on electric utilities and regional transmission organizations that plan to adopt central wind power forecasting in 2010. This is an update of the December 2009 report, NREL/SR-550-46763.

  7. The origin of net electric currents in solar active regions

    E-Print Network [OSTI]

    Dalmasse, K; Démoulin, P; Kliem, B; Török, T; Pariat, E

    2015-01-01T23:59:59.000Z

    There is a recurring question in solar physics about whether or not electric currents are neutralized in active regions (ARs). This question was recently revisited using three-dimensional (3D) magnetohydrodynamic (MHD) numerical simulations of magnetic flux emergence into the solar atmosphere. Such simulations showed that flux emergence can generate a substantial net current in ARs. Another source of AR currents are photospheric horizontal flows. Our aim is to determine the conditions for the occurrence of net vs. neutralized currents with this second mechanism. Using 3D MHD simulations, we systematically impose line-tied, quasi-static, photospheric twisting and shearing motions to a bipolar potential magnetic field. We find that such flows: (1) produce both {\\it direct} and {\\it return} currents, (2) induce very weak compression currents - not observed in 2.5D - in the ambient field present in the close vicinity of the current-carrying field, and (3) can generate force-free magnetic fields with a net current...

  8. Distributed Solar Interconnection Challenges and Best Practices

    Broader source: Energy.gov [DOE]

    The continued growth of the distributed solar market in the United States has spurred electric utilities, regulators, and stakeholders to consider improvements to distributed generation (DG) interconnection processes. More than 475,000 solar energy systems were interconnected in the U.S. by the end of 2013, but 1 million are expected by the end of 2017. Based on the SunShot Initiative's current trajectory, permitting, inspection, and interconnection (PII) soft costs are expected to drop from a current cost of $0.17/watt to $0.14/watt by 2020. While the actual cost metrics for utility PII are undetermined, they are real. A survey and interviews conducted by Solar Electric Power Association (SEPA) in 2014 have uncovered utility initiatives to lower the administrative costs of DG interconnection, making the process of connecting to the grid simpler and more transparent for customers.

  9. February 2003 INTERCONNECTIONS

    E-Print Network [OSTI]

    an Interconnection Security Agreement (ISA), which specifies the technical and security requirements of the interconFebruary 2003 SECURE INTERCONNECTIONS FOR INFORMATION TECHNOLOGY SYSTEMS Shirley Radack, Editor choose to interconnect their IT systems for a variety of reasons, depending on their organizational needs

  10. Regional Per Capita Solar Electric Footprint for the United States

    SciTech Connect (OSTI)

    Denholm, P.; Margolis, R.

    2007-12-01T23:59:59.000Z

    In this report, we quantify the state-by-state per-capita 'solar electric footprint' for the United States. We use state-level data on population, electricity consumption, economic activity and solar insolation, along with solar photovoltaic (PV) array packing density data to develop a range of estimates of the solar electric footprint. We find that the solar electric footprint, defined as the land area required to supply all end-use electricity from solar photovoltaics, is about 181 m2 per person in the United States. Two key factors that influence the magnitude of the state-level solar electric footprint include how industrial energy is allocated (based on location of use vs. where goods are consumed) and the assumed distribution of PV configurations (flat rooftop vs. fixed tilt vs. tracking). The solar electric footprint is about 0.6% of the total land area of the United States with state-level estimates ranging from less than 0.1% for Wyoming to about 9% for New Jersey. We also compare the solar electric footprint to a number of other land uses. For example, we find that the solar electric footprint is equal to less than 2% of the land dedicated to cropland and grazing in the United States.

  11. Double interconnection fuel cell array

    DOE Patents [OSTI]

    Draper, R.; Zymboly, G.E.

    1993-12-28T23:59:59.000Z

    A fuel cell array is made, containing number of tubular, elongated fuel cells which are placed next to each other in rows (A, B, C, D), where each cell contains inner electrodes and outer electrodes, with solid electrolyte between the electrodes, where the electrolyte and outer electrode are discontinuous, having two portions, and providing at least two opposed discontinuities which contain at least two oppositely opposed interconnections contacting the inner electrode, each cell having only three metallic felt electrical connectors which contact surrounding cells, where each row is electrically connected to the other. 5 figures.

  12. Western Interconnection Energy Imbalance Market Status and Prospects (Presentation)

    SciTech Connect (OSTI)

    Milligan, M.; Kirby, B.; King, J.; Beuning, S.

    2011-10-01T23:59:59.000Z

    This presentation describes how a new wholesale electricity market for energy imbalance ancillary services could be implemented and operated. Some conclusions of this presentation are: (1) Method for calculating additional reserve requirements due to wind and solar production; (2) EIM results in substantial reduction in reserves requirements and ramping demand; (3) Reduced participation reduces benefits for all but reduces the benefits to non-participants the most; (4) Full participation leads to maximum benefit across the Western Interconnection, up to 42% of total reserve requirement; and (5) Regional EIM implementations have smaller but substantial benefits.

  13. Series interconnected photovoltaic cells and method for making same

    DOE Patents [OSTI]

    Albright, Scot P. (El Paso, TX); Chamberlin, Rhodes R. (El Paso, TX); Thompson, Roger A. (Littleton, CO)

    1995-01-01T23:59:59.000Z

    A novel photovoltaic module (10) and method for constructing the same are disclosed. The module (10) includes a plurality of photovoltaic cells (12) formed on a substrate (14) and laterally separated by interconnection regions (15). Each cell (12) includes a bottom electrode (16), a photoactive layer (18) and a top electrode layer (20). Adjacent cells (12) are connected in electrical series by way of a conductive-buffer line (22). The buffer line (22) is also useful in protecting the bottom electrode (16) against severing during downstream layer cutting processes.

  14. Current induced annealing and electrical characterization of single layer graphene grown by chemical vapor deposition for future interconnects in VLSI circuits

    SciTech Connect (OSTI)

    Prasad, Neetu, E-mail: neetu.prasad@south.du.ac.in, E-mail: neetu23686@gmail.com; Kumari, Anita; Bhatnagar, P. K.; Mathur, P. C. [Department of Electronic Science, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021 (India); Bhatia, C. S. [Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576 (Singapore)

    2014-09-15T23:59:59.000Z

    Single layer graphene (SLG) grown by chemical vapor deposition (CVD) has been investigated for its prospective application as horizontal interconnects in very large scale integrated circuits. However, the major bottleneck for its successful application is its degraded electronic transport properties due to the resist residual trapped in the grain boundaries and on the surface of the polycrystalline CVD graphene during multi-step lithographic processes, leading to increase in its sheet resistance up to 5 M?/sq. To overcome this problem, current induced annealing has been employed, which helps to bring down the sheet resistance to 10?k?/sq (of the order of its initial value). Moreover, the maximum current density of ?1.2?×?10{sup 7?}A/cm{sup 2} has been obtained for SLG (1?×?2.5??m{sup 2}) on SiO{sub 2}/Si substrate, which is about an order higher than that of conventionally used copper interconnects.

  15. Interconnect Issues in NE

    Broader source: Energy.gov [DOE]

    Presentation covers interconnect issues in the Northeast and is given at the Spring 2010 Federal Utility Partnership Working Group (FUPWG) meeting in Providence, Rhode Island.

  16. Northeast regional assessment study for solar electric options in the period 1980-2000

    SciTech Connect (OSTI)

    None

    1981-04-01T23:59:59.000Z

    Opportunities for demonstration and large scale deployment of solar electric facilities are identified and assessed. Technical, economic, and institutional factors that can contribute to an accelerated use of solar energy for electric power generation are defined. The following topics are covered: a description of the Northeast Region and its solar resources, central station applications, a dispersed user analysis, user viewpoints and institutional factors, and market potential for dispersed solar electric systems. (MHR)

  17. Interconnection of bundled solid oxide fuel cells

    DOE Patents [OSTI]

    Brown, Michael; Bessette, II, Norman F; Litka, Anthony F; Schmidt, Douglas S

    2014-01-14T23:59:59.000Z

    A system and method for electrically interconnecting a plurality of fuel cells to provide dense packing of the fuel cells. Each one of the plurality of fuel cells has a plurality of discrete electrical connection points along an outer surface. Electrical connections are made directly between the discrete electrical connection points of adjacent fuel cells so that the fuel cells can be packed more densely. Fuel cells have at least one outer electrode and at least one discrete interconnection to an inner electrode, wherein the outer electrode is one of a cathode and and anode and wherein the inner electrode is the other of the cathode and the anode. In tubular solid oxide fuel cells the discrete electrical connection points are spaced along the length of the fuel cell.

  18. Design and Analysis of a Region-Wide Remotely Controllable Electrical Lock-Out System

    SciTech Connect (OSTI)

    Olama, Mohammed M [ORNL; Allgood, Glenn O [ORNL; Kuruganti, Phani Teja [ORNL; Howlader, Mostofa [ORNL; Kisner, Roger A [ORNL; Ewing, Paul D [ORNL; McIntyre, Timothy J [ORNL

    2012-01-01T23:59:59.000Z

    Electric utilities have a main responsibility to protect the lives and safety of their workers when they are working on low-, medium-, and high-voltage power lines and distribution circuits. With the anticipated widespread deployment of smart grids, a secure and highly reliable means of maintaining isolation of customer-owned distributed generation (DG) from the affected distribution circuits during maintenance is necessary to provide a fully de-energized work area, ensure utility personnel safety, and prevent hazards that can lead to accidents such as accidental electrocution from unanticipated power sources. Some circuits are serviced while energized (live line work) while others are de-energized for maintenance. For servicing de-energized circuits and equipment, lock-out tag-out (LOTO) programs provide a verifiable procedure for ensuring that circuit breakers are locked in the off state and tagged to indicate that status to operational personnel so that the lines will be checked for voltage to verify they are de-energized. The de-energized area is isolated from any energized sources, which traditionally are the substations. This procedure works well when all power sources and their interconnections are known armed with this knowledge, utility personnel can determine the appropriate circuits to de-energize for isolating the target line or equipment. However, with customer-owned DG tied into the grid, the risk of inadvertently reenergizing a circuit increases because circuit connections may not be adequately documented and are not under the direct control of the local utility. Thus, the active device may not be properly de-energized or isolated from the work area. Further, a remote means of de-energizing and locking out energized devices provides an opportunity for greatly reduced safety risk to utility personnel compared to manual operations. In this paper, we present a remotely controllable LOTO system that allows individual workers to determine the configuration and status of electrical system circuits and permit them to lock out customer-owned DG devices for safety purposes using a highly secure and ultra-reliable radio signal. The system consists of: (1) individual personal lockout devices, (2) lockout communications and logic module at circuit breakers, which are located at all DG devices, and (3) a database and configuration control process located at the utility operations center. The lockout system is a close permissive, i.e., loss of control power or communications will cause the circuit breaker to open. Once the DG device is tripped open, a visual means will provide confirmation of a loss of voltage and current that verifies the disconnected status of the DG. Further the utility personnel will be able to place their own lock electronically on the system to ensure a lockout functionally. The proposed LOTO system provides enhanced worker safety and protection against unintended energized lines when DG is present. The main approaches and challenges encountered through designing the proposed region-wide LOTO system are discussed in this paper. These approaches include: (1) evaluating the reliability of the proposed approach under N-modular redundancy with voter/spares configurations and (2) conducting a system level risk assessment study using the failure modes and effects analysis (FMEA) technique to identify and rank failure modes by probability of occurrence, probability of detection, and severity of consequences. This ranking allows a cost benefits analysis to be conducted such that dollars and efforts will be applied to the failures that provide greatest incremental gains in system capability (resilience, survivability, security, reliability, availability, etc.) per dollar spent whether capital, operations, or investment. Several simulation scenarios and their results are presented to demonstrate the viability of these approaches.

  19. An integrated assessment of global and regional water demands for electricity generation to 2095

    SciTech Connect (OSTI)

    Davies, Evan; Kyle, G. Page; Edmonds, James A.

    2013-02-01T23:59:59.000Z

    Electric power plants currently account for approximately one-half of the global industrial water withdrawal. While continued expansion of the electric sector seems likely into the future, the consequent water demands are quite uncertain, and will depend on highly variable water intensities by electricity technologies, at present and in the future. Using GCAM, an integrated assessment model of energy, agriculture, and climate change, we first establish lower-bound, median, and upper-bound estimates for present-day electric sector water withdrawals and consumption by individual electric generation technologies in each of 14 geopolitical regions, and compare them with available estimates of regional industrial or electric sector water use. We then explore the evolution of global and regional electric sector water use over the next century, focusing on uncertainties related to withdrawal and consumption intensities for a variety of electric generation technologies, rates of change of power plant cooling system types, and rates of adoption of a suite of water-saving technologies. Results reveal that the water withdrawal intensity of electricity generation is likely to decrease in the near term with capital stock turnover, as wet towers replace once-through flow cooling systems and advanced electricity generation technologies replace conventional ones. An increase in consumptive use accompanies the decrease in water withdrawal rates; however, a suite of water conservation technologies currently under development could compensate for this increase in consumption. Finally, at a regional scale, water use characteristics vary significantly based on characteristics of the existing capital stock and the selection of electricity generation technologies into the future.

  20. Energy and water in the Western and Texas interconnects.

    SciTech Connect (OSTI)

    Tidwell, Vincent Carroll

    2010-08-01T23:59:59.000Z

    The Department of Energy's Office of Electricity has initiated a $60M program to assist the electric industry in interconnection-level analysis and planning. The objective of this effort is to facilitate the development or strengthening of capabilities in each of the three interconnections serving the lower 48 states of the United States, to prepare analyses of transmission requirements under a broad range of alternative futures and develop long-term interconnection-wide transmission expansion plans. The interconnections are the Western Interconnection, the Eastern Interconnection, and the Texas Interconnection. One element of this program address the support and development of an integrated energy-water Decision Support System (DSS) that will enable planners in the Western and Texas Interconnections to analyze the potential implications of water stress for transmission and resource planning (the Eastern Interconnection is not participating in this element). Specific objectives include: (1) Develop an integrated Energy-Water Decision Support System (DSS) that will enable planners in the Western and Texas Interconnections to analyze the potential implications of water stress for transmission and resource planning. (2) Pursue the formulation and development of the Energy-Water DSS through a strongly collaborative process between members of this proposal team and the Western Electricity Coordinating Council (WECC), Western Governors Association (WGA), the Electric Reliability Council of Texas (ERCOT) and their associated stakeholder teams. (3) Exercise the Energy-Water DSS to investigate water stress implications of the transmission planning scenarios put forward by WECC, WGA, and ERCOT. The goals of this project are: (1) Develop an integrated Energy-Water Decision Support System (DSS) that will enable planners to analyze the potential implications of water stress for transmission and resource planning. (2) Pursue the formulation and development of the Energy-Water DSS through a strongly collaborative process between Western Electricity Coordinating Council, Electric Reliability Council of Texas, Western Governors Association, and Western States Water Council. (3) Exercise the Energy-Water DSS to investigate water transmission planning scenarios.

  1. Simulating Electricity Restructuring in California: Interactions with the Regional Market

    E-Print Network [OSTI]

    California at Berkeley. University of

    are quite close to one another. Within the California pool, marginal cost pricing will produce economic Institute, a multicampus research unit of the University of California, located on the Berkeley campus from pooling and transmission pricing policy. As a result of increased regional trade, transmission

  2. Operating Reserve Implication of Alternative Implementations of an Energy Imbalance Service on Wind Integration in the Western Interconnection: Preprint

    SciTech Connect (OSTI)

    Milligan, M.; Kirby, B.; King, J.; Beuning, S.

    2011-07-01T23:59:59.000Z

    During the past few years, there has been significant interest in alternative ways to manage power systems over a larger effective electrical footprint. Large regional transmission organizations in the Eastern Interconnection have effectively consolidated balancing areas, achieving significant economies of scale that result in a reduction in required reserves. Conversely, in the Western Interconnection there are many balancing areas, which will result in challenges if there is significant wind and solar energy development in the region. A recent proposal to the Western Electricity Coordinating Council suggests a regional energy imbalance service (EIS). To evaluate this EIS, a number of analyses are in process or are planned. This paper describes one part of an analysis of the EIS's implication on operating reserves under several alternative scenarios of the market footprint and participation. We improve on the operating reserves method utilized in the Eastern Wind Integration and Transmission Study and apply this modified approach to data from the Western Wind and Solar Integration Study.

  3. Sandia National Laboratories: Electric Power Generation and Water...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    InterconnectsElectric Power Generation and Water Use Data Electric Power Generation and Water Use Data Electric Power Generation and Water Use Data Electric Power Generation and...

  4. Micro-fluidic interconnect

    DOE Patents [OSTI]

    Okandan, Murat (Albuquerque, NM); Galambos, Paul C. (Albuquerque, NM); Benavides, Gilbert L. (Los Ranchos, NM); Hetherington, Dale L. (Albuquerque, NM)

    2006-02-28T23:59:59.000Z

    An apparatus for simultaneously aligning and interconnecting microfluidic ports is presented. Such interconnections are required to utilize microfluidic devices fabricated in Micro-Electromechanical-Systems (MEMS) technologies, that have multiple fluidic access ports (e.g. 100 micron diameter) within a small footprint, (e.g. 3 mm.times.6 mm). Fanout of the small ports of a microfluidic device to a larger diameter (e.g. 500 microns) facilitates packaging and interconnection of the microfluidic device to printed wiring boards, electronics packages, fluidic manifolds etc.

  5. Lake Region Electric Coop, Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |Jilin Zhongdiantou NewKorea PartsLLNLLaizhou Luneng WindLake Region

  6. Supplying Baseload Power and Reducing Transmission Requirements by Interconnecting Wind Farms

    E-Print Network [OSTI]

    Supplying Baseload Power and Reducing Transmission Requirements by Interconnecting Wind Farms is not used to supply baseload electric power today. Interconnecting wind farms through the transmission grid farms are interconnected in an array, wind speed correlation among sites decreases and so does

  7. Electrical and optical performance characteristics of 0.74eV p/n InGaAs monolithic interconnected modules

    SciTech Connect (OSTI)

    Wilt, D.M.; Weizer, V.G. [National Aeronautics and Space Administration, Cleveland, OH (United States). Lewis Research Center; Fatemi, N.S.; Jenkins, P.P.; Hoffman, R.W. Jr. [Essential Research Inc., Cleveland, OH (United States); Jain, R.K. [National Research Council, Washington, DC (United States); Murray, C.S.; Riley, D.R. [Westinghouse Electric Corp., West Mifflin, PA (United States)

    1997-06-01T23:59:59.000Z

    There has been a traditional trade-off in thermophotovoltaic (TPV) energy conversion development between system efficiency and power density. This trade-off originates from the use of front surface spectral controls such as selective emitters and various types of filters. A monolithic interconnected module (MIM) structure has been developed which allows for both high power densities and high system efficiencies. The MIM device consists of many individual indium gallium arsenide (InGaAs) cells series-connected on a single semi-insulating indium phosphide (InP) substrate. The MIM is exposed to the entire emitter output, thereby maximizing output power density. An infrared (IR) reflector placed on the rear surface of the substrate returns the unused portion of the emitter output spectrum back to the emitter for recycling, thereby providing for high system efficiencies. Initial MIM development has focused on a 1 cm{sup 2} device consisting of eight series interconnected cells. MIM devices, produced from 0.74 eV InGaAs, have demonstrated V{sub oc} = 3.2 volts, J{sub sc} = 70 mA/cm{sup 2} and a fill factor of 66% under flashlamp testing. Infrared (IR) reflectance measurements (> 2 {micro}m) of these devices indicate a reflectivity of > 82%. MIM devices produced from 0.55 eV InGaAs have also been demonstrated. In addition, conventional p/n InGaAs devices with record efficiencies (11.7% AM0) have been demonstrated.

  8. Joint Maintenance Status Report of Potomac Electric Power Company...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    amd PJM Interconnection, LLC Docket No. EO-05-01: Potomac Electric Power Company ("Pepco") and PJM Interconnection, L.L.C. ("PJM") hereby jointly submit this Maintenance...

  9. Modeling, Optimization and Power Efficiency Comparison of High-speed Inter-chip Electrical and Optical Interconnect Architectures in Nanometer CMOS Technologies

    E-Print Network [OSTI]

    Palaniappan, Arun

    2012-02-14T23:59:59.000Z

    for the power optimization and comparison of high-speed electrical and optical links at a given data rate and channel type in 90 nm and 45 nm CMOS technologies. The electrical I/O design framework combines statistical link analysis techniques, which are used...

  10. Interconnection Guidelines (Rhode Island)

    Broader source: Energy.gov [DOE]

    Rhode Island enacted legislation (HB 6222) in June 2011 to standardize the application process for the interconnection of customer-sited renewable-energy systems to the state’s distribution grid....

  11. Puerto Rico- Interconnection Standards

    Broader source: Energy.gov [DOE]

    In 2007, the Autoridad de Energía Electrica de Puerto Rico (PREPA*) adopted interconnection standards based on the standard contained in the federal Energy Policy Act of 2005. PREPA promulgated...

  12. Effects of regional insolation differences upon advanced solar thermal electric power plant performance and energy costs

    SciTech Connect (OSTI)

    Latta, A.F.; Bowyer, J.M.; Fujita, T.; Richter, P.H.

    1980-02-01T23:59:59.000Z

    This study determines the performance and cost of four 10 MWe advanced solar thermal electric power plants sited in various regions of the continental United States. The solar plants are conceptualized to begin commercial operation in the year 2000. It is assumed that major subsystem performance will have improved substantially as compared to that of pilot plants currently operating or under construction. The net average annual system efficiency is therefore roughly twice that of current solar thermal electric power plant designs. Similarly, capital costs reflecting goals based on high-volume mass production that are considered to be appropriate for the year 2000 have been used. These costs, which are approximately an order of magnitude below the costs of current experimental projects, are believed to be achievable as a result of the anticipated sizeable solar penetration into the energy market in the 1990 to 2000 timeframe. The paraboloidal dish, central receiver, cylindrical parabolic trough, and compound parabolic concentrators comprise the advanced collector concepts studied. All concepts exhibit their best performance when sited in regional areas such as the sunbelt where the annual insolation is high. The regional variation in solar plant performance has been assessed in relation to the expected rise in the future cost of residential and commercial electricity in the same regions. A discussion of the regional insolation data base, a description of the solar systems performance and costs, and a presentation of a range for the forecast cost of conventional electricity by region and nationally over the next several decades are given.

  13. Flexible gas insulated transmission line having regions of reduced electric field

    DOE Patents [OSTI]

    Cookson, Alan H. (Pittsburgh, PA); Fischer, William H. (Wilkins Township, Allegheny County, PA); Yoon, Kue H. (Pittsburgh, PA); Meyer, Jeffry R. (Penn Hills Township, Allegheny County, PA)

    1983-01-01T23:59:59.000Z

    A gas insulated transmission line having radially flexible field control means for reducing the electric field along the periphery of the inner conductor at predetermined locations wherein the support insulators are located. The radially flexible field control means of the invention includes several structural variations of the inner conductor, wherein careful controlling of the length to depth of surface depressions produces regions of reduced electric field. Several embodiments of the invention dispose a flexible connector at the predetermined location along the inner conductor where the surface depressions that control the reduced electric field are located.

  14. Impacts of Regional Electricity Prices and Building Type on the Economics of Commercial Photovoltaic Systems

    SciTech Connect (OSTI)

    Ong, S.; Campbell, C.; Clark, N.

    2012-12-01T23:59:59.000Z

    To identify the impacts of regional electricity prices and building type on the economics of solar photovoltaic (PV) systems, 207 rate structures across 77 locations and 16 commercial building types were evaluated. Results for expected solar value are reported for each location and building type. Aggregated results are also reported, showing general trends across various impact categories.

  15. Solid-state energy storage module employing integrated interconnect board

    DOE Patents [OSTI]

    Rouillard, Jean; Comte, Christophe; Daigle, Dominik; Hagen, Ronald A.; Knudson, Orlin B.; Morin, Andre; Ranger, Michel; Ross, Guy; Rouillard, Roger; St-Germain, Philippe; Sudano, Anthony; Turgeon, Thomas A.

    2004-09-28T23:59:59.000Z

    An electrochemical energy storage device includes a number of solid-state thin-film electrochemical cells which are selectively interconnected in series or parallel through use of an integrated interconnect board. The interconnect board is typically disposed within a sealed housing which also houses the electrochemical cells, and includes a first contact and a second contact respectively coupled to first and second power terminals of the energy storage device. The interconnect board advantageously provides for selective series or parallel connectivity with the electrochemical cells, irrespective of electrochemical cell position within the housing. Fuses and various electrical and electro-mechanical devices, such as bypass, equalization, and communication devices for example, may also be mounted to the interconnect board and selectively connected to the electrochemical cells.

  16. Solid-state energy storage module employing integrated interconnect board

    DOE Patents [OSTI]

    Rouillard, Jean; Comte, Christophe; Daigle, Dominik; Hagen, Ronald A.; Knudson, Orlin B.; Morin, Andre; Ranger, Michel; Ross, Guy; Rouillard, Roger; St-Germain, Philippe; Sudano, Anthony; Turgeon, Thomas A.

    2003-11-04T23:59:59.000Z

    The present invention is directed to an improved electrochemical energy storage device. The electrochemical energy storage device includes a number of solid-state, thin-film electrochemical cells which are selectively interconnected in series or parallel through use of an integrated interconnect board. The interconnect board is typically disposed within a sealed housing which also houses the electrochemical cells, and includes a first contact and a second contact respectively coupled to first and second power terminals of the energy storage device. The interconnect board advantageously provides for selective series or parallel connectivity with the electrochemical cells, irrespective of electrochemical cell position within the housing. Fuses and various electrical and electromechanical devices, such as bypass, equalization, and communication devices for example, may also be mounted to the interconnect board and selectively connected to the electrochemical cells.

  17. Integrated Energy-Water Planning in the Western and Texas Interconnections

    SciTech Connect (OSTI)

    Vincent Tidwell; John Gasper; Robert Goldstein; Jordan Macknick; Gerald Sehlke; Michael Webber; Mark Wigmosta

    2013-07-01T23:59:59.000Z

    While long-term regional electricity transmission planning has traditionally focused on cost, infrastructure utilization, and reliability, issues concerning the availability of water represent an emerging issue. Thermoelectric expansion must be considered in the context of competing demands from other water use sectors balanced with fresh and non-fresh water supplies subject to climate variability. An integrated Energy-Water Decision Support System (DSS) is being developed that will enable planners in the Western and Texas Interconnections to analyze the potential implications of water availability and cost for long-range transmission planning. The project brings together electric transmission planners (Western Electricity Coordinating Council and Electric Reliability Council of Texas) with western water planners (Western Governors’ Association and the Western States Water Council). This paper lays out the basic framework for this integrated Energy-Water DSS.

  18. IMPACTS ASSESSMENT OF PLUG-IN HYBRID VEHICLES ON ELECTRIC UTILITIES AND REGIONAL U.S. POWER GRIDS

    E-Print Network [OSTI]

    National Laboratory(a) ABSTRACT The U.S. electric power infrastructure is a strategic national asset.S. electric infrastructure is designed to meet the highest expected demand for power and, as a resultIMPACTS ASSESSMENT OF PLUG-IN HYBRID VEHICLES ON ELECTRIC UTILITIES AND REGIONAL U.S. POWER GRIDS

  19. Reversible concentric ring microfluidic interconnects

    E-Print Network [OSTI]

    Thompson, Mary Kathryn, 1980-

    2004-01-01T23:59:59.000Z

    A reversible, Chip-to-Chip microfluidic interconnect was designed for use in high temperature, high pressure applications such as chemical microreactor systems. The interconnect uses two sets of concentric, interlocking ...

  20. A SPECULATIVE FRAMEWORK FOR THE APPLICATION OF ARTIFICIAL INTELLIGENCE TO LARGE SCALE INTERCONNECTED POWER SYSTEMS

    E-Print Network [OSTI]

    Hartley, Roger

    INTERCONNECTED POWER SYSTEMS By Nadipuram R. Prasad Satish J. Ranade Electrical Engineering Department New Mexico) technologies to the operation and control of large scale interconnected electric power systems. A fundamental issue discussed in this paper is the control structure of power systems. An evaluation of the control

  1. Capillary interconnect device

    DOE Patents [OSTI]

    Renzi, Ronald F

    2013-11-19T23:59:59.000Z

    An interconnecting device for connecting a plurality of first fluid-bearing conduits to a corresponding plurality of second fluid-bearing conduits thereby providing fluid communication between the first fluid-bearing conduits and the second fluid-bearing conduits. The device includes a manifold and one or two ferrule plates that are held by compressive axial forces.

