Calculation of external dose from distributed source
Kocher, D.C.
1986-01-01T23:59:59.000Z
This paper discusses a relatively simple calculational method, called the point kernel method (Fo68), for estimating external dose from distributed sources that emit photon or electron radiations. The principles of the point kernel method are emphasized, rather than the presentation of extensive sets of calculations or tables of numerical results. A few calculations are presented for simple source geometries as illustrations of the method, and references and descriptions are provided for other caluclations in the literature. This paper also describes exposure situations for which the point kernel method is not appropriate and other, more complex, methods must be used, but these methods are not discussed in any detail.
Algon: from interchangeable distributed algorithms to interchangeable middleware
Renaud, K.V.
Renaud,K.V. Bishop,J.M. Lo,J. Worrall,B. SC 2004 Software Composition Saturday, April 3, 2004 (http://www.ida.liu.se/~uweas/sc2004). Workshop affiliated with ETAPS 2004 (http://www.lsi.upc.es/etaps04) Barcelona, Spain, March 28-April 4, 2004. Dept of Computing Science, University of Glasgow
Radiant-interchange configuration factors
Reddin, Thomas Edward
1965-01-01T23:59:59.000Z
an important role in any situation involving radiant interchange. The engineer desiring to compute the radiant heat transfer in a system is usually discouraged from performing more than a superficial estimation because of the excessive amount of time... Monitor System using the Fortran IV Compiler and the Macro Assembly Program. Listings of the programs appear in the appendices. CHAPTER II THE GEOMETRY OF THE BLACK BODY CONFIGURATION FACTOR 2. 1 Derivation of the Configuration Factor To evaluate...
Rapid calculation of the ion energy distribution on a plasma electrode Paola Diomede,a)
Economou, Demetre J.
Rapid calculation of the ion energy distribution on a plasma electrode Paola Diomede,a) Demetre J, but not excessively high to compromise selectivity or induce substrate damage. The ion energy distribution (IED 2012; published online 27 June 2012) A model was developed to rapidly calculate the ion energy
Ordenao por Block-Interchanges e Reverses com Sinais
Ayala-Rincón, Mauricio
interessantes (novas estruturas de dados, algoritmos e etc.). Cleber Mira, João Meidanis Block-Interchanges e interessantes (novas estruturas de dados, algoritmos e etc.). Cleber Mira, João Meidanis Block-Interchanges e interessantes (novas estruturas de dados, algoritmos e etc.). Cleber Mira, João Meidanis Block-Interchanges e
Fuel Interchangeability Considerations for Gas Turbine Combustion
Ferguson, D.H.
2007-10-01T23:59:59.000Z
In recent years domestic natural gas has experienced a considerable growth in demand particularly in the power generation industry. However, the desire for energy security, lower fuel costs and a reduction in carbon emissions has produced an increase in demand for alternative fuel sources. Current strategies for reducing the environmental impact of natural gas combustion in gas turbine engines used for power generation experience such hurdles as flashback, lean blow-off and combustion dynamics. These issues will continue as turbines are presented with coal syngas, gasified coal, biomass, LNG and high hydrogen content fuels. As it may be impractical to physically test a given turbine on all of the possible fuel blends it may experience over its life cycle, the need to predict fuel interchangeability becomes imperative. This study considers a number of historical parameters typically used to determine fuel interchangeability. Also addressed is the need for improved reaction mechanisms capable of accurately modeling the combustion of natural gas alternatives.
Kadmensky, S. G., E-mail: kadmensky@phys.vsu.ru; Titova, L. V.; Pen'kov, N. V. [Voronezh State University (Russian Federation)
2006-08-15T23:59:59.000Z
In the framework of quantum-mechanical fission theory, the method of calculation for partial fission width amplitudes and asymptotic behavior of the fissile nucleus wave function with strong channel coupling taken into account has been suggested. The method allows one to solve the calculation problem of angular and energy distribution countation for binary and ternary fission.
Renewable Generation Effect on Net Regional Energy Interchange...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Renewable Generation Effect on Net Regional Energy Interchange Preprint Victor Diakov, Gregory Brinkman, Paul Denholm, Thomas Jenkin, and Robert Margolis National Renewable Energy...
Guidelines for Provision and Interchange of Geothermal Data Assets
Broader source: Energy.gov [DOE]
This document presents guidelines related to provision and interchange of data assets in the context of the National Geothermal Data System.
Explicit estimation of higher order modes in fission source distribution of Monte-Carlo calculation
Yamamoto, A.; Sakata, K.; Endo, T. [Nagoya University, Department of Materials, Physics and Energy Engineering, Furo-cho, Chikusa-ku, Nagoya, 464-8603 (Japan)
2013-07-01T23:59:59.000Z
Magnitude of higher order modes in fission source distribution of a multi-group Monte-Carlo calculation is estimated using the orthogonal property of forward and adjoint fission source distributions. Calculation capability of the forward and adjoint fission source distributions for fundamental and higher order modes are implemented in the AEGIS code, which is a two-dimensional transport code based on the method of characteristics. With the calculation results of the AEGIS code, magnitudes of the first to fifth higher order modes in fission source distribution obtained by the multi-group Monte-Carlo code GMVP are estimated. There are two contributions in the present study - (1) establishment of a surrogate model, which represents convergence of fission source distribution taking into account the inherent statistical 'noise' of higher order modes of Monte-Carlo calculations and (2) independent confirmation of the estimated dominance ratio in a Monte-Carlo calculation. The surrogate model would contribute to studies of the inter-cycle correlation and estimation of sufficient number of inactive/active cycles. (authors)
Dzifcakova, E. [Astronomical Institute of the Academy of Sciences of the Czech Republic, Fricova 298, 251 65 Ondrejov (Czech Republic)] [Astronomical Institute of the Academy of Sciences of the Czech Republic, Fricova 298, 251 65 Ondrejov (Czech Republic); Dudik, J., E-mail: elena@asu.cas.cz [DAMTP, CMS, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA (United Kingdom)
2013-05-01T23:59:59.000Z
New data for the calculation of ionization and recombination rates have been published in the past few years, most of which are included in the CHIANTI database. We used these data to calculate collisional ionization and recombination rates for the non-Maxwellian {kappa}-distributions with an enhanced number of particles in the high-energy tail, which have been detected in the solar transition region and the solar wind. Ionization equilibria for elements H to Zn are derived. The {kappa}-distributions significantly influence both the ionization and recombination rates and widen the ion abundance peaks. In comparison with the Maxwellian distribution, the ion abundance peaks can also be shifted to lower or higher temperatures. The updated ionization equilibrium calculations result in large changes for several ions, notably Fe VIII-Fe XIV. The results are supplied in electronic form compatible with the CHIANTI database.
INTERCHANGE OF STREAM AND INTRAGRAVEL WATER IN A
and intragravel oxygen resupply 2 Transport processes: Stream-intragravel interchange 3 Ground-water oxygen transport 6 Intragravel oxygen balance ' Field verification of the slope-interchange mechanism 8 environmental factors causing mortality, such as floods and freezing (Royce, 1959). Other important factors
INTERCHANGE RECONNECTION IN A TURBULENT CORONA
Rappazzo, A. F.; Matthaeus, W. H. [Bartol Research Institute, Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States); Ruffolo, D. [Department of Physics, Faculty of Science, Mahidol University, Bangkok 10400 (Thailand); Servidio, S. [Dipartimento di Fisica, Universita della Calabria, I-87036 Cosenza (Italy); Velli, M., E-mail: rappazzo@udel.edu [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States)
2012-10-10T23:59:59.000Z
Magnetic reconnection at the interface between coronal holes and loops, the so-called interchange reconnection, can release the hotter, denser plasma from magnetically confined regions into the heliosphere, contributing to the formation of the highly variable slow solar wind. The interchange process is often thought to develop at the apex of streamers or pseudo-streamers, near Y- and X-type neutral points, but slow streams with loop composition have been recently observed along fanlike open field lines adjacent to closed regions, far from the apex. However, coronal heating models, with magnetic field lines shuffled by convective motions, show that reconnection can occur continuously in unipolar magnetic field regions with no neutral points: photospheric motions induce a magnetohydrodynamic turbulent cascade in the coronal field that creates the necessary small scales, where a sheared magnetic field component orthogonal to the strong axial field is created locally and can reconnect. We propose that a similar mechanism operates near and around boundaries between open and closed regions inducing a continual stochastic rearrangement of connectivity. We examine a reduced magnetohydrodynamic model of a simplified interface region between open and closed corona threaded by a strong unipolar magnetic field. This boundary is not stationary, becomes fractal, and field lines change connectivity continuously, becoming alternatively open and closed. This model suggests that slow wind may originate everywhere along loop-coronal-hole boundary regions and can account naturally and simply for outflows at and adjacent to such boundaries and for the observed diffusion of slow wind around the heliospheric current sheet.
3 Eigenvalues The calculation of the distribution of eigenvalues of very large matrices is a central
3 Eigenvalues The calculation of the distribution of eigenvalues of very large matrices: The number of operations increases as the third power of the dimension D of H and, perhaps most importantlyÂ¨odinger equation (TDSE) of a particle moving on a lattice, followed by a Fourier transform of the retarded Green
Ion finite Larmor radius effects on the interchange instability in an open system
Katanuma, I.; Sato, S.; Okuyama, Y.; Kato, S.; Kubota, R. [Plasma Research Center, University of Tsukuba, Tsukuba, Ibaraki 305-8577 (Japan)] [Plasma Research Center, University of Tsukuba, Tsukuba, Ibaraki 305-8577 (Japan)
2013-11-15T23:59:59.000Z
A particle simulation of an interchange instability was performed by taking into account the ion finite Larmor radius (FLR) effects. It is found that the interchange instability with large FLR grows in two phases, that is, linearly growing phase and the nonlinear phase subsequent to the linear phase, where the instability grows exponentially in both phases. The linear growth rates observed in the simulation agree well with the theoretical calculation. The effects of FLR are usually taken in the fluid simulation through the gyroviscosity, the effects of which are verified in the particle simulation with large FLR regime. The gyroviscous cancellation phenomenon observed in the particle simulation causes the drifts in the direction of ion diamagnetic drifts.
Lee, Chien-Wei; Hwu, Jenn-Gwo [Graduate Institute of Electronics Engineering/ Department of Electrical Engineering, National Taiwan University, Taipei, 10617, Taiwan (China)] [Graduate Institute of Electronics Engineering/ Department of Electrical Engineering, National Taiwan University, Taipei, 10617, Taiwan (China)
2013-10-15T23:59:59.000Z
We derive a statistical physics model of two-dimensional electron gas (2DEG) and propose an accurate approximation method for calculating the quantum-mechanical effects of metal-oxide-semiconductor (MOS) structure in accumulation and strong inversion regions. We use an exponential surface potential approximation in solving the quantization energy levels and derive the function of density of states in 2D to 3D transition region by applying uncertainty principle and Schrödinger equation in k-space. The simulation results show that our approximation method and theory of density of states solve the two major problems of previous researches: the non-negligible error caused by the linear potential approximation and the inconsistency of density of states and carrier distribution in 2D to 3D transition region.
Regulation of the centrifugal interchange cycle in Saturn's inner magnetosphere
Winglee, Robert M.
Regulation of the centrifugal interchange cycle in Saturn's inner magnetosphere A. Kidder,1 R. M, except that the heavy ions are being driven outward not by gravity but by centrifugal forces. Interplanetary magnetic field (IMF) parallel to the planetary magnetic field reduces centrifugal forcing, whereas
Context Interchange: New Features and Formalisms for the Intelligent Integration
Bressan, Stéphane
mediated data access to both traditional and web-based information sources. Categories and Subject information sources and receivers has grown at an unprecedented rate in the last few years, contributedContext Interchange: New Features and Formalisms for the Intelligent Integration of Information
The Evolution of Vertical IS Standards: Electronic Interchange Standards
Steinfield, Charles
on the technical details of IT-related standards, surprisingly little empirical research addresses the development from horizontal standards, not only in their narrower applicability, but also in their technical conteThe Evolution of Vertical IS Standards: Electronic Interchange Standards in the US Home Mortgage
Interchange Formats for Hybrid Systems: Review and Proposal
Carloni, Luca
and formal verification) and synthesis of hybrid systems, and we give a recommendation for an interchange to be powerful design representations for system- level design in particular for embedded controllers. The term: one would prefer to define a common model of computation for hybrid systems that should be used
Evaluation of TexSIM for modeling traffic behavior at diamond interchanges
Meadors, Allison Christine Cherry
1995-01-01T23:59:59.000Z
Poor operation of diamond interchanges along a freeway corridor can decrease the mobility of the corridor and increase time and energy costs associated with delay at signalized interchanges. Computer simulation provides a safe and efficient means...
McReynolds, W.L. (Bonneville Power Administration, Vancouver, WA (US)); Badley, D.E. (N.W. Power Pool, Coordinating Office, Portland, OR (US))
1991-08-01T23:59:59.000Z
This paper describes an automatic generation control (AGC) system that simultaneously reduces time error and accumulated inadvertent interchange energy in interconnected power system. This method is automatic time error and accumulated inadvertent interchange reduction (AIIR). With this method control areas help correct the system time error when doing so also tends to correct accumulated inadvertent interchange. Thus in one step accumulated inadvertent interchange and system time error are corrected.
Ito, Atsushi
Conversion from interchange-type modes to tearing modes: an explanation of tokamak anomalous of non-classical tearing mode exists in tokamaks: viz., current interchange tearing modes (CITMs). CITMs type (e.g., interchange/ballooning modes, drift waves, etc.) due to resistivity gradient in tokamaks
B.C. Lyons, S.C. Jardin, and J.J. Ramos
2012-06-28T23:59:59.000Z
A new code, the Neoclassical Ion-Electron Solver (NIES), has been written to solve for stationary, axisymmetric distribution functions (f ) in the conventional banana regime for both ions and elec trons using a set of drift-kinetic equations (DKEs) with linearized Fokker-Planck-Landau collision operators. Solvability conditions on the DKEs determine the relevant non-adiabatic pieces of f (called h ). We work in a 4D phase space in which ? defines a flux surface, ? is the poloidal angle, v is the total velocity referenced to the mean flow velocity, and ? is the dimensionless magnetic moment parameter. We expand h in finite elements in both v and ?#21; . The Rosenbluth potentials, ?#8; and ?, which define the integral part of the collision operator, are expanded in Legendre series in cos ? , where #31;? is the pitch angle, Fourier series in cos #18;? , and finite elements in v . At each ? , we solve a block tridiagonal system for hi (independent of fe ), then solve another block tridiagonal system for he (dependent on fi ). We demonstrate that such a formulation can be accurately and efficiently solved. NIES is coupled to the MHD equilibrium code JSOLVER [J. DeLucia, et al., J. Comput. Phys. 37 , pp 183-204 (1980).] allowing us to work with realistic magnetic geometries. The bootstrap current is calculated as a simple moment of the distribution function. Results are benchmarked against the Sauter analytic formulas and can be used as a kinetic closure for an MHD code (e.g., M3D-C1 [S.C. Jardin, et al ., Computational Science & Discovery, 4 (2012).]).
Lyons, B. C. [Program in Plasma Physics, Princeton University, Princeton, New Jersey 08543-0451 (United States); Jardin, S. C. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543-0451 (United States); Ramos, J. J. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307 (United States)
2012-08-15T23:59:59.000Z
A new code, the Neoclassical Ion-Electron Solver (NIES), has been written to solve for stationary, axisymmetric distribution functions (f) in the conventional banana regime for both ions and electrons using a set of drift-kinetic equations (DKEs) with linearized Fokker-Planck-Landau collision operators. Solvability conditions on the DKEs determine the relevant non-adiabatic pieces of f (called h). We work in a 4D phase space in which {psi} defines a flux surface, {theta} is the poloidal angle, v is the magnitude of the velocity referenced to the mean flow velocity, and {lambda} is the dimensionless magnetic moment parameter. We expand h in finite elements in both v and {lambda}. The Rosenbluth potentials, {Phi} and {Psi}, which define the integral part of the collision operator, are expanded in Legendre series in cos{chi}, where {chi} is the pitch angle, Fourier series in cos{theta}, and finite elements in v. At each {psi}, we solve a block tridiagonal system for h{sub i} (independent of f{sub e}), then solve another block tridiagonal system for h{sub e} (dependent on f{sub i}). We demonstrate that such a formulation can be accurately and efficiently solved. NIES is coupled to the MHD equilibrium code JSOLVER [J. DeLucia et al., J. Comput. Phys. 37, 183-204 (1980)] allowing us to work with realistic magnetic geometries. The bootstrap current is calculated as a simple moment of the distribution function. Results are benchmarked against the Sauter analytic formulas and can be used as a kinetic closure for an MHD code (e.g., M3D-C{sup 1}[S. C. Jardin et al., Comput. Sci. Discovery 5, 014002 (2012)]).
Ju, Tao
Geometric interpretation of the dose distribution comparison technique: Interpolation investigators to quantitatively compare multidimensional dose distributions. The tool requires the specification of dose and distance-to- agreement DTA criteria for acceptable variations between the dose distributions
Fu, Jun
2004-11-15T23:59:59.000Z
A Finite Hilbert Basis Set (FHBS) method to calculate the angular and energy distribution of ejected electrons in an ion-atom collision is presented. This method has been applied to the p + H collision at 20 keV impact energy. An interference effect...
Gajewski, Romuald [Department of Medical Physics, Sydney West Cancer Network, Westmead, New South Wales 2145 (Australia)
2009-07-15T23:59:59.000Z
A comprehensive method of output factor and dose distribution calculation for electron beams has been developed. It allows one to calculate the output factors and isodose distributions in water of arbitrary shaped electron fields with excellent accuracy even for the cases of concaved, small, elongated beams, and extended source to surface distances (SSDs). The method requires two sets of data: Depth dose distribution per monitor unit for circular cutouts and depth dose distributions per monitor unit for circular blocks (plugs), both for two SSDs, one reference of 100 cm and second extended one. The method has been extensively tested using a combination of different irregular cutouts and various SSDs for the 6 and 9 MeV electron beams. The calculated values agreed with the measured data well within 1% for output factors and below 1 for {gamma} (gamma test) for isodose distributions. The computer program has been developed to facilitate the method for practical application. The method has been used for almost 8 years considerably cutting workload in the department.
Reconnection and interchange instability in the near magnetotail
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Birn, Joachim; Liu, Yi -Hsin; Daughton, William; Hesse, Michael; Schindler, Karl
2015-07-16T23:59:59.000Z
This paper provides insights into the possible coupling between reconnection and interchange/ballooning in the magnetotail related to substorms and flow bursts. The results presented are largely based on recent simulations of magnetotail dynamics, exploring onset and progression of reconnection. 2.5-dimensional particle-in-cell (PIC) simulations with different tail deformation demonstrate a clear boundary between stable and unstable cases depending on the amount of deformation, explored up to the real proton/electron mass ratio. The evolution prior to onset, as well as the evolution of stable cases, are governed by the conservation of integral flux tube entropy S as imposed in ideal MHD, maintainingmore »a monotonic increase with distance downtail. This suggests that ballooning instability in the tail should not be expected prior to the onset of tearing and reconnection. 3-D MHD simulations confirm this conclusion, showing no indication of ballooning prior to reconnection, if the initial state is ballooning stable. The simulation also shows that, after imposing resistivity necessary to initiate reconnection, the reconnection rate and energy release initially remain slow. However, when S becomes reduced from plasmoid ejection and lobe reconnection, forming a negative slope in S as a function of distance from Earth, the reconnection rate and energy release increase drastically. The latter condition has been shown to be necessary for ballooning/interchange instability, and the cross-tail structures that develop subsequently in the MHD simulation are consistent with such modes. The simulations support a concept in which tail activity is initiated by tearing instability but significantly enhanced by the interaction with ballooning/interchange enabled by plasmoid loss and lobe reconnection.« less
Mauel, Michael E.
Observation of Centrifugally Driven Interchange Instabilities in a Plasma Confined by a Magnetic) Centrifugally driven interchange instabilities are observed in a laboratory plasma confined by a dipole magnetic electrostatic dipole vortex [3] that transports mass, energy, and charge [4]. The centrifugally driven
Sheridan, Jennifer
832 OPTICS LETTERS / Vol. 25, No. 11 / June 1, 2000 Simultaneous optical wavelength interchange January 21, 2000 We present a theoretical analysis for simultaneous optical wavelength interchange and isolation of a pair of collinear input optical signals by use of two concurrent difference
Two NP-hard Interchangeable Terminal Problems* Sartaj Sahni and San-Yuan Wu
Sahni, Sartaj K.
Two NP-hard Interchangeable Terminal Problems* Sartaj Sahni and San-Yuan Wu University of Minnesota ABSTRACT Two subproblems that arise when routing channels with interchangeable terminals are shown to be NP-hard. These problems are: P1: Is there a net to terminal assignment that results in an acyclic vertical constraint
Calculation of the fast ion tail distribution for a spherically symmetric hot spot
McDevitt, C. J.; Tang, X.-Z.; Guo, Z. [Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Berk, H. L. [Department of Physics, University of Texas, Austin, Texas 78712 (United States)
2014-10-15T23:59:59.000Z
The fast ion tail for a spherically symmetric hot spot is computed via the solution of a simplified Fokker-Planck collision operator. Emphasis is placed on describing the energy scaling of the fast ion distribution function in the hot spot as well as the surrounding cold plasma throughout a broad range of collisionalities and temperatures. It is found that while the fast ion tail inside the hot spot is significantly depleted, leading to a reduction of the fusion yield in this region, a surplus of fast ions is observed in the neighboring cold plasma region. The presence of this surplus of fast ions in the neighboring cold region is shown to result in a partial recovery of the fusion yield lost in the hot spot.
Siegel, Michael
2003-02-10T23:59:59.000Z
We examine semantic interoperability problems in the fixed income securities industry and propose a knowledge representation architecture for context interchange ...
Dryzek, Jerzy [Institute of Nuclear Physics PAN, ul. Radzikowskiego 152, 31-342 Kraków (Poland) [Institute of Nuclear Physics PAN, ul. Radzikowskiego 152, 31-342 Kraków (Poland); Institute of Physics, Opole University, ul. Oleska 48, 45-052 Opole (Poland); Siemek, Krzysztof [Institute of Nuclear Physics PAN, ul. Radzikowskiego 152, 31-342 Kraków (Poland)] [Institute of Nuclear Physics PAN, ul. Radzikowskiego 152, 31-342 Kraków (Poland)
2013-08-21T23:59:59.000Z
The spatial distribution of positrons emitted from radioactive isotopes into stacks or layered samples is a subject of the presented report. It was found that Monte Carlo (MC) simulations using GEANT4 code are not able to describe correctly the experimental data of the positron fractions in stacks. The mathematical model was proposed for calculations of the implantation profile or positron fractions in separated layers or foils being components of a stack. The model takes into account only two processes, i.e., the positron absorption and backscattering at interfaces. The mathematical formulas were applied in the computer program called LYS-1 (layers profile analysis). The theoretical predictions of the model were in the good agreement with the results of the MC simulations for the semi infinite sample. The experimental verifications of the model were performed on the symmetrical and non-symmetrical stacks of different foils. The good agreement between the experimental and calculated fractions of positrons in components of a stack was achieved. Also the experimental implantation profile obtained using the depth scanning of positron implantation technique is very well described by the theoretical profile obtained within the proposed model. The LYS-1 program allows us also to calculate the fraction of positrons which annihilate in the source, which can be useful in the positron spectroscopy.
An interchangeable scanning Hall probe/scanning SQUID microscope
Tang, Chiu-Chun; Lin, Hui-Ting; Wu, Sing-Lin [Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Chen, Tse-Jun; Wang, M. J. [Institute of Astronomy and Astrophysics, Academia Sinica, Taipei 10617, Taiwan (China); Ling, D. C. [Department of Physics, Tamkang University, Tamsui Dist., New Taipei City 25137, Taiwan (China); Chi, C. C.; Chen, Jeng-Chung [Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan (China)
2014-08-15T23:59:59.000Z
We have constructed a scanning probe microscope for magnetic imaging, which can function as a scanning Hall probe microscope (SHPM) and as a scanning SQUID microscope (SSM). The scanning scheme, applicable to SHPM and SSM, consists of a mechanical positioning (sub) micron-XY stage and a flexible direct contact to the sample without a feedback control system for the Z-axis. With the interchangeable capability of operating two distinct scanning modes, our microscope can incorporate the advantageous functionalities of the SHPM and SSM with large scan range up to millimeter, high spatial resolution (?4 ?m), and high field sensitivity in a wide range of temperature (4.2 K-300 K) and magnetic field (10{sup ?7} T-1 T). To demonstrate the capabilities of the system, we present magnetic images scanned with SHPM and SSM, including a RbFeB magnet and a nickel grid pattern at room temperature, surface magnetic domain structures of a La{sub 2/3}Ca{sub 1/3}MnO{sub 3} thin film at 77 K, and superconducting vortices in a striped niobium film at 4.2 K.
Downs, Robert T.
Electron Density Distributions Calculated for the Nickel Sulfides Millerite, Vaesite, and Heazlewoodite and Nickel Metal: A Case for the Importance of Ni-Ni Bond Paths for Electron Transport G. V. Gibbs's)) have been calculated for the bonded interactions comprising the nickel sulfide minerals millerite, Ni
Evaluation of traffic operations at diamond interchanges using advanced actuated control
Koonce, Peter John Vincent
1998-01-01T23:59:59.000Z
phasing is implemented by changing the diamond interchange ring structure within the traffic signal controller. Modeling the performance of the signal strategies is conducted using hardware-in-the-loop simulation. This procedure requires that a traffic...
Philipp Wein; Andreas Schäfer
2015-01-28T23:59:59.000Z
In this work we present a minimal parametrization of the light-cone distribution amplitudes of the baryon octet including higher twist contributions. Simultaneously we obtain the quark mass dependence of the amplitudes at leading one-loop accuracy by the use of three-flavor baryon chiral perturbation theory (BChPT), which automatically yields model-independent results for the leading $SU(3)$ flavor breaking effects. For that purpose we have constructed the nonlocal light-cone three-quark operators in terms of baryon octet and meson fields and have carried out a next-to-leading order BChPT calculation. We were able to find a minimal set of distribution amplitudes (DAs) that do not mix under chiral extrapolation towards the physical point and naturally embed the $\\Lambda$ baryon. Additionally they are chosen in such a way that all DAs of a certain symmetry class have a similar quark mass dependence (independent of the twist of the corresponding amplitude), which allows for a compact presentation. The results are well-suited for the extrapolation of lattice data and for model building.
Geothermal Energy and the Eastern US: Fifth technical information interchange meeting, Minutes
None
1980-12-01T23:59:59.000Z
The technical interchange meeting documented here is the fifth meeting where people interested in geothermal energy in the Eastern US have met to interchange technical information. These meetings are intended to assist all in the difficult task of balancing time and effort in doing their assigned jobs and keeping track of what others are doing in similar or related tasks. All of the aforementioned meetings have served their intended purpose and further regional and national meetings are sure to follow.
Ueda, R.; Matsumoto, Y.; Itagaki, M.; Oikawa, S. [Graduate School of Hokkaido University, Sapporo 060-8628 (Japan)] [Graduate School of Hokkaido University, Sapporo 060-8628 (Japan); Watanabe, K. Y.; Sato, M. [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292 (Japan)] [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292 (Japan)
2014-05-15T23:59:59.000Z
Focusing attention on the magnetic island formation, we investigate the characteristics of the resistive interchange magnetohydrodynamics instabilities, which would limit a high beta operational regime in helical type fusion reactors. An introduction of a new index, i.e., the ratio of the magnetic fluctuation level to the radial displacement, enables us to make a systematic analysis on the magnetic island formation in the large helical device-like plasmas during the linear growth phase; (i) the interchange instability with the second largest growth rate makes the magnetic island larger than that with the largest growth rate when the amplitude of the radial displacement in both cases is almost the same as each other; (ii) applied to a typical tearing instability, the index is smaller than that for the interchange instability with the second largest growth rate.
Fu, Yong
Outage Distribution Factors Jiachun Guo, Yong Fu, Member, IEEE, Zuyi Li, Member, IEEE, and Mohammad Shahidehpour, Fellow, IEEE Abstract--Line outage distribution factors (LODFs) are utilized to perform of LODFs, especially with multiple-line outages, could speed up contingency analyses and improve
California at Berkeley, University of
Remote sensing of the solar site of interchange reconnection associated with the May 1997 magnetic configuration at the source. Citation: Crooker, N. U., and D. F. Webb (2006), Remote sensing of the solar site be determined remotely from the direction of suprat
Tian, Zongzhong
2004-09-30T23:59:59.000Z
Diamond interchanges and their associated ramps are where the surface street arterial system and the freeway system interface. Historically, these two elements of the system have been operated with little or no coordination ...
Mohammadyari, P [Nuclear Engineering Department, School of Mechanical Engineering, Shiraz Un, Ilam (Iran, Islamic Republic of); Faghihi, R [Nuclear Engineering Department, Shiraz University, Shiraz (Iran, Islamic Republic of); Shirazi, M Mosleh [Radiotherapy and Oncology Department, Namazi Hospital, Shiraz University of M, Shiraz (Iran, Islamic Republic of); Lotfi, M [Shiraz University of Medical Sciences, Medical Imaging Research Center, Shiraz (Iran, Islamic Republic of); Meigooni, A [Comprehensive cancer center of Nevada - University of Nevada Las Vegas UNL, Las Vegas, NV (United States)
2014-06-01T23:59:59.000Z
Purpose: the accuboost is the most modern method of breast brachytherapy that is a boost method in compressed tissue by a mammography unit. the dose distribution in uncompressed tissue, as compressed tissue is important that should be characterized. Methods: In this study, the mechanical behavior of breast in mammography loading, the displacement of breast tissue and the dose distribution in compressed and uncompressed tissue, are investigated. Dosimetry was performed by two dosimeter methods of Monte Carlo simulations using MCNP5 code and thermoluminescence dosimeters. For Monte Carlo simulations, the dose values in cubical lattice were calculated using tally F6. The displacement of the breast elements was simulated by Finite element model and calculated using ABAQUS software, from which the 3D dose distribution in uncompressed tissue was determined. The geometry of the model is constructed from MR images of 6 volunteers. Experimental dosimetery was performed by placing the thermoluminescence dosimeters into the polyvinyl alcohol breast equivalent phantom and on the proximal edge of compression plates to the chest. Results: The results indicate that using the cone applicators would deliver more than 95% of dose to the depth of 5 to 17mm, while round applicator will increase the skin dose. Nodal displacement, in presence of gravity and 60N forces, i.e. in mammography compression, was determined with 43% contraction in the loading direction and 37% expansion in orthogonal orientation. Finally, in comparison of the acquired from thermoluminescence dosimeters with MCNP5, they are consistent with each other in breast phantom and in chest's skin with average different percentage of 13.7±5.7 and 7.7±2.3, respectively. Conclusion: The major advantage of this kind of dosimetry is the ability of 3D dose calculation by FE Modeling. Finally, polyvinyl alcohol is a reliable material as a breast tissue equivalent dosimetric phantom that provides the ability of TLD dosimetry for validation.
Nonlinear saturation of ideal interchange modes in a sheared magnetic field
Beklemishev, A.D.
1990-09-01T23:59:59.000Z
Pressure-driven ideal modes cannot completely interchange flux tubes of a sheared magnetic field; instead, they saturate, forming new helical equilibria. These equilibria are studied both analytically and numerically with reduced MHD equations in a flux-conserving Lagrangian representation. For unstable localized modes, the structure of the nonlinear layer generated around the resonant flux surface depends on the value of Mercier parameter D{sub M}. Its width is found to be proportional to the position of the inflection point on the linear eigenfunction. Perturbed surfaces in equilibrium always have folds, i.e., areas where the direction of the original reduced magnetic field is reserved. But only far from the instability threshold does the internal structure of the nonlinear layer resemble bubble' formation. The appearance of sheet currents and island-like structures along the resonant flux surface may be of interest for the description of forced reconnection in models with finite resistivity. Analytic results are found to be in agreement with 2-D numerical simulations. This study also includes the case of ballooning instability by representing nonlocal driving terms through the matching parameter {Delta}{prime}, which defines the outer boundary conditions for the interchange layer. 12 refs., 9 figs.
Net Interchange Schedule Forecasting of Electric Power Exchange for RTO/ISOs
Ferryman, Thomas A.; Haglin, David J.; Vlachopoulou, Maria; Yin, Jian; Shen, Chao; Tuffner, Francis K.; Lin, Guang; Zhou, Ning; Tong, Jianzhong
2012-07-26T23:59:59.000Z
Neighboring independent system operators (ISOs) exchange electric power to enable efficient and reliable operation of the grid. Net interchange (NI) schedule is the sum of the transactions (in MW) between an ISO and its neighbors. Effective forecasting of the amount of actual NI can improve grid operation efficiency. This paper presents results of a preliminary investigation into various methods of prediction that may result in improved prediction accuracy. The methods studied are linear regression, forward regression, stepwise regression, and support vector machine (SVM) regression. The work to date is not yet conclusive. The hope is to explore the effectiveness of other prediction methods and apply all methods to at least one new data set. This should enable more confidence in the conclusions.
Rotter, Stefan
symmetry that interchanges source drain leads, find framework random matrix theory density transmission the source drain leads couple to electronic reservoirs #see, e.g., Figs. 1#a# 1#b##, contrast them alignment entrance in a fraction of back reflected paths have updown reflected partner trajectory length e
Lee, Hyowon
to oxygen scavenging [5]. High CO2 levels (10- 80 %) are desirable for foods such as meat and poultryA NEW LED-LED PORTABLE CO2 GAS SENSOR BASED ON AN INTERCHANGEABLE MEMBRANE SYSTEM FOR INDUSTRIAL APPLICATIONS Abstract A new system for CO2 measurement (0-100%) by based on a paired emitter-detector diode
Washington at Seattle, University of
a key limiting instability for many magnetic confinement fusion configurations. In previous studies and are often referred to as fluting) and many other low magnetic shear confinement configurationsStabilization of Interchange Modes by Rotating Magnetic Fields H. Y. Guo, A. L. Hoffman, R. D
is termed Darcy's law, but. rather than a law, it is actually an equation which de- fines k, the "specific and magnitude of flow or interchange of this water were identified in this study. Equations describing motion permeability," or just "per- meability." In equation (1), p. is the liquid vis- cosity, and gc is the constant
Minimum Day Time Load Calculation and Screening
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Distributed Generation Interconnection Collaborative (DGIC) "Minimum Day Time Load Calculation and Screening" Dora Nakafuji and Anthony Hong, Hawaiian Electric Co. Babak Enayati,...
Distributed Energy Calculator | Open Energy Information
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousPlasmaP a g eWorks -09-0018-CX Jump to:Dasa Jump to: navigation,DevelopingDimethylGridDisnorte Dissur
Broader source: Energy.gov [DOE]
Original Impact Calculations, from the Tool Kit Framework: Small Town University Energy Program (STEP).
Multipole Electrostatics in Hydration Free Energy Calculations
Ponder, Jay
Multipole Electrostatics in Hydration Free Energy Calculations YUE SHI,1 CHUANJIE WU,2 JAY W Acceptance Ratio method. We have compared two approaches to derive the atomic multipoles from quantum mechanical calculations: one directly from the new distributed multipole analysis and the other involving
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Advanced Wall Systems ORNL Home ASTM Testing BEP Home Related Sites Work With Us Advanced Wall Systems Home Interactive Calculators New Whole Wall R-value Calculators As A Part Of...
Multiphase flow calculation software
Fincke, James R. (Idaho Falls, ID)
2003-04-15T23:59:59.000Z
Multiphase flow calculation software and computer-readable media carrying computer executable instructions for calculating liquid and gas phase mass flow rates of high void fraction multiphase flows. The multiphase flow calculation software employs various given, or experimentally determined, parameters in conjunction with a plurality of pressure differentials of a multiphase flow, preferably supplied by a differential pressure flowmeter or the like, to determine liquid and gas phase mass flow rates of the high void fraction multiphase flows. Embodiments of the multiphase flow calculation software are suitable for use in a variety of applications, including real-time management and control of an object system.
Broader source: Energy.gov [DOE]
Our appliance and electronic energy use calculator allows you to estimate your annual energy use and cost to operate specific products. The wattage values provided are samples only; actual wattage...
Geothermal Life Cycle Calculator
Sullivan, John
2014-03-11T23:59:59.000Z
This calculator is a handy tool for interested parties to estimate two key life cycle metrics, fossil energy consumption (Etot) and greenhouse gas emission (ghgtot) ratios, for geothermal electric power production. It is based solely on data developed by Argonne National Laboratory for DOE’s Geothermal Technologies office. The calculator permits the user to explore the impact of a range of key geothermal power production parameters, including plant capacity, lifetime, capacity factor, geothermal technology, well numbers and depths, field exploration, and others on the two metrics just mentioned. Estimates of variations in the results are also available to the user.
Geothermal Life Cycle Calculator
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Sullivan, John
This calculator is a handy tool for interested parties to estimate two key life cycle metrics, fossil energy consumption (Etot) and greenhouse gas emission (ghgtot) ratios, for geothermal electric power production. It is based solely on data developed by Argonne National Laboratory for DOE’s Geothermal Technologies office. The calculator permits the user to explore the impact of a range of key geothermal power production parameters, including plant capacity, lifetime, capacity factor, geothermal technology, well numbers and depths, field exploration, and others on the two metrics just mentioned. Estimates of variations in the results are also available to the user.
Broader source: Energy.gov [DOE]
This calculator estimates the amount of carbon emissions you and members of your household are responsible for. It does not include emissions associated with your work or getting to work if you commute by public transportation. It was developed by IEEE Spectrum magazine.
Husimi distribution function and one-dimensional Ising model
F. Kheirandish
2005-12-24T23:59:59.000Z
Husimi distribution function for the one-dimensional Ising model is obtained. One-point and joint distribution functions are calculated and their thermal behaviour are discussed.
Schenato, Luca
Networked Control Systems Clock Sync Channel identification in WSN Distributed control of Smart. Sandro Zampieri #12;Networked Control Systems Clock Sync Channel identification in WSN Distributed Systems Clock Sync Channel identification in WSN Distributed control of Smart Grids Conclusions Issues
randomly and equally likely a point in that interval), the uniform distribution ... Roughly speaking, this means that from any distribution we can create the uniform.
Calculated final state probability distributions for T2 -decay measurements
Washington at Seattle, University of - Department of Physics, Electroweak Interaction Research Group
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 1.6.1 Neutrinoless double beta decay . . . . . . . . . . . . . . . . . . . . 19 1.6.2 Cosmological
Current distribution in HTSC tapes obtained by inverse problem calculation
Amoros, Jaume
. There have been proposed several methods for non destructive in situ, or nearly in situ, testing of large on a non destructive measurement of the magnetic field created by the own current flowing in the SC. In this work, the QR inversion strategy is extended to non finite systems by considering the effect
CALCULATING INTERIOR DAYLIGHT ILLUMINATION WITH A PROGRAMMABLE HAND CALCULATOR
Bryan, Harvey J.
