National Library of Energy BETA

Sample records for interactive electromagnetic relations

  1. Electromagnetic interactions at RHIC and LHC

    E-Print Network [OSTI]

    M. C. Guclu

    2008-11-15

    At LHC energies the Lorentz factor will be 3400 for the Pb + Pb collisions and the electromagnetic interactions will play important roles. Cross sections for the electromagnetic particle productions are very large and can not be ignored for the lifetimes of the beams and background. In this article, we are going to study some of the electromagnetic processes at RHIC and LHC and show the cross section calculations of the electron-positron pair production with the giant dipole resonance of the ions.

  2. Nonlinear Electromagnetic Interactions in Energetic Materials

    E-Print Network [OSTI]

    Wood, M A; Moore, D S

    2015-01-01

    We study the scattering of electromagnetic waves in anisotropic energetic materials. Nonlinear light-matter interactions in molecular crystals result in frequency-conversion and polarization changes. Applied electromagnetic fields of moderate intensity can induce these nonlinear effects without triggering chemical decomposition, offering a mechanism for non-ionizing identification of explosives. We use molecular dynamics simulations to compute such two-dimensional Raman spectra in the terahertz range for planar slabs made of PETN and ammonium nitrate. We discuss third-harmonic generation and polarization-conversion processes in such materials. These observed far-field spectral features of the reflected or transmitted light may serve as an alternative tool for stand-off explosive detection.

  3. Laser under ultrastrong electromagnetic interaction with matter

    E-Print Network [OSTI]

    Motoaki Bamba; Tetsuo Ogawa

    2015-05-18

    The conventional picture of the light amplification by stimulated emission of radiation (laser) is broken under the ultrastrong interaction between the electromagnetic fields and matter, and distinct dynamics of the electric field and of the magnetic one make the "laser" qualitatively different from the conventional laser, which has been described simply without the distinction. The "laser" in the ultrastrong regime can show a rich variety of behaviors with spontaneous appearance of coherence. We found that the "laser" generally accompanies odd-order harmonics of the electromagnetic fields both inside and outside the cavity and a synchronization with an oscillation of atomic population. A bistability is also demonstrated in a simple model under two-level and single-mode approximations.

  4. Study of nucleon resonances with electromagnetic interactions

    E-Print Network [OSTI]

    T. -S. H. Lee; L. C. Smith

    2006-11-10

    Recent developments in using electromagnetic meson production reactions to study the structure of nucleon resonances are reviewed. Possible future works are discussed.

  5. 22.105 Electromagnetic Interactions, Fall 1998

    E-Print Network [OSTI]

    Hutchinson, I. H. (Ian H.)

    Principles and applications of electromagnetism, starting from Maxwell's equations, with emphasis on phenomena important to nuclear engineering and radiation sciences. Solution methods for electrostatic and magnetostatic ...

  6. Spin gauge theory of the first generation ; 2, basic theory of strong, weak, and electromagnetic interactions

    E-Print Network [OSTI]

    Chisholm, J S R

    1984-01-01

    Spin gauge theory of the first generation ; 2, basic theory of strong, weak, and electromagnetic interactions

  7. An approach to electromagnetism from the general relativity

    E-Print Network [OSTI]

    Robert Monjo i Agut

    2013-12-02

    Classical gravitation is so similar to the electrostatic that the possible unification has been investigated for many years. Although electromagnetism is formulated successfully by quantum field theory, this paper proposes a simple approach to describe the electromagnetism from the macroscopic perspective of general relativity. The hypothesis is based on two charged particles that cause disturbance energy sufficient to disrupt the space-time and explain approximately Maxwell's equations. Therefore, with such this simple idea, we suggest the possibility that the geometric relationship between electromagnetism and gravitation is not yet fully exhausted.

  8. An improved model of the lightning electromagnetic field interaction with the D-region ionosphere

    E-Print Network [OSTI]

    14 March 2012. [1] We present an improved time-domain model of the lightning electromagnetic pulse. Introduction [2] Lightning discharges produce both an electromagnetic pulse (EMP), due to the rapid lightningAn improved model of the lightning electromagnetic field interaction with the D-region ionosphere R

  9. Electromagnetic Mass Models in General Theory of Relativity

    E-Print Network [OSTI]

    Sumana Bhadra

    2007-10-30

    "Electromagnetic mass" where gravitational mass and other physical quantities originate from the electromagnetic field alone has a century long distinguished history. In the introductory chapter we have divided this history into three broad categories -- classical, quantum mechanical and general relativistic. Each of the categories has been described at a length to get the detailed picture of the physical background. Recent developments on Repulsive Electromagnetic Mass Models are of special interest in this introductory part of the thesis. In this context we have also stated motivation of our work. In the subsequent chapters we have presented our results and their physical significances. It is concluded that the electromagnetic mass models which are the sources of purely electromagnetic origin ``have not only heuristic flavor associated with the conjecture of Lorentz but even a physics having unconventional yet novel features characterizing their own contributions independent of the rest of the physics".

  10. Electromagnetics-Related Aspects of Signaling and Signal Processing for UWB Short Range Radios*

    E-Print Network [OSTI]

    Southern California, University of

    Electromagnetics-Related Aspects of Signaling and Signal Processing for UWB Short Range Radios* A in electromagnetic-related aspects of UWB signaling schemas and signal processing. First, pulse shaping is developed in both the transmitter and receiver, and signal processing at the receiver end. To create efficient

  11. Electromagnetic interactions for the two-body spectator equations

    SciTech Connect (OSTI)

    J. Adam; Franz Gross; J.W. Van Orden

    1997-10-01

    This paper presents a new non-associative algebra which is used to (1) show how the spectator (or Gross) two-body equations and electromagnetic currents can be formally derived from the Bethe-Salpeter equation and currents if both are treated to all orders, (2) obtain explicit expressions for the Gross two-body electromagnetic currents valid to any order, and (3) prove that the currents so derived are exactly gauge invariant when truncated consistently to any finite order. In addition to presenting these new results, this work complements and extends previous treatments based largely on the analysis of sums of Feynman diagrams.

  12. Emergent spin electromagnetism induced by magnetization textures in the presence of spin-orbit interaction (invited)

    SciTech Connect (OSTI)

    Tatara, Gen; Nakabayashi, Noriyuki

    2014-05-07

    Emergent electromagnetic field which couples to electron's spin in ferromagnetic metals is theoretically studied. Rashba spin-orbit interaction induces spin electromagnetic field which is in the linear order in gradient of magnetization texture. The Rashba-induced effective electric and magnetic fields satisfy in the absence of spin relaxation the Maxwell's equations as in the charge-based electromagnetism. When spin relaxation is taken into account besides spin dynamics, a monopole current emerges generating spin motive force via the Faraday's induction law. The monopole is expected to play an important role in spin-charge conversion and in the integration of spintronics into electronics.

  13. Electromagnetic corrections to final state interactions in $K\\to 3?$ decays

    E-Print Network [OSTI]

    S. R. Gevorkyan; A. V. Tarasov; O. O. Voskresenskaya

    2007-02-03

    The final state interactions of pions in decays $K^\\pm\\to\\pi^\\pm\\pi^0\\pi^0$ are considered using the methods of quantum mechanics. We show how to incorporate the electromagnetic effects in the amplitudes of these decays and to work out the relevant expressions valid above and below the two charged pions production threshold $M_c=2m$. The electromagnetic corrections are given as evaluated in a potential model.

  14. Chaotic Emission from Electromagnetic Systems Considering Self-Interaction

    E-Print Network [OSTI]

    Fernando Kokubun; Vilson T. Zanchin

    2006-05-02

    The emission of electromagnetic waves from a system described by the H\\'enon-Heiles potential is studied in this work. The main aim being to analyze the behavior of the system when the damping term is included explicitly into the equations of motion. Energy losses at the chaotic regime and at the regular regime are compared. The results obtained here are similar to the case of gravitational waves emission, as long we consider only the energy loss. The main difference being that in the present work the energy emitted is explicitly calculated solving the equation of motion without further approximations. It is expected that the present analysis may be useful when studying the analogous problem of dissipation in gravitational systems.

  15. On the interaction of massive spinor particles with external electromagnetic and torsion fields

    E-Print Network [OSTI]

    Lewis H. Ryder; Ilya L. Shapiro

    1998-05-21

    We explore the Dirac equation in external electromagnetic and torsion fields. Motivated by the previous study of quantum field theory in an external torsion field, we include a nonminimal interaction of the spinor field with torsion. As a consequence, the torsion axial vector and the electromagnetic potential enter the action in a similar form. The existence of an extra local symmetry is emphasized and the Foldy-Wouthuysen transformation is performed to an accuracy of next to the leading order. We also discuss the motion of a classical test particle in a constant torsion field.

  16. Polychromatic phase diagram for $n$-level atoms interacting with $\\ell$ modes of electromagnetic field

    E-Print Network [OSTI]

    Sergio Cordero; Eduardo Nahmad-Achar; Ramón López-Peña; Octavio Castaños

    2015-08-28

    A system of $N_a$ atoms of $n$-levels interacting dipolarly with $\\ell$ modes of electromagnetic field is considered. The energy surface of the system is constructed from the direct product of the coherent states of U$(n)$ in the totally symmetric representation for the matter times the $\\ell$ coherent states of the electromagnetic field. A variational analysis shows that the collective region is divided into $\\ell$ zones, inside each of which only one mode of the electromagnetic field contributes to the ground state. In consequence, the polychromatic phase diagram for the ground state naturally divides itself into monochromatic regions. For the case of $3$-level atoms in the $\\Xi$-configuration in the presence of $2$ modes, the variational calculation is compared with the exact quantum solution showing that both are in agreement.

  17. MATHEMATICAL MODEL OF THE INTERACTION PROBLEM BETWEEN ELECTROMAGNETIC FIELD AND

    E-Print Network [OSTI]

    Cakoni, Fioralba

    the rate at which energy is being converted into heat in this volume. Under the considered physical field - elastic body" is closed related to exte- rior forces, heat sources and any exterior energy the electric and magnetic scattered fields in the exterior medium e and the elastic displacement field

  18. Interacting Scalar and Electromagnetic Fields in $f(R,\\,T)$ Theory of Gravity

    E-Print Network [OSTI]

    Bijan Saha

    2014-10-07

    Within the scope of $f(R,\\,T)$ gravity we have studied the interacting scalar and electromagnetic fields in a Bianchi type I universe. It was found that if the study is confined to the case $f(R,\\,T) = R + \\lambda f(T)$, the system is completely given by the equations similar to Einstein gravity. Moreover, the present study imposes some severe restrictions on the field equations as well.

  19. Asymptotic Electromagnetic Fields in Models of Quantum-Mechanical Matter Interacting with the Quantized Radiation Field

    E-Print Network [OSTI]

    J. Froehlich; M. Griesemer; B. Schlein

    2000-09-27

    In models of (non-relativistic and pseudo-relativistic) electrons interacting with static nuclei and with the (ultraviolet-cutoff) quantized radiation field, the existence of asymptotic electromagnetic fields is established. Our results yield some mathematically rigorous understanding of Rayleigh scattering and of the phenomenon of relaxation of isolated atoms to their ground states. Our proofs are based on propagation estimates for electrons inspired by similar estimates known from $N$-body scattering theory.

  20. An eddy current problem related to electromagnetic Alfredo Bermudez, Rafael Mu~noz, Pilar Salgado

    E-Print Network [OSTI]

    Rodríguez, Rodolfo

    An eddy current problem related to electromagnetic forming Alfredo Berm´udez, Rafael Mu~noz, Pilar is to analyze a numerical method to solve a transient axisymmetric eddy current problem arising from currents in the workpiece. The magnetic field, together with the eddy currents, originate the Lorentz

  1. Gauge Freedom and Relativity: A Unified Treatment of Electromagnetism, Gravity and the Dirac Field

    E-Print Network [OSTI]

    Clifford E. Chafin

    2015-01-18

    The geometric properties of General Relativity are reconsidered as a particular nonlinear interaction of fields on a flat background where the perceived geometry and coordinates are "physical" entities that are interpolated by a patchwork of observable bodies with a nonintuitive relationship to the underlying fields. This more general notion of gauge in physics opens an important door to put all fields on a similar standing but requires a careful reconsideration of tensors in physics and the conventional wisdom surrounding them. The meaning of the flat background and the induced conserved quantities are discussed and contrasted with the "observable" positive definite energy and probability density in terms of the induced physical coordinates. In this context, the Dirac matrices are promoted to dynamic proto-gravity fields and the keeper of "physical metric" information. Independent sister fields to the wavefunctions are utilized in a bilinear rather than a quadratic lagrangian in these fields. This construction greatly enlarges the gauge group so that now proving causal evolution, relative to the physical metric, for the gauge invariant functions of the fields requires both the stress-energy conservation and probability current conservation laws. Through a Higgs-like coupling term the proto-gravity fields generate a well defined physical metric structure and gives the usual distinguishing of gravity from electromagnetism at low energies relative to the Higgs-like coupling. The flat background induces a full set of conservation laws but results in the need to distinguish these quantities from those observed by recording devices and observers constructed from the fields.

  2. Electromagnetic cascade in high energy electron, positron, and photon interactions with intense laser pulses

    E-Print Network [OSTI]

    S. S. Bulanov; C. B. Schroeder; E. Esarey; W. P. Leemans

    2013-06-05

    The interaction of high energy electrons, positrons, and photons with intense laser pulses is studied in head-on collision geometry. It is shown that electrons and/or positrons undergo a cascade-type process involving multiple emissions of photons. These photons can consequently convert into electron-positron pairs. As a result charged particles quickly lose their energy developing an exponentially decaying energy distribution, which suppresses the emission of high energy photons, thus reducing the number of electron-positron pairs being generated. Therefore, this type of interaction suppresses the development of the electromagnetic avalanche-type discharge, i.e., the exponential growth of the number of electrons, positrons, and photons does not occur in the course of interaction. The suppression will occur when 3D effects can be neglected in the transverse particle orbits, i.e., for sufficiently broad laser pulses with intensities that are not too extreme. The final distributions of electrons, positrons, and photons are calculated for the case of a high energy e-beam interacting with a counter-streaming, short intense laser pulse. The energy loss of the e-beam, which requires a self-consistent quantum description, plays an important role in this process, as well as provides a clear experimental observable for the transition from the classical to quantum regime of interaction.

  3. Relative localization of point particle interactions

    E-Print Network [OSTI]

    José Ricardo Oliveira

    2011-10-25

    We review the main concepts of the recently introduced principle of relative locality and investigate some aspects of classical interactions between point particles from this new perspective. We start with a physical motivation and basic mathematical description of relative locality and review the treatment of a system of classical point particles in this framework. We then examine one of the unsolved problems of this picture, the apparent ambiguities in the definition of momentum constraints caused by a non-commutative and/or non-associative momentum addition rule. The gamma ray burst experiment is used as an illustration. Finally, we use the formalism of relative locality to reinterpret the well-known multiple point particle system coupled to 2+1 Einstein gravity, analyzing the geometry of its phase space and once again referring to the gamma ray burst problem as an example.

  4. IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 51, NO. 7, JULY 2003 1499 Acoustic and Electromagnetic Wave Interaction

    E-Print Network [OSTI]

    Sarabandi, Kamal

    and Electromagnetic Wave Interaction: Estimation of Doppler Spectrum From an Acoustically Vibrated Metallic Circular spectrum could provide an effective means of buried object identification, where acoustic waves are used being mechanically vibrated by an incident acoustic wave. If the buried objects have unique

  5. Quantum-Mechanical Description of the Electromagnetic Interaction of Relativistic Particles with Electric and Magnetic Dipole Moments

    E-Print Network [OSTI]

    A. J. Silenko

    2006-02-03

    The Hamiltonian of relativistic particles with electric and magnetic dipole moments that interact with an electromagnetic field is determined in the Foldy-Wouthuysen representation. Transition to the semiclassical approximation is carried out. The quantum-mechanical and semiclassical equations of spin motion are derived.

  6. Self-induced transparency, compression, and stopping of electromagnetic pulses interacting with beams of unexcited classical oscillators

    SciTech Connect (OSTI)

    Ginzburg, N. S.; Zotova, I. V., E-mail: zotova@appl.sci-nnov.ru; Sergeev, A. S. [Russian Academy of Sciences, Institute of Applied Physics (Russian Federation)

    2011-11-15

    The self-induced transparency effects that emerge when short (on the relaxation time scale) light pulses propagate in a two-level noninverted medium are well known in optics. The interaction of microwave pulses with an initially rectilinear electron beam under cyclotron resonance conditions can serve as a classical analog of the described effects. In this case, at a certain intensity of the input signal, the cyclotron absorption is replaced by self-induced transparency when the input pulse propagates almost without any change of its profile, forming a soliton whose amplitude and duration are rigidly related to its velocity. In a certain domain of parameters, this process is accompanied by significant two- or threefold compression of the initial pulse, which is of practical interest for the generation of multigigawatt picosecond microwave pulses. Since the soliton velocity lies between the unperturbed group velocity of the radiation and the translational velocity of the particles, another nontrivial effect in the case of interaction with a counterpropagating electron beam is the possibility of a significant deceleration or full stopping of the electromagnetic pulse.

  7. Electromagnetic space-time crystals. III. Dispersion relations for partial solutions

    E-Print Network [OSTI]

    G. N. Borzdov

    2014-10-21

    Partial solutions of the Dirac equation describing an electron motion in electromagnetic crystals created by plane waves with linear and circular polarizations are treated. It is shown that the electromagnetic crystal formed by circularly polarized waves possesses the spin birefringence.

  8. Latitudinal dependence of nonlinear interaction between electromagnetic ion cyclotron wave and terrestrial ring current ions

    SciTech Connect (OSTI)

    Su, Zhenpeng, E-mail: szpe@mail.ustc.edu.cn; Zhu, Hui; Zheng, Huinan [CAS Key Laboratory of Geospace Environment, Department of Geophysics and Planetary Sciences, University of Science and Technology of China, Hefei, Anhui 230026 (China); State Key Laboratory of Space Weather, Chinese Academy of Sciences, Beijing 100190 (China); Xiao, Fuliang [School of Physics and Electronic Sciences, Changsha University of Science and Technology, Changsha (China); Zhang, Min [Department of Mathematics and Physics, AnHui University of Architecture, Heifei (China); CAS Key Laboratory of Geospace Environment, Department of Geophysics and Planetary Sciences, University of Science and Technology of China, Hefei, Anhui 230026 (China); Mengcheng National Geophysical Observatory, School of Earth and Space Sciences, University of Science and Technology of China, Hefei (China); Liu, Y. C.-M.; Shen, Chao [State Key Laboratory of Space Weather, Center for Space Science and Applied Research, Chinese Academy of Sciences, Beijing 100080 (China); Wang, Yuming; Wang, Shui [CAS Key Laboratory of Geospace Environment, Department of Geophysics and Planetary Sciences, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2014-05-15

    Electromagnetic ion cyclotron (EMIC) waves can lead to the rapid decay (on a timescale of hours) of the terrestrial ring current. Such decay process is usually investigated in the framework of quasi-linear theory. Here, both theoretical analysis and test-particle simulation are performed to understand the nonlinear interaction between ring current ions and EMIC waves. In particular, the dependence of the nonlinear wave-particle interaction processes on the ion initial latitude is investigated in detail. These nonlinear processes are classified into the phase trapping and phase bunching, and the phase bunching is further divided into the channel and cluster effects. Compared to the prediction of the quasi-linear theory, the ring current decay rate can be reduced by the phase trapping, increased by the channel effect phase bunching, but non-deterministically influenced by the cluster effect phase bunching. The ion initial latitude changes the occurrence of the phase trapping, modulates the transport direction and strength of the cluster effect phase bunching, and only slightly affects the channel effect phase bunching. The current results suggest that the latitudinal dependence of these nonlinear processes should be considered in the evaluation of the ring current decay induced by EMIC waves.

  9. Interactions between Electromagnetic Fields and Biological Tissues: Questions, Some Answers and Future Trends.

    E-Print Network [OSTI]

    Poignard, Clair

    , the governments have imposed some limitations to the authorized radiated fields by the power systems. It has been a more acceptable limit to these radiated fields. On the other hand, electromagnetic fields are used is obtained by submitting locally the patient to a radiofrequency (RF) electromagnetic field. The focalization

  10. Electromagnetic Properties for Arbitrary Spin Particles: Part 1 $-$ Electromagnetic Current and Multipole Decomposition

    E-Print Network [OSTI]

    Cédric Lorcé

    2009-01-27

    In a set of two papers, we propose to study an old-standing problem, namely the electromagnetic interaction for particles of arbitrary spin. Based on the assumption that light-cone helicity at tree level and $Q^2=0$ should be conserved non-trivially by the electromagnetic interaction, we are able to derive \\emph{all} the natural electromagnetic moments for a pointlike particle of \\emph{any} spin. In this first paper, we propose a transparent decomposition of the electromagnetic current in terms of covariant vertex functions. We also define in a general way the electromagnetic multipole form factors, and show their relation with the electromagnetic moments. Finally, by considering the Breit frame, we relate the covariant vertex functions to multipole form factors.

  11. Proton radius, bound state QED and the nonlocality of the electromagnetic interaction

    E-Print Network [OSTI]

    Renat Kh. Gainutdinov

    2011-03-21

    The result of a recent measurement of the size of the proton [R. Pohl et al., Nature 466, 213] performed on the base of the muonic hydrogen spectroscopy turned out to be significantly different, by five standard deviations, from the results derived from the atomic hydrogen spectroscopy. This large discrepancy could come from the calculations of the Lamb shift in atomic hydrogen and muonic hydrogen. Here we show that there is a gap in the standard bound-state QED that may be the source of the discrepancy. This gap originates in the fact that within the framework of this theory the QED corrections are described in terms of the respective Green functions. The character of the time evolution of a system which should manifest itself in the general definition of bound states as stationary states of the system cannot be described in terms of the Green functions. We present a consistent way of solving the bound-state problem in QED starting from the condition of stationarity of the bound states. Formulae for the energies and the vectors of the states of one-electron (muon) atoms derived in this way indicate that the standard bound-state QED does not obey the exact description of the atomic states and, as a result, the Lamb shift obtained in its framework should be supplemented by an additional "dynamical" energy shift. It is shown that in this shift natural nonlocality of the electromagnetic interaction that in describing the S matrix and the Green functions is hidden in the renormalization procedure manifest itself explicitly.

  12. Interaction of the Electromagnetic S-Wave with the Thin Metal Film

    E-Print Network [OSTI]

    A. V. Latyshev; A. A. Yushkanov

    2010-10-07

    It is shown that for thin metal films, thickness of which does not exceed a thickness of a skin-layer, the problem allows analytical solution for any boundary conditions. The analysis of transmission, reflection and absorption of an electromagnetic wave coefficients depending on a angle of incidence, thickness of a layer, coefficient of specular reflection and frequency of oscillations of electromagnetic field is carried out.

  13. Gauge invariance of phenomenological models of the interaction of quantum dissipative systems with electromagnetic fields

    SciTech Connect (OSTI)

    Tokman, M. D. [Institute of Applied Physics, RAS, 46 Ulyanov Street, 603950 Nizhny Novgorod (Russian Federation)

    2009-05-15

    We discuss specific features of the electrodynamic characteristics of quantum systems within the framework of models that include a phenomenological description of the relaxation processes. As is shown by W. E. Lamb, Jr., R. R. Schlicher, and M. O. Scully [Phys. Rev. A 36, 2763 (1987)], the use of phenomenological relaxation operators, which adequately describe the attenuation of eigenvibrations of a quantum system, may lead to incorrect solutions in the presence of external electromagnetic fields determined by the vector potential for different resonance processes. This incorrectness can be eliminated by giving a gauge-invariant form to the relaxation operator. Lamb, Jr., et al. proposed the corresponding gauge-invariant modification for the Weisskopf-Wigner relaxation operator, which is introduced directly into the Schroedinger equation within the framework of the two-level approximation. In the present paper, this problem is studied for the von Neumann equation supplemented by a relaxation operator. First, we show that the solution of the equation for the density matrix with the relaxation operator correctly obtained ''from the first principles'' has properties that ensure gauge invariance for the observables. Second, we propose a common recipe for transformation of the phenomenological relaxation operator into the correct (gauge-invariant) form in the density-matrix equations for a multilevel system. Also, we discuss the methods of elimination of other inaccuracies (not related to the gauge-invariance problem) which arise if the electrodynamic response of a dissipative quantum system is calculated within the framework of simplified relaxation models (first of all, the model corresponding to constant relaxation rates of coherences in quantum transitions). Examples illustrating the correctness of the results obtained within the framework of the proposed methods in contrast to inaccuracy of the results of the standard calculation techniques are given.

  14. Electromagnetic fasteners

    DOE Patents [OSTI]

    Crane, Randolph W.; Marts, Donna J.

    1994-11-01

    An electromagnetic fastener for manipulating objects in space uses the matic attraction of various metals. An end effector is attached to a robotic manipulating system having an electromagnet such that when current is supplied to the electromagnet, the object is drawn and affixed to the end effector, and when the current is withheld, the object is released. The object to be manipulated includes a multiplicity of ferromagnetic patches at various locations to provide multiple areas for the effector on the manipulator to become affixed to the object. The ferromagnetic patches are sized relative to the object's geometry and mass.

  15. Electromagnetic fasteners

    DOE Patents [OSTI]

    Crane, Randolph W. (Idaho Falls, ID); Marts, Donna J. (Idaho Falls, ID)

    1994-01-01

    An electromagnetic fastener for manipulating objects in space uses the matic attraction of various metals. An end effector is attached to a robotic manipulating system having an electromagnet such that when current is supplied to the electromagnet, the object is drawn and affixed to the end effector, and when the current is withheld, the object is released. The object to be manipulated includes a multiplicity of ferromagnetic patches at various locations to provide multiple areas for the effector on the manipulator to become affixed to the object. The ferromagnetic patches are sized relative to the object's geometry and mass.

  16. Well-posedness for Systems Representing Electromagnetic/Acoustic Wavefront Interaction

    E-Print Network [OSTI]

    interrogation.) In one such class of electromagnetic interrogation techniques, one uses a superconductive (also and applications for techniques which employ superconductive metal backings and standing acoustic waves as re are absorbing on the left (z = 0) and superconductive on the right (z = 1). We use general initial conditions

  17. Electromagnetic properties of neutrinos

    E-Print Network [OSTI]

    Carlo Giunti; Alexander Studenikin

    2010-06-08

    A short review on electromagnetic properties of neutrinos is presented. In spite of many efforts in the theoretical and experimental studies of neutrino electromagnetic properties, they still remain one of the main puzzles related to neutrinos.

  18. The electromagnetic "memory" of a dc-conducting resistor: a relativity argument and the electrical circuits

    E-Print Network [OSTI]

    Emanuel Gluskin

    2010-06-21

    A circuit-field problem is considered. A resistor conducting a constant current is argued to be associated with electromagnetic energy accumulated in the surrounded space, though contrary to the case of an inductor or a capacitor, this energy is always associated with both magnetic and electrical fields. The circuit-theory point of view saying that a resistor has no electromagnetic memory is accepted, but the necessarily involved (in view of the field argument) capacitance and inductiveness are argued then also not be associated with any memory. The mutually completing circuit and physical arguments are presented as a dialog between a physicist and an electrical engineer. How can you call "parasitic" the elements that represent the fields due to which your resistor at all receives the energy?! -- asks the physicist finally.

  19. G. Tsoulos (Ed.), MIMO System Technology for Wireless Communications, CRC & Taylor and Francis, Boca Raton, 2006. 20-Jul-05 Chapter 3: Information Theory and Electromagnetism: Are They Related? 1(37)

    E-Print Network [OSTI]

    Loyka, Sergey

    , Boca Raton, 2006. 20-Jul-05 Chapter 3: Information Theory and Electromagnetism: Are They Related? 1(37) INFORMATION THEORY AND ELECTROMAGNETISM: ARE THEY RELATED? Sergey Loyka1 , Juan Mosig2 1 School of Information [9-14]. Electromagnetic waves are used as the primary carrier of information. The basic

  20. Electromagnetic pulse (EMP) interaction with electric power systems. Power Systems Technology Program. Final report

    SciTech Connect (OSTI)

    Zaininger, H.W.

    1984-08-01

    A high altitude nuclear burst, detonated at a height of 50 km or more, causes two types of electromagnetic pulses (EMP) - high altitude EMP (HEMP) and magnetohydrodynamic EMP (MHD-EMP). This high altitude EMP scenario is of principal concern when assessing the effects of EMP on electric power systems, because the total United States can be simultaneously illuminated by HEMP and MHD-EMP can cover a large area of up to several hundred kilometers in diameter. The purpose of this project was first to define typical electrical power system characteristics for EMP analysis, and second, to determine reasonable worst case EMP induced surges on overhead electric power system transmission and distribution lines for reasonable assumptions, using unclassified HEMP and MHD-EMP electric field waveforms.

  1. Nonlinear interaction of intense electromagnetic waves with a magnetoactive electron-positron-ion plasma

    SciTech Connect (OSTI)

    Khorashadizadeh, S. M.; Rastbood, E.; Zeinaddini Meymand, H.; Niknam, A. R.

    2013-08-15

    The nonlinear coupling between circularly polarized electromagnetic (CPEM) waves and acoustic-like waves in a magnetoactive electron-positron-ion (e-p-i) plasma is studied, taking into account the relativistic motion of electrons and positrons. The possibility of modulational instability and its growth rate as well as the envelope soliton formation and its characteristics in such plasmas are investigated. It is found that the growth rate of modulation instability increases in the case that ?{sub c}/?<1 (?{sub c} and ? are the electron gyrofrequency and the CPEM wave frequency, respectively) and decreases in the case that ?{sub c}/?>1. It is also shown that in a magnetoactive e-p-i plasma, the width of bright soliton increases/decreases in case of (?{sub c}/?)<1/(?{sub c}/?)>1 by increasing the magnetic field strength.

  2. Magnetohydrodynamic electromagnetic pulse (MHD-EMP) interaction with power transmission and distribution systems

    SciTech Connect (OSTI)

    Tesche, F.M. [Tesche (F.M.), Dallas, TX (United States); Barnes, P.R. [Oak Ridge National Lab., TN (United States); Meliopoulos, A.P.S. [Georgia Inst. of Tech., Atlanta, GA (United States). Dept. of Electrical Engineering

    1992-02-01

    This report discusses the effects of the late-time high-altitude electromagnetic pulse (HEMP) on electrical transmission and distribution (T&D) systems. This environment, known as the magnetohydrodynamic electromagnetic pulse (MHD-EMP), is a very slowly varying electric field induced in the earth`s surface, similar to the field induced by a geomagnetic storm. It can result in the flow of a quasi-dc current in grounded power lines and in the subsequent magnetic saturation of transformers. This saturation, in turn, causes 6-Hz harmonic distortion and an increase in the reactive power required by generation facilities. This report analyzes and discusses these phenomena. The MHD-EMP environment is briefly discussed, and a simplified form of the earth-induced electric field is developed for use in a parametric study of transmission line responses. Various field coupling models are described, and calculated results for the responses of both transmission- and distribution-class power lines are presented. These calculated responses are compared with measurements of transformer operation under dc excitation to infer the MHD-EMP response of these power system components. It is found that the MHD-EMP environment would have a marked effect on a power system by inducing up to several hundreds of amperes of quasi-dc current on power lines. These currents will cause transformers to saturate which could result in excessive harmonic generation, voltage swings, and voltage suppression. The design of critical facilities which are required to operate during and after MHD-EMP events will have to be modified in order to mitigate the effects of these abnormal power system conditions.

  3. The electromagnetic spike solutions

    E-Print Network [OSTI]

    Ernesto Nungesser; Woei Chet Lim

    2013-09-28

    The aim of this paper is to use the existing relation between polarized electromagnetic Gowdy spacetimes and vacuum Gowdy spacetimes to find explicit solutions for electromagnetic spikes by a procedure which has been developed by one of the authors for gravitational spikes. We present new inhomogeneous solutions which we call the EME and MEM electromagnetic spike solutions.

  4. Retarded Interaction of Electromagnetic field and Symmetry Violation of Time Reversal in Non-linear Optics

    E-Print Network [OSTI]

    Mei Xiaochun

    2008-04-19

    Based on Document (1), by considering the retarded interaction of radiation fields, the third order transition probabilities of stimulated radiations and absorptions of light are calculated. The revised formulas of nonlinear polarizations are provided. The results show that that the general processes of non-linear optics violate time reversal symmetry. The phenomena of non-linear optics violating time reversal symmetry just as sum frequency, double frequency, different frequencies, double stable states, self-focusing and self-defocusing, echo phenomena, as well as optical self-transparence and self absorptions and so on are analyzed.

  5. Multipolar electromagnetic fields around neutron stars: exact vacuum solutions and related properties

    E-Print Network [OSTI]

    Jerome Petri

    2015-04-01

    The magnetic field topology in the surrounding of neutron stars is one of the key questions in pulsar magnetospheric physics. A very extensive literature exists about the assumption of a dipolar magnetic field but very little progress has been made in attempts to include multipolar components in a self-consistent way. In this paper, we study the effect of multipolar electromagnetic fields anchored in the star. We give exact analytical solutions in closed form for any order $l$ and apply them to the retarded point quadrupole ($l=2$), hexapole ($l=3$) and octopole ($l=4$), a generalization of the retarded point dipole ($l=1$). We also compare the Poynting flux from each multipole and show that the spin down luminosity depends on the ratio $R/r_{\\rm L}$, $R$ being the neutron star radius and $r_{\\rm L}$ the light-cylinder radius. Therefore the braking index also depends on $R/r_{\\rm L}$. As such multipole fields possess very different topology, most importantly smaller length scales compared to the dipolar field, especially close to the neutron star, we investigate the deformation of the polar caps induced by these multipolar fields. Such fields could have a strong impact on the interpretation of the pulsed radio emission suspected to emanate from these polar caps as well as on the inferred geometry deduced from the high-energy light-curve fitting and on the magnetic field strength. Discrepancies between the two-pole caustic model and our new multipole-caustic model are emphasized with the quadrupole field. To this respect, we demonstrate that working with only a dipole field can be very misleading.

  6. The mass-metallicity relation of interacting galaxies

    E-Print Network [OSTI]

    L. Michel-Dansac; D. G. Lambas; M. S. Alonso; P. Tissera

    2008-02-26

    We study the mass-metallicity relation of galaxies in pairs and in isolation taken from the SDSS-DR4 using the stellar masses and oxygen abundances derived by Tremonti et al. (2004). Close galaxy pairs, defined by projected separation r_p ~ 10^10 Msun/h) galaxies have a systematically lower metallicity, although with a smaller difference (-0.05 dex). Similar trends are obtained if g-band magnitudes are used instead of stellar masses. In minor interactions, we find that the less massive member is systematically enriched, while a galaxy in interaction with a comparable stellar mass companion shows a metallicity decrement with respect to galaxies in isolation. We argue that metal-rich starbursts triggered by a more massive component, and inflows of low metallicity gas induced by comparable or less massive companion galaxies, provide a natural scenario to explain our findings.

  7. Self-Duality in Nonlinear Electromagnetism

    E-Print Network [OSTI]

    Mary K. Gaillard; Bruno Zumino

    1997-05-28

    We discuss duality invariant interactions between electromagnetic fields and matter. The case of scalar fields is treated in some detail.

  8. Electromagnetic Reciprocity.

    SciTech Connect (OSTI)

    Aldridge, David F.

    2014-11-01

    A reciprocity theorem is an explicit mathematical relationship between two different wavefields that can exist within the same space - time configuration. Reciprocity theorems provi de the theoretical underpinning for mod ern full waveform inversion solutions, and also suggest practical strategies for speed ing up large - scale numerical modeling of geophysical datasets . In the present work, several previously - developed electromagnetic r eciprocity theorems are generalized to accommodate a broader range of medi um, source , and receiver types. Reciprocity relations enabling the interchange of various types of point sources and point receivers within a three - dimensional electromagnetic model are derived. Two numerical modeling algorithms in current use are successfully tested for adherence to reciprocity. Finally, the reciprocity theorem forms the point of departure for a lengthy derivation of electromagnetic Frechet derivatives. These mathe matical objects quantify the sensitivity of geophysical electromagnetic data to variatio ns in medium parameters, and thus constitute indispensable tools for solution of the full waveform inverse problem. ACKNOWLEDGEMENTS Sandia National Labor atories is a multi - program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE - AC04 - 94AL85000. Signif icant portions of the work reported herein were conducted under a Cooperative Research and Development Agreement (CRADA) between Sandia National Laboratories (SNL) and CARBO Ceramics Incorporated. The author acknowledges Mr. Chad Cannan and Mr. Terry Pa lisch of CARBO Ceramics, and Ms. Amy Halloran, manager of SNL's Geophysics and Atmospheric Sciences Department, for their interest in and encouragement of this work. Special thanks are due to Dr . Lewis C. Bartel ( recently retired from Sandia National Labo ratories and now a geophysical consultant ) and Dr. Chester J. Weiss (recently rejoined with Sandia National Laboratories) for many stimulating (and reciprocal!) discussions regar ding the topic at hand.

  9. Electromagnetic neutrinos in terrestrial experiments and astrophysics

    E-Print Network [OSTI]

    Carlo Giunti; Konstantin A. Kouzakov; Yu-Feng Li; Alexey V. Lokhov; Alexander I. Studenikin; Shun Zhou

    2015-06-17

    An overview of neutrino electromagnetic properties, which open a door to the new physics beyond the Standard Model, is given. The effects of neutrino electromagnetic interactions both in terrestrial experiments and in astrophysical environments are discussed. The experimental bounds on neutrino electromagnetic characteristics are summarized. Future astrophysical probes of electromagnetic neutrinos are outlined.

  10. Interaction of a two-dimensional electromagnetic breather with an electron inhomogeneity in an array of carbon nanotubes

    SciTech Connect (OSTI)

    Zhukov, Alexander V., E-mail: alex-zhukov@sutd.edu.sg; Bouffanais, Roland [Singapore University of Technology and Design, 20 Dover Drive, Singapore 138682 (Singapore); Fedorov, E. G. [Volgograd State University of Architecture and Civil Engineering, 400074 Volgograd (Russian Federation); Belonenko, Mikhail B. [Laboratory of Nanotechnology, Volgograd Institute of Business, 400048 Volgograd (Russian Federation)

    2014-05-28

    Propagation of ultrashort laser pulses through various nano-objects has recently became an attractive topic for both theoretical and experimental studies due to its promising perspectives in a variety of problems of modern nanoelectronics. Here, we study the propagation of extremely short two-dimensional bipolar electromagnetic pulses in a heterogeneous array of semiconductor carbon nanotubes. Heterogeneity is defined as a region of enhanced electron density. The electromagnetic field in an array of nanotubes is described by Maxwell's equations, reduced to a multidimensional wave equation. Our numerical analysis shows the possibility of stable propagation of an electromagnetic pulse in a heterogeneous array of nanotubes. Furthermore, we establish that, depending on its speed of propagation, the pulse can pass through the area of increased electron concentration or be reflected therefrom.

  11. Midcontinent Interactive Digital Carbon Atlas and Relational Database (MIDCARB)

    SciTech Connect (OSTI)

    Timothy R. Carr; Scott W. White

    2002-06-01

    This annual report describes progress of the project entitled ''Midcontinent Interactive Digital Carbon Atlas and Relational Database (MIDCARB)''. This project, funded by the Department of Energy, is a cooperative project that assembles a consortium of five states (Indiana, Illinois, Kansas, Kentucky and Ohio) to construct an online distributed Relational Database Management System (RDBMS) and Geographic Information System (GIS) covering aspects of carbon dioxide geologic sequestration (http://www.midcarb.org). The system links the five states in the consortium into a coordinated regional database system consisting of datasets useful to industry, regulators and the public. The project is working to provide advanced distributed computing solutions to link database servers across the five states into a single system where data is maintained at the local level but is accessed through a single Web portal and can be queried, assembled, analyzed and displayed. Each individual state has strengths in data gathering, data manipulation and data display, including GIS mapping, custom application development, web development, and database design. Sharing of expertise provides the critical mass of technical expertise to improve CO{sub 2} databases and data access in all states. This project improves the flow of data across servers in the five states and increases the amount and quality of available digital data. The MIDCARB project is developing improved online tools to provide real-time display and analyze CO{sub 2} sequestration data. The system links together data from sources, sinks and transportation within a spatial database that can be queried online. Visualization of high quality and current data can assist decision makers by providing access to common sets of high quality data in a consistent manner.

  12. Electromagnetic Theory 1 /56 Electromagnetic Theory

    E-Print Network [OSTI]

    Bicknell, Geoff

    Electromagnetic Theory 1 /56 Electromagnetic Theory Summary: · Maxwell's equations · EM Potentials · Equations of motion of particles in electromagnetic fields · Green's functions · Lienard-Weichert potentials · Spectral distribution of electromagnetic energy from an arbitrarily moving charge #12;Electromagnetic

  13. Massless Dirac Fermions in Electromagnetic Field

    E-Print Network [OSTI]

    Ahmed Jellal; Abderrahim El Mouhafid; Mohammed Daoud

    2012-02-12

    We study the relations between massless Dirac fermions in an electromagnetic field and atoms in quantum optics. After getting the solutions of the energy spectrum, we show that it is possible to reproduce the 2D Dirac Hamiltonian, with all its quantum relativistic effects, in a controllable system as a single trapped ion through the Jaynes--Cummings and anti-Jaynes--Cummings models. Also we show that under certain conditions the evolution of the Dirac Hamiltonian provides us with Rashba spin-orbit and linear Dresselhaus couplings. Considering the multimode multiphoton Jaynes-Cummings model interacting with N modes of electromagnetic field prepared in general pure quantum states, we analyze the Rabi oscillation. Evaluating time evolution of the Dirac position operator, we determine the Zitterbewegung frequency and the corresponding oscillating term as function of the electromagnetic field.

  14. Electromagnetic Radiations as a Fluid Flow

    E-Print Network [OSTI]

    Daniele Funaro

    2009-11-25

    We combine Maxwell's equations with Eulers's equation, related to a velocity field of an immaterial fluid, where the density of mass is replaced by a charge density. We come out with a differential system able to describe a relevant quantity of electromagnetic phenomena, ranging from classical dipole waves to solitary wave-packets with compact support. The clue is the construction of an energy tensor summing up both the electromagnetic stress and a suitable mass tensor. With this right-hand side, explicit solutions of the full Einstein's equation are computed for a wide class of wave phenomena. Since our electromagnetic waves may behave and interact exactly as a material fluid, they can create vortex structures. We then explicitly analyze some vortex ring configurations and examine the possibility to build a model for the electron.

  15. Coherent hybrid electromagnetic field imaging

    DOE Patents [OSTI]

    Cooke, Bradly J. (Jemez Springs, NM); Guenther, David C. (Los Alamos, NM)

    2008-08-26

    An apparatus and corresponding method for coherent hybrid electromagnetic field imaging of a target, where an energy source is used to generate a propagating electromagnetic beam, an electromagnetic beam splitting means to split the beam into two or more coherently matched beams of about equal amplitude, and where the spatial and temporal self-coherence between each two or more coherently matched beams is preserved. Two or more differential modulation means are employed to modulate each two or more coherently matched beams with a time-varying polarization, frequency, phase, and amplitude signal. An electromagnetic beam combining means is used to coherently combine said two or more coherently matched beams into a coherent electromagnetic beam. One or more electromagnetic beam controlling means are used for collimating, guiding, or focusing the coherent electromagnetic beam. One or more apertures are used for transmitting and receiving the coherent electromagnetic beam to and from the target. A receiver is used that is capable of square-law detection of the coherent electromagnetic beam. A waveform generator is used that is capable of generation and control of time-varying polarization, frequency, phase, or amplitude modulation waveforms and sequences. A means of synchronizing time varying waveform is used between the energy source and the receiver. Finally, a means of displaying the images created by the interaction of the coherent electromagnetic beam with target is employed.

  16. Sandia National Laboratories: Electromagnetics: Main Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LABORATORIES Electromagnetics (EM) is the study of the nature and interaction of static and dynamic electric and magnetic fields. Telecommunications, navigational guidance,...

  17. Network of Spaces and Interaction-Related Behaviors in Adult Intensive Care Units

    E-Print Network [OSTI]

    Rashid, Mahbub; Boyle, Diane K.; Crosser, Michael

    2014-12-01

    Using three spatial network measures of “space syntax”, this correlational study describes four interaction-related behaviors among three groups of users in relation to visibility and accessibility of spaces in four adult intensive care units (ICUs...

  18. The emission of electromagnetic radiation from a quantum system interacting with an external noise: A general result

    E-Print Network [OSTI]

    S. Donadi; A. Bassi

    2015-01-29

    We compute the spectrum of emitted radiation by a generic quantum system interacting with an external classic noise. Our motivation is to understand this phenomenon within the framework of collapse models. However the computation is general and applies practically to any situation where a quantum system interacts with a noise. The computation is carried out at a perturbative level. This poses problems concerning the correct way of performing the analysis, as repeatedly discussed in the literature. We will clarify also this issue.

  19. Electromagnetic formation flight dipole solution planning

    E-Print Network [OSTI]

    Schweighart, Samuel A. (Samuel Adam), 1977-

    2005-01-01

    Electromagnetic Formation Flight (EMFF) describes the concept of using electromagnets (coupled with reaction wheels) to provide all of the necessary forces and torques needed to maintain a satellite's relative position and ...