  2. Potential Impacts of Plug-in Hybrid Electric Vehicles on Regional Power Generation

    SciTech Connect (OSTI)

    Hadley, Stanton W [ORNL; Tsvetkova, Alexandra A [ORNL

    2008-01-01T23:59:59.000Z

    Plug-in hybrid electric vehicles (PHEVs) are being developed around the world, with much work aiming to optimize engine and battery for efficient operation, both during discharge and when grid electricity is available for recharging. However, the general expectation has been that the grid will not be greatly affected by the use of PHEVs because the recharging will occur during off-peak hours, or the number of vehicles will grow slowly enough so that capacity planning will respond adequately. This expectation does not consider that drivers will control the timing of recharging, and their inclination will be to plug in when convenient, rather than when utilities would prefer. It is important to understand the ramifications of adding load from PHEVs onto the grid. Depending on when and where the vehicles are plugged in, they could cause local or regional constraints on the grid. They could require the addition of new electric capacity and increase the utilization of existing capacity. Usage patterns of local distribution grids will change, and some lines or substations may become overloaded sooner than expected. Furthermore, the type of generation used to meet the demand for recharging PHEVs will depend on the region of the country and the timing of recharging. This paper analyzes the potential impacts of PHEVs on electricity demand, supply, generation structure, prices, and associated emission levels in 2020 and 2030 in 13 regions specified by the North American Electric Reliability Corporation (NERC) and the U.S. Department of Energy's (DOE's) Energy Information Administration (EIA), and on which the data and analysis in EIA's Annual Energy Outlook 2007 are based (Figure ES-1). The estimates of power plant supplies and regional hourly electricity demand come from publicly available sources from EIA and the Federal Energy Regulatory Commission. Electricity requirements for PHEVs are based on analysis from the Electric Power Research Institute, with an optimistic projection of 25% market penetration by 2020, involving a mixture of sedans and sport utility vehicles. The calculations were done using the Oak Ridge Competitive Electricity Dispatch (ORCED) model, a model developed over the past 12 years to evaluate a wide variety of critical electricity sector issues. Seven scenarios were run for each region for 2020 and 2030, for a total of 182 scenarios. In addition to a base scenario of no PHEVs, the authors modeled scenarios assuming that vehicles were either plugged in starting at 5:00 p.m. (evening) or at 10:00 p.m.(night) and left until fully charged. Three charging rates were examined: 120V/15A (1.4 kW), 120V/20A (2 kW), and 220V/30A (6 kW). Most regions will need to build additional capacity or utilize demand response to meet the added demand from PHEVs in the evening charging scenarios, especially by 2030 when PHEVs have a larger share of the installed vehicle base and make a larger demand on the system. The added demands of evening charging, especially at high power levels, can impact the overall demand peaks and reduce the reserve margins for a region's system. Night recharging has little potential to influence peak loads, but will still influence the amount and type of generation.

  3. National electrical code changes for 1996 and USA participation in International Energy Agency activities related to photovoltaics safety and grid interconnection

    SciTech Connect (OSTI)

    Bower, W.

    1995-01-01T23:59:59.000Z

    As photovoltaic (PV) systems gain more acceptance in utility-interactive applications throughout the world, many organizations are placing increasingly higher priorities on writing guidelines, codes and standards. These guidelines and codes are being written to improve safety, installation, acceptance, listing or certification of the PV components or systems. Sandia National Laboratories` PV System Applications Department is working closely with the PV industry to address issues that are associated with fire and personnel safety and with National Electrical Code (NEC) requirements. Additionally, the United States has agreed to participate in two of the International Energy Agency (IEA) Annexes (topical tasks) of the Implementing Agreement for a Cooperative Programme on Photovoltaic Power Systems. This paper describes events and activities associated with the NEC and the IEA that are being led by Sandia National Laboratories with broad participation by the US PV industry.

  4. Potential Impacts of Plug-in Hybrid Electric Vehicles (PHEVs) on Regional Power Generation

    SciTech Connect (OSTI)

    Hadley, Stanton W [ORNL; Tsvetkova, Alexandra A [ORNL

    2009-01-01T23:59:59.000Z

    PHEVs are expected to penetrate market soon. If recharging occurs during off-peak hours, the grid will not be significantly affected. However, peak-time recharging may lead to capacity shortfalls. This paper analyzes the potential impact of PHEVs on electricity demand, supply, generation structure, prices, and emissions levels in 2020 and 2030 in 13 U.S. regions under 7 recharging scenarios. The simulations predict that the PHEV introduction could impact demand peaks, reduce reserve margins, and increase prices. The type of power generation used to recharge the PHEVs and associated emissions will depend upon the region and the timing of the recharge.

  5. Resource Planning Model: An Integrated Resource Planning and Dispatch Tool for Regional Electric Systems

    SciTech Connect (OSTI)

    Mai, T.; Drury, E.; Eurek, K.; Bodington, N.; Lopez, A.; Perry, A.

    2013-01-01T23:59:59.000Z

    This report introduces a new capacity expansion model, the Resource Planning Model (RPM), with high spatial and temporal resolution that can be used for mid- and long-term scenario planning of regional power systems. Although RPM can be adapted to any geographic region, the report describes an initial version of the model adapted for the power system in Colorado. It presents examples of scenario results from the first version of the model, including an example of a 30%-by-2020 renewable electricity penetration scenario.

  6. Photospheric Electric Fields and Energy Fluxes in the Eruptive Active Region NOAA 11158

    E-Print Network [OSTI]

    Kazachenko, Maria D; Welsch, Brian T; Liu, Yang; Sun, Xudong

    2015-01-01T23:59:59.000Z

    How much electromagnetic energy crosses the photosphere in evolving solar active regions? With the advent of high-cadence vector magnetic field observations, addressing this fundamental question has become tractable. In this paper, we apply the "PTD-Doppler-FLCT-Ideal" (PDFI) electric field inversion technique of Kazachenko et al. (2014) to a 6-day HMI/SDO vector magnetogram and Doppler velocity sequence, to find the electric field and Poynting flux evolution in NOAA active region 11158, which produced an X2.2 flare early on 2011 February 15. We find photospheric electric fields ranging up to $1.5$ V/cm. The Poynting fluxes range up to $2\\times10^{10}$ ergs$\\cdot$cm$^{-2}$s$^{-1}$ with mean values around $10^8$-$10^9$ ergs$\\cdot$cm$^{-2}$s$^{-1}$. Integrating the instantaneous energy flux over space and time, we find that the total magnetic energy accumulated above the photosphere from emergence to the moment before the X2.2 flare to be $E=10.6\\times10^{32}$ ergs, which is partitioned as $2.0\\times10^{32}$ er...

  7. Electricity Monthly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    month. Prices and demand are shown for six Regional Transmission Operator (RTO) markets: ISO New England (ISO-NE), New York ISO (NYISO), PJM Interconnection (PJM), Midwest ISO...

  8. RidgenoseSolarInterconnectionProject

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ridgenose Solar Interconnection Project The Western Area Power Administration (Western), an agency of the Department of Energy (DOE), is preparing an environmental assessment (EA)...

  9. RidgenoseSolarInterconnectionProject

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to a request from Longview Solar, LLC, to interconnect their proposed Cliffrose Solar Energy Plant, located south of Kingman, Mohave County, Arizona to Westerns...

  10. Interconnection Agreements for Onsite Generation

    Broader source: Energy.gov [DOE]

    Presentation covers Interconnection Agreements for Onsite Generation and is given at the Spring 2011 Federal Utility Partnership Working Group (FUPWG) meeting.

  11. GSA-Utility Interconnection Agreements

    Broader source: Energy.gov [DOE]

    Presentation—given at at the Fall 2012 Federal Utility Partnership Working Group (FUPWG) meeting—covers the General Service Administration's (GSA's) utility interconnection agreements.

  12. Interconnection Standards for Small Generators

    Broader source: Energy.gov [DOE]

    The Federal Energy Regulatory Commission (FERC) adopted "small generator" interconnection standards for distributed energy resources up to 20 megawatts (MW) in capacity in May 2005.* The FERC's...

  13. EA-1990: Ridgenose Solar Energy Interconnection Facility, Mohave County, Arizona

    Broader source: Energy.gov [DOE]

    The EA was cancelled by the applicant.DOE’s Western Area Power Administration (Desert Southwest Region) is preparing an EA that will assess the potential environmental impacts of a proposal to interconnect the planned Ridgenose Solar Energy Project to Western’s transmission system. Western’s actions could include constructing less than a mile of new transmission line from the solar facility to an existing substation, constructing an interconnection substation, and adding, moving, or modifying structures.

  14. Characterization of micro-contact resistance between a gold nanocrystalline line and a tungsten electrode probe in interconnect fatigue testing

    SciTech Connect (OSTI)

    Ling, Xue; Wang, Yusheng [Department of Engineering Mechanics, AML, Tsinghua University, Beijing 100084 (China); Li, Xide, E-mail: lixide@tsinghua.edu.cn [Department of Engineering Mechanics, AML, Tsinghua University, Beijing 100084 (China); Center for Nano and Micro Mechanics, Tsinghua University, Beijing 100084 (China)

    2014-10-15T23:59:59.000Z

    An electromechanically-coupled micro-contact resistance measurement system is built to mimic the contact process during fatigue testing of nanoscale-thickness interconnects using multiple probe methods. The design combines an optical microscope, high-resolution electronic balance, and micromanipulator-controlled electric probe, and is coupled with electrical measurements to investigate microscale contact physics. Experimental measurements are performed to characterize the contact resistance response of the gold nanocrystalline pad of a 35-nm-thick interconnect under mechanical force applied by a tungsten electrode probe. Location of a stable region for the contact resistance and the critical contact force provides better understanding of micro-contact behavior relative to the effects of the contact force and the nature of the contact surface. Increasing contact temperature leads to reduced contact resistance, softens the pad material, and modifies the contact surface. The stability of both contact resistance and interconnect resistance is studied under increasing contact force. Major fluctuations emerge when the contact force is less than the critical contact force, which shows that temporal contact resistance will affect interconnect resistance measurement accuracy, even when using the four-wire method. This performance is demonstrated experimentally by heating the Au line locally with a laser beam. Finally, the contact resistances are calculated using the LET (Li–Etsion–Talke) model together with combined Holm and Sharvin theory under various contact forces. Good agreement between the results is obtained. This research provides a way to measure change in interconnect line resistance directly under a stable contact resistance regime with a two-wire method that will greatly reduce the experimental costs.

  15. North American Electric Reliability Corporation Interconnections |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in Many DevilsForumEnginesVacantmagneticDepartment ofDepartment of

  16. North American Electric Reliability Corporation Interconnections |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOilNEW HAMPSHIREofNewsletter NewsletterGeneralof EnergyDepartment of

  17. North American Electric Reliability Corporation Interconnections |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaeferAprilOverview | DepartmentofEmerging TechnologiesSchoolsDepartment of

  18. Sandia National Laboratories: Small Generator Interconnection...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Commission Revised Its Small Generator Interconnection Procedure and Small Generator Interconnection Agreement On March 4, 2014, in Distribution Grid Integration, Energy, Grid...

  19. Sandia National Laboratories: Updating Interconnection Screens...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Commission Revised Its Small Generator Interconnection Procedure and Small Generator Interconnection Agreement On March 4, 2014, in Distribution Grid Integration, Energy, Grid...

  20. Solid-state energy storage module employing integrated interconnect board

    DOE Patents [OSTI]

    Rouillard, Jean (Saint-Luc, CA); Comte, Christophe (Montreal, CA); Daigle, Dominik (St-Hyacinthe, CA); Hagen, Ronald A. (Stillwater, MN); Knudson, Orlin B. (Vadnais Heights, MN); Morin, Andre (Longueuil, CA); Ranger, Michel (Lachine, CA); Ross, Guy (Beloeil, CA); Rouillard, Roger (Beloeil, CA); St-Germain, Philippe (Outremont, CA); Sudano, Anthony (Laval, CA); Turgeon, Thomas A. (Fridley, MN)

    2000-01-01T23:59:59.000Z

    The present invention is directed to an improved electrochemical energy storage device. The electrochemical energy storage device includes a number of solid-state, thin-film electrochemical cells which are selectively interconnected in series or parallel through use of an integrated interconnect board. The interconnect board is typically disposed within a sealed housing which also houses the electrochemical cells, and includes a first contact and a second contact respectively coupled to first and second power terminals of the energy storage device. The interconnect board advantageously provides for selective series or parallel connectivity with the electrochemical cells, irrespective of electrochemical cell position within the housing. In one embodiment, a sheet of conductive material is processed by employing a known milling, stamping, or chemical etching technique to include a connection pattern which provides for flexible and selective interconnecting of individual electrochemical cells within the housing, which may be a hermetically sealed housing. Fuses and various electrical and electro-mechanical devices, such as bypass, equalization, and communication devices for example, may also be mounted to the interconnect board and selectively connected to the electrochemical cells.

  1. Optimal investment and scheduling of distributed energy resources with uncertainty in electric vehicles driving schedules

    E-Print Network [OSTI]

    Cardoso, Goncalo

    2014-01-01T23:59:59.000Z

    of Smart Grids with Electric Vehicle Interconnection,”Economy of 2012 Electric Vehicles. ” [Online]. Available:Plug-in Hybrid Electric Vehicle Charging Infrastructure

  2. Cost-Effectivenessof PhotovoltaicGenerationIn A Transmission-Constrained Load Area of An InterconnectedSystem

    E-Print Network [OSTI]

    Gross, George

    Abstract: Electric power systems of today are experiencing a difficulty of constrained transmission lines, present electric system networks are experiencing the difficulty of constrained transmission lines: Photovoltaic Generation, Power System Economics, Dispersed Generation, Transmission-Constrained Interconnected

  3. Towards a Secure Electricity Grid Mike Burmester, Joshua Lawrence, David Guidry, Sean Easton, Sereyvathana Ty

    E-Print Network [OSTI]

    Burmester, Mike

    }@cs.fsu.edu Sandia National Laboratories, New Mexico, P.O. Box 5800, Albuquerque, NM 87185, U.S.A. sty@sandia.gov Abstract--The transmission of bulk power within a zone of an interconnected region of an electric grid the grid, as well as the control and communication nodes of the network grid. It is crucial

  4. Hermetic aluminum radio frequency interconnection and method for making

    DOE Patents [OSTI]

    Kilgo, Riley D. (Albuquerque, NM); Kovacic, Larry (Albuquerque, NM); Brow, Richard K. (Rolla, MO)

    2000-01-01T23:59:59.000Z

    The present invention provides a light-weight, hermetic coaxial radio-frequency (RF) interconnection having an electrically conductive outer housing made of aluminum or an aluminum alloy, a central electrical conductor made of ferrous or non-ferrous material, and a cylinder of dielectric material comprising a low-melting-temperature, high-thermal-expansion aluminophosphate glass composition for hermetically sealing between the aluminum-alloy outer housing and the ferrous or non-ferrous center conductor. The entire RF interconnection assembly is made permanently hermetic by thermally fusing the center conductor, glass, and housing concurrently by bringing the glass to the melt point by way of exposure to an atmospheric temperature sufficient to melt the glass, less than 540.degree. C., but that does not melt the center conductor or the outer aluminum or aluminum alloy housing. The composition of the glass used is controlled to provide a suitable low dielectric constant so that an appropriate electrical characteristic impedance, for example 50 ohms, can be achieved for an electrical interconnection that performs well at high radio frequencies and also provides an interconnection maintaining a relatively small physical size.

  5. Oahu Wind Integration and Transmission Study (OWITS): Hawaiian Islands Transmission Interconnection Project

    SciTech Connect (OSTI)

    Woodford, D.

    2011-02-01T23:59:59.000Z

    This report provides an independent review included an initial evaluation of the technical configuration and capital costs of establishing an undersea cable system and examining impacts to the existing electric transmission systems as a result of interconnecting the islands.

  6. Effect of Via Separationand Low-k Dielectric Materials on the Thermal Characteristics of Cu Interconnects

    E-Print Network [OSTI]

    and their impact on interconnect reliability and performance [7, 81. Furthermore, self-heating in via structures in the metal wires and evaluate the impact of via separation. Based on the thermal-electrical analogy (Fig. I

  7. Phase 2 Report: Oahu Wind Integration and Transmission Study (OWITS); Hawaiian Islands Transmission Interconnection Project

    SciTech Connect (OSTI)

    Woodford, D.

    2011-02-01T23:59:59.000Z

    This report provides an independent review including an initial evaluation of the technical configuration and capital costs of establishing an undersea cable system and examining impacts to the existing electric transmission systems as a result of interconnecting the islands

  8. Renewable Systems Interconnection: Executive Summary

    SciTech Connect (OSTI)

    Kroposki, B.; Margolis, R.; Kuswa, G.; Torres, J.; Bower, W.; Key, T.; Ton, D.

    2008-02-01T23:59:59.000Z

    The U.S. Department of Energy launched the Renewable Systems Interconnection (RSI) study in 2007 to address the challenges to high penetrations of distributed renewable energy technologies. The RSI study consists of 14 additional reports.

  9. Southeast Regional Assessment Study: an assessment of the opportunities of solar electric power generation in the Southeastern United States

    SciTech Connect (OSTI)

    None

    1980-07-01T23:59:59.000Z

    The objective of this study was to identify and assess opportunities for demonstration and large scale deployment of solar electric facilities in the southeast region and to define the technical, economic, and institutional factors that can contribute to an accelerated use of solar energy for electric power generation. Graphs and tables are presented indicating the solar resource potential, siting opportunities, energy generation and use, and socioeconomic factors of the region by state. Solar electric technologies considered include both central station and dispersed solar electric generating facilities. Central stations studied include solar thermal electric, wind, photovoltaic, ocean thermal gradient, and biomass; dispersed facilities include solar thermal total energy systems, wind, and photovoltaic. The value of solar electric facilities is determined in terms of the value of conventional facilities and the use of conventional fuels which the solar facilities can replace. Suitable cost and risk sharing mechanisms to accelerate the commercialization of solar electric technologies in the Southeast are identified. The major regulatory and legal factors which could impact on the commercialization of solar facilities are reviewed. The most important factors which affect market penetration are reviewed, ways to accelerate the implementation of these technologies are identified, and market entry paths are identified. Conclusions and recommendations are presented. (WHK)

  10. Analysis of interconnect microstrip lines

    E-Print Network [OSTI]

    Luong, Giam-Minh

    1992-01-01T23:59:59.000Z

    of the return loss of the slot-coupled microstrip dipole. Section C presents two simulations of the return loss on the slot- coupled rectangular patch antenna. A. Interconnect of Microstrip Lines Several circuits with the geometry of Figure 1 were fabricated.... Experimental and Theoretical Results of the Interconnect Two circuits were designed and fabricated. Each circuit consists of two substrates as shown in Figure 9. One substrate has an open microstrip line etched in one side and an aperture etched...

  11. Spatial structure of electric potential near the extraction region in Cs-seeded H{sup -} ion sources

    SciTech Connect (OSTI)

    Fukano, A.; Hanatani, J.; Matsumiya, T.; Hatayama, A. [Mechanical Sysytems Engineering Course, Monozukuri Department, Tokyo Metropolitan College of Industrial Technology, Higashioi, Shinagawa, Tokyo 140-0011 (Japan); Faculty of Science and Technology, Keio University, Hiyoshi, Yokohama 223-8522 (Japan)

    2008-02-15T23:59:59.000Z

    Structure of electric potential near the extraction region in a negative ion source is investigated analytically with the effect of strong surface H{sup -} production. The potential profile is analyzed one dimensional by solving the plasma-sheath equation, which gives the electric potential in the plasma region and the sheath region near the wall self-consistently. The potential profile depends on the production rate and the temperature of negative ions. As the production rate becomes large and the negative ion energy becomes small, the potential near the extraction region decreases. The negative potential peak is formed near the plasma grid (PG) surface for the case of large amount and low energy surface production. As a result, negative ions are reflected by this negative potential peak near the PG and returned to the PG surface. This reflection mechanism by the negative potential peak possibly affects the negative ion extraction.

  12. Power Electonics & Electric Machinery | Clean Energy | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Areas of expertise include advanced power electronics, electric machines, thermal control for power electronics, and power quality and utility interconnection. For more...

  13. Response to ``Comment on `Parallel electric fields in the upward current region of the aurora: Numerical solutions'''

    E-Print Network [OSTI]

    California at Berkeley, University of

    of H is largely conserved. Our article identifies several areas where a dynamic simulation is needed , decidedly the opposite argument used in his abstract fully dynamic simulations are needed for the lowestResponse to ``Comment on `Parallel electric fields in the upward current region of the aurora

  14. U.S. Department of Energy Office of Electricity Delivery & Energy...

    Broader source: Energy.gov (indexed) [DOE]

    electric systems. The Program develops standards for interconnection and system architecture; researches advanced technologies in sensing, communications, control, and power...

  15. Development of Ceramic Interconnect Materials for SOFC

    SciTech Connect (OSTI)

    Yoon, Kyung J.; Stevenson, Jeffry W.; Marina, Olga A.

    2010-08-05T23:59:59.000Z

    Currently, acceptor-doped lanthanum chromite is the state-of-the-art ceramic interconnect material for high temperature solid oxide fuel cells (SOFCs) due to its fairly good electronic conductivity and chemical stability in both oxidizing and reducing atmospheres, and thermal compatibility with other cell components. The major challenge for acceptor-doped lanthanum chromite for SOFC interconnect applications is its inferior sintering behavior in air, which has been attributed to the development of a thin layer of Cr2O3 at the interparticle necks during the initial stages of sintering. In addition, lanthanum chromite is reactive with YSZ electrolyte at high temperatures, forming a highly resistive lanthanum zirconate phase (La2Zr2O7), which further complicates co-firing processes. Acceptor-doped yttrium chromite is considered to be one of the promising alternatives to acceptor-doped lanthanum chromite because it is more stable with respect to the formation of hydroxides in SOFC operating conditions, and the formation of impurity phases can be effectively avoided at co-firing temperatures. In addition, calcium-doped yttrium chromite exhibits higher mechanical strength than lanthanum chromite-based materials. The major drawback of yttrium chromite is considered to be its lower electrical conductivity than lanthanum chromite. The properties of yttrium chromites could possibly be improved and optimized by partial substitution of chromium with various transition metals. During FY10, PNNL investigated the effect of various transition metal doping on chemical stability, sintering and thermal expansion behavior, microstructure, electronic and ionic conductivity, and chemical compatibility with other cell components to develop the optimized ceramic interconnect material.

  16. Low lying electric dipole excitations in nuclei of the rare earth region

    SciTech Connect (OSTI)

    von Brentano, P.; Zilges, A.; Herzberg, R.D. [Koeln Univ. (Germany). Inst. fuer Kernphysik; Zamfir, N.V. [Brookhaven National Lab., Upton, NY (United States); Kneissl, U.; Heil, R.D.; Pitz, H.H. [Stuttgart Univ. (Germany). Inst. fuer Strahlenphysik; Wesselborg, C. [Giessen Univ. (Germany). Inst. fuer Kernphysik

    1992-10-01T23:59:59.000Z

    From many experiments with low energy photon scattering on deformed rare earth nuclei we have obtained detailed information about the distribution of electric dipole strength below 4 MeV. Apart from some weaker transitions between 2 and 4 MeV we observed one, and sometimes two, very strong El-groundstate transitions around 1.5 MeV in all examined nuclei. They arise from the de-excitation of the bandheads of the (J{sup {pi}},K)=(l{sup {minus}},0) and (J{sup {pi}},K)=(l{sup {minus}},1) octupole vibrational bands. It is shown that the decay branching ratios and the absolute transition strengths of these states can be reproduced rather well with an improved T(El)-operator in the sdf-Interacting Boson Model. Another class of octupole states has been investigated in the region of the semimagic nucleus {sup 142}Nd. Here a quintuplet of collective excitations around 3.5 MeV is expected due to the coupling of the 3{minus}-octupole vibration with the 2+-quadrupole vibration. We performed photon scattering experiments on the odd A neighboring nucleus {sup 141}Pr and found first evidence for the existence of 3{sup {minus}}{circle_times}2+{circle_times}particle-states.

  17. Regional economic impacts of changes in electricity rates resulting from Western Area Power Administration`s power marketing alternatives

    SciTech Connect (OSTI)

    Allison, T.; Griffes, P.; Edwards, B.K.

    1995-03-01T23:59:59.000Z

    This technical memorandum describes an analysis of regional economic impacts resulting from changes in retail electricity rates due to six power marketing programs proposed by Western Area Power Administration (Western). Regional economic impacts of changes in rates are estimated in terms of five key regional economic variables: population, gross regional product, disposable income, employment, and household income. The REMI (Regional Impact Models, Inc.) and IMPLAN (Impact Analysis for Planning) models simulate economic impacts in nine subregions in the area in which Western power is sold for the years 1993, 2000, and 2008. Estimates show that impacts on aggregate economic activity in any of the subregions or years would be minimal for three reasons. First, the utilities that buy power from Western sell only a relatively small proportion of the total electricity sold in any of the subregions. Second, reliance of Western customers on Western power is fairly low in each subregion. Finally, electricity is not a significant input cost for any industry or for households in any subregion.

  18. ELECTRIC

    Office of Legacy Management (LM)

    you nay give us will be greatly uppreckted. VPry truly your23, 9. IX. Sin0j3, Mtinager lclectronics and Nuclear Physics Dept. omh , WESTINGHOUSE-THE NAT KING IN ELECTRICITY...

  19. Abstract--The security of modern large interconnected power systems suffers from the absence of a unique security coordinator

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Abstract-- The security of modern large interconnected power systems suffers from the absence interconnected power systems. In the absence of a full information exchange, the operators' alternative solution contingencies screening , control areas data exchange, multi-area electric power system security assessment. I

  20. Design and analysis of high performance multistage interconnection networks 

    E-Print Network [OSTI]

    Bhogavilli, Suresh K

    1993-01-01T23:59:59.000Z

    Major Subject: Electrical Engineering ABSTRACT Design and Analysis of High Performance Multistage Interconnection Networks. (December 1993) Suresh K. Bhogavilli, B. Tech. , J. N. T. University Chair of Advisory Committee: Dr. Hosame Abu-Amara Small... the next stage buffers are not full. Thus r, = A and this value doesn't change with network size. But this model results in cycle loss, When a packet from the full buffer moves forward, a cycle is lost since it will not allow the packets...

  1. On the State of the Art of Metal Interconnects for SOFC Application

    SciTech Connect (OSTI)

    Jablonski@netl.doe.gov

    2011-02-27T23:59:59.000Z

    One of the recent developments for Solid Oxide Fuel Cells (SOFC) is oxide component materials capable of operating at lower temperatures such as 700-800C. This lower temperature range has provided for the consideration of metallic interconnects which have several advantages over ceramic interconnects: low cost, ease in manufacturing, and high conductivity. Most metals and alloys will oxidize under both the anode and cathode conditions within an SOFC, thus a chief requirement is that the base metal oxide scale must be electrically conductive since this constitutes the majority of the electrical resistance in a metallic interconnect. Common high temperature alloys form scales that contain chrome, silicon and aluminum oxides among others. Under SOFC operating conditions chrome oxide is a semi-conductor while silicon and aluminum oxides are insulators. In this talk we will review the evolution in candidate alloys and surface modifications which constitute an engineered solution for SOFC interconnect applications.

  2. Solid oxide fuel cell with internal reforming, catalyzed interconnect for use therewith, and methods

    DOE Patents [OSTI]

    Liu, Di-Jia; Guan, Jie; Minh, Nguyen

    2010-06-08T23:59:59.000Z

    A catalyzed interconnect for an SOFC electrically connects an anode and an anodic current collector and comprises a metallic substrate, which provides space between the anode and anodic current collector for fuel gas flow over at least a portion of the anode, and a catalytic coating on the metallic substrate comprising a catalyst for catalyzing hydrocarbon fuel in the fuel gas to hydrogen rich reformate. An SOFC including the catalyzed anodic inter-connect, a method for operating an SOFC, and a method for making a catalyzed anodic interconnect are also disclosed.

  3. ,"Table 1. Net Energy For Load, Actual and Projected by North American Electric Reliability Corporation Region, "

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePrice Sold to Electric Powere.

  4. ,"Table 2a. Noncoincident Summer Peak Load, Actual and Projected by North American Electric Reliability Corporation Region, "

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePrice Sold to Electric Powere.. Net Energya.

  5. ,"Table 2a. Noncoincident Summer Peak Load, Actual and Projected by North American Electric Reliability Corporation Region, "

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePrice Sold to Electric Powere.. Net

  6. ,"Table 2b. Noncoincident Winter Peak Load, Actual and Projected by North American Electric Reliability Corporation Region, "

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePrice Sold to Electric Powere..

  7. ,"Table 2b. Noncoincident Winter Peak Load, Actual and Projected by North American Electric Reliability Council Region, "

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePrice Sold to Electric Powere..3 and

  8. National Offshore Wind Energy Grid Interconnection Study

    SciTech Connect (OSTI)

    Daniel, John P. [ABB Inc; Liu, Shu [ABB Inc; Ibanez, Eduardo [National Renewable Energy Laboratory; Pennock, Ken [AWS Truepower; Reed, Greg [University of Pittsburgh; Hanes, Spencer [Duke Energy

    2014-07-30T23:59:59.000Z

    The National Offshore Wind Energy Grid Interconnection Study (NOWEGIS) considers the availability and potential impacts of interconnecting large amounts of offshore wind energy into the transmission system of the lower 48 contiguous United States. A total of 54GW of offshore wind was assumed to be the target for the analyses conducted. A variety of issues are considered including: the anticipated staging of offshore wind; the offshore wind resource availability; offshore wind energy power production profiles; offshore wind variability; present and potential technologies for collection and delivery of offshore wind energy to the onshore grid; potential impacts to existing utility systems most likely to receive large amounts of offshore wind; and regulatory influences on offshore wind development. The technologies considered the reliability of various high-voltage ac (HVAC) and high-voltage dc (HVDC) technology options and configurations. The utility system impacts of GW-scale integration of offshore wind are considered from an operational steady-state perspective and from a regional and national production cost perspective.

  9. New Report Characterizes Existing Offshore Wind Grid Interconnection...

    Office of Environmental Management (EM)

    New Report Characterizes Existing Offshore Wind Grid Interconnection Capabilities New Report Characterizes Existing Offshore Wind Grid Interconnection Capabilities September 3,...