2013-01-01T23:59:59.000Z
illumination at any sky luminance distribution functionsis a function the sky luminance, the window transmission,4. 2 1 of Luminance Distribution on Clear Skies 1 11 CIE
Thompson, Undiné-Celeste, E-mail: undine_t@hotmail.com; Marsan, Jean-François, E-mail: jfmarsan@hotmail.com; Fournier-Peyresblanques, Bastien, E-mail: bastien.fp@gmail.com; Forgues, Chantal, E-mail: chantal_forgues@hotmail.com; Ogaa, Anita, E-mail: aogaa1@gmail.com; Jaeger, Jochen A.G., E-mail: jochen.jaeger@concordia.ca
2013-09-15T23:59:59.000Z
There is increasing concern about the disjunct between the intent of higher level government goals and actual projects “on the ground” in Canada. Although strategic environmental assessment (SEA) and a wide variety of plans, policies and programmes (PPP) contain and promote goals that envision a movement towards social, economic and environmental sustainability, these goals are not necessarily upheld by large-scale projects and their environmental impact assessments (EIAs). This disconnect is often illustrated through anecdotal observations. However, to be able to overcome this disjunct it is imperative to come to a clearer understanding of the degree of sustainability or unsustainability of large-scale developments and the way in which they “measure up” in terms of the goals when compared to alternative options. This article proposes a Compliance Analysis method for investigating the level of harmonization between SEA, PPP and proposed projects and their possible alternatives (CAPPP). This method is quantified through a Likert scale which allows for comparison of alternatives for decision making and analytical purposes. The 2009 proposal for the Turcot Exchange redevelopment in Montréal, Québec, put forward by the Ministry of Transport of Québec (MTQ), as well as two alternative proposals, were utilized as a case study to clearly demonstrate the CAPPP methodology and its applicability. The approved plan for the Turcot redevelopment proposed by MTQ was found to be in poor compliance with the majority of the 178 goals in the six sectors that were examined (air quality, climate change, health, noise, socioeconomic, transport), while alternative proposals were found to be in greater accordance with the intentions of governmental SEA and PPP. Synthesis and applications: The CAPPP methodology is a versatile “watchdog” tool for the examination of the level of compliance between stated goals for regions, industrial sectors, or governments and the EIAs of concrete projects “on the ground”. CAPPP can be used as a tool for comparative analysis in decision-making situations at various scales. CAPPP is a fairly straight-forward method that can be used by policy makers, EIA experts, and members of the general public alike. Highlights: ? We investigated the level of harmonization between SEA, plans, policies and programmes and EIA projects. ? We created a new methodology: the goal compliance analysis (GCA). ? We tested it on an ongoing project, the Turcot Interchange in Montreal, Canada. ? The method is straight-forward and can be used by policy makers, EIA experts, and members of the general public alike.
How Are Momentum Savings Calculated?
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Simplifying the Math: How Are Momentum Savings Calculated? Many people have heard about Momentum savings but don't understand how these types of savings are calculated. The short...
Health Calculators & Logs - HPMC Occupational Health Services
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Calculators & Logs Health Education & Wellness Downloads & Patient Materials Health & Productivity Health Calculators & Logs Body Mass Index Calorie Calculator Health Coaching...
Calorie Calculator - HPMC Occupational Health Services
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Calorie Calculator Health Education & Wellness Downloads & Patient Materials Health & Productivity Health Calculators & Logs Body Mass Index Calorie Calculator Health Coaching...
Ness, E.
1999-09-02T23:59:59.000Z
Distributed generation, locating electricity generators close to the point of consumption, provides some unique benefits to power companies and customers that are not available from centralized electricity generation. Photovoltaic (PV) technology is well suited to distributed applications and can, especially in concert with other distributed resources, provide a very close match to the customer demand for electricity, at a significantly lower cost than the alternatives. In addition to augmenting power from central-station generating plants, incorporating PV systems enables electric utilities to optimize the utilization of existing transmission and distribution.
CALCULATING INTERIOR DAYLIGHT ILLUMINATION WITH A PROGRAMMABLE HAND CALCULATOR
Bryan, Harvey J.
2013-01-01T23:59:59.000Z
within a room utilizing sky luminance distribution functionsis a function of the sky luminance, the window transmission,normal. The CIE Standard Sky luminance function is given by
ITP Industrial Distributed Energy: Distributed Energy Program...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
ITP Industrial Distributed Energy: Distributed Energy Program Project Profile: Verizon Central Office Building ITP Industrial Distributed Energy: Distributed Energy Program Project...
Computational Tools for Supersymmetry Calculations
Howard Baer
2009-12-16T23:59:59.000Z
I present a brief overview of a variety of computational tools for supersymmetry calculations, including: spectrum generators, cross section and branching fraction calculators, low energy constraints, general purpose event generators, matrix element event generators, SUSY dark matter codes, parameter extraction codes and Les Houches interface tools.
Closure and Sealing Design Calculation
T. Lahnalampi; J. Case
2005-08-26T23:59:59.000Z
The purpose of the ''Closure and Sealing Design Calculation'' is to illustrate closure and sealing methods for sealing shafts, ramps, and identify boreholes that require sealing in order to limit the potential of water infiltration. In addition, this calculation will provide a description of the magma that can reduce the consequences of an igneous event intersecting the repository. This calculation will also include a listing of the project requirements related to closure and sealing. The scope of this calculation is to: summarize applicable project requirements and codes relating to backfilling nonemplacement openings, removal of uncommitted materials from the subsurface, installation of drip shields, and erecting monuments; compile an inventory of boreholes that are found in the area of the subsurface repository; describe the magma bulkhead feature and location; and include figures for the proposed shaft and ramp seals. The objective of this calculation is to: categorize the boreholes for sealing by depth and proximity to the subsurface repository; develop drawing figures which show the location and geometry for the magma bulkhead; include the shaft seal figures and a proposed construction sequence; and include the ramp seal figure and a proposed construction sequence. The intent of this closure and sealing calculation is to support the License Application by providing a description of the closure and sealing methods for the Safety Analysis Report. The closure and sealing calculation will also provide input for Post Closure Activities by describing the location of the magma bulkhead. This calculation is limited to describing the final configuration of the sealing and backfill systems for the underground area. The methods and procedures used to place the backfill and remove uncommitted materials (such as concrete) from the repository and detailed design of the magma bulkhead will be the subject of separate analyses or calculations. Post-closure monitoring will not be addressed in this calculation.
Daylighting Calculation in DOE-2
Winkelmann, F.C
2013-01-01T23:59:59.000Z
8 2.4 Sky LuminanceXBL~829—4589 6. Clear sky luminance distribution as measuredand overcast sky DYL Sky luminance ' y DNSOL I Direct
Calculation of Neutral Beam Injection into SSPX
Pearlstein, L D; Casper, T A; Hill, D N; LoDestro, L L; McLean, H S
2006-06-13T23:59:59.000Z
The SSPX spheromak experiment has achieved electron temperatures of 350eV and confinement consistent with closed magnetic surfaces. In addition, there is evidence that the experiment may be up against an operational beta limit for Ohmic heating. To test this barrier, there are firm plans to add two 0.9MW Neutral Beam (NB) sources to the experiment. A question is whether the limit is due to instability. Since the deposited Ohmic power in the core is relatively small the additional power from the beams is sufficient to significantly increase the electron temperature. Here we present results of computations that will support this contention. We have developed a new NB module to calculate the orbits of the injected fast fast-ions. The previous computation made heavy use of tokamak ordering which fails for a tight-aspect-ratio device, where B{sub tor} {approx} B{sub pol}. The model calculates the deposition from the NFREYA package [1]. The neutral from the CX deposition is assumed to be ionized in place, a high-density approximation. The fast ions are then assumed to fill a constant angular momentum orbit. And finally, the fast ions immediately assume the form of a dragged down distribution. Transfer rates are then calculated from this distribution function [2]. The differential times are computed from the orbit times and the particle weights in each flux zone (the sampling bin) are proportional to the time spent in the zone. From this information the flux-surface-averaged profiles are obtained and fed into the appropriate transport equation. This procedure is clearly approximate, but accurate enough to help guide experiments. A major advantage is speed: 5000 particles can be processed in under 4s on our fastest LINUX box. This speed adds flexibility by enabling a ''large'' number of predictive studies. Similar approximations, without the accurate orbit calculation presented here, had some success comparing with experiment and TRANSP [3]. Since our procedure does not have multiple CX and relies on disparate time scales, more detailed understanding requires a ''complete'' NB package such as the NUBEAM [4] module, which follows injected fast ions along with their generations until they enter the main thermal distribution.
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:5 TablesExports(Journal Article)41cloth Documentation DataDepartment of EnergyOn-Farm1 of 62.1Energy,Busy Y-12 Fire StationWallace to
SB EE Calculator | Argonne National Laboratory
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Calculator Energy Efficiency Decision Support Calculator Argonne's Energy Efficiency Decision Support Calculator is a simple tool that small business owners can use to quickly...
Chen, Yangjun
Distributed DBMS Outline Introduction What is a distributed DBMS Problems Current state-of-affairs Background Distributed DBMS Architecture Distributed Database Design Semantic Data Control Distributed Query Processing Distributed Transaction Management Parallel Database Systems Distributed Object DBMS
User
NORMAL DlSTRlBUTION TABLE. Entries represent the area under the standardized normal distribution from -w to z, Pr(Z
Transfer Area Mechanical Handling Calculation
B. Dianda
2004-06-23T23:59:59.000Z
This calculation is intended to support the License Application (LA) submittal of December 2004, in accordance with the directive given by DOE correspondence received on the 27th of January 2004 entitled: ''Authorization for Bechtel SAX Company L.L. C. to Include a Bare Fuel Handling Facility and Increased Aging Capacity in the License Application, Contract Number DE-AC28-01R W12101'' (Arthur, W.J., I11 2004). This correspondence was appended by further Correspondence received on the 19th of February 2004 entitled: ''Technical Direction to Bechtel SAIC Company L.L. C. for Surface Facility Improvements, Contract Number DE-AC28-OIRW12101; TDL No. 04-024'' (BSC 2004a). These documents give the authorization for a Fuel Handling Facility to be included in the baseline. The purpose of this calculation is to establish preliminary bounding equipment envelopes and weights for the Fuel Handling Facility (FHF) transfer areas equipment. This calculation provides preliminary information only to support development of facility layouts and preliminary load calculations. The limitations of this preliminary calculation lie within the assumptions of section 5 , as this calculation is part of an evolutionary design process. It is intended that this calculation is superseded as the design advances to reflect information necessary to support License Application. The design choices outlined within this calculation represent a demonstration of feasibility and may or may not be included in the completed design. This calculation provides preliminary weight, dimensional envelope, and equipment position in building for the purposes of defining interface variables. This calculation identifies and sizes major equipment and assemblies that dictate overall equipment dimensions and facility interfaces. Sizing of components is based on the selection of commercially available products, where applicable. This is not a specific recommendation for the future use of these components or their related manufacturer. A component produced by one manufacturer certainly varies dimensionally from a similar product produced by a different manufacturer. The internal envelope dimensions are dependent on the selection of the individual components. The external envelope dimensions, as well as, key interface dimensions are established within this calculation and are to be treated as bounding dimensions.
Calculation of a fluctuating entropic force by phase space sampling
Waters, James T
2015-01-01T23:59:59.000Z
A polymer chain pinned in space exerts a fluctuating force on the pin point in thermal equilibrium. The average of such fluctuating force is well understood from statistical mechanics as an entropic force, but little is known about the underlying force distribution. Here, we introduce two phase space sampling methods that can produce the equilibrium distribution of instantaneous forces exerted by a terminally pinned polymer. In these methods, both the positions and momenta of mass points representing a freely jointed chain are perturbed in accordance with the spatial constraints and the Boltzmann distribution of total energy. The constraint force for each conformation and momentum is calculated using Lagrangian dynamics. Using terminally pinned chains in space and on a surface, we show that the force distribution is highly asymmetric with both tensile and compressive forces. Most importantly, the mean of the distribution, which is equal to the entropic force, is not the most probable force even for long chain...
Energy Distribution of a Charged Regular Black Hole
Irina Radinschi
2000-11-20T23:59:59.000Z
We calculate the energy distribution of a charged regular black hole by using the energy-momentum complexes of Einstein and M{\\o}ller.
Log-normal distribution for correlators in lattice QCD?
Thomas DeGrand
2012-04-20T23:59:59.000Z
Many hadronic correlators used in spectroscopy calculations in lattice QCD simulations appear to show a log-normal distribution at intermediate time separations.
Understanding Parton Distributions from Lattice QCD
Dru B. Renner
2005-08-04T23:59:59.000Z
I examine the past lattice QCD calculations of three representative observables, the transverse quark distribution, momentum fraction, and axial charge, and emphasize the prospects for not only quantitative comparison with experiment but also qualitative understanding of QCD.
Generalized Parton Distributions from Lattice QCD
D. B. Renner
2005-01-05T23:59:59.000Z
I review the LHPC Collaboration's lattice QCD calculations of the generalized parton distributions of the nucleon and highlight those aspects of nucleon structure best illuminated by lattice QCD, the nucleon's spin decomposition and transverse quark structure.
Paris-Sud XI, Université de
- perature model of a first order stream in Luxembourg. A DTS (Distributed Temperature Sensing) fiber optic model presented here. The model calculates the total energy balance including solar radia- tion (with runoff components. The DTS fiber optic is an excellent tool to provide this knowledge. 1 Introduction15
Light Meson Distribution Amplitudes
R. Arthur; P. A. Boyle; D. Brömmel; M. A. Donnellan; J. M. Flynn; A. Jüttner; H. Pedroso de Lima; T. D. Rae; C. T. Sachrajda; B. Samways
2010-11-12T23:59:59.000Z
We calculated the first two moments of the light-cone distribution amplitudes for the pseudoscalar mesons ($\\pi$ and $K$) and the longitudinally polarised vector mesons ($\\rho$, $K^*$ and $\\phi$) as part of the UKQCD and RBC collaborations' $N_f=2+1$ domain-wall fermion phenomenology programme. These quantities were obtained with a good precision and, in particular, the expected effects of $SU(3)$-flavour symmetry breaking were observed. Operators were renormalised non-perturbatively and extrapolations to the physical point were made, guided by leading order chiral perturbation theory. The main results presented are for two volumes, $16^3\\times 32$ and $24^3\\times 64$, with a common lattice spacing. Preliminary results for a lattice with a finer lattice spacing, $32^3\\times64$, are discussed and a first look is taken at the use of twisted boundary conditions to extract distribution amplitudes.
Building wall heat flux calculations
Park, J.E.; Kirkpatrick, J.R.; Tunstall, J.N.; Childs, K.W.
1987-01-01T23:59:59.000Z
Calculations of the heat transfer through the standard stud wall structure of a residential building are described. The wall cavity contains no insulation. Four of the five test cases represent progressively more complicated approximations to the heat transfer through and within a hollow wall structure. The fifth adds the model components necessary to severely inhibit the radiative energy transport across the empty cavity. Flow within the wall cavity is calculated from the Navier-Stokes equations and the energy conservation equation for an ideal gas using the Implicit Compressible Eulerian (ICE) algorithm. The fluid flow calculation is coupled to the radiation-conduction model for the solid portions of the system. Conduction through sill plates is about 4% of the total heat transferred through a composite wall.
Random number stride in Monte Carlo calculations
Hendricks, J.S.
1990-01-01T23:59:59.000Z
Monte Carlo radiation transport codes use a sequence of pseudorandom numbers to sample from probability distributions. A common practice is to start each source particle a predetermined number of random numbers up the pseudorandom number sequence. This number of random numbers skipped between each source particles the random number stride, S. Consequently, the jth source particle always starts with the j{center dot}Sth random number providing correlated sampling'' between similar calculations. A new machine-portable random number generator has been written for the Monte Carlo radiation transport code MCNP providing user's control of the random number stride. First the new MCNP random number generator algorithm will be described and then the effects of varying the stride will be presented. 2 refs., 1 fig.
DISTRIBUTED DATABASES INTRODUCTION
Liu, Chengfei
D DISTRIBUTED DATABASES INTRODUCTION The development of network and data communication tech- nology distributed database management. Naturally, the decen- tralized approach reflects the distributed aspects in the definition of a distributed database exist. First, a distributed database is distributed
DOE's Roof Savings Calculator (RSC)
Wang, Xiaorui "Ray"
DOE's Roof Savings Calculator (RSC) http://rsc.ornl.gov (www.roofcalc.com) in collaboration) Whole Building and Community Integration Group for: MCA Roofing Council Clearwater Beach, FL January 27, 2014 #12;Presentation summary · Context US Energy and ORNL BTRIC · Building Physics · Roof Savings
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:5 TablesExports(Journal Article)41clothThe Bonneville Power Administration wouldDecemberReportsEnergy Analysis Energy Analysis ElectricityDistributed
Heller, Barbara
probabilities in the standard normal table What is the area to the left of Z=1.51 in a standard normal curve? Z=1.51 Z=1.51 Area is 93.45% #12;Exercises Â· If scores are normally distributed with a mean of 30 beauty of the normal curve: No matter what and are, the area between - and + is about 68%; the area
Key distributionKey distribution Key distribution, symmetric encryption
Fisher, Michael
COMP 522 Key distributionKey distribution COMP 522 Key distribution, symmetric encryption From in a secure way and must keep the key secure" · Important issue: how to distribute secret keys? COMP 522 Key distribution, manual delivery For two parties A and B: · A key could be created by A and delivered physically
Building wall heat flux calculations
Park, J.E.; Kirkpatrick, J.R.; Tunstall, J.N.; Childs, K.W.
1987-06-01T23:59:59.000Z
Calculations of the heat transfer through the standard stud wall structure of a residential building are described. The wall cavity contains no insulation. Four of the five test cases represent progressively more complicated approximations to the heat transfer through and within a hollow wall structure. The fifth adds the model components necessary to severely inhibit the radiative energy transport across the empty cavity. Flow within the wall cavity is calculated from the Navier-Stokes equations and the energy conservation equation for an ideal gas using the Implicit Compressible Eulerian (ICE) algorithm. The fluid flow calculation is coupled to the radiation-conduction model for the solid portions of the system. Conduction through sill plates is about 4% of the total heat transferred through a composite wall. All of the other model elements (conduction through wall board, sheathing, and siding; convection from siding and wallboard to ambients; and radiation across the wall cavity) are required to accurately predict the heat transfer through a wall. Addition of a foil liner on one inner surface of the wall cavity reduces the total heat transferred by almost 50%.
Excited State Effects in Nucleon Matrix Element Calculations
Constantia Alexandrou, Martha Constantinou, Simon Dinter, Vincent Drach, Karl Jansen, Theodoros Leontiou, Dru B Renner
2011-12-01T23:59:59.000Z
We perform a high-statistics precision calculation of nucleon matrix elements using an open sink method allowing us to explore a wide range of sink-source time separations. In this way the influence of excited states of nucleon matrix elements can be studied. As particular examples we present results for the nucleon axial charge g{sub A} and for the first moment of the isovector unpolarized parton distribution x{sub u-d}. In addition, we report on preliminary results using the generalized eigenvalue method for nucleon matrix elements. All calculations are performed using N{sub f} = 2+1+1 maximally twisted mass Wilson fermions.
Analytic calculation of 1-jettiness in DIS at O (?s)
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Kang, Daekyoung; Lee, Christopher; Stewart, Iain W.
2014-11-24T23:59:59.000Z
We present an analytic O(?s) calculation of cross sections in deep inelastic scattering (DIS) dependent on an event shape, 1-jettiness, that probes final states with one jet plus initial state radiation. This is the first entirely analytic calculation for a DIS event shape cross section at this order. We present results for the differential and cumulative 1-jettiness cross sections, and express both in terms of structure functions dependent not only on the usual DIS variables x, Q 2 but also on the 1-jettiness ?. Combined with previous results for log resummation, predictions are obtained over the entire range of themore »1-jettiness distribution.« less
Equilibrium surface distributions for constant energy ensembles B. I. Henry
Henry, Bruce Ian
Equilibrium surface distributions for constant energy ensembles B. I. Henry Department of Applied distributions are seen [11,12]. In this paper we shall discuss how one calculates the constant energy energy en semble are discussed. An equilibrium surface density is introduced and used to calculate
Office of Scientific and Technical Information (OSTI)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:5 TablesExports to3,1,50022,3,,0,,6,1,Separation 23Tribal EnergyCatalyticPreparation and propertiessystem (Conference)U.S. China60308U235:DISTRIBUTION
Introduction to Dynamic Distributed
Roma "La Sapienza", Università di
Introduction to Dynamic Distributed SystemsSystems #12;Outline Introduction Churn Building Applications in Dynamic Distributed Systems RegistersRegisters Eventual Leader election Connectivity in Dynamic Distributed Systems #12;Dynamic Distributed Systems: Context & Motivations Advent of Complex Distributed
Incorporating Weather Data into Energy Savings Calculations ...
Weather Data into Energy Savings Calculations Incorporating Weather Data into Energy Savings Calculations Better Buildings Residential Network Peer Exchange Call Series:...
Using a calculator to do statistics
Dave
2012-03-25T23:59:59.000Z
Statistics on a Scientific Calculator. NOTE: Some of these may not be regular keys on your calculator and may appear in a different color above another key.
Harmonic Analysis Errors in Calculating Dipole,
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
to reduce the harmonic field calculation errors. A conformal transfor- mation of a multipole magnet into a dipole reduces these errors. Dipole Magnet Calculations A triangular...
Baltazar-Cervantes, J. C.; Gilman, D.; Haberl, J. S.; Culp, C.
2005-01-01T23:59:59.000Z
subdivision level. According to this TCEQ guidance, energy efficiency, renewable energy and no-emission distributed generation strategies that may be considered for inclusion as SIP measures include, among others, the Local Distributed Generation Solar... of Wisconsin for the U.S. Department of Energy (Klein and Beckman, 1983). METHODOLOGY To calculate NOx emissions from the installation of solar energy systems, two analyses were created: one procedure for calculating annual and peak-day 8 electricity...
On the calculation of percentile-based bibliometric indicators
Waltman, Ludo
2012-01-01T23:59:59.000Z
A percentile-based bibliometric indicator is an indicator that values publications based on their position within the citation distribution of their field. The most straightforward percentile-based indicator is the proportion of frequently cited publications, for instance the proportion of publications that belong to the top 10% most frequently cited of their field. Recently, more complex percentile-based indicators were proposed. A difficulty in the calculation of percentile-based indicators is caused by the discrete nature of citation distributions combined with the presence of many publications with the same number of citations. We introduce an approach to calculating percentile-based indicators that deals with this difficulty in a more satisfactory way than earlier approaches suggested in the literature. We show in a formal mathematical framework that our approach leads to indicators that do not suffer from biases in favor of or against particular fields of science.
558: Calculation of Eddy Currents in the ETE Spherical Torus G.O. Ludwig
558: Calculation of Eddy Currents in the ETE Spherical Torus G.O. Ludwig Instituto Nacional de model based on the Green's function method. The distribution of eddy currents is calculated using a thin well with values of the eddy currents measured in ETE. INTRODUCTION This paper presents a magnetostatic
Indoor design condition and the cooling load calculation
Sun, T.Y. [Sun (Tseng-Yao), Rancho Palos Verde, CA (United States)
1997-12-01T23:59:59.000Z
Cooling load calculation involves two steps. The first is to determine the basic building load. This consists of external loads through the building envelope and internal loads from people, lights, appliances, and other heat sources. The required supply air quantity for each conditioned space generally is determined in the first step. This is because each relates only to the coil leaving and required room dry bulb temperatures (unless reheat is required to control the humidity level in the conditioned space). The second step, after completing the above, is to calculate the system cooling load. This step adapts the selected air distribution system to the building load and involves the introduction of the required outdoor air volume into the air conditioning system for ventilation. Proper psychrometric analysis is required to calculate the entering and leaving wet bulb conditions of the air passing through the cooling coil. These, together with the corresponding dry bulb temperatures, will determine the system cooling load.
The First Calculation of Fractional Jets
Daniele Bertolini; Jesse Thaler; Jonathan R. Walsh
2015-05-14T23:59:59.000Z
In collider physics, jet algorithms are a ubiquitous tool for clustering particles into discrete jet objects. Event shapes offer an alternative way to characterize jets, and one can define a jet multiplicity event shape, which can take on fractional values, using the framework of "jets without jets". In this paper, we perform the first analytic studies of fractional jet multiplicity $\\tilde{N}_{\\rm jet}$ in the context of $e^+e^-$ collisions. We use fixed-order QCD to understand the $\\tilde{N}_{\\rm jet}$ cross section at order $\\alpha_s^2$, and we introduce a candidate factorization theorem to capture certain higher-order effects. The resulting distributions have a hybrid jet algorithm/event shape behavior which agrees with parton shower Monte Carlo generators. The $\\tilde{N}_{\\rm jet}$ observable does not satisfy ordinary soft-collinear factorization, and the $\\tilde{N}_{\\rm jet}$ cross section exhibits a number of unique features, including the absence of collinear logarithms and the presence of soft logarithms that are purely non-global. Additionally, we find novel divergences connected to the energy sharing between emissions, which are reminiscent of rapidity divergences encountered in other applications. Given these interesting properties of fractional jet multiplicity, we advocate for future measurements and calculations of $\\tilde{N}_{\\rm jet}$ at hadron colliders like the LHC.
Parton content of the nucleon from distribution amplitudes and transition distribution amplitudes
B. Pasquini; M. Pincetti; S. Boffi
2009-07-06T23:59:59.000Z
The nucleon distribution amplitudes and the nucleon-to-pion transition distribution amplitudes are investigated at leading twist within the frame of a light-cone quark model. The distribution amplitudes probe the three-quark component of the nucleon light-cone wave function, while higher order components in the Fock-space expansion of the nucleon state are essential to describe the nucleon-to-pion transition distribution amplitudes. Adopting a meson-cloud model of the nucleon the nucleon-to-pion transition distribution amplitudes are calculated for the first time.
Energy Distribution of Nanoflares in Three-Dimensional Simulations of
Ng, Chung-Sang
Energy Distribution of Nanoflares in Three-Dimensional Simulations of Coronal Heating Chung-Sang Ng difficulties. We will present energy distributions and other statistics based on our simulations, calculated simulation results. · Parker's nanoflare heating model vs observations · Energy distributions of nanoflares
Energy Distribution of Nanoflares in Three-Dimensional Simulations of
Ng, Chung-Sang
Energy Distribution of Nanoflares in Three-Dimensional Simulations of Coronal Heating Chung-Sang Ng]. While there have been many observations of the energy distribution of solar flares, there have not been difficulties. We will present energy distributions and other statistics based on our simulations, calculated
Distributed Theorem Proving for Distributed Hybrid Systems
Platzer, André
system with a varying number of arbitrarily many cars. 1 Introduction Hybrid systems with joint discrete a multi-agent system, e.g., distributed car control systems. Such systems form distributed hybrid systemsDistributed Theorem Proving for Distributed Hybrid Systems David W. Renshaw, Sarah M. Loos
RTU Comparison Calculator Enhancement Plan
Miller, James D.; Wang, Weimin; Katipamula, Srinivas
2014-03-31T23:59:59.000Z
Over the past two years, Department of Energy’s Building Technologies Office (BTO) has been investigating ways to increase the operating efficiency of the packaged rooftop units (RTUs) in the field. First, by issuing a challenge to the RTU manufactures to increase the integrated energy efficiency ratio (IEER) by 60% over the existing ASHRAE 90.1-2010 standard. Second, by evaluating the performance of an advanced RTU controller that reduces the energy consumption by over 40%. BTO has previously also funded development of a RTU comparison calculator (RTUCC). RTUCC is a web-based tool that provides the user a way to compare energy and cost savings for two units with different efficiencies. However, the RTUCC currently cannot compare savings associated with either the RTU Challenge unit or the advanced RTU controls retrofit. Therefore, BTO has asked PNNL to enhance the tool so building owners can compare energy and savings associated with this new class of products. This document provides the details of the enhancements that are required to support estimating energy savings from use of RTU challenge units or advanced controls on existing RTUs.
Interchange turbulence simulations for JET relevant parameters
, Culham Science center, Abingdon UK W. Fundamenski et al, subm. NF (2006) IEA Large Tokamak IA Workshop on Edge Transport in Fusion Plasmas #12;IEA Large Tokamak IA Workshop on Edge Transport in Fusion Plasmas from first principal #12;IEA Large Tokamak IA Workshop on Edge Transport in Fusion Plasmas ESEL code
Interchange Format for Hybrid Systems: Abstract Semantics
Carloni, Luca
used by the algorithms. Modelica, for instance, pro- vides a language for describing systems in terms
Consolidated periphery : commercial and highway interchange
McGrath, Christine L. (Christine Lynn)
1997-01-01T23:59:59.000Z
Highway expansion legislation has been a significant catalyst for suburban development. Initially funded for military mobilization in the 1930s , later massively extended in the 1950s, today's highway system, together with ...
Discrete multivariate distributions
Oleg Yu. Vorobyev; Lavrentiy S. Golovkov
2011-02-22T23:59:59.000Z
This article brings in two new discrete distributions: multidimensional Binomial distribution and multidimensional Poisson distribution. Those distributions were created in eventology as more correct generalizations of Binomial and Poisson distributions. Accordingly to eventology new laws take into account full distribution of events. Also, in article its characteristics and properties are described
DENSITY OF STATES CALCULATIONS FOR CARBON
Adler, Joan
DENSITY OF STATES CALCULATIONS FOR CARBON ALLOTROPES AND MIXTURES EDUARDO WARSZAWSKI #12;#12;DENSITY OF STATES CALCULATIONS FOR CARBON ALLOTROPES AND MIXTURES Research Thesis Submitted in Partial;#12;Contents Abstract xiii 1 Introduction 1 1.1 Carbon allotropes
Quantum transport calculations using periodic boundaryconditions
Wang, Lin-Wang
2004-06-15T23:59:59.000Z
An efficient new method is presented to calculate the quantum transports using periodic boundary conditions. This method allows the use of conventional ground state ab initio programs without big changes. The computational effort is only a few times of a normal groundstate calculations, thus is makes accurate quantum transport calculations for large systems possible.
On parton distributions in a photon gas
I. Alikhanov
2009-06-19T23:59:59.000Z
In some cases it may be useful to know parton distributions in a photon gas. This may be relevant, e.g., for the analysis of interactions of high energy cosmic ray particles with the cosmic microwave background radiation. The latter can be considered as a gas of photons with an almost perfect blackbody spectrum. An approach to finding such parton distributions is described. The survival probability of ultra-high energy neutrinos traveling through this radiation is calculated.
On the Sensitivity of ?/? Prediction to Dose Calculation Methodology in Prostate Brachytherapy
Afsharpour, Hossein [Centre de Recherche sur le Cancer, Université Laval and Département de Radio-Oncologie, Centre Hospitalier Universitaire de Québec, Québec, QC (Canada); Centre Intégré de Cancérologie de la Montérégie, Hôpital Charles-LeMoyne, Greenfield Park, QC (Canada); Walsh, Sean [Department of Radiation Oncology Maastricht Radiation Oncology (MAASTRO), GROW, University Hospital Maastricht, Maastricht (Netherlands); Gray Institute for Radiation Oncology and Biology, The University of Oxford, The United Kingdom (United Kingdom); Collins Fekete, Charles-Antoine; Vigneault, Eric [Centre de Recherche sur le Cancer, Université Laval and Département de Radio-Oncologie, Centre Hospitalier Universitaire de Québec, Québec, QC (Canada); Verhaegen, Frank [Department of Radiation Oncology Maastricht Radiation Oncology (MAASTRO), GROW, University Hospital Maastricht, Maastricht (Netherlands); Medical Physics Unit, Department of Oncology, McGill University, Montréal, Québec (Canada); Beaulieu, Luc, E-mail: Luc.Beaulieu@phy.ulaval.ca [Centre de Recherche sur le Cancer, Université Laval and Département de Radio-Oncologie, Centre Hospitalier Universitaire de Québec, Québec, QC (Canada)
2014-02-01T23:59:59.000Z
Purpose: To study the relationship between the accuracy of the dose calculation in brachytherapy and the estimations of the radiosensitivity parameter, ?/?, for prostate cancer. Methods and Materials: In this study, Monte Carlo methods and more specifically the code ALGEBRA was used to produce accurate dose calculations in the case of prostate brachytherapy. Equivalent uniform biologically effective dose was calculated for these dose distributions and was used in an iso-effectiveness relationship with external beam radiation therapy. Results: By considering different levels of detail in the calculations, the estimation for the ?/? parameter varied from 1.9 to 6.3 Gy, compared with a value of 3.0 Gy suggested by the American Association of Physicists in Medicine Task Group 137. Conclusions: Large variations of the ?/? show the sensitivity of this parameter to dose calculation modality. The use of accurate dose calculation engines is critical for better evaluating the biological outcomes of treatments.
Neutron/gamma coupled library generation and gamma transport calculation with KARMA 1.2
Hong, S. G. [Dept. of Nuclear Engineering, Kyung Hee Univ., 446-701 Deogyeong-daero, GiHeung-gu, Yongin, Gyeonggi-do (Korea, Republic of); Kim, K. S.; Cho, J. Y.; Lee, K. H. [Korea Atomic Energy Research Inst., 305-353 Duckjin-dong, Yuseong-gu, Daejon (Korea, Republic of)
2012-07-01T23:59:59.000Z
KAERI has developed a lattice transport calculation code KARMA and its multi-group cross section library generation system. Recently, the multi-group cross section library generation system has included a gamma cross section generation capability and KARMA also has been improved to include a gamma transport calculation module. This paper addresses the multi-group gamma cross section generation capability for the KARMA 1.2 code and the preliminary test results of the KARMA 1.2 gamma transport calculations. The gamma transport calculation with KARMA 1.2 gives the gamma flux, gamma smeared power, and gamma energy deposition distributions. The results of the KARMA gamma calculations were compared with those of HELIOS and they showed that KARMA 1.2 gives reasonable gamma transport calculation results. (authors)
Learning poisson binomial distributions
Daskalakis, Constantinos
We consider a basic problem in unsupervised learning: learning an unknown Poisson Binomial Distribution. A Poisson Binomial Distribution (PBD) over {0,1,...,n} is the distribution of a sum of n independent Bernoulli random ...
Pretzelosity distribution function
H. Avakian; A. V. Efremov; P. Schweitzer; F. Yuan
2008-08-28T23:59:59.000Z
The 'pretzelosity' distribution is discussed. Theoretical properties, model results, and perspectives to access experimental information on this leading twist, transverse momentum dependent parton distribution function are reviewed. Its relation to helicity and transversity distributions is highlighted.
Energy Distribution of a Black Hole Solution in Heterotic String Theory
I. Radinschi
2003-02-12T23:59:59.000Z
We calculate the energy distribution of a charged black hole solution in heterotic string theory in the M{\\o}ller prescription.
Stadler, Michael
2010-01-01T23:59:59.000Z
solar/calculators/PVWATTS/version1/ Firestone, R. , (2004), “Distributed Energy Resources Customersolar thermal collectors, absorption chillers, batteries and thermal storage systems. We apply the Distributed Energy Resources Customer
Some Calculations for Cold Fusion Superheavy Elements
Zhong, X H; Ning, P Z
2004-01-01T23:59:59.000Z
The Q value and optimal exciting energy of the hypothetical superheavy nuclei in cold fusion reaction are calculated with relativistic mean field model and semiemperical shell model mass equation(SSME) and the validity of the two models is tested. The fusion barriers are also calculated with two different models and reasonable results are obtained. The calculations can give useful references for the experiments in the superheavy nuclei synthesized in cold fusion reactions.
Some Calculations for Cold Fusion Superheavy Elements
X. H. Zhong; L. Li; P. Z. Ning
2004-10-18T23:59:59.000Z
The Q value and optimal exciting energy of the hypothetical superheavy nuclei in cold fusion reaction are calculated with relativistic mean field model and semiemperical shell model mass equation(SSME) and the validity of the two models is tested. The fusion barriers are also calculated with two different models and reasonable results are obtained. The calculations can give useful references for the experiments in the superheavy nuclei synthesized in cold fusion reactions.
Distribution of particles which produces a desired radiation pattern
A. G. Ramm
2005-07-01T23:59:59.000Z
A method is given for calculation of a distribution of small particles, embedded in a medium, so that the resulting medium would have a desired radiation pattern for the plane wave scattering by this medium.
13_050406_CLN_01.doc TO: DISTRIBUTION
Princeton Plasma Physics Laboratory
on the linear pressure distribution model [3]. ! MEM _ IP = ITF 71167 " # $ % & ' 2 * 70653 ! MJoint_ IP = CStructure _ IP * MEM _ IP #12;#12;In PSRTC the in-plane and out-of-plane pressures are calculated separately
About Industrial Distributed Energy
Broader source: Energy.gov [DOE]
The Advanced Manufacturing Office's (AMO's) Industrial Distributed Energy activities build on the success of predecessor DOE programs on distributed energy and combined heat and power (CHP) while...
Broader source: Energy.gov [DOE]
The DOE Systems Integration team funds distribution grid integration research and development (R&D) activities to address the technical issues that surround distribution grid planning,...
Calculating Plutonium and Praseodymium Structural Transformations...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Calculating Plutonium and Praseodymium Structural Transformations A newly-developed hybrid computational method has computed, for the first time, plutonium's exotic crystal...
What is the GREET Fleet Footprint Calculator
fuels and advanced vehicles (AFVs). The Greenhouse gases, Regulated Emis- sions, and Energy use in Transportation (GREET) Fleet Foot- print Calculator can help fleets decide on...
Evaluation Of Chemical Geothermometers For Calculating Reservoir...
search OpenEI Reference LibraryAdd to library Conference Paper: Evaluation Of Chemical Geothermometers For Calculating Reservoir Temperatures At Nevada Geothermal Power...
SPREADSHEET DESCRIPTION DOCUMENT FOR SATURATION TEMPERATURE CALCULATION
JO J
2008-08-29T23:59:59.000Z
This document describes the methodology for determining the saturation temperature in waste tanks. The saturation temperature is used to calculate neutral buoyancy ratio.
Cooling airflow design calculations for UFAD
Bauman, Fred; Webster, Tom; Benedek, Corinne
2007-01-01T23:59:59.000Z
written permission. Cooling Airflow Design Calculations form) height. Table 2: Design cooling airflow performance fortool predictions of UFAD cooling airflow rates and associ-
Equilibrium Tail Distribution Due to Touschek Scattering
Nash,B.; Krinsky, S.
2009-05-04T23:59:59.000Z
Single large angle Coulomb scattering is referred to as Touschek scattering. In addition to causing particle loss when the scattered particles are outside the momentum aperture, the process also results in a non-Gaussian tail, which is an equilibrium between the Touschek scattering and radiation damping. Here we present an analytical calculation for this equilibrium distribution.
Calculating a checksum with inactive networking components in a computing system
Aho, Michael E; Chen, Dong; Eisley, Noel A; Gooding, Thomas M; Heidelberger, Philip; Tauferner, Andrew T
2014-12-16T23:59:59.000Z
Calculating a checksum utilizing inactive networking components in a computing system, including: identifying, by a checksum distribution manager, an inactive networking component, wherein the inactive networking component includes a checksum calculation engine for computing a checksum; sending, to the inactive networking component by the checksum distribution manager, metadata describing a block of data to be transmitted by an active networking component; calculating, by the inactive networking component, a checksum for the block of data; transmitting, to the checksum distribution manager from the inactive networking component, the checksum for the block of data; and sending, by the active networking component, a data communications message that includes the block of data and the checksum for the block of data.
Momentum distributions for 2H(e,e'p)
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Ford, William P.; Jeschonnek, Sabine; Van Orden, J. Wallace
2014-12-01T23:59:59.000Z
[Background] A primary goal of deuteron electrodisintegration is the possibility of extracting the deuteron momentum distribution. This extraction is inherently fraught with difficulty, as the momentum distribution is not an observable and the extraction relies on theoretical models dependent on other models as input. [Purpose] We present a new method for extracting the momentum distribution which takes into account a wide variety of model inputs thus providing a theoretical uncertainty due to the various model constituents. [Method] The calculations presented here are using a Bethe-Salpeter like formalism with a wide variety of bound state wave functions, form factors, and finalmore »state interactions. We present a method to extract the momentum distributions from experimental cross sections, which takes into account the theoretical uncertainty from the various model constituents entering the calculation. [Results] In order to test the extraction pseudo-data was generated, and the extracted "experimental'' distribution, which has theoretical uncertainty from the various model inputs, was compared with the theoretical distribution used to generate the pseudo-data. [Conclusions] In the examples we compared the original distribution was typically within the error band of the extracted distribution. The input wave functions do contain some outliers which are discussed in the text, but at least this procedure can provide an upper bound on the deuteron momentum distribution. Due to the reliance on the theoretical calculation to obtain this quantity any extraction method should account for the theoretical error inherent in these calculations due to model inputs.« less
Momentum distributions for $^2$H$(e,e'p)$
William P. Ford; Sabine Jeschonnek; J. W. Van Orden
2014-11-12T23:59:59.000Z
Background: A primary goal of deuteron electrodisintegration is the possibility of extracting the deuteron momentum distribution. This extraction is inherently fraught with difficulty, as the momentum distribution is not an observable and the extraction relies on theoretical models dependent on other models as input. Purpose: We present a new method for extracting the momentum distribution which takes into account a wide variety of model inputs thus providing a theoretical uncertainty due to the various model constituents. Method: The calculations presented here are using a Bethe-Salpeter like formalism with a wide variety of bound state wave functions, form factors, and final state interactions. We present a method to extract the momentum distributions from experimental cross sections, which takes into account the theoretical uncertainty from the various model constituents entering the calculation. Results: In order to test the extraction pseudo-data was generated, and the extracted "experimental" distribution, which has theoretical uncertainty from the various model inputs, was compared with the theoretical distribution used to generate the pseudo-data. Conclusions: In the examples we compared, the original distribution was typically within the error band of the extracted distribution. The input wave functions do contain some outliers which are discussed in the text, but at least this procedure can provide an upper bound on the deuteron momentum distribution. Due to the reliance on the theoretical calculation to obtain this quantity any extraction method should account for the theoretical error inherent in these calculations due to model inputs.