  20. Electromagnetic neutrino: a short review

    E-Print Network [OSTI]

    Alexander I. Studenikin

    2014-11-09

    A short review on selected issues related to the problem of neutrino electromagnetic properties is given. After a flash look at the theoretical basis of neutrino electromagnetic form factors, constraints on neutrino magnetic moments and electric millicharge from terrestrial experiments and astrophysical observations are discussed. We also focus on some recent studies of the problem and on perspectives.

  1. Electromagnetic Radiation REFERENCE: Remote Sensing of

    E-Print Network [OSTI]

    Gilbes, Fernando

    ;2 Electromagnetic Energy Interactions Energy recorded by remote sensing systems undergoes fundamental interactions that should be understood to properly interpret the remotely sensed data. For example, if the energy being nanosecond (10-9 s). The electromagnetic wave consists of two fluctuating fields--one electric and the other

  2. Electromagnetic Geometry

    E-Print Network [OSTI]

    M. Novello; F. T. Falciano; E. Goulart

    2011-11-08

    We show that Maxwell's electromagnetism can be mapped into the Born-Infeld theory in a curved space-time, which depends only on the electromagnetic field in a specific way. This map is valid for any value of the two lorentz invariants $F$ and $G$ confirming that we have included all possible solutions of Maxwell's equations. Our result seems to show that specifying the dynamics and the space-time structure of a given theory can be viewed merely as a choice of representation to describe the physical system.

  3. Effects of Solvent Mediated Interactions on Electrolytes and Related Electrostatic Systems

    E-Print Network [OSTI]

    Effects of Solvent Mediated Interactions on Electrolytes and Related Electrostatic Systems Thesis. The first issue is concerned with discrete polar solvents such as water. The main objective is to study the consequences of solvent discreteness, as opposed to a continuous dielectric medium. Ion-ion interactions

  4. Colonel Blotto On Facebook: The Effect of Social Relations On Strategic Interaction

    E-Print Network [OSTI]

    Kohli, Pushmeet

    Colonel Blotto On Facebook: The Effect of Social Relations On Strategic Interaction Pushmeet Kohli Of Pennsylvania Philadelphia, USA mkearns@cis.upenn.edu Ralf Herbrich Facebook Mountain View, USA ralf. We report the deployment of a Facebook application called "Project Waterloo" which allows users

  5. Steven Weinberg, Weak Interactions, and Electromagnetic Interactions

    Office of Scientific and Technical Information (OSTI)

    of Texas Austin and is founding director of the Theory Group in the College of Natural Sciences. He is well known for his development of a field theory that unifies the...

  6. Steven Weinberg, Weak Interactions, and Electromagnetic Interactions

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield MunicipalTechnical Report:Speeding access toSmallTechnicalSheldon Glashow and-D

  7. Electromagnetically Induced Entanglement

    E-Print Network [OSTI]

    Xihua Yang; Min Xiao

    2015-05-18

    We present a novel quantum phenomenon named electromagnetically induced entanglement in the conventional Lambda-type three-level atomic system driven by a strong pump field and a relatively weak probe field. Nearly perfect entanglement between the pump and probe fields can be achieved with a low coherence decay rate between the two lower levels, high pump-field intensity, and large optical depth of the atomic ensemble. The physical origin is quantum coherence between the lower doublet produced by the pump and probe fields, similar to the well-known electromagnetically induced transparency. This method would greatly facilitate the generation of nondegenerate narrow-band continuous-variable entanglement between bright light beams by using only coherent laser fields, and may find potential and broad applications in realistic quantum information processing.

  8. The interaction of two coronal mass ejections: Influence of relative orientation

    SciTech Connect (OSTI)

    Lugaz, N.; Farrugia, C. J.; Schwadron, N.; Manchester IV, W. B.

    2013-11-20

    We report on a numerical investigation of two coronal mass ejections (CMEs) that interact as they propagate in the inner heliosphere. We focus on the effect of the orientation of the CMEs relative to each other by performing four different simulations with the axis of the second CME rotated by 90° from one simulation to the next. Each magnetohydrodynamic simulation is performed in three dimensions with the Space Weather Modeling Framework in an idealized setting reminiscent of solar minimum conditions. We extract synthetic satellite measurements during and after the interaction and compare the different cases. We also analyze the kinematics of the two CMEs, including the evolution of their widths and aspect ratios. We find that the first CME contracts radially as a result of the interaction in all cases, but the amount of subsequent radial expansion depends on the relative orientation of the two CMEs. Reconnection between the two ejecta and between the ejecta and the interplanetary magnetic field determines the type of structure resulting from the interaction. When a CME with a high inclination with respect to the ecliptic overtakes one with a low inclination, it is possible to create a compound event with a smooth rotation in the magnetic field vector over more than 180°. Due to reconnection, the second CME only appears as an extended 'tail', and the event may be mistaken for a glancing encounter with an isolated CME. This configuration differs significantly from the one usually studied of a multiple-magnetic-cloud event, which we found to be associated with the interaction of two CMEs with the same orientation.

  9. Nonlocal theory of electromagnetic wave decay into two electromagnetic waves in a rippled density plasma channel

    SciTech Connect (OSTI)

    Sati, Priti; Tripathi, V. K.

    2012-12-15

    Parametric decay of a large amplitude electromagnetic wave into two electromagnetic modes in a rippled density plasma channel is investigated. The channel is taken to possess step density profile besides a density ripple of axial wave vector. The density ripple accounts for the momentum mismatch between the interacting waves and facilitates nonlinear coupling. For a given pump wave frequency, the requisite ripple wave number varies only a little w.r.t. the frequency of the low frequency decay wave. The radial localization of electromagnetic wave reduces the growth rate of the parametric instability. The growth rate decreases with the frequency of low frequency electromagnetic wave.

  10. Scattering of an ultrashort electromagnetic radiation pulse by an atom in a broad spectral range

    SciTech Connect (OSTI)

    Astapenko, V. A., E-mail: astval@mail.ru [Moscow Institute of Physics and Technology (Russian Federation)

    2011-02-15

    The scattering of an ultrashort electromagnetic pulse by atomic particles is described using a consistent quantum-mechanical approach taking into account excitation of a target and nondipole electromagnetic interaction, which is valid in a broad spectral range. This approach is applied to the scattering of single- and few-cycle pulses by a multielectron atom and a hydrogen atom. Scattering spectra are obtained for ultrashort pulses of different durations. The relative contribution of 'elastic' scattering of a single-cycle pulse by a hydrogen atom is studied in the high-frequency limit as a function of the carrier frequency and scattering angle.

  11. Electromagnetic field with induced massive term: Case with spinor field

    E-Print Network [OSTI]

    Yu. P. Rybakov; G. N. Shikin; Yu. A. Popov; Bijan Saha

    2010-08-12

    We consider an interacting system of spinor and electromagnetic field, explicitly depending on the electromagnetic potentials, i.e., interaction with broken gauge invariance. The Lagrangian for interaction is chosen in such a way that the electromagnetic field equation acquires an additional term, which in some cases is proportional to the vector potential of the electromagnetic field. This equation can be interpreted as the equation of motion of photon with induced non-trivial rest-mass. This system of interacting spinor and scalar fields is considered within the scope of Bianchi type-I (BI) cosmological model. It is shown that, as a result of interaction the electromagnetic field vanishes at $t \\to \\infty$ and the isotropization process of the expansion takes place.

  12. Electromagnetic field with induced massive term: Case with scalar field

    E-Print Network [OSTI]

    Yu. P. Rybakov; G. N. Shikin; Yu. A. Popov; Bijan Saha

    2010-04-21

    We consider an interacting system of massless scalar and electromagnetic field, with the Lagrangian explicitly depending on the electromagnetic potentials, i.e., interaction with broken gauge invariance. The Lagrangian for interaction is chosen in such a way that the electromagnetic field equation acquires an additional term, which in some cases is proportional to the vector potential of the electromagnetic field. This equation can be interpreted as the equation of motion of photon with induced nonzero rest-mass. This system of interacting fields is considered within the scope of Bianchi type-I (BI) cosmological model. It is shown that, as a result of interaction the electromagnetic field vanishes at $t \\to \\infty$ and the isotropization process of the expansion takes place.

  13. Electromagnetism in terms of quantum measurements

    E-Print Network [OSTI]

    Andreas Andersson

    2015-09-16

    We consider the question whether electromagnetism can be derived from quantum physics of measurements. It turns out that this is possible, both for quantum and classical electromagnetism, if we use more recent innovations such as smearing of observables and simultaneous measurability. In this way we justify the use of von Neumann-type measurement models for physical processes. We apply operational quantum measurement theory to gain insight in fundamental aspects of quantum physics. Interactions of von Neumann type make the Heisenberg evolution of observables describable using explicit operator deformations. In this way one can obtain quantized electromagnetism as a measurement of a system by another. The relevant deformations (Rieffel deformations) have a mathematically well-defined "classical" limit which is indeed classical electromagnetism for our choice of interaction.

  14. Alternative expression for the electromagnetic Lagrangian

    E-Print Network [OSTI]

    Saldanha, Pablo L

    2015-01-01

    We propose an alternative expression for the Lagrangian density that governs the interaction of a charged particle with external electromagnetic fields. The proposed Lagrangian is written in terms of the local superposition of the particle fields with the applied electromagnetic fields, not in terms of the particle charge and of the electromagnetic potentials as is usual. The total Lagrangian for a set of charged particles assumes a simple elegant form with the alternative formulation, giving an aesthetic support for it. The proposed Lagrangian is equivalent to the traditional one in their domain of validity and provides an interesting description of the Aharonov-Bohm effect.

  15. Investigation of electromagnetic welding

    E-Print Network [OSTI]

    Pressl, Daniel G. (Daniel Gerd)

    2009-01-01

    We propose several methodologies to study and optimize the electromagnetic process for Electromagnetic Forming (EMF) and Welding (EMW), thereby lowering the necessary process energy up to a factor of three and lengthening ...

  16. Objects of maximum electromagnetic chirality

    E-Print Network [OSTI]

    Fernandez-Corbaton, Ivan

    2015-01-01

    We introduce a definition of the electromagnetic chirality of an object and show that it has an upper bound. The upper bound is attained if and only if the object is transparent for fields of one handedness (helicity). Additionally, electromagnetic duality symmetry, i.e. helicity preservation upon scattering, turns out to be a necessary condition for reciprocal scatterers to attain the upper bound. We use these results to provide requirements for the design of such extremal scatterers. The requirements can be formulated as constraints on the polarizability tensors for dipolar scatterers or as material constitutive relations. We also outline two applications for objects of maximum electromagnetic chirality: A twofold resonantly enhanced and background free circular dichroism measurement setup, and angle independent helicity filtering glasses.

  17. Electromagnetic Abdulaziz Hanif

    E-Print Network [OSTI]

    Masoudi, Husain M.

    Electromagnetic Propulsion Abdulaziz Hanif Electrical Engineering Department King Fahd University of spacecraft, which would be jolted through space by electromagnets, could take us farther than any of these other methods. When cooled to extremely low temperatures, electromagnets demonstrate an unusual behavior

  18. Electromagnetic Measurements at RHIC

    E-Print Network [OSTI]

    Hamagaki, Hideki

    Electromagnetic Measurements at RHIC Hideki Hamagaki Center for Nuclear Study University of Tokyo #12;2/10/2005 "Electromagnetic measurements at RHIC"@ICPAQGP 05 Hideki Hamagaki 2 Prologue · EM probe and where they are produced; #12;2/10/2005 "Electromagnetic measurements at RHIC"@ICPAQGP 05 Hideki Hamagaki

  19. Electromagnetic Wave Dynamics in

    E-Print Network [OSTI]

    Kaiser, Robin

    Mesoscopic Electromagnetic Wave Dynamics in Ultracold Atomic Gases Robin Kaiser and Mark D. Havey Mesoscopic Electromagnetic Wave Dynamics in Ultracold Atomic Gases #12;39 E xperimental developments permit in the transport proper- ties of electromagnetic radiation in strongly scattering random media. Even in weakly

  20. Electromagnetic Measurements at RHIC

    E-Print Network [OSTI]

    Hamagaki, Hideki

    Electromagnetic Measurements at RHIC Hideki Hamagaki Center for Nuclear Study Graduate School of Science the University of Tokyo #12;2006/06/29 "Electromagnetic measurements at RHIC"@ATHIC 2006 Hideki;2006/06/29 "Electromagnetic measurements at RHIC"@ATHIC 2006 Hideki Hamagaki 3 Prologue ­ scope of EM measurements · EM

  1. The Relative Effectiveness of Positive Interdependence and Group Processing on Student Achievement, Interaction, and Attitude in Online Cooperative Learning 

    E-Print Network [OSTI]

    Nam, Chang Woo

    2010-01-14

    The purpose of this study was to investigate the relative effectiveness of positive interdependence and group processing on student achievement, interaction, and attitude in online cooperative learning. All of the participants, ...

  2. Counting energy packets in the electromagnetic wave

    E-Print Network [OSTI]

    Stefan Popescu; Bernhard Rothenstein

    2007-05-18

    We discuss the concept of energy packets in respect to the energy transported by electromagnetic waves and we demonstrate that this physical quantity can be used in physical problems involving relativistic effects. This refined concept provides results compatible to those obtained by simpler definition of energy density when relativistic effects apply to the free electromagnetic waves. We found this concept further compatible to quantum theory perceptions and we show how it could be used to conciliate between different physical approaches including the classical electromagnetic wave theory, the special relativity and the quantum theories.

  3. 8.07 Electromagnetism II, Fall 2002

    E-Print Network [OSTI]

    Zwiebach, Barton

    Survey of basic electromagnetic phenomena: electrostatics, magnetostatics; electromagnetic properties of matter. Time-dependent electromagnetic fields and Maxwell's equations. Electromagnetic waves, emission, absorption, ...

  4. Electromagnetic Dipole Response as a Test of the $^{\\bf 11}$Li g.s. Structure and the n-$^{\\bf 9}$Li Interaction

    E-Print Network [OSTI]

    B. V. Danilin; M. V. Zhukov; J. S. Vaagen; I. J. Thompson; J. M. Bang

    1993-04-23

    The electric dipole response of the halo nucleus $^{11}$Li is calculated in a hyperspherical three-body formulation, and is studied as a function of the interaction employed for $n-^9$Li to reflect the Pauli principle. Strength concentrations at lower energies are found but no narrow resonances. Only one possible scenario of $^{11}$Li structure is in close correspondence with MSU and RIKEN experimental data.

  5. Breit-Wheeler process in very short electromagnetic pulses

    E-Print Network [OSTI]

    A. I. Titov; B. Kampfer; H. Takabe; A. Hosaka

    2013-03-26

    The generalized Breit-Wheeler process, i.e. the emission of $e^+e^-$ pairs off a probe photon propagating through a polarized short-pulsed electromagnetic (e.g.\\ laser) wave field, is analyzed. We show that the production probability is determined by the interplay of two dynamical effects. The first one is related to the shape and duration of the pulse and the second one is the non-linear dynamics of the interaction of $e^\\pm$ with the strong electromagnetic field. The first effect manifests itself most clearly in the weak-field regime, where the small field intensity is compensated by the rapid variation of the electromagnetic field in a limited space-time region, which intensifies the few-photon events and can enhance the production probability by orders of magnitude compared to an infinitely long pulse. Therefore, short pulses may be considered as a powerful amplifier. The non-linear dynamics in the multi-photon Breit-Wheeler regime plays a decisive role at large field intensities, where effects of the pulse shape and duration are less important. In the transition regime, both effects must be taken into account simultaneously. We provide suitable expressions for the $e^+e^-$ production probability for kinematic regions which can be used in transport codes.

  6. NISTHB 150-11 Electromagnetic

    E-Print Network [OSTI]

    NISTHB 150-11 NVLAP Electromagnetic Compatibility and Telecommunications Bethany Hackett Bradley. #12;NISTHB 150-11 NVLAP Electromagnetic Compatibility and Telecommunications Bethany Hackett Bradley Programs Dennis Camell Electromagnetics Division Physical Measurement Laboratory http://dx.doi.org/10

  7. Tunability enhanced electromagnetic wiggler

    DOE Patents [OSTI]

    Schlueter, Ross D. (Albany, CA); Deis, Gary A. (Livermore, CA)

    1992-01-01

    The invention discloses a wiggler used in synchrotron radiation sources and free electron lasers, where each pole is surrounded by at least two electromagnetic coils. The electromagnetic coils are energized with different amounts of current to provide a wide tunable range of the on-axis magnetic flux density, while preventing magnetic saturation of the poles.

  8. Tunability enhanced electromagnetic wiggler

    DOE Patents [OSTI]

    Schlueter, R.D.; Deis, G.A.

    1992-03-24

    The invention discloses a wiggler used in synchrotron radiation sources and free electron lasers, where each pole is surrounded by at least two electromagnetic coils. The electromagnetic coils are energized with different amounts of current to provide a wide tunable range of the on-axis magnetic flux density, while preventing magnetic saturation of the poles. 14 figs.

  9. Electromagnetic Composites at the Compton Scale

    E-Print Network [OSTI]

    Frederick J. Mayer; John R. Reitz

    2011-09-10

    A new class of electromagnetic composite particles is proposed. The composites are very small (the Compton scale), potentially long-lived, would have unique interactions with atomic and nuclear systems, and, if they exist, could explain a number of otherwise anomalous and conflicting observations in diverse research areas.

  10. The classical geometrization of the electromagnetism

    E-Print Network [OSTI]

    Celso de Araujo Duarte

    2015-08-13

    Following the line of the history, if by one side the electromagnetic theory was consolidated on the 19th century, the emergence of the special and the general relativity theories on the 20th century opened possibilities of further developments, with the search for the unification of the gravitation and the electromagnetism on a single unified theory. Some attempts to the geometrization of the electromagnetism emerged in this context, where these first models resided strictly on a classical basis. Posteriorly, they were followed by more complete and embracing quantum field theories. The present work reconsiders the classical viewpoint, with the purpose of showing that at first order of approximation the electromagnetism constitutes a geometric structure aside other phenomena as gravitation, and that magnetic monopoles do not exist at least up to this order of approximation. Even though being limited, the model is consistent and offers the possibility of an experimental test of validity.

  11. Spherically symmetric electromagnetic mass models of embedding class one

    E-Print Network [OSTI]

    S. K. Maurya; Y. K. Gupta; Saibal Ray; Sourav Roy Chowdhury

    2015-05-30

    In this article we consider the static spherically symmetric spacetime metric of embedding class one. Specifically three new electromagnetic mass models are derived where the solutions are entirely dependent on the electromagnetic field, such that the physical parameters, like density, pressure etc. do vanish for the vanishing charge. We have analyzed schematically all these three sets of solutions related to electromagnetic mass models by plotting graphs and shown that they can pass through all the physical tests performed by us. To validate these special type of solutions related to electromagnetic mass models a comparison has been done with that of compact stars and shown exclusively the feasibility of the models.

  12. The unification of the fundamental interaction within Maxwell electromagnetism: Model of hydrogen atom. Gravity as the secondary electric force. Calculation of the unified inertia force

    E-Print Network [OSTI]

    L. Neslusan

    2010-12-28

    Considering two static, electrically charged, elementary particles, we demonstrate a possible way of proving that all known fundamental forces in the nature are the manifestations of the single, unique interaction. We re-define the gauging of integration constants in the Schwarzschild solution of Einstein field equations. We consider the potential energy in this context regardless it is gravitational or electric potential energy. With the newly gauged constants, we sketch how the unique interaction can be described with the help of an appropriate solution of the well-known Maxwell equations. According the solution, there are two zones, in the system of two oppositely charged particles, where the force is oscillating. The first particle can be in a stable, constant distance from the second particle, between the neighbouring regions of repulsion and attraction. In an outer oscillation zone, the corresponding energy levels in the proton-electron systems are identical (on the level of accuracy of values calculated by the Dirac's equations) to some experimentally determined levels in the hydrogen atom. For each system of two particles, there is also the zone with the macroscopic, i.e. monotonous behavior of the force. As well, the solution can be used to demonstrate that the net force between two assemblies consisting each (or at least one) of the same numbers of both positively and negatively charged particles is never zero. A secondary electric force, having the same orientation as the primary electric force between the oppositely charged particles, is always present. It can be identified to the gravity. Finally, the solution of the Maxwell equations can be used to calculate the inertia force of a particle. The consistent formulas for both acting and inertia forces enable to construct the dimensionless (without gravitational constant, permitivity of vacuum, etc.) equation of motion.

  13. Microslots : scalable electromagnetic instrumentation

    E-Print Network [OSTI]

    Maguire, Yael G., 1975-

    2004-01-01

    This thesis explores spin manipulation, fabrication techniques and boundary conditions of electromagnetism to bridge the macroscopic and microscopic worlds of biology, chemistry and electronics. This work is centered around ...

  14. Purely electromagnetic spacetimes

    E-Print Network [OSTI]

    B. V. Ivanov

    2007-12-15

    Electrovacuum solutions devoid of usual mass sources are classified in the case of one, two and three commuting Killing vectors. Three branches of solutions exist. Electromagnetically induced mass terms appear in some of them.

  15. Electromagnetic rotational actuation.

    SciTech Connect (OSTI)

    Hogan, Alexander Lee

    2010-08-01

    There are many applications that need a meso-scale rotational actuator. These applications have been left by the wayside because of the lack of actuation at this scale. Sandia National Laboratories has many unique fabrication technologies that could be used to create an electromagnetic actuator at this scale. There are also many designs to be explored. In this internship exploration of the designs and fabrications technologies to find an inexpensive design that can be used for prototyping the electromagnetic rotational actuator.

  16. Near-field thermal electromagnetic transport

    E-Print Network [OSTI]

    Edalatpour, Sheila

    2015-01-01

    A general near-field thermal electromagnetic transport formalism that is independent of the size, shape and number of heat sources is derived. The formalism is based on fluctuational electrodynamics, where fluctuating currents due to thermal agitation are added into Maxwell's curl equations, and is thus valid for heat sources in local thermodynamic equilibrium. Using a volume integral formulation, it is shown that the proposed formalism is a generalization of the classical electromagnetic scattering framework in which thermal emission is implicitly assumed to be negligible. The near-field thermal electromagnetic transport formalism is afterwards applied to a problem involving three spheres exchanging thermal radiation, where all multipolar interactions are taken into account. Using the thermal discrete dipole approximation, it is shown that depending on the dielectric function, the presence of a third sphere slightly affects the spatial distribution of power absorbed compared to the two-sphere case. The forma...

  17. Interaction of gravitational waves with matter

    E-Print Network [OSTI]

    A. Cetoli; C. J. Pethick

    2011-10-03

    We develop a unified formalism for describing the interaction of gravitational waves with matter that clearly separates the effects of general relativity from those due to interactions in the matter. Using it, we derive a general expression for the dispersion of gravitational waves in matter in terms of correlation functions for the matter in flat spacetime. The self energy of a gravitational wave is shown to have contributions analogous to the paramagnetic and diamagnetic contributions to the self energy of an electromagnetic wave. We apply the formalism to some simple systems - free particles, an interacting scalar field, and a fermionic superfluid.

  18. Kinetic theory of the electron bounce instability in two dimensional current sheets—Full electromagnetic treatment

    SciTech Connect (OSTI)

    Tur, A.; Fruit, G.; Louarn, P.

    2014-03-15

    In the general context of understanding the possible destabilization of a current sheet with applications to magnetospheric substorms or solar flares, a kinetic model is proposed for studying the resonant interaction between electromagnetic fluctuations and trapped bouncing electrons in a 2D current sheet. Tur et al. [A. Tur et al., Phys. Plasmas 17, 102905 (2010)] and Fruit et al. [G. Fruit et al., Phys. Plasmas 20, 022113 (2013)] already used this model to investigate the possibilities of electrostatic instabilities. Here, the model is completed for full electromagnetic perturbations. Starting with a modified Harris sheet as equilibrium state, the linearized gyrokinetic Vlasov equation is solved for electromagnetic fluctuations with period of the order of the electron bounce period. The particle motion is restricted to its first Fourier component along the magnetic field and this allows the complete time integration of the non local perturbed distribution functions. The dispersion relation for electromagnetic modes is finally obtained through the quasineutrality condition and the Ampere's law for the current density. It is found that for mildly strechted current, undamped modes oscillate at typical electron bounce frequency with wavelength of the order of the plasma sheet half thickness. As the stretching of the plasma sheet becomes more intense, the frequency of these normal modes decreases and beyond a certain threshold in ??=?B{sub z}/B{sub lobes}, the mode becomes explosive with typical growth rate of a few tens of seconds. The free energy contained in the bouncing motion of the electrons may trigger an electromagnetic instability able to disrupt the cross-tail current in a few seconds. This new instability–electromagnetic electron-bounce instability–may explain fast and global scale destabilization of current sheets as required to describe substorm phenomena.

  19. Ladder-type electromagnetically induced transparency using nanofiber-guided light in a warm atomic vapor

    E-Print Network [OSTI]

    Jones, D E; Pittman, T B

    2015-01-01

    We demonstrate ladder-type electromagnetically induced transparency (EIT) using an optical nanofiber suspended in a warm rubidium vapor. The signal and control fields are both guided along the nanofiber, which enables strong nonlinear interactions with the surrounding atoms at relatively low powers. Transit-time broadening is found to be a significant EIT decoherence mechanism in this tightly-confined waveguiding geometry. Nonetheless, we observe significant EIT and controlled polarization rotation using control-field powers of only a few microWatts in this relatively robust warm-atom nanofiber system.

  20. Investigating the Relation Between Stress and Marital Satisfaction: The Interaction Effects of Dyadic Coping and Communication 

    E-Print Network [OSTI]

    Gasbarrini, Molly F

    2013-07-30

    This study examined the role that communication and coping skills play in the relation between stress and marital satisfaction in a community sample of 119 married, heterosexual couples in Italy. Hierarchical regression models were used to test...

  1. Interacting boson model from energy density functionals: {gamma}-softness and the related topics

    SciTech Connect (OSTI)

    Nomura, K.

    2012-10-20

    A comprehensive way of deriving the Hamiltonian of the interacting boson model (IBM) is described. Based on the fact that the multi-nucleon induced surface deformation in finite nucleus is simulated by effective boson degrees of freedom, the potential energy surface calculated with self-consistent mean-field method employing a given energy density functional (EDF) is mapped onto the IBM analog, and thereby the excitation spectra and transition rates with good symmetry quantum numbers are calculated. Recent applications of the proposed approach are reported: (i) an alternative robust interpretation of the {gamma}-soft nuclei and (ii) shape coexistence in lead isotopes.

  2. Control of Light-matter Interaction Using Dispersion Engineered...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    interaction between them is carried by the electromagnetic Bloch waves of the photonic crystal. This coherent interaction results in the formation of strongly coupled...

  3. Bioelectromagnetic effects of the electromagnetic pulse (EMP)

    SciTech Connect (OSTI)

    Patrick, E.L.; Vault, W.L.

    1990-03-01

    The public has expressed concern about the biological effects and hazards of non-ionizing electromagnetic fields produced by the electro-magnetic pulse (EMP) simulators that simulate the EMP emanating from a high-altitude nuclear explosion. This paper provides a summary of the bioelectromagnetic effects literature up through the present, describes current occupational standards for workers exposed to the EMP environment, and discusses the use of medical surveillance as it relates to the potential human health hazards associated with exposure to the EMP environment.

  4. Collision of arbitrary strong gravitational and electromagnetic waves in the expanding universe

    E-Print Network [OSTI]

    Alekseev, G A

    2015-01-01

    A completely analytical model of the process of collision and nonlinear interaction of gravitational and electromagnetic soliton wave pulses and strong electromagnetic travelling waves of arbitrary profiles propagating in the expanding universe (symmetric Kasner space-time) is presented. In contrast to intuitive expectations that rather strong travelling waves can destroy the soliton, it occurs that the soliton survives during its interaction with electromagnetic wave of arbitrary amplitude and profile, but its parameters begin to evolve under the influence of this interaction. If a travelling electromagnetic wave possesses a finite duration, the soliton parameters after interaction take constant values again, but these values in general are different from those before the interaction. Based on exact solutions of Einstein - Maxwell equations, our model demonstrates a series of nonlinear phenomena, such as (a) creation of gravitational waves in the collision of two electromagnetic waves, (b) creation of electr...

  5. HumanWildlife Interactions 4(1):3246, Spring 2010 Estimating relative distribution of raccoons,

    E-Print Network [OSTI]

    of animal control reports per capita and areas of land covers to assess the relative habitat-use of raccoons) and obtained areas of land cover within each quadrat. We evaluated numbers of confirmed animals per capita is taken to remove potential biases, verified animal control reports can be used as a low-cost

  6. Complex geometry and pre-metric electromagnetism

    E-Print Network [OSTI]

    D. H. Delphenich

    2004-12-10

    The intimate link between complex geometry and the problem of the pre-metric formulation of electromagnetism is explored. In particular, the relationship between 3+1 decompositions of R4 and the decompositions of the vector space of bivectors over R4 into real and imaginary subspaces relative to a choice of complex structure is emphasized. The role of the various scalar products on the space of bivectors that are defined in terms of a volume element on R4 and a complex structure on the space of bivectors that makes it C-linear isomorphic to C3 is discussed in the context of formulation of a theory of electromagnetism in which the Lorentzian metric on spacetime follows as a consequence of the existence of electromagnetic waves, not a prior assumption.

  7. Electromagnetically Induced Flows Michiel de Reus

    E-Print Network [OSTI]

    Vuik, Kees

    Electromagnetically Induced Flows in Water Michiel de Reus 8 maart 2013 () Electromagnetically Conclusion and future research () Electromagnetically Induced Flows 2 / 56 #12;1 Introduction 2 Maxwell Navier Stokes equations 5 Simulations 6 Conclusion and future research () Electromagnetically Induced

  8. 8.07 Electromagnetism II, Fall 2005

    E-Print Network [OSTI]

    Bertschinger, Edmund

    This course is the second in a series on Electromagnetism beginning with Electromagnetism I (8.02 or 8.022). It is a survey of basic electromagnetic phenomena: electrostatics; magnetostatics; electromagnetic properties of ...

  9. Electromagnetic probes in heavy-ion collisions: Messengers from the hot and dense phase

    E-Print Network [OSTI]

    H. van Hees; J. Weil; S. Endres; M. Bleicher

    2015-02-12

    Due to their penetrating nature, electromagnetic probes, i.e., lepton-antilepton pairs (dileptons) and photons are unique tools to gain insight into the nature of the hot and dense medium of strongly-interacting particles created in relativistic heavy-ion collisions, including hints to the nature of the restoration of chiral symmetry of QCD. Of particular interest are the spectral properties of the electromagnetic current-correlation function of these particles within the dense and/or hot medium. The related theoretical investigations of the in-medium properties of the involved particles in both the partonic and hadronic part of the QCD phase diagram underline the importance of a proper understanding of the properties of various hadron resonances in the medium.

  10. DEF: The Physical Basis of Electromagnetic Propulsion

    E-Print Network [OSTI]

    Pinheiro, Mario J

    2015-01-01

    The very existence of the physical vacuum provides a framework to propose a general mechanism for propelling bodies through an agency of electromagnetic fields, that seat in that medium. When two sub-systems of a general closed device interact via nonlocal and retarded electromagnetic pulses, it is easily shown that they give a nonzero force, and that only tend to comply with the action-to-reaction force in the limit of instantaneous interactions. The arrangement of sub-systems provide a handy way to optimize the unbalanced EM force with the concept of impedance matching. The general properties of the differential electromagnetic force (DEF) are the following: i) it is proportional to the square of the intensity and to the angular wave frequency $\\omega$; ii) to the space between the sub-systems (although in a non-linear manner); iii) it is inversely proportional to the speed of interaction; iv) when the two sub-systems are out-of-phase, DEF is null. The approach is of interest to practical engineering princi...

  11. Electromagnetism and Gravitation

    E-Print Network [OSTI]

    Kenneth Dalton

    1997-03-10

    The classical concept of "mass density" is not fundamental to the quantum theory of matter. Therefore, mass density cannot be the source of gravitation. Here, we treat electromagnetic energy, momentum, and stress as its source. The resulting theory predicts that the gravitational potential near any charged elementary particle is many orders of magnitude greater than the Newtonian value.

  12. Electromagnetic pulsar spindown

    E-Print Network [OSTI]

    I. Contopoulos

    2007-01-10

    We evaluate the result of the recent pioneering numerical simulations in Spitkovsky~2006 on the spindown of an oblique relativistic magnetic dipole rotator. Our discussion is based on our experience from two idealized cases, that of an aligned dipole rotator, and that of an oblique split-monopole rotator. We conclude that the issue of electromagnetic pulsar spindown may not have been resolved yet.

  13. On the Numerical Dispersion of Electromagnetic Particle-In-Cell Code : Finite Grid Instability

    SciTech Connect (OSTI)

    Meyers, Michael David; Huang, Chengkun; Zeng, Yong; Yi, Sunghwan; Albright, Brian James

    2014-07-15

    The Particle-In-Cell (PIC) method is widely used in relativistic particle beam and laser plasma modeling. However, the PIC method exhibits numerical instabilities that can render unphysical simulation results or even destroy the simulation. For electromagnetic relativistic beam and plasma modeling, the most relevant numerical instabilities are the finite grid instability and the numerical Cherenkov instability. We review the numerical dispersion relation of the electromagnetic PIC algorithm to analyze the origin of these instabilities. We rigorously derive the faithful 3D numerical dispersion of the PIC algorithm, and then specialize to the Yee FDTD scheme. In particular, we account for the manner in which the PIC algorithm updates and samples the fields and distribution function. Temporal and spatial phase factors from solving Maxwell's equations on the Yee grid with the leapfrog scheme are also explicitly accounted for. Numerical solutions to the electrostatic-like modes in the 1D dispersion relation for a cold drifting plasma are obtained for parameters of interest. In the succeeding analysis, we investigate how the finite grid instability arises from the interaction of the numerical 1D modes admitted in the system and their aliases. The most significant interaction is due critically to the correct representation of the operators in the dispersion relation. We obtain a simple analytic expression for the peak growth rate due to this interaction.

  14. Electromagnetic Interrogation Techniques Damage Detection

    E-Print Network [OSTI]

    Electromagnetic Interrogation Techniques for Damage Detection H. T. Banks and M. L. Joyner Center.P. Winfree Nasa Langley Research Center Hampton, VA Plenary Lecture, Electromagnetic Nondestructive Evaluation 2001 (ENDE 2001), Kobe, Japan, May 18-19, 20001 #12;Electromagnetic Interrogation Techniques

  15. Electromagnetic structure of light nuclei

    E-Print Network [OSTI]

    Saori Pastore

    2015-08-28

    The present understanding of nuclear electromagnetic properties including electromagnetic moments, form factors and transitions in nuclei with A $\\le$ 10 is reviewed. Emphasis is on calculations based on nuclear Hamiltonians that include two- and three-nucleon realistic potentials, along with one- and two-body electromagnetic currents derived from a chiral effective field theory with pions and nucleons.

  16. Electromagnetic Interrogation Techniques Damage Detection

    E-Print Network [OSTI]

    Electromagnetic Interrogation Techniques for Damage Detection H. T. Banks #3; and M. L. Joyner Wincheski and W.P. Winfree Nasa Langley Research Center Hampton, VA #3; Plenary Lecture, Electromagnetic Nondestructive Evaluation 2001 (ENDE 2001), Kobe, Japan, May 18­19, 20001 #12; Electromagnetic Interrogation

  17. Obliquely propagating electromagnetic waves in magnetized kappa plasmas

    E-Print Network [OSTI]

    Gaelzer, Rudi

    2015-01-01

    Velocity distribution functions (VDFs) that exhibit a power-law dependence on the high-energy tail have been the subject of intense research by the plasma physics community. Such functions, known as kappa or superthermal distributions, have been found to provide a better fitting to the VDFs measured by spacecraft in the solar wind. One of the problems that is being addressed on this new light is the temperature anisotropy of solar wind protons and electrons. In the literature, the general treatment for waves excited by (bi-)Maxwellian plasmas is well-established. However, for kappa distributions, the wave characteristics have been studied mostly for the limiting cases of purely parallel or perpendicular propagation, relative to the ambient magnetic field. Contributions to the general case of obliquely-propagating electromagnetic waves have been scarcely reported so far. The absence of a general treatment prevents a complete analysis of the wave-particle interaction in kappa plasmas, since some instabilities c...

  18. On electromagnetic models of ball lightning with topological structure

    E-Print Network [OSTI]

    Donoso, J M; Trueba, J L

    2003-01-01

    It has been long admitted that a consequence of the virial theorem is that there can be no equilibrium configurations of a system of charges in electromagnetic interaction in the absence of external forces. However, recent results have shown that the virial theorem can not preclude the existence of certain nontrivial equilibrium configurations. Although some of these new results are based on an effective microscopic field theory, they are important for a theory of ball lightning that has been developed by the authors of the present work. Other theoretical results relative to magnetic force-free fields with field aligned currents and self-organized filamentary structures are also found to be relevant for this model.

  19. Gravitation and Electromagnetism

    E-Print Network [OSTI]

    B. G. Sidharth

    2001-06-16

    The realms of gravitation, belonging to Classical Physics, and Electromagnetism, belonging to the Theory of the Electron and Quantum Mechanics have remained apart as two separate pillars, inspite of a century of effort by Physicists to reconcile them. In this paper it is argued that if we extend ideas of Classical spacetime to include in addition to non integrability non commutavity also, then such a reconcilation is possible.

  20. Quaternion Gravi-Electromagnetism

    E-Print Network [OSTI]

    A. S. Rawat; O. P. S. Negi

    2011-07-05

    Defining the generalized charge, potential, current and generalized fields as complex quantities where real and imaginary parts represent gravitation and electromagnetism respectively, corresponding field equation, equation of motion and other quantum equations are derived in manifestly covariant manner. It has been shown that the field equations are invariant under Lorentz as well as duality transformations. It has been shown that the quaternionic formulation presented here remains invariant under quaternion transformations.

  1. Fractional Electromagnetic Waves

    E-Print Network [OSTI]

    J. F. Gómez; J. J. Rosales; J. J. Bernal; V. I. Tkach; M. Guía

    2011-08-31

    In the present work we consider the electromagnetic wave equation in terms of the fractional derivative of the Caputo type. The order of the derivative being considered is 0 <\\gamma<1. A new parameter \\sigma, is introduced which characterizes the existence of the fractional components in the system. We analyze the fractional derivative with respect to time and space, for \\gamma = 1 and \\gamma = 1/2 cases.

  2. Banded electromagnetic stator core

    DOE Patents [OSTI]

    Fanning, A.W.; Gonzales, A.A.; Patel, M.R.; Olich, E.E.

    1994-04-05

    A stator core for an electromagnetic pump includes a plurality of circumferentially adjoining groups of flat laminations disposed about a common centerline axis and collectively defining a central bore and a discontinuous outer perimeter, with adjacent groups diverging radially outwardly to form V-shaped gaps. An annular band surrounds the groups and is predeterminedly tensioned to clamp together the laminations, and has a predetermined flexibility in a radial direction to form substantially straight bridge sections between the adjacent groups. 5 figures.

  3. Banded electromagnetic stator core

    DOE Patents [OSTI]

    Fanning, Alan W. (San Jose, CA); Gonzales, Aaron A. (San Jose, CA); Patel, Mahadeo R. (San Jose, CA); Olich, Eugene E. (Aptos, CA)

    1994-01-01

    A stator core for an electromagnetic pump includes a plurality of circumferentially adjoining groups of flat laminations disposed about a common centerline axis and collectively defining a central bore and a discontinuous outer perimeter, with adjacent groups diverging radially outwardly to form V-shaped gaps. An annular band surrounds the groups and is predeterminedly tensioned to clamp together the laminations, and has a predetermined flexibility in a radial direction to form substantially straight bridge sections between the adjacent groups.

  4. Banded electromagnetic stator core

    DOE Patents [OSTI]

    Fanning, Alan W. (San Jose, CA); Gonzales, Aaron A. (San Jose, CA); Patel, Mahadeo R. (San Jose, CA); Olich, Eugene E. (Aptos, CA)

    1996-01-01

    A stator core for an electromagnetic pump includes a plurality of circumferentially adjoining groups of flat laminations disposed about a common centerline axis and collectively defining a central bore and a discontinuous outer perimeter, with adjacent groups diverging radially outwardly to form V-shaped gaps. An annular band surrounds the groups and is predeterminedly tensioned to clamp together the laminations, and has a predetermined flexibility in a radial direction to form substantially straight bridge sections between the adjacent groups.

  5. The electromagnetic dark sector

    E-Print Network [OSTI]

    Jose Beltran Jimenez; Antonio L. Maroto

    2010-02-12

    We consider electromagnetic field quantization in an expanding universe. We find that the covariant (Gupta-Bleuler) method exhibits certain difficulties when trying to impose the quantum Lorenz condition on cosmological scales. We thus explore the possibility of consistently quantizing without imposing such a condition. In this case there are three physical states, which are the two transverse polarizations of the massless photon and a new massless scalar mode coming from the temporal and longitudinal components of the electromagnetic field. An explicit example in de Sitter space-time shows that it is still possible to eliminate the negative norm state and to ensure the positivity of the energy in this theory. The new state is decoupled from the conserved electromagnetic currents, but is non-conformally coupled to gravity and therefore can be excited from vacuum fluctuations by the expanding background. The cosmological evolution ensures that the new state modifies Maxwell's equations in a totally negligible way on sub-Hubble scales. However, on cosmological scales it can give rise to a non-negligible energy density which could explain in a natural way the present phase of accelerated expansion of the universe.

  6. Electromagnetic structure of the proton within the CP-violation hypothesis

    SciTech Connect (OSTI)

    Krutov, A. F. Kudinov, M. Yu.

    2013-11-15

    The so-called non-Rosenbluth behavior of the proton electromagnetic form factors can be explained within the hypothesis of CP violation in electromagnetic processes involving composite systems of strongly interacting particles. It is shown that this hypothesis leads to the appearance of an additional, anapole, form factor of the proton. The proton electromagnetic form factors, including the anapole form factor, are estimated on the basis of experimental data on elastic electron-proton scattering.

  7. K -> pi pi Phenomenology in the Presence of Electromagnetism

    E-Print Network [OSTI]

    Vincenzo Cirigliano; John F. Donoghue; Eugene Golowich

    2000-08-28

    We describe the influence of electromagnetism on the phenomenology of K -> pi pi decays. This is required because the present data were analyzed without inclusion of electromagnetic radiative corrections, and hence contain several ambiguities and uncertainties which we describe in detail. Our presentation includes a full description of the infrared effects needed for a new experimental analysis. It also describes the general treatment of final state interaction phases, needed because Watson's theorem is no longer valid in the presence of electromagnetism. The phase of the isospin-two amplitude A_2 may be modified by 50% -> 100%. We provide a tentative analysis using present data in order to illustrate the sensitivity to electromagnetic effects, and also discuss how the standard treatment of epsilon'/epsilon is modified.

  8. Electromagnetic WavesElectromagnetic Waves In this chapter we will review selected properties of electromagnetic waves since

    E-Print Network [OSTI]

    Rutledge, Steven

    Electromagnetic WavesElectromagnetic Waves In this chapter we will review selected properties of electromagnetic waves since radar involves the transmission, propagation and scattering of EM waves by various is the electrostatic force between two point charges. #12;Electromagnetic WavesElectromagnetic Waves Electric fields

  9. Theory of electromagnetic fluctuations for magnetized multi-species plasmas

    SciTech Connect (OSTI)

    Navarro, Roberto E. Muñoz, Víctor; Araneda, Jaime; Moya, Pablo S.; Viñas, Adolfo F.; Valdivia, Juan A.

    2014-09-15

    Analysis of electromagnetic fluctuations in plasma provides relevant information about the plasma state and its macroscopic properties. In particular, the solar wind persistently sustains a small but detectable level of magnetic fluctuation power even near thermal equilibrium. These fluctuations may be related to spontaneous electromagnetic fluctuations arising from the discreteness of charged particles. Here, we derive general expressions for the plasma fluctuations in a multi-species plasma following arbitrary distribution functions. This formalism, which generalizes and includes previous works on the subject, is then applied to the generation of electromagnetic fluctuations propagating along a background magnetic field in a plasma of two proton populations described by drifting bi-Maxwellians.

  10. A Connection between Gravitation and Electromagnetism

    E-Print Network [OSTI]

    D. M. Snyder

    2000-02-16

    It is argued that there is a connection between the fundamental forces of electromagnetism and gravitation. This connection occurs because of: 1) the fundamental significance of the finite and invariant velocity of light in inertial reference frames in the special theory, and 2) the reliance of the general theory of relativity upon the special theory of relativity locally in spacetime. The connection between the fundamental forces of electromagnetism and gravitation follows immediately from these two points. A brief review is provided of: 1) the role of the finite and invariant velocity of light in inertial reference frames in the special theory, and 2) certain fundamental concepts of the general theory, including its reliance on the special theory locally.

