Powered by Deep Web Technologies
Note: This page contains sample records for the topic "interactive electromagnetic relations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Electromagnetic interactions at RHIC and LHC  

E-Print Network [OSTI]

At LHC energies the Lorentz factor will be 3400 for the Pb + Pb collisions and the electromagnetic interactions will play important roles. Cross sections for the electromagnetic particle productions are very large and can not be ignored for the lifetimes of the beams and background. In this article, we are going to study some of the electromagnetic processes at RHIC and LHC and show the cross section calculations of the electron-positron pair production with the giant dipole resonance of the ions.

M. C. Guclu

2008-11-15T23:59:59.000Z

2

22.105 Electromagnetic Interactions, Fall 1998  

E-Print Network [OSTI]

Principles and applications of electromagnetism, starting from Maxwell's equations, with emphasis on phenomena important to nuclear engineering and radiation sciences. Solution methods for electrostatic and magnetostatic ...

Hutchinson, I. H. (Ian H.)

3

An approach to electromagnetism from the general relativity  

E-Print Network [OSTI]

Classical gravitation is so similar to the electrostatic that the possible unification has been investigated for many years. Although electromagnetism is formulated successfully by quantum field theory, this paper proposes a simple approach to describe the electromagnetism from the macroscopic perspective of general relativity. The hypothesis is based on two charged particles that cause disturbance energy sufficient to disrupt the space-time and explain approximately Maxwell's equations. Therefore, with such this simple idea, we suggest the possibility that the geometric relationship between electromagnetism and gravitation is not yet fully exhausted.

Robert Monjo i Agut

2013-12-02T23:59:59.000Z

4

Interactions of hadrons in the CALICE silicon tungsten electromagnetic calorimeter  

E-Print Network [OSTI]

The CALICE collaboration develops prototypes for highly granular calorimeters for detectors at a future linear electron positron collider. The highly granular electromagnetic calorimeter prototype was tested in particle beams. We present the study of the interactions of hadrons in this prototype.

Roman Pöschl; for the CALICE Collaboration

2012-03-07T23:59:59.000Z

5

Electromagnetic fluctuation-induced interactions in randomly charged slabs  

E-Print Network [OSTI]

Randomly charged net-neutral dielectric slabs are shown to interact across a featureless dielectric continuum with long-range electrostatic forces that scale with the statistical variance of their quenched random charge distribution and inversely with the distance between their bounding surfaces. By accounting for the whole spectrum of electromagnetic field fluctuations, we show that this long-range disorder-generated interaction extends well into the retarded regime where higher-order Matsubara frequencies contribute significantly. This occurs even for highly clean samples with only a trace amount of charge disorder and shows that disorder effects can be important down to the nano scale. As a result, the previously predicted non-monotonic behavior for the total force between dissimilar slabs as a function of their separation distance is substantially modified by higher-order contributions, and in almost all cases of interest, we find that the equilibrium inter-surface separation is shifted to substantially larger values compared to predictions based solely on the zero-frequency component. This suggests that the ensuing non-monotonic interaction is more easily amenable to experimental detection. The presence of charge disorder in the intervening dielectric medium between the two slabs is shown to lead to an additional force that can be repulsive or attractive depending on the system parameters and can, for instance, wash out the non-monotonic behavior of the total force when the intervening slab contains a sufficiently large amount of disorder charges.

Vahid Rezvani; Jalal Sarabadani; Ali Naji; Rudolf Podgornik

2012-07-19T23:59:59.000Z

6

Electromagnetic Mass Models in General Theory of Relativity  

E-Print Network [OSTI]

"Electromagnetic mass" where gravitational mass and other physical quantities originate from the electromagnetic field alone has a century long distinguished history. In the introductory chapter we have divided this history into three broad categories -- classical, quantum mechanical and general relativistic. Each of the categories has been described at a length to get the detailed picture of the physical background. Recent developments on Repulsive Electromagnetic Mass Models are of special interest in this introductory part of the thesis. In this context we have also stated motivation of our work. In the subsequent chapters we have presented our results and their physical significances. It is concluded that the electromagnetic mass models which are the sources of purely electromagnetic origin ``have not only heuristic flavor associated with the conjecture of Lorentz but even a physics having unconventional yet novel features characterizing their own contributions independent of the rest of the physics".

Sumana Bhadra

2007-10-30T23:59:59.000Z

7

Charge splitting of directed flow and space-time picture of pion emission from the electromagnetic interactions with spectators  

E-Print Network [OSTI]

We estimate the effect of the spectator-induced electromagnetic interaction on the directed flow of charged pions. For intermediate centrality Au+Au collisions at $\\sqrt{s_{NN}}=7.7$~GeV, we demonstrate that the electromagnetic interaction between spectator charges and final state pions results in charge splitting of positive and negative pion directed flow. Such a charge splitting is visible in the experimental data reported by the STAR Collaboration. The magnitude of this charge splitting appears to strongly depend on the actual distance between the pion emission site (pion at freeze-out) and the spectator system. As such, the above electromagnetic effect brings new, independent information on the space-time evolution of pion production in heavy ion collisions. From the comparison of our present analysis to our earlier studies made for pions produced at higher rapidity, we formulate conclusions on the rapidity dependence of the distance between the pion emission site and the spectator system. This distance appears to decrease with increasing pion rapidity, reflecting the longitudinal expansion of the strongly-interacting system responsible for pion emission. Thus for the first time, information on the space-time characteristics of the system is being provided by means of the spectator-induced electromagnetic interaction. The above electromagnetic effect being in fact a straight-forward consequence of the presence of spectator charges in the collision, we consider that it should be considered as a baseline for studies of other phenomena, like those related to the electric conductivity of the quark-gluon plasma.

Andrzej Rybicki; Antoni Szczurek

2014-05-27T23:59:59.000Z

8

Electromagnetic corrections to final state interactions in $K\\to 3?$ decays  

E-Print Network [OSTI]

The final state interactions of pions in decays $K^\\pm\\to\\pi^\\pm\\pi^0\\pi^0$ are considered using the methods of quantum mechanics. We show how to incorporate the electromagnetic effects in the amplitudes of these decays and to work out the relevant expressions valid above and below the two charged pions production threshold $M_c=2m$. The electromagnetic corrections are given as evaluated in a potential model.

S. R. Gevorkyan; A. V. Tarasov; O. O. Voskresenskaya

2007-02-03T23:59:59.000Z

9

Chaotic Emission from Electromagnetic Systems Considering Self-Interaction  

E-Print Network [OSTI]

The emission of electromagnetic waves from a system described by the H\\'enon-Heiles potential is studied in this work. The main aim being to analyze the behavior of the system when the damping term is included explicitly into the equations of motion. Energy losses at the chaotic regime and at the regular regime are compared. The results obtained here are similar to the case of gravitational waves emission, as long we consider only the energy loss. The main difference being that in the present work the energy emitted is explicitly calculated solving the equation of motion without further approximations. It is expected that the present analysis may be useful when studying the analogous problem of dissipation in gravitational systems.

Fernando Kokubun; Vilson T. Zanchin

2006-05-02T23:59:59.000Z

10

Interacting Scalar and Electromagnetic Fields in $f(R,\\,T)$ Theory of Gravity  

E-Print Network [OSTI]

Within the scope of $f(R,\\,T)$ gravity we have studied the interacting scalar and electromagnetic fields in a Bianchi type I universe. It was found that if the study is confined to the case $f(R,\\,T) = R + \\lambda f(T)$, the system is completely given by the equations similar to Einstein gravity. Moreover, the present study imposes some severe restrictions on the field equations as well.

Bijan Saha

2014-10-07T23:59:59.000Z

11

Gauge Freedom and Relativity: A Unified Treatment of Electromagnetism, Gravity and the Dirac Field  

E-Print Network [OSTI]

The geometric properties of General Relativity are reconsidered as a particular nonlinear interaction of fields on a flat background where the perceived geometry and coordinates are "physical" entities that are interpolated by a patchwork of observable bodies with a nonintuitive relationship to the underlying fields. This more general notion of gauge in physics opens an important door to put all fields on a similar standing but requires a careful reconsideration of tensors in physics and the conventional wisdom surrounding them. The meaning of the flat background and the induced conserved quantities are discussed and contrasted with the "observable" positive definite energy and probability density in terms of the induced physical coordinates. In this context, the Dirac matrices are promoted to dynamic proto-gravity fields and the keeper of "physical metric" information. Independent sister fields to the wavefunctions are utilized in a bilinear rather than a quadratic lagrangian in these fields. This construction greatly enlarges the gauge group so that now proving causal evolution, relative to the physical metric, for the gauge invariant functions of the fields requires both the stress-energy conservation and probability current conservation laws. Through a Higgs-like coupling term the proto-gravity fields generate a well defined physical metric structure and gives the usual distinguishing of gravity from electromagnetism at low energies relative to the Higgs-like coupling. The flat background induces a full set of conservation laws but results in the need to distinguish these quantities from those observed by recording devices and observers constructed from the fields.

Clifford E. Chafin

2015-01-18T23:59:59.000Z

12

Coherent interaction of a monochromatic gravitational wave with both elastic bodies and electromagnetic circuits  

E-Print Network [OSTI]

The interaction of a gravitational wave with a system made of an RLC circuit forming one end of a mechanical harmonic oscillator is investigated. We show that, in some configurations, the coherent interaction of the wave with both the mechanical oscillator and the RLC circuit gives rise to a mechanical quality factor increase of the electromagnetic signal. When this system is used as an amplifier of gravitational periodic signals in the frequency range 50-1000 Hz, at ultracryogenic temperatures and for sufficiently long integration times (up to 4 months), a sensitivity of 10^(-24)-10^(-27) on the amplitude of the metric could be achieved when thermal noise, shot noise and amplifier back--action are considered.

Enrico Montanari; Pierluigi Fortini

1998-08-26T23:59:59.000Z

13

Non-Markovian master equation for a system of Fermions interacting with an electromagnetic field  

SciTech Connect (OSTI)

For a system of charged Fermions interacting with an electromagnetic field, we derive a non-Markovian master equation in the second-order approximation of the weak dissipative coupling. A complex dissipative environment including Fermions, Bosons and the free electromagnetic field is taken into account. Besides the well-known Markovian term of Lindblad's form, that describes the decay of the system by correlated transitions of the system and environment particles, this equation includes new Markovian and non-Markovian terms proceeding from the fluctuations of the self-consistent field of the environment. These terms describe fluctuations of the energy levels, transitions among these levels stimulated by the fluctuations of the self-consistent field of the environment, and the influence of the time-evolution of the environment on the system dynamics. We derive a complementary master equation describing the environment dynamics correlated with the dynamics of the system. As an application, we obtain non-Markovian Maxwell-Bloch equations and calculate the absorption spectrum of a field propagation mode transversing an array of two-level quantum dots.

Stefanescu, Eliade [Center of Advanced Studies in Physics at the Institute of Mathematics Simion Stoilow of the Romanian Academy, 13 Calea 13 Septembrie, 050711 Bucharest S5 (Romania); Institut fuer Theoretische Physik der Justus-Liebig-Universitaet, Heinrich-Buff-Ring 16, D-35392 Giessen (Germany); Academy of Romanian Scientists, 54 Splaiul Independentei, 050094 Bucharest (Romania)], E-mail: eliadestefanescu@yahoo.fr; Scheid, Werner; Sandulescu, Aurel [Center of Advanced Studies in Physics at the Institute of Mathematics Simion Stoilow of the Romanian Academy, 13 Calea 13 Septembrie, 050711 Bucharest S5 (Romania); Institut fuer Theoretische Physik der Justus-Liebig-Universitaet, Heinrich-Buff-Ring 16, D-35392 Giessen (Germany); Academy of Romanian Scientists, 54 Splaiul Independentei, 050094 Bucharest (Romania)

2008-05-15T23:59:59.000Z

14

Rao-Blackwellised Interacting Markov Chain Monte Carlo for Electromagnetic Scattering Inversion  

E-Print Network [OSTI]

The following electromagnetism (EM) inverse problem is addressed. It consists in estimating local radioelectric properties of materials recovering an object from the global EM scattering measurement, at various incidences and wave frequencies. This large scale ill-posed inverse problem is explored by an intensive exploitation of an efficient 2D Maxwell solver, distributed on High Performance Computing (HPC) machines. Applied to a large training data set, a statistical analysis reduces the problem to a simpler probabilistic metamodel, on which Bayesian inference can be performed. Considering the radioelectric properties as a dynamic stochastic process, evolving in function of the frequency, it is shown how advanced Markov Chain Monte Carlo methods, called Sequential Monte Carlo (SMC) or interacting particles, can provide estimations of the EM properties of each material, and their associated uncertainties.

Giraud, François

2012-01-01T23:59:59.000Z

15

Electromagnetic Radiation REFERENCE: Remote Sensing of  

E-Print Network [OSTI]

1 CHAPTER 2: Electromagnetic Radiation Principles REFERENCE: Remote Sensing of the Environment John;2 Electromagnetic Energy Interactions Energy recorded by remote sensing systems undergoes fundamental interactions, creating convectional currents in the atmosphere. c) Electromagnetic energy in the form of electromagnetic

Gilbes, Fernando

16

Electromagnetic space-time crystals. III. Dispersion relations for partial solutions  

E-Print Network [OSTI]

Partial solutions of the Dirac equation describing an electron motion in electromagnetic crystals created by plane waves with linear and circular polarizations are treated. It is shown that the electromagnetic crystal formed by circularly polarized waves possesses the spin birefringence.

G. N. Borzdov

2014-10-21T23:59:59.000Z

17

Plasma parameters and electromagnetic forces induced by the magneto hydro dynamic interaction in a hypersonic argon flow experiment  

SciTech Connect (OSTI)

This work proposes an experimental analysis on the magneto hydro dynamic (MHD) interaction induced by a magnetic test body immersed into a hypersonic argon flow. The characteristic plasma parameters are measured. They are related to the voltages arising in the Hall direction and to the variation of the fluid dynamic properties induced by the interaction. The tests have been performed in a hypersonic wind tunnel at Mach 6 and Mach 15. The plasma parameters are measured in the stagnation region in front of the nozzle of the wind tunnel and in the free stream region at the nozzle exit. The test body has a conical shape with the cone axis in the gas flow direction and the cone vertex against the flow. It is placed at the nozzle exit and is equipped with three permanent magnets. In the configuration adopted, the Faraday current flows in a closed loop completely immersed into the plasma of the shock layer. The electric field and the pressure variation due to MHD interaction have been measured on the test body walls. Microwave adsorption measurements have been used for the determination of the electron number density and the electron collision frequency. Continuum recombination radiation and line radiation emissions have been detected. The electron temperature has been determined by means of the spectroscopic data by using different methods. The electron number density has been also determined by means of the Stark broadening of H{sub {alpha}} and the H{sub {beta}} lines. Optical imaging has been utilized to visualize the pattern of the electric current distribution in the shock layer around the test body. The experiments show a considerable effect of the electromagnetic forces produced by the MHD interaction acting on the plasma flow around the test body. A comparison of the experimental data with simulation results shows a good agreement.

Cristofolini, Andrea; Neretti, Gabriele; Borghi, Carlo A. [Department of Electrical Engineering, University of Bologna, Viale Risorgimento 2, 40136 Bologna (Italy)

2012-08-01T23:59:59.000Z

18

Progress In Electromagnetics Research, PIER 74, 119, 2007 ANALYSIS OF INTERACTION BETWEEN A  

E-Print Network [OSTI]

partially re-radiates, and partially dissipates within the FR body, eventually producing heat. Both re-radiated energy and heat loss in the FR depend on coupling between the FR and the electromagnetic field picks out energy from electromagnetic field at the ferromagnetic resonance. Thus the typical linewidth

Koledintseva, Marina Y.

19

Electromagnetic Properties for Arbitrary Spin Particles: Part 1 $-$ Electromagnetic Current and Multipole Decomposition  

E-Print Network [OSTI]

In a set of two papers, we propose to study an old-standing problem, namely the electromagnetic interaction for particles of arbitrary spin. Based on the assumption that light-cone helicity at tree level and $Q^2=0$ should be conserved non-trivially by the electromagnetic interaction, we are able to derive \\emph{all} the natural electromagnetic moments for a pointlike particle of \\emph{any} spin. In this first paper, we propose a transparent decomposition of the electromagnetic current in terms of covariant vertex functions. We also define in a general way the electromagnetic multipole form factors, and show their relation with the electromagnetic moments. Finally, by considering the Breit frame, we relate the covariant vertex functions to multipole form factors.

Cédric Lorcé

2009-01-27T23:59:59.000Z

20

Advanced methods for the computation of particle beam transport and the computation of electromagnetic fields and beam-cavity interactions  

SciTech Connect (OSTI)

The University of Maryland Dynamical Systems and Accelerator Theory Group carries out research in two broad areas: the computation of charged particle beam transport using Lie algebraic methods and advanced methods for the computation of electromagnetic fields and beam-cavity interactions. Important improvements in the state of the art are believed to be possible in both of these areas. In addition, applications of these methods are made to problems of current interest in accelerator physics including the theoretical performance of present and proposed high energy machines. The Lie algebraic method of computing and analyzing beam transport handles both linear and nonlinear beam elements. Tests show this method to be superior to the earlier matrix or numerical integration methods. It has wide application to many areas including accelerator physics, intense particle beams, ion microprobes, high resolution electron microscopy, and light optics. With regard to the area of electromagnetic fields and beam cavity interactions, work is carried out on the theory of beam breakup in single pulses. Work is also done on the analysis of the high behavior of longitudinal and transverse coupling impendances, including the examination of methods which may be used to measure these impedances. Finally, work is performed on the electromagnetic analysis of coupled cavities and on the coupling of cavities to waveguides.

Dragt, A.J.; Gluckstern, R.L.

1990-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "interactive electromagnetic relations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Electromagnetic signatures of far-field gravitational radiation in the 1+3 approach  

E-Print Network [OSTI]

Gravitational waves from astrophysical sources can interact with background electromagnetic fields, giving rise to distinctive and potentially detectable electromagnetic signatures. In this paper, we study such interactions for far-field gravitational radiation using the 1+3 approach to relativity. Linearised equations for the electromagnetic field on perturbed Minkowski space are derived and solved analytically. The inverse Gertsenshtein conversion of gravitational waves in a static electromagnetic field is rederived, and the resultant electromagnetic radiation is shown to be significant for highly magnetised pulsars in compact binary systems. We also obtain a variety of nonlinear interference effects for interacting gravitational and electromagnetic waves, although wave-wave resonances previously described in the literature are absent when the electric-magnetic self-interaction is taken into account. The fluctuation and amplification of electromagnetic energy flux as the gravitational wave strength increases towards the gravitational-electromagnetic frequency ratio is a possible signature of gravitational radiation from extended astrophysical sources.

Alvin J. K. Chua; Priscilla Cañizares; Jonathan R. Gair

2014-12-06T23:59:59.000Z

22

Electromagnetic radiation, motion of a particle and energy-mass relation  

E-Print Network [OSTI]

Equation of motion of an uncharged arbitrarily shaped dust particle under the effects of (stellar) electromagnetic radiation and thermal emission is derived. The resulting relativistically covariant equation of motion is expressed in terms of standard optical parameters. Relations between energy and mass of the incoming and outgoing radiation are obtained, together with relations between radiation energy and mass of the particle. The role of the diffraction nicely fits the relativistic formulation of the momentum of the outgoing radiation. The inequality 0 < $\\bar{Q}'_{pr, 1} / \\bar{Q}'_{ext}$ < 2 is a simple relativistic consequence for the Poynting-Robertson (P-R) effect ($\\bar{Q}'_{ext}$ and $\\bar{Q}'_{pr, 1}$ are dimensionless efficiency factors for the extinction and radial direction of the radiation pressure, integrated over stellar spectrum). The condition for the P-R effect is $\\vec{p}'_{o}$ = (1 - $\\bar{Q}'_{pr, 1} / \\bar{Q}'_{ext}$) $\\vec{p}'_{i}$, where $\\vec{p}'_{i}$ and $\\vec{p}'_{o}$ are incoming and outgoing radiation momenta (per unit time) measured in the proper frame of reference of the particle. The case of "perfectly absorbing spherical dust particle", within geometrical optics approximation, corresponds to the condition $\\vec{p}'_{o}$ = 0.5 $\\vec{p}'_{i}$. As for arbitrarily shaped dust particle, the condition 0 < $\\bar{C}'_{pr, 1}$ / $\\bar{C}'_{ext}$ < 2 / ($1 ~+~ \\sum_{j=2}^{3} \\bar{C}'_{pr, j} / \\bar{C}'_{pr, 1}$) holds for cross sections of extinction and radiation pressure components. The condition can add a new information to the results obtained from observations, measurements and numerical calculations of the optical properties of the particle.

J. Klacka

2008-07-18T23:59:59.000Z

23

Electromagnetic properties of neutrinos  

E-Print Network [OSTI]

A short review on electromagnetic properties of neutrinos is presented. In spite of many efforts in the theoretical and experimental studies of neutrino electromagnetic properties, they still remain one of the main puzzles related to neutrinos.

Carlo Giunti; Alexander Studenikin

2010-06-08T23:59:59.000Z

24

I. What is electromagnetic radiation and the electromagnetic spectrum?  

E-Print Network [OSTI]

i­1 I. What is electromagnetic radiation and the electromagnetic spectrum? What do light, X effects on matter. This "stuff" is called electromagnetic radiation, because it travels (radiates) and has electrical and magnetic effects. Electromagnetic radiation is the means for many of our interactions

Sitko, Michael L.

25

G. Tsoulos (Ed.), MIMO System Technology for Wireless Communications, CRC & Taylor and Francis, Boca Raton, 2006. 20-Jul-05 Chapter 3: Information Theory and Electromagnetism: Are They Related? 1(37)  

E-Print Network [OSTI]

, Boca Raton, 2006. 20-Jul-05 Chapter 3: Information Theory and Electromagnetism: Are They Related? 1(37) INFORMATION THEORY AND ELECTROMAGNETISM: ARE THEY RELATED? Sergey Loyka1 , Juan Mosig2 1 School of Information [9-14]. Electromagnetic waves are used as the primary carrier of information. The basic

Loyka, Sergey

26

Investigation of the electromagnetic structure of. eta. and. eta. prime mesons by two-photon interactions  

SciTech Connect (OSTI)

The TPC/Two-Gamma facility at the SLAC {ital e}{sup +}{ital e}{sup {minus}} storage ring PEP was used to study the reactions {gamma}{gamma}{sup *}{r arrow}{eta} and {gamma}{gamma}{sup *}{r arrow}{eta}{prime}. The {eta}{gamma}{sup *}{gamma} and {eta}{prime}{gamma}{sup *}{gamma} transition form factors were measured as functions of {ital Q}{sup 2}, the negative of the invariant mass squared of the tagged photon, in the range 0.1{lt}{ital Q}{sup 2}{lt}7 GeV{sup 2}. These determinations of the electromagnetic structure of the {eta} and {eta}{prime} mesons are consistent with both vector-meson dominance and QCD. They also provide new measurements of the pseudoscalar mixing angle and decay constants.

Aihara, H.; Alston-Garnjost, M.; Avery, R.E.; Barbaro-Galtieri, A.; Barker, A.R.; Barnett, B.A.; Bauer, D.A.; Bay, A.; Bobbink, G.J.; Buchanan, C.D.; Buijs, A.; Caldwell, D.O.; Chao, H.; Chun, S.; Clark, A.R.; Cowan, G.D.; Crane, D.A.; Dahl, O.I.; Daoudi, M.; Derby, K.A.; Eastman, J.J.; Eberhard, P.H.; Edberg, T.K.; Eisner, A.M.; Erne, F.C.; Fairfield, K.H.; Hauptman, J.M.; Hofmann, W.; Hylen, J.; Kamae, T.; Kaye, H.S.; Kenney, R.W.; Khacheryan, S.; Kofler, R.R.; Langeveld, W.G.J.; Layter, J.G.; Lin, W.T.; Linde, F.L.; Loken, S.C.; Lu, A.; Lynch, G.R.; Madaras, R.J.; Magnuson, B.D.; Masek, G.E.; Mathis, L.G.; Matthews, J.A.J.; Maxfield, S.J.; Miller, E.S.; Moses, W.; Nygren, D.R.; Oddone, P.J.; Paar, H.P.; Park, S.K.; Pellett, D.E.; Pripstein, M.; Ronan, M.T.; Ross, R.R.; Rouse, F.R.; Schwitkis, K.A.; Sens, J.C.; Shapiro, G.; Shen, B.C.; Smith, J.R.; Steinman, J.S.; Stephens, R.W.; Stevenson, M.L.; Stork, D.H.; Strauss, M.G.; Sullivan, M.K.; Takahashi, T.; Toutounchi, S.; van Tyen, R.; TPC /Two-Gamma Collaboration

1990-01-08T23:59:59.000Z

27

Nonlinear interaction of intense electromagnetic waves with a magnetoactive electron-positron-ion plasma  

SciTech Connect (OSTI)

The nonlinear coupling between circularly polarized electromagnetic (CPEM) waves and acoustic-like waves in a magnetoactive electron-positron-ion (e-p-i) plasma is studied, taking into account the relativistic motion of electrons and positrons. The possibility of modulational instability and its growth rate as well as the envelope soliton formation and its characteristics in such plasmas are investigated. It is found that the growth rate of modulation instability increases in the case that ?{sub c}/?<1 (?{sub c} and ? are the electron gyrofrequency and the CPEM wave frequency, respectively) and decreases in the case that ?{sub c}/?>1. It is also shown that in a magnetoactive e-p-i plasma, the width of bright soliton increases/decreases in case of (?{sub c}/?)<1/(?{sub c}/?)>1 by increasing the magnetic field strength.

Khorashadizadeh, S. M.; Rastbood, E.; Zeinaddini Meymand, H. [Physics Department, University of Birjand, Birjand (Iran, Islamic Republic of)] [Physics Department, University of Birjand, Birjand (Iran, Islamic Republic of); Niknam, A. R. [Laser and Plasma Research Institute, Shahid Beheshti University, G.C., Tehran (Iran, Islamic Republic of)] [Laser and Plasma Research Institute, Shahid Beheshti University, G.C., Tehran (Iran, Islamic Republic of)

2013-08-15T23:59:59.000Z

28

Topics in phenomenology of unified gauge theories of weak, electromagnetic, and strong interactions  

SciTech Connect (OSTI)

Three phenomenological analyses on the current unification theories of elementary particle interactions are presented. In Chapter I, the neutral current phenomenology of a class of supersymmetric SU(2) x U(1) x U tilde(1) models is analyzed. A model with the simplest fermion and Higgs structure allowing a realistic mass spectrum is considered first. Its neutral current sector is parametrized in terms of two mixing angles and the strength of the new U tilde(1) interactions. Expressions for low-energy model-independent parameters are derived and compared with those of the standard model. Bounds on the neutral gauge boson masses are obtained from the data for various neutrino interactions, eD scattering, and the asymmetry in e/sup +/e/sup -/ ..-->.. ..mu../sup +/..mu../sup -/. In Chapter II, the evolution of fermion mass in grand unified theories is reexamined. In particular, the question of gauge invariance of mass ratios in left-right asymmetric theories is considered. A simple expression is derived for the evolution of the Higgs-fermion-fermion coupling which essentially governs the scale dependence of fermion mass. At the one loop level the expression is gauge invariant and involves only the representation content of left- and right-handed fermions but not that of Higgs. The corresponding expression for supersymmetric theories is also given. In Chapter III, the production and the subsequent decays of a heavy lepton pair L/sup + -/ near the Z peak in e/sup +/e/sup -/ annihilation are considered as a test of the standard model. The longitudinal polarization is derived from the spin-dependent production cross-section, and the decays L ..-->.. ..pi.. nu and L ..-->.. l nu nu are used as helicity analyzers.

Kang, Y.S.

