Electromagnetic interactions at RHIC and LHC
M. C. Guclu
2008-11-15T23:59:59.000Z
At LHC energies the Lorentz factor will be 3400 for the Pb + Pb collisions and the electromagnetic interactions will play important roles. Cross sections for the electromagnetic particle productions are very large and can not be ignored for the lifetimes of the beams and background. In this article, we are going to study some of the electromagnetic processes at RHIC and LHC and show the cross section calculations of the electron-positron pair production with the giant dipole resonance of the ions.
22.105 Electromagnetic Interactions, Fall 1998
Hutchinson, I. H. (Ian H.)
Principles and applications of electromagnetism, starting from Maxwell's equations, with emphasis on phenomena important to nuclear engineering and radiation sciences. Solution methods for electrostatic and magnetostatic ...
Study of nucleon resonances with electromagnetic interactions
T. -S. H. Lee; L. C. Smith
2006-11-10T23:59:59.000Z
Recent developments in using electromagnetic meson production reactions to study the structure of nucleon resonances are reviewed. Possible future works are discussed.
An approach to electromagnetism from the general relativity
Robert Monjo i Agut
2013-12-02T23:59:59.000Z
Classical gravitation is so similar to the electrostatic that the possible unification has been investigated for many years. Although electromagnetism is formulated successfully by quantum field theory, this paper proposes a simple approach to describe the electromagnetism from the macroscopic perspective of general relativity. The hypothesis is based on two charged particles that cause disturbance energy sufficient to disrupt the space-time and explain approximately Maxwell's equations. Therefore, with such this simple idea, we suggest the possibility that the geometric relationship between electromagnetism and gravitation is not yet fully exhausted.
An improved model of the lightning electromagnetic field interaction with the D-region ionosphere
14 March 2012. [1] We present an improved time-domain model of the lightning electromagnetic pulse. Introduction [2] Lightning discharges produce both an electromagnetic pulse (EMP), due to the rapid lightningAn improved model of the lightning electromagnetic field interaction with the D-region ionosphere R
Electromagnetic Mass Models in General Theory of Relativity
Sumana Bhadra
2007-10-30T23:59:59.000Z
"Electromagnetic mass" where gravitational mass and other physical quantities originate from the electromagnetic field alone has a century long distinguished history. In the introductory chapter we have divided this history into three broad categories -- classical, quantum mechanical and general relativistic. Each of the categories has been described at a length to get the detailed picture of the physical background. Recent developments on Repulsive Electromagnetic Mass Models are of special interest in this introductory part of the thesis. In this context we have also stated motivation of our work. In the subsequent chapters we have presented our results and their physical significances. It is concluded that the electromagnetic mass models which are the sources of purely electromagnetic origin ``have not only heuristic flavor associated with the conjecture of Lorentz but even a physics having unconventional yet novel features characterizing their own contributions independent of the rest of the physics".
Electromagnetics-Related Aspects of Signaling and Signal Processing for UWB Short Range Radios*
Southern California, University of
Electromagnetics-Related Aspects of Signaling and Signal Processing for UWB Short Range Radios* A in electromagnetic-related aspects of UWB signaling schemas and signal processing. First, pulse shaping is developed in both the transmitter and receiver, and signal processing at the receiver end. To create efficient
Electromagnetic interactions for the two-body spectator equations
J. Adam; Franz Gross; J.W. Van Orden
1997-10-01T23:59:59.000Z
This paper presents a new non-associative algebra which is used to (1) show how the spectator (or Gross) two-body equations and electromagnetic currents can be formally derived from the Bethe-Salpeter equation and currents if both are treated to all orders, (2) obtain explicit expressions for the Gross two-body electromagnetic currents valid to any order, and (3) prove that the currents so derived are exactly gauge invariant when truncated consistently to any finite order. In addition to presenting these new results, this work complements and extends previous treatments based largely on the analysis of sums of Feynman diagrams.
Electromagnetic corrections to final state interactions in $K\\to 3?$ decays
S. R. Gevorkyan; A. V. Tarasov; O. O. Voskresenskaya
2007-02-03T23:59:59.000Z
The final state interactions of pions in decays $K^\\pm\\to\\pi^\\pm\\pi^0\\pi^0$ are considered using the methods of quantum mechanics. We show how to incorporate the electromagnetic effects in the amplitudes of these decays and to work out the relevant expressions valid above and below the two charged pions production threshold $M_c=2m$. The electromagnetic corrections are given as evaluated in a potential model.
Chaotic Emission from Electromagnetic Systems Considering Self-Interaction
Fernando Kokubun; Vilson T. Zanchin
2006-05-02T23:59:59.000Z
The emission of electromagnetic waves from a system described by the H\\'enon-Heiles potential is studied in this work. The main aim being to analyze the behavior of the system when the damping term is included explicitly into the equations of motion. Energy losses at the chaotic regime and at the regular regime are compared. The results obtained here are similar to the case of gravitational waves emission, as long we consider only the energy loss. The main difference being that in the present work the energy emitted is explicitly calculated solving the equation of motion without further approximations. It is expected that the present analysis may be useful when studying the analogous problem of dissipation in gravitational systems.
Sergio Cordero; Eduardo Nahmad-Achar; Ramón López-Peña; Octavio Castaños
2015-08-28T23:59:59.000Z
A system of $N_a$ atoms of $n$-levels interacting dipolarly with $\\ell$ modes of electromagnetic field is considered. The energy surface of the system is constructed from the direct product of the coherent states of U$(n)$ in the totally symmetric representation for the matter times the $\\ell$ coherent states of the electromagnetic field. A variational analysis shows that the collective region is divided into $\\ell$ zones, inside each of which only one mode of the electromagnetic field contributes to the ground state. In consequence, the polychromatic phase diagram for the ground state naturally divides itself into monochromatic regions. For the case of $3$-level atoms in the $\\Xi$-configuration in the presence of $2$ modes, the variational calculation is compared with the exact quantum solution showing that both are in agreement.
Nonlinear interactions of electromagnetic waves with the auroral ionosphere
Wong, Alfred Y. [Department of Physics and Astronomy, UCLA, Los Angeles, California 90024 (United States)
1999-09-20T23:59:59.000Z
The ionosphere provides us with an opportunity to perform plasma experiments in an environment with long confinement times, very large-scale lengths, and no confining walls. The auroral ionosphere with its nearly vertical magnetic field geometry is uniquely endowed with large amount of free energy from electron and ion precipitation along the magnetic field and mega-ampere current across the magnetic field. To take advantage of this giant outdoor laboratory, two facilities HAARP and HIPAS, with frequencies ranging from the radio to optical bands, are now available for active probing of and interaction with this interesting region. The ponderomotive pressures from the self-consistent wave fields have produced significant local perturbations of density and particle distributions at heights where the incident EM frequency matches a plasma resonance. This paper will review theory and experiments covering the nonlinear phenomena of parametric decay instability to wave collapse processes. At HF frequencies plasma lenses can be created by preconditioning pulses to focus what is a normally divergent beam into a high-intensity spot to further enhance nonlinear phenomena. At optical wavelengths a large rotating liquid metal mirror is used to focus laser pulses up to a given height. Such laser pulses are tuned to the same wavelengths of selected atomic and molecular resonances, with resulting large scattering cross sections. Ongoing experiments on dual-site experiments and excitation of ELF waves will be presented. The connection of such basic studies to environmental applications will be discussed. Such applications include the global communication using ELF waves, the ozone depletion and remediation and the control of atmospheric CO{sub 2} through the use of ion cyclotron resonant heating.
Hugonin, Jean-Paul; Ben-Abdallah, Philippe
2015-01-01T23:59:59.000Z
Absorption and scattering of electromagnetic waves by dielectric media are of fundamental importance in many branches of physics. In this Letter we analytically derived the ultimate upper limits for the absorbed and scattered powers by any system of optical resonators in mutual interaction. We show that these bounds depend only on the geometric configuration given an incident field. We give the conditions to fullfill to reach these limits paving so a way for a rational design of optimal metamaterials.
Interacting Scalar and Electromagnetic Fields in $f(R,\\,T)$ Theory of Gravity
Bijan Saha
2014-10-07T23:59:59.000Z
Within the scope of $f(R,\\,T)$ gravity we have studied the interacting scalar and electromagnetic fields in a Bianchi type I universe. It was found that if the study is confined to the case $f(R,\\,T) = R + \\lambda f(T)$, the system is completely given by the equations similar to Einstein gravity. Moreover, the present study imposes some severe restrictions on the field equations as well.
An eddy current problem related to electromagnetic Alfredo Bermudez, Rafael Mu~noz, Pilar Salgado
RodrÃguez, Rodolfo
An eddy current problem related to electromagnetic forming Alfredo BermÂ´udez, Rafael Mu~noz, Pilar is to analyze a numerical method to solve a transient axisymmetric eddy current problem arising from currents in the workpiece. The magnetic field, together with the eddy currents, originate the Lorentz
Gillani, S. S. A.; Shah, H. A. [Department of Physics, Government College University, Lahore 54000 (Pakistan); Tsintsadze, N. L. [Department of Physics, Government College University, Lahore 54000 (Pakistan); Salam Chair in Physics, Government College University, Lahore 54000 (Pakistan); Institute of Physics, Tbilisi 380077 (Georgia); Razzaq, M. [Department of Physics, Government College University, Lahore 54000 (Pakistan); Salam Chair in Physics, Government College University, Lahore 54000 (Pakistan)
2010-08-15T23:59:59.000Z
It is shown that the interaction of the superstrong laser radiation with an isotropic plasma leads to the generation of low frequency electromagnetic (EM) waves and in particular a quasistationary magnetic field. When the relativistic circularly polarized transverse EM wave propagates along z-axis, it creates a ponderomotive force, which affects the motion of particles along the direction of its propagation. On the other hand, motion of the particles across the direction of propagation is defined by the ponderomotive potential. The dispersion relation for the transverse EM wave using a special distribution function, which has an anisotropic form, is derived. The dispersion relation is subsequently investigated for a number of special cases. In general, it is shown that the growth rate of the EM wave strongly depends upon its intensity.
Interaction of electromagnetic pulse with commercial nuclear-power-plant systems
Ericson, D.M. Jr.; Strawe, D.F.; Sandberg, S.J.; Jones, V.K.; Rensner, G.D.; Shoup, R.W.; Hanson, R.J.; Williams, C.B.
1983-02-01T23:59:59.000Z
This study examines the interaction of the electromagnetic pulse from a high altitude nuclear burst with commercial nuclear power plant systems. The potential vulnerability of systems required for safe shutdown of a specific nuclear power plant are explored. EMP signal coupling, induced plant response and component damage thresholds are established using techniques developed over several decades under Defense Nuclear Agency sponsorship. A limited test program was conducted to verify the coupling analysis technique as applied to a nuclear power plant. The results are extended, insofar as possible, to other nuclear plants.
S. S. Bulanov; C. B. Schroeder; E. Esarey; W. P. Leemans
2013-06-05T23:59:59.000Z
The interaction of high energy electrons, positrons, and photons with intense laser pulses is studied in head-on collision geometry. It is shown that electrons and/or positrons undergo a cascade-type process involving multiple emissions of photons. These photons can consequently convert into electron-positron pairs. As a result charged particles quickly lose their energy developing an exponentially decaying energy distribution, which suppresses the emission of high energy photons, thus reducing the number of electron-positron pairs being generated. Therefore, this type of interaction suppresses the development of the electromagnetic avalanche-type discharge, i.e., the exponential growth of the number of electrons, positrons, and photons does not occur in the course of interaction. The suppression will occur when 3D effects can be neglected in the transverse particle orbits, i.e., for sufficiently broad laser pulses with intensities that are not too extreme. The final distributions of electrons, positrons, and photons are calculated for the case of a high energy e-beam interacting with a counter-streaming, short intense laser pulse. The energy loss of the e-beam, which requires a self-consistent quantum description, plays an important role in this process, as well as provides a clear experimental observable for the transition from the classical to quantum regime of interaction.
Non-Markovian master equation for a system of Fermions interacting with an electromagnetic field
Stefanescu, Eliade [Center of Advanced Studies in Physics at the Institute of Mathematics Simion Stoilow of the Romanian Academy, 13 Calea 13 Septembrie, 050711 Bucharest S5 (Romania); Institut fuer Theoretische Physik der Justus-Liebig-Universitaet, Heinrich-Buff-Ring 16, D-35392 Giessen (Germany); Academy of Romanian Scientists, 54 Splaiul Independentei, 050094 Bucharest (Romania)], E-mail: eliadestefanescu@yahoo.fr; Scheid, Werner; Sandulescu, Aurel [Center of Advanced Studies in Physics at the Institute of Mathematics Simion Stoilow of the Romanian Academy, 13 Calea 13 Septembrie, 050711 Bucharest S5 (Romania); Institut fuer Theoretische Physik der Justus-Liebig-Universitaet, Heinrich-Buff-Ring 16, D-35392 Giessen (Germany); Academy of Romanian Scientists, 54 Splaiul Independentei, 050094 Bucharest (Romania)
2008-05-15T23:59:59.000Z
For a system of charged Fermions interacting with an electromagnetic field, we derive a non-Markovian master equation in the second-order approximation of the weak dissipative coupling. A complex dissipative environment including Fermions, Bosons and the free electromagnetic field is taken into account. Besides the well-known Markovian term of Lindblad's form, that describes the decay of the system by correlated transitions of the system and environment particles, this equation includes new Markovian and non-Markovian terms proceeding from the fluctuations of the self-consistent field of the environment. These terms describe fluctuations of the energy levels, transitions among these levels stimulated by the fluctuations of the self-consistent field of the environment, and the influence of the time-evolution of the environment on the system dynamics. We derive a complementary master equation describing the environment dynamics correlated with the dynamics of the system. As an application, we obtain non-Markovian Maxwell-Bloch equations and calculate the absorption spectrum of a field propagation mode transversing an array of two-level quantum dots.
A. J. Silenko
2006-02-03T23:59:59.000Z
The Hamiltonian of relativistic particles with electric and magnetic dipole moments that interact with an electromagnetic field is determined in the Foldy-Wouthuysen representation. Transition to the semiclassical approximation is carried out. The quantum-mechanical and semiclassical equations of spin motion are derived.
Electromagnetic Radiation REFERENCE: Remote Sensing of
Gilbes, Fernando
1 CHAPTER 2: Electromagnetic Radiation Principles REFERENCE: Remote Sensing of the Environment John;2 Electromagnetic Energy Interactions Energy recorded by remote sensing systems undergoes fundamental interactions, creating convectional currents in the atmosphere. c) Electromagnetic energy in the form of electromagnetic
Electromagnetic space-time crystals. III. Dispersion relations for partial solutions
G. N. Borzdov
2014-10-21T23:59:59.000Z
Partial solutions of the Dirac equation describing an electron motion in electromagnetic crystals created by plane waves with linear and circular polarizations are treated. It is shown that the electromagnetic crystal formed by circularly polarized waves possesses the spin birefringence.
Ginzburg, N. S.; Zotova, I. V., E-mail: zotova@appl.sci-nnov.ru; Sergeev, A. S. [Russian Academy of Sciences, Institute of Applied Physics (Russian Federation)
2011-11-15T23:59:59.000Z
The self-induced transparency effects that emerge when short (on the relaxation time scale) light pulses propagate in a two-level noninverted medium are well known in optics. The interaction of microwave pulses with an initially rectilinear electron beam under cyclotron resonance conditions can serve as a classical analog of the described effects. In this case, at a certain intensity of the input signal, the cyclotron absorption is replaced by self-induced transparency when the input pulse propagates almost without any change of its profile, forming a soliton whose amplitude and duration are rigidly related to its velocity. In a certain domain of parameters, this process is accompanied by significant two- or threefold compression of the initial pulse, which is of practical interest for the generation of multigigawatt picosecond microwave pulses. Since the soliton velocity lies between the unperturbed group velocity of the radiation and the translational velocity of the particles, another nontrivial effect in the case of interaction with a counterpropagating electron beam is the possibility of a significant deceleration or full stopping of the electromagnetic pulse.
Su, Zhenpeng, E-mail: szpe@mail.ustc.edu.cn; Zhu, Hui; Zheng, Huinan [CAS Key Laboratory of Geospace Environment, Department of Geophysics and Planetary Sciences, University of Science and Technology of China, Hefei, Anhui 230026 (China); State Key Laboratory of Space Weather, Chinese Academy of Sciences, Beijing 100190 (China); Xiao, Fuliang [School of Physics and Electronic Sciences, Changsha University of Science and Technology, Changsha (China); Zhang, Min [Department of Mathematics and Physics, AnHui University of Architecture, Heifei (China); CAS Key Laboratory of Geospace Environment, Department of Geophysics and Planetary Sciences, University of Science and Technology of China, Hefei, Anhui 230026 (China); Mengcheng National Geophysical Observatory, School of Earth and Space Sciences, University of Science and Technology of China, Hefei (China); Liu, Y. C.-M.; Shen, Chao [State Key Laboratory of Space Weather, Center for Space Science and Applied Research, Chinese Academy of Sciences, Beijing 100080 (China); Wang, Yuming; Wang, Shui [CAS Key Laboratory of Geospace Environment, Department of Geophysics and Planetary Sciences, University of Science and Technology of China, Hefei, Anhui 230026 (China)
2014-05-15T23:59:59.000Z
Electromagnetic ion cyclotron (EMIC) waves can lead to the rapid decay (on a timescale of hours) of the terrestrial ring current. Such decay process is usually investigated in the framework of quasi-linear theory. Here, both theoretical analysis and test-particle simulation are performed to understand the nonlinear interaction between ring current ions and EMIC waves. In particular, the dependence of the nonlinear wave-particle interaction processes on the ion initial latitude is investigated in detail. These nonlinear processes are classified into the phase trapping and phase bunching, and the phase bunching is further divided into the channel and cluster effects. Compared to the prediction of the quasi-linear theory, the ring current decay rate can be reduced by the phase trapping, increased by the channel effect phase bunching, but non-deterministically influenced by the cluster effect phase bunching. The ion initial latitude changes the occurrence of the phase trapping, modulates the transport direction and strength of the cluster effect phase bunching, and only slightly affects the channel effect phase bunching. The current results suggest that the latitudinal dependence of these nonlinear processes should be considered in the evaluation of the ring current decay induced by EMIC waves.
Poignard, Clair
, the governments have imposed some limitations to the authorized radiated fields by the power systems. It has been a more acceptable limit to these radiated fields. On the other hand, electromagnetic fields are used is obtained by submitting locally the patient to a radiofrequency (RF) electromagnetic field. The focalization
Cédric Lorcé
2009-01-27T23:59:59.000Z
In a set of two papers, we propose to study an old-standing problem, namely the electromagnetic interaction for particles of arbitrary spin. Based on the assumption that light-cone helicity at tree level and $Q^2=0$ should be conserved non-trivially by the electromagnetic interaction, we are able to derive \\emph{all} the natural electromagnetic moments for a pointlike particle of \\emph{any} spin. In this first paper, we propose a transparent decomposition of the electromagnetic current in terms of covariant vertex functions. We also define in a general way the electromagnetic multipole form factors, and show their relation with the electromagnetic moments. Finally, by considering the Breit frame, we relate the covariant vertex functions to multipole form factors.
Proton radius, bound state QED and the nonlocality of the electromagnetic interaction
Renat Kh. Gainutdinov
2011-03-21T23:59:59.000Z
The result of a recent measurement of the size of the proton [R. Pohl et al., Nature 466, 213] performed on the base of the muonic hydrogen spectroscopy turned out to be significantly different, by five standard deviations, from the results derived from the atomic hydrogen spectroscopy. This large discrepancy could come from the calculations of the Lamb shift in atomic hydrogen and muonic hydrogen. Here we show that there is a gap in the standard bound-state QED that may be the source of the discrepancy. This gap originates in the fact that within the framework of this theory the QED corrections are described in terms of the respective Green functions. The character of the time evolution of a system which should manifest itself in the general definition of bound states as stationary states of the system cannot be described in terms of the Green functions. We present a consistent way of solving the bound-state problem in QED starting from the condition of stationarity of the bound states. Formulae for the energies and the vectors of the states of one-electron (muon) atoms derived in this way indicate that the standard bound-state QED does not obey the exact description of the atomic states and, as a result, the Lamb shift obtained in its framework should be supplemented by an additional "dynamical" energy shift. It is shown that in this shift natural nonlocality of the electromagnetic interaction that in describing the S matrix and the Green functions is hidden in the renormalization procedure manifest itself explicitly.
Crane, Randolph W.; Marts, Donna J.
1994-11-01T23:59:59.000Z
An electromagnetic fastener for manipulating objects in space uses the matic attraction of various metals. An end effector is attached to a robotic manipulating system having an electromagnet such that when current is supplied to the electromagnet, the object is drawn and affixed to the end effector, and when the current is withheld, the object is released. The object to be manipulated includes a multiplicity of ferromagnetic patches at various locations to provide multiple areas for the effector on the manipulator to become affixed to the object. The ferromagnetic patches are sized relative to the object's geometry and mass.
Crane, Randolph W. (Idaho Falls, ID); Marts, Donna J. (Idaho Falls, ID)
1994-01-01T23:59:59.000Z
An electromagnetic fastener for manipulating objects in space uses the matic attraction of various metals. An end effector is attached to a robotic manipulating system having an electromagnet such that when current is supplied to the electromagnet, the object is drawn and affixed to the end effector, and when the current is withheld, the object is released. The object to be manipulated includes a multiplicity of ferromagnetic patches at various locations to provide multiple areas for the effector on the manipulator to become affixed to the object. The ferromagnetic patches are sized relative to the object's geometry and mass.
Tokman, M. D. [Institute of Applied Physics, RAS, 46 Ulyanov Street, 603950 Nizhny Novgorod (Russian Federation)
2009-05-15T23:59:59.000Z
We discuss specific features of the electrodynamic characteristics of quantum systems within the framework of models that include a phenomenological description of the relaxation processes. As is shown by W. E. Lamb, Jr., R. R. Schlicher, and M. O. Scully [Phys. Rev. A 36, 2763 (1987)], the use of phenomenological relaxation operators, which adequately describe the attenuation of eigenvibrations of a quantum system, may lead to incorrect solutions in the presence of external electromagnetic fields determined by the vector potential for different resonance processes. This incorrectness can be eliminated by giving a gauge-invariant form to the relaxation operator. Lamb, Jr., et al. proposed the corresponding gauge-invariant modification for the Weisskopf-Wigner relaxation operator, which is introduced directly into the Schroedinger equation within the framework of the two-level approximation. In the present paper, this problem is studied for the von Neumann equation supplemented by a relaxation operator. First, we show that the solution of the equation for the density matrix with the relaxation operator correctly obtained ''from the first principles'' has properties that ensure gauge invariance for the observables. Second, we propose a common recipe for transformation of the phenomenological relaxation operator into the correct (gauge-invariant) form in the density-matrix equations for a multilevel system. Also, we discuss the methods of elimination of other inaccuracies (not related to the gauge-invariance problem) which arise if the electrodynamic response of a dissipative quantum system is calculated within the framework of simplified relaxation models (first of all, the model corresponding to constant relaxation rates of coherences in quantum transitions). Examples illustrating the correctness of the results obtained within the framework of the proposed methods in contrast to inaccuracy of the results of the standard calculation techniques are given.
Well-posedness for Systems Representing Electromagnetic/Acoustic Wavefront Interaction
interrogation.) In one such class of electromagnetic interrogation techniques, one uses a superconductive (also and applications for techniques which employ superconductive metal backings and standing acoustic waves as re are absorbing on the left (z = 0) and superconductive on the right (z = 1). We use general initial conditions
Electromagnetic properties of neutrinos
Carlo Giunti; Alexander Studenikin
2010-06-08T23:59:59.000Z
A short review on electromagnetic properties of neutrinos is presented. In spite of many efforts in the theoretical and experimental studies of neutrino electromagnetic properties, they still remain one of the main puzzles related to neutrinos.
Ericson, D.M. Jr.; Strawe, D.F.; Sandberg, S.J.; Jones, V.K.; Rensner, G.D.; Shoup, R.W.; Hanson, R.J.; Williams, C.B.
1983-02-01T23:59:59.000Z
It has been recognized for many years that the detonation of a nuclear weapon at high altitude leads to the creation of an intense electromagnetic field of very short duration, the electromagnetic pulse (EMP). The EMP from a single burst at the proper altitude could induce large currents and voltages in electrical equipment over the entire continental United States. Commercial nuclear power plants are not required to have protection against EMP. Therefore, the study has the following objectives: determine the vulnerability of systems required for safe shutdown of a specific nuclear plant to the effects of EMP; establish how any safe shutdown systems vulnerable to EMP may best be hardened against it; and characterize to the extent possible, the effects of EMP on nuclear plants in general based upon the results for systems in the example plant. The systems of concern in an example plant were identified and defined. Then, estimates were made of the currents and voltages which might exist at key points if the plant were subjected to EMP. Concurrently, component damage thresholds were estimated. These two sets of estimates were combined to assess the vulnerability of selected components. Because nuclear plants are complex, a modest experimental program was conducted to verify (or reject) conclusions reached about signal distribution and attenuation in the plant electrical systems.
Loyka, Sergey
, Boca Raton, 2006. 20-Jul-05 Chapter 3: Information Theory and Electromagnetism: Are They Related? 1(37) INFORMATION THEORY AND ELECTROMAGNETISM: ARE THEY RELATED? Sergey Loyka1 , Juan Mosig2 1 School of Information [9-14]. Electromagnetic waves are used as the primary carrier of information. The basic
Lehman, D.R.; Haberzettl, H.; Maximon, L.C.; Parke, W.C.; Bennhold, C.; Ito, Hiroshi; Pratt, R.K.; Najmeddine, M.; Rakei, A.
1994-07-01T23:59:59.000Z
In order to make it easy for the reader to see the specific research carried out and the progress made, the following report of progress is done by topic. Each item has a format layout of Topic, Investigators, Objective, Significance, and Description of Progress, followed at the end by the relevant references. As is clear from the topics listed, the emphasis of the GW nuclear theory group has been on the structure and electromagnetic interactions of few-body nuclei. Both low- and intermediate-energy electromagnetic disintegration of these nuclei is considered, including coherent photoproduction of {pi} mesons. When the excitation energy of the target nucleus is low, the aim has been to handle the continuum part of the theoretical work numerically with no approximations, that is, by means of full three- or four-body dynamics. When structure questions are the issue, numerically accurate calculations are always carried through, limited only by the underlying two-body or three-body interactions used as input. Implicit in our work is the question of how far one can go within the traditional nuclear physics framework i.e., nucleons and mesons in a nonrelativistic setting. Our central goal is to carry through state-of-the-art few-body calculations that will serve as a means of determining at what point standard nuclear physics requires introduction of relativity and/or quark degrees of freedom in order to understand the phenomena in question. So far, the problems considered were mostly concerned with low- to medium-energy regimes where little evidence was found that requires going beyond the traditional approach.
The electromagnetic spike solutions
Ernesto Nungesser; Woei Chet Lim
2013-09-28T23:59:59.000Z
The aim of this paper is to use the existing relation between polarized electromagnetic Gowdy spacetimes and vacuum Gowdy spacetimes to find explicit solutions for electromagnetic spikes by a procedure which has been developed by one of the authors for gravitational spikes. We present new inhomogeneous solutions which we call the EME and MEM electromagnetic spike solutions.
Khorashadizadeh, S. M.; Rastbood, E.; Zeinaddini Meymand, H. [Physics Department, University of Birjand, Birjand (Iran, Islamic Republic of)] [Physics Department, University of Birjand, Birjand (Iran, Islamic Republic of); Niknam, A. R. [Laser and Plasma Research Institute, Shahid Beheshti University, G.C., Tehran (Iran, Islamic Republic of)] [Laser and Plasma Research Institute, Shahid Beheshti University, G.C., Tehran (Iran, Islamic Republic of)
2013-08-15T23:59:59.000Z
The nonlinear coupling between circularly polarized electromagnetic (CPEM) waves and acoustic-like waves in a magnetoactive electron-positron-ion (e-p-i) plasma is studied, taking into account the relativistic motion of electrons and positrons. The possibility of modulational instability and its growth rate as well as the envelope soliton formation and its characteristics in such plasmas are investigated. It is found that the growth rate of modulation instability increases in the case that ?{sub c}/?<1 (?{sub c} and ? are the electron gyrofrequency and the CPEM wave frequency, respectively) and decreases in the case that ?{sub c}/?>1. It is also shown that in a magnetoactive e-p-i plasma, the width of bright soliton increases/decreases in case of (?{sub c}/?)<1/(?{sub c}/?)>1 by increasing the magnetic field strength.
Zaininger, H.W.
1984-08-01T23:59:59.000Z
A high altitude nuclear burst, detonated at a height of 50 km or more, causes two types of electromagnetic pulses (EMP) - high altitude EMP (HEMP) and magnetohydrodynamic EMP (MHD-EMP). This high altitude EMP scenario is of principal concern when assessing the effects of EMP on electric power systems, because the total United States can be simultaneously illuminated by HEMP and MHD-EMP can cover a large area of up to several hundred kilometers in diameter. The purpose of this project was first to define typical electrical power system characteristics for EMP analysis, and second, to determine reasonable worst case EMP induced surges on overhead electric power system transmission and distribution lines for reasonable assumptions, using unclassified HEMP and MHD-EMP electric field waveforms.
Tesche, F.M. [Tesche (F.M.), Dallas, TX (United States); Barnes, P.R. [Oak Ridge National Lab., TN (United States); Meliopoulos, A.P.S. [Georgia Inst. of Tech., Atlanta, GA (United States). Dept. of Electrical Engineering
1992-02-01T23:59:59.000Z
This report discusses the effects of the late-time high-altitude electromagnetic pulse (HEMP) on electrical transmission and distribution (T&D) systems. This environment, known as the magnetohydrodynamic electromagnetic pulse (MHD-EMP), is a very slowly varying electric field induced in the earth`s surface, similar to the field induced by a geomagnetic storm. It can result in the flow of a quasi-dc current in grounded power lines and in the subsequent magnetic saturation of transformers. This saturation, in turn, causes 6-Hz harmonic distortion and an increase in the reactive power required by generation facilities. This report analyzes and discusses these phenomena. The MHD-EMP environment is briefly discussed, and a simplified form of the earth-induced electric field is developed for use in a parametric study of transmission line responses. Various field coupling models are described, and calculated results for the responses of both transmission- and distribution-class power lines are presented. These calculated responses are compared with measurements of transformer operation under dc excitation to infer the MHD-EMP response of these power system components. It is found that the MHD-EMP environment would have a marked effect on a power system by inducing up to several hundreds of amperes of quasi-dc current on power lines. These currents will cause transformers to saturate which could result in excessive harmonic generation, voltage swings, and voltage suppression. The design of critical facilities which are required to operate during and after MHD-EMP events will have to be modified in order to mitigate the effects of these abnormal power system conditions.
Virtual Compass: Relative Positioning To Sense Mobile Social Interactions
Hunt, Galen
Virtual Compass: Relative Positioning To Sense Mobile Social Interactions Nilanjan Banerjee in availability and ac- curacy. Virtual Compass is a peer-based relative positioning system that relies solely movement. We have im- plemented Virtual Compass on mobile phones and laptops, and we eval- uate it using
Ewing, P.D.; Korsah, K. [Oak Ridge National Lab., TN (United States)
1994-04-01T23:59:59.000Z
This report discusses the development of the technical basis for the control of upsets and malfunctions in safety-related instrumentation and control (I&C) systems caused by electromagnetic and radio-frequency interference (EMI/RFI) and power surges. The research was performed at the Oak Ridge National Laboratory (ORNL) and was sponsored by the USNRC Office of Nuclear Regulatory Research (RES). The motivation for research stems from the safety-related issues that need to be addressed with the application of advanced I&C systems to nuclear power plants. Development of the technical basis centered around establishing good engineering practices to ensure that sufficient levels of electromagnetic compatibility (EMC) are maintained between the nuclear power plant`s electronic and electromechanical systems known to be the source(s) of EMI/RFI and power surges. First, good EMC design and installation practices need to be established to control the impact of interference sources on nearby circuits and systems. These EMC good practices include circuit layouts, terminations, filtering, grounding, bonding, shielding, and adequate physical separation. Second, an EMI/RFI test and evaluation program needs to be established to outline the tests to be performed, the associated test methods to be followed, and carefully formulated acceptance criteria based on the intended environment to ensure that the circuit or system under test meets the recommended guidelines. Third, a program needs to be developed to perform confirmatory tests and evaluate the surge withstand capability (SWC) and of I&C equipment connected to or installed in the vicinity of power circuits within the nuclear power plant. By following these three steps, the design and operability of safety-related I&C systems against EMI/RFI and power surges can be evaluated, acceptance criteria can be developed, and appropriate regulatory guidance can be provided.
Jerome Petri
2015-04-01T23:59:59.000Z
The magnetic field topology in the surrounding of neutron stars is one of the key questions in pulsar magnetospheric physics. A very extensive literature exists about the assumption of a dipolar magnetic field but very little progress has been made in attempts to include multipolar components in a self-consistent way. In this paper, we study the effect of multipolar electromagnetic fields anchored in the star. We give exact analytical solutions in closed form for any order $l$ and apply them to the retarded point quadrupole ($l=2$), hexapole ($l=3$) and octopole ($l=4$), a generalization of the retarded point dipole ($l=1$). We also compare the Poynting flux from each multipole and show that the spin down luminosity depends on the ratio $R/r_{\\rm L}$, $R$ being the neutron star radius and $r_{\\rm L}$ the light-cylinder radius. Therefore the braking index also depends on $R/r_{\\rm L}$. As such multipole fields possess very different topology, most importantly smaller length scales compared to the dipolar field, especially close to the neutron star, we investigate the deformation of the polar caps induced by these multipolar fields. Such fields could have a strong impact on the interpretation of the pulsed radio emission suspected to emanate from these polar caps as well as on the inferred geometry deduced from the high-energy light-curve fitting and on the magnetic field strength. Discrepancies between the two-pole caustic model and our new multipole-caustic model are emphasized with the quadrupole field. To this respect, we demonstrate that working with only a dipole field can be very misleading.
Mei Xiaochun
2008-04-19T23:59:59.000Z
Based on Document (1), by considering the retarded interaction of radiation fields, the third order transition probabilities of stimulated radiations and absorptions of light are calculated. The revised formulas of nonlinear polarizations are provided. The results show that that the general processes of non-linear optics violate time reversal symmetry. The phenomena of non-linear optics violating time reversal symmetry just as sum frequency, double frequency, different frequencies, double stable states, self-focusing and self-defocusing, echo phenomena, as well as optical self-transparence and self absorptions and so on are analyzed.
Self-Duality in Nonlinear Electromagnetism
Mary K. Gaillard; Bruno Zumino
1997-05-28T23:59:59.000Z
We discuss duality invariant interactions between electromagnetic fields and matter. The case of scalar fields is treated in some detail.
Aldridge, David F.
2014-11-01T23:59:59.000Z
A reciprocity theorem is an explicit mathematical relationship between two different wavefields that can exist within the same space - time configuration. Reciprocity theorems provi de the theoretical underpinning for mod ern full waveform inversion solutions, and also suggest practical strategies for speed ing up large - scale numerical modeling of geophysical datasets . In the present work, several previously - developed electromagnetic r eciprocity theorems are generalized to accommodate a broader range of medi um, source , and receiver types. Reciprocity relations enabling the interchange of various types of point sources and point receivers within a three - dimensional electromagnetic model are derived. Two numerical modeling algorithms in current use are successfully tested for adherence to reciprocity. Finally, the reciprocity theorem forms the point of departure for a lengthy derivation of electromagnetic Frechet derivatives. These mathe matical objects quantify the sensitivity of geophysical electromagnetic data to variatio ns in medium parameters, and thus constitute indispensable tools for solution of the full waveform inverse problem. ACKNOWLEDGEMENTS Sandia National Labor atories is a multi - program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE - AC04 - 94AL85000. Signif icant portions of the work reported herein were conducted under a Cooperative Research and Development Agreement (CRADA) between Sandia National Laboratories (SNL) and CARBO Ceramics Incorporated. The author acknowledges Mr. Chad Cannan and Mr. Terry Pa lisch of CARBO Ceramics, and Ms. Amy Halloran, manager of SNL's Geophysics and Atmospheric Sciences Department, for their interest in and encouragement of this work. Special thanks are due to Dr . Lewis C. Bartel ( recently retired from Sandia National Labo ratories and now a geophysical consultant ) and Dr. Chester J. Weiss (recently rejoined with Sandia National Laboratories) for many stimulating (and reciprocal!) discussions regar ding the topic at hand.
Borisov, A. V.; Kerimov, B. K.; Sizin, P. E., E-mail: borisov@phys.msu.ru [Moscow State University (Russian Federation)
2012-11-15T23:59:59.000Z
Expressions for the power of neutrino radiation from a degenerate electron gas in a strong magnetic field are derived for the case of neutrino-pair photoproduction via the weak and electromagnetic interaction mechanisms (it is assumed that the neutrino possesses electromagnetic form factors). It is shown that the neutrino luminosity of a medium in the electromagnetic reaction channel may exceed substantially the luminosity in the weak channel. Relative upper bounds on the effective neutrino magnetic moment are obtained.
Electromagnetic neutrinos in terrestrial experiments and astrophysics
Carlo Giunti; Konstantin A. Kouzakov; Yu-Feng Li; Alexey V. Lokhov; Alexander I. Studenikin; Shun Zhou
2015-06-17T23:59:59.000Z
An overview of neutrino electromagnetic properties, which open a door to the new physics beyond the Standard Model, is given. The effects of neutrino electromagnetic interactions both in terrestrial experiments and in astrophysical environments are discussed. The experimental bounds on neutrino electromagnetic characteristics are summarized. Future astrophysical probes of electromagnetic neutrinos are outlined.
Zhukov, Alexander V., E-mail: alex-zhukov@sutd.edu.sg; Bouffanais, Roland [Singapore University of Technology and Design, 20 Dover Drive, Singapore 138682 (Singapore); Fedorov, E. G. [Volgograd State University of Architecture and Civil Engineering, 400074 Volgograd (Russian Federation); Belonenko, Mikhail B. [Laboratory of Nanotechnology, Volgograd Institute of Business, 400048 Volgograd (Russian Federation)
2014-05-28T23:59:59.000Z
Propagation of ultrashort laser pulses through various nano-objects has recently became an attractive topic for both theoretical and experimental studies due to its promising perspectives in a variety of problems of modern nanoelectronics. Here, we study the propagation of extremely short two-dimensional bipolar electromagnetic pulses in a heterogeneous array of semiconductor carbon nanotubes. Heterogeneity is defined as a region of enhanced electron density. The electromagnetic field in an array of nanotubes is described by Maxwell's equations, reduced to a multidimensional wave equation. Our numerical analysis shows the possibility of stable propagation of an electromagnetic pulse in a heterogeneous array of nanotubes. Furthermore, we establish that, depending on its speed of propagation, the pulse can pass through the area of increased electron concentration or be reflected therefrom.
Electromagnetic Theory 1 /56 Electromagnetic Theory
Bicknell, Geoff
Electromagnetic Theory 1 /56 Electromagnetic Theory Summary: · Maxwell's equations · EM Potentials · Equations of motion of particles in electromagnetic fields · Green's functions · Lienard-Weichert potentials · Spectral distribution of electromagnetic energy from an arbitrarily moving charge #12;Electromagnetic
Electromagnetic Radiations as a Fluid Flow
Daniele Funaro
2009-11-25T23:59:59.000Z
We combine Maxwell's equations with Eulers's equation, related to a velocity field of an immaterial fluid, where the density of mass is replaced by a charge density. We come out with a differential system able to describe a relevant quantity of electromagnetic phenomena, ranging from classical dipole waves to solitary wave-packets with compact support. The clue is the construction of an energy tensor summing up both the electromagnetic stress and a suitable mass tensor. With this right-hand side, explicit solutions of the full Einstein's equation are computed for a wide class of wave phenomena. Since our electromagnetic waves may behave and interact exactly as a material fluid, they can create vortex structures. We then explicitly analyze some vortex ring configurations and examine the possibility to build a model for the electron.
Massless Dirac Fermions in Electromagnetic Field
Ahmed Jellal; Abderrahim El Mouhafid; Mohammed Daoud
2012-02-12T23:59:59.000Z
We study the relations between massless Dirac fermions in an electromagnetic field and atoms in quantum optics. After getting the solutions of the energy spectrum, we show that it is possible to reproduce the 2D Dirac Hamiltonian, with all its quantum relativistic effects, in a controllable system as a single trapped ion through the Jaynes--Cummings and anti-Jaynes--Cummings models. Also we show that under certain conditions the evolution of the Dirac Hamiltonian provides us with Rashba spin-orbit and linear Dresselhaus couplings. Considering the multimode multiphoton Jaynes-Cummings model interacting with N modes of electromagnetic field prepared in general pure quantum states, we analyze the Rabi oscillation. Evaluating time evolution of the Dirac position operator, we determine the Zitterbewegung frequency and the corresponding oscillating term as function of the electromagnetic field.
Midcontinent Interactive Digital Carbon Atlas and Relational Database (MIDCARB)
Timothy R. Carr; Scott W. White
2002-06-01T23:59:59.000Z
This annual report describes progress of the project entitled ''Midcontinent Interactive Digital Carbon Atlas and Relational Database (MIDCARB)''. This project, funded by the Department of Energy, is a cooperative project that assembles a consortium of five states (Indiana, Illinois, Kansas, Kentucky and Ohio) to construct an online distributed Relational Database Management System (RDBMS) and Geographic Information System (GIS) covering aspects of carbon dioxide geologic sequestration (http://www.midcarb.org). The system links the five states in the consortium into a coordinated regional database system consisting of datasets useful to industry, regulators and the public. The project is working to provide advanced distributed computing solutions to link database servers across the five states into a single system where data is maintained at the local level but is accessed through a single Web portal and can be queried, assembled, analyzed and displayed. Each individual state has strengths in data gathering, data manipulation and data display, including GIS mapping, custom application development, web development, and database design. Sharing of expertise provides the critical mass of technical expertise to improve CO{sub 2} databases and data access in all states. This project improves the flow of data across servers in the five states and increases the amount and quality of available digital data. The MIDCARB project is developing improved online tools to provide real-time display and analyze CO{sub 2} sequestration data. The system links together data from sources, sinks and transportation within a spatial database that can be queried online. Visualization of high quality and current data can assist decision makers by providing access to common sets of high quality data in a consistent manner.
MIDCONTINENT INTERACTIVE DIGITAL CARBON ATLAS AND RELATIONAL DATABASE (MIDCARB)
Timothy R. Carr; Scott W. White
2003-07-01T23:59:59.000Z
This annual report describes progress in the second year of the three-year project entitled ''Midcontinent Interactive Digital Carbon Atlas and Relational Database (MIDCARB)''. This project, funded by the Department of Energy, is a cooperative project that assembles a consortium of five states (Indiana, Illinois, Kansas, Kentucky and Ohio) to construct an online distributed Relational Database Management System (RDBMS) and Geographic Information System (GIS) covering aspects of carbon dioxide geologic sequestration (http://www.midcarb.org). The system links the five states in the consortium into a coordinated regional database system consisting of datasets useful to industry, regulators and the public. The project is providing advanced distributed computing solutions to link database servers across the five states into a single system where data is maintained at the local level but is accessed through a single Web portal and can be queried, assembled, analyzed and displayed. Each individual state has strengths in data gathering, data manipulation and data display, including GIS mapping, custom application development, web development, and database design. Sharing of expertise provides the critical mass of technical expertise to improve CO{sub 2} databases and data access in all states. This project improves the flow of data across servers in the five states and increases the amount and quality of available digital data. Data is being assembled to analyze CO{sub 2} sequestration potential from a single object (e.g., power plant or well) to a region and across geographic boundaries. The MIDCARB system is robust and capable of being updated from multiple sources on a daily basis. The MIDCARB project has developed improved online tools to provide real-time display and analysis of CO{sub 2} sequestration data. The MIDCARB project is a functional template for distributed data systems to address CO{sub 2} sequestration and other natural resource issues that cross the boundaries between institutions and geographic areas. The system links together data from sources, sinks and transportation within a spatial database that can be queried online. Visualization of high quality and current data can assist decision makers by providing access to common sets of high quality data in a consistent manner.