  11. Spacetime dynamics of spinning particles - exact gravito-electromagnetic analogies

    E-Print Network [OSTI]

    L. Filipe O. Costa; José Natário; Miguel Zilhão

    2015-07-29

    We compare the rigorous equations describing the motion of spinning test particles in gravitational and electromagnetic fields, and show that if the Mathisson-Pirani spin condition holds then exact gravito-electromagnetic analogies emerge. These analogies provide a familiar formalism to treat gravitational problems, as well as a means for comparing the two interactions. Fundamental differences are manifest in the symmetries and time projections of the electromagnetic and gravitational tidal tensors. The physical consequences of the symmetries of the tidal tensors are explored comparing the following analogous setups: magnetic dipoles in the field of non-spinning/spinning charges, and gyroscopes in the Schwarzschild, Kerr, and Kerr-de Sitter spacetimes. The implications of the time-projections of the tidal tensors are illustrated by the work done on the particle in various frames; in particular, a reciprocity is found to exist: in a frame comoving with the particle, the electromagnetic (but not the gravitational) field does work on it, causing a variation of its proper mass; conversely, for "static observers", a stationary gravitomagnetic (but not a magnetic) field does work on the particle, and the associated potential energy is seen to embody the Hawking-Wald spin-spin interaction energy. The issue of hidden momentum, and its counterintuitive dynamical implications, is also analyzed. Finally, a number of issues regarding the electromagnetic interaction are clarified, namely the differences in the dynamics of electric and magnetic dipoles, and the physical meaning of Dixon's equations.

  12. Vibration Harvesting using Electromagnetic Transduction

    E-Print Network [OSTI]

    Waterbury, Andrew

    2011-01-01

    Puers, “Harvesting Energy from Vibrations by a Micromachinedsignal processing using vibration-based power generation,”electromagnetic generator for vibration energy harvesting,”

  13. Electromagnetism on Anisotropic Fractals

    E-Print Network [OSTI]

    Martin Ostoja-Starzewski

    2011-06-08

    We derive basic equations of electromagnetic fields in fractal media which are specified by three indepedent fractal dimensions {\\alpha}_{i} in the respective directions x_{i} (i=1,2,3) of the Cartesian space in which the fractal is embedded. To grasp the generally anisotropic structure of a fractal, we employ the product measure, so that the global forms of governing equations may be cast in forms involving conventional (integer-order) integrals, while the local forms are expressed through partial differential equations with derivatives of integer order but containing coefficients involving the {\\alpha}_{i}'s. First, a formulation based on product measures is shown to satisfy the four basic identities of vector calculus. This allows a generalization of the Green-Gauss and Stokes theorems as well as the charge conservation equation on anisotropic fractals. Then, pursuing the conceptual approach, we derive the Faraday and Amp\\`ere laws for such fractal media, which, along with two auxiliary null-divergence conditions, effectively give the modified Maxwell equations. Proceeding on a separate track, we employ a variational principle for electromagnetic fields, appropriately adapted to fractal media, to independently derive the same forms of these two laws. It is next found that the parabolic (for a conducting medium) and the hyperbolic (for a dielectric medium) equations involve modified gradient operators, while the Poynting vector has the same form as in the non-fractal case. Finally, Maxwell's electromagnetic stress tensor is reformulated for fractal systems. In all the cases, the derived equations for fractal media depend explicitly on fractal dimensions and reduce to conventional forms for continuous media with Euclidean geometries upon setting the dimensions to integers.

  14. Gravitation and electromagnetism

    E-Print Network [OSTI]

    V. P. Dmitriyev

    2002-07-23

    Maxwell's equations comprise both electromagnetic and gravitational fields. The transverse part of the vector potential belongs to magnetism, the longitudinal one is concerned with gravitation. The Coulomb gauge indicates that longitudinal components of the fields propagate instantaneously. The delta-function singularity of the field of the divergence of the vector potential, referred to as the dilatation center, represents an elementary agent of gravitation. Viewing a particle as a source or a scattering center of the point dilatation, the Newton's gravitation law can be reproduced.

  15. Electromagnetic Probes in PHENIX

    E-Print Network [OSTI]

    Gabor David

    2006-09-21

    Electromagnetic probes are arguably the most universal tools to study the different physics processes in high energy hadron and heavy ion collisions. In this paper we summarize recent measurements of real and virtual direct photons at central rapidity by the PHENIX experiment at RHIC in p+p, d+Au and Au+Au collisions. We also discuss the impact of the results and the constraints they put on theoretical models. At the end we report on the immediate as well as on the mid-term future of photon measurements at RHIC.

  16. One dimensional electromagnetic relativistic PIC-hydrodynamic hybrid simulation code H-VLPL

    E-Print Network [OSTI]

    Grimm, Volker

    One dimensional electromagnetic relativistic PIC-hydrodynamic hybrid simulation code H-VLPL (Hybrid full electromagnetic relativistic hybrid plasma model. The full kinetic particle-in cell (PIC, there is a demand to simulate high density plasmas, e.g., in the experiments where the laser pulse interacts

  17. Stopping supersonic oxygen with a series of pulsed electromagnetic coils: A molecular coilgun Edvardas Narevicius,1

    E-Print Network [OSTI]

    Texas at Austin. University of

    Stopping supersonic oxygen with a series of pulsed electromagnetic coils: A molecular coilgun, using a series of pulsed electromagnetic coils. A series of coils is fired in a timed sequence to bring in some experiments by interactions with pulsed electric fields Stark decelerator 4­6 , by inter- actions

  18. Electromagnetic Surface Wave Propagation Applicable to UltraHigh Energy Neutrino

    E-Print Network [OSTI]

    Electromagnetic Surface Wave Propagation Applicable to UltraHigh Energy Neutrino Detection Peter ultrahigh energy cosmic rays (UHECR), which would typically interact very close to the surface. Since of electromagnetic surface waves and their propagation is presented. The charged particle shower is modelled

  19. The universal C*-algebra of the electromagnetic field

    E-Print Network [OSTI]

    Buchholz, Detlev; Ruzzi, Giuseppe; Vasselli, Ezio

    2015-01-01

    A universal C*-algebra of the electromagnetic field is constructed. It is represented in any quantum field theory which incorporates electromagnetism and expresses basic features of this field such as Maxwell's equations, Poincar\\'e covariance and Einstein causality. Moreover, topological properties of the field resulting from Maxwell's equations are encoded in the algebra, leading to commutation relations with values in its center. The representation theory of the algebra is discussed with focus on vacuum representations, fixing the dynamics of the field.

  20. Does the Poynting vector always represent electromagnetic power flow?

    E-Print Network [OSTI]

    Changbiao Wang

    2015-07-07

    Poynting vector as electromagnetic power flow has prevailed over one hundred years in the community. However in this paper, it is shown from Maxwell equations that the Poynting vector may not represent the electromagnetic power flow for a plane wave in a non-dispersive, lossless, non-conducting, anisotropic uniform medium; this important conclusion revises the conventional understanding of Poynting vector. It is also shown that this conclusion is clearly supported by Fermat's principle and special theory of relativity.

  1. Does the Poynting vector always represent electromagnetic power flow?

    E-Print Network [OSTI]

    Wang, Changbiao

    2015-01-01

    Poynting vector as electromagnetic power flow has prevailed over one hundred years in the community. However in this paper, it is shown from Maxwell equations that the Poynting vector may not represent the electromagnetic power flow for a plane wave in a non-dispersive, lossless, non-conducting, anisotropic uniform medium; this important conclusion revises the conventional understanding of Poynting vector. It is also shown that this conclusion is clearly supported by Fermat's principle and special theory of relativity.

  2. Geometrical Interpretation of Electromagnetism in 5-Dimensional Manifold

    E-Print Network [OSTI]

    Kim, TaeHun

    2015-01-01

    In this paper Kaluza-Klein theory is revisited and its implications are elaborated. We show that electromagnetic 4-potential is a deformation factor of a 5-dimensional (5D) manifold along the fifth (5th) axis. The charge-to-mass ratio has a physical meaning as the ratio of the movement along the direction of the 5th axis to the movement in the 4D space-time. Examinations on the interaction between particles registered by different observers suggest a covariance breaking of the 5th dimension. In order to have a 5D matter which is consistent with the construction of the 5D manifold, a notion of particle-thread is considered. Finally, the field equations which extend the Einstein field equations give the total energy-momentum tensor as a sum of that of matter, electromagnetic field, and the interaction between electric current and electromagnetic field.

  3. Geometrical Interpretation of Electromagnetism in 5-Dimensional Manifold

    E-Print Network [OSTI]

    TaeHun Kim; Hyunbyuk Kim

    2015-07-12

    In this paper Kaluza-Klein theory is revisited and its implications are elaborated. We show that electromagnetic 4-potential is a deformation factor of a 5-dimensional (5D) manifold along the fifth (5th) axis. The charge-to-mass ratio has a physical meaning as the ratio of the movement along the direction of the 5th axis to the movement in the 4D space-time. Examinations on the interaction between particles registered by different observers suggest a covariance breaking of the 5th dimension. In order to have a 5D matter which is consistent with the construction of the 5D manifold, a notion of particle-thread is considered. Finally, the field equations which extend the Einstein field equations give the total energy-momentum tensor as a sum of that of matter, electromagnetic field, and the interaction between electric current and electromagnetic field.

  4. Theory of Dipole Induced Electromagnetic Transparency

    E-Print Network [OSTI]

    Puthumpally-Joseph, Raiju; Sukharev, Maxim; Charron, Eric

    2015-01-01

    A detailed theory describing linear optics of vapors comprised of interacting multi-level quantum emitters is proposed. It is shown both by direct integration of Maxwell-Bloch equations and using a simple analytical model that at large densities narrow transparency windows appear in otherwise completely opaque spectra. The existence of such windows is attributed to overlapping resonances. This effect, first introduced for three-level systems in [R. Puthumpally-Joseph, M. Sukharev, O. Atabek and E. Charron, Phys. Rev. Lett. 113, 163603 (2014)], is due to strongly enhanced dipole-dipole interactions at high emitters' densities. The presented theory extends this effect to the case of multilevel systems. The theory is applied to the D1 transitions of interacting Rb-85 atoms. It is shown that at high atomic densities, Rb-85 atoms can behave as three-level emitters exhibiting all the properties of dipole induced electromagnetic transparency. Applications including slow light and laser pulse shaping are also propose...

  5. The Role of Repeated Interactions, Self-Enforcing Agreements and Relational [Sub]Contracting: Evidence from California Highway Procurement Auctions

    E-Print Network [OSTI]

    Gil, Ricard; Marion, Justin

    2009-01-01

    interactions for oil well drilling in Texas. contracts areon the productivity of well drilling in Texas. Our paper di?

  6. The Role of Repeated Interactions, Self-Enforcing Agreements and Relational [Sub]Contracting: Evidence from California Highway Procurement Auctions

    E-Print Network [OSTI]

    Gil, Ricard; Marion, Justin

    2009-01-01

    interactions for oil well drilling in Texas. stock of prioron the productivity of well drilling in Texas. Our paper

  7. Electromagnetic corrections to pseudoscalar decay constants

    E-Print Network [OSTI]

    Benjamin Glaessle; Gunnar S. Bali

    2011-11-16

    The effects of electromagnetic interactions on pseudoscalar decay constants are investigated. Using a compact QED and QCD action we are able to resolve differences of about 0.1 MeV. We obtain the preliminary results f_pi^0-f_pi^+/- =0.09(3) MeV and f_D^0-f_D^+/- =0.79(11) MeV for light and charmed pseudoscalar decay constants on a N_f=2 nonperturbatively improved Sheikholeslami-Wohlert ensemble.

  8. Nuclear electromagnetic pulse and the electric power system

    SciTech Connect (OSTI)

    Legro, J.R.; Reed, T.J.

    1985-01-01

    A single, high-altitude nuclear detonation over the continental United States can expose large geographic areas to transient, electromagnetic pulse (EMP). The initial electromagnetic fields produced by this event have been defined as high-altitude electromagnetic pulse (HEMP). Later-time, low frequency fields have been defined as magnetohydrodynamic-electromagnetic pulse (MHD-EMP). Nuclear detonations at, or near the surface of the earth can also produce transient EMP. These electromagnetic phenomena have been defined as source region electromagnetic pulse (SREMP). The Division of Electric Energy Systems (EES) of the United States Department of Energy (DOE) has formulated and implemented a Program Plan to assess the possible effects of the above nuclear EMP on civilian electric power systems. This unclassified research effort is under the technical leadership of the Oak Ridge National Laboratory. This paper presents a brief perspective of EMP phenomenology and important interaction issues for power systems based on research performed by Westinghouse Advanced Systems Technology as a principal subcontractor in the research effort.

  9. Quantum theory of dispersive electromagnetic modes P. D. Drummond

    E-Print Network [OSTI]

    Queensland, University of

    Quantum theory of dispersive electromagnetic modes P. D. Drummond Department of Physics proposals--have the character of fundamental tests of the quantum theory of interacting fields 7 Received 15 June 1998 A quantum theory of dispersion for an inhomogeneous solid is obtained, from

  10. On unification of gravitation and electromagnetism in the framework of a general-relativistic approach

    E-Print Network [OSTI]

    Alexander A. Chernitskii

    2009-07-13

    We consider the unification problem for the gravitational and electromagnetic interactions and its possible solution on the basis of the existence of an effective Riemannian space in nonlinear electrodynamics

  11. Electromagnetic Radiation in Hot QCD Matter: Rates, Electric Conductivity, Flavor Susceptibility and Diffusion

    E-Print Network [OSTI]

    Chang-Hwan Lee; Ismail Zahed

    2014-03-07

    We discuss the general features of the electromagnetic radiation from a thermal hadronic gas as constrained by chiral symmetry. The medium effects on the electromagnetic spectral functions and the partial restoration of chiral symmetry are quantified in terms of the pion densities. The results are compared with the electromagnetic radiation from a strongly interacting quark-gluon plasma in terms of the leading gluon condensate operators. We use the spectral functions as constrained by the emission rates to estimate the electric conductivity, the light flavor susceptibility and diffusion constant across the transition from the correlated hadronic gas to a strongly interacting quark-gluon plasma.

  12. Analog Electromagnetism in a Symmetrized $^3$He-A

    E-Print Network [OSTI]

    Jacek Dziarmaga

    2001-12-18

    We derive a low temperature effective action for the order parameter in a symmetrized phase A of helium 3, where the Fermi velocity equals the transversal velocity of low energy fermionic quasiparticles. The effective action has a form of the electromagnetic action. This analog electromagnetism is a part of the program to derive analog gravity and the standard model as a low energy effective theory in a condensed matter system. For the analog gauge field to satisfy the Maxwell equations interactions in $^3$He require special tuning that leads to the symmetric case.

  13. Low- and intermediate-energy nucleon-nucleon interactions and the analysis of deuteron photodisintegration within the dispersion relation technique

    E-Print Network [OSTI]

    A. V. Anisovich; V. A. Sadovnikova

    1999-12-22

    The nucleon-nucleon interaction in the region of the nucleon kinetic energy up to 1000 MeV is analysed together with the reaction $\\gamma d \\to pn$ in the photon energy range $E_{\\gamma}=0-400$ MeV. Nine nucleon-nucleon $s$-channel partial amplitudes are reconstructed in the dispersion relation $N/D$ method: $^1S_0$, $^3S_1-^3D_1$, $^3P_0$, $^1P_1$, $^3P_1$, $^3P_2$, $^1D_2$, $^3D_2$ and $^3F_3$. Correspondingly, the dispersive representation of partial amplitudes $N\\Delta \\to pn$, $NN^* \\to pn$ and $NN\\pi \\to pn$ is given. Basing on that, we have performed parameter-free calculation of the amplitude $\\gamma d \\to pn$, taking into account: $(i)$ pole diagram, $(ii)$ nucleon-nucleon final-state rescattering $\\gamma d \\to pn \\to pn$, and $(iii)$ inelastic final-state rescatterings $\\gamma d \\to N\\Delta(1232) \\to pn$, $\\gamma d \\to NN^*(1400) \\to pn$ and $\\gamma d \\to NN\\pi \\to pn$. The $\\gamma d \\to pn$ partial amplitudes for nine above-mentioned channels are found. It is shown that the process $\\gamma d \\to pn \\to pn$ is significant for the waves $^1S_0$, $^3P_0$, $^3P_1$, at $E_{\\gamma} =50 -100$ MeV, while $\\gamma d \\to N\\Delta \\to pn$ for the waves $^3P_2$, $^1D_2$,$^3F_3$ dominates at $E_{\\gamma} > 300$ MeV. Meson exchange current contributions into the deuteron disintegration are estimated: they are significant at $E_\\gamma =100-400$ MeV.

  14. The electromagnetic model of Gamma Ray Bursts

    E-Print Network [OSTI]

    Maxim Lyutikov

    2005-12-13

    I describe electromagnetic model of gamma ray bursts and contrast its main properties and predictions with hydrodynamic fireball model and its magnetohydrodynamical extension. The electromagnetic model assumes that rotational energy of a relativistic, stellar-mass central source (black-hole--accretion disk system or fast rotating neutron star) is converted into magnetic energy through unipolar dynamo mechanism, propagated to large distances in a form of relativistic, subsonic, Poynting flux-dominated wind and is dissipated directly into emitting particles through current-driven instabilities. Thus, there is no conversion back and forth between internal and bulk energies as in the case of fireball model. Collimating effects of magnetic hoop stresses lead to strongly non-spherical expansion and formation of jets. Long and short GRBs may develop in a qualitatively similar way, except that in case of long bursts ejecta expansion has a relatively short, non-relativistic, strongly dissipative stage inside the star. Electromagnetic and fireball models (as well as strongly and weakly magnetized fireballs) lead to different early afterglow dynamics, before deceleration time. Finally, I discuss the models in view of latest observational data in the Swift era.

  15. 22.51 Interaction of Radiation with Matter, Spring 2003

    E-Print Network [OSTI]

    Chen, Sow-Hsin

    Basic principles of interaction of electromagnetic radiation, thermal neutrons, and charged particles with matter. Introduces classical electrodynamics, quantum theory of radiation, time-dependent perturbation theory, ...

  16. Electromagnetic Signals from Bacterial DNA

    E-Print Network [OSTI]

    A. Widom; J. Swain; Y. N. Srivastava; S. Sivasubramanian

    2012-02-09

    Chemical reactions can be induced at a distance due to the propagation of electromagnetic signals during intermediate chemical stages. Although is is well known at optical frequencies, e.g. photosynthetic reactions, electromagnetic signals hold true for muck lower frequencies. In E. coli bacteria such electromagnetic signals can be generated by electric transitions between energy levels describing electrons moving around DNA loops. The electromagnetic signals between different bacteria within a community is a "wireless" version of intercellular communication found in bacterial communities connected by "nanowires". The wireless broadcasts can in principle be of both the AM and FM variety due to the magnetic flux periodicity in electron energy spectra in bacterial DNA orbital motions.

  17. Position-dependent photon operators in the quantization of the electromagnetic field in dielectrics at local thermal equilibrium

    E-Print Network [OSTI]

    Mikko Partanen; Teppo Häyrynen; Jani Oksanen; Jukka Tulkki

    2014-12-02

    It has very recently been suggested that asymmetric coupling of electromagnetic fields to thermal reservoirs under nonequilibrium conditions can produce unexpected oscillatory behavior in the local photon statistics in layered structures. Better understanding of the predicted phenomena could enable useful applications related to thermometry, noise filtering, and enhancing optical interactions. In this work we briefly review the field quantization and study the local steady state temperature distributions in optical cavities formed of lossless and lossy media to show that also local field temperatures exhibit oscillations that depend on position as well as the photon energy.

  18. Electromagnetic Calorimeter for HADES

    E-Print Network [OSTI]

    W. Czyzycki; E. Epple; L. Fabbietti; M. Golubeva; F. Guber; A. Ivashkin; M. Kajetanowicz; A. Krasa; F. Krizek; A. Kugler; K. Lapidus; E. Lisowski; J. Pietraszko; A. Reshetin; P. Salabura; Y. Sobolev; J. Stanislav; P. Tlusty; T. Torrieri; M. Traxler

    2011-11-28

    We propose to build the Electromagnetic calorimeter for the HADES di-lepton spectrometer. It will enable to measure the data on neutral meson production from nucleus-nucleus collisions, which are essential for interpretation of dilepton data, but are unknown in the energy range of planned experiments (2-10 GeV per nucleon). The calorimeter will improve the electron-hadron separation, and will be used for detection of photons from strange resonances in elementary and HI reactions. Detailed description of the detector layout, the support structure, the electronic readout and its performance studied via Monte Carlo simulations and series of dedicated test experiments is presented. The device will cover the total area of about 8 m^2 at polar angles between 12 and 45 degrees with almost full azimuthal coverage. The photon and electron energy resolution achieved in test experiments amounts to 5-6%/sqrt(E[GeV]) which is sufficient for the eta meson reconstruction with S/B ratio of 0.4% in Ni+Ni collisions at 8 AGeV. A purity of the identified leptons after the hadron rejection, resulting from simulations based on the test measurements, is better than 80% at momenta above 500 MeV/c, where time-of-flight cannot be used.

  19. SOLAR NANTENNA ELECTROMAGNETIC COLLECTORS

    SciTech Connect (OSTI)

    Steven D. Novack; Dale K. Kotter; Dennis Slafer; Patrick Pinhero

    2008-08-01

    This research explores a new efficient approach for producing electricity from the abundant energy of the sun. A nanoantenna electromagnetic collector (NEC) has been designed, prototyped, and tested. Proof of concept has been validated. The device targets mid-infrared wavelengths where conventional photovoltaic (PV) solar cells do not respond but is abundant in solar energy. The initial concept of designing NEC antennas was based on scaling of radio frequency antenna theory. This approach has proven unsuccessful by many due to not fully understanding and accounting for the optical behavior of materials in the THz region. Also until recent years the nanofabrication methods were not available to fabricate the optical antenna elements. We have addressed and overcome both technology barriers. Several factors were critical in successful implementation of NEC including: 1) frequency-dependent modeling of antenna elements, 2) selection of materials with proper THz properties and 3) novel manufacturing methods that enable economical large-scale manufacturing. The work represents an important step toward the ultimate realization of a low-cost device that will collect as well as convert this radiation into electricity, which will lead to a wide spectrum, high conversion efficiency, and low cost solution to complement conventional PVs.

  20. Black Hole Thermodynamics and Electromagnetism

    E-Print Network [OSTI]

    Burra G. Sidharth

    2005-07-15

    We show a strong parallel between the Hawking, Beckenstein black hole Thermodynamics and electromagnetism: When the gravitational coupling constant transform into the electromagnetic coupling constant, the Schwarzchild radius, the Beckenstein temperature, the Beckenstein decay time and the Planck mass transform to respectively the Compton wavelength, the Hagedorn temperature, the Compton time and a typical elementary particle mass. The reasons underlying this parallalism are then discussed in detail.

  1. iWRAP: An Interface Threading Approach with Application to Prediction of Cancer-Related Protein–Protein Interactions

    E-Print Network [OSTI]

    Hosur, Raghavendra

    Current homology modeling methods for predicting protein–protein interactions (PPIs) have difficulty in the “twilight zone” (< 40%) of sequence identities. Threading methods extend coverage further into the twilight zone ...

  2. Properties of electrons scattered on a strong plane electromagnetic wave with a linear polarization: classical treatment

    E-Print Network [OSTI]

    Bogdanov, O V

    2014-01-01

    The relations among the components of the exit momenta of ultrarelativistic electrons scattered on a strong electromagnetic wave of a low (optical) frequency and linear polarization are established using the exact solutions to the equations of motion with radiation reaction included (the Landau-Lifshitz equation). It is found that the momentum components of the electrons traversed the electromagnetic wave depend weakly on the initial values of the momenta. These electrons are mostly scattered at the small angles to the direction of propagation of the electromagnetic wave. The maximum Lorentz factor of the electrons crossed the electromagnetic wave is proportional to the work done by the electromagnetic field and is independent of the initial momenta. The momentum component parallel to the electric field strength vector of the electromagnetic wave is determined only by the diameter of the laser beam measured in the units of the classical electron radius. As for the reflected electrons, they for the most part l...

  3. Testing black hole candidates with electromagnetic radiation

    E-Print Network [OSTI]

    Bambi, Cosimo

    2015-01-01

    Astrophysical black hole candidates are thought to be the Kerr black holes of general relativity, but there is currently no direct observational evidence that the spacetime geometry around these objects is described by the Kerr solution. The study of the properties of the electromagnetic radiation emitted by gas or stars orbiting these objects can potentially test the Kerr black hole hypothesis. In this paper, I review the state of the art of this research field, describing the possible approaches to test the Kerr metric with current and future observational facilities and discussing current constraints.

  4. Surface electromagnetic wave equations in a warm magnetized quantum plasma

    SciTech Connect (OSTI)

    Li, Chunhua; Yang, Weihong [Department of Modern Physics, University of Science and Technology of China, 230026 Hefei (China); Wu, Zhengwei, E-mail: wuzw@ustc.edu.cn [Department of Modern Physics, University of Science and Technology of China, 230026 Hefei (China); Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon (Hong Kong); Center of Low Temperature Plasma Application, Yunnan Aerospace Industry Company, Kunming, 650229 Yunnan (China); Chu, Paul K. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon (Hong Kong)

    2014-07-15

    Based on the single-fluid plasma model, a theoretical investigation of surface electromagnetic waves in a warm quantum magnetized inhomogeneous plasma is presented. The surface electromagnetic waves are assumed to propagate on the plane between a vacuum and a warm quantum magnetized plasma. The quantum magnetohydrodynamic model includes quantum diffraction effect (Bohm potential), and quantum statistical pressure is used to derive the new dispersion relation of surface electromagnetic waves. And the general dispersion relation is analyzed in some special cases of interest. It is shown that surface plasma oscillations can be propagated due to quantum effects, and the propagation velocity is enhanced. Furthermore, the external magnetic field has a significant effect on surface wave's dispersion equation. Our work should be of a useful tool for investigating the physical characteristic of surface waves and physical properties of the bounded quantum plasmas.

  5. Division of the Energy and of the Momentum of Electromagnetic Waves in Linear Media into Electromagnetic and Material Parts

    E-Print Network [OSTI]

    Pablo L. Saldanha

    2011-02-02

    We defend a natural division of the energy density, energy flux and momentum density of electromagnetic waves in linear media in electromagnetic and material parts. In this division, the electromagnetic part of these quantities have the same form as in vacuum when written in terms of the macroscopic electric and magnetic fields, the material momentum is calculated directly from the Lorentz force that acts on the charges of the medium, the material energy is the sum of the kinetic and potential energies of the charges of the medium and the material energy flux results from the interaction of the electric field with the magnetized medium. We present reasonable models for linear dispersive non-absorptive dielectric and magnetic media that agree with this division. We also argue that the electromagnetic momentum of our division can be associated with the electromagnetic relativistic momentum, inspired on the recent work of Barnett [Phys. Rev. Lett. 104, 070401 (2010)] that showed that the Abraham momentum is associated with the kinetic momentum and the Minkowski momentum is associated with the canonical momentum.

  6. Electromagnetic fields: Biological and clinical aspects

    SciTech Connect (OSTI)

    Tabrah, F.L.; Batkin, S. (Department of Physiology, University of Hawaii School of Medicine, Honolulu (USA))

    1991-03-01

    Our entire biosphere is immersed in a sea of man-made electromagnetic fields (EMF). Occupational and public health data suggest that these fields may be a health hazard, possibly involving cancer and fetal loss. This paper reviews the history and pertinent physics of electromagnetic fields and presents evidence from the authors' work, and that of others, of biological interaction with living systems. Epidemiological data suggesting EMF hazards are reviewed including a discussion of possible risks associated with Hawaii's Lualualei transmitter site, TV and FM antennas in high-density population areas, fields surrounding electric power transmission and computer terminals, and the plan to route a major highway through the near-field of an operating Omega signal-source. In the face of current public fear and controversial research reports about long-term EMF exposure, suggestions are presented for public policy about these local sources of concern, as well as for the EMF risks common to any similarly developed areas. 30 refs.

  7. One-electron self-interaction and the asymptotics of the Kohn-Sham potential: an impaired relation

    E-Print Network [OSTI]

    Schmidt, Tobias; Kronik, Leeor; Kümmel, Stephan

    2015-01-01

    One-electron self-interaction and an incorrect asymptotic behavior of the Kohn-Sham exchange-correlation potential are among the most prominent limitations of many present-day density functionals. However, a one-electron self-interaction-free energy does not necessarily lead to the correct long-range potential. This is here shown explicitly for local hybrid functionals. Furthermore, carefully studying the ratio of the von Weizs\\"acker kinetic energy density to the (positive) Kohn-Sham kinetic energy density, $\\tau_\\mathrm{W}/\\tau$, reveals that this ratio, which frequently serves as an iso-orbital indicator and is used to eliminate one-electron self-interaction effects in meta-generalized-gradient approximations and local hybrid functionals, can fail to approach its expected value in the vicinity of orbital nodal planes. This perspective article suggests that the nature and consequences of one-electron self-interaction and some of the strategies for its correction need to be reconsidered.

  8. A characterization of the electromagnetic stress-energy tensor

    E-Print Network [OSTI]

    J. Navarro; J. B. Sancho

    2011-01-13

    In a previous paper, we pointed out how a dimensional analysis of the stress-energy tensor of the gravitational field allows to derive the field equation of General Relativity. In this note, we comment an analogous reasoning in presence of a 2-form, that allows to characterize the so called electromagnetic stress-energy tensor.

  9. Electromagnetic source localization with finite set of frequency measurements

    E-Print Network [OSTI]

    Abdul Wahab; Amer Rasheed; Rab Nawaz; Saman Anjum

    2014-09-16

    A phase conjugation algorithm for localizing an extended radiating electromagnetic source from boundary measurements of the electric field is presented. Measurements are taken over a finite number of frequencies. The artifacts related to the finite frequency data are tackled with $l_1-$regularization blended with the fast iterative shrinkage-thresholding algorithm with backtracking of Beck & Teboulle.

  10. A New Electromagnetic Valve Actuator W. S. Chang

    E-Print Network [OSTI]

    Perreault, Dave

    A New Electromagnetic Valve Actuator W. S. Chang , T. A. Parlikar , M. D. Seeman , D. J. Perreault--In conventional internal combustion (IC) engines, en- gine valve displacements are fixed relative to crankshaft position. If these valves are actuated as a variable function of crankshaft an- gle, significant

  11. ECE 341: Electromagnetic Fields I EM devices and systems

    E-Print Network [OSTI]

    Schumacher, Russ

    - Power systems - Electromagnetic compatibility - Modeling of transmission lines - Communications model electric and magnetic properties of material media in relation with field equations - Understands and appreciates EM field theory as a foundation of circuit theory and electrical engineering as a whole Maxwell

  12. Electromagnetic radiation by gravitating bodies

    E-Print Network [OSTI]

    Iwo Bialynicki-Birula; Zofia Bialynicka-Birula

    2008-05-06

    Gravitating bodies in motion, regardless of their constitution, always produce electromagnetic radiation in the form of photon pairs. This phenomenon is an analog of the radiation caused by the motion of dielectric (or magnetic) bodies. It is a member of a wide class of phenomena named dynamical Casimir effects, and it may be viewed as the squeezing of the electromagnetic vacuum. Production of photon pairs is a purely quantum-mechanical effect. Unfortunately, as we show, the emitted radiation is extremely weak as compared to radiation produced by other mechanisms.

  13. Vacuum birefringence in strong inhomogeneous electromagnetic fields

    E-Print Network [OSTI]

    Karbstein, Felix; Reuter, Maria; Zepf, Matt

    2015-01-01

    Birefringence is one of the fascinating properties of the vacuum of quantum electrodynamics (QED) in strong electromagnetic fields. The scattering of linearly polarized incident probe photons into a perpendicularly polarized mode provides a distinct signature of the optical activity of the quantum vacuum and thus offers an excellent opportunity for a precision test of non-linear QED. Precision tests require accurate predictions and thus a theoretical framework that is capable of taking the detailed experimental geometry into account. We derive analytical solutions for vacuum birefringence which include the spatio-temporal field structure of a strong optical pump laser field and an x-ray probe. We show that the angular distribution of the scattered photons depends strongly on the interaction geometry and find that scattering of the perpendicularly polarized scattered photons out of the cone of the incident probe x-ray beam is the key to making the phenomenon experimentally accessible with the current generatio...

  14. Electromagnetic low-energy constants in ChPT

    E-Print Network [OSTI]

    Christoph Haefeli; Mikhail A. Ivanov; Martin Schmid

    2007-10-29

    We investigate three-flavour chiral perturbation theory including virtual photons in a limit where the strange quark mass is much larger than the external momenta and the up and down quark masses, and where the external fields are those of two-flavour chiral perturbation theory. In particular we work out the strange quark mass dependence of the electromagnetic two-flavour low-energy constants C and k_i. We expect that these relations will be useful for a more precise determination of the electromagnetic low-energy constants.

  15. On the computational modeling of the viscosity of colloidal dispersions and its relation with basic molecular interactions

    E-Print Network [OSTI]

    A. Gama Goicochea; M. A. Balderas Altamirano; R. Lopez-Esparza; M. A. Waldo; E. Perez

    2015-06-20

    The connection between fundamental interactions acting in molecules in a fluid and macroscopically measured properties, such as the viscosity between colloidal particles coated with polymers, is studied here. The role that hydrodynamic and Brownian forces play in colloidal dispersions is also discussed. It is argued that many body systems in which all these interactions take place can be accurately solved using computational simulation tools. One of those modern tools is the technique known as dissipative particle dynamics, which incorporates Brownian and hydrodynamic forces, as well as basic conservative interactions. A case study is reported, as an example of the applications of this technique, which consists of the prediction of the viscosity and friction between two opposing parallel surfaces covered with polymer chains, under the influence of a steady flow. This work is intended to serve as an introduction to the subject of colloidal dispersions and computer simulations, for last year undergraduate students and beginning graduate students who are interested in beginning research in soft matter systems. To that end, a computational code is included that students can use right away to study complex fluids in equilibrium.

  16. Three dimensional electromagnetic wavepackets in a plasma: Spatiotemporal modulational instability

    SciTech Connect (OSTI)

    Borhanian, J.; Hosseini Faradonbe, F.

    2014-04-15

    The nonlinear interaction of an intense electromagnetic beam with relativistic collisionless unmagnetized plasma is investigated by invoking the reductive perturbation technique, resting on the model of three-dimensional nonlinear Schrödinger (NLS) equation with cubic nonlinearity which incorporates the effects of self-focusing, self-phase modulation, and diffraction on wave propagation. Relying on the derived NLS equation, the occurrence of spatiotemporal modulational instability is investigated in detail.

  17. The Electromagnetic Field as a Synchrony Gauge Field

    E-Print Network [OSTI]

    Robert D. Bock

    2015-09-24

    Building on our previous work, we investigate the identification of the electromagnetic field as a local gauge field of a restricted group of synchrony transformations. We begin by arguing that the inability to measure the one-way speed of light independent of a synchronization scheme necessitates that physical laws must be reformulated without distant simultaneity. As a result, we are forced to introduce a new operational definition of time which leads to a fundamental space-time invariance principle that is related to a subset of the synchrony group. We identify the gauge field associated with this new invariance principle with the electromagnetic field. Consequently, the electromagnetic field acquires a space-time interpretation, as suggested in our previous work. In addition, we investigate the static, spherically symmetric solution of the resulting field equations. Also, we discuss implications of the present work for understanding the tension between classical and quantum theory.

  18. The Electromagnetic Field as a Synchrony Gauge Field

    E-Print Network [OSTI]

    Bock, Robert D

    2015-01-01

    Building on our previous work, we investigate the identification of the electromagnetic field as a local gauge field of a restricted group of synchrony transformations. We begin by arguing that the inability to measure the one-way speed of light independent of a synchronization scheme necessitates that physical laws must be reformulated without distant simultaneity. As a result, we are forced to introduce a new operational definition of time which leads to a fundamental space-time invariance principle that is related to a subset of the synchrony group. We identify the gauge field associated with this new invariance principle with the electromagnetic field. Consequently, the electromagnetic field acquires a space-time interpretation, as suggested in our previous work. In addition, we investigate the static, spherically symmetric solution of the resulting field equations. Also, we discuss implications of the present work for understanding the tension between classical and quantum theory.

  19. Electromagnetic dissociation of relativistic {sup 28}Si by nucleon emission

    SciTech Connect (OSTI)

    Sonnadara, U.J.

    1992-12-01

    A detailed study of the electromagnetic dissociation of {sup 28}Si by nucleon emission at E{sub lab}/A = 14.6 (GeV/nucleon was carried out with {sup 28}Si beams interacting on {sup 208}Pb). {sup 120}Sn. {sup 64}C targets. The measurements apparatus consists of detectors in the target area which measure the energy and charged multiplicity, and a forward spectrometer which measures the position, momentum and energy of the reaction fragments. The exclusive electromagnetic dissociation cross sections for decay channels having multiple nucleons in the final state have been measured which enables the selection of events produced in pure electromagnetic interactions. The measured cross sections agree well with previous measurements obtained for the removal of a few nucleons as well as with measurements on total charge removal cross sections from other experiments. The dependence of the integrated cross sections on the target charge Z{sub T} and the target mass AT confirms that for higher Z targets the excitation is largely electromagnetic. Direct measurements of the excitation energy for the electromagnetic dissociation of {sup 28}Si {yields} p+{sup 27}Al and {sup 28}Si {yields} n+{sup 27}Si have been obtained through a calculation of the invariant mass in kinematically, reconstructed events. The excitation energy spectrum for all targets peak near the isovector giant dipole resonance in {sup 28}Si. These distributions are well reproduced by combining the photon spectrum calculated using the Weizsaecker-Williams approximation with the experimental data on the photonuclear {sup 28}Si({sub {gamma},p}){sup 27}Al and {sup 28}Si({sub {gamma},n}){sup 27}Si. The possibilities of observing double giant dipole resonance excitations in {sup 28}Si have been investigated with cross section measurements as well as with excitation energy reconstruction.

  20. Electromagnetic dissociation of relativistic [sup 28]Si by nucleon emission

    SciTech Connect (OSTI)

    Sonnadara, U.J.

    1992-12-01

    A detailed study of the electromagnetic dissociation of [sup 28]Si by nucleon emission at E[sub lab]/A = 14.6 (GeV/nucleon was carried out with [sup 28]Si beams interacting on [sup 208]Pb). [sup 120]Sn. [sup 64]C targets. The measurements apparatus consists of detectors in the target area which measure the energy and charged multiplicity, and a forward spectrometer which measures the position, momentum and energy of the reaction fragments. The exclusive electromagnetic dissociation cross sections for decay channels having multiple nucleons in the final state have been measured which enables the selection of events produced in pure electromagnetic interactions. The measured cross sections agree well with previous measurements obtained for the removal of a few nucleons as well as with measurements on total charge removal cross sections from other experiments. The dependence of the integrated cross sections on the target charge Z[sub T] and the target mass AT confirms that for higher Z targets the excitation is largely electromagnetic. Direct measurements of the excitation energy for the electromagnetic dissociation of [sup 28]Si [yields] p+[sup 27]Al and [sup 28]Si [yields] n+[sup 27]Si have been obtained through a calculation of the invariant mass in kinematically, reconstructed events. The excitation energy spectrum for all targets peak near the isovector giant dipole resonance in [sup 28]Si. These distributions are well reproduced by combining the photon spectrum calculated using the Weizsaecker-Williams approximation with the experimental data on the photonuclear [sup 28]Si([sub [gamma],p])[sup 27]Al and [sup 28]Si([sub [gamma],n])[sup 27]Si. The possibilities of observing double giant dipole resonance excitations in [sup 28]Si have been investigated with cross section measurements as well as with excitation energy reconstruction.

  1. Why Study Electromagnetics: The First Unit in an Undergraduate Electromagnetics Course

    E-Print Network [OSTI]

    Taflove, Allen

    1 Why Study Electromagnetics: The First Unit in an Undergraduate Electromagnetics Course Allen unification of electric and magnetic fields predicting electromagnetic wave phenomena which Nobel Laureate: "Of what relevance is the study of electromagnetics to our modern society?" The goal of this unit

  2. STIMULATED ELECTROMAGNETIC EMISSIONS BY HIGH-FREQUENCY ELECTROMAGNETIC PUMPING OF THE

    E-Print Network [OSTI]

    STIMULATED ELECTROMAGNETIC EMISSIONS BY HIGH-FREQUENCY ELECTROMAGNETIC PUMPING OF THE IONOSPHERIC.S.A. Abstract. A high frequency electromagnetic pump wave transmitted into the ionospheric plasma from the ground can stimulate electromagnetic radiation with frequencies around that of the ionospher- ically

  3. EE335 Electromagnetic Theory II Text: Fundamentals of Applied Electromagnetics 5e

    E-Print Network [OSTI]

    Kaiser, Todd J.

    EE335 Electromagnetic Theory II Text: Fundamentals of Applied Electromagnetics 5e Author: Fawwaz T://www.coe.montana.edu/ee/tjkaiser/EE335/ Office Hours: M 9am, W 10am Prerequisites: EE334 Electromagnetic Theory I or permission from: Exam 1 100 Exam 2 100 Exam 3 100 Term paper 100 Homework 100 Final Exam 200 #12;EE 335 Electromagnetic

  4. Electromagnetic Corrections in Staggered Chiral Perturbation Theory

    E-Print Network [OSTI]

    Bernard, Claude

    Electromagnetic Corrections in Staggered Chiral Perturbation Theory C. Bernard and E.D. Freeland perturbation theory including electromagnetism, and discuss the extent to which quenched-photon simulations can-lat]17Nov2010 #12;Electromagnetic Corrections in Staggered Chiral Perturbation Theory E.D. Freeland 1

  5. 611: Electromagnetic Theory Problem Sheet 6

    E-Print Network [OSTI]

    Pope, Christopher

    611: Electromagnetic Theory Problem Sheet 6 (1) Consider the expression for the electric field due · dS over a spherical surface that encloses the moving charge. (2a) Consider an electromagnetic wave density and the Poynting vector. (2c) Repeat the steps in (2a) and (2b) for an electromagnetic wave

  6. Electromagnetic Formation Flight of Satellite Arrays

    E-Print Network [OSTI]

    Electromagnetic Formation Flight of Satellite Arrays Daniel W. Kwon and David W. Miller February 2005 SSL # 2-05 #12;#12;Electromagnetic Formation Flight of Satellite Arrays By DANIEL W. KWON S;#12;Electromagnetic Formation Flight of Satellite Arrays by DANIEL W. KWON Submitted to the Department of Aeronautics

  7. 611: Electromagnetic Theory Problem Sheet 5

    E-Print Network [OSTI]

    Pope, Christopher

    611: Electromagnetic Theory Problem Sheet 5 (1a) The Null Energy Condition on an energy = (k, 0, 0, k), show that the energy-momentum tensor Tµ = 1 4 Fµ F - 1 4µ F F (1) for electromagnetism if the equality kµ k Tµ = 0 is attained. (2) Show that the energy-momentum tensor for electromagnetism can

  8. 611: Electromagnetic Theory Problem Sheet 7

    E-Print Network [OSTI]

    Pope, Christopher

    611: Electromagnetic Theory Problem Sheet 7 (1) Consider the non-relativistic motion of a particle momentum of the particle about the centre of the force at r = 0.) (2a) Consider an electromagnetic wave the energy density and the Poynting vector. (2c) Repeat the steps in (2a) and (2b) for an electromagnetic

  9. 611: Electromagnetic Theory Problem Sheet 6

    E-Print Network [OSTI]

    Pope, Christopher

    611: Electromagnetic Theory Problem Sheet 6 (1) A small test particle (mass m and positive charge q of the orbit. (2a) Consider an electromagnetic wave for which the electric field is given by E = E0 sin t (sin in (2a) and (2b) for an electromagnetic wave for which the electric field is E = E0 cos z (cos t, - sin

  10. 611: Electromagnetic Theory Problem Sheet 5

    E-Print Network [OSTI]

    Pope, Christopher

    611: Electromagnetic Theory Problem Sheet 5 (1) Consider the expression for the electric field due · dS over a spherical surface that encloses the moving charge. (2a) Consider an electromagnetic wave density and the Poynting vector. (2c) Repeat the steps in (2a) and (2b) for an electromagnetic wave

  11. 611: Electromagnetic Theory Problem Sheet 5

    E-Print Network [OSTI]

    Pope, Christopher

    611: Electromagnetic Theory Problem Sheet 5 (1a) Show that the energy-momentum tensor for the electromagnetic field is tracefree, i.e. Tµ µ = 0. What would happen, in a spacetime dimension d = 4? (Assume) Show that the energy-momentum tensor for the electromagnetic field can be written as Tµ = 1 8 (Fµ F

  12. Electromagnetic Interrogation of Dielectric Materials 1

    E-Print Network [OSTI]

    Electromagnetic Interrogation of Dielectric Materials 1 H.T. Banks M.W. Buksas Center for Research grant P200A40730. #12; Abstract We investigate time domain based electromagnetic inverse problems electromagnetic phenomenon. For our purposes, we categorize the materials and the models employed to describe them

  13. Electromagnetic Field Theory Fall 2014 Course Outline

    E-Print Network [OSTI]

    Haimovich, Alexander

    ECE 620 Electromagnetic Field Theory Fall 2014 Course Outline Instructor: Dr. Gerald Whitman Text of electromagnetic phenomena that vary sinusoidally in time. Course Learning Outcome: Students will learn fundamental knowledge of ac electromagnetic theory, which is needed for a broad spectrum of electrical engineering

  14. Solar/Electromagnetic Energy Harvesting and Wireless

    E-Print Network [OSTI]

    Tentzeris, Manos

    INVITED P A P E R Solar/Electromagnetic Energy Harvesting and Wireless Power Transmission This paper reviews numerous existing efforts and solutions in the field of solar and electromagnetic energy of solar/electromagnetic energy harvest- ing and wireless power transmission. More specifically, the paper

  15. A Materials Perspective on Casimir and van der Waals Interactions

    E-Print Network [OSTI]

    Woods, L M; Tkatchenko, A; Rodriguez-Lopez, P; Rodriguez, A W; Podgornik, R

    2015-01-01

    Interactions induced by electromagnetic fluctuations, such as van der Waals and Casimir forces, are of universal nature present at any length scale between any types of systems with finite dimensions. Such interactions are important not only for the fundamental science of materials behavior, but also for the design and improvement of micro- and nano-structured devices. In the past decade, many new materials have become available, which has stimulated the need of understanding their dispersive interactions. The field of van der Waals and Casimir forces has experienced an impetus in terms of developing novel theoretical and computational methods to provide new insights in related phenomena. The understanding of such forces has far reaching consequences as it bridges concepts in materials, atomic and molecular physics, condensed matter physics, high energy physics, chemistry and biology. In this review, we summarize major breakthroughs and emphasize the common origin of van der Waals and Casimir interactions. We...