Momentum distributions for H2(e,e?p)
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Ford, William P.; Jeschonnek, Sabine; Van Orden, J. W.
2014-12-01T23:59:59.000Z
[Background] A primary goal of deuteron electrodisintegration is the possibility of extracting the deuteron momentum distribution. This extraction is inherently fraught with difficulty, as the momentum distribution is not an observable and the extraction relies on theoretical models dependent on other models as input. [Purpose] We present a new method for extracting the momentum distribution which takes into account a wide variety of model inputs thus providing a theoretical uncertainty due to the various model constituents. [Method] The calculations presented here are using a Bethe-Salpeter like formalism with a wide variety of bound state wave functions, form factors, and finalmore »state interactions. We present a method to extract the momentum distributions from experimental cross sections, which takes into account the theoretical uncertainty from the various model constituents entering the calculation. [Results] In order to test the extraction pseudo-data was generated, and the extracted "experimental'' distribution, which has theoretical uncertainty from the various model inputs, was compared with the theoretical distribution used to generate the pseudo-data. [Conclusions] In the examples we compared the original distribution was typically within the error band of the extracted distribution. The input wave functions do contain some outliers which are discussed in the text, but at least this procedure can provide an upper bound on the deuteron momentum distribution. Due to the reliance on the theoretical calculation to obtain this quantity any extraction method should account for the theoretical error inherent in these calculations due to model inputs.« less
Momentum distributions for 2H(e,e'p)
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Ford, William P. [ODU; Jeschonnek, Sabine [Ohio State University; Van Orden, J. Wallace [ODU, JLAB
2014-12-01T23:59:59.000Z
[Background] A primary goal of deuteron electrodisintegration is the possibility of extracting the deuteron momentum distribution. This extraction is inherently fraught with difficulty, as the momentum distribution is not an observable and the extraction relies on theoretical models dependent on other models as input. [Purpose] We present a new method for extracting the momentum distribution which takes into account a wide variety of model inputs thus providing a theoretical uncertainty due to the various model constituents. [Method] The calculations presented here are using a Bethe-Salpeter like formalism with a wide variety of bound state wave functions, form factors, and final state interactions. We present a method to extract the momentum distributions from experimental cross sections, which takes into account the theoretical uncertainty from the various model constituents entering the calculation. [Results] In order to test the extraction pseudo-data was generated, and the extracted "experimental'' distribution, which has theoretical uncertainty from the various model inputs, was compared with the theoretical distribution used to generate the pseudo-data. [Conclusions] In the examples we compared the original distribution was typically within the error band of the extracted distribution. The input wave functions do contain some outliers which are discussed in the text, but at least this procedure can provide an upper bound on the deuteron momentum distribution. Due to the reliance on the theoretical calculation to obtain this quantity any extraction method should account for the theoretical error inherent in these calculations due to model inputs.
Rasool, Syed Ahmed
1994-01-01T23:59:59.000Z
program. 4. 3 Flow chart for Bublp subroutine 5. 1 Pressure profiles for Well Tex A 10. . 5. 2 Pressure profiles for Well Tex A3. . 5. 3 Crossplot of PBHFp~, versus measured BHFP. 5. 4 Cmssplot of PttHppcurr versus measured BHFP 5. 5 Error... distribution for BHFP calculated by EOS. . . . . . . . . . . 5. 6 Error distribution for BHFP calculated by correlation. . . . . . . . . . . . . . . . . . . . . . 5. 7 Plot of depth versus flow patterns for Well 364 and Well 365 . . . . . . . . . 5. 8 Plot...
End-to-end calculation of the radiation characteristics of VVER-1000 spent fuel assemblies
Linge, I. I.; Mitenkova, E. F., E-mail: mit@ibrae.ac.ru; Novikov, N. V. [Russian Academy of Sciences, Nuclear Safety Institute (Russian Federation)
2012-12-15T23:59:59.000Z
The results of end-to-end calculation of the radiation characteristics of VVER-1000 spent nuclear fuel are presented. Details of formation of neutron and gamma-radiation sources are analyzed. Distributed sources of different types of radiation are considered. A comparative analysis of calculated radiation characteristics is performed with the use of nuclear data from different ENDF/B and EAF files and ANSI/ANS and ICRP standards.
PVWatts (R) Calculator India (Fact Sheet)
Not Available
2014-01-01T23:59:59.000Z
The PVWatts (R) Calculator for India was released by the National Renewable Energy Laboratory in 2013. The online tool estimates electricity production and the monetary value of that production of grid-connected roof- or ground-mounted crystalline silicon photovoltaics systems based on a few simple inputs. This factsheet provides a broad overview of the PVWatts (R) Calculator for India.
Calculating Highly Oscillatory Integrals by Quadrature Methods
Thapa, Krishna 1989-
2012-04-24T23:59:59.000Z
are found by requiring Z b a m (x) sin(!x)dx = 2 +2X i= wim (xi) The calculation of the wi therefore hinges on calculating the moments R b a x nei!g(x)dx. Unlike traditional approximation methods, the accuracy of the function increases...
2004 NET SYSTEM POWER CALCULATION COMMISSIONREPORT
CALIFORNIA ENERGY COMMISSION 2004 NET SYSTEM POWER CALCULATION COMMISSIONREPORT April 2005 CEC-300 Adam Pan, Terry Ewing Principal Author David Ashuckian Manager Electricity Analysis Office Terry O, the Legislature directed the California Energy Commission (Energy Commission) to calculate and report annually
Tools for calculations in color space
Malin Sjodahl; Stefan Keppeler
2013-07-04T23:59:59.000Z
Both the higher energy and the initial state colored partons contribute to making exact calculations in QCD color space more important at the LHC than at its predecessors. This is applicable whether the method of assessing QCD is fixed order calculation, resummation, or parton showers. In this talk we discuss tools for tackling the problem of performing exact color summed calculations. We start with theoretical tools in the form of the (standard) trace bases and the orthogonal multiplet bases (for which a general method of construction was recently presented). Following this, we focus on two new packages for performing color structure calculations: one easy to use Mathematica package, ColorMath, and one C++ package, ColorFull, which is suitable for more demanding calculations, and for interfacing with event generators.
Distributed Paging Yair Bartal
Bartal, Yair
. We survey distributed data management problems including distributed paging, file allocation fantastically on an annual basis. This survey deals with distributed data management problems. Such probÂ lems in distributed data management is the deÂ sign of a dynamic allocation of file copies in a network in order
Introduction to Distributed Systems
Pous, Damien
1 Introduction to Distributed Systems Fabienne Boyer, LIG, fabienne.boyer@inria.fr Sources: Cours d'Olivier Gruber, Sacha Krakowiak, Sara Bouchenak, UJF Fabienne Boyer, Distributed Programming 2 Objectives Study conceptual and practical aspects of distributed systems l Client-server model l Distributed protocols l
Numerical analysis of atomic density distribution in arc driven negative ion sources
Yamamoto, T., E-mail: t.yamamoto@ppl.appi.keio.ac.jp; Shibata, T.; Hatayama, A. [Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi, Yokohama 223-8522 (Japan)] [Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi, Yokohama 223-8522 (Japan); Kashiwagi, M.; Hanada, M. [Japan Atomic Energy Agency (JAEA), 801-1 Mukouyama, Naka 311-0193 (Japan)] [Japan Atomic Energy Agency (JAEA), 801-1 Mukouyama, Naka 311-0193 (Japan); Sawada, K. [Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553 (Japan)] [Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553 (Japan)
2014-02-15T23:59:59.000Z
The purpose of this study is to calculate atomic (H{sup 0}) density distribution in JAEA 10 ampere negative ion source. A collisional radiative model is developed for the calculation of the H{sup 0} density distribution. The non-equilibrium feature of the electron energy distribution function (EEDF), which mainly determines the H{sup 0} production rate, is included by substituting the EEDF calculated from 3D electron transport analysis. In this paper, the H{sup 0} production rate, the ionization rate, and the density distribution in the source chamber are calculated. In the region where high energy electrons exist, the H{sup 0} production and the ionization are enhanced. The calculated H{sup 0} density distribution without the effect of the H{sup 0} transport is relatively small in the upper region. In the next step, the effect should be taken into account to obtain more realistic H{sup 0} distribution.
Calculated fission-fragment yield systematics in the region 74
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Möller, Peter; Randrup, Jørgen
2015-04-01T23:59:59.000Z
Background: In the seminal experiment by Schmidt et al. [Nucl. Phys. A 665, 221 (2000)] in which fission-fragment charge distributions were obtained for 70 nuclides, asymmetric distributions were seen above nucleon number A ? 226 and symmetric ones below. Because asymmetric fission had often loosely been explained as a preference for the nucleus to always exploit the extra binding of fragments near ¹³²Sn it was assumed that all systems below A ? 226 would fission symmetrically because available isotopes do not have a proton-to-neutron Z/N ratio that allows division into fragments near ¹³²Sn. But the finding by Andreyev et al.more »[Phys. Rev. Lett. 105, 252502 (2010)] did not conform to this expectation because the compound system ¹??Hg was shown to fission asymmetrically. It was suggested that this was a new type of asymmetric fission, because no strong shell effects occur for any possible fragment division. Purpose: We calculate a reference database for fission-fragment mass yields for a large region of the nuclear chart comprising 987 nuclides. A particular aim is to establish whether ¹??Hg is part of a contiguous region of asymmetric fission, and if so, its extent, or if not, in contrast to the actinides, there are scattered smaller groups of nuclei that fission asymmetrically in this area of the nuclear chart. Methods: We use the by now well benchmarked Brownian shape-motion method and perform random walks on the previously calculated five-dimensional potential-energy surfaces. The calculated shell corrections are damped out with energy according to a prescription developed earlier. Results: We have obtained a theoretical reference database of fission-fragment mass yields for 987 nuclides. These results show an extended region of asymmetric fission with approximate extension 74 ? Z ? 85 and 100 ? N ? 120. The calculated yields are highly variable. We show 20 representative plots of these variable features and summarize the main aspects of our results in terms of “nuclear-chart” plots showing calculated degrees of asymmetry versus N and Z. Conclusions: Experimental data in this region are rare: only ten or so yield distributions have been measured, some with very limited statistics. We agree with several measurements with higher statistics. Regions where there might be differences between our calculated results and measurements lie near the calculated transition line between symmetric and asymmetric fission. To draw more definite conclusions about the accuracy of the present implementation of the Brownian shape-motion approach in this region experimental data, with reliable statistics, for a fair number of suitably located additional nuclides are clearly needed. Because the nuclear potential-energy structure is so different in this region compared to the actinide region, additional experimental data together with fission theory studies that incorporate additional, dynamical aspects should provide much new insight.« less
Moeller, M. P.; Urbanik, II, T.; Desrosiers, A. E.
1982-03-01T23:59:59.000Z
This paper describes the methodology and application of the computer model CLEAR (Calculates Logical Evacuation And Response) which estimates the time required for a specific population density and distribution to evacuate an area using a specific transportation network. The CLEAR model simulates vehicle departure and movement on a transportation network according to the conditions and consequences of traffic flow. These include handling vehicles at intersecting road segments, calculating the velocity of travel on a road segment as a function of its vehicle density, and accounting for the delay of vehicles in traffic queues. The program also models the distribution of times required by individuals to prepare for an evacuation. In order to test its accuracy, the CLEAR model was used to estimate evacuatlon tlmes for the emergency planning zone surrounding the Beaver Valley Nuclear Power Plant. The Beaver Valley site was selected because evacuation time estimates had previously been prepared by the licensee, Duquesne Light, as well as by the Federal Emergency Management Agency and the Pennsylvania Emergency Management Agency. A lack of documentation prevented a detailed comparison of the estimates based on the CLEAR model and those obtained by Duquesne Light. However, the CLEAR model results compared favorably with the estimates prepared by the other two agencies.
Assessment of seismic margin calculation methods
Kennedy, R.P.; Murray, R.C.; Ravindra, M.K.; Reed, J.W.; Stevenson, J.D.
1989-03-01T23:59:59.000Z
Seismic margin review of nuclear power plants requires that the High Confidence of Low Probability of Failure (HCLPF) capacity be calculated for certain components. The candidate methods for calculating the HCLPF capacity as recommended by the Expert Panel on Quantification of Seismic Margins are the Conservative Deterministic Failure Margin (CDFM) method and the Fragility Analysis (FA) method. The present study evaluated these two methods using some representative components in order to provide further guidance in conducting seismic margin reviews. It is concluded that either of the two methods could be used for calculating HCLPF capacities. 21 refs., 9 figs., 6 tabs.
INDIRECT COST CALCULATION [IN REVERSE] YOU WANT TO CALCULATE THE DIRECT COSTS
Finley Jr., Russell L.
INDIRECT COST CALCULATION [IN REVERSE] YOU WANT TO CALCULATE THE DIRECT COSTS YOU KNOW WHAT THE TUITION, STIPEND AND EQUIPMENT COSTS ARE YOU KNOW WHAT THE TOTAL COST IS CALCULATION IS USING THE 2010 FED F&A RATE FOR WSU OF 52% (.52) [ DIRECT COST TUITION STIPEND EQUIPMENT] (.52 ) + DIRECT
NREL: Energy Analysis - Levelized Cost of Energy Calculator
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Useful Life Land Use by System Technology LCOE Calculator Simple Levelized Cost of Energy (sLCOE) Calculator (BETA) Simple Levelized Cost of Energy Calculator Financial...
HYDRAULIC CALCULATIONS FOR A MODIFIED IN-SITU RETORT
Hall, W.G.
2012-01-01T23:59:59.000Z
LBL-1 0431 UC-91 HYDRAULIC CALCULATIONS FOR A MODIFIED IN-REFERENCES • . • • • • . , . HYDRAULIC CALCULATIONS FOR ACalifomia. LBL-10431 HYDRAULIC CALCULATIONS FOR A MODIFIED
Medical physics calculations with MCNP: a primer
Lazarine, Alexis D
2006-10-30T23:59:59.000Z
of Medical Internal Radiation Dose (MIRD) specific absorbed fraction (SAF) values using the ORNL MIRD phantom, x-ray phototherapy effectiveness, prostate brachytherapy lifetime dose calculations, and a radiograph of the head using the Zubal head phantom. Also...
Design Calculations For APS Safety Shutters
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
computer program MCNPX 1 to verify the guidelines set forth previously for the APS safety shutters 2. The original shutter design calculations were carried out using the EGS4...
Essential Value, Pmax, and Omax Automated Calculator
Kaplan, Brent A.; Reed, Derek D.
2014-08-21T23:59:59.000Z
Behavioral economic measures of demand are often calculated in sophisticated spreadsheet programs. Unfortunately, no closed form models for exact pmax (point of unit elasticity) and omax (response output at pmax) can be ...
Calculation of rotordynamic forces on labyrinth seals
Hensel, Steve John
1986-01-01T23:59:59.000Z
CALCULATION OF ROTORDYNAMIC FORCES ON LABYRINTH SEALS A Thesis STEVE JOHN HENSEL Submitted to the Graduate College of Texas AkM University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE December 1986 Major... Subject: Mechanical Engineering CALCULATION OF ROTORDYNAMIC FORCES ON LABYRINTH SEALS A Thesis by STEVE JOHN HENSEL Approved as to style snd content by: David Rhode (Chairman of Committee) Erian Baskharone Leel and Garison (Member) +, gg, W. D...
Broader source: Energy.gov [DOE]
Distributed Wind 2015 is committed to the advancement of both distributed and community wind energy. This two day event includes a Business Conference with sessions focused on advancing the...
PABS: A Computer Program to Normalize Emission Probabilities and Calculate Realistic Uncertainties
Caron, D. S.; Browne, E.; Norman, E. B.
2009-08-21T23:59:59.000Z
The program PABS normalizes relative particle emission probabilities to an absolute scale and calculates the relevant uncertainties on this scale. The program is written in Java using the JDK 1.6 library. For additional information about system requirements, the code itself, and compiling from source, see the README file distributed with this program. The mathematical procedures used are given below.
2012-03-14T23:59:59.000Z
Index Terms—Basis pursuit, distributed optimization, sensor networks, augmented ... and image denoising and restoration [1], [2], compression, fitting and ...
Transversity Parton Distribution
Alexei Prokudin
2013-04-01T23:59:59.000Z
Transversity distribution is one of the three fundamental parton distributions that completely describe polarized spin 1/2 nucleon. Its chiral odd nature prevented for many years its experimental exploration, however presently we have obtained great deal of information about this distribution. This includes experimental data from Semi Inclusive Deep Inelastic Scattering, knowledge of scale dependence and phenomenological extractions. I will discuss main features of this distribution and indicate the future improvements of our knowledge.
Energy Distribution of Black Plane Solutions
Paul Halpern
2006-03-27T23:59:59.000Z
We use the Einstein energy-momentum complex to calculate the energy distribution of static plane-symmetric solutions of the Einstein-Maxwell equations in 3+1 dimensions with asymptotic anti-de Sitter behavior. This solution is expressed in terms of three parameters: the mass, electric charge and cosmological constant. We compare the energy distribution to that of the Reissner-Nordstrom-anti-de Sitter solution, pointing to qualitative differences between the models. Finally, we examine these results within the context of the Cooperstock hypothesis.
Simplified calculation method for design cooling loads in underfloor air distribution (UFAD) systems
Schiavon, Stefano; Lee, Kwang Ho; Bauman, Fred; Webster, Tom
2010-01-01T23:59:59.000Z
and P.L. Linden, The EnergyPlus UFAD module. Proceedings ofUS, (2008) 23-28. EnergyPlus, Engineering Reference. U.S.uc/item/7gr8r3d3 EnergyPlus. Testing and Validation. http://
Calculation of radiation therapy dose using all particle Monte Carlo transport
Chandler, William P. (Tracy, CA); Hartmann-Siantar, Christine L. (San Ramon, CA); Rathkopf, James A. (Livermore, CA)
1999-01-01T23:59:59.000Z
The actual radiation dose absorbed in the body is calculated using three-dimensional Monte Carlo transport. Neutrons, protons, deuterons, tritons, helium-3, alpha particles, photons, electrons, and positrons are transported in a completely coupled manner, using this Monte Carlo All-Particle Method (MCAPM). The major elements of the invention include: computer hardware, user description of the patient, description of the radiation source, physical databases, Monte Carlo transport, and output of dose distributions. This facilitated the estimation of dose distributions on a Cartesian grid for neutrons, photons, electrons, positrons, and heavy charged-particles incident on any biological target, with resolutions ranging from microns to centimeters. Calculations can be extended to estimate dose distributions on general-geometry (non-Cartesian) grids for biological and/or non-biological media.
Calculation of radiation therapy dose using all particle Monte Carlo transport
Chandler, W.P.; Hartmann-Siantar, C.L.; Rathkopf, J.A.
1999-02-09T23:59:59.000Z
The actual radiation dose absorbed in the body is calculated using three-dimensional Monte Carlo transport. Neutrons, protons, deuterons, tritons, helium-3, alpha particles, photons, electrons, and positrons are transported in a completely coupled manner, using this Monte Carlo All-Particle Method (MCAPM). The major elements of the invention include: computer hardware, user description of the patient, description of the radiation source, physical databases, Monte Carlo transport, and output of dose distributions. This facilitated the estimation of dose distributions on a Cartesian grid for neutrons, photons, electrons, positrons, and heavy charged-particles incident on any biological target, with resolutions ranging from microns to centimeters. Calculations can be extended to estimate dose distributions on general-geometry (non-Cartesian) grids for biological and/or non-biological media. 57 figs.
FRIB cryogenic distribution system
Ganni, V.; Dixon, K.; Laverdure, N.; Knudsen, P.; Arenius, D. [Thomas Jefferson National Accelerator Facility (JLab), Newport News, VA 23606 (United States); Barrios, M.; Jones, S.; Johnson, M.; Casagrande, F. [Facility for Rare Isotope Beams (FRIB), Michigan State University, East Lansing, MI 48824 (United States)
2014-01-29T23:59:59.000Z
The Michigan State University Facility for Rare Isotope Beams (MSU-FRIB) helium distribution system has been revised to include bayonet/warm valve type disconnects between each cryomodule and the transfer line distribution system, similar to the Thomas Jefferson National Accelerator Facility (JLab) and the Spallation Neutron Source (SNS) cryogenic distribution systems. The heat loads at various temperature levels and some of the features in the design of the distribution system are outlined. The present status, the plans for fabrication, and the procurement approach for the helium distribution system are also included.
FRIB cryogenic distribution system
Ganni, Venkatarao [JLAB; Dixon, Kelly D. [JLAB; Laverdure, Nathaniel A. [JLAB; Knudsen, Peter N. [JLAB; Arenius, Dana M. [JLAB; Barrios, Matthew N. [Michigan State; Jones, S. [Michigan State; Johnson, M. [Michigan State; Casagrande, Fabio [Michigan State
2014-01-01T23:59:59.000Z
The Michigan State University Facility for Rare Isotope Beams (MSU-FRIB) helium distribution system has been revised to include bayonet/warm valve type disconnects between each cryomodule and the transfer line distribution system, similar to the Thomas Jefferson National Accelerator Facility (JLab) and the Spallation Neutron Source (SNS) cryogenic distribution systems. The heat loads at various temperature levels and some of the features in the design of the distribution system are outlined. The present status, the plans for fabrication, and the procurement approach for the helium distribution system are also included.
Improved Calculation of Thermal Fission Energy
Ma, X B; Wang, L Z; Chen, Y X; Cao, J
2013-01-01T23:59:59.000Z
Thermal fission energy is one of the basic parameters needed in the calculation of antineutrino flux for reactor neutrino experiments. It is useful to improve the precision of the thermal fission energy calculation for current and future reactor neutrino experiments, which are aimed at more precise determination of neutrino oscillation parameters. In this article, we give new values for thermal fission energies of some common thermal reactor fuel iso-topes, with improvements on two aspects. One is more recent input data acquired from updated nuclear databases. The other, which is unprecedented, is a consideration of the production yields of fission fragments from both thermal and fast incident neutrons for each of the four main fuel isotopes. The change in calculated antineutrino flux due to the new values of thermal fission energy is about 0.33%, and the uncertainties of the new values are about 30% smaller.
LCEs for Naval Reactor Benchmark Calculations
W.J. Anderson
1999-07-19T23:59:59.000Z
The purpose of this engineering calculation is to document the MCNP4B2LV evaluations of Laboratory Critical Experiments (LCEs) performed as part of the Disposal Criticality Analysis Methodology program. LCE evaluations documented in this report were performed for 22 different cases with varied design parameters. Some of these LCEs (10) are documented in existing references (Ref. 7.1 and 7.2), but were re-run for this calculation file using more neutron histories. The objective of this analysis is to quantify the MCNP4B2LV code system's ability to accurately calculate the effective neutron multiplication factor (k{sub eff}) for various critical configurations. These LCE evaluations support the development and validation of the neutronics methodology used for criticality analyses involving Naval reactor spent nuclear fuel in a geologic repository.
Dose calculations for severe LWR accident scenarios
Margulies, T.S.; Martin, J.A. Jr.
1984-05-01T23:59:59.000Z
This report presents a set of precalculated doses based on a set of postulated accident releases and intended for use in emergency planning and emergency response. Doses were calculated for the PWR (Pressurized Water Reactor) accident categories of the Reactor Safety Study (WASH-1400) using the CRAC (Calculations of Reactor Accident Consequences) code. Whole body and thyroid doses are presented for a selected set of weather cases. For each weather case these calculations were performed for various times and distances including three different dose pathways - cloud (plume) shine, ground shine and inhalation. During an emergency this information can be useful since it is immediately available for projecting offsite radiological doses based on reactor accident sequence information in the absence of plant measurements of emission rates (source terms). It can be used for emergency drill scenario development as well.
Analytical calculation of neutral transport and its effect on ions
Calvin, M.D.; Hazeltine, R.D.; Valanju, P.M.; Solano, E.R. (Texas Univ., Austin, TX (USA). Inst. for Fusion Studies Texas Univ., Austin, TX (USA). Fusion Research Center)
1991-06-01T23:59:59.000Z
We analytically calculate the neutral particle distribution and its effects on ion heat and momentum transport in three-dimensional plasmas with arbitrary temperature and density profiles. A general variational principle taking advantage of the simplicity of the charge-exchange (CX) operator is derived to solve self-consistently the neutral-plasma interaction problem. To facilitate an extremal solution, we use the short CX mean-free-path ({lambda}{sub x}) ordering. Further, a non-variational, analytical solution providing a full set of transport coefficient is derived by making the realistic assumption that the product of the CX cross section with relative velocity is constant. The effects of neutrals on plasma energy loss and rotation appear in simple, sensible forms. We find that neutral viscosity dominates ion viscosity everywhere, and in the edge region by a large factor. 13 refs.
book review: Species distribution models for species distribution modellers
Dormann, Carsten F
2012-01-01T23:59:59.000Z
Mapping species distributions: spa? tial inference and news and update book review Species distribution models for species distribution modellers Ecological niches and
Heat Exchanger Support Bracket Design Calculations
Rucinski, Russ; /Fermilab
1995-01-12T23:59:59.000Z
This engineering note documents the design of the heat exchanger support brackets. The heat exchanger is roughly 40 feet long, 22 inches in diameter and weighs 6750 pounds. It will be mounted on two identical support brackets that are anchored to a concrete wall. The design calculations were done for one bracket supporting the full weight of the heat exchanger, rounded up to 6800 pounds. The design follows the American Institute of Steel Construction (AISC) Manual of steel construction, Eighth edition. All calculated stresses and loads on welds were below allowables.
Fully Automated Calculations in the complex MSSM
T. Hahn; S. Heinemeyer; F. von der Pahlen; H. Rzehak; C. Schappacher
2014-07-01T23:59:59.000Z
We review recent progress towards automated higher-order calculations in the MSSM with complex parameters (cMSSM). The consistent renormalization of all relevant sectors of the cMSSM and the inclusion into the FeynArts/FormCalc framework has recently been completed. Some example calculations applying this framework are briefly discussed. These include two-loop corrections to cMSSM Higgs boson masses as well as partial decay widths of electroweak supersymmetric particles decaying into a Higgs boson and another supersymmetric particle.
Calculation method for safe ?* in the LHC
Bruce, R; Herr, W; Wollmann, D
2011-01-01T23:59:59.000Z
One way of increasing the peak luminosity in the LHC is to decrease the beam size at the interaction points by squeezing to smaller values of ?*. The LHC is now in a regime where safety and stability determines the limit on ?*, as opposed to traditional optics limits. In this paper, we derive a calculation model to determine the safe ?*-values based on collimator settings and operational stability of the LHC. This model was used to calculate the settings for the LHC run in 2011. It was found that ?* could be decreased from 3.5 m to 1.5 m, which has now successfully been put into operation.
Avoiding Distribution System Upgrade Costs Using Distributed Generation
Schienbein, Lawrence A.; Balducci, Patrick J.; Nguyen, Tony B.; Brown, Daryl R.; DeSteese, John G.; Speer, Gregory A.
2004-01-20T23:59:59.000Z
PNNL, in cooperation with three utilities, developed a database and methodology to analyze and characterize the avoided costs of Distributed Generation (DG) deployment as an alternative to traditional distribution system investment. After applying a number of screening criteria to the initial set of 307 cases, eighteen were selected for detailed analysis. Alternative DG investment scenarios were developed for these cases to permit capital, operation, maintenance, and fuel costs to be identified and incorporated into the analysis. The “customer-owned” backup power generator option was also investigated. The results of the analysis of the 18 cases show that none yielded cost savings under the alternative DG scenarios. However, the DG alternative systems were configured using very restrictive assumptions concerning reliability, peak rating, engine types and acceptable fuel. In particular it was assumed that the DG alternative in each case must meet the reliability required of conventional distribution systems (99.91% reliability). The analysis was further constrained by a requirement that each substation meet the demands placed upon it by a one in three weather occurrence. To determine if, by relaxing these requirements, the DG alternative might be more viable, one project was re-examined. The 99.91% reliability factor was still assumed for normal operating conditions but redundancy required to maintain reliability was relaxed for the relatively few hours every three years where extreme weather caused load to exceed present substation capacity. This resulted in the deferment of capital investment until later years and reduced the number of engines required for the project. The cost of both the conventional and DG alternative also dropped because the centralized power generation, variable O&M, and DG fuels costs were calculated based on present load requirements in combination with long-term forecasts of load growth, as opposed to load requirements plus a buffer based on predictions of extraordinary weather conditions. Application of the relaxed set of assumptions reduced the total cost of the DG alternative by roughly 57 percent from $7.0 million to $3.0 million. The reduction, however, did not change the overall result of the analysis, as the cost of the conventional distribution system upgrade alternative remained lower at $1.7 million. This paper also explores the feasibility of using a system of backup generators to defer investment in distribution system infrastructure. Rather than expanding substation capacity at substations experiencing slow load growth rates, PNNL considered a scenario where diesel generators were installed on location at customers participating in a program designed to offer additional power security and reliability to the customer and connection to the grid. The backup generators, in turn, could be used to meet peak demand for a limited number of hours each year, thus deferring distribution system investment. Data from an existing program at one of the three participating utilities was used to quantify the costs associated with the backup generator scenario. The results of the “customer owned” backup power generator analysis showed that in all cases the nominal cost of the DG scenario is more than the nominal cost of the base-case conventional distribution system upgrade scenario. However, in two of the cases the total present value costs of the alternative backup generator scenarios were between 15 and 22% less than those for the conventional scenarios. Overall, the results of the study offer considerable encouragement that the use of DG systems can defer conventional distribution system upgrades under the right conditions and when the DG configurations are intelligently designed. Using existing customer-owned DG to defer distribution system upgrades appears to be an immediate commercially-viable opportunity.
Statistical assessment of Monte Carlo distributional tallies
Kiedrowski, Brian C [Los Alamos National Laboratory; Solomon, Clell J [Los Alamos National Laboratory
2010-12-09T23:59:59.000Z
Four tests are developed to assess the statistical reliability of distributional or mesh tallies. To this end, the relative variance density function is developed and its moments are studied using simplified, non-transport models. The statistical tests are performed upon the results of MCNP calculations of three different transport test problems and appear to show that the tests are appropriate indicators of global statistical quality.
Energy and Isotope Dependence of Neutron Multiplicity Distributions
J. P. Lestone
2014-09-17T23:59:59.000Z
Fission neutron multiplicity distributions are known to be well reproduced by simple Gaussian distributions. Many previous evaluations of multiplicity distributions have adjusted the widths of Gaussian distributions to best fit the measured multiplicity distributions Pn. However, many observables do not depend on the detailed shape of Pn, but depend on the first three factorial moments of the distributions. In the present evaluation, the widths of Gaussians are adjusted to fit the measured 2nd and 3rd factorial moments. The relationships between the first three factorial moments are estimated assuming that the widths of the multiplicity distributions are independent of the initial excitation energy of the fissioning system. These simple calculations are in good agreement with experimental neutron induced fission data up to an incoming neutron energy of 10 MeV.
Consanguine Calculations Input File: blood.in
California at Berkeley, University of
1 of 20 Problem A+ Consanguine Calculations Input File: blood.in Every person's blood has 2 markers in a particular ABO blood type for that person. Combination ABO Blood Type AA A AB AB AO A BB B BO B OO O Likewise, every person has two alleles for the blood Rh factor, represented by the characters + and -. Someone who
SCALE Sensitivity Calculations Using Contributon Theory
Rearden, Bradley T [ORNL] [ORNL; Perfetti, Chris [University of Michigan] [University of Michigan; Williams, Mark L [ORNL] [ORNL; Petrie Jr, Lester M [ORNL] [ORNL
2010-01-01T23:59:59.000Z
The SCALE TSUNAMI-3D sensitivity and uncertainty analysis sequence computes the sensitivity of k-eff to each constituent multigroup cross section using adjoint techniques with the KENO Monte Carlo codes. A new technique to simultaneously obtain the product of the forward and adjoint angular flux moments within a single Monte Carlo calculation has been developed and implemented in the SCALE TSUNAMI-3D analysis sequence. A new concept in Monte Carlo theory has been developed for this work, an eigenvalue contributon estimator, which is an extension of previously developed fixed-source contributon estimators. A contributon is a particle for which the forward solution is accumulated, and its importance to the response, which is equivalent to the adjoint solution, is simultaneously accumulated. Thus, the contributon is a particle coupled with its contribution to the response, in this case keff. As implemented in SCALE, the contributon provides the importance of a particle exiting at any energy or direction for each location, energy and direction at which the forward flux solution is sampled. Although currently implemented for eigenvalue calculations in multigroup mode in KENO, this technique is directly applicable to continuous-energy calculations for many other responses such as fixed-source sensitivity analysis and quantification of reactor kinetics parameters. This paper provides the physical bases of eigenvalue contributon theory, provides details of implementation into TSUNAMI-3D, and provides results of sample calculations.
Spin Contamination in Inorganic Chemistry Calculations
Schlegel, H. Bernhard
R EVISED PAG E PR O O FS ia617 Spin Contamination in Inorganic Chemistry Calculations Jason L . In such cases, 0 is said to be spin contaminated owing to incorporation of higher spin state character of IronSulfur ia618 Clusters). It is important to note that while spin-contaminated and broken
Improved Calculation of Thermal Fission Energy
X. B. Ma; W. L. Zhong; L. Z. Wang; Y. X. Chen; J. Cao
2013-06-30T23:59:59.000Z
Thermal fission energy is one of the basic parameters needed in the calculation of antineutrino flux for reactor neutrino experiments. It is useful to improve the precision of the thermal fission energy calculation for current and future reactor neutrino experiments, which are aimed at more precise determination of neutrino oscillation parameters. In this article, we give new values for thermal fission energies of some common thermal reactor fuel isotopes, with improvements on three aspects. One is more recent input data acquired from updated nuclear databases. the second one is a consideration of the production yields of fission fragments from both thermal and fast incident neutrons for each of the four main fuel isotopes. The last one is more carefully calculation of the average energy taken away by antineutrinos in thermal fission with the comparison of antineutrino spectrum from different models. The change in calculated antineutrino flux due to the new values of thermal fission energy is about 0.32%, and the uncertainties of the new values are about 50% smaller.
URANIUM MILL TAILINGS RADON FLUX CALCULATIONS
URANIUM MILL TAILINGS RADON FLUX CALCULATIONS PIÑON RIDGE PROJECT MONTROSE COUNTY, COLORADO an administration building, a 17-acre mill, a 30.5-acre tailings cell with phased expansion capacity to 91.5 acres, a 40-acre evaporation pond area with an expansion capacity to 80 acres, an approximately 6-acre ore
Calculation of a coaxial microwave torch
Gritsinin, S. I.; Kossyi, I. A. [Russian Academy of Sciences, Prokhorov Institute of General Physics (Russian Federation); Kulumbaev, E. B.; Lelevkin, V. M. [Kyrgyz-Russian Slavic University (Kyrgyzstan)
2006-10-15T23:59:59.000Z
Parameters of an equilibrium microwave discharge in an atmospheric-pressure argon flow in a coaxial waveguide with a truncated inner electrode are calculated numerically by using a self-consistent two-dimensional MHD model. The results obtained agree satisfactorily with the experimental data.
CALCULATING THE CARBON FOOTPRINT SUPPLY CHAIN FOR
Su, Xiao
CALCULATING THE CARBON FOOTPRINT SUPPLY CHAIN FOR THE SEMICONDUCTOR INDUSTRY By: Yasser Dessouky #12;Carbon Footprint Supply Chain Carbon Trust defines carbon footprint of a supply chain as follows: "The carbon footprint of a product is the carbon dioxide emitted across the supply chain for a single
Oberseminar -ICP Temperature Calculation for Tribological
Harting, Jens
and passing to third parties. 0 #12;Overview Where to calculate the heat: diesel injection pump First focus in the steel in the meantime of one step It takes some rotations to have the heat penetrate the whole pump even in the event of industrial property rights. We reserve all rights of disposal such as copying
PIC : Protein Interaction Calculator HELP AND GUIDELINES
Srinivasan, N.
PIC : Protein Interaction Calculator HELP AND GUIDELINES CONTENTS 1. Overview 2. Method 3. Input 4 (PIC) is a server which, given the coordinate set of threedimensional structure of a protein colored by PIC programmes can be downloaded and conveniently displayed with structural viewers
2002CALIFORNIAPOWERMIX 2002 NET SYSTEM POWER CALCULATION
CALIFORNIA ENERGY COMMISSION APRIL 2003 300-03-002 2002CALIFORNIAPOWERMIX 2002 NET SYSTEM POWER CALCULATION Gray Davis, Governor #12;CALIFORNIA ENERGY COMMISSION William J. Keese Chairman Commissioners Adam Pan, Ron Wetherall Principal Authors David Ashuckian Manager Electricity Analysis Office Terry O
Calculation of Kinetics Parameters for the NBSR
Hanson A. L.; Diamond D.
2012-03-06T23:59:59.000Z
The delayed neutron fraction and prompt neutron lifetime have been calculated at different times in the fuel cycle for the NBSR when fueled with both high-enriched uranium (HEU) and low-enriched uranium (LEU) fuel. The best-estimate values for both the delayed neutron fraction and the prompt neutron lifetime are the result of calculations using MCNP5-1.60 with the most recent ENDFB-VII evaluations. The best-estimate values for the total delayed neutron fraction from fission products are 0.00665 and 0.00661 for the HEU fueled core at startup and end-of-cycle, respectively. For the LEU fuel the best estimate values are 0.00650 and 0.00648 at startup and end-of-cycle, respectively. The present recommendations for the delayed neutron fractions from fission products are smaller than the value reported previously of 0.00726 for the HEU fuel. The best-estimate values for the contribution from photoneutrons will remain as 0.000316, independent of the fuel or time in the cycle.The values of the prompt neutron lifetime as calculated with MCNP5-1.60 are compared to values calculated with two other independent methods and the results are in reasonable agreement with each other. The recommended, conservative values of the neutron lifetime for the HEU fuel are 650 {micro}s and 750 {micro}s for the startup and end-of-cycle conditions, respectively. For LEU fuel the recommended, conservative values are 600 {micro}s and 700 {micro}s for the startup and end-of-cycle conditions, respectively. In all three calculations, the prompt neutron lifetime was determined to be longer for the end-of-cycle equilibrium condition when compared to the startup condition. The results of the three analyses were in agreement that the LEU fuel will exhibit a shorter prompt neutron lifetime when compared to the HEU fuel.
Chen, Qingyan "Yan"
1 Computer simulations and experimental measurements of air distributions in buildings: past to perform computer simulations to calculate air distribution in buildings. The most advanced computer models, sustainable, and safe building, it is important to know the distributions of air velocity, air temperature
Impact Ionization Model Using Average Energy and Average Square Energy of Distribution Function
Dunham, Scott
Impact Ionization Model Using Average Energy and Average Square Energy of Distribution Function Ken relaxation length, v sat ø h''i (¸ 0:05¯m), the energy distribution function is not well described calculation of impact ionization coefficient requires the use of a high energy distribution function because
Cooling water distribution system
Orr, Richard (Pittsburgh, PA)
1994-01-01T23:59:59.000Z
A passive containment cooling system for a nuclear reactor containment vessel. Disclosed is a cooling water distribution system for introducing cooling water by gravity uniformly over the outer surface of a steel containment vessel using an interconnected series of radial guide elements, a plurality of circumferential collector elements and collector boxes to collect and feed the cooling water into distribution channels extending along the curved surface of the steel containment vessel. The cooling water is uniformly distributed over the curved surface by a plurality of weirs in the distribution channels.