Coherent hybrid electromagnetic field imaging
Cooke, Bradly J. (Jemez Springs, NM); Guenther, David C. (Los Alamos, NM)
2008-08-26T23:59:59.000Z
An apparatus and corresponding method for coherent hybrid electromagnetic field imaging of a target, where an energy source is used to generate a propagating electromagnetic beam, an electromagnetic beam splitting means to split the beam into two or more coherently matched beams of about equal amplitude, and where the spatial and temporal self-coherence between each two or more coherently matched beams is preserved. Two or more differential modulation means are employed to modulate each two or more coherently matched beams with a time-varying polarization, frequency, phase, and amplitude signal. An electromagnetic beam combining means is used to coherently combine said two or more coherently matched beams into a coherent electromagnetic beam. One or more electromagnetic beam controlling means are used for collimating, guiding, or focusing the coherent electromagnetic beam. One or more apertures are used for transmitting and receiving the coherent electromagnetic beam to and from the target. A receiver is used that is capable of square-law detection of the coherent electromagnetic beam. A waveform generator is used that is capable of generation and control of time-varying polarization, frequency, phase, or amplitude modulation waveforms and sequences. A means of synchronizing time varying waveform is used between the energy source and the receiver. Finally, a means of displaying the images created by the interaction of the coherent electromagnetic beam with target is employed.
Electromagnetic formation flight dipole solution planning
Schweighart, Samuel A. (Samuel Adam), 1977-
2005-01-01T23:59:59.000Z
Electromagnetic Formation Flight (EMFF) describes the concept of using electromagnets (coupled with reaction wheels) to provide all of the necessary forces and torques needed to maintain a satellite's relative position and ...
Network of Spaces and Interaction-Related Behaviors in Adult Intensive Care Units
Rashid, Mahbub; Boyle, Diane K.; Crosser, Michael
2014-12-01T23:59:59.000Z
Using three spatial network measures of “space syntax”, this correlational study describes four interaction-related behaviors among three groups of users in relation to visibility and accessibility of spaces in four adult intensive care units (ICUs...
Electromagnetic neutrino: a short review
Alexander I. Studenikin
2014-11-09T23:59:59.000Z
A short review on selected issues related to the problem of neutrino electromagnetic properties is given. After a flash look at the theoretical basis of neutrino electromagnetic form factors, constraints on neutrino magnetic moments and electric millicharge from terrestrial experiments and astrophysical observations are discussed. We also focus on some recent studies of the problem and on perspectives.
M. Novello; F. T. Falciano; E. Goulart
2011-11-08T23:59:59.000Z
We show that Maxwell's electromagnetism can be mapped into the Born-Infeld theory in a curved space-time, which depends only on the electromagnetic field in a specific way. This map is valid for any value of the two lorentz invariants $F$ and $G$ confirming that we have included all possible solutions of Maxwell's equations. Our result seems to show that specifying the dynamics and the space-time structure of a given theory can be viewed merely as a choice of representation to describe the physical system.
Electromagnetic effects on geodesic acoustic modes
Bashir, M. F., E-mail: frazbashir@yahoo.com [Salam Chair in Physics, G. C. University Lahore, Katchery Road, Lahore 54000 (Pakistan); Department of Physics, G. C. University Lahore, Katchery Road, Lahore 54000 (Pakistan); Smolyakov, A. I. [University of Saskatchewan, 116 Science Place, Saskatoon S7N 5E2 (Canada); Institute of Tokamak Physics, NRC “Kurchatov Institute,” 123182 Moscow (Russian Federation); Elfimov, A. G. [Institute of Physics, University of São Paulo, São Paulo 05508-090 (Brazil); Melnikov, A. V. [Institute of Tokamak Physics, NRC “Kurchatov Institute,” 123182 Moscow (Russian Federation); National Research Nuclear University MEPhI, 115409, Moscow (Russian Federation); Murtaza, G. [Visiting Professor, Department of Physics, Quaid-e-Azam University, Islamabad (Pakistan)
2014-08-15T23:59:59.000Z
By using the full electromagnetic drift kinetic equations for electrons and ions, the general dispersion relation for geodesic acoustic modes (GAMs) is derived incorporating the electromagnetic effects. It is shown that m?=?1 harmonic of the GAM mode has a finite electromagnetic component. The electromagnetic corrections appear for finite values of the radial wave numbers and modify the GAM frequency. The effects of plasma pressure ?{sub e}, the safety factor q, and the temperature ratio ? on GAM dispersion are analyzed.
McDonald, Kirk
than the retarded forms of the Coulomb and the BiotSavart laws. Of course, it was Maxwell who first of the Coulomb and BiotSavart laws as their leading terms, but their relation to radiation is not as manifest greater emphasis to the radiation fields. This article presents a derivation of the various expressions
Multipole radiation in a collisonless gas coupled to electromagnetism or scalar gravitation
Sebastian Bauer; Markus Kunze; Gerhard Rein; Alan D. Rendall
2005-08-29T23:59:59.000Z
We consider the relativistic Vlasov-Maxwell and Vlasov-Nordstr\\"om systems which describe large particle ensembles interacting by either electromagnetic fields or a relativistic scalar gravity model. For both systems we derive a radiation formula analogous to the Einstein quadrupole formula in general relativity.
Electromagnetically Induced Entanglement
Xihua Yang; Min Xiao
2015-05-18T23:59:59.000Z
We present a novel quantum phenomenon named electromagnetically induced entanglement in the conventional Lambda-type three-level atomic system driven by a strong pump field and a relatively weak probe field. Nearly perfect entanglement between the pump and probe fields can be achieved with a low coherence decay rate between the two lower levels, high pump-field intensity, and large optical depth of the atomic ensemble. The physical origin is quantum coherence between the lower doublet produced by the pump and probe fields, similar to the well-known electromagnetically induced transparency. This method would greatly facilitate the generation of nondegenerate narrow-band continuous-variable entanglement between bright light beams by using only coherent laser fields, and may find potential and broad applications in realistic quantum information processing.
Colonel Blotto On Facebook: The Effect of Social Relations On Strategic Interaction
Kohli, Pushmeet
Colonel Blotto On Facebook: The Effect of Social Relations On Strategic Interaction Pushmeet Kohli Of Pennsylvania Philadelphia, USA mkearns@cis.upenn.edu Ralf Herbrich Facebook Mountain View, USA ralf. We report the deployment of a Facebook application called "Project Waterloo" which allows users
Steven Weinberg, Weak Interactions, and Electromagnetic Interactions
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:5(Million Cubic Feet) Oregon (Including Vehicle Fuel) (MillionStructural Basis of Wnt Recognition by Frizzled SSRLDr.Arakawa and Jung (2003)Steven
Scattering of an ultrashort electromagnetic radiation pulse by an atom in a broad spectral range
Astapenko, V. A., E-mail: astval@mail.ru [Moscow Institute of Physics and Technology (Russian Federation)
2011-02-15T23:59:59.000Z
The scattering of an ultrashort electromagnetic pulse by atomic particles is described using a consistent quantum-mechanical approach taking into account excitation of a target and nondipole electromagnetic interaction, which is valid in a broad spectral range. This approach is applied to the scattering of single- and few-cycle pulses by a multielectron atom and a hydrogen atom. Scattering spectra are obtained for ultrashort pulses of different durations. The relative contribution of 'elastic' scattering of a single-cycle pulse by a hydrogen atom is studied in the high-frequency limit as a function of the carrier frequency and scattering angle.
Electromagnetic field with induced massive term: Case with scalar field
Yu. P. Rybakov; G. N. Shikin; Yu. A. Popov; Bijan Saha
2010-04-21T23:59:59.000Z
We consider an interacting system of massless scalar and electromagnetic field, with the Lagrangian explicitly depending on the electromagnetic potentials, i.e., interaction with broken gauge invariance. The Lagrangian for interaction is chosen in such a way that the electromagnetic field equation acquires an additional term, which in some cases is proportional to the vector potential of the electromagnetic field. This equation can be interpreted as the equation of motion of photon with induced nonzero rest-mass. This system of interacting fields is considered within the scope of Bianchi type-I (BI) cosmological model. It is shown that, as a result of interaction the electromagnetic field vanishes at $t \\to \\infty$ and the isotropization process of the expansion takes place.
Electromagnetic field with induced massive term: Case with spinor field
Yu. P. Rybakov; G. N. Shikin; Yu. A. Popov; Bijan Saha
2010-08-12T23:59:59.000Z
We consider an interacting system of spinor and electromagnetic field, explicitly depending on the electromagnetic potentials, i.e., interaction with broken gauge invariance. The Lagrangian for interaction is chosen in such a way that the electromagnetic field equation acquires an additional term, which in some cases is proportional to the vector potential of the electromagnetic field. This equation can be interpreted as the equation of motion of photon with induced non-trivial rest-mass. This system of interacting spinor and scalar fields is considered within the scope of Bianchi type-I (BI) cosmological model. It is shown that, as a result of interaction the electromagnetic field vanishes at $t \\to \\infty$ and the isotropization process of the expansion takes place.
Investigation of electromagnetic welding
Pressl, Daniel G. (Daniel Gerd)
2009-01-01T23:59:59.000Z
We propose several methodologies to study and optimize the electromagnetic process for Electromagnetic Forming (EMF) and Welding (EMW), thereby lowering the necessary process energy up to a factor of three and lengthening ...
Objects of maximum electromagnetic chirality
Fernandez-Corbaton, Ivan
2015-01-01T23:59:59.000Z
We introduce a definition of the electromagnetic chirality of an object and show that it has an upper bound. The upper bound is attained if and only if the object is transparent for fields of one handedness (helicity). Additionally, electromagnetic duality symmetry, i.e. helicity preservation upon scattering, turns out to be a necessary condition for reciprocal scatterers to attain the upper bound. We use these results to provide requirements for the design of such extremal scatterers. The requirements can be formulated as constraints on the polarizability tensors for dipolar scatterers or as material constitutive relations. We also outline two applications for objects of maximum electromagnetic chirality: A twofold resonantly enhanced and background free circular dichroism measurement setup, and angle independent helicity filtering glasses.
Alternative expression for the electromagnetic Lagrangian
Saldanha, Pablo L
2015-01-01T23:59:59.000Z
We propose an alternative expression for the Lagrangian density that governs the interaction of a charged particle with external electromagnetic fields. The proposed Lagrangian is written in terms of the local superposition of the particle fields with the applied electromagnetic fields, not in terms of the particle charge and of the electromagnetic potentials as is usual. The total Lagrangian for a set of charged particles assumes a simple elegant form with the alternative formulation, giving an aesthetic support for it. The proposed Lagrangian is equivalent to the traditional one in their domain of validity and provides an interesting description of the Aharonov-Bohm effect.
Electromagnetic Abdulaziz Hanif
Masoudi, Husain M.
Electromagnetic Propulsion Abdulaziz Hanif Electrical Engineering Department King Fahd University of spacecraft, which would be jolted through space by electromagnets, could take us farther than any of these other methods. When cooled to extremely low temperatures, electromagnets demonstrate an unusual behavior
Electromagnetic Measurements at RHIC
Hamagaki, Hideki
Electromagnetic Measurements at RHIC Hideki Hamagaki Center for Nuclear Study Graduate School of Science the University of Tokyo #12;2006/06/29 "Electromagnetic measurements at RHIC"@ATHIC 2006 Hideki;2006/06/29 "Electromagnetic measurements at RHIC"@ATHIC 2006 Hideki Hamagaki 3 Prologue scope of EM measurements · EM
Electromagnetic Wave Dynamics in
Kaiser, Robin
Mesoscopic Electromagnetic Wave Dynamics in Ultracold Atomic Gases Robin Kaiser and Mark D. Havey Mesoscopic Electromagnetic Wave Dynamics in Ultracold Atomic Gases #12;39 E xperimental developments permit in the transport proper- ties of electromagnetic radiation in strongly scattering random media. Even in weakly
Electromagnetic Measurements at RHIC
Hamagaki, Hideki
Electromagnetic Measurements at RHIC Hideki Hamagaki Center for Nuclear Study University of Tokyo #12;2/10/2005 "Electromagnetic measurements at RHIC"@ICPAQGP 05 Hideki Hamagaki 2 Prologue · EM probe and where they are produced; #12;2/10/2005 "Electromagnetic measurements at RHIC"@ICPAQGP 05 Hideki Hamagaki
Nam, Chang Woo
2010-01-14T23:59:59.000Z
The purpose of this study was to investigate the relative effectiveness of positive interdependence and group processing on student achievement, interaction, and attitude in online cooperative learning. All of the participants, ...
Counting energy packets in the electromagnetic wave
Stefan Popescu; Bernhard Rothenstein
2007-05-18T23:59:59.000Z
We discuss the concept of energy packets in respect to the energy transported by electromagnetic waves and we demonstrate that this physical quantity can be used in physical problems involving relativistic effects. This refined concept provides results compatible to those obtained by simpler definition of energy density when relativistic effects apply to the free electromagnetic waves. We found this concept further compatible to quantum theory perceptions and we show how it could be used to conciliate between different physical approaches including the classical electromagnetic wave theory, the special relativity and the quantum theories.
8.07 Electromagnetism II, Fall 2002
Zwiebach, Barton
Survey of basic electromagnetic phenomena: electrostatics, magnetostatics; electromagnetic properties of matter. Time-dependent electromagnetic fields and Maxwell's equations. Electromagnetic waves, emission, absorption, ...
Particle Acceleration by a Short-Intense Elliptically Polarized Electromagnetic
Paris-Sud XI, Université de
Particle Acceleration by a Short-Intense Elliptically Polarized Electromagnetic Pulse Propagating to plasma physics and particle accelerators. The interaction physics of fields with particles has also been, Colchester CO4 3SQ, U.K. Abstract. The motion of a charged particle driven by an electromagnetic pulse
Breit-Wheeler process in very short electromagnetic pulses
A. I. Titov; B. Kampfer; H. Takabe; A. Hosaka
2013-03-26T23:59:59.000Z
The generalized Breit-Wheeler process, i.e. the emission of $e^+e^-$ pairs off a probe photon propagating through a polarized short-pulsed electromagnetic (e.g.\\ laser) wave field, is analyzed. We show that the production probability is determined by the interplay of two dynamical effects. The first one is related to the shape and duration of the pulse and the second one is the non-linear dynamics of the interaction of $e^\\pm$ with the strong electromagnetic field. The first effect manifests itself most clearly in the weak-field regime, where the small field intensity is compensated by the rapid variation of the electromagnetic field in a limited space-time region, which intensifies the few-photon events and can enhance the production probability by orders of magnitude compared to an infinitely long pulse. Therefore, short pulses may be considered as a powerful amplifier. The non-linear dynamics in the multi-photon Breit-Wheeler regime plays a decisive role at large field intensities, where effects of the pulse shape and duration are less important. In the transition regime, both effects must be taken into account simultaneously. We provide suitable expressions for the $e^+e^-$ production probability for kinematic regions which can be used in transport codes.
NISTHB 150-11 NVLAP Electromagnetic Compatibility and Telecommunications Bethany Hackett Bradley. #12;NISTHB 150-11 NVLAP Electromagnetic Compatibility and Telecommunications Bethany Hackett Bradley Programs Dennis Camell Electromagnetics Division Physical Measurement Laboratory http://dx.doi.org/10
Tunability enhanced electromagnetic wiggler
Schlueter, Ross D. (Albany, CA); Deis, Gary A. (Livermore, CA)
1992-01-01T23:59:59.000Z
The invention discloses a wiggler used in synchrotron radiation sources and free electron lasers, where each pole is surrounded by at least two electromagnetic coils. The electromagnetic coils are energized with different amounts of current to provide a wide tunable range of the on-axis magnetic flux density, while preventing magnetic saturation of the poles.
Electromagnetic Composites at the Compton Scale
Frederick J. Mayer; John R. Reitz
2011-09-10T23:59:59.000Z
A new class of electromagnetic composite particles is proposed. The composites are very small (the Compton scale), potentially long-lived, would have unique interactions with atomic and nuclear systems, and, if they exist, could explain a number of otherwise anomalous and conflicting observations in diverse research areas.
The classical geometrization of the electromagnetism
Celso de Araujo Duarte
2015-08-13T23:59:59.000Z
Following the line of the history, if by one side the electromagnetic theory was consolidated on the 19th century, the emergence of the special and the general relativity theories on the 20th century opened possibilities of further developments, with the search for the unification of the gravitation and the electromagnetism on a single unified theory. Some attempts to the geometrization of the electromagnetism emerged in this context, where these first models resided strictly on a classical basis. Posteriorly, they were followed by more complete and embracing quantum field theories. The present work reconsiders the classical viewpoint, with the purpose of showing that at first order of approximation the electromagnetism constitutes a geometric structure aside other phenomena as gravitation, and that magnetic monopoles do not exist at least up to this order of approximation. Even though being limited, the model is consistent and offers the possibility of an experimental test of validity.
Spherically symmetric electromagnetic mass models of embedding class one
S. K. Maurya; Y. K. Gupta; Saibal Ray; Sourav Roy Chowdhury
2015-05-30T23:59:59.000Z
In this article we consider the static spherically symmetric spacetime metric of embedding class one. Specifically three new electromagnetic mass models are derived where the solutions are entirely dependent on the electromagnetic field, such that the physical parameters, like density, pressure etc. do vanish for the vanishing charge. We have analyzed schematically all these three sets of solutions related to electromagnetic mass models by plotting graphs and shown that they can pass through all the physical tests performed by us. To validate these special type of solutions related to electromagnetic mass models a comparison has been done with that of compact stars and shown exclusively the feasibility of the models.
L. Neslusan
2010-12-28T23:59:59.000Z
Considering two static, electrically charged, elementary particles, we demonstrate a possible way of proving that all known fundamental forces in the nature are the manifestations of the single, unique interaction. We re-define the gauging of integration constants in the Schwarzschild solution of Einstein field equations. We consider the potential energy in this context regardless it is gravitational or electric potential energy. With the newly gauged constants, we sketch how the unique interaction can be described with the help of an appropriate solution of the well-known Maxwell equations. According the solution, there are two zones, in the system of two oppositely charged particles, where the force is oscillating. The first particle can be in a stable, constant distance from the second particle, between the neighbouring regions of repulsion and attraction. In an outer oscillation zone, the corresponding energy levels in the proton-electron systems are identical (on the level of accuracy of values calculated by the Dirac's equations) to some experimentally determined levels in the hydrogen atom. For each system of two particles, there is also the zone with the macroscopic, i.e. monotonous behavior of the force. As well, the solution can be used to demonstrate that the net force between two assemblies consisting each (or at least one) of the same numbers of both positively and negatively charged particles is never zero. A secondary electric force, having the same orientation as the primary electric force between the oppositely charged particles, is always present. It can be identified to the gravity. Finally, the solution of the Maxwell equations can be used to calculate the inertia force of a particle. The consistent formulas for both acting and inertia forces enable to construct the dimensionless (without gravitational constant, permitivity of vacuum, etc.) equation of motion.
Purely electromagnetic spacetimes
B. V. Ivanov
2007-12-15T23:59:59.000Z
Electrovacuum solutions devoid of usual mass sources are classified in the case of one, two and three commuting Killing vectors. Three branches of solutions exist. Electromagnetically induced mass terms appear in some of them.
Jones, D E; Pittman, T B
2015-01-01T23:59:59.000Z
We demonstrate ladder-type electromagnetically induced transparency (EIT) using an optical nanofiber suspended in a warm rubidium vapor. The signal and control fields are both guided along the nanofiber, which enables strong nonlinear interactions with the surrounding atoms at relatively low powers. Transit-time broadening is found to be a significant EIT decoherence mechanism in this tightly-confined waveguiding geometry. Nonetheless, we observe significant EIT and controlled polarization rotation using control-field powers of only a few microWatts in this relatively robust warm-atom nanofiber system.
Interaction of gravitational waves with matter
A. Cetoli; C. J. Pethick
2011-10-03T23:59:59.000Z
We develop a unified formalism for describing the interaction of gravitational waves with matter that clearly separates the effects of general relativity from those due to interactions in the matter. Using it, we derive a general expression for the dispersion of gravitational waves in matter in terms of correlation functions for the matter in flat spacetime. The self energy of a gravitational wave is shown to have contributions analogous to the paramagnetic and diamagnetic contributions to the self energy of an electromagnetic wave. We apply the formalism to some simple systems - free particles, an interacting scalar field, and a fermionic superfluid.
DETECTING CANCER-RELATED GENES AND GENE-GENE INTERACTIONS BY MACHINE LEARNING METHODS
Han, Bing
2011-12-31T23:59:59.000Z
to use two Bayesian Network based methods: DASSO-MB (Detection of ASSOciations using Markov Blanket) and EpiBN (Epistatic interaction detection using Bayesian Network model) to address the two critical challenges: searching and scoring. DASSO-MB is based...
Bioelectromagnetic effects of the electromagnetic pulse (EMP)
Patrick, E.L.; Vault, W.L.
1990-03-01T23:59:59.000Z
The public has expressed concern about the biological effects and hazards of non-ionizing electromagnetic fields produced by the electro-magnetic pulse (EMP) simulators that simulate the EMP emanating from a high-altitude nuclear explosion. This paper provides a summary of the bioelectromagnetic effects literature up through the present, describes current occupational standards for workers exposed to the EMP environment, and discusses the use of medical surveillance as it relates to the potential human health hazards associated with exposure to the EMP environment.
Complex geometry and pre-metric electromagnetism
D. H. Delphenich
2004-12-10T23:59:59.000Z
The intimate link between complex geometry and the problem of the pre-metric formulation of electromagnetism is explored. In particular, the relationship between 3+1 decompositions of R4 and the decompositions of the vector space of bivectors over R4 into real and imaginary subspaces relative to a choice of complex structure is emphasized. The role of the various scalar products on the space of bivectors that are defined in terms of a volume element on R4 and a complex structure on the space of bivectors that makes it C-linear isomorphic to C3 is discussed in the context of formulation of a theory of electromagnetism in which the Lorentzian metric on spacetime follows as a consequence of the existence of electromagnetic waves, not a prior assumption.
Electromagnetically Induced Flows Michiel de Reus
Vuik, Kees
Electromagnetically Induced Flows in Water Michiel de Reus 8 maart 2013 () Electromagnetically Conclusion and future research () Electromagnetically Induced Flows 2 / 56 #12;1 Introduction 2 Maxwell Navier Stokes equations 5 Simulations 6 Conclusion and future research () Electromagnetically Induced
8.07 Electromagnetism II, Fall 2005
Bertschinger, Edmund
This course is the second in a series on Electromagnetism beginning with Electromagnetism I (8.02 or 8.022). It is a survey of basic electromagnetic phenomena: electrostatics; magnetostatics; electromagnetic properties of ...
Electromagnetic radiation from relativistic nuclear collisions
Charles Gale; Kevin L. Haglin
2003-06-16T23:59:59.000Z
We review some of the results obtained in the study of the production of electromagnetic radiation in relativistic nuclear collisions. We concentrate on the emission of real photons and dileptons from the hot and dense strongly interacting phases of the reaction. We examine the contributions from the partonic sector, as well as those from the nonperturbative hadronic sector. We examine the current data, some of the predictions for future measurements, and comment on what has been learnt so far.
Electromagnetism and Gravitation
Kenneth Dalton
1997-03-10T23:59:59.000Z
The classical concept of "mass density" is not fundamental to the quantum theory of matter. Therefore, mass density cannot be the source of gravitation. Here, we treat electromagnetic energy, momentum, and stress as its source. The resulting theory predicts that the gravitational potential near any charged elementary particle is many orders of magnitude greater than the Newtonian value.
Electromagnetic pulsar spindown
I. Contopoulos
2007-01-10T23:59:59.000Z
We evaluate the result of the recent pioneering numerical simulations in Spitkovsky~2006 on the spindown of an oblique relativistic magnetic dipole rotator. Our discussion is based on our experience from two idealized cases, that of an aligned dipole rotator, and that of an oblique split-monopole rotator. We conclude that the issue of electromagnetic pulsar spindown may not have been resolved yet.
Electromagnetic Interrogation Techniques Damage Detection
Electromagnetic Interrogation Techniques for Damage Detection H. T. Banks #3; and M. L. Joyner Wincheski and W.P. Winfree Nasa Langley Research Center Hampton, VA #3; Plenary Lecture, Electromagnetic Nondestructive Evaluation 2001 (ENDE 2001), Kobe, Japan, May 1819, 20001 #12; Electromagnetic Interrogation
Electromagnetic structure of light nuclei
Saori Pastore
2015-08-28T23:59:59.000Z
The present understanding of nuclear electromagnetic properties including electromagnetic moments, form factors and transitions in nuclei with A $\\le$ 10 is reviewed. Emphasis is on calculations based on nuclear Hamiltonians that include two- and three-nucleon realistic potentials, along with one- and two-body electromagnetic currents derived from a chiral effective field theory with pions and nucleons.
Electromagnetic Interrogation Techniques Damage Detection
Electromagnetic Interrogation Techniques for Damage Detection H. T. Banks and M. L. Joyner Center.P. Winfree Nasa Langley Research Center Hampton, VA Plenary Lecture, Electromagnetic Nondestructive Evaluation 2001 (ENDE 2001), Kobe, Japan, May 18-19, 20001 #12;Electromagnetic Interrogation Techniques
DEF: The Physical Basis of Electromagnetic Propulsion
Pinheiro, Mario J
2015-01-01T23:59:59.000Z
The very existence of the physical vacuum provides a framework to propose a general mechanism for propelling bodies through an agency of electromagnetic fields, that seat in that medium. When two sub-systems of a general closed device interact via nonlocal and retarded electromagnetic pulses, it is easily shown that they give a nonzero force, and that only tend to comply with the action-to-reaction force in the limit of instantaneous interactions. The arrangement of sub-systems provide a handy way to optimize the unbalanced EM force with the concept of impedance matching. The general properties of the differential electromagnetic force (DEF) are the following: i) it is proportional to the square of the intensity and to the angular wave frequency $\\omega$; ii) to the space between the sub-systems (although in a non-linear manner); iii) it is inversely proportional to the speed of interaction; iv) when the two sub-systems are out-of-phase, DEF is null. The approach is of interest to practical engineering princi...
Control of Light-matter Interaction Using Dispersion Engineered...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
interaction between them is carried by the electromagnetic Bloch waves of the photonic crystal. This coherent interaction results in the formation of strongly coupled...
On the Numerical Dispersion of Electromagnetic Particle-In-Cell Code : Finite Grid Instability
Meyers, Michael David [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Univ. of California, Los Angeles, CA (United States) Dept. of Physics and Astronomy; Huang, Chengkun [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Zeng, Yong [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Yi, Sunghwan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Albright, Brian James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2014-07-15T23:59:59.000Z
The Particle-In-Cell (PIC) method is widely used in relativistic particle beam and laser plasma modeling. However, the PIC method exhibits numerical instabilities that can render unphysical simulation results or even destroy the simulation. For electromagnetic relativistic beam and plasma modeling, the most relevant numerical instabilities are the finite grid instability and the numerical Cherenkov instability. We review the numerical dispersion relation of the electromagnetic PIC algorithm to analyze the origin of these instabilities. We rigorously derive the faithful 3D numerical dispersion of the PIC algorithm, and then specialize to the Yee FDTD scheme. In particular, we account for the manner in which the PIC algorithm updates and samples the fields and distribution function. Temporal and spatial phase factors from solving Maxwell's equations on the Yee grid with the leapfrog scheme are also explicitly accounted for. Numerical solutions to the electrostatic-like modes in the 1D dispersion relation for a cold drifting plasma are obtained for parameters of interest. In the succeeding analysis, we investigate how the finite grid instability arises from the interaction of the numerical 1D modes admitted in the system and their aliases. The most significant interaction is due critically to the correct representation of the operators in the dispersion relation. We obtain a simple analytic expression for the peak growth rate due to this interaction.
On electromagnetic models of ball lightning with topological structure
Donoso, J M; Trueba, J L
2003-01-01T23:59:59.000Z
It has been long admitted that a consequence of the virial theorem is that there can be no equilibrium configurations of a system of charges in electromagnetic interaction in the absence of external forces. However, recent results have shown that the virial theorem can not preclude the existence of certain nontrivial equilibrium configurations. Although some of these new results are based on an effective microscopic field theory, they are important for a theory of ball lightning that has been developed by the authors of the present work. Other theoretical results relative to magnetic force-free fields with field aligned currents and self-organized filamentary structures are also found to be relevant for this model.
Quaternion Gravi-Electromagnetism
A. S. Rawat; O. P. S. Negi
2011-07-05T23:59:59.000Z
Defining the generalized charge, potential, current and generalized fields as complex quantities where real and imaginary parts represent gravitation and electromagnetism respectively, corresponding field equation, equation of motion and other quantum equations are derived in manifestly covariant manner. It has been shown that the field equations are invariant under Lorentz as well as duality transformations. It has been shown that the quaternionic formulation presented here remains invariant under quaternion transformations.
Gravitation and Electromagnetism
B. G. Sidharth
2001-06-16T23:59:59.000Z
The realms of gravitation, belonging to Classical Physics, and Electromagnetism, belonging to the Theory of the Electron and Quantum Mechanics have remained apart as two separate pillars, inspite of a century of effort by Physicists to reconcile them. In this paper it is argued that if we extend ideas of Classical spacetime to include in addition to non integrability non commutavity also, then such a reconcilation is possible.
Fractional Electromagnetic Waves
J. F. Gómez; J. J. Rosales; J. J. Bernal; V. I. Tkach; M. Guía
2011-08-31T23:59:59.000Z
In the present work we consider the electromagnetic wave equation in terms of the fractional derivative of the Caputo type. The order of the derivative being considered is 0 <\\gamma<1. A new parameter \\sigma, is introduced which characterizes the existence of the fractional components in the system. We analyze the fractional derivative with respect to time and space, for \\gamma = 1 and \\gamma = 1/2 cases.
Banded electromagnetic stator core
Fanning, A.W.; Gonzales, A.A.; Patel, M.R.; Olich, E.E.
1994-04-05T23:59:59.000Z
A stator core for an electromagnetic pump includes a plurality of circumferentially adjoining groups of flat laminations disposed about a common centerline axis and collectively defining a central bore and a discontinuous outer perimeter, with adjacent groups diverging radially outwardly to form V-shaped gaps. An annular band surrounds the groups and is predeterminedly tensioned to clamp together the laminations, and has a predetermined flexibility in a radial direction to form substantially straight bridge sections between the adjacent groups. 5 figures.
Saleem, H. [National Centre for Physics (NCP), Quaid-i-Azam University Campus, Islamabad (Pakistan); Department of Physics, COMSATS Institute of Information Technology (CIIT), Islamabad (Pakistan); Ahmad, Ali [Department of Physics, COMSATS Institute of Information Technology (CIIT), Islamabad (Pakistan); Theoretical Plasma Physics Division, Pakistan Institute of Nuclear Science and Technology (PINSTECH), Islamabad (Pakistan); Khan, S. A. [National Centre for Physics (NCP), Quaid-i-Azam University Campus, Islamabad (Pakistan); Department of Physics, COMSATS Institute of Information Technology (CIIT), Islamabad (Pakistan); Department of Physics, Government College Bagh AJK (Pakistan)
2008-09-15T23:59:59.000Z
A coupled linear dispersion relation for the basic electrostatic and electromagnetic waves in the ultracold nonuniform magnetized dense plasmas has been obtained which interestingly is analogous to the classical case. The scales of macroscopic phenomena and the interparticle quantum interactions are discussed. It is important to point out that hydrodynamic models cannot take into account strong quantum effects and they are not applicable to very dense plasmas. The analysis is presented with applications to dense plasmas which are relevant to both laboratory and astrophysical environments.
Spin-spin interaction in general relativity and induced geometries with nontrivial topology
V. G. Krechet; D. V. Sadovnikov
2009-12-11T23:59:59.000Z
We consider the dynamics of a self-gravitating spinor field and a self-gravitating rotating perfect fluid. It is shown that both these matter distributions can induce a vortex field described by the curl 4-vector of a tetrad: $\\omega^i = \\frac12\\eps^{iklm}e_{(a)k}e^{(a)}_{l;m}$, where $e^{(a)}_k$ are components of the tetrad. The energy-momentum tensor $T_{ik}(\\omega)$ of this field has been found and shown to violate the strong and weak energy conditions which leads to possible formation of geometries with nontrivial topology like wormholes. The corresponding exact solutions to the equations of general relativity have been found. It is also shown that other vortex fields, e.g., the magnetic field, can also possess such properties.
K -> pi pi Phenomenology in the Presence of Electromagnetism
Vincenzo Cirigliano; John F. Donoghue; Eugene Golowich
2000-08-28T23:59:59.000Z
We describe the influence of electromagnetism on the phenomenology of K -> pi pi decays. This is required because the present data were analyzed without inclusion of electromagnetic radiative corrections, and hence contain several ambiguities and uncertainties which we describe in detail. Our presentation includes a full description of the infrared effects needed for a new experimental analysis. It also describes the general treatment of final state interaction phases, needed because Watson's theorem is no longer valid in the presence of electromagnetism. The phase of the isospin-two amplitude A_2 may be modified by 50% -> 100%. We provide a tentative analysis using present data in order to illustrate the sensitivity to electromagnetic effects, and also discuss how the standard treatment of epsilon'/epsilon is modified.
Kensuke Homma
2009-11-30T23:59:59.000Z
High intense electromagnetic fields can be unique probes to study natures of macroscopic vacua by themselves. Combining accelerators with the intense field can provide more fruitful probes which can neither be achieved by only intense fields nor only high energy accelerators. We will overview the natures of vacua which can be accessible via intense laser-laser and intense laser-electron interactions. In the case of the laser-laser interaction, we propose how to observe nonlinear QED effects and effects of new fields like light scalar and pseudo scalar fields which may contribute to a macroscopic nature of our universe such as dark energy. In the case of the laser-electron interaction, in addition to nonlinear QED effects, we can further discuss the nature of accelerating field in the vacuum where we can access physics related with event horizons such as Hawking-Unruh radiations. We will introduce a recent experimental trial to search for this kind of odd radiations.
Rutledge, Steven
Electromagnetic WavesElectromagnetic Waves In this chapter we will review selected properties of electromagnetic waves since radar involves the transmission, propagation and scattering of EM waves by various is the electrostatic force between two point charges. #12;Electromagnetic WavesElectromagnetic Waves Electric fields
Theory of electromagnetic fluctuations for magnetized multi-species plasmas
Navarro, Roberto E., E-mail: roberto.navarro@ug.uchile.cl; Muñoz, Víctor [Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago (Chile); Araneda, Jaime [Departamento de Física, Universidad de Concepción, Concepción 4070386 (Chile); Moya, Pablo S. [NASA Goddard Space Flight Center, Heliophysics Science Division, Geospace Physics Laboratory, Mail Code 673, Greenbelt, Maryland 20771 (United States); Department of Physics, Catholic University of America, Washington, D. C. 20064 (United States); Viñas, Adolfo F. [NASA Goddard Space Flight Center, Heliophysics Science Division, Geospace Physics Laboratory, Mail Code 673, Greenbelt, Maryland 20771 (United States); Valdivia, Juan A. [Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago (Chile); Centro de Estudios Interdisciplinarios Básicos y Aplicados en Complejidad, CEIBA complejidad, Bogotá (Colombia)
2014-09-15T23:59:59.000Z
Analysis of electromagnetic fluctuations in plasma provides relevant information about the plasma state and its macroscopic properties. In particular, the solar wind persistently sustains a small but detectable level of magnetic fluctuation power even near thermal equilibrium. These fluctuations may be related to spontaneous electromagnetic fluctuations arising from the discreteness of charged particles. Here, we derive general expressions for the plasma fluctuations in a multi-species plasma following arbitrary distribution functions. This formalism, which generalizes and includes previous works on the subject, is then applied to the generation of electromagnetic fluctuations propagating along a background magnetic field in a plasma of two proton populations described by drifting bi-Maxwellians.
Nugent, Linda Elizabeth
2014-07-01T23:59:59.000Z
Aim:To test the interactive effects of the constructs of Modified Social Learning Theory (MSLT) in relation to predicting health behaviour in Type 2 Diabetes. Methods: The study is mixed methods and employs an ...
A Connection between Gravitation and Electromagnetism
D. M. Snyder
2000-02-16T23:59:59.000Z
It is argued that there is a connection between the fundamental forces of electromagnetism and gravitation. This connection occurs because of: 1) the fundamental significance of the finite and invariant velocity of light in inertial reference frames in the special theory, and 2) the reliance of the general theory of relativity upon the special theory of relativity locally in spacetime. The connection between the fundamental forces of electromagnetism and gravitation follows immediately from these two points. A brief review is provided of: 1) the role of the finite and invariant velocity of light in inertial reference frames in the special theory, and 2) certain fundamental concepts of the general theory, including its reliance on the special theory locally.
Vibration Harvesting using Electromagnetic Transduction
Waterbury, Andrew
2011-01-01T23:59:59.000Z
Puers, “Harvesting Energy from Vibrations by a Micromachinedsignal processing using vibration-based power generation,”electromagnetic generator for vibration energy harvesting,”
Electromagnetism on Anisotropic Fractals
Martin Ostoja-Starzewski
2011-06-08T23:59:59.000Z
We derive basic equations of electromagnetic fields in fractal media which are specified by three indepedent fractal dimensions {\\alpha}_{i} in the respective directions x_{i} (i=1,2,3) of the Cartesian space in which the fractal is embedded. To grasp the generally anisotropic structure of a fractal, we employ the product measure, so that the global forms of governing equations may be cast in forms involving conventional (integer-order) integrals, while the local forms are expressed through partial differential equations with derivatives of integer order but containing coefficients involving the {\\alpha}_{i}'s. First, a formulation based on product measures is shown to satisfy the four basic identities of vector calculus. This allows a generalization of the Green-Gauss and Stokes theorems as well as the charge conservation equation on anisotropic fractals. Then, pursuing the conceptual approach, we derive the Faraday and Amp\\`ere laws for such fractal media, which, along with two auxiliary null-divergence conditions, effectively give the modified Maxwell equations. Proceeding on a separate track, we employ a variational principle for electromagnetic fields, appropriately adapted to fractal media, to independently derive the same forms of these two laws. It is next found that the parabolic (for a conducting medium) and the hyperbolic (for a dielectric medium) equations involve modified gradient operators, while the Poynting vector has the same form as in the non-fractal case. Finally, Maxwell's electromagnetic stress tensor is reformulated for fractal systems. In all the cases, the derived equations for fractal media depend explicitly on fractal dimensions and reduce to conventional forms for continuous media with Euclidean geometries upon setting the dimensions to integers.
Spacetime dynamics of spinning particles - exact gravito-electromagnetic analogies
L. Filipe O. Costa; José Natário; Miguel Zilhão
2015-07-29T23:59:59.000Z
We compare the rigorous equations describing the motion of spinning test particles in gravitational and electromagnetic fields, and show that if the Mathisson-Pirani spin condition holds then exact gravito-electromagnetic analogies emerge. These analogies provide a familiar formalism to treat gravitational problems, as well as a means for comparing the two interactions. Fundamental differences are manifest in the symmetries and time projections of the electromagnetic and gravitational tidal tensors. The physical consequences of the symmetries of the tidal tensors are explored comparing the following analogous setups: magnetic dipoles in the field of non-spinning/spinning charges, and gyroscopes in the Schwarzschild, Kerr, and Kerr-de Sitter spacetimes. The implications of the time-projections of the tidal tensors are illustrated by the work done on the particle in various frames; in particular, a reciprocity is found to exist: in a frame comoving with the particle, the electromagnetic (but not the gravitational) field does work on it, causing a variation of its proper mass; conversely, for "static observers", a stationary gravitomagnetic (but not a magnetic) field does work on the particle, and the associated potential energy is seen to embody the Hawking-Wald spin-spin interaction energy. The issue of hidden momentum, and its counterintuitive dynamical implications, is also analyzed. Finally, a number of issues regarding the electromagnetic interaction are clarified, namely the differences in the dynamics of electric and magnetic dipoles, and the physical meaning of Dixon's equations.
Electromagnetic Probes in PHENIX
Gabor David
2006-09-21T23:59:59.000Z
Electromagnetic probes are arguably the most universal tools to study the different physics processes in high energy hadron and heavy ion collisions. In this paper we summarize recent measurements of real and virtual direct photons at central rapidity by the PHENIX experiment at RHIC in p+p, d+Au and Au+Au collisions. We also discuss the impact of the results and the constraints they put on theoretical models. At the end we report on the immediate as well as on the mid-term future of photon measurements at RHIC.
Gravitation and electromagnetism
V. P. Dmitriyev
2002-07-23T23:59:59.000Z
Maxwell's equations comprise both electromagnetic and gravitational fields. The transverse part of the vector potential belongs to magnetism, the longitudinal one is concerned with gravitation. The Coulomb gauge indicates that longitudinal components of the fields propagate instantaneously. The delta-function singularity of the field of the divergence of the vector potential, referred to as the dilatation center, represents an elementary agent of gravitation. Viewing a particle as a source or a scattering center of the point dilatation, the Newton's gravitation law can be reproduced.
Electromagnetic pump stator coil
Fanning, Alan W. (San Jose, CA); Dahl, Leslie R. (Livermore, CA)
1996-01-01T23:59:59.000Z
An electrical stator coil for an electromagnetic pump includes a continuous conductor strip having first and second terminals at opposite ends thereof and an intermediate section disposed therebetween. The strip is configured in first and second coil halves, with the first coil half including a plurality of windings extending from the first terminal to the intermediate section, and the second coil half including a plurality of windings extending from the second terminal to the intermediate section. The first and second coil halves are disposed coaxially, and the first and second terminals are disposed radially inwardly therefrom with the intermediate section being disposed radially outwardly therefrom.
Electromagnetic pump stator coil
Fanning, A.W.; Dahl, L.R.
1996-06-25T23:59:59.000Z
An electrical stator coil for an electromagnetic pump includes a continuous conductor strip having first and second terminals at opposite ends thereof and an intermediate section disposed therebetween. The strip is configured in first and second coil halves, with the first coil half including a plurality of windings extending from the first terminal to the intermediate section, and the second coil half including a plurality of windings extending from the second terminal to the intermediate section. The first and second coil halves are disposed coaxially, and the first and second terminals are disposed radially inwardly therefrom with the intermediate section being disposed radially outwardly therefrom. 9 figs.
Does the Poynting vector always represent electromagnetic power flow?