1982-11-01T23:59:59.000Z

29

Retarded Interaction of Electromagnetic field and Symmetry Violation of Time Reversal in Non-linear Optics  

E-Print Network [OSTI]

Based on Document (1), by considering the retarded interaction of radiation fields, the third order transition probabilities of stimulated radiations and absorptions of light are calculated. The revised formulas of nonlinear polarizations are provided. The results show that that the general processes of non-linear optics violate time reversal symmetry. The phenomena of non-linear optics violating time reversal symmetry just as sum frequency, double frequency, different frequencies, double stable states, self-focusing and self-defocusing, echo phenomena, as well as optical self-transparence and self absorptions and so on are analyzed.

Mei Xiaochun

2008-04-19T23:59:59.000Z

30

Self-Duality in Nonlinear Electromagnetism  

E-Print Network [OSTI]

We discuss duality invariant interactions between electromagnetic fields and matter. The case of scalar fields is treated in some detail.

Mary K. Gaillard; Bruno Zumino

1997-05-28T23:59:59.000Z

31

Unbalanced electromagnetic forces  

E-Print Network [OSTI]

) . I :, jazdz g (Member) (Member) August 1974 -" ~ 5:. -. 62 ABSTRACT Unbalanced Electromagnetic Forces (August 1974) Craig Martin Hansen, B. S. , Texas A&M University Directed by: Dr. Attilio J. Giaroia Electromagnetic forces from moving... be deduced from the history of the development of an under- standing of electromagnetic forces. This is a relatively short history (starting in the late 1800's) filled with misunderstandings and pre]udices. This history can be divided into two eras: non...

Hansen, Craig Martin

2012-06-07T23:59:59.000Z

32

Relativistic approach to electromagnetic imaging  

E-Print Network [OSTI]

A novel imaging principle based on the interaction of electromagnetic waves with a beam of relativistic electrons is proposed. Wave-particle interaction is assumed to take place in a small spatial domain, so that each electron is only briefly accelerated by the incident field. In the one-dimensional case the spatial distribution of the source density can be directly observed in the temporal spectrum of the scattered field. Whereas, in the two-dimensional case the relation between the source and the spectrum is shown to be approximately the Radon transform.

Budko, N

2004-01-01T23:59:59.000Z

33

Relativistic approach to electromagnetic imaging  

E-Print Network [OSTI]

A novel imaging principle based on the interaction of electromagnetic waves with a beam of relativistic electrons is proposed. Wave-particle interaction is assumed to take place in a small spatial domain, so that each electron is only briefly accelerated by the incident field. In the one-dimensional case the spatial distribution of the source density can be directly observed in the temporal spectrum of the scattered field. Whereas, in the two-dimensional case the relation between the source and the spectrum is shown to be approximately the Radon transform.

Neil Budko

2004-03-11T23:59:59.000Z

34

Electromagnetic Reciprocity.  

SciTech Connect (OSTI)

A reciprocity theorem is an explicit mathematical relationship between two different wavefields that can exist within the same space - time configuration. Reciprocity theorems provi de the theoretical underpinning for mod ern full waveform inversion solutions, and also suggest practical strategies for speed ing up large - scale numerical modeling of geophysical datasets . In the present work, several previously - developed electromagnetic r eciprocity theorems are generalized to accommodate a broader range of medi um, source , and receiver types. Reciprocity relations enabling the interchange of various types of point sources and point receivers within a three - dimensional electromagnetic model are derived. Two numerical modeling algorithms in current use are successfully tested for adherence to reciprocity. Finally, the reciprocity theorem forms the point of departure for a lengthy derivation of electromagnetic Frechet derivatives. These mathe matical objects quantify the sensitivity of geophysical electromagnetic data to variatio ns in medium parameters, and thus constitute indispensable tools for solution of the full waveform inverse problem. ACKNOWLEDGEMENTS Sandia National Labor atories is a multi - program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE - AC04 - 94AL85000. Signif icant portions of the work reported herein were conducted under a Cooperative Research and Development Agreement (CRADA) between Sandia National Laboratories (SNL) and CARBO Ceramics Incorporated. The author acknowledges Mr. Chad Cannan and Mr. Terry Pa lisch of CARBO Ceramics, and Ms. Amy Halloran, manager of SNL's Geophysics and Atmospheric Sciences Department, for their interest in and encouragement of this work. Special thanks are due to Dr . Lewis C. Bartel ( recently retired from Sandia National Labo ratories and now a geophysical consultant ) and Dr. Chester J. Weiss (recently rejoined with Sandia National Laboratories) for many stimulating (and reciprocal!) discussions regar ding the topic at hand.

Aldridge, David F.

2014-11-01T23:59:59.000Z

35

Electromagnetic field and cosmic censorship  

E-Print Network [OSTI]

We construct a gedanken experiment in which an extremal Kerr black hole interacts with a test electromagnetic field. Using Teukolsky's solutions for electromagnetic perturbations in Kerr spacetime, and the conservation laws imposed by the energy momentum tensor of the electromagnetic field and the Killing vectors of the spacetime, we prove that this interaction cannot convert the black hole into a naked singularity, thus cosmic censorship conjecture is not violated in this case.

Koray Düzta?

2014-04-09T23:59:59.000Z

36

Electromagnetic Radiations as a Fluid Flow  

E-Print Network [OSTI]

We combine Maxwell's equations with Eulers's equation, related to a velocity field of an immaterial fluid, where the density of mass is replaced by a charge density. We come out with a differential system able to describe a relevant quantity of electromagnetic phenomena, ranging from classical dipole waves to solitary wave-packets with compact support. The clue is the construction of an energy tensor summing up both the electromagnetic stress and a suitable mass tensor. With this right-hand side, explicit solutions of the full Einstein's equation are computed for a wide class of wave phenomena. Since our electromagnetic waves may behave and interact exactly as a material fluid, they can create vortex structures. We then explicitly analyze some vortex ring configurations and examine the possibility to build a model for the electron.

Daniele Funaro

2009-11-25T23:59:59.000Z

37

Nucleon-Nucleon Interactions from Dispersion Relations: Coupled Partial Waves  

E-Print Network [OSTI]

We consider nucleon-nucleon interactions from chiral effective field theory applying the N/D method. The case of coupled partial waves is now treated, extending Ref. [1] where the uncoupled case was studied. As a result three N/D elastic-like equations have to be solved for every set of three independent partial waves coupled. As in the previous reference the input for this method is the discontinuity along the left-hand cut of the nucleon-nucleon partial wave amplitudes. It can be calculated perturbatively in chiral perturbation theory because it involves only irreducible two-nucleon intermediate states. We apply here our method to the leading order result consisting of one-pion exchange as the source for the discontinuity along the left-hand cut. The linear integral equations for the N/D method must be solved in the presence of L - 1 constraints, with L the orbital angular momentum, in order to satisfy the proper threshold behavior for L>= 2. We dedicate special attention to satisfy the requirements of unitarity in coupled channels. We also focus on the specific issue of the deuteron pole position in the 3S1-3D1 scattering. Our final amplitudes are based on dispersion relations and chiral effective field theory, being independent of any explicit regulator. They are amenable to a systematic improvement order by order in the chiral expansion.

M. Albaladejo; J. A. Oller

2012-10-02T23:59:59.000Z

38

A multi-band, multi-level, multi-electron model for efficient FDTD simulations of electromagnetic interactions with semiconductor quantum wells  

E-Print Network [OSTI]

We report a new computational model for simulations of electromagnetic interactions with semiconductor quantum well(s) (SQW) in complex electromagnetic geometries using the finite difference time domain (FDTD) method. The presented model is based on an approach of spanning a large number of electron transverse momentum states in each SQW sub-band (multi-band) with a small number of discrete multi-electron states (multi-level, multi-electron). This enables accurate and efficient two dimensional (2-D) and 3-D simulations of nanophotonic devices with SQW active media. The model includes the following features: (1) Optically induced interband transitions between various SQW conduction and heavy-hole or light-hole sub-bands are considered. (2) Novel intra sub-band and inter sub-band transition terms are derived to thermalize the electron and hole occupational distributions to the correct Fermi-Dirac distributions. (3) The terms in (2) result in an explicit update scheme which circumvents numerically cumbersome ite...

Ravi, Koustuban; Ho, Seng-Tiong

2015-01-01T23:59:59.000Z

39

Coherent hybrid electromagnetic field imaging  

DOE Patents [OSTI]

An apparatus and corresponding method for coherent hybrid electromagnetic field imaging of a target, where an energy source is used to generate a propagating electromagnetic beam, an electromagnetic beam splitting means to split the beam into two or more coherently matched beams of about equal amplitude, and where the spatial and temporal self-coherence between each two or more coherently matched beams is preserved. Two or more differential modulation means are employed to modulate each two or more coherently matched beams with a time-varying polarization, frequency, phase, and amplitude signal. An electromagnetic beam combining means is used to coherently combine said two or more coherently matched beams into a coherent electromagnetic beam. One or more electromagnetic beam controlling means are used for collimating, guiding, or focusing the coherent electromagnetic beam. One or more apertures are used for transmitting and receiving the coherent electromagnetic beam to and from the target. A receiver is used that is capable of square-law detection of the coherent electromagnetic beam. A waveform generator is used that is capable of generation and control of time-varying polarization, frequency, phase, or amplitude modulation waveforms and sequences. A means of synchronizing time varying waveform is used between the energy source and the receiver. Finally, a means of displaying the images created by the interaction of the coherent electromagnetic beam with target is employed.

Cooke, Bradly J. (Jemez Springs, NM); Guenther, David C. (Los Alamos, NM)

2008-08-26T23:59:59.000Z

40

Exactly solvable model of two three-dimensional harmonic oscillators interacting with the quantum electromagnetic field: The far-zone Casimir-Polder potential  

SciTech Connect (OSTI)

We consider two three-dimensional isotropic harmonic oscillators with the same frequency and interacting with the quantum electromagnetic field in the Coulomb gauge and within dipole approximation. Using a Bogoliubov-type transformation, we can obtain transformed operators such that the Hamiltonian of the system, when expressed in terms of these operators, assumes a diagonal form. We are also able to obtain an expression for the energy shift of the ground state, which is valid at all orders in the coupling constant. From this energy shift, the nonperturbative Casimir-Polder potential energy between the two oscillators can be obtained. When approximated to the fourth order in the electric charge, the well-known expression of the far zone Casimir-Polder potential in terms of the polarizabilities of the oscillators is recovered.

Ciccarello, F. [Dipartimento di Fisica e Tecnologie Relative dell'Universita degli Studi di Palermo and CNR-INFM, Viale delle Scienze, Edificio 18, 90128 Palermo (Italy); Karpov, E. [International Solvay Institutes for Physics and Chemistry, Campus Plaine ULB, C.P. 231, Boulevard du Triomphe, B-1050, Brussels (Belgium) and Quantum Information and Communication (QUIC), CP 165/59, Ecole Polytechnique, Universite Libre de Bruxelles, 50 av. F. D. Roosevelt, B-1050 Brussels (Belgium); Passante, R. [Dipartimento di Scienze Fisiche ed Astronomiche dell'Universita degli Studi di Palermo and CNR-INFM, Via Archirafi 36, I-90123 Palermo (Italy)

2005-11-15T23:59:59.000Z

Note: This page contains sample records for the topic "interactive electromagnetic relations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Torsion and the Electromagnetic Field  

E-Print Network [OSTI]

In the framework of the teleparallel equivalent of general relativity, we study the dynamics of a gravitationally coupled electromagnetic field. It is shown that the electromagnetic field is able not only to couple to torsion, but also, through its energy-momentum tensor, to produce torsion. Furthermore, it is shown that the coupling of the electromagnetic field with torsion preserves the local gauge invariance of Maxwell's theory.

V. C. de Andrade; J. G. Pereira

1999-01-11T23:59:59.000Z

42

The dispersion relation and excitation of transverse magnetic mode electromagnetic waves in rippled-wall waveguide with a plasma rod and an annular dielectric  

SciTech Connect (OSTI)

By using the linear field theory, the dispersion relation of electromagnetic waves in a rippled-wall waveguide with a plasma rod and an annular dielectric is obtained. In addition, by injecting a finite thick annular intense relativistic electron beam in this waveguide, the excitation of these waves is investigated. Furthermore, the effects of the radius of the plasma rod, the radius of the dielectric, the corrugation amplitude, and period on the frequency spectrum are investigated. Besides, the time growth rate of excitation of these waves by an annular relativistic electron beam is studied. Finally, to demonstrate the advantages of this rippled-wall waveguide, the dispersion relation and the growth rate of three simplified cases are investigated.

Nejati, M. [Physics Department, Shahid Beheshti University, G. C. Evin, Tehran (Iran, Islamic Republic of); Shokri, B. [Physics Department and Laser-Plasma Research Institute, Shahid Beheshti University, G. C. Evin, Tehran (Iran, Islamic Republic of)

2012-01-15T23:59:59.000Z

43

Electromagnetic neutrino: a short review  

E-Print Network [OSTI]

A short review on selected issues related to the problem of neutrino electromagnetic properties is given. After a flash look at the theoretical basis of neutrino electromagnetic form factors, constraints on neutrino magnetic moments and electric millicharge from terrestrial experiments and astrophysical observations are discussed. We also focus on some recent studies of the problem and on perspectives.

Alexander I. Studenikin

2014-11-09T23:59:59.000Z

44

Generation of higher order nonclassical states via interaction of intense electromagnetic field with third order nonlinear medium  

E-Print Network [OSTI]

Interaction of intense laser beam with an inversion symmetric third order nonlinear medium is modeled as a quartic anharmonic oscillator. A first order operator solution of the model Hamiltonian is used to study the possibilities of generation of higher order nonclassical states. It is found that the higher order squeezed and higher order antibunched states can be produced by this interaction. It is also shown that the higher order nonclassical states may appear separately, i.e. a higher order antibunched state is not essentially higher order squeezed state and vice versa.

Anirban Pathak

2007-02-24T23:59:59.000Z

45

Electromagnetic Theory 1 /56 Electromagnetic Theory  

E-Print Network [OSTI]

Electromagnetic Theory 1 /56 Electromagnetic Theory Summary: · Maxwell's equations · EM Potentials · Equations of motion of particles in electromagnetic fields · Green's functions · Lienard-Weichert potentials · Spectral distribution of electromagnetic energy from an arbitrarily moving charge #12;Electromagnetic

Bicknell, Geoff

46

Electromagnetic reactions on light nuclei  

E-Print Network [OSTI]

Electromagnetic reactions on light nuclei are fundamental to advance our understanding of nuclear structure and dynamics. The perturbative nature of the electromagnetic probes allows to clearly connect measured cross sections with the calculated structure properties of nuclear targets. We present an overview on recent theoretical ab-initio calculations of electron-scattering and photonuclear reactions involving light nuclei. We encompass both the conventional approach and the novel theoretical framework provided by chiral effective field theories. Because both strong and electromagnetic interactions are involved in the processes under study, comparison with available experimental data provides stringent constraints on both many-body nuclear Hamiltonians and electromagnetic currents. We discuss what we have learned from studies on electromagnetic observables of light nuclei, starting from the deuteron and reaching up to nuclear systems with mass number A=16.

Sonia Bacca; Saori Pastore

2014-07-13T23:59:59.000Z

47

Electromagnetic Geometry  

E-Print Network [OSTI]

We show that Maxwell's electromagnetism can be mapped into the Born-Infeld theory in a curved space-time, which depends only on the electromagnetic field in a specific way. This map is valid for any value of the two lorentz invariants $F$ and $G$ confirming that we have included all possible solutions of Maxwell's equations. Our result seems to show that specifying the dynamics and the space-time structure of a given theory can be viewed merely as a choice of representation to describe the physical system.

M. Novello; F. T. Falciano; E. Goulart

2011-11-08T23:59:59.000Z

48

Electromagnetic properties of baryons  

SciTech Connect (OSTI)

We discuss the chiral behavior of the nucleon and {Delta}(1232) electromagnetic properties within the framework of a SU(2) covariant baryon chiral perturbation theory. Our one-loop calculation is complete to the order p{sup 3} and p{sup 4}/{Delta} with {Delta} as the {Delta}(1232)-nucleon energy gap. We show that the magnetic moment of a resonance can be defined by the linear energy shift only when an additional relation between the involved masses and the applied magnetic field strength is fulfilled. Singularities and cusps in the pion mass dependence of the {Delta}(1232) electromagnetic moments reflect a non-fulfillment. We show results for the pion mass dependence of the nucleon iso-vector electromagnetic quantities and present preliminary results for finite volume effects on the iso-vector anomalous magnetic moment.

Ledwig, T.; Pascalutsa, V.; Vanderhaeghen, M. [Institut fuer Kernphysik, Universitaet Mainz, D-55099 Mainz (Germany); Martin-Camalich, J. [Departamento de Fisica Teorica and IFIC, Universidad de Valencia-CSIC, Spain and Department of Physics and Astronomy, University of Sussex, BN1 9Qh, Brighton (United Kingdom)

2011-10-21T23:59:59.000Z

49

Electromagnetic design considerations for fast acting controllers  

SciTech Connect (OSTI)

Electromagnetic design considerations for fast acting controllers in a power system is introduced and defined. A distinction is made in relation to the more commonly understood system control design necessary for damping electromechanical oscillations using stability programs and eigenanalysis. Electromagnetic eigenanalysis tools have limited availability and are consequently rarely used. Electromagnetic transients programs (emtp) on the other hand are widely used and a procedure for undertaking electromagnetic control design of fast acting controllers in a power system using emtp is presented.

Woodford, D.A. [Manitoba HVDC Research Centre, Winnipeg, Manitoba (Canada)] [Manitoba HVDC Research Centre, Winnipeg, Manitoba (Canada)

1996-07-01T23:59:59.000Z

50

Asymmetric current-phase relation due to spin-orbit interaction in semiconductor nanowire Josephson junction  

SciTech Connect (OSTI)

We theoretically study the current-phase relation in semiconductor nanowire Josephson junction in the presence of spin-orbit interaction. In the nanowire, the impurity scattering with strong SO interaction is taken into account using the random matrix theory. In the absence of magnetic field, the Josephson current I and phase difference ? between the superconductors satisfy the relation of I(?) = –I(–?). In the presence of magnetic field along the nanowire, the interplay between the SO interaction and Zeeman effect breaks the current-phase relation of I(?) = –I(–?). In this case, we show that the critical current depends on the current direction, which qualitatively agrees with recent experimental findings.

Yokoyama, Tomohiro; Eto, Mikio [Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan); Nazarov, Yuli V. [Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands (Netherlands)

2013-12-04T23:59:59.000Z

51

Computational Electronics and Electromagnetics  

SciTech Connect (OSTI)

The Computational Electronics and Electromagnetics thrust area is a focal point for computer modeling activities in electronics and electromagnetics in the Electronics Engineering Department of Lawrence Livermore National Laboratory (LLNL). Traditionally, they have focused their efforts in technical areas of importance to existing and developing LLNL programs, and this continues to form the basis for much of their research. A relatively new and increasingly important emphasis for the thrust area is the formation of partnerships with industry and the application of their simulation technology and expertise to the solution of problems faced by industry. The activities of the thrust area fall into three broad categories: (1) the development of theoretical and computational models of electronic and electromagnetic phenomena, (2) the development of useful and robust software tools based on these models, and (3) the application of these tools to programmatic and industrial problems. In FY-92, they worked on projects in all of the areas outlined above. The object of their work on numerical electromagnetic algorithms continues to be the improvement of time-domain algorithms for electromagnetic simulation on unstructured conforming grids. The thrust area is also investigating various technologies for conforming-grid mesh generation to simplify the application of their advanced field solvers to design problems involving complicated geometries. They are developing a major code suite based on the three-dimensional (3-D), conforming-grid, time-domain code DSI3D. They continue to maintain and distribute the 3-D, finite-difference time-domain (FDTD) code TSAR, which is installed at several dozen university, government, and industry sites.

DeFord, J.F.

1993-03-01T23:59:59.000Z

52

Multipole radiation in a collisonless gas coupled to electromagnetism or scalar gravitation  

E-Print Network [OSTI]

We consider the relativistic Vlasov-Maxwell and Vlasov-Nordstr\\"om systems which describe large particle ensembles interacting by either electromagnetic fields or a relativistic scalar gravity model. For both systems we derive a radiation formula analogous to the Einstein quadrupole formula in general relativity.

Sebastian Bauer; Markus Kunze; Gerhard Rein; Alan D. Rendall

2005-08-29T23:59:59.000Z

53

Steven Weinberg, Weak Interactions, and Electromagnetic Interactions  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinan antagonist Journal Article: Crystal structureComposite ForPropertiestoDept

54

Scattering by an electromagnetic radiation field  

E-Print Network [OSTI]

Motion of test particles in the gravitational field associated with an electromagnetic plane wave is investigated. The interaction with the radiation field is modeled by a force term {\\it \\`a la} Poynting-Robertson entering the equations of motion given by the 4-momentum density of radiation observed in the particle's rest frame with a multiplicative constant factor expressing the strength of the interaction itself. Explicit analytical solutions are obtained. Scattering of fields by the electromagnetic wave, i.e., scalar (spin 0), massless spin $\\frac12$ and electromagnetic (spin 1) fields, is studied too.

Donato Bini; Andrea Geralico

2014-08-21T23:59:59.000Z

55

Electromagnetic Field Theory  

E-Print Network [OSTI]

Electromagnetic Field Theory BO THID� UPSILON BOOKS #12;#12;ELECTROMAGNETIC FIELD THEORY #12;#12;Electromagnetic Field Theory BO THID� Swedish Institute of Space Physics and Department of Astronomy and Space, Sweden UPSILON BOOKS · COMMUNA AB · UPPSALA · SWEDEN #12;Also available ELECTROMAGNETIC FIELD THEORY

Hart, Gus

56

Nonlocal theory of electromagnetic wave decay into two electromagnetic waves in a rippled density plasma channel  

SciTech Connect (OSTI)

Parametric decay of a large amplitude electromagnetic wave into two electromagnetic modes in a rippled density plasma channel is investigated. The channel is taken to possess step density profile besides a density ripple of axial wave vector. The density ripple accounts for the momentum mismatch between the interacting waves and facilitates nonlinear coupling. For a given pump wave frequency, the requisite ripple wave number varies only a little w.r.t. the frequency of the low frequency decay wave. The radial localization of electromagnetic wave reduces the growth rate of the parametric instability. The growth rate decreases with the frequency of low frequency electromagnetic wave.

Sati, Priti; Tripathi, V. K. [Indian Institute of Technology, Hauz Khas, Delhi 110054 (India)

2012-12-15T23:59:59.000Z

57

An electromagnetic black hole made of metamaterials  

E-Print Network [OSTI]

Traditionally, a black hole is a region of space with huge gravitational field in the means of general relativity, which absorbs everything hitting it including the light. In general relativity, the presence of matter-energy densities results in the motion of matter propagating in a curved spacetime1, which is similar to the electromagnetic-wave propagation in a curved space and in an inhomogeneous metamaterial2. Hence one can simulate the black hole using electromagnetic fields and metamaterials. In a recent theoretical work, an optical black hole has been proposed based on metamaterials, in which the numerical simulations showed a highly efficient light absorption3. Here we report the first experimental demonstration of electromagnetic black hole in the microwave frequencies. The proposed black hole is composed of non-resonant and resonant metamaterial structures, which can absorb electromagnetic waves efficiently coming from all directions due to the local control of electromagnetic fields. Hence the elect...

Cheng, Qiang

2009-01-01T23:59:59.000Z

58

Electromagnetic field with induced massive term: Case with scalar field  

E-Print Network [OSTI]

We consider an interacting system of massless scalar and electromagnetic field, with the Lagrangian explicitly depending on the electromagnetic potentials, i.e., interaction with broken gauge invariance. The Lagrangian for interaction is chosen in such a way that the electromagnetic field equation acquires an additional term, which in some cases is proportional to the vector potential of the electromagnetic field. This equation can be interpreted as the equation of motion of photon with induced nonzero rest-mass. This system of interacting fields is considered within the scope of Bianchi type-I (BI) cosmological model. It is shown that, as a result of interaction the electromagnetic field vanishes at $t \\to \\infty$ and the isotropization process of the expansion takes place.

Yu. P. Rybakov; G. N. Shikin; Yu. A. Popov; Bijan Saha

2010-04-21T23:59:59.000Z

59

Electromagnetic field with induced massive term: Case with spinor field  

E-Print Network [OSTI]

We consider an interacting system of spinor and electromagnetic field, explicitly depending on the electromagnetic potentials, i.e., interaction with broken gauge invariance. The Lagrangian for interaction is chosen in such a way that the electromagnetic field equation acquires an additional term, which in some cases is proportional to the vector potential of the electromagnetic field. This equation can be interpreted as the equation of motion of photon with induced non-trivial rest-mass. This system of interacting spinor and scalar fields is considered within the scope of Bianchi type-I (BI) cosmological model. It is shown that, as a result of interaction the electromagnetic field vanishes at $t \\to \\infty$ and the isotropization process of the expansion takes place.

Yu. P. Rybakov; G. N. Shikin; Yu. A. Popov; Bijan Saha

2010-08-12T23:59:59.000Z

60

Investigation of electromagnetic welding  

E-Print Network [OSTI]

We propose several methodologies to study and optimize the electromagnetic process for Electromagnetic Forming (EMF) and Welding (EMW), thereby lowering the necessary process energy up to a factor of three and lengthening ...

Pressl, Daniel G. (Daniel Gerd)

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "interactive electromagnetic relations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Electromagnetic Measurements at RHIC  

E-Print Network [OSTI]

Electromagnetic Measurements at RHIC Hideki Hamagaki Center for Nuclear Study University of Tokyo #12;2/10/2005 "Electromagnetic measurements at RHIC"@ICPAQGP 05 Hideki Hamagaki 2 Prologue · EM probe and where they are produced; #12;2/10/2005 "Electromagnetic measurements at RHIC"@ICPAQGP 05 Hideki Hamagaki

Hamagaki, Hideki

62

Electromagnetic Abdulaziz Hanif  

E-Print Network [OSTI]

Electromagnetic Propulsion Abdulaziz Hanif Electrical Engineering Department King Fahd University of spacecraft, which would be jolted through space by electromagnets, could take us farther than any of these other methods. When cooled to extremely low temperatures, electromagnets demonstrate an unusual behavior

Masoudi, Husain M.

63

Electromagnetic Measurements at RHIC  

E-Print Network [OSTI]

Electromagnetic Measurements at RHIC Hideki Hamagaki Center for Nuclear Study Graduate School of Science the University of Tokyo #12;2006/06/29 "Electromagnetic measurements at RHIC"@ATHIC 2006 Hideki;2006/06/29 "Electromagnetic measurements at RHIC"@ATHIC 2006 Hideki Hamagaki 3 Prologue ­ scope of EM measurements · EM

Hamagaki, Hideki

64

Electromagnetic annihilation into charged leptons and scattering off nucleons of spin-3/2 Majorana particles  

E-Print Network [OSTI]

We compute the cross section for the electromagnetic annihilation into charged leptons, and the electromagnetic scattering off nucleons, of spin-3/2 self-conjugate (Majorana) particles using the general form of the electromagnetic vertex function that was obtained previously for such particles. In addition to the restrictions imposed by common principles such as electromagnetic gauge invariance and hermiticity, the vertex function incorporates the restriction due to the Majorana condition as well as the particular properties related to the spinors in the Rarita-Schwinger representation, and is the counterpart of the so-called anapole interaction of spin-1/2 Majorana particles. The formulas obtained for the cross sections share certain similarities with the corresponding results in the spin-1/2 case, but they also reveal some important differences which are pointed out and discussed. The results given here can be useful for applications involving the electromagnetic interactions of spin-3/2 or spin-1/2 Majorana particles in several contexts that have been of interest in the recent literature such as nucleosynthesis and dark matter.

José F. Nieves; Sarira Sahu

2014-08-06T23:59:59.000Z

65

Electromagnetic fuel injector  

SciTech Connect (OSTI)

This patent describes an electromagnetic fuel injector for an internal combustion engine having a valve axis and including a housing, a flat armature connected to a movable valve element arranged to cooperate with a valve seat, spring means for exerting a force in an axial direction on the armature, and electromagnetic means for exerting a force in an opposite direction on the armature when electrically energized. The improvement comprises: the spring means being a helical coil spring disposed in substantially coaxial alignment with the valve axis and having an end in compressive engagement with the armature, the final coil which includes the end of the coil spring being inclined axially outward at an angle relative to a plane normal to the axis of the spring so as to apply to the armature a greater axial spring force to one side of the valve axis than the other thereby to effect pivoting of the armature about a pivot, the pivot being determined by the location of the end of the coil spring.