  10. Drag Forces, Neutral Wind and Electric Conductivity Changes in the Ionospheric E Region

    E-Print Network [OSTI]

    Nenovski, Petko

    2014-01-01T23:59:59.000Z

    The neutrals in the Earth environment are in fact free and subjected to drag forces (by ions). In this study we show that drag or friction forces in the ionosphere-thermosphere system initiate changes in the plasma flow, neutral wind, and the conductivity, as well. Ions and electrons embedded in neutral wind field of velocity u acquire drifts perpendicular both to the initial neutral wind velocity and to the ambient magnetic field producing a perpendicular electric current. This perpendicular electric current is defined by a conductivity derived previously and the polarization electric field u x B. Self-consistently, the free neutrals acquires an additional neutral velocity component perpendicular to the initial neutral wind velocity u. The Pedersen and Hall currents wane within a specific time inversely proportional to neutral-ion collision frequency. These findings are relevant to a better understanding of electric current generation, distribution and closure in weakly ionized plasmas where charged particle...

  11. Turk J Elec Engin, VOL.17, NO.1 2009, c TUBITAK Accurate Prediction of Crosstalk for RC Interconnects

    E-Print Network [OSTI]

    Sayil, Selahattin

    Interconnects Selahattin SAYIL, Merlyn RUDRAPATI Department of Electrical Engineering, Lamar University P.O. Box 10029, Beaumont, TX 77710, U.S.A. e-mail: sayil@ee.lamar.edu Abstract This work proposes an accurate

  12. Energy Efficiency in Western Utility Resource Plans: Impacts on Regional Resources Assessment and Support for WGA Policies

    E-Print Network [OSTI]

    Hopper, Nicole; Goldman, Charles; Schlegal, Jeff

    2006-01-01T23:59:59.000Z

    Interconnection overseen by the Western Electricity Coordinating Council (WECC), which includes Arizona, California, Colorado, Idaho, Montana, New Mexico,

  13. ANALYSIS OF ELECTRIC CURRENT HELICITY IN ACTIVE REGIONS ON THE BASIS OF VECTOR MAGNETOGRAMS

    E-Print Network [OSTI]

    Yurchyshyn, Vasyl

    can suggest that the build up of large­scale currents in an active region due to small­scale of Sciences, Beijing 100080, China Abstract. The problem of (dc) magnetic field energy build up in the solar seemingly can occur in any active region, the energy build up mechanism must be easy accessible for all

  14. Pricing mechanism for real-time balancing in regional electricity markets

    E-Print Network [OSTI]

    de Weerdt, Mathijs

    an econometric analysis of the regulating power market on the Nordic power exchange Nord Pool, and M¨oller et al , Wolfgang Ketter , and John Collins Abstract We consider the problem of designing a pricing mechanism for precisely controlling the real-time balance in electricity markets, where retail brokers aggregate

  15. Particle acceleration and radiation by direct electric fields in flaring complex solar active regions

    E-Print Network [OSTI]

    Anastasiadis, Anastasios

    Particle acceleration and radiation by direct electric fields in flaring complex solar active-Meudon, 92195 Meudon Cedex, FRANCE Abstract The acceleration and radiation of solar energetic particles with the existing observations. 1 Introduction The approach used for particle acceleration models proposed for solar

  16. americans land electricity: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Horstmann John Dayton Power & Light Company (The) Transmission Owner Issermoyer John PPL Electric Utilities Corp. dba PPL Utilities Transmission Owner Pjm Interconnection Llc;...

  17. ,"Table 1. Net Energy For Load, Actual and Projected by North American Electric Reliability Corporation Region, "

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePrice Sold to Electric Powere. Historical7,1. Net1.

  18. ,"Table 1. Net Energy For Load, Actual and Projected by North American Electric Reliability Corporation Region, "

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePrice Sold to Electric Powere. Historical7,1.

  19. ,"Table 1. Net Energy For Load, Actual and Projected by North American Electric Reliability Corporation Region, "

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePrice Sold to Electric Powere.. Net Energy For

  20. ,"Table 1. Net Energy For Load, Actual and Projected by North American Electric Reliability Council Region, "

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePrice Sold to Electric Powere.. Net Energy For3 and

  1. ,"Table 1. Net Energy For Load, Actual and Projected by North American Electric Reliability Council Region, "

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePrice Sold to Electric Powere.. Net Energy For3

  2. ,"Table 1. Net Energy For Load, Actual and Projected by North American Electric Reliability Council Region, "

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePrice Sold to Electric Powere.. Net Energy For32005

  3. ,"Table 2a. Noncoincident Summer Peak Load, Actual and Projected by North American Electric Reliability Corporation Region, "

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePrice Sold to Electric Powere.. Net Energya.a.

  4. ,"Table 2a. Noncoincident Summer Peak Load, Actual and Projected by North American Electric Reliability Corporation Region, "

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePrice Sold to Electric Powere.. Net9"

  5. ,"Table 2a. Noncoincident Summer Peak Load, Actual and Projected by North American Electric Reliability Council Region, "

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePrice Sold to Electric Powere.. Net9"3 and

  6. ,"Table 2a. Noncoincident Summer Peak Load, Actual and Projected by North American Electric Reliability Council Region, "

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePrice Sold to Electric Powere.. Net9"3 and4

  7. ,"Table 2a. Noncoincident Summer Peak Load, Actual and Projected by North American Electric Reliability Council Region, "

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePrice Sold to Electric Powere.. Net9"3

  8. ,"Table 2b. Noncoincident Winter Peak Load, Actual and Projected by North American Electric Reliability Corporation Region, "

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePrice Sold to Electric Powere.. Net9"3b.

  9. ,"Table 2b. Noncoincident Winter Peak Load, Actual and Projected by North American Electric Reliability Corporation Region, "

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePrice Sold to Electric Powere.. Net9"3b.b.

  10. ,"Table 2b. Noncoincident Winter Peak Load, Actual and Projected by North American Electric Reliability Corporation Region, "

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePrice Sold to Electric Powere.. Net9"3b.b.2b.

  11. ,"Table 2b. Noncoincident Winter Peak Load, Actual and Projected by North American Electric Reliability Council Region, "

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePrice Sold to Electric Powere..3 and Projected 2004

  12. ,"Table 2b. Noncoincident Winter Peak Load, Actual and Projected by North American Electric Reliability Council Region, "

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePrice Sold to Electric Powere..3 and Projected

  13. Low lying electric dipole excitations in nuclei of the rare earth region

    SciTech Connect (OSTI)

    von Brentano, P.; Zilges, A.; Herzberg, R.D. (Koeln Univ. (Germany). Inst. fuer Kernphysik); Zamfir, N.V. (Brookhaven National Lab., Upton, NY (United States)); Kneissl, U.; Heil, R.D.; Pitz, H.H. (Stuttgart Univ. (Germany). Inst. fuer Strahlenphysik); Wesselborg, C. (Giessen Univ. (Germany). Inst. fuer Kernphysik)

    1992-01-01T23:59:59.000Z

    From many experiments with low energy photon scattering on deformed rare earth nuclei we have obtained detailed information about the distribution of electric dipole strength below 4 MeV. Apart from some weaker transitions between 2 and 4 MeV we observed one, and sometimes two, very strong El-groundstate transitions around 1.5 MeV in all examined nuclei. They arise from the de-excitation of the bandheads of the (J[sup [pi

  14. Regional Transmission Projects: Finding Solutions

    SciTech Connect (OSTI)

    The Keystone Center

    2005-06-15T23:59:59.000Z

    The Keystone Center convened and facilitated a year-long Dialogue on "Regional Transmission Projects: Finding Solutions" to develop recommendations that will help address the difficult and contentious issues related to expansions of regional electric transmission systems that are needed for reliable and economic transmission of power within and across regions. This effort brought together a cross-section of affected stakeholders and thought leaders to address the problem with the collective wisdom of their experience and interests. Transmission owners sat at the table with consumer advocates and environmental organizations. Representatives from regional transmission organizations exchanged ideas with state and federal regulators. Generation developers explored common interests with public power suppliers. Together, the Dialogue participants developed consensus solutions about how to begin unraveling some of the more intractable issues surrounding identification of need, allocation of costs, and reaching consensus on siting issues that can frustrate the development of regional transmission infrastructure. The recommendations fall into three broad categories: 1. Recommendations on appropriate institutional arrangements and processes for achieving regional consensus on the need for new or expanded transmission infrastructure 2. Recommendations on the process for siting of transmission lines 3. Recommendations on the tools needed to support regional planning, cost allocation, and siting efforts. List of Dialogue participants: List of Dialogue Participants: American Electric Power American Transmission Company American Wind Energy Association California ISO Calpine Corporation Cinergy Edison Electric Institute Environmental Defense Federal Energy Regulatory Commission Great River Energy International Transmission Company ISO-New England Iowa Public Utility Board Kanner & Associates Midwest ISO National Association of Regulatory Utility Commissioners National Association of State Utility Consumer Advocates National Grid Northeast Utilities PA Office of Consumer Advocates Pacific Gas & Electric Corporation Pennsylvania Public Utility Commission PJM Interconnection The Electricity Consumers Resource Council U.S. Department of Energy US Department of the Interior Van Ness Feldman Western Interstate Energy Board Wind on the Wires Wisconsin Public Service Commission Xcel Energy

  15. The role of regional power pools in support of a competitive electric power market

    SciTech Connect (OSTI)

    Budhraja, V. [Southern California Edison, Rosemead, CA (United States)

    1995-12-31T23:59:59.000Z

    The regulated, vertically integrated electric utility industry is transitioning to a competitive market structure. Change is driven by new technologies, competition, markets and customers. Electric industry restructuring must focus on bringing the benefits of competition to all consumers; a market system producing lower costs through competitive efficiencies, not zero-sum games of cost shifting and cost avoidance; and a transparent, open market that provides opportunity for all to compete to serve all customers. Customers want choice, flexibility and reliability. To this end, Edison has developed a pool-based proposal. All electric systems that have transitioned from a regulated to a competitive market model, such as UK, Norway, New Zealand and Alberta have relied on a pool-based structure. Edison`s proposal has become known as POOLCO, and it separates financial transactions from physical operation of the system, giving customers the choice of service through bilateral commercial contracts, yet assuring coordinated, reliable system operation. Independent and unaffiliated with any utility, it would make a real-time, voluntary spot power market; dispatch supply; provide open, comparable transmission access and perform the balancing or settlement function, based on visible, competitive future requires resolution of some important policy issues--recovery of costs prudently incurred under the current regulatory structure; jurisdictional clarity between federal and state regulatory authority; and size, scope and recovery of costs associated with energy policy programs.

  16. Relevance of Generation Interconnection Procedures to Feed-in Tariffs in the United States

    SciTech Connect (OSTI)

    Fink, S.; Porter, K.; Rogers, J.

    2010-10-01T23:59:59.000Z

    Feed-in tariffs (FITs) have been used to promote renewable electricity development in over 40 countries throughout the past two decades. These policies generally provide guaranteed prices for the full system output from eligible generators for a fixed time period (typically 15-20 years). Due in part to the success of FIT policies in Europe, some jurisdictions in the United States are considering implementing similar policies, and a few have already put such policies in place. This report is intended to offer some guidance to policymakers and regulators on how generator interconnection procedures may affect the implementation of FITs and how state generator interconnection procedures can be formulated to support state renewable energy objectives. This report is based on a literature review of model interconnection procedures formulated by several organizations, as well as other documents that have reviewed, commented on, and in some cases, ranked state interconnection procedures.

  17. Interconnect

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes | National Nuclear SecurityIntellectual

  18. NREL: Technology Deployment - Distributed Generation Interconnection...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Distributed Generation Interconnection Collaborative Become a Member DGIC members are included in quarterly informational meetings and discussions related to distributed PV...

  19. Electric Potential Near The Extraction Region In Negative Ion Sources With Surface Produced Negative Ions

    SciTech Connect (OSTI)

    Fukano, A. [Monozukuri Department, Tokyo Metropolitan College of Industrial Technology, 1-10-40 Higashi-Ohi, Shinagawa-ku, Tokyo 140-0011 (Japan); Hatayama, A. [Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kouhoku-ku, Yokohama 223-8522 (Japan)

    2011-09-26T23:59:59.000Z

    The potential distribution near the extraction region in negative ion sources for the plasma with the surface produced negative ions is studied analytically. The potential is derived analytically by using a plasma-sheath equation, where negative ions produced on the Plasma Grid (PG) surface are considered in addition to positive ions and electrons. A negative potential peak is formed in the sheath region near the PG surface for the case of strong surface production of negative ions or for low energy negative ions. Negative ions are reflected by the negative potential peak near the PG and returned to the PG surface. This reflection mechanism by the negative potential peak possibly becomes a factor in negative ion extraction. It is also indicated that the potential difference between the plasma region and the wall decreases by the surface produced negative ions. This also has the possibility to contribute to the negative ion extraction.

  20. Pricing in Information-Centric Network Interconnection

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    --ICN interconnection, economic incentives, col- laborative caching, non-cooperative games, network pricing. I economic incentives for caching and sharing content in ICN interconnection. For example, an ISP provider Engineering Department, ETH Zurich, Switzerland Abstract--We propose a pricing model to study the economic

  1. SIMULTANEOUS INTERCONNECTION AND DAMPING ASSIGNMENT PASSIVITYBASED

    E-Print Network [OSTI]

    Batlle, Carles

    SIMULTANEOUS INTERCONNECTION AND DAMPING ASSIGNMENT PASSIVITY­BASED CONTROL: TWO PRACTICAL EXAMPLES­UNAM, Apartado Postal 70-256, 04510 M´exico D.F., MEXICO, gerardoe@servidor.unam.mx Laboratoire des Signaux et.Ortega@lss.supelec.fr Abstract: We argue in this paper that the standard two­stage procedure used in Interconnection and Damping

  2. EPRI PEAC Corp.: Certification Model Program and Interconnection Agreement Tools

    SciTech Connect (OSTI)

    Not Available

    2003-10-01T23:59:59.000Z

    Summarizes the work of EPRI PEAC Corp., under contract to DOE's Distribution and Interconnection R&D, to develop a certification model program and interconnection agreement tools to support the interconnection of distributed energy resources.

  3. A G LO BA L P OW E R TECHNOLO GIES CO M PA N Y SolarTieTM Grid Interconnection Solution

    E-Print Network [OSTI]

    Homes, Christopher C.

    G f· Shipments to date sufficient to power 10 GW of wind power SWind Plant Interconnection Solutions's Wind-Generated Electricity "Powered by AMSC®" Wind Turbine Designs, Controls & Converters · Relied upon utilized at more than 70 wind plants worldwide · Shipments to date sufficient to allow interconnection 4 p

  4. Thin-film chip-to-substrate interconnect and methods for making same

    DOE Patents [OSTI]

    Tuckerman, D.B.

    1988-06-06T23:59:59.000Z

    Integrated circuit chips are electrically connected to a silicon wafer interconnection substrate. Thin film wiring is fabricated down bevelled edges of the chips. A subtractive wire fabrication method uses a series of masks and etching steps to form wires in a metal layer. An additive method direct laser writes or deposits very thin lines which can then be plated up to form wires. A quasi-additive or subtractive/additive method forms a pattern of trenches to expose a metal surface which can nucleate subsequent electrolytic deposition of wires. Low inductance interconnections on a 25 micron pitch (1600 wires on a 1 cm square chip) can be produced. The thin film hybrid interconnect eliminates solder joints or welds, and minimizes the levels of metallization. Advantages include good electrical properties, very high wiring density, excellent backside contact, compactness, and high thermal and mechanical reliability. 6 figs.

  5. Method for fabricating an interconnected array of semiconductor devices

    DOE Patents [OSTI]

    Grimmer, Derrick P. (White Bear Lake, MN); Paulson, Kenneth R. (North St. Paul, MN); Gilbert, James R. (St. Paul, MN)

    1989-10-10T23:59:59.000Z

    Semiconductor layer and conductive layer formed on a flexible substrate, divided into individual devices and interconnected with one another in series by interconnection layers and penetrating terminals.

  6. The regulation of internet interconnection : assessing network market power

    E-Print Network [OSTI]

    Maida, Elisabeth M. (Elisabeth Marigo)

    2013-01-01T23:59:59.000Z

    Interconnection agreements in the telecommunications industry have always been constrained by regulation. Internet interconnection has not received the same level of scrutiny. Recent debates regarding proposed mergers, ...

  7. CHP: Connecting the Gap between Markets and Utility Interconnection...

    Office of Environmental Management (EM)

    CHP: Connecting the Gap between Markets and Utility Interconnection and Tariff Practices, 2006 CHP: Connecting the Gap between Markets and Utility Interconnection and Tariff...

  8. Reliability of Wireless On-Chip Interconnects Based on Carbon Nanotube Antennas

    E-Print Network [OSTI]

    Pande, Partha Pratim

    Reliability of Wireless On-Chip Interconnects Based on Carbon Nanotube Antennas A. Nojeh1 , P Engineering University of British Columbia 2332 Main Mall Vancouver, BC, Canada 2 School of Electrical of the research effort in the emerging area of nanoelectronics has revolved around creating novel devices

  9. Power Reduction of CMP Communication Networks via RF-Interconnects M-C. Frank Chang

    E-Print Network [OSTI]

    Cong, Jason "Jingsheng"

    latency and low energy consumption [5][7]. RF-I transmission lines provide single-cycle crossPower Reduction of CMP Communication Networks via RF-Interconnects M-C. Frank Chang , Jason Cong}@cs.ucla.edu Electrical Engineering Department, UCLA. {mfchang, socher, roccotam}@ee.ucla.edu Abstract As chip

  10. ACTIVE SUBSTRATES FOR OPTOELECTRONIC INTERCONNECT Donald Chiarulli, Steven Levitan, Jason Bakos

    E-Print Network [OSTI]

    Bakos, Jason D.

    silicon on sapphire technology and the adaptation of laser drilling techniques to create vias through goal is a new solution to one of the most difficult problems associated with the packaging of chip and electrically compatible with current ball grid array (BGA) technology for electronic interconnect, and provides

  11. Optimization and Visualization of the North American Eastern Interconnect Power Market

    E-Print Network [OSTI]

    Optimization and Visualization of the North American Eastern Interconnect Power Market Douglas R. Hale DHALE@eia.doe.gov U.S. Energy Information Agency Washington, DC 20585 USA Thomas J. Overbye. Introduction The road to competitive electricity markets in the United States is becoming littered

  12. Full-wave Surface Integral Equation Method for Electromagnetic-circuit Simulation of Three-dimensional Interconnects in Layered Media

    E-Print Network [OSTI]

    Karsilayan, Nur

    2011-08-08T23:59:59.000Z

    FULL-WAVE SURFACE INTEGRAL EQUATION METHOD FOR ELECTROMAGNETIC-CIRCUIT SIMULATION OF THREE-DIMENSIONAL INTERCONNECTS IN LAYERED MEDIA A Dissertation by NUR KURT KARSILAYAN Submitted to the Office of Graduate Studies of Texas A&M University... in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY May 2010 Major Subject: Electrical Engineering FULL-WAVE SURFACE INTEGRAL EQUATION METHOD FOR ELECTROMAGNETIC-CIRCUIT SIMULATION OF THREE-DIMENSIONAL INTERCONNECTS...

  13. Interconnecting PV on New York City's Secondary Network Distribution System

    SciTech Connect (OSTI)

    K. Anderson; M. Coddington; K. Burman; S. Hayter; B. Kroposki; and A. Watson

    2009-11-30T23:59:59.000Z

    The U.S. Department of Energy (DOE) has teamed with cities across the country through the Solar America Cities (SAC) partnership program to help reduce barriers and accelerate implementation of solar energy. The New York City SAC team is a partnership between the City University of New York (CUNY), the New York City Mayor s Office of Long-term Planning and Sustainability, and the New York City Economic Development Corporation (NYCEDC).The New York City SAC team is working with DOE s National Renewable Energy Laboratory (NREL) and Con Edison, the local utility, to develop a roadmap for photovoltaic (PV) installations in the five boroughs. The city set a goal to increase its installed PV capacity from1.1 MW in 2005 to 8.1 MW by 2015 (the maximum allowed in 2005). A key barrier to reaching this goal, however, is the complexity of the interconnection process with the local utility. Unique challenges are associated with connecting distributed PV systems to secondary network distribution systems (simplified to ���¢��������networks���¢������� in this report). Although most areas of the country use simpler radial distribution systems to distribute electricity, larger metropolitan areas like New York City typically use networks to increase reliability in large load centers. Unlike the radial distribution system, where each customer receives power through a single line, a network uses a grid of interconnected lines to deliver power to each customer through several parallel circuits and sources. This redundancy improves reliability, but it also requires more complicated coordination and protection schemes that can be disrupted by energy exported from distributed PV systems. Currently, Con Edison studies each potential PV system in New York City to evaluate the system s impact on the network, but this is time consuming for utility engineers and may delay the customer s project or add cost for larger installations. City leaders would like to streamline this process to facilitate faster, simpler, and less expensive distributed PV system interconnections. To assess ways to improve the interconnection process, NREL conducted a four-part study with support from DOE. The NREL team then compiled the final reports from each study into this report. In Section 1���¢��������PV Deployment Analysis for New York City���¢��������we analyze the technical potential for rooftop PV systems in the city. This analysis evaluates potential PV power production in ten Con Edison networks of various locations and building densities (ranging from high density apartments to lower density single family homes). Next, we compare the potential power production to network loads to determine where and when PV generation is most likely to exceed network load and disrupt network protection schemes. The results of this analysis may assist Con Edison in evaluating future PV interconnection applications and in planning future network protection system upgrades. This analysis may also assist other utilities interconnecting PV systems to networks by defining a method for assessing the technical potential of PV in the network and its impact on network loads. Section 2���¢��������A Briefing for Policy Makers on Connecting PV to a Network Grid���¢��������presents an overview intended for nontechnical stakeholders. This section describes the issues associated with interconnecting PV systems to networks, along with possible solutions. Section 3���¢��������Technical Review of Concerns and Solutions to PV Interconnection in New Y

  14. Carbon nanotube interconnects for IC chips

    E-Print Network [OSTI]

    Anwar Ali, Hashina Parveen

    2006-01-01T23:59:59.000Z

    Carbon nanotubes (CNTs) have been investigated as candidate materials to replace or augment the existing copper-based technologies as interconnects for Integrated Circuit (IC) chips. Being ballistic conductors, CNTs are ...

  15. Carbon nanotube synthesis for integrated circuit interconnects

    E-Print Network [OSTI]

    Nessim, Gilbert Daniel

    2009-01-01T23:59:59.000Z

    Based on their properties, carbon nanotubes (CNTs) have been identified as ideal replacements for copper interconnects in integrated circuits given their higher current density, inertness, and higher resistance to ...

  16. Wind/PV Generation for Frequency Regulation and Oscillation Damping in the Eastern Interconnection

    SciTech Connect (OSTI)

    Liu, Yong [The University of Tennessee, Knoxville; Gracia, Jose R [ORNL; Hadley, Stanton W [ORNL; Liu, Yilu [ORNL

    2013-12-01T23:59:59.000Z

    This report presents the control of renewable energy sources, including the variable-speed wind generators and solar photovoltaic (PV) generators, for frequency regulation and inter-area oscillation damping in the U.S. Eastern Interconnection (EI). In this report, based on the user-defined wind/PV generator electrical control model and the 16,000-bus Eastern Interconnection dynamic model, the additional controllers for frequency regulation and inter-area oscillation damping are developed and incorporated and the potential contributions of renewable energy sources to the EI system frequency regulation and inter-area oscillation damping are evaluated.

  17. NREL Variability Analysis for the Western Interconnect (Presentation)

    SciTech Connect (OSTI)

    Milligan, M.; Kirby, B.; King, J.

    2011-07-01T23:59:59.000Z

    This presentation investigates the effects of several Energy Imbalance Markets implementations in the Western Interconnect.

  18. Accelerating Fatigue Testing for Cu Ribbon Interconnects (Presentation)

    SciTech Connect (OSTI)

    Bosco, N.; Silverman, T.; Wohlgemuth , J.; Kurtz, S.; Inoue, M.; Sakurai, K.; Shioda, T.; Zenkoh, H.; Miyashita, M.; Tadanori, T.; Suzuki, S.

    2013-05-01T23:59:59.000Z

    This presentation describes fatigue experiments and discusses dynamic mechanical loading for Cu ribbon interconnects.

  19. Electricity Monthly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Percentage Btu Region map map showing electricity regions The chart above compares coal consumption in March 2014 and March 2015 by region and shows that coal consumption for...

  20. Development of Ni1-xCoxO as the cathode/interconnect contact for solid oxide fuel cells

    SciTech Connect (OSTI)

    Lu, Zigui; Xia, Guanguang; Templeton, Joshua D.; Li, Xiaohong S.; Nie, Zimin; Yang, Zhenguo; Stevenson, Jeffry W.

    2011-06-01T23:59:59.000Z

    A new type of material, Ni1-xCoxO, was developed for solid oxide fuel cell (SOFC) cathode/interconnect contact applications. The phase structure, coefficient of thermal expansion, sintering behavior, electrical property, and mechanical bonding strength of these materials were evaluated against the requirements of the SOFC cathode/interconnect contact. A dense cathode/interconnect contact layer was developed through reaction sintering from Ni and Co metal powders. An area specific resistance (ASR) as low as 5.5 mohm.cm2 was observed after 1000 h exposure in air at 800 °C for the LSM/Ni0.33Co0.67O/AISI441 assembly. Average mechanical strengths of 6.8 and 5.0 MPa were obtained for the cathode/contact/cathode and interconnect/contact/interconnect structures, respectively. The significantly low ASR was probably due to the dense structure and therefore improved electrical conductivity of the Ni0.33Co0.67O contact and the good bonding of the interfaces between the contact and the cathode, and between the contact and the interconnect.

  1. Long-term oxidation behavior of spinel-coated ferritic stainless steel for solid oxide fuel cell interconnect applications

    SciTech Connect (OSTI)

    Stevenson, Jeffry W.; Yang, Zhenguo (Gary) [Gary; Xia, Guanguang; Nie, Zimin; Templeton, Joshua D.

    2013-06-01T23:59:59.000Z

    Long-term tests (>8,000 hours) indicate that AISI 441 ferritic stainless steel coated with a Mn-Co spinel protection layer is a promising candidate material system for IT-SOFC interconnect applications. While uncoated AISI 441 showed a substantial increase in area-specific electrical resistance (ASR), spinel-coated AISI 441 exhibited much lower ASR values (11-13 mOhm-cm2). Formation of an insulating silica sublayer beneath the native chromia-based scale was not observed, and the spinel coatings reduced the oxide scale growth rate and blocked outward diffusion of Cr from the alloy substrate. The structure of the scale formed under the spinel coatings during the long term tests differed from that typically observed on ferritic stainless steels after short term oxidation tests. While short term tests typically indicate a dual layer scale structure consisting of a chromia layer covered by a layer of Mn-Cr spinel, the scale grown during the long term tests consisted of a chromia matrix with discrete regions of Mn-Cr spinel distributed throughout the matrix. The presence of Ti in the chromia scale matrix and/or the presence of regions of Mn-Cr spinel within the scale may have increased the scale electrical conductivity, which would explain the fact that the observed ASR in the tests was lower than would be expected if the scale consisted of pure chromia.

  2. Thin 3D Multiplication Regions in Plasmonically Enhanced Nanopillar Avalanche Detectors

    E-Print Network [OSTI]

    Hayat, Majeed M.

    and Electrical and Computer Engineering Department, University of New Mexico, Albuquerque, New Mexico 87106 array applications nor integrated as low capacitance detectors for optical interconnect applications

  3. Survey of Transmission Cost Allocation Methodologies for Regional Transmission Organizations

    SciTech Connect (OSTI)

    Fink, S.; Porter, K.; Mudd, C.; Rogers, J.

    2011-02-01T23:59:59.000Z

    The report presents transmission cost allocation methodologies for reliability transmission projects, generation interconnection, and economic transmission projects for all Regional Transmission Organizations.

  4. 1979 year-end electric power survey. [Monograph

    SciTech Connect (OSTI)

    Not Available

    1980-01-01T23:59:59.000Z

    The status of electric power supply, generating facility expansion, and electric power equipment manufacture is presented for 1979 on the basis of an industry survey covering investor-owned systems, public systems, and rural electric cooperatives as well as industrial installations which are interconnected with and supply power to utility systems. A 3.2 increase in generating capacity brought the total to 576.2 million kilowatts, 86 percent of which is thermal and the remainder hydro. Survey data for Hawaii is shown separately. December and summer peak capabilities, peak loads, and capability margins are presented for each of the nine regions. Their relationships to each other, to annual load factor, and to annual kilowatt hour requirements are also shown. Details of the orders placed with manufacturers for heavy power equipment are presented for the years 1975 to 1979. The manufacturing schedules of conventional and nuclear equipment are presented for the years 1979 to 1985. 28 tables. (DCK)

  5. Nuclear-renewable hybrid energy systems: Opportunities, interconnections, and needs

    SciTech Connect (OSTI)

    Mark F. Ruth; Owen R. Zinaman; Mark Antkowiak; Richard D. Boardman; Robert S. Cherry; Morgan D. Bazilian

    2014-02-01T23:59:59.000Z

    As the U.S. energy system evolves, the amount of electricity from variable-generation sources is likely to increase, which could result in additional times when electricity demand is lower than available production. Thus, purveyors of technologies that traditionally have provided base-load electricity—such as nuclear power plants—can explore new operating procedures to deal with the associated market signals. Concurrently, innovations in nuclear reactor design coupled with sophisticated control systems now allow for more complex apportionment of heat within an integrated system such as one linked to energy-intensive chemical processes. This paper explores one opportunity – nuclear-renewable hybrid energy systems. These are defined as integrated facilities comprised of nuclear reactors, renewable energy generation, and industrial processes that can simultaneously address the need for grid flexibility, greenhouse gas emission reductions, and optimal use of investment capital. Six aspects of interaction (interconnections) between elements of nuclear-renewable hybrid energy systems are identified: Thermal, electrical, chemical, hydrogen, mechanical, and information. Additionally, system-level aspects affect selection, design, and operation of this hybrid system type. Throughout the paper, gaps and research needs are identified to promote further exploration of the topic.