* Department of Energy Washington, DC 20585 December 20, 2007 MEMORANDUM FOR DISTRIBUTION FROM: MICHAEL W. OWEN
DIGITAL VISION & PHOTODISC Distributed
Simeone, Osvaldo
of scalability and energy efficiency and offers new opportunities through the interplay with specific distributed, to the advances in telegraphy and, later, wireless transmission. Railroad transportation, geodesy (measurement
Distribution of Correspondence
Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]
1996-08-30T23:59:59.000Z
Defines correct procedures for distribution of correspondence to the Naval Reactors laboratories. Does not cancel another directive. Expired 8-30-97.
Distributionally Robust Convex Optimization
2013-09-22T23:59:59.000Z
Distributionally Robust Convex Optimization. Wolfram Wiesemann1, Daniel Kuhn2, and Melvyn Sim3. 1Imperial College Business School, Imperial College ...
A PROCEDURE FOR CALCULATING INTERIOR DAYLIGHT ILLUMINATION WITH A PROGRAMMABLE HAND CALCULATOR
Bryan, H.J.
2010-01-01T23:59:59.000Z
within a room utilizing sky luminance distribution functionsis a function of the sky luminance, the window transmission,normal. The CIE Standard Sky luminance function 4 is given
Analysis of Voltage Rise Effect on Distribution Network with Distributed
Pota, Himanshu Roy
Analysis of Voltage Rise Effect on Distribution Network with Distributed Generation M. A. Mahmud.hossain@adfa.edu.au, and H.Pota@adfa.edu.au). Abstract: Connections of distributed generation (DG) in distribution networks are increasing. These connections of distributed generation cause voltage rise in the distribution network
IBS for non-gaussian distributions
Fedotov, A.; Sidorin, A.O.; Smirnov, A.V.
2010-09-27T23:59:59.000Z
In many situations distribution can significantly deviate from Gaussian which requires accurate treatment of IBS. Our original interest in this problem was motivated by the need to have an accurate description of beam evolution due to IBS while distribution is strongly affected by the external electron cooling force. A variety of models with various degrees of approximation were developed and implemented in BETACOOL in the past to address this topic. A more complete treatment based on the friction coefficient and full 3-D diffusion tensor was introduced in BETACOOL at the end of 2007 under the name 'local IBS model'. Such a model allowed us calculation of IBS for an arbitrary beam distribution. The numerical benchmarking of this local IBS algorithm and its comparison with other models was reported before. In this paper, after briefly describing the model and its limitations, they present its comparison with available experimental data.
HP-41 Calculates Dykstra-Parsons permeability
Bixler, B.
1983-07-01T23:59:59.000Z
A new program for the HP-41 programmable calculator has been written which will calculate the often used Dykstra-Parsons permeability variation factor, V. No longer must numerous individual permeability values be plotted on log probability paper as a first step in determining V. Input is simply these same permeability values selected at equal spacing along the interval in question. For most core analysis this spacing will be 1 ft. This program is labeled ''KVAR'' (for permeability variation) and is listed here, along with its bar code for those with optical wands. It requires only nine registers for program storage (since it uses HP built-in statistical functions) and eight registers for data storage. Also, it can be stored on one track of the standard two-track magnetic card. Data entry is terminated by entering ''O''. Lastly, it will run with or without a printer.
Validation of Dose Calculation Codes for Clearance
Menon, S.; Wirendal, B.; Bjerler, J.; Studsvik; Teunckens, L.
2003-02-27T23:59:59.000Z
Various international and national bodies such as the International Atomic Energy Agency, the European Commission, the US Nuclear Regulatory Commission have put forward proposals or guidance documents to regulate the ''clearance'' from regulatory control of very low level radioactive material, in order to allow its recycling as a material management practice. All these proposals are based on predicted scenarios for subsequent utilization of the released materials. The calculation models used in these scenarios tend to utilize conservative data regarding exposure times and dose uptake as well as other assumptions as a safeguard against uncertainties. None of these models has ever been validated by comparison with the actual real life practice of recycling. An international project was organized in order to validate some of the assumptions made in these calculation models, and, thereby, better assess the radiological consequences of recycling on a practical large scale.
Interruption Cost Estimate Calculator | Open Energy Information
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousPlasmaP aCentrothermDepew,Independent EnergyInternational Maritime LawInterruption Cost Estimate Calculator
Diffusion Simulation and Lifetime Calculation at RHIC
Abreu,N.P.; Fischer, W.; Luo, Y.; Robert-Demolaize, G.
2009-01-02T23:59:59.000Z
The beam lifetime is an important parameter for any storage ring. For protons in RHIC it is dominated by the non-linear nature of the head-on collisions that causes the particles to diffuse outside the stable area in phase space. In this report we show results from diffusion simulation and lifetime calculation for the 2006 and 2008 polarized proton runs in RHIC.
Permeability Calculation in a Fracture Network - 12197
Lee, Cheo Kyung; Kim, Hyo Won [Handong Global University, 3 Namsong-ri, Heunghae-eub, Buk-gu, Pohang, Kyungbuk, 791-708 (Korea, Republic of); Yim, Sung Paal [Korea Atomic Energy Research Institute, Yusong, Daejon, 305-600 (Korea, Republic of)
2012-07-01T23:59:59.000Z
Laminar flow of a viscous fluid in the pore space of a saturated fractured rock medium is considered to calculate the effective permeability of the medium. The effective permeability is determined from the flow field which is calculated numerically by using the finite element method. The computation of permeability components is carried out with a few different discretizations for a number of fracture arrangements. Various features such as flow field in the fracture channels, the convergence of permeability, and the variation of permeability among different fracture networks are discussed. The longitudinal permeability in general appears greater than the transverse ones. The former shows minor variations with fracture arrangement whereas the latter appears to be more sensitive to the arrangement. From the calculations of the permeability in a rock medium with a fracture network (two parallel fractures aligned in the direction of 45-deg counterclockwise from the horizontal and two connecting fractures(narrowing, parallel and widening) the following conclusions are drawn. 1. The permeability of fractured medium not only depends on the primary orientation of the main fractures but also is noticeably influenced by the connecting fractures in the medium. 2. The transverse permeability (the permeability in the direction normal to the direction of the externally imposed macro-scale pressure gradient) is only a fraction of the longitudinal one, but is sensitive to the arrangement of the connecting fractures. 3. It is important to figure out the pattern of the fractures that connect (or cross) the main fractures for reliable calculation of the transverse permeability. (authors)
Economic Calculations for the ASHRAE Handbook
Haberl, J. S.
1993-01-01T23:59:59.000Z
ESL-TR-93/04-07 Economic Calculations for the ASHRAE Handbook Jeff S. Haberl Dept. of Mechanical Engineering Texas A&M University College Station, TX 77843-3123 For any proposed capital investment, the capital and interest costs, salvage costs... Office, Washington, D.C. BIBLIOGRAPHY ASTM. 1985. Definition of terms relating to building economics. ASTM Standard E933-S5. ASTM, Philadelphia. Kurtz, M. 1984. Handbook of engineering economics: A guide for engineers, technicians, scientists and managers...
Free Energy Calculation in MD Simulation
Nielsen, Steven O.
Free Energy Calculation in MD Simulation #12;Basic Thermodynamics Helmoholtz free energy A = U TS + i Ni dA = wrev (reversible, const N V T) eq (22.9) McQuarrie & Simon Gibbs free energy G = U;Implication of Free Energy A B Keq = [A]/[B] Keq = exp (-G0 /RT) G0 = -RT ln Keq G = G0 + RT ln Q G > 0
Advanced Neutronics Tools for BWR Design Calculations
Santamarina, A.; Hfaiedh, N.; Letellier, R.; Sargeni, A.; Vaglio, C. [CEA-Cadarache, 13108 St Paul lez Durance Cedex (France); Marotte, V. [AREVA NP SAS (France); Misu, S. [AREVA NP GmbH (Germany); Zmijarevic, I. [CEA-Saclay, 91191 Gif-sur-Yvette Cedex (France)
2006-07-01T23:59:59.000Z
This paper summarizes the developments implemented in the new APOLLO2.8 neutronics tool to meet the required target accuracy in LWR applications, particularly void effects and pin-by-pin power map in BWRs. The Method Of Characteristics was developed to allow efficient LWR assembly calculations in 2D-exact heterogeneous geometry; resonant reaction calculation was improved by the optimized SHEM-281 group mesh, which avoids resonance self-shielding approximation below 23 eV, and the new space-dependent method for resonant mixture that accounts for resonance overlapping. Furthermore, a new library CEA2005, processed from JEFF3.1 evaluations involving feedback from Critical Experiments and LWR P.I.E, is used. The specific '2005-2007 BWR Plan' settled to demonstrate the validation/qualification of this neutronics tool is described. Some results from the validation process are presented: the comparison of APOLLO2.8 results to reference Monte Carlo TRIPOLI4 results on specific BWR benchmarks emphasizes the ability of the deterministic tool to calculate BWR assembly multiplication factor within 200 pcm accuracy for void fraction varying from 0 to 100%. The qualification process against the BASALA mock-up experiment stresses APOLLO2.8/CEA2005 performances: pin-by-pin power is always predicted within 2% accuracy, reactivity worth of B4C or Hf cruciform control blade, as well as Gd pins, is predicted within 1.2% accuracy. (authors)
Agriculture-related radiation dose calculations
Furr, J.M.; Mayberry, J.J.; Waite, D.A.
1987-10-01T23:59:59.000Z
Estimates of radiation dose to the public must be made at each stage in the identification and qualification process leading to siting a high-level nuclear waste repository. Specifically considering the ingestion pathway, this paper examines questions of reliability and adequacy of dose calculations in relation to five stages of data availability (geologic province, region, area, location, and mass balance) and three methods of calculation (population, population/food production, and food production driven). Calculations were done using the model PABLM with data for the Permian and Palo Duro Basins and the Deaf Smith County area. Extra effort expended in gathering agricultural data at succeeding environmental characterization levels does not appear justified, since dose estimates do not differ greatly; that effort would be better spent determining usage of food types that contribute most to the total dose; and that consumption rate and the air dispersion factor are critical to assessment of radiation dose via the ingestion pathway. 17 refs., 9 figs., 32 tabs.
Criticality calculations for Step-2 GPHS modules.
Hensen, Danielle Lynn; Lipinski, Ronald J.
2007-08-01T23:59:59.000Z
The Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) will use an improved version of the General Purpose Heat Source (GPHS) module as its source of thermal power. This new version, referred to as the Step-2 GPHS Module, has additional and thicker layers of carbon fiber material (Fine Weaved Pierced Fabric) for increased strength over the original GPHS module. The GPHS uses alpha decay of {sup 238}Pu in the oxide form as the primary source of heat, and small amounts of other actinides are also present in the oxide fuel. Criticality calculations have been performed by previous researchers on the original version of the GPHS module (Step 0). This paper presents criticality calculations for the present Step-2 version. The Monte Carlo N-Particle eXtended code (MCNPX) was used for these calculations. Numerous configurations of GPHS module arrays surrounded by wet sand and other materials (to reflect the neutrons back into the stack with minimal absorption) were modeled. For geometries with eight GPHS modules (from a single MMRTG) surrounded by wet sand, the configuration is extremely sub-critical; k{sub eff} is about 0.3. It requires about 1000 GPHS modules (from 125 MMRTGs) in a close-spaced stack to approach criticality (k{sub eff} = 1.0) when surrounded by wet sand. The effect of beryllium in the MMRTG was found to be relatively small.
Criticality Calculations for Step-2 GPHS Modules
Lipinski, Ronald J. [Advanced Nuclear Concepts Department, Sandia National Laboratories, P.O Box 5800, Albuquerque, NM 87185 (United States); Hensen, Danielle L. [Risk and Reliability Department Sandia National Laboratories, P.O Box 5800, Albuquerque, NM 87185 (United States)
2008-01-21T23:59:59.000Z
The Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) will use an improved version of the General Purpose Heat Source (GPHS) module as its source of thermal power. This new version, referred to as the Step-2 GPHS Module, has additional and thicker layers of carbon fiber material (Fine Weaved Pierced Fabric) for increased strength over the original GPHS module. The GPHS uses alpha decay of {sup 238}Pu in the oxide form as the primary source of heat, and small amounts of other actinides are also present in the oxide fuel. Criticality calculations have been performed by previous researchers on the original version of the GPHS module (Step 0). This paper presents criticality calculations for the present Step-2 version. The Monte Carlo N-Particle eXtended code (MCNPX) was used for these calculations. Numerous configurations of GPHS module arrays surrounded by wet sand and other materials (to reflect the neutrons back into the stack with minimal absorption) were modeled. For geometries with eight GPHS modules (from a single MMRTG) surrounded by wet sand, the configuration is extremely sub-critical; k{sub eff} is about 0.3. It requires about 1000 GPHS modules (from 125 MMRTGs) in a close-spaced stack to approach criticality (k{sub eff} = 1.0) when surrounded by wet sand. The effect of beryllium in the MMRTG was found to be relatively small.
Iron loss calculation for synchronous reluctance machines
Leonardi, F.; Matsuo, T.; Lipo, T.A. [Univ. of Wisconsin, Madison, WI (United States)
1995-12-31T23:59:59.000Z
A numerical method for iron loss calculation is presented in this paper. The method is suitable for any synchronous and most dc machines, especially if the current waveforms are known a priori . This technique will be principally useful for high speed machines and in particular for the synchronous reluctance machines and in particular for the synchronous reluctance machine, where the iron losses are often an important issue. The calculation is based on Finite Element Analysis, which provides the flux density waveforms in the iron, and on the Fourier Analysis of these waveforms. Several Finite Element Simulations are necessary to obtain the induced voltage versus time waveforms. To reduce the post-processing time the majority of the elements of the model are grouped together to create super elements. Also the periodicity of the motor can be used to reduce the number of required simulations. The method is applied to the calculation of the iron losses of a synchronous reluctance generator, and a number of interesting results are discussed in the paper.
Distributed Road Grade Estimation
Johansson, Karl Henrik
Distributed Road Grade Estimation for Heavy Duty Vehicles PER SAH LHOLM Doctoral Thesis in Automatic Control Stockholm, Sweden 2011 #12;Distributed Road Grade Estimation for Heavy Duty Vehicles PER state-of-charge control decrease the energy consumption of vehicles and increase the safety
DISTRIBUTION John R. Jones Qualung aspen is the most widely distributed native North American tree aspen (Populus tremula), has a wider range (Weigle and Frothingham 1911). In the humid East, aspen plateaus. Aspen is one of the most common trees in the interior West, where its range (fig.1)coincides
Self-consistent Green's function calculation of 16O at small missing energies
C. Barbieri; W. H. Dickhoff
2004-10-19T23:59:59.000Z
Calculations of the one-hole spectral function of 16O for small missing energies are reviewed. The self-consistent Green's function approach is employed together with the Faddeev equations technique in order to study the coupling of both particle-particle and particle-hole phonons to the single-particle motion. The results indicate that the characteristics of hole fragmentation are related to the low-lying states of 16O and an improvement of the description of this spectrum, beyond the random phase approximation, is required to understand the experimental strength distribution. A first calculation in this direction that accounts for two-phonon states is discussed.
Relaxation times calculated from angular deflections
E. Athanassoula; Ch. L. Vozikis; J. C. Lambert
2001-08-21T23:59:59.000Z
In this paper we measure the two-body relaxation time from the angular deflection of test particles launched in a rigid configuration of field particles. We find that centrally concentrated configurations have relaxation times that can be shorter than those of the corresponding homogeneous distributions by an order of magnitude or more. For homogeneous distributions we confirm that the relaxation time is proportional to the number of particles. On the other hand centrally concentrated configurations have a much shallower dependence, particularly for small values of the softening. The relaxation time increases with the inter-particle velocities and with softening. The latter dependence is not very strong, of the order of a factor of two when the softening is increased by an order of magnitude. Finally we show that relaxation times are the same on GRAPE-3 and GRAPE-4, dedicated computer boards with limited and high precision respectively.
Fuse and breaker coordination on the Harlingen distribution system
Foelker, Henry Edward
1951-01-01T23:59:59.000Z
impedances were calculated and converted4 to a 10, 000 KVA Base for use on the A. C. Network Calculator. 4 E ectrical Transmission and Distribution Reference Book, Westinghouse Electric and Manufacturing Company. 12 The method of symmetrical components..., " Relay Conference Paper, 1948. Coordinated ~S stem Protection For Rural and Suburban Lines, B-4700, Westinghouse Electric Corpozation. Douglass, W. Eer "Correlation of Product and Over-Current Relays for Ground Fault Protection, " Relay Conference...
NSRD-2015-TD01, Technical Report for Calculations of Atmospheric...
Broader source: Energy.gov (indexed) [DOE]
default Q value when calculating the dispersion of chemical releases. NSRD-2015-TD01, Technical Report for Calculations of Atmospheric Dispersion at Onsite Locations for DOE...
Measurement and Verification Plan and Savings Calculations Methods...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Measurement and Verification Plan and Savings Calculations Methods Outline (IDIQ Attachment J-8) Measurement and Verification Plan and Savings Calculations Methods Outline (IDIQ...
Fragment Yields Calculated in a Time-Dependent Microscopic Theory...
Office of Scientific and Technical Information (OSTI)
Fragment Yields Calculated in a Time-Dependent Microscopic Theory of Fission Citation Details In-Document Search Title: Fragment Yields Calculated in a Time-Dependent Microscopic...
Energy Department Report Calculates Emissions and Costs of Power...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Report Calculates Emissions and Costs of Power Plant Cycling Necessary for Increased Wind and Solar in the West Energy Department Report Calculates Emissions and Costs of Power...
Illustrative Calculation of Economics for Heat Pump and "Grid...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Illustrative Calculation of Economics for Heat Pump and "Grid-Enabled" Water Heaters Illustrative Calculation of Economics for Heat Pump and "Grid-Enabled" Water Heaters Rate...
Excited state contamination in nucleon structure calculations
Jeremy Green; Stefan Krieg; John Negele; Andrew Pochinsky; Sergey Syritsyn
2011-11-28T23:59:59.000Z
Among the sources of systematic error in nucleon structure calculations is contamination from unwanted excited states. In order to measure this systematic error, we vary the operator insertion time and source-sink separation independently. We compute observables for three source-sink separations between 0.93 fm and 1.39 fm using clover-improved Wilson fermions and pion masses as low as 150 MeV. We explore the use of a two-state model fit to subtract off the contribution from excited states.
Simple method for calculating island widths
Cary, J.R.; Hanson, J.D.; Carreras, B.A.; Lynch, V.E.
1989-01-01T23:59:59.000Z
A simple method for calculating magnetic island widths has been developed. This method uses only information obtained from integrating along the closed field line at the island center. Thus, this method is computationally less intensive than the usual method of producing surfaces of section of sufficient detail to locate and resolve the island separatrix. This method has been implemented numerically and used to analyze the buss work islands of ATF. In this case the method proves to be accurate to at least within 30%. 7 refs.
Simple method for calculating island widths
Cary, J.R. (Department of Astrophysical, Planetary, and Atmospheric Sciences, and Department of Physics, University of Colorado, Boulder, Colorado 80309-0391 (USA)); Hanson, J.D. (Department of Physics, Auburn University, Auburn, Alabama 36849 (USA))
1991-04-01T23:59:59.000Z
A simple method for calculating magnetic island widths has been developed. This method uses only that information obtained from integrating along the closed field line at the island center. Thus, this method is computationally less intensive than the usual method of producing surfaces of section of sufficient detail to locate and resolve the island separatrix. This method has been implemented numerically and used to analyze the buss work islands of ATF (Fusion Technol. {bold 10}, 179 (1986)). In this case the method proves to be accurate to at least within 20% even though the islands are within a factor of 2 of overlapping.
NERSC HPSS Storage Resource Units (SRU) Calculator
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:5 TablesExports(Journal Article) |govInstrumentsmfrirtA Journey Inside the Complex andFOUR Los Phase 1MillerYiMuseumTrack StorageCalculator SRU
Touschek Lifetime Calculations for NSLS-II
Nash,B.; Kramer, S.
2009-05-04T23:59:59.000Z
The Touschek effect limits the lifetime for NSLS-II. The basic mechanism is Coulomb scattering resulting in a longitudinal momentum outside the momentum aperture. The momentum aperture results from a combination of the initial betatron oscillations after the scatter and the non-linear properties determining the resultant stability. We find that higher order multipole errors may reduce the momentum aperture, particularly for scattered particles with energy loss. The resultant drop in Touschek lifetime is minimized, however, due to less scattering in the dispersive regions. We describe these mechanisms, and present calculations for NSLS-II using a realistic lattice model including damping wigglers and engineering tolerances.
R. F. O'Connell
2010-09-22T23:59:59.000Z
In contrast to classical physics, the language of quantum mechanics involves operators and wave functions (or, more generally, density operators). However, in 1932, Wigner formulated quantum mechanics in terms of a distribution function $W(q,p)$, the marginals of which yield the correct quantum probabilities for $q$ and $p$ separately \\cite{wigner}. Its usefulness stems from the fact that it provides a re-expression of quantum mechanics in terms of classical concepts so that quantum mechanical expectation values are now expressed as averages over phase-space distribution functions. In other words, statistical information is transferred from the density operator to a quasi-classical (distribution) function.
Distributed Wind Diffusion Model Overview (Presentation)
Preus, R.; Drury, E.; Sigrin, B.; Gleason, M.
2014-07-01T23:59:59.000Z
Distributed wind market demand is driven by current and future wind price and performance, along with several non-price market factors like financing terms, retail electricity rates and rate structures, future wind incentives, and others. We developed a new distributed wind technology diffusion model for the contiguous United States that combines hourly wind speed data at 200m resolution with high resolution electricity load data for various consumer segments (e.g., residential, commercial, industrial), electricity rates and rate structures for utility service territories, incentive data, and high resolution tree cover. The model first calculates the economics of distributed wind at high spatial resolution for each market segment, and then uses a Bass diffusion framework to estimate the evolution of market demand over time. The model provides a fundamental new tool for characterizing how distributed wind market potential could be impacted by a range of future conditions, such as electricity price escalations, improvements in wind generator performance and installed cost, and new financing structures. This paper describes model methodology and presents sample results for distributed wind market potential in the contiguous U.S. through 2050.
Multicavity SCRF calculation of ion hydration energies
Diercksen, B.H.F. [Max-Planck-Institut Fuer Astrophysik, Muenchen (Germany); Karelson, M. [Univ. of Tartu (Estonia); Tamm, T. [Univ. of Florida, Gainesville, FL (United States)
1994-12-31T23:59:59.000Z
The hydration energies of the proton, hydroxyl ion, and several inorganic ions were calculated using the multicavity self-consistent reaction field (MCa SCRF) method developed for the quantum-mechanical modeling of rotationally or flexible systems in dielectric media. The ionic complexes H{sub 3}O{sup +}(H2O){sub 4}, OH{sup {minus}}(H2O){sub 4}, NH{sup +}{sub 4}(H2O){sub 4}, and Hal{sup {minus}}(H2O){sub 4}, where Hal = F, Cl, or Br, have been studied. Each complex was divided between five spheres, corresponding to the central ion and four water molecules in their first coordination sphere, respectively. Each cavity was surrounded by a polarizable medium with the dielectric permittivity of water at room temperature (80). The ionic hydration energies of ions were divided into specific and nonspecific parts. After accounting for the cavity-formation energy using scaled particle theory, good agreement between the total calculated and experimental hydration energies was obtained for all ions studied.
Calculating chiller emissions and source energy use
Aumann, D.J. [Bevilacqua-Knight, Inc., Oakland, CA (United States)
1996-12-31T23:59:59.000Z
Various analyses have compared the emissions and over-all source energy use of different chillers. However, these analyses are typically based on national or regional electric power plant annual averages or rely on outdated emissions data that do not account for scrubbers and other pollution controls applied in response to the 1990 Clean Air Act Amendments (CAAA). Other analyses have used power generation data for a specific utility but require hourly generation profiles, which are difficult to obtain. Thus, many of the existing models are either too general to provide valuable information or too complex to be practical for the day-to-day applications engineers face. This paper introduces a simple yet reliable hand calculation method for estimating the combustion-related emissions and source energy use of gas and electric chillers. The user needs to supply only two inputs: annual chiller system energy use and the utility`s power generation mix during chiller operation. The analysis supplies electric power plant heat rates and emission factors. Referenced guidelines are documented for all calculation inputs.
Dabek, Frank (Frank Edward), 1977-
2006-01-01T23:59:59.000Z
DHash is a new system that harnesses the storage and network resources of computers distributed across the Internet by providing a wide-area storage service, DHash. DHash frees applications from re-implementing mechanisms ...
Edelstein, Elspeth Claire
2012-11-28T23:59:59.000Z
The distribution of adverbs is particularly difficult to account for, given the amount of variation it encompasses. Not only are adverbs typically optional, but any adverb may also appear in several different positions ...
Minimum Day Time Load Calculation and Screening
Broader source: Energy.gov (indexed) [DOE]
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:5 TablesExports to3,1,50022,3,,0,,6,1,Separation 23 362 ofSubscribe to AcquisitionJen Carter What doesADOE_EVMS_Gold_Card_Sep_2011.pdf54% ofDistributed
Vysotskii, Yu.B.; Zemskaya, E.A.; Zemskii, B.P.; Dulenko, V.I.
1987-10-01T23:59:59.000Z
The dipole moments, diamagnetic susceptibilities, chemical shifts of the /sup 1/H, /sup 13/C, and /sup 14/N nuclei, and the energies of the lowest singlet-singlet transitions of aza-substituted thiophenes and benzo(b)thiophenes were calculated within the framework of the bonded variant of perturbation theory by the Pariser-Parr-Pople (PPP) method. A scale of aromatic character of the investigated class of compounds is given on the basis of the current distributions found.
Equilibrium Distributions and Superconductivity
Ashot Vagharshakyan
2011-06-07T23:59:59.000Z
In this article two models for charges distributions are discussed. On the basis of our consideration we put different points of view for stationary state. We prove that only finite energy model for charges' distribution and well-known variation principle explain some well-known experimental results. A new model for superconductivity was suggested, too. In frame of that model some characteristic experimental results for superconductors is possible to explain.
SUPERTHERMAL ELECTRON DISTRIBUTION
Kauffman, R
2007-12-20T23:59:59.000Z
This memo discusses the analysis of the high-energy x-ray distribution from a laser-induced plasma to determine the superthermal electron distribution. The methods of deconvolution outlined in I are similar to formulae derived in the literature not including and including effects due to electron stopping. In II the methods are applied to an x-ray spectrum from an Au disc irradiated by ARGUS.
Polygamy of distributed entanglement
Buscemi, Francesco [Statistical Laboratory, DPMMS, University of Cambridge, Cambridge CB3 0WB (United Kingdom); Gour, Gilad [Institute for Quantum Information Science, University of Calgary, Alberta, T2N 1N4 (Canada); Department of Mathematics and Statistics, University of Calgary, Alberta, T2N 1N4 (Canada); Kim, Jeong San [Institute for Quantum Information Science, University of Calgary, Alberta, T2N 1N4 (Canada)
2009-07-15T23:59:59.000Z
While quantum entanglement is known to be monogamous (i.e., shared entanglement is restricted in multipartite settings), here we show that distributed entanglement (or the potential for entanglement) is by nature polygamous. By establishing the concept of one-way unlocalizable entanglement (UE) and investigating its properties, we provide a polygamy inequality of distributed entanglement in tripartite quantum systems of arbitrary dimension. We also provide a polygamy inequality in multiqubit systems and several trade-offs between UE and other correlation measures.
Quantum dense key distribution
Degiovanni, I.P.; Ruo Berchera, I.; Castelletto, S.; Rastello, M.L.; Bovino, F.A.; Colla, A.M.; Castagnoli, G. [Istituto Elettrotecnico Nazionale G. Ferraris, Strada delle Cacce 91, 10135 Torino (Italy); ELSAG SpA, Via Puccini 2, 16154, Genova (Italy)
2004-03-01T23:59:59.000Z
This paper proposes a protocol for quantum dense key distribution. This protocol embeds the benefits of a quantum dense coding and a quantum key distribution and is able to generate shared secret keys four times more efficiently than the Bennet-Brassard 1984 protocol. We hereinafter prove the security of this scheme against individual eavesdropping attacks, and we present preliminary experimental results, showing its feasibility.
Localitysensitive hashing using stable distributions
Localitysensitive hashing using stable distributions 4.1 LSH scheme based sstable distributions. of work appeared earlier in [DIIM04]. 4.1.1 sstable distributions Stable distributions [Zol86] defined limits of normalized sums independent identically distributed variables alternate definition follows
Particle distribution and nuclear stopping in Au-Au collisions at $\\sqrt{s_{NN}}$=200 GeV
L. L. Zhu; C. B. Yang
2006-05-18T23:59:59.000Z
The transverse momentum distribution of produced charged particles is investigated for gold-gold collisions at $\\sqrt{s_{NN}}=200$ GeV. A simple parameterization is suggested for the particle distribution based on the nuclear stopping effect. The model can fit very well both the transverse momentum distributions at different pseudo-rapidities and the pseudo-rapidity distributions at different centralities. The ratio of rapidity distributions for peripheral and central collisions is calculated and compared with the data.
A new approach to calculate the transport matrix in RF cavities
Eidelman, Yu.; /Novosibirsk, IYF; Mokhov, N.; Nagaitsev, S.; Solyak, N.; /Fermilab
2011-03-01T23:59:59.000Z
A realistic approach to calculate the transport matrix in RF cavities is developed. It is based on joint solution of equations of longitudinal and transverse motion of a charged particle in an electromagnetic field of the linac. This field is a given by distribution (measured or calculated) of the component of the longitudinal electric field on the axis of the linac. New approach is compared with other matrix methods to solve the same problem. The comparison with code ASTRA has been carried out. Complete agreement for tracking results for a TESLA-type cavity is achieved. A corresponding algorithm will be implemented into the MARS15 code. A realistic approach to calculate the transport matrix in RF cavities is developed. Complete agreement for tracking results with existed code ASTRA is achieved. New algorithm will be implemented into MARS15 code.
Comparison of various approaches to the calculation of optically induced forces
Torchigin, V.P., E-mail: v_torchigin@mail.ru; Torchigin, A.V.
2012-09-15T23:59:59.000Z
Various approaches used for the calculation of optically induced forces applied to a transparent optical medium imbedded in a close plane optical resonator are analyzed. The forces are calculated by means of analysis of a change in the eigen frequency and energy stored in the resonator at various positions of the medium. It is shown that results obtained are identical to those calculated by means of approaches based on the Maxwell stress tensor, based on an analysis of a change in the momentum of light. An exception is for results obtained on the base of last versions of the Lorentz density force. - Highlights: Black-Right-Pointing-Pointer There are no Lorentz forces in a homogeneous optical medium. Black-Right-Pointing-Pointer A net force produced by an inhomogeneous electrostriction pressure is equal to zero. Black-Right-Pointing-Pointer Any distributions of the Lorentz force in a homogeneous optical medium are misleading.
Interaction of loading pattern and nuclear data uncertainties in reactor core calculations
Klein, M.; Gallner, L.; Krzykacz-Hausmann, B.; Pautz, A.; Velkov, K.; Zwermann, W. [Gesellschaft fuer Anlagen- und Reaktorsicherheit GRS MbH, Boltzmannstr. 14, D- 85748 Garching b. Muenchen (Germany)
2012-07-01T23:59:59.000Z
Along with best-estimate calculations for design and safety analysis, understanding uncertainties is important to determine appropriate design margins. In this framework, nuclear data uncertainties and their propagation to full core calculations are a critical issue. To deal with this task, different error propagation techniques, deterministic and stochastic are currently developed to evaluate the uncertainties in the output quantities. Among these is the sampling based uncertainty and sensitivity software XSUSA which is able to quantify the influence of nuclear data covariance on reactor core calculations. In the present work, this software is used to investigate systematically the uncertainties in the power distributions of two PWR core loadings specified in the OECD UAM-Benchmark suite. With help of a statistical sensitivity analysis, the main contributors to the uncertainty are determined. Using this information a method is studied with which loading patterns of reactor cores can be optimized with regard to minimizing power distribution uncertainties. It is shown that this technique is able to halve the calculation uncertainties of a MOX/UOX core configuration. (authors)
Benchmark On Sensitivity Calculation (Phase III)
Ivanova, Tatiana [IRSN; Laville, Cedric [IRSN; Dyrda, James [Atomic Weapons Establishment; Mennerdahl, Dennis [E. Mennerdahl Systems; Golovko, Yury [Institute of Physics and Power Engineering (IPPE), Obninsk, Russia; Raskach, Kirill [Institute of Physics and Power Engineering (IPPE), Obninsk, Russia; Tsiboulia, Anatoly [Institute of Physics and Power Engineering (IPPE), Obninsk, Russia; Lee, Gil Soo [Korea Institute of Nuclear Safety (KINS); Woo, Sweng-Woong [Korea Institute of Nuclear Safety (KINS); Bidaud, Adrien [Labratoire de Physique Subatomique et de Cosmolo-gie (LPSC); Patel, Amrit [NRC; Bledsoe, Keith C [ORNL; Rearden, Bradley T [ORNL; Gulliford, J. [OECD Nuclear Energy Agency
2012-01-01T23:59:59.000Z
The sensitivities of the keff eigenvalue to neutron cross sections have become commonly used in similarity studies and as part of the validation algorithm for criticality safety assessments. To test calculations of the sensitivity coefficients, a benchmark study (Phase III) has been established by the OECD-NEA/WPNCS/EG UACSA (Expert Group on Uncertainty Analysis for Criticality Safety Assessment). This paper presents some sensitivity results generated by the benchmark participants using various computational tools based upon different computational methods: SCALE/TSUNAMI-3D and -1D, MONK, APOLLO2-MORET 5, DRAGON-SUSD3D and MMKKENO. The study demonstrates the performance of the tools. It also illustrates how model simplifications impact the sensitivity results and demonstrates the importance of 'implicit' (self-shielding) sensitivities. This work has been a useful step towards verification of the existing and developed sensitivity analysis methods.
Calculating LHC Tuning Knobs using Various Methods
Wittmer, W; Zimmermann, Frank
2004-01-01T23:59:59.000Z
By measuring and adjusting the beta-functions at the IP the luminosity is being optimized. In LEP this was done with the two closest doublet magnets. This approach is not applicable for the LHC due to the asymmetric lattice and common beam pipe through the triplet magnets. To control and change the beta-functions quadrupole groups situated on both sides further away from the IP have to be used where the two beams are already separated. The quadrupoles are excited in specific linear combinations, forming the socalled “tuning knobs” for the IP beta functions. We compare the performance of such knobs calculated by different methods: (1) matching in MAD, (2) inversion of the response matrix and singular value decomposition inversion and conditioning and (3) conditioning the response matrix by multidimensional minimization using an Adapted Moore Penrose Method.
On the calculation of mutual information
Duncan, Tyrone E.
1970-07-01T23:59:59.000Z
as follows: (1) d Yt Zt dt + dBt, where the n-dimensional process Z is independent of the n-dimensional standard Brownian motion B, [0, 1], Yo =- 0 and (2) f,f ZTt Zt dP dr< where the superscript T denotes transpose. We wish to calculate the amount... was supported by the United States Air Force under Grant AF-AFOSR 814-66. 215 D ow nl oa de d 09 /1 0/ 14 to 1 29 .2 37 .4 6. 10 0. R ed ist rib ut io n su bje ct to SIA M lic en se or co py rig ht; se e h ttp ://w ww .si am .or g/j ou rna ls/ ojs a...
Followup calculations for the UVAR LEU conversion
Rydin, R.A.; Hosticka, B.; Burns, T. [Univ. of Virginia, Charlottesville, VA (United States). Dept. of Mechanical, Aerospace and Nuclear Engineering] [and others
1995-12-31T23:59:59.000Z
The UVAR reactor was successfully converted to LEU fuel in April 1994. Void coefficient measurements were made on the 4-by-4 fully-graphite-reflected LEU-1 core configuration, and an isothermal temperature coefficient measurement was made on the operational 4-by-5 partially-graphite-reflected LEU-2 core configuration. Both of these experiments have now been modeled in their critical configurations using the 3DBUM code. The LEU cores were also modeled using the Monte Carlo code MCNP in order to obtain a neutron/gamma source for BNCT filter design calculations. Advanced BNCT filters have been evaluated using both MCNP and the discrete ordinates code DORT. The results indicate that the UVAR would be an ideal source for the BNCT treatment of brain tumors.
The generalized Mackenzie distribution: disorientation angle distributions for arbitrary textures
Mason, J. K.
A general formulation for the disorientation angle distribution function is derived. The derivation employs the hyperspherical harmonic expansion for orientation distributions, and an explicit solution is presented for ...
A primer for criticality calculations with DANTSYS
Busch, R.D. [Univ. of New Mexico, Albuquerque, NM (United States). Nuclear Criticality Safety Group
1997-08-01T23:59:59.000Z
With the closure of many experimental facilities, the nuclear safety analyst has to rely on computer calculations to identify safe limits for the handling and storage of fissile materials. Although deterministic methods often do not provide exact models of a system, a substantial amount of reliable information on nuclear systems can be obtained using these methods if the user understands their limitations. To guide criticality specialists in this area, the Nuclear Criticality Safety Group at the University of New Mexico (UNM) in cooperation with the Radiation Transport Group at Los Alamos National Laboratory (LANL) has designed a primer to help the analyst understand and use the DANTSYS deterministic transport code for nuclear criticality safety analyses. DANTSYS is the new name of the group of codes formerly known as: ONEDANT, TWODANT, TWOHEX, TWOGQ, and THREEDANT. The primer is designed to teach bu example, with each example illustrating two or three DANTSYS features useful in criticality analyses. Starting with a Quickstart chapter, the primer gives an overview of the basic requirements for DANTSYS input and allows the user to quickly run a simple criticality problem with DANTSYS. Each chapter has a list of basic objectives at the beginning identifying the goal of the chapter and the individual DANTSYS features covered in detail in the chapter example problems. On completion of the primer, it is expected that the user will be comfortable doing criticality calculations with DANTSYS and can handle 60--80% of the situations that normally arise in a facility. The primary provides a set of input files that can be selective modified by the user to fit each particular problem.
GUIDE TO CALCULATING TRANSPORT EFFICIENCY OF AEROSOLS IN OCCUPATIONAL AIR SAMPLING SYSTEMS
Hogue, M.; Hadlock, D.; Thompson, M.; Farfan, E.
2013-11-12T23:59:59.000Z
This report will present hand calculations for transport efficiency based on aspiration efficiency and particle deposition losses. Because the hand calculations become long and tedious, especially for lognormal distributions of aerosols, an R script (R 2011) will be provided for each element examined. Calculations are provided for the most common elements in a remote air sampling system, including a thin-walled probe in ambient air, straight tubing, bends and a sample housing. One popular alternative approach would be to put such calculations in a spreadsheet, a thorough version of which is shared by Paul Baron via the Aerocalc spreadsheet (Baron 2012). To provide greater transparency and to avoid common spreadsheet vulnerabilities to errors (Burns 2012), this report uses R. The particle size is based on the concept of activity median aerodynamic diameter (AMAD). The AMAD is a particle size in an aerosol where fifty percent of the activity in the aerosol is associated with particles of aerodynamic diameter greater than the AMAD. This concept allows for the simplification of transport efficiency calculations where all particles are treated as spheres with the density of water (1 g?cm-3). In reality, particle densities depend on the actual material involved. Particle geometries can be very complicated. Dynamic shape factors are provided by Hinds (Hinds 1999). Some example factors are: 1.00 for a sphere, 1.08 for a cube, 1.68 for a long cylinder (10 times as long as it is wide), 1.05 to 1.11 for bituminous coal, 1.57 for sand and 1.88 for talc. Revision 1 is made to correct an error in the original version of this report. The particle distributions are based on activity weighting of particles rather than based on the number of particles of each size. Therefore, the mass correction made in the original version is removed from the text and the calculations. Results affected by the change are updated.
Free volume distribution of nearly jammed hard sphere packings
Moumita Maiti; Srikanth Sastry
2014-07-25T23:59:59.000Z
We calculate the free volume distributions of nearly jammed packings of monodisperse and bidisperse hard sphere configurations. These distributions differ qualitatively from those of the fluid, displaying a power law tail at large free volumes, which constitutes a distinct signature of nearly jammed configurations, persisting for moderate degrees of decompression. We reproduce and explain the observed distribution by considering the pair correlation function within the first coordination shell for jammed hard sphere configurations. We analyze features of the equation of state near jamming, and discuss the significance of observed asphericities of the free volumes to the equation of state.