Gieseking, J.H.

1987-04-28T23:59:59.000Z

66

Theory of electromagnetic fields  

E-Print Network [OSTI]

We discuss the theory of electromagnetic fields, with an emphasis on aspects relevant to radiofrequency systems in particle accelerators. We begin by reviewing Maxwell's equations and their physical significance. We show that in free space, there are solutions to Maxwell's equations representing the propagation of electromagnetic fields as waves. We introduce electromagnetic potentials, and show how they can be used to simplify the calculation of the fields in the presence of sources. We derive Poynting's theorem, which leads to expressions for the energy density and energy flux in an electromagnetic field. We discuss the properties of electromagnetic waves in cavities, waveguides and transmission lines.

Wolski, Andrzej

2011-01-01T23:59:59.000Z

67

The Relative Effectiveness of Positive Interdependence and Group Processing on Student Achievement, Interaction, and Attitude in Online Cooperative Learning  

E-Print Network [OSTI]

The purpose of this study was to investigate the relative effectiveness of positive interdependence and group processing on student achievement, interaction, and attitude in online cooperative learning. All of the participants, 144 college students...

Nam, Chang Woo

2010-01-14T23:59:59.000Z

68

Counting energy packets in the electromagnetic wave  

E-Print Network [OSTI]

We discuss the concept of energy packets in respect to the energy transported by electromagnetic waves and we demonstrate that this physical quantity can be used in physical problems involving relativistic effects. This refined concept provides results compatible to those obtained by simpler definition of energy density when relativistic effects apply to the free electromagnetic waves. We found this concept further compatible to quantum theory perceptions and we show how it could be used to conciliate between different physical approaches including the classical electromagnetic wave theory, the special relativity and the quantum theories.

Stefan Popescu; Bernhard Rothenstein

2007-05-18T23:59:59.000Z

69

Meson electromagnetic form factors  

E-Print Network [OSTI]

The electromagnetic structure of the pseudoscalar meson nonet is completely described by the sophisticated Unitary&Analytic model, respecting all known theoretical properties of the corresponding form factors.

Stanislav Dubnicka; Anna Z. Dubnickova

2012-10-23T23:59:59.000Z

70

NISTHB 150-11 Electromagnetic  

E-Print Network [OSTI]

NISTHB 150-11 NVLAP Electromagnetic Compatibility and Telecommunications Bethany Hackett Bradley. #12;NISTHB 150-11 NVLAP Electromagnetic Compatibility and Telecommunications Bethany Hackett Bradley Programs Dennis Camell Electromagnetics Division Physical Measurement Laboratory http://dx.doi.org/10

71

Tunability enhanced electromagnetic wiggler  

DOE Patents [OSTI]

The invention discloses a wiggler used in synchrotron radiation sources and free electron lasers, where each pole is surrounded by at least two electromagnetic coils. The electromagnetic coils are energized with different amounts of current to provide a wide tunable range of the on-axis magnetic flux density, while preventing magnetic saturation of the poles. 14 figs.

Schlueter, R.D.; Deis, G.A.

1992-03-24T23:59:59.000Z

72

Electromagnetic Composites at the Compton Scale  

E-Print Network [OSTI]

A new class of electromagnetic composite particles is proposed. The composites are very small (the Compton scale), potentially long-lived, would have unique interactions with atomic and nuclear systems, and, if they exist, could explain a number of otherwise anomalous and conflicting observations in diverse research areas.

Frederick J. Mayer; John R. Reitz

2011-09-10T23:59:59.000Z

73

FULL ELECTROMAGNETIC FEL SIMULATION VIA THE LORENTZ-BOOSTED FRAME TRANSFORMATION  

SciTech Connect (OSTI)

Numerical electromagnetic simulation of some systems containing charged particles with highly relativistic directed motion can by speeded up by orders of magnitude by choice of the proper Lorentz-boosted frame. A particularly good application for calculation in a boosted frame isthat of short wavelength free-electron lasers (FELs) where a high energy electron beam with small fractional energy spread interacts with a static magnetic undulator. In the optimal boost frame (i.e., the ponderomotive rest frame), the red-shifted FEL radiation and blue-shifted undulator field have identical wavelengths and the number of required longitudinal grid cells and time-steps for fully electromagnetic simulation (relative to the laboratory frame) decrease by factors of gamma^2 each. In theory, boosted frame EM codes permit direct study of FEL problems for which the eikonal approximation for propagation of the radiation field and wiggler-period-averaging for the particle-field interaction may be suspect. We have adapted the WARP code to apply this method to several electromagnetic FEL problems including spontaneous emission, strong exponential gain in a seeded, single pass amplifier configuration, and emission from e-beams in undulators with multiple harmonic components. WARP has a standard relativistic macroparticle mover and a fully 3-D electromagnetic field solver. We discuss our boosted frame results and compare with those obtained using the ?standard? eikonal FEL simulation approach.

Fawley, William; Vay, Jean-Luc

2010-08-16T23:59:59.000Z

74

Unification of Electromagnetism and Gravitation in the Framework of General Geometry  

E-Print Network [OSTI]

A new geometry, called General geometry, is constructed. It is proven that its the most simplest special case is geometry underlying Electromagnetism. Another special case is Riemannian geometry. Action for electromagnetic field and Maxwell equations are derived from curvature function of geometry underlying Electromagnetism. It is shown that equation of motion for a particle interacting with electromagnetic field coincides exactly with equation for geodesics of geometry underlying Electromagnetism. It is also shown that Electromagnetism can not be geometrized in the framework of Riemannian geometry. Using General Geometry we propose a unified model of electromagnetism and gravitation which reproduces Electromagnetism and Gravitation and predicts that electromagnetic field is a source for gravitational field. This theory is formulated in four dimensional spacetime and does not contain additional fields.

Shervgi Shahverdiyev

2005-07-05T23:59:59.000Z

75

The unification of the fundamental interaction within Maxwell electromagnetism: Model of hydrogen atom. Gravity as the secondary electric force. Calculation of the unified inertia force  

E-Print Network [OSTI]

Considering two static, electrically charged, elementary particles, we demonstrate a possible way of proving that all known fundamental forces in the nature are the manifestations of the single, unique interaction. We re-define the gauging of integration constants in the Schwarzschild solution of Einstein field equations. We consider the potential energy in this context regardless it is gravitational or electric potential energy. With the newly gauged constants, we sketch how the unique interaction can be described with the help of an appropriate solution of the well-known Maxwell equations. According the solution, there are two zones, in the system of two oppositely charged particles, where the force is oscillating. The first particle can be in a stable, constant distance from the second particle, between the neighbouring regions of repulsion and attraction. In an outer oscillation zone, the corresponding energy levels in the proton-electron systems are identical (on the level of accuracy of values calculated by the Dirac's equations) to some experimentally determined levels in the hydrogen atom. For each system of two particles, there is also the zone with the macroscopic, i.e. monotonous behavior of the force. As well, the solution can be used to demonstrate that the net force between two assemblies consisting each (or at least one) of the same numbers of both positively and negatively charged particles is never zero. A secondary electric force, having the same orientation as the primary electric force between the oppositely charged particles, is always present. It can be identified to the gravity. Finally, the solution of the Maxwell equations can be used to calculate the inertia force of a particle. The consistent formulas for both acting and inertia forces enable to construct the dimensionless (without gravitational constant, permitivity of vacuum, etc.) equation of motion.

L. Neslusan

2010-12-28T23:59:59.000Z

76

Purely electromagnetic spacetimes  

E-Print Network [OSTI]

Electrovacuum solutions devoid of usual mass sources are classified in the case of one, two and three commuting Killing vectors. Three branches of solutions exist. Electromagnetically induced mass terms appear in some of them.

B. V. Ivanov

2007-12-15T23:59:59.000Z

77

Electromagnetic rotational actuation.  

SciTech Connect (OSTI)

There are many applications that need a meso-scale rotational actuator. These applications have been left by the wayside because of the lack of actuation at this scale. Sandia National Laboratories has many unique fabrication technologies that could be used to create an electromagnetic actuator at this scale. There are also many designs to be explored. In this internship exploration of the designs and fabrications technologies to find an inexpensive design that can be used for prototyping the electromagnetic rotational actuator.

Hogan, Alexander Lee

2010-08-01T23:59:59.000Z

78

Infrared nullification of the effective electromagnetic field at finite temperature  

E-Print Network [OSTI]

The problem of infrared divergence of the effective electromagnetic field at finite temperature (T) is revisited. A model of single spatially localized electron interacting with thermal photons is considered in the limit T to 0 using two different regularization schemes. The first is based on the shift i 0 to i varepsilon of the electron propagator pole in the complex energy plane, and is used to explicitly calculate the effective field in the one-loop approximation. We show that the matrix-valued imaginary part of the electron self-energy can be consistently related to the pole shift, and that the presence of the heat bath leads to appearance of an effective varepsilon sim T, thus providing a natural infrared regulator of the theory. We find that the one-loop effective Coulomb field calculated using this varepsilon vanishes. The other scheme combines an infrared momentum cutoff with smearing of the delta-functions in the interaction vertices. We prove that this regularization admits factorization of the infrared contributions in multi-loop diagrams, and sum the corresponding infinite series. The effective electromagnetic field is found to vanish in this case too. An essentially perturbative nature of this result is emphasized and discussed in connection with the long-range expansion of the effective field.

Kirill A. Kazakov; Vladimir V. Nikitin

2009-10-30T23:59:59.000Z

79

Electrodynamics of a generalized charged particle in doubly special relativity framework  

SciTech Connect (OSTI)

In the present paper, dynamics of generalized charged particles are studied in the presence of external electromagnetic interactions. This particular extension of the free relativistic particle model lives in Non-Commutative ?-Minkowski space–time, compatible with Doubly Special Relativity, that is motivated to describe Quantum Gravity effects. Furthermore we have also considered the electromagnetic field to be dynamical and have derived the modified forms of Lienard–Wiechert like potentials for these extended charged particle models. In all the above cases we exploit the new and extended form of ?-Minkowski algebra where electromagnetic effects are incorporated in the lowest order, in the Dirac framework of Hamiltonian constraint analysis.

Pramanik, Souvik, E-mail: souvick.in@gmail.com [Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata 700 108 (India); Ghosh, Subir, E-mail: subir_ghosh2@rediffmail.com [Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata 700 108 (India); Pal, Probir, E-mail: probirkumarpal@rediffmail.com [S. N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata 700 098 (India)

2014-07-15T23:59:59.000Z

80

Merging electromagnetism with space-time metric  

E-Print Network [OSTI]

In the present work, it is shown that the electromagnetism may be directly associated to the four-dimensional space-time geometry. The starting point is an analysis of the geodesic equation of general relativity where it is verified that it contains implicitly the effects of the Coulomb and the Lorentz forces. Consequently, some components of the metric tensor are identified with the components of the four-vector electromagnetic potential. Then, it is constructed a low-field equation for the electromagnetism in the same structure of the Einstein field equations for the gravitation, relating the curvature of space-time to sources of charge and current density. In this framework, all the Maxwell equations are implicit. A proof of consistency with the framework of quantum mechanics is shown.

C. A. Duarte

2014-03-10T23:59:59.000Z

Note: This page contains sample records for the topic "interactive electromagnetic relations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

EMG #121471 Electromagnetics, 25:679693, 2005  

E-Print Network [OSTI]

. Keywords electromagnetic compatibility, electromagnetic interference, aperture, cou- pling, finite compatibility (EMC) and electromagnetic interference (EMI) requirements, it is crucial to quantify

Ramahi, Omar

82

3. ELECTROMAGNETIC COMPATIBILITY Abstract --The electromagnetic interference between the  

E-Print Network [OSTI]

walls and tubes) and with strong EMI (Electromagnetic Interference). So it is ideal to use the power

Paris-Sud XI, Université de

83

Influence of Absorbers on the Electromagnetic Radiation  

E-Print Network [OSTI]

The phenomenon of the electromagnetic absorption by arbitrarily distributed discrete absorbers is analyzed from the photon point of view. It is shown that apart from the decrease in the intensity of the signal the net effect of absorption includes a relative increase in the photon bunching.

Budko, Neil V

2007-01-01T23:59:59.000Z

84

Influence of Absorbers on the Electromagnetic Radiation  

E-Print Network [OSTI]

The phenomenon of the electromagnetic absorption by arbitrarily distributed discrete absorbers is analyzed from the photon point of view. It is shown that apart from the decrease in the intensity of the signal the net effect of absorption includes a relative increase in the photon bunching.

Neil V. Budko

2007-12-05T23:59:59.000Z

85

Electromagnetic power loss in open coaxial diodes and the Langmuir-Blodgett law  

SciTech Connect (OSTI)

The space charge limited current in coaxial diodes with electromagnetic power loss is studied. The Langmuir-Blodgett law is expressed in terms of the electromagnetic power loss and the applied voltage. Particle-in-cell simulations of photodiode-like situations and high power diodes confirm the relation between the applied voltage, diode voltage, and electromagnetic power loss.

Kumar, Raghwendra; Biswas, Debabrata [Theoretical Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India)

2010-10-15T23:59:59.000Z

86

Televisions, Video Privacy, and Powerline Electromagnetic Interference  

E-Print Network [OSTI]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .iv Safe Use Guidelines, Electromagnetic Interference, and FCC Warning . . . . . . . . . . . . .v

Matsuoka, Yoky

87

Electromagnetically Induced Flows Michiel de Reus  

E-Print Network [OSTI]

Electromagnetically Induced Flows in Water Michiel de Reus 8 maart 2013 () Electromagnetically Conclusion and future research () Electromagnetically Induced Flows 2 / 56 #12;1 Introduction 2 Maxwell Navier Stokes equations 5 Simulations 6 Conclusion and future research () Electromagnetically Induced

Vuik, Kees

88

Complex geometry and pre-metric electromagnetism  

E-Print Network [OSTI]

The intimate link between complex geometry and the problem of the pre-metric formulation of electromagnetism is explored. In particular, the relationship between 3+1 decompositions of R4 and the decompositions of the vector space of bivectors over R4 into real and imaginary subspaces relative to a choice of complex structure is emphasized. The role of the various scalar products on the space of bivectors that are defined in terms of a volume element on R4 and a complex structure on the space of bivectors that makes it C-linear isomorphic to C3 is discussed in the context of formulation of a theory of electromagnetism in which the Lorentzian metric on spacetime follows as a consequence of the existence of electromagnetic waves, not a prior assumption.

D. H. Delphenich

2004-12-10T23:59:59.000Z

89

Progress In Electromagnetics Research, Vol. 140, 297311, 2013 SIMPLE, TAYLOR-BASED WORST-CASE MODEL FOR  

E-Print Network [OSTI]

) is resolving unwanted electromagnetic interactions between electronic systems. The number of possibleProgress In Electromagnetics Research, Vol. 140, 297­311, 2013 SIMPLE, TAYLOR-BASED WORST Rennes Cedex 7, France Abstract--To obtain Electromagnetic Compatibility (EMC), we would like to study

Boyer, Edmond

90

Electromagnetic Wave Dynamics in  

E-Print Network [OSTI]

possibilities for strong localization of electromagnetic radiation in a dense and ultracold atomic gas sample an ultracold atomic rubidium gas sample, showing the coherent backscattering cone. The angular width of electrical excita- tion of condensed samples.3 Ongoing experimental and theoretical research directed toward

91

Electromagnetism and Gravitation  

E-Print Network [OSTI]

The classical concept of "mass density" is not fundamental to the quantum theory of matter. Therefore, mass density cannot be the source of gravitation. Here, we treat electromagnetic energy, momentum, and stress as its source. The resulting theory predicts that the gravitational potential near any charged elementary particle is many orders of magnitude greater than the Newtonian value.

Kenneth Dalton

1997-03-10T23:59:59.000Z

92

Electromagnetic pulsar spindown  

E-Print Network [OSTI]

We evaluate the result of the recent pioneering numerical simulations in Spitkovsky~2006 on the spindown of an oblique relativistic magnetic dipole rotator. Our discussion is based on our experience from two idealized cases, that of an aligned dipole rotator, and that of an oblique split-monopole rotator. We conclude that the issue of electromagnetic pulsar spindown may not have been resolved yet.

I. Contopoulos

2007-01-10T23:59:59.000Z

93

Interacting boson model from energy density functionals: {gamma}-softness and the related topics  

SciTech Connect (OSTI)

A comprehensive way of deriving the Hamiltonian of the interacting boson model (IBM) is described. Based on the fact that the multi-nucleon induced surface deformation in finite nucleus is simulated by effective boson degrees of freedom, the potential energy surface calculated with self-consistent mean-field method employing a given energy density functional (EDF) is mapped onto the IBM analog, and thereby the excitation spectra and transition rates with good symmetry quantum numbers are calculated. Recent applications of the proposed approach are reported: (i) an alternative robust interpretation of the {gamma}-soft nuclei and (ii) shape coexistence in lead isotopes.

Nomura, K. [Institut fuer Kernphysik, Universitaet zu Koeln, D-50937 Koeln (Germany)

2012-10-20T23:59:59.000Z

94

Electromagnetic soliton-particle with spin and magnetic moment  

E-Print Network [OSTI]

Electromagnetic soliton-particle with both quasi-static and quick-oscillating wave parts is considered. Its mass, spin, charge, and magnetic moment appear naturally when the interaction with distant solitons is considered. The substantiation of Dirac equation for the wave part of the interacting soliton-particle is given.

Alexander A. Chernitskii

2012-12-17T23:59:59.000Z

95

Electromagnetic probes of the QGP  

E-Print Network [OSTI]

We investigate the properties of the QCD matter across the deconfinement phase transition in the scope of the parton-hadron string dynamics (PHSD) transport approach. We present here in particular the results on the electromagnetic radiation, i.e. photon and dilepton production, in relativistic heavy-ion collisions. By comparing our calculations for the heavy-ion collisions to the available data, we determine the relative importance of the various production sources and address the possible origin of the observed strong elliptic flow $v_2$ of direct photons. We argue that the different centrality dependence of the hadronic and partonic sources for direct photon production in nucleus-nucleus collisions can be employed to shed some more light on the origin of the photon $v_2$ "puzzle". While the dilepton spectra at low invariant mass show in-medium effects like an enhancement from multiple baryonic resonance formation or a collisional broadening of the vector meson spectral functions, the dilepton yield at high invariant masses (above 1.1 GeV) is dominated by QGP contributions for central heavy-ion collisions at ultra-relativistic energies. This allows to have an independent view on the parton dynamics via their electromagnetic massive radiation.

E. L. Bratkovskaya; O. Linnyk; W. Cassing

2014-09-15T23:59:59.000Z

96

Interactive, Domain-Independent Identi cation and Summarization of Topically Related News  

E-Print Network [OSTI]

selects a single news story from a news Web site. Our system then searches other live sources of news. In addition, our system automatically locates topically-related stories on a large number of real-time search engines. 2 The NewsInEssence System 2.1 Topic-focused search Overview. Our system's topic-focused search

Radev, Dragomir R.

97

Muon production in extensive air showers and its relation to hadronic interactions  

E-Print Network [OSTI]

In this work, the relation between muon production in extensive air showers and features of hadronic multiparticle production at low energies is studied. Using CORSIKA, we determine typical energies and phase space regions of secondary particles which are important for muon production in extensive air showers and confront the results with existing fixed target measurements. Furthermore possibilities to measure relevant quantities of hadron production in existing and planned accelerator experiments are discussed.

C. Meurer; J. Bluemer; R. Engel; A. Haungs; M. Roth

2005-12-21T23:59:59.000Z

98

Gravitation and Electromagnetism  

E-Print Network [OSTI]

The realms of gravitation, belonging to Classical Physics, and Electromagnetism, belonging to the Theory of the Electron and Quantum Mechanics have remained apart as two separate pillars, inspite of a century of effort by Physicists to reconcile them. In this paper it is argued that if we extend ideas of Classical spacetime to include in addition to non integrability non commutavity also, then such a reconcilation is possible.

B. G. Sidharth

2001-06-16T23:59:59.000Z

99

Fractional Electromagnetic Waves  

E-Print Network [OSTI]

In the present work we consider the electromagnetic wave equation in terms of the fractional derivative of the Caputo type. The order of the derivative being considered is 0 <\\gamma<1. A new parameter \\sigma, is introduced which characterizes the existence of the fractional components in the system. We analyze the fractional derivative with respect to time and space, for \\gamma = 1 and \\gamma = 1/2 cases.

J. F. Gómez; J. J. Rosales; J. J. Bernal; V. I. Tkach; M. Guía

2011-08-31T23:59:59.000Z

100

Quaternion Gravi-Electromagnetism  

E-Print Network [OSTI]

Defining the generalized charge, potential, current and generalized fields as complex quantities where real and imaginary parts represent gravitation and electromagnetism respectively, corresponding field equation, equation of motion and other quantum equations are derived in manifestly covariant manner. It has been shown that the field equations are invariant under Lorentz as well as duality transformations. It has been shown that the quaternionic formulation presented here remains invariant under quaternion transformations.

A. S. Rawat; O. P. S. Negi

2011-07-05T23:59:59.000Z

Note: This page contains sample records for the topic "interactive electromagnetic relations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Banded electromagnetic stator core  

DOE Patents [OSTI]

A stator core for an electromagnetic pump includes a plurality of circumferentially adjoining groups of flat laminations disposed about a common centerline axis and collectively defining a central bore and a discontinuous outer perimeter, with adjacent groups diverging radially outwardly to form V-shaped gaps. An annular band surrounds the groups and is predeterminedly tensioned to clamp together the laminations, and has a predetermined flexibility in a radial direction to form substantially straight bridge sections between the adjacent groups. 5 figs.

Fanning, A.W.; Gonzales, A.A.; Patel, M.R.; Olich, E.E.

1996-06-11T23:59:59.000Z

102

Banded electromagnetic stator core  

DOE Patents [OSTI]

A stator core for an electromagnetic pump includes a plurality of circumferentially adjoining groups of flat laminations disposed about a common centerline axis and collectively defining a central bore and a discontinuous outer perimeter, with adjacent groups diverging radially outwardly to form V-shaped gaps. An annular band surrounds the groups and is predeterminedly tensioned to clamp together the laminations, and has a predetermined flexibility in a radial direction to form substantially straight bridge sections between the adjacent groups. 5 figures.

Fanning, A.W.; Gonzales, A.A.; Patel, M.R.; Olich, E.E.

1994-04-05T23:59:59.000Z

103

Relationalism  

E-Print Network [OSTI]

This article contributes to the debate of the meaning of relationalism and background independence, which has remained of interest in theoretical physics from Newton versus Leibniz through to foundational issues for today's leading candidate theories of quantum gravity. I contrast and compose the substantially different Leibniz--Mach--Barbour (LMB) and Rovelli--Crane (RC) uses of the word `relational'. Leibniz advocated primary timelessness and Mach that `time is to be abstracted from change'. I consider 3 distinct viewpoints on Machian time: Barbour's, Rovelli's and my own. I provide four expansions on Barbour's taking configuration space to be primary: to (perhaps a weakened notion of) phase space, categorizing, perspecting and propositioning. Categorizing means considering not only object spaces but also the corresponding morphisms and then functors between such pairs. Perspecting means considering the set of subsystem perspectives; this is an arena in which the LMB and Rovelli approaches make contact. By propositioning, I mean considering the set of propositions about a physical (sub)system. I argue against categorization being more than a formal pre-requisite for quantization in general; however, perspecting is a categorical operation, and propositioning leads one to considering topoi, with Isham and Doering's work represents one possibility for a mathematically sharp implementation of propositioning. Further applications of this article are arguing for Ashtekar variables as being relational in LMB as well as just the usually-ascribed RC sense, relationalism versus supersymmetry, string theory and M-theory. The question of whether scale is relational is also considered, with quantum cosmology in mind.

Edward Anderson

2014-07-15T23:59:59.000Z

104

Editorial, Workshop on New Directions for Advanced Computer Simulations and Experiments in Fusion-Related Plasma-Surface Interactions  

SciTech Connect (OSTI)

Because plasma-boundary physics encompasses some of the most important unresolved issues for both the International Thermonuclear Experimental Reactor (ITER) project and future fusion power reactors, there is a strong interest in the fusion community for better understanding and characterization of plasma-wall interactions. Chemical and physical sputtering cause the erosion of the limiters/divertor plates and vacuum vessel walls (made of C, Be and W, for example) and degrade fusion performance by diluting the fusion fuel and excessively cooling the core, while carbon redeposition could produce long-term in-vessel tritium retention, degrading the superior thermo-mechanical properties of the carbon materials. Mixed plasma-facing materials are proposed, requiring optimization for different power and particle flux characteristics. Knowledge of material properties as well as characteristics of the plasma-material interaction are prerequisites for such optimizations. Computational power will soon reach hundreds of teraflops, so that theoretical and plasma science expertise can be matched with new experimental capabilities in order to mount a strong response to these challenges. To begin to address such questions, a Workshop on New Directions for Advanced Computer Simulations and Experiments in Fusion-Related Plasma-Surface Interactions for Fusion (PSIF) was held at the Oak Ridge National Laboratory from 21 to 23 March, 2005. The purpose of the workshop was to bring together researchers in fusion related plasma-wall interactions in order to address these topics and to identify the most needed and promising directions for study, to exchange opinions on the present depth of knowledge of surface properties for the main fusion-related materials, e.g., C, Be and W, especially for sputtering, reflection, and deuterium (tritium) retention properties. The goal was to suggest the most important next steps needed for such basic computational and experimental work to be facilitated by researchers in fusion, material, and physical sciences. Representatives from many fusion research laboratories attended, and 25 talks were given, the majority of them making up the content of these Workshop proceedings. The presentations of all talks and further information on the Workshop are available at http://www-cfadc.phy.ornl.gov/psif/home.html. The workshop talks dealt with identification of needs from the perspective of integrated fusion simulation and ITER design, recent developments and perspectives on computation of plasma-facing surface properties using the current and expected new generation of computation capability, and with the status of dedicated laboratory experiments which characterize the underlying processes of PSIF. The Workshop summary and conclusions are being published in Nuclear Fusion 45 (2005).

Hogan, John T [ORNL; Krstic, Predrag S [ORNL; Meyer, Fred W [ORNL

2006-01-01T23:59:59.000Z

105

ELECTROMAGNETIC COMPATIBILITY AND RENEWABLE POWER FOR IMPLANTABLE NEUROSTIMULATORS  

E-Print Network [OSTI]

J, Bakker P: Electromagnetic interference from radiomaking electromagnetic interference neurostimulator functioninclude electromagnetic interference and battery failure. In

Pantchenko, Oxana S.

2012-01-01T23:59:59.000Z

106

Electromagnetic analysis of nanostructure dispersion in polymer matrices  

E-Print Network [OSTI]

P. R. , “Enhanced electromagnetic interference shielding40] Chung D. D. L. “Electromagnetic Interference Shieldingreinforcement, electromagnetic interference shielding, etc.

Pfeifer, Steven Charles; Pfeifer, Steven Charles

2012-01-01T23:59:59.000Z

107

K -> pi pi Phenomenology in the Presence of Electromagnetism  

E-Print Network [OSTI]

We describe the influence of electromagnetism on the phenomenology of K -> pi pi decays. This is required because the present data were analyzed without inclusion of electromagnetic radiative corrections, and hence contain several ambiguities and uncertainties which we describe in detail. Our presentation includes a full description of the infrared effects needed for a new experimental analysis. It also describes the general treatment of final state interaction phases, needed because Watson's theorem is no longer valid in the presence of electromagnetism. The phase of the isospin-two amplitude A_2 may be modified by 50% -> 100%. We provide a tentative analysis using present data in order to illustrate the sensitivity to electromagnetic effects, and also discuss how the standard treatment of epsilon'/epsilon is modified.