  6. Method and system to directly produce electrical power within the lithium blanket region of a magnetically confined, deuterium-tritium (DT) fueled, thermonuclear fusion reactor

    DOE Patents [OSTI]

    Woolley, Robert D. (Belle Mead, NJ)

    1999-01-01T23:59:59.000Z

    A method for integrating liquid metal magnetohydrodynamic power generation with fusion blanket technology to produce electrical power from a thermonuclear fusion reactor located within a confining magnetic field and within a toroidal structure. A hot liquid metal flows from a liquid metal blanket region into a pump duct of an electromagnetic pump which moves the liquid metal to a mixer where a gas of predetermined pressure is mixed with the pressurized liquid metal to form a Froth mixture. Electrical power is generated by flowing the Froth mixture between electrodes in a generator duct. When the Froth mixture exits the generator the gas is separated from the liquid metal and both are recycled.

  7. Selection and Evaluation of Heat-Resistant Alloys for Planar SOFC Interconnect Applications

    SciTech Connect (OSTI)

    Yang, Z Gary; Weil, K. Scott; Paxton, Dean M.; Stevenson, Jeffry W.

    2002-11-21T23:59:59.000Z

    Over the past several years, the steady reduction in SOFC operating temperatures to the intermediate range of 700~850oC [1] has made it feasible for lanthanum chromite to be supplanted by metals or alloys as the interconnect materials. Compared to doped lanthanum chromite, metals or alloys offer significantly lower raw material and fabrication costs. However, to be a durable and reliable, a metal or alloy has to satisfy several functional requirements specific to the interconnect under SOFC operating conditions. Specifically, the interconnect metal or alloy should possess the following properties: (i) Good surface stability (resistance to oxidation, hot corrosion, and carburization) in both cathodic (air) and anodic (fuel) atmospheres; (ii) Thermal expansion matching to the ceramic PEN (positive cathode-electrolyte-negative anode) and seal materials (as least for a rigid seal design); (iii) High electrical conductivity through both the bulk material and in-situ formed oxide scales; (iv) Bulk and interfacial thermal mechanical reliability and durability at the operating temperature; (v) Compatibility with other materials in contact with interconnects such as seals and electrical contact materials.

  8. Climate mitigation’s impact on global and regional electric power sector water use in the 21st Century

    SciTech Connect (OSTI)

    Dooley, James J.; Kyle, G. Page; Davies, Evan

    2013-08-05T23:59:59.000Z

    Over the course of this coming century, global electricity use is expected to grow at least five fold and if stringent greenhouse gas emissions controls are in place the growth could be more than seven fold from current levels. Given that the electric power sector represents the second largest anthropogenic use of water and given growing concerns about the nature and extent of future water scarcity driven by population growth and a changing climate, significant concern has been expressed about the electricity sector’s use of water going forward. In this paper, the authors demonstrate that an often overlooked but absolutely critical issue that needs to be taken into account in discussions about the sustainability of the electric sector’s water use going forward is the tremendous turn over in electricity capital stock that will occur over the course of this century; i.e., in the scenarios examined here more than 80% of global electricity production in the year 2050 is from facilities that have not yet been built. The authors show that because of the large scale changes in the global electricity system, the water withdrawal intensity of electricity production is likely to drop precipitously with the result being relatively constant water withdrawals over the course of the century even in the face of the large growth in electricity usage. The ability to cost effectively reduce the water intensity of power plants with carbon dioxide capture and storage systems in particular is key to constraining overall global water use.

  9. Novel Composite Materials for SOFC Cathode-Interconnect Contact

    SciTech Connect (OSTI)

    J. H. Zhu

    2009-07-31T23:59:59.000Z

    This report summarized the research efforts and major conclusions of our University Coal Research Project, which focused on developing a new class of electrically-conductive, Cr-blocking, damage-tolerant Ag-perovksite composite materials for the cathode-interconnect contact of intermediate-temperature solid oxide fuel cell (SOFC) stacks. The Ag evaporation rate increased linearly with air flow rate initially and became constant for the air flow rate {ge} {approx} 1.0 cm {center_dot} s{sup -1}. An activation energy of 280 KJ.mol{sup -1} was obtained for Ag evaporation in both air and Ar+5%H{sub 2}+3%H{sub 2}O. The exposure environment had no measurable influence on the Ag evaporation rate as well as its dependence on the gas flow rate, while different surface morphological features were developed after thermal exposure in the oxidizing and reducing environments. Pure Ag is too volatile at the SOFC operating temperature and its evaporation rate needs to be reduced to facilitate its application as the cathode-interconnect contact. Based on extensive evaporation testing, it was found that none of the alloying additions reduced the evaporation rate of Ag over the long-term exposure, except the noble metals Au, Pt, and Pd; however, these noble elements are too expensive to justify their practical use in contact materials. Furthermore, the addition of La{sub 0.8}Sr{sub 0.2}MnO{sub 3} (LSM) into Ag to form a composite material also did not significantly modify the Ag evaporation rate. The Ag-perovskite composites with the perovskite being either (La{sub 0.6}Sr{sub 0.4})(Co{sub 0.8}Fe{sub 0.2})O{sub 3} (LSCF) or LSM were systematically evaluated as the contact material between the ferritic interconnect alloy Crofer 22 APU and the LSM cathode. The area specific resistances (ASRs) of the test specimens were shown to be highly dependent on the volume percentage and the type of the perovskite present in the composite contact material as well as the amount of thermal cycling that the specimens were subjected to during testing. The Ag-LSCF composite contact materials proved more effective in trapping Cr within the contact material and preventing Cr migration into the cathode than the Ag-LSM composites. Ag-perovskite composite contact materials are promising candidates for use in intermediate-temperature SOFC stacks with ferritic stainless steel interconnects due to their ability to maintain acceptably low ASRs while reducing Cr migration into the cathode material.

  10. Planarization of metal films for multilevel interconnects

    DOE Patents [OSTI]

    Tuckerman, David B. (Livermore, CA)

    1987-01-01T23:59:59.000Z

    In the fabrication of multilevel integrated circuits, each metal layer is anarized by heating to momentarily melt the layer. The layer is melted by sweeping laser pulses of suitable width, typically about 1 microsecond duration, over the layer in small increments. The planarization of each metal layer eliminates irregular and discontinuous conditions between successive layers. The planarization method is particularly applicable to circuits having ground or power planes and allows for multilevel interconnects. Dielectric layers can also be planarized to produce a fully planar multilevel interconnect structure. The method is useful for the fabrication of VLSI circuits, particularly for wafer-scale integration.

  11. Planarization of metal films for multilevel interconnects

    DOE Patents [OSTI]

    Tuckerman, D.B.

    1985-06-24T23:59:59.000Z

    In the fabrication of multilevel integrated circuits, each metal layer is planarized by heating to momentarily melt the layer. The layer is melted by sweeping lase pulses of suitable width, typically about 1 microsecond duration, over the layer in small increments. The planarization of each metal layer eliminates irregular and discontinuous conditions between successive layers. The planarization method is particularly applicable to circuits having ground or power planes and allows for multilevel interconnects. Dielectric layers can also be planarized to produce a fully planar multilevel interconnect structure. The method is useful for the fabrication of VLSI circuits, particularly for wafer-scale integration.

  12. Planarization of metal films for multilevel interconnects

    DOE Patents [OSTI]

    Tuckerman, D.B.

    1985-08-23T23:59:59.000Z

    In the fabrication of multilevel integrated circuits, each metal layer is planarized by heating to momentarily melt the layer. The layer is melted by sweeping laser pulses of suitable width, typically about 1 microsecond duration, over the layer in small increments. The planarization of each metal layer eliminates irregular and discontinuous conditions between successive layers. The planarization method is particularly applicable to circuits having ground or power planes and allows for multilevel interconnects. Dielectric layers can also be planarized to produce a fully planar multilevel interconnect structure. The method is useful for the fabrication of VLSI circuits, particularly for wafer-scale integration.

  13. Planarization of metal films for multilevel interconnects

    DOE Patents [OSTI]

    Tuckerman, D.B.

    1989-03-21T23:59:59.000Z

    In the fabrication of multilevel integrated circuits, each metal layer is planarized by heating to momentarily melt the layer. The layer is melted by sweeping laser pulses of suitable width, typically about 1 microsecond duration, over the layer in small increments. The planarization of each metal layer eliminates irregular and discontinuous conditions between successive layers. The planarization method is particularly applicable to circuits having ground or power planes and allows for multilevel interconnects. Dielectric layers can also be planarized to produce a fully planar multilevel interconnect structure. The method is useful for the fabrication of VLSI circuits, particularly for wafer-scale integration. 6 figs.

  14. Planarization of metal films for multilevel interconnects

    DOE Patents [OSTI]

    Tuckerman, David B. (Livermore, CA)

    1989-01-01T23:59:59.000Z

    In the fabrication of multilevel integrated circuits, each metal layer is anarized by heating to momentarily melt the layer. The layer is melted by sweeping laser pulses of suitable width, typically about 1 microsecond duration, over the layer in small increments. The planarization of each metal layer eliminates irregular and discontinuous conditions between successive layers. The planarization method is particularly applicable to circuits having ground or power planes and allows for multilevel interconnects. Dielectric layers can also be planarized to produce a fully planar multilevel interconnect structure. The method is useful for the fabrication of VLSI circuits, particularly for wafer-scale integration.

  15. Electrically long vertical interconnects for microwave circuits and antennas

    E-Print Network [OSTI]

    Coutant, Matthew Richard

    2000-01-01T23:59:59.000Z

    , =2. 2, h=31 mil, and Zc=50 ohms. Equations cited by Gonzales [20] and Pozar [21] give a 95. 5 mil line using the same parameters. The program LineCalc [22] gives a 94. 2 mil width and TXLine [23] gives a 97. 1 mil width, both using t=1. 4 mils... equations. Next, a length of 1200 mil microstrip line was optimized in IE3D [24] to find the line width for 50 ohm operation around 9. 5 GHz. Using its Genetic Algorithm Optimization, limits of Si i & -40 dB and Sn& -0. 5dB were used. This optimization...

  16. Vehicle Technologies Office Merit Review 2014: Reliability of Electrical Interconnects

    Broader source: Energy.gov [DOE]

    Presentation given by National Renewable Energy Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

  17. Analysis of electric vehicle interconnection with commercial building microgrids

    E-Print Network [OSTI]

    Stadler, Michael

    2011-01-01T23:59:59.000Z

    power (CHP), PV, solar thermal, stationary battery, etc. isstationary battery • stationary batteries charged by PV • noyears PV: $3237/kW, lifetime: 20 years stationary battery: $

  18. Analysis of electric vehicle interconnection with commercial building microgrids

    E-Print Network [OSTI]

    Stadler, Michael

    2011-01-01T23:59:59.000Z

    energy systems design considering storage technologies,”afternoon Environmental Energy Technologies Division StorageEnvironmental Energy Technologies Division Storage

  19. Physics of Failure of Electrical Interconnects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in235-1Department of Energy Photovoltaics at DOE's2 DOE Hydrogen and

  20. Physics of Failure of Electrical Interconnects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in235-1Department of Energy Photovoltaics at DOE's2 DOE Hydrogen and1

  1. National Electric Transmission Congestion Study 2006 Eastern Interconnection Analysis

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked QuestionsDepartment of Energyof Energy U.S.August 2014 |

  2. National Electric Transmission Study 2006 Western Interconnection Analysis

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked QuestionsDepartment of Energyof Energy U.S.August 2014Western

  3. Did geomagnetic activity challenge electric power reliability during solar cycle 23? Evidence from the PJM regional transmission

    E-Print Network [OSTI]

    Schrijver, Karel

    Did geomagnetic activity challenge electric power reliability during solar cycle 23? Evidence from through 30 April 2004. During this time period PJM coordinated the movement of wholesale electricity of challenged reliability is the incidence of out-of-economic-merit order dispatching due to adverse reactive

  4. A Study of the Correlation Between Electrical Resistivity and Matric Suction for Unsaturated Ash-Fall Pyroclastic Soils in the Campania Region (Southern Italy)

    E-Print Network [OSTI]

    De Vita, Pantaleone; Piegari, Ester

    2011-01-01T23:59:59.000Z

    In the territory of the Campania region (southern Italy), critical rainfall events periodically trigger dangerous fast slope movements involving ashy and pyroclastic soils originated by the explosive phases of the Mt. Somma-Vesuvius volcano and deposited along the surrounding mountain ranges. In this paper, an integration of engineering-geological and geophysical measurements is presented to characterize unsaturated pyroclastic samples collected in a test area on the Sarno Mountains (Salerno and Avellino provinces, Campania region). The laboratory analyses were aimed at defining both soil water retention and electrical resistivity curves versus water content. From the matching of the experimental data, a direct relationship between electrical resistivity and matric suction is retrieved for the investigated soil horizons typical of a ash-fall pyroclastic succession. The obtained relation turns out to be helpful in characterizing soils up to close saturation, which is a critical condition for the trigger of slo...

  5. U.S. Geothermal Signs Interconnection Agreement for Neal Hot...

    Open Energy Info (EERE)

    Signs Interconnection Agreement for Neal Hot Springs Power Project Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: U.S. Geothermal Signs Interconnection...

  6. ,"Table 3a. January Monthly Peak Hour Demand, Actual and Projected by North American Electric Reliability Corporation Region, "

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePrice Sold to Electric Powere..3

  7. ,"Table 3a. January Monthly Peak Hour Demand, Actual and Projected by North American Electric Reliability Council Region, "

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePrice Sold to Electric Powere..3January

  8. subcollector Schottky collector contact & interconnect metals

    E-Print Network [OSTI]

    Rodwell, Mark J. W.

    base collector depletion layer subcollector ohmic metal (a) base collector depletion layer Schottky metal base emitter collector collector We emitter base emitter emitter We Wc Wc (b) Schottky collector contact & interconnect metals Emitter & collector Ohmics undoped collector depletion layer base N

  9. Asynchronous intrusion recovery for interconnected web services

    E-Print Network [OSTI]

    Sabatini, David M.

    Asynchronous intrusion recovery for interconnected web services Ramesh Chandra, Taesoo Kim, and tracking down and recovering from such an attack re- quires significant manual effort. Web services for such web services. Aire addresses several challenges, such as propagating repair across services when some

  10. Examination of Potential Benefits of an Energy Imbalance Market in the Western Interconnection

    SciTech Connect (OSTI)

    Milligan, M.; Clark, K.; King, J.; Kirby, B.; Guo, T.; Liu, G.

    2013-03-01T23:59:59.000Z

    In the Western Interconnection, there is significant interest in improving approaches to wide-area coordinated operations of the bulk electric power system, in part because of the increasing penetration of variable generation. One proposed solution is an energy imbalance market. This study focused on that approach alone, with the goal of identifying the potential benefits of an energy imbalance market in the year 2020.

  11. Interconnected hydro-thermal systems Models, methods, and applications

    E-Print Network [OSTI]

    Interconnected hydro-thermal systems Models, methods, and applications Magnus Hindsberger Kgs. Lyngby 2003 IMM-PHD-2003-112 Interconnected hydro-thermalsystems #12;Technical University of Denmark 45882673 reception@imm.dtu.dk www.imm.dtu.dk IMM-PHD-2003-112 ISSN 0909-3192 #12;Interconnected hydro

  12. Phase 1 - Evaluation of a Functional Interconnect System for Solid Oxide Fuel Cells

    SciTech Connect (OSTI)

    James M. Rakowski

    2006-09-30T23:59:59.000Z

    This project is focused on evaluating the suitability of materials and complex multi-materials systems for use as solid oxide fuel cell interconnects. ATI Allegheny Ludlum has generated promising results for interconnect materials which incorporate modified surfaces. Methods for producing these surfaces include cladding, which permits the use of novel materials, and modifications via unique thermomechanical processing, which allows for the modification of materials chemistry. The University of Pittsburgh is assisting in this effort by providing use of their in-place facilities for dual atmosphere testing and ASR measurements, along with substantial work to characterize post-exposure specimens. Carnegie Mellon is testing interconnects for chromia scale spallation resistance using macro-scale and nano-scale indentation tests. Chromia spallation can increase electrical resistance to unacceptable levels and interconnect systems must be developed that will not experience spallation within 40,000 hours at operating temperatures. Spallation is one of three interconnect failure mechanisms, the others being excessive growth of the chromia scale (increasing electrical resistance) and scale evaporation (which can poison the cathode). The goal of indentation fracture testing at Carnegie Mellon is to accelerate the evaluation of new interconnect systems (by inducing spalls at after short exposure times) and to use fracture mechanics to understand mechanisms leading to premature interconnect failure by spallation. Tests include bare alloys from ATI and coated systems from DOE Laboratories and industrial partners, using ATI alloy substrates. West Virginia University is working towards developing a cost-effective material for use as a contact material in the cathode chamber of the SOFC. Currently materials such as platinum are well suited for this purpose, but are cost-prohibitive. For the solid-oxide fuel cell to become a commercial reality it is imperative that lower cost components be developed. Based on the results obtained to date, it appears that sterling silver could be an inexpensive, dependable candidate for use as a contacting material in the cathode chamber of the solid-oxide fuel cell. Although data regarding pure silver samples show a lower rate of thickness reduction, the much lower cost of sterling silver makes it an attractive alternative for use in SOFC operation.

  13. Power Politics: The Political Economy of Russia's Electricity Sector Liberalization

    E-Print Network [OSTI]

    Wengle, Susanne Alice

    2010-01-01T23:59:59.000Z

    Electricity Sector in Russia: Regional Aspects " In Economics EducationElectricity Sector in Russia: Regional Aspects " in Economics Education

  14. Southeast Regional Clean Energy Policy Analysis (Revised)

    SciTech Connect (OSTI)

    McLaren, J.

    2011-04-01T23:59:59.000Z

    More than half of the electricity produced in the southeastern states is fuelled by coal. Although the region produces some coal, most of the states depend heavily on coal imports. Many of the region's aging coal power facilities are planned for retirement within the next 20 years. However, estimates indicate that a 20% increase in capacity is needed over that time to meet the rapidly growing demand. The most common incentives for energy efficiency in the Southeast are loans and rebates; however, total public spending on energy efficiency is limited. The most common state-level policies to support renewable energy development are personal and corporate tax incentives and loans. The region produced 1.8% of the electricity from renewable resources other than conventional hydroelectricity in 2009, half of the national average. There is significant potential for development of a biomass market in the region, as well as use of local wind, solar, methane-to-energy, small hydro, and combined heat and power resources. Options are offered for expanding and strengthening state-level policies such as decoupling, integrated resource planning, building codes, net metering, and interconnection standards to support further clean energy development. Benefits would include energy security, job creation, insurance against price fluctuations, increased value of marginal lands, and local and global environmental paybacks.

  15. Apparatus for improving performance of electrical insulating structures

    DOE Patents [OSTI]

    Wilson, Michael J. (Modesto, CA); Goerz, David A. (Brentwood, CA)

    2002-01-01T23:59:59.000Z

    Removing the electrical field from the internal volume of high-voltage structures; e.g., bushings, connectors, capacitors, and cables. The electrical field is removed from inherently weak regions of the interconnect, such as between the center conductor and the solid dielectric, and places it in the primary insulation. This is accomplished by providing a conductive surface on the inside surface of the principal solid dielectric insulator surrounding the center conductor and connects the center conductor to this conductive surface. The advantage of removing the electric fields from the weaker dielectric region to a stronger area improves reliability, increases component life and operating levels, reduces noise and losses, and allows for a smaller compact design. This electric field control approach is currently possible on many existing products at a modest cost. Several techniques are available to provide the level of electric field control needed. Choosing the optimum technique depends on material, size, and surface accessibility. The simplest deposition method uses a standard electroless plating technique, but other metalization techniques include vapor and energetic deposition, plasma spraying, conductive painting, and other controlled coating methods.

  16. Method for improving performance of highly stressed electrical insulating structures

    DOE Patents [OSTI]

    Wilson, Michael J. (Modesto, CA); Goerz, David A. (Brentwood, CA)

    2002-01-01T23:59:59.000Z

    Removing the electrical field from the internal volume of high-voltage structures; e.g., bushings, connectors, capacitors, and cables. The electrical field is removed from inherently weak regions of the interconnect, such as between the center conductor and the solid dielectric, and places it in the primary insulation. This is accomplished by providing a conductive surface on the inside surface of the principal solid dielectric insulator surrounding the center conductor and connects the center conductor to this conductive surface. The advantage of removing the electric fields from the weaker dielectric region to a stronger area improves reliability, increases component life and operating levels, reduces noise and losses, and allows for a smaller compact design. This electric field control approach is currently possible on many existing products at a modest cost. Several techniques are available to provide the level of electric field control needed. Choosing the optimum technique depends on material, size, and surface accessibility. The simplest deposition method uses a standard electroless plating technique, but other metalization techniques include vapor and energetic deposition, plasma spraying, conductive painting, and other controlled coating methods.

  17. Apparatus for improving performance of electrical insulating structures

    DOE Patents [OSTI]

    Wilson, Michael J.; Goerz, David A.

    2004-08-31T23:59:59.000Z

    Removing the electrical field from the internal volume of high-voltage structures; e.g., bushings, connectors, capacitors, and cables. The electrical field is removed from inherently weak regions of the interconnect, such as between the center conductor and the solid dielectric, and places it in the primary insulation. This is accomplished by providing a conductive surface on the inside surface of the principal solid dielectric insulator surrounding the center conductor and connects the center conductor to this conductive surface. The advantage of removing the electric fields from the weaker dielectric region to a stronger area improves reliability, increases component life and operating levels, reduces noise and losses, and allows for a smaller compact design. This electric field control approach is currently possible on many existing products at a modest cost. Several techniques are available to provide the level of electric field control needed. Choosing the optimum technique depends on material, size, and surface accessibility. The simplest deposition method uses a standard electroless plating technique, but other metalization techniques include vapor and energetic deposition, plasma spraying, conductive painting, and other controlled coating methods.

  18. Answer of Potomac Electric Power Company and PJM lnterconnection...

    Broader source: Energy.gov (indexed) [DOE]

    ("FERC" or "Commission"), 18 C.F.R. 385.213, Potomac Electric Power Company ("Pepco") and PJM Interconnection, L.L.C. ("PJM") hereby answer the Motion of Robert G....

  19. Examination of the Regional Supply and Demand Balance for Renewable Electricity in the United States through 2015: Projecting from 2009 through 2015 (Revised)

    SciTech Connect (OSTI)

    Bird, L.; Hurlbut, D.; Donohoo, P.; Cory, K.; Kreycik, C.

    2010-06-01T23:59:59.000Z

    This report examines the balance between the demand and supply of new renewable electricity in the United States on a regional basis through 2015. It expands on a 2007 NREL study that assessed the supply and demand balance on a national basis. As with the earlier study, this analysis relies on estimates of renewable energy supplies compared to demand for renewable energy generation needed to meet existing state renewable portfolio standard (RPS) policies in 28 states, as well as demand by consumers who voluntarily purchase renewable energy. However, it does not address demand by utilities that may procure cost-effective renewables through an integrated resource planning process or otherwise.

  20. ,"Table 3a. January Monthly Peak Hour Demand, Actual and Projected by North American Electric Reliability Corporation Region, "

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePrice Sold to Electric Powere..3 andA.1.6"

  1. ,"Table 3a. January Monthly Peak Hour Demand, Actual and Projected by North American Electric Reliability Corporation Region, "

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePrice Sold to Electric Powere..3January 2010"

  2. ,"Table 3a. January Monthly Peak Hour Demand, Actual and Projected by North American Electric Reliability Council Region, "

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePrice Sold to Electric Powere..3January3a. January

  3. ,"Table 4.B Winter Net Internal Demand, Capacity Resources, and Capacity Margins by North American Electric Reliability Corporation Region,"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePrice Sold to Electric Powere..3January3a. JanuaryB

  4. Electric power annual 1994. Volume 1

    SciTech Connect (OSTI)

    NONE

    1995-07-21T23:59:59.000Z

    The Electric Power Annual presents a summary of electric power industry statistics at national, regional, and State levels.

  5. The Development of Interconnection Standards in Six States In 2007-2008

    SciTech Connect (OSTI)

    Keyes, Jason B.

    2008-04-01T23:59:59.000Z

    This paper discusses the process of developing standards for the interconnection of photovoltaic systems and other generators under ten megawatts to the electric grid. State utility commission rulemakings in 2007-2008 in Florida, New Mexico, North Carolina, Maryland, Illinois and Utah provide the basis for analysis of what is and should be considered in the development of standards, and how the process can be improved. State interconnection standards vary substantially, and many utilities have discretion to establish additional or different requirements, creating literally hundreds of sets of rules. This lack of uniformity imposes a significant cost on project developers and installers to track and comply with applicable rules. As well, burdensome provisions and uncertain costs and timelines present formidable barriers to entry, which advocates have limited resources to challenge. For a better process, the author proposes: establishing federal standards as a baseline, involving solar advocates, and developing a utility cost-recovery mechanism.

  6. Impacts Assessment of Plug-in Hybrid Vehicles on Electric Utilities and Regional US Power Grids: Part 1: Technical Analysis

    SciTech Connect (OSTI)

    Kintner-Meyer, Michael CW; Schneider, Kevin P.; Pratt, Robert G.

    2007-01-31T23:59:59.000Z

    This initial paper estimates the regional percentages of the energy requirements for the U.S. light duty vehicle stock that could be supported by the existing grid, based on 12 NERC regions. This paper also discusses the impact of overall emissions of criteria gases and greenhouse gases as a result of shifting emission from millions of tailpipes to a relatively few power plants. The paper concludes with an outlook of the technology requirements necessary to manage the additional and potentially sizable new load to maintain grid reliability.

  7. Data integrity for on-chip interconnects

    E-Print Network [OSTI]

    Singhal, Rohit

    2007-09-17T23:59:59.000Z

    -Chairs of Committee, Rabi Mahapatra Gwan Choi Committee Members, Duncan M. Walker Eun Jung Kim Jiang Hu Madhav Pappu Head of Department, Valerie Taylor May 2007 Major Subject: Computer Science iii ABSTRACT Data Integrity for On-Chip Interconnects. (May 2007) Rohit... Singhal, B. Tech., Indian Institute of Technology; M.S., Texas A&M University Co{Chairs of Advisory Committee: Dr. Rabi Mahapatra Dr. Gwan Choi With shrinking feature size and growing integration density in the Deep Sub- Micron (DSM) technologies...

  8. Updating Interconnection Screens for PV System Integration

    SciTech Connect (OSTI)

    Coddington, M.; Mather, B.; Kroposki, B.; Lynn, K.; Razon, A.; Ellis, A.; Hill, R.; Key, T.; Nicole, K.; Smith, J.

    2012-02-01T23:59:59.000Z

    This white paper evaluates the origins and usefulness of the capacity penetration screen, offer short-term solutions which could effectively allow fast-track interconnection to many PV system applications, and considers longer-term solutions for increasing PV deployment levels in a safe and reliable manner while reducing or eliminating the emphasis on the penetration screen. Short-term and longer-term alternatives approaches are offered as examples; however, specific modifications to screening procedures should be discussed with stakeholders and must ultimately be adopted by state and federal regulatory bodies.

  9. Repairable chip bonding/interconnect process

    DOE Patents [OSTI]

    Bernhardt, Anthony F. (Berkeley, CA); Contolini, Robert J. (Livermore, CA); Malba, Vincent (Livermore, CA); Riddle, Robert A. (Tracy, CA)

    1997-01-01T23:59:59.000Z

    A repairable, chip-to-board interconnect process which addresses cost and testability issues in the multi-chip modules. This process can be carried out using a chip-on-sacrificial-substrate technique, involving laser processing. This process avoids the curing/solvent evolution problems encountered in prior approaches, as well is resolving prior plating problems and the requirements for fillets. For repairable high speed chip-to-board connection, transmission lines can be formed on the sides of the chip from chip bond pads, ending in a gull wing at the bottom of the chip for subsequent solder.

  10. Repairable chip bonding/interconnect process

    DOE Patents [OSTI]

    Bernhardt, A.F.; Contolini, R.J.; Malba, V.; Riddle, R.A.

    1997-08-05T23:59:59.000Z

    A repairable, chip-to-board interconnect process which addresses cost and testability issues in the multi-chip modules is disclosed. This process can be carried out using a chip-on-sacrificial-substrate technique, involving laser processing. This process avoids the curing/solvent evolution problems encountered in prior approaches, as well is resolving prior plating problems and the requirements for fillets. For repairable high speed chip-to-board connection, transmission lines can be formed on the sides of the chip from chip bond pads, ending in a gull wing at the bottom of the chip for subsequent solder. 10 figs.