Radiation calculations for the ILC cryomodule
Nakao, N.; Mokhov, N.V.; Klebaner, A.; /Fermilab
2007-04-01T23:59:59.000Z
The MARS15 radiation simulations were performed for the ILC cryomodule. The model assumes a uniform beam loss intensity of 1 W/m of 750-MeV and 250-GeV electron along the inner surface of the beam pipe and the cavity iris of the 12-m cryomodule. Two-dimensional distributions of radiation dose in the module were obtained. Absorbed dose rate and energy spectra of electrons, photons, neutrons and protons were also obtained at the three cryogenic thermometers locations by filling with silicon material in the appropriate locations, and radiation hardness of the thermometers was discussed. From the obtained results, maximum absorbed dose of thermometers at the cooling pipe is 0.85mGy/sec (85 mRad/sec), that is 0.31 MGy (31 MRad) for 20 years.
Analysis of Cold Air Distribution System in an Office Building by the Numerical Simulation Method
Jian, Y.; Li, D.; Xu, H.; Ma, X.
2006-01-01T23:59:59.000Z
Numerical simulation is carried out in this paper to calculate indoor air patterns, which include angles of inlet direction and induced ratios in a typical official room. According to the simulation results, the indoor air distribution and indoor...
Chu, Shih-I; Dalgarno, A.
1975-08-01T23:59:59.000Z
The effective close-coupling method of Rabitz is tested and used to calculate the angular distributions of the elastic and inelastic scattering of molecular hydrogen in collision with atomic hydrogen when rotational transitions may occur...
Analysis of Cold Air Distribution System in an Office Building by the Numerical Simulation Method
Jian, Y.; Li, D.; Xu, H.; Ma, X.
2006-01-01T23:59:59.000Z
Numerical simulation is carried out in this paper to calculate indoor air patterns, which include angles of inlet direction and induced ratios in a typical official room. According to the simulation results, the indoor air distribution and indoor...
Numerical Investigation of Temperature Distribution on a High Pressure Gas Turbine Blade
Zirakzadeh, Hootan
2014-08-10T23:59:59.000Z
A numerical code is developed to calculate the temperature distributions on the surface of a gas turbine blade. This code is a tool for quick prediction of the temperatures by knowing the boundary conditions and the flow conditions, and doesn...
Energy Distribution of a Gödel-Type Space-Time
Ragab M. Gad
2004-01-29T23:59:59.000Z
We calculate the energy and momentum distributions associated with a G\\"{o}del-type space-time, using the well-known energy-momentum complexes of Landau and Lifshitz and M{\\o}ller. We show that the definitions of Landau and Lifshitz and M{\\o}ller do not furnish a consistent result.
Distributed Radio Interferometric Calibration
Yatawatta, Sarod
2015-01-01T23:59:59.000Z
Increasing data volumes delivered by a new generation of radio interferometers require computationally efficient and robust calibration algorithms. In this paper, we propose distributed calibration as a way of improving both computational cost as well as robustness in calibration. We exploit the data parallelism across frequency that is inherent in radio astronomical observations that are recorded as multiple channels at different frequencies. Moreover, we also exploit the smoothness of the variation of calibration parameters across frequency. Data parallelism enables us to distribute the computing load across a network of compute agents. Smoothness in frequency enables us reformulate calibration as a consensus optimization problem. With this formulation, we enable flow of information between compute agents calibrating data at different frequencies, without actually passing the data, and thereby improving robustness. We present simulation results to show the feasibility as well as the advantages of distribute...
Brown, Kenneth Dewayne (Grain Valley, MO); Dunson, David (Kansas City, MO)
2006-08-08T23:59:59.000Z
A distributed data transmitter (DTXR) which is an adaptive data communication microwave transmitter having a distributable architecture of modular components, and which incorporates both digital and microwave technology to provide substantial improvements in physical and operational flexibility. The DTXR has application in, for example, remote data acquisition involving the transmission of telemetry data across a wireless link, wherein the DTXR is integrated into and utilizes available space within a system (e.g., a flight vehicle). In a preferred embodiment, the DTXR broadly comprises a plurality of input interfaces; a data modulator; a power amplifier; and a power converter, all of which are modularly separate and distinct so as to be substantially independently physically distributable and positionable throughout the system wherever sufficient space is available.
Brown, Kenneth Dewayne (Grain Valley, MO); Dunson, David (Kansas City, MO)
2008-06-03T23:59:59.000Z
A distributed data transmitter (DTXR) which is an adaptive data communication microwave transmitter having a distributable architecture of modular components, and which incorporates both digital and microwave technology to provide substantial improvements in physical and operational flexibility. The DTXR has application in, for example, remote data acquisition involving the transmission of telemetry data across a wireless link, wherein the DTXR is integrated into and utilizes available space within a system (e.g., a flight vehicle). In a preferred embodiment, the DTXR broadly comprises a plurality of input interfaces; a data modulator; a power amplifier; and a power converter, all of which are modularly separate and distinct so as to be substantially independently physically distributable and positionable throughout the system wherever sufficient space is available.
Momentum distributions for ^{2}H(e,e'p)
Ford, William P. [ODU; Jeschonnek, Sabine [Ohio State University; Van Orden, J. Wallace [ODU, JLAB
2014-12-01T23:59:59.000Z
[Background] A primary goal of deuteron electrodisintegration is the possibility of extracting the deuteron momentum distribution. This extraction is inherently fraught with difficulty, as the momentum distribution is not an observable and the extraction relies on theoretical models dependent on other models as input. [Purpose] We present a new method for extracting the momentum distribution which takes into account a wide variety of model inputs thus providing a theoretical uncertainty due to the various model constituents. [Method] The calculations presented here are using a Bethe-Salpeter like formalism with a wide variety of bound state wave functions, form factors, and final state interactions. We present a method to extract the momentum distributions from experimental cross sections, which takes into account the theoretical uncertainty from the various model constituents entering the calculation. [Results] In order to test the extraction pseudo-data was generated, and the extracted "experimental'' distribution, which has theoretical uncertainty from the various model inputs, was compared with the theoretical distribution used to generate the pseudo-data. [Conclusions] In the examples we compared the original distribution was typically within the error band of the extracted distribution. The input wave functions do contain some outliers which are discussed in the text, but at least this procedure can provide an upper bound on the deuteron momentum distribution. Due to the reliance on the theoretical calculation to obtain this quantity any extraction method should account for the theoretical error inherent in these calculations due to model inputs.
The Energy Distribution in a Static Spherically Symmetric Nonsingular Black Hole Space-Time
I. Radinschi
2000-08-14T23:59:59.000Z
We calculate the energy distribution in a static spherically symmetric nonsingular black hole space-time by using the Tolman's energy-momentum complex. All the calculations are performed in quasi-Cartesian coordinates. The energy distribution is positive everywhere and be equal to zero at origin. We get the same result as obtained by Y-Ching Yang by using the Einstein's and Weinberg's prescriptions.
Worst Case Scenario for Large Distribution Networks with Distributed Generation
Pota, Himanshu Roy
Worst Case Scenario for Large Distribution Networks with Distributed Generation M. A. Mahmud) in distri- bution network has significant effects on voltage profile for both customers and distribution on variation of the voltage and the amount of DG that can be connected to the distribution networks. This paper
Water vapor distribution in protoplanetary disks
Du, Fujun; Bergin, Edwin A., E-mail: fdu@umich.edu [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109 (United States)
2014-09-01T23:59:59.000Z
Water vapor has been detected in protoplanetary disks. In this work, we model the distribution of water vapor in protoplanetary disks with a thermo-chemical code. For a set of parameterized disk models, we calculate the distribution of dust temperature and radiation field of the disk with a Monte Carlo method, and then solve the gas temperature distribution and chemical composition. The radiative transfer includes detailed treatment of scattering by atomic hydrogen and absorption by water of Ly? photons, since the Ly? line dominates the UV spectrum of accreting young stars. In a fiducial model, we find that warm water vapor with temperature around 300 K is mainly distributed in a small and well-confined region in the inner disk. The inner boundary of the warm water region is where the shielding of UV field due to dust and water itself become significant. The outer boundary is where the dust temperature drops below the water condensation temperature. A more luminous central star leads to a more extended distribution of warm water vapor, while dust growth and settling tends to reduce the amount of warm water vapor. Based on typical assumptions regarding the elemental oxygen abundance and the water chemistry, the column density of warm water vapor can be as high as 10{sup 22} cm{sup –2}. A small amount of hot water vapor with temperature higher than ?300 K exists in a more extended region in the upper atmosphere of the disk. Cold water vapor with temperature lower than 100 K is distributed over the entire disk, produced by photodesorption of the water ice.
Big Bang Nucleosynthesis with Independent Neutrino Distribution Functions
Christel J. Smith; George M. Fuller; Michael S. Smith
2008-12-06T23:59:59.000Z
We have performed new Big Bang Nucleosynthesis calculations which employ arbitrarily-specified, time-dependent neutrino and antineutrino distribution functions for each of up to four neutrino flavors. We self-consistently couple these distributions to the thermodynamics, the expansion rate and scale factor-time/temperature relationship, as well as to all relevant weak, electromagnetic, and strong nuclear reaction processes in the early universe. With this approach, we can treat any scenario in which neutrino or antineutrino spectral distortion might arise. These scenarios might include, for example, decaying particles, active-sterile neutrino oscillations, and active-active neutrino oscillations in the presence of significant lepton numbers. Our calculations allow lepton numbers and sterile neutrinos to be constrained with observationally-determined primordial helium and deuterium abundances. We have modified a standard BBN code to perform these calculations and have made it available to the community.
Development of a Roof Savings Calculator
New, Joshua Ryan [ORNL] [ORNL; Miller, William A [ORNL] [ORNL; Desjarlais, Andre Omer [ORNL] [ORNL; Erdem, Ender [Lawrence Berkeley National Laboratory (LBNL)] [Lawrence Berkeley National Laboratory (LBNL); Huang, Joe [Lawrence Berkeley National Laboratory (LBNL)] [Lawrence Berkeley National Laboratory (LBNL)
2011-01-01T23:59:59.000Z
A web-based Roof Savings Calculator (RSC) has been deployed for the Department of Energy as an industry-consensus tool to help building owners, manufacturers, distributors, contractors and researchers easily run complex roof and attic simulations. This tool employs the latest web technologies and usability design to provide an easy input interface to an annual simulation of hour-by-hour, whole-building performance using the world-class simulation tools DOE-2.1E and AtticSim. Building defaults were assigned and can provide estimated annual energy and cost savings after the user selects nothing more than building location. In addition to cool reflective roofs, the RSC tool can simulate multiple roof types at arbitrary inclinations. There are options for above sheathing ventilation, radiant barriers, and low-emittance surfaces. The tool also accommodates HVAC ducts either in the conditioned space or in the attic with custom air leakage rates. Multiple layers of building materials, ceiling and deck insulation, and other parameters can be compared side-by-side to generate an energy/cost savings estimate between two buildings. The RSC tool was benchmarked against field data for demonstration homes in Ft. Irwin, CA.
Development of a Roof Savings Calculator
New, Joshua Ryan [ORNL] [ORNL; Miller, William A [ORNL] [ORNL; Huang, Joe [Lawrence Berkeley National Laboratory (LBNL)] [Lawrence Berkeley National Laboratory (LBNL); Erdem, Ender [Lawrence Berkeley National Laboratory (LBNL)] [Lawrence Berkeley National Laboratory (LBNL)
2011-01-01T23:59:59.000Z
A web-based Roof Savings Calculator (RSC) has been deployed for the Department of Energy as an industry-consensus tool to help building owners, manufacturers, distributors, contractors and researchers easily run complex roof and attic simulations. This tool employs the latest web technologies and usability design to provide an easy input interface to an annual simulation of hour-by-hour, whole-building performance using the world-class simulation tools DOE-2.1E and AtticSim. Building defaults were assigned and can provide annual energy and cost savings after the user selects nothing more than building location. In addition to cool reflective roofs, the RSC tool can simulate multiple roof types at arbitrary inclinations. There are options for above sheathing ventilation, radiant barriers and low-emittance surfaces. The tool also accommodates HVAC ducts either in the conditioned space or in the attic with custom air leakage rates. Multiple layers of thermal mass, ceiling insulation and other parameters can be compared side-by-side to generate energy/cost savings between two buildings. The RSC tool was benchmarked against field data for demonstration homes in Ft Irwin, CA.
Visual Analytics for Roof Savings Calculator Ensembles
Jones, Chad [University of California, Davis] [University of California, Davis; New, Joshua Ryan [ORNL] [ORNL; Sanyal, Jibonananda [ORNL] [ORNL; Ma, Kwan-Liu [University of California, Davis] [University of California, Davis
2012-01-01T23:59:59.000Z
The Roof Savings Calculator (RSC) has been deployed for DOE as an industry-consensus, web-based tool for easily running complex building energy simulations. These simulations allow both homeowners and experts to determine building-specific cost and energy savings for modern roof and attic technologies. Using a database of over 3 million RSC simulations for different combinations of parameters, we have built a visual analytics tool to assist in the exploration and identification of features in the data. Since the database contains multiple variables, both categorical and continuous, we employ a coordinated multi-view approach that allows coordinated feature exploration through multiple visualizations at once. The main component of our system, a parallel coordinates view, has been adapted to handle large-scale, mixed data types as are found in RSC simulations. Other visualizations include map coordinated plots, high dynamic range (HDR) line plot rendering, and an intuitive user interface. We demonstrate these techniques with several use cases that have helped identify software and parametric simulation issues.
PEP-X IMPEDANCE AND INSTABILITY CALCULATIONS
Bane, K.L.F.; Lee, L.-Q.; Ng, C.; Stupakov, G.; au Wang, L.; Xiao, L.; /SLAC
2010-08-25T23:59:59.000Z
PEP-X, a next generation, ring-based light source is designed to run with beams of high current and low emittance. Important parameters are: energy 4.5 GeV, circumference 2.2 km, beam current 1.5 A, and horizontal and vertical emittances, 185 pm by 8 pm. In such a machine it is important that impedance driven instabilities not degrade the beam quality. In this report they study the strength of the impedance and its effects in PEP-X. For the present, lacking a detailed knowledge of the vacuum chamber shape, they create a straw man design comprising important vacuum chamber objects to be found in the ring, for which they then compute the wake functions. From the wake functions they generate an impedance budget and a pseudo-Green function wake representing the entire ring, which they, in turn, use for performing microwave instability calculations. In this report they, in addition, consider in PEP-X the transverse mode-coupling, multi-bunch transverse, and beam-ion instabilities.
Recent PQCD calculations of heavy quark production
Vitev, I
2006-01-01T23:59:59.000Z
We summarize the results of a recent study of heavy quark production and attenuation in cold nuclear matter. In p+p collisions, we investigate the relative contribution of partonic sub-processes to $D$ meson production and $D$ meson-triggered inclusive di-hadrons to lowest order in perturbative QCD. While gluon fusion dominates the creation of large angle $D\\bar{D}$ pairs, charm on light parton scattering determines the yield of single inclusive $D$ mesons. The distinctly different non-perturbative fragmentation of $c$ quarks into $D$ mesons versus the fragmentation of quarks and gluons into light hadrons results in a strong transverse momentum dependence of anticharm content of the away-side charm-triggered jet. In p+A reactions, we calculate and resum the coherent nuclear-enhanced power corrections from the final-state partonic scattering in the medium. We find that single and double inclusive open charm production can be suppressed as much as the yield of neutral pions from dynamical high-twist shadowing. ...
Water vapor distribution in protoplanetary disks
Du, Fujun
2014-01-01T23:59:59.000Z
Water vapor has been detected in protoplanetary disks. In this work we model the distribution of water vapor in protoplanetary disks with a thermo-chemical code. For a set of parameterized disk models, we calculate the distribution of dust temperature and radiation field of the disk with a Monte Carlo method, and then solve the gas temperature distribution and chemical composition. The radiative transfer includes detailed treatment of scattering by atomic hydrogen and absorption by water of Lyman alpha photons, since the Lyman alpha line dominates the UV spectrum of accreting young stars. In a fiducial model, we find that warm water vapor with temperature around 300 K is mainly distributed in a small and well-confined region in the inner disk. The inner boundary of the warm water region is where the shielding of UV field due to dust and water itself become significant. The outer boundary is where the dust temperature drops below the water condensation temperature. A more luminous central star leads to a more ...
Fast algorithm for finding the eigenvalue distribution of very large matrices Anthony Hams and Hans distribution density of states of very large matrices. The salient feature of this method is that for matrices The calculation of the distribution of eigenvalues of very large matrices is a central problem in quantum physics
The Energy Distribution of Gamma-Ray Bursts
David L. Band
2001-05-15T23:59:59.000Z
The distribution of the apparent total energy emitted by a gamma-ray burst reflects not only the distribution of the energy actually released by the burst engine, but also the distribution of beaming angles. Using the observed energy fluences, the detection thresholds and burst redshifts for three burst samples, I calculate the best-fit parameters for lognormal and power-law distributions of the apparent total energy. Two of the samples include a small number of bursts with spectroscopic redshifts, while the third sample has 220 bursts with redshifts determined by the proposed variability-luminosity correlation. I find different sets of parameter values for the three burst samples. The Bayesian odds ratio cannot distinguish between the two model distribution functions for the two smaller burst samples with spectroscopic redshifts, but does favor the lognormal distribution for the larger sample with variability-derived redshifts. The data do not rule out a distribution with a low energy tail which is currently unobservable. I find that neglecting the burst detection threshold biases the fitted distribution to be narrower with a higher average value than the true distribution; this demonstrates the importance of determining and reporting the effective detection threshold for bursts in a sample.
Handbook of Industrial Engineering Equations, Formulas, and Calculations
Badiru, Adedeji B [ORNL; Omitaomu, Olufemi A [ORNL
2011-01-01T23:59:59.000Z
The first handbook to focus exclusively on industrial engineering calculations with a correlation to applications, Handbook of Industrial Engineering Equations, Formulas, and Calculations contains a general collection of the mathematical equations often used in the practice of industrial engineering. Many books cover individual areas of engineering and some cover all areas, but none covers industrial engineering specifically, nor do they highlight topics such as project management, materials, and systems engineering from an integrated viewpoint. Written by acclaimed researchers and authors, this concise reference marries theory and practice, making it a versatile and flexible resource. Succinctly formatted for functionality, the book presents: Basic Math Calculations; Engineering Math Calculations; Production Engineering Calculations; Engineering Economics Calculations; Ergonomics Calculations; Facility Layout Calculations; Production Sequencing and Scheduling Calculations; Systems Engineering Calculations; Data Engineering Calculations; Project Engineering Calculations; and Simulation and Statistical Equations. It has been said that engineers make things while industrial engineers make things better. To make something better requires an understanding of its basic characteristics and the underlying equations and calculations that facilitate that understanding. To do this, however, you do not have to be computational experts; you just have to know where to get the computational resources that are needed. This book elucidates the underlying equations that facilitate the understanding required to improve design processes, continuously improving the answer to the age-old question: What is the best way to do a job?
Cook, William R.
1 Web Services versus Distributed Objects William R. Cook, Janel Barfield University of Texas at Austin 2 How many times have you heard... 3 "Web Services suck..." ? 4 "WS are a bad version Objects 10 to 100 times faster than Web Services 7 Test Case Call a remote service that returns an integer
Distributed Quantum Programming
Ellie D'Hondt; Yves Vandriessche
2010-01-11T23:59:59.000Z
In this paper we explore the structure and applicability of the Distributed Measurement Calculus (DMC), an assembly language for distributed measurement-based quantum computations. We describe the formal language's syntax and semantics, both operational and denotational, and state several properties that are crucial to the practical usability of our language, such as equivalence of our semantics, as well as compositionality and context-freeness of DMC programs. We show how to put these properties to use by constructing a composite program that implements distributed controlled operations, in the knowledge that the semantics of this program does not change under the various composition operations. Our formal model is the basis of a quantum virtual machine construction for distributed quantum computations, which we elaborate upon in the latter part of this work. This virtual machine embodies the formal semantics of DMC such that programming execution no longer needs to be analysed by hand. Far from a literal translation, it requires a substantial concretisation of the formal model at the level of data structures, naming conventions and abstraction mechanisms. At the same time we provide automatisation techniques for program specification where possible to obtain an expressive and user-friendly programming environment.
Figure 1. Approximate distribution of beluga whales in Alaska waters. The dark shading displays (DeMaster 1995: pp. 16). CURRENT AND MAXIMUM NET PRODUCTIVITY RATES A reliable estimate of the maximum net productivity rate is currently unavailable for the Beaufort Sea stock of beluga whales. Hence
MAIL DISTRIBUTION MAIL PRODUCTION
MAIL DISTRIBUTION AND MAIL PRODUCTION OPERATIONS GUIDE November 07 Revised November 07 #12;2 Mail/billing......................................................................................1-5346 Mail Production of the University non-profit permit. 3. All bulk mailings must be coordinated with Mail Production at the earliest
CALCULATION Water cooling process SHEET 1 OF 1 CALCULATION BY Cale Caldwell
McDonald, Kirk
Assumptions steady state conditions; heat distributed evenly over entire cylinder; no heat lost to surroundings; uniform heat flux Q 2500kW Heat to be removed Coolant is Water c 4180 J kg K Specific heat 998/2in pipe, schedule 10) v 5 m s Velocity of coolant (assumed) As d L1 Surface area n flowrate v
Distributed Energy Resources for Carbon Emissions Mitigation
Firestone, Ryan; Marnay, Chris
2008-01-01T23:59:59.000Z
Distributed Energy Resource Technology Characterizations. ”ABORATORY Distributed Energy Resources for Carbon Emissions5128 Distributed Energy Resources for Carbon Emissions
Distributed Energy Alternatives to Electrical
Pennycook, Steve
Distributed Energy Alternatives to Electrical Distribution Grid Expansion in Consolidated Edison.www.gastechnology.org 2 #12;Distributed Energy Alternatives to Electrical Distribution Grid Expansion in Consolidated-Battelle for the Department of Energy Subcontract Number: 4000052360 GTI Project Number: 20441 New York State Energy Research
Rohrer, Gregory S.
Validating computed grain boundary energies in fcc metals using the grain boundary character. Since the GBCD is inversely related to the grain boundary energy distribution, it offers a useful metric for validating grain boundary energy calculations. Comparisons between the measured GBCD and calculated energies
Continuum Extrapolation of Moments of Nucleon Quark Distributions in Full QCD
Dreher, P; Capitani, S; Dolgov, D S; Edwards, R; Eicker, N; Heller, U M; Lipert, T; Negele, J W; Pochinsky, A V; Renner, D B; Schilling, K; Lipert, Th.
2002-01-01T23:59:59.000Z
Moments of light cone quark density, helicity, and transversity distributions are calculated in unquenched lattice QCD at $\\beta = 5.5$ and $\\beta = 5.3$ using Wilson fermions on $ 16^3 \\times 32 $ lattices. These results are combined with earlier calculations at $\\beta = 5.6$ using SESAM configurations to study the continuum limit.
Normalizing Weather Data to Calculate Energy Savings Peer Exchange...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Normalizing Weather Data to Calculate Energy Savings Peer Exchange Call Normalizing Weather Data to Calculate Energy Savings Peer Exchange Call February 26, 2015 3:00PM to 4:3...
Supporting Calculations For Submerged Bed Scrubber Condensate Disposal Preconceptual Study
Pajunen, A. J.; Tedeschi, A. R.
2012-09-18T23:59:59.000Z
This document provides supporting calculations for the preparation of the Submerged Bed Scrubber Condensate Disposal Preconceptual Study report The supporting calculations include equipment sizing, Hazard Category determination, and LAW Melter Decontamination Factor Adjustments.
TDHF fusion calculations for spherical+deformed systems
A. S. Umar; V. E. Oberacker
2006-04-04T23:59:59.000Z
We outline a formalism to carry out TDHF calculations of fusion cross sections for spherical + deformed nuclei. The procedure incorporates the dynamic alignment of the deformed nucleus into the calculation of the fusion cross section. The alignment results from multiple E2/E4 Coulomb excitation of the ground state rotational band. Implications for TDHF fusion calculations are discussed. TDHF calculations are done in an unrestricted three-dimensional geometry using modern Skyrme force parametrizations.
The melting lines of model systems calculated from coexistence simulations
Song, Xueyu
rapidly as a function of the potential cutoff, indicating that long-range corrections to the free energies of the solid and liquid phases very nearly cancel. This approach provides an alternative to traditional methods them. Tradition- ally, these calculations have been made using free energy calculations: by calculating
Light-Cone Distribution Amplitudes for the Light $1^1P_1$ Mesons
Kwei-Chou Yang
2005-10-27T23:59:59.000Z
We present a study of light-cone distribution amplitudes of the light $1^1P_1$ mesons. The first few Gegenbauer moments of leading twist light-cone distribution amplitudes are calculated by using the QCD sum rule technique.
Inclusive distributions at the LHC as predicted from the DPMJET-III model with chain fusion
J. Ranft; F. W. Bopp; R. Engel; S. Roesler
2007-06-26T23:59:59.000Z
DPMJET-III with chain fusion is used to calculate inclusive distributions of Pb-Pb collisions at LHC energies. We present rapidity distributions as well as scaled multiplicities at mid-rapidity as function of the collision energy and the number of participants.
Tian, Zhen; Folkerts, Michael; Shi, Feng; Jiang, Steve B; Jia, Xun
2015-01-01T23:59:59.000Z
Monte Carlo (MC) simulation is considered as the most accurate method for radiation dose calculations. Accuracy of a source model for a linear accelerator is critical for the overall dose calculation accuracy. In this paper, we presented an analytical source model that we recently developed for GPU-based MC dose calculations. A key concept called phase-space-ring (PSR) was proposed. It contained a group of particles that are of the same type and close in energy and radial distance to the center of the phase-space plane. The model parameterized probability densities of particle location, direction and energy for each primary photon PSR, scattered photon PSR and electron PSR. For a primary photon PSRs, the particle direction is assumed to be from the beam spot. A finite spot size is modeled with a 2D Gaussian distribution. For a scattered photon PSR, multiple Gaussian components were used to model the particle direction. The direction distribution of an electron PSRs was also modeled as a 2D Gaussian distributi...
Multipartite secure state distribution
Duer, W.; Briegel, H.-J. [Institut fuer Theoretische Physik, Universitaet Innsbruck, Technikerstrasse 25, A-6020 Innsbruck (Austria); Institut fuer Quantenoptik und Quanteninformation der Oesterreichischen, Akademie der Wissenschaften, Innsbruck (Austria); Calsamiglia, J. [Institut fuer Theoretische Physik, Universitaet Innsbruck, Technikerstrasse 25, A-6020 Innsbruck (Austria)
2005-04-01T23:59:59.000Z
We introduce the distribution of a secret multipartite entangled state in a real-world scenario as a quantum primitive. We show that in the presence of noisy quantum channels (and noisy control operations), any state chosen from the set of two-colorable graph states (Calderbank-Shor-Steane codewords) can be created with high fidelity while it remains unknown to all parties. This is accomplished by either blind multipartite entanglement purification, which we introduce in this paper, or by multipartite entanglement purification of enlarged states, which offers advantages over an alternative scheme based on standard channel purification and teleportation. The parties are thus provided with a secret resource of their choice for distributed secure applications.
A solvable model of fracture with power-law distribution of fragment sizes
Ken Yamamoto; Yoshihiro Yamazaki
2011-06-08T23:59:59.000Z
The present paper describes a stochastic model of fracture, whose fragment size distribution can be calculated analytically as a power-law-like distribution. The model is basically cascade fracture, but incorporates the effect that each fragment in each stage of cascade ceases fracture with a certain probability. When the probability is constant, the exponent of the power-law cumulative distribution lies between -1 and 0, depending not only on the probability but the distribution of fracture points. Whereas, when the probability depends on the size of a fragment, the exponent is less than -1, irrespective of the distribution of fracture points.
Mapping Biomass Distribution Potential
Schaetzel, Michael
2010-11-18T23:59:59.000Z
Mapping Biomass Distribution Potential Michael Schaetzel Undergraduate ? Environmental Studies ? University of Kansas L O C A T S I O N BIOMASS ENERGY POTENTIAL o According to DOE, Biomass has the potential to provide 14% of... the nation’s power o Currently 1% of national power supply o Carbon neutral? combustion of biomass is part of the natural carbon cycle o Improved crop residue management has potential to benefit environment, producers, and economy Biomass Btu...
Symmetric generalized binomial distributions
Bergeron, H. [Univ Paris-Sud, ISMO, UMR 8214, 91405 Orsay (France)] [Univ Paris-Sud, ISMO, UMR 8214, 91405 Orsay (France); Curado, E. M. F. [Centro Brasileiro de Pesquisas Fisicas, Rua Xavier Sigaud 150 22290-180 - Rio de Janeiro (Brazil) [Centro Brasileiro de Pesquisas Fisicas, Rua Xavier Sigaud 150 22290-180 - Rio de Janeiro (Brazil); Instituto Nacional de Ciência e Tecnologia - Sistemas Complexos, Rua Xavier Sigaud 150, 22290-180 - Rio de Janeiro, RJ (Brazil); Gazeau, J. P. [Centro Brasileiro de Pesquisas Fisicas, Rua Xavier Sigaud 150 22290-180 - Rio de Janeiro (Brazil) [Centro Brasileiro de Pesquisas Fisicas, Rua Xavier Sigaud 150 22290-180 - Rio de Janeiro (Brazil); APC, UMR 7164, Univ Paris Diderot, Sorbonne Paris Cité, 75205 Paris (France); Rodrigues, Ligia M. C. S., E-mail: herve.bergeron@u-psud.fr, E-mail: evaldo@cbpf.br, E-mail: gazeau@apc.univ-paris7.fr, E-mail: ligia@cbpf.br [Centro Brasileiro de Pesquisas Fisicas, Rua Xavier Sigaud 150 22290-180 - Rio de Janeiro (Brazil)
2013-12-15T23:59:59.000Z
In two recent articles, we have examined a generalization of the binomial distribution associated with a sequence of positive numbers, involving asymmetric expressions of probabilities that break the symmetry win-loss. We present in this article another generalization (always associated with a sequence of positive numbers) that preserves the symmetry win-loss. This approach is also based on generating functions and presents constraints of non-negativeness, similar to those encountered in our previous articles.
F. Nerling; J. Blümer; R. Engel; M. Risse
2005-12-22T23:59:59.000Z
The shower simulation code CORSIKA has been used to investigate the electron energy and angular distributions in high-energy showers. Based on the universality of both distributions, we develop an analytical description of Cherenkov light emission in extensive air showers, which provides the total number and angular distribution of photons. The parameterisation can be used e.g. to calculate the contribution of direct and scattered Cherenkov light to shower profiles measured with the air fluorescence technique.
GASIFICATION FOR DISTRIBUTED GENERATION
Ronald C. Timpe; Michael D. Mann; Darren D. Schmidt
2000-05-01T23:59:59.000Z
A recent emphasis in gasification technology development has been directed toward reduced-scale gasifier systems for distributed generation at remote sites. The domestic distributed power generation market over the next decade is expected to be 5-6 gigawatts per year. The global increase is expected at 20 gigawatts over the next decade. The economics of gasification for distributed power generation are significantly improved when fuel transport is minimized. Until recently, gasification technology has been synonymous with coal conversion. Presently, however, interest centers on providing clean-burning fuel to remote sites that are not necessarily near coal supplies but have sufficient alternative carbonaceous material to feed a small gasifier. Gasifiers up to 50 MW are of current interest, with emphasis on those of 5-MW generating capacity. Internal combustion engines offer a more robust system for utilizing the fuel gas, while fuel cells and microturbines offer higher electric conversion efficiencies. The initial focus of this multiyear effort was on internal combustion engines and microturbines as more realistic near-term options for distributed generation. In this project, we studied emerging gasification technologies that can provide gas from regionally available feedstock as fuel to power generators under 30 MW in a distributed generation setting. Larger-scale gasification, primarily coal-fed, has been used commercially for more than 50 years to produce clean synthesis gas for the refining, chemical, and power industries. Commercial-scale gasification activities are under way at 113 sites in 22 countries in North and South America, Europe, Asia, Africa, and Australia, according to the Gasification Technologies Council. Gasification studies were carried out on alfalfa, black liquor (a high-sodium waste from the pulp industry), cow manure, and willow on the laboratory scale and on alfalfa, black liquor, and willow on the bench scale. Initial parametric tests evaluated through reactivity and product composition were carried out on thermogravimetric analysis (TGA) equipment. These tests were evaluated and then followed by bench-scale studies at 1123 K using an integrated bench-scale fluidized-bed gasifier (IBG) which can be operated in the semicontinuous batch mode. Products from tests were solid (ash), liquid (tar), and gas. Tar was separated on an open chromatographic column. Analysis of the gas product was carried out using on-line Fourier transform infrared spectroscopy (FT-IR). For selected tests, gas was collected periodically and analyzed using a refinery gas analyzer GC (gas chromatograph). The solid product was not extensively analyzed. This report is a part of a search into emerging gasification technologies that can provide power under 30 MW in a distributed generation setting. Larger-scale gasification has been used commercially for more than 50 years to produce clean synthesis gas for the refining, chemical, and power industries, and it is probable that scaled-down applications for use in remote areas will become viable. The appendix to this report contains a list, description, and sources of currently available gasification technologies that could be or are being commercially applied for distributed generation. This list was gathered from current sources and provides information about the supplier, the relative size range, and the status of the technology.
Once-through steam-generator sensitivity calculations
Steiner, J.L.; Siebe, D.A.
1988-01-01T23:59:59.000Z
A series of TRAC-PF1/MOD2 thermal-hydraulic calculations has been performed to determine the effect of uncertainties in modeling once through steam-generator (OTSG) secondary-side phenomena on the calculated behavior of Babcock and Wilcox power plants. The calculations were performed by varying parameters in correlations for the secondary-side phenomena. The parameters and transients were chosen to show the maximum expected sensitivity of the calculated results to the parameter variations. The parameters were then varied over a range representing the estimated uncertainty in the correlation. In this manner, the sensitivity if the calculated plant behavior to the modeling uncertainties was determined with a reasonable number of calculations. The sensitivity of calculated plant behavior to variations in interfacial heat-transfer in the OTSG secondaries was determined in a series of steam-generator overfill transient calculations. Calculations were performed for a main steam line break (MSLB) transient to quantify the sensitivity to variations in interfacial drag in the secondaries; the interfacial drag was varied in these calculations to indicate the effects of entrainment and de-entrainment processes, for which no specific models exist in the code. In addition to the transient calculations, a series of steady-state calculations was performed to determine the sensitivity of the OTSG primary-to-secondary heat transfer to the assumed fraction of tubes wetted by the auxiliary feedwater (AFW) injection. The plant model used for the sensitivity calculations was qualified by performing a benchmark calculation for a natural circulation test in the TMI-1 plant.
A distributed accelerated gradient algorithm for distributed model predictive
Como, Giacomo
power control, Distributed optimization, Accelerated gradient algorithm, Model predictive control, Distributed model predictive control 1. Introduction Hydro power plants generate electricity from potential. By sig- nificantly increasing the power efficiency of hydro power valley (HPV) systems, real-time control
A reliability assessment methodology for distribution systems with distributed generation
Duttagupta, Suchismita Sujaya
2006-08-16T23:59:59.000Z
Reliability assessment is of primary importance in designing and planning distribution systems that operate in an economic manner with minimal interruption of customer loads. With the advances in renewable energy sources, Distributed Generation (DG...
Clanton, John L
1956-01-01T23:59:59.000Z
BALANCE CALCULATIONS A Thesis By JOHN L. CLANTON Approved as to style and content by: Chairman of Commi e ad of Department TABLE OF CONTENTS 1. ABSTRACT Page Z. INTRODUCTION 3. REVIEW OF LITERATURE 4. DESCRIPTION OF KELLEY-SNYDER FIELD, 5... BALANCE EQUATION 1874(B. P. ) ~Ntb Wg bbl w bbls. Re scf/bbl v res bbls/sef 1756 1698 1647 1555 1546 1561 1589 60, 420, 88Z 7Z, 378, 937 85, 698, SS6 105, 707, 67Z 117, 57Z, I?6 1Z7, 690, 579 138, 151, 475 1, 199, 482 18, 909, 009 39...
Chantal Valeriani; Rosalind J. Allen; Marco J. Morelli; Daan Frenkel; Pieter Rein ten Wolde
2009-07-03T23:59:59.000Z
We present a method for computing stationary distributions for activated processes in equilibrium and non-equilibrium systems using Forward Flux Sampling (FFS). In this method, the stationary distributions are obtained directly from the rate constant calculations for the forward and backward reactions; there is no need to perform separate calculations for the stationary distribution and the rate constant. We apply the method to the non-equilibrium rare event problem proposed by Maier and Stein, to nucleation in a 2-dimensional Ising system, and to the flipping of a genetic switch.
Nuclear parton distributions and the Drell-Yan process
S. A. Kulagin; R. Petti
2014-10-14T23:59:59.000Z
We study the nuclear parton distribution functions on the basis of our recently developed semi-microscopic model, which takes into account a number of nuclear effects including nuclear shadowing, Fermi motion and nuclear binding, nuclear meson-exchange currents, and off-shell corrections to bound nucleon distributions. We discuss in detail the dependencies of nuclear effects on the type of parton distribution (nuclear sea vs valence), as well as on the parton flavor (isospin). We apply the resulting nuclear parton distributions to calculate ratios of cross sections for proton-induced Drell-Yan production off different nuclear targets. We obtain a good agreement on the magnitude, target and projectile $x$, and the dimuon mass dependence of proton-nucleus Drell-Yan process data from the E772 and E866 experiments at Fermilab. We also provide nuclear corrections for the Drell-Yan data from the E605 experiment.
Journal of Parallel and Distributed Computing 00 (2015) 116 Distributed
Zhang, Minjie
2015-01-01T23:59:59.000Z
Computing Decentralised Dispatch of Distributed Energy Resources in Smart Grids via Multi-Agent Coalition Published by Elsevier Ltd. Keywords: Distributed Energy Dispatch, Smart Grids, Multi-Agent Systems, there has been an increasing number of renewable generators embedded in distribution networks [4]. This pos
Distributed Computing Column 36 Distributed Computing: 2009 Edition
Distributed Computing Column 36 Distributed Computing: 2009 Edition Idit Keidar Dept. of Electrical computing events. Awards First, let's look at awards. This year we learned that two women were recognized with ACM and IEEE prestigious awards for their achievements in, (among other things), distributed computing
Distributed Generation with Heat Recovery and Storage
Siddiqui, Afzal S.; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan
2008-01-01T23:59:59.000Z
distributed energy resource technology characterizations, National Renewable EnergyEfficiency and Renewable Energy, Office of Distributed
Distributed Energy Resources Market Diffusion Model
Maribu, Karl Magnus; Firestone, Ryan; Marnay, Chris; Siddiqui, Afzal S.
2006-01-01T23:59:59.000Z
Efficiency and Renewable Energy, Distributed Energy ProgramDistributed Energy Resources Characterizations. National Renewable Energy
Distributed Optimization System
Hurtado, John E. (Albuquerque, NM); Dohrmann, Clark R. (Albuquerque, NM); Robinett, III, Rush D. (Tijeras, NM)
2004-11-30T23:59:59.000Z
A search system and method for controlling multiple agents to optimize an objective using distributed sensing and cooperative control. The search agent can be one or more physical agents, such as a robot, and can be software agents for searching cyberspace. The objective can be: chemical sources, temperature sources, radiation sources, light sources, evaders, trespassers, explosive sources, time dependent sources, time independent sources, function surfaces, maximization points, minimization points, and optimal control of a system such as a communication system, an economy, a crane, and a multi-processor computer.
Discrete Probability Distributions
Stewart, William J.
, 2, . . . , n, the moments of the discrete uniform distribution are given by E[Xk ] = nX i=1 ik /n. In particular, E[X] = nX i=1 i/n = 1 n nX i=1 i = 1 n n(n + 1) 2 = n + 1 2 , and, using the well-known formula for the sum of the squares of the first n integers, E[X2 ] = nX i=1 i2 /n = 1 n nX i=1 i2 = 1 n n(n + 1)(2n
Testing symmetric properties of distributions
Valiant, Paul (Paul Andrew)
2008-01-01T23:59:59.000Z
We introduce the notion of a Canonical Tester for a class of properties on distributions, that is, a tester strong and general enough that "a distribution property in the class is testable if and only if the Canonical ...