Changbiao Wang
2015-07-07T23:59:59.000Z
Poynting vector as electromagnetic power flow has prevailed over one hundred years in the community. However in this paper, it is shown from Maxwell equations that the Poynting vector may not represent the electromagnetic power flow for a plane wave in a non-dispersive, lossless, non-conducting, anisotropic uniform medium; this important conclusion revises the conventional understanding of Poynting vector. It is also shown that this conclusion is clearly supported by Fermat's principle and special theory of relativity.
The universal C*-algebra of the electromagnetic field
Buchholz, Detlev; Ruzzi, Giuseppe; Vasselli, Ezio
2015-01-01T23:59:59.000Z
A universal C*-algebra of the electromagnetic field is constructed. It is represented in any quantum field theory which incorporates electromagnetism and expresses basic features of this field such as Maxwell's equations, Poincar\\'e covariance and Einstein causality. Moreover, topological properties of the field resulting from Maxwell's equations are encoded in the algebra, leading to commutation relations with values in its center. The representation theory of the algebra is discussed with focus on vacuum representations, fixing the dynamics of the field.
Does the Poynting vector always represent electromagnetic power flow?
Wang, Changbiao
2015-01-01T23:59:59.000Z
Poynting vector as electromagnetic power flow has prevailed over one hundred years in the community. However in this paper, it is shown from Maxwell equations that the Poynting vector may not represent the electromagnetic power flow for a plane wave in a non-dispersive, lossless, non-conducting, anisotropic uniform medium; this important conclusion revises the conventional understanding of Poynting vector. It is also shown that this conclusion is clearly supported by Fermat's principle and special theory of relativity.
Electromagnetic Surface Wave Propagation Applicable to UltraHigh Energy Neutrino
Electromagnetic Surface Wave Propagation Applicable to UltraHigh Energy Neutrino Detection Peter ultrahigh energy cosmic rays (UHECR), which would typically interact very close to the surface. Since of electromagnetic surface waves and their propagation is presented. The charged particle shower is modelled
One dimensional electromagnetic relativistic PIC-hydrodynamic hybrid simulation code H-VLPL
Grimm, Volker
One dimensional electromagnetic relativistic PIC-hydrodynamic hybrid simulation code H-VLPL (Hybrid full electromagnetic relativistic hybrid plasma model. The full kinetic particle-in cell (PIC, there is a demand to simulate high density plasmas, e.g., in the experiments where the laser pulse interacts
Texas at Austin. University of
Stopping supersonic oxygen with a series of pulsed electromagnetic coils: A molecular coilgun, using a series of pulsed electromagnetic coils. A series of coils is fired in a timed sequence to bring in some experiments by interactions with pulsed electric fields Stark decelerator 46 , by inter- actions
Geometrical Interpretation of Electromagnetism in 5-Dimensional Manifold
TaeHun Kim; Hyunbyuk Kim
2015-07-12T23:59:59.000Z
In this paper Kaluza-Klein theory is revisited and its implications are elaborated. We show that electromagnetic 4-potential is a deformation factor of a 5-dimensional (5D) manifold along the fifth (5th) axis. The charge-to-mass ratio has a physical meaning as the ratio of the movement along the direction of the 5th axis to the movement in the 4D space-time. Examinations on the interaction between particles registered by different observers suggest a covariance breaking of the 5th dimension. In order to have a 5D matter which is consistent with the construction of the 5D manifold, a notion of particle-thread is considered. Finally, the field equations which extend the Einstein field equations give the total energy-momentum tensor as a sum of that of matter, electromagnetic field, and the interaction between electric current and electromagnetic field.
Geometrical Interpretation of Electromagnetism in 5-Dimensional Manifold
Kim, TaeHun
2015-01-01T23:59:59.000Z
In this paper Kaluza-Klein theory is revisited and its implications are elaborated. We show that electromagnetic 4-potential is a deformation factor of a 5-dimensional (5D) manifold along the fifth (5th) axis. The charge-to-mass ratio has a physical meaning as the ratio of the movement along the direction of the 5th axis to the movement in the 4D space-time. Examinations on the interaction between particles registered by different observers suggest a covariance breaking of the 5th dimension. In order to have a 5D matter which is consistent with the construction of the 5D manifold, a notion of particle-thread is considered. Finally, the field equations which extend the Einstein field equations give the total energy-momentum tensor as a sum of that of matter, electromagnetic field, and the interaction between electric current and electromagnetic field.
Theory of Dipole Induced Electromagnetic Transparency
Puthumpally-Joseph, Raiju; Sukharev, Maxim; Charron, Eric
2015-01-01T23:59:59.000Z
A detailed theory describing linear optics of vapors comprised of interacting multi-level quantum emitters is proposed. It is shown both by direct integration of Maxwell-Bloch equations and using a simple analytical model that at large densities narrow transparency windows appear in otherwise completely opaque spectra. The existence of such windows is attributed to overlapping resonances. This effect, first introduced for three-level systems in [R. Puthumpally-Joseph, M. Sukharev, O. Atabek and E. Charron, Phys. Rev. Lett. 113, 163603 (2014)], is due to strongly enhanced dipole-dipole interactions at high emitters' densities. The presented theory extends this effect to the case of multilevel systems. The theory is applied to the D1 transitions of interacting Rb-85 atoms. It is shown that at high atomic densities, Rb-85 atoms can behave as three-level emitters exhibiting all the properties of dipole induced electromagnetic transparency. Applications including slow light and laser pulse shaping are also propose...
Electromagnetic corrections to pseudoscalar decay constants
Benjamin Glaessle; Gunnar S. Bali
2011-11-16T23:59:59.000Z
The effects of electromagnetic interactions on pseudoscalar decay constants are investigated. Using a compact QED and QCD action we are able to resolve differences of about 0.1 MeV. We obtain the preliminary results f_pi^0-f_pi^+/- =0.09(3) MeV and f_D^0-f_D^+/- =0.79(11) MeV for light and charmed pseudoscalar decay constants on a N_f=2 nonperturbatively improved Sheikholeslami-Wohlert ensemble.
Nuclear electromagnetic pulse and the electric power system
Legro, J.R.; Reed, T.J.
1985-01-01T23:59:59.000Z
A single, high-altitude nuclear detonation over the continental United States can expose large geographic areas to transient, electromagnetic pulse (EMP). The initial electromagnetic fields produced by this event have been defined as high-altitude electromagnetic pulse (HEMP). Later-time, low frequency fields have been defined as magnetohydrodynamic-electromagnetic pulse (MHD-EMP). Nuclear detonations at, or near the surface of the earth can also produce transient EMP. These electromagnetic phenomena have been defined as source region electromagnetic pulse (SREMP). The Division of Electric Energy Systems (EES) of the United States Department of Energy (DOE) has formulated and implemented a Program Plan to assess the possible effects of the above nuclear EMP on civilian electric power systems. This unclassified research effort is under the technical leadership of the Oak Ridge National Laboratory. This paper presents a brief perspective of EMP phenomenology and important interaction issues for power systems based on research performed by Westinghouse Advanced Systems Technology as a principal subcontractor in the research effort.
Electromagnetic Compatibility in Nuclear Power Plants
Ewing, P.D.; Kercel, S.W.; Korsah, K.; Wood, R.T.
1999-08-29T23:59:59.000Z
Electromagnetic compatibility (EMC) has long been a key element of qualification for mission critical instrumentation and control (I&C) systems used by the U.S. military. The potential for disruption of safety-related I&C systems by electromagnetic interference (EMI), radio-frequency interference (RFI), or power surges is also an issue of concern for the nuclear industry. Experimental investigations of the potential vulnerability of advanced safety systems to EMI/RFI, coupled with studies of reported events at nuclear power plants (NPPs) that are attributed to EMI/RFI, confirm the safety significance of EMC for both analog and digital technology. As a result, Oak Ridge National Laboratory has been engaged in the development of the technical basis for guidance that addresses EMC for safety-related I&C systems in NPPs. This research has involved the identification of engineering practices to minimize the potential impact of EMI/RFI and power surges and an evaluation of the ambient electromagnetic environment at NPPs to tailor those practices for use by the nuclear industry. Recommendations for EMC guidance have been derived from these research findings and are summarized in this paper.
Remote Sensing Ayman F. Habib Electro-Magnetic Radiation
Habib, Ayman
Remote Sensing Ayman F. Habib 1 Chapter 2 Electro-Magnetic Radiation #12;Remote Sensing Ayman F. Habib 2 Elements of Remote Sensing #12;Remote Sensing Ayman F. Habib 3 Chapter 2 Radiation: nature & source #12;Remote Sensing Ayman F. Habib 4 Chapter 2 Interaction with the atmosphere #12;Remote Sensing
Remote Sensing Ayman F. Habib Electro-Magnetic Radiation
Habib, Ayman
Remote Sensing Ayman F. Habib 1 Chapter 2 Electro-Magnetic Radiation Remote Sensing Ayman F. Habib 2 Elements of Remote Sensing #12;Remote Sensing Ayman F. Habib 3 Chapter 2 Radiation: nature & source Remote Sensing Ayman F. Habib 4 Chapter 2 Interaction with the atmosphere #12;Remote Sensing Ayman
Electromagnetically Induced Guiding of Counter-Propagating Lasers in Plasmas
- propagating laser pulses and (ii) guiding of an ultra-short tightly focused laser pulse by a counterElectromagnetically Induced Guiding of Counter-Propagating Lasers in Plasmas G. Shvets Princeton for Quantenoptik, D-85748 Garching, Germany Abstract The interaction of counter-propagating laser pulses
Alexander A. Chernitskii
2009-07-13T23:59:59.000Z
We consider the unification problem for the gravitational and electromagnetic interactions and its possible solution on the basis of the existence of an effective Riemannian space in nonlinear electrodynamics
Gil, Ricard; Marion, Justin
2009-01-01T23:59:59.000Z
interactions for oil well drilling in Texas. stock of prioron the productivity of well drilling in Texas. Our paper
Gil, Ricard; Marion, Justin
2009-01-01T23:59:59.000Z
interactions for oil well drilling in Texas. contracts areon the productivity of well drilling in Texas. Our paper di?
Chang-Hwan Lee; Ismail Zahed
2014-03-07T23:59:59.000Z
We discuss the general features of the electromagnetic radiation from a thermal hadronic gas as constrained by chiral symmetry. The medium effects on the electromagnetic spectral functions and the partial restoration of chiral symmetry are quantified in terms of the pion densities. The results are compared with the electromagnetic radiation from a strongly interacting quark-gluon plasma in terms of the leading gluon condensate operators. We use the spectral functions as constrained by the emission rates to estimate the electric conductivity, the light flavor susceptibility and diffusion constant across the transition from the correlated hadronic gas to a strongly interacting quark-gluon plasma.
Analog Electromagnetism in a Symmetrized $^3$He-A
Jacek Dziarmaga
2001-12-18T23:59:59.000Z
We derive a low temperature effective action for the order parameter in a symmetrized phase A of helium 3, where the Fermi velocity equals the transversal velocity of low energy fermionic quasiparticles. The effective action has a form of the electromagnetic action. This analog electromagnetism is a part of the program to derive analog gravity and the standard model as a low energy effective theory in a condensed matter system. For the analog gauge field to satisfy the Maxwell equations interactions in $^3$He require special tuning that leads to the symmetric case.
The electromagnetic model of Gamma Ray Bursts
Maxim Lyutikov
2005-12-13T23:59:59.000Z
I describe electromagnetic model of gamma ray bursts and contrast its main properties and predictions with hydrodynamic fireball model and its magnetohydrodynamical extension. The electromagnetic model assumes that rotational energy of a relativistic, stellar-mass central source (black-hole--accretion disk system or fast rotating neutron star) is converted into magnetic energy through unipolar dynamo mechanism, propagated to large distances in a form of relativistic, subsonic, Poynting flux-dominated wind and is dissipated directly into emitting particles through current-driven instabilities. Thus, there is no conversion back and forth between internal and bulk energies as in the case of fireball model. Collimating effects of magnetic hoop stresses lead to strongly non-spherical expansion and formation of jets. Long and short GRBs may develop in a qualitatively similar way, except that in case of long bursts ejecta expansion has a relatively short, non-relativistic, strongly dissipative stage inside the star. Electromagnetic and fireball models (as well as strongly and weakly magnetized fireballs) lead to different early afterglow dynamics, before deceleration time. Finally, I discuss the models in view of latest observational data in the Swift era.
Electromagnetic Signals from Bacterial DNA
A. Widom; J. Swain; Y. N. Srivastava; S. Sivasubramanian
2012-02-09T23:59:59.000Z
Chemical reactions can be induced at a distance due to the propagation of electromagnetic signals during intermediate chemical stages. Although is is well known at optical frequencies, e.g. photosynthetic reactions, electromagnetic signals hold true for muck lower frequencies. In E. coli bacteria such electromagnetic signals can be generated by electric transitions between energy levels describing electrons moving around DNA loops. The electromagnetic signals between different bacteria within a community is a "wireless" version of intercellular communication found in bacterial communities connected by "nanowires". The wireless broadcasts can in principle be of both the AM and FM variety due to the magnetic flux periodicity in electron energy spectra in bacterial DNA orbital motions.
Electromagnetic Calorimeter for HADES
W. Czyzycki; E. Epple; L. Fabbietti; M. Golubeva; F. Guber; A. Ivashkin; M. Kajetanowicz; A. Krasa; F. Krizek; A. Kugler; K. Lapidus; E. Lisowski; J. Pietraszko; A. Reshetin; P. Salabura; Y. Sobolev; J. Stanislav; P. Tlusty; T. Torrieri; M. Traxler
2011-11-28T23:59:59.000Z
We propose to build the Electromagnetic calorimeter for the HADES di-lepton spectrometer. It will enable to measure the data on neutral meson production from nucleus-nucleus collisions, which are essential for interpretation of dilepton data, but are unknown in the energy range of planned experiments (2-10 GeV per nucleon). The calorimeter will improve the electron-hadron separation, and will be used for detection of photons from strange resonances in elementary and HI reactions. Detailed description of the detector layout, the support structure, the electronic readout and its performance studied via Monte Carlo simulations and series of dedicated test experiments is presented. The device will cover the total area of about 8 m^2 at polar angles between 12 and 45 degrees with almost full azimuthal coverage. The photon and electron energy resolution achieved in test experiments amounts to 5-6%/sqrt(E[GeV]) which is sufficient for the eta meson reconstruction with S/B ratio of 0.4% in Ni+Ni collisions at 8 AGeV. A purity of the identified leptons after the hadron rejection, resulting from simulations based on the test measurements, is better than 80% at momenta above 500 MeV/c, where time-of-flight cannot be used.
Black Hole Thermodynamics and Electromagnetism
Burra G. Sidharth
2005-07-15T23:59:59.000Z
We show a strong parallel between the Hawking, Beckenstein black hole Thermodynamics and electromagnetism: When the gravitational coupling constant transform into the electromagnetic coupling constant, the Schwarzchild radius, the Beckenstein temperature, the Beckenstein decay time and the Planck mass transform to respectively the Compton wavelength, the Hagedorn temperature, the Compton time and a typical elementary particle mass. The reasons underlying this parallalism are then discussed in detail.
Mikko Partanen; Teppo Häyrynen; Jani Oksanen; Jukka Tulkki
2014-12-02T23:59:59.000Z
It has very recently been suggested that asymmetric coupling of electromagnetic fields to thermal reservoirs under nonequilibrium conditions can produce unexpected oscillatory behavior in the local photon statistics in layered structures. Better understanding of the predicted phenomena could enable useful applications related to thermometry, noise filtering, and enhancing optical interactions. In this work we briefly review the field quantization and study the local steady state temperature distributions in optical cavities formed of lossless and lossy media to show that also local field temperatures exhibit oscillations that depend on position as well as the photon energy.
Bogdanov, O V
2014-01-01T23:59:59.000Z
The relations among the components of the exit momenta of ultrarelativistic electrons scattered on a strong electromagnetic wave of a low (optical) frequency and linear polarization are established using the exact solutions to the equations of motion with radiation reaction included (the Landau-Lifshitz equation). It is found that the momentum components of the electrons traversed the electromagnetic wave depend weakly on the initial values of the momenta. These electrons are mostly scattered at the small angles to the direction of propagation of the electromagnetic wave. The maximum Lorentz factor of the electrons crossed the electromagnetic wave is proportional to the work done by the electromagnetic field and is independent of the initial momenta. The momentum component parallel to the electric field strength vector of the electromagnetic wave is determined only by the diameter of the laser beam measured in the units of the classical electron radius. As for the reflected electrons, they for the most part l...
Testing black hole candidates with electromagnetic radiation
Bambi, Cosimo
2015-01-01T23:59:59.000Z
Astrophysical black hole candidates are thought to be the Kerr black holes of general relativity, but there is currently no direct observational evidence that the spacetime geometry around these objects is described by the Kerr solution. The study of the properties of the electromagnetic radiation emitted by gas or stars orbiting these objects can potentially test the Kerr black hole hypothesis. In this paper, I review the state of the art of this research field, describing the possible approaches to test the Kerr metric with current and future observational facilities and discussing current constraints.
Surface electromagnetic wave equations in a warm magnetized quantum plasma
Li, Chunhua; Yang, Weihong [Department of Modern Physics, University of Science and Technology of China, 230026 Hefei (China); Wu, Zhengwei, E-mail: wuzw@ustc.edu.cn [Department of Modern Physics, University of Science and Technology of China, 230026 Hefei (China); Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon (Hong Kong); Center of Low Temperature Plasma Application, Yunnan Aerospace Industry Company, Kunming, 650229 Yunnan (China); Chu, Paul K. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon (Hong Kong)
2014-07-15T23:59:59.000Z
Based on the single-fluid plasma model, a theoretical investigation of surface electromagnetic waves in a warm quantum magnetized inhomogeneous plasma is presented. The surface electromagnetic waves are assumed to propagate on the plane between a vacuum and a warm quantum magnetized plasma. The quantum magnetohydrodynamic model includes quantum diffraction effect (Bohm potential), and quantum statistical pressure is used to derive the new dispersion relation of surface electromagnetic waves. And the general dispersion relation is analyzed in some special cases of interest. It is shown that surface plasma oscillations can be propagated due to quantum effects, and the propagation velocity is enhanced. Furthermore, the external magnetic field has a significant effect on surface wave's dispersion equation. Our work should be of a useful tool for investigating the physical characteristic of surface waves and physical properties of the bounded quantum plasmas.
Hosur, Raghavendra
Current homology modeling methods for predicting protein–protein interactions (PPIs) have difficulty in the “twilight zone” (< 40%) of sequence identities. Threading methods extend coverage further into the twilight zone ...
Electromagnetic fields: Biological and clinical aspects
Tabrah, F.L.; Batkin, S. (Department of Physiology, University of Hawaii School of Medicine, Honolulu (USA))
1991-03-01T23:59:59.000Z
Our entire biosphere is immersed in a sea of man-made electromagnetic fields (EMF). Occupational and public health data suggest that these fields may be a health hazard, possibly involving cancer and fetal loss. This paper reviews the history and pertinent physics of electromagnetic fields and presents evidence from the authors' work, and that of others, of biological interaction with living systems. Epidemiological data suggesting EMF hazards are reviewed including a discussion of possible risks associated with Hawaii's Lualualei transmitter site, TV and FM antennas in high-density population areas, fields surrounding electric power transmission and computer terminals, and the plan to route a major highway through the near-field of an operating Omega signal-source. In the face of current public fear and controversial research reports about long-term EMF exposure, suggestions are presented for public policy about these local sources of concern, as well as for the EMF risks common to any similarly developed areas. 30 refs.
Electromagnetic source localization with finite set of frequency measurements
Abdul Wahab; Amer Rasheed; Rab Nawaz; Saman Anjum
2014-09-16T23:59:59.000Z
A phase conjugation algorithm for localizing an extended radiating electromagnetic source from boundary measurements of the electric field is presented. Measurements are taken over a finite number of frequencies. The artifacts related to the finite frequency data are tackled with $l_1-$regularization blended with the fast iterative shrinkage-thresholding algorithm with backtracking of Beck & Teboulle.
ECE 341: Electromagnetic Fields I EM devices and systems
Schumacher, Russ
- Power systems - Electromagnetic compatibility - Modeling of transmission lines - Communications model electric and magnetic properties of material media in relation with field equations - Understands and appreciates EM field theory as a foundation of circuit theory and electrical engineering as a whole Maxwell
A characterization of the electromagnetic stress-energy tensor
J. Navarro; J. B. Sancho
2011-01-13T23:59:59.000Z
In a previous paper, we pointed out how a dimensional analysis of the stress-energy tensor of the gravitational field allows to derive the field equation of General Relativity. In this note, we comment an analogous reasoning in presence of a 2-form, that allows to characterize the so called electromagnetic stress-energy tensor.
A New Electromagnetic Valve Actuator W. S. Chang
Perreault, Dave
A New Electromagnetic Valve Actuator W. S. Chang , T. A. Parlikar , M. D. Seeman , D. J. Perreault--In conventional internal combustion (IC) engines, en- gine valve displacements are fixed relative to crankshaft position. If these valves are actuated as a variable function of crankshaft an- gle, significant
Electromagnetic radiation by gravitating bodies
Iwo Bialynicki-Birula; Zofia Bialynicka-Birula
2008-05-06T23:59:59.000Z
Gravitating bodies in motion, regardless of their constitution, always produce electromagnetic radiation in the form of photon pairs. This phenomenon is an analog of the radiation caused by the motion of dielectric (or magnetic) bodies. It is a member of a wide class of phenomena named dynamical Casimir effects, and it may be viewed as the squeezing of the electromagnetic vacuum. Production of photon pairs is a purely quantum-mechanical effect. Unfortunately, as we show, the emitted radiation is extremely weak as compared to radiation produced by other mechanisms.
Electromagnetic low-energy constants in ChPT
Christoph Haefeli; Mikhail A. Ivanov; Martin Schmid
2007-10-29T23:59:59.000Z
We investigate three-flavour chiral perturbation theory including virtual photons in a limit where the strange quark mass is much larger than the external momenta and the up and down quark masses, and where the external fields are those of two-flavour chiral perturbation theory. In particular we work out the strange quark mass dependence of the electromagnetic two-flavour low-energy constants C and k_i. We expect that these relations will be useful for a more precise determination of the electromagnetic low-energy constants.
English, M.; Schexnayder, S.; Altman, J. [Tennessee Univ., Knoxville, TN (United States). Energy, Environment and Resources Center; Schweitzer, M. [Oak Ridge National Lab., TN (United States)
1994-03-01T23:59:59.000Z
This report discusses the activities of organizations that seek to promote integrated resource planning and aggressive, cost-effective demand-side management by utilities. The activities of such groups -- here called energy efficiency advocacy groups (EEAGs) -- are examined in ten detailed am studies. Nine of the cases involve some form of interactive effort between investor-owned electric utilities and non-utility to develop policies, plans, or programs cooperatively. Many but not all of the interactive efforts examined are formal collaboratives. In addition, all ten cases include discussion of other EEAG activities, such as coalition-building, research, participation in statewide energy planning, and intervention in regulatory proceedings.
Vacuum birefringence in strong inhomogeneous electromagnetic fields
Karbstein, Felix; Reuter, Maria; Zepf, Matt
2015-01-01T23:59:59.000Z
Birefringence is one of the fascinating properties of the vacuum of quantum electrodynamics (QED) in strong electromagnetic fields. The scattering of linearly polarized incident probe photons into a perpendicularly polarized mode provides a distinct signature of the optical activity of the quantum vacuum and thus offers an excellent opportunity for a precision test of non-linear QED. Precision tests require accurate predictions and thus a theoretical framework that is capable of taking the detailed experimental geometry into account. We derive analytical solutions for vacuum birefringence which include the spatio-temporal field structure of a strong optical pump laser field and an x-ray probe. We show that the angular distribution of the scattered photons depends strongly on the interaction geometry and find that scattering of the perpendicularly polarized scattered photons out of the cone of the incident probe x-ray beam is the key to making the phenomenon experimentally accessible with the current generatio...
The Electromagnetic Field as a Synchrony Gauge Field
Bock, Robert D
2015-01-01T23:59:59.000Z
Building on our previous work, we investigate the identification of the electromagnetic field as a local gauge field of a restricted group of synchrony transformations. We begin by arguing that the inability to measure the one-way speed of light independent of a synchronization scheme necessitates that physical laws must be reformulated without distant simultaneity. As a result, we are forced to introduce a new operational definition of time which leads to a fundamental space-time invariance principle that is related to a subset of the synchrony group. We identify the gauge field associated with this new invariance principle with the electromagnetic field. Consequently, the electromagnetic field acquires a space-time interpretation, as suggested in our previous work. In addition, we investigate the static, spherically symmetric solution of the resulting field equations. Also, we discuss implications of the present work for understanding the tension between classical and quantum theory.
One-electron self-interaction and the asymptotics of the Kohn-Sham potential: an impaired relation
Schmidt, Tobias; Kronik, Leeor; Kümmel, Stephan
2015-01-01T23:59:59.000Z
One-electron self-interaction and an incorrect asymptotic behavior of the Kohn-Sham exchange-correlation potential are among the most prominent limitations of many present-day density functionals. However, a one-electron self-interaction-free energy does not necessarily lead to the correct long-range potential. This is here shown explicitly for local hybrid functionals. Furthermore, carefully studying the ratio of the von Weizs\\"acker kinetic energy density to the (positive) Kohn-Sham kinetic energy density, $\\tau_\\mathrm{W}/\\tau$, reveals that this ratio, which frequently serves as an iso-orbital indicator and is used to eliminate one-electron self-interaction effects in meta-generalized-gradient approximations and local hybrid functionals, can fail to approach its expected value in the vicinity of orbital nodal planes. This perspective article suggests that the nature and consequences of one-electron self-interaction and some of the strategies for its correction need to be reconsidered.
Three dimensional electromagnetic wavepackets in a plasma: Spatiotemporal modulational instability
Borhanian, J.; Hosseini Faradonbe, F. [Department of Physics, Faculty of Science, University of Mohaghegh Ardabili, P. O. Box 179, Ardabil (Iran, Islamic Republic of)] [Department of Physics, Faculty of Science, University of Mohaghegh Ardabili, P. O. Box 179, Ardabil (Iran, Islamic Republic of)
2014-04-15T23:59:59.000Z
The nonlinear interaction of an intense electromagnetic beam with relativistic collisionless unmagnetized plasma is investigated by invoking the reductive perturbation technique, resting on the model of three-dimensional nonlinear Schrödinger (NLS) equation with cubic nonlinearity which incorporates the effects of self-focusing, self-phase modulation, and diffraction on wave propagation. Relying on the derived NLS equation, the occurrence of spatiotemporal modulational instability is investigated in detail.
Why Study Electromagnetics: The First Unit in an Undergraduate Electromagnetics Course
Taflove, Allen
1 Why Study Electromagnetics: The First Unit in an Undergraduate Electromagnetics Course Allen unification of electric and magnetic fields predicting electromagnetic wave phenomena which Nobel Laureate: "Of what relevance is the study of electromagnetics to our modern society?" The goal of this unit
STIMULATED ELECTROMAGNETIC EMISSIONS BY HIGH-FREQUENCY ELECTROMAGNETIC PUMPING OF THE
STIMULATED ELECTROMAGNETIC EMISSIONS BY HIGH-FREQUENCY ELECTROMAGNETIC PUMPING OF THE IONOSPHERIC.S.A. Abstract. A high frequency electromagnetic pump wave transmitted into the ionospheric plasma from the ground can stimulate electromagnetic radiation with frequencies around that of the ionospher- ically
Electromagnetic dissociation of relativistic {sup 28}Si by nucleon emission
Sonnadara, U.J.
1992-12-01T23:59:59.000Z
A detailed study of the electromagnetic dissociation of {sup 28}Si by nucleon emission at E{sub lab}/A = 14.6 (GeV/nucleon was carried out with {sup 28}Si beams interacting on {sup 208}Pb). {sup 120}Sn. {sup 64}C targets. The measurements apparatus consists of detectors in the target area which measure the energy and charged multiplicity, and a forward spectrometer which measures the position, momentum and energy of the reaction fragments. The exclusive electromagnetic dissociation cross sections for decay channels having multiple nucleons in the final state have been measured which enables the selection of events produced in pure electromagnetic interactions. The measured cross sections agree well with previous measurements obtained for the removal of a few nucleons as well as with measurements on total charge removal cross sections from other experiments. The dependence of the integrated cross sections on the target charge Z{sub T} and the target mass AT confirms that for higher Z targets the excitation is largely electromagnetic. Direct measurements of the excitation energy for the electromagnetic dissociation of {sup 28}Si {yields} p+{sup 27}Al and {sup 28}Si {yields} n+{sup 27}Si have been obtained through a calculation of the invariant mass in kinematically, reconstructed events. The excitation energy spectrum for all targets peak near the isovector giant dipole resonance in {sup 28}Si. These distributions are well reproduced by combining the photon spectrum calculated using the Weizsaecker-Williams approximation with the experimental data on the photonuclear {sup 28}Si({sub {gamma},p}){sup 27}Al and {sup 28}Si({sub {gamma},n}){sup 27}Si. The possibilities of observing double giant dipole resonance excitations in {sup 28}Si have been investigated with cross section measurements as well as with excitation energy reconstruction.
Electromagnetic dissociation of relativistic [sup 28]Si by nucleon emission
Sonnadara, U.J.
1992-12-01T23:59:59.000Z
A detailed study of the electromagnetic dissociation of [sup 28]Si by nucleon emission at E[sub lab]/A = 14.6 (GeV/nucleon was carried out with [sup 28]Si beams interacting on [sup 208]Pb). [sup 120]Sn. [sup 64]C targets. The measurements apparatus consists of detectors in the target area which measure the energy and charged multiplicity, and a forward spectrometer which measures the position, momentum and energy of the reaction fragments. The exclusive electromagnetic dissociation cross sections for decay channels having multiple nucleons in the final state have been measured which enables the selection of events produced in pure electromagnetic interactions. The measured cross sections agree well with previous measurements obtained for the removal of a few nucleons as well as with measurements on total charge removal cross sections from other experiments. The dependence of the integrated cross sections on the target charge Z[sub T] and the target mass AT confirms that for higher Z targets the excitation is largely electromagnetic. Direct measurements of the excitation energy for the electromagnetic dissociation of [sup 28]Si [yields] p+[sup 27]Al and [sup 28]Si [yields] n+[sup 27]Si have been obtained through a calculation of the invariant mass in kinematically, reconstructed events. The excitation energy spectrum for all targets peak near the isovector giant dipole resonance in [sup 28]Si. These distributions are well reproduced by combining the photon spectrum calculated using the Weizsaecker-Williams approximation with the experimental data on the photonuclear [sup 28]Si([sub [gamma],p])[sup 27]Al and [sup 28]Si([sub [gamma],n])[sup 27]Si. The possibilities of observing double giant dipole resonance excitations in [sup 28]Si have been investigated with cross section measurements as well as with excitation energy reconstruction.
Electromagnetic Formation Flight of Satellite Arrays
Electromagnetic Formation Flight of Satellite Arrays Daniel W. Kwon and David W. Miller February 2005 SSL # 2-05 #12;#12;Electromagnetic Formation Flight of Satellite Arrays By DANIEL W. KWON S;#12;Electromagnetic Formation Flight of Satellite Arrays by DANIEL W. KWON Submitted to the Department of Aeronautics
Electromagnetics from Simulation to Optimal Design
Grohs, Philipp
1 Electromagnetics from Simulation to Optimal Design Christian Hafner Laboratory for Electromagnetic Fields and Microwave Electronics (IFH) ETH Zurich (Switzerland) Lab: http://www.ifh.ee.ethz.ch COG 23, 2013 #12;2 IFH courses · Advanced engineering electromagnetics (Leuchtmann, start spring 2014
611: Electromagnetic Theory Problem Sheet 5
Pope, Christopher
611: Electromagnetic Theory Problem Sheet 5 (1) Consider the expression for the electric field due · dS over a spherical surface that encloses the moving charge. (2a) Consider an electromagnetic wave density and the Poynting vector. (2c) Repeat the steps in (2a) and (2b) for an electromagnetic wave
611: Electromagnetic Theory Problem Sheet 5
Pope, Christopher
611: Electromagnetic Theory Problem Sheet 5 (1a) The Null Energy Condition on an energy = (k, 0, 0, k), show that the energy-momentum tensor Tµ = 1 4 Fµ F - 1 4µ F F (1) for electromagnetism if the equality kµ k Tµ = 0 is attained. (2) Show that the energy-momentum tensor for electromagnetism can
611: Electromagnetic Theory Problem Sheet 7
Pope, Christopher
611: Electromagnetic Theory Problem Sheet 7 (1) Consider the non-relativistic motion of a particle momentum of the particle about the centre of the force at r = 0.) (2a) Consider an electromagnetic wave the energy density and the Poynting vector. (2c) Repeat the steps in (2a) and (2b) for an electromagnetic
Electromagnetic Corrections in Staggered Chiral Perturbation Theory
Bernard, Claude
Electromagnetic Corrections in Staggered Chiral Perturbation Theory C. Bernard and E.D. Freeland perturbation theory including electromagnetism, and discuss the extent to which quenched-photon simulations can-lat]17Nov2010 #12;Electromagnetic Corrections in Staggered Chiral Perturbation Theory E.D. Freeland 1
611: Electromagnetic Theory Problem Sheet 5
Pope, Christopher
611: Electromagnetic Theory Problem Sheet 5 (1a) Show that the energy-momentum tensor for the electromagnetic field is tracefree, i.e. Tµ µ = 0. What would happen, in a spacetime dimension d = 4? (Assume) Show that the energy-momentum tensor for the electromagnetic field can be written as Tµ = 1 8 (Fµ F
611: Electromagnetic Theory Problem Sheet 6
Pope, Christopher
611: Electromagnetic Theory Problem Sheet 6 (1) A small test particle (mass m and positive charge q of the orbit. (2a) Consider an electromagnetic wave for which the electric field is given by E = E0 sin t (sin in (2a) and (2b) for an electromagnetic wave for which the electric field is E = E0 cos z (cos t, - sin
Electromagnetic Interrogation of Dielectric Materials 1
Electromagnetic Interrogation of Dielectric Materials 1 H.T. Banks M.W. Buksas Center for Research grant P200A40730. #12; Abstract We investigate time domain based electromagnetic inverse problems electromagnetic phenomenon. For our purposes, we categorize the materials and the models employed to describe them
611: Electromagnetic Theory Problem Sheet 6
Pope, Christopher
611: Electromagnetic Theory Problem Sheet 6 (1) Consider the expression for the electric field due · dS over a spherical surface that encloses the moving charge. (2a) Consider an electromagnetic wave density and the Poynting vector. (2c) Repeat the steps in (2a) and (2b) for an electromagnetic wave
A. V. Borisov; P. E. Sizin
2014-06-12T23:59:59.000Z
We calculate the neutrino luminosity of a degenerate electron gas in a strong magnetic field via plasmon decay to a neutrino pair due to neutrino electromagnetic moments and obtain the relative upper bounds on the effective neutrino magnetic moment.
A. Gama Goicochea; M. A. Balderas Altamirano; R. Lopez-Esparza; M. A. Waldo; E. Perez
2015-06-20T23:59:59.000Z
The connection between fundamental interactions acting in molecules in a fluid and macroscopically measured properties, such as the viscosity between colloidal particles coated with polymers, is studied here. The role that hydrodynamic and Brownian forces play in colloidal dispersions is also discussed. It is argued that many body systems in which all these interactions take place can be accurately solved using computational simulation tools. One of those modern tools is the technique known as dissipative particle dynamics, which incorporates Brownian and hydrodynamic forces, as well as basic conservative interactions. A case study is reported, as an example of the applications of this technique, which consists of the prediction of the viscosity and friction between two opposing parallel surfaces covered with polymer chains, under the influence of a steady flow. This work is intended to serve as an introduction to the subject of colloidal dispersions and computer simulations, for last year undergraduate students and beginning graduate students who are interested in beginning research in soft matter systems. To that end, a computational code is included that students can use right away to study complex fluids in equilibrium.
Electromagnetic Induced Gravitational Perturbations
T. M. Adamo; E. T. Newman
2008-07-23T23:59:59.000Z
We study the physical consequences of two diffferent but closely related perturbation schemes applied to the Einstein-Maxwell equations. In one case the starting space-time is flat while in the other case it is Schwarzschild. In both cases the perturbation is due to a combined electric and magnetic dipole field. We can see, within the Einstein-Maxwell equations a variety of physical consequences. They range from induced gravitational energy-momentum loss, to a well defined spin angular momentum with its loss and a center-of-mass with its equations of motion.
Some Wave Equations for Electromagnetism and Gravitation
Zi-Hua Weng
2010-08-11T23:59:59.000Z
The paper studies the inferences of wave equations for electromagnetic fields when there are gravitational fields at the same time. In the description with the algebra of octonions, the inferences of wave equations are identical with that in conventional electromagnetic theory with vector terminology. By means of the octonion exponential function, we can draw out that the electromagnetic waves are transverse waves in a vacuum, and rephrase the law of reflection, Snell's law, Fresnel formula, and total internal reflection etc. The study claims that the theoretical results of wave equations for electromagnetic strength keep unchanged in the case for coexistence of gravitational and electromagnetic fields. Meanwhile the electric and magnetic components of electromagnetic waves can not be determined simultaneously in electromagnetic fields.
Classification of Electromagnetic and Gravitational Hopfions by Algebraic Type
Amy Thompson; Alexander Wickes; Joe Swearngin; Dirk Bouwmeester
2015-05-02T23:59:59.000Z
We extend the definition of hopfions to include a class of spin-$h$ fields and use this to introduce the electromagnetic and gravitational hopfions of different algebraic types. The fields are constructed through the Penrose contour integral transform, thus the singularities of the generating functions are directly related to the geometry of the resulting physical fields. We discuss this relationship and how the topological structure of the fields is related to the Robinson congruence. Since the topology appears in the lines of force for both electromagnetism and gravity, the gravito-electromagnetic formalism is used to analyze the gravitational hopfions and describe the time evolution of their tendex and vortex lines. The correspondence between fields of different spin results in analogous configurations based on the same topological structure. The null and type N fields propagate at the speed of light, while the non-null and type D fields radiate energy outward from the center. Finally we discuss the type III gravitational hopfion, which has no direct electromagnetic analog, but find that it still exhibits some of the characteristic features common to the other hopfion fields.
Evolution of linearly polarized electromagnetic pulses in laser plasmas
Borhanian, J. [Department of Atomic and Molecular Physics, Faculty of Physics, University of Tabriz 51664 (Iran, Islamic Republic of); Centre for Plasma Physics, Department of Physics and Astronomy, Queen's University Belfast, BT7 1NN, Northern Ireland (United Kingdom); Sobhanian, S. [Department of Atomic and Molecular Physics, Faculty of Physics, University of Tabriz 51664 (Iran, Islamic Republic of); Kourakis, I. [Centre for Plasma Physics, Department of Physics and Astronomy, Queen's University Belfast, BT7 1NN, Northern Ireland (United Kingdom); Esfandyari-Kalejahi, A. [Department of Physics, Faculty of Science, Azarbaijan University of Tarbiat Moallem, Tabriz 51745-406 (Iran, Islamic Republic of)
2008-09-15T23:59:59.000Z
An analytical and numerical investigation is presented of the behavior of a linearly polarized electromagnetic pulse as it propagates through a plasma. Considering a weakly relativistic regime, the system of one-dimensional fluid-Maxwell equations is reduced to a generalized nonlinear Schroedinger type equation, which is solved numerically using a split step Fourier method. The spatio-temporal evolution of an electromagnetic pulse is investigated. The evolution of the envelope amplitude of density harmonics is also studied. An electromagnetic pulse propagating through the plasma tends to broaden due to dispersion, while the nonlinear frequency shift is observed to slow down the pulse at a speed lower than the group velocity. Such nonlinear effects are more important for higher density plasmas. The pulse broadening factor is calculated numerically, and is shown to be related to the background plasma density. In particular, the broadening effect appears to be stronger for dense plasmas. The relation to existing results on electromagnetic pulses in laser plasmas is discussed.
Dark Energy, Gravitation and Electromagnetism
B. G. Sidharth
2004-01-08T23:59:59.000Z
In the context of the fact that the existence of dark energy causing the accelerated expansion of the universe has been confirmed by the WMAP and the Sloan Digital Sky Survey, we re-examine gravitation itself, starting with the formulation of Sakharov and show that it is possible to obtain gravitation in terms of the electromagnetic charge of elementary particles, once the ZPF and its effects at the Compton scale are taken into account.
Laminated electromagnetic pump stator core
Fanning, A.W.
1995-08-08T23:59:59.000Z
A stator core for an electromagnetic pump includes a plurality of circumferentially abutting tapered laminations extending radially outwardly from a centerline axis to collectively define a radially inner bore and a radially outer circumference. Each of the laminations includes radially inner and outer edges and has a thickness increasing from the inner edge toward the outer edge to provide a substantially continuous path adjacent the circumference. This pump is used in nuclear fission reactors. 19 figs.
Electromagnetism Tutorial (Tutorial de Eletromagnetismo)
Dantas, Christine C
2009-01-01T23:59:59.000Z
The present tutorial aims at covering the fundamentals of electromagnetism, in a condensed and clear manner. Some solved and proposed exercises have been included. The reader is assumed to have knowledge of basic electricity, partial derivatives and multiple integrals. ----- O presente tutorial visa cobrir os fundamentos do eletromagnetismo, de forma condensada e clara. Alguns exercicios resolvidos e propostos foram incluidos. Assume-se conhecimento de eletricidade basica, derivadas parciais e integrais multiplas.
The nature of electromagnetic energy
Jerrold Franklin
2012-05-29T23:59:59.000Z
The nature of the electromagnetic (EM) energy for general charge and current distributions is analyzed. There are two well known forms for calculating EM energy as the integral over all space of either the electromagnetic fields: $u_{\\bf EB}=({\\bf E\\bcdot D+B\\bcdot H})/8\\pi$, or the electromagnetic potentials and charge-current densities: $u_{\\rho{\\bf A}}=1/2(\\rho\\phi+{\\bf j\\bcdot A})$. We discuss the appropriate use of each of these forms in calculating the total EM energy and the EM energy within a limited volume. We conclude that only the form $u_{\\bf EB}$ can be considered as a suitable EM energy density, while either form can be integrated to find the total EM energy. However, bounding surface integrals (if they don't vanish) must be included when using the $u_{\\bf EB}$ form. Including these surface integrals resolves some seeming paradoxes in the energy of electric or magnetic dipoles in uniform fields
Electromagnetic Probes at RHIC-II
G. David; R. Rapp; Z. Xu
2008-04-25T23:59:59.000Z
We summarize how future measurements of electromagnetic (e.m.) probes at the Relativistic Heavy Ion Collider (RHIC), in connection with theoretical analysis, can advance our understanding of strongly interacting matter at high energy densities and temperatures. After a brief survey of the important role that e.m. probes data have played at the Super Proton Synchrotron (SPS, CERN) and RHIC to date, we identify key physics objectives and observables that remain to be addressed to characterize the (strongly interacting) Quark-Gluon Plasma (sQGP) and associated transition properties at RHIC. These include medium modifications of vector mesons via low-mass dileptons, a temperature measurement of the hot phases via continuum radiation, as well as gamma-gamma correlations to characterize early source sizes. We outline strategies to establish microscopic matter and transition properties such as the number of degrees of freedom in the sQGP, the origin of the hadron masses and manifestations of chiral symmetry restoration, which will require accompanying but rather well-defined advances in theory. Increased experimental precision, order of magnitude higher statistics than currently achievable, as well as a detailed scan of colliding species and energies are then mandatory to achieve sufficient discrimination power in theoretical interpretations. This increased precision can be achieved with hardware upgrades to the large RHIC detectors (PHENIX and STAR) along with at least a factor of ten as increase in luminosity over the next few years as envisioned for RHIC-II.