  11. Environmental Regulation Impacts on Eastern Interconnection Performance

    SciTech Connect (OSTI)

    Markham, Penn N [ORNL; Liu, Yilu [ORNL; Young II, Marcus Aaron [ORNL

    2013-07-01T23:59:59.000Z

    In the United States, recent environmental regulations will likely result in the removal of nearly 30 GW of oil and coal-fired generation from the power grid, mostly in the Eastern Interconnection (EI). The effects of this transition on voltage stability and transmission line flows have previously not been studied from a system-wide perspective. This report discusses the results of power flow studies designed to simulate the evolution of the EI over the next few years as traditional generation sources are replaced with environmentally friendlier ones such as natural gas and wind.

  12. Interconnecting gold islands with DNA origami

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes | National Nuclear SecurityIntellectualInterconnecting gold islands

  13. Impact of High Solar Penetration in the Western Interconnection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Impact of High Solar Penetration in the Western Interconnection Debra Lew National Renewable Energy Laboratory Nicholas Miller, Kara Clark, Gary Jordan, and Zhi Gao GE Energy...

  14. EA-1989: Cliffrose Solar Energy Interconnection Project, Mohave...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Area Power Administration (Western) is preparing an EA that will assess the potential environmental impacts of interconnecting the proposed Cliffrose Solar Energy Project in...

  15. Proposed rule for Interconnection for Wind Energy and Other Alternativ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ENERGY REGULATORY COMMISSION 18 CFR Part 35 (Docket No. RM05-4-000) Interconnection for Wind Energy and Other Alternative Technologies (January 24, 2005) AGENCY: Federal Energy...

  16. Microgrid V2G Charging Station Interconnection Testing (Presentation)

    SciTech Connect (OSTI)

    Simpson, M.

    2013-07-01T23:59:59.000Z

    This presentation by Mike Simpson of the National Renewable Energy Laboratory (NREL) describes NREL's microgrid vehicle-to-grid charging station interconnection testing.

  17. Pepco and PJM Interconnection Comments on District of Columbia...

    Energy Savers [EERE]

    Pepco and PJM Interconnection Comments on District of Columbia Public Service Commission, Docket No. EO-05-01 Comments and Answer to Requests for Rehearing Pepco and PJM...

  18. Response from PJM Interconnection LLC and Pepco to Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PJM Interconnection LLC and Pepco to Department of Energy Request for Information Concerning the Potential Need for Potomac River Station Generation Response from PJM...

  19. SETS, March 2006Institute of Electrical Engineering and Information Technology

    E-Print Network [OSTI]

    Hellebrand, Sybille

    SETS, March 2006Institute of Electrical Engineering and Information Technology Alg. & Tools" in Electrical Engineering and Computer Engineering (Master program or main study period for Diploma) · 30 min of Electrical Engineering and Information Technology Overview ATPG Fault-models & BIST for interconnections Test

  20. Richmond Electric Vehicle Initiative Electric Vehicle Readiness...

    Broader source: Energy.gov (indexed) [DOE]

    The REVi plan addresses the electric vehicle market in Richmond and then addresses a regional plan, policies, and analysis of the the communities readiness. richmondevinitiative....

  1. Study of Internet autonomous system interconnectivity from BGP routing tables

    E-Print Network [OSTI]

    Catalunya, Universitat Politčcnica de

    Study of Internet autonomous system interconnectivity from BGP routing tables Jose M. Barcelo ISPs (Internet Service Providers) and to interconnect enterprises to ISPs. ISPs usually are providers University of Baja California (UABC), Mexico. He is a PhD student at UPC, Spain, with a grant of the Mexican

  2. Virtual TCP Offload: Optimizing Ethernet Overlay Performance on Advanced Interconnects

    E-Print Network [OSTI]

    Dinda, Peter A.

    Virtual TCP Offload: Optimizing Ethernet Overlay Performance on Advanced Interconnects Zheng Cui Patrick G. Bridges John R. Lange Peter A. Dinda Department of CS University of New Mexico Albuquerque, NM. Their performance suffers on advanced interconnects such as Infiniband, however, be- cause of differences between

  3. Flocking with Obstacle Avoidance in Switching Networks of Interconnected Vehicles

    E-Print Network [OSTI]

    Tanner, Herbert G.

    Flocking with Obstacle Avoidance in Switching Networks of Interconnected Vehicles Herbert G. Tanner Mechanical Engineering Department University of New Mexico Abstract--The paper introduces a set of nonsmooth- tivity requirements on the interconnection network can be relaxed due to the common objective. I

  4. Simultaneous Interconnection and Damping Assignment PassivityBased Control: Two

    E-Print Network [OSTI]

    Batlle, Carles

    Simultaneous Interconnection and Damping Assignment Passivity­Based Control: Two Practical Examples.doria@upc.edu 2 DEPFI­UNAM, Apartado Postal 70-256, 04510 M´exico D.F., MEXICO, gerardoe@servidor.unam.mx 3 Jd : Rn × R Rn×n , Hd : Rn R, satisfying the skew­symmetry condition for the interconnection matrix

  5. Decentralized symbolic control of interconnected systems with application to

    E-Print Network [OSTI]

    Johansson, Karl Henrik

    Decentralized symbolic control of interconnected systems with application to vehicle platooning A interconnection of continuous nonlinear systems and we address the decentralized design of local controllers funding from the European Union Seventh Framework Programme [FP7/2007-2013] under grant agreement n

  6. Generalized Lyapunov Function for Stability Analysis of Interconnected Power Systems

    E-Print Network [OSTI]

    Pota, Himanshu Roy

    Generalized Lyapunov Function for Stability Analysis of Interconnected Power Systems M. A. Mahmud for formulating generalized Lyapunov function for the stability analysis of interconnected power systems. Lyapunov function is formulated based on the total energy of power system where the system is considered as a single

  7. Updating Small Generator Interconnection Procedures for New Market Conditions

    SciTech Connect (OSTI)

    Coddington, M.; Fox, K.; Stanfield, S.; Varnado, L.; Culley, T.; Sheehan, M.

    2012-12-01T23:59:59.000Z

    Federal and state regulators are faced with the challenge of keeping interconnection procedures updated against a backdrop of evolving technology, new codes and standards, and considerably transformed market conditions. This report is intended to educate policymakers and stakeholders on beneficial reforms that will keep interconnection processes efficient and cost-effective while maintaining a safe and reliable power system.

  8. Evaluation of a Surface Treatment on the Performance of Stainless Steels for SOFC Interconnect Applications

    SciTech Connect (OSTI)

    Alman, D.E.; Holcomb, Adler, T.A.; G.R.; Wilson, R.D.; Jablonski, P.D.

    2007-04-01T23:59:59.000Z

    Pack cementation-like Cerium based surface treatments have been found to be effective in enhancing the oxidation resistance of ferritic steels (Crofer 22APU) for solid oxide fuel cell (SOFC) applications. The application of either a CeN- or CeO2 based surface treatment results in a decrease in weight gain by a factor of three after 4000 hours exposure to air+3%H2O at 800oC. Similar oxide scales formed on treated and untreated surfaces, with a continuous Cr-Mn outer oxide layer and a continuous inner Cr2O3 layer formed on the surface. However, the thickness of the scales, and the amount of internal oxidation were significantly reduced with the treatment, leading to the decrease in oxidation rate. This presentation will detail the influence of the treatment on the electrical properties of the interconnect. Half-cell experiments (LSM cathode sandwiched between two steel interconnects) and full SOFC button cell experiments were run with treated and untreated interconnects. Preliminary results indicate the Ce treatment can improve SOFC performance.

  9. Reactive power interconnection requirements for PV and wind plants : recommendations to NERC.

    SciTech Connect (OSTI)

    McDowell, Jason (General Electric, Schenectady, NY); Walling, Reigh (General Electric, Schenectady, NY); Peter, William (SunPower, Richmond, CA); Von Engeln, Edi (NV Energy, Reno, NV); Seymour, Eric (AEI, Fort Collins, CO); Nelson, Robert (Siemens Wind Turbines, Orlando, FL); Casey, Leo (Satcon, Boston, MA); Ellis, Abraham; Barker, Chris. (SunPower, Richmond, CA)

    2012-02-01T23:59:59.000Z

    Voltage on the North American bulk system is normally regulated by synchronous generators, which typically are provided with voltage schedules by transmission system operators. In the past, variable generation plants were considered very small relative to conventional generating units, and were characteristically either induction generator (wind) or line-commutated inverters (photovoltaic) that have no inherent voltage regulation capability. However, the growing level of penetration of non-traditional renewable generation - especially wind and solar - has led to the need for renewable generation to contribute more significantly to power system voltage control and reactive power capacity. Modern wind-turbine generators, and increasingly PV inverters as well, have considerable dynamic reactive power capability, which can be further enhanced with other reactive support equipment at the plant level to meet interconnection requirements. This report contains a set of recommendations to the North-America Electricity Reliability Corporation (NERC) as part of Task 1-3 (interconnection requirements) of the Integration of Variable Generation Task Force (IVGTF) work plan. The report discusses reactive capability of different generator technologies, reviews existing reactive power standards, and provides specific recommendations to improve existing interconnection standards.

  10. Recovery Act Interconnection Transmission Planning | Department...

    Broader source: Energy.gov (indexed) [DOE]

    clean energy goals, including the development, integration, and delivery of new renewable and other low-carbon resources in the electricity sector, and the use of these...

  11. , Analysis of U.S. Net Metering and Interconnection Policy

    SciTech Connect (OSTI)

    Haynes, Rusty; Cook, Chris

    2006-07-01T23:59:59.000Z

    Historically, the absence of interconnection standards has been one of the primary barriers to the deployment of distributed generation (DG) in the United States. Although significant progress in the development of interconnection standards was achieved at both the federal and state levels in 2005, interconnection policy and net-metering policy continue to confound regulators, lawmakers, DG businesses, clean-energy advocates and consumers. For this reason it is critical to keep track of developments related to these issues. The North Carolina Solar Center (NCSC) is home to two Interstate Renewable Energy Council (IREC) projects -- the National Interconnection Project and the Database of State Incentives for Renewable Energy (DSIRE). This paper will present the major federal and state level policy developments in interconnection and net metering in 2005 and early 2006. It will also present conclusions based an analysis of data collected by these two projects.

  12. Method and closing pores in a thermally sprayed doped lanthanum chromite interconnection layer

    DOE Patents [OSTI]

    Singh, P.; Ruka, R.J.

    1995-02-14T23:59:59.000Z

    A dense, substantially gas-tight electrically conductive interconnection layer is formed on an air electrode structure of an electrochemical cell by (A) providing an air electrode surface; (B) forming on a selected portion of the electrode surface, a layer of doped LaCrO{sub 3} particles doped with an element or elements selected from Ca, Sr, Ba, Mg, Co, Ni, Al and mixtures thereof by thermal spraying doped LaCrO{sub 3} particles, either by plasma arc spraying or flame spraying; (C) depositing a mixture of CaO and Cr{sub 2}O{sub 3} on the surface of the thermally sprayed layer; and (D) heating the doped LaCrO{sub 3} layer coated with CaO and Cr{sub 2}O{sub 3} surface deposit at from about 1,000 C to 1,200 C to substantially close the pores, at least at a surface, of the thermally sprayed doped LaCrO{sub 3} layer. The result is a dense, substantially gas-tight, highly doped, electrically conductive interconnection material bonded to the electrode surface. A solid electrolyte layer can be applied to the nonselected portion of the air electrode. A fuel electrode can be applied to the solid electrolyte, to form an electrochemical cell, for example for generation of electrical power. 5 figs.

  13. Method and closing pores in a thermally sprayed doped lanthanum chromite interconnection layer

    DOE Patents [OSTI]

    Singh, Prabhakar (Export, PA); Ruka, Roswell J. (Pittsburgh, PA)

    1995-01-01T23:59:59.000Z

    A dense, substantially gas-tight electrically conductive interconnection layer is formed on an air electrode structure of an electrochemical cell by (A) providing an air electrode surface; (B) forming on a selected portion of the electrode surface, a layer of doped LaCrO.sub.3 particles doped with an element or elements selected from Ca, Sr, Ba, Mg, Co, Ni, Al and mixtures thereof by thermal spraying doped LaCrO.sub.3 particles, either by plasma arc spraying or flame spraying; (C) depositing a mixture of CaO and Cr.sub.2 O.sub.3 on the surface of the thermally sprayed layer; and (D) heating the doped LaCrO.sub.3 layer coated with CaO and Cr.sub.2 O.sub.3 surface deposit at from about 1000.degree. C. to 1200.degree. C. to substantially close the pores, at least at a surface, of the thermally sprayed doped LaCrO.sub.3 layer. The result is a dense, substantially gas-tight, highly doped, electrically conductive interconnection material bonded to the electrode surface. A solid electrolyte layer can be applied to the nonselected portion of the air electrode. A fuel electrode can be applied to the solid electrolyte, to form an electrochemical cell, for example for generation of electrical power.

  14. In situ study on low-k interconnect time-dependent-dielectric-breakdown mechanisms

    SciTech Connect (OSTI)

    Boon Yeap, Kong, E-mail: KongBoon.Yeap@globalfoundries.com [GLOBALFOUNDRIES, Fab8, 400 Stonebreak Rd. Extension, Malta, New York 12020 (United States); Fraunhofer Institute for Ceramic Technologies and Systems, Maria-Reiche-Str. 2, D-01109 Dresden (Germany); Gall, Martin; Liao, Zhongquan; Sander, Christoph; Muehle, Uwe; Zschech, Ehrenfried [Fraunhofer Institute for Ceramic Technologies and Systems, Maria-Reiche-Str. 2, D-01109 Dresden (Germany); Justison, Patrick [GLOBALFOUNDRIES, Fab8, 400 Stonebreak Rd. Extension, Malta, New York 12020 (United States); Aubel, Oliver; Hauschildt, Meike; Beyer, Armand; Vogel, Norman [GLOBALFOUNDRIES Dresden Module One LLC and Co. KG, Wilschdorfer Landstr. 101, D-01109 Dresden (Germany)

    2014-03-28T23:59:59.000Z

    An in situ transmission-electron-microscopy methodology is developed to observe time-dependent dielectric breakdown (TDDB) in an advanced Cu/ultra-low-k interconnect stack. A test structure, namely a “tip-to-tip” structure, was designed to localize the TDDB degradation in small dielectrics regions. A constant voltage is applied at 25?°C to the “tip-to-tip” structure, while structural changes are observed at nanoscale. Cu nanoparticle formation, agglomeration, and migration processes are observed after dielectric breakdown. The Cu nanoparticles are positively charged, since they move in opposite direction to the electron flow. Measurements of ionic current, using the Triangular-Voltage-Stress method, suggest that Cu migration is not possible before dielectric breakdown, unless the Cu/ultra-low-k interconnect stacks are heated to 200?°C and above.

  15. Assessment of Industrial Load for Demand Response across Western Interconnect

    SciTech Connect (OSTI)

    Alkadi, Nasr E [ORNL; Starke, Michael R [ORNL; Ma, Ookie [United States Department of Energy (DOE), Office of Efficiency and Renewable Energy (EERE)

    2013-11-01T23:59:59.000Z

    Demand response (DR) has the ability to both increase power grid reliability and potentially reduce operating system costs. Understanding the role of demand response in grid modeling has been difficult due to complex nature of the load characteristics compared to the modeled generation and the variation in load types. This is particularly true of industrial loads, where hundreds of different industries exist with varying availability for demand response. We present a framework considering industrial loads for the development of availability profiles that can provide more regional understanding and can be inserted into analysis software for further study. The developed framework utilizes a number of different informational resources, algorithms, and real-world measurements to perform a bottom-up approach in the development of a new database with representation of the potential demand response resource in the industrial sector across the U.S. This tool houses statistical values of energy and demand response (DR) potential by industrial plant and geospatially locates the information for aggregation for different territories without proprietary information. This report will discuss this framework and the analyzed quantities of demand response for Western Interconnect (WI) in support of evaluation of the cost production modeling with power grid modeling efforts of demand response.

  16. Electricity Monthly Update

    Gasoline and Diesel Fuel Update (EIA)

    a whole. Regional Wholesale Markets The fourth section presents data on the market making systems in the electric power sector: wholesale markets. It is not possible to show...

  17. Learn More About Interconnections | Department of Energy

    Office of Environmental Management (EM)

    Central Canada Eastward to the Atlantic coast (excluding Qubec), South to Florida and West to the foot of the Rockies (excluding most of Texas). All of the electric utilities...

  18. Western Baldwin County, AL Grid Interconnection Project

    SciTech Connect (OSTI)

    Thomas DeBell

    2011-09-30T23:59:59.000Z

    The Objective of this Project was to provide an additional supply of electricity to the affected portions of Baldwin County, AL through the purchase, installation, and operation of certain substation equipment.

  19. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    1. 2012 Summary Statistics (Connecticut) Item Value U.S. Rank NERC Region(s) NPCC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 9,060 35 Electric Utilities 152 46...

  20. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    1. 2012 Summary statistics (Vermont) Item Value U.S. Rank NERC Region(s) NPCC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 1,235 50 Electric Utilities 329 45...

  1. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    2012 Summary statistics (Virginia) Item Value U.S. Rank NERC Region(s) RFCSERC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 24,849 16 Electric Utilities 20,626...

  2. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    2012 Summary statistics (South Carolina) Item Value U.S. Rank NERC Region(s) SERC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 23,083 18 Electric Utilities 21,280...

  3. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Summary Statistics (Illinois) Item Value U.S. Rank NERC Region(s) MRORFCSERC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 45,146 5 Electric Utilities 5,274 34...

  4. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    1. 2012 Summary statistics (New Jersey) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 18,924 22 Electric Utilities 517 43...

  5. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    2012 Summary statistics (New Hampshire) Item Value U.S. Rank NERC Region(s) NPCC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 4,323 44 Electric Utilities 1,121 41...

  6. Fabrication and Characterization of Through-Substrate Interconnects

    E-Print Network [OSTI]

    del Alamo, Jesus A.

    We developed a through-substrate copper-damascene interconnect technology in silicon with minimal impedance. Via impedance was extracted using parameter measurements at 50 GHz that were matched to simple circuit models. ...

  7. Modeling Message Blocking and Deadlock in Interconnection Networks

    E-Print Network [OSTI]

    Pinkston, Timothy M.

    Modeling Message Blocking and Deadlock in Interconnection Networks Sugath Warnakulasuriya. This model allows various types of message blocking to be represented precisely, including deadlock. Our model of deadlock distinguishes between messages involved in deadlock and those simply dependent

  8. Energy scalability of on-chip interconnection networks

    E-Print Network [OSTI]

    Konstantakopoulos, Theodoros K., 1977-

    2007-01-01T23:59:59.000Z

    On-chip interconnection networks (OCN) such as point-to-point networks and buses form the communication backbone in multiprocessor systems-on-a-chip, multicore processors, and tiled processors. OCNs consume significant ...

  9. Advanced Unit Commitment Strategies in the United States Eastern Interconnection

    SciTech Connect (OSTI)

    Meibom, P.; Larsen, H. V.; Barth, R.; Brand, H.; Tuohy, A.; Ela, E.

    2011-08-01T23:59:59.000Z

    This project sought to evaluate the impacts of high wind penetrations on the U.S. Eastern Interconnection and analyze how different unit commitment strategies may affect these impacts.

  10. Interconnecting PV on New York City's Secondary Network Distribution System

    SciTech Connect (OSTI)

    Anderson, K.; Coddington, M.; Burman, K.; Hayter, S.; Kroposki, B.; Watson, A.

    2009-12-01T23:59:59.000Z

    This study describes technical assistance provided by NREL to help New York City and Con Edison improve the interconnection of distributed PV systems on a secondary network distribution system.

  11. Low-Swing Signaling on Monolithically Integrated Global Graphene Interconnects

    E-Print Network [OSTI]

    Lee, Kyeong-Jae

    In this paper, we characterize the performance of monolithically integrated graphene interconnects on a prototype 0.35-?m CMOS chip. The test chip implements an array of transmitter/receivers to analyze the end-to-end data ...

  12. InterConnections A Report on Interdisciplinary Computing at the

    E-Print Network [OSTI]

    Gruner, Daniel S.

    InterConnections A Report on Interdisciplinary Computing at the University of Maryland Institute- gual corpora of parallel texts. In addition to UMIACS, the team includes researchers from New Mexico

  13. Design and analysis of high performance multistage interconnection networks

    E-Print Network [OSTI]

    Bhogavilli, Suresh K

    1993-01-01T23:59:59.000Z

    Small switching elements are the key components of multistage interconnection networks (MINS) used in multiprocessors and in high speed switching fabrics for broad-band communication systems. The structure of their internal buffers, efficient...

  14. Evaluation of phase change materials for reconfigurable interconnects

    E-Print Network [OSTI]

    Khoo, Chee Ying

    2010-01-01T23:59:59.000Z

    The possible use of programmable integrated circuit interconnect vias using an indirectly heated phase change material is evaluated. Process development and materials investigations are examined. Devices capable of multiple ...

  15. Interconnecting PV on NYC's Secondary Network Distribution System

    Broader source: Energy.gov [DOE]

    To assess ways to improve the interconnection process, NREL conducted a four-part study with support from DOE. The NREL team then compiled the final reports from each study into this report.

  16. Photovoltaic Systems Interconnected onto Secondary Network Distribution Systems – Success Stories

    Broader source: Energy.gov [DOE]

    This report examines six case studies of photovoltaic (PV) systems integrated into secondary network systems. The six PV systems were chosen for evaluation because they are interconnected to secondary network systems located in four major Solar America Cities.

  17. An optical data receiver for integrated photonic interconnects

    E-Print Network [OSTI]

    Georgas, Michael S. (Michael Stephen)

    2009-01-01T23:59:59.000Z

    The throughput bounds of traditional interconnect networks in microprocessors are being pushed to their limits. In past single-core processors, the number of long global wires constituted only a small fraction of the total. ...

  18. The hybrid ensemble smoother (HEnS) & noncartesian computational interconnects

    E-Print Network [OSTI]

    Cessna, Joseph B.

    2010-01-01T23:59:59.000Z

    Figure 3.5: A four-node tile can be extracted from thefolded 1D interconnect, a tile may be designed that contains3.10: The three fundamental tiles, denoted E, F , and G,

  19. Solar Energy to Benefit from New FERC Interconnection Procedures...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    from New FERC Interconnection Procedures October 30, 2014 - 5:15pm Addthis As a major win for solar and testament to the impact of DOE SunShot funded research at the national...

  20. Upgrade of the LHC magnet interconnections thermal shielding

    SciTech Connect (OSTI)

    Musso, Andrea; Barlow, Graeme; Bastard, Alain; Charrondiere, Maryline; Deferne, Guy; Dib, Gaëlle; Duret, Max; Guinchard, Michael; Prin, Hervé; Craen, Arnaud Vande; Villiger, Gilles [CERN European Organization for Nuclear Research, Meyrin 1211, Geneva 23, CH (Switzerland); Chrul, Anna [The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, ul.Radzikowskiego 152, 31-324 Krakow (Poland); Damianoglou, Dimitrios [NTUA National Technical University of Athens, Heeron Polytechniou 9, 15780 Zografou (Greece); Strychalski, Micha? [Wroclaw University of Technology, Faculty of Mechanical and Power Engineering, Wyb. Wyspianskiego 27, Wroclaw, 50-370 (Poland); Wright, Loren [Lancaster University, Bailrigg, Lancaster, LA1 4YW (United Kingdom)

    2014-01-29T23:59:59.000Z

    The about 1700 interconnections (ICs) between the Large Hadron Collider (LHC) superconducting magnets include thermal shielding at 50-75 K, providing continuity to the thermal shielding of the magnet cryostats to reduce the overall radiation heat loads to the 1.9 K helium bath of the magnets. The IC shield, made of aluminum, is conduction-cooled via a welded bridge to the thermal shield of the adjacent magnets which is actively cooled. TIG welding of these bridges made in the LHC tunnel at installation of the magnets induced a considerable risk of fire hazard due to the proximity of the multi-layer insulation of the magnet shields. A fire incident occurred in one of the machine sectors during machine installation, but fortunately with limited consequences thanks to prompt intervention of the operators. LHC is now undergoing a 2 years technical stop during which all magnet's ICs will have to be opened to consolidate the magnet electrical connections. The IC thermal shields will therefore have to be removed and re-installed after the work is completed. In order to eliminate the risk of fire hazard when re-welding, it has been decided to review the design of the IC shields, by replacing the welded bridges with a mechanical clamping which also preserves its thermal function. An additional advantage of this new solution is the ease in dismantling for maintenance, and eliminating weld-grinding operations at removal needing radioprotection measures because of material activation after long-term operation of the LHC. This paper describes the new design of the IC shields and in particular the theoretical and experimental validation of its thermal performance. Furthermore a status report of the on-going upgrade work in the LHC is given.

  1. On the Optimality and Interconnection of Valiant Load-Balancing Networks

    E-Print Network [OSTI]

    Chuang, John C.-I.

    - terconnection regime evolves over time, as networks negotiate interconnection agreements with one anotherOn the Optimality and Interconnection of Valiant Load-Balancing Networks Moshe Babaioff and John to enable interconnection of multiple VLB networks, and study interconnection via bilateral peering

  2. Developing Generic Dynamic Models for the 2030 Eastern Interconnection Grid

    SciTech Connect (OSTI)

    Kou, Gefei [ORNL; Hadley, Stanton W [ORNL; Markham, Penn N [ORNL; Liu, Yilu [ORNL

    2013-12-01T23:59:59.000Z

    The Eastern Interconnection Planning Collaborative (EIPC) has built three major power flow cases for the 2030 Eastern Interconnection (EI) based on various levels of energy/environmental policy conditions, technology advances, and load growth. Using the power flow cases, this report documents the process of developing the generic 2030 dynamic models using typical dynamic parameters. The constructed model was validated indirectly using the synchronized phasor measurements by removing the wind generation temporarily.

  3. Design of wide-area electric transmission networks under uncertainty : methods for dimensionality reduction

    E-Print Network [OSTI]

    Donohoo-Vallett, Pearl Elizabeth

    2014-01-01T23:59:59.000Z

    The growth of location-constrained renewable generators and the integration of electricity markets in the United States and Europe are forcing transmission planners to consider the design of interconnection-wide systems. ...

  4. Geometric effects modelling for the PJM interconnection system. Part 1; Earth surface potentials computation

    SciTech Connect (OSTI)

    Towle, J.N. (Diversified EM, Seattle, WA (US)); Prabhakara, F.S. (Power Technologies, Inc., Schenectady, NY (US)); Ponder, J.Z. (PJM Interconnection, Norristown, PA (US))

    1992-07-01T23:59:59.000Z

    This paper describes an ionospheric source current model and development of an earth resistivity model used to calculate geomagnetic induced currents (GIC) on the Pennsylvania-New Jersey-Maryland Interconnection (PJM). Ionospheric current is modelled as a gaussian distributed current sheet above the earth. Geological details are included by dividing the PJM service area into 11 different earth resistivity regions. The resulting earth surface potential (ESP) at each power system substation is then calculated. A companion paper describes how this ESP is applied to the power system model to calculate the geomagnetic induced current in the power system equipment and facilities.

  5. Timing-Driven Interconnect Synthesis , Gabriel Robins

    E-Print Network [OSTI]

    Robins, Gabriel

    -driven routing, and details key historical research devel- opments that helped usher in the era of high grants CCR-9988331, CCF-0429737, and CNS-0716635. Department of Electrical and Computer Engineering [34] for distributed RC trees [72, 89, 102] motivated cost-radius tradeoffs that depended

  6. Tariff-based analysis of commercial building electricity prices

    E-Print Network [OSTI]

    Coughlin, Katie M.; Bolduc, Chris A.; Rosenquist, Greg J.; Van Buskirk, Robert D.; McMahon, James E.

    2008-01-01T23:59:59.000Z

    4 Calculation of Electricity Prices 4.1 Averageaverage seasonal and annual electricity prices by region inbased annual average electricity price vs. annual energy

  7. The self-consistent parallel electric field due to electrostatic ion-cyclotron turbulence in downward auroral-current regions of the Earth's magnetosphere. IV

    SciTech Connect (OSTI)

    Jasperse, John R.; Basu, Bamandas [Air Force Research Laboratory, Space Vehicles Directorate, Hanscom AFB, Massachusetts 01731 (United States); Lund, Eric J. [Space Science Center, University of New Hampshire, Durham, New Hampshire 03824 (United States); Grossbard, Neil [Institute for Scientific Research, Boston College, Chestnut Hill, Massachusetts 02467 (United States)

    2010-06-15T23:59:59.000Z

    The physical processes that determine the self-consistent electric field (E{sub ||}) parallel to the magnetic field have been an unresolved problem in magnetospheric physics for over 40 years. Recently, a new multimoment fluid theory was developed for inhomogeneous, nonuniformly magnetized plasma in the guiding-center and gyrotropic approximation that includes the effect of electrostatic, turbulent, wave-particle interactions (see Jasperse et al. [Phys. Plasmas 13, 072903 (2006); ibid.13, 112902 (2006)]). In the present paper and its companion paper [Jasperse et al., Phys. Plasmas 17, 062903 (2010)], which are intended as sequels to the earlier work, a fundamental model for downward, magnetic field-aligned (Birkeland) currents for quasisteady conditions is presented. The model includes the production of electrostatic ion-cyclotron turbulence in the long-range potential region by an electron, bump-on-tail-driven ion-cyclotron instability. Anomalous momentum transfer (anomalous resistivity) by itself is found to produce a very small contribution to E{sub ||}; however, the presence of electrostatic, ion-cyclotron turbulence has a very large effect on the altitude dependence of the entire quasisteady solution. Anomalous energy transfer (anomalous heating and cooling) modifies the density, drift, and temperature altitude profiles and hence the generalized parallel-pressure gradients and mirror forces in the electron and ion momentum-balance equations. As a result, |E{sub ||}| is enhanced by nearly a factor of 40 compared to its value when turbulence is absent. The space-averaged potential increase associated with the strong double layer at the bottom of the downward-current sheet is estimated using the FAST satellite data and the multimoment fluid theory.