Vincenzo Cirigliano; John F. Donoghue; Eugene Golowich

2000-08-28T23:59:59.000Z

108

Pion Electromagnetic Form Factor up to 10 [GeV/]^2  

E-Print Network [OSTI]

The light-front approach is applied to calculate the electromagnetic current for quark-antiquark bound states for the pion. The pion electromagnetic form factor is obtnaide from the "+" and "-" components of the electromagnetic current in the Drell-Yan frame, with different models of the pi-q\\bar{q} vertex and the results for the pion electromagnetic form factor are compared with the experimental data up to 10 [GeV/c]^2 and anothers hadronic models. The rotational symmetry propreties of the pion electromagnetic current related with the zero-modes in the light-front are investigate.

J. P. B. C. de Melo

2005-07-26T23:59:59.000Z

109

Electromagnetic WavesElectromagnetic Waves In this chapter we will review selected properties of electromagnetic waves since  

E-Print Network [OSTI]

Electromagnetic WavesElectromagnetic Waves In this chapter we will review selected properties of electromagnetic waves since radar involves the transmission, propagation and scattering of EM waves by various is the electrostatic force between two point charges. #12;Electromagnetic WavesElectromagnetic Waves Electric fields

Rutledge, Steven

110

Fundamental physics on natures of the macroscopic vacuum under high intense electromagnetic fields with accelerators  

E-Print Network [OSTI]

High intense electromagnetic fields can be unique probes to study natures of macroscopic vacua by themselves. Combining accelerators with the intense field can provide more fruitful probes which can neither be achieved by only intense fields nor only high energy accelerators. We will overview the natures of vacua which can be accessible via intense laser-laser and intense laser-electron interactions. In the case of the laser-laser interaction, we propose how to observe nonlinear QED effects and effects of new fields like light scalar and pseudo scalar fields which may contribute to a macroscopic nature of our universe such as dark energy. In the case of the laser-electron interaction, in addition to nonlinear QED effects, we can further discuss the nature of accelerating field in the vacuum where we can access physics related with event horizons such as Hawking-Unruh radiations. We will introduce a recent experimental trial to search for this kind of odd radiations.

Kensuke Homma

2009-11-30T23:59:59.000Z

111

Theory of electromagnetic fluctuations for magnetized multi-species plasmas  

SciTech Connect (OSTI)

Analysis of electromagnetic fluctuations in plasma provides relevant information about the plasma state and its macroscopic properties. In particular, the solar wind persistently sustains a small but detectable level of magnetic fluctuation power even near thermal equilibrium. These fluctuations may be related to spontaneous electromagnetic fluctuations arising from the discreteness of charged particles. Here, we derive general expressions for the plasma fluctuations in a multi-species plasma following arbitrary distribution functions. This formalism, which generalizes and includes previous works on the subject, is then applied to the generation of electromagnetic fluctuations propagating along a background magnetic field in a plasma of two proton populations described by drifting bi-Maxwellians.

Navarro, Roberto E., E-mail: roberto.navarro@ug.uchile.cl; Muñoz, Víctor [Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago (Chile); Araneda, Jaime [Departamento de Física, Universidad de Concepción, Concepción 4070386 (Chile); Moya, Pablo S. [NASA Goddard Space Flight Center, Heliophysics Science Division, Geospace Physics Laboratory, Mail Code 673, Greenbelt, Maryland 20771 (United States); Department of Physics, Catholic University of America, Washington, D. C. 20064 (United States); Viñas, Adolfo F. [NASA Goddard Space Flight Center, Heliophysics Science Division, Geospace Physics Laboratory, Mail Code 673, Greenbelt, Maryland 20771 (United States); Valdivia, Juan A. [Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago (Chile); Centro de Estudios Interdisciplinarios Básicos y Aplicados en Complejidad, CEIBA complejidad, Bogotá (Colombia)

2014-09-15T23:59:59.000Z

112

Division of the momentum of electromagnetic waves in linear media into electromagnetic and material parts  

E-Print Network [OSTI]

It is proposed a natural and consistent division of the momentum of electromagnetic waves in linear, non-dispersive and non-absorptive dielectric and magnetic media into material and electromagnetic parts. The material part is calculated using directly the Lorentz force law and the electromagnetic momentum density has the same form than in vacuum, without an explicit dependence on the properties of the media. The consistency of the treatment is verified through the obtention of a correct momentum balance equation in many examples and showing the compatibility of the division with the Einstein's theory of relativity by the use of a gedanken experiment. An experimental prediction for the radiation pressure on mirrors immersed in linear dielectric and magnetic media is also made.

Pablo L. Saldanha

2010-02-04T23:59:59.000Z

113

Division of the momentum of electromagnetic waves in linear media into electromagnetic and material parts  

E-Print Network [OSTI]

It is proposed a natural and consistent division of the momentum of electromagnetic waves in linear, non-dispersive and non-absorptive dielectric and magnetic media into material and electromagnetic parts. The material part is calculated using directly the Lorentz force law and the electromagnetic momentum density has the same form than in vacuum, without an explicit dependence on the properties of the media. The consistency of the treatment is verified through the obtention of a correct momentum balance equation in many examples and showing the compatibility of the division with the Einstein's theory of relativity by the use of a gedanken experiment. An experimental prediction for the radiation pressure on mirrors immersed in linear dielectric and magnetic media is also made.

Saldanha, Pablo L

2009-01-01T23:59:59.000Z

114

A Connection between Gravitation and Electromagnetism  

E-Print Network [OSTI]

It is argued that there is a connection between the fundamental forces of electromagnetism and gravitation. This connection occurs because of: 1) the fundamental significance of the finite and invariant velocity of light in inertial reference frames in the special theory, and 2) the reliance of the general theory of relativity upon the special theory of relativity locally in spacetime. The connection between the fundamental forces of electromagnetism and gravitation follows immediately from these two points. A brief review is provided of: 1) the role of the finite and invariant velocity of light in inertial reference frames in the special theory, and 2) certain fundamental concepts of the general theory, including its reliance on the special theory locally.

D. M. Snyder

2000-02-16T23:59:59.000Z

115

Equations of a Moving Mirror and the Electromagnetic Field  

E-Print Network [OSTI]

We consider a slab of a material that is linear, isotropic, non-magnetizable, ohmic, and electrically neutral when it is at rest. The slab interacts with the electromagnetic field through radiation pressure. Using a relativistic treatment, we deduce the exact equations governing the dynamics of the field and of the slab, as well as, approximate equations to first order in the velocity and the acceleration of the slab. As a consequence of the motion of the slab, the field must satisfy a wave equation with damping and slowly varying coefficients plus terms that are small when the time-scale of the evolution of the mirror is much smaller than that of the field. Moreover, the dynamics of the mirror involve a time-dependent mass arising from the interaction with the field and it is related to the effective mass of mechanical oscillators used in optomechanics. By the same reason, the mirror is subject to a velocity dependent force which is related to the much sought cooling of mechanical oscillators in optomechanics.

Luis Octavio Castaños; Ricardo Weder

2014-10-28T23:59:59.000Z

116

Electromagnetism on Anisotropic Fractals  

E-Print Network [OSTI]

We derive basic equations of electromagnetic fields in fractal media which are specified by three indepedent fractal dimensions {\\alpha}_{i} in the respective directions x_{i} (i=1,2,3) of the Cartesian space in which the fractal is embedded. To grasp the generally anisotropic structure of a fractal, we employ the product measure, so that the global forms of governing equations may be cast in forms involving conventional (integer-order) integrals, while the local forms are expressed through partial differential equations with derivatives of integer order but containing coefficients involving the {\\alpha}_{i}'s. First, a formulation based on product measures is shown to satisfy the four basic identities of vector calculus. This allows a generalization of the Green-Gauss and Stokes theorems as well as the charge conservation equation on anisotropic fractals. Then, pursuing the conceptual approach, we derive the Faraday and Amp\\`ere laws for such fractal media, which, along with two auxiliary null-divergence conditions, effectively give the modified Maxwell equations. Proceeding on a separate track, we employ a variational principle for electromagnetic fields, appropriately adapted to fractal media, to independently derive the same forms of these two laws. It is next found that the parabolic (for a conducting medium) and the hyperbolic (for a dielectric medium) equations involve modified gradient operators, while the Poynting vector has the same form as in the non-fractal case. Finally, Maxwell's electromagnetic stress tensor is reformulated for fractal systems. In all the cases, the derived equations for fractal media depend explicitly on fractal dimensions and reduce to conventional forms for continuous media with Euclidean geometries upon setting the dimensions to integers.

Martin Ostoja-Starzewski

2011-06-08T23:59:59.000Z

117

Electromagnetic Probes in PHENIX  

E-Print Network [OSTI]

Electromagnetic probes are arguably the most universal tools to study the different physics processes in high energy hadron and heavy ion collisions. In this paper we summarize recent measurements of real and virtual direct photons at central rapidity by the PHENIX experiment at RHIC in p+p, d+Au and Au+Au collisions. We also discuss the impact of the results and the constraints they put on theoretical models. At the end we report on the immediate as well as on the mid-term future of photon measurements at RHIC.

Gabor David

2006-09-21T23:59:59.000Z

118

Gravitation and electromagnetism  

E-Print Network [OSTI]

Maxwell's equations comprise both electromagnetic and gravitational fields. The transverse part of the vector potential belongs to magnetism, the longitudinal one is concerned with gravitation. The Coulomb gauge indicates that longitudinal components of the fields propagate instantaneously. The delta-function singularity of the field of the divergence of the vector potential, referred to as the dilatation center, represents an elementary agent of gravitation. Viewing a particle as a source or a scattering center of the point dilatation, the Newton's gravitation law can be reproduced.

V. P. Dmitriyev

2002-07-23T23:59:59.000Z

119

Electromagnetic pump stator coil  

DOE Patents [OSTI]

An electrical stator coil for an electromagnetic pump includes a continuous conductor strip having first and second terminals at opposite ends thereof and an intermediate section disposed therebetween. The strip is configured in first and second coil halves, with the first coil half including a plurality of windings extending from the first terminal to the intermediate section, and the second coil half including a plurality of windings extending from the second terminal to the intermediate section. The first and second coil halves are disposed coaxially, and the first and second terminals are disposed radially inwardly therefrom with the intermediate section being disposed radially outwardly therefrom. 9 figs.

Fanning, A.W.; Dahl, L.R.

1996-06-25T23:59:59.000Z

120

Understanding stable levitation of superconductors from intermediate electromagnetics  

E-Print Network [OSTI]

related to magnetic flux conservation and minimum energy losses. II. BASIC SUPERCONDUCTIVITY for electromagnetic energy related quantities. Comprehensible illustrations, based on the calculated lines of magnetic a superconductor (or viceversa) is related to flux expulsion. One may even use the standard image technique

Majós, Antonio Badía

Note: This page contains sample records for the topic "interactive electromagnetic relations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Theory of Dipole Induced Electromagnetic Transparency  

E-Print Network [OSTI]

A detailed theory describing linear optics of vapors comprised of interacting multi-level quantum emitters is proposed. It is shown both by direct integration of Maxwell-Bloch equations and using a simple analytical model that at large densities narrow transparency windows appear in otherwise completely opaque spectra. The existence of such windows is attributed to overlapping resonances. This effect, first introduced for three-level systems in [R. Puthumpally-Joseph, M. Sukharev, O. Atabek and E. Charron, Phys. Rev. Lett. 113, 163603 (2014)], is due to strongly enhanced dipole-dipole interactions at high emitters' densities. The presented theory extends this effect to the case of multilevel systems. The theory is applied to the D1 transitions of interacting Rb-85 atoms. It is shown that at high atomic densities, Rb-85 atoms can behave as three-level emitters exhibiting all the properties of dipole induced electromagnetic transparency. Applications including slow light and laser pulse shaping are also propose...

Puthumpally-Joseph, Raiju; Sukharev, Maxim; Charron, Eric

2015-01-01T23:59:59.000Z

122

Electromagnetic corrections to pseudoscalar decay constants  

E-Print Network [OSTI]

The effects of electromagnetic interactions on pseudoscalar decay constants are investigated. Using a compact QED and QCD action we are able to resolve differences of about 0.1 MeV. We obtain the preliminary results f_pi^0-f_pi^+/- =0.09(3) MeV and f_D^0-f_D^+/- =0.79(11) MeV for light and charmed pseudoscalar decay constants on a N_f=2 nonperturbatively improved Sheikholeslami-Wohlert ensemble.

Benjamin Glaessle; Gunnar S. Bali

2011-11-16T23:59:59.000Z

123

Airborne electromagnetic surveys as a reconnaissance technique...  

Open Energy Info (EERE)

Airborne electromagnetic surveys as a reconnaissance technique for geothermal exploration Abstract INPUT airborne electromagnetic (AEM) surveys were conducted during 1979 in five...

124

Electromagnetic couplings of elementary vector particles  

E-Print Network [OSTI]

On the basis of the three fundamental principles of (i) Poincar\\'{e} symmetry of space time, (ii) electromagnetic gauge symmetry, and (iii) unitarity, we construct an universal Lagrangian for the electromagnetic interactions of elementary vector particles, i.e., massive spin-1 particles transforming in the /1/2,1/2) representation space of the Homogeneous Lorentz Group (HLG). We make the point that the first two symmetries alone do not fix the electromagnetic couplings uniquely but solely prescribe a general Lagrangian depending on two free parameters, here denoted by \\xi and g. The first one defines the electric-dipole and the magnetic-quadrupole moments of the vector particle, while the second determines its magnetic-dipole and electric-quadrupole moments. In order to fix the parameters one needs an additional physical input suited for the implementation of the third principle. As such, one chooses Compton scattering off a vector target and requires the cross section to respect the unitarity bounds in the high energy limit. In result, we obtain the universal g=2, and \\xi=0 values which completely characterize the electromagnetic couplings of the considered elementary vector field at tree level. The nature of this vector particle, Abelian versus non-Abelian, does not affect this structure. Merely, a partition of the g=2 value into non-Abelian, g_{na}, and Abelian, g_{a}=2-g_{na}, contributions occurs for non-Abelian fields with the size of g_{na} being determined by the specific non-Abelian group appearing in the theory of interest, be it the Standard Model or any other theory.

M. Napsuciale; S. Rodriguez; E. G. Delgado-Acosta; M. Kirchbach

2007-11-27T23:59:59.000Z

125

Electromagnetic Compatibility in Nuclear Power Plants  

SciTech Connect (OSTI)

Electromagnetic compatibility (EMC) has long been a key element of qualification for mission critical instrumentation and control (I&C) systems used by the U.S. military. The potential for disruption of safety-related I&C systems by electromagnetic interference (EMI), radio-frequency interference (RFI), or power surges is also an issue of concern for the nuclear industry. Experimental investigations of the potential vulnerability of advanced safety systems to EMI/RFI, coupled with studies of reported events at nuclear power plants (NPPs) that are attributed to EMI/RFI, confirm the safety significance of EMC for both analog and digital technology. As a result, Oak Ridge National Laboratory has been engaged in the development of the technical basis for guidance that addresses EMC for safety-related I&C systems in NPPs. This research has involved the identification of engineering practices to minimize the potential impact of EMI/RFI and power surges and an evaluation of the ambient electromagnetic environment at NPPs to tailor those practices for use by the nuclear industry. Recommendations for EMC guidance have been derived from these research findings and are summarized in this paper.

Ewing, P.D.; Kercel, S.W.; Korsah, K.; Wood, R.T.

1999-08-29T23:59:59.000Z

126

Probabilistic methods applied to 2D electromagnetic numerical dosimetry  

E-Print Network [OSTI]

the number of realizations. When the modeling of the 3D interaction between the human body and a cellphoneProbabilistic methods applied to 2D electromagnetic numerical dosimetry D. Voyer F. Musy L. Nicolas dosimetry problems in order to take into account the variability of the input parameters. Methodology

Paris-Sud XI, Université de

127

Nucleon Electromagnetic Form Factors  

SciTech Connect (OSTI)

There has been much activity in the measurement of the elastic electromagnetic proton and neutron form factors in the last decade, and the quality of the data has greatly improved by performing double polarization experiments, in comparison with previous unpolarized data. Here we review the experimental data base in view of the new results for the proton, and neutron, obtained at JLab, MAMI, and MIT-Bates. The rapid evolution of phenomenological models triggered by these high-precision experiments will be discussed, including the recent progress in the determination of the valence quark generalized parton distributions of the nucleon, as well as the steady rate of improvements made in the lattice QCD calculations.

Marc Vanderhaeghen; Charles Perdrisat; Vina Punjabi

2007-10-01T23:59:59.000Z

128

On unification of gravitation and electromagnetism in the framework of a general-relativistic approach  

E-Print Network [OSTI]

We consider the unification problem for the gravitational and electromagnetic interactions and its possible solution on the basis of the existence of an effective Riemannian space in nonlinear electrodynamics

Alexander A. Chernitskii

2009-07-13T23:59:59.000Z

129

E-Print Network 3.0 - alpha-nucleus interaction potential Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

(CPEP) 4-1 Chapter 4 Four Fundamental Interactions The forces of gravity and electromagnetism... and weak interactions. When two protons encounter each other, they experience...

130

Electromagnetic Radiation in Hot QCD Matter: Rates, Electric Conductivity, Flavor Susceptibility and Diffusion  

E-Print Network [OSTI]

We discuss the general features of the electromagnetic radiation from a thermal hadronic gas as constrained by chiral symmetry. The medium effects on the electromagnetic spectral functions and the partial restoration of chiral symmetry are quantified in terms of the pion densities. The results are compared with the electromagnetic radiation from a strongly interacting quark-gluon plasma in terms of the leading gluon condensate operators. We use the spectral functions as constrained by the emission rates to estimate the electric conductivity, the light flavor susceptibility and diffusion constant across the transition from the correlated hadronic gas to a strongly interacting quark-gluon plasma.

Chang-Hwan Lee; Ismail Zahed

2014-03-07T23:59:59.000Z

131

Analog Electromagnetism in a Symmetrized $^3$He-A  

E-Print Network [OSTI]

We derive a low temperature effective action for the order parameter in a symmetrized phase A of helium 3, where the Fermi velocity equals the transversal velocity of low energy fermionic quasiparticles. The effective action has a form of the electromagnetic action. This analog electromagnetism is a part of the program to derive analog gravity and the standard model as a low energy effective theory in a condensed matter system. For the analog gauge field to satisfy the Maxwell equations interactions in $^3$He require special tuning that leads to the symmetric case.

Jacek Dziarmaga

2001-12-18T23:59:59.000Z

132

PHYSICS 416. Electromagnetism. Lecturer: Tim Gorringe.  

E-Print Network [OSTI]

PHYSICS 416. Electromagnetism. Lecturer: Tim Gorringe. Office: CP 273. Phone: 257-8740. Textbook: Electromagnetic Fields, R. Wangsness, 2nd Ed. Web page www.pa.uky.edu/gorringe/phy416/index.html Class hours: MWF-semester sequence on electromagnetic theory. 1 416/417 Course Objectives. The electromagnetic field binds electrons

MacAdam, Keith

133

PHYSICS 417. Electromagnetism. Lecturer: Tim Gorringe.  

E-Print Network [OSTI]

PHYSICS 417. Electromagnetism. Lecturer: Tim Gorringe. Office: CP273. Phone: 257-8740. Textbook: Electromagnetic Fields, R. Wangsness, 2nd Ed. Web page www.pa.uky.edu/gorringe/phy417/index.html Class hours: MWF-semester sequence on electromagnetic theory. 1 Course Objectives. The electromagnetic field binds electrons

MacAdam, Keith

134

The electromagnetic model of Gamma Ray Bursts  

E-Print Network [OSTI]

I describe electromagnetic model of gamma ray bursts and contrast its main properties and predictions with hydrodynamic fireball model and its magnetohydrodynamical extension. The electromagnetic model assumes that rotational energy of a relativistic, stellar-mass central source (black-hole--accretion disk system or fast rotating neutron star) is converted into magnetic energy through unipolar dynamo mechanism, propagated to large distances in a form of relativistic, subsonic, Poynting flux-dominated wind and is dissipated directly into emitting particles through current-driven instabilities. Thus, there is no conversion back and forth between internal and bulk energies as in the case of fireball model. Collimating effects of magnetic hoop stresses lead to strongly non-spherical expansion and formation of jets. Long and short GRBs may develop in a qualitatively similar way, except that in case of long bursts ejecta expansion has a relatively short, non-relativistic, strongly dissipative stage inside the star. Electromagnetic and fireball models (as well as strongly and weakly magnetized fireballs) lead to different early afterglow dynamics, before deceleration time. Finally, I discuss the models in view of latest observational data in the Swift era.

Maxim Lyutikov

2005-12-13T23:59:59.000Z

135

Electromagnetic Signals from Bacterial DNA  

E-Print Network [OSTI]

Chemical reactions can be induced at a distance due to the propagation of electromagnetic signals during intermediate chemical stages. Although is is well known at optical frequencies, e.g. photosynthetic reactions, electromagnetic signals hold true for muck lower frequencies. In E. coli bacteria such electromagnetic signals can be generated by electric transitions between energy levels describing electrons moving around DNA loops. The electromagnetic signals between different bacteria within a community is a "wireless" version of intercellular communication found in bacterial communities connected by "nanowires". The wireless broadcasts can in principle be of both the AM and FM variety due to the magnetic flux periodicity in electron energy spectra in bacterial DNA orbital motions.

A. Widom; J. Swain; Y. N. Srivastava; S. Sivasubramanian

2012-02-09T23:59:59.000Z

136

Black Hole Thermodynamics and Electromagnetism  

E-Print Network [OSTI]

We show a strong parallel between the Hawking, Beckenstein black hole Thermodynamics and electromagnetism: When the gravitational coupling constant transform into the electromagnetic coupling constant, the Schwarzchild radius, the Beckenstein temperature, the Beckenstein decay time and the Planck mass transform to respectively the Compton wavelength, the Hagedorn temperature, the Compton time and a typical elementary particle mass. The reasons underlying this parallalism are then discussed in detail.

Burra G. Sidharth

2005-07-15T23:59:59.000Z

137

SOLAR NANTENNA ELECTROMAGNETIC COLLECTORS  

SciTech Connect (OSTI)

This research explores a new efficient approach for producing electricity from the abundant energy of the sun. A nanoantenna electromagnetic collector (NEC) has been designed, prototyped, and tested. Proof of concept has been validated. The device targets mid-infrared wavelengths where conventional photovoltaic (PV) solar cells do not respond but is abundant in solar energy. The initial concept of designing NEC antennas was based on scaling of radio frequency antenna theory. This approach has proven unsuccessful by many due to not fully understanding and accounting for the optical behavior of materials in the THz region. Also until recent years the nanofabrication methods were not available to fabricate the optical antenna elements. We have addressed and overcome both technology barriers. Several factors were critical in successful implementation of NEC including: 1) frequency-dependent modeling of antenna elements, 2) selection of materials with proper THz properties and 3) novel manufacturing methods that enable economical large-scale manufacturing. The work represents an important step toward the ultimate realization of a low-cost device that will collect as well as convert this radiation into electricity, which will lead to a wide spectrum, high conversion efficiency, and low cost solution to complement conventional PVs.

Steven D. Novack; Dale K. Kotter; Dennis Slafer; Patrick Pinhero

2008-08-01T23:59:59.000Z

138

Electromagnetically driven peristaltic pump  

DOE Patents [OSTI]

An electromagnetic peristaltic pump apparatus may comprise a main body section having an inlet end and an outlet end and a flexible membrane which divides the main body section into a first cavity and a second cavity. The first cavity is in fluid communication with the inlet and outlet ends of the main body section. The second cavity is not in fluid communication with the first cavity and contains an electrically conductive fluid. The second cavity includes a plurality of electrodes which are positioned within the second cavity generally adjacent the flexible membrane. A magnetic field generator produces a magnetic field having a plurality of flux lines at least some of which are contained within the second cavity of the main body section and which are oriented generally parallel to a flow direction in which a material flows between the inlet and outlet ends of the main body section. A control system selectively places a voltage potential across selected ones of the plurality of electrodes to deflect the flexible membrane in a wave-like manner to move material contained in the first cavity between the inlet and outlet ends of the main body section.

Marshall, Douglas W. (Blackfoot, ID)

2000-01-01T23:59:59.000Z

139

Electromagnetic Calorimeter for HADES  

E-Print Network [OSTI]

We propose to build the Electromagnetic calorimeter for the HADES di-lepton spectrometer. It will enable to measure the data on neutral meson production from nucleus-nucleus collisions, which are essential for interpretation of dilepton data, but are unknown in the energy range of planned experiments (2-10 GeV per nucleon). The calorimeter will improve the electron-hadron separation, and will be used for detection of photons from strange resonances in elementary and HI reactions. Detailed description of the detector layout, the support structure, the electronic readout and its performance studied via Monte Carlo simulations and series of dedicated test experiments is presented. The device will cover the total area of about 8 m^2 at polar angles between 12 and 45 degrees with almost full azimuthal coverage. The photon and electron energy resolution achieved in test experiments amounts to 5-6%/sqrt(E[GeV]) which is sufficient for the eta meson reconstruction with S/B ratio of 0.4% in Ni+Ni collisions at 8 AGeV. A purity of the identified leptons after the hadron rejection, resulting from simulations based on the test measurements, is better than 80% at momenta above 500 MeV/c, where time-of-flight cannot be used.

W. Czyzycki; E. Epple; L. Fabbietti; M. Golubeva; F. Guber; A. Ivashkin; M. Kajetanowicz; A. Krasa; F. Krizek; A. Kugler; K. Lapidus; E. Lisowski; J. Pietraszko; A. Reshetin; P. Salabura; Y. Sobolev; J. Stanislav; P. Tlusty; T. Torrieri; M. Traxler

2011-11-28T23:59:59.000Z

140

Electromagnetic Calorimeter for HADES  

E-Print Network [OSTI]

We propose to build the Electromagnetic calorimeter for the HADES di-lepton spectrometer. It will enable to measure the data on neutral meson production from nucleus-nucleus collisions, which are essential for interpretation of dilepton data, but are unknown in the energy range of planned experiments (2-10 GeV per nucleon). The calorimeter will improve the electron-hadron separation, and will be used for detection of photons from strange resonances in elementary and HI reactions. Detailed description of the detector layout, the support structure, the electronic readout and its performance studied via Monte Carlo simulations and series of dedicated test experiments is presented. The device will cover the total area of about 8 m^2 at polar angles between 12 and 45 degrees with almost full azimuthal coverage. The photon and electron energy resolution achieved in test experiments amounts to 5-6%/sqrt(E[GeV]) which is sufficient for the eta meson reconstruction with S/B ratio of 0.4% in Ni+Ni collisions at 8 AGeV....

Czyzycki, W; Fabbietti, L; Golubeva, M; Guber, F; Ivashkin, A; Kajetanowicz, M; Krasa, A; Krizek, F; Kugler, A; Lapidus, K; Lisowski, E; Pietraszko, J; Reshetin, A; Salabura, P; Sobolev, Y; Stanislav, J; Tlusty, P; Torrieri, T; Traxler, M

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "interactive electromagnetic relations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Position-dependent photon operators in the quantization of the electromagnetic field in dielectrics at local thermal equilibrium  

E-Print Network [OSTI]

It has very recently been suggested that asymmetric coupling of electromagnetic fields to thermal reservoirs under nonequilibrium conditions can produce unexpected oscillatory behavior in the local photon statistics in layered structures. Better understanding of the predicted phenomena could enable useful applications related to thermometry, noise filtering, and enhancing optical interactions. In this work we briefly review the field quantization and study the local steady state temperature distributions in optical cavities formed of lossless and lossy media to show that also local field temperatures exhibit oscillations that depend on position as well as the photon energy.

Mikko Partanen; Teppo Häyrynen; Jani Oksanen; Jukka Tulkki

2014-12-02T23:59:59.000Z

142

Particle dynamics and deviation effects in the field of a strong electromagnetic wave  

E-Print Network [OSTI]

Some strong field effects on test particle motion associated with the propagation of a plane electromagnetic wave in the exact theory of general relativity are investigated. Two different profiles of the associated radiation flux are considered in comparison, corresponding to either constant or oscillating electric and magnetic fields with respect to a natural family of observers. These are the most common situations to be experimentally explored, and have a well known counterpart in the flat spacetime limit. The resulting line elements are determined by a single metric function, which turns out to be expressed in terms of standard trigonometric functions in the case of a constant radiation flux, and in terms of special functions in the case of oscillating flux, leading to different features of test particle motion. The world line deviation between both uncharged and charged particles on different spacetime trajectories due to the combined effect of gravitational and electromagnetic forces is studied. The interaction of charged particles with the background radiation field is also discussed through a general relativistic description of the inverse Compton effect. Motion as well as deviation effects on particles endowed with spin are studied too. Special situations may occur in which the direction of the spin vector change during the interaction, leading to obsevables effects like spin-flip.