Planck Distribution in Noncommutative Space
C. Yuce
2005-06-13T23:59:59.000Z
In this study, we derive the Planck distribution function in noncommutative space. It is found that it is modified by a small factor. It is shown that it is reduced to the usual Planck distribution function in the commutative limit .
THE COLLISIONAL DIVOT IN THE KUIPER BELT SIZE DISTRIBUTION
Fraser, Wesley C. [Division of Geological and Planetary Sciences, California Institute of Technology, MC 150-21, 1200 E. California Blvd. Pasadena, CA 91125 (United States)
2009-11-20T23:59:59.000Z
This paper presents the results of collisional evolution calculations for the Kuiper Belt starting from an initial size distribution similar to that produced by accretion simulations of that region-a steep power-law large object size distribution that breaks to a shallower slope at r approx 1-2 km, with collisional equilibrium achieved for objects r approx< 0.5 km. We find that the break from the steep large object power law causes a divot, or depletion of objects at r approx 10-20 km, which, in turn, greatly reduces the disruption rate of objects with r approx> 25-50 km, preserving the steep power-law behavior for objects at this size. Our calculations demonstrate that the roll-over observed in the Kuiper Belt size distribution is naturally explained as an edge of a divot in the size distribution; the radius at which the size distribution transitions away from the power law, and the shape of the divot from our simulations are consistent with the size of the observed roll-over, and size distribution for smaller bodies. Both the kink radius and the radius of the divot center depend on the strength scaling law in the gravity regime for Kuiper Belt objects. These simulations suggest that the sky density of r approx 1 km objects is approx10{sup 6}-10{sup 7} objects per square degree. A detection of the divot in the size distribution would provide a measure of the strength of large Kuiper Belt objects, and constrain the shape of the size distribution at the end of accretion in the Kuiper Belt.
Taylor, Michael, E-mail: michael.taylor@rmit.edu.au [School of Applied Sciences, College of Science, Engineering and Health, RMIT University, Melbourne, Victoria (Australia); Physical Sciences, Peter MacCallum Cancer Centre, East Melbourne, Victoria (Australia); Dunn, Leon; Kron, Tomas; Height, Felicity; Franich, Rick [School of Applied Sciences, College of Science, Engineering and Health, RMIT University, Melbourne, Victoria (Australia); Physical Sciences, Peter MacCallum Cancer Centre, East Melbourne, Victoria (Australia)
2012-04-01T23:59:59.000Z
Prediction of dose distributions in close proximity to interfaces is difficult. In the context of radiotherapy of lung tumors, this may affect the minimum dose received by lesions and is particularly important when prescribing dose to covering isodoses. The objective of this work is to quantify underdosage in key regions around a hypothetical target using Monte Carlo dose calculation methods, and to develop a factor for clinical estimation of such underdosage. A systematic set of calculations are undertaken using 2 Monte Carlo radiation transport codes (EGSnrc and GEANT4). Discrepancies in dose are determined for a number of parameters, including beam energy, tumor size, field size, and distance from chest wall. Calculations were performed for 1-mm{sup 3} regions at proximal, distal, and lateral aspects of a spherical tumor, determined for a 6-MV and a 15-MV photon beam. The simulations indicate regions of tumor underdose at the tumor-lung interface. Results are presented as ratios of the dose at key peripheral regions to the dose at the center of the tumor, a point at which the treatment planning system (TPS) predicts the dose more reliably. Comparison with TPS data (pencil-beam convolution) indicates such underdosage would not have been predicted accurately in the clinic. We define a dose reduction factor (DRF) as the average of the dose in the periphery in the 6 cardinal directions divided by the central dose in the target, the mean of which is 0.97 and 0.95 for a 6-MV and 15-MV beam, respectively. The DRF can assist clinicians in the estimation of the magnitude of potential discrepancies between prescribed and delivered dose distributions as a function of tumor size and location. Calculation for a systematic set of 'generic' tumors allows application to many classes of patient case, and is particularly useful for interpreting clinical trial data.
Calculating work in weakly driving quantum master equations: backward and forward equations
Fei Liu
2015-06-28T23:59:59.000Z
We present a technical report that the two methods of calculating characteristic functions for the work distribution in the weakly driven quantum master equations are equivalent. One is obtained by the notion of quantum jump trajectory [Phys. Rev. E 89, 042122 (2014)], while the other is based on the two time energy measurements on the combined system and reservoir [Silaev, et al., Phys. Rev. E 90, 022103 (2014)]. They are indeed the backward and forward methods, respectively, which is very similar to the case of the Kolmogorov backward and forward equations in classical stochastic theory. The microscopic basis of the former method is also clarified.
Calculation of oscillation probabilities of atmospheric neutrinos using nuCraft
Wallraff, Marius
2014-01-01T23:59:59.000Z
NuCraft (nucraft.hepforge.org) is an open-source Python project that calculates neutrino oscillation probabilities for neutrinos from cosmic-ray interactions in the atmosphere for their propagation through Earth. The solution is obtained by numerically solving the Schr\\"odinger equation. The code supports arbitrary numbers of neutrino flavors including additional sterile neutrinos, CP violation, arbitrary mass hierarchies, matter effects with a configurable Earth model, and takes into account the production height distribution of neutrinos in the Earth's atmosphere.
Network aware distributed applications
Agarwal, Deborah [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Tierney, Brian L. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Gunter, Dan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Lee, Jason [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Johnston, William [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
2001-02-04T23:59:59.000Z
Most distributed applications today manage to utilize only a small percentage of the needed and available network bandwidth. Often application developers are not aware of the potential bandwidth of the network, and therefore do not know what to expect. Even when application developers are aware of the specifications of the machines and network links, they have few resources that can help determine why the expected performance was not achieved. What is needed is a ubiquitous and easy-to-use service that provides reliable, accurate, secure, and timely estimates of dynamic network properties. This service will help advise applications on how to make use of the network's increasing bandwidth and capabilities for traffic shaping and engineering. When fully implemented, this service will make building currently unrealizable levels of network awareness into distributed applications a relatively mundane task. For example, a remote data visualization application could choose between sending a wireframe, a pre-rendered image, or a 3-D representation, based on forecasts of CPU availability and power, compression options, and available bandwidth. The same service will provide on-demand performance information so that applications can compare predicted with actual results, and allow detailed queries about the end-to-end path for application and network tuning and debugging.
B-meson distribution amplitudes
A. G. Grozin
2005-06-24T23:59:59.000Z
B-meson light-cone distribution amplitudes are discussed in these lectures in the framework of HQET. The evolution equation for the leading-twist distribution amplitude is derived in one-loop approximation. QCD sum rules for distribution amplitudes are discussed.
Binding Energies in Benzene Dimers: Nonlocal Density Functional Calculations
Aaron Puzder; Maxime Dion; David C. Langreth
2005-09-15T23:59:59.000Z
The interaction energy and minimum energy structure for different geometries of the benzene dimer has been calculated using the recently developed nonlocal correlation energy functional for calculating dispersion interactions. The comparison of this straightforward and relatively quick density functional based method with recent calculations can elucidate how the former, quicker method might be exploited in larger more complicated biological, organic, aromatic, and even infinite systems such as molecules physisorbed on surfaces, and van der Waals crystals.
A Cosmology Calculator for the World Wide Web
Edward L. Wright
2006-10-10T23:59:59.000Z
A cosmology calculator that computes times and distances as a function of redshift for user-defined cosmological parameters is available on the World Wide Web. This note gives the formulae used by the cosmology calculator and discusses some of its implementation. A version of the calculator that allows one to specify the equation of state parameter w and w' and neutrino masses, and a version for converting the light travel times usually given in the popular press into redshifts are also available.
Chapter 2 Interchanges and Contracts Table of Contents
Sheridan, Jennifer
officials at the other UW institution. The form may be initiated by the UW- Madison department involved at the selling institution's extramural support fringe benefit rate. iii. "Accounting Code" Line 1. If UW-Madison is the buying institution, the "Accounting Code" line should be used to specify the fund, account, UDDS
Effects of the Hot Electron Interchange Instability on
-coil in charging station 2) Inductively charge F-coil (1 MA), C-coil discharges 3) Lift F-coil into position 4) Use or discharge into charging station #12;EEO_ICC06_INVTLK 7 Floating Coil Held Up by Thin Supports Three high
High Beta Observations of the Hot Electron Interchange Instability
-Section/Operation Supported Mode 1) Liquid Helium cools F- coil in charging station 2) Inductively charge F-coil (1 MA), C-coil discharges 3) Lift F-coil into position 4) Use ECRH (5 kW); create plasma 5) Run experiments safely for two hours 6) Lower F-coil back to re- charge or discharge into charging station #12;Measure HEI Fluctuations
Operational characteristics of the three-level diamond interchange
McCann, Charles Howard Wesley
1963-01-01T23:59:59.000Z
of Niehigea Righuay Rspertasat. 3, Nsrtia bnucaisgo City Truffle Ragisaera City of Nilusuhoa. Thaabs sre 4uo te ay uife, Asses, for ths eaeouragaleut as4 sssistsaee that she offece4 4urlsg ths preparation of Chio thesis. Approeietios is slee 4us to Nrs... ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ o ~ ~ ~ ~ ~ ~ ~ o 1 4 3 1 1o Stoky Prooo4oro Thai Artor iol Ss?P ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ o LOCOtisaa ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ o ~ ~ Staa4ios ~ ~ ~ ~ ~ o ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ o ~ ~ ~ ~ ~ 111. Oa?alts of Cha Oaaoorah Stoky...
Operational characteristics of the three-level diamond interchange
McCann, Charles Howard Wesley
1963-01-01T23:59:59.000Z
uels ~ a4 their staffs foc chair essieteeeo ia tba eolleecioa of 4sts that uas uss4 ia chio cbeeist 1. cooper Nsgeeborae Rireatore Reyerceeac of Traffia sa4 Tcsasportsti, oa Cicy of Nouscoa, R. R. Cooper, Riceetor& Truffle Sivisioa, gtate... ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ o ~ ~ ~ ~ ~ ~ ~ o 1 4 3 1 1o Stoky Prooo4oro Thai Artor iol Ss?P ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ o LOCOtisaa ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ o ~ ~ Staa4ios ~ ~ ~ ~ ~ o ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ o ~ ~ ~ ~ ~ 111. Oa?alts of Cha Oaaoorah Stoky...
Interchangeable whole-body and nose-only exposure system
Cannon, W.C.; Allemann, R.T.; Moss, O.R.; Decker, J.R. Jr.
1992-03-31T23:59:59.000Z
An exposure system for experimental animals includes a container for a single animal which has a double wall. The animal is confined within the inner wall. Gaseous material enters a first end, flows over the entire animal, then back between the walls and out the first end. The system also includes an arrangement of valve-controlled manifolds for supplying gaseous material to, and exhausting it from, the containers. 6 figs.
Strategic level expert system design for diamond interchange control
Patrone, David Michael
1999-01-01T23:59:59.000Z
to the Prototype C. Scenarios. 1. Scenario Generator. . 2. General Scenario Information . . 3. Three-Phase Lead-Lead Scenario . . 4. Three-Phase Lag-Lag Scenario . . 5. Three-Phase Lead-Lag/Lag-Lead Scenario. 6. Four-Phase Scenario. D. Verification... of Generated Scenarios with PASSER-III l. Three-Phase Lead-Lead Generated Scenario Verification. . . . 2. Three-Phase Lag-Lag Generated Scenario Verification . . . . . . . 3. Three-Phase Lead-Lag Generated Scenario Verification. . . . . . 4. Three-Phase Lag-Lead...
Velocity shear stabilization of interchange modes in elongated plasma configurations
Hassam, Adil
) University of Maryland, Institute for Plasma Research, College Park, Maryland 20742 Received 3 March 1999
Cognitive Support, UMLAdherence, and XMI Interchange in Argo/UML
Redmiles, David F.
understanding. This paper describes Argo/UML, an object-oriented design tool using the Unified Modeling Language/UML, a tool for object-oriented design that uses the Unified Modeling Language. Argo/UML is a research system design is a cognitively challenging task. Most software design tools provide support for editing, viewing
Strategic level expert system design for diamond interchange control
Patrone, David Michael
1999-01-01T23:59:59.000Z
29 31 31 V. PROTOTYPE DEVELOPMENT A. Prototyping Overview B. Fuzzy Logic. C. FuzzyCLIPS . D. Rule Development. . E. Control Design . 37 . 37 41 41 . 43 F. Rule Base Design, 1. Situation Assessment Design. 2. Situation Assessment Rules.... Revised strategic architecture Fig. 21. Example membership function definitions for AVERAGE. . 15 16 17 18 19 20 21 27 28 29 . . . . 33 35 Fig. 22. Fuzzy Rule inference example Fig. 23. Examples of defuzzification. Fig. 24. Top level...
An Architecture for Hypermedia Systems Using MHEG Standard Objects Interchange
Colcher, Sérgio
- Brasil E-mail: lfgs@inf.puc-rio.br Marco Antonio Casanova Centro Científico Rio, IBM Brasil Caixa Postal 4624 20001 - Rio de Janeiro, RJ - Brasil E-mail: casanova@vnet.ibm.com Sérgio Colcher Departamento de Informática, PUC-Rio R. Marquês de São Vicente 225 22453 - Rio de Janeiro, RJ - Brasil E-mail: colcher
Dynamics and length distribution of microtubules under force and confinement
Björn Zelinski; Nina Müller; Jan Kierfeld
2012-12-14T23:59:59.000Z
We investigate the microtubule polymerization dynamics with catastrophe and rescue events for three different confinement scenarios, which mimic typical cellular environments: (i) The microtubule is confined by rigid and fixed walls, (ii) it grows under constant force, and (iii) it grows against an elastic obstacle with a linearly increasing force. We use realistic catastrophe models and analyze the microtubule dynamics, the resulting microtubule length distributions, and force generation by stochastic and mean field calculations; in addition, we perform stochastic simulations. We also investigate the force dynamics if growth parameters are perturbed in dilution experiments. Finally, we show the robustness of our results against changes of catastrophe models and load distribution factors.
Cascade calculation of subthreshold. pi. sup 0 production
Gavron, A.; Yariv, Y. (Physics Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (US))
1990-05-01T23:59:59.000Z
Intranuclear cascade calculations are found to provide a good description of the various features of subthreshold {pi}{sup 0} production in nucleon-nucleus collisions.
Building America Webinar: HVAC Right-Sizing Part 1-Calculating...
Team IBACOS highlighted the key criteria required to create accurate heating and cooling load calculations. Current industry rules of thumb, perceptions and barriers to...
A Method for Calculating Reference Evapotranspiration on Daily Time Scales
Farmer, William
Measures of reference evapotranspiration are essential for applications of agricultural management and water resources engineering. Using numerous esoteric variables, one can calculate daily reference evapotranspiration ...
Energy Cost Savings Calculator for Commercial Boilers: Closed...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Commercial Boilers: Closed Loop, Space Heating Applications Only Energy Cost Savings Calculator for Commercial Boilers: Closed Loop, Space Heating Applications Only This cost...
Energy savings estimates and cost benefit calculations for high...
Office of Scientific and Technical Information (OSTI)
Energy savings estimates and cost benefit calculations for high performance relocatable classrooms Citation Details In-Document Search Title: Energy savings estimates and cost...
AIM: Web-Based, Residential Energy Calculator for Homeowners
Marshall, K.; Moss, M.; Liu, B.; Culp, C.; Haberl, J.; Herbert, C.
2010-01-01T23:59:59.000Z
for simulations in existing homes, are automatically provided using statistical tables. This allows homeowners to use the calculator with information commonly available during a real estate transaction....
Pota, Himanshu Roy
Nonlinear DSTATCOM controller design for distribution network with distributed generation Accepted 19 June 2013 Keywords: Distributed generation Distribution network DSATACOM Partial feedback connected to a distribution network with distributed generation (DG) to regulate the line voltage
Distributed road assessment system
Beer, N. Reginald; Paglieroni, David W
2014-03-25T23:59:59.000Z
A system that detects damage on or below the surface of a paved structure or pavement is provided. A distributed road assessment system includes road assessment pods and a road assessment server. Each road assessment pod includes a ground-penetrating radar antenna array and a detection system that detects road damage from the return signals as the vehicle on which the pod is mounted travels down a road. Each road assessment pod transmits to the road assessment server occurrence information describing each occurrence of road damage that is newly detected on a current scan of a road. The road assessment server maintains a road damage database of occurrence information describing the previously detected occurrences of road damage. After the road assessment server receives occurrence information for newly detected occurrences of road damage for a portion of a road, the road assessment server determines which newly detected occurrences correspond to which previously detected occurrences of road damage.
Computing Partial Eigenvalue Sum in Electronic Structure Calculations
Bai, Zhaojun
and CPU time. In the application of electronic structure calculations in molecular dynamics, the newComputing Partial Eigenvalue Sum in Electronic Structure Calculations Z. Bai M. Faheyy G. Golubz M where computation of the total energy of an electronic structure requires the evaluation of partial
Dynamic Algorithm Selection in Parallel GAMESS Calculations Nurzhan Ustemirov
Sosonkina, Masha
and Molecular Electronic Structure System (GAMESS) used for ab initio molecular quantum chemistry calculationsDynamic Algorithm Selection in Parallel GAMESS Calculations Nurzhan Ustemirov Masha Sosonkina, network, or disk I/O. For large-scale scientific applications, dynamic adjustments to a computationally
An efficient Java implementation of the immediate successors calculation
Paris-Sud XI, Université de
An efficient Java implementation of the immediate successors calculation Cl´ement Gu´erin, Karell an effective Java imple- mentation of the concept immediate successors calculation. It is based on the lattice Java library, developed by K. Bertet and the Limited Objects Access algorithm, proposed by C. Demko [5
Processus communicants Communication synchrone CSP/CCS/-calcul
Grigoras, .Romulus
Processus communicants Communication synchrone CSP/CCS/-calcul Rendez-vous étendu Ada Huitième partie Processus communicants CSP/Ada Systèmes concurrents 2 / 44 #12;Processus communicants Communication synchrone CSP/CCS/-calcul Rendez-vous étendu Ada Principes Synchronisation Désignation
Independent review of SCDAP/RELAP5 natural circulation calculations
Martinez, G.M.; Gross, R.J.; Martinez, M.J.; Rightley, G.S.
1994-01-01T23:59:59.000Z
A review and assessment of the uncertainties in the calculated response of reactor coolant system natural circulation using the SCDAP/RELAP5 computer code were completed. The SCDAP/RELAP5 calculation modeled a station blackout transient in the Surry nuclear power plant and concluded that primary system depressurization from natural circulation induced primary system failure is more likely than previously thought.
Long-term Framework for Electricity Distribution Access Charges
Jamasb, Tooraj; Neuhoff, Karsten; Newbery, David; Pollitt, Michael G.
2006-03-14T23:59:59.000Z
. 4 4. Access Charges in Other Countries Article 23 of the EC Directive 2003/54 states that national regulatory authorities should be responsible for approving at least the methodologies used to calculate the terms and conditions for connection... and access to the national networks, including distribution tariffs.2 The Directive states that the regulatory authorities are, at least, responsible for: “the terms, conditions and tariffs for connecting new producers of electricity to guarantee...
Nearest neighbor spacing distribution of prime numbers and quantum chaos
Marek Wolf
2014-01-07T23:59:59.000Z
We give heuristic arguments and computer results to support the hypothesis that, after appropriate rescaling, the statistics of spacings between adjacent prime numbers follows the Poisson distribution. The scaling transformation removes the oscillations in the NNSD of primes. These oscillations have the very profound period of length six. We also calculate the spectral rigidity $\\Delta_3$ for prime numbers by two methods. After suitable averaging one of these methods gives the Poisson dependence $\\Delta_3(L)=L/15$.
The recursive structure of the distribution of primes
Carolin Zöbelein
2014-11-07T23:59:59.000Z
In this work I look at the distribution of primes by calculation of an infinite number of intersections. For this I use the set of all numbers which are not elements of a certain times table in each case. I am able to show that it exists a recursive relationship between primes of different ranges and so to describe some inner structure of this special set of numbers.
Spectral energy distribution for GJ406
Ya. V. Pavlenko; H. R. A. Jones; Yu. Lyubchik; J. Tennyson; D. J. Pinfield
2005-10-19T23:59:59.000Z
We present results of modelling the bulk of the spectral energy distribution (0.35 - 5 micron) for GJ406 (M6V). Synthetic spectra were calculated using the NextGen, Dusty and Cond model atmospheres and incorporate line lists for H2O, TiO, CrH, FeH, CO, MgH molecules as well as the VALD line list of atomic lines. A comparison of synthetic and observed spectra gives Tef = 2800 +/- 100 K. We determine M$_bol = 12.13 +/- 0.10 for which evolutionary models by Baraffe et al. (2003) suggest an age of around 0.1 -- 0.35 Gyr consistent with its high activity. The age and luminosity of GJ406 correspond to a wide range of plausible masses (0.07 -- 0.1 Msun).
Distributed Energy Resources for Carbon Emissions Mitigation
Firestone, Ryan; Marnay, Chris
2008-01-01T23:59:59.000Z
2003. “Gas-Fired Distributed Energy Resource TechnologyATIONAL L ABORATORY Distributed Energy Resources for CarbonFirestone 5128 Distributed Energy Resources for Carbon
Distributed Energy Resources Market Diffusion Model
Maribu, Karl Magnus; Firestone, Ryan; Marnay, Chris; Siddiqui, Afzal S.
2006-01-01T23:59:59.000Z
International Journal of Distributed Energy Resources, 1 (Gas-Fired Distributed Energy Resources Characterizations.Firestone, R. (2004) Distributed Energy Resources Customer
Phylogenetic Distribution of Potential Cellulases in Bacteria
Berlemont, R.; Martiny, A. C
2012-01-01T23:59:59.000Z
Phylogenetic Distribution of Potential Cellulases incontent/79/5/1545 Phylogenetic Distribution of Potential3, 4). Thus, the phylogenetic distribution of en- zyme genes
Universal Protein Distributions in a Model of Cell Growth and Division
Naama Brenner; C. M. Newman; Dino Osmanovic; Yitzhak Rabin; Hanna Salman; D. L. Stein
2015-04-08T23:59:59.000Z
Protein distributions measured under a broad set of conditions in bacteria and yeast exhibit a universal skewed shape, with variances depending quadratically on means. For bacteria these properties are reproduced by protein accumulation and division dynamics across generations. We present a stochastic growth-and-division model with feedback which captures these observed properties. The limiting copy number distribution is calculated exactly, and a single parameter is found to determine the distribution shape and the variance-to-mean relation. Estimating this parameter from bacterial temporal data reproduces the measured universal distribution shape with high accuracy, and leads to predictions for future experiments.
Boyer, Edmond
,, or on the differencep, -p, bet- ween the neutron and proton distributions. These experiments include scattering NEUTRON DISTRIBUTIONS R. C. BARRETT University of Surrey, Guildford, Surrey, U. K. RBsumB. -Un rappel des calculs de distributions de densite de neutrons B partir du modtile a particules independantes, du modtile
Morozov, Dmitriy; Weber, Gunther
2013-01-08T23:59:59.000Z
Improved simulations and sensors are producing datasets whose increasing complexity exhausts our ability to visualize and comprehend them directly. To cope with this problem, we can detect and extract significant features in the data and use them as the basis for subsequent analysis. Topological methods are valuable in this context because they provide robust and general feature definitions. As the growth of serial computational power has stalled, data analysis is becoming increasingly dependent on massively parallel machines. To satisfy the computational demand created by complex datasets, algorithms need to effectively utilize these computer architectures. The main strength of topological methods, their emphasis on global information, turns into an obstacle during parallelization. We present two approaches to alleviate this problem. We develop a distributed representation of the merge tree that avoids computing the global tree on a single processor and lets us parallelize subsequent queries. To account for the increasing number of cores per processor, we develop a new data structure that lets us take advantage of multiple shared-memory cores to parallelize the work on a single node. Finally, we present experiments that illustrate the strengths of our approach as well as help identify future challenges.
Weibel instability with nonextensive distribution
Qiu, Hui-Bin; Liu, Shi-Bing [Strong-field and Ultrafast Photonics Lab, Institute of Laser Engineering, Beijing University of Technology, Beijing 100124 (China)] [Strong-field and Ultrafast Photonics Lab, Institute of Laser Engineering, Beijing University of Technology, Beijing 100124 (China)
2013-10-15T23:59:59.000Z
Weibel instability in plasma, where the ion distribution is isotropic and the electron component of the plasma possesses the anisotropic temperature distribution, is investigated based on the kinetic theory in context of nonextensive statistics mechanics. The instability growth rate is shown to be dependent on the nonextensive parameters of both electron and ion, and in the extensive limit, the result in Maxwellian distribution plasma is recovered. The instability growth rate is found to be enhanced as the nonextensive parameter of electron increases.
SU-E-I-28: Evaluating the Organ Dose From Computed Tomography Using Monte Carlo Calculations
Ono, T; Araki, F [Faculty of Life Sciences, Kumamoto University, Kumamoto (Japan)
2014-06-01T23:59:59.000Z
Purpose: To evaluate organ doses from computed tomography (CT) using Monte Carlo (MC) calculations. Methods: A Philips Brilliance CT scanner (64 slice) was simulated using the GMctdospp (IMPS, Germany) based on the EGSnrc user code. The X-ray spectra and a bowtie filter for MC simulations were determined to coincide with measurements of half-value layer (HVL) and off-center ratio (OCR) profile in air. The MC dose was calibrated from absorbed dose measurements using a Farmer chamber and a cylindrical water phantom. The dose distribution from CT was calculated using patient CT images and organ doses were evaluated from dose volume histograms. Results: The HVLs of Al at 80, 100, and 120 kV were 6.3, 7.7, and 8.7 mm, respectively. The calculated HVLs agreed with measurements within 0.3%. The calculated and measured OCR profiles agreed within 3%. For adult head scans (CTDIvol) =51.4 mGy), mean doses for brain stem, eye, and eye lens were 23.2, 34.2, and 37.6 mGy, respectively. For pediatric head scans (CTDIvol =35.6 mGy), mean doses for brain stem, eye, and eye lens were 19.3, 24.5, and 26.8 mGy, respectively. For adult chest scans (CTDIvol=19.0 mGy), mean doses for lung, heart, and spinal cord were 21.1, 22.0, and 15.5 mGy, respectively. For adult abdominal scans (CTDIvol=14.4 mGy), the mean doses for kidney, liver, pancreas, spleen, and spinal cord were 17.4, 16.5, 16.8, 16.8, and 13.1 mGy, respectively. For pediatric abdominal scans (CTDIvol=6.76 mGy), mean doses for kidney, liver, pancreas, spleen, and spinal cord were 8.24, 8.90, 8.17, 8.31, and 6.73 mGy, respectively. In head scan, organ doses were considerably different from CTDIvol values. Conclusion: MC dose distributions calculated by using patient CT images are useful to evaluate organ doses absorbed to individual patients.
Distributed storage with communication costs
Armstrong, Craig Kenneth
2011-01-01T23:59:59.000Z
5 Introduction to Coding for Distributed Storage The Repairflow graph for 1 repair with varying storage capac- itythe Capacity of Storage Nodes . . . 4.1 Characterizing
Distribution Workshop | Department of Energy
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
distributed generation Electric vehicle charging and electrolyzers Energy storage Building and industrial loads and demand response Smart grid sensing, automation, and...
DISTRIBUTED GENERATION AND COGENERATION POLICY
Director EFFICIENCY, RENEWABLES & DEMAND ANALYSIS DIVISION B.B. Blevins Executive Director DISCLAIMER capacity targets. KEYWORDS Distributed generation, cogeneration, photovoltaics, wind, biomass, combined
2013 Distributed Wind Market Report
AC Orrell
2014-08-15T23:59:59.000Z
This report describes the status of the U.S. distributed wind industry in 2013; its trends, performance, market drivers and future outlook.
AGENDA: PETROLEUM PRODUCT TRANSMISSION & DISTRIBUTION
Broader source: Energy.gov [DOE]
The agenda for the Quadrennial Energy Review (QER) public stakeholder meeting in New Orleans on petroleum product transmission, distribution, and storage.
K-effective of the world: and other concerns for Monte Carlo Eigenvalue calculations
Brown, Forrest B [Los Alamos National Laboratory
2010-01-01T23:59:59.000Z
Monte Carlo methods have been used to compute k{sub eff} and the fundamental model eigenfunction of critical systems since the 1950s. Despite the sophistication of today's Monte Carlo codes for representing realistic geometry and physics interactions, correct results can be obtained in criticality problems only if users pay attention to source convergence in the Monte Carlo iterations and to running a sufficient number of neutron histories to adequately sample all significant regions of the problem. Recommended best practices for criticality calculations are reviewed and applied to several practical problems for nuclear reactors and criticality safety, including the 'K-effective of the World' problem. Numerical results illustrate the concerns about convergence and bias. The general conclusion is that with today's high-performance computers, improved understanding of the theory, new tools for diagnosing convergence (e.g., Shannon entropy of the fission distribution), and clear practical guidance for performing calculations, practitioners will have a greater degree of confidence than ever of obtaining correct results for Monte Carlo criticality calculations.
Web servers and services for electrostatics calculations with APBS and PDB2PQR
Unni, Samir; Huang, Yong; Hanson, Robert M.; Tobias, Malcolm; Krishnan, Sriram; Li, Wilfred; Nielsen, Jens E.; Baker, Nathan A.
2011-04-02T23:59:59.000Z
APBS and PDB2PQR are widely utilized free software packages for biomolecular electrostatics calculations. Using the Opal toolkit, we have developed a web services framework for these software packages that enables the use of APBS and PDB2PQR by users who do not have local access to the necessary amount of computational capabilities. This not only increases accessibility of the software to a wider range of scientists, educators, and students but it also increases the availability of electrostatics calculations on portable computing platforms. Users can access this new functionality in two ways. First, an Opal-enabled version of APBS is provided in current distributions, available freely on the web. Second, we have extended the PDB2PQR web server to provide an interface for the setup, execution, and visualization electrostatics potentials as calculated by APBS. This web interface also uses the Opal framework which ensures the scalability needed to support the large APBS user community. Both of these resources are available from the APBS/PDB2PQR website: http://www.poissonboltzmann.org/.
F. Bopp; J. Ranft
2011-10-28T23:59:59.000Z
A DPMJET-III model (DPMJET-III-2011) with chain fusion adjusted to include energy.dependent parameters is used to calculate inclusive distributions in p-p collisions at LHC energies. Presented are charged hadrons rapidity distributions, transverse momentum distributions, multiplicity distributions as well as multiplicities at mid-rapidity as function of the collision energy. For hadrons with strangeness we present cms-rapidity distributions and transverse momentum distributions. With the considered merely energy-dependent adjustments the obtained agreement with the transversal \\Lambda and \\Xi distribution is not satisfactory.
IN-DRIFT MICROBIAL COMMUNITIES MODEL VALIDATION CALCULATIONS
D.M. Jolley
2001-12-18T23:59:59.000Z
The objective and scope of this calculation is to create the appropriate parameter input for MING 1.0 (CSCI 30018 V1.0, CRWMS M&O 1998b) that will allow the testing of the results from the MING software code with both scientific measurements of microbial populations at the site and laboratory and with natural analogs to the site. This set of calculations provides results that will be used in model validation for the ''In-Drift Microbial Communities'' model (CRWMS M&O 2000) which is part of the Engineered Barrier System Department (EBS) process modeling effort that eventually will feed future Total System Performance Assessment (TSPA) models. This calculation is being produced to replace MING model validation output that is effected by the supersession of DTN M09909SPAMINGl.003 using its replacement DTN M00106SPAIDMO 1.034 so that the calculations currently found in the ''In-Drift Microbial Communities'' AMR (CRWMS M&O 2000) will be brought up to date. This set of calculations replaces the calculations contained in sections 6.7.2, 6.7.3 and Attachment I of CRWMS M&O (2000) As all of these calculations are created explicitly for model validation, the data qualification status of all inputs can be considered corroborative in accordance with AP-3.15Q. This work activity has been evaluated in accordance with the AP-2.21 procedure, ''Quality Determinations and Planning for Scientific, Engineering, and Regulatory Compliance Activities'', and is subject to QA controls (BSC 2001). The calculation is developed in accordance with the AP-3.12 procedure, Calculations, and prepared in accordance with the ''Technical Work Plan For EBS Department Modeling FY 01 Work Activities'' (BSC 200 1) which includes controls for the management of electronic data.
Jedek, Christoph
2012-01-01T23:59:59.000Z
J.A. , Beckman, W.A. (1991). Solar engineering of thermalA new method for predicting the solar heat gain of complexfenestration systems. ASHRAE Solar Heat Gain Project 548-RP
Tsibidis, George D; Gaze, William; Wellington, Elizabeth M H
2010-01-01T23:59:59.000Z
Interactions between bacteria and protozoa is an increasing area of interest, however there are a few systems that allow extensive observation of the interactions. We examined a surface system consisting of non nutrient agar with a uniform bacterial lawn that extended over the agar surface, and a spatially localised central population of amoebae. The amoeba fed on bacteria and migrated over the plate. Automated image analysis techniques were used to locate and count amoebae, cysts and bacteria coverage in a series of spatial images. Most algorithms were based on intensity thresholding, or a modification of this idea with probabilistic models. Our strategy was two tiered, we performed an automated analysis for object classification and bacteria counting followed by user intervention/reclassification using custom written Graphical User Interfaces.
Jedek, Christoph
2012-01-01T23:59:59.000Z
References References ANSI/ASHRAE Standard 55 (2010).that applied in the American ANSI/ASHRAE Standard 55 (2010)The adaptive model after ANSI/ASHRAE Standard 55 (2010, p.
Jedek, Christoph
2012-01-01T23:59:59.000Z
like heat transfer through radiation, convection,J.R. (1972). Thermal Radiation Heat Transfer. New York, NY:radiation, it follows, that adjacent bodies exchange energy in form of heat transfer.
Universality of the subsolar mass distribution from critical gravitational collapse
Matt Visser; Nicolas Yunes
2004-04-21T23:59:59.000Z
Self-similarity induced by critical gravitational collapse is used as a paradigm to probe the mass distribution of subsolar objects. At large mass (solar mass and above) there is widespread agreement as to both the form and parameter values arising in the mass distribution of stellar objects. At subsolar mass there is still considerable disagreement as to the qualitative form of the mass distribution, let alone the specific parameter values characterizing that distribution. For the first time, the paradigm of critical gravitational collapse is applied to several concrete astrophysical scenarios to derive robust qualitative features of the subsolar mass distribution. We further contrast these theoretically derived ideas with the observational situation. In particular, we demonstrate that at very low mass the distribution is given by a power law, with an exponent opposite in sign to that observed in the high-mass regime. The value of this low-mass exponent is in principle calculable via dynamical systems theory applied to gravitational collapse. Qualitative agreement between theory, numerical experiments, and observational data is good, though quantitative issues remain troublesome.
Relativistic mean field calculations in neutron-rich nuclei
Gangopadhyay, G.; Bhattacharya, Madhubrata [Department of Physics, University of Calcutta, 92 Acharya Prafulla Chandra Road, Kolkata 700 009 (India); Roy, Subinit [Saha Institute of Nuclear Physics, Block AF, Sector 1, Kolkata- 700 064 (India)
2014-08-14T23:59:59.000Z
Relativistic mean field calculations have been employed to study neutron rich nuclei. The Lagrange's equations have been solved in the co-ordinate space. The effect of the continuum has been effectively taken into account through the method of resonant continuum. It is found that BCS approximation performs as well as a more involved Relativistic Continuum Hartree Bogoliubov approach. Calculations reveal the possibility of modification of magic numbers in neutron rich nuclei. Calculation for low energy proton scattering cross sections shows that the present approach reproduces the density in very light neutron rich nuclei.
First-principles Calculation of Excited State Spectra in QCD
Dudek, Jozef J. [Jefferson Laboratory, 12000 Jefferson Avenue Suite 1, Newport News, VA 23606 (United States); Department of Physics, Old Dominion University, Norfolk, VA 23529 (United States); Edwards, Robert G.; Richards, David G.; Thomas, Christopher E. [Jefferson Laboratory, 12000 Jefferson Avenue Suite 1, Newport News, VA 23606 (United States); Peardon, Michael J. [School of Mathematics, Trinity College, Dublin 2 (Ireland)
2011-05-24T23:59:59.000Z
Recent progress at understanding the excited state spectra of mesons and baryons is described. I begin by outlining the application of the variational method to compute the spectrum of QCD, and then present results for the excited meson spectrum, with continuum quantum numbers of the states clearly delineated. I emphasise the need to extend the calculation to encompass multi-hadron contributions, and describe a recent calculation of the I = 2{pi}{pi} energy-dependent phase shifts as a precursor to the study of channels with resonant behavior. I conclude with recent results for the low lying baryon spectrum, and the prospects for future calculations.
Observation and Control for Debugging Distributed Computations
Garg, Vijay
Observation and Control for Debugging Distributed Computations Vijay K. Garg \\Lambda Parallel and Distributed Systems Laboratory, Electrical and Computer Engineering Department The University of Texas for observing and controlling a distributed computation and its applications to distributed debugging
Observation and Control for Debugging Distributed Computations
Garg, Vijay
Observation and Control for Debugging Distributed Computations Vijay K. Garg Parallel and Distributed Systems Laboratory, Electrical and Computer Engineering Department The University of Texas for observing and controlling a distributed computation and its applications to distributed debugging
Transverse momentum-dependent parton distribution functions in lattice QCD
Engelhardt, Michael G. [New Mexico State University; Musch, Bernhard U. [Tech. University Munich; Haegler, Philipp G. [Tech. University Munich; Negele, John W. [MIT; Schaefer, Andreas [Regensburg
2013-08-01T23:59:59.000Z
A fundamental structural property of the nucleon is the distribution of quark momenta, both parallel as well as perpendicular to its propagation. Experimentally, this information is accessible via selected processes such as semi-inclusive deep inelastic scattering (SIDIS) and the Drell-Yan process (DY), which can be parametrized in terms of transversemomentum-dependent parton distributions (TMDs). On the other hand, these distribution functions can be extracted from nucleon matrix elements of a certain class of bilocal quark operators in which the quarks are connected by a staple-shaped Wilson line serving to incorporate initial state (DY) or final state (SIDIS) interactions. A scheme for evaluating such matrix elements within lattice QCD is developed. This requires casting the calculation in a particular Lorentz frame, which is facilitated by a parametrization of the matrix elements in terms of invariant amplitudes. Exploratory results are presented for the time-reversal odd Sivers and Boer-Mulders transverse momentum shifts.
Jian-Miin Liu
2003-07-07T23:59:59.000Z
In solar interior, it is the equilibrium velocity distribution of few high-energy protons and nuclei that participates in determining nuclear fusion reaction rates. So, it is inappropriate to use the Maxwellian velocity distribution to calculate the rates of solar nuclear fusion reactions. We have to use the relativistic equilibrium velocity distribution for the purpose. The nuclear fusion reaction rate based on the relativistic equilibrium velocity distribution has a reduction factor with respect to that based on the Maxwellian distribution. The reduction factor depends on the temperature, reduced mass and atomic numbers of the studied nuclear fusion reactions, in other words, it varies with the sort of neutrinos. Substituting the relativistic equilibrium velocity distribution for the Maxwellian distribution is not important for the calculation of solar sound speeds. The relativistic equilibrium velocity distribution, if adopted in standard solar models, will lower solar neutrino fluxes and change solar neutrino energy spectra but maintain solar sound speeds. This velocity distribution is possibly a solution to the solar neutrino problem.
Regulatory Considerations for Developing Distributed Generation...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Regulatory Considerations for Developing Distributed Generation Projects Webinar May 23, 2012 Regulatory Considerations for Developing Distributed Generation Projects Webinar May...
Commercial % Sold by Local Distribution Companies
Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]
Residential Price - Local Distribution Companies Residential Price - Marketers Residential % Sold by Local Distribution Companies Average Commercial Price Commercial Price - Local...