  16. Electromagnetic Induced Gravitational Perturbations

    E-Print Network [OSTI]

    T. M. Adamo; E. T. Newman

    2008-07-23

    We study the physical consequences of two diffferent but closely related perturbation schemes applied to the Einstein-Maxwell equations. In one case the starting space-time is flat while in the other case it is Schwarzschild. In both cases the perturbation is due to a combined electric and magnetic dipole field. We can see, within the Einstein-Maxwell equations a variety of physical consequences. They range from induced gravitational energy-momentum loss, to a well defined spin angular momentum with its loss and a center-of-mass with its equations of motion.

  17. Strong permanent magnet-assisted electromagnetic undulator

    DOE Patents [OSTI]

    Halbach, Klaus (Berkeley, CA)

    1988-01-01

    This invention discloses an improved undulator comprising a plurality of electromagnet poles located along opposite sides of a particle beam axis with alternate north and south poles on each side of the beam to cause the beam to wiggle or undulate as it travels generally along the beam axis and permanent magnets spaced adjacent the electromagnetic poles on each side of the axis of said particle beam in an orientation sufficient to reduce the saturation of the electromagnet poles whereby the field strength of the electromagnet poles can be increased beyond the normal saturation levels of the electromagnetic poles.

  18. Some Wave Equations for Electromagnetism and Gravitation

    E-Print Network [OSTI]

    Zi-Hua Weng

    2010-08-11

    The paper studies the inferences of wave equations for electromagnetic fields when there are gravitational fields at the same time. In the description with the algebra of octonions, the inferences of wave equations are identical with that in conventional electromagnetic theory with vector terminology. By means of the octonion exponential function, we can draw out that the electromagnetic waves are transverse waves in a vacuum, and rephrase the law of reflection, Snell's law, Fresnel formula, and total internal reflection etc. The study claims that the theoretical results of wave equations for electromagnetic strength keep unchanged in the case for coexistence of gravitational and electromagnetic fields. Meanwhile the electric and magnetic components of electromagnetic waves can not be determined simultaneously in electromagnetic fields.

  19. Evolution of linearly polarized electromagnetic pulses in laser plasmas

    SciTech Connect (OSTI)

    Borhanian, J. [Department of Atomic and Molecular Physics, Faculty of Physics, University of Tabriz 51664 (Iran, Islamic Republic of); Centre for Plasma Physics, Department of Physics and Astronomy, Queen's University Belfast, BT7 1NN, Northern Ireland (United Kingdom); Sobhanian, S. [Department of Atomic and Molecular Physics, Faculty of Physics, University of Tabriz 51664 (Iran, Islamic Republic of); Kourakis, I. [Centre for Plasma Physics, Department of Physics and Astronomy, Queen's University Belfast, BT7 1NN, Northern Ireland (United Kingdom); Esfandyari-Kalejahi, A. [Department of Physics, Faculty of Science, Azarbaijan University of Tarbiat Moallem, Tabriz 51745-406 (Iran, Islamic Republic of)

    2008-09-15

    An analytical and numerical investigation is presented of the behavior of a linearly polarized electromagnetic pulse as it propagates through a plasma. Considering a weakly relativistic regime, the system of one-dimensional fluid-Maxwell equations is reduced to a generalized nonlinear Schroedinger type equation, which is solved numerically using a split step Fourier method. The spatio-temporal evolution of an electromagnetic pulse is investigated. The evolution of the envelope amplitude of density harmonics is also studied. An electromagnetic pulse propagating through the plasma tends to broaden due to dispersion, while the nonlinear frequency shift is observed to slow down the pulse at a speed lower than the group velocity. Such nonlinear effects are more important for higher density plasmas. The pulse broadening factor is calculated numerically, and is shown to be related to the background plasma density. In particular, the broadening effect appears to be stronger for dense plasmas. The relation to existing results on electromagnetic pulses in laser plasmas is discussed.

  20. Time domain electromagnetic metal detectors

    SciTech Connect (OSTI)

    Hoekstra, P.

    1996-04-01

    This presentation focuses on illustrating by case histories the range of applications and limitations of time domain electromagnetic (TDEM) systems for buried metal detection. Advantages claimed for TDEM metal detectors are: independent of instrument response (Geonics EM61) to surrounding soil and rock type; simple anomaly shape; mitigation of interference by ambient electromagnetic noise; and responsive to both ferrous and non-ferrous metallic targets. The data in all case histories to be presented were acquired with the Geonics EM61 TDEM system. Case histories are a test bed site on Molokai, Hawaii; Fort Monroe, Virginia; and USDOE, Rocky Flats Plant. The present limitations of this technology are: discrimination capabilities in terms of type of ordnance, and depth of burial is limited, and ability of resolving targets with small metallic ambient needs to be improved.

  1. Electromagnetism Tutorial (Tutorial de Eletromagnetismo)

    E-Print Network [OSTI]

    Dantas, Christine C

    2009-01-01

    The present tutorial aims at covering the fundamentals of electromagnetism, in a condensed and clear manner. Some solved and proposed exercises have been included. The reader is assumed to have knowledge of basic electricity, partial derivatives and multiple integrals. ----- O presente tutorial visa cobrir os fundamentos do eletromagnetismo, de forma condensada e clara. Alguns exercicios resolvidos e propostos foram incluidos. Assume-se conhecimento de eletricidade basica, derivadas parciais e integrais multiplas.

  2. Dark Energy, Gravitation and Electromagnetism

    E-Print Network [OSTI]

    B. G. Sidharth

    2004-01-08

    In the context of the fact that the existence of dark energy causing the accelerated expansion of the universe has been confirmed by the WMAP and the Sloan Digital Sky Survey, we re-examine gravitation itself, starting with the formulation of Sakharov and show that it is possible to obtain gravitation in terms of the electromagnetic charge of elementary particles, once the ZPF and its effects at the Compton scale are taken into account.

  3. Laminated electromagnetic pump stator core

    DOE Patents [OSTI]

    Fanning, A.W.

    1995-08-08

    A stator core for an electromagnetic pump includes a plurality of circumferentially abutting tapered laminations extending radially outwardly from a centerline axis to collectively define a radially inner bore and a radially outer circumference. Each of the laminations includes radially inner and outer edges and has a thickness increasing from the inner edge toward the outer edge to provide a substantially continuous path adjacent the circumference. This pump is used in nuclear fission reactors. 19 figs.

  4. Electromagnetic Probes at RHIC-II

    E-Print Network [OSTI]

    G. David; R. Rapp; Z. Xu

    2008-04-25

    We summarize how future measurements of electromagnetic (e.m.) probes at the Relativistic Heavy Ion Collider (RHIC), in connection with theoretical analysis, can advance our understanding of strongly interacting matter at high energy densities and temperatures. After a brief survey of the important role that e.m. probes data have played at the Super Proton Synchrotron (SPS, CERN) and RHIC to date, we identify key physics objectives and observables that remain to be addressed to characterize the (strongly interacting) Quark-Gluon Plasma (sQGP) and associated transition properties at RHIC. These include medium modifications of vector mesons via low-mass dileptons, a temperature measurement of the hot phases via continuum radiation, as well as gamma-gamma correlations to characterize early source sizes. We outline strategies to establish microscopic matter and transition properties such as the number of degrees of freedom in the sQGP, the origin of the hadron masses and manifestations of chiral symmetry restoration, which will require accompanying but rather well-defined advances in theory. Increased experimental precision, order of magnitude higher statistics than currently achievable, as well as a detailed scan of colliding species and energies are then mandatory to achieve sufficient discrimination power in theoretical interpretations. This increased precision can be achieved with hardware upgrades to the large RHIC detectors (PHENIX and STAR) along with at least a factor of ten as increase in luminosity over the next few years as envisioned for RHIC-II.

  5. The nature of electromagnetic energy

    E-Print Network [OSTI]

    Jerrold Franklin

    2012-05-29

    The nature of the electromagnetic (EM) energy for general charge and current distributions is analyzed. There are two well known forms for calculating EM energy as the integral over all space of either the electromagnetic fields: $u_{\\bf EB}=({\\bf E\\bcdot D+B\\bcdot H})/8\\pi$, or the electromagnetic potentials and charge-current densities: $u_{\\rho{\\bf A}}=1/2(\\rho\\phi+{\\bf j\\bcdot A})$. We discuss the appropriate use of each of these forms in calculating the total EM energy and the EM energy within a limited volume. We conclude that only the form $u_{\\bf EB}$ can be considered as a suitable EM energy density, while either form can be integrated to find the total EM energy. However, bounding surface integrals (if they don't vanish) must be included when using the $u_{\\bf EB}$ form. Including these surface integrals resolves some seeming paradoxes in the energy of electric or magnetic dipoles in uniform fields

  6. Detection and analysis of RF emission generated by laser-matter interactions

    E-Print Network [OSTI]

    Van Stryland, Eric

    range 1-40GHz. Keywords: Electromagnetic pulses, laser-matter interactions, plasmas, femtosecond pulses 1. INTRODUCTION Transient electric fields are an established source of electromagnetic pulses of electromagnetic pulse events than nanosecond lasers. There are two mechanisms under which transient electric

  7. Emergent cosmological constant from colliding electromagnetic waves

    SciTech Connect (OSTI)

    Halilsoy, M.; Mazharimousavi, S. Habib; Gurtug, O. E-mail: habib.mazhari@emu.edu.tr

    2014-11-01

    In this study we advocate the view that the cosmological constant is of electromagnetic (em) origin, which can be generated from the collision of em shock waves coupled with gravitational shock waves. The wave profiles that participate in the collision have different amplitudes. It is shown that, circular polarization with equal amplitude waves does not generate cosmological constant. We also prove that the generation of the cosmological constant is related to the linear polarization. The addition of cross polarization generates no cosmological constant. Depending on the value of the wave amplitudes, the generated cosmological constant can be positive or negative. We show additionally that, the collision of nonlinear em waves in a particular class of Born-Infeld theory also yields a cosmological constant.

  8. Dissipative electromagnetic solitary waves in collisional plasmas

    SciTech Connect (OSTI)

    Borhanian, Jafar [Department of Physics, Faculty of Science, University of Mohaghegh Ardabili, P.O.Box 179, Ardabil (Iran, Islamic Republic of)

    2012-08-15

    The propagation of linearly polarized electromagnetic (EM) waves in a collisional plasma is studied using multiple scale perturbation technique in a weakly nonlinear regime. A complex linear dispersion relation and a complex group velocity are obtained for EM waves propagating in a plasma and their dependence on system parameters is investigated. It is shown that the amplitude of EM pulse is governed by an envelope equation similar to a cubic complex Ginzburg-Landau equation. A traveling bright solitary wave solution for envelope equation is found, its existence condition in parameter space is explored and variation of its profile with system parameters is manipulated. Monitoring temporal evolution of traveling solitary wave solution provides more insight into the nature of this solution and ensures that depending on the parameters of the system, solitary wave solution may behave like a stationary soliton or may exhibit the behavior of a breathing soliton.

  9. Electromagnetic response of confined Dirac particles

    E-Print Network [OSTI]

    Paris, M W

    2003-01-01

    The eigenstates of a single massless Dirac particle confined in a linear potential are calculated exactly by direct solution of the Dirac equation. The electromagnetic structure functions are calculated from the Dirac wave functions of the ground and excited states of the particle by coupling to its conserved vector current. We obtain the longitudinal and transverse structure functions as a function of y=nu-q, where nu and q are the energy and momentum transferred to the target in its rest frame. At values of q>~2.5 GeV, much larger than the characteristic energy scale ~140 MeV of the confining potential, the response exhibits y scaling, a generalization of Bjorken scaling. We compare the exact structure functions with those obtained from the ground state wave functions in the plane wave impulse approximation. The deviation from the Callan-Gross relation is compared with the parton model prediction.

  10. Electromagnetic and nuclear radiation detector using micromechanical sensors

    DOE Patents [OSTI]

    Thundat, Thomas G. (Knoxville, TN); Warmack, Robert J. (Knoxville, TN); Wachter, Eric A. (Oak Ridge, TN)

    2000-01-01

    Electromagnetic and nuclear radiation is detected by micromechanical sensors that can be coated with various interactive materials. As the micromechanical sensors absorb radiation, the sensors bend and/or undergo a shift in resonance characteristics. The bending and resonance changes are detected with high sensitivity by any of several detection methods including optical, capacitive, and piezoresistive methods. Wide bands of the electromagnetic spectrum can be imaged with picoJoule sensitivity, and specific absorptive coatings can be used for selective sensitivity in specific wavelength bands. Microcantilevers coated with optical cross-linking polymers are useful as integrating optical radiation dosimeters. Nuclear radiation dosimetry is possible by fabricating cantilevers from materials that are sensitive to various nuclear particles or radiation. Upon exposure to radiation, the cantilever bends due to stress and its resonance frequency shifts due to changes in elastic properties, based on cantilever shape and properties of the coating.

  11. Electromagnetic Effects in SDF Explosions

    SciTech Connect (OSTI)

    Reichenbach, H; Neuwald, P; Kuhl, A L

    2010-02-12

    The notion of high ion and electron concentrations in the detonation of aluminized explosive mixtures has aroused some interest in electro-magnetic effects that the SDF charges might generate when detonated. Motivated by this interest we have started to investigate whether significant electro-magnetic effects show up in our small-scale experiments. However, the design of instrumentation for this purpose is far from straightforward, since there are a number of open questions. Thus the main aim of the feasibility tests is to find - if possible - a simple and reliable method that can be used as a diagnostic tool for electro-magnetic effects. SDF charges with a 0.5-g PETN booster and a filling of 1 g aluminum flakes have been investigated in three barometric bomb calorimeters with volumes ranging from 6.3 l to of 6.6 l. Though similar in volume, the barometric bombs differed in the length-to-diameter ratio. The tests were carried out with the bombs filled with either air or nitrogen at ambient pressure. The comparison of the test in air to those in nitrogen shows that the combustion of TNT detonation products or aluminum generates a substantial increase of the quasi-steady overpressure in the bombs. Repeated tests in the same configuration resulted in some scatter of the experimental results. The most likely reason is that the aluminum combustion in most or all cases is incomplete and that the amount of aluminum actually burned varies from test to test. The mass fraction burned apparently decreases with increasing aspect ratio L/D. Thus an L/D-ratio of about 1 is optimal for the performance of shock-dispersed-fuel combustion. However, at an L/D-ratio of about 5 the combustion still yields appreciable overpressure in excess of the detonation. For a multi-burst scenario in a tunnel environment with a number of SDF charges distributed along a tunnel section a spacing of 5 tunnel diameter and a fuel-specific volume of around 7 l/g might provide an acceptable compromise between optimizing the combustion performance and keeping the number of elementary charges low. Further tests in a barometric bomb calorimeter of 21.2 l volume were performed with four types of aluminum. The mass fraction burned in this case appeared to depend on the morphology of the aluminum particles. Flake aluminum exhibited a better performance than granulated aluminum with particle sizes ranging from below 25 {micro}m to 125 {micro}m for the coarsest material. In addition, a feasibility study on electro-magnetic effects from SDF charges detonated in a tunnel has been performed. A method was developed to measure the local, unsteady electro-conductivity in the detonation/combustion products cloud. This method proved to yield reproducible results. A variety of methods were tested with regard to probing electro-magnetic pulses from the detonation of SDF charges. The results showed little reproducibility and were small compared to the effect from pulsed high voltage discharges of comparatively small energy (around 32 J). Thus either no significant electromagnetic pulse is generated in our small-scale tests or the tested techniques have to be discarded as too insensitive or too limited in bandwidth to detect possibly very high frequency electro-magnetic disturbances.

  12. On the pair-electromagnetic pulse from an electromagnetic Black Hole surrounded by a Baryonic Remnant

    E-Print Network [OSTI]

    Remo Ruffini; Jay D. Salmonson; James R. Wilson; She-Sheng Xue

    2000-04-18

    The interaction of an expanding Pair-Electromagnetic pulse (PEM pulse) with a shell of baryonic matter surrounding a Black Hole with electromagnetic structure (EMBH) is analyzed for selected values of the baryonic mass at selected distances well outside the dyadosphere of an EMBH. The dyadosphere, the region in which a super critical field exists for the creation of electron-positron pairs, is here considered in the special case of a Reissner-Nordstrom geometry. The interaction of the PEM pulse with the baryonic matter is described using a simplified model of a slab of constant thickness in the laboratory frame (constant-thickness approximation) as well as performing the integration of the general relativistic hydrodynamical equations. The validation of the constant-thickness approximation, already presented in a previous paper Ruffini, et al.(1999) for a PEM pulse in vacuum, is here generalized to the presence of baryonic matter. It is found that for a baryonic shell of mass-energy less than 1% of the total energy of the dyadosphere, the constant-thickness approximation is in excellent agreement with full general relativistic computations. The approximation breaks down for larger values of the baryonic shell mass, however such cases are of less interest for observed Gamma Ray Bursts (GRBs). On the basis of numerical computations of the slab model for PEM pulses, we describe (i) the properties of relativistic evolution of a PEM pulse colliding with a baryonic shell; (ii) the details of the expected emission energy and observed temperature of the associated GRBs for a given value of the EMBH mass; 10^3 solar masses, and for baryonic mass-energies in the range 10^{-8} to 10^{-2} the total energy of the dyadosphere.

  13. Electromagnetic wave scattering by Schwarzschild black holes

    E-Print Network [OSTI]

    Luís C. B. Crispino; Sam R. Dolan; Ednilton S. Oliveira

    2009-05-20

    We analyze the scattering of a planar monochromatic electromagnetic wave incident upon a Schwarzschild black hole. We obtain accurate numerical results from the partial wave method for the electromagnetic scattering cross section, and show that they are in excellent agreement with analytical approximations. The scattering of electromagnetic waves is compared with the scattering of scalar, spinor and gravitational waves. We present a unified picture of the scattering of all massless fields for the first time.

  14. An electromagnetic analog of gravitational wave memory

    E-Print Network [OSTI]

    Lydia Bieri; David Garfinkle

    2013-09-10

    We present an electromagnetic analog of gravitational wave memory. That is, we consider what change has occurred to a detector of electromagnetic radiation after the wave has passed. Rather than a distortion in the detector, as occurs in the gravitational wave case, we find a residual velocity (a "kick") to the charges in the detector. In analogy with the two types of gravitational wave memory ("ordinary" and "nonlinear") we find two types of electromagnetic kick.

  15. 611: Electromagnetic Theory Problem Sheet 4

    E-Print Network [OSTI]

    Pope, Christopher

    611: Electromagnetic Theory Problem Sheet 4 (1a) The angular momentum 3-vector L is defined by Li) Prove from the above that for the electromagnetic field, L = 1 4 r × (E × B) d3 x (b) Prove that dR dt = P E where R is the centre of mass of the electromagnetic field, defined by R Wd3x = rWd3x

  16. Anisotropic conducting films for electromagnetic radiation applications

    DOE Patents [OSTI]

    Cavallo, Francesca; Lagally, Max G.; Rojas-Delgado, Richard

    2015-06-16

    Electronic devices for the generation of electromagnetic radiation are provided. Also provided are methods for using the devices to generate electromagnetic radiation. The radiation sources include an anisotropic electrically conducting thin film that is characterized by a periodically varying charge carrier mobility in the plane of the film. The periodic variation in carrier mobility gives rise to a spatially varying electric field, which produces electromagnetic radiation as charged particles pass through the film.

  17. Thin sheet casting with electromagnetic pressurization

    DOE Patents [OSTI]

    Walk, Steven R. (Winterport, ME); Slepian, R. Michael (Pittsburgh, PA); Nathenson, Richard D. (Pittsburgh, PA); Williams, Robert S. (Fairfield, OH)

    1991-01-01

    An apparatus, method and system for the casting of thin strips or strips of metal upon a moving chill block that includes an electromagnet located so that molten metal poured from a reservoir onto the chill block passes into the magnetic field produced by the electromagnet. The electromagnet produces a force on the molten metal on said chill block in the direction toward said chill block in order to enhance thermal contact between the molten metal and the chill block.

  18. 6.630 Electromagnetic Theory, Fall 2002

    E-Print Network [OSTI]

    Kong, Jin Au, 1942-

    6.630 is an introductory subject on electromagnetics, emphasizing fundamental concepts and applications of Maxwell equations. Topics covered include: polarization, dipole antennas, wireless communications, forces and energy, ...

  19. Detection of electromagnetic waves using MEMS antennas

    SciTech Connect (OSTI)

    Lavrik, Nickolay V [ORNL] [ORNL; Tobin, [Oak Ridge National Laboratory (ORNL)] [Oak Ridge National Laboratory (ORNL); Bowland, Landon T [ORNL] [ORNL

    2011-01-01

    We describe the design, fabrication and characterization of simple micromechanical structures that are capable of sensing static electric time varying electromagnetic fields. Time varying electric field sensing is usually achieved using an electromagnetic antenna and a receiver. However, these antenna-based approaches do not exhibit high sensitivity over a broad frequency (or wavelength) range. An important aspect of the present work is that, in contrast to traditional antennas, the dimensions of these micromechanical oscillators can be much smaller than the wavelength of the electromagnetic wave. We characterized the fabricated micromechanical oscillators by measuring their responses to time varying electric and electromagnetic fields.

  20. Electromagnetic properties of massive neutrinos

    SciTech Connect (OSTI)

    Dobrynina, A. A., E-mail: aleksandradobrynina@rambler.ru; Mikheev, N. V.; Narynskaya, E. N. [Demidov Yaroslavl State University (Russian Federation)] [Demidov Yaroslavl State University (Russian Federation)

    2013-10-15

    The vertex function for a virtual massive neutrino is calculated in the limit of soft real photons. A method based on employing the neutrino self-energy operator in a weak external electromagnetic field in the approximation linear in the field is developed in order to render this calculation of the vertex function convenient. It is shown that the electric charge and the electric dipole moment of the real neutrino are zero; only the magnetic moment is nonzero for massive neutrinos. A fourth-generation heavy neutrino of mass not less than half of the Z-boson mass is considered as a massive neutrino.

  1. Quantum modulation against electromagnetic interference

    E-Print Network [OSTI]

    Juan Carlos Garcia-Escartin

    2014-11-26

    Periodic signals in electrical and electronic equipment can cause interference in nearby devices. Randomized modulation of those signals spreads their energy through the frequency spectrum and can help to mitigate electromagnetic interference problems. The inherently random nature of quantum phenomena makes them a good control signal. I present a quantum modulation method based on the random statistics of quantum light. The paper describes pulse width modulation schemes where a Poissonian light source acts as a random control that spreads the energy of the potential interfering signals. I give an example application for switching-mode power supplies and comment the further possibilities of the method.

  2. 466 IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, VOL. 51, NO. 3, AUGUST 2009 Electromagnetic Pulses Produced by

    E-Print Network [OSTI]

    Florida, University of

    discharge, lightning electromagnetic (EM) pulse, trav- eling wave, wave reflections. I. INTRODUCTION466 IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, VOL. 51, NO. 3, AUGUST 2009 Electromagnetic Pulses Produced by Bouncing-Wave-Type Lightning Discharges Amitabh Nag, Member, IEEE, and Vladimir A

  3. Progress In Electromagnetics Research, Vol. 114, 317332, 2011 PULSED BEAM EXPANSION OF ELECTROMAGNETIC

    E-Print Network [OSTI]

    Melamed, Timor

    Progress In Electromagnetics Research, Vol. 114, 317­332, 2011 PULSED BEAM EXPANSION-based pulsed-beams expansion of planar aperture time- dependent electromagnetic fields. The propagating field-beam waveobjects over the frame spectral lattice. Explicit asymptotic expressions for the electromagnetic pulsed

  4. Reducible Quantum Electrodynamics. I. The Quantum Dimension of the Electromagnetic Field

    E-Print Network [OSTI]

    Jan Naudts

    2015-05-30

    In absence of currents and charges the quantized electromagnetic field can be described by wave functions which for each individual wave vector are normalized to one. The resulting formalism involves reducible representations of the Canonical Commutation Relations. The corresponding paradigm is a space-time filled with two-dimensional quantum harmonic oscillators. Mathematically, this is equivalent with two additional dimensions penetrated by the electromagnetic waves.

  5. Determination of shower central position in laterally segmented lead-fluoride electromagnetic calorimeters

    E-Print Network [OSTI]

    M. Mazouz; L. Ghedira; E. Voutier

    2015-10-02

    The spatial resolution of laterally segmented electromagnetic calorimeters is studied on the basis of Monte-Carlo simulations worked-out for lead fluoride material. Parametrization of the relative resolution is proposed and optimized in terms of the energy of incoming particles and the elementary size of the calorimeter blocks. A new fit algorithm method is proposed that improves spatial resolution at high energies, and provides guidance for the design optimization of electromagnetic calorimeters.

  6. Determination of shower central position in laterally segmented lead-fluoride electromagnetic calorimeters

    E-Print Network [OSTI]

    Mazouz, M; Voutier, E

    2015-01-01

    The spatial resolution of laterally segmented electromagnetic calorimeters is studied on the basis of Monte-Carlo simulations worked-out for lead fluoride material. Parametrization of the relative resolution is proposed and optimized in terms of the energy of incoming particles and the elementary size of the calorimeter blocks. A new fit algorithm method is proposed that improves spatial resolution at high energies, and provides guidance for the design optimization of electromagnetic calorimeters.

  7. Gravitation and electromagnetism in theory of a unified four-vector field

    E-Print Network [OSTI]

    Alexander A. Chernitskii

    2006-09-28

    A four-vector field in flat space-time, satisfying a gauge-invariant set of second-order differential equations, is considered as a unified field. The model variational principle corresponds to the general covariance idea and gives rise to nonlinear Born-Infeld electrodynamics. Thus the four-vector field is considered as an electromagnetic potential. It is suggested that space-localized (particle) solutions of the nonlinear field model correspond to material particles. Electromagnetic and gravitational interactions between field particles appear naturally when a many-particle solution is investigated with the help of a perturbation method. The electromagnetic interaction appears in the first order in the small field of distant particles. In the second order, there is an effective Riemannian space induced by the field of distant particles. This Riemannian space can be connected with gravitation.

  8. General Relativity in Electrical Engineering

    E-Print Network [OSTI]

    Ulf Leonhardt; Thomas G. Philbin

    2006-07-26

    In electrical engineering metamaterials have been developed that offer unprecedented control over electromagnetic fields. Here we show that general relativity lends the theoretical tools for designing devices made of such versatile materials. Given a desired device function, the theory describes the electromagnetic properties that turn this function into fact. We consider media that facilitate space-time transformations and include negative refraction. Our theory unifies the concepts operating behind the scenes of perfect invisibility devices, perfect lenses, the optical Aharonov-Bohm effect and electromagnetic analogs of the event horizon, and may lead to further applications.

  9. Electromagnetic Eavesdropping Risks of Flat-Panel Displays

    E-Print Network [OSTI]

    Kuhn, Markus

    Electromagnetic Eavesdropping Risks of Flat-Panel Displays Markus G. Kuhn University of Cambridge/ Abstract. Electromagnetic eavesdropping of computer displays ­ first demonstrated to the general public shielded against such compromising electromagnetic emanations. The exact "TEMPEST" emis- sion limits

  10. Localization of fremions in rotating electromagnetic fields

    E-Print Network [OSTI]

    B. V. Gisin

    2015-06-15

    Parameters of localization are defined in the lab and rotating frame for solutions of the Dirac equation in the field of a traveling circularly polarized electromagnetic wave and constant magnetic field. The radius of localization is of the order of the electromagnetic wavelength and lesser.

  11. Space-time Curvature of Classical Electromagnetism

    E-Print Network [OSTI]

    R. W. M. Woodside

    2004-10-08

    The space-time curvature carried by electromagnetic fields is discovered and a new unification of geometry and electromagnetism is found. Curvature is invariant under charge reversal symmetry. Electromagnetic field equations are examined with De Rham co homology theory. Radiative electromagnetic fields must be exact and co exact to preclude unobserved massless topological charges. Weyl's conformal tensor, here called ``the gravitational field'', is decomposed into a divergence-free non-local piece with support everywhere and a local piece with the same support as the matter. By tuning a local gravitational field to a Maxwell field the electromagnetic field's local gravitational field is discovered. This gravitational field carries the electromagnetic field's polarization or phase information, unlike Maxwell's stress-energy tensor. The unification assumes Einstein's equations and derives Maxwell's equations from curvature assumptions. Gravity forbids magnetic monopoles! This unification is stronger than the Einstein-Maxwell equations alone, as those equations must produce the electromagnetic field's local gravitational field and not just any conformal tensor. Charged black holes are examples. Curvature of radiative null electromagnetic fields is characterized.

  12. Electromagnetic corrections to light hadron masses

    E-Print Network [OSTI]

    A. Portelli; S. Dürr; Z. Fodor; J. Frison; C. Hoelbling; S. D. Katz; S. Krieg; T. Kurth; L. Lellouch; T. Lippert; K. K. Szabó; A. Ramos

    2011-01-12

    At the precision reached in current lattice QCD calculations, electromagnetic effects are becoming numerically relevant. We will present preliminary results for electromagnetic corrections to light hadron masses, based on simulations in which a $\\mathrm{U}(1)$ degree of freedom is superimposed on $N_f=2+1$ QCD configurations from the BMW collaboration.

  13. Narrow field electromagnetic sensor system and method

    DOE Patents [OSTI]

    McEwan, Thomas E. (Livermore, CA)

    1996-01-01

    A narrow field electromagnetic sensor system and method of sensing a characteristic of an object provide the capability to realize a characteristic of an object such as density, thickness, or presence, for any desired coordinate position on the object. One application is imaging. The sensor can also be used as an obstruction detector or an electronic trip wire with a narrow field without the disadvantages of impaired performance when exposed to dirt, snow, rain, or sunlight. The sensor employs a transmitter for transmitting a sequence of electromagnetic signals in response to a transmit timing signal, a receiver for sampling only the initial direct RF path of the electromagnetic signal while excluding all other electromagnetic signals in response to a receive timing signal, and a signal processor for processing the sampled direct RF path electromagnetic signal and providing an indication of the characteristic of an object. Usually, the electromagnetic signal is a short RF burst and the obstruction must provide a substantially complete eclipse of the direct RF path. By employing time-of-flight techniques, a timing circuit controls the receiver to sample only the initial direct RF path of the electromagnetic signal while not sampling indirect path electromagnetic signals. The sensor system also incorporates circuitry for ultra-wideband spread spectrum operation that reduces interference to and from other RF services while allowing co-location of multiple electronic sensors without the need for frequency assignments.

  14. Narrow field electromagnetic sensor system and method

    DOE Patents [OSTI]

    McEwan, T.E.

    1996-11-19

    A narrow field electromagnetic sensor system and method of sensing a characteristic of an object provide the capability to realize a characteristic of an object such as density, thickness, or presence, for any desired coordinate position on the object. One application is imaging. The sensor can also be used as an obstruction detector or an electronic trip wire with a narrow field without the disadvantages of impaired performance when exposed to dirt, snow, rain, or sunlight. The sensor employs a transmitter for transmitting a sequence of electromagnetic signals in response to a transmit timing signal, a receiver for sampling only the initial direct RF path of the electromagnetic signal while excluding all other electromagnetic signals in response to a receive timing signal, and a signal processor for processing the sampled direct RF path electromagnetic signal and providing an indication of the characteristic of an object. Usually, the electromagnetic signal is a short RF burst and the obstruction must provide a substantially complete eclipse of the direct RF path. By employing time-of-flight techniques, a timing circuit controls the receiver to sample only the initial direct RF path of the electromagnetic signal while not sampling indirect path electromagnetic signals. The sensor system also incorporates circuitry for ultra-wideband spread spectrum operation that reduces interference to and from other RF services while allowing co-location of multiple electronic sensors without the need for frequency assignments. 12 figs.

  15. Ultimate Energy Densities for Electromagnetic Pulses

    E-Print Network [OSTI]

    Mankei Tsang

    2008-03-06

    The ultimate electric and magnetic energy densities that can be attained by bandlimited electromagnetic pulses in free space are calculated using an ab initio quantized treatment, and the quantum states of electromagnetic fields that achieve the ultimate energy densities are derived. The ultimate energy densities also provide an experimentally accessible metric for the degree of localization of polychromatic photons.

  16. Matched Slow Pulses Using Double Electromagnetically Induced Transparency

    E-Print Network [OSTI]

    Andrew MacRae; Geoff Campbell; A. I. Lvovsky

    2008-09-29

    We implement double electromagnetically-induced transparency (double EIT) in rubidium vapor, using a tripod-shaped energy level scheme consisting of hyperfine and magnetic sublevels of the 5S1/2 to 5P1/2 transition. We show experimentally that through the use of double EIT one can control the contrast of transparency windows as well as group velocities of the two signal fields. In particular, the group velocities can be equalized, which holds promise to greatly enhance nonlinear optical interaction between these fields.

  17. Noninvasive valve monitor using alternating electromagnetic field

    DOE Patents [OSTI]

    Eissenberg, D.M.; Haynes, H.D.; Casada, D.A.

    1993-03-16

    One or more electrical coils are carefully located on the outside of a valve body. An alternating current passing through the coil(s) results in an alternating electromagnetic field being transmitted into the valve body and valve internals. The electromagnetic field varies in intensity and polarity in the valve. As the position of a valve internal part is changed, the electromagnetic field throughout the valve body and its internals is altered. A passive receiver coil carefully located on the outside of the valve body detects the intensity of the electromagnetic field at that location as an induced electrical voltage in the coil. With the change in position of the valve internal part, there is a corresponding change in the induced voltage as a result of the alteration in the alternating electromagnetic field at that location. Changes in the voltage provide an indication of the position and motion of valve internals.

  18. Noninvasive valve monitor using alternating electromagnetic field

    DOE Patents [OSTI]

    Eissenberg, David M. (Oak Ridge, TN); Haynes, Howard D. (Knoxville, TN); Casada, Donald A. (Knoxville, TN)

    1993-01-01

    One or more electrical coils are carefully located on the outside of a valve body. An alternating current passing through the coil(s) results in an alternating electromagnetic field being transmitted into the valve body and valve internals. The electromagnetic field varies in intensity and polarity in the valve. As the position of a valve internal part is changed, the electromagnetic field throughout the valve body and its internals is altered. A passive receiver coil carefully located on the outside of the valve body detects the intensity of the electromagnetic field at that location as an induced electrical voltage in the coil. With the change in position of the valve internal part, there is a corresponding change in the induced voltage as a result of the alteration in the alternating electromagnetic field at that location. Changes in the voltage provide an indication of the position and motion of valve internals.

  19. Electromagnetic field with constraints and Papapetrou equation

    E-Print Network [OSTI]

    Z. Ya. Turakulov; A. T. Muminov

    2006-01-12

    It is shown that geometric optical description of electromagnetic wave with account of its polarization in curved space-time can be obtained straightforwardly from the classical variational principle for electromagnetic field. For this end the entire functional space of electromagnetic fields must be reduced to its subspace of locally plane monochromatic waves. We have formulated the constraints under which the entire functional space of electromagnetic fields reduces to its subspace of locally plane monochromatic waves. These constraints introduce variables of another kind which specify a field of local frames associated to the wave and contain some congruence of null-curves. The Lagrangian for constrained electromagnetic field contains variables of two kinds, namely, a congruence of null-curves and the field itself. This yields two kinds of Euler-Lagrange equations. Equations of first kind are trivial due to the constraints imposed. Variation of the curves yields the Papapetrou equations for a classical massless particle with helicity 1.

  20. Modulational and filamentational instabilities of two electromagnetic pulses in a radiation background

    E-Print Network [OSTI]

    M. Marklund; P. K. Shukla; G. Brodin; L. Stenflo

    2004-10-21

    The nonlinear interaction, due to quantum electrodynamical (QED) effects, between two electromagnetic pulses and a radiation gas is investigated. It is found that the governing equations admit both modulational and filamentational instabilities. The instability growth rates are derived, and the results are discussed.

  1. Geometric and Electromagnetic Aspects of Fusion Pore Making

    E-Print Network [OSTI]

    Darya Apushkinskaya; Evgeny Apushkinsky; Bernhelm Booss-Bavnbek; Martin Koch

    2010-04-29

    For regulated exocytosis, we model the morphology and dynamics of the making of the fusion pore or porosome as a cup-shaped lipoprotein structure (a dimple or pit) on the cytosol side of the plasma membrane. We describe the forming of the dimple by a free boundary problem. We discuss the various forces acting and analyze the magnetic character of the wandering electromagnetic field wave produced by intracellular spatially distributed pulsating (and well observed) release and binding of calcium ions anteceding the bilayer membrane vesicle fusion of exocytosis. Our approach explains the energy efficiency of the observed dimple forming prior to hemifusion and fusion pore, and the observed flickering in secretion. It provides a frame to relate characteristic time length of exocytosis to the frequency, amplitude and direction of propagation of the underlying electromagnetic field wave.

  2. Electromagnetic stabilization of tokamak microturbulence in a high-$\\beta$ regime

    E-Print Network [OSTI]

    Citrin, J; Goerler, T; Jenko, F; Mantica, P; Told, D; Bourdelle, C; Hatch, D R; Hogeweij, G M D; Johnson, T; Pueschel, M J; Schneider, M

    2014-01-01

    The impact of electromagnetic stabilization and flow shear stabilization on ITG turbulence is investigated. Analysis of a low-$\\beta$ JET L-mode discharge illustrates the relation between ITG stabilization, and proximity to the electromagnetic instability threshold. This threshold is reduced by suprathermal pressure gradients, highlighting the effectiveness of fast ions in ITG stabilization. Extensive linear and nonlinear gyrokinetic simulations are then carried out for the high-$\\beta$ JET hybrid discharge 75225, at two separate locations at inner and outer radii. It is found that at the inner radius, nonlinear electromagnetic stabilization is dominant, and is critical for achieving simulated heat fluxes in agreement with the experiment. The enhancement of this effect by suprathermal pressure also remains significant. It is also found that flow shear stabilization is not effective at the inner radii. However, at outer radii the situation is reversed. Electromagnetic stabilization is negligible while the flow...

  3. Full Action for an Electromagnetic Field with Electrical and Magnetic Charges

    E-Print Network [OSTI]

    S. S. Serova; S. A. Serov

    2010-09-25

    The paper offers the full action for an electromagnetic field with electrical and magnetic charges; Feynman laws are formulated for the calculation of the interaction cross-sections for electrically and magnetically charged particles on the base of offered action within relativistic quantum field theory. Derived with formulated Feynman rules cross-section of the interaction between an elementary particle with magnetic charge and an elementary particle with electrical charge proves to be equal zero.

  4. Terahertz electromagnetic wave generation and amplification by an electron beam in the elliptical plasma waveguides with dielectric rod

    SciTech Connect (OSTI)

    Rahmani, Z. Jazi, B.; Heidari-Semiromi, E.

    2014-09-15

    The propagation of electromagnetic waves in an elliptical plasma waveguide including strongly magnetized plasma column and a dielectric rod is investigated. The dispersion relation of guided hybrid electromagnetic waves is obtained. Excitation of the waves by a thin annular relativistic elliptical electron beam will be studied. The time growth rate of electromagnetic waves is obtained. The effects of relative permittivity constant of dielectric rod, radius of dielectric rod, accelerating voltage, and current density of the annular elliptical beam on the growth rate and the frequency spectra are numerically presented.

  5. An electromagnetic black hole made of metamaterials

    E-Print Network [OSTI]

    Qiang Cheng; Tie Jun Cui; Wei Xiang Jiang; Ben Geng Cai

    2010-04-30

    Traditionally, a black hole is a region of space with huge gravitational field, which absorbs everything hitting it. In history, the black hole was first discussed by Laplace under the Newton mechanics, whose event horizon radius is the same as the Schwarzschild's solution of the Einstein's vacuum field equations. If all those objects having such an event horizon radius but different gravitational fields are called as black holes, then one can simulate certain properties of the black holes using electromagnetic fields and metamaterials due to the similar propagation behaviours of electromagnetic waves in curved space and in inhomogeneous metamaterials. In a recent theoretical work by Narimanov and Kildishev, an optical black hole has been proposed based on metamaterials, in which the theoretical analysis and numerical simulations showed that all electromagnetic waves hitting it are trapped and absorbed. Here we report the first experimental demonstration of such an electromagnetic black hole in the microwave frequencies. The proposed black hole is composed of non-resonant and resonant metamaterial structures, which can trap and absorb electromagnetic waves coming from all directions spirally inwards without any reflections due to the local control of electromagnetic fields and the event horizon corresponding to the device boundary. It is shown that the absorption rate can reach 99% in the microwave frequencies. We expect that the electromagnetic black hole could be used as the thermal emitting source and to harvest the solar light.

  6. Spinors and pre-metric electromagnetism

    E-Print Network [OSTI]

    David Delphenich

    2005-12-22

    The basic concepts of the formulation of Maxwellian electromagnetism in the absence of a Minkowski scalar product on spacetime are summarized, with particular emphasis on the way that the electromagnetic constitutive law on the space of bivectors over spacetime supplants the role of the Minkowski scalar product on spacetime itself. The complex geometry of the space of bivectors is summarized, with the intent of showing how an isomorphic copy of the Lorentz group appears in that context. The use of complex 3-spinors to represent electromagnetic fields is then discussed, as well as the expansion of scope that the more general complex projective geometry of the space of bivectors suggests.

  7. On the Axioms of Topological Electromagnetism

    E-Print Network [OSTI]

    D. H. Delphenich

    2003-12-14

    The axioms of topological electromagnetism are refined by the introduction of the de Rham homology of k-vector fields on orientable manifolds and the use of Poincare duality in place of Hodge duality. The central problem of defining the electromagnetic constitutive law is elaborated upon in the linear and nonlinear cases. The manner by which the spacetime metric might follow from the constitutive law is examined in the linear case. The possibility that the intersection form of the spacetime manifold might play a role in defining a topological basis for the constitutive law is explored. The manner by which wave motion might follow from the electromagnetic structure is also discussed.

  8. Electromagnetic wave propagation in a random distribution of C{sub 60} molecules

    SciTech Connect (OSTI)

    Moradi, Afshin

    2014-10-15

    Propagation of electromagnetic waves in a random distribution of C{sub 60} molecules are investigated, within the framework of the classical electrodynamics. Electronic excitations over the each C{sub 60} molecule surface are modeled by a spherical layer of electron gas represented by two interacting fluids, which takes into account the different nature of the ? and ? electrons. It is found that the present medium supports four modes of electromagnetic waves, where they can be divided into two groups: one group with shorter wavelength than the light waves of the same frequency and the other with longer wavelength than the free-space radiation.

  9. Binary power multiplier for electromagnetic energy

    DOE Patents [OSTI]

    Farkas, Zoltan D. (203 Leland Ave., Menlo Park, CA 94025)

    1988-01-01

    A technique for converting electromagnetic pulses to higher power amplitude and shorter duration, in binary multiples, splits an input pulse into two channels, and subjects the pulses in the two channels to a number of binary pulse compression operations. Each pulse compression operation entails combining the pulses in both input channels and selectively steering the combined power to one output channel during the leading half of the pulses and to the other output channel during the trailing half of the pulses, and then delaying the pulse in the first output channel by an amount equal to half the initial pulse duration. Apparatus for carrying out each of the binary multiplication operation preferably includes a four-port coupler (such as a 3 dB hybrid), which operates on power inputs at a pair of input ports by directing the combined power to either of a pair of output ports, depending on the relative phase of the inputs. Therefore, by appropriately phase coding the pulses prior to any of the pulse compression stages, the entire pulse compression (with associated binary power multiplication) can be carried out solely with passive elements.