Donato Bini; Andrea Geralico; Maria Haney; Antonello Ortolan

2014-08-23T23:59:59.000Z

143

Surface electromagnetic wave equations in a warm magnetized quantum plasma  

SciTech Connect (OSTI)

Based on the single-fluid plasma model, a theoretical investigation of surface electromagnetic waves in a warm quantum magnetized inhomogeneous plasma is presented. The surface electromagnetic waves are assumed to propagate on the plane between a vacuum and a warm quantum magnetized plasma. The quantum magnetohydrodynamic model includes quantum diffraction effect (Bohm potential), and quantum statistical pressure is used to derive the new dispersion relation of surface electromagnetic waves. And the general dispersion relation is analyzed in some special cases of interest. It is shown that surface plasma oscillations can be propagated due to quantum effects, and the propagation velocity is enhanced. Furthermore, the external magnetic field has a significant effect on surface wave's dispersion equation. Our work should be of a useful tool for investigating the physical characteristic of surface waves and physical properties of the bounded quantum plasmas.

Li, Chunhua; Yang, Weihong [Department of Modern Physics, University of Science and Technology of China, 230026 Hefei (China); Wu, Zhengwei, E-mail: wuzw@ustc.edu.cn [Department of Modern Physics, University of Science and Technology of China, 230026 Hefei (China); Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon (Hong Kong); Center of Low Temperature Plasma Application, Yunnan Aerospace Industry Company, Kunming, 650229 Yunnan (China); Chu, Paul K. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon (Hong Kong)

2014-07-15T23:59:59.000Z

144

Numerical methods for computing Casimir interactions  

E-Print Network [OSTI]

We review several different approaches for computing Casimir forces and related fluctuation-induced interactions between bodies of arbitrary shapes and materials. The relationships between this problem and well known computational techniques from classical electromagnetism are emphasized. We also review the basic principles of standard computational methods, categorizing them according to three criteria---choice of problem, basis, and solution technique---that can be used to classify proposals for the Casimir problem as well. In this way, mature classical methods can be exploited to model Casimir physics, with a few important modifications.

Steven G. Johnson

2010-10-01T23:59:59.000Z

145

Laboratory Studies of the Short-term Responses of Freshwater Fish to Electromagnetic Fields  

SciTech Connect (OSTI)

Hydrokinetic energy technologies are being proposed as an environmentally preferred means of generating electricity from river and tidal currents. Among the potential issues that must be investigated in order to resolve environmental concerns are the effects on aquatic organisms of electromagnetic fields created by underwater generators and transmission cables. The behavioral responses of common freshwater fishes to static and variable electromagnetic fields (EMF) that may be emitted by hydrokinetic projects were evaluated in laboratory experiments. Various fish species were exposed to either static (DC) EMF fields created by a permanent bar magnet or variable (AC) EMF fields created by a switched electromagnet for 48 h, fish locations were recorded with a digital imaging system, and changes in activity level and distribution relative to the magnet position were quantified at 5-min intervals. Experiments with fathead minnows, redear sunfish, striped bass, lake sturgeon, and channel catfish produced mixed results. Except for fathead minnows there was no effect on activity level. Only redear sunfish and channel catfish exhibited a change in distribution relative to the position of the magnet with an apparent attraction to the EMF source. In separate experiments, rapid behavioral responses of paddlefish and lake sturgeon to onset of the AC field were recorded with high-speed video. Paddlefish did not react to a variable, 60-Hz magnetic field like that which would be emitted by an AC generator or cable, but lake sturgeon consistently responded to the variable, AC-generated magnetic field with a variety of altered swimming behaviors. These results will be useful for determining under what circumstances cables or generators need to be positioned to minimize interactions with sensitive species.

Bevelhimer, Mark S [ORNL; Cada, Glenn F [ORNL; Fortner, Allison M [ORNL; Schweizer, Peter E [ORNL; Riemer, Kristina P [ORNL

2013-01-01T23:59:59.000Z

146

Interactions of microbes in aquatic systems Uncultured populations of bacteria were analyzed in aquatic systems and populations related  

E-Print Network [OSTI]

Rotsee (Lucerne, Switzerland), and were subsequently expanded to studies on the interaction of aggregate-actions that presumably resemble a source-sink rela-tionship for sulfide between the sulfate-reducing bacterium growing

Aspbury, Andrea S. - Department of Biology, Texas State University

147

arXiv:nucl-th/001006218Oct2000 Electromagnetic Structure of Few-Nucleon Systems: a Critical Review  

E-Print Network [OSTI]

in predicting a number of nuclear properties for systems with mass number A 8, including energy spectra of low-lying states, electromagnetic form factors, and low-energy capture reactions. 2. Interactions and Energy, including energy spectra, electromagnetic form factors, and capture reactions, is critically reviewed within

Thomas Jefferson National Accelerator Facility

148

Electromagnetic compatibility in semiconductor manufacturing  

SciTech Connect (OSTI)

Electromagnetic Interference (EMI) causes problems in semiconductor manufacturing facilities that range from nuisances to major disruptions of production. In many instances, these issues are addressed in a reactionary rather than proactive manner by individuals who do not have the experience or the equipment necessary to combat EMI problems in a timely, cost effective manner. This approach leads to expensive retrofits, reduced equipment availability, long recovery times, and in some cases, line yield impacts. The goal of electromagnetic compatibility (EMC) in semiconductor manufacturing is to ensure that semiconductor process, metrology, and support equipment operate as intended without being affected by electromagnetic disturbances either transmitted through air (radiated interference), or transferred into the equipment via a conductive media (conducted interference). Rather than being neglected until serious issues arise, EMC should be considered in the early stages of facility design, in order to gain the most benefit at the lowest cost.

Montoya, J.A. [Intel Corp., Hillsboro, OR (United States)

1995-12-31T23:59:59.000Z

149

Electromagnetic source localization with finite set of frequency measurements  

E-Print Network [OSTI]

A phase conjugation algorithm for localizing an extended radiating electromagnetic source from boundary measurements of the electric field is presented. Measurements are taken over a finite number of frequencies. The artifacts related to the finite frequency data are tackled with $l_1-$regularization blended with the fast iterative shrinkage-thresholding algorithm with backtracking of Beck & Teboulle.

Abdul Wahab; Amer Rasheed; Rab Nawaz; Saman Anjum

2014-09-16T23:59:59.000Z

150

Propagation Analysis of Electromagnetic Waves: Application to Auroral Kilometric Radiation  

E-Print Network [OSTI]

12 Propagation Analysis of Electromagnetic Waves: Application to Auroral Kilometric Radiation, containing waves which simultaneously propagate in different directions and/or wave modes the concept emission is found to propagate predominantly in the R-X mode with wave energy distributed in relatively

Santolik, Ondrej

151

Electromagnetic radiation by gravitating bodies  

E-Print Network [OSTI]

Gravitating bodies in motion, regardless of their constitution, always produce electromagnetic radiation in the form of photon pairs. This phenomenon is an analog of the radiation caused by the motion of dielectric (or magnetic) bodies. It is a member of a wide class of phenomena named dynamical Casimir effects, and it may be viewed as the squeezing of the electromagnetic vacuum. Production of photon pairs is a purely quantum-mechanical effect. Unfortunately, as we show, the emitted radiation is extremely weak as compared to radiation produced by other mechanisms.

Iwo Bialynicki-Birula; Zofia Bialynicka-Birula

2008-05-06T23:59:59.000Z

152

Perfectly Reflectionless Omnidirectional Electromagnetic Absorber  

E-Print Network [OSTI]

We demonstrate the existence of metamaterial blueprints describing, and fundamental limitations concerning, perfectly reflectionless omnidirectional electromagnetic absorbers (PR-OEMA). Previous attempts to define PR-OEMA blueprints have led to active (gain), rather than passive, media. We explain this fact and unveil new, distinct limitations of true PR-OEMA devices including the appearance of an "electromagnetic horizon" on physical solutions. As practical alternatives, we introduce two new OEMA blueprints. While these two blueprints do not correspond to reflectionless media, they are effective in absorbing incident waves in a manner robust to incident wave diversity.

Sainath, Kamalesh

2014-01-01T23:59:59.000Z

153

Immunizing digital systems against electromagnetic interference  

SciTech Connect (OSTI)

This paper discusses the development of the technical basis for acceptance criteria applicable to the immunization of digital systems against electromagnetic interference (EMI). The work is sponsored by the US Nuclear Regulatory Commission and stems from the safety-related issues that need to be addressed as a result of the application of digital instrumentation and control systems in nuclear power plants. Designers of digital circuits are incorporating increasingly higher clock frequencies and lower logic level voltages, thereby leading to potentially greater susceptibility of spurious interference being misinterpreted as legitimate logic. Development of the technical basis for acceptance criteria to apply to these digital systems centers around establishing good engineering practices to ensure that sufficient levels of electromagnetic compatibility (EMC) are maintained between the nuclear power plant`s electronic and electromechanical systems. First, good EMC design and installation practices are needed to control the emissions from interference sources and thereby their impact on other nearby circuits and systems. Secondly, a test and evaluation program is needed to outline the EMI tests to be performed, the associated test methods to be followed, and adequate test limits to ensure that the circuit or system under test meets the recommended guidelines. Test and evaluation should be followed by periodic maintenance to assess whether the recommended EMI control practices continue to be adhered to as part of the routine operation of the nuclear power plant. By following these steps, the probability of encountering safety-related instrumentation problems associated with EMI will be greatly reduced.

Ewing, P.D.; Korsah, K. [Oak Ridge National Lab., TN (United States); Antonescu, C. [Nuclear Regulatory Commission, Washington, DC (United States). Office of Nuclear Regulatory Research

1993-02-01T23:59:59.000Z

154

Immunizing digital systems against electromagnetic interference  

SciTech Connect (OSTI)

This paper discusses the development of the technical basis for acceptance criteria applicable to the immunization of digital systems against electromagnetic interference (EMI). The work is sponsored by the US Nuclear Regulatory Commission and stems from the safety-related issues that need to be addressed as a result of the application of digital instrumentation and control systems in nuclear power plants. Designers of digital circuits are incorporating increasingly higher clock frequencies and lower logic level voltages, thereby leading to potentially greater susceptibility of spurious interference being misinterpreted as legitimate logic. Development of the technical basis for acceptance criteria to apply to these digital systems centers around establishing good engineering practices to ensure that sufficient levels of electromagnetic compatibility (EMC) are maintained between the nuclear power plant's electronic and electromechanical systems. First, good EMC design and installation practices are needed to control the emissions from interference sources and thereby their impact on other nearby circuits and systems. Secondly, a test and evaluation program is needed to outline the EMI tests to be performed, the associated test methods to be followed, and adequate test limits to ensure that the circuit or system under test meets the recommended guidelines. Test and evaluation should be followed by periodic maintenance to assess whether the recommended EMI control practices continue to be adhered to as part of the routine operation of the nuclear power plant. By following these steps, the probability of encountering safety-related instrumentation problems associated with EMI will be greatly reduced.

Ewing, P.D.; Korsah, K. (Oak Ridge National Lab., TN (United States)); Antonescu, C. (Nuclear Regulatory Commission, Washington, DC (United States). Office of Nuclear Regulatory Research)

1993-01-01T23:59:59.000Z

155

Electromagnetic low-energy constants in ChPT  

E-Print Network [OSTI]

We investigate three-flavour chiral perturbation theory including virtual photons in a limit where the strange quark mass is much larger than the external momenta and the up and down quark masses, and where the external fields are those of two-flavour chiral perturbation theory. In particular we work out the strange quark mass dependence of the electromagnetic two-flavour low-energy constants C and k_i. We expect that these relations will be useful for a more precise determination of the electromagnetic low-energy constants.

Christoph Haefeli; Mikhail A. Ivanov; Martin Schmid

2007-10-29T23:59:59.000Z

156

Electromagnetic-gravitational cross-sections in external electromagnetic fields  

E-Print Network [OSTI]

The classical processes: the conversion of photons into gravitons in the static electromagnetic fields are considered by using Feynman perturbation techniques. The differential cross sections are presented for the conversion in the electric field of the flat condesor and the magnetic field of the selenoid. A numerical evaluation shows that the cross sections may have the observable value in the present technical scenario.

Long, H N; Tran, T A; Tuan, T A; Long, Hoang Ngoc; Van Soa, Dang; Tran, Tuan A; Tuan, Tran Anh

1994-01-01T23:59:59.000Z

157

Making a difference: Ten case studies of DSM/IRP interactive efforts and related advocacy group activities  

SciTech Connect (OSTI)

This report discusses the activities of organizations that seek to promote integrated resource planning and aggressive, cost-effective demand-side management by utilities. The activities of such groups -- here called energy efficiency advocacy groups (EEAGs) -- are examined in ten detailed am studies. Nine of the cases involve some form of interactive effort between investor-owned electric utilities and non-utility to develop policies, plans, or programs cooperatively. Many but not all of the interactive efforts examined are formal collaboratives. In addition, all ten cases include discussion of other EEAG activities, such as coalition-building, research, participation in statewide energy planning, and intervention in regulatory proceedings.

English, M.; Schexnayder, S.; Altman, J. [Tennessee Univ., Knoxville, TN (United States). Energy, Environment and Resources Center; Schweitzer, M. [Oak Ridge National Lab., TN (United States)

1994-03-01T23:59:59.000Z

158

Three dimensional electromagnetic wavepackets in a plasma: Spatiotemporal modulational instability  

SciTech Connect (OSTI)

The nonlinear interaction of an intense electromagnetic beam with relativistic collisionless unmagnetized plasma is investigated by invoking the reductive perturbation technique, resting on the model of three-dimensional nonlinear Schrödinger (NLS) equation with cubic nonlinearity which incorporates the effects of self-focusing, self-phase modulation, and diffraction on wave propagation. Relying on the derived NLS equation, the occurrence of spatiotemporal modulational instability is investigated in detail.

Borhanian, J.; Hosseini Faradonbe, F. [Department of Physics, Faculty of Science, University of Mohaghegh Ardabili, P. O. Box 179, Ardabil (Iran, Islamic Republic of)] [Department of Physics, Faculty of Science, University of Mohaghegh Ardabili, P. O. Box 179, Ardabil (Iran, Islamic Republic of)

2014-04-15T23:59:59.000Z

159

CHARACTERIZATION OF THE COHERENT NOISE, ELECTROMAGNETIC COMPATIBILITY AND ELECTROMAGNETIC INTERFERENCE OF THE ATLAS EM CALORIMETER FRONT END BOARD  

SciTech Connect (OSTI)

The ATLAS Electromagnetic (EM) calorimeter (EMCAL) Front End Board (FEB) will be located in custom-designed enclosures solidly connected to the feedtroughs. It is a complex mixed signal board which includes the preamplifier, shaper, switched capacitor array analog memory unit (SCA), analog to digital conversion, serialization of the data and related control logic. It will be described in detail elsewhere in these proceedings. The electromagnetic interference (either pick-up from the on board digital activity, from power supply ripple or from external sources) which affects coherently large groups of channels (coherent noise) is of particular concern in calorimetry and it has been studied in detail.

CHASE,B.CITTERIO,M.LANNI,F.MAKOWIECKI,D.RADEKA,S.RESCIA,S.TAKAI,H.ET AL.

1999-09-20T23:59:59.000Z

160

CHARACTERIZATION OF THE COHERENT NOISE, ELECTROMAGNETIC COMPATIBILITY AND ELECTROMAGNETIC INTERFERENCE OF THE ATLAS EM CALORIMETER FRONT END BOARD  

SciTech Connect (OSTI)

The ATLAS Electromagnetic (EM) calorimeter (EMCAL) Front End Board (FEB) will be located in custom-designed enclosures solidly connected to the feedtroughs. It is a complex mixed signal board which includes the preamplifier, shaper, switched capacitor array analog memory unit (SCA), analog to digital conversion, serialization of the data and related control logic. It will be described in detail elsewhere in these proceedings. The electromagnetic interference (either pick-up from the on board digital activity, from power supply ripple or from external sources) which affects coherently large groups of channels (coherent noise) is of particular concern in calorimetry and it has been studied in detail.

CHASE,R.L.; CITTERIO,M.; LANNI,F.; MAKOWIECKI,D.; RADEKA,V.; RESCIA,S.; TAKAI,H.; BAN,J.; PARSONS,J.; SIPPACH,W.

2000-09-20T23:59:59.000Z

Note: This page contains sample records for the topic "interactive electromagnetic relations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, VOL. 55, NO. 2, APRIL 2013 395 Electromagnetic Interference Analysis of  

E-Print Network [OSTI]

to electromagnetic interference (EMI) is becoming a critical aspect of signal integrity analysis. For mod- eling in high-speed packages [2]. As a result, effi- cient and accurate electromagnetic interference (EMIIEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, VOL. 55, NO. 2, APRIL 2013 395 Electromagnetic

Roy, Sourajeet

162

Why Study Electromagnetics: The First Unit in an Undergraduate Electromagnetics Course  

E-Print Network [OSTI]

1 Why Study Electromagnetics: The First Unit in an Undergraduate Electromagnetics Course Allen unification of electric and magnetic fields predicting electromagnetic wave phenomena which Nobel Laureate: "Of what relevance is the study of electromagnetics to our modern society?" The goal of this unit

Taflove, Allen

163

STIMULATED ELECTROMAGNETIC EMISSIONS BY HIGH-FREQUENCY ELECTROMAGNETIC PUMPING OF THE  

E-Print Network [OSTI]

STIMULATED ELECTROMAGNETIC EMISSIONS BY HIGH-FREQUENCY ELECTROMAGNETIC PUMPING OF THE IONOSPHERIC.S.A. Abstract. A high frequency electromagnetic pump wave transmitted into the ionospheric plasma from the ground can stimulate electromagnetic radiation with frequencies around that of the ionospher- ically

164

relation functional proposed by Perdew, Burke, and Ernzerhof (PBE) [20] was adopted. To account for the valencecore interaction, ultra-  

E-Print Network [OSTI]

for the valence­core interaction, ultra- soft pseudopotentials [21] were chosen for Nb 4p and 4d states and norm)2), and lithium ethoxide (LiOC2H5) were used as precursors of inorganic components. Niobium ethoxide, titanium] K. Tanabe, M. Misono, Y. Ono, H. Hattori, New Solid Acids and Bases: Their Catalytic Properties

Van Vliet, Krystyn J.

165

Electromagnetic dissociation of relativistic [sup 28]Si by nucleon emission  

SciTech Connect (OSTI)

A detailed study of the electromagnetic dissociation of [sup 28]Si by nucleon emission at E[sub lab]/A = 14.6 (GeV/nucleon was carried out with [sup 28]Si beams interacting on [sup 208]Pb). [sup 120]Sn. [sup 64]C targets. The measurements apparatus consists of detectors in the target area which measure the energy and charged multiplicity, and a forward spectrometer which measures the position, momentum and energy of the reaction fragments. The exclusive electromagnetic dissociation cross sections for decay channels having multiple nucleons in the final state have been measured which enables the selection of events produced in pure electromagnetic interactions. The measured cross sections agree well with previous measurements obtained for the removal of a few nucleons as well as with measurements on total charge removal cross sections from other experiments. The dependence of the integrated cross sections on the target charge Z[sub T] and the target mass AT confirms that for higher Z targets the excitation is largely electromagnetic. Direct measurements of the excitation energy for the electromagnetic dissociation of [sup 28]Si [yields] p+[sup 27]Al and [sup 28]Si [yields] n+[sup 27]Si have been obtained through a calculation of the invariant mass in kinematically, reconstructed events. The excitation energy spectrum for all targets peak near the isovector giant dipole resonance in [sup 28]Si. These distributions are well reproduced by combining the photon spectrum calculated using the Weizsaecker-Williams approximation with the experimental data on the photonuclear [sup 28]Si([sub [gamma],p])[sup 27]Al and [sup 28]Si([sub [gamma],n])[sup 27]Si. The possibilities of observing double giant dipole resonance excitations in [sup 28]Si have been investigated with cross section measurements as well as with excitation energy reconstruction.

Sonnadara, U.J.

1992-12-01T23:59:59.000Z

166

Electromagnetic dissociation of relativistic {sup 28}Si by nucleon emission  

SciTech Connect (OSTI)

A detailed study of the electromagnetic dissociation of {sup 28}Si by nucleon emission at E{sub lab}/A = 14.6 (GeV/nucleon was carried out with {sup 28}Si beams interacting on {sup 208}Pb). {sup 120}Sn. {sup 64}C targets. The measurements apparatus consists of detectors in the target area which measure the energy and charged multiplicity, and a forward spectrometer which measures the position, momentum and energy of the reaction fragments. The exclusive electromagnetic dissociation cross sections for decay channels having multiple nucleons in the final state have been measured which enables the selection of events produced in pure electromagnetic interactions. The measured cross sections agree well with previous measurements obtained for the removal of a few nucleons as well as with measurements on total charge removal cross sections from other experiments. The dependence of the integrated cross sections on the target charge Z{sub T} and the target mass AT confirms that for higher Z targets the excitation is largely electromagnetic. Direct measurements of the excitation energy for the electromagnetic dissociation of {sup 28}Si {yields} p+{sup 27}Al and {sup 28}Si {yields} n+{sup 27}Si have been obtained through a calculation of the invariant mass in kinematically, reconstructed events. The excitation energy spectrum for all targets peak near the isovector giant dipole resonance in {sup 28}Si. These distributions are well reproduced by combining the photon spectrum calculated using the Weizsaecker-Williams approximation with the experimental data on the photonuclear {sup 28}Si({sub {gamma},p}){sup 27}Al and {sup 28}Si({sub {gamma},n}){sup 27}Si. The possibilities of observing double giant dipole resonance excitations in {sup 28}Si have been investigated with cross section measurements as well as with excitation energy reconstruction.

Sonnadara, U.J.

1992-12-01T23:59:59.000Z

167

Structurally Electromagnetic Formation Flight (EMFF)  

E-Print Network [OSTI]

Structurally connected secondary mirror EMFF secondary mirror EMFF Design Electromagnetic Formation for a smaller, simpler system. µEMFF investigates the use of conventional conductors, capacitors, and solar propellants that often limit lifetime, the EMFF system uses solar power to energize a magnetic field

de Weck, Olivier L.

168

611: Electromagnetic Theory Problem Sheet 5  

E-Print Network [OSTI]

611: Electromagnetic Theory Problem Sheet 5 (1a) The Null Energy Condition on an energy = (k, 0, 0, k), show that the energy-momentum tensor Tµ = 1 4 Fµ F - 1 4µ F F (1) for electromagnetism if the equality kµ k Tµ = 0 is attained. (2) Show that the energy-momentum tensor for electromagnetism can

Pope, Christopher

169

Electromagnetic Interrogation of Dielectric Materials 1  

E-Print Network [OSTI]

Electromagnetic Interrogation of Dielectric Materials 1 H.T. Banks M.W. Buksas Center for Research grant P200A40730. #12; Abstract We investigate time domain based electromagnetic inverse problems electromagnetic phenomenon. For our purposes, we categorize the materials and the models employed to describe them

170

Course Outline Physics 433: Electromagnetism II  

E-Print Network [OSTI]

Course Outline Physics 433: Electromagnetism II Spring 2014 Prof. Keun Hyuk "Ken" Ahn 483 Tiernan of this course is on the elementary concepts of electromagnetic fields. Upon completion of the course, students are expected to be capable of using the Maxwell equations to calculate simple electromagnetic problems, ranging

171

611: Electromagnetic Theory Problem Sheet 5  

E-Print Network [OSTI]

611: Electromagnetic Theory Problem Sheet 5 (1a) Show that the energy-momentum tensor for the electromagnetic field is tracefree, i.e. Tµ µ = 0. What would happen, in a spacetime dimension d = 4? (Assume) Show that the energy-momentum tensor for the electromagnetic field can be written as Tµ = 1 8 (Fµ F

Pope, Christopher

172

Electromagnetic Corrections in Staggered Chiral Perturbation Theory  

E-Print Network [OSTI]

Electromagnetic Corrections in Staggered Chiral Perturbation Theory C. Bernard and E.D. Freeland perturbation theory including electromagnetism, and discuss the extent to which quenched-photon simulations can-lat]17Nov2010 #12;Electromagnetic Corrections in Staggered Chiral Perturbation Theory E.D. Freeland 1

Bernard, Claude

173

Physics 4: Introductory Physics Electromagnetism and Light  

E-Print Network [OSTI]

Physics 4: Introductory Physics Electromagnetism and Light Professor Jeffrey D. Richman Department: Electromagnetism and Light Welcome to Physics 4! What is your goal in life? If it is to become an engineer or to pursue a career in science, this is a key class for you. Understanding electromagnetism and light

Fygenson, Deborah Kuchnir

174

611: Electromagnetic Theory Problem Sheet 5  

E-Print Network [OSTI]

611: Electromagnetic Theory Problem Sheet 5 (1) Consider the expression for the electric field due · dS over a spherical surface that encloses the moving charge. (2a) Consider an electromagnetic wave density and the Poynting vector. (2c) Repeat the steps in (2a) and (2b) for an electromagnetic wave

Pope, Christopher

175

611: Electromagnetic Theory Problem Sheet 6  

E-Print Network [OSTI]

611: Electromagnetic Theory Problem Sheet 6 (1) Consider the expression for the electric field due · dS over a spherical surface that encloses the moving charge. (2a) Consider an electromagnetic wave density and the Poynting vector. (2c) Repeat the steps in (2a) and (2b) for an electromagnetic wave

Pope, Christopher

176

Electromagnetics from Simulation to Optimal Design  

E-Print Network [OSTI]

1 Electromagnetics from Simulation to Optimal Design Christian Hafner Laboratory for Electromagnetic Fields and Microwave Electronics (IFH) ETH Zurich (Switzerland) Lab: http://www.ifh.ee.ethz.ch COG 23, 2013 #12;2 IFH courses · Advanced engineering electromagnetics (Leuchtmann, start spring 2014

Lang, Annika

177

Electromagnetic Formation Flight of Satellite Arrays  

E-Print Network [OSTI]

Electromagnetic Formation Flight of Satellite Arrays Daniel W. Kwon and David W. Miller February 2005 SSL # 2-05 #12;#12;Electromagnetic Formation Flight of Satellite Arrays By DANIEL W. KWON S;#12;Electromagnetic Formation Flight of Satellite Arrays by DANIEL W. KWON Submitted to the Department of Aeronautics

178

Characterization of the coherent noise, electromagnetic compatibility and electromagnetic interference of the ATLAS EM calorimeter Front End Board  

E-Print Network [OSTI]

Characterization of the coherent noise, electromagnetic compatibility and electromagnetic interference of the ATLAS EM calorimeter Front End Board

Chase, B E; Lanni, F; Makowiecki, D S; Radeka, V; Rescia, S; Takai, H; Bán, J; Parsons, J; Sippach, W

1999-01-01T23:59:59.000Z

179

Vibration Isolation using a Shunted Electromagnetic S. Behrens, A. J. Fleming, S. O. R. Moheimani  

E-Print Network [OSTI]

a base disturbance y. A low- frequency mass-spring-damper is often employed as a mechanical filter to the terminals of an electromagnetic coil, the relative mechanical velocity between the coil and magnet can

Fleming, Andrew J.

180

Plasmon decay to a neutrino pair via neutrino electromagnetic moments in a strongly magnetized medium  

E-Print Network [OSTI]

We calculate the neutrino luminosity of a degenerate electron gas in a strong magnetic field via plasmon decay to a neutrino pair due to neutrino electromagnetic moments and obtain the relative upper bounds on the effective neutrino magnetic moment.