  8. Net Metering and Interconnection Procedures-- Incorporating Best Practices

    SciTech Connect (OSTI)

    Jason Keyes, Kevin Fox, Joseph Wiedman, Staff at North Carolina Solar Center

    2009-04-01T23:59:59.000Z

    State utility commissions and utilities themselves are actively developing and revising their procedures for the interconnection and net metering of distributed generation. However, the procedures most often used by regulators and utilities as models have not been updated in the past three years, in which time most of the distributed solar facilities in the United States have been installed. In that period, the Interstate Renewable Energy Council (IREC) has been a participant in more than thirty state utility commission rulemakings regarding interconnection and net metering of distributed generation. With the knowledge gained from this experience, IREC has updated its model procedures to incorporate current best practices. This paper presents the most significant changes made to IREC���¢��������s model interconnection and net metering procedures.

  9. Fan-In Communications On A Cray Gemini Interconnect

    SciTech Connect (OSTI)

    Jones, Terry R [ORNL] [ORNL; Settlemyer, Bradley W [ORNL] [ORNL

    2014-01-01T23:59:59.000Z

    Using the Cray Gemini interconnect as our platform, we present a study of an important class of communication operations the fan-in communication pattern. By its nature, fan-in communications form hot spots that present significant challenges for any interconnect fabric and communication software stack. Yet despite the inherent challenges, these communication patterns are common in both applications (which often perform reductions and other collective operations that include fan-in communication such as barriers) and system software (where they assume an important role within parallel file systems and other components requiring high-bandwidth or low-latency I/O). Our study determines the effectiveness of differing clientserver fan-in strategies. We describe fan-in performance in terms of aggregate bandwidth in the presence of varying degrees of congestion, as well as several other key attributes. Comparison numbers are presented for the Cray Aries interconnect. Finally, we provide recommended communication strategies based on our findings.

  10. Producing thin film photovoltaic modules with high integrity interconnects and dual layer contacts

    DOE Patents [OSTI]

    Jansen, Kai W. (Lawrenceville, NJ); Maley, Nagi (Exton, PA)

    2001-01-01T23:59:59.000Z

    High performance photovoltaic modules are produced with improved interconnects by a special process. Advantageously, the photovoltaic modules have a dual layer back (rear) contact and a front contact with at least one layer. The front contact and the inner layer of the back contact can comprise a transparent conductive oxide. The outer layer of the back contact can comprise a metal or metal oxide. The front contact can also have a dielectric layer. In one form, the dual layer back contact comprises a zinc oxide inner layer and an aluminum outer layer and the front contact comprises a tin oxide inner layer and a silicon dioxide dielectric outer layer. One or more amorphous silicon-containing thin film semiconductors can be deposited between the front and back contacts. The contacts can be positioned between a substrate and an optional superstrate. During production, the transparent conductive oxide layer of the front contact is scribed by a laser, then the amorphous silicon-containing semiconductors and inner layer of the dual layer back contact are simultaneously scribed and trenched (drilled) by the laser and the trench is subsequently filled with the same metal as the outer layer of the dual layer back contact to provide a superb mechanical and electrical interconnect between the front contact and the outer layer of the dual layer back contact. The outer layer of the dual layer back contact can then be scribed by the laser. For enhanced environmental protection, the photovoltaic modules can be encapsulated.

  11. Producing thin film photovoltaic modules with high integrity interconnects and dual layer contacts

    DOE Patents [OSTI]

    Jansen, Kai W. (Lawrenceville, NJ); Maley, Nagi (Exton, PA)

    2000-01-01T23:59:59.000Z

    High performance photovoltaic modules are produced with improved interconnects by a special process. Advantageously, the photovoltaic modules have a dual layer back (rear) contact and a front contact with at least one layer. The front contact and the inner layer of the back contact can comprise a transparent conductive oxide. The outer layer of the back contact can comprise a metal or metal oxide. The front contact can also have a dielectric layer. In one form, the dual layer back contact comprises a zinc oxide inner layer and an aluminum outer layer and the front contact comprises a tin oxide inner layer and a silicon dioxide dielectric outer layer. One or more amorphous silicon-containing thin film semiconductors can be deposited between the front and back contacts. The contacts can be positioned between a substrate and an optional superstrate. During production, the transparent conductive oxide layer of the front contact is scribed by a laser, then the amorphous silicon-containing semiconductors and inner layer of the dual layer back contact are simultaneously scribed and trenched (drilled) by the laser and the trench is subsequently filled with the same metal as the outer layer of the dual layer back contact to provide a superb mechanical and electrical interconnect between the front contact and the outer layer of the dual layer back contact. The outer layer of the dual layer back contact can then be scribed by the laser. For enhanced environmental protection, the photovoltaic modules can be encapsulated.

  12. 1 Pricing Games among Interconnected Microgrids

    E-Print Network [OSTI]

    Gaurav S. Kasbekar; Saswati Sarkar

    Abstract—We consider a scenario with multiple independent microgrids close to each other in a region that are connected to each other and to the central grid (macrogrid). In each time slot, a given microgrid may produce more than, less than or as much power as it needs, and there is uncertainty on

  13. Fundamental Studies of the Durability of Materials for Interconnects in Solid Oxide Fuel Cells

    SciTech Connect (OSTI)

    Frederick S. Pettit; Gerald H. Meier

    2006-06-30T23:59:59.000Z

    Ferritic stainless steels are a leading candidate material for use as an SOFC interconnect, but have the problem of forming volatile chromia species that lead to cathode poisoning. This project has focused both on optimization of ferritic alloys for SOFC applications and evaluating the possibility of using alternative materials. The initial efforts involved studying the oxidation behavior of a variety of chromia-forming ferritic stainless steels in the temperature range 700-900 C in atmospheres relevant to solid oxide fuel cell operation. The alloys exhibited a wide variety of oxidation behavior based on composition. A method for reducing the vaporization is to add alloying elements that lead to the formation of a thermally grown oxide layer over the protective chromia. Several commercial steels form manganese chromate on the surface. This same approach, combined with observations of TiO{sub 2} overlayer formation on the chromia forming, Ni-based superalloy IN 738, has resulted in the development of a series of Fe-22 Cr-X Ti alloys (X=0-4 wt%). Oxidation testing has indicated that this approach results in significant reduction in chromia evaporation. Unfortunately, the Ti also results in accelerated chromia scale growth. Fundamental thermo-mechanical aspects of the durability of solid oxide fuel cell (SOFC) interconnect alloys have also been investigated. A key failure mechanism for interconnects is the spallation of the chromia scale that forms on the alloy, as it is exposed to fuel cell environments. Indentation testing methods to measure the critical energy release rate (Gc) associated with the spallation of chromia scale/alloy systems have been evaluated. This approach has been used to evaluate the thermomechanical stability of chromia films as a function of oxidation exposure. The oxidation of pure nickel in SOFC environments was evaluated using thermogravimetric analysis (TGA) to determine the NiO scaling kinetics and a four-point probe was used to measure the area-specific resistance (ASR) to estimate the electrical degradation of the interconnect. In addition to the baseline study of pure nickel, steps were taken to decrease the ASR through alloying and surface modifications. Finally, high conductivity composite systems, consisting of nickel and silver, were studied. These systems utilize high conductivity silver pathways through nickel while maintaining the mechanical stability that a nickel matrix provides.

  14. Spintronic switches for ultra low energy global interconnects

    SciTech Connect (OSTI)

    Sharad, Mrigank, E-mail: msharad@purdue.edu; Roy, Kaushik [School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907 (United States)

    2014-05-07T23:59:59.000Z

    We present ultra-low energy interconnect design using nano-scale spin-torque (ST) switches for global data-links. Emerging spin-torque phenomena can lead to ultra-low-voltage, high-speed current-mode magnetic-switches. ST-switches can simultaneously provide large trans-impedance gain by employing magnetic tunnel junctions, to convert current-mode signals into large-swing voltage levels. Such device-characteristics can be used in the design of energy-efficient current-mode global interconnects.

  15. Tubular solid oxide fuel cells with porous metal supports and ceramic interconnections

    DOE Patents [OSTI]

    Huang, Kevin (Export, PA); Ruka, Roswell J. (Pittsburgh, PA)

    2012-05-08T23:59:59.000Z

    An intermediate temperature solid oxide fuel cell structure capable of operating at from 600.degree. C. to 800.degree. C. having a very thin porous hollow elongated metallic support tube having a thickness from 0.10 mm to 1.0 mm, preferably 0.10 mm to 0.35 mm, a porosity of from 25 vol. % to 50 vol. % and a tensile strength from 700 GPa to 900 GPa, which metallic tube supports a reduced thickness air electrode having a thickness from 0.010 mm to 0.2 mm, a solid oxide electrolyte, a cermet fuel electrode, a ceramic interconnection and an electrically conductive cell to cell contact layer.

  16. Gas Technology Institute and Encorp Inc.: Innovative Interconnection and Control Systems

    SciTech Connect (OSTI)

    Not Available

    2003-01-01T23:59:59.000Z

    Summarizes the work of the Gas Technology Institute and Encorp Inc., under contract to DOEs Distribution and Interconnection R&D, to develop interconnection and control systems for distributed power.

  17. Gas Technology Institute and Encorp Inc.: Innovative Interconnection and Control Systems

    SciTech Connect (OSTI)

    Not Available

    2003-10-01T23:59:59.000Z

    Summarizes the work of the Gas Technology Institute and Encorp Inc., under contract to DOE's Distribution and Interconnection R&D, to develop interconnection and control systems for distributed power.

  18. Effects of aquifer interconnection resulting from underground coal gasification

    SciTech Connect (OSTI)

    Stone, R.

    1983-09-01T23:59:59.000Z

    Lawrence Livermore National Laboratory evaluated the effects of aquifer interconnection caused by the collapse of cavities formed in coal seams by two small underground coal gasification experiments in the Powder River Basin, Wyoming. Flow models and field measurements were used to show that the water from one or both of the upper aquifers enters the collapse, rubble and flows down to the lowest aquifer (the gasified coal seam) where it flows away from the collapse zones. The investigations showed that the hydraulic conductivity of the collapse rubble is less than that of the aquifers and provides only a moderately permeable interconnection between them, a marked reduction in hydraulic conductivity of the gasified coal seam near the collapse zones restricts the flow in the seam, away from them; changes in the hydraulic head and flow patterns caused by aquifer interconnection extend generally only 60-90 m away from the experiment sites, whereas flow in the uppermost aquifer at one of the sites may be influenced as far away as 122 m. At both sites, the aquifer interconnection allows water from the uppermost (sand) aquifer, which contains the poorest quality water of the 3 aquifers, to enter one or both of the underlying aquifers.

  19. attach interconnection technology: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    attach interconnection technology First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Processing and...

  20. A Holistic Approach to Designing Energy-Efficient Cluster Interconnects

    E-Print Network [OSTI]

    Kim, Eun Jung "EJ"

    , new data centers in the Seattle area are forecast to increase the city's power demands by 25 percentA Holistic Approach to Designing Energy-Efficient Cluster Interconnects Eun Jung Kim, Member, IEEE--Designing energy-efficient clusters has recently become an important concern to make these systems economically

  1. Techniques in the Control of Interconnected Plants Morten Hovd

    E-Print Network [OSTI]

    Skogestad, Sigurd

    Techniques in the Control of Interconnected Plants Morten Hovd Fantoft Prosess Teknostallen N-7030 in modern chemical plants, and the decreased volumes or removal of bu er tanks between processing steps. Thus, disturbances will spread more rapidly and widely throughout a modern chemical plant than in older

  2. Techniques in the Control of Interconnected Plants Morten Hovd \\Lambda

    E-Print Network [OSTI]

    Skogestad, Sigurd

    Techniques in the Control of Interconnected Plants Morten Hovd \\Lambda Fantoft Prosess Teknostallen. This is caused by tighter integration of heat and mass in modern chemical plants, and the decreased volumes (or throughout a modern chemical plant than in older plants. This puts greater demands on the control system

  3. Silicon Micro-Needles with Flexible Interconnections , Y. Hanein1

    E-Print Network [OSTI]

    Department of Zoology, University of Washington, Seattle WA 98195 Abstract - A flexible polyimide to carry elements such as amplifiers, battery or memory. The interconnecting scheme uses two polyimide base and the micro-electrodes, while the polyimide layers provide flexible insulation. The current

  4. Dynamic management of water transfer between two interconnected river basins

    E-Print Network [OSTI]

    Boyer, Edmond

    Dynamic management of water transfer between two interconnected river basins Francisco Cabo Katrin cause environmental damage in the donor basin. The recipient faces a trade-off between paying the price of the irrigated soil, or demand for water for highly productive activities like tourism), then the existence

  5. Integration of a waveguide self-electrooptic effect device and a vertically coupled interconnect waveguide

    DOE Patents [OSTI]

    Vawter, G. Allen (Corrales, NM)

    2008-02-26T23:59:59.000Z

    A self-electrooptic effect device ("SEED") is integrated with waveguide interconnects through the use of vertical directional couplers. Light initially propagating in the interconnect waveguide is vertically coupled to the active waveguide layer of the SEED and, if the SEED is in the transparent state, the light is coupled back to the interconnect waveguide.

  6. Wavelength-space permutation switch with coherent PDM QPSK transmission for supercomputer optical interconnects

    E-Print Network [OSTI]

    Vlachos, Kyriakos G.

    Several low-cost, low-latency, high throughput optical interconnect architectures have been proposed interconnects F. Karinou (1), I. Roudas (1), K. Vlachos (1), C. S. Petrou (1), . Vgenis (1), and B. R. Hemenway optical interconnect employing wavelength-space optical packet switching, polarization division

  7. A Design Space Exploration of Transmission-Line Links for On-Chip Interconnect

    E-Print Network [OSTI]

    Huang, Michael C.

    A Design Space Exploration of Transmission-Line Links for On-Chip Interconnect Aaron Carpenter-performance interconnect fabric that is energy-efficient. Well-engineered transmission line-based commu- nication systems and a much better energy profile than a conventional mesh interconnect. Keywords: Transmission Line, On

  8. LFTI: A New Performance Metric for Assessing Interconnect Designs for Extreme-Scale HPC Systems

    E-Print Network [OSTI]

    Pakin, Scott

    , New Mexico Email: {mlang,pakin}@lanl.gov Abstract--Traditionally, interconnect performance is eitherLFTI: A New Performance Metric for Assessing Interconnect Designs for Extreme-Scale HPC Systems Xin a good performance overview for extreme-scale interconnects. The topological pa- rameters

  9. Interconnecting Eyeballs to Content: A Shapley Value Perspective on ISP Peering and Settlement

    E-Print Network [OSTI]

    of these interconnections are often negotiated and maintained via bilateral agreements. Current differences of opinion-peering, bilateral agreements. I. INTRODUCTION The Internet consists of thousands of interconnected ISPs, with each Tier 1 ISPs would willingly all peer with one another, and other interconnection agreements could

  10. Interconnecting Eyeballs to Content: A Shapley Value Perspective on ISP Peering and Settlement

    E-Print Network [OSTI]

    , with each ISP interested in maximizing its own profits. Interconnection agreements, often negotiated Tier 1 ISPs would willingly all peer with one another, and other interconnection agreements couldInterconnecting Eyeballs to Content: A Shapley Value Perspective on ISP Peering and Settlement

  11. 650 IEEE ELECTRON DEVICE LETTERS, VOL. 27, NO. 8, AUGUST 2006 Fully Elastic Interconnects on Nanopatterned

    E-Print Network [OSTI]

    650 IEEE ELECTRON DEVICE LETTERS, VOL. 27, NO. 8, AUGUST 2006 Fully Elastic Interconnects interconnects are re- quired for electronic skin. To date, the resistance of such thin-film interconnects has by only 60%, which is in close agreement with purely geometric deformation. Index Terms

  12. High Performance Ceramic Interconnect Material for Solid Oxide Fuel Cells (SOFCs): Ca- and Transition Metal-doped Yttrium Chromite

    SciTech Connect (OSTI)

    Yoon, Kyung J.; Stevenson, Jeffry W.; Marina, Olga A.

    2011-10-15T23:59:59.000Z

    The effect of transition metal substitution on thermal and electrical properties of Ca-doped yttrium chromite was investigated in relation to use as a ceramic interconnect in high temperature solid oxide fuel cells (SOFCs). 10 at% Co, 4 at% Ni, and 1 at% Cu substitution on B-site of 20 at% Ca-doped yttrium chromite led to a close match of thermal expansion coefficient (TEC) with that of 8 mol% yttria-stabilized zirconia (YSZ), and a single phase Y0.8Ca0.2Cr0.85Co0.1Ni0.04Cu0.01O3 remained stable between 25 and 1100 degree C over a wide oxygen partial pressure range. Doping with Cu significantly facilitated densification of yttrium chromite. Ni dopant improved both electrical conductivity and dimensional stability in reducing environments, likely through diminishing the oxygen vacancy formation. Substitution with Co substantially enhanced electrical conductivity in oxidizing atmosphere, which was attributed to an increase in charge carrier density and hopping mobility. Electrical conductivity of Y0.8Ca0.2Cr0.85Co0.1Ni0.04Cu0.01O3 at 900 degree C is 57 S/cm in air and 11 S/cm in fuel (pO2=5×10^-17 atm) environments. Chemical compatibility of doped yttrium chromite with other cell components was verified at the processing temperatures. Based on the chemical and dimensional stability, sinterability, and thermal and electrical properties, Y0.8Ca0.2Cr0.85Co0.1Ni0.04Cu0.01O3 is suggested as a promising SOFC ceramic interconnect to potentially overcome technical limitations of conventional acceptor-doped lanthanum chromites.

  13. Integrating Wind and Solar Energy in the U.S. Bulk Power System: Lessons from Regional Integration Studies

    SciTech Connect (OSTI)

    Bird, L.; Lew, D.

    2012-09-01T23:59:59.000Z

    Two recent studies sponsored by the U.S. Department of Energy (DOE) and the National Renewable Energy Laboratory (NREL) have examined the impacts of integrating high penetrations of wind and solar energy on the Eastern and Western electric grids. The Eastern Wind Integration and Transmission Study (EWITS), initiated in 2007, examined the impact on power system operations of reaching 20% to 30% wind energy penetration in the Eastern Interconnection. The Western Wind and Solar Integration Study (WWSIS) examined the operational implications of adding up to 35% wind and solar energy penetration to the Western Interconnect. Both studies examined the costs of integrating variable renewable energy generation into the grid and transmission and operational changes that might be necessary to address higher penetrations of wind or solar generation. This paper identifies key insights from these regional studies for integrating high penetrations of renewables in the U.S. electric grid. The studies share a number of key findings, although in some instances the results vary due to differences in grid operations and markets, the geographic location of the renewables, and the need for transmission.

  14. Electricity Grid: Impacts of Plug-In Electric Vehicle Charging

    E-Print Network [OSTI]

    Yang, Christopher; McCarthy, Ryan

    2009-01-01T23:59:59.000Z

    in the context of regional grid structure and operations,and Regional U.S. Power Grids. Part 1: Technical Analysis;ccyang@ucdavis.edu. Electricity Grid Impacts of Plug-In

  15. Abstract--South America has emerged in recent years as one of the most dynamic regions for natural gas and electricity

    E-Print Network [OSTI]

    Catholic University of Chile (Universidad Católica de Chile)

    for natural gas and electricity development. The continent boasts natural gas reserves and high- growth energy countries to promote the use of natural gas, especially for power generation. On the other hand, challenges-country natural gas agreements, competition between natural gas and other resources for power generation

  16. Spontaneous synchronization driven by energy transport in interconnected networks

    E-Print Network [OSTI]

    Vincenzo Nicosia; Per Sebastian Skardal; Vito Latora; Alex Arenas

    2015-02-26T23:59:59.000Z

    Understanding dynamical processes on networks is an important area of research in complex systems, with far reaching implications and applications in many real-world cases. Here we introduce and study a model of intertwined dynamics on interconnected networks, inspired by the human brain, which consists of bidirectionally coupled synchronization and energy transport processes. Remarkably, the proposed model allows the emergence of spontaneous switch-like synchronization transitions driven by the energy transport dynamics, which qualitatively mirror the transitions observed in human brain dynamics between resting-state and cognitive activity. We provide a steady-state analytical explanation for the observed behavior and show that the switch-like transition is robust over a wide range of model parameters and network topologies. Finally, we suggest that the complexity inherent in other interconnected dynamical processes might be responsible for various other emergent behaviors observed in natural systems.

  17. Reliability assessment of autonomous power systems incorporating HVDC interconnection links

    SciTech Connect (OSTI)

    Dialynas, E.N.; Koskolos, N.C. [National Technical Univ., Athens (Greece). Dept. of Electrical and Computer Engineering] [National Technical Univ., Athens (Greece). Dept. of Electrical and Computer Engineering; Agoris, D. [Public Power Corp., Athens (Greece)] [Public Power Corp., Athens (Greece)

    1996-01-01T23:59:59.000Z

    The objective of this paper is to present an improved computational method for the overall reliability assessment of autonomous power systems that may or may not contain HVdc interconnection links. This is a hybrid method based on a Monte-Carlo simulation sequential approach which incorporates an analytical approach for the reliability modeling of the HVdc transmission links. The developed models and techniques have been implemented into a computer program that can be used to simulate the operational practices and characteristics of the overall system under study efficiently and realistically. A set of reliability indices are calculated for each load-point of interest and the entire system while a set of additional indices is calculated for quantifying the reliability performance of the interconnection links under the specified operating requirements. The analysis of a practical system is also included for a number of studies representing its various operating and design characteristics.

  18. Ultrafast Electrically Pumped VECSELs Volume 5, Number 4, August 2013

    E-Print Network [OSTI]

    Keller, Ursula

    ]. In order to allow access to low-cost applications such as optical clocking, chip-to-chip interconnects with 26 mW of average output power. Passively modelocking one of the fabricated EP-VECSELs with a quantum. To achieve this, electrical pumping is the first important step towards more compact and cost

  19. SOFC Interconnect and Compressive Seal Development at PNNL

    SciTech Connect (OSTI)

    Chou, Y S.; Yang, Z Gary; Singh, Prabhakar; Stevenson, Jeffry W.; Xia, Gordon

    2005-11-01T23:59:59.000Z

    The development of solid oxide fuel cell (SOFC) technology represents an opportunity to achieve significant improvements in energy conversion efficiency and reduction of undesirable emissions. However, many technical challenges still need to be overcome before the utilization of the advantages of SOFC can take place. These challenges include the need for improved interconnects and seals for planar SOFC stacks. In this paper, we briefly summarize recent progress at PNNL in these two research areas.

  20. Using CrAIN Multilayer Coatings to Improve Oxidation Resistance of Steel Interconnects for Solid Oxide Fuel Cell Stacks

    SciTech Connect (OSTI)

    Smith, Richard J.; Tripp, C.; Knospe, Anders; Ramana, C. V.; Gorokhovsky, Vladimir I.; Shutthanandan, V.; Gelles, David S.

    2004-06-01T23:59:59.000Z

    The requirements of low cost and high-tempurature corrosion resistance for bipolar interconnect plates in solid oxide fuel cell stacks has directed attention to the use of metal plates with oxidation resistant coatings. We have investigatedt he performance of steel plates with multilayer coatings consisting of CrN for electrical conductivity and CrAIN for oxidation resistance. The coatings were deposited usin large area filterd arc deposition technolgy, and subsequently annealed in air for up to 25 hours at 800 degrees celsius. The composition, structer and morphology of the coated plates were characterized using RBS, nuclear reaction analysis, AFM and TEM techniques. By altering the architecture of the layers within the coatings, the rate of oxidation was reduced by more than an order of magnitute. Electrical resistance was measured at room temperature.

  1. Grid Interconnection and Performance Testing Procedures for Vehicle-To-Grid (V2G) Power Electronics: Preprint

    SciTech Connect (OSTI)

    Kramer, W.; Chakraborty, S.; Kroposki, B.; Hoke, A.; Martin, G.; Markel, T.

    2012-03-01T23:59:59.000Z

    Bidirectional power electronics can add vehicle-to-grid (V2G) capability in a plug-in vehicle, which then allows the vehicle to operate as a distributed resource (DR). The uniqueness of the battery-based V2G power electronics requires a test procedure that will not only maintain IEEE interconnection standards, but can also evaluate the electrical performance of the vehicle working as a DR. The objective of this paper is to discuss a recently published NREL technical report that provides interim test procedures for V2G vehicles for their integration into the electrical distribution systems and for their performance in terms of continuous output power, efficiency, and losses. Additionally, some other test procedures are discussed that are applicable to a V2G vehicle that desires to provide power reserve functions. A few sample test results are provided based on testing of prototype V2G vehicles at NREL.

  2. Chip-Level Electromigration Reliability for Cu Interconnects

    SciTech Connect (OSTI)

    Gall, M.; Oh, C.; Grinshpon, A.; Zolotov, V.; Panda, R.; Demircan, E.; Mueller, J.; Justison, P.; Ramakrishna, K.; Thrasher, S.; Hernandez, R.; Herrick, M.; Fox, R.; Boeck, B.; Kawasaki, H. [Technology Solutions Organization, Freescale Semiconductor (United States); Haznedar, H.; Ku, P. [Sector Quality, Freescale Semiconductor (United States)

    2004-12-08T23:59:59.000Z

    Even after the successful introduction of Cu-based metallization, the electromigration (EM) failure risk has remained one of the most important reliability concerns for most advanced process technologies. Ever increasing operating current densities and the introduction of low-k materials in the backend process scheme are some of the issues that threaten reliable, long-term operation at elevated temperatures. The traditional method of verifying EM reliability only through current density limit checks is proving to be inadequate in general, or quite expensive at the best. A Statistical EM Budgeting (SEB) methodology has been proposed to assess more realistic chip-level EM reliability from the complex statistical distribution of currents in a chip. To be valuable, this approach requires accurate estimation of currents for all interconnect segments in a chip. However, no efficient technique to manage the complexity of such a task for very large chip designs is known. We present an efficient method to estimate currents exhaustively for all interconnects in a chip. The proposed method uses pre-characterization of cells and macros, and steps to identify and filter out symmetrically bi-directional interconnects. We illustrate the strength of the proposed approach using a high-performance microprocessor design for embedded applications as a case study.

  3. Sandia Energy - Federal Electric Regulatory Commission Revised...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Small Generator Interconnection Procedure and Small Generator Interconnection Agreement Home Renewable Energy Energy Grid Integration Partnership News Distribution Grid...

  4. Contents ISS and Lyapunov functions Input-to-state stability and interconnections Lyapunov functions Simplicial fixed point algor Lyapunov Functions for Interconnected Systems

    E-Print Network [OSTI]

    Hafstein, Sigurđur Freyr

    Contents ISS and Lyapunov functions Input-to-state stability and interconnections Lyapunov functions Simplicial fixed point algor Lyapunov Functions for Interconnected Systems Fabian Wirth Institute of Mathematics, University of W¨urzburg Workshop on Algorithms for Dynamical Systems and Lyapunov Functions

  5. Electric power monthly

    SciTech Connect (OSTI)

    NONE

    1995-08-01T23:59:59.000Z

    The Energy Information Administration (EIA) prepares the Electric Power Monthly (EPM) for a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. This publication provides monthly statistics for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions. The EIA publishes statistics in the EPM on net generation by energy source, consumption, stocks, quantity, quality, and cost of fossil fuels; and capability of new generating units by company and plant. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead.

  6. Electrical Characterization Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01T23:59:59.000Z

    This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Electrical Characterization Laboratory at the Energy Systems Integration Facility. Electrical Characterization Laboratory at NREL's Energy Systems Integration Facility (ESIF) focuses on the detailed electrical characterization of components and systems. This laboratory allows researchers to test the ability of equipment to withstand high voltage surges and high current faults, including equipment using standard and advanced fuels such as hydrogen. Equipment that interconnected to the electric power grid is required to meet specific surge withstand capabilities. This type of application tests the ability of electrical equipment to survive a lightning strike on the main grid. These are often specified in IEEE standards such as IEEE Std. 1547. In addition, this lab provides a space for testing new, unproven, or potentially hazardous equipment for robust safety assessment prior to use in other labs at ESIF. The Electric Characterization Laboratory is in a location where new, possibly sensitive or secret equipment can be evaluated behind closed doors.

  7. AVTA: 2010 Electric Vehicles International Neighborhood Electric...

    Energy Savers [EERE]

    10 Electric Vehicles International Neighborhood Electric Vehicle Testing Results AVTA: 2010 Electric Vehicles International Neighborhood Electric Vehicle Testing Results The...