Emergent cosmological constant from colliding electromagnetic waves
Halilsoy, M.; Mazharimousavi, S. Habib; Gurtug, O., E-mail: mustafa.halilsoy@emu.edu.tr, E-mail: habib.mazhari@emu.edu.tr, E-mail: ozay.gurtug@emu.edu.tr [Department of Physics, Eastern Mediterranean University, Gazimavgusa, north Cyprus, Mersin 10 (Turkey)
2014-11-01T23:59:59.000Z
In this study we advocate the view that the cosmological constant is of electromagnetic (em) origin, which can be generated from the collision of em shock waves coupled with gravitational shock waves. The wave profiles that participate in the collision have different amplitudes. It is shown that, circular polarization with equal amplitude waves does not generate cosmological constant. We also prove that the generation of the cosmological constant is related to the linear polarization. The addition of cross polarization generates no cosmological constant. Depending on the value of the wave amplitudes, the generated cosmological constant can be positive or negative. We show additionally that, the collision of nonlinear em waves in a particular class of Born-Infeld theory also yields a cosmological constant.
Dissipative electromagnetic solitary waves in collisional plasmas
Borhanian, Jafar [Department of Physics, Faculty of Science, University of Mohaghegh Ardabili, P.O.Box 179, Ardabil (Iran, Islamic Republic of)
2012-08-15T23:59:59.000Z
The propagation of linearly polarized electromagnetic (EM) waves in a collisional plasma is studied using multiple scale perturbation technique in a weakly nonlinear regime. A complex linear dispersion relation and a complex group velocity are obtained for EM waves propagating in a plasma and their dependence on system parameters is investigated. It is shown that the amplitude of EM pulse is governed by an envelope equation similar to a cubic complex Ginzburg-Landau equation. A traveling bright solitary wave solution for envelope equation is found, its existence condition in parameter space is explored and variation of its profile with system parameters is manipulated. Monitoring temporal evolution of traveling solitary wave solution provides more insight into the nature of this solution and ensures that depending on the parameters of the system, solitary wave solution may behave like a stationary soliton or may exhibit the behavior of a breathing soliton.
Electromagnetic Effects in SDF Explosions
Reichenbach, H; Neuwald, P; Kuhl, A L
2010-02-12T23:59:59.000Z
The notion of high ion and electron concentrations in the detonation of aluminized explosive mixtures has aroused some interest in electro-magnetic effects that the SDF charges might generate when detonated. Motivated by this interest we have started to investigate whether significant electro-magnetic effects show up in our small-scale experiments. However, the design of instrumentation for this purpose is far from straightforward, since there are a number of open questions. Thus the main aim of the feasibility tests is to find - if possible - a simple and reliable method that can be used as a diagnostic tool for electro-magnetic effects. SDF charges with a 0.5-g PETN booster and a filling of 1 g aluminum flakes have been investigated in three barometric bomb calorimeters with volumes ranging from 6.3 l to of 6.6 l. Though similar in volume, the barometric bombs differed in the length-to-diameter ratio. The tests were carried out with the bombs filled with either air or nitrogen at ambient pressure. The comparison of the test in air to those in nitrogen shows that the combustion of TNT detonation products or aluminum generates a substantial increase of the quasi-steady overpressure in the bombs. Repeated tests in the same configuration resulted in some scatter of the experimental results. The most likely reason is that the aluminum combustion in most or all cases is incomplete and that the amount of aluminum actually burned varies from test to test. The mass fraction burned apparently decreases with increasing aspect ratio L/D. Thus an L/D-ratio of about 1 is optimal for the performance of shock-dispersed-fuel combustion. However, at an L/D-ratio of about 5 the combustion still yields appreciable overpressure in excess of the detonation. For a multi-burst scenario in a tunnel environment with a number of SDF charges distributed along a tunnel section a spacing of 5 tunnel diameter and a fuel-specific volume of around 7 l/g might provide an acceptable compromise between optimizing the combustion performance and keeping the number of elementary charges low. Further tests in a barometric bomb calorimeter of 21.2 l volume were performed with four types of aluminum. The mass fraction burned in this case appeared to depend on the morphology of the aluminum particles. Flake aluminum exhibited a better performance than granulated aluminum with particle sizes ranging from below 25 {micro}m to 125 {micro}m for the coarsest material. In addition, a feasibility study on electro-magnetic effects from SDF charges detonated in a tunnel has been performed. A method was developed to measure the local, unsteady electro-conductivity in the detonation/combustion products cloud. This method proved to yield reproducible results. A variety of methods were tested with regard to probing electro-magnetic pulses from the detonation of SDF charges. The results showed little reproducibility and were small compared to the effect from pulsed high voltage discharges of comparatively small energy (around 32 J). Thus either no significant electromagnetic pulse is generated in our small-scale tests or the tested techniques have to be discarded as too insensitive or too limited in bandwidth to detect possibly very high frequency electro-magnetic disturbances.
Electromagnetic and nuclear radiation detector using micromechanical sensors
Thundat, Thomas G. (Knoxville, TN); Warmack, Robert J. (Knoxville, TN); Wachter, Eric A. (Oak Ridge, TN)
2000-01-01T23:59:59.000Z
Electromagnetic and nuclear radiation is detected by micromechanical sensors that can be coated with various interactive materials. As the micromechanical sensors absorb radiation, the sensors bend and/or undergo a shift in resonance characteristics. The bending and resonance changes are detected with high sensitivity by any of several detection methods including optical, capacitive, and piezoresistive methods. Wide bands of the electromagnetic spectrum can be imaged with picoJoule sensitivity, and specific absorptive coatings can be used for selective sensitivity in specific wavelength bands. Microcantilevers coated with optical cross-linking polymers are useful as integrating optical radiation dosimeters. Nuclear radiation dosimetry is possible by fabricating cantilevers from materials that are sensitive to various nuclear particles or radiation. Upon exposure to radiation, the cantilever bends due to stress and its resonance frequency shifts due to changes in elastic properties, based on cantilever shape and properties of the coating.
Sainath, Kamalesh
2015-01-01T23:59:59.000Z
We propose a full-wave pseudo-analytical numerical electromagnetic (EM) algorithm to model subsurface induction sensors, traversing planar-layered geological formations of arbitrary EM material anisotropy and loss, which are used, for example, in the exploration of hydrocarbon reserves. Unlike past pseudo-analytical planar-layered modeling algorithms that impose parallelism between the formation's bed junctions however, our method involves judicious employment of Transformation Optics techniques to address challenges related to modeling arbitrarily-oriented, relative slope (i.e., tilting) between said junctions. The algorithm exhibits this flexibility, both with respect to anisotropy in the formation layers as well as junction tilting, via employing special planar slabs that coat each "flattened" (i.e., originally tilted) planar interface, locally redirecting the incident wave within the coating slabs to cause wave fronts to interact with the flattened interfaces as if they were still tilted with a specific, ...
Detection and analysis of RF emission generated by laser-matter interactions
Van Stryland, Eric
range 1-40GHz. Keywords: Electromagnetic pulses, laser-matter interactions, plasmas, femtosecond pulses 1. INTRODUCTION Transient electric fields are an established source of electromagnetic pulses of electromagnetic pulse events than nanosecond lasers. There are two mechanisms under which transient electric
Timo Bihr; Udo Seifert; Ana-Suncana Smith
2015-03-05T23:59:59.000Z
Macromolecular complexation leading to coupling of two or more cellular membranes is a crucial step in a number of biological functions of the cell. While other mechanisms may also play a role, adhesion always involves the fluctuations of deformable membranes, the diffusion of proteins and the molecular binding and unbinding. Because these stochastic processes couple over a multitude of time and length scales, theoretical modeling of membrane adhesion has been a major challenge. Here we present an effective Monte Carlo scheme within which the effects of the membrane are integrated into local rates for molecular recognition. The latter step in the Monte Carlo approach enables us to simulate the nucleation and growth of adhesion domains within a system of the size of a cell for tens of seconds without loss of accuracy, as shown by comparison to $10^6$ times more expensive Langevin simulations. To perform this validation, the Langevin approach was augmented to simulate diffusion of proteins explicitly, together with reaction kinetics and membrane dynamics. We use the Monte Carlo scheme to gain deeper insight to the experimentally observed radial growth of micron sized adhesion domains, and connect the effective rate with which the domain is growing to the underlying microscopic events. We thus demonstrate that our technique yields detailed information about protein transport and complexation in membranes, which is a fundamental step toward understanding even more complex membrane interactions in the cellular context.
611: Electromagnetic Theory Problem Sheet 4
Pope, Christopher
611: Electromagnetic Theory Problem Sheet 4 (1a) The angular momentum 3-vector L is defined by Li) Prove from the above that for the electromagnetic field, L = 1 4 r × (E × B) d3 x (b) Prove that dR dt = P E where R is the centre of mass of the electromagnetic field, defined by R Wd3x = rWd3x
Electromagnetic wave scattering by Schwarzschild black holes
Luís C. B. Crispino; Sam R. Dolan; Ednilton S. Oliveira
2009-05-20T23:59:59.000Z
We analyze the scattering of a planar monochromatic electromagnetic wave incident upon a Schwarzschild black hole. We obtain accurate numerical results from the partial wave method for the electromagnetic scattering cross section, and show that they are in excellent agreement with analytical approximations. The scattering of electromagnetic waves is compared with the scattering of scalar, spinor and gravitational waves. We present a unified picture of the scattering of all massless fields for the first time.
An electromagnetic analog of gravitational wave memory
Lydia Bieri; David Garfinkle
2013-09-10T23:59:59.000Z
We present an electromagnetic analog of gravitational wave memory. That is, we consider what change has occurred to a detector of electromagnetic radiation after the wave has passed. Rather than a distortion in the detector, as occurs in the gravitational wave case, we find a residual velocity (a "kick") to the charges in the detector. In analogy with the two types of gravitational wave memory ("ordinary" and "nonlinear") we find two types of electromagnetic kick.
Remo Ruffini; Jay D. Salmonson; James R. Wilson; She-Sheng Xue
2000-04-18T23:59:59.000Z
The interaction of an expanding Pair-Electromagnetic pulse (PEM pulse) with a shell of baryonic matter surrounding a Black Hole with electromagnetic structure (EMBH) is analyzed for selected values of the baryonic mass at selected distances well outside the dyadosphere of an EMBH. The dyadosphere, the region in which a super critical field exists for the creation of electron-positron pairs, is here considered in the special case of a Reissner-Nordstrom geometry. The interaction of the PEM pulse with the baryonic matter is described using a simplified model of a slab of constant thickness in the laboratory frame (constant-thickness approximation) as well as performing the integration of the general relativistic hydrodynamical equations. The validation of the constant-thickness approximation, already presented in a previous paper Ruffini, et al.(1999) for a PEM pulse in vacuum, is here generalized to the presence of baryonic matter. It is found that for a baryonic shell of mass-energy less than 1% of the total energy of the dyadosphere, the constant-thickness approximation is in excellent agreement with full general relativistic computations. The approximation breaks down for larger values of the baryonic shell mass, however such cases are of less interest for observed Gamma Ray Bursts (GRBs). On the basis of numerical computations of the slab model for PEM pulses, we describe (i) the properties of relativistic evolution of a PEM pulse colliding with a baryonic shell; (ii) the details of the expected emission energy and observed temperature of the associated GRBs for a given value of the EMBH mass; 10^3 solar masses, and for baryonic mass-energies in the range 10^{-8} to 10^{-2} the total energy of the dyadosphere.
Detection of electromagnetic waves using MEMS antennas
Lavrik, Nickolay V [ORNL] [ORNL; Tobin, [Oak Ridge National Laboratory (ORNL)] [Oak Ridge National Laboratory (ORNL); Bowland, Landon T [ORNL] [ORNL
2011-01-01T23:59:59.000Z
We describe the design, fabrication and characterization of simple micromechanical structures that are capable of sensing static electric time varying electromagnetic fields. Time varying electric field sensing is usually achieved using an electromagnetic antenna and a receiver. However, these antenna-based approaches do not exhibit high sensitivity over a broad frequency (or wavelength) range. An important aspect of the present work is that, in contrast to traditional antennas, the dimensions of these micromechanical oscillators can be much smaller than the wavelength of the electromagnetic wave. We characterized the fabricated micromechanical oscillators by measuring their responses to time varying electric and electromagnetic fields.
6.630 Electromagnetic Theory, Fall 2002
Kong, Jin Au, 1942-
6.630 is an introductory subject on electromagnetics, emphasizing fundamental concepts and applications of Maxwell equations. Topics covered include: polarization, dipole antennas, wireless communications, forces and energy, ...
Y-12 electromagnetic separation process wins approval
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
work immediately. Just like what we know of Groves, huh. The gaseous diffusion, reactor pile and electromagnetic separation approaches were reviewed with each group attempting to...
Airborne electromagnetic surveys as a reconnaissance technique...
geothermal exploration Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Proceedings: Airborne electromagnetic surveys as a reconnaissance technique for...
Electromagnetic compatibility of nuclear power plants
Cabayan, H.S.
1983-01-01T23:59:59.000Z
Lately, there has been a mounting concern about the electromagnetic compatibility of nuclear-power-plant systems mainly because of the effects due to the nuclear electromagnetic pulse, and also because of the introduction of more-sophisticated and, therefore, more-susceptible solid-state devices into the plants. Questions have been raised about the adequacy of solid-state-device protection against plant electromagnetic-interference sources and transients due to the nuclear electromagnetic pulse. In this paper, the author briefly reviews the environment, and the coupling, susceptibility, and vulnerability assessment issues of commercial nuclear power plants.
Quantum modulation against electromagnetic interference
Juan Carlos Garcia-Escartin
2014-11-26T23:59:59.000Z
Periodic signals in electrical and electronic equipment can cause interference in nearby devices. Randomized modulation of those signals spreads their energy through the frequency spectrum and can help to mitigate electromagnetic interference problems. The inherently random nature of quantum phenomena makes them a good control signal. I present a quantum modulation method based on the random statistics of quantum light. The paper describes pulse width modulation schemes where a Poissonian light source acts as a random control that spreads the energy of the potential interfering signals. I give an example application for switching-mode power supplies and comment the further possibilities of the method.
Electromagnetic properties of massive neutrinos
Dobrynina, A. A., E-mail: aleksandradobrynina@rambler.ru; Mikheev, N. V.; Narynskaya, E. N. [Demidov Yaroslavl State University (Russian Federation)] [Demidov Yaroslavl State University (Russian Federation)
2013-10-15T23:59:59.000Z
The vertex function for a virtual massive neutrino is calculated in the limit of soft real photons. A method based on employing the neutrino self-energy operator in a weak external electromagnetic field in the approximation linear in the field is developed in order to render this calculation of the vertex function convenient. It is shown that the electric charge and the electric dipole moment of the real neutrino are zero; only the magnetic moment is nonzero for massive neutrinos. A fourth-generation heavy neutrino of mass not less than half of the Z-boson mass is considered as a massive neutrino.
Dr. S. Cruz-Pol, INEL 4151-Electromagnetics I
Cruz-Pol, Sandra L.
! dt d NVemf -= -= sL dSB t dlE Electromagnetics was born! Ø This is the principle of motors = magnetic field density, [Teslas] mH mF HB ED o o /104 36 10 /1085.8 7 9 12 - - - ×= =×= = = µ µ #12;Dr://micro.magnet.fsu.edu/electromag/java/generator/dc.html BlIF BuQF ×= ×= Encarta® Who was NikolaTesla? ØFind out what inventions he made ØHis relation
Florida, University of
discharge, lightning electromagnetic (EM) pulse, trav- eling wave, wave reflections. I. INTRODUCTION466 IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, VOL. 51, NO. 3, AUGUST 2009 Electromagnetic Pulses Produced by Bouncing-Wave-Type Lightning Discharges Amitabh Nag, Member, IEEE, and Vladimir A
Melamed, Timor
Progress In Electromagnetics Research, Vol. 114, 317332, 2011 PULSED BEAM EXPANSION-based pulsed-beams expansion of planar aperture time- dependent electromagnetic fields. The propagating field-beam waveobjects over the frame spectral lattice. Explicit asymptotic expressions for the electromagnetic pulsed
Reducible Quantum Electrodynamics. I. The Quantum Dimension of the Electromagnetic Field
Jan Naudts
2015-05-30T23:59:59.000Z
In absence of currents and charges the quantized electromagnetic field can be described by wave functions which for each individual wave vector are normalized to one. The resulting formalism involves reducible representations of the Canonical Commutation Relations. The corresponding paradigm is a space-time filled with two-dimensional quantum harmonic oscillators. Mathematically, this is equivalent with two additional dimensions penetrated by the electromagnetic waves.
Gravitation and electromagnetism in theory of a unified four-vector field
Alexander A. Chernitskii
2006-09-28T23:59:59.000Z
A four-vector field in flat space-time, satisfying a gauge-invariant set of second-order differential equations, is considered as a unified field. The model variational principle corresponds to the general covariance idea and gives rise to nonlinear Born-Infeld electrodynamics. Thus the four-vector field is considered as an electromagnetic potential. It is suggested that space-localized (particle) solutions of the nonlinear field model correspond to material particles. Electromagnetic and gravitational interactions between field particles appear naturally when a many-particle solution is investigated with the help of a perturbation method. The electromagnetic interaction appears in the first order in the small field of distant particles. In the second order, there is an effective Riemannian space induced by the field of distant particles. This Riemannian space can be connected with gravitation.
Electromagnetically Induced Transparency and Slow Light with Optomechanics
Safavi-Naeini, Amir H; Chan, Jasper; Eichenfield, Matt; Winger, Martin; Lin, Qiang; Hill, Jeffrey T; Chang, Darrick; Painter, Oskar
2010-01-01T23:59:59.000Z
Controlling the interaction between localized optical and mechanical excitations has recently become possible following advances in micro- and nano-fabrication techniques. To date, most experimental studies of optomechanics have focused on measurement and control of the mechanical subsystem through its interaction with optics, and have led to the experimental demonstration of dynamical back-action cooling and optical rigidity of the mechanical system. Converseley, the optical response of these systems is also modified in the presence of mechanical interactions, leading to strong nonlinear optical effects such as Electromagnetically Induced Transparency (EIT) and parametric normal-mode splitting. In atomic systems, seminal experiments and proposals to slow and stop the propagation of light, and their applicability to modern optical networks, and future quantum networks, have thrust EIT to the forefront of experimental study during the last two decades. In a similar fashion, here we use the optomechanical nonli...
Electromagnetic Eavesdropping Risks of Flat-Panel Displays
Kuhn, Markus
Electromagnetic Eavesdropping Risks of Flat-Panel Displays Markus G. Kuhn University of Cambridge/ Abstract. Electromagnetic eavesdropping of computer displays first demonstrated to the general public shielded against such compromising electromagnetic emanations. The exact "TEMPEST" emis- sion limits
Electromagnetic corrections to light hadron masses
A. Portelli; S. Dürr; Z. Fodor; J. Frison; C. Hoelbling; S. D. Katz; S. Krieg; T. Kurth; L. Lellouch; T. Lippert; K. K. Szabó; A. Ramos
2011-01-12T23:59:59.000Z
At the precision reached in current lattice QCD calculations, electromagnetic effects are becoming numerically relevant. We will present preliminary results for electromagnetic corrections to light hadron masses, based on simulations in which a $\\mathrm{U}(1)$ degree of freedom is superimposed on $N_f=2+1$ QCD configurations from the BMW collaboration.
Localization of fremions in rotating electromagnetic fields
B. V. Gisin
2015-06-15T23:59:59.000Z
Parameters of localization are defined in the lab and rotating frame for solutions of the Dirac equation in the field of a traveling circularly polarized electromagnetic wave and constant magnetic field. The radius of localization is of the order of the electromagnetic wavelength and lesser.
Space-time Curvature of Classical Electromagnetism
R. W. M. Woodside
2004-10-08T23:59:59.000Z
The space-time curvature carried by electromagnetic fields is discovered and a new unification of geometry and electromagnetism is found. Curvature is invariant under charge reversal symmetry. Electromagnetic field equations are examined with De Rham co homology theory. Radiative electromagnetic fields must be exact and co exact to preclude unobserved massless topological charges. Weyl's conformal tensor, here called ``the gravitational field'', is decomposed into a divergence-free non-local piece with support everywhere and a local piece with the same support as the matter. By tuning a local gravitational field to a Maxwell field the electromagnetic field's local gravitational field is discovered. This gravitational field carries the electromagnetic field's polarization or phase information, unlike Maxwell's stress-energy tensor. The unification assumes Einstein's equations and derives Maxwell's equations from curvature assumptions. Gravity forbids magnetic monopoles! This unification is stronger than the Einstein-Maxwell equations alone, as those equations must produce the electromagnetic field's local gravitational field and not just any conformal tensor. Charged black holes are examples. Curvature of radiative null electromagnetic fields is characterized.
Ultimate Energy Densities for Electromagnetic Pulses
Mankei Tsang
2008-03-06T23:59:59.000Z
The ultimate electric and magnetic energy densities that can be attained by bandlimited electromagnetic pulses in free space are calculated using an ab initio quantized treatment, and the quantum states of electromagnetic fields that achieve the ultimate energy densities are derived. The ultimate energy densities also provide an experimentally accessible metric for the degree of localization of polychromatic photons.
Narrow field electromagnetic sensor system and method
McEwan, T.E.
1996-11-19T23:59:59.000Z
A narrow field electromagnetic sensor system and method of sensing a characteristic of an object provide the capability to realize a characteristic of an object such as density, thickness, or presence, for any desired coordinate position on the object. One application is imaging. The sensor can also be used as an obstruction detector or an electronic trip wire with a narrow field without the disadvantages of impaired performance when exposed to dirt, snow, rain, or sunlight. The sensor employs a transmitter for transmitting a sequence of electromagnetic signals in response to a transmit timing signal, a receiver for sampling only the initial direct RF path of the electromagnetic signal while excluding all other electromagnetic signals in response to a receive timing signal, and a signal processor for processing the sampled direct RF path electromagnetic signal and providing an indication of the characteristic of an object. Usually, the electromagnetic signal is a short RF burst and the obstruction must provide a substantially complete eclipse of the direct RF path. By employing time-of-flight techniques, a timing circuit controls the receiver to sample only the initial direct RF path of the electromagnetic signal while not sampling indirect path electromagnetic signals. The sensor system also incorporates circuitry for ultra-wideband spread spectrum operation that reduces interference to and from other RF services while allowing co-location of multiple electronic sensors without the need for frequency assignments. 12 figs.
Narrow field electromagnetic sensor system and method
McEwan, Thomas E. (Livermore, CA)
1996-01-01T23:59:59.000Z
A narrow field electromagnetic sensor system and method of sensing a characteristic of an object provide the capability to realize a characteristic of an object such as density, thickness, or presence, for any desired coordinate position on the object. One application is imaging. The sensor can also be used as an obstruction detector or an electronic trip wire with a narrow field without the disadvantages of impaired performance when exposed to dirt, snow, rain, or sunlight. The sensor employs a transmitter for transmitting a sequence of electromagnetic signals in response to a transmit timing signal, a receiver for sampling only the initial direct RF path of the electromagnetic signal while excluding all other electromagnetic signals in response to a receive timing signal, and a signal processor for processing the sampled direct RF path electromagnetic signal and providing an indication of the characteristic of an object. Usually, the electromagnetic signal is a short RF burst and the obstruction must provide a substantially complete eclipse of the direct RF path. By employing time-of-flight techniques, a timing circuit controls the receiver to sample only the initial direct RF path of the electromagnetic signal while not sampling indirect path electromagnetic signals. The sensor system also incorporates circuitry for ultra-wideband spread spectrum operation that reduces interference to and from other RF services while allowing co-location of multiple electronic sensors without the need for frequency assignments.
General Relativity in Electrical Engineering
Ulf Leonhardt; Thomas G. Philbin
2006-07-26T23:59:59.000Z
In electrical engineering metamaterials have been developed that offer unprecedented control over electromagnetic fields. Here we show that general relativity lends the theoretical tools for designing devices made of such versatile materials. Given a desired device function, the theory describes the electromagnetic properties that turn this function into fact. We consider media that facilitate space-time transformations and include negative refraction. Our theory unifies the concepts operating behind the scenes of perfect invisibility devices, perfect lenses, the optical Aharonov-Bohm effect and electromagnetic analogs of the event horizon, and may lead to further applications.
Matched Slow Pulses Using Double Electromagnetically Induced Transparency
Andrew MacRae; Geoff Campbell; A. I. Lvovsky
2008-09-29T23:59:59.000Z
We implement double electromagnetically-induced transparency (double EIT) in rubidium vapor, using a tripod-shaped energy level scheme consisting of hyperfine and magnetic sublevels of the 5S1/2 to 5P1/2 transition. We show experimentally that through the use of double EIT one can control the contrast of transparency windows as well as group velocities of the two signal fields. In particular, the group velocities can be equalized, which holds promise to greatly enhance nonlinear optical interaction between these fields.
Electromagnetic field with constraints and Papapetrou equation
Z. Ya. Turakulov; A. T. Muminov
2006-01-12T23:59:59.000Z
It is shown that geometric optical description of electromagnetic wave with account of its polarization in curved space-time can be obtained straightforwardly from the classical variational principle for electromagnetic field. For this end the entire functional space of electromagnetic fields must be reduced to its subspace of locally plane monochromatic waves. We have formulated the constraints under which the entire functional space of electromagnetic fields reduces to its subspace of locally plane monochromatic waves. These constraints introduce variables of another kind which specify a field of local frames associated to the wave and contain some congruence of null-curves. The Lagrangian for constrained electromagnetic field contains variables of two kinds, namely, a congruence of null-curves and the field itself. This yields two kinds of Euler-Lagrange equations. Equations of first kind are trivial due to the constraints imposed. Variation of the curves yields the Papapetrou equations for a classical massless particle with helicity 1.
Noninvasive valve monitor using alternating electromagnetic field
Eissenberg, David M. (Oak Ridge, TN); Haynes, Howard D. (Knoxville, TN); Casada, Donald A. (Knoxville, TN)
1993-01-01T23:59:59.000Z
One or more electrical coils are carefully located on the outside of a valve body. An alternating current passing through the coil(s) results in an alternating electromagnetic field being transmitted into the valve body and valve internals. The electromagnetic field varies in intensity and polarity in the valve. As the position of a valve internal part is changed, the electromagnetic field throughout the valve body and its internals is altered. A passive receiver coil carefully located on the outside of the valve body detects the intensity of the electromagnetic field at that location as an induced electrical voltage in the coil. With the change in position of the valve internal part, there is a corresponding change in the induced voltage as a result of the alteration in the alternating electromagnetic field at that location. Changes in the voltage provide an indication of the position and motion of valve internals.
Noninvasive valve monitor using alternating electromagnetic field
Eissenberg, D.M.; Haynes, H.D.; Casada, D.A.
1993-03-16T23:59:59.000Z
One or more electrical coils are carefully located on the outside of a valve body. An alternating current passing through the coil(s) results in an alternating electromagnetic field being transmitted into the valve body and valve internals. The electromagnetic field varies in intensity and polarity in the valve. As the position of a valve internal part is changed, the electromagnetic field throughout the valve body and its internals is altered. A passive receiver coil carefully located on the outside of the valve body detects the intensity of the electromagnetic field at that location as an induced electrical voltage in the coil. With the change in position of the valve internal part, there is a corresponding change in the induced voltage as a result of the alteration in the alternating electromagnetic field at that location. Changes in the voltage provide an indication of the position and motion of valve internals.
M. Marklund; P. K. Shukla; G. Brodin; L. Stenflo
2004-10-21T23:59:59.000Z
The nonlinear interaction, due to quantum electrodynamical (QED) effects, between two electromagnetic pulses and a radiation gas is investigated. It is found that the governing equations admit both modulational and filamentational instabilities. The instability growth rates are derived, and the results are discussed.
Geometric and Electromagnetic Aspects of Fusion Pore Making
Darya Apushkinskaya; Evgeny Apushkinsky; Bernhelm Booss-Bavnbek; Martin Koch
2010-04-29T23:59:59.000Z
For regulated exocytosis, we model the morphology and dynamics of the making of the fusion pore or porosome as a cup-shaped lipoprotein structure (a dimple or pit) on the cytosol side of the plasma membrane. We describe the forming of the dimple by a free boundary problem. We discuss the various forces acting and analyze the magnetic character of the wandering electromagnetic field wave produced by intracellular spatially distributed pulsating (and well observed) release and binding of calcium ions anteceding the bilayer membrane vesicle fusion of exocytosis. Our approach explains the energy efficiency of the observed dimple forming prior to hemifusion and fusion pore, and the observed flickering in secretion. It provides a frame to relate characteristic time length of exocytosis to the frequency, amplitude and direction of propagation of the underlying electromagnetic field wave.
Full Action for an Electromagnetic Field with Electrical and Magnetic Charges
S. S. Serova; S. A. Serov
2010-09-25T23:59:59.000Z
The paper offers the full action for an electromagnetic field with electrical and magnetic charges; Feynman laws are formulated for the calculation of the interaction cross-sections for electrically and magnetically charged particles on the base of offered action within relativistic quantum field theory. Derived with formulated Feynman rules cross-section of the interaction between an elementary particle with magnetic charge and an elementary particle with electrical charge proves to be equal zero.
Rahmani, Z., E-mail: z.rahmani@kashanu.ac.ir; Jazi, B. [Department of Laser and Photonics, Faculty of Physics, University of Kashan, Kashan (Iran, Islamic Republic of); Heidari-Semiromi, E. [Department of Condense Matter, Faculty of Physics, University of Kashan, Kashan (Iran, Islamic Republic of)
2014-09-15T23:59:59.000Z
The propagation of electromagnetic waves in an elliptical plasma waveguide including strongly magnetized plasma column and a dielectric rod is investigated. The dispersion relation of guided hybrid electromagnetic waves is obtained. Excitation of the waves by a thin annular relativistic elliptical electron beam will be studied. The time growth rate of electromagnetic waves is obtained. The effects of relative permittivity constant of dielectric rod, radius of dielectric rod, accelerating voltage, and current density of the annular elliptical beam on the growth rate and the frequency spectra are numerically presented.
On the Axioms of Topological Electromagnetism
D. H. Delphenich
2003-12-14T23:59:59.000Z
The axioms of topological electromagnetism are refined by the introduction of the de Rham homology of k-vector fields on orientable manifolds and the use of Poincare duality in place of Hodge duality. The central problem of defining the electromagnetic constitutive law is elaborated upon in the linear and nonlinear cases. The manner by which the spacetime metric might follow from the constitutive law is examined in the linear case. The possibility that the intersection form of the spacetime manifold might play a role in defining a topological basis for the constitutive law is explored. The manner by which wave motion might follow from the electromagnetic structure is also discussed.
Spinors and pre-metric electromagnetism
David Delphenich
2005-12-22T23:59:59.000Z
The basic concepts of the formulation of Maxwellian electromagnetism in the absence of a Minkowski scalar product on spacetime are summarized, with particular emphasis on the way that the electromagnetic constitutive law on the space of bivectors over spacetime supplants the role of the Minkowski scalar product on spacetime itself. The complex geometry of the space of bivectors is summarized, with the intent of showing how an isomorphic copy of the Lorentz group appears in that context. The use of complex 3-spinors to represent electromagnetic fields is then discussed, as well as the expansion of scope that the more general complex projective geometry of the space of bivectors suggests.
Electromagnetic wave propagation in a random distribution of C{sub 60} molecules
Moradi, Afshin, E-mail: a.moradi@kut.ac.ir [Department of Engineering Physics, Kermanshah University of Technology, Kermanshah, Iran and Department of Nano Sciences, Institute for Studies in Theoretical Physics and Mathematics (IPM), Tehran (Iran, Islamic Republic of)
2014-10-15T23:59:59.000Z
Propagation of electromagnetic waves in a random distribution of C{sub 60} molecules are investigated, within the framework of the classical electrodynamics. Electronic excitations over the each C{sub 60} molecule surface are modeled by a spherical layer of electron gas represented by two interacting fluids, which takes into account the different nature of the ? and ? electrons. It is found that the present medium supports four modes of electromagnetic waves, where they can be divided into two groups: one group with shorter wavelength than the light waves of the same frequency and the other with longer wavelength than the free-space radiation.
Numerical Methods of Computational Electromagnetics for Complex Inhomogeneous Systems
Cai, Wei
2014-05-15T23:59:59.000Z
Understanding electromagnetic phenomena is the key in many scientific investigation and engineering designs such as solar cell designs, studying biological ion channels for diseases, and creating clean fusion energies, among other things. The objectives of the project are to develop high order numerical methods to simulate evanescent electromagnetic waves occurring in plasmon solar cells and biological ion-channels, where local field enhancement within random media in the former and long range electrostatic interactions in the latter are of major challenges for accurate and efficient numerical computations. We have accomplished these objectives by developing high order numerical methods for solving Maxwell equations such as high order finite element basis for discontinuous Galerkin methods, well-conditioned Nedelec edge element method, divergence free finite element basis for MHD, and fast integral equation methods for layered media. These methods can be used to model the complex local field enhancement in plasmon solar cells. On the other hand, to treat long range electrostatic interaction in ion channels, we have developed image charge based method for a hybrid model in combining atomistic electrostatics and continuum Poisson-Boltzmann electrostatics. Such a hybrid model will speed up the molecular dynamics simulation of transport in biological ion-channels.
Binary power multiplier for electromagnetic energy
Farkas, Zoltan D. (203 Leland Ave., Menlo Park, CA 94025)
1988-01-01T23:59:59.000Z
A technique for converting electromagnetic pulses to higher power amplitude and shorter duration, in binary multiples, splits an input pulse into two channels, and subjects the pulses in the two channels to a number of binary pulse compression operations. Each pulse compression operation entails combining the pulses in both input channels and selectively steering the combined power to one output channel during the leading half of the pulses and to the other output channel during the trailing half of the pulses, and then delaying the pulse in the first output channel by an amount equal to half the initial pulse duration. Apparatus for carrying out each of the binary multiplication operation preferably includes a four-port coupler (such as a 3 dB hybrid), which operates on power inputs at a pair of input ports by directing the combined power to either of a pair of output ports, depending on the relative phase of the inputs. Therefore, by appropriately phase coding the pulses prior to any of the pulse compression stages, the entire pulse compression (with associated binary power multiplication) can be carried out solely with passive elements.
Enhanced Electromagnetic Chirality by Locally Excited Surface Plasmon Polaritons
Alizadeh, M H
2015-01-01T23:59:59.000Z
The possibility to enhance chiral light-matter interactions through plasmonic nanostructures provides entirely new opportunities for greatly improving the detection limits of chiroptical spectroscopies down to the single molecule level. The most pronounced of these chiral interactions occur in the ultraviolet (UV) range of the electromagnetic spectrum, which is difficult to access with conventional localized plasmon resonance based sensors. Although Surface Plasmon Polaritons (SPPs) on noble metal films can sustain resonances in the desired spectral range, their transverse magnetic nature has been an obstacle for enhancing chiroptical effects. Here we demonstrate, both analytically and numerically, that SPPs excited by near-field sources can exhibit rich and non-trivial chiral characteristics. In particular, we show that the excitation of SPPs by a chiral source not only results in a locally enhanced optical chirality but also achieves manifold enhancement of net optical chirality. Our finding that SPPs facil...
Electromagnetic Structure of Few-Nucleon Ground States
Marcucci, L E; Pena, M T; Piarulli, M; Schiavilla, R; Sick, I; Stadler, A; Van Orden, J W; Viviani, M
2015-01-01T23:59:59.000Z
Experimental form factors of the hydrogen and helium isotopes, extracted from an up-to-date global analysis of cross sections and polarization observables measured in elastic electron scattering from these systems, are compared to predictions obtained in three different theoretical approaches: the first is based on realistic interactions and currents, including relativistic corrections (labeled as the conventional approach); the second relies on a chiral effective field theory description of the strong and electromagnetic interactions in nuclei (labeled $\\chi$EFT); the third utilizes a fully relativistic treatment of nuclear dynamics as implemented in the covariant spectator theory (labeled CST). For momentum transfers below $Q \\lesssim 5$ fm$^{-1}$ there is satisfactory agreement between experimental data and theoretical results in all three approaches. However, at $Q \\gtrsim 5$ fm$^{-1}$, particularly in the case of the deuteron, a relativistic treatment of the dynamics, as is done in the CST, is necessary....
Plasma confinement by circularly polarized electromagnetic field in toroidal geometry
Svidzinski, Vladimir A. [University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); and Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)
2007-10-15T23:59:59.000Z
A novel plasma confinement concept based on plasma confinement by electromagnetic pressure of circularly polarized electromagnetic fields is proposed. Practical implementation of this concept in a toroidal device is suggested. In this concept the confining field frequency is in the lower range such that the size of the device is much smaller than the vacuum wavelength. Most of the previous radio-frequency (rf) confinement concepts of unmagnetized plasma were related to confinement in rf cavities which operated at high frequency for which the size of the cavity is comparable to the wavelength. Operation at lower frequencies simplifies rf design, reduces Ohmic losses in the conducting walls and probably makes application of superconductors for wall materials more feasible. It is demonstrated that circular (or nearly circular) polarization of the electromagnetic field is required for confinement from both the equilibrium and stability considerations. Numerical analysis of plasma confinement for magnetohydrodynamic plasma model in two-dimensional toroidal geometry is performed. Within this model plasma is confined by the applied rf fields and its equilibrium is stable. Technically feasible compact and medium size toroidal plasma confinement devices based on this concept are proposed. Application of this approach to the fusion reactor requires use of superconducting materials for the toroidal shell to reduce the Ohmic losses. Further theoretical and experimental studies are required for a more reliable conclusion about the attractiveness of this plasma confinement concept.
Electromagnetic Side Channels of an FPGA Implementation of AES
International Association for Cryptologic Research (IACR)
Electromagnetic Side Channels of an FPGA Implementation of AES Vincent Carlier, Hervâ??e Chabanne processed. Another side channel is the one that exploits the Electromagnetic (EM) emanations. Indeed references. In [QS01, GMO01], Simple Electromagnetic Analysis (SEMA) and Di#erential Electromagnetic Analysis
Electromagnetic Side Channels of an FPGA Implementation of AES
International Association for Cryptologic Research (IACR)
Electromagnetic Side Channels of an FPGA Implementation of AES Vincent Carlier, HervÂ´e Chabanne processed. Another side channel is the one that exploits the Electromagnetic (EM) emanations. Indeed references. In [QS01, GMO01], Simple Electromagnetic Analysis (SEMA) and Differential Electromagnetic
A pulsed electromagnet controller for prepolarized MRI
Nam, Hyokwon
2001-01-01T23:59:59.000Z
fundamental measure of scanner performance. To enable PMRI experiments, a pulsed electromagnet controller has been designed and built. In this thesis, the theory of the controller is presented and results are discussed....
Least-squares methods for computational electromagnetics
Kolev, Tzanio Valentinov
2004-11-15T23:59:59.000Z
The modeling of electromagnetic phenomena described by the Maxwell's equations is of critical importance in many practical applications. The numerical simulation of these equations is challenging and much more involved than initially believed...
Dynamic programming applied to electromagnetic satellite actuation
Eslinger, Gregory John
2013-01-01T23:59:59.000Z
Electromagnetic formation flight (EMFF) is an enabling technology for a number of space mission architectures. While much work has been done for EMFF control for large separation distances, little work has been done for ...
Advances in non-planar electromagnetic prototyping
Ehrenberg, Isaac M
2013-01-01T23:59:59.000Z
The advent of metamaterials has introduced new ways to manipulate how electromagnetic waves reflect, refract and radiate in systems where the range of available material properties now includes negative permittivity, ...
Electromagnetic Characterization of MIMO Communication Systems
Heath Jr., - Robert W.
Electromagnetic Characterization of MIMO Communication Systems Kapil R. Dandekar, Sumant Kawale) wireless communication links [1, 2]. Systems with MIMO communication links use multiple antenna arrays, one generation mobile cellular systems [9]. The theoretical capabilities of MIMO communication links have been
A pulsed electromagnet controller for prepolarized MRI
Nam, Hyokwon
2001-01-01T23:59:59.000Z
fundamental measure of scanner performance. To enable PMRI experiments, a pulsed electromagnet controller has been designed and built. In this thesis, the theory of the controller is presented and results are discussed....
Electromagnetically Induced Transparency and Slow Light with Optomechanics
Amir H. Safavi-Naeini; Thiago P. Mayer Alegre; Jasper Chan; Matt Eichenfield; Martin Winger; Qiang Lin; Jeffrey T. Hill; Darrick Chang; Oskar Painter
2010-12-14T23:59:59.000Z
Controlling the interaction between localized optical and mechanical excitations has recently become possible following advances in micro- and nano-fabrication techniques. To date, most experimental studies of optomechanics have focused on measurement and control of the mechanical subsystem through its interaction with optics, and have led to the experimental demonstration of dynamical back-action cooling and optical rigidity of the mechanical system. Conversely, the optical response of these systems is also modified in the presence of mechanical interactions, leading to strong nonlinear effects such as Electromagnetically Induced Transparency (EIT) and parametric normal-mode splitting. In atomic systems, seminal experiments and proposals to slow and stop the propagation of light, and their applicability to modern optical networks, and future quantum networks, have thrust EIT to the forefront of experimental study during the last two decades. In a similar fashion, here we use the optomechanical nonlinearity to control the velocity of light via engineered photon-phonon interactions. Our results demonstrate EIT and tunable optical delays in a nanoscale optomechanical crystal device, fabricated by simply etching holes into a thin film of silicon (Si). At low temperature (8.7 K), we show an optically-tunable delay of 50 ns with near-unity optical transparency, and superluminal light with a 1.4 microseconds signal advance. These results, while indicating significant progress towards an integrated quantum optomechanical memory, are also relevant to classical signal processing applications. Measurements at room temperature and in the analogous regime of Electromagnetically Induced Absorption (EIA) show the utility of these chip-scale optomechanical systems for optical buffering, amplification, and filtering of microwave-over-optical signals.
Electromagnetic and spin polarisabilities in lattice QCD
W. Detmold; B. C. Tiburzi; A. Walker-Loud
2006-10-02T23:59:59.000Z
We discuss the extraction of the electromagnetic and spin polarisabilities of nucleons from lattice QCD. We show that the external field method can be used to measure all the electromagnetic and spin polarisabilities including those of charged particles. We then turn to the extrapolations required to connect such calculations to experiment in the context of chiral perturbation theory, finding a strong dependence on the lattice volume and quark masses.
Electromagnetic Corrections in Staggered Chiral Perturbation Theory
C. Bernard; E. D. Freeland
2010-11-17T23:59:59.000Z
To reduce errors in light-quark mass determinations, it is now necessary to consider electromagnetic contributions to light-meson masses. Calculations using staggered quarks and quenched photons are currently underway. Suitably-extended chiral perturbation theory is necessary to extrapolate the lattice data to the physical limit. Here we give (preliminary) results for light-meson masses using staggered chiral perturbation theory including electromagnetism, and discuss the extent to which quenched-photon simulations can improve quark-mass calculations.