A. V. Borisov; P. E. Sizin

2014-06-12T23:59:59.000Z

Note: This page contains sample records for the topic "interactive electromagnetic relations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Nonlinear interaction of meta-atoms through optical coupling  

SciTech Connect (OSTI)

We propose and experimentally demonstrate a multi-frequency nonlinear coupling mechanism between split-ring resonators. We engineer the coupling between two microwave resonators through optical interaction, whilst suppressing the direct electromagnetic coupling. This allows for a power-dependent interaction between the otherwise independent resonators, opening interesting opportunities to address applications in signal processing, filtering, directional coupling, and electromagnetic compatibility.

Slobozhanyuk, A. P.; Kapitanova, P. V.; Filonov, D. S.; Belov, P. A. [National Research University of Information Technologies, Mechanics and Optics (ITMO), St. Petersburg 197101 (Russian Federation)] [National Research University of Information Technologies, Mechanics and Optics (ITMO), St. Petersburg 197101 (Russian Federation); Powell, D. A. [Nonlinear Physics Centre and Centre for Ultrahigh-bandwidth Devices for Optical Systems (CUDOS), Australian National University, Canberra, ACT 0200 (Australia)] [Nonlinear Physics Centre and Centre for Ultrahigh-bandwidth Devices for Optical Systems (CUDOS), Australian National University, Canberra, ACT 0200 (Australia); Shadrivov, I. V.; Kivshar, Yu. S. [National Research University of Information Technologies, Mechanics and Optics (ITMO), St. Petersburg 197101 (Russian Federation) [National Research University of Information Technologies, Mechanics and Optics (ITMO), St. Petersburg 197101 (Russian Federation); Nonlinear Physics Centre and Centre for Ultrahigh-bandwidth Devices for Optical Systems (CUDOS), Australian National University, Canberra, ACT 0200 (Australia); Lapine, M., E-mail: mlapine@physics.usyd.edu.au [National Research University of Information Technologies, Mechanics and Optics (ITMO), St. Petersburg 197101 (Russian Federation); Centre for Ultrahigh-bandwidth Devices for Optical Systems (CUDOS), School of Physics, University of Sydney, New South Wales 2006 (Australia); McPhedran, R. C. [Centre for Ultrahigh-bandwidth Devices for Optical Systems (CUDOS), School of Physics, University of Sydney, New South Wales 2006 (Australia)] [Centre for Ultrahigh-bandwidth Devices for Optical Systems (CUDOS), School of Physics, University of Sydney, New South Wales 2006 (Australia)

2014-01-06T23:59:59.000Z

182

Strong permanent magnet-assisted electromagnetic undulator  

DOE Patents [OSTI]

This invention discloses an improved undulator comprising a plurality of electromagnet poles located along opposite sides of a particle beam axis with alternate north and south poles on each side of the beam to cause the beam to wiggle or undulate as it travels generally along the beam axis and permanent magnets spaced adjacent the electromagnetic poles on each side of the axis of said particle beam in an orientation sufficient to reduce the saturation of the electromagnet poles whereby the field strength of the electromagnet poles can be increased beyond the normal saturation levels of the electromagnetic poles.

Halbach, Klaus (Berkeley, CA)

1988-01-01T23:59:59.000Z

183

Electromagnetic Induced Gravitational Perturbations  

E-Print Network [OSTI]

We study the physical consequences of two diffferent but closely related perturbation schemes applied to the Einstein-Maxwell equations. In one case the starting space-time is flat while in the other case it is Schwarzschild. In both cases the perturbation is due to a combined electric and magnetic dipole field. We can see, within the Einstein-Maxwell equations a variety of physical consequences. They range from induced gravitational energy-momentum loss, to a well defined spin angular momentum with its loss and a center-of-mass with its equations of motion.

T. M. Adamo; E. T. Newman

2008-07-23T23:59:59.000Z

184

Some Wave Equations for Electromagnetism and Gravitation  

E-Print Network [OSTI]

The paper studies the inferences of wave equations for electromagnetic fields when there are gravitational fields at the same time. In the description with the algebra of octonions, the inferences of wave equations are identical with that in conventional electromagnetic theory with vector terminology. By means of the octonion exponential function, we can draw out that the electromagnetic waves are transverse waves in a vacuum, and rephrase the law of reflection, Snell's law, Fresnel formula, and total internal reflection etc. The study claims that the theoretical results of wave equations for electromagnetic strength keep unchanged in the case for coexistence of gravitational and electromagnetic fields. Meanwhile the electric and magnetic components of electromagnetic waves can not be determined simultaneously in electromagnetic fields.

Zi-Hua Weng

2010-08-11T23:59:59.000Z

185

Transient electromagnetic interference in substations  

SciTech Connect (OSTI)

Electromagnetic interference levels on sensitive electronic equipment are quantified experimentally and theoretically in air and gas insulated substations of different voltages. Measurement techniques for recording interference voltages and currents and electric and magnetic fields are reviewed and actual interference data are summarized. Conducted and radiated interference coupling mechanisms and levels in substation control wiring are described using both measurement results and electromagnetic models validated against measurements. The nominal maximum field and control wire interference levels expected in the switchyard and inside the control house from switching operations, faults, and an average lightning strike are estimated using high frequency transient coupling models. Comparisons with standards are made and recommendations given concerning equipment shielding and surge protection.

Wiggins, C.M.; Thomas, D.E.; Nickel, F.S.; Salas, T.M. (BDM International, Inc., Albuquerque, NM (United States)); Wright, S.E. (Electric Power Research Inst., Palo Alto, CA (United States))

1994-10-01T23:59:59.000Z

186

Dark Energy, Gravitation and Electromagnetism  

E-Print Network [OSTI]

In the context of the fact that the existence of dark energy causing the accelerated expansion of the universe has been confirmed by the WMAP and the Sloan Digital Sky Survey, we re-examine gravitation itself, starting with the formulation of Sakharov and show that it is possible to obtain gravitation in terms of the electromagnetic charge of elementary particles, once the ZPF and its effects at the Compton scale are taken into account.

B. G. Sidharth

2004-01-08T23:59:59.000Z

187

Laminated electromagnetic pump stator core  

DOE Patents [OSTI]

A stator core for an electromagnetic pump includes a plurality of circumferentially abutting tapered laminations extending radially outwardly from a centerline axis to collectively define a radially inner bore and a radially outer circumference. Each of the laminations includes radially inner and outer edges and has a thickness increasing from the inner edge toward the outer edge to provide a substantially continuous path adjacent the circumference. This pump is used in nuclear fission reactors. 19 figs.

Fanning, A.W.

1995-08-08T23:59:59.000Z

188

Shielding effectiveness against electromagnetic interference  

SciTech Connect (OSTI)

The use of metal-filled and metal-coated plastics and other modified dielectric materials to replace metals for enclosures has created a need to test these materials for their electromagnetic interference (EMI) shielding effectiveness (SE). Shielding effectiveness involves a variety of electromagnetic environments, and useful data can be obtained from tests that carefully limit the environment to that of a plane wave. Such an environment can be created in a circular or rectangular transmission line. Two such transmission line test fixtures, which hold samples of the material to be tested, have been developed. The fixtures described in this report are the National Bureau of Standards (NBS) coaxial transverse electromagnetic (TEM) cell, and a dual TEM cell constructed at ORNL from a design suggested by the NBS. The NBS coaxial fixture is an improved version of the device recommended by the American Society for Testing and Materials (ASTM). The problems associated with measuring SE are well described in the literature. The two methods described here are the result of years of work to establish procedures and instrumentation that will produce acceptable data.

Googe, J.M.; Hess, R.A.

1987-10-01T23:59:59.000Z

189

The nature of electromagnetic energy  

E-Print Network [OSTI]

The nature of the electromagnetic (EM) energy for general charge and current distributions is analyzed. There are two well known forms for calculating EM energy as the integral over all space of either the electromagnetic fields: $u_{\\bf EB}=({\\bf E\\bcdot D+B\\bcdot H})/8\\pi$, or the electromagnetic potentials and charge-current densities: $u_{\\rho{\\bf A}}=1/2(\\rho\\phi+{\\bf j\\bcdot A})$. We discuss the appropriate use of each of these forms in calculating the total EM energy and the EM energy within a limited volume. We conclude that only the form $u_{\\bf EB}$ can be considered as a suitable EM energy density, while either form can be integrated to find the total EM energy. However, bounding surface integrals (if they don't vanish) must be included when using the $u_{\\bf EB}$ form. Including these surface integrals resolves some seeming paradoxes in the energy of electric or magnetic dipoles in uniform fields

Jerrold Franklin

2007-07-23T23:59:59.000Z

190

Electromagnetic Probes at RHIC-II  

E-Print Network [OSTI]

We summarize how future measurements of electromagnetic (e.m.) probes at the Relativistic Heavy Ion Collider (RHIC), in connection with theoretical analysis, can advance our understanding of strongly interacting matter at high energy densities and temperatures. After a brief survey of the important role that e.m. probes data have played at the Super Proton Synchrotron (SPS, CERN) and RHIC to date, we identify key physics objectives and observables that remain to be addressed to characterize the (strongly interacting) Quark-Gluon Plasma (sQGP) and associated transition properties at RHIC. These include medium modifications of vector mesons via low-mass dileptons, a temperature measurement of the hot phases via continuum radiation, as well as gamma-gamma correlations to characterize early source sizes. We outline strategies to establish microscopic matter and transition properties such as the number of degrees of freedom in the sQGP, the origin of the hadron masses and manifestations of chiral symmetry restoration, which will require accompanying but rather well-defined advances in theory. Increased experimental precision, order of magnitude higher statistics than currently achievable, as well as a detailed scan of colliding species and energies are then mandatory to achieve sufficient discrimination power in theoretical interpretations. This increased precision can be achieved with hardware upgrades to the large RHIC detectors (PHENIX and STAR) along with at least a factor of ten as increase in luminosity over the next few years as envisioned for RHIC-II.

G. David; R. Rapp; Z. Xu

2008-04-25T23:59:59.000Z

191

Electromagnetic waves with nonlinear dispersion law  

E-Print Network [OSTI]

Last year physicists in Europe have measured the velocity of the neutrinos particles. They found the neutrinos moving faster than the speed of light in vacuum. This result means that Einstein's relativity principle and its consequences in modern physics need a global additional renovation. In present paper the part of this problem is considered in terms of basic Maxwell's method only. By means of introduction a diffusion like displacement current the new super wave equation was derived, which permits of its solution be described the electromagnetic waves moving some faster than the conventional speed of light in vacuum especially in a gamma ray of a very short wave length region. The unique properties of these waves are that they undergo nonlinear dispersion law, uppermost limit of which is restricted. Discussion of further experimental problems and a number of estimations are given for the macro physic super wave equations also.

Pavel Mednis

2012-02-08T23:59:59.000Z

192

Emergent cosmological constant from colliding electromagnetic waves  

E-Print Network [OSTI]

In this study we advocate the view that the cosmological constant is of electromagnetic (em) origin, which can be generated from the collision of em shock waves coupled with gravitational shock waves. The wave profiles that participate in the collision have different amplitudes. It is shown that, circular polarization with equal amplitude waves does not generate cosmological constant. We also prove that the generation of the cosmological constant is related to the linear polarization. The addition of cross polarization generates no cosmological constant. Depending on the value of the wave amplitudes, the generated cosmological constant can be positive or negative. We show additionally that, the collision of nonlinear em waves in a particular class of Born-Infeld theory also yields a cosmological constant.

M. Halilsoy; S. Habib Mazharimousavi; O. Gurtug

2014-10-15T23:59:59.000Z

193

Electromagnetic Effects in SDF Explosions  

SciTech Connect (OSTI)

The notion of high ion and electron concentrations in the detonation of aluminized explosive mixtures has aroused some interest in electro-magnetic effects that the SDF charges might generate when detonated. Motivated by this interest we have started to investigate whether significant electro-magnetic effects show up in our small-scale experiments. However, the design of instrumentation for this purpose is far from straightforward, since there are a number of open questions. Thus the main aim of the feasibility tests is to find - if possible - a simple and reliable method that can be used as a diagnostic tool for electro-magnetic effects. SDF charges with a 0.5-g PETN booster and a filling of 1 g aluminum flakes have been investigated in three barometric bomb calorimeters with volumes ranging from 6.3 l to of 6.6 l. Though similar in volume, the barometric bombs differed in the length-to-diameter ratio. The tests were carried out with the bombs filled with either air or nitrogen at ambient pressure. The comparison of the test in air to those in nitrogen shows that the combustion of TNT detonation products or aluminum generates a substantial increase of the quasi-steady overpressure in the bombs. Repeated tests in the same configuration resulted in some scatter of the experimental results. The most likely reason is that the aluminum combustion in most or all cases is incomplete and that the amount of aluminum actually burned varies from test to test. The mass fraction burned apparently decreases with increasing aspect ratio L/D. Thus an L/D-ratio of about 1 is optimal for the performance of shock-dispersed-fuel combustion. However, at an L/D-ratio of about 5 the combustion still yields appreciable overpressure in excess of the detonation. For a multi-burst scenario in a tunnel environment with a number of SDF charges distributed along a tunnel section a spacing of 5 tunnel diameter and a fuel-specific volume of around 7 l/g might provide an acceptable compromise between optimizing the combustion performance and keeping the number of elementary charges low. Further tests in a barometric bomb calorimeter of 21.2 l volume were performed with four types of aluminum. The mass fraction burned in this case appeared to depend on the morphology of the aluminum particles. Flake aluminum exhibited a better performance than granulated aluminum with particle sizes ranging from below 25 {micro}m to 125 {micro}m for the coarsest material. In addition, a feasibility study on electro-magnetic effects from SDF charges detonated in a tunnel has been performed. A method was developed to measure the local, unsteady electro-conductivity in the detonation/combustion products cloud. This method proved to yield reproducible results. A variety of methods were tested with regard to probing electro-magnetic pulses from the detonation of SDF charges. The results showed little reproducibility and were small compared to the effect from pulsed high voltage discharges of comparatively small energy (around 32 J). Thus either no significant electromagnetic pulse is generated in our small-scale tests or the tested techniques have to be discarded as too insensitive or too limited in bandwidth to detect possibly very high frequency electro-magnetic disturbances.

Reichenbach, H; Neuwald, P; Kuhl, A L

2010-02-12T23:59:59.000Z

194

Dynamics of electromagnetic solitons in a relativistic plasma  

SciTech Connect (OSTI)

Dynamical features of one-dimensional electromagnetic solitons formed in a relativistic interaction of a linearly polarized laser light with underdense cold plasma are investigated. The relativistic Lorentz force in an intense laser light pushes electrons into longitudinal motion, generating coupled longitudinal-transverse waves. In a weakly relativistic approximation these modes are well described by the generalized nonlinear Schroedinger type of equation, with two extra nonlocal terms. Here, an original analytical solution for a moving electromagnetic soliton is derived in an implicit form. For an isolated soliton, our analysis shows that the motion downshifts the soliton eigenfrequency and decreases its amplitude. The effect of the soliton velocity on the stability is analytically predicted and checked numerically. Results show shifting of the stability region toward larger amplitudes in comparison to the standing soliton case. Rich dynamics with examples of (un)stable soliton propagation and breather creation and formation of unstable cusp-type structures is exposed numerically.

Mancic, Ana; Hadzievski, Ljupco; Skoric, Milos M. [Department of Physics, Faculty of Sciences and Mathematics, University of Nis, P. O. B. 224, 18001 Nis (Serbia and Montenegro); Vinca Institute of Nuclear Sciences, P.O. Box 522, 11001 Belgrade (Serbia and Montenegro); National Institute for Fusion Science, Toki, 509-5292 (Japan)

2006-05-15T23:59:59.000Z

195

Electromagnetic and nuclear radiation detector using micromechanical sensors  

DOE Patents [OSTI]

Electromagnetic and nuclear radiation is detected by micromechanical sensors that can be coated with various interactive materials. As the micromechanical sensors absorb radiation, the sensors bend and/or undergo a shift in resonance characteristics. The bending and resonance changes are detected with high sensitivity by any of several detection methods including optical, capacitive, and piezoresistive methods. Wide bands of the electromagnetic spectrum can be imaged with picoJoule sensitivity, and specific absorptive coatings can be used for selective sensitivity in specific wavelength bands. Microcantilevers coated with optical cross-linking polymers are useful as integrating optical radiation dosimeters. Nuclear radiation dosimetry is possible by fabricating cantilevers from materials that are sensitive to various nuclear particles or radiation. Upon exposure to radiation, the cantilever bends due to stress and its resonance frequency shifts due to changes in elastic properties, based on cantilever shape and properties of the coating.

Thundat, Thomas G. (Knoxville, TN); Warmack, Robert J. (Knoxville, TN); Wachter, Eric A. (Oak Ridge, TN)

2000-01-01T23:59:59.000Z

196

Multiscale approaches to protein-mediated interactions between membranes - Relating microscopic and macroscopic dynamics in radially growing adhesions  

E-Print Network [OSTI]

Macromolecular complexation leading to coupling of two or more cellular membranes is a crucial step in a number of biological functions of the cell. While other mechanisms may also play a role, adhesion always involves the fluctuations of deformable membranes, the diffusion of proteins and the molecular binding and unbinding. Because these stochastic processes couple over a multitude of time and length scales, theoretical modeling of membrane adhesion has been a major challenge. Here we present an effective Monte Carlo scheme within which the effects of the membrane are integrated into local rates for molecular recognition. The latter step in the Monte Carlo approach enables us to simulate the nucleation and growth of adhesion domains within a system of the size of a cell for tens of seconds without loss of accuracy, as shown by comparison to $10^6$ times more expensive Langevin simulations. To perform this validation, the Langevin approach was augmented to simulate diffusion of proteins explicitly, together with reaction kinetics and membrane dynamics. We use the Monte Carlo scheme to gain deeper insight to the experimentally observed radial growth of micron sized adhesion domains, and connect the effective rate with which the domain is growing to the underlying microscopic events. We thus demonstrate that our technique yields detailed information about protein transport and complexation in membranes, which is a fundamental step toward understanding even more complex membrane interactions in the cellular context.

Timo Bihr; Udo Seifert; Ana-Suncana Smith

2015-03-05T23:59:59.000Z

197

Electromagnetic wave scattering by Schwarzschild black holes  

E-Print Network [OSTI]

We analyze the scattering of a planar monochromatic electromagnetic wave incident upon a Schwarzschild black hole. We obtain accurate numerical results from the partial wave method for the electromagnetic scattering cross section, and show that they are in excellent agreement with analytical approximations. The scattering of electromagnetic waves is compared with the scattering of scalar, spinor and gravitational waves. We present a unified picture of the scattering of all massless fields for the first time.

Luís C. B. Crispino; Sam R. Dolan; Ednilton S. Oliveira

2009-05-20T23:59:59.000Z

198

Cellular Manipulation and Control by Electromagnetism | Argonne...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

phenomenon for sensors; however, one may also use intense electromagnetic radiation, such as pulsed power, plasmas, or lasers, to induce changes in cellular...

199

6.630 Electromagnetic Theory, Fall 2002  

E-Print Network [OSTI]

6.630 is an introductory subject on electromagnetics, emphasizing fundamental concepts and applications of Maxwell equations. Topics covered include: polarization, dipole antennas, wireless communications, forces and energy, ...

Kong, Jin Au, 1942-

200

Electromagnetic effects on transportation systems  

SciTech Connect (OSTI)

Electronic and electrical system protection design can be used to eliminate deleterious effects from lightning, electromagnetic interference, and electrostatic discharges. Evaluation of conventional lightning protection systems using advanced computational modeling in conjunction with rocket-triggered lightning tests suggests that currently used lightning protection system design rules are inadequate and that significant improvements in best practices used for electronic and electrical system protection designs are possible. A case study of lightning induced upset and failure of a railway signal and control system is sketched.

Morris, M.E.; Dinallo, M.A.

1996-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "interactive electromagnetic relations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Quantum modulation against electromagnetic interference  

E-Print Network [OSTI]

Periodic signals in electrical and electronic equipment can cause interference in nearby devices. Randomized modulation of those signals spreads their energy through the frequency spectrum and can help to mitigate electromagnetic interference problems. The inherently random nature of quantum phenomena makes them a good control signal. I present a quantum modulation method based on the random statistics of quantum light. The paper describes pulse width modulation schemes where a Poissonian light source acts as a random control that spreads the energy of the potential interfering signals. I give an example application for switching-mode power supplies and comment the further possibilities of the method.

Juan Carlos Garcia-Escartin

2014-11-26T23:59:59.000Z

202

Electromagnetic properties of massive neutrinos  

SciTech Connect (OSTI)

The vertex function for a virtual massive neutrino is calculated in the limit of soft real photons. A method based on employing the neutrino self-energy operator in a weak external electromagnetic field in the approximation linear in the field is developed in order to render this calculation of the vertex function convenient. It is shown that the electric charge and the electric dipole moment of the real neutrino are zero; only the magnetic moment is nonzero for massive neutrinos. A fourth-generation heavy neutrino of mass not less than half of the Z-boson mass is considered as a massive neutrino.

Dobrynina, A. A., E-mail: aleksandradobrynina@rambler.ru; Mikheev, N. V.; Narynskaya, E. N. [Demidov Yaroslavl State University (Russian Federation)] [Demidov Yaroslavl State University (Russian Federation)

2013-10-15T23:59:59.000Z

203

Gravitation and electromagnetism in theory of a unified four-vector field  

E-Print Network [OSTI]

A four-vector field in flat space-time, satisfying a gauge-invariant set of second-order differential equations, is considered as a unified field. The model variational principle corresponds to the general covariance idea and gives rise to nonlinear Born-Infeld electrodynamics. Thus the four-vector field is considered as an electromagnetic potential. It is suggested that space-localized (particle) solutions of the nonlinear field model correspond to material particles. Electromagnetic and gravitational interactions between field particles appear naturally when a many-particle solution is investigated with the help of a perturbation method. The electromagnetic interaction appears in the first order in the small field of distant particles. In the second order, there is an effective Riemannian space induced by the field of distant particles. This Riemannian space can be connected with gravitation.

Alexander A. Chernitskii

2006-09-28T23:59:59.000Z

204

Electromagnetically Restrained Lithium Blanket APEX Interim Report November, 1999  

E-Print Network [OSTI]

to avoid corrosion or fire. Lithium's high electrical conductivity may possibly permit efficient, compactElectromagnetically Restrained Lithium Blanket APEX Interim Report November, 1999 6-1 CHAPTER 6: ELECTROMAGNETICALLY RESTRAINED LITHIUM BLANKET Contributors Robert Woolley #12;Electromagnetically Restrained Lithium

California at Los Angeles, University of

205

Electromagnetic Inverse Problems Involving Distributions of Dielectric Mechanisms and Parameters  

E-Print Network [OSTI]

Electromagnetic Inverse Problems Involving Distributions of Dielectric Mechanisms and Parameters H University, Raleigh, NC 27695-8205 August 17, 2005 Abstract We consider electromagnetic interrogation, uniform, log-normal, and log-Bi-Gaussian distributions. Keywords: Electromagnetic interrogation

206

Regularity and approximation of systems arising in electromagnetic interrogation of  

E-Print Network [OSTI]

Regularity and approximation of systems arising in electromagnetic interrogation of dielectric describes the electromagnetic interrogation of dielectric materials. We address the well describing the electromagnetic in- terrogation of dielectric materials. Let E and H be the intensities

207

Conservation of the spin and orbital angular momenta in electromagnetism  

E-Print Network [OSTI]

We review and re-examine the description and separation of the spin and orbital angular momenta (AM) of an electromagnetic field in free space. While the spin and orbital AM of light are not separately-meaningful physical quantities in orthodox quantum mechanics or classical field theory, these quantities are routinely measured and used for applications in optics. A meaningful quantum description of the spin and orbital AM of light was recently provided by several authors, which describes separately conserved and measurable integral values of these quantities. However, the electromagnetic field theory still lacks corresponding locally-conserved spin and orbital AM currents. In this paper, we construct these missing spin and orbital AM densities and fluxes that satisfy the proper continuity equations. We show that these are physically measurable and conserved quantities. These are, however, not Lorentz-covariant, so only make sense in the single laboratory reference frame of the measurement probe. The fluxes we derive improve the canonical (non-conserved) spin and orbital AM fluxes, and include a `spin-orbit' term that describes the spin-orbit interaction effects observed in nonparaxial optical fields. We also consider both standard and dual-symmetric versions of the electromagnetic field theory. Applying the general theory to nonparaxial optical vortex beams validates our results and allows us to discriminate between earlier approaches to the problem. Our treatment yields the complete and consistent description of the spin and orbital AM of free Maxwell fields in both quantum-mechanical and field-theory approaches.

Konstantin Y. Bliokh; Justin Dressel; Franco Nori

2014-08-03T23:59:59.000Z

208

Narrow field electromagnetic sensor system and method  

DOE Patents [OSTI]

A narrow field electromagnetic sensor system and method of sensing a characteristic of an object provide the capability to realize a characteristic of an object such as density, thickness, or presence, for any desired coordinate position on the object. One application is imaging. The sensor can also be used as an obstruction detector or an electronic trip wire with a narrow field without the disadvantages of impaired performance when exposed to dirt, snow, rain, or sunlight. The sensor employs a transmitter for transmitting a sequence of electromagnetic signals in response to a transmit timing signal, a receiver for sampling only the initial direct RF path of the electromagnetic signal while excluding all other electromagnetic signals in response to a receive timing signal, and a signal processor for processing the sampled direct RF path electromagnetic signal and providing an indication of the characteristic of an object. Usually, the electromagnetic signal is a short RF burst and the obstruction must provide a substantially complete eclipse of the direct RF path. By employing time-of-flight techniques, a timing circuit controls the receiver to sample only the initial direct RF path of the electromagnetic signal while not sampling indirect path electromagnetic signals. The sensor system also incorporates circuitry for ultra-wideband spread spectrum operation that reduces interference to and from other RF services while allowing co-location of multiple electronic sensors without the need for frequency assignments.

McEwan, Thomas E. (Livermore, CA)

1996-01-01T23:59:59.000Z

209

Space-time Curvature of Classical Electromagnetism  

E-Print Network [OSTI]

The space-time curvature carried by electromagnetic fields is discovered and a new unification of geometry and electromagnetism is found. Curvature is invariant under charge reversal symmetry. Electromagnetic field equations are examined with De Rham co homology theory. Radiative electromagnetic fields must be exact and co exact to preclude unobserved massless topological charges. Weyl's conformal tensor, here called ``the gravitational field'', is decomposed into a divergence-free non-local piece with support everywhere and a local piece with the same support as the matter. By tuning a local gravitational field to a Maxwell field the electromagnetic field's local gravitational field is discovered. This gravitational field carries the electromagnetic field's polarization or phase information, unlike Maxwell's stress-energy tensor. The unification assumes Einstein's equations and derives Maxwell's equations from curvature assumptions. Gravity forbids magnetic monopoles! This unification is stronger than the Einstein-Maxwell equations alone, as those equations must produce the electromagnetic field's local gravitational field and not just any conformal tensor. Charged black holes are examples. Curvature of radiative null electromagnetic fields is characterized.

R. W. M. Woodside

2004-10-08T23:59:59.000Z

210

Electromagnetic corrections to light hadron masses  

E-Print Network [OSTI]

At the precision reached in current lattice QCD calculations, electromagnetic effects are becoming numerically relevant. We will present preliminary results for electromagnetic corrections to light hadron masses, based on simulations in which a $\\mathrm{U}(1)$ degree of freedom is superimposed on $N_f=2+1$ QCD configurations from the BMW collaboration.