  8. SURFACE-MODIFIED FERRITIC INTERCONNECT MATERIALS FOR SOLID OXIDE FUEL CELLS

    SciTech Connect (OSTI)

    Bruce R. Lanning; James Arps; Ronghua Wei; Goeff Dearnaley

    2004-03-15T23:59:59.000Z

    Interconnects are a critical element of an SOFC assembly and although much work has focused on chromium and chromium-iron alloys containing an oxide that is both oxidation resistant and electrically conductive, the thermal instability of typical native metal oxides allow interdiffusion of cations across the interconnect-electrode boundary that ultimately leads to degradation of SOFC performance. Phase I of the SECA Core Technology Program has been a one-year effort to investigate and evaluate the feasibility of: (1) Ion implanting an alumina-scale forming ferritic steel, such as FeCrAlY, to form an interconnect material with low resistance (< 0.1 {Omega}/cm{sup 2}) in oxidizing/reducing environments up to 800 C, and (2) Maintaining the above low resistance metric for an extended time (> 1000 hours at 800 C) in contact with an LSF cathode material. We confirmed, as part of our oxidation kinetics evaluation of FeCrAlY and 430 ferritic steel, the parabolic growth of a mixed chromia/alumina scale on FeCrAlY and a single chromia layer in the case of the 430 stainless steel; the outer contiguous layer of Al{sub 2}O{sub 3}, in the case of FeCrAlY, forming a stable, self-limiting, protective scale with no detectable cation interdiffusion between FeCrAlY and an LSF electrode even after 1000 hours at 800 C in air. To render the alumina scale conductive, we implanted either titanium or niobium ions into FeCrAlY scales to a fixed depth (0.12 {micro}m), varying only the thickness of the oxide. ASR for an un-doped FeCrAlY oxide scale (i.e., alumina) was more than an order of magnitude greater than the 430 control sample whereas, the ASR for the doped FeCrAlY oxide scale sample was comparable to the 430 control sample; hence, the resistance of a doped alumina scale on FeCrAlY was equal to the resistance of a chromia-scale forming alloy, such as 430 (chromia scales of which are typically < 0.1 {Omega}-cm). Along with the ASR measurements, AC impedance measurements were conducted to evaluate conduction mechanisms. From the AC impedance measurements, we observed that the addition of niobium resulted in at least a two order of magnitude reduction in resistance over the un-doped specimen and that the conduction in the doped alumina scale was pure electronic conduction, as opposed to mixed ionic-electronic conduction (dominated by intrinsic (ionic) defects) for the un-doped alumina scales. The DC resistance component was {approx}4 {Omega} although when this value is adjusted to account for the system resistance (i.e., leads, junctions, etc.), the ASR was determined to be < 0.1 {Omega}-cm; even after 1000 hours at 800 C in air. Our results have clearly shown that dopant additions increase the electronic conductivity of alumina forming scale alloys, such as FeCrAlY, transforming from a mixed ionic/electronic conduction mechanism. Just as importantly, the demonstrated stable formation of an alumina scale was shown to be an advantage over conventional pure chromia forming alloys as interconnect materials.

  9. Assessment of Solder Interconnect Integrity in Dismantled Electronic Components from N57 and B61 Tube-Type Radars

    SciTech Connect (OSTI)

    Rejent, J.A.; Vianco, P.T.; Woodrum, R.A.

    1999-07-01T23:59:59.000Z

    Aging analyses were performed on solder joints from two radar units: (1) a laboratory, N57 tube-type radar unit and (2) a field-returned, B61-0, tube-type radar unit. The cumulative temperature environments experienced by the units during aging were calculated from the intermetallic compound layer thickness and the mean Pb-rich phase particle size metrics for solder joints in the units, assuming an aging time of 35 years for both radars. Baseline aging metrics were obtained from a laboratory test vehicle assembled at AS/FM and T; the aging kinetics of both metrics were calculated from isothermal aging experiments. The N57 radar unit interconnect board solder joints exhibited very little aging. The eyelet solder joints did show cracking that most likely occurred at the time of assembly. The eyelet, SA1126 connector solder joints, showed some delamination between the Cu pad and underlying laminate. The B61 field-returned radar solder joints showed a nominal degree of aging. Cracking of the eyelet solder joints was observed. The Pb-rich phase particle measurements indicated additional aging of the interconnects as a result of residual stresses. Cracking of the terminal pole connector, pin-to-pin solder joint was observed; but it was not believed to jeopardize the electrical functionality of the interconnect. Extending the stockpile lifetime of the B61 tube-type radar by an additional 20 years would not be impacted by the reliability of the solder joints with respect to further growth of the intermetallic compound layer. Additional coarsening of the Pb-rich phase will increase the joints' sensitivity to thermomechanical fatigue.

  10. Production process for advanced space satellite system cables/interconnects.

    SciTech Connect (OSTI)

    Mendoza, Luis A.

    2007-12-01T23:59:59.000Z

    This production process was generated for the satellite system program cables/interconnects group, which in essences had no well defined production process. The driver for the development of a formalized process was based on the set backs, problem areas, challenges, and need improvements faced from within the program at Sandia National Laboratories. In addition, the formal production process was developed from the Master's program of Engineering Management for New Mexico Institute of Mining and Technology in Socorro New Mexico and submitted as a thesis to meet the institute's graduating requirements.

  11. DER Certification Laboratory Pilot, Accreditation Plan, and Interconnection Agreement Handbook

    SciTech Connect (OSTI)

    Key, T.; Sitzlar, H. E.; Ferraro, R.

    2003-11-01T23:59:59.000Z

    This report describes the first steps toward creating the organization, procedures, plans and tools for distributed energy resources (DER) equipment certification, test laboratory accreditation, and interconnection agreements. It covers the activities and accomplishments during the first period of a multiyear effort. It summarizes steps taken to outline a certification plan to assist in the future development of an interim plan for certification and accreditation activities. It also summarizes work toward a draft plan for certification, a beta Web site to support communications and materials, and preliminary draft certification criteria.

  12. Evaluation of a Functional Interconnect System for SOFC's

    SciTech Connect (OSTI)

    Matthew Bender; James Rakowski

    2010-12-31T23:59:59.000Z

    The overall objective of this project was to validate the concept and application of a functional interconnect, based on a ferritic stainless steel, for a solid oxide fuel cell through manufacturing trials, laboratory testing, and field experience. The materials of construction and their surfaces were to be optimized for the particular service conditions and include low-cost ferritic stainless steels, novel postprocess treatments, and third-party coatings. This work aimed to optimize specific aspects of substrate alloy chemistry and to study the effects of long-term exposures on resistive oxide film structure and chemistry, interaction with applied surface coatings, and effectiveness of novel surface treatments.

  13. Electromigration kinetics and critical current of Pb-free interconnects

    SciTech Connect (OSTI)

    Lu, Minhua; Rosenberg, Robert [IBM T. J. Watson Research Center, Yorktown Heights, New York 10598 (United States)

    2014-04-07T23:59:59.000Z

    Electromigration kinetics of Pb-free solder bump interconnects have been studied using a single bump parameter sweep technique. By removing bump to bump variations in structure, texture, and composition, the single bump sweep technique has provided both activation energy and power exponents that reflect atomic migration and interface reactions with fewer samples, shorter stress time, and better statistics than standard failure testing procedures. Contact metallurgies based on Cu and Ni have been studied. Critical current, which corresponds to the Blech limit, was found to exist in the Ni metallurgy, but not in the Cu metallurgy. A temperature dependence of critical current was also observed.

  14. Interconnection-Wide Transmission Planning Initiative - Meeting Calendars |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment of EnergyIndustry15 IntellectualInterconnection

  15. Interconnection-Wide Transmission Planning Initiative: Topic B, Cooperation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment of EnergyIndustry15Among States in the Eastern Interconnection

  16. Low Carbon Jobs in an Interconnected World | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |Jilin ZhongdiantouLichuanInformationLoremoJobs in an Interconnected

  17. Circuits & Systems Test Circuits for Characterization of Process, Device, and Interconnect Variation ................................................................................. CS.1

    E-Print Network [OSTI]

    Reif, Rafael

    Circuits & Systems Test Circuits for Characterization of Process, Device, and Interconnect................................................................................................. CS.2 45nm Direct-battery DC-DC Converter for Mobile Applications

  18. Generation Interconnection Policies and Wind Power: A Discussion of Issues, Problems, and Potential Solutions

    SciTech Connect (OSTI)

    Porter, K.; Fink, S.; Mudd, C.; DeCesaro, J.

    2009-01-01T23:59:59.000Z

    This report describes the adoption and implementation of FERC Order 2003 and the reasons for the sharp rise in generation interconnection filings in recent years.

  19. NMAC 17.9.569 Interconnection of Generating Facilities with a...

    Open Energy Info (EERE)

    Reference LibraryAdd to library Legal Document- RegulationRegulation: NMAC 17.9.569 Interconnection of Generating Facilities with a Rated Capacity Greater than 10 MWLegal...

  20. Comparing Germany's and California's Interconnection Processes for PV Systems (White Paper)

    SciTech Connect (OSTI)

    Tweedie, A.; Doris, E.

    2011-07-01T23:59:59.000Z

    Establishing interconnection to the grid is a recognized barrier to the deployment of distributed energy generation. This report compares interconnection processes for photovoltaic projects in California and Germany. This report summarizes the steps of the interconnection process for developers and utilities, the average length of time utilities take to process applications, and paperwork required of project developers. Based on a review of the available literature, this report finds that while the interconnection procedures and timelines are similar in California and Germany, differences in the legal and regulatory frameworks are substantial.

  1. Vdd Programmability to Reduce FPGA Interconnect Power Fei Li, Yan Lin and Lei He

    E-Print Network [OSTI]

    He, Lei

    interconnect power by 56.51% and total FPGA power by 50.55%. Due to the highly low utilization rate of routing

  2. ISSN 1745-9648 Electrifying Integration: Electricity

    E-Print Network [OSTI]

    Feigon, Brooke

    ISSN 1745-9648 Electrifying Integration: Electricity Production and the South East Europe Regional: The paper provides an overview of the generation of electricity in ten countries in South East Europe during of the electricity markets in South East Europe is explored. We conduct a cross-country analysis of electricity

  3. Renewable Electricity Futures (Presentation)

    SciTech Connect (OSTI)

    Hand, M. M.

    2012-08-01T23:59:59.000Z

    This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented to the 2012 Western Conference of Public Service Commissioners, during their June, 2012, meeting. The Western Conference of Public Service Commissioners is a regional association within the National Association of Regulatory Utility Commissioners (NARUC).

  4. Electric power annual 1993

    SciTech Connect (OSTI)

    Not Available

    1994-12-08T23:59:59.000Z

    This report presents a summary of electric power industry statistics at national, regional, and state levels: generating capability and additions, net generation, fossil-fuel statistics, retail sales and revenue, finanical statistics, environmental statistics, power transactions, demand side management, nonutility power producers. Purpose is to provide industry decisionmakers, government policymakers, analysts, and the public with historical data that may be used in understanding US electricity markets.

  5. Electric power annual 1992

    SciTech Connect (OSTI)

    Not Available

    1994-01-06T23:59:59.000Z

    The Electric Power Annual presents a summary of electric utility statistics at national, regional and State levels. The objective of the publication is to provide industry decisionmakers, government policymakers, analysts and the general public with historical data that may be used in understanding US electricity markets. The Electric Power Annual is prepared by the Survey Management Division; Office of Coal, Nuclear, Electric and Alternate Fuels; Energy Information Administration (EIA); US Department of Energy. ``The US Electric Power Industry at a Glance`` section presents a profile of the electric power industry ownership and performance, and a review of key statistics for the year. Subsequent sections present data on generating capability, including proposed capability additions; net generation; fossil-fuel statistics; retail sales; revenue; financial statistics; environmental statistics; electric power transactions; demand-side management; and nonutility power producers. In addition, the appendices provide supplemental data on major disturbances and unusual occurrences in US electricity power systems. Each section contains related text and tables and refers the reader to the appropriate publication that contains more detailed data on the subject matter. Monetary values in this publication are expressed in nominal terms.

  6. Optimal Planning and Operation of Smart Grids with Electric Vehicle Interconnection

    E-Print Network [OSTI]

    Stadler, Michael

    2012-01-01T23:59:59.000Z

    GWh] combined heat and power (CHP) and other distributenand combined heat and power (CHP) systems with and withoutrenewable energy source or CHP system at the building could

  7. Optimal Planning and Operation of Smart Grids with Electric Vehicle Interconnection

    E-Print Network [OSTI]

    Stadler, Michael

    2012-01-01T23:59:59.000Z

    buildings/energyplus/. EPRI-DOE Handbook of Energy StorageApplications (2003). EPRI, Palo Alto, CA, and the U.S.2004), (SGIP, 2008), (EPRI-DOE, 2003), (Mechanical Cost Data

  8. Optimal Planning and Operation of Smart Grids with Electric Vehicle Interconnection

    E-Print Network [OSTI]

    Stadler, Michael

    2012-01-01T23:59:59.000Z

    for the available PV, solar thermal, and EV parking lots atphotovoltaic (PV), solar thermal, stationary batteries,maximum possible PV and solar thermal adoption as well as

  9. Electrically-pumped compact hybrid silicon microring lasers for optical interconnects

    E-Print Network [OSTI]

    2009-01-01T23:59:59.000Z

    to this substantial power loss from band-to-band absorption,estimate the power loss to be 7 dB, corresponding to a 70 cm

  10. Smart buildings with electric vehicle interconnection as buffer for local renewables?

    E-Print Network [OSTI]

    Stadler, Michael

    2012-01-01T23:59:59.000Z

    utilization, ICE: internal combustion engine with waste heatlifetime: 10 years internal combustion engine with heat

  11. Optimal Planning and Operation of Smart Grids with Electric Vehicle Interconnection

    E-Print Network [OSTI]

    Stadler, Michael

    2012-01-01T23:59:59.000Z

    storage, and combined heat and power (CHP) systems with and without absorption chillers. A microgrid

  12. Smart buildings with electric vehicle interconnection as buffer for local renewables?

    E-Print Network [OSTI]

    Stadler, Michael

    2012-01-01T23:59:59.000Z

    power (CHP), PV, solar thermal, stationary battery, etc. isstationary battery • stationary batteries charged by PV • noDavis PV: photovoltaic, BS: conventional lead acid battery,

  13. Optimal Planning and Operation of Smart Grids with Electric Vehicle Interconnection

    E-Print Network [OSTI]

    Stadler, Michael

    2012-01-01T23:59:59.000Z

    there is no PV installed and no stationary battery capacity.Battery Efficiency Near Top-of-Charge and the Impact on PV

  14. High performance low cost interconnections for flip chip attachment with electrically conductive adhesive. Final report

    SciTech Connect (OSTI)

    NONE

    1998-05-01T23:59:59.000Z

    This final report is a compilation of final reports from each of the groups participating in the program. The main three groups involved in this effort are the Thomas J. Watson Research Center of IBM Corporation in Yorktown Heights, New York, Assembly Process Design of IBM Corporation in Endicott, New York, and SMT Laboratory of Universal Instruments Corporation in Binghamton, New York. The group at the research center focused on the conductive adhesive materials development and characterization. The group in process development focused on processing of the Polymer-Metal-Solvent Paste (PMSP) to form conductive adhesive bumps, formation of the Polymer-Metal Composite (PMC) on semiconductor devices and study of the bonding process to circuitized organic carriers, and the long term durability and reliability of joints formed using the process. The group at Universal Instruments focused on development of an equipment set and bonding parameters for the equipment to produce bond assembly tooling. Reports of each of these individual groups are presented here reviewing their technical efforts and achievements.

  15. Smart buildings with electric vehicle interconnection as buffer for local renewables?

    E-Print Network [OSTI]

    Stadler, Michael

    2012-01-01T23:59:59.000Z

    energy systems design considering storage technologies,”storage- viability-website Environmental Energy Technologies

  16. Optimal Planning and Operation of Smart Grids with Electric Vehicle Interconnection

    E-Print Network [OSTI]

    Stadler, Michael

    2012-01-01T23:59:59.000Z

    energy systems design considering storage technologies,”and cooling energy, as well as storage technologies. DER-CAMstorage technologies to smartgrids will have substantial implications for building energy

  17. Smart buildings with electric vehicle interconnection as buffer for local renewables?

    E-Print Network [OSTI]

    Stadler, Michael

    2012-01-01T23:59:59.000Z

    lifetime: 10 years internal combustion engine with heatutilization, ICE: internal combustion engine with waste heat

  18. Optimal Planning and Operation of Smart Grids with Electric Vehicle Interconnection

    E-Print Network [OSTI]

    Stadler, Michael

    2012-01-01T23:59:59.000Z

    driven demand response in these commercial buildings. Byenable demand response. When connected to buildings, mobile

  19. Electricity Reliability

    E-Print Network [OSTI]

    electric power equipment with more energy efficiency and higher capacity than today's systems of modernizing the electric grid to meet the nations's need for reliable, electric power, enhancing security continues to increase within the electricity infrastructure. DOE is conducting research, development

  20. Combination nickel foam expanded nickel screen electrical connection supports for solid oxide fuel cells

    DOE Patents [OSTI]

    Draper, Robert; Prevish, Thomas; Bronson, Angela; George, Raymond A.

    2007-01-02T23:59:59.000Z

    A solid oxide fuel assembly is made, wherein rows (14, 25) of fuel cells (17, 19, 21, 27, 29, 31), each having an outer interconnection (20) and an outer electrode (32), are disposed next to each other with corrugated, electrically conducting expanded metal mesh member (22) between each row of cells, the corrugated mesh (22) having top crown portions and bottom portions, where the top crown portion (40) have a top bonded open cell nickel foam (51) which contacts outer interconnections (20) of the fuel cells, said mesh and nickel foam electrically connecting each row of fuel cells, and where there are no more metal felt connections between any fuel cells.

  1. Electric power monthly

    SciTech Connect (OSTI)

    Not Available

    1992-05-01T23:59:59.000Z

    The Electric Power Monthly is prepared by the Survey Management Division; Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), Department of Energy. This publication provides monthly statistics at the national, Census division, and State levels for net generation, fuel consumption, fuel stocks, quantity and quality of fuel, cost of fuel, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fuel are also displayed for the North American Electric Reliability Council (NERC) regions. Additionally, statistics by company and plant are published in the EPM on capability of new plants, new generation, fuel consumption, fuel stocks, quantity and quality of fuel, and cost of fuel.

  2. Proposed changes to generating capacity 1980-1989 for the contiguous United States: as projected by the Regional Electric Reliability Councils in their April 1, 1980 long-range coordinated planning reports to the Department of Energy

    SciTech Connect (OSTI)

    None

    1980-12-01T23:59:59.000Z

    The changes in generating capacity projected for 1980 to 1989 are summarized. Tabulated data provide summaries to the information on projected generating unit construction, retirements, and changes, in several different categories and groupings. The new generating units to be completed by the end of 1989 total 699, representing 259,490 megawatts. This total includes 10 wind power and one fuel cell installations totaling 48.5 MW to be completed by the end of 1989. There are 321 units totaling 13,222 MW to be retired. There are capacity changes due to upratings and deratings. Summary data are presented for: total requirement for electric energy generation for 1985; hydroelectric energy production for 1985; nuclear energy production for 1985; geothermal and other energy production for 1985; approximate non-fossil generation for 1985; range of fossil energy requirements for 1985; actual fossil energy sources 1974 to 1979; estimated range of fossil fuel requirements for 1985; coal capacity available in 1985; and computation of fuel use in 1985. Power plant capacity factors are presented. Extensive data on proposed generating capacity changes by individual units in the 9 Regional Electric Reliability Councils are presented.

  3. Systematic study of LPCVD refractory metal/silicide interconnect materials for very large scale integrated circuits

    SciTech Connect (OSTI)

    Nowrozi, M.F.

    1988-01-01T23:59:59.000Z

    Recently, refractory materials have been proposed as a strong alternative to poly-silicon and aluminum alloys as metallization systems for Very Large Scale Integrated (VLSI) circuits because of their improved performance at smaller Integrated Circuit (IC) feature size and higher interconnect current densities. However, processing and reliability problems associated with the use of refractory materials have limited their widespread acceptance. The hot-wall low-pressure chemical vapor deposition (LPCVD) of Mo and W from their respective hexacarbonyl sources has been studied as a potential remedy to such problems, in addition to providing the potential for higher throughput and better step coverage. Using deposition chemistries based on carbonyl sources, Mo and W deposits were characterized with respect to their electrical, mechanical, structural, and chemical properties as well as their compatibility with conventional IC processing. Excellent film step coverage and uniformity were obtained by low-temperature (300-350 C) deposition at pressures of 400-600 mTorr. As-deposited films were observed to be amorphous, with a resistivity of 250 and 350 microohm-cm for Mo and W, respectively.

  4. Interconnect-Power Dissipation in a Microprocessor Intel Israel (74) Ltd.

    E-Print Network [OSTI]

    Kolodny, Avinoam

    Interconnect-Power Dissipation in a Microprocessor Nir Magen Intel Israel (74) Ltd. Mobile Platform-performance microprocessor designed for power efficiency. The analysis showed that interconnect power is over 50 ­ Microprocessors; B.7.2 [Integrated Circuits]: Design Aids ­ Placement and Routing. General Terms Performance

  5. Impact of Interconnect Length on BTI and HCI Induced Frequency Degradation

    E-Print Network [OSTI]

    Kim, Chris H.

    Impact of Interconnect Length on BTI and HCI Induced Frequency Degradation Xiaofei Wang Pulkit Jain Instability (BTI) and Hot Carrier Injection (HCI) induced frequency degradation on interconnect length has degradation due to BTI decreases monotonically with longer wires because of the shorter effective stress time

  6. Reliability of Nano-Structured Nickel Interconnections Replacing FlipChip Solder Assembly without Underfill

    E-Print Network [OSTI]

    Swaminathan, Madhavan

    Reliability of Nano-Structured Nickel Interconnections Replacing FlipChip Solder Assembly without nano-structured nickel as the primary interconnection material. Assembly was accomplished materials such as nanostructured copper and nickel, novel bonding and barrier layers to provide both

  7. Control Design for Interconnected Power Systems with OLTCs via Robust Decentralized Control

    E-Print Network [OSTI]

    Pota, Himanshu Roy

    Control Design for Interconnected Power Systems with OLTCs via Robust Decentralized Control the problem of designing a decentralized control of interconnected power systems, with OLTC and SVCs, under are adjusted for variations in power system model due to large changes in loads. The only feedback needed

  8. Effect of Large Dynamic Loads on Interconnected Power Systems with Power Oscillation Damping

    E-Print Network [OSTI]

    Pota, Himanshu Roy

    Effect of Large Dynamic Loads on Interconnected Power Systems with Power Oscillation Damping.hossain and H.Pota)@adfa.edu.au Abstract--Power systems are composed of dynamic loads. In this paper presents an analysis to investigate the effects of large dynamic loads on interconnected power systems

  9. Plasticity contributions to interface adhesion in thin-film interconnect structures

    E-Print Network [OSTI]

    Vainchtein, Anna

    Plasticity contributions to interface adhesion in thin-film interconnect structures Michael Lanea of plasticity in thin copper layers on the interface fracture resistance in thin-film interconnect structures yield properties together with a plastic flow model for the metal layers were used to predict

  10. Exemption from Electric Generation Tax (Connecticut)

    Broader source: Energy.gov [DOE]

    In 2011, Connecticut created a new tax requiring electric power plants in the state that generate and upload electricity to the regional bulk power grid to pay $2.50 per megawatt hour. Renewable...

  11. Maze Solving Automatons for Self-Healing of Open Interconnects: Modular Add-on for Circuit Boards

    E-Print Network [OSTI]

    Aswathi Nair; Karthik Raghunandan; Vaddi Yaswanth; Sreelal Shridharan; Sanjiv Sambandan

    2014-12-30T23:59:59.000Z

    We present the circuit board integration of a self-healing mechanism to repair open faults. The electric field driven mechanism physically restores fractured interconnects in electronic circuits and has the ability to solve mazes. The repair is performed by conductive particles dispersed in an insulating fluid. We demonstrate the integration of the healing module onto printed circuit boards and the ability of maze solving. We model and perform experiments on the influence of the geometry of the conductive particles as well as the terminal impedances of the route on the healing efficiency. The typical heal rate is 10 $\\mu$m/s with healed route having resistance of 100 $\\Omega$ to 20 k$\\Omega$ depending on the materials and concentrations used.

  12. Sustainable Energy Solutions Task 1.0: Networked Monitoring and Control of Small Interconnected Wind Energy Systems

    SciTech Connect (OSTI)

    Janet.twomey@wichita.edu

    2010-04-30T23:59:59.000Z

    EXECUTIVE SUMARRY This report presents accomplishments, results, and future work for one task of five in the Wichita State University Sustainable Energy Solutions Project: To develop a scale model laboratory distribution system for research into questions that arise from networked control and monitoring of low-wind energy systems connected to the AC distribution system. The lab models developed under this task are located in the Electric Power Quality Lab in the Engineering Research Building on the Wichita State University campus. The lab system consists of four parts: 1. A doubly-fed induction generator 2. A wind turbine emulator 3. A solar photovoltaic emulator, with battery energy storage 4. Distribution transformers, lines, and other components, and wireless and wired communications and control These lab elements will be interconnected and will function together to form a complete testbed for distributed resource monitoring and control strategies and smart grid applications testing. Development of the lab system will continue beyond this project.

  13. "Interconnection","NERC Regional Assesment Area"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. AppliancesTotal" "(Data from03.4

  14. "Interconnection","NERC Regional Assesment Area","Summer"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. AppliancesTotal" "(Data from03.4B Winter net2.

  15. U.S. Virgin Islands Establishes Interconnection Standards to...

    Office of Environmental Management (EM)

    ensure that the procedure it ultimately adopted would encourage and promote renewable energy development without compromising the safety and reliability of the electricity...

  16. Electric power monthly, May 1993

    SciTech Connect (OSTI)

    Not Available

    1993-05-25T23:59:59.000Z

    The Electric Power Monthly (EPM) is prepared by the Survey Management Division; Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), Department of Energy. This publication provides monthly statistics at the US, Census division, and State levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions.

  17. Electric power monthly, April 1993

    SciTech Connect (OSTI)

    Not Available

    1993-05-07T23:59:59.000Z

    The Electric Power Monthly is prepared by the Survey Management Division; Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), Department of Energy. This publication provides monthly statistics at the US, Census division, and State levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions.

  18. Long-Distance Interconnection as Solar Resource Intermittency Solution: Optimizing the Use of Energy Storage and the Geographic

    E-Print Network [OSTI]

    of Energy Storage and the Geographic Dispersion + Interconnection of Solar Generating Facilities. Marc J. R energy storage and Long-distance interconnection coupled with geographic dispersion of solar generating and serve predetermined load requirements. Index Terms -- Energy Storage, variability, intermittency

  19. The design, construction, and operation of long-distance high-voltage electricity transmission technologies.

    SciTech Connect (OSTI)

    Molburg, J. C.; Kavicky, J. A.; Picel, K. C.

    2008-03-03T23:59:59.000Z

    This report focuses on transmission lines, which operate at voltages of 115 kV and higher. Currently, the highest voltage lines comprising the North American power grid are at 765 kV. The grid is the network of transmission lines that interconnect most large power plants on the North American continent. One transmission line at this high voltage was built near Chicago as part of the interconnection for three large nuclear power plants southwest of the city. Lines at this voltage also serve markets in New York and New England, also very high demand regions. The large power transfers along the West Coast are generally at 230 or 500 kV. Just as there are practical limits to centralization of power production, there are practical limits to increasing line voltage. As voltage increases, the height of the supporting towers, the size of the insulators, the distance between conductors on a tower, and even the width of the right-of-way (ROW) required increase. These design features safely isolate the electric power, which has an increasing tendency to arc to ground as the voltage (or electrical potential) increases. In addition, very high voltages (345 kV and above) are subject to corona losses. These losses are a result of ionization of the atmosphere, and can amount to several megawatts of wasted power. Furthermore, they are a local nuisance to radio transmission and can produce a noticeable hum. Centralized power production has advantages of economies of scale and special resource availability (for instance, hydro resources), but centralized power requires long-distance transfers of power both to reach customers and to provide interconnections for reliability. Long distances are most economically served at high voltages, which require large-scale equipment and impose a substantial footprint on the corridors through which power passes. The most visible components of the transmission system are the conductors that provide paths for the power and the towers that keep these conductors at a safe distance from each other and from the ground and the natural and built environment. Common elements that are generally less visible (or at least more easily overlooked) include the maintained ROW along the path of the towers, access roads needed for maintenance, and staging areas used for initial construction that may be restored after construction is complete. Also visible but less common elements along the corridor may include switching stations or substations, where lines of similar or different voltages meet to transfer power.

  20. Geothermal Power and Interconnection: The Economics of Getting to Market

    SciTech Connect (OSTI)

    Hurlbut, D.

    2012-04-01T23:59:59.000Z

    This report provides a baseline description of the transmission issues affecting geothermal technologies. The report begins with a comprehensive overview of the grid, how it is planned, how it is used, and how it is paid for. The report then overlays onto this 'big picture' three types of geothermal technologies: conventional hydrothermal systems; emerging technologies such as enhanced engineered geothermal systems (EGS) and geopressured geothermal; and geothermal co-production with existing oil and gas wells. Each category of geothermal technology has its own set of interconnection issues, and these are examined separately for each. The report draws conclusions about each technology's market affinities as defined by factors related to transmission and distribution infrastructure. It finishes with an assessment of selected markets with known geothermal potential, identifying those that offer the best prospects for near-term commercial development and for demonstration projects.

  1. Catalytic bipolar interconnection plate for use in a fuel cell

    DOE Patents [OSTI]

    Lessing, P.A.

    1996-03-05T23:59:59.000Z

    A bipolar interconnection plate is described for use between adjacent fuel cell units in a stacked fuel cell assembly. Each plate is manufactured from an intermetallic composition, examples of which include NiAl or Ni{sub 3}Al which can catalyze steam reforming of hydrocarbons. Distributed within the intermetallic structure of the plate is a ceramic filler composition. The plate includes a first side with gas flow channels therein and a second side with fuel flow channels therein. A protective coating is applied to the first side, with exemplary coatings including strontium-doped or calcium-doped lanthanum chromite. To produce the plate, Ni and Al powders are combined with the filler composition, compressed at a pressure of about 10,000--30,000 psi, and heated to about 600--1000 C. The coating is then applied to the first side of the completed plate using liquid injection plasma deposition or other deposition techniques. 6 figs.