Unification of Gravity and Electromagnetism I: Mach's Principle and Cosmology
Partha Ghose
2015-02-12T23:59:59.000Z
The phenomenological consequences of unification of Einstein gravity and electromagnetism in an early phase of a Machian universe with a very small and uniform electrical charge density $\\rho_q$ are explored. A form of the Strong Equivalence Principle for unified electrogravity is first formulated, and it immediately leads to (i) the empirical Schuster-Blackett law relating the magnetic moments and angular momenta of neutral astronomical bodies, (ii) an analogous relation between the linear acceleration of neutral massive bodies and associated electric fields, (iii) gravitational lensing in excess of Einstein gravity, and, with the additional assumption of scaling, to (iv) the Wesson relation between the angular momentum and the square of the mass of astronomical bodies. Incorporation of Sciama's version of Mach's principle leads to a new post-Newtonian dynamics (in the weak field limit of gravity alone without electromagnetism) that predicts flat rotation curves of galaxies without the need of dark matter haloes. Finally, it is shown that the unified theory with a broken symmetry predicts a flat expanding universe with a cosmological term intimately related to electrogravity unification, and can explain WMAP data with a single free parameter. WMAP data require $\\rho_q =6.1\\times 10^{-43}$ C/cc which is too small to be detected at
The role of the hadron initiated single electromagnetic subcascades in IACT observations
Sobczynska, Dorota
2015-01-01T23:59:59.000Z
The sensitivity of Imaging Air Cherenkov Telescopes (IACTs) worsens significantly at low energies because the gamma/hadron separation becomes much more complex. In this paper we study the impact of the single electromagnetic subcascade events on the efficiency of the gamma/hadron separation for a system of four IACTs using Monte Carlo simulations. The studies are done for: two different altitudes of the observatory, three different telescope sizes and two hadron interaction models (GHEISHA and FLUKA). More than 90% of the single electromagnetic proton-induced subcascade events are showers with primary energy below 200 GeV, regardless on the trigger threshold. The estimated efficiency of the gamma/hadron separation using the FLUKA model is similar to results obtained using the GHEISHA model. Nevertheless, for at least one triggered telescope only, a higher fraction of single electromagnetic subcascade events was obtained from the FLUKA model. Finally, the calculated quality factors are anti-correlated with the...
Transition from thermal to turbulent equilibrium with a resulting electromagnetic spectrum
Ziebell, L. F., E-mail: luiz.ziebell@ufrgs.br [Instituto de Física, UFRGS, Porto Alegre, RS (Brazil); Yoon, P. H. [Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742 (United States) [Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742 (United States); School of Space Research, Kyung Hee University, Yongin, Gyeonggi 446-701 (Korea, Republic of); Gaelzer, R. [Instituto de Física, UFRGS, Porto Alegre, RS (Brazil) [Instituto de Física, UFRGS, Porto Alegre, RS (Brazil); Instituto de Física e Matemática, UFPel, Pelotas, RS (Brazil); Pavan, J. [Instituto de Física e Matemática, UFPel, Pelotas, RS (Brazil)] [Instituto de Física e Matemática, UFPel, Pelotas, RS (Brazil)
2014-01-15T23:59:59.000Z
A recent paper [Ziebell et al., Phys. Plasmas 21, 010701 (2014)] discusses a new type of radiation emission process for plasmas in a state of quasi-equilibrium between the particles and enhanced Langmuir turbulence. Such a system may be an example of the so-called “turbulent quasi-equilibrium.” In the present paper, it is shown on the basis of electromagnetic weak turbulence theory that an initial thermal equilibrium state (i.e., only electrostatic fluctuations and Maxwellian particle distributions) transitions toward the turbulent quasi-equilibrium state with enhanced electromagnetic radiation spectrum, thus demonstrating that the turbulent quasi-equilibrium discussed in the above paper correctly describes the weakly turbulent plasma dynamically interacting with electromagnetic fluctuations, while maintaining a dynamical steady-state in the average sense.
Richard Kerner; Gerardo Naumis
2011-02-10T23:59:59.000Z
A generalized Dirac equation is derived in order to describe charge carriers moving in corrugated graphene, which is the case for temperatures above 10{\\deg}K due to the presence of flexural phonons. Such interaction is taken into account by considering an induced metric, in the same spirit as the general relativity approach for the description of fermionic particle moving in a curved space-time. The resulting equation allows to include in a natural way the presence of other phonon branches as well as an external electromagnetic field. It also predicts non-linear effects which are not present in the usual vector potential approximation used in most of publications on the subject, as well as the possibility of controlling electronic conductivity using pure sinusoidal strain fields. The non-linear terms are important at high temperatures, and can also lead to interesting effects, like e.g. resonances between flexural phonons and external electromagnetic fields.
Modified definition of group velocity and electromagnetic energy conservation equation
Changbiao Wang
2015-05-11T23:59:59.000Z
The classical definition of group velocity has two flaws: (a) the group velocity can be greater than the phase velocity and break Fermat's principle in a non-dispersive, lossless, non-conducting, anisotropic uniform medium; (b) the definition is not consistent with the principle of relativity for a plane wave in a moving isotropic uniform medium. To remove the flaws, a modified definition is proposed. A criterion is set up to identify the justification of group velocity definition. A "superluminal power flow" is constructed to show that the electromagnetic energy conservation equation cannot uniquely define the power flow if the principle of Fermat is not taken into account.
Scattering of an ultrashort electromagnetic pulse in a plasma
Astapenko, V. A. [Moscow Institute of Physics and Technology (Russian Federation)
2011-11-15T23:59:59.000Z
An analytic approach is developed to describing how ultrashort electromagnetic pulses with a duration of one period or less at the carrier frequency are scattered in a plasma. Formulas are derived to calculate and analyze the angular and spectral probabilities of radiation scattering via two possible mechanisms-Compton and transition radiation channels-throughout the entire pulse. Numerical simulations were carried out for a Gaussian pulse. The effect of the phase of the carrier frequency relative to the pulse envelope on the scattering parameters is investigated.
Gravity Control by means of Electromagnetic Field through Gas or Plasma at Ultra-Low Pressure
Fran De Aquino
2013-12-02T23:59:59.000Z
It is shown that the gravity acceleration just above a chamber filled with gas or plasma at ultra-low pressure can be strongly reduced by applying an Extra Low-Frequency (ELF) electromagnetic field across the gas or the plasma. This Gravitational Shielding Effect is related to recent discovery of quantum correlation between gravitational mass and inertial mass. According to the theory samples hung above the gas or the plasma should exhibit a weight decrease when the frequency of the electromagnetic field is decreased or when the intensity of the electromagnetic field is increased. This Gravitational Shielding Effect is unprecedented in the literature and can not be understood in the framework of the General Relativity. From the technical point of view, there are several applications for this discovery; possibly it will change the paradigms of energy generation, transportation and telecommunications.
Electromagnetic Compatibility of Power Converters
Charoy, A
2015-01-01T23:59:59.000Z
This paper describes the main challenges related to power converters in a scientific environment. It proposes some methods of EMC analysis, design, meas urement, and EMC troubleshooting.
Ning Wu
2007-03-21T23:59:59.000Z
For a long time, it is generally believed that spin-spin interactions can only exist in a theory where Lorentz symmetry is gauged, and a theory with spin-spin interactions is not perturbatively renormalizable. But this is not true. By studying the motion of a spinning particle in gravitational field, it is found that there exist spin-spin interactions in gauge theory of gravity. Its mechanism is that a spinning particle will generate gravitomagnetic field in space-time, and this gravitomagnetic field will interact with the spin of another particle, which will cause spin-spin interactions. So, spin-spin interactions are transmitted by gravitational field. The form of spin-spin interactions in post Newtonian approximations is deduced. This result can also be deduced from the Papapetrou equation. This kind of interactions will not affect the renormalizability of the theory. The spin-spin interactions will violate the weak equivalence principle, and the violation effects are detectable. An experiment is proposed to detect the effects of the violation of the weak equivalence principle.
Discussion on the Mechanism of Electromigration from the Perspective of Electromagnetism
Zhou, Peng; Johnson, William C.
2010-01-01T23:59:59.000Z
from the Perspective of Electromagnetism PENG ZHOU 1,3 andthe perspective of electromagnetism, rather than from thecharge, electromigration, electromagnetism INTRODUCTION
Timothy R. Carr
2004-07-16T23:59:59.000Z
This annual report describes progress in the third year of the three-year project entitled ''Midcontinent Interactive Digital Carbon Atlas and Relational Database (MIDCARB)''. The project assembled a consortium of five states (Indiana, Illinois, Kansas, Kentucky and Ohio) to construct an online distributed Relational Database Management System (RDBMS) and Geographic Information System (GIS) covering aspects of carbon dioxide (CO{sub 2}) geologic sequestration (http://www.midcarb.org). The system links the five states in the consortium into a coordinated regional database system consisting of datasets useful to industry, regulators and the public. The project has been extended and expanded as a ''NATional CARBon Sequestration Database and Geographic Information System (NATCARB)'' to provide national coverage across the Regional CO{sub 2} Partnerships, which currently cover 40 states (http://www.natcarb.org). Advanced distributed computing solutions link database servers across the five states and other publicly accessible servers (e.g., USGS) into a single system where data is maintained and enhanced at the local level but is accessed and assembled through a single Web portal and can be queried, assembled, analyzed and displayed. This project has improved the flow of data across servers and increased the amount and quality of available digital data. The online tools used in the project have improved in stability and speed in order to provide real-time display and analysis of CO{sub 2} sequestration data. The move away from direct database access to web access through eXtensible Markup Language (XML) has increased stability and security while decreasing management overhead. The MIDCARB viewer has been simplified to provide improved display and organization of the more than 125 layers and data tables that have been generated as part of the project. The MIDCARB project is a functional demonstration of distributed management of data systems that cross the boundaries between institutions and geographic areas. The MIDCARB system addresses CO{sub 2} sequestration and other natural resource issues from sources, sinks and transportation within a spatial database that can be queried online. Visualization of high quality and current data can assist decision makers by providing access to common sets of high quality data in a consistent manner.
Electromagnetic confinement for vertical casting or containing molten metal
Lari, Robert J. (Aurora, IL); Praeg, Walter F. (Palos Park, IL); Turner, Larry R. (Naperville, IL)
1991-01-01T23:59:59.000Z
An apparatus and method adapted to confine a molten metal to a region by means of an alternating electromagnetic field. As adapted for use in the present invention, the alternating electromagnetic field given by B.sub.y =(2.mu..sub.o .rho.gy).sup.1/2 (where B.sub.y is the vertical component of the magnetic field generated by the magnet at the boundary of the region; y is the distance measured downward form the top of the region, .rho. is the metal density, g is the acceleration of gravity and .mu..sub.o is the permeability of free space) induces eddy currents in the molten metal which interact with the magnetic field to retain the molten metal with a vertical boudnary. As applied to an apparatus for the continuous casting of metal sheets or rods, metal in liquid form can be continuously introduced into the region defined by the magnetic field, solidified and conveyed away from the magnetic field in solid form in a continuous process.
Interaction, protection and epidemics
Goyal, Sanjeev; Vigier, Adrien
2015-03-06T23:59:59.000Z
unique equilibrium: individuals who invest in protection choose to interact more relative to those who do not invest in protection. Changes in the contagiousness of the disease have non-monotonic effects: as a result interaction initially falls...
Boyer, Edmond
to the stator winding when slotting is neglected by a relative permeance function of the slotted airgap region performances such as electromagnetic torque or back electromotive force (EMF). The presence of stator slots has. In this model, the winding current is replaced by a current sheet located at the armature bore radius. In [16
Low frequency electrostatic and electromagnetic modes in nonuniform cold quantum plasmas
Saleem, H.; Ahmad, Ali [Theoretical Plasma Physics Division, Pakistan Institute of Nuclear Science and Technology (PINSTECH), Islamabad (Pakistan); Department of Physics, COMSATS Institute of Information Technology (CIIT), Islamabad (Pakistan); Khan, S. A. [Department of Physics, COMSATS Institute of Information Technology (CIIT), Islamabad (Pakistan); Department of Physics, Government College Bagh AJK (Pakistan)
2008-01-15T23:59:59.000Z
The low frequency electrostatic and electromagnetic linear modes in a nonuniform cold quantum electron-ion plasma are studied. The effect of stationary dust on an electrostatic mode is also investigated. The quantum corrections in the linear dispersion relations of a cold dense plasma are presented with possible applications.
Chung, Deborah D.L.
of polymer-matrix composites have also been conducted in relation to the laminate properties, the fib of polymer-matrix composites with continuous carbon-fibers was less and that of polymer-matrix composites. Carbon-fiber; A. Carbon-carbon composites (CCCs); A. Polymer-matrix composites (PMCs); Electromagnetic
Stresa, Italy, 25-27 April 2007 STEP-UP CONVERTER FOR ELECTROMAGNETIC VIBRATIONAL ENERGY
Boyer, Edmond
are important factors in determining the choice of technique used for the conversion. A relatively largeStresa, Italy, 25-27 April 2007 STEP-UP CONVERTER FOR ELECTROMAGNETIC VIBRATIONAL ENERGY SCAVENGER generally requires a voltage step-up circuit. A suitable voltage step-up circuit for a low voltage energy
Duality in Off-Shell Electromagnetism
Martin Land
2006-03-21T23:59:59.000Z
In this paper, we examine the Dirac monopole in the framework of Off-Shell Electromagnetism, the five dimensional U(1) gauge theory associated with Stueckelberg-Schrodinger relativistic quantum theory. After reviewing the Dirac model in four dimensions, we show that the structure of the five dimensional theory prevents a natural generalization of the Dirac monopole, since the theory is not symmetric under duality transformations. It is shown that the duality symmetry can be restored by generalizing the electromagnetic field strength to an element of a Clifford algebra. Nevertheless, the generalized framework does not permit us to recover the phenomenological (or conventional) absence of magnetic monopoles.
Electromagnetic Observables in Few-Nucleon Systems
Sonia Bacca
2012-10-10T23:59:59.000Z
The electromagnetic probe is a very valuable tool to study the dynamics of few nucleons. It can be very helpful in shedding light on the not yet fully understood three-nucleon forces. We present an update on the theoretical studies of electromagnetic induced reactions, such as photo-disintegration and electron scattering off 4He. We will show that they potentially represent a tool to discriminate among three-nucleon forces. Then, we will discuss the charge radius and the nuclear electric polarizability of the 6He halo nucleus.
Electromagnetic waves, gravitational coupling and duality analysis
E. M. C. Abreu; C. Pinheiro; S. A. Diniz; F. C. Khanna
2005-10-27T23:59:59.000Z
In this letter we introduce a particular solution for parallel electric and magnetic fields, in a gravitational background, which satisfy free-wave equations and the phenomenology suggested by astrophysical plasma physics. These free-wave equations are computed such that the electric field does not induce the magnetic field and vice-versa. In a gravitational field, we analyze the Maxwell equations and the corresponding electromagnetic waves. A continuity equation is presented. A commutative and noncommutative analysis of the electromagnetic duality is described.
Scanning evanescent electro-magnetic microscope
Xiang, Xiao-Dong (Alameda, CA); Gao, Chen (Anhui, CN); Schultz, Peter G. (La Jolla, CA); Wei, Tao (Sunnyvale, CA)
2003-01-01T23:59:59.000Z
A novel scanning microscope is described that uses near-field evanescent electromagnetic waves to probe sample properties. The novel microscope is capable of high resolution imaging and quantitative measurements of the electrical properties of the sample. The inventive scanning evanescent wave electromagnetic microscope (SEMM) can map dielectric constant, tangent loss, conductivity, complex electrical impedance, and other electrical parameters of materials. The quantitative map corresponds to the imaged detail. The novel microscope can be used to measure electrical properties of both dielectric and electrically conducting materials.
Scanning evanescent electro-magnetic microscope
Xiang, Xiao-Dong (Alameda, CA); Gao, Chen (Alameda, CA)
2001-01-01T23:59:59.000Z
A novel scanning microscope is described that uses near-field evanescent electromagnetic waves to probe sample properties. The novel microscope is capable of high resolution imaging and quantitative measurements of the electrical properties of the sample. The inventive scanning evanescent wave electromagnetic microscope (SEMM) can map dielectric constant, tangent loss, conductivity, complex electrical impedance, and other electrical parameters of materials. The quantitative map corresponds to the imaged detail. The novel microscope can be used to measure electrical properties of both dielectric and electrically conducting materials.
Electromagnetic continuous casting project: Final report
Battles, J.E.; Rote, D.M.; Misra, B.; Praeg, W.F.; Hull, J.R.; Turner, L.R.; Shah, V.L.; Lari, R.J.; Gopalsami, N.; Wiencek, T.
1988-10-01T23:59:59.000Z
This report describes the work on development of an electromagnetic casting process for steel, which was carried out at Argonne National Laboratory between January 1985 and December 1987. This effort was concerned principally with analysis and design work on magnet technology, liquid metal feed system, coolant system, and sensors and process controllers. Experimentation primarily involved (1) electromagnetic studies to determine the conditions and controlling parameters for stable levitation and (2) feed-system studies to establish important parameters that control and influence fluid flow from the liquid metal source to the caster. 73 refs., 91 figs., 11 tabs.
Richard H. Price; John W. Belcher; David A. Nichols
2012-12-19T23:59:59.000Z
We compare the nature of electromagnetic fields and of gravitational fields in linearized general relativity. We carry out this comparison both mathematically and visually. In particular the "lines of force" visualizations of electromagnetism are contrasted with the recently introduced tendex/vortex eigenline technique for visualizing gravitational fields. Specific solutions, visualizations, and comparisons are given for an oscillating point quadrupole source. Among the similarities illustrated are the quasistatic nature of the near fields, the transverse 1/r nature of the far fields, and the interesting intermediate field structures connecting these two limiting forms. Among the differences illustrated are the meaning of field line motion, and of the flow of energy.
Cosmic Electromagnetic Fields due to Perturbations in the Gravitational Field
Bishop Mongwane; Peter K. S. Dunsby; Bob Osano
2012-10-21T23:59:59.000Z
We use non-linear gauge-invariant perturbation theory to study the interaction of an inflation produced seed magnetic field with density and gravitational wave perturbations in an almost Friedmann-Lema\\^itre-Robertson-Walker (FLRW) spacetime. We compare the effects of this coupling under the assumptions of poor conductivity, infinite conductivity and the case where the electric field is sourced via the coupling of velocity perturbations to the seed field in the ideal magnetohydrodynamic (MHD) regime, thus generalizing, improving on and correcting previous results. We solve our equations for long wavelength limits and numerically integrate the resulting equations to generate power spectra for the electromagnetic field variables, showing where the modes cross the horizon. We find that the rotation of the electric field dominates the power spectrum on small scales, in agreement with previous arguments.
Ultrahigh performance three-dimensional electromagnetic relativistic kinetic plasma simulation
Bowers, K. J.; Albright, B. J.; Yin, L.; Bergen, B.; Kwan, T. J. T. [Plasma Theory and Applications (X-1-PTA), Los Alamos National Laboratory, MS F699, P.O. Box 1663, Los Alamos, New Mexico 87545 (United States)
2008-05-15T23:59:59.000Z
The algorithms, implementation details, and applications of VPIC, a state-of-the-art first principles 3D electromagnetic relativistic kinetic particle-in-cell code, are discussed. Unlike most codes, VPIC is designed to minimize data motion, as, due to physical limitations (including the speed of light{exclamation_point}), moving data between and even within modern microprocessors is more time consuming than performing computations. As a result, VPIC has achieved unprecedented levels of performance. For example, VPIC can perform {approx}0.17 billion cold particles pushed and charge conserving accumulated per second per processor on IBM's Cell microprocessor--equivalent to sustaining Los Alamos's planned Roadrunner supercomputer at {approx}0.56 petaflop (quadrillion floating point operations per second). VPIC has enabled previously intractable simulations in numerous areas of plasma physics, including magnetic reconnection and laser plasma interactions; next generation supercomputers like Roadrunner will enable further advances.
Born-Infeld Axion-Dilaton Electrodynamics and Electromagnetic Confinement
D. A. Burton; T. Dereli; R. W. Tucker
2011-08-16T23:59:59.000Z
A generalization of Born-Infeld non-linear vacuum electrodynamics involving axion and dilaton fields is constructed with couplings dictated by electromagnetic duality and SL(2,R) symmetries in the weak field limit. Besides the Newtonian gravitational constant the model contains a single fundamental coupling parameter b0. In the absence of axion and dilaton interactions it reduces, in the limit as b0 tends to infinity, to Maxwell's linear vacuum theory while for finite b0 it reduces to the original Born-Infeld model. The spherically symmetric static sector of the theory is explored in a background Minkowski spacetime where numerical evidence suggests the existence of axion-dilaton bound states possessing confined electric flux.
Variational Principles for Constrained Electromagnetic Field and Papapetrou Equation
A. T. Muminov
2007-06-28T23:59:59.000Z
In our previous article [4] an approach to derive Papapetrou equations for constrained electromagnetic field was demonstrated by use of field variational principles. The aim of current work is to present more universal technique of deduction of the equations which could be applied to another types of non-scalar fields. It is based on Noether theorem formulated in terms of Cartan' formalism of orthonormal frames. Under infinitesimal coordinate transformation the one leads to equation which includes volume force of spin-gravitational interaction. Papapetrou equation for vector of propagation of the wave is derived on base of the equation. Such manner of deduction allows to formulate more accurately the constraints and clarify equations for the potential and for spin.
Fractional Diffusion Modeling of Electromagnetic Induction in Fractured Rocks
Ge, Jianchao
2014-08-11T23:59:59.000Z
The controlled-source electromagnetic (CSEM) technique is well-established for non-invasive geophysical survey. Due to the strong attenuation of earth materials to electromagnetic signals, the effective depth of most CSEM surveys is restricted to 1...
Electromagnetic Light in Medium of Polarized Atoms $^3$He
V. N. Minasyan
2009-04-01T23:59:59.000Z
First, it is predicted that polarized atoms $^3$He increase a value of speed electromagnetic waves. This reasoning implies that the velocity of electromagnetic waves into gas consisting of polarized atoms $^3$He is rather than one in vacuum.
The Eyjafjallajkull volcanic system, Iceland: insights from electromagnetic measurements
Jones, Alan G.
The Eyjafjallajökull volcanic system, Iceland: insights from electromagnetic measurements Journal; Iceland Geosurvey, Vilhjálmsson, Arnar; Iceland Geosurvey, Keywords: Magnetotellurics system, Iceland: insights from1 electromagnetic measurements2 Marion P. Miensopust1,2, , Alan G. Jones1
Passive electromagnetic damping device for motion control of building structures
Palomera-Arias, Rogelio, 1972-
2005-01-01T23:59:59.000Z
The research presented in this thesis develops a new device for the passive control of motion in building structures: an electromagnetic damper. The electromagnetic damper is a self-excited device that provides a reaction ...
Reflection and Transmission of Pulsed Electromagnetic Fields through Multilayered
Oughstun, Kurt
Reflection and Transmission of Pulsed Electromagnetic Fields through Multilayered Biological Media- cally rigorous, physically correct description of the propagation of pulsed electromagnetic fields pulses through multilayered biological media consisting of three biological tissue layers rep- resenting
Electromagnetically induced transparency with broadband laser pulses D. D. Yavuz
Yavuz, Deniz
Electromagnetically induced transparency with broadband laser pulses D. D. Yavuz Department pulses inside an atomic medium using electromag- netically induced transparency. Extending the suggestion.65. k Over the last decade, counterintuitive optical effects using electromagnetically induced
Mathematical Methods for Electromagnetic and Optical Waves1
Lu, Ya Yan
Mathematical Methods for Electromagnetic and Optical Waves1 Ya Yan Lu Department of Mathematics . . . . . . . . . . . . . . . . . . . . . . 5 1.6 The energy law of electromagnetic field . . . . . . . . . . . . . . . . . . . . . 7 2.5 Pulse propagation and temporal solitons . . . . . . . . . . . . . . . . . . . . . 70 2 #12;Chapter 1
Dr. S. Cruz-Pol, INEL 4152-Electromagnetics
Cruz-Pol, Sandra L.
field density [VF/m2] ØH = magnetic field intensity, [A/m] ØB = magnetic field density, [Teslas] Take JdlH Cruz-Pol, Electromagnetics UPRM Electromagnetics Ø This is the principle of motors, hydro
Gravitational Hertz experiment with electromagnetic radiation in a strong magnetic field
N. I. Kolosnitsyn; V. N. Rudenko
2015-04-24T23:59:59.000Z
Brief review of principal ideas in respect of the high frequency gravitational radiation generated and detected in the laboratory condition is presented. Interaction of electro-magnetic and gravitational waves into a strong magnetic field is considered as a more promising variant of the laboratory GW-Hertz experiment. The formulae of the direct and inverse Gertsenshtein-Zeldovich effect are derived. Numerical estimates are given and a discussion of a possibility of observation of these effects in a lab is carried out.
Motor Packaging with Consideration of Electromagnetic and Material...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
More Documents & Publications Alnico and Ferrite Hybrid Excitation Electric Machines Motor Packaging with Consideration of Electromagnetic and Material Characteristics Electric...
Waveguide-based Ultrasonic and Far-field Electromagnetic Sensors...
waveguide-based ultrasonic and farfield electromagnetic sensors to measure key Enhanced Geothermal Systems (EGS) reservoir parameters, including directional temperature,...
Southern California, University of
Observation of coupled plasmon-polariton modes of plasmon waveguides for electromagnetic energy the influence of optical near-field interactions on the dipole surface plasmon resonance of Au nanoparticles, the resonance energies of the collective plasmon-polariton modes are determined for longitudinal and transverse
Electromagnetic Siegert states for periodic dielectric structures
Friends R. Ndangali; Sergei V. Shabanov
2011-08-09T23:59:59.000Z
The formalism of Siegert states to describe the resonant scattering in quantum theory is extended to the resonant scattering of electromagnetic waves on periodic dielectric arrays. The excitation of electromagnetic Siegert states by an incident wave packet and their decay is studied. The formalism is applied to develop a theory of coupled electromagnetic resonances arising in the electromagnetic scattering problem for two such arrays separated by a distance 2h (or, generally, when the physical properties of the scattering array depend on a real coupling parameter h). Analytic properties of Siegert states as functions of the coupling parameter h are established by the Regular Perturbation Theorem which is an extension the Kato-Rellich theorem to the present case. By means of this theorem, it is proved that if the scattering structure admits a bound state in the radiation continuum at a certain value of the coupling parameter h, then there always exist regions within the structure in which the near field can be amplified as much as desired by adjusting the value of h. This establishes a rather general mechanism to control and amplify optical nonlinear effects in periodically structured planar structures possessing a nonlinear dielectric susceptibility.
Line geometry and electromagnetism I: basic structures
D. H. Delphenich
2013-09-11T23:59:59.000Z
Some key notions of line geometry are recalled, along with their application to mechanics. It is then shown that most of the basic structures that one introduces in the pre-metric formulation of electromagnetism can be interpreted directly in terms of corresponding concepts in line geometry. The results are summarized in a table.
Electromagnetic Radiation and Motion of Real Particle
Jozef Klacka
2001-06-21T23:59:59.000Z
Relativistically covariant equation of motion for real dust particle under the action of electromagnetic radiation is derived. The particle is neutral in charge. Equation of motion is expressed in terms of particle's optical properties, standardly used in optics for stationary particles.
Theory of electromagnetic reactions in light nuclei
Xu, Tianrui; Bacca, Sonia; Hagen, Gaute
2015-01-01T23:59:59.000Z
We briefly review the theory for electromagnetic reactions in light nuclei based on the coupled-cluster formulation of the Lorentz integral transform method. Results on photodisintegration reactions of 22O and 40Ca are reported on and preliminary calculations on the Coulomb sum rule for 4He are discussed.
Theory of electromagnetic reactions in light nuclei
Tianrui Xu; Mirko Miorelli; Sonia Bacca; Gaute Hagen
2015-09-11T23:59:59.000Z
We briefly review the theory for electromagnetic reactions in light nuclei based on the coupled-cluster formulation of the Lorentz integral transform method. Results on photodisintegration reactions of 22O and 40Ca are reported on and preliminary calculations on the Coulomb sum rule for 4He are discussed.
Optimizing Electromagnetic Hotspots in Plasmonic Bowtie Nanoantennae
Xiong, Qihua
Optimizing Electromagnetic Hotspots in Plasmonic Bowtie Nanoantennae Stephanie Dodson, Mohamed: Sensitivity is a key factor in the improvement of nanoparticle-based biosensors. Bowtie nanoantennae have resonance (LSPR)-based biosensing. In this work, optical bowtie nanoantennae with varying geometries were
Slave Electromagnetic studies Alan G. Jones1
Jones, Alan G.
and Jessica Spratt1,5 1 Geological Survey of Canada, 615 Booth St., Ottawa, Ontario, K1A 0E9, Canada. Email-probing electromagnetic surveys, using the nautral-source magnetotelluric (MT) technique, have recently been carried out. The former ensured low resistance ground contact for electric field measurements, and the latter avoided
Electromagnetic field triggered drug and chemical delivery via liposomes
Liburdy, Robert P. (1820 Mountain View Rd., Tiburon, CA 94920)
1993-01-01T23:59:59.000Z
The present invention relates to a system and to a method of delivering a drug to a preselected target body site of a patient, comprising the steps of encapsulating the chemical agent within liposomes, essentially temperature insensitive, i.e. not having a specific predetermined phase transition temperature within the specific temperature range of drug administration; administering the liposomes to the target body site; and subjecting the target body site to nonionizing electromagnetic fields in an area of the preselected target body in order to release said chemical agent from the liposomes at a temperature of between about +10 and 65.degree. C. The invention further relates to the use of said liposomes to bind to the surface of or to enter target tissue or an organ in a living system, and, when subjected to a nonionizing field, to release a drug from the liposomes into the target site.
Electromagnetic field triggered drug and chemical delivery via liposomes
Liburdy, R.P.
1993-03-02T23:59:59.000Z
The present invention relates to a system and to a method of delivering a drug to a preselected target body site of a patient, comprising the steps of encapsulating the chemical agent within liposomes, essentially temperature insensitive, i.e. not having a specific predetermined phase transition temperature within the specific temperature range of drug administration; administering the liposomes to the target body site; and subjecting the target body site to nonionizing electromagnetic fields in an area of the preselected target body in order to release the chemical agent from the liposomes at a temperature of between about +10 and 65 C. The invention further relates to the use of the liposomes to bind to the surface of or to enter target tissue or an organ in a living system, and, when subjected to a nonionizing field, to release a drug from the liposomes into the target site.
ELECTROMAGNETIC IMAGES OF THE TINTINA FAULT (NORTHERN CANADIAN CORDILLERA)
Jones, Alan G.
ELECTROMAGNETIC IMAGES OF THE TINTINA FAULT (NORTHERN CANADIAN CORDILLERA) Juanjo Ledo1 , Alan G to obtain a crustal scale electromagnetic image of the fault. A short, higher station density profile-dimensional (2- D) electromagnetic behavior of the fault. Distortion decomposition of the responses corroborated
Electromagnetics, 26:335, 2006 Copyright Taylor & Francis Group, LLC
Anlage, Steven
Electromagnetics, 26:335, 2006 Copyright © Taylor & Francis Group, LLC ISSN: 0272-6343 print/1532 the statistical properties of the impedance (Z) and scattering (S) matrices of open electromagnetic cavities. Introduction The problem of the coupling of electromagnetic radiation in and out of structures is a general one
Electromagnetic guided waves on linear arrays of spheres
Electromagnetic guided waves on linear arrays of spheres C M Linton, V Zalipaev, and I Thompson electromagnetic waves propagating along one-dimensional arrays of dielec- tric spheres are studied. The quasi. There have been previous studies of electromagnetic surface waves guided by periodic arrays, but these have
Matched slow pulses using double electromagnetically induced transparency
Lvovsky, Alexander
Matched slow pulses using double electromagnetically induced transparency Andrew MacRae,* Geoff, 2008 We implement double electromagnetically induced transparency (DEIT) in rubidium vapor using Optical Society of America OCIS codes: 270.1670, 270.5585, 190.5530. Electromagnetically induced
Cosmological electromagnetic fields due to gravitational wave perturbations Mattias Marklund*
Dunsby, Peter
show that this coupling leads to an initial pulse of electromagnetic waves whose width and amplitude to produce a pulse of gravitationally induced electromagnetic waves. In particular, because of the differentCosmological electromagnetic fields due to gravitational wave perturbations Mattias Marklund
Mitchell Revalski; Will Rhodes; Thulsi Wickramasinghe
2015-02-03T23:59:59.000Z
We provide calculations and theoretical arguments supporting the emission of electromagnetic radiation from charged particles accelerated by gravitational waves (GWs). These waves have significant indirect evidence to support their existence, yet they interact weakly with ordinary matter. We show that the induced oscillations of charged particles interacting with a GW, which lead to the emission of electromagnetic radiation, will also result in wave attenuation. These ideas are supported by a small body of literature, as well as additional arguments for particle acceleration based on GW memory effects. We derive order of magnitude power calculations for various initial charge distributions accelerated by GWs. The resulting power emission is extremely small for all but very strong GWs interacting with large quantities of charge. If the results here are confirmed and supplemented, significant consequences such as attenuation of early universe GWs could result. Additionally, this effect could extend GW detection techniques into the electromagnetic regime. These explorations are worthy of study to determine the presence of such radiation, as it is extremely important to refine our theoretical framework in an era of active GW astrophysics.
Hydrodynamic construction of the electromagnetic field
Peter Holland
2014-10-03T23:59:59.000Z
We present an alternative Eulerian hydrodynamic model for the electromagnetic field in which the discrete vector indices in Maxwell\\s equations are replaced by continuous angular freedoms, and develop the corresponding Lagrangian picture in which the fluid particles have rotational and translational freedoms. This enables us to extend to the electromagnetic field the exact method of state construction proposed previously for spin 0 systems, in which the time-dependent wavefunction is computed from a single-valued continuum of deterministic trajectories where two spacetime points are linked by at most a single orbit. The deduction of Maxwell\\s equations from continuum mechanics is achieved by generalizing the spin 0 theory to a general Riemannian manifold from which the electromagnetic construction is extracted as a special case. In particular, the flat-space Maxwell equations are represented as a curved-space Schr\\"odinger equation for a massive system. The Lorentz covariance of the Eulerian field theory is obtained from the non-covariant Lagrangian-coordinate model as a kind of collective effect. The method makes manifest the electromagnetic analogue of the quantum potential that is tacit in Maxwell\\s equations. This implies a novel definition of the \\classical limit\\ of Maxwell\\s equations that differs from geometrical optics. It is shown that Maxwell\\s equations may be obtained by canonical quantization of the classical model. Using the classical trajectories a novel expression is derived for the propagator of the electromagnetic field in the Eulerian picture. The trajectory and propagator methods of solution are illustrated for the case of a light wave.
Ovchinnikov, K. N.; Uryupin, S. A., E-mail: uryupin@sci.lebedev.ru [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation)
2013-09-15T23:59:59.000Z
Specific features of the interaction of a relatively weak electromagnetic pulse with a nonisothermal current-carrying plasma in which the electron drift velocity is much higher than the ion-acoustic velocity, but lower than the electron thermal velocity, are studied. If the state of the plasma with ion-acoustic turbulence does not change during the pulse action, the field penetrates into the plasma in the ordinary diffusion regime, but the diffusion coefficient in this case is inversely proportional to the anomalous conductivity. If, during the pulse action, the particle temperatures and the current-driving field change due to turbulent heating, the field penetrates into the plasma in the subdiffusion regime. It is shown how the presence of subdiffusion can be detected by measuring the reflected field.
Lau, Ryan
2007-09-17T23:59:59.000Z
Relatively little is known about marine controlled-source electromagnetic surveys (MCSEM) used to detect hydrocarbon reservoirs. Typical MCSEM require the use of inversion to generate a model of the subsurface. We utilize a 3D finite-element forward...
Florida, University of
of both the incident lightning electromagnetic pulse (LEMP) and the effects of coupling of this field- mental validation using: 1) reduced-scale setups with LEMP and nuclear electromagnetic pulse (NEMP532 IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, VOL. 51, NO. 3, AUGUST 2009 Lightning
Popov, Branko N.
of metals and alloys in aqueous environments. The interactions between hydrogen and the heterogeneities, laser surface modification and shot preening have been proposed to decrease hydrogen permeation hazards. On the other hand, coating the hard alloy with a suitable metal/alloy can successfully reduce
Radiative Reactions and Coherence Modeling in the High Altitude Electromagnetic Pulse
Charles N. Vittitoe; Mario Rabinowitz
2003-06-03T23:59:59.000Z
A high altitude nuclear electromagnetic pulse (EMP) with a peak field intensity of 5 x 10^4 V/m carries momentum that results in a retarding force on the average Compton electron (radiating coherently to produce the waveform) with magnitude near that of the geomagnetic force responsible for the coherent radiation. The retarding force results from a self field effect. The Compton electron interaction with the self generated magnetic field due to the other electrons accounts for the momentum density in the propagating wave; interaction with the self generated electric field accounts for the energy flux density in the propagating wave. Coherent addition of radiation is also quantitatively modeled.
Electron and photon beams interacting with plasma
Strathclyde, University of
-amplitude plasma waves are dense, ultra-short relativistic electron bunches (Chen et al. 1985) or intense laser A comparison is made between the interaction of electron bunches and intense laser pulses with plasma. The laser pulse is modelled with photon kinetic theory, i.e. a representation of the electromagnetic field
Fluidic electrodynamics: Approach to electromagnetic propulsion
Martins, Alexandre A.; Pinheiro, Mario J. [Institute for Plasmas and Nuclear Fusion and Instituto Superior Tecnico Lisboa, Portugal 351.1.21.841.92.43 (Portugal); Department of Physics and Institute for Plasmas and Nuclear Fusion and Instituto Superior Tecnico Lisboa, Portugal 351.1.21.841.93.22 (Portugal)
2009-03-16T23:59:59.000Z
We report on a new methodological approach to electrodynamics based on a fluidic viewpoint. We develop a systematic approach establishing analogies between physical magnitudes and isomorphism (structure-preserving mappings) between systems of equations. This methodological approach allows us to give a general expression for the hydromotive force, thus re-obtaining the Navier-Stokes equation departing from the appropriate electromotive force. From this ground we offer a fluidic approach to different kinds of issues with interest in propulsion, e.g., the force exerted by a charged particle on a body carrying current; the magnetic force between two parallel currents; the Magnus's force. It is shown how the intermingle between the fluid vector fields and electromagnetic fields leads to new insights on their dynamics. The new concepts introduced in this work suggest possible applications to electromagnetic (EM) propulsion devices and the mastery of the principles of producing electric fields of required configuration in plasma medium.
Electromagnetic Pulse from Final Gravitational Stellar Collapse
P. D. Morley; Ivan Schmidt
2002-01-30T23:59:59.000Z
We employ an effective gravitational stellar final collapse model which contains the relevant physics involved in this complex phenomena: spherical radical infall in the Schwarzschild metric of the homogeneous core of an advanced star, giant magnetic dipole moment, magnetohydrodynamic material response and realistic equations of state (EOS). The electromagnetic pulse is computed both for medium size cores undergoing hydrodynamic bounce and large size cores undergoing black hole formation. We clearly show that there must exist two classes of neutron stars, separated by maximum allowable masses: those that collapsed as solitary stars (dynamical mass limit) and those that collapsed in binary systems allowing mass accretion (static neutron star mass). Our results show that the electromagnetic pulse spectrum associated with black hole formation is a universal signature, independent of the nuclear EOS. Our results also predict that there must exist black holes whose masses are less than the static neutron star stability limit.
Plimak, L.I., E-mail: lev.plimak@uni-ulm.de [Institut fuer Quantenphysik, Universitaet Ulm, 89069 Ulm (Germany); Stenholm, S. [Institut fuer Quantenphysik, Universitaet Ulm, 89069 Ulm (Germany) [Institut fuer Quantenphysik, Universitaet Ulm, 89069 Ulm (Germany); Physics Department, Royal Institute of Technology, KTH, Stockholm (Sweden); Laboratory of Computational Engineering, HUT, Espoo (Finland)
2012-11-15T23:59:59.000Z
The connection between real-time quantum field theory (RTQFT) [see, e.g., A. Kamenev and A. Levchenko, Adv. Phys. 58 (2009) 197] and phase-space techniques [E. Wolf and L. Mandel, Optical Coherence and Quantum Optics (Cambridge, 1995)] is investigated. The Keldysh rotation that forms the basis of RTQFT is shown to be a phase-space mapping of the quantum system based on the symmetric (Weyl) ordering. Following this observation, we define generalised Keldysh rotations based on the class of operator orderings introduced by Cahill and Glauber [K.E. Cahill, R.J. Glauber, Phys. Rev. 177 (1969) 1882]. Each rotation is a phase-space mapping, generalising the corresponding ordering from free to interacting fields. In particular, response transformation [L.I. Plimak, S. Stenholm, Ann. Phys. (N.Y.) 323 (2008) 1989] extends the normal ordering of free-field operators to the time-normal ordering of Heisenberg operators. Structural properties of the response transformation, such as its association with the nonlinear quantum response problem and the related causality properties, hold for all generalised Keldysh rotations. Furthermore, we argue that response transformation is especially suited for RTQFT formulation of spatial, in particular, relativistic, problems, because it extends cancellation of zero-point fluctuations, characteristic of the normal ordering, to interacting fields. As an example, we consider quantised electromagnetic field in the Dirac sea. In the time-normally-ordered representation, dynamics of the field looks essentially classical (fields radiated by currents), without any contribution from zero-point fluctuations. For comparison, we calculate zero-point fluctuations of the interacting electromagnetic field under orderings other than time-normal. The resulting expression is physically inconsistent: it does not obey the Lorentz condition, nor Maxwell's equations. - Highlights: Black-Right-Pointing-Pointer The Keldysh rotation is a phase-space mapping based on Weyl's operator ordering. Black-Right-Pointing-Pointer Generalised Keldysh rotations (GKRs) based on other orderings are introduced. Black-Right-Pointing-Pointer Special properties of the GKR based on the normal ordering are elucidated. Black-Right-Pointing-Pointer In relativistic QED, other rotations are shown to be physically inconsistent.
Velocity damper for electromagnetically levitated materials
Fox, Richard J. (Oak Ridge, TN)
1994-01-01T23:59:59.000Z
A system for damping oscillatory and spinning motions induced in an electromagnetically levitated material. Two opposed field magnets are located orthogonally to the existing levitation coils for providing a DC quadrupole field (cusp field) around the material. The material used for generating the DC quadrupole field must be nonconducting to avoid eddy-current heating and of low magnetic permeability to avoid distorting the induction fields providing the levitation.
Velocity damper for electromagnetically levitated materials
Fox, R.J.
1994-06-07T23:59:59.000Z
A system for damping oscillatory and spinning motions induced in an electromagnetically levitated material is disclosed. Two opposed field magnets are located orthogonally to the existing levitation coils for providing a DC quadrupole field (cusp field) around the material. The material used for generating the DC quadrupole field must be nonconducting to avoid eddy-current heating and of low magnetic permeability to avoid distorting the induction fields providing the levitation. 1 fig.
Electromagnetic or other directed energy pulse launcher
Ziolkowski, Richard W. (Livermore, CA)
1990-01-01T23:59:59.000Z
The physical realization of new solutions of wave propagation equations, such as Maxwell's equations and the scaler wave equation, produces localized pulses of wave energy such as electromagnetic or acoustic energy which propagate over long distances without divergence. The pulses are produced by driving each element of an array of radiating sources with a particular drive function so that the resultant localized packet of energy closely approximates the exact solutions and behaves the same.