A. Portelli; S. Dürr; Z. Fodor; J. Frison; C. Hoelbling; S. D. Katz; S. Krieg; T. Kurth; L. Lellouch; T. Lippert; K. K. Szabó; A. Ramos

2011-01-12T23:59:59.000Z

211

Optimization Material Distribution methodology: Some electromagnetic examples  

E-Print Network [OSTI]

730 1 Optimization Material Distribution methodology: Some electromagnetic examples P. Boissoles, H. Ben Ahmed, M. Pierre, B. Multon Abstract--In this paper, a new approach towards Optimization Material to be highly adaptive to various kinds of electromagnetic actuator optimization approaches. Several optimal

Paris-Sud XI, Université de

212

The interaction between the Moon and the solar wind  

E-Print Network [OSTI]

We study the interaction between the Moon and the solar wind using a three-dimensional hybrid plasma solver. The proton fluxes and electromagnetical fields are presented for typical solar wind conditions with different magnetic field directions. Several features are consistent with a fluid interaction, e.g., the presence of a rarefaction cone, and an increased magnetic field in the wake. There are however several kinetic features of the interaction. We find kinks in the magnetic field at the wake boundary. There are also density and magnetic field variations in the far wake, maybe from an ion beam instability related to the wake refill. The results are compared to observations by the WIND spacecraft during a wake crossing. The model magnetic field and ion velocities are in agreement with the measurements. The density and the electron temperature in the central wake are not as well captured by the model, probably from the lack of electron physics in the hybrid model.

Holmström, M; Futaana, Y; Nilsson, H

2011-01-01T23:59:59.000Z

213

Noninvasive valve monitor using alternating electromagnetic field  

DOE Patents [OSTI]

One or more electrical coils are carefully located on the outside of a valve body. An alternating current passing through the coil(s) results in an alternating electromagnetic field being transmitted into the valve body and valve internals. The electromagnetic field varies in intensity and polarity in the valve. As the position of a valve internal part is changed, the electromagnetic field throughout the valve body and its internals is altered. A passive receiver coil carefully located on the outside of the valve body detects the intensity of the electromagnetic field at that location as an induced electrical voltage in the coil. With the change in position of the valve internal part, there is a corresponding change in the induced voltage as a result of the alteration in the alternating electromagnetic field at that location. Changes in the voltage provide an indication of the position and motion of valve internals.

Eissenberg, David M. (Oak Ridge, TN); Haynes, Howard D. (Knoxville, TN); Casada, Donald A. (Knoxville, TN)

1993-01-01T23:59:59.000Z

214

Electromagnetic field with constraints and Papapetrou equation  

E-Print Network [OSTI]

It is shown that geometric optical description of electromagnetic wave with account of its polarization in curved space-time can be obtained straightforwardly from the classical variational principle for electromagnetic field. For this end the entire functional space of electromagnetic fields must be reduced to its subspace of locally plane monochromatic waves. We have formulated the constraints under which the entire functional space of electromagnetic fields reduces to its subspace of locally plane monochromatic waves. These constraints introduce variables of another kind which specify a field of local frames associated to the wave and contain some congruence of null-curves. The Lagrangian for constrained electromagnetic field contains variables of two kinds, namely, a congruence of null-curves and the field itself. This yields two kinds of Euler-Lagrange equations. Equations of first kind are trivial due to the constraints imposed. Variation of the curves yields the Papapetrou equations for a classical massless particle with helicity 1.

Z. Ya. Turakulov; A. T. Muminov

2006-01-12T23:59:59.000Z

215

applied computational electromagnetics: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electromagnetics Geosciences Websites Summary: Max Optics, Inc. 12;MadMax Optics 2 Stealth Electromagnetic interference Antennas on complex platformsFMM Code...

216

Electromagnetic Interference (EMI) Shielding of Single-Walled Carbon  

E-Print Network [OSTI]

Electromagnetic Interference (EMI) Shielding of Single-Walled Carbon Nanotube Epoxy Composites Ning (SWNT)-polymer composites have been fabricated to evaluate the electromagnetic interference (EMI

Gao, Hongjun

217

Project no. 516369 Electromagnetic compatibility between rolling stock and  

E-Print Network [OSTI]

to anything in that environment. Electromagnetic interference (EMI): Degradation of the performance compatibility EMI Electromagnetic interference ETSI European Telecommunications Standards Institute FM Frequency

Paris-Sud XI, Université de

218

Electromagnetic Interference in Wireless Communications: Behavioral-Level Simulation  

E-Print Network [OSTI]

Electromagnetic Interference in Wireless Communications: Behavioral-Level Simulation Approach in electromagnetic interference (EMI) modeling and simulation for modern and future wireless communication systems

Loyka, Sergey

219

The CLAS Forward Electromagnetic Calorimeter  

SciTech Connect (OSTI)

The CEBAF Large Acceptance Spectrometer (CLAS) at Jefferson Lab utilizes six iron-free superconducting coils to provide an approximately toroidal magnetic field. The six sectors are instrumented individually to form six independent spectrometers. The forward region (8deg < (theta) < 45deg) of each sector is equipped with a lead-scintillator electromagnetic sampling calorimeter (EC), 16 radiation lengths thick, using a novel triangular geometry with stereo readout. With its good energy and position resolution, the EC is used to provide the primary electron trigger for CLAS. It is also used to reject pions, reconstruct pi-0 and eta decays and detect neutrons, This paper treats the design, construction and performance of the calorimeter.

M. Amarian; Geram Asryan; Kevin Beard; Will Brooks; Volker Burkert; Tom Carstens; Alan Coleman; Raphael Demirchyan; Yuri Efremenko; Hovanes Egiyan; Kim Egiyan; Herb Funsten; Vladimir Gavrilov; Kevin L. Giovanetti; R.M. Marshall; Berhard Mecking; R.C. Minehart; H. Mkrtchan; Mavrik Ohandjanyan; Youri Sharabian; L.C. Smith; Stepan Stepanyan; W.A. Stephens; T.Y. Tung; Carl Zorn

2001-05-01T23:59:59.000Z

220

IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, VOL. 49, NO. 3, AUGUST 2007 661 Novel Planar Electromagnetic Bandgap Structures  

E-Print Network [OSTI]

. A novel concept of using these EBG structures for electromagnetic interference reduction is also, the power/ground noise creates significant and new challenges for electromagnetic interference

Ramahi, Omar

Note: This page contains sample records for the topic "interactive electromagnetic relations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Terahertz electromagnetic wave generation and amplification by an electron beam in the elliptical plasma waveguides with dielectric rod  

SciTech Connect (OSTI)

The propagation of electromagnetic waves in an elliptical plasma waveguide including strongly magnetized plasma column and a dielectric rod is investigated. The dispersion relation of guided hybrid electromagnetic waves is obtained. Excitation of the waves by a thin annular relativistic elliptical electron beam will be studied. The time growth rate of electromagnetic waves is obtained. The effects of relative permittivity constant of dielectric rod, radius of dielectric rod, accelerating voltage, and current density of the annular elliptical beam on the growth rate and the frequency spectra are numerically presented.

Rahmani, Z., E-mail: z.rahmani@kashanu.ac.ir; Jazi, B. [Department of Laser and Photonics, Faculty of Physics, University of Kashan, Kashan (Iran, Islamic Republic of); Heidari-Semiromi, E. [Department of Condense Matter, Faculty of Physics, University of Kashan, Kashan (Iran, Islamic Republic of)

2014-09-15T23:59:59.000Z

222

Spinors and pre-metric electromagnetism  

E-Print Network [OSTI]

The basic concepts of the formulation of Maxwellian electromagnetism in the absence of a Minkowski scalar product on spacetime are summarized, with particular emphasis on the way that the electromagnetic constitutive law on the space of bivectors over spacetime supplants the role of the Minkowski scalar product on spacetime itself. The complex geometry of the space of bivectors is summarized, with the intent of showing how an isomorphic copy of the Lorentz group appears in that context. The use of complex 3-spinors to represent electromagnetic fields is then discussed, as well as the expansion of scope that the more general complex projective geometry of the space of bivectors suggests.

David Delphenich

2005-12-22T23:59:59.000Z

223

On the Axioms of Topological Electromagnetism  

E-Print Network [OSTI]

The axioms of topological electromagnetism are refined by the introduction of the de Rham homology of k-vector fields on orientable manifolds and the use of Poincare duality in place of Hodge duality. The central problem of defining the electromagnetic constitutive law is elaborated upon in the linear and nonlinear cases. The manner by which the spacetime metric might follow from the constitutive law is examined in the linear case. The possibility that the intersection form of the spacetime manifold might play a role in defining a topological basis for the constitutive law is explored. The manner by which wave motion might follow from the electromagnetic structure is also discussed.

D. H. Delphenich

2003-12-14T23:59:59.000Z

224

Electromagnetic wave propagation in a random distribution of C{sub 60} molecules  

SciTech Connect (OSTI)

Propagation of electromagnetic waves in a random distribution of C{sub 60} molecules are investigated, within the framework of the classical electrodynamics. Electronic excitations over the each C{sub 60} molecule surface are modeled by a spherical layer of electron gas represented by two interacting fluids, which takes into account the different nature of the ? and ? electrons. It is found that the present medium supports four modes of electromagnetic waves, where they can be divided into two groups: one group with shorter wavelength than the light waves of the same frequency and the other with longer wavelength than the free-space radiation.

Moradi, Afshin, E-mail: a.moradi@kut.ac.ir [Department of Engineering Physics, Kermanshah University of Technology, Kermanshah, Iran and Department of Nano Sciences, Institute for Studies in Theoretical Physics and Mathematics (IPM), Tehran (Iran, Islamic Republic of)

2014-10-15T23:59:59.000Z

225

Numerical Methods of Computational Electromagnetics for Complex Inhomogeneous Systems  

SciTech Connect (OSTI)

Understanding electromagnetic phenomena is the key in many scientific investigation and engineering designs such as solar cell designs, studying biological ion channels for diseases, and creating clean fusion energies, among other things. The objectives of the project are to develop high order numerical methods to simulate evanescent electromagnetic waves occurring in plasmon solar cells and biological ion-channels, where local field enhancement within random media in the former and long range electrostatic interactions in the latter are of major challenges for accurate and efficient numerical computations. We have accomplished these objectives by developing high order numerical methods for solving Maxwell equations such as high order finite element basis for discontinuous Galerkin methods, well-conditioned Nedelec edge element method, divergence free finite element basis for MHD, and fast integral equation methods for layered media. These methods can be used to model the complex local field enhancement in plasmon solar cells. On the other hand, to treat long range electrostatic interaction in ion channels, we have developed image charge based method for a hybrid model in combining atomistic electrostatics and continuum Poisson-Boltzmann electrostatics. Such a hybrid model will speed up the molecular dynamics simulation of transport in biological ion-channels.

Cai, Wei

2014-05-15T23:59:59.000Z

226

Electromagnetic waves in a polydisperse dusty plasma  

SciTech Connect (OSTI)

The properties of low-frequency electromagnetic waves in a polydisperse dusty plasma are studied. The dispersion relation for the waves propagating at an arbitrary angle to the external magnetic field is derived, with the coefficients explicitly determined by the dust-size distribution function. The dependence of wave dispersion on properties of the dust-size distribution function is analysed. It is shown that the cutoff for an oblique propagation in plasma with a wide scatter of dust sizes takes place at a much lower frequency than in a plasma with monosized dust particles. It is found that dispersion properties of a transversal magnetosonic wave mode around dust–cyclotron frequencies considerably differ from those in a plasma with monosized dust. In a plasma with low mass fraction of dust particles, the dispersion is smooth without the cutoff and the resonance intrinsic for a plasma with monosized dust. Increase of the dust fraction results in splitting of the dispersion curve on to two branches. Further increase of the dust fraction leads to emergence of the third branch located between the cutoffs and restricted from the lower and higher frequencies by two resonances. The dependence of the frequencies of cutoffs and resonances on the width of the dust-size distribution, its slope and the dust mass fraction are analysed. It is shown that the transparency frequency windows in a plasma with polydisperse dust are wider for transversal elecromagnetic waves, but narrower for longitudinal or oblique waves.

Prudskikh, V. V.; Shchekinov, Yu. A. [Department of Physics, Southern Federal University, Rostov on Don 344090 (Russian Federation)] [Department of Physics, Southern Federal University, Rostov on Don 344090 (Russian Federation)

2013-10-15T23:59:59.000Z

227

Binary power multiplier for electromagnetic energy  

DOE Patents [OSTI]

A technique for converting electromagnetic pulses to higher power amplitude and shorter duration, in binary multiples, splits an input pulse into two channels, and subjects the pulses in the two channels to a number of binary pulse compression operations. Each pulse compression operation entails combining the pulses in both input channels and selectively steering the combined power to one output channel during the leading half of the pulses and to the other output channel during the trailing half of the pulses, and then delaying the pulse in the first output channel by an amount equal to half the initial pulse duration. Apparatus for carrying out each of the binary multiplication operation preferably includes a four-port coupler (such as a 3 dB hybrid), which operates on power inputs at a pair of input ports by directing the combined power to either of a pair of output ports, depending on the relative phase of the inputs. Therefore, by appropriately phase coding the pulses prior to any of the pulse compression stages, the entire pulse compression (with associated binary power multiplication) can be carried out solely with passive elements.

Farkas, Zoltan D. (203 Leland Ave., Menlo Park, CA 94025)

1988-01-01T23:59:59.000Z

228

Dynamic programming applied to electromagnetic satellite actuation  

E-Print Network [OSTI]

Electromagnetic formation flight (EMFF) is an enabling technology for a number of space mission architectures. While much work has been done for EMFF control for large separation distances, little work has been done for ...

Eslinger, Gregory John

2013-01-01T23:59:59.000Z

229

Advances in non-planar electromagnetic prototyping  

E-Print Network [OSTI]

The advent of metamaterials has introduced new ways to manipulate how electromagnetic waves reflect, refract and radiate in systems where the range of available material properties now includes negative permittivity, ...

Ehrenberg, Isaac M

2013-01-01T23:59:59.000Z

230

Electrical wire insulation and electromagnetic coil  

DOE Patents [OSTI]

An electromagnetic coil for high temperature and high radiation application in which glass is used to insulate the electrical wire. A process for applying the insulation to the wire is disclosed which results in improved insulation properties.

Bich, George J. (Penn Hills, PA); Gupta, Tapan K. (Monroeville, PA)

1984-01-01T23:59:59.000Z

231

Singular Modes of the Electromagnetic Field  

E-Print Network [OSTI]

We show that the mode corresponding to the point of essential spectrum of the electromagnetic scattering operator is a vector-valued distribution representing the square root of the three-dimensional Dirac's delta function. An explicit expression for this singular mode in terms of the Weyl sequence is provided and analyzed. An essential resonance thus leads to a perfect localization (confinement) of the electromagnetic field, which in practice, however, may result in complete absorption.

Neil V. Budko; Alexander B. Samokhin

2006-06-15T23:59:59.000Z

232

Singular Modes of the Electromagnetic Field  

E-Print Network [OSTI]

We show that the mode corresponding to the point of essential spectrum of the electromagnetic scattering operator is a vector-valued distribution representing the square root of the three-dimensional Dirac's delta function. An explicit expression for this singular mode in terms of the Weyl sequence is provided and analyzed. An essential resonance thus leads to a perfect localization (confinement) of the electromagnetic field, which in practice, however, may result in complete absorption.

Budko, N V; Budko, Neil V.; Samokhin, Alexander B.

2006-01-01T23:59:59.000Z

233

Characterization of electromagnetic transients in power substations  

E-Print Network [OSTI]

CHARACTERIZATION OF ELECTROMAGNETIC TRANSIENTS IN POWER SUBSTATIONS A Thesis by WILLIAM CHESTER CiOERS, JR. Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement for the degree of MASTER... OF SCIENCE December 1980 Major Subject: Electrical Engineering CHARACTERIZATION OF ELECTROMAGNETIC TRANSIENTS IN POWER SUBSTATIONS A Thesis by WILLIAM CHESTER GOERS, JR. Approved as to style and content by: Dr. B. Don Russell (Chairman of Committee...

Goers, William Chester

1980-01-01T23:59:59.000Z

234

Electromagnetic Beams Overpass the Black Hole Horizon  

E-Print Network [OSTI]

We show that the electromagnetic excitations of the Kerr black hole have very strong back reaction on metric. In particular, the electromagnetic excitations aligned with the Kerr congruence form the light-like beams which overcome horizon, forming the holes in it, which allows matter to escape interior. So, there is no information lost inside the black hole. This effect is based exclusively on the analyticity of the algebraically special solutions.

Alexander Burinskii

2008-06-16T23:59:59.000Z

235

Electromagnetic Corrections in Staggered Chiral Perturbation Theory  

E-Print Network [OSTI]

To reduce errors in light-quark mass determinations, it is now necessary to consider electromagnetic contributions to light-meson masses. Calculations using staggered quarks and quenched photons are currently underway. Suitably-extended chiral perturbation theory is necessary to extrapolate the lattice data to the physical limit. Here we give (preliminary) results for light-meson masses using staggered chiral perturbation theory including electromagnetism, and discuss the extent to which quenched-photon simulations can improve quark-mass calculations.

C. Bernard; E. D. Freeland

2010-11-17T23:59:59.000Z

236

Electromagnetic and spin polarisabilities in lattice QCD  

E-Print Network [OSTI]

We discuss the extraction of the electromagnetic and spin polarisabilities of nucleons from lattice QCD. We show that the external field method can be used to measure all the electromagnetic and spin polarisabilities including those of charged particles. We then turn to the extrapolations required to connect such calculations to experiment in the context of chiral perturbation theory, finding a strong dependence on the lattice volume and quark masses.

W. Detmold; B. C. Tiburzi; A. Walker-Loud

2006-10-02T23:59:59.000Z

237

Elec Eng 2FH3 Electromagnetics I COURSE NUMBER & TITLE: Elec Eng 2FH3 Electromagnetics I  

E-Print Network [OSTI]

Elec Eng 2FH3 ­ Electromagnetics I COURSE NUMBER & TITLE: Elec Eng 2FH3 ­ Electromagnetics I field 6. Inductance 7. Faraday's law CALENDAR DESCRIPTION: Electromagnetics Part I is an introduction into engineering electromagnetics. It covers the mathematical foundations such as selected topics of vector

Haykin, Simon

238

The Emission of Electromagnetic Radiation from Charges Accelerated by Gravitational Waves and its Astrophysical Implications  

E-Print Network [OSTI]

We provide calculations and theoretical arguments supporting the emission of electromagnetic radiation from charged particles accelerated by gravitational waves (GWs). These waves have significant indirect evidence to support their existence, yet they interact weakly with ordinary matter. We show that the induced oscillations of charged particles interacting with a GW, which lead to the emission of electromagnetic radiation, will also result in wave attenuation. These ideas are supported by a small body of literature, as well as additional arguments for particle acceleration based on GW memory effects. We derive order of magnitude power calculations for various initial charge distributions accelerated by GWs. The resulting power emission is extremely small for all but very strong GWs interacting with large quantities of charge. If the results here are confirmed and supplemented, significant consequences such as attenuation of early universe GWs could result. Additionally, this effect could extend GW detection...

Revalski, Mitchell; Wickramasinghe, Thulsi

2015-01-01T23:59:59.000Z

239

Interaction between transposable phages: cip locus of prophage D3112, responsible for inhibition of integration and transposition of the related phage B39 of Pseudomonas aeruginosa  

SciTech Connect (OSTI)

Bacteriophage D3112 forms two types of PA01 (D3112) lysogens: those that partially, or completely, limit the growth of the related heteroimmune phage B39. DNA/DNA hybridization has shown that the lysogens of the first type always contain one copy of prophage D3112 (monolysogens), and the lysogens of the second type contain two or more copies of prophage D3112. Limitation of the growth of phage B39 on PA01 (D3112) lysogens is associated with the functioning of the locus of prophage D3112, designated as cip (control of interaction of phages). Using deletion derivatives of plasmid RP4::D3112, the cip locus was mapped at an interval of 1.3-2.45 kb of the D3112 genome. The expression of the cip locus occurs only if the D3112 genome is at the prophage state. The function of the Cip prophage of D3112 exerts an influence on early stages of development of phage B39, decreasing the efficiency of the integration and transposition processes of phage B39.

Gerasimov, V.A.; Yanenko, A.S.; Akhverdyan, V.Z.; Krylov, V.N.

1986-04-01T23:59:59.000Z

240

Pion electromagnetic form factor in the Covariant Spectator Theory  

SciTech Connect (OSTI)

The pion electromagnetic form factor at spacelike momentum transfer is calculated in relativistic impulse approximation using the Covariant Spectator Theory. The same dressed quark mass function and the equation for the pion bound-state vertex function as discussed in the companion paper are used for the calculation, together with a dressed quark current that satisfies the Ward-Takahashi identity. The results obtained for the pion form factor are in agreement with experimental data, they exhibit the typical monopole behavior at high momentum transfer and they satisfy some remarkable scaling relations.

Biernat, Elmar P. [CFTP, Institute Superior Tecnico, Lisboa (Portugal); Gross, Franz L. [JLAB, Newport News, VA (United States); Pena, Teresa [CFTP, Institute Superior Tecnico, Lisboa (Portugal); Stadler, Alfred [University of Evora, Lisboa (Portugal)

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "interactive electromagnetic relations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Dr. S. Cruz-Pol, INEL 4151-Electromagnetics I  

E-Print Network [OSTI]

! dt d NVemf -= -= sL dSB t dlE Electromagnetics was born! � This is the principle of motors = magnetic field density, [Teslas] mH mF HB ED o o /104 36 10 /1085.8 7 9 12 - - - �= =�= = = µ µ #12;Dr://micro.magnet.fsu.edu/electromag/java/generator/dc.html BlIF BuQF �= �= Encarta® Who was NikolaTesla? �Find out what inventions he made �His relation

Cruz-Pol, Sandra L.

242

Modified definition of group velocity and electromagnetic energy conservation equation  

E-Print Network [OSTI]

The classical definition of group velocity has two flaws: (a) the group velocity can be greater than the phase velocity in a non-dispersive, lossless, non-conducting, anisotropic uniform medium; (b) the definition is not consistent with the principle of relativity for a plane wave in a moving isotropic uniform medium. To remove the flaws, a modified definition is proposed. A criterion is set up to identify the justification of group velocity definition. A "superluminal power flow" is constructed to show that the electromagnetic energy conservation equation cannot uniquely define the power flow if the principle of Fermat is not taken into account.

Changbiao Wang

2015-01-19T23:59:59.000Z

243

Electromagnetic scattering from grassland Part II: Measurement and modeling results  

E-Print Network [OSTI]

-InvestigatoronmanyprojectssponsoredbyNASA,JPL,ARO,ONR,ARL, and GM all related in one way or the other to microwave and millimeter wave radar remote sensing. He has published many book chapters and more than 80 papers in refereed journals on electromagnetic scattering, random media modeling, microwave measurement...LecturerAwardfromtheGerman Federal Ministry for Education, Science, and Technology. FawwazT.Ulaby(M’68–SM’74–F’80)receivedthe B.S.degreeinphysicsfromtheAmericanUniversity of Beirut, Lebanon, in 1964, and the M.S.E.E. and Ph.D.degreesinelectricalengineeringfromtheUni- versity...

Stiles, James Marion; Ulaby, F. T.; Sarabandi, K.

2000-01-01T23:59:59.000Z

244

Name of the Presentation Fundamental Properties of Electromagnetic RadiationFundamental Properties of Electromagnetic Radiation  

E-Print Network [OSTI]

a continuous spectrum of energy from gamma rays to radio waves. The visible portion of the spectrum may to radio waves. The visible portion of the spectrum may be measured using wavelength (measured between the Sun and the Earth. Electromagnetic Spectrum Electromagnetic Spectrum The Sun produces

245

Electrical, electromagnetic and structural characteristics of carbon nanotube-polymer nanocomposites  

E-Print Network [OSTI]

Composites for Electromagnetic Interference Shielding. NanoY. Ma, et al. Electromagnetic Interference (EMI) Shieldingof Bonn). Chung DDL. Electromagnetic interference shielding

Park, Sung-Hoon

2009-01-01T23:59:59.000Z

246

Discussion on the Mechanism of Electromigration from the Perspective of Electromagnetism  

E-Print Network [OSTI]

from the Perspective of Electromagnetism PENG ZHOU 1,3 andthe perspective of electromagnetism, rather than from thecharge, electromigration, electromagnetism INTRODUCTION

Zhou, Peng; Johnson, William C.

2010-01-01T23:59:59.000Z

247

NATIONAL CARBON SEQUESTRATION DATABASE AND GEOGRAPHIC INFORMATION SYSTEM (NATCARB) FORMER TITLE-MIDCONTINENT INTERACTIVE DIGITAL CARBON ATLAS AND RELATIONAL DATABASE (MIDCARB)  

SciTech Connect (OSTI)

This annual report describes progress in the third year of the three-year project entitled ''Midcontinent Interactive Digital Carbon Atlas and Relational Database (MIDCARB)''. The project assembled a consortium of five states (Indiana, Illinois, Kansas, Kentucky and Ohio) to construct an online distributed Relational Database Management System (RDBMS) and Geographic Information System (GIS) covering aspects of carbon dioxide (CO{sub 2}) geologic sequestration (http://www.midcarb.org). The system links the five states in the consortium into a coordinated regional database system consisting of datasets useful to industry, regulators and the public. The project has been extended and expanded as a ''NATional CARBon Sequestration Database and Geographic Information System (NATCARB)'' to provide national coverage across the Regional CO{sub 2} Partnerships, which currently cover 40 states (http://www.natcarb.org). Advanced distributed computing solutions link database servers across the five states and other publicly accessible servers (e.g., USGS) into a single system where data is maintained and enhanced at the local level but is accessed and assembled through a single Web portal and can be queried, assembled, analyzed and displayed. This project has improved the flow of data across servers and increased the amount and quality of available digital data. The online tools used in the project have improved in stability and speed in order to provide real-time display and analysis of CO{sub 2} sequestration data. The move away from direct database access to web access through eXtensible Markup Language (XML) has increased stability and security while decreasing management overhead. The MIDCARB viewer has been simplified to provide improved display and organization of the more than 125 layers and data tables that have been generated as part of the project. The MIDCARB project is a functional demonstration of distributed management of data systems that cross the boundaries between institutions and geographic areas. The MIDCARB system addresses CO{sub 2} sequestration and other natural resource issues from sources, sinks and transportation within a spatial database that can be queried online. Visualization of high quality and current data can assist decision makers by providing access to common sets of high quality data in a consistent manner.

Timothy R. Carr

2004-07-16T23:59:59.000Z

248

Electromagnetic confinement for vertical casting or containing molten metal  

DOE Patents [OSTI]

An apparatus and method adapted to confine a molten metal to a region by means of an alternating electromagnetic field. As adapted for use in the present invention, the alternating electromagnetic field given by B.sub.y =(2.mu..sub.o .rho.gy).sup.1/2 (where B.sub.y is the vertical component of the magnetic field generated by the magnet at the boundary of the region; y is the distance measured downward form the top of the region, .rho. is the metal density, g is the acceleration of gravity and .mu..sub.o is the permeability of free space) induces eddy currents in the molten metal which interact with the magnetic field to retain the molten metal with a vertical boudnary. As applied to an apparatus for the continuous casting of metal sheets or rods, metal in liquid form can be continuously introduced into the region defined by the magnetic field, solidified and conveyed away from the magnetic field in solid form in a continuous process.

Lari, Robert J. (Aurora, IL); Praeg, Walter F. (Palos Park, IL); Turner, Larry R. (Naperville, IL)

1991-01-01T23:59:59.000Z

249

Electromagnetic Waves in the De Sitter Space  

E-Print Network [OSTI]

5-Dimensional wave equation for a massive particle of spin 1 in the background of de Sitter space-time model is solved in static coordinates. The spherical 5-dimensional vectors $A_{a}, a= 1,...,5$ of three types, $j,j+1, j-1$ are constructed. In massless case they give electromagnetic wave solutions, obeying the Lorentz condition. 5-form of equations in massless case is used to produce recipe to build electromagnetic wave solutions of the types $\\Pi, E,M$; the first is trivial and can be removed by a gauge ransformation. The recipe is specified to produce spherical $\\Pi, E, M$ solutions in static coordinates.

V. S. Otchik; V. M. Red'kov

2010-01-24T23:59:59.000Z

250

Scanning evanescent electro-magnetic microscope  

DOE Patents [OSTI]

A novel scanning microscope is described that uses near-field evanescent electromagnetic waves to probe sample properties. The novel microscope is capable of high resolution imaging and quantitative measurements of the electrical properties of the sample. The inventive scanning evanescent wave electromagnetic microscope (SEMM) can map dielectric constant, tangent loss, conductivity, complex electrical impedance, and other electrical parameters of materials. The quantitative map corresponds to the imaged detail. The novel microscope can be used to measure electrical properties of both dielectric and electrically conducting materials.