Photoelectron Angular Distribution and Molecular Structure in...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Angular Distribution and Molecular Structure in Multiply Charged Anions. Photoelectron Angular Distribution and Molecular Structure in Multiply Charged Anions. Abstract:...
Dean, Cleon Eugene
1982-01-01T23:59:59.000Z
's work. They are explicitly A = (-1) i ~2v ~~( 1 i [n(n+1)+v(v+1)-p(p+1)] P (13a) xa(m, n, -m, v, p)h , kd), (1) P B = (-1) i 222- j i (-2imkd)a(m, n, -m, v, p)h (kd). (13b) P The index p ranges from n-v to n+v in steps of 2, The interchange... and Wang g1ve the extinction 1n terms of P, 0 plots as a function of the effect i ve separat1on kd or the incidence angle o where the di- mensionless p and 0 components of the complex forward scattering amplitude S(0) are P 2 Im[S(0)]' 0 Z Re[5(0)], k...
Sader, Charles Avery
2015-01-01T23:59:59.000Z
Electronic Structure Theory Calculations and Molecular DynamicsElectronic Structure Theory Calculations and Molecular Dynamicsdynamics simulation requires identification of an electronic structure calculation
Simulation of dose distribution for iridium-192 brachytherapy source type-H01 using MCNPX
Purwaningsih, Anik [Center for development of nuclear informatics, National Nuclear Energy Agency, PUSPIPTEK, Serpong, Banten 15310 (Indonesia)
2014-09-30T23:59:59.000Z
Dosimetric data for a brachytherapy source should be known before it used for clinical treatment. Iridium-192 source type H01 was manufactured by PRR-BATAN aimed to brachytherapy is not yet known its dosimetric data. Radial dose function and anisotropic dose distribution are some primary keys in brachytherapy source. Dose distribution for Iridium-192 source type H01 was obtained from the dose calculation formalism recommended in the AAPM TG-43U1 report using MCNPX 2.6.0 Monte Carlo simulation code. To know the effect of cavity on Iridium-192 type H01 caused by manufacturing process, also calculated on Iridium-192 type H01 if without cavity. The result of calculation of radial dose function and anisotropic dose distribution for Iridium-192 source type H01 were compared with another model of Iridium-192 source.
Universal calculation formula and calibration method in Fourier transform profilometry
Wen Yongfu; Li Sikun; Cheng Haobo; Su Xianyu; Zhang Qican
2010-12-01T23:59:59.000Z
We propose a universal calculation formula of Fourier transform profilometry and give a strict theoretical analysis about the phase-height mapping relation. As the request on the experimental setup of the universal calculation formula is unconfined, the projector and the camera can be located arbitrarily to get better fringe information, which makes the operation flexible. The phase-height calibration method under the universal condition is proposed, which can avoid measuring the system parameters directly. It makes the system easy to manipulate and improves the measurement velocity. A computer simulation and experiment are conducted to verify its validity. The calculation formula and calibration method have been applied to measure an object of 22.00 mm maximal height. The relative error of the measurement result is only 0.59%. The experimental results prove that the three-dimensional shape of tested objects can be reconstructed exactly by using the calculation formula and calibration method, and the system has better universality.
Oxygen Toxicity Calculations by Erik C. Baker, P.E.
Read, Charles
calculations. The first is pulmonary oxygen toxicity which primarily concerns the effects to the lungs of long is the maximum volume of air (or gas) that a person can expel from his/her lungs after first filling the lungs
Calculating the hyperWiener index of benzenoid hydrocarbons
Klavzar, Sandi
Calculating the hyperÂWiener index of benzenoid hydrocarbons Petra Zigert1 , Sandi Klavzar1) is not easy, especially in the case of large polycyclic molecules, such as benzenoid hydrocarbons. Some time
Calculating the hyper--Wiener index of benzenoid hydrocarbons
Klavzar, Sandi
Calculating the hyper--Wiener index of benzenoid hydrocarbons Petra Å¸ Zigert 1 , Sandi KlavÅ¸ zar 1. (1) is not easy, especially in the case of large polycyclic molecules, such as benzenoid hydrocarbons
Guidelines for the analysis of free energy calculations
Klimovich, PV; Shirts, MR; Mobley, DL; Mobley, DL
2015-01-01T23:59:59.000Z
Efficient estimation of free energy differ- ences from Montenumerical instabilities in free energy calculations based onD.L. , DiCapua, F.M. : Free energy via molecular simulation:
Is Ring breaking feasible in relative binding free energy calculations?
Liu, S; Wang, L; Mobley, DL
2015-01-01T23:59:59.000Z
Essex, J. W. Rigorous Free Energy Calculations in Structure-of Hydration Free Energies for SAMPL. J. Comput. -Aided Mol.Basic Ingredients of Free Energy Calcula- tions: A Review.
RESEARCH PAPER Calculating the effective permeability of sandstone with
Borja, Ronaldo I.
RESEARCH PAPER Calculating the effective permeability of sandstone with multiscale lattice microtomo- graphic images of a sandstone, with sample resolution of 3.34 lm. We discuss the predictive
Guidelines for the analysis of free energy calculations
Klimovich, PV; Shirts, MR; Mobley, DL; Mobley, DL
2015-01-01T23:59:59.000Z
Free energy calculations for Lennard-Jones systems and waterfree energy change is found as the negative of ?G waterenergy of hydrophobic hydration: A molecular dynam- ics study of noble gases in water.
Calculating Horsepower Requirements and Sizing Supply Pipelines for Irrigation
Fipps, Guy
1995-09-05T23:59:59.000Z
Pumping costs are often one of the largest single expenses in irrigated agriculture. This publication explains how to lower pumping costs by calculating horsepower requirements and sizing supply pipelines correctly. Examples take the reader through...
Reactor physics calculation of BWR fuel bundles containing gadolinia
Morales, Diego
1977-01-01T23:59:59.000Z
A technique for the calculation of the neutronic behavior of BWR fuel bundles has been developed and applied to a Vermont Yankee fuel bundle. The technique is based on a diffusion theory treatment of the bundle, with ...
Protein Thermostability Calculations Using Alchemical Free Energy Simulations
de Groot, Bert
Protein Thermostability Calculations Using Alchemical Free Energy Simulations Daniel Seeliger by alterations in the free energy of folding. Growing computational power, however, increasingly allows us to use alchem- ical free energy simulations, such as free energy perturbation or thermodynamic integration
Automated higher-order calculations: Status and prospects
Giovanni Ossola
2015-08-08T23:59:59.000Z
In this presentation we review the current status in the automated evaluation of scattering amplitudes, with particular attention to the developments related with NLO calculations, which led to the construction of powerful multi-purpose computational tools. After a general overview, we will devote a short section to describe the GoSam framework for NLO calculations and its application to the production of Higgs boson plus jets. We will then briefly comment on the challenges presented by NNLO calculations, whose structure is considerably more complicated. Finally, we will describe some of the features of the integrand-reduction techniques beyond NLO, an alternative promising approach to multi-loop calculations which is currently under development.
Automated higher-order calculations: Status and prospects
Ossola, Giovanni
2015-01-01T23:59:59.000Z
In this presentation we review the current status in the automated evaluation of scattering amplitudes, with particular attention to the developments related with NLO calculations, which led to the construction of powerful multi-purpose computational tools. After a general overview, we will devote a short section to describe the GoSam framework for NLO calculations and its application to the production of Higgs boson plus jets. We will then briefly comment on the challenges presented by NNLO calculations, whose structure is considerably more complicated. Finally, we will describe some of the features of the integrand-reduction techniques beyond NLO, an alternative promising approach to multi-loop calculations which is currently under development.
Sequential Voronoi diagram calculations using simple chemical reactions
Costello, Ben de Lacy; Adamatzky, Andy
2012-01-01T23:59:59.000Z
In our recent paper [de Lacy Costello et al. 2010] we described the formation of complex tessellations of the plane arising from the various reactions of metal salts with potassium ferricyanide and ferrocyanide loaded gels. In addition to producing colourful tessellations these reactions are naturally computing generalised Voronoi diagrams of the plane. The reactions reported previously were capable of the calculation of three distinct Voronoi diagrams of the plane. As diffusion coupled with a chemical reaction is responsible for the calculation then this is achieved in parallel. Thus an increase in the complexity of the data input does not utilise additional computational resource. Additional benefits of these chemical reactions is that a permanent record of the Voronoi diagram calculation (in the form of precipitate free bisectors) is achieved, so there is no requirement for further processing to extract the calculation results. Previously it was assumed that the permanence of the results was also a potenti...
CRAC calculations for accident sections of environmental statements
Johnson, J.D.; Ritchie, L.T.
1983-03-01T23:59:59.000Z
The CRAC2 computer code was adapted to the calculation requirements of Draft/Final Environmental Impact Statement (DES/FES) casework analysis for the Nuclear Regulatory Commission. CRAC is a revised version of the CRAC (Calculation of Reactor Accident Consequences) computer code developed in support of the Reactor Safety Study, WASH-1400. A graphical output package was developed for displaying CRAC2 computed results. All phases of the casework analysis calculations from initial data formatting to plotting of calculated results are executed through the use of procedure files on the Idaho National Engineering Laboratory (INEL) computing system at Idaho Falls, Idaho. The INEL computing system operates under the Control Data Corporation (CDC) NOS/BE Operating System (Level 518) and Intercom Version 5.
TOUSCHEK LIFETIME CALCULATIONS AND SIMULATIONS FOR NSLS-II
MONTAG,C.; BENGTSSON, J.; NASH, B.
2007-06-25T23:59:59.000Z
The beam lifetime in most medium energy synchrotron radiation sources is limited by the Touschek effect, which describes the momentum transfer from the transverse into the longitudinal direction due to binary collisions between electrons. While an analytical formula exists to calculate the resulting lifetime, the actual momentum acceptance necessary to perform this calculation can only be determined by tracking. This is especially the case in the presence of small vertical apertures at insertion devices. In this case, nonlinear betatron coupling leads to beam losses at these vertical aperture restrictions. In addition, a realistic model of the storage ring is necessary for calculation of equilibrium beam sizes (particularly in the vertical direction) which are important for a self-consistent lifetime calculation.
DISTRIBUTED SHORTESTPATH PROTOCOLS TIMEDEPENDENT NETWORKS
Orda, Ariel
DISTRIBUTED SHORTESTPATH PROTOCOLS for TIMEDEPENDENT NETWORKS Ariel Orda Raphael Rom+ Department and the dynamic behavior of networks, since a distributed solution enables constant tracking of changes 32000 October 1992 Revised May 1994, October 1995 ABSTRACT This paper addresses algorithms for networks
Quality monitored distributed voting system
Skogmo, David (Albuquerque, NM)
1997-01-01T23:59:59.000Z
A quality monitoring system can detect certain system faults and fraud attempts in a distributed voting system. The system uses decoy voters to cast predetermined check ballots. Absent check ballots can indicate system faults. Altered check ballots can indicate attempts at counterfeiting votes. The system can also cast check ballots at predetermined times to provide another check on the distributed voting system.
Distributed Internet Security and Measurement
New Mexico, University of
, New Mexico May, 2009 #12;Distributed Internet Security and Measurement by Josh Karlin B.A., Computer#12;Distributed Internet Security and Measurement by Josh Karlin B.A., Computer Science for the Degree of Doctor of Philosophy Computer Science The University of New Mexico Albuquerque, New Mexico May
Quality monitored distributed voting system
Skogmo, D.
1997-03-18T23:59:59.000Z
A quality monitoring system can detect certain system faults and fraud attempts in a distributed voting system. The system uses decoy voters to cast predetermined check ballots. Absent check ballots can indicate system faults. Altered check ballots can indicate attempts at counterfeiting votes. The system can also cast check ballots at predetermined times to provide another check on the distributed voting system. 6 figs.
Strategy Guideline: Accurate Heating and Cooling Load Calculations
Burdick, A.
2011-06-01T23:59:59.000Z
This guide presents the key criteria required to create accurate heating and cooling load calculations and offers examples of the implications when inaccurate adjustments are applied to the HVAC design process. The guide shows, through realistic examples, how various defaults and arbitrary safety factors can lead to significant increases in the load estimate. Emphasis is placed on the risks incurred from inaccurate adjustments or ignoring critical inputs of the load calculation.
Improved load models for multi-area reliability calculations
Pathak, Sanjesh
1992-01-01T23:59:59.000Z
IMPROVED LOAD MODELS FOR MULTI-AREA RELIABILITY CALCULATIONS A Thesis by SANJESH PATHAK Submitted to the Office of Graduate Studies of Texas ARM University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May... 1992 Major Subject: Electrical Engineering IMPROVED LOAD MODELS FOR MULTI-AREA RELIABILITY CALCULATIONS A Thesis by SAN JESH PATHAK Approved as to style and content by: Chanan Singh (Chair of Committee) Prasad Enjeti (Member) Ces . Mal, e...
Ab initio calculations of nuclear widths via an integral relation
Kenneth M. Nollett
2012-05-31T23:59:59.000Z
I describe the computation of energy widths of nuclear states using an integral over the interaction region of ab initio variational Monte Carlo wave functions, and I present calculated widths for many states. I begin by presenting relations that connect certain short-range integrals to widths. I then present predicted widths for 5 integral relation, I conclude that overlap calculations can diagnose cases in which computed widths should not be trusted.
Scoping calculations of power sources for nuclear electric propulsion
Difilippo, F.C. [Oak Ridge National Lab., TN (United States)] [Oak Ridge National Lab., TN (United States)
1994-05-01T23:59:59.000Z
This technical memorandum describes models and calculational procedures to fully characterize the nuclear island of power sources for nuclear electric propulsion. Two computer codes were written: one for the gas-cooled NERVA derivative reactor and the other for liquid metal-cooled fuel pin reactors. These codes are going to be interfaced by NASA with the balance of plant in order to making scoping calculations for mission analysis.
Iterative acceleration methods for Monte Carlo and deterministic criticality calculations
Urbatsch, T.J.
1995-11-01T23:59:59.000Z
If you have ever given up on a nuclear criticality calculation and terminated it because it took so long to converge, you might find this thesis of interest. The author develops three methods for improving the fission source convergence in nuclear criticality calculations for physical systems with high dominance ratios for which convergence is slow. The Fission Matrix Acceleration Method and the Fission Diffusion Synthetic Acceleration (FDSA) Method are acceleration methods that speed fission source convergence for both Monte Carlo and deterministic methods. The third method is a hybrid Monte Carlo method that also converges for difficult problems where the unaccelerated Monte Carlo method fails. The author tested the feasibility of all three methods in a test bed consisting of idealized problems. He has successfully accelerated fission source convergence in both deterministic and Monte Carlo criticality calculations. By filtering statistical noise, he has incorporated deterministic attributes into the Monte Carlo calculations in order to speed their source convergence. He has used both the fission matrix and a diffusion approximation to perform unbiased accelerations. The Fission Matrix Acceleration method has been implemented in the production code MCNP and successfully applied to a real problem. When the unaccelerated calculations are unable to converge to the correct solution, they cannot be accelerated in an unbiased fashion. A Hybrid Monte Carlo method weds Monte Carlo and a modified diffusion calculation to overcome these deficiencies. The Hybrid method additionally possesses reduced statistical errors.
Posttest calculations of bundle quench test CORA-13 with ATHLET-CD
Bestele, J.; Trambauer, K. [Gesellschaft fuer Anlagen- und Reaktorsicherheit mbH, Garching (Germany); Schubert, J.D. [Gesellschaft fuer Anlagen- und Reaktorsicherheit mbH, Koeln (Germany)
1997-01-01T23:59:59.000Z
Gesellschaft fuer Anlagen- und Reaktorsicherheit is developing, in cooperation with the Institut fuer Kernenergetik und Energiesysteme, Stuttgart, the system code Analysis of Thermalhydraulics of Leaks and Transients with Core Degradation (ATHLET-CD). The code consists of detailed models of the thermal hydraulics of the reactor coolant system. This thermo-fluid dynamics module is coupled with modules describing the early phase of the core degradation, like cladding deformation, oxidation and melt relocation, and the release and transport of fission products. The assessment of the code is being done by the analysis of separate effect tests, integral tests, and plant events. The code will be applied to the verification of severe accident management procedures. The out-of-pile test CORA-13 was conducted by Forschungszentrum Karlsruhe in their CORA test facility. The test consisted of two phases, a heatup phase and a quench phase. At the beginning of the quench phase, a sharp peak in the hydrogen generation rate was observed. Both phases of the test have been calculated with the system code ATHLET-CD. Special efforts have been made to simulate the heat losses and the flow distribution in the test facility and the thermal hydraulics during the quench phase. In addition to previous calculations, the material relocation and the quench phase have been modeled. The temperature increase during the heatup phase, the starting time of the temperature escalation, and the maximum temperatures have been calculated correctly. At the beginning of the quench phase, an increased hydrogen generation rate has been calculated as measured in the experiment.
Monajemi, T. T.; Clements, Charles M.; Sloboda, Ron S. [Department of Medical Physics, Cross Cancer Institute, Edmonton, Alberta T6G 1Z2 (Canada) and Department of Oncology, University of Alberta, Edmonton, Alberta T6G 2R3 (Canada); Department of Physics, University of Alberta, Edmonton, Alberta T6G 2R3 (Canada); Department of Medical Physics, Cross Cancer Institute, Edmonton, Alberta T6G 1Z2 (Canada); Department of Oncology, University of Alberta, Edmonton, Alberta T6G 2R3 (Canada) and Department of Physics, University of Alberta, Edmonton, Alberta T6G 2R3 (Canada)
2011-04-15T23:59:59.000Z
Purpose: The objectives of this study were (i) to develop a dose calculation method for permanent prostate implants that incorporates a clinically motivated model for edema and (ii) to illustrate the use of the method by calculating the preimplant dosimetry error for a reference configuration of {sup 125}I, {sup 103}Pd, and {sup 137}Cs seeds subject to edema-induced motions corresponding to a variety of model parameters. Methods: A model for spatially anisotropic edema that resolves linearly with time was developed based on serial magnetic resonance imaging measurements made previously at our center to characterize the edema for a group of n=40 prostate implant patients [R. S. Sloboda et al., ''Time course of prostatic edema post permanent seed implant determined by magnetic resonance imaging,'' Brachytherapy 9, 354-361 (2010)]. Model parameters consisted of edema magnitude, {Delta}, and period, T. The TG-43 dose calculation formalism for a point source was extended to incorporate the edema model, thus enabling calculation via numerical integration of the cumulative dose around an individual seed in the presence of edema. Using an even power piecewise-continuous polynomial representation for the radial dose function, the cumulative dose was also expressed in closed analytical form. Application of the method was illustrated by calculating the preimplant dosimetry error, RE{sub preplan}, in a 5x5x5 cm{sup 3} volume for {sup 125}I (Oncura 6711), {sup 103}Pd (Theragenics 200), and {sup 131}Cs (IsoRay CS-1) seeds arranged in the Radiological Physics Center test case 2 configuration for a range of edema relative magnitudes ({Delta}=[0.1,0.2,0.4,0.6,1.0]) and periods (T=[28,56,84] d). Results were compared to preimplant dosimetry errors calculated using a variation of the isotropic edema model developed by Chen et al. [''Dosimetric effects of edema in permanent prostate seed implants: A rigorous solution,'' Int. J. Radiat. Oncol., Biol., Phys. 47, 1405-1419 (2000)]. Results: As expected, RE{sub preplan} for our edema model indicated underdosage in the calculation volume with a clear dependence on seed and calculation point positions, and increased with increasing values of {Delta} and T. Values of RE{sub preplan} were generally larger near the ends of the virtual prostate in the RPC phantom compared with more central locations. For edema characteristics similar to the population average values previously measured at our center, i.e., {Delta}=0.2 and T=28 d, mean values of RE{sub preplan} in an axial plane located 1.5 cm from the center of the seed distribution were 8.3% for {sup 131}Cs seeds, 7.5% for {sup 103}Pd seeds, and 2.2% for {sup 125}I seeds. Maximum values of RE{sub preplan} in the same plane were about 1.5 times greater. Note that detailed results strictly apply only for loose seed implants where the seeds are fixed in tissue and move in synchrony with that tissue. Conclusions: A dose calculation method for permanent prostate implants incorporating spatially anisotropic linearly time-resolving edema was developed for which cumulative dose can be written in closed form. The method yields values for RE{sub preplan} that differ from those for spatially isotropic edema. The method is suitable for calculating pre- and postimplant dosimetry correction factors for clinical seed configurations when edema characteristics can be measured or estimated.
Formal Management Review of the Safety Basis Calculations Noncompliance
Altenbach, T J
2008-06-24T23:59:59.000Z
In Reference 1, LLNL identified a failure to adequately implement an institutional commitment concerning administrative requirements governing the documentation of Safety Basis calculations supporting the Documented Safety Analysis (DSA) process for LLNL Hazard Category 2 and Category 3 nuclear facilities. The AB Section has discovered that the administrative requirements of AB procedure AB-006, 'Safety Basis Calculation Procedure for Category 2 and 3 Nuclear Facilities', have not been uniformly or consistently applied in the preparation of Safety Basis calculations for LLNL Hazard Category 2 and 3 Nuclear Facilities. The SEP Associated Director has directed the AB Section to initiate a formal management review of the issue that includes, but is not necessarily limited to the following topics: (1) the basis establishing Ab-006 as a required internal procedure for Safety Basis calculations; (2) how requirements for Safety Basis calculations flow down in the institutional DSA process; (3) the extent to which affected Laboratory organizations have explicitly complied with the requirements of Procedure AB-006; (4) what alternative approaches LLNL organizations has used for Safety Basis calculations and how these alternate approaches compare with Procedure AB-006 requirements; and (5) how to reconcile Safety Basis calculations that were performed before Procedure AB-006 came into existence (i.e., August 2001). The management review2 also includes an extent-of-condition evaluation to determine how widespread the discovered issue is throughout Laboratory organizations responsible for operating nuclear facilities, and to determine if implementation of AB procedures other than AB-006 has been similarly affected. In Reference 2, Corrective Action 1 was established whereby the SEP Directorate will develop a plan for performing a formal management review of the discovered condition, including an extent-of condition evaluation. In Reference 3, a plan was provided to prepare a formal management review, satisfying Corrective Action 1. An AB-006 Working Group was formed,led by the AB Section, with representatives from the Nuclear Materials Technology Program (NMTP), the Radioactive and Hazardous Waste Management (RHWM) Division, and the Packaging and Transportation Safety (PATS) Program. The key action of this management review was for Working Group members to conduct an assessment of all safety basis calculations referenced in their respective DSAs. Those assessments were tasked to provide the following information: (1) list which safety basis calculations correctly follow AB-006 and therefore require no additional documentation; (2) identify and list which safety basis calculations do not strictly follow AB-006, these include NMTP Engineering Notes, Engineering Safety Notes, and calculations by organizations external to the nuclear facilities (such as Plant Engineering), subcontractor calculations, and other internally generated calculations. Each of these will be reviewed and listed on a memorandum with the facility manager's (or designee's) signature accepting that calculation for use in the DSA. If any of these calculations are lacking the signature of a technical reviewer, they must also be reviewed for technical content and that review documented per AB-006.
Distribution System Voltage Regulation by Distributed Energy Resources
Ceylan, Oguzhan [ORNL; Liu, Guodong [ORNL; Xu, Yan [ORNL; Tomsovic, Kevin [University of Tennessee, Knoxville (UTK)
2014-01-01T23:59:59.000Z
This paper proposes a control method to regulate voltages in 3 phase unbalanced electrical distribution systems. A constrained optimization problem to minimize voltage deviations and maximize distributed energy resource (DER) active power output is solved by harmony search algorithm. IEEE 13 Bus Distribution Test System was modified to test three different cases: a) only voltage regulator controlled system b) only DER controlled system and c) both voltage regulator and DER controlled system. The simulation results show that systems with both voltage regulators and DER control provide better voltage profile.
Ali, Imad, E-mail: iali@ouhsc.edu [Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK (United States); Ahmad, Salahuddin [Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK (United States)
2013-10-01T23:59:59.000Z
To compare the doses calculated using the BrainLAB pencil beam (PB) and Monte Carlo (MC) algorithms for tumors located in various sites including the lung and evaluate quality assurance procedures required for the verification of the accuracy of dose calculation. The dose-calculation accuracy of PB and MC was also assessed quantitatively with measurement using ionization chamber and Gafchromic films placed in solid water and heterogeneous phantoms. The dose was calculated using PB convolution and MC algorithms in the iPlan treatment planning system from BrainLAB. The dose calculation was performed on the patient's computed tomography images with lesions in various treatment sites including 5 lungs, 5 prostates, 4 brains, 2 head and necks, and 2 paraspinal tissues. A combination of conventional, conformal, and intensity-modulated radiation therapy plans was used in dose calculation. The leaf sequence from intensity-modulated radiation therapy plans or beam shapes from conformal plans and monitor units and other planning parameters calculated by the PB were identical for calculating dose with MC. Heterogeneity correction was considered in both PB and MC dose calculations. Dose-volume parameters such as V95 (volume covered by 95% of prescription dose), dose distributions, and gamma analysis were used to evaluate the calculated dose by PB and MC. The measured doses by ionization chamber and EBT GAFCHROMIC film in solid water and heterogeneous phantoms were used to quantitatively asses the accuracy of dose calculated by PB and MC. The dose-volume histograms and dose distributions calculated by PB and MC in the brain, prostate, paraspinal, and head and neck were in good agreement with one another (within 5%) and provided acceptable planning target volume coverage. However, dose distributions of the patients with lung cancer had large discrepancies. For a plan optimized with PB, the dose coverage was shown as clinically acceptable, whereas in reality, the MC showed a systematic lack of dose coverage. The dose calculated by PB for lung tumors was overestimated by up to 40%. An interesting feature that was observed is that despite large discrepancies in dose-volume histogram coverage of the planning target volume between PB and MC, the point doses at the isocenter (center of the lesions) calculated by both algorithms were within 7% even for lung cases. The dose distributions measured with EBT GAFCHROMIC films in heterogeneous phantoms showed large discrepancies of nearly 15% lower than PB at interfaces between heterogeneous media, where these lower doses measured by the film were in agreement with those by MC. The doses (V95) calculated by MC and PB agreed within 5% for treatment sites with small tissue heterogeneities such as the prostate, brain, head and neck, and paraspinal tumors. Considerable discrepancies, up to 40%, were observed in the dose-volume coverage between MC and PB in lung tumors, which may affect clinical outcomes. The discrepancies between MC and PB increased for 15 MV compared with 6 MV indicating the importance of implementation of accurate clinical treatment planning such as MC. The comparison of point doses is not representative of the discrepancies in dose coverage and might be misleading in evaluating the accuracy of dose calculation between PB and MC. Thus, the clinical quality assurance procedures required to verify the accuracy of dose calculation using PB and MC need to consider measurements of 2- and 3-dimensional dose distributions rather than a single point measurement using heterogeneous phantoms instead of homogenous water-equivalent phantoms.
Barrell, Kirk Arthur
1988-01-01T23:59:59.000Z
resistivities that were calculated from spontaneous potential on well logs. A salinity- depth plot was constructed and compared to the normal trend. Geothermal gradients were calculated and temperatures were obtained from well logs and bottom- hole pressure... where pressure gradients reach 0. 92 psi/ft. The distribution of abnormal pressures in the Lower Vicksburg indicates that hydrodynamic flow takes place upward from the Jackson shale and then continues along fault planes across the unconformity on top...
K-Eigenvalue sensitivities of secondary distributions of continuous-energy data
Kiedrowski, B. C.; Brown, F. B. [Los Alamos National Laboratory, MS A143, P.O. Box 1663, Los Alamos, NM 87545 (United States)
2013-07-01T23:59:59.000Z
MCNP6 has the capability to produce energy-resolved sensitivity profiles for secondary distributions (fission {Chi} and scattering laws). Computing both unconstrained and constrained profiles are possible. Verification is performed with analytic test problems and a comparison to TSUNAMI-3D, and the comparisons show MCNP6 calculates correct or consistent results. Continuous-energy calculations are performed for three fast critical experiments: Jezebel, Flattop, and copper-reflected Zeus. The sensitivities to the secondary distributions (integrated over chosen energy ranges) are of similar magnitude to those of many of the cross sections, demonstrating the possibility that integral experiments are useful for assessing the fidelity of these data as well. (authors)
Nucleon and nucleon-pair momentum distributions in A?12 nuclei
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Wiringa, Robert B. [ANL; Schiavilla, Rocco [ODU, JLAB; Pieper, Steven C. [ANL; Carlson, Joseph A. [LANL
2014-02-01T23:59:59.000Z
We report variational Monte Carlo calculations of single-nucleon momentum distributions for A?12 nuclei and nucleon-pair and nucleon-cluster momentum distributions for A?8. The wave functions have been generated for a Hamiltonian containing the Argonne ?18 two-nucleon and Urbana X three-nucleon potentials. The single-nucleon and nucleon-pair momentum distributions exhibit universal features attributable to the one-pion-exchange tensor interaction The single-nucleon distributions are broken down into proton and neutron components and spin-up and spin-down components where appropriate. The nucleon-pair momentum distributions are given separately for pp and pn pairs. The nucleon-cluster momentum distributions include dp in 3He, tp and dd in S4He, ?d in 6Li,?t in 7Li, and ?? in 8Be. Detailed tables are provided on-line for download.
Energy Loss Distribution in the Taylor-Couette Flow between Concentric Rotating Cylinders
Dou, H S; Phan-Thien, N; Yeo, K S; Dou, Hua-Shu; Khoo, Boo Cheong; Phan-Thien, Nhan; Yeo, Khoon Seng
2005-01-01T23:59:59.000Z
The distribution of energy loss due to viscosity friction in plane Couette flow and Taylor-Couette Flow between concentric rotating cylinders are studied in detail for various flow conditions. The energy loss is related to the industrial processes in some fluid delivery devices and has significant influence on the flow efficiency, flow stability, turbulent transition, mixing, and heat transfer behaviours, etc. Therefore, it is very helpful to know about the energy loss distribution in the flow domain and to know its influence on the flow for understanding the flow physics. The calculation method of the energy loss distribution in the Taylor-Couette Flow between concentric rotating cylinders has not been found in open literature. In this note, the principle and the calculation are given for single cylinder rotating of inner or outer cylinder, and counter and same direction rotating of two cylinders. For comparison, the distribution of energy loss in a plane Couette flow is also derived for various flow conditi...
Solar Reflectance Index Calculation Worksheet Instructions Usage: The purpose of this calculator is to enable contractors and homeowners to quickly and accurately calculate the solar reflectance product exceeds the Building Energy Efficiency Standards requirement for either the aged solar
A reliability assessment methodology for distribution systems with distributed generation
Duttagupta, Suchismita Sujaya
2006-08-16T23:59:59.000Z
distribution system. An objective function that minimized the composite reliability index expressed as a certain combination of the System Av- erage Interruption Duration (SAIDI) and System Average Interruption Frequency 6 (SAIFI) indices was developed... SAIDI, SAIFI, load/energy curtailed, cost of outage and cost of interruption. To determine the DG equivalence to the distribution facility, the reliability index Expected Energy Not Served (EENS), was used. The authors observed that adding the third...
Ramos-Mendez, Jose [Benemerita Universidad Autonoma de Puebla, 18 Sur and San Claudio Avenue, Puebla, Puebla 72750 (Mexico); Perl, Joseph [SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Faddegon, Bruce [Department of Radiation Oncology, University of California at San Francisco, California 94143 (United States); Schuemann, Jan; Paganetti, Harald [Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114 (United States)
2013-04-15T23:59:59.000Z
Purpose: To present the implementation and validation of a geometrical based variance reduction technique for the calculation of phase space data for proton therapy dose calculation. Methods: The treatment heads at the Francis H Burr Proton Therapy Center were modeled with a new Monte Carlo tool (TOPAS based on Geant4). For variance reduction purposes, two particle-splitting planes were implemented. First, the particles were split upstream of the second scatterer or at the second ionization chamber. Then, particles reaching another plane immediately upstream of the field specific aperture were split again. In each case, particles were split by a factor of 8. At the second ionization chamber and at the latter plane, the cylindrical symmetry of the proton beam was exploited to position the split particles at randomly spaced locations rotated around the beam axis. Phase space data in IAEA format were recorded at the treatment head exit and the computational efficiency was calculated. Depth-dose curves and beam profiles were analyzed. Dose distributions were compared for a voxelized water phantom for different treatment fields for both the reference and optimized simulations. In addition, dose in two patients was simulated with and without particle splitting to compare the efficiency and accuracy of the technique. Results: A normalized computational efficiency gain of a factor of 10-20.3 was reached for phase space calculations for the different treatment head options simulated. Depth-dose curves and beam profiles were in reasonable agreement with the simulation done without splitting: within 1% for depth-dose with an average difference of (0.2 {+-} 0.4)%, 1 standard deviation, and a 0.3% statistical uncertainty of the simulations in the high dose region; 1.6% for planar fluence with an average difference of (0.4 {+-} 0.5)% and a statistical uncertainty of 0.3% in the high fluence region. The percentage differences between dose distributions in water for simulations done with and without particle splitting were within the accepted clinical tolerance of 2%, with a 0.4% statistical uncertainty. For the two patient geometries considered, head and prostate, the efficiency gain was 20.9 and 14.7, respectively, with the percentages of voxels with gamma indices lower than unity 98.9% and 99.7%, respectively, using 2% and 2 mm criteria. Conclusions: The authors have implemented an efficient variance reduction technique with significant speed improvements for proton Monte Carlo simulations. The method can be transferred to other codes and other treatment heads.
Power-laws from critical gravitational collapse: The mass distribution of subsolar objects
Matt Visser; Nicolas Yunes
2004-03-15T23:59:59.000Z
Critical gravitational collapse and self similarity are used to probe the mass distribution of subsolar objects. We demonstrate that at very low mass the distribution is given by a power law, with an exponent opposite in sign to that observed at high-mass regime. We further show that the value of this low-mass exponent is in principle calculable via dynamical systems theory applied to gravitational collapse. Qualitative agreement between numerical experiments and observational data is good.
Instability in a uniform impurity distribution in a melt-grown silicon crystal
Rudenko, S.M.; Vasilevskii, M.I.; Golemshtok, G.M.
1988-04-01T23:59:59.000Z
Defect-distribution inhomogeneities occur in semiconductors even during crystal growth. The authors show that these can arise from instability in the dopant-semiconductor system. Many minor components enter silicon not only by substitution but also interstitially. They consider the scope for unstable states for a two-component impurity in a solid solution. Numerical stability calculations for inhomogeneous structures with various forms of impurity distribution are plotted.
Alkhazov, G. D.; Sarantsev, V. V., E-mail: saran@pnpi.spb.ru [Petersburg Nuclear Physics Institute NRC KI (Russian Federation)
2012-12-15T23:59:59.000Z
In order to clear up the sensitivity of the nucleus-nucleus scattering to the nuclear matter distributions in exotic halo nuclei, we have calculated differential cross sections for elastic scattering of the {sup 6}He and {sup 11}Li nuclei on several nuclear targets at the energy of 0.8 GeV/nucleon with different assumed nuclear density distributions in {sup 6}He and {sup 11}Li.
Mesh size and code option effects of strength calculations
Kaul, Ann M [Los Alamos National Laboratory
2010-12-10T23:59:59.000Z
Modern Lagrangian hydrodynamics codes include numerical methods which allow calculations to proceed past the point obtainable by a purely Lagrangian scheme. These options can be employed as the user deems necessary to 'complete' a calculation. While one could argue that any calculation is better than none, to truly understand the calculated results and their relationship to physical reality, the user needs to understand how their runtime choices affect the calculated results. One step toward this goal is to understand the effect of each runtime choice on particular pieces of the code physics. This paper will present simulation results for some experiments typically used for strength model validation. Topics to be covered include effect of mesh size, use of various ALE schemes for mesh detangling, and use of anti-hour-glassing schemes. Experiments to be modeled include the lower strain rate ({approx} 10{sup 4} s{sup -1}) gas gun driven Taylor impact experiments and the higher strain rate ({approx} 10{sup 5}-10{sup 6} s{sup -1}) HE products driven perturbed plate experiments. The necessary mesh resolution and the effect of the code runtime options are highly dependent on the amount of localization of strain and stress in each experiment. In turn, this localization is dependent on the geometry of the experimental setup and the drive conditions.
Benchmark calculations for elastic fermion-dimer scattering
Shahin Bour; H. -W. Hammer; Dean Lee; Ulf-G. Meißner
2012-06-08T23:59:59.000Z
We present continuum and lattice calculations for elastic scattering between a fermion and a bound dimer in the shallow binding limit. For the continuum calculation we use the Skorniakov-Ter-Martirosian (STM) integral equation to determine the scattering length and effective range parameter to high precision. For the lattice calculation we use the finite-volume method of L\\"uscher. We take into account topological finite-volume corrections to the dimer binding energy which depend on the momentum of the dimer. After subtracting these effects, we find from the lattice calculation kappa a_fd = 1.174(9) and kappa r_fd = -0.029(13). These results agree well with the continuum values kappa a_fd = 1.17907(1) and kappa r_fd = -0.0383(3) obtained from the STM equation. We discuss applications to cold atomic Fermi gases, deuteron-neutron scattering in the spin-quartet channel, and lattice calculations of scattering for nuclei and hadronic molecules at finite volume.
Born-series approach to the calculation of Casimir forces
Robert Bennett
2014-07-01T23:59:59.000Z
The Casimir force between two objects is notoriously difficult to calculate in anything other than parallel-plate geometries due to its non-additive nature. This means that for more complicated, realistic geometries one usually has to resort to approaches such as making the crude proximity force approximation (PFA). Another issue with calculation of Casimir forces in real-world situations (such as with realistic materials) is that there are continuing doubts about the status of the standard Lifshitz treatment as a true quantum theory. Here we demonstrate an alternative approach to calculation of Casimir forces for arbitrary geometries which sidesteps both these problems. Our calculations are based upon a Born expansion of the Green's function of the quantised electromagnetic vacuum field, interpreted as multiple scattering, with the relevant coupling strength being the difference in the dielectric functions of the various materials involved. This allows one to consider arbitrary geometries in single or multiple scattering simply by integrating over the desired shape, meaning that extension beyond the PFA is trivial. This work is mostly dedicated to illustration of the method by reproduction of known parallel-slab results -- a process that turns out to be non-trivial and provides several useful insights. We also present a short example of calculation of the Casimir energy for a more complicated geometry, namely that of two finite slabs.
Calculation of size for bound-state constituents
Stanislaw D. Glazek
2014-06-01T23:59:59.000Z
Elements are given of a calculation that identifies the size of a proton in the Schroedinger equation for lepton-proton bound states, using the renormalization group procedure for effective particles (RGPEP) in quantum field theory, executed only up to the second order of expansion in powers of the coupling constant. Already in this crude approximation, the extraction of size of a proton from bound-state observables is found to depend on the lepton mass, so that the smaller the lepton mass the larger the proton size extracted from the same observable bound-state energy splitting. In comparison of Hydrogen and muon-proton bound-state dynamics, the crude calculation suggests that the difference between extracted proton sizes in these two cases can be a few percent. Such values would match the order of magnitude of currently discussed proton-size differences in leptonic atoms. Calculations using the RGPEP of higher order than second are required for a precise interpretation of the energy splittings in terms of the proton size in the Schroedinger equation. Such calculations should resolve the conceptual discrepancy between two conditions: that the renormalization group scale required for high accuracy calculations based on the Schroedinger equation is much smaller than the proton mass (on the order of a root of the product of reduced and average masses of constituents) and that the energy splittings due to the physical proton size can be interpreted ignoring corrections due to the effective nature of constituents in the Schr\\"odinger equation.
Systematic study of projectile structure effect on fusion barrier distribution
Pratap Roy; A. Saxena; B. K. Nayak; E. T. Mirgule; B. John; Y. K. Gupta; L. S. Danu; R. P. Vind; Ashok Kumar; R. K. Choudhury
2011-07-29T23:59:59.000Z
Quasielastic excitation function measurement has been carried out for the $^{4}$He + $^{232}$Th system at $\\theta_{lab}$=160$^\\circ$ with respect to the beam direction, to obtain a representation of the fusion barrier distribution. Using the present data along with previously measured barrier distribution results on $^{12}$C, $^{16}$O, and $^{19}$F + $^{232}$Th systems a systematic analysis has been carried out to investigate the role of target and/or projectile structures on fusion barrier distribution. It is observed that for $^{4}$He, $^{12}$C, and $^{16}$O + $^{232}$Th, reactions the couplings due to target states only are required in coupled channel fusion calculations to explain the experimental data, whereas for the $^{19}$F+ $^{232}$Th system along with the coupling of target states, inelastic states of $^{19}$F are also required to explain the experimental results on fusion-barrier distribution. The width of the barrier distribution shows interesting transition behavior when plotted with respect to the target-projectile charge product for the above systems.