Electromagnetic Profiling Techniques | Open Energy Information
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousPlasmaP a g eWorksVillagesource History(RedirectedEl Segundo, California: EnergyElectricElectromagnetic
Electromagnetic Dark Energy and Gravitoelectrodynamics of Superconductors
Clovis Jacinto de Matos
2007-10-29T23:59:59.000Z
It is shown that Beck and Mackey electromagnetic model of dark energy in superconductors can account for the non-classical inertial properties of superconductors, which have been conjectured by the author to explain the Cooper pair's mass excess reported by Cabrera and Tate. A new Einstein-Planck regime for gravitation in condensed matter is proposed as a natural scale to host the gravitoelectrodynamic properties of superconductors.
Modulational instability of electromagnetic waves in a collisional quantum magnetoplasma
Niknam, A. R., E-mail: a-niknam@sbu.ac.ir [Laser and Plasma Research Institute, Shahid Beheshti University, G.C., Tehran (Iran, Islamic Republic of); Rastbood, E.; Bafandeh, F.; Khorashadizadeh, S. M., E-mail: smkhorashadi@birjand.ac.ir [Physics Department of Birjand University, Birjand (Iran, Islamic Republic of)
2014-04-15T23:59:59.000Z
The modulational instability of right-hand circularly polarized electromagnetic electron cyclotron (CPEM-EC) wave in a magnetized quantum plasma is studied taking into account the collisional effects. Employing quantum hydrodynamic and nonlinear Schrödinger equations, the dispersion relation of modulated CPEM-EC wave in a collisional plasma has been derived. It is found that this wave is unstable in such a plasma system and the growth rate of the associated instability depends on various parameters such as electron Fermi temperature, plasma number density, collision frequency, and modulation wavenumber. It is shown that while the increase of collision frequency leads to increase of the growth rate of instability, especially at large wavenumber limit, the increase of plasma number density results in more stable modulated CPEM-EC wave. It is also found that in contrast to collisionless plasma in which modulational instability is restricted to small wavenumbers, in collisional plasma, the interval of instability occurrence can be extended to a large domain.
Characterization of microstructure with low frequency electromagnetic techniques
Cherry, Matthew R.; Sathish, Shamachary [University of Dayton Research Institute, Structural Integrity Division, 300 College Park, Dayton, OH 45469-0020 (United States); Pilchak, Adam L.; Blodgett, Mark P. [Air Force Research Laboratory, Materials and Manufacturing Directorate (AFRL/RXCM), 2230 10th St., WPAFB, OH 45433 (United States); Cherry, Aaron J. [Southwest Ohio Council for Higher Education, 3155 Research Blvd., Suite 204, Dayton, OH 45420-4015 (United States)
2014-02-18T23:59:59.000Z
A new computational method for characterizing the relationship between surface crystallography and electrical conductivity in anisotropic materials with low frequency electromagnetic techniques is presented. The method is discussed from the standpoint of characterizing the orientation of a single grain, as well as characterizing statistical information about grain ensembles in the microstructure. Large-area electron backscatter diffraction (EBSD) data was obtained and used in conjunction with a synthetic aperture approach to simulate the eddy current response of beta annealed Ti-6Al-4V. Experimental eddy current results are compared to the computed eddy current approximations based on electron backscatter diffraction (EBSD) data, demonstrating good agreement. The detectability of notches in the presence of noise from microstructure is analyzed with the described simulation method and advantages and limitations of this method are discussed relative to other NDE techniques for such analysis.
Vertical Transport of Subwavelength Localized Surface Electromagnetic Modes
Gao, Fei; Zhang, Youming; Shi, Xihang; Yang, Zhaoju; Zhang, Baile
2015-01-01T23:59:59.000Z
Transport of subwavelength electromagnetic (EM) energy has been achieved through near-field coupling of highly confined surface EM modes supported by plasmonic nanoparticles, in a configuration usually staying on a two-dimensional (2D) substrate. Vertical transport of similar modes along the third dimension, on the other hand, can bring more flexibility in designs of functional photonic devices, but this phenomenon has not been observed in reality. In this paper, designer (or spoof) surface plasmon resonators (plasmonic meta-atoms) are stacked in the direction vertical to their individual planes in demonstrating vertical transport of subwavelength localized surface EM modes. Dispersion relation of this vertical transport is determined from coupled mode theory and is verified with near-field transmission spectrum and field mapping with a microwave near-field scanning stage. This work extends the near-field coupled resonator optical waveguide (CROW) theory into the vertical direction, and may find applications ...
Electromagnetic Isolation Solutions in Low Temperature Cofired Ceramic (LTCC)
Krueger, Daniel; Peterson, Ken; Euler, Laurie
2011-10-09T23:59:59.000Z
Low Temperature Cofired Ceramic (LTCC) is a commercial ceramic-glass multilayer technology with compelling advantages for microelectronics, microsystems and sensors. High frequency applications require good electrical properties such as low dielectric loss and newer applications require extreme isolation from electromagnetic interference (EMI) that is even difficult to measure (-150db). Approaches to providing this isolation, once provided by via fences, have included sidewall coating and full tape thickness features (FTTF) that have been introduced by the filling of slots with via-fill compositions. Several techniques for creating these structures have been modeled for stress and temperature effects in the face of other necessary attachments, such as metallic seal frames. The relative effects of attachment media, FTTF geometry, and alternative measures will be reported. Approaches for thick film and thin film implementations are described.
Electromagnetic field objects in terms of Balance of Geometric flows
Donev, Stoil
2015-01-01T23:59:59.000Z
This paper reviews our physical motivation for choosing appropriate formal presentation of electromagnetic field objects (EMFO). Our view is based on the understanding that EMFO are spatially finite entities carrying internal dynamical structure, so, their available integral time stability should be represented by appropriate adaptation of their internal dynamical structure to corresponding local stress-energy-momentum balance relations with other physical objects. This adaptation process has two aspects: internal and external. Clearly, finding adequate internal dynamical structure giving appropriate integral characteristics of the object, will bring also appropriate behavior of EMFO as a whole. Therefore, the internal local stress-energy-momentum balance among the subsystems of EMFO should formally be presented by appropriately defined tensor-field quantities, which are meant to suggest a dynamical understanding of the abilities of EMFO to successfully communicate with all the rest physical world.
Electromagnetic field objects in terms of Balance of Geometric flows
Stoil Donev; Maria Tashkova
2015-08-26T23:59:59.000Z
This paper reviews our physical motivation for choosing appropriate formal presentation of electromagnetic field objects (EMFO). Our view is based on the understanding that EMFO are spatially finite entities carrying internal dynamical structure, so, their available integral time stability should be represented by appropriate adaptation of their internal dynamical structure to corresponding local stress-energy-momentum balance relations with other physical objects. This adaptation process has two aspects: internal and external. Clearly, finding adequate internal dynamical structure giving appropriate integral characteristics of the object, will bring also appropriate behavior of EMFO as a whole. Therefore, the internal local stress-energy-momentum balance among the subsystems of EMFO should formally be presented by appropriately defined tensor-field quantities, which are meant to suggest a dynamical understanding of the abilities of EMFO to successfully communicate with all the rest physical world.
Tunable electromagnetically induced transparency with a coupled superconducting system
Xin Wang; Hong-rong Li; Wen-xiao Liu; Fu-li Li
2015-02-08T23:59:59.000Z
Electromagnetically induced transparency (EIT) has usually been demonstrated by using three-level atomic systems. In this paper, we theoretically proposed an efficient method to realize EIT in microwave regime through a coupled system consisting of a flux qubit and a superconducting LC resonator with relatively high quality factor. In the present composed system, the working levels are the dressed states of a two-level flux qubit and the resonators with a probe pump field. There exits a second order coherent transfer between the dressed states. By comparing the results with those in the conventional atomic system we have revealed the physical origin of the EIT phenomenon in this composed system. Since the whole system is artificial and tunable, our scheme may have potential applications in various domains.
The progenitor of SN 2011ja: Clues from circumstellar interaction
Chakraborti, Sayan; Smith, Randall; Ryder, Stuart; Yadav, Naveen; Sutaria, Firoza; Dwarkadas, Vikram V; Chandra, Poonam; Pooley, David; Roy, Rupak
2013-01-01T23:59:59.000Z
Massive stars, possibly red supergiants, which retain extended hydrogen envelopes until the time of core collapse produce Type IIP (Plateau) supernovae. The ejecta from these explosions shock the circumstellar matter originating from the mass loss of the progenitor during the final phases of its life. This interaction accelerates particles to relativistic energies which then lose energy via synchrotron radiation in the shock-amplified magnetic fields and inverse Compton scattering against optical photons from the supernova. These processes produce different signatures in the radio and X-ray part of the electromagnetic spectrum. Observed together, they allow us to break the degeneracy between shock acceleration and magnetic field amplification. In this work we use X-rays observations from the Chandra and radio observations from the ATCA to study the relative importance of particle acceleration and magnetic fields in producing the non-thermal radiation from SN 2011ja. We use radio observations to constrain the ...
Khan, S. A. [National Centre for Physics, Quaid-i-Azam University Campus, Islamabad 45320 (Pakistan); Ayub, M. K. [National Centre for Physics, Quaid-i-Azam University Campus, Islamabad 45320 (Pakistan); Theoretical Plasma Physics Division, PINSTECH, P. O. Nilore, Islamabad (Pakistan); Pohang University of Science and Technology (POSTECH), Pohang, Gyunbuk 790-784 (Korea, Republic of); Ahmad, Ali [National Centre for Physics, Quaid-i-Azam University Campus, Islamabad 45320 (Pakistan); Theoretical Plasma Physics Division, PINSTECH, P. O. Nilore, Islamabad (Pakistan); Department of Physics, COMSATS Institute of Information Technology, Islamabad 44000 (Pakistan)
2012-10-15T23:59:59.000Z
Quantum plasma oscillations are studied in a strongly magnetized, ultra-dense plasma with degenerate electrons and positrons. The dispersive role of electron and positron quantum effects on low frequency (in comparison to electron cyclotron frequency) shear electromagnetic wave is investigated by employing hydrodynamic formulation. In the presence of ions, the density balance changes, and the electromagnetic wave (with frequency lower than the ion cyclotron frequency) is shown to couple with electrostatic ion mode under certain conditions. For such low frequency waves, it is also seen that the contribution of electron and positron degeneracy pressure is dominant as compared to their diffraction effects. The results are analyzed numerically for illustrative purpose pointing out their relevance to the dense laboratory (e.g., super-intense laser-dense matter interactions) and astrophysical plasmas.
Brown, C G; Ayers, M J; Felker, B; Ferguson, W; Holder, J P; Nagel, S R; Piston, K W; Simanovskaia, N; Throop, A L; Chung, M; Hilsabeck, T
2012-04-20T23:59:59.000Z
Electromagnetic interference (EMI) is an ever-present challenge at laser facilities such as the National Ignition Facility (NIF). The major source of EMI at such facilities is laser-target interaction that can generate intense electromagnetic fields within, and outside of, the laser target chamber. In addition, the diagnostics themselves can be a source of EMI, even interfering with themselves. In this paper we describe EMI generated by ARIANE and DIXI, present measurements, and discuss effects of the diagnostic-generated EMI on ARIANE's CCD and on a PMT nearby DIXI. Finally we present some of the efforts we have made to mitigate the effects of diagnostic-generated EMI on NIF diagnostics.
Enhancement of Kv1.3 Potassium Conductance by Extremely Low Frequency Electromagnetic Field
Claudia Cecchetto; Marta Maschietto; Pasquale Boccaccio; Stefano Vassanelli
2015-08-25T23:59:59.000Z
Theoretical and experimental evidences support the hypothesis that extremely low-frequency electromagnetic fields can affect voltage-gated channels. Little is known, however, about their effect on potassium channels. Kv1.3, a member of the voltage-gated potassium channels family originally discovered in the brain, is a key player in important biological processes including antigen-dependent activation of T-cells during the immune response. We report that Kv1.3 expressed in CHO-K1 cells can be modulated in cell subpopulations by extremely low frequency and relatively low intensity electromagnetic fields. In particular, we observed that field exposure can cause an enhancement of Kv1.3 potassium conductance and that the effect lasts for several minutes after field removal. The results contribute to put immune and nervous system responses to extremely low-frequency electromagnetic fields into a new perspective, with Kv1.3 playing a pivotal molecular role. Keywords: immunotherapy, immunomodulation, potassium channels, gating, electromagnetic fields
Gauge Theory of the Gravitational-Electromagnetic Field
Robert D. Bock
2015-05-26T23:59:59.000Z
We develop a gauge theory of the combined gravitational-electromagnetic field by expanding the Poincar\\'e group to include clock synchronization transformations. We show that the electromagnetic field can be interpreted as a local gauge theory of the synchrony group. According to this interpretation, the electromagnetic field equations possess nonlinear terms and electromagnetic gauge transformations acquire a space-time interpretation as local synchrony transformations. The free Lagrangian for the fields leads to the usual Einstein-Maxwell field equations with additional gravitational-electromagnetic coupling terms. The connection between the electromagnetic field and the invariance properties of the Lagrangian under clock synchronization transformations provides a strong theoretical argument in favor of the thesis of the conventionality of simultaneity. This suggests that clock synchronization invariance (or equivalently, invariance under transformations of the one-way speed of light) is a fundamental invariance principle of physics.
Relativistic electromagnetic mass models in spherically symmetric spacetime
S. K. Maurya; Y. K. Gupta; Saibal Ray; Vikram Chatterjee
2015-07-04T23:59:59.000Z
Under the static spherically symmetric Einstein-Maxwell spacetime of embedding class one we explore possibility of electromagnetic mass model where mass and other physical parameters have purely electromagnetic origin (Tiwari 1984, Gautreau 1985, Gron 1985). This work is in continuation of our earlier investigation (Maurya 2015a) where we developed an algorithm and found out three new solutions of electromagnetic mass models. In the present letter we consider different metric potentials $\
Shear driven electromagnetic drift-waves in a nonuniform dense magnetoplasma
Tariq, Sabeen; Mirza, Arshad M. [Theoretical Plasma Physics Group, Department of Physics, Quaid-i-Azam University, Islamabad 45320 (Pakistan); Masood, Waqas [Theoretical Plasma Physics Division, PINSTECH, P. O. Nilore, Islamabad 44000 (Pakistan); National Center for Physics (NCP), Islamabad 44000 (Pakistan)
2011-08-15T23:59:59.000Z
Linear characteristic properties of high- and low-frequency (in comparison with the cyclotron frequency) electromagnetic drift-waves are studied in a nonuniform, dense magnetoplasma (composed of electrons and ions), in the presence of parallel (magnetic field-aligned) velocity shear, by using quantum magnetohydrodynamic model. By applying the drift-approximation (viz., |{partial_derivative} {sub t}|<<{omega}{sub ci}<<{omega}{sub ce}) to the quantum momentum equations, together with the continuity equations and the Poisson equation, we derive the governing equations for electromagnetic drift-waves with the shear flow. These linear equations are then Fourier transformed to obtain the dispersion relation in both high-frequency and low-frequency regimes. The dispersion relations are then discussed under various limiting cases.
Unification of Gravity and Electromagnetism II A Geometric Theory
Partha Ghose
2015-02-11T23:59:59.000Z
It is shown that unification of gravity and electromagnetism can be achieved using an affine non-symmetric connection $\\Gamma^\\lambda_{\\mu\
Electromagnetically induced transparency controlled by a microwave field
Li, Hebin; Sautenkov, Vladimir A.; Rostovtsev, Yuri V.; Welch, George R.; Hemmer, Philip R.; Scully, Marlan O.
2009-01-01T23:59:59.000Z
interferences in electromagnetically induced transparency. A simple theoretical model and a numerical simulation have been developed to explain the observed experimental results....
Electromagnetic wave scattering by many conducting small particles
A. G. Ramm
2008-04-21T23:59:59.000Z
A rigorous theory of electromagnetic (EM) wave scattering by small perfectly conducting particles is developed. The limiting case when the number of particles tends to infinity is discussed.
Optical beam steering based on electromagnetically induced transparency
Sun, Qingqing; Rostovtsev, Yuri V.; Zubairy, M. Suhail
2006-01-01T23:59:59.000Z
, and the limits set by residual absorption of the medium under conditions of electromagnetically induced transparency. Implementation of another scheme for ultrashort pulses is also discussed....
Time-Domain Electromagnetics At Kilauea East Rift Geothermal...
Electromagnetics At Kilauea East Rift Geothermal Area (FURUMOTO, 1976) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Time-Domain...
Frequency-Domain Electromagnetics Survey At Kilauea East Rift...
FURUMOTO, 1976) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Frequency-Domain Electromagnetics Survey At Kilauea East Rift Geothermal Area...
Ground Electromagnetic Survey At Kilauea East Rift Geothermal...
Area Exploration Technique Ground Electromagnetic Survey Activity Date 1973 - 1976 Usefulness useful DOE-funding Unknown Exploration Basis This study was conducted to...
Time-Domain Electromagnetics At Glass Mountain Area (Cumming...
GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Time-Domain Electromagnetics At Glass Mountain Area (Cumming And Mackie, 2007) Exploration Activity Details Location Glass...
Electromagnetic Soundings At Dixie Valley Geothermal Area (Mallan...
Mallan, Et Al., 2001) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Electromagnetic Soundings At Dixie Valley Geothermal Area (Mallan, Et Al.,...
Time-Domain Electromagnetics At Kilauea Southwest Rift And South...
Details Location Kilauea Southwest Rift And South Flank Area Exploration Technique Time-Domain Electromagnetics Activity Date Usefulness useful DOE-funding Unknown Notes The...
Time-Domain Electromagnetics At Mauna Loa Northeast Rift Area...
Activity Details Location Mauna Loa Northeast Rift Area Exploration Technique Time-Domain Electromagnetics Activity Date Usefulness useful DOE-funding Unknown Notes The...
Time-Domain Electromagnetics At Kilauea East Rift Geothermal...
74) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Time-Domain Electromagnetics At Kilauea East Rift Geothermal Area (Skokan, 1974) Exploration...
Time-Domain Electromagnetics At Kilauea East Rift Geothermal...
Activity Details Location Kilauea East Rift Geothermal Area Exploration Technique Time-Domain Electromagnetics Activity Date 1978 - 1987 Usefulness useful DOE-funding Unknown...
Time-Domain Electromagnetics At Long Valley Caldera Geothermal...
Activity Details Location Long Valley Caldera Geothermal Area Exploration Technique Time-Domain Electromagnetics Activity Date - 1986 Usefulness useful DOE-funding Unknown...
Time-Domain Electromagnetics At Hualalai Northwest Rift Area...
Activity Details Location Hualalai Northwest Rift Area Exploration Technique Time-Domain Electromagnetics Activity Date Usefulness useful DOE-funding Unknown Notes Three...
6.013 Electromagnetics and Applications, Fall 2002
Staelin, David H.
Electromagnetic phenomena are explored in modern applications including wireless communications, circuits, computer interconnects and peripherals, optical fiber links and components, microwave communications and radar, ...
Vlf Electromagnetic Investigations Of The Crater And Central...
Helens, Washington Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Vlf Electromagnetic Investigations Of The Crater And Central Dome Of Mount...
Electromagnetic Evidence For An Ancient Avalanche Caldera Rim...
Merapi, Indonesia Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Electromagnetic Evidence For An Ancient Avalanche Caldera Rim On The South...
Motor Packaging with Consideration of Electromagnetic and Material...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
and Peer Evaluation Meeting ape035miller2012o.pdf More Documents & Publications Motor Packaging with Consideration of Electromagnetic and Material Characteristics Alnico...
Novel resonance-assisted electromagnetic-transport phenomena
Kurs, André B
2011-01-01T23:59:59.000Z
We first demonstrate theoretically and experimentally that electromagnetic resonators with high quality factors (Q) can be used to transfer power efficiently over distances substantially larger than the characteristic ...
6.641 Electromagnetic Fields, Forces, and Motion, Spring 2003
Zahn, Markus, 1946-
Electric and magnetic quasistatic forms of Maxwell's equations applied to dielectric, conduction, and magnetization boundary value problems. Electromagnetic forces, force densities, and stress tensors, including magnetization ...
Waveguide-based Ultrasonic and Far-field Electromagnetic Sensors...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
waveguide-based ultrasonic and far- field electromagnetic sensors to measure key Enhanced Geothermal Systems (EGS) reservoir parameters, including directional temperature,...
Analysis Of Factors Affecting Natural Source Slf Electromagnetic...
At Geothermal Wells Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Analysis Of Factors Affecting Natural Source Slf Electromagnetic...
Electromagnetic wave scattering by many small particles
A. G. Ramm
2006-08-18T23:59:59.000Z
Scattering of electromagnetic waves by many small particles of arbitrary shapes is reduced rigorously to solving linear algebraic system of equations bypassing the usual usage of integral equations. The matrix elements of this linear algebraic system have physical meaning. They are expressed in terms of the electric and magnetic polarizability tensors. Analytical formulas are given for calculation of these tensors with any desired accuracy for homogeneous bodies of arbitrary shapes. An idea to create a "smart" material by embedding many small particles in a given region is formulated.
Electromagnetic Properties of the Early Universe
Keitaro Takahashi; Kiyotomo Ichiki; Naoshi Sugiyama
2008-05-29T23:59:59.000Z
Detailed physical processes of magnetic field generation from density fluctuations in the pre-recombination era are studied. Solving Maxwell equations and the generalized Ohm's law, the evolutions of the net charge density, the electric current and the electromagnetic field are solved. Unlike most of previous works, we treat electrons and photons as separate components under the assumption of tight coupling. We find that generation of the magnetic field due to density fluctuations takes place only from the second order of both perturbation theory and the tight coupling approximation.
Electromagnetic wave scattering by small bodies
A. G. Ramm
2008-04-21T23:59:59.000Z
A reduction of the Maxwell's system to a Fredholm second-kind integral equation with weakly singular kernel is given for electromagnetic (EM) wave scattering by one and many small bodies. This equation is solved asymptotically as the characteristic size of the bodies tends to zero. The technique developed is used for solving the many-body EM wave scattering problem by rigorously reducing it to solving linear algebraic systems, completely bypassing the usage of integral equations. An equation is derived for the effective field in the medium, in which many small particles are embedded. A method for creating a desired refraction coefficient is outlined.
Electromagnetic Dipole Strength in Transitional Nuclei
S. Q. Zhang; I. Bentley; S. Brant; F. Dönau; S. Frauendorf; B. Kämpfer; R. Schwengner; A. Wagner
2008-08-19T23:59:59.000Z
Electromagnetic dipole absorption cross-sections of transitional nuclei with large-amplitude shape fluctuations are calculated in a microscopic way by introducing the concept of Instantaneous Shape Sampling. The concept bases on the slow shape dynamics as compared to the fast dipole vibrations. The elctromagnetic dipole strength is calculated by means of RPA for the instantaneous shapes, the probability of which is obtained by means of IBA. Very good agreement with the experimental absorption cross sections near the nucleon emission threshold is obtained.
Electromagnetic wormholes and virtual magnetic monopoles
Allan Greenleaf; Yaroslav Kurylev; Matti Lassas; Gunther Uhlmann
2007-03-20T23:59:59.000Z
We describe new configurations of electromagnetic (EM) material parameters, the electric permittivity $\\epsilon$ and magnetic permeability $\\mu$, that allow one to construct from metamaterials objects that function as invisible tunnels. These allow EM wave propagation between two points, but the tunnels and the regions they enclose are not detectable to EM observations. Such devices function as wormholes with respect to Maxwell's equations and effectively change the topology of space vis-a-vis EM wave propagation. We suggest several applications, including devices behaving as virtual magnetic monopoles.
Electromagnetic Media with no Dispersion Equation
Ismo V. Lindell; Alberto Favaro
2013-03-25T23:59:59.000Z
It has been known through some examples that parameters of an electromagnetic medium can be so defined that there is no dispersion equation (Fresnel equation) to restrict the choice of the wave vector of a plane wave in such a medium, i.e., that the dispersion equation is satisfied identically for any wave vector. In the present paper, a more systematic study to define classes of media with no dispersion equation is attempted. The analysis makes use of coordinate-free four-dimensional formalism in terms of multivectors, multiforms and dyadics.
Electromagnetic simulations of coaxial type HOM coupler
Genfa Wu; Haipeng Wang; Robert Rimmer; Charles Reece
2005-07-10T23:59:59.000Z
DESY-type coaxial high order mode (HOM) coupler was used in many superconducting cavities. The electric probe tip is located at the maximum B-field inside the coupler can. For continuous wave (CW) high current application, the heating of this tip can be severe to degrade the cavity performance. Electromagnetic (EM) simulation was done to estimate the tip heating. The geometric remedies and detuning effect were discussed. The effect to HOM external quality factor (Qext) was also estimated due to these remedies. The HOM probe tip heating power was provided for CEBAF 12-GeV cavities and AES injector cavities.
General Polarization Matrix of Electromagnetic Radiation
Muhammet Ali Can; Alexander S. Shumovsky
2001-05-15T23:59:59.000Z
A general form of the polarization matrix valid for any type of electromagnetic radiation (plane waves, multipole radiation etc.) is defined in terms of a certain bilinear form in the field-strength tensor. The quantum counterpart is determined as an operator matrix with normal-ordered elements with respect to the creation and annihilation operators. The zero-point oscillations (ZPO) of polarization are defined via difference between the anti-normal and normal ordered operator polarization matrices. It is shown that ZPO of the multipole field are stronger than those described by the model of plane waves and are concentrated in a certain neighborhood of a local source.
Electromagnetic Radiation Hardness of Diamond Detectors
T. Behnke; M. Doucet; N. Ghodbane; A. Imhof; C. Martinez; W. Zeuner
2001-08-22T23:59:59.000Z
The behavior of artificially grown CVD diamond films under intense electromagnetic radiation has been studied. The properties of irradiated diamond samples have been investigated using the method of thermally stimulated current and by studying their charge collection properties. Diamonds have been found to remain unaffected after doses of 6.8 MGy of 10 keV photons and 10 MGy of MeV-range photons. This observation makes diamond an attractive detector material for a calorimeter in the very forward region of the proposed TESLA detector.
Physics with the ALICE Electromagnetic Calorimeter
Rene Bellwied; for the ALICE Collaboration
2009-07-17T23:59:59.000Z
I will present physics measurements which are achievable in the ALICE experiment at the LHC through the inclusion of a new electromagnetic calorimeter. I will focus on jet measurements in proton proton and heavy ion collisions. Detailed simulations have been performed on jet reconstruction, jet triggering, heavy flavor jet reconstruction through electron identification, gamma-jet reconstruction and the measurements of identified hadrons and resonances in jets. I will show the physics capabilities which are made possible through the combination of calorimeter information with the other detector components in ALICE.
Artificial Retina Project: Electromagnetic and Thermal Effects
Lazzi, Gianluca
2014-08-29T23:59:59.000Z
This award supported the investigation on electromagnetic and thermal effects associated with the artificial retina, designed in collaboration with national laboratories, universities, and private companies. Our work over the two years of support under this award has focused mainly on 1) Design of new telemetry coils for optimal power and data transfer between the implant and the external device while achieving a significant size reduction with respect to currently used coils; 2) feasibility study of the virtual electrode configuration 3) study the effect of pulse shape and duration on the stimulation efficacy.
Electromagnetic Sounding Techniques | Open Energy Information
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousPlasmaP a g eWorksVillagesource History(RedirectedEl Segundo, California: EnergyElectricElectromagneticPage
Ground Electromagnetic Techniques | Open Energy Information
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousPlasmaP aCentrothermDepew, NewAl., 2012) |GreenBrillianceGreenwood,Griggs County,Ground Electromagnetic
Cavity cooling of a trapped atom using Electromagnetically-Induced Transparency
Marc Bienert; Giovanna Morigi
2011-12-01T23:59:59.000Z
A cooling scheme for trapped atoms is proposed, which combines cavity-enhanced scattering and electromagnetically induced transparency. The cooling dynamics exploits a three-photon resonance, which combines laser and cavity excitations. It is shown that relatively fast ground-state cooling can be achieved in the Lamb-Dicke regime and for large cooperativity. Efficient ground-state cooling is found for parameters of ongoing experiments.
Electromagnetic augmentation for casting of thin metal sheets
Hull, John R. (Hinsdale, IL)
1989-01-01T23:59:59.000Z
Thin metal sheets are cast by magnetically levitating molten metal deposited in a mold within a ferromagnetic yoke and between AC conducting coils and linearly displacing the magnetically levitated liquid metal while it is being cooled by the water-cooled walls of the mold to form a solid metal sheet. A conducting shield is electrically coupled to the molten metal sheet to provide a return path for eddy currents induced in the metal sheet by the current in the AC conducting coils. In another embodiment, a DC conducting coil is coupled to the metal sheet for providing a direct current therein which interacts with the magnetic field to levitate the moving metal sheet. Levitation of the metal sheet in both molten and solid forms reduces its contact pressure with the mold walls while maintaining sufficient engagement therebetween to permit efficient conductive cooling by the mold through which a coolant fluid may be circulated. The magnetic fields associated with the currents in the aforementioned coils levitate the molten metal sheet while the mold provides for its lateral and vertical confinement. A leader sheet having electromagnetic characteristics similar to those of the molten metal sheet is used to start the casing process and precedes the molten metal sheet through the yoke/coil arrangement and mold and forms a continuous sheet therewith. The yoke/coil arrangement may be either U-shaped with a single racetrack coil or may be rectangular with a pair of spaced, facing bedstead coils.
Effects of thermal motion on electromagnetically induced absorption
Tilchin, E.; Wilson-Gordon, A. D.; Firstenberg, O. [Department of Chemistry, Bar-Ilan University, Ramat Gan IL-52900 (Israel); Department of Physics, Technion-Israel Institute of Technology, Haifa IL-32000 (Israel)
2011-05-15T23:59:59.000Z
We describe the effect of thermal motion and buffer-gas collisions on a four-level closed N system interacting with strong pump(s) and a weak probe. This is the simplest system that experiences electromagnetically induced absorption (EIA) due to transfer of coherence via spontaneous emission from the excited state to the ground state. We investigate the influence of Doppler broadening, velocity-changing collisions (VCC), and phase-changing collisions (PCC) with a buffer gas on the EIA spectrum of optically active atoms. In addition to exact expressions, we present an approximate solution for the probe absorption spectrum, which provides physical insight into the behavior of the EIA peak due to VCC, PCC, and the wave-vector difference between the pump and probe beams. VCC are shown to produce a wide pedestal at the base of the EIA peak, which is scarcely affected by the pump-probe angular deviation, whereas the sharp central EIA peak becomes weaker and broader due to the residual Doppler-Dicke effect. Using diffusionlike equations for the atomic coherences and populations, we construct a spatial-frequency filter for a spatially structured probe beam and show that Ramsey narrowing of the EIA peak is obtained for beams of finite width.
Hur, Min Sup
2009-01-01T23:59:59.000Z
813 Guiding of an electromagnetic pulse in a plasma immersedGuiding of an electromagnetic pulse in a plasma immersed inof guiding an electromagnetic pulse. The scheme consists of
Electromagnetic space-time crystals. II. Fractal computational approach
G. N. Borzdov
2014-10-20T23:59:59.000Z
A fractal approach to numerical analysis of electromagnetic space-time crystals, created by three standing plane harmonic waves with mutually orthogonal phase planes and the same frequency, is presented. Finite models of electromagnetic crystals are introduced, which make possible to obtain various approximate solutions of the Dirac equation. A criterion for evaluating accuracy of these approximate solutions is suggested.
Electromagnetic Field Creation During EWPT Nucleation With Lepton Currents
Leonard S. Kisslinger; Sameer Walawalkar; Ernest M. Henley; Mikkel B. Johnson
2005-10-11T23:59:59.000Z
We include the electromagnetic currents from fermion degrees of freedom in the equations of motion for electroweak MSSM with a right-handed Stop that we have recently investigated. It is found that near the surface of the bubble walls there are important effects on the electromagnetic fields produced during bubble nucleation.
Line geometry and electromagnetism III: groups of transformations
D. H. Delphenich
2014-04-16T23:59:59.000Z
The role of linear and projective groups of transformations in line geometry and electromagnetism is examined in accordance with Klein's Erlanger Programm for geometries. The group of collineations of real projective space is chosen as the most general group, and reductions to some of its various subgroups are then detailed according to their relevance to electromagnetic fields, and especially wave-like ones.
Electromagnetic field at Finite Temperature: A first order approach
R. Casana; B. M. Pimentel; J. S. Valverde
2007-02-04T23:59:59.000Z
In this work we study the electromagnetic field at Finite Temperature via the massless DKP formalism. The constraint analysis is performed and the partition function for the theory is constructed and computed. When it is specialized to the spin 1 sector we obtain the well-known result for the thermodynamic equilibrium of the electromagnetic field.
Time-spatial drift of decelerating electromagnetic pulses
Nerukh, Dmitry
Time-spatial drift of decelerating electromagnetic pulses Alexander G. Nerukh1* and Dmitry A dependent electromagnetic pulse generated by a current running laterally to the direction of the pulse propagation is considered in paraxial approximation. It is shown that the pulse envelope moves in the time
Errors-in-variables problems in transient electromagnetic mineral exploration
Braslavsky, Julio H.
Errors-in-variables problems in transient electromagnetic mineral exploration K. Lau, J. H in transient electromagnetic mineral exploration. A specific sub-problem of interest in this area geological surveys, dia- mond drilling, and airborne mineral exploration. Our interest here is with ground
Chang, Ray-Yuan; Fang, Wei-Chia; Lee, Ming-Tsung; He, Zong-Syun; Ke, Bai-Cian [Department of Physics, National Cheng-Kung University, Tainan 70101, Taiwan (China); Lee, Yi-Chi [Institute of Electro-Optical Science and Engineering, National Cheng-Kung University, Tainan 70101, Taiwan (China); Tsai, Chin-Chun [Department of Physics, National Cheng-Kung University, Tainan 70101, Taiwan (China); Institute of Electro-Optical Science and Engineering, National Cheng-Kung University, Tainan 70101, Taiwan (China)
2010-01-15T23:59:59.000Z
This investigation clarifies the transition phenomenon between the electromagnetically induced transparency (EIT) and Raman absorption in a ladder-type system of Doppler-broadened cesium vapor. A competition window of this transition was found to be as narrow as 2 MHz defined by the probe Rabi frequency. For a weak probe, the spectrum of EIT associated with quantum interference suggests that the effect of the Doppler velocity on the spectrum is negligible. When the Rabi frequency of the probe becomes comparable with the effective decay rate, an electromagnetically induced absorption (EIA) dip emerges at the center of the power broadened EIT peak. While the Rabi frequency of the probe exceeds the effective decay rate, decoherence that is generated by the intensified probe field occurs and Raman absorption dominates the interaction process, yielding a pure absorption spectrum; the Doppler velocity plays an important role in the interaction. A theory that is based on density matrix simulation, with or without the Doppler effect, can qualitatively fit the experimental data. In this work, the coherence of atom-photon interactions is created or destroyed using the probe Rabi frequency as a decoherence source.
THE PROGENITOR OF SN 2011ja: CLUES FROM CIRCUMSTELLAR INTERACTION
Chakraborti, Sayan [Institute for Theory and Computation, Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Ray, Alak; Yadav, Naveen [Tata Institute of Fundamental Research, 1 Homi Bhabha Road, Colaba, Mumbai 400 005 (India); Smith, Randall [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Ryder, Stuart [Australian Astronomical Observatory, P.O. Box 915, North Ryde, NSW 1670 (Australia); Sutaria, Firoza [Indian Institute of Astrophysics, Koramangala, Bangalore (India); Dwarkadas, Vikram V. [Department of Astronomy and Astrophysics, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); Chandra, Poonam [Department of Physics, Royal Military College of Canada, Kingston, ON K7K 7B4 (Canada); Pooley, David [Department of Physics, Sam Houston State University, Huntsville, TX (United States); Roy, Rupak, E-mail: schakraborti@fas.harvard.edu [Aryabhatta Research Institute of Observational Sciences, Manora Peak, Nainital (India)
2013-09-01T23:59:59.000Z
Massive stars, possibly red supergiants, which retain extended hydrogen envelopes until core collapse, produce Type II plateau (IIP) supernovae. The ejecta from these explosions shocks the circumstellar matter originating from the mass loss of the progenitor during the final phases of its life. This interaction accelerates particles to relativistic energies which then lose energy via synchrotron radiation in the shock-amplified magnetic fields and inverse Compton scattering against optical photons from the supernova. These processes produce different signatures in the radio and X-ray parts of the electromagnetic spectrum. Observed together, they allow us to break the degeneracy between shock acceleration and magnetic field amplification. In this work, we use X-rays observations from the Chandra and radio observations from the Australia Telescope Compact Array to study the relative importance of processes which accelerate particles and those which amplify magnetic fields in producing the non-thermal radiation from SN 2011ja. We use radio observations to constrain the explosion date. Multiple Chandra observations allow us to probe the history of variable mass loss from the progenitor. The ejecta expands into a low-density bubble followed by interaction with a higher density wind from a red supergiant consistent with M{sub ZAMS} {approx}> 12 M{sub Sun }. Our results suggest that a fraction of Type IIP supernovae may interact with circumstellar media set up by non-steady winds.
Electromagnetic induction pump for pumping liquid metals and other conductive liquids
Smither, R.K.
1993-05-11T23:59:59.000Z
An electromagnetic induction pump is described in which an electrically conductive liquid is made to flow by means of a force created by interaction of a permanent magnetic field and a DC current. The pump achieves high efficiency through combination of: powerful permanent magnet materials which provide a high strength field that is uniform and constant; steel tubing formed into a coil which is constructed to carry conducting liquids with minimal electrical resistance and heat; and application of a voltage to induce a DC current which continuously produces a force in the direction of the desired flow.
Kuznetsov, S.B.
1987-01-13T23:59:59.000Z
A system for casting liquid metals is provided with an electromagnetic pump which includes a pair of primary blocks each having a polyphase winding and being positioned to form a gap through which a movable conductive heat sink passes. A solidifying liquid metal sheet is deposited on the heat sink and the heat sink and sheet are held in compression by forces produced as a result of current flow through the polyphase windings. Shaded-pole interaction between the primary windings, heat sink and solidifying strip produce transverse forces which act to center the strip on the heat sink. 5 figs.
Electromagnetic induction pump for pumping liquid metals and other conductive liquids
Smither, Robert K. (Hinsdale, IL)
1993-01-01T23:59:59.000Z
An electromagnetic induction pump in which an electrically conductive liquid is made to flow by means of a force created by interaction of a permanent magnetic field and a DC current. The pump achieves high efficiency through combination of: powerful permanent magnet materials which provide a high strength field that is uniform and constant; steel tubing formed into a coil which is constructed to carry conducting liquids with minimal electrical resistance and heat; and application of a voltage to induce a DC current which continuously produces a force in the direction of the desired flow.
Kuznetsov, Stephen B. (Pittsburgh, PA)
1987-01-01T23:59:59.000Z
A system for casting liquid metals is provided with an electromagnetic pump which includes a pair of primary blocks each having a polyphase winding and being positioned to form a gap through which a movable conductive heat sink passes. A solidifying liquid metal sheet is deposited on the heat sink and the heat sink and sheet are held in compression by forces produced as a result of current flow through the polyphase windings. Shaded-pole interaction between the primary windings, heat sink and solidifying strip produce transverse forces which act to center the strip on the heat sink.
Electromagnetic reactions of few-body systems with the Lorentz integral transform method
W. Leidemann
2007-01-12T23:59:59.000Z
Various electromagnetic few-body break-up reactions into the many-body continuum are calculated microscopically with the Lorentz integral transform (LIT) method. For three- and four-body nuclei the nuclear Hamiltonian includes two- and three- nucleon forces, while semirealistic interactions are used in case of six- and seven-body systems. Comparisons with experimental data are discussed. In addition various interesting aspects of the $^4$He photodisintegration are studied: investigation of a tetrahedrical symmetry of $^4$He and a test of non-local nuclear force models via the induced two-body currents.
Electro-Optical Sensing Apparatus and Method for Characterizing Free-Space Electromagnetic Radiation
Zhang, Xi-Cheng; Libelo, Louis Francis; Wu, Qi
1999-09-14T23:59:59.000Z
Apparatus and methods for characterizing free-space electromagnetic energy, and in particular, apparatus/method suitable for real-time two-dimensional far-infrared imaging applications are presented. The sensing technique is based on a non-linear coupling between a low-frequency electric field and a laser beam in an electro-optic crystal. In addition to a practical counter-propagating sensing technique, a co-linear approach is described which provides longer radiated field--optical beam interaction length, thereby making imaging applications practical.
Norin, L.; Leyser, T. B.; Nordblad, E.; Thide, B.; McCarrick, M. [Swedish Institute of Space Physics, Uppsala (Sweden); BAE Systems Advanced Technologies, Washington, D.C. (United States)
2009-02-13T23:59:59.000Z
Experimental results of secondary electromagnetic radiation, stimulated by high-frequency radio waves irradiating the ionosphere, are reported. We have observed emission peaks, shifted in frequency up to a few tens of Hertz from radio waves transmitted at several megahertz. These emission peaks are by far the strongest spectral features of secondary radiation that have been reported. The emissions are attributed to stimulated Brillouin scattering, long predicted but hitherto never unambiguously identified in high-frequency ionospheric interaction experiments. The experiments were performed at the High-Frequency Active Auroral Research Program (HAARP), Alaska, USA.
O. V. Veko; N. D Vlasii; Yu. A. Sitenko; E. M. Ovsiyuk; V. M. Red'kov
2014-10-30T23:59:59.000Z
Tetrad-based generalized complex formalism by Majorana--Oppenheimer is applied to treat electromagnetic field in extending de Sitter Universe in on-static spherically-symmetric coordinates. With the help of Wigner D-functions, we separate angular dependence in the complex vector field E_{j}(t,r)+i B_{j}(t,r) from (t,r)-dependence. The separation parameter arising here instead of frequency \\omega in Minkowski space-time is quantized, non-static geometry of the de Sitter model leads to definite dependence of electromagnetic modes on the time variable. Relation of 3-vector complex approach to 10-dimensional Duffin-Kemmer-Petiau formalism is considered. On this base, the electromagnetic waves of magnetic and electric type have been constructed in both approaches. In Duffin-Kemmer-Petiau approach, there are constructed gradient-type solutions in Lorentz gauge.
Analytical and Numerical Studies of Effective Medium Mixing Problems in Electromagnetics
Mai, Nam
2013-02-13T23:59:59.000Z
Electromagnetically Functionalized Colloidal Dispersions (EFCDs) have been utilized in several applications in electromagnetics such as reconfigurable antennas. The colloidal dispersions vary the electrical properties depending on the volume...
Kepler, Grace Martinelli
Reduced Order Computational Methods for Electromagnetic Material Interrogation Using Pulsed Signals of a pulsed planar electromagnetic wave of a dielectric slab with a supraconductive backing. Previous work
An Obliquely Propagating Electromagnetic Drift Instability in the Lower Hybrid Frequency Range
Hantao Ji; Russell Kulsrud; William Fox; Masaaki Yamada
2005-06-10T23:59:59.000Z
By employing a local two-fluid theory, we investigate an obliquely propagating electromagnetic instability in the lower hybrid frequency range driven by cross-field current or relative drifts between electrons and ions. The theory self-consistently takes into account local cross-field current and accompanying pressure gradients. It is found that the instability is caused by reactive coupling between the backward propagating whistler (fast) waves in the moving electron frame, and the forward propagating sound (slow) waves in the ion frame when the relative drifts are large. The unstable waves we consider propagate obliquely to the unperturbed magnetic field and have mixed polarization with significant electromagnetic components. A physical picture of the instability emerges in the limit of large wave number characteristic of the local approximation. The primary positive feedback mechanism is based on reinforcement of initial electron density perturbations by compression of electron fluid via induced Lorentz force. The resultant waves are qualitatively consistent with the measured electromagnetic fluctuations in reconnecting current sheet in a laboratory plasma.