  2. innovati nInterconnection Standards Guide Integration of Distributed

    E-Print Network [OSTI]

    the United States, energy circles are buzzing about the promise of the smart grid--the digital electric power), the concept is exciting, but it isn't new. Researchers here have been laying the foundation for the smart grid and storage sources (or"distributed resources,"a key aspect of the smart grid) into the electric power system

  3. 2012 National Electric Transmission Congestion Study: Preliminary...

    Broader source: Energy.gov (indexed) [DOE]

    loading relief (TLR) procedures. Frequent or recurrent disparities in wholesale electricity prices across regional markets, as seen in RTOs' reported congestion...

  4. Electricity Delivery and Energy Reliability PROGRAM DESCRIPTION

    Broader source: Energy.gov (indexed) [DOE]

    (PSA) program provides expert technical assistance to states, tribes and regions on electricity policies, programs and market mechanisms that increase access to reliable,...

  5. CCPPolicyBriefing Electricity

    E-Print Network [OSTI]

    Feigon, Brooke

    the pattern of consumer-related and consumption-related costs. · The research uses household level data from and plays an important role in the potential South East Europe regional energy market, and is emerging. · Electricity is mainly used for lighting, power and air conditioning Turkish households. Heating requirements

  6. Electric vehicles

    SciTech Connect (OSTI)

    Not Available

    1990-03-01T23:59:59.000Z

    Quiet, clean, and efficient, electric vehicles (EVs) may someday become a practical mode of transportation for the general public. Electric vehicles can provide many advantages for the nation's environment and energy supply because they run on electricity, which can be produced from many sources of energy such as coal, natural gas, uranium, and hydropower. These vehicles offer fuel versatility to the transportation sector, which depends almost solely on oil for its energy needs. Electric vehicles are any mode of transportation operated by a motor that receives electricity from a battery or fuel cell. EVs come in all shapes and sizes and may be used for different tasks. Some EVs are small and simple, such as golf carts and electric wheel chairs. Others are larger and more complex, such as automobile and vans. Some EVs, such as fork lifts, are used in industries. In this fact sheet, we will discuss mostly automobiles and vans. There are also variations on electric vehicles, such as hybrid vehicles and solar-powered vehicles. Hybrid vehicles use electricity as their primary source of energy, however, they also use a backup source of energy, such as gasoline, methanol or ethanol. Solar-powered vehicles are electric vehicles that use photovoltaic cells (cells that convert solar energy to electricity) rather than utility-supplied electricity to recharge the batteries. This paper discusses these concepts.

  7. Fast Algorithms for High Frequency Interconnect Modeling in VLSI Circuits and Packages

    E-Print Network [OSTI]

    Yi, Yang

    2011-02-22T23:59:59.000Z

    Conductor array with magnetic blocks ................. 61 31 CPU time ratio of Maxwell 3D over our algorithm ........... 62 32 Cross sectional view of |B|. ....................... 63 33 E?ect of M 0 (M 0 = M S cos(theta)) on the inductance ......... 64 34 E...?ect of conductor current on the inductance ............. 65 35 Magnitude of S-parameters for interconnect with non-magnetic blocks 66 36 Magnitude of S-parameters for interconnect with magnetic blocks .. 67 37 Phase of S-parameters for interconnect with non...

  8. Electric power monthly, August 1993

    SciTech Connect (OSTI)

    Not Available

    1993-08-13T23:59:59.000Z

    The Electric Power Monthly (EPM) presents monthly electricity statistics. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. The EPM is prepared by the Survey Management Division; Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), Department of Energy. This publication provides monthly statistics at the US, Census division, and State levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions.

  9. Electric power monthly, September 1993

    SciTech Connect (OSTI)

    Not Available

    1993-09-17T23:59:59.000Z

    The Electric Power Monthly (EPM) presents monthly electricity statistics. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. The EPM is prepared by the Survey Management Division; Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), Department of Energy. This publication provides monthly statistics at the US, Census division, and State levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions.

  10. CCHP System with Interconnecting Cooling and Heating Network 

    E-Print Network [OSTI]

    Fu, L.; Geng, K.; Zheng, Z.; Jiang, Y.

    2006-01-01T23:59:59.000Z

    The consistency between building heating load, cooling load and power load are analyzed in this paper. The problem of energy waste and low equipment usage in a traditional CCHP (combined cooling, heating and power) system with generated electricity...

  11. CCHP System with Interconnecting Cooling and Heating Network

    E-Print Network [OSTI]

    Fu, L.; Geng, K.; Zheng, Z.; Jiang, Y.

    2006-01-01T23:59:59.000Z

    The consistency between building heating load, cooling load and power load are analyzed in this paper. The problem of energy waste and low equipment usage in a traditional CCHP (combined cooling, heating and power) system with generated electricity...

  12. Exploration of FPGA Interconnect for the Design of Unconventional Antennas

    E-Print Network [OSTI]

    @vt.edu Jacob Couch jacouch@vt.edu Peter Athanas athanas@vt.edu Bradley Department of Electrical and Computer for profit or commercial advantage and that copies bear this notice and the full citation on the first page

  13. Reforming Competitive Electricity Markets to Meet Environmental Targets

    E-Print Network [OSTI]

    Newbery, David

    network. Perhaps a more dramatic market design change would be a move to nodal pricing or Locational Marginal Pricing (LMP). LMP has been successfully implemented in a wide range of electricity markets, most notably in the PJM Interconnect, a market... 10 leading candidate was, unsurprisingly, nodal pricing to encourage efficient use of the system once built, coupled with deep connection charges to provide the right long-run locational guidance for new generation, and delivered in the form...

  14. Tubular screen electrical connection support for solid oxide fuel cells

    DOE Patents [OSTI]

    Tomlins, Gregory W. (Pittsburgh, PA); Jaszcar, Michael P. (Murrysville, PA)

    2002-01-01T23:59:59.000Z

    A solid oxide fuel assembly is made of fuel cells (16, 16', 18, 24, 24', 26), each having an outer interconnection layer (36) and an outer electrode (28), which are disposed next to each other with rolled, porous, hollow, electrically conducting metal mesh conductors (20, 20') between the fuel cells, connecting the fuel cells at least in series along columns (15, 15') and where there are no metal felt connections between any fuel cells.

  15. The Operation of Ontario's Competitive Electricity Market: Overview, Experiences, and Lessons

    E-Print Network [OSTI]

    Cańizares, Claudio A.

    outcome analysis. ACRONYMS ADE Availability Deceleration Envelope CAOR Control Action Operating Reserve Offer Guarantee DAGCG Day-Ahead Generation Cost Guarantee DSPS Dispatch Scheduling and Pricing Software electricity market can significantly impact the North American North- East and Mid-West power interconnections

  16. Development of Enhanced Electric Arc Furnace Models for Transient Analysis Gilsoo Jang

    E-Print Network [OSTI]

    of the electric power quality of the interconnected system. Because of its severe impact on the power quality impact on the power system. Some researchers used the stochastic models to represent the operation assessing the impact of the EAF on power systems. New chaotic mod- els, such as mixed chaotic model

  17. Mechanical and electrical evaluation of parylene-C encapsulated carbon nanotube networks on a flexible substrate

    E-Print Network [OSTI]

    Dokmeci, Mehmet

    Mechanical and electrical evaluation of parylene-C encapsulated carbon nanotube networks, interconnects, and sensors. In this letter, we demonstrate the fabrication of single-walled carbon nanotube SWNT.1063/1.2976633 Carbon nanotube CNT networks are excellent candi- dates for flexible electronic devices and sensors due

  18. Dynamic Interactions in the Western United States Electricity Spot Markets Christine A. Jerko

    E-Print Network [OSTI]

    by a highly interconnected transmission system and established trading regime (De Vany and Walls, 1999b this new world." Most studies of electricity pricing have investigated market structure and power, reasons), in examining spot markets in England and Wales and the Nordic countries, notes there is significant differences

  19. Sandia National Laboratories: Federal Electric Regulatory Commission

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Commission Revised Its Small Generator Interconnection Procedure and Small Generator Interconnection Agreement On March 4, 2014, in Distribution Grid Integration, Energy, Grid...

  20. A continuous distribution method for reliability evaluation of interconnected power systems 

    E-Print Network [OSTI]

    Chintaluri, Gouri Mohana

    1993-01-01T23:59:59.000Z

    the interconnection effects. Several studies are reported using IEEE-RTS and EPRI System E. The indices of LOLE, EUE and LOLF are obtained and are compared with those of the recursive method for accuracy and efficiency....

  1. Determination of Interfacial Adhesion Strength between Oxide Scale and Substrate for Metallic SOFC Interconnects

    SciTech Connect (OSTI)

    Sun, Xin; Liu, Wenning N.; Stephens, Elizabeth V.; Khaleel, Mohammad A.

    2008-01-21T23:59:59.000Z

    The interfacial adhesion strength between the oxide scale and the substrate is crucial to the reliability and durability of metallic interconnects in SOFC operating environments. It is necessary, therefore, to establish a methodology to quantify the interfacial adhesion strength between the oxide scale and the metallic interconnect substrate, and furthermore to design and optimize the interconnect material as well as the coating materials to meet the design life of an SOFC system. In this paper, we present an integrated experimental/analytical methodology for quantifying the interfacial adhesion strength between oxide scale and a ferritic stainless steel interconnect. Stair-stepping indentation tests are used in conjunction with subsequent finite element analyses to predict the interfacial strength between the oxide scale and Crofer 22 APU substrate.

  2. High-performance parallel processors based on star-coupled wavelength division multiplexing optical interconnects

    DOE Patents [OSTI]

    Deri, Robert J. (Pleasanton, CA); DeGroot, Anthony J. (Castro Valley, CA); Haigh, Ronald E. (Arvada, CO)

    2002-01-01T23:59:59.000Z

    As the performance of individual elements within parallel processing systems increases, increased communication capability between distributed processor and memory elements is required. There is great interest in using fiber optics to improve interconnect communication beyond that attainable using electronic technology. Several groups have considered WDM, star-coupled optical interconnects. The invention uses a fiber optic transceiver to provide low latency, high bandwidth channels for such interconnects using a robust multimode fiber technology. Instruction-level simulation is used to quantify the bandwidth, latency, and concurrency required for such interconnects to scale to 256 nodes, each operating at 1 GFLOPS performance. Performance scales have been shown to .apprxeq.100 GFLOPS for scientific application kernels using a small number of wavelengths (8 to 32), only one wavelength received per node, and achievable optoelectronic bandwidth and latency.

  3. Reliable low latency I/O in torus-based interconnection networks

    E-Print Network [OSTI]

    Azeez, Babatunde

    2007-04-25T23:59:59.000Z

    In today's high performance computing environment I/O remains the main bottleneck in achieving the optimal performance expected of the ever improving processor and memory technologies. Interconnection networks therefore combines processing units...

  4. EIS-0438: Interconnection of the Proposed Hermosa West Wind Farm Project, Albany County, Wyoming

    Broader source: Energy.gov [DOE]

    After the applicant withdrew its request to interconnect the proposed Hermosa West Wind Farm Project with Western Area Power Administration’s transmission system, Western cancelled preparation of an EIS to evaluate the potential environmental impacts of the proposal.

  5. A continuous distribution method for reliability evaluation of interconnected power systems

    E-Print Network [OSTI]

    Chintaluri, Gouri Mohana

    1993-01-01T23:59:59.000Z

    the interconnection effects. Several studies are reported using IEEE-RTS and EPRI System E. The indices of LOLE, EUE and LOLF are obtained and are compared with those of the recursive method for accuracy and efficiency....

  6. Solid oxide fuel cell with single material for electrodes and interconnect

    DOE Patents [OSTI]

    McPheeters, Charles C. (Naperville, IL); Nelson, Paul A. (Wheaton, IL); Dees, Dennis W. (Downers Grove, IL)

    1994-01-01T23:59:59.000Z

    A solid oxide fuel cell having a plurality of individual cells. A solid oxide fuel cell has an anode and a cathode with electrolyte disposed therebetween, and the anode, cathode and interconnect elements are comprised of substantially one material.

  7. Fully Integrated Graphene and Carbon Nanotube Interconnects for Gigahertz High-Speed Cmos Electronics

    E-Print Network [OSTI]

    Chen, Xiangyu

    Carbon-based nanomaterials such as metallic single-walled carbon nanotubes, multiwalled carbon nanotubes (MWCNTs), and graphene have been considered as some of the most promising candidates for future interconnect technology ...

  8. Demonstration of monolithically integrated graphene interconnects for low-power CMOS applications

    E-Print Network [OSTI]

    Lee, Kyeong-Jae

    2011-01-01T23:59:59.000Z

    In recent years, interconnects have become an increasingly difficult design challenge as their relative performance has not improved at the same pace with transistor scaling. The specifications for complex features, clock ...

  9. Optically Interconnected Data Center Architecture for Bandwidth Intensive Energy Efficient Networking

    E-Print Network [OSTI]

    Bergman, Keren

    sophisticated cooling systems, further reducing overall data center energy efficiencies. Moreover, measurements feasibility of the system. Keywords: optical network architecture, data center networks, reconfigurableOptically Interconnected Data Center Architecture for Bandwidth Intensive Energy Efficient

  10. Process based cost modeling of emerging optoelectronic interconnects : implications for material platform choice

    E-Print Network [OSTI]

    Liu, Shan, S.M. Massachusetts Institute of Technology

    2008-01-01T23:59:59.000Z

    Continuously increasing demand for processing power, storage capacity, and I/O capacity in personal computing, data network, and display interface suggests that optical interconnects may soon supplant copper not only for ...

  11. Sandia Energy - Energy and Water in the Western and Texas Interconnect...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy and Water in the Western and Texas Interconnects Home Climate & Earth Systems WaterEnergy Nexus Decision Models for Integrating EnergyWater Energy and Water in the Western...

  12. Innovative Distributed Power Grid Interconnection and Control Systems: Final Report, December 11, 2000 - August 30, 2005

    SciTech Connect (OSTI)

    DePodesta, K.; Birlingmair, D.; West, R.

    2006-03-01T23:59:59.000Z

    The contract goal was to further advance distributed generation in the marketplace by making installations more cost-effective and compatible with existing systems. This was achieved by developing innovative grid interconnection and control systems.

  13. Reliable low latency I/O in torus-based interconnection networks 

    E-Print Network [OSTI]

    Azeez, Babatunde

    2007-04-25T23:59:59.000Z

    In today's high performance computing environment I/O remains the main bottleneck in achieving the optimal performance expected of the ever improving processor and memory technologies. Interconnection networks therefore combines processing units...

  14. Pricing Games among Interconnected Microgrids Gaurav S. Kasbekar and Saswati Sarkar

    E-Print Network [OSTI]

    Sarkar, Saswati

    1 Pricing Games among Interconnected Microgrids Gaurav S. Kasbekar and Saswati Sarkar Abstract than, less than or as much aggregate power as it requires. G. Kasbekar and S. Sarkar

  15. Reuse Distance Based Circuit Replacement in Silicon Photonic Interconnection Networks for HPC

    E-Print Network [OSTI]

    Bergman, Keren

    -scale distance, can help to further scale data-movement capabilities in high performance computing (HPC demands within high performance computing (HPC) systems. Silicon photonic (SiP) interconnects [1-3], which

  16. Exploration of alloy 441 chemistry for solid oxide fuel cell interconnect application

    SciTech Connect (OSTI)

    Paul D. Jablonski; Christopher J. Cowen; John S. Sears

    2010-02-01T23:59:59.000Z

    Alloy 441 stainless steel (UNS S 44100) is being considered for application as an SOFC interconnect material. There are several advantages to the selection of this alloy over other iron-based or nickel-based alloys: first and foremost alloy 441ss is a production alloy which is both low in cost and readily available. Second, the coefficient of thermal expansion (CTE) more closely matches the CTE of the adjoining ceramic components of the fuel cell. Third, this alloy forms the Laves phase at typical SOFC operating temperatures of 600–800 °C. It is thought that the Laves phase preferentially consumes the Si present in the alloy microstructure. As a result it has been postulated that the long-term area specific resistance (ASR) performance degradation often seen with other ferritic stainless steels, which is associated with the formation of electrically resistive Si-rich oxide subscales, may be avoidable with alloy 441ss. In this paper we explore the physical metallurgy of alloy 441, combining computational thermodynamics with experimental verification, and discuss the results with regards to Laves phase formation under SOFC operating conditions. We show that the incorporation of the Laves phase into the microstructure cannot in itself remove sufficient Si from the ferritic matrix in order to completely avoid the formation of Si-rich oxide subscales. However, the thickness, morphology, and continuity of the Si-rich subscale that forms in this alloy is modified in comparison to non-Laves forming ferritic stainless steel alloys and therefore may not be as detrimental to long-term SOFC performance.

  17. Approaches To Integrating A HIgh Penertration Of Solar PV and CPV Onto The Electrical Grid

    E-Print Network [OSTI]

    Hill, Steven Craig

    2013-01-01T23:59:59.000Z

    entering into an Interconnection Agreement. Dynamic modelingof the Interconnection Facilities Study Agreement (IFASA);

  18. Lake Region Electric Cooperative | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to: navigation,working-groupsIllinois:

  19. THOR Concept Complex simulation Autonomous control Conclusion Interconnection of the behavior-based control

    E-Print Network [OSTI]

    Berns, Karsten

    Schmidt Interconnection of iB2C and a detailed machine model rrlab.cs.uni-kl.de 2 #12;THOR Concept Complex of iB2C and a detailed machine model rrlab.cs.uni-kl.de 3 #12;THOR Concept Complex simulation Schmidt Interconnection of iB2C and a detailed machine model rrlab.cs.uni-kl.de 5 #12;THOR Concept Complex

  20. Electrical Engineer

    Broader source: Energy.gov [DOE]

    The incumbent in this position will serve as an Electrical Engineer in the Strategy and Program Management organization of Transmission Services. The Strategy and Program Management organization is...

  1. Electric Vehicles

    ScienceCinema (OSTI)

    Ozpineci, Burak

    2014-07-23T23:59:59.000Z

    Burak Ozpineci sees a future where electric vehicles charge while we drive them down the road, thanks in part to research under way at ORNL.

  2. Electrical hazards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and certification by ANL prior to use. The Control of Hazardous Energy Sources - LockoutTagout (LOTO) Types of Energy Sources 1. Electricity 2. Gas, steam & pressurized...

  3. Electric Vehicles

    SciTech Connect (OSTI)

    Ozpineci, Burak

    2014-05-02T23:59:59.000Z

    Burak Ozpineci sees a future where electric vehicles charge while we drive them down the road, thanks in part to research under way at ORNL.

  4. Electrical stator

    DOE Patents [OSTI]

    Fanning, Alan W. (San Jose, CA); Olich, Eugene E. (Aptos, CA)

    1994-01-01T23:59:59.000Z

    An electrical stator of an electromagnetic pump includes first and second spaced apart coils each having input and output terminals for carrying electrical current. An elongate electrical connector extends between the first and second coils and has first and second opposite ends. The connector ends include respective slots receiving therein respective ones of the coil terminals to define respective first and second joints. Each of the joints includes a braze filler fixedly joining the connector ends to the respective coil terminals for carrying electrical current therethrough.

  5. Electric power annual 1997. Volume 1

    SciTech Connect (OSTI)

    NONE

    1998-07-01T23:59:59.000Z

    The Electric Power Annual presents a summary of electric power industry statistics at national, regional, and State levels. The objective of the publication is to provide industry decisionmakers, government policy-makers, analysts, and the general public with data that may be used in understanding US electricity markets. The Electric Power Annual is prepared by the Electric Power Division; Office of Coal, Nuclear, Electric and Alternate Fuels; Energy Information Administration (EIA); US Department of Energy. Volume 1 -- with a focus on US electric utilities -- contains final 1997 data on net generation and fossil fuel consumption, stocks, receipts, and cost; preliminary 1997 data on generating unit capability, and retail sales of electricity, associated revenue, and the average revenue per kilowatthour of electricity sold (based on a monthly sample: Form EIA-826, ``Monthly Electric Utility Sales and Revenue Report with State Distributions``). Additionally, information on net generation from renewable energy sources and on the associated generating capability is included in Volume 1 of the EPA.

  6. Steam-Electric Power-Plant-Cooling Handbook

    SciTech Connect (OSTI)

    Sonnichsen, J.C.; Carlson, H.A.; Charles, P.D.; Jacobson, L.D.; Tadlock, L.A.

    1982-02-01T23:59:59.000Z

    The Steam-Electric Power Plant Cooling Handbook provides summary data on steam-electric power plant capacity, generation and number of plants for each cooling means, by Electric Regions, Water Resource Regions and National Electric Reliability Council Areas. Water consumption by once-through cooling, cooling ponds and wet evaporative towers is discussed and a methodology for computation of water consumption is provided for a typical steam-electric plant which uses a wet evaporative tower or cooling pond for cooling.

  7. Electric machine

    DOE Patents [OSTI]

    El-Refaie, Ayman Mohamed Fawzi (Niskayuna, NY); Reddy, Patel Bhageerath (Madison, WI)

    2012-07-17T23:59:59.000Z

    An interior permanent magnet electric machine is disclosed. The interior permanent magnet electric machine comprises a rotor comprising a plurality of radially placed magnets each having a proximal end and a distal end, wherein each magnet comprises a plurality of magnetic segments and at least one magnetic segment towards the distal end comprises a high resistivity magnetic material.

  8. Electric power monthly, April 1994

    SciTech Connect (OSTI)

    Not Available

    1994-04-01T23:59:59.000Z

    The Electric Power Monthly (EPM) presents monthly electricity statistics. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. This publication provides monthly statistics at the U.S., Census division, and State levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions. This April 1994 issue contains 1993 year-end data and data through January 1994.

  9. Comparing the Topological and Electrical Structure of the North American Electric Power Infrastructure

    E-Print Network [OSTI]

    Cotilla-Sanchez, Eduardo; Barrows, Clayton; Blumsack, Seth

    2011-01-01T23:59:59.000Z

    The topological (graph) structure of complex networks often provides valuable information about the performance and vulnerability of the network. However, there are multiple ways to represent a given network as a graph. Electric power transmission and distribution networks have a topological structure that is straightforward to represent and analyze as a graph. However, simple graph models neglect the comprehensive connections between components that result from Ohm's and Kirchhoff's laws. This paper describes the structure of the three North American electric power interconnections, from the perspective of both topological and electrical connectivity. We compare the simple topology of these networks with that of random (Erdos, 1959), preferential-attachment (Barabasi,1999) and small-world (Watts, 1998) networks of equivalent sizes and find that power grids differ substantially from these abstract models in degree distribution, clustering, diameter and assortativity, and thus conclude that these topological f...

  10. Robust Decentralized Switching Power System Stabilisers for Interconnected

    E-Print Network [OSTI]

    Pota, Himanshu Roy

    ]. In these works, controllers are designed for multi-machine power systems using modern control techniques like system control design; Decentralized control; Switching control; Dwell time; Power system stabilizers. 1. INTRODUCTION The primary task of the power system control is to provide reliable and secure electric power

  11. Electrical and Computer Engineering

    E-Print Network [OSTI]

    Weber, Rodney

    COE 1000 Electrical and Computer Engineering Jennifer Michaels Professor and Interim Associate Chair for Undergraduate Affairs School of Electrical and Computer Engineering Fall 2011 #12;Defining Electrical and Computer Engineering Electrical Engineering: Electrical engineers explore electrical phenomena

  12. Electrical connector

    DOE Patents [OSTI]

    Dilliner, Jennifer L.; Baker, Thomas M.; Akasam, Sivaprasad; Hoff, Brian D.

    2006-11-21T23:59:59.000Z

    An electrical connector includes a female component having one or more receptacles, a first test receptacle, and a second test receptacle. The electrical connector also includes a male component having one or more terminals configured to engage the one or more receptacles, a first test pin configured to engage the first test receptacle, and a second test pin configured to engage the second test receptacle. The first test receptacle is electrically connected to the second test receptacle, and at least one of the first test pin and the second test pin is shorter in length than the one or more terminals.

  13. Texas Electricity Update

    E-Print Network [OSTI]

    Lloyd, B.

    2012-01-01T23:59:59.000Z

    Texas Electricity Update CATEE 2012 Galveston, Texas Brian Lloyd Executive Director Public Utility Commission of Texas October 10, 2012 1 2 Drought Summary May Reserve Margin Report 3 Demand Growth by Region 4 105? Normal... 917 Firm Load Forecast, MW 65,649 68,403 71,692 73,957 75,360 76,483 CATEE 2012 Questions? Brian H. Lloyd Executive Director Public Utility Commission of Texas 512-936-7040 14 ...

  14. Engineering Electrical &

    E-Print Network [OSTI]

    Hickman, Mark

    Computer Engineering Electrical & Electronic Engineering Mechatronics Engineering Mechanical Engineering Civil Engineering Natural Resources Engineering Forest Engineering Chemical & Process Engineering ELECTIVE 2 Required Engineering Intermediate Year 2011 Eight Required Courses Chart: 120 points College

  15. Engineering Electrical &

    E-Print Network [OSTI]

    Hickman, Mark

    Computer Engineering Electrical & Electronic Engineering Mechatronics Engineering Mechanical Engineering Civil Engineering Natural Resources Engineering Forest Engineering Chemical & Process Engineering ELECTIVE 2 Required Engineering Intermediate Year 2012 Eight Required Courses Chart: 120 points College

  16. Renewable Electricity Futures for the United States

    SciTech Connect (OSTI)

    Mai, Trieu; Hand, Maureen; Baldwin, Sam F.; Wiser , Ryan; Brinkman, G.; Denholm, Paul; Arent, Doug; Porro, Gian; Sandor, Debra; Hostick, Donna J.; Milligan, Michael; DeMeo, Ed; Bazilian, Morgan

    2014-04-14T23:59:59.000Z

    This paper highlights the key results from the Renewable Electricity (RE) Futures Study. It is a detailed consideration of renewable electricity in the United States. The paper focuses on technical issues related to the operability of the U. S. electricity grid and provides initial answers to important questions about the integration of high penetrations of renewable electricity technologies from a national perspective. The results indicate that the future U. S. electricity system that is largely powered by renewable sources is possible and the further work is warranted to investigate this clean generation pathway. The central conclusion of the analysis is that renewable electricity generation from technologies that are commercially available today, in combination with a more flexible electric system, is more than adequate to supply 80% of the total U. S. electricity generation in 2050 while meeting electricity demand on an hourly basis in every region of the United States.

  17. Plastic deformation in Al (Cu) interconnects stressed by electromigration and studied by synchrotron polychromatic X-ray microdiffraction

    E-Print Network [OSTI]

    Chen, Kai; Advanced Light Source; UCLA

    2008-01-01T23:59:59.000Z

    Plastic deformation in Al (Cu) interconnects stressed bygrain orientation [7], study plastic deformation [12-15] andThis aspect of EM-induced plastic deformation in grains

  18. Ashland Electric- Net Metering

    Broader source: Energy.gov [DOE]

    In 1996, Ashland adopted a net-metering program that includes simple interconnection guidelines. The program encourages the adoption of renewable-energy systems by committing the city to purchase,...

  19. SEM technique for imaging and measuring electronic transport in nanocomposites based on electric field induced contrast

    DOE Patents [OSTI]

    Jesse, Stephen (Knoxville, TN) [Knoxville, TN; Geohegan, David B. (Knoxville, TN) [Knoxville, TN; Guillorn, Michael (Brooktondale, NY) [Brooktondale, NY

    2009-02-17T23:59:59.000Z

    Methods and apparatus are described for SEM imaging and measuring electronic transport in nanocomposites based on electric field induced contrast. A method includes mounting a sample onto a sample holder, the sample including a sample material; wire bonding leads from the sample holder onto the sample; placing the sample holder in a vacuum chamber of a scanning electron microscope; connecting leads from the sample holder to a power source located outside the vacuum chamber; controlling secondary electron emission from the sample by applying a predetermined voltage to the sample through the leads; and generating an image of the secondary electron emission from the sample. An apparatus includes a sample holder for a scanning electron microscope having an electrical interconnect and leads on top of the sample holder electrically connected to the electrical interconnect; a power source and a controller connected to the electrical interconnect for applying voltage to the sample holder to control the secondary electron emission from a sample mounted on the sample holder; and a computer coupled to a secondary electron detector to generate images of the secondary electron emission from the sample.

  20. Interconnecting network for switching data packets and method for switching data packets

    DOE Patents [OSTI]

    Benner, Alan Frederic; Minkenberg, Cyriel Johan Agnes; Stunkel, Craig Brian

    2010-05-25T23:59:59.000Z

    The interconnecting network for switching data packets, having data and flow control information, comprises a local packet switch element (S1) with local input buffers (I(1,1) . . . I(1,y)) for buffering the incoming data packets, a remote packet switch element (S2) with remote input buffers (I(2,1) . . . I(2,y)) for buffering the incoming data packets, and data lines (L) for interconnecting the local and the remote packet switch elements (S1, S2). The interconnecting network further comprises a local and a remote arbiter (A1, A2) which are connected via control lines (CL) to the input buffers (I(1,1) . . . I(1,y), I(2,1) . . . I(2,y)), and which are formed such that they can provide that the flow control information is transmitted via the data lines (L) and the control lines (CL).