  10. Plasma confinement by circularly polarized electromagnetic field in toroidal geometry

    SciTech Connect (OSTI)

    Svidzinski, Vladimir A. [University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); and Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2007-10-15

    A novel plasma confinement concept based on plasma confinement by electromagnetic pressure of circularly polarized electromagnetic fields is proposed. Practical implementation of this concept in a toroidal device is suggested. In this concept the confining field frequency is in the lower range such that the size of the device is much smaller than the vacuum wavelength. Most of the previous radio-frequency (rf) confinement concepts of unmagnetized plasma were related to confinement in rf cavities which operated at high frequency for which the size of the cavity is comparable to the wavelength. Operation at lower frequencies simplifies rf design, reduces Ohmic losses in the conducting walls and probably makes application of superconductors for wall materials more feasible. It is demonstrated that circular (or nearly circular) polarization of the electromagnetic field is required for confinement from both the equilibrium and stability considerations. Numerical analysis of plasma confinement for magnetohydrodynamic plasma model in two-dimensional toroidal geometry is performed. Within this model plasma is confined by the applied rf fields and its equilibrium is stable. Technically feasible compact and medium size toroidal plasma confinement devices based on this concept are proposed. Application of this approach to the fusion reactor requires use of superconducting materials for the toroidal shell to reduce the Ohmic losses. Further theoretical and experimental studies are required for a more reliable conclusion about the attractiveness of this plasma confinement concept.

  11. Electromagnetic Side Channels of an FPGA Implementation of AES

    E-Print Network [OSTI]

    International Association for Cryptologic Research (IACR)

    Electromagnetic Side Channels of an FPGA Implementation of AES Vincent Carlier, Hervâ??e Chabanne processed. Another side channel is the one that exploits the Electromagnetic (EM) emanations. Indeed references. In [QS01, GMO01], Simple Electromagnetic Analysis (SEMA) and Di#erential Electromagnetic Analysis

  12. Electromagnetic Side Channels of an FPGA Implementation of AES

    E-Print Network [OSTI]

    International Association for Cryptologic Research (IACR)

    Electromagnetic Side Channels of an FPGA Implementation of AES Vincent Carlier, Herv´e Chabanne processed. Another side channel is the one that exploits the Electromagnetic (EM) emanations. Indeed references. In [QS01, GMO01], Simple Electromagnetic Analysis (SEMA) and Differential Electromagnetic

  13. Dr. S. Cruz-Pol, INEL 4152-Electromagnetics

    E-Print Network [OSTI]

    Cruz-Pol, Sandra L.

    Electromagnetics was born! Ø This is the principle of motors, hydro-electric generators and transformers operationDr. S. Cruz-Pol, INEL 4152- Electromagnetics Electrical Engineering, UPRM 1 Electromagnetic JdlH Cruz-Pol, Electromagnetics UPRM Would magnetism would produce electricity? Ø Eleven years later

  14. ECE 1228 Electromagnetics Theory Instructor Name: Mo Mojahedi

    E-Print Network [OSTI]

    Mojahedi, Mohammad

    ECE 1228 Electromagnetics Theory Instructor Name: Mo Mojahedi Office Location: Room SF2001D Tel: 416-978-0908 Email: mojahedi@waves.utoronto.ca Course Name and number: Electromagnetics Theory, ECE in Electromagnetics and Photonics. It revisits and expands some of the more fundamental electromagnetic laws

  15. Least-squares methods for computational electromagnetics 

    E-Print Network [OSTI]

    Kolev, Tzanio Valentinov

    2004-11-15

    The modeling of electromagnetic phenomena described by the Maxwell's equations is of critical importance in many practical applications. The numerical simulation of these equations is challenging and much more involved than initially believed...

  16. Dynamic programming applied to electromagnetic satellite actuation

    E-Print Network [OSTI]

    Eslinger, Gregory John

    2013-01-01

    Electromagnetic formation flight (EMFF) is an enabling technology for a number of space mission architectures. While much work has been done for EMFF control for large separation distances, little work has been done for ...

  17. ECGR3142 Electromagnetic Devices Course Description

    E-Print Network [OSTI]

    Nasipuri, Asis

    in transformers and electrical machines; Generation of induced voltages; Electromechanical torque development, measurements of transformer parameters, transformer parameters. Basic principles of electric machines: forcesECGR3142 Electromagnetic Devices Course Description Principles of operation and basic design

  18. Electromagnetic Characterization of MIMO Communication Systems

    E-Print Network [OSTI]

    Heath Jr., - Robert W.

    Electromagnetic Characterization of MIMO Communication Systems Kapil R. Dandekar, Sumant Kawale) wireless communication links [1, 2]. Systems with MIMO communication links use multiple antenna arrays, one generation mobile cellular systems [9]. The theoretical capabilities of MIMO communication links have been

  19. Marine Electromagnetic Methods for Gas Hydrate Characterization

    E-Print Network [OSTI]

    Weitemeyer, Karen A

    2008-01-01

    data: an electromagnetic survey at Hydrate Ridge, Oregon made possible by funding from Exxon MobilExxon Mobil and from GERD, Japan to study gas hydrates. We only had 3 days of data

  20. Marine electromagnetic methods for gas hydrate characterization

    E-Print Network [OSTI]

    Weitemeyer, Karen Andrea

    2008-01-01

    data: an electromagnetic survey at Hydrate Ridge, Oregon made possible by funding from Exxon MobilExxon Mobil and from GERD, Japan to study gas hydrates. We only had 3 days of data

  1. Advances in non-planar electromagnetic prototyping

    E-Print Network [OSTI]

    Ehrenberg, Isaac M

    2013-01-01

    The advent of metamaterials has introduced new ways to manipulate how electromagnetic waves reflect, refract and radiate in systems where the range of available material properties now includes negative permittivity, ...

  2. Electromagnetic Corrections in Staggered Chiral Perturbation Theory

    E-Print Network [OSTI]

    C. Bernard; E. D. Freeland

    2010-11-17

    To reduce errors in light-quark mass determinations, it is now necessary to consider electromagnetic contributions to light-meson masses. Calculations using staggered quarks and quenched photons are currently underway. Suitably-extended chiral perturbation theory is necessary to extrapolate the lattice data to the physical limit. Here we give (preliminary) results for light-meson masses using staggered chiral perturbation theory including electromagnetism, and discuss the extent to which quenched-photon simulations can improve quark-mass calculations.

  3. Electromagnetic Modelling of Superconducting Sensor Designs

    E-Print Network [OSTI]

    Gerra, Guido

    OF MATERIALS SCIENCE AND METALLURGY Electromagnetic Modelling of Superconducting Sensor Designs Guido Gerra Clare Hall, University of Cambridge 1 Preface The present dissertation has been submitted for the degree of Master... in the current circulating in it to the magnetic field the SQUID is subjected to. This possibility arises from the dynamics of electromagnetic fields in superconductors combined with the Josephson effect, and appropriate coupling schemes can be used to measure...

  4. Electromagnetic and spin polarisabilities in lattice QCD

    E-Print Network [OSTI]

    W. Detmold; B. C. Tiburzi; A. Walker-Loud

    2006-10-02

    We discuss the extraction of the electromagnetic and spin polarisabilities of nucleons from lattice QCD. We show that the external field method can be used to measure all the electromagnetic and spin polarisabilities including those of charged particles. We then turn to the extrapolations required to connect such calculations to experiment in the context of chiral perturbation theory, finding a strong dependence on the lattice volume and quark masses.

  5. Electromagnetic Transport From Microtearing Mode Turbulence

    SciTech Connect (OSTI)

    Guttenfelder, W; Kaye, S M; Nevins, W M; Wang, E; Bell, R E; Hammett, G W; LeBlanc, B P; Mikkelsen, D R

    2011-03-23

    This Letter presents non-linear gyrokinetic simulations of microtearing mode turbulence. The simulations include collisional and electromagnetic effects and use experimental parameters from a high beta discharge in the National Spherical Torus Experiment (NSTX). The predicted electron thermal transport is comparable to that given by experimental analysis, and it is dominated by the electromagnetic contribution of electrons free streaming along the resulting stochastic magnetic field line trajectories. Experimental values of flow shear can significantly reduce the predicted transport.

  6. A Materials Perspective on Casimir and van der Waals Interactions

    E-Print Network [OSTI]

    L. M. Woods; D. A. R. Dalvit; A. Tkatchenko; P. Rodriguez-Lopez; A. W. Rodriguez; R. Podgornik

    2015-09-10

    Interactions induced by electromagnetic fluctuations, such as van der Waals and Casimir forces, are of universal nature present at any length scale between any types of systems with finite dimensions. Such interactions are important not only for the fundamental science of materials behavior, but also for the design and improvement of micro- and nano-structured devices. In the past decade, many new materials have become available, which has stimulated the need of understanding their dispersive interactions. The field of van der Waals and Casimir forces has experienced an impetus in terms of developing novel theoretical and computational methods to provide new insights in related phenomena. The understanding of such forces has far reaching consequences as it bridges concepts in materials, atomic and molecular physics, condensed matter physics, high energy physics, chemistry and biology. In this review, we summarize major breakthroughs and emphasize the common origin of van der Waals and Casimir interactions. We examine progress related to novel ab initio modeling approaches and their application in various systems, interactions in materials with Dirac-like spectra, force manipulations through nontrivial boundary conditions, and applications of van der Waals forces in organic and biological matter. The outlook of the review is to give the scientific community a materials perspective of van der Waals and Casimir phenomena and stimulate the development of experimental techniques and applications.

  7. Transition from thermal to turbulent equilibrium with a resulting electromagnetic spectrum

    SciTech Connect (OSTI)

    Ziebell, L. F.; Yoon, P. H.; School of Space Research, Kyung Hee University, Yongin, Gyeonggi 446-701 ; Gaelzer, R.; Instituto de Física e Matemática, UFPel, Pelotas, RS ; Pavan, J.

    2014-01-15

    A recent paper [Ziebell et al., Phys. Plasmas 21, 010701 (2014)] discusses a new type of radiation emission process for plasmas in a state of quasi-equilibrium between the particles and enhanced Langmuir turbulence. Such a system may be an example of the so-called “turbulent quasi-equilibrium.” In the present paper, it is shown on the basis of electromagnetic weak turbulence theory that an initial thermal equilibrium state (i.e., only electrostatic fluctuations and Maxwellian particle distributions) transitions toward the turbulent quasi-equilibrium state with enhanced electromagnetic radiation spectrum, thus demonstrating that the turbulent quasi-equilibrium discussed in the above paper correctly describes the weakly turbulent plasma dynamically interacting with electromagnetic fluctuations, while maintaining a dynamical steady-state in the average sense.

  8. The role of the hadron initiated single electromagnetic subcascades in IACT observations

    E-Print Network [OSTI]

    Sobczynska, Dorota

    2015-01-01

    The sensitivity of Imaging Air Cherenkov Telescopes (IACTs) worsens significantly at low energies because the gamma/hadron separation becomes much more complex. In this paper we study the impact of the single electromagnetic subcascade events on the efficiency of the gamma/hadron separation for a system of four IACTs using Monte Carlo simulations. The studies are done for: two different altitudes of the observatory, three different telescope sizes and two hadron interaction models (GHEISHA and FLUKA). More than 90% of the single electromagnetic proton-induced subcascade events are showers with primary energy below 200 GeV, regardless on the trigger threshold. The estimated efficiency of the gamma/hadron separation using the FLUKA model is similar to results obtained using the GHEISHA model. Nevertheless, for at least one triggered telescope only, a higher fraction of single electromagnetic subcascade events was obtained from the FLUKA model. Finally, the calculated quality factors are anti-correlated with the...

  9. Unification of Gravity and Electromagnetism I: Mach's Principle and Cosmology

    E-Print Network [OSTI]

    Partha Ghose

    2015-02-12

    The phenomenological consequences of unification of Einstein gravity and electromagnetism in an early phase of a Machian universe with a very small and uniform electrical charge density $\\rho_q$ are explored. A form of the Strong Equivalence Principle for unified electrogravity is first formulated, and it immediately leads to (i) the empirical Schuster-Blackett law relating the magnetic moments and angular momenta of neutral astronomical bodies, (ii) an analogous relation between the linear acceleration of neutral massive bodies and associated electric fields, (iii) gravitational lensing in excess of Einstein gravity, and, with the additional assumption of scaling, to (iv) the Wesson relation between the angular momentum and the square of the mass of astronomical bodies. Incorporation of Sciama's version of Mach's principle leads to a new post-Newtonian dynamics (in the weak field limit of gravity alone without electromagnetism) that predicts flat rotation curves of galaxies without the need of dark matter haloes. Finally, it is shown that the unified theory with a broken symmetry predicts a flat expanding universe with a cosmological term intimately related to electrogravity unification, and can explain WMAP data with a single free parameter. WMAP data require $\\rho_q =6.1\\times 10^{-43}$ C/cc which is too small to be detected at

  10. Interaction, protection and epidemics

    E-Print Network [OSTI]

    Goyal, Sanjeev; Vigier, Adrien

    2015-03-06

    unique equilibrium: individuals who invest in protection choose to interact more relative to those who do not invest in protection. Changes in the contagiousness of the disease have non-monotonic effects: as a result interaction initially falls...

  11. NATIONAL CARBON SEQUESTRATION DATABASE AND GEOGRAPHIC INFORMATION SYSTEM (NATCARB) FORMER TITLE-MIDCONTINENT INTERACTIVE DIGITAL CARBON ATLAS AND RELATIONAL DATABASE (MIDCARB)

    SciTech Connect (OSTI)

    Timothy R. Carr

    2004-07-16

    This annual report describes progress in the third year of the three-year project entitled ''Midcontinent Interactive Digital Carbon Atlas and Relational Database (MIDCARB)''. The project assembled a consortium of five states (Indiana, Illinois, Kansas, Kentucky and Ohio) to construct an online distributed Relational Database Management System (RDBMS) and Geographic Information System (GIS) covering aspects of carbon dioxide (CO{sub 2}) geologic sequestration (http://www.midcarb.org). The system links the five states in the consortium into a coordinated regional database system consisting of datasets useful to industry, regulators and the public. The project has been extended and expanded as a ''NATional CARBon Sequestration Database and Geographic Information System (NATCARB)'' to provide national coverage across the Regional CO{sub 2} Partnerships, which currently cover 40 states (http://www.natcarb.org). Advanced distributed computing solutions link database servers across the five states and other publicly accessible servers (e.g., USGS) into a single system where data is maintained and enhanced at the local level but is accessed and assembled through a single Web portal and can be queried, assembled, analyzed and displayed. This project has improved the flow of data across servers and increased the amount and quality of available digital data. The online tools used in the project have improved in stability and speed in order to provide real-time display and analysis of CO{sub 2} sequestration data. The move away from direct database access to web access through eXtensible Markup Language (XML) has increased stability and security while decreasing management overhead. The MIDCARB viewer has been simplified to provide improved display and organization of the more than 125 layers and data tables that have been generated as part of the project. The MIDCARB project is a functional demonstration of distributed management of data systems that cross the boundaries between institutions and geographic areas. The MIDCARB system addresses CO{sub 2} sequestration and other natural resource issues from sources, sinks and transportation within a spatial database that can be queried online. Visualization of high quality and current data can assist decision makers by providing access to common sets of high quality data in a consistent manner.

  12. Modified definition of group velocity and electromagnetic energy conservation equation

    E-Print Network [OSTI]

    Changbiao Wang

    2015-05-11

    The classical definition of group velocity has two flaws: (a) the group velocity can be greater than the phase velocity and break Fermat's principle in a non-dispersive, lossless, non-conducting, anisotropic uniform medium; (b) the definition is not consistent with the principle of relativity for a plane wave in a moving isotropic uniform medium. To remove the flaws, a modified definition is proposed. A criterion is set up to identify the justification of group velocity definition. A "superluminal power flow" is constructed to show that the electromagnetic energy conservation equation cannot uniquely define the power flow if the principle of Fermat is not taken into account.

  13. Scattering of an ultrashort electromagnetic pulse in a plasma

    SciTech Connect (OSTI)

    Astapenko, V. A. [Moscow Institute of Physics and Technology (Russian Federation)

    2011-11-15

    An analytic approach is developed to describing how ultrashort electromagnetic pulses with a duration of one period or less at the carrier frequency are scattered in a plasma. Formulas are derived to calculate and analyze the angular and spectral probabilities of radiation scattering via two possible mechanisms-Compton and transition radiation channels-throughout the entire pulse. Numerical simulations were carried out for a Gaussian pulse. The effect of the phase of the carrier frequency relative to the pulse envelope on the scattering parameters is investigated.

  14. Gravity Control by means of Electromagnetic Field through Gas or Plasma at Ultra-Low Pressure

    E-Print Network [OSTI]

    Fran De Aquino

    2013-12-02

    It is shown that the gravity acceleration just above a chamber filled with gas or plasma at ultra-low pressure can be strongly reduced by applying an Extra Low-Frequency (ELF) electromagnetic field across the gas or the plasma. This Gravitational Shielding Effect is related to recent discovery of quantum correlation between gravitational mass and inertial mass. According to the theory samples hung above the gas or the plasma should exhibit a weight decrease when the frequency of the electromagnetic field is decreased or when the intensity of the electromagnetic field is increased. This Gravitational Shielding Effect is unprecedented in the literature and can not be understood in the framework of the General Relativity. From the technical point of view, there are several applications for this discovery; possibly it will change the paradigms of energy generation, transportation and telecommunications.

  15. Electromagnetic Compatibility of Power Converters

    E-Print Network [OSTI]

    Charoy, A

    2015-01-01

    This paper describes the main challenges related to power converters in a scientific environment. It proposes some methods of EMC analysis, design, meas urement, and EMC troubleshooting.

  16. Discussion on the Mechanism of Electromigration from the Perspective of Electromagnetism

    E-Print Network [OSTI]

    Zhou, Peng; Johnson, William C.

    2010-01-01

    from the Perspective of Electromagnetism PENG ZHOU 1,3 andthe perspective of electromagnetism, rather than from thecharge, electromigration, electromagnetism INTRODUCTION

  17. Electromagnetic confinement for vertical casting or containing molten metal

    DOE Patents [OSTI]

    Lari, Robert J. (Aurora, IL); Praeg, Walter F. (Palos Park, IL); Turner, Larry R. (Naperville, IL)

    1991-01-01

    An apparatus and method adapted to confine a molten metal to a region by means of an alternating electromagnetic field. As adapted for use in the present invention, the alternating electromagnetic field given by B.sub.y =(2.mu..sub.o .rho.gy).sup.1/2 (where B.sub.y is the vertical component of the magnetic field generated by the magnet at the boundary of the region; y is the distance measured downward form the top of the region, .rho. is the metal density, g is the acceleration of gravity and .mu..sub.o is the permeability of free space) induces eddy currents in the molten metal which interact with the magnetic field to retain the molten metal with a vertical boudnary. As applied to an apparatus for the continuous casting of metal sheets or rods, metal in liquid form can be continuously introduced into the region defined by the magnetic field, solidified and conveyed away from the magnetic field in solid form in a continuous process.

  18. General description of electromagnetic radiation processes based on instantaneous charge acceleration in ''endpoints''

    SciTech Connect (OSTI)

    James, Clancy W.; Falcke, Heino; Huege, Tim; Ludwig, Marianne

    2011-11-15

    We present a methodology for calculating the electromagnetic radiation from accelerated charged particles. Our formulation - the 'endpoint formulation' - combines numerous results developed in the literature in relation to radiation arising from particle acceleration using a complete, and completely general, treatment. We do this by describing particle motion via a series of discrete, instantaneous acceleration events, or 'endpoints', with each such event being treated as a source of emission. This method implicitly allows for particle creation and destruction, and is suited to direct numerical implementation in either the time or frequency domains. In this paper we demonstrate the complete generality of our method for calculating the radiated field from charged particle acceleration, and show how it reduces to the classical named radiation processes such as synchrotron, Tamm's description of Vavilov-Cherenkov, and transition radiation under appropriate limits. Using this formulation, we are immediately able to answer outstanding questions regarding the phenomenology of radio emission from ultra-high-energy particle interactions in both the earth's atmosphere and the moon. In particular, our formulation makes it apparent that the dominant emission component of the Askaryan effect (coherent radio-wave radiation from high-energy particle cascades in dense media) comes from coherent 'bremsstrahlung' from particle acceleration, rather than coherent Vavilov-Cherenkov radiation.

  19. Electromagnetic transitions with effective operators

    E-Print Network [OSTI]

    Ionel Stetcu; Bruce R. Barrett; Petr Navratil; Calvin W. Johnson

    2004-09-30

    In the no-core shell model formalism we compute effective one- and two-body operators, using the Lee-Suzuki procedure within the two-body cluster approximation. We evaluate the validity of the latter through calculations in reduced model spaces. In particular, we test the results for the two-body system and find that indeed the effective operators in the reduced space reproduce the expectation values or transition strengths computed in the full space. On the other hand, the renormalization for operators in the case of 6Li is very weak, suggesting the need for higher-body clusters in computing the effective interaction.

  20. Scanning evanescent electro-magnetic microscope

    DOE Patents [OSTI]

    Xiang, Xiao-Dong (Alameda, CA); Gao, Chen (Anhui, CN); Schultz, Peter G. (La Jolla, CA); Wei, Tao (Sunnyvale, CA)

    2003-01-01

    A novel scanning microscope is described that uses near-field evanescent electromagnetic waves to probe sample properties. The novel microscope is capable of high resolution imaging and quantitative measurements of the electrical properties of the sample. The inventive scanning evanescent wave electromagnetic microscope (SEMM) can map dielectric constant, tangent loss, conductivity, complex electrical impedance, and other electrical parameters of materials. The quantitative map corresponds to the imaged detail. The novel microscope can be used to measure electrical properties of both dielectric and electrically conducting materials.

  1. Scanning evanescent electro-magnetic microscope

    DOE Patents [OSTI]

    Xiang, Xiao-Dong (Alameda, CA); Gao, Chen (Alameda, CA)

    2001-01-01

    A novel scanning microscope is described that uses near-field evanescent electromagnetic waves to probe sample properties. The novel microscope is capable of high resolution imaging and quantitative measurements of the electrical properties of the sample. The inventive scanning evanescent wave electromagnetic microscope (SEMM) can map dielectric constant, tangent loss, conductivity, complex electrical impedance, and other electrical parameters of materials. The quantitative map corresponds to the imaged detail. The novel microscope can be used to measure electrical properties of both dielectric and electrically conducting materials.

  2. Electromagnetic waves, gravitational coupling and duality analysis

    E-Print Network [OSTI]

    E. M. C. Abreu; C. Pinheiro; S. A. Diniz; F. C. Khanna

    2005-10-27

    In this letter we introduce a particular solution for parallel electric and magnetic fields, in a gravitational background, which satisfy free-wave equations and the phenomenology suggested by astrophysical plasma physics. These free-wave equations are computed such that the electric field does not induce the magnetic field and vice-versa. In a gravitational field, we analyze the Maxwell equations and the corresponding electromagnetic waves. A continuity equation is presented. A commutative and noncommutative analysis of the electromagnetic duality is described.

  3. Electromagnetic Observables in Few-Nucleon Systems

    E-Print Network [OSTI]

    Sonia Bacca

    2012-10-10

    The electromagnetic probe is a very valuable tool to study the dynamics of few nucleons. It can be very helpful in shedding light on the not yet fully understood three-nucleon forces. We present an update on the theoretical studies of electromagnetic induced reactions, such as photo-disintegration and electron scattering off 4He. We will show that they potentially represent a tool to discriminate among three-nucleon forces. Then, we will discuss the charge radius and the nuclear electric polarizability of the 6He halo nucleus.

  4. Duality in Off-Shell Electromagnetism

    E-Print Network [OSTI]

    Martin Land

    2006-03-21

    In this paper, we examine the Dirac monopole in the framework of Off-Shell Electromagnetism, the five dimensional U(1) gauge theory associated with Stueckelberg-Schrodinger relativistic quantum theory. After reviewing the Dirac model in four dimensions, we show that the structure of the five dimensional theory prevents a natural generalization of the Dirac monopole, since the theory is not symmetric under duality transformations. It is shown that the duality symmetry can be restored by generalizing the electromagnetic field strength to an element of a Clifford algebra. Nevertheless, the generalized framework does not permit us to recover the phenomenological (or conventional) absence of magnetic monopoles.

  5. Forces in electromagnetic field and gravitational field

    E-Print Network [OSTI]

    Zihua Weng

    2011-03-31

    The force can be defined from the linear momentum in the gravitational field and electromagnetic field. But this definition can not cover the gradient of energy. In the paper, the force will be defined from the energy and torque in a new way, which involves the gravitational force, electromagnetic force, inertial force, gradient of energy, and some other new force terms etc. One of these new force terms can be used to explain why the solar wind varies velocity along the magnetic force line in the interplanetary space between the sun and the earth.

  6. Variational Principles for Constrained Electromagnetic Field and Papapetrou Equation

    E-Print Network [OSTI]

    A. T. Muminov

    2007-06-28

    In our previous article [4] an approach to derive Papapetrou equations for constrained electromagnetic field was demonstrated by use of field variational principles. The aim of current work is to present more universal technique of deduction of the equations which could be applied to another types of non-scalar fields. It is based on Noether theorem formulated in terms of Cartan' formalism of orthonormal frames. Under infinitesimal coordinate transformation the one leads to equation which includes volume force of spin-gravitational interaction. Papapetrou equation for vector of propagation of the wave is derived on base of the equation. Such manner of deduction allows to formulate more accurately the constraints and clarify equations for the potential and for spin.

  7. Cosmic Electromagnetic Fields due to Perturbations in the Gravitational Field

    E-Print Network [OSTI]

    Bishop Mongwane; Peter K. S. Dunsby; Bob Osano

    2012-10-21

    We use non-linear gauge-invariant perturbation theory to study the interaction of an inflation produced seed magnetic field with density and gravitational wave perturbations in an almost Friedmann-Lema\\^itre-Robertson-Walker (FLRW) spacetime. We compare the effects of this coupling under the assumptions of poor conductivity, infinite conductivity and the case where the electric field is sourced via the coupling of velocity perturbations to the seed field in the ideal magnetohydrodynamic (MHD) regime, thus generalizing, improving on and correcting previous results. We solve our equations for long wavelength limits and numerically integrate the resulting equations to generate power spectra for the electromagnetic field variables, showing where the modes cross the horizon. We find that the rotation of the electric field dominates the power spectrum on small scales, in agreement with previous arguments.

  8. Electromagnetic properties of the Be-11 nucleus in Halo EFT

    E-Print Network [OSTI]

    D. R. Phillips; H. -W. Hammer

    2010-01-19

    We compute electromagnetic properties of the Be-11 nucleus using an effective field theory that exploits the separation of scales in this halo system. We fix the parameters of the EFT from measured data on levels and scattering lengths in the Be-10 plus neutron system. We then obtain predictions for the B(E1) strength of the 1/2^+ to 1/2^- transition in the Be-11 nucleus. We also compute the charge radius of the ground state of Be-11. Agreement with experiment within the expected accuracy of a leading-order computation in this EFT is obtained. We also indicate how higher-order corrections that affect both s-wave and p-wave Be-10-neutron interactions will affect our results.

  9. Electromagnetic field and the chiral magnetic effect in the quark-gluon plasma

    E-Print Network [OSTI]

    Kirill Tuchin

    2015-05-13

    Time evolution of electromagnetic field created in heavy-ion collisions strongly depends on the electromagnetic response of the quark-gluon plasma, which can be described by the Ohmic and chiral conductivities. The later is intimately related to the Chiral Magnetic Effect. I argue that a solution to the classical Maxwell equations at finite chiral conductivity is unstable due to the soft modes $kmagnetic field of a point charge. I show that finite chiral conductivity causes oscillations of magnetic field at early times.

  10. Comparison of electromagnetic and gravitational radiation; what we can learn about each from the other

    E-Print Network [OSTI]

    Richard H. Price; John W. Belcher; David A. Nichols

    2012-12-19

    We compare the nature of electromagnetic fields and of gravitational fields in linearized general relativity. We carry out this comparison both mathematically and visually. In particular the "lines of force" visualizations of electromagnetism are contrasted with the recently introduced tendex/vortex eigenline technique for visualizing gravitational fields. Specific solutions, visualizations, and comparisons are given for an oscillating point quadrupole source. Among the similarities illustrated are the quasistatic nature of the near fields, the transverse 1/r nature of the far fields, and the interesting intermediate field structures connecting these two limiting forms. Among the differences illustrated are the meaning of field line motion, and of the flow of energy.

  11. Gravitational Hertz experiment with electromagnetic radiation in a strong magnetic field

    E-Print Network [OSTI]

    N. I. Kolosnitsyn; V. N. Rudenko

    2015-04-24

    Brief review of principal ideas in respect of the high frequency gravitational radiation generated and detected in the laboratory condition is presented. Interaction of electro-magnetic and gravitational waves into a strong magnetic field is considered as a more promising variant of the laboratory GW-Hertz experiment. The formulae of the direct and inverse Gertsenshtein-Zeldovich effect are derived. Numerical estimates are given and a discussion of a possibility of observation of these effects in a lab is carried out.

  12. Benchmark calculation of inclusive electromagnetic responses in the four-body nuclear system

    E-Print Network [OSTI]

    Ionel Stetcu; Sofia Quaglioni; Sonia Bacca; Bruce R. Barrett; Calvin W. Johnson; Petr Navratil; Nir Barnea; Winfried Leidemann; Giuseppina Orlandini

    2006-05-23

    Both the no-core shell model and the effective interaction hyperspherical harmonic approaches are applied to the calculation of different response functions to external electromagnetic probes, using the Lorentz integral transform method. The test is performed on the four-body nuclear system, within a simple potential model. The quality of the agreement in the various cases is discussed, together with the perspectives for rigorous ab initio calculations of cross sections of heavier nuclei.

  13. Some Consequences of the Law of Local Energy Conservation in Electromagnetic field

    E-Print Network [OSTI]

    Kh. M. Beshtoev

    2001-07-27

    At electromagnetic interactions of particles there arises defect of masses, i.e. the energy is liberated since the particles of the different charges are attracted. It is shown that this change of the effective mass of a particle in the external electrical field (of a nucleus) results in displacement of atomic levels of electrons. The expressions describing these velocity changes and displacement of energy levels of electrons in the atom are obtained.

  14. Electromagnetic Light in Medium of Polarized Atoms $^3$He

    E-Print Network [OSTI]

    V. N. Minasyan

    2009-04-01

    First, it is predicted that polarized atoms $^3$He increase a value of speed electromagnetic waves. This reasoning implies that the velocity of electromagnetic waves into gas consisting of polarized atoms $^3$He is rather than one in vacuum.

  15. Reflection and Transmission of Pulsed Electromagnetic Fields through Multilayered

    E-Print Network [OSTI]

    Oughstun, Kurt

    Reflection and Transmission of Pulsed Electromagnetic Fields through Multilayered Biological Media- cally rigorous, physically correct description of the propagation of pulsed electromagnetic fields pulses through multilayered biological media consisting of three biological tissue layers rep- resenting

  16. Electromagnetically induced transparency with broadband laser pulses D. D. Yavuz

    E-Print Network [OSTI]

    Yavuz, Deniz

    Electromagnetically induced transparency with broadband laser pulses D. D. Yavuz Department pulses inside an atomic medium using electromag- netically induced transparency. Extending the suggestion.65. k Over the last decade, counterintuitive optical effects using electromagnetically induced

  17. Mathematical Methods for Electromagnetic and Optical Waves1

    E-Print Network [OSTI]

    Lu, Ya Yan

    Mathematical Methods for Electromagnetic and Optical Waves1 Ya Yan Lu Department of Mathematics . . . . . . . . . . . . . . . . . . . . . . 5 1.6 The energy law of electromagnetic field . . . . . . . . . . . . . . . . . . . . . 7 2.5 Pulse propagation and temporal solitons . . . . . . . . . . . . . . . . . . . . . 70 2 #12;Chapter 1

  18. The Eyjafjallajkull volcanic system, Iceland: insights from electromagnetic measurements

    E-Print Network [OSTI]

    Jones, Alan G.

    The Eyjafjallajökull volcanic system, Iceland: insights from electromagnetic measurements Journal; Iceland Geosurvey, Vilhjálmsson, Arnar; Iceland Geosurvey, Keywords: Magnetotellurics system, Iceland: insights from1 electromagnetic measurements2 Marion P. Miensopust1,2, , Alan G. Jones1

  19. Passive electromagnetic damping device for motion control of building structures

    E-Print Network [OSTI]

    Palomera-Arias, Rogelio, 1972-

    2005-01-01

    The research presented in this thesis develops a new device for the passive control of motion in building structures: an electromagnetic damper. The electromagnetic damper is a self-excited device that provides a reaction ...

  20. Motor Packaging with Consideration of Electromagnetic and Material...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Documents & Publications Motor Packaging with Consideration of Electromagnetic and Material Characteristics Alnico and Ferrite Hybrid Excitation Electric Machines Wireless Charging...

  1. Waveguide-based Ultrasonic and Far-field Electromagnetic Sensors...

    Broader source: Energy.gov (indexed) [DOE]

    ultrasonic and farfield electromagnetic sensors to measure key Enhanced Geothermal Systems (EGS) reservoir parameters, including directional temperature, pressure,...

  2. The Emission of Electromagnetic Radiation from Charges Accelerated by Gravitational Waves and its Astrophysical Implications

    E-Print Network [OSTI]

    Mitchell Revalski; Will Rhodes; Thulsi Wickramasinghe

    2015-02-03

    We provide calculations and theoretical arguments supporting the emission of electromagnetic radiation from charged particles accelerated by gravitational waves (GWs). These waves have significant indirect evidence to support their existence, yet they interact weakly with ordinary matter. We show that the induced oscillations of charged particles interacting with a GW, which lead to the emission of electromagnetic radiation, will also result in wave attenuation. These ideas are supported by a small body of literature, as well as additional arguments for particle acceleration based on GW memory effects. We derive order of magnitude power calculations for various initial charge distributions accelerated by GWs. The resulting power emission is extremely small for all but very strong GWs interacting with large quantities of charge. If the results here are confirmed and supplemented, significant consequences such as attenuation of early universe GWs could result. Additionally, this effect could extend GW detection techniques into the electromagnetic regime. These explorations are worthy of study to determine the presence of such radiation, as it is extremely important to refine our theoretical framework in an era of active GW astrophysics.

  3. Theory of electromagnetic reactions in light nuclei

    E-Print Network [OSTI]

    Tianrui Xu; Mirko Miorelli; Sonia Bacca; Gaute Hagen

    2015-09-11

    We briefly review the theory for electromagnetic reactions in light nuclei based on the coupled-cluster formulation of the Lorentz integral transform method. Results on photodisintegration reactions of 22O and 40Ca are reported on and preliminary calculations on the Coulomb sum rule for 4He are discussed.

  4. Televisions, Video Privacy, and Powerline Electromagnetic Interference

    E-Print Network [OSTI]

    Washington at Seattle, University of

    that the power supplies of modern TVs produce discernible electromagnetic interference (EMI) signatures. For example, utility (power) companies are seeking to deploy smart meters that measure fine-grained power on servers or to redistribute to lists, requires prior specific permission and/or a fee. CCS'11, October 17

  5. Theory of electromagnetic reactions in light nuclei

    E-Print Network [OSTI]

    Xu, Tianrui; Bacca, Sonia; Hagen, Gaute

    2015-01-01

    We briefly review the theory for electromagnetic reactions in light nuclei based on the coupled-cluster formulation of the Lorentz integral transform method. Results on photodisintegration reactions of 22O and 40Ca are reported on and preliminary calculations on the Coulomb sum rule for 4He are discussed.

  6. Electromagnetic Siegert states for periodic dielectric structures

    E-Print Network [OSTI]

    Friends R. Ndangali; Sergei V. Shabanov

    2011-08-09

    The formalism of Siegert states to describe the resonant scattering in quantum theory is extended to the resonant scattering of electromagnetic waves on periodic dielectric arrays. The excitation of electromagnetic Siegert states by an incident wave packet and their decay is studied. The formalism is applied to develop a theory of coupled electromagnetic resonances arising in the electromagnetic scattering problem for two such arrays separated by a distance 2h (or, generally, when the physical properties of the scattering array depend on a real coupling parameter h). Analytic properties of Siegert states as functions of the coupling parameter h are established by the Regular Perturbation Theorem which is an extension the Kato-Rellich theorem to the present case. By means of this theorem, it is proved that if the scattering structure admits a bound state in the radiation continuum at a certain value of the coupling parameter h, then there always exist regions within the structure in which the near field can be amplified as much as desired by adjusting the value of h. This establishes a rather general mechanism to control and amplify optical nonlinear effects in periodically structured planar structures possessing a nonlinear dielectric susceptibility.

  7. Line geometry and electromagnetism I: basic structures

    E-Print Network [OSTI]

    D. H. Delphenich

    2013-09-11

    Some key notions of line geometry are recalled, along with their application to mechanics. It is then shown that most of the basic structures that one introduces in the pre-metric formulation of electromagnetism can be interpreted directly in terms of corresponding concepts in line geometry. The results are summarized in a table.

  8. Structural composites with integrated electromagnetic functionality

    E-Print Network [OSTI]

    Nemat-Nasser, Sia

    , such as wires, into polymer-based or ceramic-based composites. In addition to desired structural properties of composites based on the integration of artificial plasmon media into polymer matrixes. Such composites canStructural composites with integrated electromagnetic functionality Syrus C. Nemat-Nasser, Alireza

  9. Electromagnetics from Simulation to Optimal Design

    E-Print Network [OSTI]

    Grohs, Philipp

    for Electromagnetic Fields and Microwave Electronics (IFH) ETH Zurich (Switzerland) Lab: http://www.ifh.ee.ethz.ch COG, anti-reflective coatings, enhanced solar cells... · Optical nano structures: waveguides, photonic crystals, plasmonics, optical antennas and sensors... · Microwave and mm wave technology: antennas, radar

  10. Slave Electromagnetic studies Alan G. Jones1

    E-Print Network [OSTI]

    Jones, Alan G.

    and Jessica Spratt1,5 1 Geological Survey of Canada, 615 Booth St., Ottawa, Ontario, K1A 0E9, Canada. Email-probing electromagnetic surveys, using the nautral-source magnetotelluric (MT) technique, have recently been carried out. The former ensured low resistance ground contact for electric field measurements, and the latter avoided

  11. Discussion on the Mechanism of Electromigration from the Perspective of Electromagnetism

    E-Print Network [OSTI]

    Zhou, Peng; Johnson, William C.

    2010-01-01

    FUNDAMENTALS OF ELECTROMAGNETISM In the latter half of the 19th century, Maxwell summarized the electromagnetic theory

  12. Electromagnetic field triggered drug and chemical delivery via liposomes

    DOE Patents [OSTI]

    Liburdy, Robert P. (1820 Mountain View Rd., Tiburon, CA 94920)

    1993-01-01

    The present invention relates to a system and to a method of delivering a drug to a preselected target body site of a patient, comprising the steps of encapsulating the chemical agent within liposomes, essentially temperature insensitive, i.e. not having a specific predetermined phase transition temperature within the specific temperature range of drug administration; administering the liposomes to the target body site; and subjecting the target body site to nonionizing electromagnetic fields in an area of the preselected target body in order to release said chemical agent from the liposomes at a temperature of between about +10 and 65.degree. C. The invention further relates to the use of said liposomes to bind to the surface of or to enter target tissue or an organ in a living system, and, when subjected to a nonionizing field, to release a drug from the liposomes into the target site.

  13. Electromagnetic field triggered drug and chemical delivery via liposomes

    DOE Patents [OSTI]

    Liburdy, R.P.

    1993-03-02

    The present invention relates to a system and to a method of delivering a drug to a preselected target body site of a patient, comprising the steps of encapsulating the chemical agent within liposomes, essentially temperature insensitive, i.e. not having a specific predetermined phase transition temperature within the specific temperature range of drug administration; administering the liposomes to the target body site; and subjecting the target body site to nonionizing electromagnetic fields in an area of the preselected target body in order to release the chemical agent from the liposomes at a temperature of between about +10 and 65 C. The invention further relates to the use of the liposomes to bind to the surface of or to enter target tissue or an organ in a living system, and, when subjected to a nonionizing field, to release a drug from the liposomes into the target site.

  14. Electromagnetics, 26:335, 2006 Copyright Taylor & Francis Group, LLC

    E-Print Network [OSTI]

    Anlage, Steven

    Electromagnetics, 26:3­35, 2006 Copyright © Taylor & Francis Group, LLC ISSN: 0272-6343 print/1532 the statistical properties of the impedance (Z) and scattering (S) matrices of open electromagnetic cavities. Introduction The problem of the coupling of electromagnetic radiation in and out of structures is a general one

  15. Electromagnetic guided waves on linear arrays of spheres

    E-Print Network [OSTI]

    Electromagnetic guided waves on linear arrays of spheres C M Linton, V Zalipaev, and I Thompson electromagnetic waves propagating along one-dimensional arrays of dielec- tric spheres are studied. The quasi. There have been previous studies of electromagnetic surface waves guided by periodic arrays, but these have

  16. ELECTROMAGNETIC IMAGES OF THE TINTINA FAULT (NORTHERN CANADIAN CORDILLERA)

    E-Print Network [OSTI]

    Jones, Alan G.

    ELECTROMAGNETIC IMAGES OF THE TINTINA FAULT (NORTHERN CANADIAN CORDILLERA) Juanjo Ledo1 , Alan G to obtain a crustal scale electromagnetic image of the fault. A short, higher station density profile-dimensional (2- D) electromagnetic behavior of the fault. Distortion decomposition of the responses corroborated

  17. ECE 203 Spring 2012 Engineering Electromagnetics Waves (3)

    E-Print Network [OSTI]

    Gilchrist, James F.

    ). Additional Advanced Textbooks: Fundamentals 1. J. A. Kong, Electromagnetic Wave Theory, EMW (2002). 2. C. Cheng, Fundamental of Engineering Electromagnetics, Prentice Hall (2003). Nice and concise treatment of elementary EM theory. 3. N. Rao, Elements of Engineering Electromagnetics, Prentice Hall (2005). About

  18. 14:332:382 Electromagnetic Fields Spring 2012

    E-Print Network [OSTI]

    Jiang, Wei

    . Edminister, Schaum's outline of theory and problems of electromagnetics, McGraw- Hill; 2 edition (1994) ISBN://sakai.rutgers.edu. Overall Educational Objective: This course provides an introduction to electromagnetic theory and principles. Electromagnetics provides the fundamental basis for many subfields of electrical and computer

  19. ECE 202 Fall 2006 Introduction to Engineering Electromagnetics (3)

    E-Print Network [OSTI]

    Gilchrist, James F.

    Textbooks: Fundamentals 1. J. A. Kong, Electromagnetic Wave Theory, EMW (2002). 2. C. Balanis, Advanced, Fundamental of Engineering Electromagnetics, Prentice Hall (2003). Nice and concise treatment of elementary EM theory. 2. N. Rao, Elements of Engineering Electromagnetics, Prentice Hall (2005). About the same level

  20. Matched slow pulses using double electromagnetically induced transparency

    E-Print Network [OSTI]

    Lvovsky, Alexander

    Matched slow pulses using double electromagnetically induced transparency Andrew MacRae,* Geoff, 2008 We implement double electromagnetically induced transparency (DEIT) in rubidium vapor using Optical Society of America OCIS codes: 270.1670, 270.5585, 190.5530. Electromagnetically induced

  1. Cosmological electromagnetic fields due to gravitational wave perturbations Mattias Marklund*

    E-Print Network [OSTI]

    Dunsby, Peter

    show that this coupling leads to an initial pulse of electromagnetic waves whose width and amplitude to produce a pulse of gravitationally induced electromagnetic waves. In particular, because of the differentCosmological electromagnetic fields due to gravitational wave perturbations Mattias Marklund

  2. Action of an electromagnetic pulse on a plasma with a high level of ion-acoustic turbulence. Field diffusion and subdiffusion

    SciTech Connect (OSTI)

    Ovchinnikov, K. N.; Uryupin, S. A., E-mail: uryupin@sci.lebedev.ru [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation)

    2013-09-15

    Specific features of the interaction of a relatively weak electromagnetic pulse with a nonisothermal current-carrying plasma in which the electron drift velocity is much higher than the ion-acoustic velocity, but lower than the electron thermal velocity, are studied. If the state of the plasma with ion-acoustic turbulence does not change during the pulse action, the field penetrates into the plasma in the ordinary diffusion regime, but the diffusion coefficient in this case is inversely proportional to the anomalous conductivity. If, during the pulse action, the particle temperatures and the current-driving field change due to turbulent heating, the field penetrates into the plasma in the subdiffusion regime. It is shown how the presence of subdiffusion can be detected by measuring the reflected field.

  3. Hydrodynamic construction of the electromagnetic field

    E-Print Network [OSTI]

    Peter Holland

    2014-10-03

    We present an alternative Eulerian hydrodynamic model for the electromagnetic field in which the discrete vector indices in Maxwell\\s equations are replaced by continuous angular freedoms, and develop the corresponding Lagrangian picture in which the fluid particles have rotational and translational freedoms. This enables us to extend to the electromagnetic field the exact method of state construction proposed previously for spin 0 systems, in which the time-dependent wavefunction is computed from a single-valued continuum of deterministic trajectories where two spacetime points are linked by at most a single orbit. The deduction of Maxwell\\s equations from continuum mechanics is achieved by generalizing the spin 0 theory to a general Riemannian manifold from which the electromagnetic construction is extracted as a special case. In particular, the flat-space Maxwell equations are represented as a curved-space Schr\\"odinger equation for a massive system. The Lorentz covariance of the Eulerian field theory is obtained from the non-covariant Lagrangian-coordinate model as a kind of collective effect. The method makes manifest the electromagnetic analogue of the quantum potential that is tacit in Maxwell\\s equations. This implies a novel definition of the \\classical limit\\ of Maxwell\\s equations that differs from geometrical optics. It is shown that Maxwell\\s equations may be obtained by canonical quantization of the classical model. Using the classical trajectories a novel expression is derived for the propagator of the electromagnetic field in the Eulerian picture. The trajectory and propagator methods of solution are illustrated for the case of a light wave.