Texas at Austin, University of
Large Dynamic Range Electromagnetic FieldLarge Dynamic Range Electromagnetic Field Sensor based on Domain Inverted Electro-Optic Polymer Directional CouplerPolymer Directional Coupler Alan X. Wang Ray T. Chen Omega Optics Inc Austin TXOmega Optics Inc., Austin, TX -1- #12;Application of Electric Field
Gribakin, Gleb
, the statistics of their energy spectra show certain universal features, and transition amplitudes in- volvingStatistics of electromagnetic transitions as a signature of chaos in many-electron atoms V. V, Australia Received 28 January 1998 Using a configuration-interaction approach, we study statistics
On the Electrodynamics of Moving Permanent Dipoles in External Electromagnetic Fields
Mansuripur, Masud
2014-01-01T23:59:59.000Z
The classical theory of electrodynamics is built upon Maxwell's equations and the concepts of electromagnetic field, force, energy and momentum, which are intimately tied together by Poynting's theorem and the Lorentz force law. Whereas Maxwell's macroscopic equations relate the electric and magnetic fields to their material sources (i.e., charge, current, polarization and magnetization), Poynting's theorem governs the flow of electromagnetic energy and its exchange between fields and material media, while the Lorentz law regulates the back-and-forth transfer of momentum between the media and the fields. The close association of momentum with energy thus demands that the Poynting theorem and the Lorentz law remain consistent with each other, while, at the same time, ensuring compliance with the conservation laws of energy, linear momentum, and angular momentum. This paper shows how a consistent application of the aforementioned laws of electrodynamics to moving permanent dipoles (both electric and magnetic) b...
Electromagnetic mass difference on the lattice
Yusuke Namekawa; Yoshio Kikukawa
2005-09-24T23:59:59.000Z
We calculate electromagnetic mass difference of mesons using a method proposed by Duncan {\\it et al}. The RG-improved gauge action and the non-compact Abelian gauge action are employed to generate configurations. Quark propagators in the range of $m_{PS}/m_{V}=0.76-0.51$ are obtained with the meanfield-improved clover quark action. Chiral and continuum extrapolations are performed and the results are compared with experiments. Finite size effects are also examined. Quark masses are extracted from the measured spectrum. Our preliminary values for light quark masses are $m_{u}^{\\bar{MS}}(\\mu =2 {GeV}) = 3.03(19)$ MeV, $m_{d}^{\\bar{MS}}(\\mu = 2 {GeV}) = 4.44(28)$ MeV, $m_{s}^{\\bar{MS}}(\\mu = 2 {GeV}) = 99.2(52)$ MeV.
Electromagnetic matrix elements for negative parity nucleons
Benjamin Owen; Waseem Kamleh; Derek Leinweber; Selim Mahbub; Benjamin Menadue
2014-12-15T23:59:59.000Z
Here we present preliminary results for the evaluation of the electromagnetic form factors for the lowest-lying negative-parity, spin-$\\frac{1}{2}$ nucleons, namely the $S_{11}(1535)$ and $S_{11}(1650)$, through the use of the variational method. We find that the characteristics of the electric form factor, $G_{E}$, are similar between these states, however significant differences are observed between the quark-sector contributions to the magnetic form factor, $G_{M}$. Within simple constituent quark models, these states are understood to be admixtures of $s=\\frac{1}{2}$ and $s=\\frac{3}{2}$ states coupled to orbital angular momentum $\\ell = 1$. Our results reveal a qualitative difference in the manner in which the singly-represented quark sector contributes to these baryon magnetic form factors.
Electromagnetic nonlinear gyrokinetics with polarization drift
Duthoit, F.-X. [SNU Division of Graduate Education for Sustainabilization of Foundation Energy, Seoul National University, Gwanak-ro 1, Gwanak-gu, 151-744 Seoul (Korea, Republic of); Hahm, T. S., E-mail: tshahm@snu.ac.kr [Department of Nuclear Engineering, Seoul National University, Gwanak-ro 1, Gwanak-gu, 151-744 Seoul (Korea, Republic of); Wang, Lu [College of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China)
2014-08-15T23:59:59.000Z
A set of new nonlinear electromagnetic gyrokinetic Vlasov equation with polarization drift and gyrokinetic Maxwell equations is systematically derived by using the Lie-transform perturbation method in toroidal geometry. For the first time, we recover the drift-kinetic expression for parallel acceleration [R. M. Kulsrud, in Basic Plasma Physics, edited by A. A. Galeev and R. N. Sudan (North-Holland, Amsterdam, 1983)] from the nonlinear gyrokinetic equations, thereby bridging a gap between the two formulations. This formalism should be useful in addressing nonlinear ion Compton scattering of intermediate-mode-number toroidal Alfvén eigenmodes for which the polarization current nonlinearity [T. S. Hahm and L. Chen, Phys. Rev. Lett. 74, 266 (1995)] and the usual finite Larmor radius effects should compete.
Longo, P
2014-01-01T23:59:59.000Z
The collective emission from a one-dimensional chain of interacting two-level atoms coupled to a common electromagnetic reservoir is investigated. We derive the system's dissipative few-excitation eigenstates, and analyze their static properties, including the collective dipole moments and branching ratios between different eigenstates. Next, we study the dynamics, and characterize the light emitted or scattered by such a system via different far-field observables. Throughout the analysis, we consider spontaneous emission from an excited state as well as two different pump field setups, and contrast the two extreme cases of non-interacting and strongly interacting atoms. For the latter case, the two-excitation submanifold contains a two-body bound state, and we find that the two cases lead to different dynamics and far-field signatures. Finally we exploit these signatures to characterize the wavefunctions of the collective eigenstates. For this, we identify a direct relation between the collective branching r...
EIT-related phenomena and their mechanical analogs
J. A. Souza; L. Cabral; R. R. Oliveira; C. J. Villas-Boas
2015-06-19T23:59:59.000Z
Systems of interacting classical harmonic oscillators have received considerable attention in the last years as analog models for describing electromagnetically induced transparency (EIT) and associated phenomenona. We review these models and investigate their validity for a variety of physical systems using two and three coupled harmonic oscillators. From the simplest EIT-$\\Lambda$ configuration and two coupled single cavity modes we show that each atomic dipole-allowed transition and a single cavity mode can be represented by a damped harmonic oscillator. In this way, a one-to-one correspondence between the classical and quantum dynamical variables is established. We show the limiting conditions and what is the equivalent for the EIT dark state in the mechanical system. This correspondence is extended to other systems which present EIT-related phenomena such as two and three-level (cavity EIT) atoms interacting with a single mode of an optical cavity, and four-level atoms in a inverted-Y and tripod configurations. The achieved mechanical equivalence for the cavity EIT system, presented for the first time, is corroborated by experimental data. The analysis of the probe response of all these systems also brings to light a physical interpretation for the expectation value of the photon annihilation operator $\\left\\langle a\\right\\rangle$. We show it can be directly related to the electric susceptibility of systems which composition includes a driven cavity field mode.
Soft photon yield in nuclear interactions
Kokoulina, E
2015-01-01T23:59:59.000Z
First results of study of a soft photon yield at Nuclotron (LHEP, JINR) in nucleus-nucleus collisions at 3.5 GeV per nucleon are presented. These photons are registered by an BGO electromagnetic calorimeter built by SVD-2 Collaboration. The obtained spectra confirm the excessive yield in the energy region less than 50 MeV in comparison with theoretical estimations and agree with previous experiments at high-energy interactions.
Electromagnetic quasinormal modes of D-dimensional black holes II
A. López-Ortega
2007-06-20T23:59:59.000Z
By using the sixth order WKB approximation we calculate for an electromagnetic field propagating in D-dimensional Schwarzschild and Schwarzschild de Sitter black holes its quasinormal frequencies for the fundamental mode and first overtones. We study the dependence of these QN frequencies on the value of the cosmological constant and the spacetime dimension. We also compare with the known results for the gravitational perturbations propagating in the same background. Moreover we exactly compute the QN frequencies of the electromagnetic field propagating in D-dimensional massless topological black hole and for charged D-dimensional Nariai spacetime we exactly calculate the QN frequencies of the coupled electromagnetic and gravitational perturbations.
Inferring black hole charge from backscattered electromagnetic radiation
Luís C. B. Crispino; Sam R. Dolan; Atsushi Higuchi; Ednilton S. de Oliveira
2014-09-16T23:59:59.000Z
We compute the scattering cross section of Reissner-Nordstr\\"om black holes for the case of an incident electromagnetic wave. We describe how scattering is affected by both the conversion of electromagnetic to gravitational radiation, and the parity-dependence of phase shifts induced by the black hole charge. The latter effect creates a helicity-reversed scattering amplitude that is non-zero in the backward direction. We show that from the character of the electromagnetic wave scattered in the backward direction it is possible, in principle, to infer if a static black hole is charged.
A Full Review of the Theory of Electromagnetism
D. Funaro
2005-05-09T23:59:59.000Z
We will provide detailed arguments showing that the set of Maxwell equations, and the corresponding wave equations, do not properly describe the evolution of electromagnetic wave-fronts. We propose a nonlinear corrected version that is proven to be far more appropriate for the modellization of electromagnetic phenomena. The suitability of this approach will soon be evident to the reader, through a sequence of astonishing congruences, making the model as elegant as Maxwell's, but with increased chances of development. Actually, the new set of equations will allow us to explain many open questions, and find links between electromagnetism and other theories that have been searched for a long time, or not even imagined.
Electromagnetic Radiation and Motion of Really Shaped Particle
Jozef Klacka
2001-08-13T23:59:59.000Z
Relativistically covariant form of equation of motion for real particle (neutral in charge) under the action of electromagnetic radiation is derived. Various formulations of the equation of motion in the proper frame of reference of the particle are used. Main attention is devoted to the reformulation of the equation of motion in the general frame of reference, e. g., in the frame of reference of the source of electromagnetic radiation. This is the crucial form of equation of motion in applying it to motion of particles (cosmic dust, asteroids, ...) in the Universe if electromagnetic radiation acts on the particles. General relativistic equation of motion is presented.
Detection of electromagnetic waves using charged MEMS structures
Datskos, Panos G [ORNL; Lavrik, Nickolay V [ORNL; Tobin, Jacob D [ORNL; Bowland, Landon T [ORNL
2012-01-01T23:59:59.000Z
We describe micromechanical structures that are capable of sensing both electrostatic fields and electromagnetic fields over a wide frequency range. Typically, sensing of electromagnetic waves is achieved with electrically conducting antennas, which despite the many advantages do not exhibit high sensitivity over a broad frequency range. An important aspect of our present work is that, in contrast to traditional antennas, the dimensions of micromechanical oscillators sensitive to electromagnetic waves can be much smaller than the wavelength. We characterized the micromechanical oscillators and measured responses to electric fields and estimated the performance limits by evaluating the signal-to-noise ratio theoretically and experimentally.
Nonlinear Landau damping of transverse electromagnetic waves in dusty plasmas
Tsintsadze, N. L. [E. Andronikashvili Institute of Physics, Tbilisi 0171 (Georgia); Department of Physics, Government College University, Lahore 54000 (Pakistan); Salam Chair in Physics, Government College University, Lahore 54000 (Pakistan); Chaudhary, Rozina [Department of Physics, Government College University, Lahore 54000 (Pakistan); Salam Chair in Physics, Government College University, Lahore 54000 (Pakistan); Shah, H. A. [Department of Physics, Government College University, Lahore 54000 (Pakistan); Murtaza, G. [Salam Chair in Physics, Government College University, Lahore 54000 (Pakistan)
2009-04-15T23:59:59.000Z
High-frequency transverse electromagnetic waves in a collisionless isotropic dusty plasma damp via nonlinear Landau damping. Taking into account the latter we have obtained a generalized set of Zakharov equations with local and nonlocal terms. Then from this coupled set of Zakharov equations a kinetic nonlinear Schroedinger equation with local and nonlocal nonlinearities is derived for special cases. It is shown that the modulation of the amplitude of the electromagnetic waves leads to the modulation instability through the nonlinear Landau damping term. The maximum growth rate is obtained for the special case when the group velocity of electromagnetic waves is close to the dust acoustic velocity.
Electromagnetic energy dispersion in a 5D universe
Hartnett, John G. [School of Physics, University of Western Australia, 35 Stirling Hwy, Crawley 6009 WA Australia (Australia)
2010-06-15T23:59:59.000Z
Electromagnetism is analyzed in a 5D expanding universe. Compared to the usual 4D description of electrodynamics it can be viewed as adding effective charge and current densities to the universe that are static in time. These lead to effective polarization and magnetization of the vacuum, which is most significant at high redshift. Electromagnetic waves propagate but group and phase velocities are dispersive. This introduces a new energy scale to the cosmos. And as a result electromagnetic waves propagate with superluminal speeds but no energy is transmitted faster than the canonical speed of light c.
P. Maris; M. A. Caprio; J. P. Vary
2015-01-30T23:59:59.000Z
The emergence of rotational bands is observed in no-core configuration interaction (NCCI) calculations for the Be isotopes (7<=A<=12), as evidenced by rotational patterns for excitation energies, electromagnetic moments, and electromagnetic transitions. Yrast and low-lying excited bands are found. The results indicate well-developed rotational structure in NCCI calculations, using the JISP16 realistic nucleon-nucleon interaction within finite, computationally-accessible configuration spaces.
Relativity in Introductory Physics William E. Baylis
, presents a new world view or paradigm[1] of physics. It revises the concepts of time and space from those of electromagnetic phenomena and much of modern physics. Such symmetries provide new approaches to many problemsRelativity in Introductory Physics William E. Baylis Department of Physics, University of Windsor
Gravitation and Special Relativity D. H. Sattinger
Zakharov, Vladimir
of Maxwell's equations for gravitation, based on a mathematical proof of Faraday's Law, is presentedGravitation and Special Relativity D. H. Sattinger Department of Mathematics University of Arizona of the perturbation theory of Ein- stein's equations, puts the gravitational and electromagnetic fields on an equal
McCloy, John S.; Jordan, David V.; Kelly, James F.; McMakin, Douglas L.; Johnson, Bradley R.; Campbell, Luke W.
2009-09-01T23:59:59.000Z
A new concept for radiation detection is proposed, allowing a decoupling of the sensing medium and the readout. An electromagnetic material, such as a magnetic ceramic ferrite, is placed near a source to be tracked such as a shipping container. The electromagnetic material changes its properties, in this case its magnetic permeability, as a function of radiation. This change is evident as a change in reflection frequency and magnitude when probed using a microwave/millimeter-wave source. This brief report discusses modeling of radiation interaction of various candidate materials using a radiation detector modeling code Geant4, system design considerations for the remote readout, and some theory of the material interaction physics. The theory of radiation change in doped magnetic insulator ferrites such as yttrium iron garnet (YIG) seems well founded based on literature documentation of the photomagnetic effect. The literature also suggests sensitivity of permittivity to neutrons in some ferroelectrics. Research to date indicates that experimental demonstration of these effects in the context of radiation detection is warranted.
Gyrokinetic Particle Simulation of Compressible Electromagnetic Turbulence in High-? Plasmas
Lin, Zhihong
2014-03-13T23:59:59.000Z
Supported by this award, the PI and his research group at the University of California, Irvine (UCI) have carried out computational and theoretical studies of instability, turbulence, and transport in laboratory and space plasmas. Several massively parallel, gyrokinetic particle simulation codes have been developed to study electromagnetic turbulence in space and laboratory plasmas. In space plasma projects, the simulation codes have been successfully applied to study the spectral cascade and plasma heating in kinetic Alfven wave turbulence, the linear and nonlinear properties of compressible modes including mirror instability and drift compressional mode, and the stability of the current sheet instabilities with finite guide field in the context of collisionless magnetic reconnection. The research results have been published in 25 journal papers and presented at many national and international conferences. Reprints of publications, source codes, and other research-related information are also available to general public on the PI’s webpage (http://phoenix.ps.uci.edu/zlin/). Two PhD theses in space plasma physics are highlighted in this report.
Neutrino spin oscillations in matter under the influence of gravitational and electromagnetic fields
Dvornikov, Maxim, E-mail: maxim.dvornikov@usp.br [Institute of Physics, University of São Paulo, CP 66318, CEP 05315-970 São Paulo, SP (Brazil)
2013-06-01T23:59:59.000Z
We derive the new quasi-classical equation for the description of the spin evolution of a neutrino propagating in a curved space-time and interacting with a background matter and an external electromagnetic field. This equation is used to analyze neutrino spin oscillations in these external backgrounds. We obtain the effective Hamiltonian and the transition probability for oscillations of neutrinos when they move in the vicinity of a rotating black hole, surrounded by an accretion disk, and interact with an external magnetic field. The appearance of new resonances in neutrino spin oscillations in this system is considered. The approximate treatment of spin oscillations of radially propagating ultra high energy neutrinos is developed. We also discuss the applications of our results to the description of neutrino spin oscillations in realistic astrophysical media.
Radiative reactions and coherence modeling in the high-altitude electromagnetic pulse
Vittitoe, C.N.; Rabinowitz, M.
1988-03-15T23:59:59.000Z
A high-altitude nuclear electromagnetic pulse (EMP) with a peak field intensity of 5 x 10/sup 4/ V/m carries momentum that results in a retarding force on the average Compton electron (radiating coherently to produce the waveform) with magnitude near that of the geomagnetic force responsible for the coherent radiation. The retarding force results from a self-field effect. The Compton electron interaction with the self-generated magnetic field due to the other electrons accounts for the momentum density in the propagating wave; interaction with the self-generated electric field accounts for the energy-flux density in the propagating wave. Coherent addition of radiation is also quantitatively modeled.
Enhancement of Kv1.3 Potassium Conductance by Extremely Low Frequency Electromagnetic Field
Cecchetto, Claudia; Boccaccio, Pasquale; Vassanelli, Stefano
2015-01-01T23:59:59.000Z
Theoretical and experimental evidences support the hypothesis that extremely low-frequency electromagnetic fields can affect voltage-gated channels. Little is known, however, about their effect on potassium channels. Kv1.3, a member of the voltage-gated potassium channels family originally discovered in the brain, is a key player in important biological processes including antigen-dependent activation of T-cells during the immune response. We report that Kv1.3 expressed in CHO-K1 cells can be modulated in cell subpopulations by extremely low frequency and relatively low intensity electromagnetic fields. In particular, we observed that field exposure can cause an enhancement of Kv1.3 potassium conductance and that the effect lasts for several minutes after field removal. The results contribute to put immune and nervous system responses to extremely low-frequency electromagnetic fields into a new perspective, with Kv1.3 playing a pivotal molecular role. Keywords: immunotherapy, immunomodulation, potassium chann...
Christo I. Christov
2011-03-06T23:59:59.000Z
We show that the linearized equations of the incompressible elastic medium admit a `Maxwell form' in which the shear component of the stress vector plays the role of the electric field, and the vorticity plays the role of the magnetic field. Conversely, the set of dynamic Maxwell equations are strict mathematical corollaries from the governing equations of the incompressible elastic medium. This suggests that the nature of `electromagnetic field' may actually be related to an elastic continuous medium. The analogy is complete if the medium is assumed to behave as fluid in shear motions, while it may still behave as elastic solid under compressional motions. Then the governing equations of the elastic fluid are re-derived in the Eulerian frame by replacing the partial time derivatives by the properly invariant (frame indifferent) time rates. The `Maxwell from' of the frame indifferent formulation gives the frame indifferent system that is to replace the Maxwell system. This new system comprises terms already present in the classical Maxwell equations, alongside terms that are the progenitors of the Biot--Savart, Oersted--Ampere's, and Lorentz--force laws. Thus a frame indifferent (truly covariant) formulation of electromagnetism is achieved from a single postulate that the electromagnetic field is a kind of elastic (partly liquid partly solid) continuum.
Lustermann, W; Denes, P; Djambazov, L; Dröge, M; Faure, J L; Iliev, Bozhidar Z; Nanov, I; Raykov, P; Shivarov, N
1999-01-01T23:59:59.000Z
Low voltage supply system for the very front end readout electronics of the CMS electromagnetic calorimeter
Design of high temperature high speed electromagnetic axial thrust bearing
Mohiuddin, Mohammad Waqar
2002-01-01T23:59:59.000Z
The National Aeronautics and Space Administration (NASA) is researching the magnetic bearings to use it as a better alternative to conventional bearings. This research was to develop an axial thrust electromagnetic bearing for high performance jet...
A scalable electro-magnetic communication system for underwater swarms
Zimmer, Uwe
A scalable electro-magnetic communication system for underwater swarms Felix Schill 1 Uwe R. Zimmer for communication is small compared to propulsion requirements. Communication of state information can there- fore
Design Optimization of electromagnetic actuator by genetic algorithm
ELBEZ
2008-02-26T23:59:59.000Z
condition in the design or in the optimization of electromagnetic ... propose a new approach to optimize linear actuator. This new .... derivative of the stored magnetic energy with respect ..... H. Poorzahedy “Hybrid meta-heuristic algorithms.
Direct visualization of terahertz electromagnetic waves in classic experimental geometries
Werley, Christopher Alan
2012-01-01T23:59:59.000Z
We used newly developed experimental methods to collect educational video clips of electromagnetic waves propagating at the speed of light. The terahertz frequency waves were generated and detected in LiNbO3 crystals ...
Electromagnetic Interference (EMI) Shielding of Single-Walled Carbon
Gao, Hongjun
, electrically conducting polymer composites have gained popularity recently because of their light weight (SWNT)-polymer composites have been fabricated to evaluate the electromagnetic interference (EMI) of a composite material depends on many factors, including the filler's intrinsic conductivity, dielectric
Low-cost electromagnetic tagging : design and implementation
Fletcher, Richard R. (Richard Ribon)
2002-01-01T23:59:59.000Z
Several implementations of chipless RFID (Radio Frequency Identification) tags are presented and discussed as low-cost alternatives to chip-based RFID tags and sensors. An overview of present-day near-field electromagnetic ...
Design and parametric simulation of radially oriented electromagnetic actuators
Bosworth, William R., S.M. Massachusetts Institute of Technology
2011-01-01T23:59:59.000Z
This thesis presents the design and simulation of an electromagnetic actuator system capable of delivering large pulses of radial force onto a cylindrical surface. Due to its robust design, simple control scheme, and large ...
Electromagnetic modeling of terahertz quantum cascade laser waveguides and resonators
Kohen, Stephen Michael, 1980-
2004-01-01T23:59:59.000Z
Finite-element numerical modeling and analysis of electromagnetic waveguides and resonators used in terahertz (THz) quantum cascade lasers (QCLs) is presented. Simulations and analysis of two types were performed: ...
Horizontal electromagnetic casting of thin metal sheets
Hull, John R. (Hinsdale, IL); Lari, Robert J. (Aurora, IL); Praeg, Walter F. (Palos Park, IL); Turner, Larry R. (Naperville, IL)
1987-01-01T23:59:59.000Z
Thin metal sheets are cast by magnetically suspending molten metal deposited within a ferromagnetic yoke and between AC conducting coils and linearly displacing the magnetically levitated liquid metal while it is being cooled to form a solid metal sheet. Magnetic flux increases as the molten metal sheet moves downward and decreases as the molten metal sheet moves upward to stabilize the sheet and maintain it in equilibrium as it is linearly displaced and solidified by cooling gases. A conducting shield is electrically coupled to the molten metal sheet by means of either metal sheet engaging rollers or brushes on the solidified metal, and by means of an electrode in the vessel containing the molten metal thereby providing a return path for the eddy currents induced in the metal sheet by the AC coil generated magnetic flux. Variation in the geometry of the conducting shield allows the magnetic flux between the metal sheet and the conducting shield to be varied and the thickness in surface quality of the metal sheet to be controlled. Side guards provide lateral containment for the molten metal sheet and stabilize and shape the magnetic field while a leader sheet having electromagnetic characteristics similar to those of the metal sheet is used to start the casting process and precedes the molten metal sheet through the magnet and forms a continuous sheet therewith. The magnet may be either U-shaped with a single racetrack coil or may be rectangular with a pair of facing bedstead coils.
Horizontal electromagnetic casting of thin metal sheets
Hull, John R. (Hinsdale, IL); Lari, Robert J. (Aurora, IL); Praeg, Walter F. (Palos Park, IL); Turner, Larry R. (Naperville, IL)
1988-01-01T23:59:59.000Z
Thin metal sheets are cast by magnetically suspending molten metal deposited within a ferromagnetic yoke and between AC conducting coils and linearly displacing the magnetically levitated liquid metal while it is being cooled to form a solid metal sheet. Magnetic flux increases as the molten metal sheet moves downward and decreases as the molten metal sheet moves upward to stabilize the sheet and maintain it in equilibrium as it is linearly displaced and solidified by cooling gases. A conducting shield is electrically coupled to the molten metal sheet by means of either metal sheet engaging rollers or brushes on the solidified metal, and by means of an electrode in the vessel containing the molten metal thereby providing a return path for the eddy currents induced in the metal sheet by the AC coil generated magnetic flux. Variation in the geometry of the conducting shield allows the magnetic flux between the metal sheet and the conducting shield to be varied and the thickness in surface quality of the metal sheet to be controlled. Side guards provide lateral containment for the molten metal sheet and stabilize and shape the magnetic field while a leader sheet having electromagnetic characteristics similar to those of the metal sheet is used to start the casting process and precedes the molten metal sheet through the magnet and forms a continuous sheet therewith. The magnet may be either U-shaped with a single racetrack coil or may be rectangular with a pair of facing bedstead coils.
Electromagnetic Studies of Mesons, Nucleons, and Nuclei
Baker, Oliver K.
2013-08-20T23:59:59.000Z
Professor Baker was a faculty member at Hampton University in Hampton, Virginia, and, jointly, a Staff Physicist at Jefferson Lab in nearby Newport News from September 1989 to July 2006. The Department of Energy (DOE) funded the grant DE-FG02-97ER41035 Electromagnetic Studies of Mesons, Nucleons, and Nuclei, while Baker was in this joint appointment. Baker sent a closeout report on these activities to Hampton University’s Sponsored Research Office some years ago, shortly after joining Yale University in 2006. In the period around 2001, the research grant with Baker as the Principal Investigator (PI) was put under the supervision of Professor Liguang Tang at Hampton University. Baker continued to pursue the research while in this join appointment, however the administrative responsibilities with the DOE and with Hampton University rested with Professor Tang after 2001, to my recollection. What is written in this document is from Baker’s memory of the research activities, which he has not pursued since joining the Yale University faculty.
Electromagnetic anti-jam telemetry tool
Ganesan, Harini (Sugar Land, TX); Mayzenberg, Nataliya (Missouri City, TX)
2008-02-12T23:59:59.000Z
A mud-pulse telemetry tool includes a tool housing, a motor disposed in the tool housing, and a magnetic coupling coupled to the motor and having an inner shaft and an outer shaft. The tool may also include a stator coupled to the tool housing, a restrictor disposed proximate the stator and coupled to the magnetic coupling, so that the restrictor and the stator adapted to generate selected pulses in a drilling fluid when the restrictor is selectively rotated. The tool may also include a first anti-jam magnet coupled to the too housing, and an second anti-jam magnet disposed proximate the first anti-jam magnet and coupled to the inner shaft and/or the outer shaft, wherein at least one of the first anti-jam magnet and the second anti-jam magnet is an electromagnet, and wherein the first anti-jam magnet and the second anti-jam magnet are positioned with adjacent like poles.
Calibrating Accelerometers Using an Electromagnetic Launcher
Erik Timpson
2012-05-13T23:59:59.000Z
A Pulse Forming Network (PFN), Helical Electromagnetic Launcher (HEML), Command Module (CM), and Calibration Table (CT) were built and evaluated for the combined ability to calibrate an accelerometer. The PFN has a maximum stored energy of 19.25 kJ bank and is fired by a silicon controlled rectifier (SCR), with appropriate safety precautions. The HEML is constructed out of G-10 fiberglass and is designed to accelerate 600 grams to 10 meters per second. The CM is microcontroller based running Arduino Software. The CM has a keypad input and 7 segment outputs of the bank voltage and desired voltage. After entering a desired bank voltage, the CM controls the charge of the PFN. When the two voltages are equal it allows the fire button to send a pulse to the SCR to fire the PFN and in turn, the HEML. The HEML projectile's tip hits a target that is held by the CT. The CT consists of a table to hold the PFN and HEML, a vacuum chuck, air bearing, velocity meter and catch pot. The Target is held with the vacuum chuck awaiting impact. After impact, the air bearing allows the target to fall freely for the velocity meter to get an accurate reading. A known acceleration is determined from the known change in velocity of the target. Thus, if an accelerometer was attached to the target, the measured value can be compared to the known value.
Fast dynamic force computation for electrostatic and electromagnetic conductors
Koteeswaran, Prabhavathi
2005-02-17T23:59:59.000Z
-1 FAST DYNAMIC FORCE COMPUTATION FOR ELECTROSTATIC AND ELECTROMAGNETIC CONDUCTORS AThesis by PRABHAVATHI KOTEESWARAN Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER... OF SCIENCE December 2004 Major Subject: Computer Engineering FAST DYNAMIC FORCE COMPUTATION FOR ELECTROSTATIC AND ELECTROMAGNETIC CONDUCTORS AThesis by PRABHAVATHI KOTEESWARAN Submitted to Texas A&M University in partial fulfillment of the requirements...
Electromagnetic Interference (EMI) Resisting Analog Integrated Circuit Design Tutorial
Yu, Jingjing
2012-10-19T23:59:59.000Z
stream_source_info YU-THESIS.pdf.txt stream_content_type text/plain stream_size 148858 Content-Encoding ISO-8859-1 stream_name YU-THESIS.pdf.txt Content-Type text/plain; charset=ISO-8859-1 ELECTROMAGNETIC... August 2012 Major Subject: Electrical Engineering ELECTROMAGNETIC INTERFERENCE (EMI) RESISTING ANALOG INTEGRATED CIRCUIT DESIGN TUTORIAL A Thesis by JINGJING YU Submitted to the Office of Graduate Studies of Texas A&M University...
Electromagnetic quasinormal modes of D-dimensional black holes
A. López-Ortega
2006-11-02T23:59:59.000Z
Using the monodromy method we calculate the asymptotic quasinormal (QN) frequencies of an electromagnetic field moving in D-dimensional Schwarzschild and Schwarzschild de Sitter (SdS) black holes ($D\\geq 4$). For the D-dimensional Schwarzschild anti-de Sitter (SadS) black hole we also compute these frequencies with a similar method. Moreover, we calculate the electromagnetic normal modes of the D-dimensional anti-de Sitter (AdS) spacetime.
Electromagnetic vertex function of the pion at T > 0
J. van der heide; J. H. Koch; E. Laermann
2005-12-23T23:59:59.000Z
The matrix element of the electromagnetic current between pion states is calculated in quenched lattice QCD at a temperature of $T = 0.93 T_c$. The nonperturbatively improved Sheikholeslami-Wohlert action is used together with the corresponding ${\\cal O}(a)$ improved vector current. The electromagnetic vertex function is extracted for pion masses down to $360 {\\rm MeV}$ and momentum transfers $Q^2 \\le 2.7 {\\rm GeV}^2$.
Rydberg Atoms Ionisation by Microwave Field and Electromagnetic Pulses
B. Kaulakys; G. Vilutis
1995-04-10T23:59:59.000Z
A simple theory of the Rydberg atoms ionisation by electromagnetic pulses and microwave field is presented. The analysis is based on the scale transformation which reduces the number of parameters and reveals the functional dependencies of the processes. It is shown that the observed ionisation of Rydberg atoms by subpicosecond electromagnetic pulses scale classically. The threshold electric field required to ionise a Rydberg state may be simply evaluated in the photonic basis approach for the quantum dynamics or from the multiphoton ionisation theory.
Fast dynamic force computation for electrostatic and electromagnetic conductors
Koteeswaran, Prabhavathi
2005-02-17T23:59:59.000Z
FAST DYNAMIC FORCE COMPUTATION FOR ELECTROSTATIC AND ELECTROMAGNETIC CONDUCTORS AThesis by PRABHAVATHI KOTEESWARAN Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree... of MASTER OF SCIENCE December 2004 Major Subject: Computer Engineering FAST DYNAMIC FORCE COMPUTATION FOR ELECTROSTATIC AND ELECTROMAGNETIC CONDUCTORS AThesis by PRABHAVATHI KOTEESWARAN Submitted to Texas A&M University in partial fulfillment...
Litzenberg, Dale W.; Gallagher, Ian; Masi, Kathryn J.; Lee, Choonik; Prisciandaro, Joann I.; Hamstra, Daniel A.; Ritter, Timothy; Lam, Kwok L. [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan 48109-5010 (United States)] [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan 48109-5010 (United States)
2013-08-15T23:59:59.000Z
Purpose: To present and characterize a measurement technique to quantify the calibration accuracy of an electromagnetic tracking system to radiation isocenter.Methods: This technique was developed as a quality assurance method for electromagnetic tracking systems used in a multi-institutional clinical hypofractionated prostate study. In this technique, the electromagnetic tracking system is calibrated to isocenter with the manufacturers recommended technique, using laser-based alignment. A test patient is created with a transponder at isocenter whose position is measured electromagnetically. Four portal images of the transponder are taken with collimator rotations of 45° 135°, 225°, and 315°, at each of four gantry angles (0°, 90°, 180°, 270°) using a 3 × 6 cm{sup 2} radiation field. In each image, the center of the copper-wrapped iron core of the transponder is determined. All measurements are made relative to this transponder position to remove gantry and imager sag effects. For each of the 16 images, the 50% collimation edges are identified and used to find a ray representing the rotational axis of each collimation edge. The 16 collimator rotation rays from four gantry angles pass through and bound the radiation isocenter volume. The center of the bounded region, relative to the transponder, is calculated and then transformed to tracking system coordinates using the transponder position, allowing the tracking system's calibration offset from radiation isocenter to be found. All image analysis and calculations are automated with inhouse software for user-independent accuracy. Three different tracking systems at two different sites were evaluated for this study.Results: The magnitude of the calibration offset was always less than the manufacturer's stated accuracy of 0.2 cm using their standard clinical calibration procedure, and ranged from 0.014 to 0.175 cm. On three systems in clinical use, the magnitude of the offset was found to be 0.053 ± 0.036, 0.121 ± 0.023, and 0.093 ± 0.013 cm.Conclusions: The method presented here provides an independent technique to verify the calibration of an electromagnetic tracking system to radiation isocenter. The calibration accuracy of the system was better than the 0.2 cm accuracy stated by the manufacturer. However, it should not be assumed to be zero, especially for stereotactic radiation therapy treatments where planning target volume margins are very small.
Spatiotemporal electromagnetic soliton and spatial ring formation in nonlinear metamaterials
Zhang Jinggui; Wen Shuangchun; Xiang Yuanjiang; Wang Youwen; Luo Hailu [Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education, School of Computer and Communication, Hunan University, Changsha 410082 (China)
2010-02-15T23:59:59.000Z
We present a systematic investigation of ultrashort electromagnetic pulse propagation in metamaterials (MMs) with simultaneous cubic electric and magnetic nonlinearity. We predict that spatiotemporal electromagnetic solitons may exist in the positive-index region of a MM with focusing nonlinearity and anomalous group velocity dispersion (GVD), as well as in the negative-index region of the MM with defocusing nonlinearity and normal GVD. The experimental circumstances for generating and manipulating spatiotemporal electromagnetic solitons can be created by elaborating appropriate MMs. In addition, we find that, in the negative-index region of a MM, a spatial ring may be formed as the electromagnetic pulse propagates for focusing nonlinearity and anomalous GVD; while the phenomenon of temporal splitting of the electromagnetic pulse may appear for the same case except for the defocusing nonlinearity. Finally, we demonstrate that the nonlinear magnetization makes the sign of effective electric nonlinear effect switchable due to the combined action of electric and magnetic nonlinearity, exerting a significant influence on the propagation of electromagnetic pulses.
Casimir interaction from magnetically coupled eddy currents
Francesco Intravaia; Carsten Henkel
2009-09-06T23:59:59.000Z
We study the quantum and thermal fluctuations of eddy (Foucault) currents in thick metallic plates. A Casimir interaction between two plates arises from the coupling via quasi-static magnetic fields. As a function of distance, the relevant eddy current modes cross over from a quantum to a thermal regime. These modes alone reproduce previously discussed thermal anomalies of the electromagnetic Casimir interaction between good conductors. In particular, they provide a physical picture for the Casimir entropy whose nonzero value at zero temperature arises from a correlated, glassy state.
Casimir Interaction from Magnetically Coupled Eddy Currents
Intravaia, Francesco; Henkel, Carsten [Institut fuer Physik und Astronomie, Universitaet Potsdam, 14476 Potsdam (Germany)
2009-09-25T23:59:59.000Z
We study the quantum and thermal fluctuations of eddy (Foucault) currents in thick metallic plates. A Casimir interaction between two plates arises from the coupling via quasistatic magnetic fields. As a function of distance, the relevant eddy current modes cross over from a quantum to a thermal regime. These modes alone reproduce previously discussed thermal anomalies of the electromagnetic Casimir interaction between good conductors. In particular, they provide a physical picture for the Casimir entropy whose nonzero value at zero temperature arises from a correlated, glassy state.
S. S. Bulanov; V. D. Mur; N. B. Narozhny; J. Nees; V. S. Popov
2010-03-12T23:59:59.000Z
The scheme of simultaneous multiple pulse focusing on one spot naturally arises from the structural features of projected new laser systems, such as ELI and HiPER. It is shown that the multiple pulse configuration is beneficial for observing $e^+e^-$ pair production from vacuum under the action of sufficiently strong electromagnetic fields. The field of the focused pulses is described using a realistic three-dimensional model based on an exact solution of the Maxwell equations. The $e^+e^-$ pair production threshold in terms of electromagnetic field energy can be substantially lowered if, instead of one or even two colliding pulses, multiple pulses focused on one spot are used. The multiple pulse interaction geometry gives rise to subwavelength field features in the focal region. These features result in the production of extremely short $e^+e^-$ bunches.
Chen Ziyu; Li Jianfeng; Yu Yong; Li Xiaoya; Peng Qixian; Zhu Wenjun [National Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, Sichuan 621900 (China); Wang Jiaxiang [State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062 (China)
2012-11-15T23:59:59.000Z
The influences of lateral target size on hot electron production and electromagnetic pulse emission from laser interaction with metallic targets have been investigated. Particle-in-cell simulations at high laser intensities show that the yield of hot electrons tends to increase with lateral target size, because the larger surface area reduces the electrostatic field on the target, owing to its expansion along the target surface. At lower laser intensities and longer time scales, experimental data characterizing electromagnetic pulse emission as a function of lateral target size also show target-size effects. Charge separation and a larger target tending to have a lower target potential have both been observed. The increase in radiation strength and downshift in radiation frequency with increasing lateral target size can be interpreted using a simple model of the electrical capacity of the target.
Innovative Electromagnetic Sensors for Pipeline Crawlers
J. Bruce Nestleroth
2006-05-04T23:59:59.000Z
Internal inspection of pipelines is an important tool for ensuring safe and reliable delivery of fossil energy products. Current inspection systems that are propelled through the pipeline by the product flow cannot be used to inspect all pipelines because of the various physical barriers they encounter. Recent development efforts include a new generation of powered inspection platforms that crawl slowly inside a pipeline and are able to maneuver past the physical barriers that can limit inspection. At Battelle, innovative electromagnetic sensors are being designed and tested for these new pipeline crawlers. The various sensor types can be used to assess a wide range of pipeline anomalies including corrosion, mechanical damage, and cracks. Battelle is in the final year on a projected three-year development effort. In the first year, two innovative electromagnetic inspection technologies were designed and tested. Both were based on moving high-strength permanent magnets to generate inspection energy. One system involved translating permanent magnets towards the pipe. A pulse of electric current would be induced in the pipe to oppose the magnetization according to Lenz's Law. The decay of this pulse would indicate the presence of defects in the pipe wall. This inspection method is similar to pulsed eddy current inspection methods, with the fundamental difference being the manner in which the current is generated. Details of this development effort were reported in the first semiannual report on this project. The second inspection methodology is based on rotating permanent magnets. The rotating exciter unit produces strong eddy currents in the pipe wall. At distances of a pipe diameter or more from the rotating exciter, the currents flow circumferentially. These circumferential currents are deflected by pipeline defects such as corrosion and axially aligned cracks. Simple sensors are used to detect the change in current densities in the pipe wall. The second semiannual report on this project reported on experimental and modeling results. The results showed that the rotating system was more adaptable to pipeline inspection and therefore only this system will be carried into the second year of the sensor development. In the third reporting period, the rotating system inspection was further developed. Since this is a new inspection modality without published fundamentals to build upon, basic analytical and experimental investigations were performed. A closed form equation for designing rotating exciters and positioning sensors was derived from fundamental principles. Also signal processing methods were investigated for detection and assessment of pipeline anomalies. A lock in amplifier approach was chosen as the method for detecting the signals. Finally, mechanical implementations for passing tight restrictions such as plug valves were investigated. This inspection concept is new and unique; a United States patent application has been submitted. In this reporting period, a general design of the rotating permanent magnet inspection system is presented. The rotating permanent magnet inspection system is feasible for pipes ranging in diameter from 8 to 18 inches using a two pole configuration. Experimental results and theoretical calculations provide the basis for selection of the critical design parameters. The parameters include a significant magnet to pipe separation that will facilitate the passage of pipeline features. With the basic values of critical components established, the next step is a detailed mechanical design of a pipeline ready inspection system.
APS/123-QED Quantum Control of the Spin-Orbit Interaction Using the
Huennekens, John
19122 and National Institute for Theoretical Physics (NITheP), Stellenbosch 7600, South Africa J of mixing dependent on the strength of the spin-orbit interaction as well as the energy separation between the interacting states. It is also well known that, in the presence of strong electromagnetic fields, the energy
Electromagnetic scattering and absorption by aerosol agglomerates
Chen, Hsingyi.
1989-01-01T23:59:59.000Z
Calculation of scattering and absorption by smoke aerosols is required in many applications, including characterization of atmospheric aerosols, prediction of climatic impact of smoke, evaluation of smoke effectiveness in obscuration, calculation of heat transfer from flames, and evaluation of various scenarios of nuclear winter. In this dissertation two procedures were developed to accurately make these calculations utilizing realistic models of smoke agglomerates including oriented chains and fractal geometries. First the Iterative Extended Boundary Condition Method (IEBCM) was utilized to calculate the electromagnetic (EM) scattering and absorption of elongated aerosol particles. The computation efficiency and capability of IEBCM were improved by implementing the sectioning and the segmentation procedures. The sectioning procedure resulted in improving the computational efficiency and the segmentation method made it possible to make calculations for particles with aspect ratios as high as 250. The other procedure employed the Volume Integral Equation Formulation (VIEF) to compute the EM scattering and absorption by agglomerates of complex geometries. The validity of the procedure was checked first by comparing the obtained results with those obtained from the Mie solution for a spherical object and with the IEBCM for nonspherical objects. The comparison between results showed excellent agreement and hence validated the accuracy of the VIEF. The VIEF solution was then used to make calculations for five types of fractal agglomerates of smoke aerosol particles with fractal dimensions in the range from 1.7 to 1.9. The results obtained were compared with those based on the fractal theory recently published by Berry and Percival, and some differences were observed.