Embodied emergence : distributed computing manipulatives
Bouchard, David, S.M. Massachusetts Institute of Technology
2007-01-01T23:59:59.000Z
Distributed systems and the emergent properties that can arise out of simple localized interactions have fascinated scientists and artists alike for the last century. They challenge the notions of control and creativity, ...
Modeling hydrogen fuel distribution infrastructure
Pulido, Jon R. (Jon Ramon), 1974-
2004-01-01T23:59:59.000Z
This thesis' fundamental research question is to evaluate the structure of the hydrogen production, distribution, and dispensing infrastructure under various scenarios and to discover if any trends become apparent after ...
2013 Distributed Wind Market Report
Orrell, Alice C.; Rhoads-Weaver, H. E.; Flowers, Larry T.; Gagne, Matthew N.; Pro, Boyd H.; Foster, Nikolas AF
2014-08-20T23:59:59.000Z
The purpose of this report is to quantify and summarize the 2013 U.S. distributed wind market to help plan and guide future investments and decisions by industry stakeholders, utilities, state and federal agencies, and other interested parties.
Distribution of neutron resonance widths
Hans A. Weidenmueller
2011-10-28T23:59:59.000Z
Recent data on neutron resonance widths indicate disagreement with the Porter-Thomas distribution (PTD). I discuss the theoretical arguments for the PTD, possible theoretical modifications, and I summarize the experimantal evidence.
Multimedia Environmental Distribution of Nanomaterials
Liu, Haoyang Haven
2015-01-01T23:59:59.000Z
4. Air Mass Distribution (%) Water Air (ng/m ) Water (ng/L)Air (%) Sediment Soil Water Air Fraction Release to Air (%)Interfacial Area (air-water, air-soil) Mixing height Water
Distributed optical fiber vibration sensing
Yu, Hui
2001-01-01T23:59:59.000Z
This thesis presents a distributed optical fiber vibration sensor. The purpose of this sensing system is to monitor, in real time, the status of railcars by burying an optical fiber underground beside the rails. Using a coherent homodyne technique...
Distributed control of coded networks
Zhao, Fang, Ph. D. Massachusetts Institute of Technology
2010-01-01T23:59:59.000Z
The introduction of network coding has the potential to revolutionize the way people operate networks. For the benefits of network coding to be realized, distributed solutions are needed for various network problems. In ...
Orbital migration and the period distribution of exoplanets
A. Del Popolo
2005-08-28T23:59:59.000Z
We use the model for the migration of planets introduced in Del Popolo, Yesilyurt & Ercan (2003) to calculate the observed mass and semimajor axis distribution of extra-solar planets. The assumption that the surface density in planetesimals is proportional to that of gas is relaxed, and in order to describe disc evolution we use a method which, using a series of simplifying assumptions, is able to simultaneously follow the evolution of gas and solid particles for up to $10^7 {\\rm yr}$. The distribution of planetesimals obtained after $10^7 {\\rm yr}$ is used to study the migration rate of a giant planet through the model of this paper. The disk and migration models are used to calculate the distribution of planets as function of mass and semimajor axis. The results show that the model can give a reasonable prediction of planets' semi-major axes and mass distribution. In particular there is a pile-up of planets at $a \\simeq 0.05$ AU, a minimum near 0.3 AU, indicating a paucity of planets at that distance, and a rise for semi-major axes larger than 0.3 AU, out to 3 AU. The semi-major axis distribution shows that the more massive planets (typically, masses larger than $4 M_{\\rm J}$) form preferentially in the outer regions and do not migrate much. Intermediate-mass objects migrate more easily whatever the distance they form, and that the lighter planets (masses from sub-Saturnian to Jovian) migrate easily.
Overview of TRAC-PD2 assessment calculations
Waterman, M E
1985-11-01T23:59:59.000Z
A summary of Transient Reactor Analysis Code Version PD2 (TRAC-PD2) calculations performed at the Idaho National Engineering Laboratory (INEL) is presented in this report as part of the US Nuclear Regulatory Commission's (NRCs) overall assessment program of TRAC-PD2. The calculated and measured parameters summarized in this report are break mass flow rate, primary coolant system pressure, reactor core flow rates, and fuel rod cladding temperatures. The data were obtained from seven tests that were performed at two test facilities. The tests were conducted to study the various aspects of cold leg break transients, including the effects of large and small beaks, and core reflood phenomena. User experience gained from the various calculations is also summarized. 42 figs., 10 tabs.
Fully microscopic shell-model calculations with realistic effective hamiltonians
Coraggio, L; Gargano, A; Itaco, N; Kuo, T T S
2011-01-01T23:59:59.000Z
The advent of nucleon-nucleon potentials derived from chiral perturbation theory, as well as the so-called V-low-k approach to the renormalization of the strong short-range repulsion contained in the potentials, have brought renewed interest in realistic shell-model calculations. Here we focus on calculations where a fully microscopic approach is adopted. No phenomenological input is needed in these calculations, because single-particle energies, matrix elements of the two-body interaction, and matrix elements of the electromagnetic multipole operators are derived theoretically. This has been done within the framework of the time-dependent degenerate linked-diagram perturbation theory. We present results for some nuclei in different mass regions. These evidence the ability of realistic effective hamiltonians to provide an accurate description of nuclear structure properties.
Theory and calculations of synchrotron instabilities and feedback-mechanism
Meijssen, T.E.M.
1981-08-12T23:59:59.000Z
The properties of the phenomenon synchrotron radiation are given with general theory on the basic processes and betatron and synchrotron oscillations. A more extended theoretical view at transverse instabilities and the influence of a damping feedback system are discussed. The longitudinal case is covered. For the calculations on the longitudinal case with M equally spaced pointbunches, with N electrons each, in the storage ring, the parasitic modes of the radio-frequency cavity were measured. A description of this is given. The values of damping rates of the longitudinal feedback system found, are as expected, but too low to damp the longitudinal instabilities calculated. This might be caused by the input data. The calculated growth rates are very sensitive to changes in frequency and width of the parasitic modes, which were measured under conditions differing slightly from the operating conditions.
TEA: A Code for Calculating Thermochemical Equilibrium Abundances
Blecic, Jasmina; Bowman, M Oliver
2015-01-01T23:59:59.000Z
We present an open-source Thermochemical Equilibrium Abundances (TEA) code that calculates the abundances of gaseous molecular species. The code is based on the methodology of White et al. (1958) and Eriksson (1971). It applies Gibbs free-energy minimization using an iterative, Lagrangian optimization scheme. Given elemental abundances, TEA calculates molecular abundances for a particular temperature and pressure or a list of temperature-pressure pairs. We tested the code against the method of Burrows & Sharp (1999), the free thermochemical equilibrium code CEA (Chemical Equilibrium with Applications), and the example given by White et al. (1958). Using their thermodynamic data, TEA reproduces their final abundances, but with higher precision. We also applied the TEA abundance calculations to models of several hot-Jupiter exoplanets, producing expected results. TEA is written in Python in a modular format. There is a start guide, a user manual, and a code document in addition to this theory paper. TEA is ...
Fully microscopic shell-model calculations with realistic effective hamiltonians
L. Coraggio; A. Covello; A. Gargano; N. Itaco; T. T. S. Kuo
2011-01-24T23:59:59.000Z
The advent of nucleon-nucleon potentials derived from chiral perturbation theory, as well as the so-called V-low-k approach to the renormalization of the strong short-range repulsion contained in the potentials, have brought renewed interest in realistic shell-model calculations. Here we focus on calculations where a fully microscopic approach is adopted. No phenomenological input is needed in these calculations, because single-particle energies, matrix elements of the two-body interaction, and matrix elements of the electromagnetic multipole operators are derived theoretically. This has been done within the framework of the time-dependent degenerate linked-diagram perturbation theory. We present results for some nuclei in different mass regions. These evidence the ability of realistic effective hamiltonians to provide an accurate description of nuclear structure properties.
From Logical to Distributional Models
Anne Preller
2014-12-30T23:59:59.000Z
The paper relates two variants of semantic models for natural language, logical functional models and compositional distributional vector space models, by transferring the logic and reasoning from the logical to the distributional models. The geometrical operations of quantum logic are reformulated as algebraic operations on vectors. A map from functional models to vector space models makes it possible to compare the meaning of sentences word by word.
Fast spectral source integration in black hole perturbation calculations
Seth Hopper; Erik Forseth; Thomas Osburn; Charles R. Evans
2015-06-15T23:59:59.000Z
This paper presents a new technique for achieving spectral accuracy and fast computational performance in a class of black hole perturbation and gravitational self-force calculations involving extreme mass ratios and generic orbits. Called \\emph{spectral source integration} (SSI), this method should see widespread future use in problems that entail (i) point-particle description of the small compact object, (ii) frequency domain decomposition, and (iii) use of the background eccentric geodesic motion. Frequency domain approaches are widely used in both perturbation theory flux-balance calculations and in local gravitational self-force calculations. Recent self-force calculations in Lorenz gauge, using the frequency domain and method of extended homogeneous solutions, have been able to accurately reach eccentricities as high as $e \\simeq 0.7$. We show here SSI successfully applied to Lorenz gauge. In a double precision Lorenz gauge code, SSI enhances the accuracy of results and makes a factor of three improvement in the overall speed. The primary initial application of SSI--for us its \\emph{raison d'\\^{e}tre}--is in an arbitrary precision \\emph{Mathematica} code that computes perturbations of eccentric orbits in the Regge-Wheeler gauge to extraordinarily high accuracy (e.g., 200 decimal places). These high accuracy eccentric orbit calculations would not be possible without the exponential convergence of SSI. We believe the method will extend to work for inspirals on Kerr, and will be the subject of a later publication. SSI borrows concepts from discrete-time signal processing and is used to calculate the mode normalization coefficients in perturbation theory via sums over modest numbers of points around an orbit. A variant of the idea is used to obtain spectral accuracy in solution of the geodesic orbital motion.
Dose calculation for electron therapy using an improved LBR method
Gebreamlak, Wondesen T.; Alkhatib, Hassaan A. [Department of Physics and Astronomy, University of South Carolina, Columbia, South Carolina 29208 (United States); South Carolina Oncology Associates, Columbia, South Carolina 29210 (United States); Tedeschi, David J. [Department of Physics and Astronomy, University of South Carolina, Columbia, South Carolina 29208 (United States)
2013-07-15T23:59:59.000Z
Purpose: To calculate the percentage depth dose (PDD) of any irregularly shaped electron beam using a modified lateral build-up ratio (LBR) method.Methods: Percentage depth dose curves were measured using 6, 9, 12, and 15 MeV electron beam energies for applicator cone sizes of 6 Multiplication-Sign 6, 10 Multiplication-Sign 10, 14 Multiplication-Sign 14, and 20 Multiplication-Sign 20 cm{sup 2}. Circular cutouts for each cone were prepared from 2.0 cm diameter to the maximum possible size for each cone. In addition, three irregular cutouts were prepared.Results: The LBR for each circular cutout was calculated from the measured PDD curve using the open field of the 14 Multiplication-Sign 14 cm{sup 2} cone as the reference field. Using the LBR values and the radius of the circular cutouts, the corresponding lateral spread parameter [{sigma}{sub R}(z)] of the electron shower was calculated. Unlike the commonly accepted assumption that {sigma}{sub R}(z) is independent of cutout size, it is shown that its value increases linearly with circular cutout size (R). Using this characteristic of the lateral spread parameter, the PDD curves of irregularly shaped cutouts were calculated. Finally, the calculated PDD curves were compared with measured PDD curves.Conclusions: In this research, it is shown that the lateral spread parameter {sigma}{sub R}(z) increases with cutout size. For radii of circular cutout sizes up to the equilibrium range of the electron beam, the increase of {sigma}{sub R}(z) with the cutout size is linear. The percentage difference of the calculated PDD curve from the measured PDD data for irregularly shaped cutouts was under 1.0% in the region between the surface and therapeutic range of the electron beam. Similar results were obtained for four electron beam energies (6, 9, 12, and 15 MeV)
Johnson, M.W.
1990-01-01T23:59:59.000Z
A comparison of electron densities calculated from the Utah State University First-Principals Ionospheric Model with simultaneous observations taken at Sondrestrom, Millstone, and Arecibo incoherent-scatter radars was undertaken to better understanding the response of the ionosphere at these longitudinally similar yet latitudinally separated locations. The comparison included over 50 days distributed over 3 1/2 years roughly symmetrical about the last solar-minimum in 1986. The overall trend of the comparison was that to first-order the model reproduces electron densities responding to diurnal, seasonal, geomagnetic, and solar-cycle variations for all three radars. However, some model-observation discrepancies were found. These include, failure of the model to correctly produce an evening peak at Millstone, fall-spring equinox differences at Sondrestrom, tidal structure at Arecibo, and daytime NmF2 values at Arecibo.
Calculation of synchrotron radiation from high intensity electron beam at eRHIC
Jing Y.; Chubar, O.; Litvinenko, V.
2012-05-20T23:59:59.000Z
The Electron-Relativistic Heavy Ion Collider (eRHIC) at Brookhaven National Lab is an upgrade project for the existing RHIC. A 30 GeV energy recovery linac (ERL) will provide a high charge and high quality electron beam to collide with proton and ion beams. This will improve the luminosity by at least 2 orders of magnitude. The synchrotron radiation (SR) from the bending magnets and strong quadrupoles for such an intense beam could be penetrating the vacuum chamber and producing hazards to electronic devices and undesired background for detectors. In this paper, we calculate the SR spectral intensity, power density distributions and heat load on the chamber wall. We suggest the wall thickness required to stop the SR and estimate spectral characteristics of the residual and scattered background radiation outside the chamber.
Greene, N.M.; Arwood, J.W.; Wright, R.Q.; Parks, C.V.
1994-08-01T23:59:59.000Z
The 238-group LAW Library is a new multigroup neutron cross-section library based on ENDF/B-V data, with five sets of data taken from ENDF/B-VI ({sup 14}N{sub 7}, {sup 15}N{sub 7}, {sup 16}O{sub 8}, {sup 154Eu}{sub 63}, and {sup 155}Eu{sub 63}). These five nuclides are included because the new evaluations are thought to be superior to those in Version 5. The LAW Library contains data for over 300 materials and will be distributed by the Radiation Shielding Information Center, located at Oak Ridge National Laboratory. It was generated for use in neutronics calculations required in radioactive waste analyses, although it has equal utility in any study requiring multigroup neutron cross sections.
Calculation of the strange quark mass using domain wall fermions
Tom Blum; Amarjit Soni; Matthew Wingate
2000-09-18T23:59:59.000Z
We present a first calculation of the strange quark mass using domain wall fermions. This paper contains an overview of the domain wall discretization and a pedagogical presentation of the perturbative calculation necessary for computing the mass renormalization. We combine the latter with numerical simulations to estimate the strange quark mass. Our final result in the quenched approximation is 95(26) MeV in the ${\\bar{MS}}$ scheme at a scale of 2 GeV. We find that domain wall fermions have a small perturbative mass renormalization, similar to Wilson quarks, and exhibit good scaling behavior.
Heat Transfer Calculations for a Fixed CST Bed Column
Lee, S.Y.
2001-03-28T23:59:59.000Z
In support of the crystalline silicotitanate (CST) ion exchange project of High-Level Waste (HLW) Process Engineering, a transient two-dimensional heat transfer model that includes the conduction process neglecting the convection cooling mechanism inside the CST column has been constructed and heat transfer calculations made for the present design configurations. For this situation, a no process flow condition through the column was assumed as one of the reference conditions for the simulation of a loss-of-flow accident. The modeling and calculations were performed using a computational heat transfer approach.
RADIATION DOSE CALCULATION FOR FUEL HANDLING FACILITY CLOSURE CELL EQUIPMENT
D. Musat
2005-03-07T23:59:59.000Z
This calculation evaluates the energy deposition rates in silicon, gamma and neutron flux spectra at various locations of interest throughout FHF closure cell. The physical configuration features a complex geometry, with particle flux attenuation of many orders of magnitude that cannot be modeled by computer codes that use deterministic methods. Therefore, in this calculation the Monte Carlo method was used to solve the photon and neutron transport. In contrast with the deterministic methods, Monte Carlo does not solve an explicit transport equation, but rather obtain answers by simulating individual particles, recording the aspects of interest of their average behavior, and estimates the statistical precision of the results.
New approach to calculating the potential energy of colliding nuclei
Kurmanov, R. S., E-mail: kurmanovrs@mail.ru [Omsk State Transport University (Russian Federation); Kosenko, G. I., E-mail: kosenkophys@gmail.com [Omsk Tank Engineering Institute (Russian Federation)
2014-12-15T23:59:59.000Z
The differential method proposed by the present authors earlier for the reduction of volume integrals in calculating the potential energy of a compound nucleus is generalized to the case of two interacting nuclei. The Coulomb interaction energy is obtained for the cases of a sharp and a diffuse boundary of nuclei, while the nuclear interaction energy is found only for nuclei with a sharp boundary, the finiteness of the nuclear-force range being taken into account. The present method of calculations permits reducing the time it takes to compute the potential energy at least by two orders of magnitude.
A Parallel Orbital-Updating Approach for Electronic Structure Calculations
Xiaoying Dai; Xingao Gong; Aihui Zhou; Jinwei Zhu
2014-11-05T23:59:59.000Z
In this paper, we propose an orbital iteration based parallel approach for electronic structure calculations. This approach is based on our understanding of the single-particle equations of independent particles that move in an effective potential. With this new approach, the solution of the single-particle equation is reduced to some solutions of independent linear algebraic systems and a small scale algebraic problem. It is demonstrated by our numerical experiments that this new approach is quite efficient for full-potential calculations for a class of molecular systems.
Semiclassical framework for the calculation of transport anisotropies
Vyborny, Karel; Kovalev, Alexey A.; Sinova, Jairo; Jungwirth, T.
2009-01-01T23:59:59.000Z
microscopic calculations and a simple physical model was recently found in the diluted magnetic semiconductor10,11 #1;Ga,Mn#2;As whose band structure is much simpler. Despite the long history of the AMR research, the ques- tion has not been answered... the main body of the paper by discussing the relevance of our model calculations for the AMR in magnetic semiconductors and by summarizing the key elements of the theoretical framework we have developed. Appendixes A?G contain de- tails of our...
Improved guidelines for RELAP4/MOD6 reflood calculations. [PWR
Chen, T.H.; Fletcher, C.D.
1980-01-01T23:59:59.000Z
Computer simulations were performed for an extensive selection of forced- and gravity-feed reflood experiments. This effort was a portion of the assessment procedure for the RELAP4/MOD6 thermal hydraulic computer code. A common set of guidelines, based on recommendations from the code developers, was used in determining the model and user-selected input options for each calculation. The comparison of code-calculated and experimental data was then used to assess the capability of the RELAP4/MOD6 code to model the reflood phenomena. As a result of the assessment, the guidelines for determining the user-selected input options were improved.
Additional nuclear criticality safety calculations for small-diameter containers
Hone, M.J.
1996-01-01T23:59:59.000Z
This report documents additional criticality safety analysis calculations for small diameter containers, which were originally documented in Reference 1. The results in Reference 1 indicated that some of the small diameter containers did not meet the criteria established for criticality safety at the Portsmouth facility (K{sub eff} +2{sigma}<.95) when modeled under various contingency assumptions of reflection and moderation. The calculations performed in this report reexamine those cases which did not meet the criticality safety criteria. In some cases, unnecessary conservatism is removed, and in other cases mass or assay limits are established for use with the respective containers.
Posters 535 ARCHITECTURAL CONSIDERATIONS WITH DISTRIBUTED
Bryant, Barrett R.
Posters 535 ARCHITECTURAL CONSIDERATIONS WITH DISTRIBUTED COMPUTING Yibing Wang, Robert M. Hyatt understand distributed systems as a collection of distributed computation resources that work together as one but powerful computers that make it possible to use distributed commodity computers to facilitate distributed
Distributed Wind Energy in Idaho
Gardner, John; Ferguson, James; Ahmed-Zaid, Said; Johnson, Kathryn; Haynes, Todd; Bennett, Keith
2009-01-31T23:59:59.000Z
Project Objective: This project is a research and development program aimed at furthering distributed wind technology. In particular, this project addresses some of the barriers to distributed wind energy utilization in Idaho. Background: At its core, the technological challenge inherent in Wind Energy is the transformation of a highly variable form of energy to one which is compatible with the commercial power grid or another useful application. A major economic barrier to the success of distributed wind technology is the relatively high capital investment (and related long payback periods) associated with wind turbines. This project will carry out fundamental research and technology development to address both the technological and economic barriers. Ã¢Â?Â¢ Active drive train control holds the potential to improve the overall efficiency of a turbine system by allowing variable speed turbine operation while ensuring a tight control of generator shaft speed, thus greatly simplifying power conditioning. Ã¢Â?Â¢ Recent blade aerodynamic advancements have been focused on large, utility-scale wind turbine generators (WTGs) as opposed to smaller WTGs designed for distributed generation. Because of Reynolds Number considerations, blade designs do not scale well. Blades which are aerodynamically optimized for distributed-scale WTGs can potentially reduce the cost of electricity by increasing shaft-torque in a given wind speed. Ã¢Â?Â¢ Grid-connected electric generators typically operate at a fixed speed. If a generator were able to economically operate at multiple speeds, it could potentially convert more of the windÃ¢Â?Â?s energy to electricity, thus reducing the cost of electricity. This research directly supports the stated goal of the Wind and Hydropower Technologies Program for Distributed Wind Energy Technology: By 2007, reduce the cost of electricity from distributed wind systems to 10 to 15 cents/kWh in Class 3 wind resources, the same level that is currently achievable in Class 5 winds.
Physical Effects of Distributed PV Generation on California's Distribution System
Cohen, Michael A
2015-01-01T23:59:59.000Z
Deployment of high-penetration photovoltaic (PV) power is expected to have a range of effects -- both positive and negative -- on the distribution grid. The magnitude of these effects may vary greatly depending upon feeder topology, climate, PV penetration level, and other factors. In this paper we present a simulation study of eight representative distribution feeders in three California climates at PV penetration levels up to 100\\%, supported by a unique database of distributed PV generation data that enables us to capture the impact of PV variability on feeder voltage and voltage regulating equipment. When comparing the influence of feeder location (i.e. climate) versus feeder type on outcomes, we find that location more strongly influences the incidence of reverse power flow, reductions in peak loading and the presence of voltage excursions. On the other hand, we find that feeder characteristics more strongly influence the magnitude of loss reduction and changes in voltage regulator operations. We find th...
Optimal Distributed Voltage Regulation in Power Distribution Networks
Lam, Albert Y S; Dominguez-Garcia, Alejandro; Tse, David
2012-01-01T23:59:59.000Z
In this paper, we address the problem of voltage regulation in power distribution networks with deep-penetration of distributed energy resources (DERs), e.g., renewable-based generation, and storage-capable loads such as plug-in hybrid electric vehicles. We cast the problem as an optimization program, where the objective is to minimize the losses in the network subject to constraints on bus voltage magnitudes, limits on active and reactive power injections, transmission line thermal limits and losses. We provide sufficient conditions under which the optimization problem can be solved via its convex relaxation. Using data from existing networks, we show that the conditions are expected to be satisfied by most networks. We also provide an efficient distributed algorithm to solve the problem. The algorithm is asynchronous, with a communication topology that is the same as the electrical network topology. We illustrate the algorithm's performance in the IEEE 34-bus and the 123-bus feeder test systems.
ARCHITECTURAL PROGRAMMINGARCHITECTURAL PROGRAMMING Program Spreadsheet GSF, NSF, NOSF Calculation
Heller, Barbara
ARCHITECTURAL PROGRAMMINGARCHITECTURAL PROGRAMMING Program Spreadsheet GSF, NSF, NOSF Calculation? This is an estimate, based on: · Experience doing these types of layouts · Studying existing successful plans of similar projects (doing area take-offs) #12;To get NOSF* - Guidelines for adding circulation · % of space
Efficient Calculation of Statistical Moments for Structural Health Monitoring
Sweetman, Bert
Efficient Calculation of Statistical Moments for Structural Health Monitoring Myoungkeun Choi sen- sor packages have shown considerable promise in providing low-cost Structural Health Monitoring@tamu.edu, Telephone:(409) 740-4834, Fax:(409) 741-7153 1 Journal of Structural Health Monitoring, January 1, 2010, Vol
SHADING CALCULATIONS FOR THE BIG DISH Jeff Cumpston1
shading fraction in a field of dish-Stirling systems for a given ground-cover ratio1 , g, as a function an economic analysis of a large dish-Stirling field by simulating a dish-field with separation determinedSHADING CALCULATIONS FOR THE BIG DISH Jeff Cumpston1 , John Pye2 , and Keith Lovegrove3 1 B science
EQ6 Calculations for Chemical Degradation of Navy Waste Packages
S. LeStrange
1999-11-15T23:59:59.000Z
The Monitored Geologic Repository Waste Package Operations of the Civilian Radioactive Waste Management System Management & Operating Contractor (CRWMS M&O) performed calculations to provide input for disposal of spent nuclear fuel (SNF) from the Navy (Refs. 1 and 2). The Navy SNF has been considered for disposal at the potential Yucca Mountain site. For some waste packages, the containment may breach (Ref. 3), allowing the influx of water. Water in the waste package may moderate neutrons, increasing the likelihood of a criticality event within the waste package. The water may gradually leach the fissile components and neutron absorbers out of the waste package. In addition, the accumulation of silica (SiO{sub 2}) in the waste package over time may further affect the neutronics of the system. This study presents calculations of the long-term geochemical behavior of waste packages containing the Enhanced Design Alternative (EDA) II inner shell, Navy canister, and basket components. The calculations do not include the Navy SNF in the waste package. The specific study objectives were to determine the chemical composition of the water and the quantity of silicon (Si) and other solid corrosion products in the waste package during the first million years after the waste package is breached. The results of this calculation will be used to ensure that the type and amount of criticality control material used in the waste package design will prevent criticality.
Calculation of the RayleighSommerfeld diffraction integral by exact
Calculation of the RayleighSommerfeld diffraction integral by exact integration of the fast of constant (possibly complex) index of refraction n. The method integrates the RayleighSommerfeld diffraction integral numerically. After an appropriate change of integration variables, the integrand
2004 Compliance Recertification Application Performance Assessment Baseline Calculation
2004 Compliance Recertification Application Performance Assessment Baseline Calculation Revision O Sandia National Laboratories Waste Isolation Pilot Plant 2004 Compliance Recertification Application (2 ~"f, Date QA Review Mario Chavez Print WIPP: 1.4.1.1.:P A:QA-L:540232 lof153 #12;2004 Compliance
Solution of Large Eigenvalue Problems in Electronic Structure Calculations \\Lambda
Stathopoulos, Andreas
Solution of Large Eigenvalue Problems in Electronic Structure Calculations \\Lambda Y. Saad y , A the structural and electronic properties of complex systems is one of the outstanding problems in condensed external perturbations. For example, it may be desirable in certain cases to follow the dynamics of atoms/electrons
Patent Citation Analysis: Calculating Science linkage based on Citing Motivation
Menczer, Filippo
1 Patent Citation Analysis: Calculating Science linkage based on Citing Motivation Rui Li used patent bibliometric indicator to measure patent linkage to scientific research based on the frequency of citations to scientific papers within the patent. Science linkage is also regarded as noisy
Calculation of Extreme Wave Loads on Coastal Highway Bridges
Meng, Bo
2010-01-14T23:59:59.000Z
force on bridge decks. 2D Model is a linear wave model, which has the capability of calculating wave velocity potential components in time domain based on wave parameters such as wave height, wave period and water depth, and complex structural geometries...
Vol.11,No.1,January-February 1995 Calculations
JOURNAL OF PROPULSION AND POWER Vol.11,No.1,January-February 1995 Calculations for Steady, and trailing oblique shock. The reaction strengthens the lead shock tothe extent that the far-field wave angle to balance the wave drag. Fora fixed heat release greater than a critical value, two steady propagation
Calculating Residential Carbon Dioxide Emissions --A New Approach
Hughes, Larry
that are targeted to the demand. This paper demonstrates this by removing the equivalent residential emissions from their space heating demand from oil to electricity, the emissions shift from A.4.b (Residential) to A.1.aCalculating Residential Carbon Dioxide Emissions -- A New Approach Larry Hughes, Kathleen Bohan
RZ calculations for self shielded multigroup cross sections
Li, M.; Sanchez, R.; Zmijarevic, I.; Stankovski, Z. [Commissariat a l'Energie Atomique CEA, Direction de l'Energie Nucleaire, DEN/DM2S/SERMA/LENR, 91191 Gif-sur-Yvette Cedex (France)
2006-07-01T23:59:59.000Z
A collision probability method has been implemented for RZ geometries. The method accounts for white albedo, specular and translation boundary condition on the top and bottom surfaces of the geometry and for a white albedo condition on the outer radial surface. We have applied the RZ CP method to the calculation of multigroup self shielded cross sections for Gadolinia absorbers in BWRs. (authors)
Improving Cost Calculations for Global Constraints in Local Search
Rossi, Francesca
Improving Cost Calculations for Global Constraints in Local Search Markus Bohlin Swedish Institute- straint satisfaction is based on local minimization of a cost function, which is usually the number equivalent to a set of basic constraints but still contributes as little to the cost as a single basic
Fuzzy-probabilistic calculations of water-balance uncertainty
Faybishenko, B.
2009-10-01T23:59:59.000Z
Hydrogeological systems are often characterized by imprecise, vague, inconsistent, incomplete, or subjective information, which may limit the application of conventional stochastic methods in predicting hydrogeologic conditions and associated uncertainty. Instead, redictions and uncertainty analysis can be made using uncertain input parameters expressed as probability boxes, intervals, and fuzzy numbers. The objective of this paper is to present the theory for, and a case study as an application of, the fuzzyprobabilistic approach, ombining probability and possibility theory for simulating soil water balance and assessing associated uncertainty in the components of a simple waterbalance equation. The application of this approach is demonstrated using calculations with the RAMAS Risk Calc code, to ssess the propagation of uncertainty in calculating potential evapotranspiration, actual evapotranspiration, and infiltration-in a case study at the Hanford site, Washington, USA. Propagation of uncertainty into the results of water-balance calculations was evaluated by hanging he types of models of uncertainty incorporated into various input parameters. The results of these fuzzy-probabilistic calculations are compared to the conventional Monte Carlo simulation approach and estimates from field observations at the Hanford site.
Ironless Permanent Magnet Motors: Three-Dimensional Analytical Calculation
Paris-Sud XI, Université de
of the magnetic torque exerted between a tile permanent magnet radially magnetized and a winding in ironless structures. Such an expression can be used for calculating the magnetic torque transmitted between the stator or winding dimensions. The ironless structure we consider in this paper is commonly used for high speed
Calculated Phonon Spectra of Plutonium at High Temperatures
Savrasov, Sergej Y.
Calculated Phonon Spectra of Plutonium at High Temperatures X. Dai,1 S. Y. Savrasov,2 * G. Kotliar dynamical proper- ties of plutonium using an electronic structure method, which incorporates correlation anharmonic and can be stabilized at high temperatures by its phonon entropy. Plutonium (Pu) is a material
SEMIEMPIRICAL MOLECULAR ORBITAL CALCULATIONS OF BAND GAPS OF CONJUGATED POLYMERS
Goddard III, William A.
SEMIEMPIRICAL MOLECULAR ORBITAL CALCULATIONS OF BAND GAPS OF CONJUGATED POLYMERS Tahir Cagin Research and Development Center, Materials Labarotory, Polymer Branch, Wright Patterson AFB, Ohio 45433 geometries and energy band gaps of conjugated polymers. In this study, we used a modified version of semi
Subject Positions and Derivational Scope Calculation in Minimalist Syntax
Subject Positions and Derivational Scope Calculation in Minimalist Syntax: A Phase-Based Approach without any other special implement. 1 Introduction This paper explores the correlation between subject in subject positions across languages. We claim that unlike English Nominative Case, C, rather than
General calculations using graphics hardware, with application to interactive caustics
Stewart, James
General calculations using graphics hardware, with application to interactive caustics Chris Trendall and A. James Stewart iMAGIS--GRAVIR/IMAG and University of Toronto Abstract. Graphics hardware has been developed with image production in mind, but current hardware can be exploited for much more
CALCULATING THE CARBON FOOTPRINT SUPPLY CHAIN FOR THE
Su, Xiao
CALCULATING THE CARBON FOOTPRINT SUPPLY CHAIN FOR THE SEMICONDUCTOR INDUSTRY A LEARNING TOOL By a complete supply chain #12;Carbon Footprint Supply Chain Carbon Trust defines carbon footprint of a supply chain as follows: "The carbon footprint of a product is the carbon dioxide emitted across the supply
Calculating coherent pair production with Monte Carlo methods
Bottcher, C.; Strayer, M.R.
1989-01-01T23:59:59.000Z
We discuss calculations of the coherent electromagnetic pair production in ultra-relativistic hadron collisions. This type of production, in lowest order, is obtained from three diagrams which contain two virtual photons. We discuss simple Monte Carlo methods for evaluating these classes of diagrams without recourse to involved algebraic reduction schemes. 19 refs., 11 figs.
HOPF CALCULATIONS IN DELAYED CAR-FOLLOWING MODELS Gabor Stepan
Awtar, Shorya
HOPF CALCULATIONS IN DELAYED CAR-FOLLOWING MODELS G´abor St´ep´an and G´abor Orosz Department: A nonlinear car-following model that includes the reaction-time delay of drivers is considered. When, bistability 1. INTRODUCTION There are two important goals of traffic manage- ment when cars follow each other
Using Graphical Representations to Support the Calculation of Infusion Parameters
Subramanian, Sriram
Using Graphical Representations to Support the Calculation of Infusion Parameters Sandy J. J. Gould in which participants were asked to solve a num- ber of infusion parameter problems that were represented representations transfer to actual workplace settings. Keywords: Graphical reasoning, infusion pumps, re
Systematic perturbation calculation of integrals with applications to physics
Paolo Amore; Alfredo Aranda; Francisco M. Fernandez; Ricardo A. Saenz
2004-07-09T23:59:59.000Z
In this paper we generalize and improve a method for calculating the period of a classical oscillator and other integrals of physical interest, which was recently developed by some of the authors. We derive analytical expressions that prove to be more accurate than those commonly found in the literature, and test the convergence of the series produced by the approach.
ELECTROMOTION 2009 3D Analytical Calculation of Forces between
Paris-Sud XI, UniversitÃ© de
Co or NdFeB, the designers can use magnets owning a really rigid magnetization. They are the magnets whichELECTROMOTION 2009 1 3D Analytical Calculation of Forces between Linear Halbach-Type Permanent Magnet Arrays H. Allag1,2 , J-P. Yonnet1 and M. E. H. Latreche2 1- Laboratoire de GÃ©nie Electrique de
Calculation Method of Permanent Magnet Pickups for Electric Guitars
Paris-Sud XI, UniversitÃ© de
in the 1930s, when Rickenbacker fitted out a guitar with a magnet and coils, thus designing the first magnetic to look at the types of magnetic circuit for the guitar pickups. We consider in this paper the most usual1 Calculation Method of Permanent Magnet Pickups for Electric Guitars G. Lemarquand and V
AI A A-90-0688 Multigrid Euler Calculations
Jameson, Antony
the three-dimensional Euler equations is applied to cascade calculation. Test cases of a VKI turbine cascade on blade surfaces show good agreements with experimental data at design conditions, while dis- crepancy support the theory that the development of passage and horse-shoe vortices in cascades is, to a large
Alternative similarity renormalization group generators in nuclear structure calculations
Nuiok M. Dicaire; Conor Omand; Petr Navratil
2014-08-22T23:59:59.000Z
The similarity renormalization group (SRG) has been successfully applied to soften interactions for ab initio nuclear calculations. In almost all practical applications in nuclear physics, an SRG generator with the kinetic energy operator is used. With this choice, a fast convergence of many-body calculations can be achieved, but at the same time substantial three-body interactions are induced even if one starts from a purely two-nucleon (NN) Hamiltonian. Three-nucleon (3N) interactions can be handled by modern many-body methods. However, it has been observed that when including initial chiral 3N forces in the Hamiltonian, the SRG transformations induce a non-negligible four-nucleon interaction that cannot be currently included in the calculations for technical reasons. Consequently, it is essential to investigate alternative SRG generators that might suppress the induction of many-body forces while at the same time might preserve the good convergence. In this work we test two alternative generators with operators of block structure in the harmonic oscillator basis. In the no-core shell model calculations for 3H, 4He and 6Li with chiral NN force, we demonstrate that their performances appear quite promising.
AIM: Web-Based, Residential Energy Calculator for Homeowners
Marshall, K.; Moss, M.; Liu, B.; Culp, C.; Haberl, J.; Herbert, C.
house using a minimum number of inputs. To accomplish this, AIM uses DOE-2 loads simulations and a simplified systems model. To simplify the use of the calculator, parameters such as window U-factor, roof and wall insulation, which are normally required...
Vacuum Calculations in Azimuthally Symmetric Geometry \\Lambda M. S. Chance
Vacuum Calculations in Azimuthally Symmetric Geometry \\Lambda M. S. Chance Princeton University the volume integrated perturbed magnetic energy in the vacuum region or through the continuity requirements plasmavacuum boundary. The method is based upon using Green's second identity and the method
Vacuum Calculations in Azimuthally Symmetric Geometry M. S. Chance
Vacuum Calculations in Azimuthally Symmetric Geometry M. S. Chance Princeton University Plasma energy in the vacuum region or through the continuity requirements for the normal component of the perturbed magnetic #12;eld and the total perturbed pressure across the unperturbed plasma-vacuum boundary
Semiclassical calculation of an induced decay of false vacuum
A. Monin; M. B. Voloshin
2010-04-12T23:59:59.000Z
We consider a model where a scalar field develops a metastable vacuum state and weakly interacts with another scalar field. In this situation we find the probability of decay of the false vacuum stimulated by the presence and collisions of particles of the second field. The discussed calculation is an illustration of the recently suggested thermal approach to treatment of induced semiclassical processes.
Comparison of TRAC calculations with experimental data. [PWR
Jackson, J.F.; Vigil, J.C.
1980-01-01T23:59:59.000Z
TRAC is an advanced best-estimate computer code for analyzing postulated accidents in light water reactors. This paper gives a brief description of the code followed by comparisons of TRAC calculations with data from a variety of separate-effects, system-effects, and integral experiments. Based on these comparisons, the capabilities and limitations of the early versions of TRAC are evaluated.
CALCULATION OF THE NEUTRON NOISE INDUCED BY SHELL-MODE
Demazière, Christophe
CALCULATION OF THE NEUTRON NOISE INDUCED BY SHELL-MODE FISSION REACTORS CORE-BARREL VIBRATIONS-REGION SLAB REACTOR MODEL CARL SUNDE,* CHRISTOPHE DEMAZIÈRE, and IMRE PÁZSIT Chalmers University of Technology. 5 gives a self-contained description of the principles of fluctuation analysis for the diagnostics
Atomic Structure Calculations from the Los Alamos Atomic Physics Codes
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Cowan, R. D.
The well known Hartree-Fock method of R.D. Cowan, developed at Los Alamos National Laboratory, is used for the atomic structure calculations. Electron impact excitation cross sections are calculated using either the distorted wave approximation (DWA) or the first order many body theory (FOMBT). Electron impact ionization cross sections can be calculated using the scaled hydrogenic method developed by Sampson and co-workers, the binary encounter method or the distorted wave method. Photoionization cross sections and, where appropriate, autoionizations are also calculated. Original manuals for the atomic structure code, the collisional excitation code, and the ionization code, are available from this website. Using the specialized interface, you will be able to define the ionization stage of an element and pick the initial and final configurations. You will be led through a series of web pages ending with a display of results in the form of cross sections, collision strengths or rates coefficients. Results are available in tabular and graphic form.