  4. Healing design: a phenomenological approach to the relation of the physical setting to positive social interaction in pediatric intensive care units in the United States and Turkey 

    E-Print Network [OSTI]

    Ozcan, Hilal

    2006-04-12

    and her concern for world; All care providers for choosing their career, especially Turkish nurses and physicians, whose spirit overcomes practical constraints in the delivery of critical care. I also want to express my gratitude to Dr. Tezer Kutluk..................................................................163 xiv LIST OF FIGURES (Continued) FIGURE Page 5.1 Social Interaction of Turkish Caregivers, Nurses? Room (Source: Author)..................................168 5.2 Nature Characteristics...

  5. 532 IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, VOL. 51, NO. 3, AUGUST 2009 Lightning Electromagnetic Field Coupling to

    E-Print Network [OSTI]

    Florida, University of

    of both the incident lightning electromagnetic pulse (LEMP) and the effects of coupling of this field- mental validation using: 1) reduced-scale setups with LEMP and nuclear electromagnetic pulse (NEMP532 IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, VOL. 51, NO. 3, AUGUST 2009 Lightning

  6. Interaction transfer of silicon atoms forming Co silicide for Co/?(3)×?(3)R30°-Ag/Si(111) and related magnetic properties

    SciTech Connect (OSTI)

    Chang, Cheng-Hsun-Tony; Fu, Tsu-Yi; Tsay, Jyh-Shen

    2015-05-07

    Combined scanning tunneling microscopy, Auger electron spectroscopy, and surface magneto-optic Kerr effect studies were employed to study the microscopic structures and magnetic properties for ultrathin Co/?(3)×?(3)R30°-Ag/Si(111). As the annealing temperature increases, the upward diffusion of Si atoms and formation of Co silicides occurs at temperature above 400?K. Below 600?K, the ?(3)×?(3)R30°-Ag/Si(111) surface structure persists. We propose an interaction transferring mechanism of Si atoms across the ?(3)×?(3)R30°-Ag layer. The upward transferred Si atoms react with Co atoms to form Co silicide. The step height across the edge of the island, a separation of 0.75?nm from the analysis of the 2?×?2 structure, and the calculations of the normalized Auger signal serve as strong evidences for the formation of CoSi{sub 2} at the interface. The interaction transferring mechanism for Si atoms enhances the possibility of interactions between Co and Si atoms. The smoothness of the surface is advantage for that the easy axis of magnetization for Co/?(3)×?(3)R30°-Ag/Si(111) is in the surface plane. This provides a possible way of growing flat magnetic layers on silicon substrate with controllable silicide formation and shows potential applications in spintronics devices.

  7. Radiative Reactions and Coherence Modeling in the High Altitude Electromagnetic Pulse

    E-Print Network [OSTI]

    Charles N. Vittitoe; Mario Rabinowitz

    2003-06-03

    A high altitude nuclear electromagnetic pulse (EMP) with a peak field intensity of 5 x 10^4 V/m carries momentum that results in a retarding force on the average Compton electron (radiating coherently to produce the waveform) with magnitude near that of the geomagnetic force responsible for the coherent radiation. The retarding force results from a self field effect. The Compton electron interaction with the self generated magnetic field due to the other electrons accounts for the momentum density in the propagating wave; interaction with the self generated electric field accounts for the energy flux density in the propagating wave. Coherent addition of radiation is also quantitatively modeled.

  8. A strong permanent magnet-assisted electromagnetic undulator

    DOE Patents [OSTI]

    Halbach, K.

    1987-01-30

    This invention discloses an improved undulator comprising a plurality of electromagnet poles located along opposite sides of a particle beam axis with alternate north and south poles on each side of the beam to cause the beam to wiggle or undulate as it travels generally along the beam axis and permanent magnets spaced adjacent the electromagnetic poles on each side of the axis of said particle beam in an orientation sufficient to reduce the saturation of the electromagnet poles whereby the field strength of the electromagnet poles can be increased beyond the normal saturation levels of the electromagnetic poles. 4 figs.

  9. Recoil Polarization Measurements of the Proton Electromagnetic Form Factor Ratio to Q^2 = 8.5 GeV^2

    E-Print Network [OSTI]

    A. J. R. Puckett; E. J. Brash; M. K. Jones; W. Luo; M. Meziane; L. Pentchev; C. F. Perdrisat; V. Punjabi; F. R. Wesselmann; A. Ahmidouch; I. Albayrak; K. A. Aniol; J. Arrington; A. Asaturyan; H. Baghdasaryan; F. Benmokhtar; W. Bertozzi; L. Bimbot; P. Bosted; W. Boeglin; C. Butuceanu; P. Carter; S. Chernenko; E. Christy; M. Commisso; J. C. Cornejo; S. Covrig; S. Danagoulian; A. Daniel; A. Davidenko; D. Day; S. Dhamija; D. Dutta; R. Ent; S. Frullani; H. Fenker; E. Frlez; F. Garibaldi; D. Gaskell; S. Gilad; R. Gilman; Y. Goncharenko; K. Hafidi; D. Hamilton; D. W. Higinbotham; W. Hinton; T. Horn; B. Hu; J. Huang; G. M. Huber; E. Jensen; C. Keppel; M. Khandaker; P. King; D. Kirillov; M. Kohl; V. Kravtsov; G. Kumbartzki; Y. Li; V. Mamyan; D. J. Margaziotis; A. Marsh; Y. Matulenko; J. Maxwell; G. Mbianda; D. Meekins; Y. Melnik; J. Miller; A. Mkrtchyan; H. Mkrtchyan; B. Moffit; O. Moreno; J. Mulholland; A. Narayan; S. Nedev; Nuruzzaman; E. Piasetzky; W. Pierce; N. M. Piskunov; Y. Prok; R. D. Ransome; D. S. Razin; P. Reimer; J. Reinhold; O. Rondon; M. Shabestari; A. Shahinyan; K. Shestermanov; S. Sirca; I. Sitnik; L. Smykov; G. Smith; L. Solovyev; P. Solvignon; R. Subedi; E. Tomasi-Gustafsson; A. Vasiliev; M. Veilleux; B. B. Wojtsekhowski; S. Wood; Z. Ye; Y. Zanevsky; X. Zhang; Y. Zhang; X. Zheng; L. Zhu

    2010-05-28

    Among the most fundamental observables of nucleon structure, electromagnetic form factors are a crucial benchmark for modern calculations describing the strong interaction dynamics of the nucleon's quark constituents; indeed, recent proton data have attracted intense theoretical interest. In this letter, we report new measurements of the proton electromagnetic form factor ratio using the recoil polarization method, at momentum transfers Q2=5.2, 6.7, and 8.5 GeV2. By extending the range of Q2 for which GEp is accurately determined by more than 50%, these measurements will provide significant constraints on models of nucleon structure in the non-perturbative regime.

  10. Multidimensional, autoresonant three-wave interactions O. Yaakobia

    E-Print Network [OSTI]

    Friedland, Lazar

    electromagnetic wave and an ion-acoustic wave stimulated Brillouin scattering SBS or an electrostatic plasma wave waves of the Korteweg­de Vries KdV equation,23 and one-dimensional 1D two- and three-wave interactionsMultidimensional, autoresonant three-wave interactions O. Yaakobia and L. Friedlandb Racah

  11. Causal signal transmission by quantum fields. V: Generalised Keldysh rotations and electromagnetic response of the Dirac sea

    SciTech Connect (OSTI)

    Plimak, L.I., E-mail: lev.plimak@uni-ulm.de [Institut fuer Quantenphysik, Universitaet Ulm, 89069 Ulm (Germany); Stenholm, S. [Institut fuer Quantenphysik, Universitaet Ulm, 89069 Ulm (Germany) [Institut fuer Quantenphysik, Universitaet Ulm, 89069 Ulm (Germany); Physics Department, Royal Institute of Technology, KTH, Stockholm (Sweden); Laboratory of Computational Engineering, HUT, Espoo (Finland)

    2012-11-15

    The connection between real-time quantum field theory (RTQFT) [see, e.g., A. Kamenev and A. Levchenko, Adv. Phys. 58 (2009) 197] and phase-space techniques [E. Wolf and L. Mandel, Optical Coherence and Quantum Optics (Cambridge, 1995)] is investigated. The Keldysh rotation that forms the basis of RTQFT is shown to be a phase-space mapping of the quantum system based on the symmetric (Weyl) ordering. Following this observation, we define generalised Keldysh rotations based on the class of operator orderings introduced by Cahill and Glauber [K.E. Cahill, R.J. Glauber, Phys. Rev. 177 (1969) 1882]. Each rotation is a phase-space mapping, generalising the corresponding ordering from free to interacting fields. In particular, response transformation [L.I. Plimak, S. Stenholm, Ann. Phys. (N.Y.) 323 (2008) 1989] extends the normal ordering of free-field operators to the time-normal ordering of Heisenberg operators. Structural properties of the response transformation, such as its association with the nonlinear quantum response problem and the related causality properties, hold for all generalised Keldysh rotations. Furthermore, we argue that response transformation is especially suited for RTQFT formulation of spatial, in particular, relativistic, problems, because it extends cancellation of zero-point fluctuations, characteristic of the normal ordering, to interacting fields. As an example, we consider quantised electromagnetic field in the Dirac sea. In the time-normally-ordered representation, dynamics of the field looks essentially classical (fields radiated by currents), without any contribution from zero-point fluctuations. For comparison, we calculate zero-point fluctuations of the interacting electromagnetic field under orderings other than time-normal. The resulting expression is physically inconsistent: it does not obey the Lorentz condition, nor Maxwell's equations. - Highlights: Black-Right-Pointing-Pointer The Keldysh rotation is a phase-space mapping based on Weyl's operator ordering. Black-Right-Pointing-Pointer Generalised Keldysh rotations (GKRs) based on other orderings are introduced. Black-Right-Pointing-Pointer Special properties of the GKR based on the normal ordering are elucidated. Black-Right-Pointing-Pointer In relativistic QED, other rotations are shown to be physically inconsistent.

  12. Electromagnetic Pulse from Final Gravitational Stellar Collapse

    E-Print Network [OSTI]

    P. D. Morley; Ivan Schmidt

    2002-01-30

    We employ an effective gravitational stellar final collapse model which contains the relevant physics involved in this complex phenomena: spherical radical infall in the Schwarzschild metric of the homogeneous core of an advanced star, giant magnetic dipole moment, magnetohydrodynamic material response and realistic equations of state (EOS). The electromagnetic pulse is computed both for medium size cores undergoing hydrodynamic bounce and large size cores undergoing black hole formation. We clearly show that there must exist two classes of neutron stars, separated by maximum allowable masses: those that collapsed as solitary stars (dynamical mass limit) and those that collapsed in binary systems allowing mass accretion (static neutron star mass). Our results show that the electromagnetic pulse spectrum associated with black hole formation is a universal signature, independent of the nuclear EOS. Our results also predict that there must exist black holes whose masses are less than the static neutron star stability limit.

  13. Fluidic electrodynamics: Approach to electromagnetic propulsion

    SciTech Connect (OSTI)

    Martins, Alexandre A.; Pinheiro, Mario J. [Institute for Plasmas and Nuclear Fusion and Instituto Superior Tecnico Lisboa, Portugal 351.1.21.841.92.43 (Portugal); Department of Physics and Institute for Plasmas and Nuclear Fusion and Instituto Superior Tecnico Lisboa, Portugal 351.1.21.841.93.22 (Portugal)

    2009-03-16

    We report on a new methodological approach to electrodynamics based on a fluidic viewpoint. We develop a systematic approach establishing analogies between physical magnitudes and isomorphism (structure-preserving mappings) between systems of equations. This methodological approach allows us to give a general expression for the hydromotive force, thus re-obtaining the Navier-Stokes equation departing from the appropriate electromotive force. From this ground we offer a fluidic approach to different kinds of issues with interest in propulsion, e.g., the force exerted by a charged particle on a body carrying current; the magnetic force between two parallel currents; the Magnus's force. It is shown how the intermingle between the fluid vector fields and electromagnetic fields leads to new insights on their dynamics. The new concepts introduced in this work suggest possible applications to electromagnetic (EM) propulsion devices and the mastery of the principles of producing electric fields of required configuration in plasma medium.

  14. Velocity damper for electromagnetically levitated materials

    DOE Patents [OSTI]

    Fox, Richard J. (Oak Ridge, TN)

    1994-01-01

    A system for damping oscillatory and spinning motions induced in an electromagnetically levitated material. Two opposed field magnets are located orthogonally to the existing levitation coils for providing a DC quadrupole field (cusp field) around the material. The material used for generating the DC quadrupole field must be nonconducting to avoid eddy-current heating and of low magnetic permeability to avoid distorting the induction fields providing the levitation.

  15. Velocity damper for electromagnetically levitated materials

    DOE Patents [OSTI]

    Fox, R.J.

    1994-06-07

    A system for damping oscillatory and spinning motions induced in an electromagnetically levitated material is disclosed. Two opposed field magnets are located orthogonally to the existing levitation coils for providing a DC quadrupole field (cusp field) around the material. The material used for generating the DC quadrupole field must be nonconducting to avoid eddy-current heating and of low magnetic permeability to avoid distorting the induction fields providing the levitation. 1 fig.

  16. Electromagnetic Dark Energy and Gravitoelectrodynamics of Superconductors

    E-Print Network [OSTI]

    Clovis Jacinto de Matos

    2007-10-29

    It is shown that Beck and Mackey electromagnetic model of dark energy in superconductors can account for the non-classical inertial properties of superconductors, which have been conjectured by the author to explain the Cooper pair's mass excess reported by Cabrera and Tate. A new Einstein-Planck regime for gravitation in condensed matter is proposed as a natural scale to host the gravitoelectrodynamic properties of superconductors.

  17. Electromagnetic or other directed energy pulse launcher

    DOE Patents [OSTI]

    Ziolkowski, Richard W. (Livermore, CA)

    1990-01-01

    The physical realization of new solutions of wave propagation equations, such as Maxwell's equations and the scaler wave equation, produces localized pulses of wave energy such as electromagnetic or acoustic energy which propagate over long distances without divergence. The pulses are produced by driving each element of an array of radiating sources with a particular drive function so that the resultant localized packet of energy closely approximates the exact solutions and behaves the same.

  18. Comparison between electroglottography and electromagnetic glottography

    SciTech Connect (OSTI)

    Titze, Ingo R.; Story, Brad H.; Burnett, Gregory C.; Holzrichter, John F.; Ng, Lawrence C.; Lea, Wayne A.

    2000-01-01

    Newly developed glottographic sensors, utilizing high-frequency propagating electromagnetic waves, were compared to a well-established electroglottographic device. The comparison was made on four male subjects under different phonation conditions, including three levels of vocal fold adduction (normal, breathy, and pressed), three different registers (falsetto, chest, and fry), and two different pitches. Agreement between the sensors was always found for the glottal closure event, but for the general wave shape the agreement was better for falsetto and breathy voice than for pressed voice and vocal fry. Differences are attributed to the field patterns of the devices. Whereas the electroglottographic device can operate only in a conduction mode, the electromagnetic device can operate in either the forward scattering (diffraction) mode or in the backward scattering (reflection) mode. Results of our tests favor the diffraction mode because a more favorable angle imposed on receiving the scattered (reflected) signal did not improve the signal strength. Several observations are made on the uses of the electromagnetic sensors for operation without skin contact and possibly in an array configuration for improved spatial resolution within the glottis. (c) 2000 Acoustical Society of America.

  19. Cosmological electromagnetic fields and dark energy

    E-Print Network [OSTI]

    Jose Beltran Jimenez; Antonio L. Maroto

    2009-02-18

    We show that the presence of a temporal electromagnetic field on cosmological scales generates an effective cosmological constant which can account for the accelerated expansion of the universe. Primordial electromagnetic quantum fluctuations produced during electroweak scale inflation could naturally explain the presence of this field and also the measured value of the dark energy density. The behavior of the electromagnetic field on cosmological scales is found to differ from the well studied short-distance behavior and, in fact, the presence of a non-vanishing cosmological constant could be signalling the breakdown of gauge invariance on cosmological scales. The theory is compatible with all the local gravity tests, and is free from classical or quantum instabilities. Thus we see that, not only the true nature of dark energy can be established without resorting to new physics, but also the value of the cosmological constant finds a natural explanation in the context of standard inflationary cosmology. This mechanism could be discriminated from a true cosmological constant by upcoming observations of CMB anisotropies and large scale structure.

  20. Electromagnetic field objects in terms of Balance of Geometric flows

    E-Print Network [OSTI]

    Donev, Stoil

    2015-01-01

    This paper reviews our physical motivation for choosing appropriate formal presentation of electromagnetic field objects (EMFO). Our view is based on the understanding that EMFO are spatially finite entities carrying internal dynamical structure, so, their available integral time stability should be represented by appropriate adaptation of their internal dynamical structure to corresponding local stress-energy-momentum balance relations with other physical objects. This adaptation process has two aspects: internal and external. Clearly, finding adequate internal dynamical structure giving appropriate integral characteristics of the object, will bring also appropriate behavior of EMFO as a whole. Therefore, the internal local stress-energy-momentum balance among the subsystems of EMFO should formally be presented by appropriately defined tensor-field quantities, which are meant to suggest a dynamical understanding of the abilities of EMFO to successfully communicate with all the rest physical world.

  1. Vertical Transport of Subwavelength Localized Surface Electromagnetic Modes

    E-Print Network [OSTI]

    Gao, Fei; Zhang, Youming; Shi, Xihang; Yang, Zhaoju; Zhang, Baile

    2015-01-01

    Transport of subwavelength electromagnetic (EM) energy has been achieved through near-field coupling of highly confined surface EM modes supported by plasmonic nanoparticles, in a configuration usually staying on a two-dimensional (2D) substrate. Vertical transport of similar modes along the third dimension, on the other hand, can bring more flexibility in designs of functional photonic devices, but this phenomenon has not been observed in reality. In this paper, designer (or spoof) surface plasmon resonators (plasmonic meta-atoms) are stacked in the direction vertical to their individual planes in demonstrating vertical transport of subwavelength localized surface EM modes. Dispersion relation of this vertical transport is determined from coupled mode theory and is verified with near-field transmission spectrum and field mapping with a microwave near-field scanning stage. This work extends the near-field coupled resonator optical waveguide (CROW) theory into the vertical direction, and may find applications ...

  2. Characterization of microstructure with low frequency electromagnetic techniques

    SciTech Connect (OSTI)

    Cherry, Matthew R.; Sathish, Shamachary [University of Dayton Research Institute, Structural Integrity Division, 300 College Park, Dayton, OH 45469-0020 (United States); Pilchak, Adam L.; Blodgett, Mark P. [Air Force Research Laboratory, Materials and Manufacturing Directorate (AFRL/RXCM), 2230 10th St., WPAFB, OH 45433 (United States); Cherry, Aaron J. [Southwest Ohio Council for Higher Education, 3155 Research Blvd., Suite 204, Dayton, OH 45420-4015 (United States)

    2014-02-18

    A new computational method for characterizing the relationship between surface crystallography and electrical conductivity in anisotropic materials with low frequency electromagnetic techniques is presented. The method is discussed from the standpoint of characterizing the orientation of a single grain, as well as characterizing statistical information about grain ensembles in the microstructure. Large-area electron backscatter diffraction (EBSD) data was obtained and used in conjunction with a synthetic aperture approach to simulate the eddy current response of beta annealed Ti-6Al-4V. Experimental eddy current results are compared to the computed eddy current approximations based on electron backscatter diffraction (EBSD) data, demonstrating good agreement. The detectability of notches in the presence of noise from microstructure is analyzed with the described simulation method and advantages and limitations of this method are discussed relative to other NDE techniques for such analysis.

  3. Electromagnetic field objects in terms of Balance of Geometric flows

    E-Print Network [OSTI]

    Stoil Donev; Maria Tashkova

    2015-08-26

    This paper reviews our physical motivation for choosing appropriate formal presentation of electromagnetic field objects (EMFO). Our view is based on the understanding that EMFO are spatially finite entities carrying internal dynamical structure, so, their available integral time stability should be represented by appropriate adaptation of their internal dynamical structure to corresponding local stress-energy-momentum balance relations with other physical objects. This adaptation process has two aspects: internal and external. Clearly, finding adequate internal dynamical structure giving appropriate integral characteristics of the object, will bring also appropriate behavior of EMFO as a whole. Therefore, the internal local stress-energy-momentum balance among the subsystems of EMFO should formally be presented by appropriately defined tensor-field quantities, which are meant to suggest a dynamical understanding of the abilities of EMFO to successfully communicate with all the rest physical world.

  4. Electromagnetic Isolation Solutions in Low Temperature Cofired Ceramic (LTCC)

    SciTech Connect (OSTI)

    Krueger, Daniel; Peterson, Ken; Euler, Laurie

    2011-10-09

    Low Temperature Cofired Ceramic (LTCC) is a commercial ceramic-glass multilayer technology with compelling advantages for microelectronics, microsystems and sensors. High frequency applications require good electrical properties such as low dielectric loss and newer applications require extreme isolation from electromagnetic interference (EMI) that is even difficult to measure (-150db). Approaches to providing this isolation, once provided by via fences, have included sidewall coating and full tape thickness features (FTTF) that have been introduced by the filling of slots with via-fill compositions. Several techniques for creating these structures have been modeled for stress and temperature effects in the face of other necessary attachments, such as metallic seal frames. The relative effects of attachment media, FTTF geometry, and alternative measures will be reported. Approaches for thick film and thin film implementations are described.

  5. Modulational instability of electromagnetic waves in a collisional quantum magnetoplasma

    SciTech Connect (OSTI)

    Niknam, A. R.; Rastbood, E.; Bafandeh, F.; Khorashadizadeh, S. M.

    2014-04-15

    The modulational instability of right-hand circularly polarized electromagnetic electron cyclotron (CPEM-EC) wave in a magnetized quantum plasma is studied taking into account the collisional effects. Employing quantum hydrodynamic and nonlinear Schrödinger equations, the dispersion relation of modulated CPEM-EC wave in a collisional plasma has been derived. It is found that this wave is unstable in such a plasma system and the growth rate of the associated instability depends on various parameters such as electron Fermi temperature, plasma number density, collision frequency, and modulation wavenumber. It is shown that while the increase of collision frequency leads to increase of the growth rate of instability, especially at large wavenumber limit, the increase of plasma number density results in more stable modulated CPEM-EC wave. It is also found that in contrast to collisionless plasma in which modulational instability is restricted to small wavenumbers, in collisional plasma, the interval of instability occurrence can be extended to a large domain.

  6. Correlation length of the two-dimensional Ising spin glass with Gaussian interactions 

    E-Print Network [OSTI]

    Katzgraber, Helmut G.; Lee, LW; Young, AP.

    2004-01-01

    In this paper, we examine the Casimir interaction between a scalar field and a boundary analogous to a conducting wall with some small but finite skin depth to electromagnetic radiation with the goal of calculating the energy density and pressure...

  7. Supplementary Note 1. Related Software The necessity to make large multi-channel volumetric images and time series available for interactive vi-

    E-Print Network [OSTI]

    Cai, Long

    Supplementary Note 1. Related Software The necessity to make large multi-channel volumetric images reported dataset 300GB 6TB 10TB 10TB N/A N/A 2.5TB Both volumetric and slice-based visualization of image

  8. Theory of diatomic molecules in an external electromagnetic field from first quantum mechanical principles

    E-Print Network [OSTI]

    Sindelka, M; Sindelka, Milan; Moiseyev, Nimrod

    2006-01-01

    We study a general problem of the translational/rotational/vibrational/electronic dynamics of a diatomic molecule exposed to an interaction with an arbitrary external electromagnetic field. The theory developed in this paper is relevant to a variety of specific applications. Such as, alignment or orientation of molecules by lasers, trapping of ultracold molecules in optical traps, molecular optics and interferometry, rovibrational spectroscopy of molecules in the presence of intense laser light, or generation of high order harmonics from molecules. Starting from the first quantum mechanical principles, we derive an appropriate molecular Hamiltonian suitable for description of the center of mass, rotational, vibrational and electronic molecular motions driven by the field within the electric dipole approximation. Consequently, the concept of the Born-Oppenheimer separation between the electronic and the nuclear degrees of freedom in the presence of an electromagnetic field is introduced. Special cases of the d...

  9. Assessment and Mitigation of Diagnostic-Generated Electromagnetic Interference at the National Ignition Facility

    SciTech Connect (OSTI)

    Brown, C G; Ayers, M J; Felker, B; Ferguson, W; Holder, J P; Nagel, S R; Piston, K W; Simanovskaia, N; Throop, A L; Chung, M; Hilsabeck, T

    2012-04-20

    Electromagnetic interference (EMI) is an ever-present challenge at laser facilities such as the National Ignition Facility (NIF). The major source of EMI at such facilities is laser-target interaction that can generate intense electromagnetic fields within, and outside of, the laser target chamber. In addition, the diagnostics themselves can be a source of EMI, even interfering with themselves. In this paper we describe EMI generated by ARIANE and DIXI, present measurements, and discuss effects of the diagnostic-generated EMI on ARIANE's CCD and on a PMT nearby DIXI. Finally we present some of the efforts we have made to mitigate the effects of diagnostic-generated EMI on NIF diagnostics.

  10. Enhancement of Kv1.3 Potassium Conductance by Extremely Low Frequency Electromagnetic Field

    E-Print Network [OSTI]

    Claudia Cecchetto; Marta Maschietto; Pasquale Boccaccio; Stefano Vassanelli

    2015-08-25

    Theoretical and experimental evidences support the hypothesis that extremely low-frequency electromagnetic fields can affect voltage-gated channels. Little is known, however, about their effect on potassium channels. Kv1.3, a member of the voltage-gated potassium channels family originally discovered in the brain, is a key player in important biological processes including antigen-dependent activation of T-cells during the immune response. We report that Kv1.3 expressed in CHO-K1 cells can be modulated in cell subpopulations by extremely low frequency and relatively low intensity electromagnetic fields. In particular, we observed that field exposure can cause an enhancement of Kv1.3 potassium conductance and that the effect lasts for several minutes after field removal. The results contribute to put immune and nervous system responses to extremely low-frequency electromagnetic fields into a new perspective, with Kv1.3 playing a pivotal molecular role. Keywords: immunotherapy, immunomodulation, potassium channels, gating, electromagnetic fields

  11. Gauge Theory of the Gravitational-Electromagnetic Field

    E-Print Network [OSTI]

    Robert D. Bock

    2015-05-26

    We develop a gauge theory of the combined gravitational-electromagnetic field by expanding the Poincar\\'e group to include clock synchronization transformations. We show that the electromagnetic field can be interpreted as a local gauge theory of the synchrony group. According to this interpretation, the electromagnetic field equations possess nonlinear terms and electromagnetic gauge transformations acquire a space-time interpretation as local synchrony transformations. The free Lagrangian for the fields leads to the usual Einstein-Maxwell field equations with additional gravitational-electromagnetic coupling terms. The connection between the electromagnetic field and the invariance properties of the Lagrangian under clock synchronization transformations provides a strong theoretical argument in favor of the thesis of the conventionality of simultaneity. This suggests that clock synchronization invariance (or equivalently, invariance under transformations of the one-way speed of light) is a fundamental invariance principle of physics.

  12. Relativistic electromagnetic mass models in spherically symmetric spacetime

    E-Print Network [OSTI]

    S. K. Maurya; Y. K. Gupta; Saibal Ray; Vikram Chatterjee

    2015-07-04

    Under the static spherically symmetric Einstein-Maxwell spacetime of embedding class one we explore possibility of electromagnetic mass model where mass and other physical parameters have purely electromagnetic origin (Tiwari 1984, Gautreau 1985, Gron 1985). This work is in continuation of our earlier investigation (Maurya 2015a) where we developed an algorithm and found out three new solutions of electromagnetic mass models. In the present letter we consider different metric potentials $\

  13. Analysis Of Factors Affecting Natural Source Slf Electromagnetic...

    Open Energy Info (EERE)

    to the integrated axis of the artificial electromagnetic interference field, the noise is weakest. (3) Rain can exert great influence on the high frequency band of natural...

  14. Electromagnetically induced transparency controlled by a microwave field 

    E-Print Network [OSTI]

    Li, Hebin; Sautenkov, Vladimir A.; Rostovtsev, Yuri V.; Welch, George R.; Hemmer, Philip R.; Scully, Marlan O.

    2009-01-01

    interferences in electromagnetically induced transparency. A simple theoretical model and a numerical simulation have been developed to explain the observed experimental results....

  15. Electromagnetic wave scattering by many conducting small particles

    E-Print Network [OSTI]

    A. G. Ramm

    2008-04-21

    A rigorous theory of electromagnetic (EM) wave scattering by small perfectly conducting particles is developed. The limiting case when the number of particles tends to infinity is discussed.

  16. Unification of Gravity and Electromagnetism II A Geometric Theory

    E-Print Network [OSTI]

    Partha Ghose

    2015-02-11

    It is shown that unification of gravity and electromagnetism can be achieved using an affine non-symmetric connection $\\Gamma^\\lambda_{\\mu\

  17. Ground Electromagnetic Survey At Kilauea East Rift Geothermal...

    Open Energy Info (EERE)

    Exploration Basis This study was conducted to learn about and model the resistivity structures in the Puna area Notes An Electromagnetic transient sounding (time domain) survey...

  18. Time-Domain Electromagnetics At Kilauea Southwest Rift And South...

    Open Energy Info (EERE)

    Details Location Kilauea Southwest Rift And South Flank Area Exploration Technique Time-Domain Electromagnetics Activity Date Usefulness useful DOE-funding Unknown Notes The...

  19. Time-Domain Electromagnetics At Mauna Loa Northeast Rift Area...

    Open Energy Info (EERE)

    Activity Details Location Mauna Loa Northeast Rift Area Exploration Technique Time-Domain Electromagnetics Activity Date Usefulness useful DOE-funding Unknown Notes The...

  20. Time-Domain Electromagnetics At Hualalai Northwest Rift Area...

    Open Energy Info (EERE)

    Activity Details Location Hualalai Northwest Rift Area Exploration Technique Time-Domain Electromagnetics Activity Date Usefulness useful DOE-funding Unknown Notes Three...

  1. Interpretation of electromagnetic soundings in the Raft River...

    Open Energy Info (EERE)

    Interpretation of electromagnetic soundings in the Raft River geothermal area, Idaho Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Interpretation of...

  2. Time-Domain Electromagnetics At Glass Mountain Area (Cumming...

    Open Energy Info (EERE)

    Time-Domain Electromagnetics At Glass Mountain Area (Cumming And Mackie, 2007) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Time-Domain...

  3. Electromagnetic form factors and the hypercentral constituent quark model

    SciTech Connect (OSTI)

    Sanctis, M. De; Giannini, M. M.; Santopinto, E.; Vassallo, A.

    2007-12-15

    We present new results concerning the electromagnetic form factors of the nucleon using a relativistic version of the hypercentral constituent quark model and a relativistic current.

  4. Novel resonance-assisted electromagnetic-transport phenomena

    E-Print Network [OSTI]

    Kurs, André B

    2011-01-01

    We first demonstrate theoretically and experimentally that electromagnetic resonators with high quality factors (Q) can be used to transfer power efficiently over distances substantially larger than the characteristic ...

  5. Electric And Electromagnetic Outline Of The Mount Somma-Vesuvius...

    Open Energy Info (EERE)

    Structural Setting Abstract We present and discuss the results of an integrated electrical and electromagnetic survey in the active volcanic area of Mount Somma-Vesuvius...

  6. ELECTROMAGNETIC CAVITIES AS ELECTROMECHANICAL TRANSDUCERS: THEORY AND EXPERIMENT

    E-Print Network [OSTI]

    ELECTROMAGNETIC CAVITIES AS ELECTROMECHANICAL TRANSDUCERS: THEORY AND EXPERIMENT Joaquim J. Barroso as electromechanical transducers in sonant mass gravitational wave antennas. Introduction · Theoretical

  7. 6.641 Electromagnetic Fields, Forces, and Motion, Spring 2003

    E-Print Network [OSTI]

    Zahn, Markus, 1946-

    Electric and magnetic quasistatic forms of Maxwell's equations applied to dielectric, conduction, and magnetization boundary value problems. Electromagnetic forces, force densities, and stress tensors, including magnetization ...

  8. Motor Packaging with Consideration of Electromagnetic and Material...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ape035millerp.pdf More Documents & Publications Alnico and Ferrite Hybrid Excitation Electric Machines Motor Packaging with Consideration of Electromagnetic and Material...

  9. Iterative Electromagnetic Born Inversion Applied to Earth Conductivity Imaging

    E-Print Network [OSTI]

    Alumbaugh, D.L.

    1993-01-01

    variation due to steam flooding: a log study: Geophysics,electromagnetic induction for steam flooding monitoring, 62'as steam injection, in situ combustion,water flooding and

  10. Coherent THz electromagnetic radiation emission as a shock wave...

    Office of Scientific and Technical Information (OSTI)

    Coherent THz electromagnetic radiation emission as a shock wave diagnostic and probe of ultrafast phase transformations Citation Details In-Document Search Title: Coherent THz...

  11. 6.013 Electromagnetics and Applications, Fall 2002

    E-Print Network [OSTI]

    Staelin, David H.

    Electromagnetic phenomena are explored in modern applications including wireless communications, circuits, computer interconnects and peripherals, optical fiber links and components, microwave communications and radar, ...

  12. Time-Domain Electromagnetics At Kilauea East Rift Geothermal...

    Open Energy Info (EERE)

    Thomas, 1986) Exploration Activity Details Location Kilauea East Rift Geothermal Area Exploration Technique Time-Domain Electromagnetics Activity Date 1978 - 1987 Usefulness useful...

  13. Time-Domain Electromagnetics At Kilauea East Rift Geothermal...

    Open Energy Info (EERE)

    ENERGYGeothermal Home Exploration Activity: Time-Domain Electromagnetics At Kilauea East Rift Geothermal Area (Skokan, 1974) Exploration Activity Details Location Kilauea East...

  14. Electromagnetic simulations of coaxial type HOM coupler

    SciTech Connect (OSTI)

    Genfa Wu; Haipeng Wang; Robert Rimmer; Charles Reece

    2005-07-10

    DESY-type coaxial high order mode (HOM) coupler was used in many superconducting cavities. The electric probe tip is located at the maximum B-field inside the coupler can. For continuous wave (CW) high current application, the heating of this tip can be severe to degrade the cavity performance. Electromagnetic (EM) simulation was done to estimate the tip heating. The geometric remedies and detuning effect were discussed. The effect to HOM external quality factor (Qext) was also estimated due to these remedies. The HOM probe tip heating power was provided for CEBAF 12-GeV cavities and AES injector cavities.

  15. Electromagnetic Dipole Strength in Transitional Nuclei

    E-Print Network [OSTI]

    S. Q. Zhang; I. Bentley; S. Brant; F. Dönau; S. Frauendorf; B. Kämpfer; R. Schwengner; A. Wagner

    2008-08-19

    Electromagnetic dipole absorption cross-sections of transitional nuclei with large-amplitude shape fluctuations are calculated in a microscopic way by introducing the concept of Instantaneous Shape Sampling. The concept bases on the slow shape dynamics as compared to the fast dipole vibrations. The elctromagnetic dipole strength is calculated by means of RPA for the instantaneous shapes, the probability of which is obtained by means of IBA. Very good agreement with the experimental absorption cross sections near the nucleon emission threshold is obtained.

  16. Electromagnetic wave scattering by many small particles

    E-Print Network [OSTI]

    A. G. Ramm

    2006-08-18

    Scattering of electromagnetic waves by many small particles of arbitrary shapes is reduced rigorously to solving linear algebraic system of equations bypassing the usual usage of integral equations. The matrix elements of this linear algebraic system have physical meaning. They are expressed in terms of the electric and magnetic polarizability tensors. Analytical formulas are given for calculation of these tensors with any desired accuracy for homogeneous bodies of arbitrary shapes. An idea to create a "smart" material by embedding many small particles in a given region is formulated.

  17. Electromagnetic wormholes and virtual magnetic monopoles

    E-Print Network [OSTI]

    Allan Greenleaf; Yaroslav Kurylev; Matti Lassas; Gunther Uhlmann

    2007-03-20

    We describe new configurations of electromagnetic (EM) material parameters, the electric permittivity $\\epsilon$ and magnetic permeability $\\mu$, that allow one to construct from metamaterials objects that function as invisible tunnels. These allow EM wave propagation between two points, but the tunnels and the regions they enclose are not detectable to EM observations. Such devices function as wormholes with respect to Maxwell's equations and effectively change the topology of space vis-a-vis EM wave propagation. We suggest several applications, including devices behaving as virtual magnetic monopoles.

  18. Electromagnetic Properties of the Early Universe

    E-Print Network [OSTI]

    Keitaro Takahashi; Kiyotomo Ichiki; Naoshi Sugiyama

    2008-05-29

    Detailed physical processes of magnetic field generation from density fluctuations in the pre-recombination era are studied. Solving Maxwell equations and the generalized Ohm's law, the evolutions of the net charge density, the electric current and the electromagnetic field are solved. Unlike most of previous works, we treat electrons and photons as separate components under the assumption of tight coupling. We find that generation of the magnetic field due to density fluctuations takes place only from the second order of both perturbation theory and the tight coupling approximation.

  19. Electromagnetic Media with no Dispersion Equation

    E-Print Network [OSTI]

    Ismo V. Lindell; Alberto Favaro

    2013-03-25

    It has been known through some examples that parameters of an electromagnetic medium can be so defined that there is no dispersion equation (Fresnel equation) to restrict the choice of the wave vector of a plane wave in such a medium, i.e., that the dispersion equation is satisfied identically for any wave vector. In the present paper, a more systematic study to define classes of media with no dispersion equation is attempted. The analysis makes use of coordinate-free four-dimensional formalism in terms of multivectors, multiforms and dyadics.

  20. Physics with the ALICE Electromagnetic Calorimeter

    E-Print Network [OSTI]

    Rene Bellwied; for the ALICE Collaboration

    2009-07-17

    I will present physics measurements which are achievable in the ALICE experiment at the LHC through the inclusion of a new electromagnetic calorimeter. I will focus on jet measurements in proton proton and heavy ion collisions. Detailed simulations have been performed on jet reconstruction, jet triggering, heavy flavor jet reconstruction through electron identification, gamma-jet reconstruction and the measurements of identified hadrons and resonances in jets. I will show the physics capabilities which are made possible through the combination of calorimeter information with the other detector components in ALICE.

  1. Electromagnetic imaging of dynamic brain activity

    SciTech Connect (OSTI)

    Mosher, J.; Leahy, R.; Lewis, P.; Lewine, J.; George, J.; Singh, M.

    1991-12-31

    Neural activity in the brain produces weak dynamic electromagnetic fields that can be measured by an array of sensors. Using a spatio-temporal modeling framework, we have developed a new approach to localization of multiple neural sources. This approach is based on the MUSIC algorithm originally developed for estimating the direction of arrival of signals impinging on a sensor array. We present applications of this technique to magnetic field measurements of a phantom and of a human evoked somatosensory response. The results of the somatosensory localization are mapped onto the brain anatomy obtained from magnetic resonance images.

  2. Electromagnetic Radiation Hardness of Diamond Detectors

    E-Print Network [OSTI]

    T. Behnke; M. Doucet; N. Ghodbane; A. Imhof; C. Martinez; W. Zeuner

    2001-08-22

    The behavior of artificially grown CVD diamond films under intense electromagnetic radiation has been studied. The properties of irradiated diamond samples have been investigated using the method of thermally stimulated current and by studying their charge collection properties. Diamonds have been found to remain unaffected after doses of 6.8 MGy of 10 keV photons and 10 MGy of MeV-range photons. This observation makes diamond an attractive detector material for a calorimeter in the very forward region of the proposed TESLA detector.

  3. Chiral solitons in nuclei: Electromagnetic form factors

    E-Print Network [OSTI]

    Jason R. Smith; Gerald A. Miller

    2004-09-08

    We calculate the electromagnetic form factors of a bound proton. The Chiral Quark-Soliton model provides the quark and antiquark substructure of the proton, which is embedded in nuclear matter. This procedure yields significant modifications of the form factors in the nuclear environment. The sea quarks are almost completely unaffected, and serve to mitigate the valence quark effect. In particular, the ratio of the isoscalar electric to the isovector magnetic form factor decreases by 20% at Q^2=1 GeV^2 at nuclear density, and we do not see a strong enhancement of the magnetic moment.

  4. Artificial Retina Project: Electromagnetic and Thermal Effects

    SciTech Connect (OSTI)

    Lazzi, Gianluca

    2014-08-29

    This award supported the investigation on electromagnetic and thermal effects associated with the artificial retina, designed in collaboration with national laboratories, universities, and private companies. Our work over the two years of support under this award has focused mainly on 1) Design of new telemetry coils for optimal power and data transfer between the implant and the external device while achieving a significant size reduction with respect to currently used coils; 2) feasibility study of the virtual electrode configuration 3) study the effect of pulse shape and duration on the stimulation efficacy.

  5. Electromagnetic wave scattering by small bodies

    E-Print Network [OSTI]

    A. G. Ramm

    2008-04-21

    A reduction of the Maxwell's system to a Fredholm second-kind integral equation with weakly singular kernel is given for electromagnetic (EM) wave scattering by one and many small bodies. This equation is solved asymptotically as the characteristic size of the bodies tends to zero. The technique developed is used for solving the many-body EM wave scattering problem by rigorously reducing it to solving linear algebraic systems, completely bypassing the usage of integral equations. An equation is derived for the effective field in the medium, in which many small particles are embedded. A method for creating a desired refraction coefficient is outlined.

  6. Cavity cooling of a trapped atom using Electromagnetically-Induced Transparency

    E-Print Network [OSTI]

    Marc Bienert; Giovanna Morigi

    2011-12-01

    A cooling scheme for trapped atoms is proposed, which combines cavity-enhanced scattering and electromagnetically induced transparency. The cooling dynamics exploits a three-photon resonance, which combines laser and cavity excitations. It is shown that relatively fast ground-state cooling can be achieved in the Lamb-Dicke regime and for large cooperativity. Efficient ground-state cooling is found for parameters of ongoing experiments.

  7. Localization from near-source quasi-static electromagnetic fields

    SciTech Connect (OSTI)

    Mosher, J.C.

    1993-09-01

    A wide range of research has been published on the problem of estimating the parameters of electromagnetic and acoustical sources from measurements of signals measured at an array of sensors. In the quasi-static electromagnetic cases examined here, the signal variation from a point source is relatively slow with respect to the signal propagation and the spacing of the array of sensors. As such, the location of the point sources can only be determined from the spatial diversity of the received signal across the array. The inverse source localization problem is complicated by unknown model order and strong local minima. The nonlinear optimization problem is posed for solving for the parameters of the quasi-static source model. The transient nature of the sources can be exploited to allow subspace approaches to separate out the signal portion of the spatial correlation matrix. Decomposition techniques are examined for improved processing, and an adaptation of MUtiple SIgnal Characterization (MUSIC) is presented for solving the source localization problem. Recent results on calculating the Cramer-Rao error lower bounds are extended to the multidimensional problem here. This thesis focuses on the problem of source localization in magnetoencephalography (MEG), with a secondary application to thunderstorm source localization. Comparisons are also made between MEG and its electrical equivalent, electroencephalography (EEG). The error lower bounds are examined in detail for several MEG and EEG configurations, as well as localizing thunderstorm cells over Cape Canaveral and Kennedy Space Center. Time-eigenspectrum is introduced as a parsing technique for improving the performance of the optimization problem.