Electromagnetic Signatures of Massive Black Hole Binaries
Tamara Bogdanovic; Britton D. Smith; Michael Eracleous; Steinn Sigurdsson
2006-09-28T23:59:59.000Z
We model the electromagnetic emission signatures of massive black hole binaries (MBHBs) with an associated gas component. The method comprises numerical simulations of relativistic binaries and gas coupled with calculations of the physical properties of the emitting gas. We calculate the accretion powered UV/X-ray and Halpha light curves and the Halpha emission line profiles. The simulations have been carried out with a modified version of the parallel tree SPH code Gadget. The heating, cooling, and radiative processes for the solar metallicity gas have been calculated with the photoionization code Cloudy. We investigate gravitationally bound, sub-parsec binaries which have not yet entered the gravitational radiation phase. The results from the first set of calculations, carried out for a coplanar binary and gas disk, suggest that the outbursts in the X-ray light curve are pronounced during pericentric passages and can serve as a fingerprint for this type of binaries if periodic outbursts are a long lived signature of the binary. The Halpha emission-line profiles also offer strong indications of a binary presence and may be used as a criterion for selection of MBHB candidates for further monitoring from existing archival data. The orbital period and mass ratio of a binary could be determined from the Halpha light curves and profiles of carefully monitored candidates. Although systems with the orbital periods studied here are not within the frequency band of the Laser Interferometer Space Antenna (LISA), their discovery is important for understanding of the merger rates of MBHBs and the evolution of such binaries through the last parsec and towards the detectable gravitational wave window.
Amy Peng; Mattias Johnsson; Joseph J. Hope
2004-11-09T23:59:59.000Z
We examine in detail an alternative method of retrieving the information written into an atomic ensemble of three-level atoms using electromagnetically induced transparency. We find that the behavior of the retrieved pulse is strongly influenced by the relative collective atom-light coupling strengths of the two relevant transitions. When the collective atom-light coupling strength for the retrieval beam is the stronger of the two transitions, regeneration of the stored pulse is possible. Otherwise, we show the retrieval process can lead to creation of soliton-like pulses.
Andrew Puckett
2010-02-01T23:59:59.000Z
The electromagnetic form factors of the nucleon characterize the effect of its internal structure on its response to an electromagnetic probe as studied in elastic electronnucleon scattering. These form factors are functions of the squared four-momentum transfer Q2 between the electron and the proton. The two main classes of observables of this reaction are the scattering cross section and polarization asymmetries, both of which are sensitive to the form factors in different ways. When considering large f momentum transfers, double-polarization observables offer superior sensitivity to the electric form factor. This thesis reports the results of a new measurement of the ratio of the electric and magnetic form factors of the proton at high momentum transfer using the recoil polarization technique. A polarized electron beam was scattered from a liquid hydrogen target, transferring polarization to the recoiling protons. These protons were detected in a magnetic spectrometer which was used to reconstruct their kinematics, including their scattering angles and momenta, and the position of the interaction vertex. A proton polarimeter measured the polarization of the recoiling protons by measuring the azimuthal asymmetry in the angular distribution of protons scattered in CH2 analyzers. The scattered electron was detected in a large acceptance electromagnetic calorimeter in order to suppress inelastic backgrounds. The measured ratio of the transverse and longitudinal polarization components of the scattered proton is directly proportional to the ratio of form factors GpE=GpM. The measurements reported in this thesis took place at Q2 =5.2, 6.7, and 8.5 GeV2, and represent the most accurate measurements of GpE in this Q2 region to date.
On the spontaneous emission of electromagnetic radiation in the CSL model
Donadi, Sandro, E-mail: sandro.donadi@ts.infn.it [Department of Physics, University of Trieste, Strada Costiera 11, 34151 Trieste (Italy) [Department of Physics, University of Trieste, Strada Costiera 11, 34151 Trieste (Italy); Istituto Nazionale di Fisica Nucleare, Trieste Section, Via Valerio 2, 34127 Trieste (Italy); Deckert, Dirk-André, E-mail: deckert@math.ucdavis.edu [Department of Mathematics, University of California, One Shields Ave, 95616 Davis (United States)] [Department of Mathematics, University of California, One Shields Ave, 95616 Davis (United States); Bassi, Angelo, E-mail: bassi@ts.infn.it [Department of Physics, University of Trieste, Strada Costiera 11, 34151 Trieste (Italy) [Department of Physics, University of Trieste, Strada Costiera 11, 34151 Trieste (Italy); Istituto Nazionale di Fisica Nucleare, Trieste Section, Via Valerio 2, 34127 Trieste (Italy)
2014-01-15T23:59:59.000Z
Spontaneous photon emission in the Continuous Spontaneous Localization (CSL) model is studied one more time. In the CSL model each particle interacts with a noise field that induces the collapse of its wave function. As a consequence of this interaction, when the particle is electrically charged, it radiates. As discussed in Adler (2013) the formula for the emission rate, to first perturbative order, contains two terms: one is proportional to the Fourier component of the noise field at the same frequency as that of the emitted photon and one is proportional to the zero Fourier component of the noise field. As discussed in previous works, this second term seems unphysical. In Adler (2013) it was shown that the unphysical term disappears when the noise is confined to a bounded region and the final particle’s state is a wave packet. Here we investigate the origin of this unphysical term and why it vanishes according to the previous prescription. We will see that perturbation theory is formally not valid in the large time limit since the effect of the noise accumulates continuously in time. Therefore either one performs an exact calculation (or at least in some way includes higher order terms) as we do here, or one finds a way to make a perturbative calculation meaningful, e.g., by confining the system as in Adler (2013). -- Highlights: •We compute the electromagnetic radiation emission in collapse models. •Under only the dipole approximation, the equations of motion are solved exactly. •The electromagnetic interaction must be treated exactly. •In order to obtain the correct emission rate the particle must be bounded.
Lattice p-Form Electromagnetism and Chain Field Theory
Derek K. Wise
2005-10-08T23:59:59.000Z
Since Wilson's work on lattice gauge theory in the 1970s, discrete versions of field theories have played a vital role in fundamental physics. But there is recent interest in certain higher dimensional analogues of gauge theory, such as p-form electromagnetism, including the Kalb-Ramond field in string theory, and its nonabelian generalizations. It is desirable to discretize such `higher gauge theories' in a way analogous to lattice gauge theory, but with the fundamental geometric structures in the discretization boosted in dimension. As a step toward studying discrete versions of more general higher gauge theories, we consider the case of p-form electromagnetism. We show that discrete p-form electromagnetism admits a simple algebraic description in terms of chain complexes of abelian groups. Moreover, the model allows discrete spacetimes with quite general geometry, in contrast to the regular cubical lattices usually associated with lattice gauge theory. After constructing a suitable model of discrete spacetime for p-form electromagnetism, we quantize the theory using the Euclidean path integral formalism. The main result is a description of p-form electromagnetism as a `chain field theory' -- a theory analogous to topological quantum field theory, but with chain complexes replacing manifolds. This, in particular, gives a notion of time evolution from one `spacelike slice' of discrete spacetime to another.
On the Pair Electromagnetic Pulse of a Black Hole with Electromagnetic Structure
Remo Ruffini; Jay D. Salmonson; James R. Wilson; She-Sheng Xue
1999-07-02T23:59:59.000Z
We study the relativistically expanding electron-positron pair plasma formed by the process of vacuum polarization around an electromagnetic black hole (EMBH). Such processes can occur for EMBH's with mass all the way up to $6\\cdot 10^5M_\\odot$. Beginning with a idealized model of a Reissner-Nordstrom EMBH with charge to mass ratio $\\xi=0.1$, numerical hydrodynamic calculations are made to model the expansion of the pair-electromagnetic pulse (PEM pulse) to the point that the system is transparent to photons. Three idealized special relativistic models have been compared and contrasted with the results of the numerically integrated general relativistic hydrodynamic equations. One of the three models has been validated: a PEM pulse of constant thickness in the laboratory frame is shown to be in excellent agreement with results of the general relativistic hydrodynamic code. It is remarkable that this precise model, starting from the fundamental parameters of the EMBH, leads uniquely to the explicit evaluation of the parameters of the PEM pulse, including the energy spectrum and the astrophysically unprecedented large Lorentz factors (up to $6\\cdot 10^3$ for a $10^3 M_{\\odot}$ EMBH). The observed photon energy at the peak of the photon spectrum at the moment of photon decoupling is shown to range from 0.1 MeV to 4 MeV as a function of the EMBH mass. Correspondingly the total energy in photons is in the range of $10^{52}$ to $10^{54}$ ergs, consistent with observed gamma-ray bursts. In these computations we neglect the presence of baryonic matter which will be the subject of forthcoming publications.
Electromagnetic Zero Point Field as Active Energy Source in the Intergalactic Medium
Alfonso Rueda; Hiroki Sunahata; Bernhard Haisch
1999-06-16T23:59:59.000Z
For over twenty years the possibility that the electromagnetic zero point field (ZPF) may actively accelerate electromagnetically interacting particles in regions of extremely low particle density (as those extant in intergalactic space (IGS) with n energies. The recent finding by the AGASA collaboration (Phys. Rev. Lett., 81, 1163, 1998) that the CR energy spectrum does not display any signs of the Greisen-Zatsepin-Kuzmin cut-off (that should be present if these CR particles were indeed generated in localized ultrahigh energies CR sources, as e.g., quasars and other highly active galactic nuclei), may indicate the need for an acceleration mechanism that is distributed throughout IGS as is the case with the ZPF. Other unexplained phenomena that receive an explanation from this mechanism are the generation of X-ray and gamma-ray backgrounds and the existence of Cosmic Voids. However recently, a statistical mechanics kind of challenge to the classical (not the quantum) version of the zero-point acceleration mechanism has been posed (de la Pena and Cetto, The Quantum Dice, 1996). Here we briefly examine the consequences of this challenge and a prospective resolution.
Dimitrijevic, J.; Arsenovic, D.; Jelenkovic, B. M. [Institute of Physics, 11080 Belgrade (Serbia)
2007-07-15T23:59:59.000Z
In this paper, we present a theoretical model for studying the interaction between linearly polarized laser light and near-degenerated Zeeman sublevels for a multiple V-type atomic system of {sup 2}S{sub 1/2}F{sub g}=2{yields}{sup 2}P{sub 3/2}F{sub e}=3 transition in {sup 87}Rb. We have calculated the laser absorption in a Hanle configuration, as well as the amplitudes and the widths of electromagnetically induced absorption (EIA) in the range of laser intensities from 0.01 to 40 mW/cm{sup 2}. Our results, showing nonvanishing EIA amplitude, a nonmonotonic increase of the EIA width for the increase of laser intensity, and pronounced shape differences of the Hanle EIA curves at different laser intensities, are in good agreement with recent experimental results. We have found that the EIA behaves differently than the electromagnetically induced transparency (EIT) as a function of the laser intensity. Both the amplitude and width of the EIA have narrow maximums at 1 to 2 mW/cm{sup 2}. We have shown the strong influence of Doppler broadening of atomic transition on Hanle resonances and have suggested the explanation of it.
Collapse and revival of electromagnetic cascades in focused intense laser pulses
A. A. Mironov; N. B. Narozhny; A. M. Fedotov
2014-07-24T23:59:59.000Z
We consider interaction of a high-energy electron beam with two counterpropagating femtosecond laser pulses. Nonlinear Compton scattering and electron-positron pair production by the emitted photons result in development of an electromagnetic "shower-type" cascade, which however collapses rather quickly due to energy losses by secondary particles. Nevertheless, the laser field accelerates the low-energy electrons and positrons trapped in the focal region, thus giving rise to development of electromagnetic cascade of another type ("avalanche-type"). This effect of cascade collapse and revival can be observed at the electron beam energy of the order of several GeV and intensity of the colliding laser pulses of the level of $10^{24}$W/cm$^2$. This means that it can be readily observed at the novel laser facilities which are either planned for the nearest future, or are already under construction. The proposed experimental setup provides the most realistic and promissory way to observe the "avalanche-type" cascades.
Collapse and revival of electromagnetic cascades in focused intense laser pulses
Mironov, A A; Fedotov, A M
2014-01-01T23:59:59.000Z
We consider interaction of a high-energy electron beam with two counterpropagating femtosecond laser pulses. Nonlinear Compton scattering and electron-positron pair production by the emitted photons result in development of an electromagnetic "shower-type" cascade, which however collapses rather quickly due to energy losses by secondary particles. Nevertheless, the laser field accelerates the low-energy electrons and positrons trapped in the focal region, thus giving rise to development of electromagnetic cascade of another type ("avalanche-type"). This effect of cascade collapse and revival can be observed at the electron beam energy of the order of several GeV and intensity of the colliding laser pulses of the level of $10^{24}$W/cm$^2$. This means that it can be readily observed at the novel laser facilities which are either planned for the nearest future, or are already under construction. The proposed experimental setup provides the most realistic and promissory way to observe the "avalanche-type" cascad...
Electromagnetic radiation from nuclear collisions at RHIC energies
Simon Turbide; Charles Gale; Evan Frodermann; Ulrich Heinz
2007-12-20T23:59:59.000Z
The hot and dense strongly interacting matter created in collisions of heavy nuclei at RHIC energies is modeled with relativistic hydrodynamics, and the spectra of real and virtual photons produced at mid-rapidity in these events are calculated. Several different sources are considered, and their relative importance is compared. Specifically, we include jet fragmentation, jet-plasma interactions, the emission of radiation from the thermal medium and from primordial hard collisions. Our calculations consistently take into account jet energy loss, as evaluated in the AMY formalism. We obtain results for the spectra, the nuclear modification factor (R_AA), and the azimuthal anisotropy (v_2) that agree with the photon measurements performed by the PHENIX collaboration at RHIC.
A Continuous Field Theory of Matter and Electromagnetism
Raymond J. Beach
2012-08-31T23:59:59.000Z
A continuous field theory of matter and electromagnetism is developed. The starting point of the theory is the classical Maxwell equations which are directly tied to the Riemann-Christoffel curvature tensor. This is done through the derivatives of the Maxwell tensor which are equated to a vector field contracted with the curvature tensor. The electromagnetic portion of the theory is shown to be equivalent to the classical Maxwell equations with the addition of a hidden variable. Because the proposed equations describing electromagnetism and matter differ from the classical Maxwell-Einstein equations, their ability to describe classical physics is shown for several situations by direct calculation. The inclusion of antimatter and the possibility of particle-like solutions exhibiting both quantized charge and mass are discussed.
Electromagnetic prompt response in an elastic wave cavity
A. M. Martínez-Argüello; M. Martínez-Mares; M. Cobián-Suárez; G. Báez; R. A. Méndez-Sánchez
2015-02-11T23:59:59.000Z
A rapid, or prompt response, of an electromagnetic nature, is found in an elastic wave scattering experiment. The experiment is performed with torsional elastic waves in a quasi-one-dimensional cavity with one port, formed by a notch grooved at a certain distance from the free end of a beam. The stationary patterns are diminished using a passive vibration isolation system at the other end of the beam. The measurement of the resonances is performed with non-contact electromagnetic-acoustic transducers outside the cavity. In the Argand plane, each resonance describes a circle over a base impedance curve which comes from the electromagnetic components of the equipment. A model, based on a variation of Poisson's kernel is developed. Excellent agreement between theory and experiment is obtained.
Method for imaging with low frequency electromagnetic fields
Lee, Ki H. (Lafayette, CA); Xie, Gan Q. (Berkeley, CA)
1994-01-01T23:59:59.000Z
A method for imaging with low frequency electromagnetic fields, and for interpreting the electromagnetic data using ray tomography, in order to determine the earth conductivity with high accuracy and resolution. The imaging method includes the steps of placing one or more transmitters, at various positions in a plurality of transmitter holes, and placing a plurality of receivers in a plurality of receiver holes. The transmitters generate electromagnetic signals which diffuse through a medium, such as earth, toward the receivers. The measured diffusion field data H is then transformed into wavefield data U. The traveltimes corresponding to the wavefield data U, are then obtained, by charting the wavefield data U, using a different regularization parameter .alpha. for each transform. The desired property of the medium, such as conductivity, is then derived from the velocity, which in turn is constructed from the wavefield data U using ray tomography.
Method for imaging with low frequency electromagnetic fields
Lee, K.H.; Xie, G.Q.
1994-12-13T23:59:59.000Z
A method is described for imaging with low frequency electromagnetic fields, and for interpreting the electromagnetic data using ray tomography, in order to determine the earth conductivity with high accuracy and resolution. The imaging method includes the steps of placing one or more transmitters, at various positions in a plurality of transmitter holes, and placing a plurality of receivers in a plurality of receiver holes. The transmitters generate electromagnetic signals which diffuse through a medium, such as earth, toward the receivers. The measured diffusion field data H is then transformed into wavefield data U. The travel times corresponding to the wavefield data U, are then obtained, by charting the wavefield data U, using a different regularization parameter [alpha] for each transform. The desired property of the medium, such as conductivity, is then derived from the velocity, which in turn is constructed from the wavefield data U using ray tomography. 13 figures.
Electromagnetic gauge invariance of chiral hybrid quark models
Koepf, W.; Henley, E.M. (Department of Physics, FM-15, University of Washington, Seattle, Washington 98195 (United States))
1994-04-01T23:59:59.000Z
In this work, we investigate the question whether the conventional analysis of the electromagnetic form factors of the nucleon, evaluated in the framework of the cloudy bag model (CBM) or other chirally invariant hybrid quark models utilizing the same philosophy, is gauge invariant In order to address that point, we first formulate the CBM in a style that resembles the technique of loop integrals. Evaluating the self-energy and the electromagnetic form factors of the nucleon in that manner, and comparing with the standard analysis where nonrelativistic perturbation theory is used, allows us to show that our approach is appropriate and to point out what approximations are made in the standard derivation of the model. From the form of those loop integrals, we then show that additional diagrams are needed to preserve electromagnetic gauge invariance and we assess the corresponding corrections.
Energy or Mass and Interaction
Gustavo R Gonzalez-Martin
2010-07-19T23:59:59.000Z
A review. Problems: 1-Many empirical parameters and large dimension number; 2-Gravitation and Electrodynamics are challenged by dark matter and energy. Energy and nonlinear electrodynamics are fundamental in a unified nonlinear interaction. Nuclear energy appears as nonlinear SU(2) magnetic energy. Gravitation and electromagnetism are unified giving Einstein's equation and a geometric energy momentum tensor. A solution energy in the newtonian limit gives the gravitational constant G. Outside of this limit G is variable. May be interpreted as dark matter or energy. In vacuum, known gravitational solutions are obtained. Electromagnetism is an SU(2) subgroup. A U(1) limit gives Maxwell's equations. Geometric fields determine a generalized Dirac equation and are the germ of quantum physics. Planck's h and of Einstein's c are given by the potential and the metric. Excitations have quanta of charge, flux and spin determining the FQHE. There are only three stable 1/2 spin fermions. Mass is a form of energy. The rest energies of the fermions give the proton/electron mass ratio. Potential excitations have energies equal to the weak boson masses allowing a geometric interpretation of Weinberg's angle. SU(2) gives the anomalous magnetic moments of proton, electron, neutron and generates nuclear range attractive potentials strong enough to produce the binding energies of the deuteron and other nuclides. Lepton and meson masses are due to topological excitations. The geometric mass spectrum is satisfactory. The proton has a triple structure. The alpha constant is a geometric number.
Classical Dynamics of Free Electromagnetic Laser Pulses
Goto, S; Walton, T J
2015-01-01T23:59:59.000Z
We discuss a class of exact finite energy solutions to the vacuum source-free Maxwell field equations as models for multi- and single cycle laser pulses in classical interaction with relativistic charged test particles. These solutions are classified in terms of their chiral content based on their influence on particular charge configurations in space. Such solutions offer a computationally efficient parameterization of compact laser pulses used in laser-matter simulations and provide a potential means for experimentally bounding the fundamental length scale in the generalized electrodynamics of Bopp, Lande and Podolsky.
Classical Dynamics of Free Electromagnetic Laser Pulses
S. Goto; R. W. Tucker; T. J. Walton
2015-08-21T23:59:59.000Z
We discuss a class of exact finite energy solutions to the vacuum source-free Maxwell field equations as models for multi- and single cycle laser pulses in classical interaction with relativistic charged test particles. These solutions are classified in terms of their chiral content based on their influence on particular charge configurations in space. Such solutions offer a computationally efficient parameterization of compact laser pulses used in laser-matter simulations and provide a potential means for experimentally bounding the fundamental length scale in the generalized electrodynamics of Bopp, Lande and Podolsky.
Electromagnetically Induced Transparency from a Single Atom in Free Space
L. Slodicka; G. Hetet; S. Gerber; M. Hennrich; R. Blatt
2010-05-18T23:59:59.000Z
We report an absorption spectroscopy experiment and the observation of electromagnetically induced transparency from a single trapped atom. We focus a weak and narrowband Gaussian light beam onto an optically cooled Barium ion using a high numerical aperture lens. Extinction of this beam is observed with measured values of up to 1.3 %. We demonstrate electromagnetically induced transparency of the ion by tuning a strong control beam over a two-photon resonance in a three-level lambda-type system. The probe beam extinction is inhibited by more than 75 % due to population trapping.
Electromagnetic field quantization in a linear dielectric medium
F. Kheirandish; M. Amooshahi
2005-11-13T23:59:59.000Z
By modeling a dielectric medium with two independent reservoirs, i.e., electric and magnetic reservoirs, the electromagnetic field is quantized in a linear dielectric medium consistently. A Hamiltonian is proposed from which using the Heisenberg equations, not only the Maxwell equations but also the structural equations can be obtained. Using the Laplace transformation, the wave equation for the electromagnetic vector potential is solved in the case of a homogeneous dielectric medium. Some examples are considered showing the applicability of the model to both absorptive and nonabsorptive dielectrics.
Electromagnetic Field Quantization in Time-Dependent Dielectric Media
Xiao-Min Bei; Zhong-Zhu Liu
2011-04-18T23:59:59.000Z
We present a Gupta-Bleuler quantization scheme for the electromagnetic field in time-dependent dielectric media. Starting from the Maxwell equations, a generalization of the Lorentz gauge condition adapted to time varying dielectrics is derived. Using this gauge, a Gupta-Bleuler approach to quantize all polarizations of the radiation field and the corresponding constraint condition are introduced. This new approach is different from the quantized electromagnetic field in vacuum in the sense that here the contributions of unphysical photons cannot be thoroughly eliminated, which further lead to a surface charge density. Finally, a discussion of potential experimental tests and possible implication is also made.
Electromagnetic leptogenesis at the TeV scale
Debajyoti Choudhury; Namit Mahajan; Sudhanwa Patra; Utpal Sarkar
2011-04-11T23:59:59.000Z
We construct an explicit model implementing electromagnetic leptogenesis. In a simple extension of the Standard Model, a discrete symmetry forbids the usual decays of the right-handed neutrinos, while allowing for an effective coupling between the left-handed and right-handed neutrinos through the electromagnetic dipole moment. This generates correct leptogenesis with resonant enhancement and also the required neutrino mass via a TeV scale seesaw mechanism. The model is consistent with low energy phenomenology and would have distinct signals in the next generation colliders, and, perhaps even the LHC.
Electromagnetic nucleon form factors in instant and point form
T. Melde; K. Berger; L. Canton; W. Plessas; R. F. Wagenbrunn
2007-09-30T23:59:59.000Z
We present a study of the electromagnetic structure of the nucleons with constituent quark models in the framework of relativistic quantum mechanics. In particular, we address the construction of spectator-model currents in the instant and point forms. Corresponding results for the elastic nucleon electromagnetic form factors as well as charge radii and magnetic moments are presented. We also compare results obtained by different realistic nucleon wave functions stemming from alternative constituent quark models. Finally, we discuss the theoretical uncertainties that reside in the construction of spectator-model transition operators.
Graded pitch electromagnetic pump for thin strip metal casting systems
Kuznetsov, S.B.
1986-04-01T23:59:59.000Z
A metal strip casing system is provided with an electromagnetic pump which includes a pair of primary blocks having a graded pole pitch, polyphase ac winding and being arranged on opposite sides of a movable heat sink. A nozzle is provided for depositing liquid metal on the heat sink such that the resulting metal strip and heat sink combination is subjected to a longitudinal electromagnetic field which increases in wavelength in the direction of travel of the heat sink, thereby subjecting the metal and heat sink to a longitudinal force having a magnitude which increases in the direction of travel. 4 figs.
Electromagnetic triangle anomaly and neutral pion condensation in QCD vacuum
Cao, Gaoqing
2015-01-01T23:59:59.000Z
We study the QCD vacuum structure under the influence of an electromagnetic field with a nonzero second Lorentz invariant $I_2=\\vec{E}\\cdot{\\vec B}$. We show that the presence of $I_2$ can induce neutral pion ($\\pi^0$) condensation in the QCD vacuum through the electromagnetic triangle anomaly. Within the frameworks of chiral perturbation theory at leading small-momenta expansion as well as the Nambu--Jona-Lasinio model at leading $1/N_c$ expansion, we quantify the dependence of the $\\pi^0$ condensate on $I_2$. The stability of the $\\pi^0$-condensed vacuum against the Schwinger charged pair production due to electric field is also discussed.
The NA62 Liquid Krypton Electromagnetic Calorimeter Level 0 Trigger
V. Bonaiuto; A. Fucci; G. Paoluzzi; A. Salamon; G. Salina; E. Santovetti; F. Sargeni; F. M. Scarfi'
2012-01-16T23:59:59.000Z
The NA62 experiment at CERN SPS aims to measure the Branching Ratio of the very rare kaon decay K+ -> pi+ nu nubar collecting O(100) events with a 10% background to make a stringent test of the Standard Model. One of the main backgrounds to the proposed measurement is represented by the K+ -> pi+ pi0 decay. To suppress this background an efficient photo veto system is foreseen. In the 1-10 mrad angular region the NA48 high performance liquid krypton electromagnetic calorimeter is used. The design, implementation and current status of the Liquid Krypton Electromagnetic Calorimeter Level 0 Trigger are presented.
The NA62 Liquid Krypton Electromagnetic Calorimeter Level 0 Trigger
Vincenzo Bonaiuto; Adolfo Fucci; Giovanni Paoluzzi; Andrea Salamon; Gaetano Salina; Emanuele Santovetti; Fausto Sargeni; Francesco M. Scarfi'
2012-01-18T23:59:59.000Z
The NA62 experiment at CERN SPS aims to measure the Branching Ratio of the very rare kaon decay K+ -> pi+ nu nubar collecting O(100) events with a 10% background to make a stringent test of the Standard Model. One of the main backgrounds to the proposed measurement is represented by the K+ -> pi+ pi0 decay. To suppress this background an efficient photo veto system is foreseen. In the 1-10 mrad angular region the NA48 high performance liquid krypton electromagnetic calorimeter is used. The design, implementation and current status of the Liquid Krypton Electromagnetic Calorimeter Level 0 Trigger are presented.
Graded pitch electromagnetic pump for thin strip metal casting systems
Kuznetsov, Stephen B. (Pittsburgh, PA)
1986-01-01T23:59:59.000Z
A metal strip casing system is provided with an electromagnetic pump which includes a pair of primary blocks having a graded pole pitch, polyphase ac winding and being arranged on opposite sides of a movable heat sink. A nozzle is provided for depositing liquid metal on the heat sink such that the resulting metal strip and heat sink combination is subjected to a longitudinal electromagnetic field which increases in wavelength in the direction of travel of the heat sink, thereby subjecting the metal and heat sink to a longitudinal force having a magnitude which increases in the direction of travel.
Spectrally isomorphic Dirac systems: graphene in electromagnetic field
Vit Jakubsky
2014-12-02T23:59:59.000Z
We construct the new one-dimensional Dirac Hamiltonians that are spectrally isomorphic (not isospectral) with the known exactly solvable models. Explicit formulas for their spectra and eigenstates are provided. The operators are utilized for description of Dirac fermions in graphene in presence of an inhomogeneous electromagnetic field. We discuss explicit, physically relevant, examples of spectrally isomorphic systems with both non-periodic and periodic electromagnetic barriers. In the latter case, spectrally isomorphic two- and three-gap systems associated with the Ablowitz-Kaup-Newell-Segur hierarchy are considered.
Beam dynamics studies for transverse electromagnetic mode type rf deflectors
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Ahmed, Shahid; Krafft, Geoffrey A.; Deitrick, Kirsten; De Silva, Subashini U.; Delayen, Jean R.; Spata, Mike; Tiefenback, Michael; Hofler, Alicia; Beard, Kevin
2012-02-01T23:59:59.000Z
We have performed three-dimensional simulations of beam dynamics for transverse electromagnetic mode (TEM) type rf deflectors: normal and superconducting. The compact size of these cavities as compared to the conventional TM110 type structures is more attractive particularly at low frequency. Highly concentrated electromagnetic fields between the parallel bars provide strong electrical stability to the beam for any mechanical disturbance. An array of six 2-cell normal conducting cavities or a single cell superconducting structure is enough to produce the required vertical displacement at the target point. Both the normal and superconducting structures show very small emittance dilution due to the vertical kick of the beam.
Evaluation of methodologies for estimating vulnerability to electromagnetic pulse effects
Not Available
1984-01-01T23:59:59.000Z
High-altitude electromagnetic pulse (EMP) is an electromagnetic radiation of very short rise time, large amplitude, and brief duration that follows a nuclear explosion above the atmosphere. The area over which a single EMP event is experienced can be very great if the explosion if high enough and large enough. Several such nuclear explosions might render unprotected electronic equipment and systems inoperative over an area as large as the continental United States. Damage may occur when high currents and voltages, driven by EMP, reach vital internal circuits. It is therefore essential to protect the systems and to form some idea of how well they will withstand EMP.
Statistics of the electromagnetic response of a chaotic reverberation chamber
J. -B. Gros; U. Kuhl; O. Legrand; F. Mortessagne; O. Picon; E. Richalot
2014-09-20T23:59:59.000Z
This article presents a study of the electromagnetic response of a chaotic reverberation chamber (RC) in the presence of losses. By means of simulations and of experiments, the fluctuations in the maxima of the field obtained in a conventional mode-stirred RC are compared with those in a chaotic RC in the neighborhood of the Lowest Useable Frequency (LUF). The present work illustrates that the universal spectral and spatial statistical properties of chaotic RCs allow to meet more adequately the criteria required by the Standard IEC 61000-4-21 to perform tests of electromagnetic compatibility.
Andreev, A A; Galkin, A L; Kalashnikov, M P; Korobkin, V V; Romanovsky, Mikhail Yu; Shiryaev, O B [A M Prokhorov General Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation)
2011-08-31T23:59:59.000Z
We study the motion of an electron and emission of electromagnetic waves by an electron in the field of a relativistically intense laser pulse. The dynamics of the electron is described by the Newton equation with the Lorentz force in the right-hand side. It is shown that the electrons may be ejected from the interaction region with high energy. The energy spectrum of these electrons and the technique of using the spectrum to assess the maximal intensity in the focus are analysed. It is found that electromagnetic radiation of an electron moving in an intense laser field occurs within a small angle around the direction of the electron trajectory tangent. The tangent quickly changes its direction in space; therefore, electromagnetic radiation of the electron in the far-field zone in a certain direction in the vicinity of the tangent is a short pulse with a duration as short as zeptoseconds. The calculation of the temporary and spectral distribution of the radiation field is carried out. (superintense laser fields)
Electromagnetic Casimir forces of parabolic cylinder and knife-edge geometries
Graham, Noah [Department of Physics, Middlebury College, Middlebury, Vermont 05753 (United States); Shpunt, Alexander; Kardar, Mehran [Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Emig, Thorsten [Laboratoire de Physique Theorique et Modeles Statistiques, CNRS UMR 8626, Bat. 100, Universite Paris-Sud, 91405 Orsay cedex (France); Rahi, Sahand Jamal [Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Center for Studies in Physics and Biology, The Rockefeller University, 1230 York Street, New York, New York 10065 (United States); Jaffe, Robert L. [Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Center for Theoretical Physics and Laboratory for Nuclear Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)
2011-06-15T23:59:59.000Z
An exact calculation of electromagnetic scattering from a perfectly conducting parabolic cylinder is employed to compute Casimir forces in several configurations. These include interactions between a parabolic cylinder and a plane, two parabolic cylinders, and a parabolic cylinder and an ordinary cylinder. To elucidate the effect of boundaries, special attention is focused on the 'knife-edge' limit in which the parabolic cylinder becomes a half-plane. Geometrical effects are illustrated by considering arbitrary rotations of a parabolic cylinder around its focal axis, and arbitrary translations perpendicular to this axis. A quite different geometrical arrangement is explored for the case of an ordinary cylinder placed in the interior of a parabolic cylinder. All of these results extend simply to nonzero temperatures.
Zhang, Xi-Cheng; Riordan, Jenifer Ann; Sun, Feng-Guo
2000-08-29T23:59:59.000Z
Apparatus and methods for characterizing free-space electromagnetic energy, and in particular, apparatus/method suitable for real-time two-dimensional far-infrared imaging applications are presented. The sensing technique is based on a non-linear coupling between a low-frequency electric (or magnetic) field and a laser beam in an electro-optic (or magnetic-optic) crystal. In addition to a practical counter-propagating sensing technique, a co-linear approach is described which provides longer radiated field-optical beam interaction length, thereby making imaging applications practical.
Rayleigh-Taylor-Induced electromagnetic fields in laser-produced plasmas
Manuel, Mario John-Errol
2013-01-01T23:59:59.000Z
Spontaneous electromagnetic fields can be important to the dynamic evolution of a plasma by directing heat flow as well as providing additional pressures on the conducting fluids through the Lorentz force. Electromagnetic ...
Kwon, Daniel W., 1980-
2009-01-01T23:59:59.000Z
An emerging method of propellant-less formation flight propulsion is the use of electromagnets coupled with reaction wheels. This technique is called Electromagnetic Formation Flight (EMFF). In order to create a large ...
Puckett, Andrew James Ruehe
2010-01-01T23:59:59.000Z
The electromagnetic form factors of the nucleon characterize the effect of its internal structure on its response to an electromagnetic probe as studied in elastic electronnucleon scattering. These form factors are functions ...
Frequency and temperature dependence in electromagnetic properties of Martian analog minerals
Stillman, David E.
Frequency and temperature dependence in electromagnetic properties of Martian analog minerals David), Frequency and temperature dependence in electromagnetic properties of Martian analog minerals, J. Geophys energy [Grimm et al., 2006]. Lastly, dielectric and magnetic relaxations of Martian subsurface minerals
Ming Zhang; Zhan-Ying Yang; Rui-Hong Yue
2014-07-04T23:59:59.000Z
In present paper, by using the generalized DDC formalism, we investigate the spontaneous excitation of an static atom interacting with electromagnetic vacuum fluctuations outside a EGB black hole in $d$-dimensions. We find that spontaneous excitation does not occur in Boulware vacuum. The Gauss-Bonnet term has no effect on the stability of the atom. Finally, we discuss the contribution of the coupling constant and dimensional factor to the results in three different kinds of spacetime.
Lie-Santilli isoapproach to the unification of gravity and electromagnetism
Animalu, A.O.E. [Univ. of Nigeria, Nsukka (Nigeria)]|[Istituto per la Ricerca di Base, Monteroduni (Italy)
1996-06-01T23:59:59.000Z
The author reviews the problem of Einstein`s original proposal for the unification of gravity and electromagnetism in space-time differential geometry along the lines of the recent contributions by A.A. Logunov, R.M. Santilli, D.F. Lopez and others. The author presents a new method of unification based on the Lie-Santilli isotopic theory whereby the unified field tensor g = (g{sub {mu}{nu}}) is constructed from the symmetric Riemannian gravitational tensor, g = (g{mu}{nu}), and the antisymmetric electromagnetic field tensor F = (F{sub {mu}{nu}}) via an isotopic lifting g {yields} {cflx g} = Fg of the type of Lax pairing, where det F {ne} 0, the unified field {cflx g} satisfies Logunov-Santilli equations while g and F are treated as Lax pair. Because of Santilli`s isotopic equivalence between Minkowskian and Riemannian geometries, the author infers that in the Minkowskian limit F = f, g = {eta}, the metric {eta} satisfies Lax`s equation of motion {partial_derivative}{eta}/{partial_derivative}t = f{eta} {minus} {eta}f which insures the conservation of the eigenvalues of g. The invariance of the electromagnetic group of transformations (F) in Minkowski space is determined by the eigenvalue equations, det (F{sub {mu}{nu}}){minus}{lambda}{eta}{sub {mu}{nu}} = 0, from which the author deduces a Lie-isotopic {open_quotes}extended{close_quotes} relativity principle. A wave equation for a spin-2 particle in the unified field is derived, and the experimental consequences of the theory are discussed.
Space-Time Galerkin Projection of Electro-Magnetic Fields
Wang, Zifu; Hofmann, Heath
2015-01-01T23:59:59.000Z
Spatial Galerkin projection transfers fields between different meshes. In the area of finite element analysis of electromagnetic fields, it provides great convenience for remeshing, multi-physics, domain decomposition methods, etc. In this paper, a space-time Galerkin projection is developed in order to transfer fields between different spatial and temporal discretization bases.
Examination of Contemporary Electromagnetic Software Capable of Modeling Problems of
Yakovlev, Vadim
Heating Vadim V. Yakovlev Department of Mathematical Sciences, Worcester Polytechnic Institute, Worcester the database of the modern electromagnetic (EM) software suitable for the modeling of microwave heating. Software Database The database of the EM software available in the market and applicable to the majority
Electromagnetic fields and transport coefficients in a hot pion gas
A. Gomez Nicola; D. Fernandez-Fraile
2006-08-24T23:59:59.000Z
We present recent results on finite temperature electromagnetic form factors and the electrical conductivity in a pion gas. The standard Chiral Perturbation Theory power counting needs to be modified for transport coefficients. We pay special attention to unitarity and to possible applications for dilepton and photon production.
Does three dimensional electromagnetic field inherit the spacetime symmetries?
Cvitan, Maro; Smoli?, Ivica
2015-01-01T23:59:59.000Z
We prove that the electromagnetic field in a (1+2)-dimensional spacetime necessarily inherits the symmetries of the spacetime metric in a large class of generalized Einstein-Maxwell theories. The Lagrangians of the studied theories have general diff-covariant gravitational part and include both the gravitational and the gauge Chern-Simons terms.
The modified electromagnetism and the emergent longitudinal wave
Arbab I Arbab; Mudhahir Al-Ajmi
2014-01-22T23:59:59.000Z
The classical theory of electromagnetism has been revisited and the possibility of longitudinal photon wave is explored. It is shown that the emergence of longitudinal wave is a consequence of Lorenz gauge (condition) violation. Proca, Vlaenderen & Waser and Arbab theories are investigated.
NEAR-SURFACE CONTROLLED-SOURCE ELECTROMAGNETIC INDUCTION
Meju, Max
-D and advanced 3-D forward modeling and inversion for more detailed analyses. Previous reviews. EVERETT Dept. of Geology and Geophysics, Texas A&M University College Station TX 77843 U.S.A. MAX A. MEJU The controlled-source electromagnetic (CSEM) induction method is emerging as a leading geophysical technique
Electromagnetic radiation and motion of arbitrarily shaped particle
Jozef Klacka
2001-07-06T23:59:59.000Z
Covariant form of equation of motion for arbitrarily shaped particle in the electromagnetic radiation field is presented. Equation of motion in the proper frame of the particle uses the radiation pressure cross section 3 $\\times$ 3 matrix. The obtained equation of motion is compared with known result.
Behavior of Electric Current Subjected to ELF Electromagnetic Radiation
Fran De Aquino
2002-10-05T23:59:59.000Z
Gravitational effects produced by ELF electromagnetic radiation upon the electric current in a conductor are studied. An apparatus has been constructed to test the behavior of current subjected to ELF radiation. The experimental results are in agreement with theoretical predictions and show that ELF radiation can cause transitory interruptions in electric current conduction.
"Light" or the Electromagnetic spectrum www.nasa.gov
Mojzsis, Stephen J.
#12;"Light" or the Electromagnetic spectrum www.nasa.gov #12;Diffraction and Light · When passed Nasa.gov #12;The Visible Spectrum violet 380-420 nm indigo 420-450 nm blue 450-495 nm green 495-570 nm, Blue, or green · Cones concentrated at the center · Rods at outside of eye www.nasa.gov #12;Cone
College of Engineering Electromagnetically Enhanced Hydrocyclone for Magnetite Separation during
Demirel, Melik C.
during Overview Magnetite is used by Consol Energy to separate coal from waste rock by increasing the magnetic field patterns · An impeller was installed to continuously mix the slurry to keep the mixture Electromagnetically Enhanced Hydrocyclone for Magnetite Separation during Coal Beneficiation Magnetite is used
Electromagnetically and Thermally Driven Flow Phenomena in Electroslag Welding
Eagar, Thomas W.
) Electromagnetically and Thermally Driven Flow Phenomena in Electroslag Welding A. H. DILAWARI, J for the Electroslag Welding Process. In the formulation, allowance has been made {or both etee- tromagnetic and b in the use of electroslag welding (ESW), particularly for the construction of thick walled pressure vessels
Energy and linear and angular momenta in simple electromagnetic systems
Mansuripur, Masud
2015-01-01T23:59:59.000Z
We present examples of simple electromagnetic systems in which energy, linear momentum, and angular momentum exhibit interesting behavior. The systems are sufficiently simple to allow exact solutions of Maxwell's equations in conjunction with the electrodynamic laws of force, torque, energy, and momentum. In all the cases examined, conservation of energy and momentum is confirmed.
Susceptibility study of audio recording devices to electromagnetic stimulations
Halligan, Matthew S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Grant, Steven L. [Missouri Univ. of Science and Technology, Rolla, MO (United States); Beetner, Daryl G. [Missouri Univ. of Science and Technology, Rolla, MO (United States)
2014-02-01T23:59:59.000Z
Little research has been performed to study how intentional electromagnetic signals may couple into recording devices. An electromagnetic susceptibility study was performed on an analog tape recorder, a digital video camera, a wired computer microphone, and a wireless microphone system to electromagnetic interference. Devices were subjected to electromagnetic stimulations in the frequency range of 1-990 MHz and field strengths up to 4.9 V/m. Carrier and message frequencies of the stimulation signals were swept, and the impacts of device orientation and antenna polarization were explored. Message signals coupled into all devices only when amplitude modulated signals were used as stimulation signals. Test conditions that produced maximum sensitivity were highly specific to each device. Only narrow carrier frequency ranges could be used for most devices to couple messages into recordings. A basic detection technique using cross-correlation demonstrated the need for messages to be as long as possible to maximize message detection and minimize detection error. Analysis suggests that detectable signals could be coupled to these recording devices under realistic ambient conditions.
ARTICULATORY SPACE CALIBRATION IN 3D ELECTRO-MAGNETIC ARTICULOGRAPHY
Johnson, Michael T.
articulatory space. A bite plate record for a target subject is used to define the maxillary occlusal collected using NDI Wave Speech Research System for one pilot subject, and calibration results of articulatory kinematics and relationship to acoustics. Index Terms-- Electro-Magnetic Articulography