  8. THE PROGENITOR OF SN 2011ja: CLUES FROM CIRCUMSTELLAR INTERACTION

    SciTech Connect (OSTI)

    Chakraborti, Sayan [Institute for Theory and Computation, Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Ray, Alak; Yadav, Naveen [Tata Institute of Fundamental Research, 1 Homi Bhabha Road, Colaba, Mumbai 400 005 (India); Smith, Randall [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Ryder, Stuart [Australian Astronomical Observatory, P.O. Box 915, North Ryde, NSW 1670 (Australia); Sutaria, Firoza [Indian Institute of Astrophysics, Koramangala, Bangalore (India); Dwarkadas, Vikram V. [Department of Astronomy and Astrophysics, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); Chandra, Poonam [Department of Physics, Royal Military College of Canada, Kingston, ON K7K 7B4 (Canada); Pooley, David [Department of Physics, Sam Houston State University, Huntsville, TX (United States); Roy, Rupak, E-mail: schakraborti@fas.harvard.edu [Aryabhatta Research Institute of Observational Sciences, Manora Peak, Nainital (India)

    2013-09-01

    Massive stars, possibly red supergiants, which retain extended hydrogen envelopes until core collapse, produce Type II plateau (IIP) supernovae. The ejecta from these explosions shocks the circumstellar matter originating from the mass loss of the progenitor during the final phases of its life. This interaction accelerates particles to relativistic energies which then lose energy via synchrotron radiation in the shock-amplified magnetic fields and inverse Compton scattering against optical photons from the supernova. These processes produce different signatures in the radio and X-ray parts of the electromagnetic spectrum. Observed together, they allow us to break the degeneracy between shock acceleration and magnetic field amplification. In this work, we use X-rays observations from the Chandra and radio observations from the Australia Telescope Compact Array to study the relative importance of processes which accelerate particles and those which amplify magnetic fields in producing the non-thermal radiation from SN 2011ja. We use radio observations to constrain the explosion date. Multiple Chandra observations allow us to probe the history of variable mass loss from the progenitor. The ejecta expands into a low-density bubble followed by interaction with a higher density wind from a red supergiant consistent with M{sub ZAMS} {approx}> 12 M{sub Sun }. Our results suggest that a fraction of Type IIP supernovae may interact with circumstellar media set up by non-steady winds.

  9. International interactive

    E-Print Network [OSTI]

    Nielsen, Finn Årup

    and interact with the same visualization. The researchers can be situated anywhere on the Internet. Bibli

  10. Effects of thermal motion on electromagnetically induced absorption

    SciTech Connect (OSTI)

    Tilchin, E.; Wilson-Gordon, A. D.; Firstenberg, O. [Department of Chemistry, Bar-Ilan University, Ramat Gan IL-52900 (Israel); Department of Physics, Technion-Israel Institute of Technology, Haifa IL-32000 (Israel)

    2011-05-15

    We describe the effect of thermal motion and buffer-gas collisions on a four-level closed N system interacting with strong pump(s) and a weak probe. This is the simplest system that experiences electromagnetically induced absorption (EIA) due to transfer of coherence via spontaneous emission from the excited state to the ground state. We investigate the influence of Doppler broadening, velocity-changing collisions (VCC), and phase-changing collisions (PCC) with a buffer gas on the EIA spectrum of optically active atoms. In addition to exact expressions, we present an approximate solution for the probe absorption spectrum, which provides physical insight into the behavior of the EIA peak due to VCC, PCC, and the wave-vector difference between the pump and probe beams. VCC are shown to produce a wide pedestal at the base of the EIA peak, which is scarcely affected by the pump-probe angular deviation, whereas the sharp central EIA peak becomes weaker and broader due to the residual Doppler-Dicke effect. Using diffusionlike equations for the atomic coherences and populations, we construct a spatial-frequency filter for a spatially structured probe beam and show that Ramsey narrowing of the EIA peak is obtained for beams of finite width.

  11. Electromagnetic augmentation for casting of thin metal sheets

    DOE Patents [OSTI]

    Hull, John R. (Hinsdale, IL)

    1989-01-01

    Thin metal sheets are cast by magnetically levitating molten metal deposited in a mold within a ferromagnetic yoke and between AC conducting coils and linearly displacing the magnetically levitated liquid metal while it is being cooled by the water-cooled walls of the mold to form a solid metal sheet. A conducting shield is electrically coupled to the molten metal sheet to provide a return path for eddy currents induced in the metal sheet by the current in the AC conducting coils. In another embodiment, a DC conducting coil is coupled to the metal sheet for providing a direct current therein which interacts with the magnetic field to levitate the moving metal sheet. Levitation of the metal sheet in both molten and solid forms reduces its contact pressure with the mold walls while maintaining sufficient engagement therebetween to permit efficient conductive cooling by the mold through which a coolant fluid may be circulated. The magnetic fields associated with the currents in the aforementioned coils levitate the molten metal sheet while the mold provides for its lateral and vertical confinement. A leader sheet having electromagnetic characteristics similar to those of the molten metal sheet is used to start the casing process and precedes the molten metal sheet through the yoke/coil arrangement and mold and forms a continuous sheet therewith. The yoke/coil arrangement may be either U-shaped with a single racetrack coil or may be rectangular with a pair of spaced, facing bedstead coils.

  12. Guiding of an electromagnetic pulse in a plasma immersed in combined wiggler and axial magnetic fields

    E-Print Network [OSTI]

    Hur, Min Sup

    2009-01-01

    813 Guiding of an electromagnetic pulse in a plasma immersedGuiding of an electromagnetic pulse in a plasma immersed inof guiding an electromagnetic pulse. The scheme consists of

  13. Progress In Electromagnetics Research B, Vol. 15, 197215, 2009 MODELING OF SHIELDING COMPOSITE MATERIALS

    E-Print Network [OSTI]

    Koledintseva, Marina Y.

    Progress In Electromagnetics Research B, Vol. 15, 197­215, 2009 MODELING OF SHIELDING COMPOSITE inclusions are required in many engineering applications, especially, for the design of microwave shielding enclosures to ensure electromagnetic compatibility and electromagnetic immunity. Herein, multilayer shielding

  14. On the role of wave-particle interactions in the macroscopic dynamics of collisionless plasmas

    E-Print Network [OSTI]

    Wilson, Lynn B; Osmane, Adnane; Malaspina, David M

    2015-01-01

    What is the relative importance of small-scale (i.e., electron to sub-electron scales), microphysical plasma processes to the acceleration of particles from thermal to suprathermal or even to cosmic-ray energies? Additionally, can these microphysical plasma processes influence or even dominate macroscopic (i.e., greater than ion scales) processes, thus affecting global dynamics? These are fundamental and unresolved questions in plasma and astrophysical research. Recent observations of large amplitude electromagnetic waves in the terrestrial radiation belts [i.e., Cattell et al., 2008; Kellogg et al., 2010; Wilson III et al., 2011] and in collisionless shock waves [i.e., Wilson III et al., 2014a,b] have raised questions regarding the macrophysical effect of these microscopic waves. The processes thought to dominate particle acceleration and the macroscopic dynamics in both regions have been brought into question with these recent observations. The relative importance of wave-particle interactions has recently ...

  15. Line geometry and electromagnetism III: groups of transformations

    E-Print Network [OSTI]

    D. H. Delphenich

    2014-04-16

    The role of linear and projective groups of transformations in line geometry and electromagnetism is examined in accordance with Klein's Erlanger Programm for geometries. The group of collineations of real projective space is chosen as the most general group, and reductions to some of its various subgroups are then detailed according to their relevance to electromagnetic fields, and especially wave-like ones.

  16. Electromagnetic field at Finite Temperature: A first order approach

    E-Print Network [OSTI]

    R. Casana; B. M. Pimentel; J. S. Valverde

    2007-02-04

    In this work we study the electromagnetic field at Finite Temperature via the massless DKP formalism. The constraint analysis is performed and the partition function for the theory is constructed and computed. When it is specialized to the spin 1 sector we obtain the well-known result for the thermodynamic equilibrium of the electromagnetic field.

  17. Electromagnetic Field Creation During EWPT Nucleation With Lepton Currents

    E-Print Network [OSTI]

    Leonard S. Kisslinger; Sameer Walawalkar; Ernest M. Henley; Mikkel B. Johnson

    2005-10-11

    We include the electromagnetic currents from fermion degrees of freedom in the equations of motion for electroweak MSSM with a right-handed Stop that we have recently investigated. It is found that near the surface of the bubble walls there are important effects on the electromagnetic fields produced during bubble nucleation.

  18. Electromagnetic space-time crystals. II. Fractal computational approach

    E-Print Network [OSTI]

    G. N. Borzdov

    2014-10-20

    A fractal approach to numerical analysis of electromagnetic space-time crystals, created by three standing plane harmonic waves with mutually orthogonal phase planes and the same frequency, is presented. Finite models of electromagnetic crystals are introduced, which make possible to obtain various approximate solutions of the Dirac equation. A criterion for evaluating accuracy of these approximate solutions is suggested.

  19. Long Pulse Fusion Physics Experiments Without Superconducting Electromagnets

    E-Print Network [OSTI]

    Long Pulse Fusion Physics Experiments Without Superconducting Electromagnets Robert D. Woolley) 243­3130 *Supported by U.S.Department of Energy Contract No. DE­AC02­76CH03073. ABSTRACT Long pulse pulse ignition with DT fuel. 1,2,3,4 Long pulse resistive electromagnets are alternatives to today

  20. Long Pulse Fusion Physics Experiments Without Superconducting Electromagnets

    E-Print Network [OSTI]

    Long Pulse Fusion Physics Experiments Without Superconducting Electromagnets Robert D. Woolley) 243-3130 *Supported by U.S.Department of Energy Contract No. DE-AC02-76CH03073. ABSTRACT Long pulse pulse ignition with DT fuel. 1,2,3,4 Long pulse resistive electromagnets are alternatives to today

  1. On Generating Gravity Waves with Matter and Electromagnetic Waves

    E-Print Network [OSTI]

    C. Barrabes; P. A. Hogan

    2008-04-05

    If a homogeneous plane light-like shell collides head-on with a homogeneous plane electromagnetic shock wave having a step-function profile then no backscattered gravitational waves are produced. We demonstrate, by explicit calculation, that if the matter is accompanied by a homogeneous plane electromagnetic shock wave with a step-function profile then backscattered gravitational waves appear after the collision.

  2. Errors-in-variables problems in transient electromagnetic mineral exploration

    E-Print Network [OSTI]

    Braslavsky, Julio H.

    Errors-in-variables problems in transient electromagnetic mineral exploration K. Lau, J. H in transient electromagnetic mineral exploration. A specific sub-problem of interest in this area geological surveys, dia- mond drilling, and airborne mineral exploration. Our interest here is with ground

  3. Second harmonic electromagnetic emission via Langmuir wave coalescence

    E-Print Network [OSTI]

    Melrose, Don

    constraints.8 The theory of nonlinear three-wave processes to explain fundamental and second harmonic emissionSecond harmonic electromagnetic emission via Langmuir wave coalescence A. J. Willes, P. A. Robinson 1995 The coalescence of Langmuir waves to produce electromagnetic waves at twice the plasma frequency

  4. EE 141: Electromagnetic Field Theory Fall Semester 2014

    E-Print Network [OSTI]

    Oughstun, Kurt

    @cems.uvm.edu Catalog Description: Fundamentals of electromagnetic field theory; vector analy- sis; electricEE 141: Electromagnetic Field Theory Fall Semester 2014 MWF 4:05­4:55 PM (Votey 207) & F 1 and magnetic fields, potential theory, boundary conditions and boundary value problems, Maxwell-Lorentz theory

  5. EE 141: Electromagnetic Field Theory Fall Semester 2015

    E-Print Network [OSTI]

    Oughstun, Kurt

    @cems.uvm.edu Catalog Description: Fundamentals of electromagnetic field theory and applica- tions: vector analysisEE 141: Electromagnetic Field Theory Fall Semester 2015 MWF 3:30­4:20 PM (Perkins 101) & F 2, electric and magnetic fields, potential theory, boundary con- ditions and boundary value problems

  6. Time-spatial drift of decelerating electromagnetic pulses

    E-Print Network [OSTI]

    Nerukh, Dmitry

    Time-spatial drift of decelerating electromagnetic pulses Alexander G. Nerukh1* and Dmitry A dependent electromagnetic pulse generated by a current running laterally to the direction of the pulse propagation is considered in paraxial approximation. It is shown that the pulse envelope moves in the time

  7. Marine Electromagnetic Studies of Seafloor Resources and Tectonics

    E-Print Network [OSTI]

    Key, Kerry

    Marine Electromagnetic Studies of Seafloor Resources and Tectonics Kerry Key Received: 3 December been a period of rapid growth for marine electromagnetic (EM) methods, predominantly due. This growth is illustrated by a database of marine EM publications spanning from the early developments

  8. Geometric optics for a coupling model of the electromagnetic and gravitational fields

    E-Print Network [OSTI]

    Jiliang Jing Songbai Chen; Qiyuan Pan

    2015-10-12

    In the usual spacetime, the first and third laws of geometric optics are invalid for a modified theory in which the electromagnetic and gravitational fields interact with each other. By introducing an effective spacetime, we find that the wave vector is null and obeys the geodesic equation, the polarization vector is perpendicular to the rays, and the number of photons is conserved. That is to say, the laws of geometric optics are still valid for the modified theory in the effective spacetime. We also show that the focusing theorem of light rays for the modified theory in the effective spacetime takes the same form as usual.

  9. Electromagnetic reactions of few-body systems with the Lorentz integral transform method

    E-Print Network [OSTI]

    W. Leidemann

    2007-01-12

    Various electromagnetic few-body break-up reactions into the many-body continuum are calculated microscopically with the Lorentz integral transform (LIT) method. For three- and four-body nuclei the nuclear Hamiltonian includes two- and three- nucleon forces, while semirealistic interactions are used in case of six- and seven-body systems. Comparisons with experimental data are discussed. In addition various interesting aspects of the $^4$He photodisintegration are studied: investigation of a tetrahedrical symmetry of $^4$He and a test of non-local nuclear force models via the induced two-body currents.

  10. Double-sided electromagnetic pump with controllable normal force for rapid solidification of liquid metals

    DOE Patents [OSTI]

    Kuznetsov, Stephen B. (Pittsburgh, PA)

    1987-01-01

    A system for casting liquid metals is provided with an electromagnetic pump which includes a pair of primary blocks each having a polyphase winding and being positioned to form a gap through which a movable conductive heat sink passes. A solidifying liquid metal sheet is deposited on the heat sink and the heat sink and sheet are held in compression by forces produced as a result of current flow through the polyphase windings. Shaded-pole interaction between the primary windings, heat sink and solidifying strip produce transverse forces which act to center the strip on the heat sink.

  11. Electromagnetic induction pump for pumping liquid metals and other conductive liquids

    DOE Patents [OSTI]

    Smither, Robert K. (Hinsdale, IL)

    1993-01-01

    An electromagnetic induction pump in which an electrically conductive liquid is made to flow by means of a force created by interaction of a permanent magnetic field and a DC current. The pump achieves high efficiency through combination of: powerful permanent magnet materials which provide a high strength field that is uniform and constant; steel tubing formed into a coil which is constructed to carry conducting liquids with minimal electrical resistance and heat; and application of a voltage to induce a DC current which continuously produces a force in the direction of the desired flow.

  12. Double-sided electromagnetic pump with controllable normal force for rapid solidification of liquid metals

    DOE Patents [OSTI]

    Kuznetsov, S.B.

    1987-01-13

    A system for casting liquid metals is provided with an electromagnetic pump which includes a pair of primary blocks each having a polyphase winding and being positioned to form a gap through which a movable conductive heat sink passes. A solidifying liquid metal sheet is deposited on the heat sink and the heat sink and sheet are held in compression by forces produced as a result of current flow through the polyphase windings. Shaded-pole interaction between the primary windings, heat sink and solidifying strip produce transverse forces which act to center the strip on the heat sink. 5 figs.

  13. Electromagnetic induction pump for pumping liquid metals and other conductive liquids

    DOE Patents [OSTI]

    Smither, R.K.

    1993-05-11

    An electromagnetic induction pump is described in which an electrically conductive liquid is made to flow by means of a force created by interaction of a permanent magnetic field and a DC current. The pump achieves high efficiency through combination of: powerful permanent magnet materials which provide a high strength field that is uniform and constant; steel tubing formed into a coil which is constructed to carry conducting liquids with minimal electrical resistance and heat; and application of a voltage to induce a DC current which continuously produces a force in the direction of the desired flow.

  14. Electro-Optical Sensing Apparatus and Method for Characterizing Free-Space Electromagnetic Radiation

    DOE Patents [OSTI]

    Zhang, Xi-Cheng; Libelo, Louis Francis; Wu, Qi

    1999-09-14

    Apparatus and methods for characterizing free-space electromagnetic energy, and in particular, apparatus/method suitable for real-time two-dimensional far-infrared imaging applications are presented. The sensing technique is based on a non-linear coupling between a low-frequency electric field and a laser beam in an electro-optic crystal. In addition to a practical counter-propagating sensing technique, a co-linear approach is described which provides longer radiated field--optical beam interaction length, thereby making imaging applications practical.

  15. On the Coupling Effects between Elastic and Electromagnetic Fields from the Perspective of Conservation of Energy

    E-Print Network [OSTI]

    Peng Zhou

    2015-12-17

    In a natural system, coupling effects among different physical fields substantially reflect the conversion of energy from one form to another. According to the law of conservation of energy (LCE), the loss of energy in one field must equal to the gain of energy in another field. In this paper, this LCE is applied to analyze the reversible processes coupled between elastic and electromagnetic fields. Here, it is called the energy formulation. For simple physical processes such as mechanical movement, diffusion and electrodynamic process, it is shown their governing or constitutive equations all satisfy the LCE. Then, analysis is extended to coupling effects. First, it is found for the linear direct and converse piezoelectric and piezomagnetic effects, their constitutive equations guarantee energy is conserved during the conversion of energies. Second, analyses found for the generalized Villari effects, the electromagnetic energy can be treated as an extra term in the generalized elastic energy. Third, for electrostriction and magnetostriction. It is argued both effects are induced by the Maxwell stress. Their energy is purely electromagnetic, thus both have no converse effects. During these processes, energy can be converted in three ways, i.e., via nonpotential forces, cross dependence of energy terms and directly via the interaction of ions and electrons. In the end, general coupling processes which involve elastic, electromagnetic fields and diffusion are also analyzed. The energy formulation, when combined with the phase-field variational approach, has the potential of being developed into a general approach to analyze coupling effects between reversible and irreversible processes. The advantage of the energy formulation is that it facilitates the discussion of the conversion of energies and provides more physical insights into their mechanisms.

  16. On the Coupling Effects between Elastic and Electromagnetic Fields from the Perspective of Conservation of Energy

    E-Print Network [OSTI]

    Peng Zhou

    2015-11-29

    In this paper, the law of conservation of energy is applied to analyze reversible and coupling processes between elastic and electromagnetic fields. This approach is here called the energy formulation. For simple physical processes such as mechanical movement, diffusion and electrodynamic process, it is shown their governing equations all satisfy the law of conservation of energy. Then, analysis is extended to coupling effects. First, it is found the constitutive equations of the linear direct and converse piezoelectric and piezomagnetic effects guarantee that energy is conserved during the conversion of energies. Second, analyses found that for the generalized Villari effects, the electromagnetic energy can be treated as an extra term in the generalized elastic energy. Third, both the laws of conservation of momentum and energy are used to analyze electrostriction and magnetostriction. It is argued that both of these strictive effects are induced by the Maxwell stress. In addition, their energy is purely electromagnetic, thus there are no converse effects for both of them. It is shown during these processes, energy can be converted in three different ways, i.e., via nonpotential forces, cross dependence of energy terms and directly via the interaction of ions and electrons. In the end, general coupling processes in electronic devices which involve elastic, electromagnetic fields and diffusion are also analyzed. The energy formulation, when combined with the phase-field variational approach, has the potential of being developed into a general approach to analyze coupling effects between reversible and irreversible processes. Compared with the traditional Lagrangian formulation, the energy formulation facilitates the discussion of the conversion of energies during these effects and provides more physical insights into their mechanisms.

  17. Statistics of electromagnetic transitions as a signature of chaos in many-electron atoms V. V. Flambaum, A. A. Gribakina, and G. F. Gribakin

    E-Print Network [OSTI]

    Gribakin, Gleb

    , the statistics of their energy spectra show certain universal features, and transition amplitudes in- volvingStatistics of electromagnetic transitions as a signature of chaos in many-electron atoms V. V, Australia Received 28 January 1998 Using a configuration-interaction approach, we study statistics

  18. Reduced Order Computational Methods for Electromagnetic Material Interrogation Using Pulsed Signals and Conductive

    E-Print Network [OSTI]

    Kepler, Grace Martinelli

    Reduced Order Computational Methods for Electromagnetic Material Interrogation Using Pulsed Signals of a pulsed planar electromagnetic wave of a dielectric slab with a supraconductive backing. Previous work

  19. Probing few-excitation eigenstates of interacting atoms on a lattice by observing their collective light emission in the far field

    E-Print Network [OSTI]

    Longo, P

    2014-01-01

    The collective emission from a one-dimensional chain of interacting two-level atoms coupled to a common electromagnetic reservoir is investigated. We derive the system's dissipative few-excitation eigenstates, and analyze their static properties, including the collective dipole moments and branching ratios between different eigenstates. Next, we study the dynamics, and characterize the light emitted or scattered by such a system via different far-field observables. Throughout the analysis, we consider spontaneous emission from an excited state as well as two different pump field setups, and contrast the two extreme cases of non-interacting and strongly interacting atoms. For the latter case, the two-excitation submanifold contains a two-body bound state, and we find that the two cases lead to different dynamics and far-field signatures. Finally we exploit these signatures to characterize the wavefunctions of the collective eigenstates. For this, we identify a direct relation between the collective branching r...

  20. Soft photon yield in nuclear interactions

    E-Print Network [OSTI]

    Kokoulina, E

    2015-01-01

    First results of study of a soft photon yield at Nuclotron (LHEP, JINR) in nucleus-nucleus collisions at 3.5 GeV per nucleon are presented. These photons are registered by an BGO electromagnetic calorimeter built by SVD-2 Collaboration. The obtained spectra confirm the excessive yield in the energy region less than 50 MeV in comparison with theoretical estimations and agree with previous experiments at high-energy interactions.

  1. Electromagnetic nonlinear gyrokinetics with polarization drift

    SciTech Connect (OSTI)

    Duthoit, F.-X. [SNU Division of Graduate Education for Sustainabilization of Foundation Energy, Seoul National University, Gwanak-ro 1, Gwanak-gu, 151-744 Seoul (Korea, Republic of); Hahm, T. S., E-mail: tshahm@snu.ac.kr [Department of Nuclear Engineering, Seoul National University, Gwanak-ro 1, Gwanak-gu, 151-744 Seoul (Korea, Republic of); Wang, Lu [College of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China)

    2014-08-15

    A set of new nonlinear electromagnetic gyrokinetic Vlasov equation with polarization drift and gyrokinetic Maxwell equations is systematically derived by using the Lie-transform perturbation method in toroidal geometry. For the first time, we recover the drift-kinetic expression for parallel acceleration [R. M. Kulsrud, in Basic Plasma Physics, edited by A. A. Galeev and R. N. Sudan (North-Holland, Amsterdam, 1983)] from the nonlinear gyrokinetic equations, thereby bridging a gap between the two formulations. This formalism should be useful in addressing nonlinear ion Compton scattering of intermediate-mode-number toroidal Alfvén eigenmodes for which the polarization current nonlinearity [T. S. Hahm and L. Chen, Phys. Rev. Lett. 74, 266 (1995)] and the usual finite Larmor radius effects should compete.

  2. Electromagnetic mass difference on the lattice

    E-Print Network [OSTI]

    Yusuke Namekawa; Yoshio Kikukawa

    2005-09-24

    We calculate electromagnetic mass difference of mesons using a method proposed by Duncan {\\it et al}. The RG-improved gauge action and the non-compact Abelian gauge action are employed to generate configurations. Quark propagators in the range of $m_{PS}/m_{V}=0.76-0.51$ are obtained with the meanfield-improved clover quark action. Chiral and continuum extrapolations are performed and the results are compared with experiments. Finite size effects are also examined. Quark masses are extracted from the measured spectrum. Our preliminary values for light quark masses are $m_{u}^{\\bar{MS}}(\\mu =2 {GeV}) = 3.03(19)$ MeV, $m_{d}^{\\bar{MS}}(\\mu = 2 {GeV}) = 4.44(28)$ MeV, $m_{s}^{\\bar{MS}}(\\mu = 2 {GeV}) = 99.2(52)$ MeV.

  3. Electromagnetic matrix elements for negative parity nucleons

    E-Print Network [OSTI]

    Benjamin Owen; Waseem Kamleh; Derek Leinweber; Selim Mahbub; Benjamin Menadue

    2014-12-15

    Here we present preliminary results for the evaluation of the electromagnetic form factors for the lowest-lying negative-parity, spin-$\\frac{1}{2}$ nucleons, namely the $S_{11}(1535)$ and $S_{11}(1650)$, through the use of the variational method. We find that the characteristics of the electric form factor, $G_{E}$, are similar between these states, however significant differences are observed between the quark-sector contributions to the magnetic form factor, $G_{M}$. Within simple constituent quark models, these states are understood to be admixtures of $s=\\frac{1}{2}$ and $s=\\frac{3}{2}$ states coupled to orbital angular momentum $\\ell = 1$. Our results reveal a qualitative difference in the manner in which the singly-represented quark sector contributes to these baryon magnetic form factors.

  4. Electromagnetic wave propagation in random waveguides

    E-Print Network [OSTI]

    Ricardo Alonso; Liliana Borcea

    2013-10-18

    We study long range propagation of electromagnetic waves in random waveguides with rectangular cross-section and perfectly conducting boundaries. The waveguide is filled with an isotropic linear dielectric material, with randomly fluctuating electric permittivity. The fluctuations are weak, but they cause significant cumulative scattering over long distances of propagation of the waves. We decompose the wave field in propagating and evanescent transverse electric and magnetic modes with random amplitudes that encode the cumulative scattering effects. They satisfy a coupled system of stochastic differential equations driven by the random fluctuations of the electric permittivity. We analyze the solution of this system with the diffusion approximation theorem, under the assumption that the fluctuations decorrelate rapidly in the range direction. The result is a detailed characterization of the transport of energy in the waveguide, the loss of coherence of the modes and the depolarization of the waves due to cumulative scattering.

  5. EIT-related phenomena and their mechanical analogs

    E-Print Network [OSTI]

    J. A. Souza; L. Cabral; R. R. Oliveira; C. J. Villas-Boas

    2015-07-13

    Systems of interacting classical harmonic oscillators have received considerable attention in the last years as analog models for describing electromagnetically induced transparency (EIT) and associated phenomena. We review these models and investigate their validity for a variety of physical systems using two- and three-coupled harmonic oscillators. From the simplest EIT-$\\Lambda$ configuration and two-coupled single cavity modes we show that each atomic dipole-allowed transition and a single cavity mode can be represented by a damped harmonic oscillator. Thus, we have established a one-to-one correspondence between the classical and quantum dynamical variables. We show the limiting conditions and the equivalent for the EIT dark state in the mechanical system. This correspondence is extended to other systems that present EIT-related phenomena. Examples of such systems are two- and three-level (cavity EIT) atoms interacting with a single mode of an optical cavity, and four-level atoms in a inverted-Y and tripod configurations. The established equivalence between the mechanical and the cavity EIT systems, presented here for the first time, has been corroborated by experimental data. The analysis of the probe response of all these systems also brings to light a physical interpretation for the expectation value of the photon annihilation operator $\\left\\langle a\\right\\rangle$. We show it can be directly related to the electric susceptibility of systems, the composition of which includes a driven cavity field mode.

  6. Emergence of rotational bands in ab initio no-core configuration interaction calculations of the Be isotopes

    E-Print Network [OSTI]

    P. Maris; M. A. Caprio; J. P. Vary

    2015-01-30

    The emergence of rotational bands is observed in no-core configuration interaction (NCCI) calculations for the Be isotopes (7<=A<=12), as evidenced by rotational patterns for excitation energies, electromagnetic moments, and electromagnetic transitions. Yrast and low-lying excited bands are found. The results indicate well-developed rotational structure in NCCI calculations, using the JISP16 realistic nucleon-nucleon interaction within finite, computationally-accessible configuration spaces.

  7. X-Ray Propulsor: Physical Principle for an Electromagnetic Propellantless Propulsion System

    E-Print Network [OSTI]

    Martins, Alexandre A

    2012-01-01

    In this work we are going to develop a physical model that explains how propulsion may be developed in a vacuum by the collision of electrons with an anode. Instead of using principles related to the conservation of mechanical momentum to achieve propulsion, like all the current propulsion systems do, the present system achieves propulsion by using principles related to the conservation of electromagnetic momentum. The complete physical model will be provided and comparison with preliminary experimental results will be performed. These results are important since they show that it is possible to achieve a radical different propulsion system with many advantages.

  8. Inferring black hole charge from backscattered electromagnetic radiation

    E-Print Network [OSTI]

    Luís C. B. Crispino; Sam R. Dolan; Atsushi Higuchi; Ednilton S. de Oliveira

    2014-09-16

    We compute the scattering cross section of Reissner-Nordstr\\"om black holes for the case of an incident electromagnetic wave. We describe how scattering is affected by both the conversion of electromagnetic to gravitational radiation, and the parity-dependence of phase shifts induced by the black hole charge. The latter effect creates a helicity-reversed scattering amplitude that is non-zero in the backward direction. We show that from the character of the electromagnetic wave scattered in the backward direction it is possible, in principle, to infer if a static black hole is charged.

  9. A Full Review of the Theory of Electromagnetism

    E-Print Network [OSTI]

    D. Funaro

    2005-05-09

    We will provide detailed arguments showing that the set of Maxwell equations, and the corresponding wave equations, do not properly describe the evolution of electromagnetic wave-fronts. We propose a nonlinear corrected version that is proven to be far more appropriate for the modellization of electromagnetic phenomena. The suitability of this approach will soon be evident to the reader, through a sequence of astonishing congruences, making the model as elegant as Maxwell's, but with increased chances of development. Actually, the new set of equations will allow us to explain many open questions, and find links between electromagnetism and other theories that have been searched for a long time, or not even imagined.

  10. Electromagnetic quasinormal modes of D-dimensional black holes II

    E-Print Network [OSTI]

    A. López-Ortega

    2007-06-20

    By using the sixth order WKB approximation we calculate for an electromagnetic field propagating in D-dimensional Schwarzschild and Schwarzschild de Sitter black holes its quasinormal frequencies for the fundamental mode and first overtones. We study the dependence of these QN frequencies on the value of the cosmological constant and the spacetime dimension. We also compare with the known results for the gravitational perturbations propagating in the same background. Moreover we exactly compute the QN frequencies of the electromagnetic field propagating in D-dimensional massless topological black hole and for charged D-dimensional Nariai spacetime we exactly calculate the QN frequencies of the coupled electromagnetic and gravitational perturbations.

  11. Detection of electromagnetic waves using charged MEMS structures

    SciTech Connect (OSTI)

    Datskos, Panos G [ORNL; Lavrik, Nickolay V [ORNL; Tobin, Jacob D [ORNL; Bowland, Landon T [ORNL

    2012-01-01

    We describe micromechanical structures that are capable of sensing both electrostatic fields and electromagnetic fields over a wide frequency range. Typically, sensing of electromagnetic waves is achieved with electrically conducting antennas, which despite the many advantages do not exhibit high sensitivity over a broad frequency range. An important aspect of our present work is that, in contrast to traditional antennas, the dimensions of micromechanical oscillators sensitive to electromagnetic waves can be much smaller than the wavelength. We characterized the micromechanical oscillators and measured responses to electric fields and estimated the performance limits by evaluating the signal-to-noise ratio theoretically and experimentally.

  12. Relativity in Introductory Physics William E. Baylis

    E-Print Network [OSTI]

    , presents a new world view or paradigm[1] of physics. It revises the concepts of time and space from those of electromagnetic phenomena and much of modern physics. Such symmetries provide new approaches to many problemsRelativity in Introductory Physics William E. Baylis Department of Physics, University of Windsor

  13. About consistence between pi N Delta spin-3/2 gauge couplings and electromagnetic gauge invariance

    E-Print Network [OSTI]

    D. Badagnani; C. Barbero; A. Mariano

    2015-03-05

    We analyze the consistence between the recently proposed "spin 3/2 gauge" interaction for the Delta resonance with nucleons and pions, and the fundamental electromagnetic gauge invariance in any radiative amplitude. Chiral symmetric pion-derivative pi N Delta couplings can be substituted through a linear transformation to get Delta-derivative ones, which have the property of decoupling the 1/2 field components of the Delta propagator. Nevertheless, the electromagnetic gauge invariance introduced through minimal substitution in all derivatives, can only be fulfilled at a given order n without destroying the spin 3/2 one by dropping n+1 order terms within an effective field theory (EFT) framework with a defined power counting. In addition, we show that the Ward identity for the gamma Delta gamma vertex cannot be fulfilled with a trimmed 3/2 propagator, which should be necessary in order to keep the spin 3/2 gauge symmetry in the radiative case for the gamma Delta gamma amplitude. Finally, it is shown that radiative corrections of the spin 3/2 gauge strong vertexes at one loop, reintroduce the conventional interaction.

  14. Electromagnetic material changes for remote detection and monitoring: a feasibility study: Progress report

    SciTech Connect (OSTI)

    McCloy, John S.; Jordan, David V.; Kelly, James F.; McMakin, Douglas L.; Johnson, Bradley R.; Campbell, Luke W.

    2009-09-01

    A new concept for radiation detection is proposed, allowing a decoupling of the sensing medium and the readout. An electromagnetic material, such as a magnetic ceramic ferrite, is placed near a source to be tracked such as a shipping container. The electromagnetic material changes its properties, in this case its magnetic permeability, as a function of radiation. This change is evident as a change in reflection frequency and magnitude when probed using a microwave/millimeter-wave source. This brief report discusses modeling of radiation interaction of various candidate materials using a radiation detector modeling code Geant4, system design considerations for the remote readout, and some theory of the material interaction physics. The theory of radiation change in doped magnetic insulator ferrites such as yttrium iron garnet (YIG) seems well founded based on literature documentation of the photomagnetic effect. The literature also suggests sensitivity of permittivity to neutrons in some ferroelectrics. Research to date indicates that experimental demonstration of these effects in the context of radiation detection is warranted.

  15. Casimir interaction from magnetically coupled eddy currents

    E-Print Network [OSTI]

    Francesco Intravaia; Carsten Henkel

    2009-09-06

    We study the quantum and thermal fluctuations of eddy (Foucault) currents in thick metallic plates. A Casimir interaction between two plates arises from the coupling via quasi-static magnetic fields. As a function of distance, the relevant eddy current modes cross over from a quantum to a thermal regime. These modes alone reproduce previously discussed thermal anomalies of the electromagnetic Casimir interaction between good conductors. In particular, they provide a physical picture for the Casimir entropy whose nonzero value at zero temperature arises from a correlated, glassy state.

  16. Casimir Interaction from Magnetically Coupled Eddy Currents

    SciTech Connect (OSTI)

    Intravaia, Francesco; Henkel, Carsten [Institut fuer Physik und Astronomie, Universitaet Potsdam, 14476 Potsdam (Germany)

    2009-09-25

    We study the quantum and thermal fluctuations of eddy (Foucault) currents in thick metallic plates. A Casimir interaction between two plates arises from the coupling via quasistatic magnetic fields. As a function of distance, the relevant eddy current modes cross over from a quantum to a thermal regime. These modes alone reproduce previously discussed thermal anomalies of the electromagnetic Casimir interaction between good conductors. In particular, they provide a physical picture for the Casimir entropy whose nonzero value at zero temperature arises from a correlated, glassy state.

  17. Microengineering laser plasma interactions at relativistic intensities

    E-Print Network [OSTI]

    Jiang, S; Audesirk, H; George, K M; Snyder, J; Krygier, A; Lewis, N S; Schumacher, D W; Pukhov, A; Freeman, R R; Akli, K U

    2015-01-01

    We report on the first successful proof-of-principle experiment to manipulate laser-matter interactions on the microscale using highly ordered Si microwire arrays. The interaction of a high contrast short pulse laser with a flat target via periodic Si microwires yields a substantial enhancement in both total and cut-off energies of the produced electron beam. The self generated electric and magnetic fields behave as an electromagnetic lens that confines and guides electrons between the microwires as they acquire relativistic energies via direct laser acceleration (DLA).

  18. Radiative reactions and coherence modeling in the high-altitude electromagnetic pulse

    SciTech Connect (OSTI)

    Vittitoe, C.N.; Rabinowitz, M.

    1988-03-15

    A high-altitude nuclear electromagnetic pulse (EMP) with a peak field intensity of 5 x 10/sup 4/ V/m carries momentum that results in a retarding force on the average Compton electron (radiating coherently to produce the waveform) with magnitude near that of the geomagnetic force responsible for the coherent radiation. The retarding force results from a self-field effect. The Compton electron interaction with the self-generated magnetic field due to the other electrons accounts for the momentum density in the propagating wave; interaction with the self-generated electric field accounts for the energy-flux density in the propagating wave. Coherent addition of radiation is also quantitatively modeled.

  19. Gyrokinetic Particle Simulation of Compressible Electromagnetic Turbulence in High-? Plasmas

    SciTech Connect (OSTI)

    Lin, Zhihong

    2014-03-13

    Supported by this award, the PI and his research group at the University of California, Irvine (UCI) have carried out computational and theoretical studies of instability, turbulence, and transport in laboratory and space plasmas. Several massively parallel, gyrokinetic particle simulation codes have been developed to study electromagnetic turbulence in space and laboratory plasmas. In space plasma projects, the simulation codes have been successfully applied to study the spectral cascade and plasma heating in kinetic Alfven wave turbulence, the linear and nonlinear properties of compressible modes including mirror instability and drift compressional mode, and the stability of the current sheet instabilities with finite guide field in the context of collisionless magnetic reconnection. The research results have been published in 25 journal papers and presented at many national and international conferences. Reprints of publications, source codes, and other research-related information are also available to general public on the PI’s webpage (http://phoenix.ps.uci.edu/zlin/). Two PhD theses in space plasma physics are highlighted in this report.

  20. Enhancement of Kv1.3 Potassium Conductance by Extremely Low Frequency Electromagnetic Field

    E-Print Network [OSTI]

    Cecchetto, Claudia; Boccaccio, Pasquale; Vassanelli, Stefano

    2015-01-01

    Theoretical and experimental evidences support the hypothesis that extremely low-frequency electromagnetic fields can affect voltage-gated channels. Little is known, however, about their effect on potassium channels. Kv1.3, a member of the voltage-gated potassium channels family originally discovered in the brain, is a key player in important biological processes including antigen-dependent activation of T-cells during the immune response. We report that Kv1.3 expressed in CHO-K1 cells can be modulated in cell subpopulations by extremely low frequency and relatively low intensity electromagnetic fields. In particular, we observed that field exposure can cause an enhancement of Kv1.3 potassium conductance and that the effect lasts for several minutes after field removal. The results contribute to put immune and nervous system responses to extremely low-frequency electromagnetic fields into a new perspective, with Kv1.3 playing a pivotal molecular role. Keywords: immunotherapy, immunomodulation, potassium chann...

  1. Frame Indifferent Formulation of Maxwell's Elastic Fluid and the Rational Continuum Mechanics of the Electromagnetic Field

    E-Print Network [OSTI]

    Christo I. Christov

    2011-03-06

    We show that the linearized equations of the incompressible elastic medium admit a `Maxwell form' in which the shear component of the stress vector plays the role of the electric field, and the vorticity plays the role of the magnetic field. Conversely, the set of dynamic Maxwell equations are strict mathematical corollaries from the governing equations of the incompressible elastic medium. This suggests that the nature of `electromagnetic field' may actually be related to an elastic continuous medium. The analogy is complete if the medium is assumed to behave as fluid in shear motions, while it may still behave as elastic solid under compressional motions. Then the governing equations of the elastic fluid are re-derived in the Eulerian frame by replacing the partial time derivatives by the properly invariant (frame indifferent) time rates. The `Maxwell from' of the frame indifferent formulation gives the frame indifferent system that is to replace the Maxwell system. This new system comprises terms already present in the classical Maxwell equations, alongside terms that are the progenitors of the Biot--Savart, Oersted--Ampere's, and Lorentz--force laws. Thus a frame indifferent (truly covariant) formulation of electromagnetism is achieved from a single postulate that the electromagnetic field is a kind of elastic (partly liquid partly solid) continuum.

  2. Low voltage supply system for the very front end readout electronics of the CMS electromagnetic calorimeter

    E-Print Network [OSTI]

    Lustermann, W; Denes, P; Djambazov, L; Dröge, M; Faure, J L; Iliev, Bozhidar Z; Nanov, I; Raykov, P; Shivarov, N

    1999-01-01

    Low voltage supply system for the very front end readout electronics of the CMS electromagnetic calorimeter

  3. ON THE INFLUENCE OF THE GEOMETRY ON SKIN EFFECT IN ELECTROMAGNETISM

    E-Print Network [OSTI]

    Faou, Erwan

    ON THE INFLUENCE OF THE GEOMETRY ON SKIN EFFECT IN ELECTROMAGNETISM GABRIEL CALOZ, MONIQUE DAUGE, ERWAN FAOU, VICTOR P´ERON ABSTRACT. We consider the equations of electromagnetism set on a domain made in electromagnetism. This effect describes the rapid decay of electromagnetic fields with depth inside a metallic

  4. 1D subsurface electromagnetic fields excited by energized steel casing

    E-Print Network [OSTI]

    Torres-Verdín, Carlos

    1D subsurface electromagnetic fields excited by energized steel casing Wei Yang1 , Carlos Torres-cased well is energized at the surface or within the borehole at an arbitrary depth with an electrode

  5. Design and parametric simulation of radially oriented electromagnetic actuators

    E-Print Network [OSTI]

    Bosworth, William R., S.M. Massachusetts Institute of Technology

    2011-01-01

    This thesis presents the design and simulation of an electromagnetic actuator system capable of delivering large pulses of radial force onto a cylindrical surface. Due to its robust design, simple control scheme, and large ...

  6. Low-cost electromagnetic tagging : design and implementation

    E-Print Network [OSTI]

    Fletcher, Richard R. (Richard Ribon)

    2002-01-01

    Several implementations of chipless RFID (Radio Frequency Identification) tags are presented and discussed as low-cost alternatives to chip-based RFID tags and sensors. An overview of present-day near-field electromagnetic ...

  7. Direct visualization of terahertz electromagnetic waves in classic experimental geometries

    E-Print Network [OSTI]

    Werley, Christopher Alan

    2012-01-01

    We used newly developed experimental methods to collect educational video clips of electromagnetic waves propagating at the speed of light. The terahertz frequency waves were generated and detected in LiNbO3 crystals ...

  8. A scalable electro-magnetic communication system for underwater swarms

    E-Print Network [OSTI]

    Zimmer, Uwe

    A scalable electro-magnetic communication system for underwater swarms Felix Schill 1 Uwe R. Zimmer for communication is small compared to propulsion requirements. Communication of state information can there- fore

  9. Design of high temperature high speed electromagnetic axial thrust bearing 

    E-Print Network [OSTI]

    Mohiuddin, Mohammad Waqar

    2002-01-01

    The National Aeronautics and Space Administration (NASA) is researching the magnetic bearings to use it as a better alternative to conventional bearings. This research was to develop an axial thrust electromagnetic bearing for high performance jet...

  10. Electromagnetic Studies of Mesons, Nucleons, and Nuclei

    SciTech Connect (OSTI)

    Baker, Oliver K.

    2013-08-20

    Professor Baker was a faculty member at Hampton University in Hampton, Virginia, and, jointly, a Staff Physicist at Jefferson Lab in nearby Newport News from September 1989 to July 2006. The Department of Energy (DOE) funded the grant DE-FG02-97ER41035 Electromagnetic Studies of Mesons, Nucleons, and Nuclei, while Baker was in this joint appointment. Baker sent a closeout report on these activities to Hampton University’s Sponsored Research Office some years ago, shortly after joining Yale University in 2006. In the period around 2001, the research grant with Baker as the Principal Investigator (PI) was put under the supervision of Professor Liguang Tang at Hampton University. Baker continued to pursue the research while in this join appointment, however the administrative responsibilities with the DOE and with Hampton University rested with Professor Tang after 2001, to my recollection. What is written in this document is from Baker’s memory of the research activities, which he has not pursued since joining the Yale University faculty.

  11. Calibrating Accelerometers Using an Electromagnetic Launcher

    SciTech Connect (OSTI)

    Erik Timpson

    2012-05-13

    A Pulse Forming Network (PFN), Helical Electromagnetic Launcher (HEML), Command Module (CM), and Calibration Table (CT) were built and evaluated for the combined ability to calibrate an accelerometer. The PFN has a maximum stored energy of 19.25 kJ bank and is fired by a silicon controlled rectifier (SCR), with appropriate safety precautions. The HEML is constructed out of G-10 fiberglass and is designed to accelerate 600 grams to 10 meters per second. The CM is microcontroller based running Arduino Software. The CM has a keypad input and 7 segment outputs of the bank voltage and desired voltage. After entering a desired bank voltage, the CM controls the charge of the PFN. When the two voltages are equal it allows the fire button to send a pulse to the SCR to fire the PFN and in turn, the HEML. The HEML projectile's tip hits a target that is held by the CT. The CT consists of a table to hold the PFN and HEML, a vacuum chuck, air bearing, velocity meter and catch pot. The Target is held with the vacuum chuck awaiting impact. After impact, the air bearing allows the target to fall freely for the velocity meter to get an accurate reading. A known acceleration is determined from the known change in velocity of the target. Thus, if an accelerometer was attached to the target, the measured value can be compared to the known value.

  12. (Low frequency electromagnetic fields and public health)

    SciTech Connect (OSTI)

    Aldrich, T.E.

    1988-05-23

    The traveler participated in the IARC-sponsored workshop entitled Extremely Low Frequency Electromagnetic Fields (EMF) and Public Health'' where he delivered the keynote address. This address set the stage for deliberations among the EMF public health professionals regarding strategies for international collaborative work on this topic. Strong emphasis was placed in explicit exposure monitoring. The traveler also participated in the Tenth Yves Biraud Seminar on rare-event surveillance as a sentinel system for detection potential environmental hazards. He presented an invited paper describing a means for making rapid, preliminary decisions regarding potential health impacts due to contamination of the environment around point sources of toxic substances. He served as the symposium's expert on numerical techniques on the use of spatial and temporal aggregation of rare health events. There is considerable variation among countries in emphasis on application of sentinel systems and application of sentinel systems and data gathering. France has a highly automated, statistically-sophisticated system involving individual physician reporting of specific reportable infectious diseases to a central location. The European Common Market nations are sold on this concept and are supporting the development of an internationally coordinated system.

  13. Horizontal electromagnetic casting of thin metal sheets

    DOE Patents [OSTI]

    Hull, John R. (Hinsdale, IL); Lari, Robert J. (Aurora, IL); Praeg, Walter F. (Palos Park, IL); Turner, Larry R. (Naperville, IL)

    1988-01-01

    Thin metal sheets are cast by magnetically suspending molten metal deposited within a ferromagnetic yoke and between AC conducting coils and linearly displacing the magnetically levitated liquid metal while it is being cooled to form a solid metal sheet. Magnetic flux increases as the molten metal sheet moves downward and decreases as the molten metal sheet moves upward to stabilize the sheet and maintain it in equilibrium as it is linearly displaced and solidified by cooling gases. A conducting shield is electrically coupled to the molten metal sheet by means of either metal sheet engaging rollers or brushes on the solidified metal, and by means of an electrode in the vessel containing the molten metal thereby providing a return path for the eddy currents induced in the metal sheet by the AC coil generated magnetic flux. Variation in the geometry of the conducting shield allows the magnetic flux between the metal sheet and the conducting shield to be varied and the thickness in surface quality of the metal sheet to be controlled. Side guards provide lateral containment for the molten metal sheet and stabilize and shape the magnetic field while a leader sheet having electromagnetic characteristics similar to those of the metal sheet is used to start the casting process and precedes the molten metal sheet through the magnet and forms a continuous sheet therewith. The magnet may be either U-shaped with a single racetrack coil or may be rectangular with a pair of facing bedstead coils.

  14. Horizontal electromagnetic casting of thin metal sheets

    DOE Patents [OSTI]

    Hull, John R. (Hinsdale, IL); Lari, Robert J. (Aurora, IL); Praeg, Walter F. (Palos Park, IL); Turner, Larry R. (Naperville, IL)

    1987-01-01

    Thin metal sheets are cast by magnetically suspending molten metal deposited within a ferromagnetic yoke and between AC conducting coils and linearly displacing the magnetically levitated liquid metal while it is being cooled to form a solid metal sheet. Magnetic flux increases as the molten metal sheet moves downward and decreases as the molten metal sheet moves upward to stabilize the sheet and maintain it in equilibrium as it is linearly displaced and solidified by cooling gases. A conducting shield is electrically coupled to the molten metal sheet by means of either metal sheet engaging rollers or brushes on the solidified metal, and by means of an electrode in the vessel containing the molten metal thereby providing a return path for the eddy currents induced in the metal sheet by the AC coil generated magnetic flux. Variation in the geometry of the conducting shield allows the magnetic flux between the metal sheet and the conducting shield to be varied and the thickness in surface quality of the metal sheet to be controlled. Side guards provide lateral containment for the molten metal sheet and stabilize and shape the magnetic field while a leader sheet having electromagnetic characteristics similar to those of the metal sheet is used to start the casting process and precedes the molten metal sheet through the magnet and forms a continuous sheet therewith. The magnet may be either U-shaped with a single racetrack coil or may be rectangular with a pair of facing bedstead coils.

  15. Electromagnetic anti-jam telemetry tool

    DOE Patents [OSTI]

    Ganesan, Harini (Sugar Land, TX); Mayzenberg, Nataliya (Missouri City, TX)

    2008-02-12

    A mud-pulse telemetry tool includes a tool housing, a motor disposed in the tool housing, and a magnetic coupling coupled to the motor and having an inner shaft and an outer shaft. The tool may also include a stator coupled to the tool housing, a restrictor disposed proximate the stator and coupled to the magnetic coupling, so that the restrictor and the stator adapted to generate selected pulses in a drilling fluid when the restrictor is selectively rotated. The tool may also include a first anti-jam magnet coupled to the too housing, and an second anti-jam magnet disposed proximate the first anti-jam magnet and coupled to the inner shaft and/or the outer shaft, wherein at least one of the first anti-jam magnet and the second anti-jam magnet is an electromagnet, and wherein the first anti-jam magnet and the second anti-jam magnet are positioned with adjacent like poles.

  16. Fast dynamic force computation for electrostatic and electromagnetic conductors 

    E-Print Network [OSTI]

    Koteeswaran, Prabhavathi

    2005-02-17

    -1 FAST DYNAMIC FORCE COMPUTATION FOR ELECTROSTATIC AND ELECTROMAGNETIC CONDUCTORS AThesis by PRABHAVATHI KOTEESWARAN Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER... OF SCIENCE December 2004 Major Subject: Computer Engineering FAST DYNAMIC FORCE COMPUTATION FOR ELECTROSTATIC AND ELECTROMAGNETIC CONDUCTORS AThesis by PRABHAVATHI KOTEESWARAN Submitted to Texas A&M University in partial fulfillment of the requirements...

  17. Electromagnetic quasinormal modes of D-dimensional black holes

    E-Print Network [OSTI]

    A. López-Ortega

    2006-11-02

    Using the monodromy method we calculate the asymptotic quasinormal (QN) frequencies of an electromagnetic field moving in D-dimensional Schwarzschild and Schwarzschild de Sitter (SdS) black holes ($D\\geq 4$). For the D-dimensional Schwarzschild anti-de Sitter (SadS) black hole we also compute these frequencies with a similar method. Moreover, we calculate the electromagnetic normal modes of the D-dimensional anti-de Sitter (AdS) spacetime.

  18. Electromagnetic vertex function of the pion at T > 0

    E-Print Network [OSTI]

    J. van der heide; J. H. Koch; E. Laermann

    2005-12-23

    The matrix element of the electromagnetic current between pion states is calculated in quenched lattice QCD at a temperature of $T = 0.93 T_c$. The nonperturbatively improved Sheikholeslami-Wohlert action is used together with the corresponding ${\\cal O}(a)$ improved vector current. The electromagnetic vertex function is extracted for pion masses down to $360 {\\rm MeV}$ and momentum transfers $Q^2 \\le 2.7 {\\rm GeV}^2$.

  19. Generating Electromagnetic Waves from Gravity Waves in Cosmology

    E-Print Network [OSTI]

    P. A. Hogan; S. O'Farrell

    2009-05-18

    Examples of test electromagnetic waves on a Friedmann-Lemaitre-Robertson-Walker(FLRW) background are constructed from explicit perturbations of the FLRW space-times describing gravitational waves propagating in the isotropic universes. A possible physical mechanism for the production of the test electromagnetic waves is shown to be the coupling of the gravitational waves with a test magnetic field, confirming the observation of Marklund, Dunsby and Brodin [Phys.Rev. D62,101501(R) (2000)].

  20. Rydberg Atoms Ionisation by Microwave Field and Electromagnetic Pulses

    E-Print Network [OSTI]

    B. Kaulakys; G. Vilutis

    1995-04-10

    A simple theory of the Rydberg atoms ionisation by electromagnetic pulses and microwave field is presented. The analysis is based on the scale transformation which reduces the number of parameters and reveals the functional dependencies of the processes. It is shown that the observed ionisation of Rydberg atoms by subpicosecond electromagnetic pulses scale classically. The threshold electric field required to ionise a Rydberg state may be simply evaluated in the photonic basis approach for the quantum dynamics or from the multiphoton ionisation theory.

  1. Spatiotemporal electromagnetic soliton and spatial ring formation in nonlinear metamaterials

    SciTech Connect (OSTI)

    Zhang Jinggui; Wen Shuangchun; Xiang Yuanjiang; Wang Youwen; Luo Hailu [Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education, School of Computer and Communication, Hunan University, Changsha 410082 (China)

    2010-02-15

    We present a systematic investigation of ultrashort electromagnetic pulse propagation in metamaterials (MMs) with simultaneous cubic electric and magnetic nonlinearity. We predict that spatiotemporal electromagnetic solitons may exist in the positive-index region of a MM with focusing nonlinearity and anomalous group velocity dispersion (GVD), as well as in the negative-index region of the MM with defocusing nonlinearity and normal GVD. The experimental circumstances for generating and manipulating spatiotemporal electromagnetic solitons can be created by elaborating appropriate MMs. In addition, we find that, in the negative-index region of a MM, a spatial ring may be formed as the electromagnetic pulse propagates for focusing nonlinearity and anomalous GVD; while the phenomenon of temporal splitting of the electromagnetic pulse may appear for the same case except for the defocusing nonlinearity. Finally, we demonstrate that the nonlinear magnetization makes the sign of effective electric nonlinear effect switchable due to the combined action of electric and magnetic nonlinearity, exerting a significant influence on the propagation of electromagnetic pulses.

  2. Electromagnetic waves near the proton cyclotron frequency: Stereo observations

    SciTech Connect (OSTI)

    Jian, L. K.; Wei, H. Y.; Russell, C. T.; Luhmann, J. G.; Klecker, B.; Omidi, N.; Isenberg, P. A.; Goldstein, M. L.; Figueroa-Viñas, A.; Blanco-Cano, X.

    2014-05-10

    Transverse, near-circularly polarized, parallel-propagating electromagnetic waves around the proton cyclotron frequency were found sporadically in the solar wind throughout the inner heliosphere. They could play an important role in heating and accelerating the solar wind. These low-frequency waves (LFWs) are intermittent but often occur in prolonged bursts lasting over 10 minutes, named 'LFW storms'. Through a comprehensive survey of them from Solar Terrestrial Relations Observatory A using dynamic spectral wave analysis, we have identified 241 LFW storms in 2008, present 0.9% of the time. They are left-hand (LH) or right-hand (RH) polarized in the spacecraft frame with similar characteristics, probably due to Doppler shift of the same type of waves or waves of intrinsically different polarities. In rare cases, the opposite polarities are observed closely in time or even simultaneously. Having ruled out interplanetary coronal mass ejections, shocks, energetic particles, comets, planets, and interstellar ions as LFW sources, we discuss the remaining generation scenarios: LH ion cyclotron instability driven by greater perpendicular temperature than parallel temperature or by ring-beam distribution, and RH ion fire hose instability driven by inverse temperature anisotropy or by cool ion beams. The investigation of solar wind conditions is compromised by the bias of the one-dimensional Maxwellian fit used for plasma data calibration. However, the LFW storms are preferentially detected in rarefaction regions following fast winds and when the magnetic field is radial. This preference may be related to the ion cyclotron anisotropy instability in fast wind and the minimum in damping along the radial field.

  3. Biological interactions of extremely-low-frequency electric and magnetic fields

    SciTech Connect (OSTI)

    Tenforde, T.S.

    1990-03-01

    A description is given of the fundamental physical properties of extremely-low frequency (ELF) electromagnetic fields, and the mechanisms through which these fields interact with the human body at a macroscopic level. the mechanisms through which ELF electric and magnetic fields induce currents in humans and other living objects are described. Evidence is presented that cell membranes play an important role in transducing ELF signals. Both experimental evidence and theoretical models are described that relate pericellular currents and electrochemical events at the outer membrane surface to transmembrane signaling pathways and cytoplasmic responses. Biological responses to ELF fields at the tissue, cellular and molecular levels are summarized, including new evidence that ELF field exposure produces alterations in messenger RNA synthesis, gene expression and the cytoplasmic concentrations of specific proteins. 50 refs., 9 figs., 2 tabs.

  4. Relativity in Classical Mechanics: Momentum, Energy and the Third Law

    E-Print Network [OSTI]

    R Assumpcao

    2005-07-19

    Most of the logical objections against the classical laws of motion, as they are usually presented in textbooks, centre on the fact that defining force in terms of mass and acceleration, the first two laws are mere assertions of concepts to be introduced in the theory; conversely, the third law expresses the experimental fact that the ratio of masses is inversely proportional to the ratio of accelerations, but it is known to fail when the interacting bodies are rapidly accelerated or far apart, leading to objections at the research level, particularly when electromagnetic phenomena is present. Following a specification of the coordinate system with respect to which velocities and accelerations are to be measured, relative to a fixed spacetime point, this contribution argues that the limitation of the third law is removed; as a consequence, Energy and Momentum relations are given an alternative formulation, extending their fundamental aspects and terms to the relativistic level. Most important, the presented alternative relations seem to preserve exactly the same form of the concepts as originally used by Newton in the Principia.

  5. Multiple colliding electromagnetic pulses: a way to lower the threshold of $e^+e^-$ pair production from vacuum

    E-Print Network [OSTI]

    S. S. Bulanov; V. D. Mur; N. B. Narozhny; J. Nees; V. S. Popov

    2010-03-12

    The scheme of simultaneous multiple pulse focusing on one spot naturally arises from the structural features of projected new laser systems, such as ELI and HiPER. It is shown that the multiple pulse configuration is beneficial for observing $e^+e^-$ pair production from vacuum under the action of sufficiently strong electromagnetic fields. The field of the focused pulses is described using a realistic three-dimensional model based on an exact solution of the Maxwell equations. The $e^+e^-$ pair production threshold in terms of electromagnetic field energy can be substantially lowered if, instead of one or even two colliding pulses, multiple pulses focused on one spot are used. The multiple pulse interaction geometry gives rise to subwavelength field features in the focal region. These features result in the production of extremely short $e^+e^-$ bunches.

  6. Influence of lateral target size on hot electron production and electromagnetic pulse emission from laser-irradiated metallic targets

    SciTech Connect (OSTI)

    Chen Ziyu; Li Jianfeng; Yu Yong; Li Xiaoya; Peng Qixian; Zhu Wenjun [National Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, Sichuan 621900 (China); Wang Jiaxiang [State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062 (China)

    2012-11-15

    The influences of lateral target size on hot electron production and electromagnetic pulse emission from laser interaction with metallic targets have been investigated. Particle-in-cell simulations at high laser intensities show that the yield of hot electrons tends to increase with lateral target size, because the larger surface area reduces the electrostatic field on the target, owing to its expansion along the target surface. At lower laser intensities and longer time scales, experimental data characterizing electromagnetic pulse emission as a function of lateral target size also show target-size effects. Charge separation and a larger target tending to have a lower target potential have both been observed. The increase in radiation strength and downshift in radiation frequency with increasing lateral target size can be interpreted using a simple model of the electrical capacity of the target.

  7. Innovative Electromagnetic Sensors for Pipeline Crawlers

    SciTech Connect (OSTI)

    J. Bruce Nestleroth

    2006-05-04

    Internal inspection of pipelines is an important tool for ensuring safe and reliable delivery of fossil energy products. Current inspection systems that are propelled through the pipeline by the product flow cannot be used to inspect all pipelines because of the various physical barriers they encounter. Recent development efforts include a new generation of powered inspection platforms that crawl slowly inside a pipeline and are able to maneuver past the physical barriers that can limit inspection. At Battelle, innovative electromagnetic sensors are being designed and tested for these new pipeline crawlers. The various sensor types can be used to assess a wide range of pipeline anomalies including corrosion, mechanical damage, and cracks. Battelle is in the final year on a projected three-year development effort. In the first year, two innovative electromagnetic inspection technologies were designed and tested. Both were based on moving high-strength permanent magnets to generate inspection energy. One system involved translating permanent magnets towards the pipe. A pulse of electric current would be induced in the pipe to oppose the magnetization according to Lenz's Law. The decay of this pulse would indicate the presence of defects in the pipe wall. This inspection method is similar to pulsed eddy current inspection methods, with the fundamental difference being the manner in which the current is generated. Details of this development effort were reported in the first semiannual report on this project. The second inspection methodology is based on rotating permanent magnets. The rotating exciter unit produces strong eddy currents in the pipe wall. At distances of a pipe diameter or more from the rotating exciter, the currents flow circumferentially. These circumferential currents are deflected by pipeline defects such as corrosion and axially aligned cracks. Simple sensors are used to detect the change in current densities in the pipe wall. The second semiannual report on this project reported on experimental and modeling results. The results showed that the rotating system was more adaptable to pipeline inspection and therefore only this system will be carried into the second year of the sensor development. In the third reporting period, the rotating system inspection was further developed. Since this is a new inspection modality without published fundamentals to build upon, basic analytical and experimental investigations were performed. A closed form equation for designing rotating exciters and positioning sensors was derived from fundamental principles. Also signal processing methods were investigated for detection and assessment of pipeline anomalies. A lock in amplifier approach was chosen as the method for detecting the signals. Finally, mechanical implementations for passing tight restrictions such as plug valves were investigated. This inspection concept is new and unique; a United States patent application has been submitted. In this reporting period, a general design of the rotating permanent magnet inspection system is presented. The rotating permanent magnet inspection system is feasible for pipes ranging in diameter from 8 to 18 inches using a two pole configuration. Experimental results and theoretical calculations provide the basis for selection of the critical design parameters. The parameters include a significant magnet to pipe separation that will facilitate the passage of pipeline features. With the basic values of critical components established, the next step is a detailed mechanical design of a pipeline ready inspection system.

  8. Pulse retrieval and soliton formation in a non-standard scheme for dynamic electromagnetically induced transparency

    E-Print Network [OSTI]

    Amy Peng; Mattias Johnsson; Joseph J. Hope

    2004-11-09

    We examine in detail an alternative method of retrieving the information written into an atomic ensemble of three-level atoms using electromagnetically induced transparency. We find that the behavior of the retrieved pulse is strongly influenced by the relative collective atom-light coupling strengths of the two relevant transitions. When the collective atom-light coupling strength for the retrieval beam is the stronger of the two transitions, regeneration of the stored pulse is possible. Otherwise, we show the retrieval process can lead to creation of soliton-like pulses.

  9. On the spontaneous emission of electromagnetic radiation in the CSL model

    SciTech Connect (OSTI)

    Donadi, Sandro; Istituto Nazionale di Fisica Nucleare, Trieste Section, Via Valerio 2, 34127 Trieste ; Deckert, Dirk-André; Bassi, Angelo; Istituto Nazionale di Fisica Nucleare, Trieste Section, Via Valerio 2, 34127 Trieste

    2014-01-15

    Spontaneous photon emission in the Continuous Spontaneous Localization (CSL) model is studied one more time. In the CSL model each particle interacts with a noise field that induces the collapse of its wave function. As a consequence of this interaction, when the particle is electrically charged, it radiates. As discussed in Adler (2013) the formula for the emission rate, to first perturbative order, contains two terms: one is proportional to the Fourier component of the noise field at the same frequency as that of the emitted photon and one is proportional to the zero Fourier component of the noise field. As discussed in previous works, this second term seems unphysical. In Adler (2013) it was shown that the unphysical term disappears when the noise is confined to a bounded region and the final particle’s state is a wave packet. Here we investigate the origin of this unphysical term and why it vanishes according to the previous prescription. We will see that perturbation theory is formally not valid in the large time limit since the effect of the noise accumulates continuously in time. Therefore either one performs an exact calculation (or at least in some way includes higher order terms) as we do here, or one finds a way to make a perturbative calculation meaningful, e.g., by confining the system as in Adler (2013). -- Highlights: •We compute the electromagnetic radiation emission in collapse models. •Under only the dipole approximation, the equations of motion are solved exactly. •The electromagnetic interaction must be treated exactly. •In order to obtain the correct emission rate the particle must be bounded.

  10. Recoil Polarization Measurements of the Proton Electromagnetic Form Factor Ratio to High Momentum Transfer

    E-Print Network [OSTI]

    Andrew J. R. Puckett

    2015-08-06

    The electromagnetic form factors of the nucleon characterize the effect of its internal structure on its response to an electromagnetic probe as studied in elastic electron-nucleon scattering. These form factors are functions of the squared four-momentum transfer $Q^2$ between the electron and the proton. The two main classes of observables of this reaction are the scattering cross section and polarization asymmetries, both of which are sensitive to the form factors in different ways. When considering large momentum transfers, double-polarization observables offer superior sensitivity to the electric form factor. This thesis reports the results of a new measurement of the ratio of the electric and magnetic form factors of the proton at high momentum transfer using the recoil polarization technique. A polarized electron beam was scattered from a liquid hydrogen target, transferring polarization to the recoiling protons. These protons were detected in a magnetic spectrometer which was used to reconstruct their kinematics, including their scattering angles and momenta, and the position of the interaction vertex. A proton polarimeter measured the polarization of the recoiling protons by measuring the azimuthal asymmetry in the angular distribution of protons scattered in CH$_2$ analyzers. The scattered electron was detected in a large-acceptance electromagnetic calorimeter in order to suppress inelastic backgrounds. The measured ratio of the transverse and longitudinal polarization components of the scattered proton is directly proportional to the ratio of form factors $G_E^p/G_M^p$. The measurements reported in this thesis took place at $Q^2=$5.2, 6.7, and 8.5 GeV$^2$, and represent the most accurate measurements of $G_E^p$ in this $Q^2$ region to date.

  11. Recoil Polarization Measurements of the Proton Electromagnetic Form Factor Ratio to High Momentum Transfer

    SciTech Connect (OSTI)

    Andrew Puckett

    2010-02-01

    The electromagnetic form factors of the nucleon characterize the effect of its internal structure on its response to an electromagnetic probe as studied in elastic electronnucleon scattering. These form factors are functions of the squared four-momentum transfer Q2 between the electron and the proton. The two main classes of observables of this reaction are the scattering cross section and polarization asymmetries, both of which are sensitive to the form factors in different ways. When considering large f momentum transfers, double-polarization observables offer superior sensitivity to the electric form factor. This thesis reports the results of a new measurement of the ratio of the electric and magnetic form factors of the proton at high momentum transfer using the recoil polarization technique. A polarized electron beam was scattered from a liquid hydrogen target, transferring polarization to the recoiling protons. These protons were detected in a magnetic spectrometer which was used to reconstruct their kinematics, including their scattering angles and momenta, and the position of the interaction vertex. A proton polarimeter measured the polarization of the recoiling protons by measuring the azimuthal asymmetry in the angular distribution of protons scattered in CH2 analyzers. The scattered electron was detected in a large acceptance electromagnetic calorimeter in order to suppress inelastic backgrounds. The measured ratio of the transverse and longitudinal polarization components of the scattered proton is directly proportional to the ratio of form factors GpE=GpM. The measurements reported in this thesis took place at Q2 =5.2, 6.7, and 8.5 GeV2, and represent the most accurate measurements of GpE in this Q2 region to date.

  12. Energy or Mass and Interaction

    E-Print Network [OSTI]

    Gustavo R Gonzalez-Martin

    2010-07-19

    A review. Problems: 1-Many empirical parameters and large dimension number; 2-Gravitation and Electrodynamics are challenged by dark matter and energy. Energy and nonlinear electrodynamics are fundamental in a unified nonlinear interaction. Nuclear energy appears as nonlinear SU(2) magnetic energy. Gravitation and electromagnetism are unified giving Einstein's equation and a geometric energy momentum tensor. A solution energy in the newtonian limit gives the gravitational constant G. Outside of this limit G is variable. May be interpreted as dark matter or energy. In vacuum, known gravitational solutions are obtained. Electromagnetism is an SU(2) subgroup. A U(1) limit gives Maxwell's equations. Geometric fields determine a generalized Dirac equation and are the germ of quantum physics. Planck's h and of Einstein's c are given by the potential and the metric. Excitations have quanta of charge, flux and spin determining the FQHE. There are only three stable 1/2 spin fermions. Mass is a form of energy. The rest energies of the fermions give the proton/electron mass ratio. Potential excitations have energies equal to the weak boson masses allowing a geometric interpretation of Weinberg's angle. SU(2) gives the anomalous magnetic moments of proton, electron, neutron and generates nuclear range attractive potentials strong enough to produce the binding energies of the deuteron and other nuclides. Lepton and meson masses are due to topological excitations. The geometric mass spectrum is satisfactory. The proton has a triple structure. The alpha constant is a geometric number.

  13. Interactive Jobs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation CurrentHenryInhibitingInteractive Jobs Interactive Jobs To run an interactive

  14. Lattice p-Form Electromagnetism and Chain Field Theory

    E-Print Network [OSTI]

    Derek K. Wise

    2005-10-08

    Since Wilson's work on lattice gauge theory in the 1970s, discrete versions of field theories have played a vital role in fundamental physics. But there is recent interest in certain higher dimensional analogues of gauge theory, such as p-form electromagnetism, including the Kalb-Ramond field in string theory, and its nonabelian generalizations. It is desirable to discretize such `higher gauge theories' in a way analogous to lattice gauge theory, but with the fundamental geometric structures in the discretization boosted in dimension. As a step toward studying discrete versions of more general higher gauge theories, we consider the case of p-form electromagnetism. We show that discrete p-form electromagnetism admits a simple algebraic description in terms of chain complexes of abelian groups. Moreover, the model allows discrete spacetimes with quite general geometry, in contrast to the regular cubical lattices usually associated with lattice gauge theory. After constructing a suitable model of discrete spacetime for p-form electromagnetism, we quantize the theory using the Euclidean path integral formalism. The main result is a description of p-form electromagnetism as a `chain field theory' -- a theory analogous to topological quantum field theory, but with chain complexes replacing manifolds. This, in particular, gives a notion of time evolution from one `spacelike slice' of discrete spacetime to another.

  15. developments. interactive

    E-Print Network [OSTI]

    Jaun, André

    interactive course: ffl web­pages for hyper­linked lecture notes, student exercises and projects, ffl java teachers: ffl public on the web y : lecture notes including the JBONE applet, ffl on demand: source Java

  16. Theory of diatomic molecules in an external electromagnetic field from first quantum mechanical principles

    E-Print Network [OSTI]

    Milan Sindelka; Nimrod Moiseyev

    2006-01-29

    We study a general problem of the translational/rotational/vibrational/electronic dynamics of a diatomic molecule exposed to an interaction with an arbitrary external electromagnetic field. The theory developed in this paper is relevant to a variety of specific applications. Such as, alignment or orientation of molecules by lasers, trapping of ultracold molecules in optical traps, molecular optics and interferometry, rovibrational spectroscopy of molecules in the presence of intense laser light, or generation of high order harmonics from molecules. Starting from the first quantum mechanical principles, we derive an appropriate molecular Hamiltonian suitable for description of the center of mass, rotational, vibrational and electronic molecular motions driven by the field within the electric dipole approximation. Consequently, the concept of the Born-Oppenheimer separation between the electronic and the nuclear degrees of freedom in the presence of an electromagnetic field is introduced. Special cases of the dc/ac field limits are then discussed separately. Finally, we consider a perturbative regime of a weak dc/ac field, and obtain simple analytic formulas for the associated Born-Oppenheimer translational/rotational/vibrational molecular Hamiltonian.

  17. Collapse and revival of electromagnetic cascades in focused intense laser pulses

    E-Print Network [OSTI]

    A. A. Mironov; N. B. Narozhny; A. M. Fedotov

    2014-07-24

    We consider interaction of a high-energy electron beam with two counterpropagating femtosecond laser pulses. Nonlinear Compton scattering and electron-positron pair production by the emitted photons result in development of an electromagnetic "shower-type" cascade, which however collapses rather quickly due to energy losses by secondary particles. Nevertheless, the laser field accelerates the low-energy electrons and positrons trapped in the focal region, thus giving rise to development of electromagnetic cascade of another type ("avalanche-type"). This effect of cascade collapse and revival can be observed at the electron beam energy of the order of several GeV and intensity of the colliding laser pulses of the level of $10^{24}$W/cm$^2$. This means that it can be readily observed at the novel laser facilities which are either planned for the nearest future, or are already under construction. The proposed experimental setup provides the most realistic and promissory way to observe the "avalanche-type" cascades.

  18. Collapse and revival of electromagnetic cascades in focused intense laser pulses

    E-Print Network [OSTI]

    Mironov, A A; Fedotov, A M

    2014-01-01

    We consider interaction of a high-energy electron beam with two counterpropagating femtosecond laser pulses. Nonlinear Compton scattering and electron-positron pair production by the emitted photons result in development of an electromagnetic "shower-type" cascade, which however collapses rather quickly due to energy losses by secondary particles. Nevertheless, the laser field accelerates the low-energy electrons and positrons trapped in the focal region, thus giving rise to development of electromagnetic cascade of another type ("avalanche-type"). This effect of cascade collapse and revival can be observed at the electron beam energy of the order of several GeV and intensity of the colliding laser pulses of the level of $10^{24}$W/cm$^2$. This means that it can be readily observed at the novel laser facilities which are either planned for the nearest future, or are already under construction. The proposed experimental setup provides the most realistic and promissory way to observe the "avalanche-type" cascad...

  19. On the Pair Electromagnetic Pulse of a Black Hole with Electromagnetic Structure

    E-Print Network [OSTI]

    Remo Ruffini; Jay D. Salmonson; James R. Wilson; She-Sheng Xue

    1999-07-02

    We study the relativistically expanding electron-positron pair plasma formed by the process of vacuum polarization around an electromagnetic black hole (EMBH). Such processes can occur for EMBH's with mass all the way up to $6\\cdot 10^5M_\\odot$. Beginning with a idealized model of a Reissner-Nordstrom EMBH with charge to mass ratio $\\xi=0.1$, numerical hydrodynamic calculations are made to model the expansion of the pair-electromagnetic pulse (PEM pulse) to the point that the system is transparent to photons. Three idealized special relativistic models have been compared and contrasted with the results of the numerically integrated general relativistic hydrodynamic equations. One of the three models has been validated: a PEM pulse of constant thickness in the laboratory frame is shown to be in excellent agreement with results of the general relativistic hydrodynamic code. It is remarkable that this precise model, starting from the fundamental parameters of the EMBH, leads uniquely to the explicit evaluation of the parameters of the PEM pulse, including the energy spectrum and the astrophysically unprecedented large Lorentz factors (up to $6\\cdot 10^3$ for a $10^3 M_{\\odot}$ EMBH). The observed photon energy at the peak of the photon spectrum at the moment of photon decoupling is shown to range from 0.1 MeV to 4 MeV as a function of the EMBH mass. Correspondingly the total energy in photons is in the range of $10^{52}$ to $10^{54}$ ergs, consistent with observed gamma-ray bursts. In these computations we neglect the presence of baryonic matter which will be the subject of forthcoming publications.

  20. CHEMICAL ASPECTS OF PELLET-CLADDING INTERACTION IN LIGHT WATER REACTOR FUEL ELEMENTS

    E-Print Network [OSTI]

    Olander, D.R.

    2010-01-01

    Tubing in Relation to the Pellet-Cladding Interaction010155 CHEMICAL ASPECTS OF PELLET-CLADDING INTERACTION INthe mechanical as­ pects of pellet-cladding interaction(PCI)

  1. Electromagnetic prompt response in an elastic wave cavity

    E-Print Network [OSTI]

    A. M. Martínez-Argüello; M. Martínez-Mares; M. Cobián-Suárez; G. Báez; R. A. Méndez-Sánchez

    2015-02-11

    A rapid, or prompt response, of an electromagnetic nature, is found in an elastic wave scattering experiment. The experiment is performed with torsional elastic waves in a quasi-one-dimensional cavity with one port, formed by a notch grooved at a certain distance from the free end of a beam. The stationary patterns are diminished using a passive vibration isolation system at the other end of the beam. The measurement of the resonances is performed with non-contact electromagnetic-acoustic transducers outside the cavity. In the Argand plane, each resonance describes a circle over a base impedance curve which comes from the electromagnetic components of the equipment. A model, based on a variation of Poisson's kernel is developed. Excellent agreement between theory and experiment is obtained.

  2. A Continuous Field Theory of Matter and Electromagnetism

    E-Print Network [OSTI]

    Raymond J. Beach

    2012-08-31

    A continuous field theory of matter and electromagnetism is developed. The starting point of the theory is the classical Maxwell equations which are directly tied to the Riemann-Christoffel curvature tensor. This is done through the derivatives of the Maxwell tensor which are equated to a vector field contracted with the curvature tensor. The electromagnetic portion of the theory is shown to be equivalent to the classical Maxwell equations with the addition of a hidden variable. Because the proposed equations describing electromagnetism and matter differ from the classical Maxwell-Einstein equations, their ability to describe classical physics is shown for several situations by direct calculation. The inclusion of antimatter and the possibility of particle-like solutions exhibiting both quantized charge and mass are discussed.

  3. Effects of electromagnetic field stimulation on cellular signal transduction mechanisms: Analyses of the effects of low frequency electromagnetic fields on calcium spiking in ROS 17/2.8 cells. Final report

    SciTech Connect (OSTI)

    Sisken, B.F.; Sisken, J.E.

    1997-12-01

    The general goals of this work were to determine whether resting levels of cellular second messengers, especially calcium, are affected by low-level electromagnetic fields and the mechanisms that could lead to such changes. The work performed was directed at (1) verifying the report of McLeod et al (1990) that low frequency sinusoidal EMF can alter basal calcium fluctuations in cultured ROS 17/2.8 osteoblast-like cells and (2) reproducing the findings of Luben et al (1982) that pulsed electromagnetic fields can affect PTH-stimulated adenylate cyclase activity in osteoblasts. Initially a system was constructed so that cells could be exposed to sinusoidal electric fields using platinum electrodes. In this system, the electrodes were separated from the cells and culture medium by agar barriers. A series of experiments indicated that this system was subject to a significant, though little-known artifact in which a not well understood interaction between the electrodes and sodium ions in the medium or in plain salt solutions led to frequency and amplitude dependent emission of photons that are recorded by the detection system. They therefore designed and constructed an air gap reactor system that utilizes a ferromagnetic core to direct the magnetic flux generated by a sinusoidal coil. Studies on the effects of a 15 Hz pulsed electromagnetic field (PEMF) on cyclic AMP metabolism were performed on ROS 17/2.8 and MC3T3 cells.

  4. Classical Dynamics of Free Electromagnetic Laser Pulses

    E-Print Network [OSTI]

    Goto, S; Walton, T J

    2015-01-01

    We discuss a class of exact finite energy solutions to the vacuum source-free Maxwell field equations as models for multi- and single cycle laser pulses in classical interaction with relativistic charged test particles. These solutions are classified in terms of their chiral content based on their influence on particular charge configurations in space. Such solutions offer a computationally efficient parameterization of compact laser pulses used in laser-matter simulations and provide a potential means for experimentally bounding the fundamental length scale in the generalized electrodynamics of Bopp, Lande and Podolsky.

  5. Classical Dynamics of Free Electromagnetic Laser Pulses

    E-Print Network [OSTI]

    S. Goto; R. W. Tucker; T. J. Walton

    2015-08-21

    We discuss a class of exact finite energy solutions to the vacuum source-free Maxwell field equations as models for multi- and single cycle laser pulses in classical interaction with relativistic charged test particles. These solutions are classified in terms of their chiral content based on their influence on particular charge configurations in space. Such solutions offer a computationally efficient parameterization of compact laser pulses used in laser-matter simulations and provide a potential means for experimentally bounding the fundamental length scale in the generalized electrodynamics of Bopp, Lande and Podolsky.

  6. Detection of electromagnetic radiation using micromechanical multiple

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfate Reducing BacteriaConnectlaser-solid interactionCrystalDesigning(Journal Article) |quantum

  7. Detection of electromagnetic radiation using micromechanical multiple

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfate Reducing BacteriaConnectlaser-solid interactionCrystalDesigning(Journal Article)

  8. Beam dynamics studies for transverse electromagnetic mode type rf deflectors

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ahmed, Shahid; Krafft, Geoffrey A.; Deitrick, Kirsten; De Silva, Subashini U.; Delayen, Jean R.; Spata, Mike; Tiefenback, Michael; Hofler, Alicia; Beard, Kevin

    2012-02-01

    We have performed three-dimensional simulations of beam dynamics for transverse electromagnetic mode (TEM) type rf deflectors: normal and superconducting. The compact size of these cavities as compared to the conventional TM110 type structures is more attractive particularly at low frequency. Highly concentrated electromagnetic fields between the parallel bars provide strong electrical stability to the beam for any mechanical disturbance. An array of six 2-cell normal conducting cavities or a single cell superconducting structure is enough to produce the required vertical displacement at the target point. Both the normal and superconducting structures show very small emittance dilution due to the verticalmore »kick of the beam.« less

  9. Statistics of the electromagnetic response of a chaotic reverberation chamber

    E-Print Network [OSTI]

    J. -B. Gros; U. Kuhl; O. Legrand; F. Mortessagne; O. Picon; E. Richalot

    2014-09-20

    This article presents a study of the electromagnetic response of a chaotic reverberation chamber (RC) in the presence of losses. By means of simulations and of experiments, the fluctuations in the maxima of the field obtained in a conventional mode-stirred RC are compared with those in a chaotic RC in the neighborhood of the Lowest Useable Frequency (LUF). The present work illustrates that the universal spectral and spatial statistical properties of chaotic RCs allow to meet more adequately the criteria required by the Standard IEC 61000-4-21 to perform tests of electromagnetic compatibility.

  10. Electromagnetic nucleon form factors in instant and point form

    E-Print Network [OSTI]

    T. Melde; K. Berger; L. Canton; W. Plessas; R. F. Wagenbrunn

    2007-09-30

    We present a study of the electromagnetic structure of the nucleons with constituent quark models in the framework of relativistic quantum mechanics. In particular, we address the construction of spectator-model currents in the instant and point forms. Corresponding results for the elastic nucleon electromagnetic form factors as well as charge radii and magnetic moments are presented. We also compare results obtained by different realistic nucleon wave functions stemming from alternative constituent quark models. Finally, we discuss the theoretical uncertainties that reside in the construction of spectator-model transition operators.

  11. Electromagnetically Induced Transparency from a Single Atom in Free Space

    E-Print Network [OSTI]

    L. Slodicka; G. Hetet; S. Gerber; M. Hennrich; R. Blatt

    2010-05-18

    We report an absorption spectroscopy experiment and the observation of electromagnetically induced transparency from a single trapped atom. We focus a weak and narrowband Gaussian light beam onto an optically cooled Barium ion using a high numerical aperture lens. Extinction of this beam is observed with measured values of up to 1.3 %. We demonstrate electromagnetically induced transparency of the ion by tuning a strong control beam over a two-photon resonance in a three-level lambda-type system. The probe beam extinction is inhibited by more than 75 % due to population trapping.

  12. Electromagnetic leptogenesis at the TeV scale

    E-Print Network [OSTI]

    Debajyoti Choudhury; Namit Mahajan; Sudhanwa Patra; Utpal Sarkar

    2011-04-11

    We construct an explicit model implementing electromagnetic leptogenesis. In a simple extension of the Standard Model, a discrete symmetry forbids the usual decays of the right-handed neutrinos, while allowing for an effective coupling between the left-handed and right-handed neutrinos through the electromagnetic dipole moment. This generates correct leptogenesis with resonant enhancement and also the required neutrino mass via a TeV scale seesaw mechanism. The model is consistent with low energy phenomenology and would have distinct signals in the next generation colliders, and, perhaps even the LHC.

  13. Electromagnetic Field Quantization in Time-Dependent Dielectric Media

    E-Print Network [OSTI]

    Xiao-Min Bei; Zhong-Zhu Liu

    2011-04-18

    We present a Gupta-Bleuler quantization scheme for the electromagnetic field in time-dependent dielectric media. Starting from the Maxwell equations, a generalization of the Lorentz gauge condition adapted to time varying dielectrics is derived. Using this gauge, a Gupta-Bleuler approach to quantize all polarizations of the radiation field and the corresponding constraint condition are introduced. This new approach is different from the quantized electromagnetic field in vacuum in the sense that here the contributions of unphysical photons cannot be thoroughly eliminated, which further lead to a surface charge density. Finally, a discussion of potential experimental tests and possible implication is also made.

  14. Electromagnetic triangle anomaly and neutral pion condensation in QCD vacuum

    E-Print Network [OSTI]

    Cao, Gaoqing

    2015-01-01

    We study the QCD vacuum structure under the influence of an electromagnetic field with a nonzero second Lorentz invariant $I_2=\\vec{E}\\cdot{\\vec B}$. We show that the presence of $I_2$ can induce neutral pion ($\\pi^0$) condensation in the QCD vacuum through the electromagnetic triangle anomaly. Within the frameworks of chiral perturbation theory at leading small-momenta expansion as well as the Nambu--Jona-Lasinio model at leading $1/N_c$ expansion, we quantify the dependence of the $\\pi^0$ condensate on $I_2$. The stability of the $\\pi^0$-condensed vacuum against the Schwinger charged pair production due to electric field is also discussed.

  15. Electromagnetic field quantization in a linear dielectric medium

    E-Print Network [OSTI]

    F. Kheirandish; M. Amooshahi

    2005-11-13

    By modeling a dielectric medium with two independent reservoirs, i.e., electric and magnetic reservoirs, the electromagnetic field is quantized in a linear dielectric medium consistently. A Hamiltonian is proposed from which using the Heisenberg equations, not only the Maxwell equations but also the structural equations can be obtained. Using the Laplace transformation, the wave equation for the electromagnetic vector potential is solved in the case of a homogeneous dielectric medium. Some examples are considered showing the applicability of the model to both absorptive and nonabsorptive dielectrics.

  16. Graded pitch electromagnetic pump for thin strip metal casting systems

    DOE Patents [OSTI]

    Kuznetsov, Stephen B. (Pittsburgh, PA)

    1986-01-01

    A metal strip casing system is provided with an electromagnetic pump which includes a pair of primary blocks having a graded pole pitch, polyphase ac winding and being arranged on opposite sides of a movable heat sink. A nozzle is provided for depositing liquid metal on the heat sink such that the resulting metal strip and heat sink combination is subjected to a longitudinal electromagnetic field which increases in wavelength in the direction of travel of the heat sink, thereby subjecting the metal and heat sink to a longitudinal force having a magnitude which increases in the direction of travel.

  17. Graded pitch electromagnetic pump for thin strip metal casting systems

    DOE Patents [OSTI]

    Kuznetsov, S.B.

    1986-04-01

    A metal strip casing system is provided with an electromagnetic pump which includes a pair of primary blocks having a graded pole pitch, polyphase ac winding and being arranged on opposite sides of a movable heat sink. A nozzle is provided for depositing liquid metal on the heat sink such that the resulting metal strip and heat sink combination is subjected to a longitudinal electromagnetic field which increases in wavelength in the direction of travel of the heat sink, thereby subjecting the metal and heat sink to a longitudinal force having a magnitude which increases in the direction of travel. 4 figs.

  18. Evaluation of methodologies for estimating vulnerability to electromagnetic pulse effects

    SciTech Connect (OSTI)

    Not Available

    1984-01-01

    High-altitude electromagnetic pulse (EMP) is an electromagnetic radiation of very short rise time, large amplitude, and brief duration that follows a nuclear explosion above the atmosphere. The area over which a single EMP event is experienced can be very great if the explosion if high enough and large enough. Several such nuclear explosions might render unprotected electronic equipment and systems inoperative over an area as large as the continental United States. Damage may occur when high currents and voltages, driven by EMP, reach vital internal circuits. It is therefore essential to protect the systems and to form some idea of how well they will withstand EMP.

  19. Beam dynamics studies for transverse electromagnetic mode type rf deflectors

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ahmed, Shahid; Krafft, Geoffrey A.; Deitrick, Kirsten; De Silva, Subashini U.; Delayen, Jean R.; Spata, Mike; Tiefenback, Michael; Hofler, Alicia; Beard, Kevin

    2012-02-01

    We have performed three-dimensional simulations of beam dynamics for transverse electromagnetic mode (TEM) type rf deflectors: normal and superconducting. The compact size of these cavities as compared to the conventional TM110 type structures is more attractive particularly at low frequency. Highly concentrated electromagnetic fields between the parallel bars provide strong electrical stability to the beam for any mechanical disturbance. An array of six 2-cell normal conducting cavities or a single cell superconducting structure is enough to produce the required vertical displacement at the target point. Both the normal and superconducting structures show very small emittance dilution due to the vertical kick of the beam.

  20. Electrons in a relativistic-intensity laser field: generation of zeptosecond electromagnetic pulses and energy spectrum of the accelerated electrons

    SciTech Connect (OSTI)

    Andreev, A A; Galkin, A L; Kalashnikov, M P; Korobkin, V V; Romanovsky, Mikhail Yu; Shiryaev, O B [A M Prokhorov General Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation)

    2011-08-31

    We study the motion of an electron and emission of electromagnetic waves by an electron in the field of a relativistically intense laser pulse. The dynamics of the electron is described by the Newton equation with the Lorentz force in the right-hand side. It is shown that the electrons may be ejected from the interaction region with high energy. The energy spectrum of these electrons and the technique of using the spectrum to assess the maximal intensity in the focus are analysed. It is found that electromagnetic radiation of an electron moving in an intense laser field occurs within a small angle around the direction of the electron trajectory tangent. The tangent quickly changes its direction in space; therefore, electromagnetic radiation of the electron in the far-field zone in a certain direction in the vicinity of the tangent is a short pulse with a duration as short as zeptoseconds. The calculation of the temporary and spectral distribution of the radiation field is carried out. (superintense laser fields)