Xiang, Xiao-Dong (Alameda, CA); Gao, Chen (Alameda, CA)

2001-01-01T23:59:59.000Z

251

Phenomenology of the Deuteron Electromagnetic Form Factors  

E-Print Network [OSTI]

A rigorous extraction of the deuteron charge form factors from tensor polarization data in elastic electron-deuteron scattering, at given values of the 4-momentum transfer, is presented. Then the world data for elastic electron-deuteron scattering is used to parameterize, in three different ways, the three electromagnetic form factors of the deuteron in the 4-momentum transfer range 0-7 fm^-1. This procedure is made possible with the advent of recent polarization measurements. The parameterizations allow a phenomenological characterization of the deuteron electromagnetic structure. They can be used to remove ambiguities in the form factors extraction from future polarization data.

TheJLAB t20 collaboration; D. Abbott

2000-02-25T23:59:59.000Z

252

Duality in Off-Shell Electromagnetism  

E-Print Network [OSTI]

In this paper, we examine the Dirac monopole in the framework of Off-Shell Electromagnetism, the five dimensional U(1) gauge theory associated with Stueckelberg-Schrodinger relativistic quantum theory. After reviewing the Dirac model in four dimensions, we show that the structure of the five dimensional theory prevents a natural generalization of the Dirac monopole, since the theory is not symmetric under duality transformations. It is shown that the duality symmetry can be restored by generalizing the electromagnetic field strength to an element of a Clifford algebra. Nevertheless, the generalized framework does not permit us to recover the phenomenological (or conventional) absence of magnetic monopoles.

Martin Land

2006-03-21T23:59:59.000Z

253

Electromagnetic waves, gravitational coupling and duality analysis  

E-Print Network [OSTI]

In this letter we introduce a particular solution for parallel electric and magnetic fields, in a gravitational background, which satisfy free-wave equations and the phenomenology suggested by astrophysical plasma physics. These free-wave equations are computed such that the electric field does not induce the magnetic field and vice-versa. In a gravitational field, we analyze the Maxwell equations and the corresponding electromagnetic waves. A continuity equation is presented. A commutative and noncommutative analysis of the electromagnetic duality is described.

E. M. C. Abreu; C. Pinheiro; S. A. Diniz; F. C. Khanna

2005-10-27T23:59:59.000Z

254

Electromagnetic Observables in Few-Nucleon Systems  

E-Print Network [OSTI]

The electromagnetic probe is a very valuable tool to study the dynamics of few nucleons. It can be very helpful in shedding light on the not yet fully understood three-nucleon forces. We present an update on the theoretical studies of electromagnetic induced reactions, such as photo-disintegration and electron scattering off 4He. We will show that they potentially represent a tool to discriminate among three-nucleon forces. Then, we will discuss the charge radius and the nuclear electric polarizability of the 6He halo nucleus.

Sonia Bacca

2012-10-10T23:59:59.000Z

255

Electromagnetic continuous casting project: Final report  

SciTech Connect (OSTI)

This report describes the work on development of an electromagnetic casting process for steel, which was carried out at Argonne National Laboratory between January 1985 and December 1987. This effort was concerned principally with analysis and design work on magnet technology, liquid metal feed system, coolant system, and sensors and process controllers. Experimentation primarily involved (1) electromagnetic studies to determine the conditions and controlling parameters for stable levitation and (2) feed-system studies to establish important parameters that control and influence fluid flow from the liquid metal source to the caster. 73 refs., 91 figs., 11 tabs.

Battles, J.E.; Rote, D.M.; Misra, B.; Praeg, W.F.; Hull, J.R.; Turner, L.R.; Shah, V.L.; Lari, R.J.; Gopalsami, N.; Wiencek, T.

1988-10-01T23:59:59.000Z

256

Addressing the susceptibility of digital systems to electromagnetic interference  

SciTech Connect (OSTI)

This paper discusses the development of the technical basis for acceptance criteria applicable to the immunization of digital systems against electromagnetic interference (EMI). The work is sponsored by the US Nuclear Regulatory Commission and stems from the safety-related issues that need to be addressed as a result of the application of digital instrumentation and control systems in nuclear power plants. Designers of digital circuits are incorporating increasingly higher clock frequencies and lower logic level voltages, thereby leading to potentially greater susceptibility of spurious interference being misinterpreted as legitimate logic. Development of the technical basis for acceptance criteria to apply to these digital systems centers around establishing good engineering practices to ensure that sufficient levels of electromagnetic compatibility (EMC) are maintained between the nuclear power plant`s electronic and electromechanical systems. First, good EMC design and installation practices are needed to control the emissions from interference sources and thereby their impact on other nearby circuits and systems. Second, a verification and validation (V&V) program is needed to outline the EMI tests to be performed, the associated test methods to be followed, and adequate acceptance criteria to ensure that the circuit or system under test meets the recommended guidelines. V&V should be followed by periodic maintenance to assess whether the recommended EMI control practices continue to be adhered to as part of the routine operation of the nuclear power plant. By following these steps, the probability of encountering safety-related instrumentation susceptibility attributable to EMI will be greatly reduced.

Ewing, P.D.; Korsah, K. [Oak Ridge National Lab., TN (US); Antonescu, C. [Nuclear Regulatory Commission, Rockville, MD (US). Office of Nuclear Regulatory Research

1993-06-01T23:59:59.000Z

257

Addressing the susceptibility of digital systems to electromagnetic interference  

SciTech Connect (OSTI)

This paper discusses the development of the technical basis for acceptance criteria applicable to the immunization of digital systems against electromagnetic interference (EMI). The work is sponsored by the US Nuclear Regulatory Commission and stems from the safety-related issues that need to be addressed as a result of the application of digital instrumentation and control systems in nuclear power plants. Designers of digital circuits are incorporating increasingly higher clock frequencies and lower logic level voltages, thereby leading to potentially greater susceptibility of spurious interference being misinterpreted as legitimate logic. Development of the technical basis for acceptance criteria to apply to these digital systems centers around establishing good engineering practices to ensure that sufficient levels of electromagnetic compatibility (EMC) are maintained between the nuclear power plant's electronic and electromechanical systems. First, good EMC design and installation practices are needed to control the emissions from interference sources and thereby their impact on other nearby circuits and systems. Second, a verification and validation (V V) program is needed to outline the EMI tests to be performed, the associated test methods to be followed, and adequate acceptance criteria to ensure that the circuit or system under test meets the recommended guidelines. V V should be followed by periodic maintenance to assess whether the recommended EMI control practices continue to be adhered to as part of the routine operation of the nuclear power plant. By following these steps, the probability of encountering safety-related instrumentation susceptibility attributable to EMI will be greatly reduced.

Ewing, P.D.; Korsah, K. (Oak Ridge National Lab., TN (United States)); Antonescu, C. (Nuclear Regulatory Commission, Rockville, MD (United States). Office of Nuclear Regulatory Research)

1993-01-01T23:59:59.000Z

258

Nucleon shape and electromagnetic form factors in the chiral constituent quark model  

SciTech Connect (OSTI)

The electromagnetic form factors are the most fundamental quantities to describe the internal structure of the nucleon and the shape of a spatially extended particle is determined by its intrinsic quadrupole moment which can be related to the charge radii. We have calculated the electromagnetic form factors, nucleon charge radii and the intrinsic quadrupole moment of the nucleon in the framework of chiral constituent quark model. The results obtained are comparable to the latest experimental studies and also show improvement over some theoretical interpretations.

Dahiya, Harleen; Sharma, Neetika [Department of Physics, Dr. B.R. Ambedkar National Institute of Technology, Jalandhar, Punjab-144 011 (India)

2010-08-05T23:59:59.000Z

259

Nucleon shape and electromagnetic form factors in the chiral constituent quark model  

E-Print Network [OSTI]

The electromagnetic form factors are the most fundamental quantities to describe the internal structure of the nucleon and the shape of a spatially extended particle is determined by its intrinsic quadrupole moment which can be related to the charge radii. We have calculated the electromagnetic form factors, nucleon charge radii and the intrinsic quadrupole moment of the nucleon in the framework of chiral constituent quark model. The results obtained are comparable to the latest experimental studies and also show improvement over some theoretical interpretations.

Harleen Dahiya; Neetika Sharma

2010-01-27T23:59:59.000Z

260

Nano- and microscale particles and global electromagnetic resonances in the Earth-ionosphere cavity  

SciTech Connect (OSTI)

The influence of nano-and microscale particles (dust grains) on the global electromagnetic (Schumann) cavity has been studied in the context of two possible mechanisms. First, the presence of charged microscale particles in the ionospheric plasma modifies the dispersion properties of the upper boundary of the Schumann cavity and, thus, affects its eigenfrequencies and quality factor. Second, there is a relation between the dust concentration in the atmosphere and lightning discharges, which excite Schumann resonances. Therefore, dust grains can enhance the energy pumping of the cavity, thereby increasing the amplitude of electromagnetic oscillations in it.

Besedina, Yu. N.; Popel, S. I. [Russian Academy of Sciences, Institute of Geosphere Dynamics (Russian Federation)

2007-02-15T23:59:59.000Z

Note: This page contains sample records for the topic "interactive electromagnetic relations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Electromagnetic and neutral-weak response functions of 4He and 12C  

E-Print Network [OSTI]

Ab initio calculations of the quasi-elastic electromagnetic and neutral-weak response functions of 4He and 12C are carried out for the first time. They are based on a realistic approach to nuclear dynamics, in which the strong interactions are described by two- and three-nucleon potentials and the electroweak interactions with external fields include one- and two-body terms. The Green's function Monte Carlo method is used to calculate directly the Laplace transforms of the response functions, and maximum-entropy techniques are employed to invert the resulting imaginary-time correlation functions with associated statistical errors. The theoretical results, confirmed by experiment in the electromagnetic case, show that two-body currents generate excess transverse strength from threshold to the quasi-elastic to the dip region and beyond. These findings challenge the conventional picture of quasi-elastic inclusive scattering as being largely dominated by single-nucleon knockout processes.

A. Lovato; S. Gandolfi; J. Carlson; Steven C. Pieper; R. Schiavilla

2015-01-08T23:59:59.000Z

262

Electromagnetic and neutral-weak response functions of 4He and 12C  

E-Print Network [OSTI]

Ab initio calculations of the quasi-elastic electromagnetic and neutral-weak response functions of 4He and 12C are carried out for the first time. They are based on a realistic approach to nuclear dynamics, in which the strong interactions are described by two- and three-nucleon potentials and the electroweak interactions with external fields include one- and two-body terms. The Green's function Monte Carlo method is used to calculate directly the Laplace transforms of the response functions, and maximum-entropy techniques are employed to invert the resulting imaginary-time correlation functions with associated statistical errors. The theoretical results, confirmed by experiment in the electromagnetic case, show that two-body currents generate excess transverse strength from threshold to the quasi-elastic to the dip region and beyond. These findings challenge the conventional picture of quasi-elastic inclusive scattering as being largely dominated by single-nucleon knockout processes.

Lovato, A; Carlson, J; Pieper, Steven C; Schiavilla, R

2015-01-01T23:59:59.000Z

263

The Future of Hard and Electromagnetic Probes at RHIC  

E-Print Network [OSTI]

Potential near- and long-term physics opportunities with jets, heavy flavors and electromagnetic probes at the Relativistic Heavy Ion Collider (RHIC) are presented. Much new physics remains to be unveiled using these probes, due to their sensitivity to the initial high density stage of RHIC collisions, when quark-gluon plasma (QGP) formation is expected. Additional physics will include addressing deconfinement, chiral symmetry restoration, properties of the strongly-coupled QGP and a possible weakly-interacting QGP, color glass condensate in the initial state, and hadronization. To fully realize the physics prospects of the RHIC energy regime, new detector components must be added to existing experiments, the RHIC machine luminosity upgraded, and a possible new detector with significantly extended coverage and capabilities added.

John W. Harris

2005-03-18T23:59:59.000Z

264

Variational Principles for Constrained Electromagnetic Field and Papapetrou Equation  

E-Print Network [OSTI]

In our previous article [4] an approach to derive Papapetrou equations for constrained electromagnetic field was demonstrated by use of field variational principles. The aim of current work is to present more universal technique of deduction of the equations which could be applied to another types of non-scalar fields. It is based on Noether theorem formulated in terms of Cartan' formalism of orthonormal frames. Under infinitesimal coordinate transformation the one leads to equation which includes volume force of spin-gravitational interaction. Papapetrou equation for vector of propagation of the wave is derived on base of the equation. Such manner of deduction allows to formulate more accurately the constraints and clarify equations for the potential and for spin.

A. T. Muminov

2007-06-28T23:59:59.000Z

265

Dr. S. Cruz-Pol, INEL 4152-Electromagnetics  

E-Print Network [OSTI]

field density [VF/m2] Ã?H = magnetic field intensity, [A/m] Ã?B = magnetic field density, [Teslas] Take JdlH Cruz-Pol, Electromagnetics UPRM Electromagnetics Ã? This is the principle of motors, hydro

Cruz-Pol, Sandra L.

266

On the gravitational fields created by the electromagnetic waves  

E-Print Network [OSTI]

We show that the Maxwell equations describing an electromagnetic wave are a mathematical consequence of the Einstein equations for the same wave. This fact is significant for the problem of the Einsteinian metrics corresponding to the electromagnetic waves.

A. Loinger; T. Marsico

2011-06-11T23:59:59.000Z

267

College of Engineering Electromagnetically Enhanced Hydrocyclone for Magnetite Separation during  

E-Print Network [OSTI]

designed the cyclone; a safer technology aimed at replacing the drum separators. The prototy er increase Electromagnetically Enhanced Hydrocyclone for Magnetite Separation during cyclone; a safer technology aimedPENNSTATE College of Engineering Electromagnetically Enhanced Hydrocyclone for Magnetite Separation

Demirel, Melik C.

268

Electromagnetic Light in Medium of Polarized Atoms $^3$He  

E-Print Network [OSTI]

First, it is predicted that polarized atoms $^3$He increase a value of speed electromagnetic waves. This reasoning implies that the velocity of electromagnetic waves into gas consisting of polarized atoms $^3$He is rather than one in vacuum.

V. N. Minasyan

2009-04-01T23:59:59.000Z

269

Exact microscopic theory of electromagnetic heat transfer between a dielectric sphere and plate  

E-Print Network [OSTI]

Near-field electromagnetic heat transfer holds great potential for the advancement of nanotechnology. Whereas far-field electromagnetic heat transfer is constrained by Planck's blackbody limit, the increased density of states in the near-field enhances heat transfer rates by orders of magnitude relative to the conventional limit. Such enhancement opens new possibilities in numerous applications, including thermal-photo-voltaics, nano-patterning, and imaging. The advancement in this area, however, has been hampered by the lack of rigorous theoretical treatment, especially for geometries that are of direct experimental relevance. Here we introduce an efficient computational strategy, and present the first rigorous calculation of electromagnetic heat transfer in a sphere-plate geometry, the only geometry where transfer rate beyond blackbody limit has been quantitatively probed at room temperature. Our approach results in a definitive picture unifying various approximations previously used to treat this problem, ...

Otey, Clayton

2011-01-01T23:59:59.000Z

270

Exact microscopic theory of electromagnetic heat transfer between a dielectric sphere and plate  

E-Print Network [OSTI]

Near-field electromagnetic heat transfer holds great potential for the advancement of nanotechnology. Whereas far-field electromagnetic heat transfer is constrained by Planck's blackbody limit, the increased density of states in the near-field enhances heat transfer rates by orders of magnitude relative to the conventional limit. Such enhancement opens new possibilities in numerous applications, including thermal-photo-voltaics, nano-patterning, and imaging. The advancement in this area, however, has been hampered by the lack of rigorous theoretical treatment, especially for geometries that are of direct experimental relevance. Here we introduce an efficient computational strategy, and present the first rigorous calculation of electromagnetic heat transfer in a sphere-plate geometry, the only geometry where transfer rate beyond blackbody limit has been quantitatively probed at room temperature. Our approach results in a definitive picture unifying various approximations previously used to treat this problem, and provides new physical insights for designing experiments aiming to explore enhanced thermal transfer.

Clayton Otey; Shanhui Fan

2011-10-10T23:59:59.000Z

271

Nonlinear phenomena of generation of longitudinal electric current by transversal electromagnetic field in plasmas  

E-Print Network [OSTI]

The analysis of nonlinear interaction of transversal electromagnetic field with collisionless plasma is carried out. Formulas for calculation electric current in collisionless plasma with arbitrary degree of degeneration of electronic gas are deduced. It has appeared, that the nonlinearity account leads to occurrence of the longitudinal electric current directed along a wave vector. This second current is orthogonal to the known transversal current, received at the classical linear analysis.

Latyshev, A V

2015-01-01T23:59:59.000Z

272

On UHECR energy estimation algorithms based on the measurement of electromagnetic component parameters in EAS  

E-Print Network [OSTI]

Model calculations are performed of extensive air shower (EAS) component energies using a variety of hadronic interaction parameters. A conversion factor from electromagnetic component energy to the energy of ultra-high energy cosmic rays (UHECRs) and its model and primary mass dependence is studied. It is shown that model dependence of the factor minimizes under the necessary condition of the same maximum position and muon content of simulated showers.

A. A. Ivanov

2007-04-26T23:59:59.000Z

273

Motor Packaging with Consideration of Electromagnetic and Material...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Documents & Publications Motor Packaging with Consideration of Electromagnetic and Material Characteristics Alnico and Ferrite Hybrid Excitation Electric Machines Wireless Charging...

274

E-Print Network 3.0 - axisymmetric electromagnetic resonators...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

-Lab Northwest Electromagnetics & Acoustics Research Outline Introduction to Terahertz ... Source: La Rosa, Andres H. - Department of Physics, Portland State...

275

Electromagnetic power of merging and collapsing compact objects  

E-Print Network [OSTI]

[Abridged] Electromagnetic emission can be produced as a precursor to the merger, as a prompt emission during the collapse of a NS and at the spin-down stage of the resulting BH. We demonstrate that the time evolution of the axisymmetric force-free magnetic fields can be expressed in terms of the hyperbolic Grad-Shafranov equation. We find exact non-linear time-dependent split-monopole structure of magnetosphere driven by spinning and collapsing NS in Schwarzschild geometry. Based on this solution, we argue that the collapse of a NS into the BH happens smoothly, without natural formation of current sheets or other dissipative structures on the open field lines and, thus, does not allow the magnetic field to become disconnected from the star and escape to infinity. Thus, as long as an isolated Kerr BH can produce plasma and currents, it does not lose its open magnetic field lines, its magnetospheric structure evolved towards a split monopole and the BH spins down electromagnetically. The "no hair theorem", which assumes that the outside medium is a vacuum, is not applicable in this case: highly conducting plasma introduces a topological constraint forbidding the disconnection of the magnetic field lines from the BH. Eventually, a single random large scale spontaneous reconnection event will lead to magnetic field release, shutting down the electromagnetic BH engine forever. We also discuss the nature of short Gamma Ray Bursts and suggest that the similarity of the early afterglows properties of long and short GRBs can be related to the fact that in both cases a spinning BH can retains magnetic field for sufficiently long time to extract a large fraction of its rotation energy and produce high energy emission via the internal dissipation in the wind.

Maxim Lyutikov

2011-04-06T23:59:59.000Z

276

FMM Code Libraries for Computational Electromagnetics  

E-Print Network [OSTI]

Max Optics, Inc. #12;MadMax Optics 2 · Stealth · Electromagnetic interference · Antennas on complex platforms ­ Closed and open surfaces, complex materials · Fast, Direct Solvers for Ill-Conditioned Problems ­ handle isotropic materials with closed surfaces ­ Open surfaces still active area of research · Geometric

Maryland at College Park, University of

277

Structural composites with integrated electromagnetic functionality  

E-Print Network [OSTI]

Structural composites with integrated electromagnetic functionality Syrus C. Nemat-Nasser, Alireza, such as wires, into polymer-based or ceramic-based composites. In addition to desired structural properties, these materials may be leveraged for active tasks such as filtering. The advantages of such hybrid composites

Nemat-Nasser, Sia

278

Line geometry and electromagnetism I: basic structures  

E-Print Network [OSTI]

Some key notions of line geometry are recalled, along with their application to mechanics. It is then shown that most of the basic structures that one introduces in the pre-metric formulation of electromagnetism can be interpreted directly in terms of corresponding concepts in line geometry. The results are summarized in a table.

D. H. Delphenich

2013-09-11T23:59:59.000Z

279

Electromagnetic Siegert states for periodic dielectric structures  

E-Print Network [OSTI]

The formalism of Siegert states to describe the resonant scattering in quantum theory is extended to the resonant scattering of electromagnetic waves on periodic dielectric arrays. The excitation of electromagnetic Siegert states by an incident wave packet and their decay is studied. The formalism is applied to develop a theory of coupled electromagnetic resonances arising in the electromagnetic scattering problem for two such arrays separated by a distance 2h (or, generally, when the physical properties of the scattering array depend on a real coupling parameter h). Analytic properties of Siegert states as functions of the coupling parameter h are established by the Regular Perturbation Theorem which is an extension the Kato-Rellich theorem to the present case. By means of this theorem, it is proved that if the scattering structure admits a bound state in the radiation continuum at a certain value of the coupling parameter h, then there always exist regions within the structure in which the near field can be amplified as much as desired by adjusting the value of h. This establishes a rather general mechanism to control and amplify optical nonlinear effects in periodically structured planar structures possessing a nonlinear dielectric susceptibility.

Friends R. Ndangali; Sergei V. Shabanov

2011-08-09T23:59:59.000Z

280

Decomposition of Electromagnetic Q and P Media  

E-Print Network [OSTI]

Two previously studied classes of electromagnetic media, labeled as those of Q media and P media, are decomposed according to the natural decomposition introduced by Hehl and Obukhov. Six special cases based on either non-existence or sole existence of the three Hehl-Obukhov components, are defined for both medium classes.

Lindell, I V

2015-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "interactive electromagnetic relations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Electromagnetic Wellbore Heating Ibrahim Agyemang1  

E-Print Network [OSTI]

Chapter 5 Electromagnetic Wellbore Heating Ibrahim Agyemang1 , Matthew Bolton2 , Lloyd Bridge2 with the recovery of petroleum fluids from an oil reservoir using electrical energy. By its very nature this problem must deal with both the equations that describe the fluid flow as well as the heat flow equations

Bohun, C. Sean

282

Electromagnetic characterization of PCB cards for mobile phones  

E-Print Network [OSTI]

Electromagnetic characterization of PCB cards for mobile phones Ali Jazzar(*), Edith Clavel state, more the price linked to the EMC (Electromagnetic Compatibility) requirements is important .Thus the electromagnetic perturbations inside and outside the structure. The required CAD tool to achieve this modeling

Boyer, Edmond

283

Electromagnetics, 26:335, 2006 Copyright Taylor & Francis Group, LLC  

E-Print Network [OSTI]

Electromagnetics, 26:3­35, 2006 Copyright © Taylor & Francis Group, LLC ISSN: 0272-6343 print/1532 the statistical properties of the impedance (Z) and scattering (S) matrices of open electromagnetic cavities. Introduction The problem of the coupling of electromagnetic radiation in and out of structures is a general one

Anlage, Steven

284

Electromagnetic measurements of duodenal digesta flow in cannulated sheep  

E-Print Network [OSTI]

Electromagnetic measurements of duodenal digesta flow in cannulated sheep C. PONCET, M. IVAN M of duodenal digesta flow were made in sheep implanted with an electromagnetic flowmeter probe on the ascending to frequent oscillation of the digesta. It was concluded that accurate quantitative electromagnetic

Paris-Sud XI, Université de

285

The Emission of Electromagnetic Radiation from Charges Accelerated by Gravitational Waves and its Astrophysical Implications  

E-Print Network [OSTI]

We provide calculations and theoretical arguments supporting the emission of electromagnetic radiation from charged particles accelerated by gravitational waves (GWs). These waves have significant indirect evidence to support their existence, yet they interact weakly with ordinary matter. We show that the induced oscillations of charged particles interacting with a GW, which lead to the emission of electromagnetic radiation, will also result in wave attenuation. These ideas are supported by a small body of literature, as well as additional arguments for particle acceleration based on GW memory effects. We derive order of magnitude power calculations for various initial charge distributions accelerated by GWs. The resulting power emission is extremely small for all but very strong GWs interacting with large quantities of charge. If the results here are confirmed and supplemented, significant consequences such as attenuation of early universe GWs could result. Additionally, this effect could extend GW detection techniques into the electromagnetic regime. These explorations are worthy of study to determine the presence of such radiation, as it is extremely important to refine our theoretical framework in an era of active GW astrophysics.

Mitchell Revalski; Will Rhodes; Thulsi Wickramasinghe

2015-02-03T23:59:59.000Z

286

Hydrodynamic construction of the electromagnetic field  

E-Print Network [OSTI]

We present an alternative Eulerian hydrodynamic model for the electromagnetic field in which the discrete vector indices in Maxwell\\s equations are replaced by continuous angular freedoms, and develop the corresponding Lagrangian picture in which the fluid particles have rotational and translational freedoms. This enables us to extend to the electromagnetic field the exact method of state construction proposed previously for spin 0 systems, in which the time-dependent wavefunction is computed from a single-valued continuum of deterministic trajectories where two spacetime points are linked by at most a single orbit. The deduction of Maxwell\\s equations from continuum mechanics is achieved by generalizing the spin 0 theory to a general Riemannian manifold from which the electromagnetic construction is extracted as a special case. In particular, the flat-space Maxwell equations are represented as a curved-space Schr\\"odinger equation for a massive system. The Lorentz covariance of the Eulerian field theory is obtained from the non-covariant Lagrangian-coordinate model as a kind of collective effect. The method makes manifest the electromagnetic analogue of the quantum potential that is tacit in Maxwell\\s equations. This implies a novel definition of the \\classical limit\\ of Maxwell\\s equations that differs from geometrical optics. It is shown that Maxwell\\s equations may be obtained by canonical quantization of the classical model. Using the classical trajectories a novel expression is derived for the propagator of the electromagnetic field in the Eulerian picture. The trajectory and propagator methods of solution are illustrated for the case of a light wave.

Peter Holland

2014-10-03T23:59:59.000Z

287

A 3D finite-element modelling investigation into optimal survey parameters and direct imaging for marine controlled-source electromagnetic surveys  

E-Print Network [OSTI]

Relatively little is known about marine controlled-source electromagnetic surveys (MCSEM) used to detect hydrocarbon reservoirs. Typical MCSEM require the use of inversion to generate a model of the subsurface. We utilize a 3D finite-element forward...

Lau, Ryan

2007-09-17T23:59:59.000Z

288

Ultrarelativistic electron states in a general background electromagnetic field  

E-Print Network [OSTI]

The feasibility of obtaining exact analytical results in the realm of QED in the presence of a background electromagnetic field is almost exclusively limited to a few tractable cases, where the Dirac equation in the corresponding background field can be solved analytically. This circumstance has restricted, in particular, the theoretical analysis of QED processes in intense laser fields to within the plane-wave approximation even at those high intensities, achievable experimentally only by tightly focusing the laser energy in space. Here, within the Wentzel-Kramers-Brillouin (WKB) or eikonal approximation, we construct analytically single-particle electron states in the presence of a background electromagnetic field of general space-time structure in the realistic assumption that the initial energy of the electron is the largest dynamical energy scale in the problem. The relatively compact expression of these states opens, in particular, the possibility of investigating analytically strong-field QED processes in the presence of spatially focused laser beams, which is of particular relevance in view of the upcoming experimental campaigns in this field.

A. Di Piazza

2014-07-27T23:59:59.000Z

289

A strong permanent magnet-assisted electromagnetic undulator  

DOE Patents [OSTI]

This invention discloses an improved undulator comprising a plurality of electromagnet poles located along opposite sides of a particle beam axis with alternate north and south poles on each side of the beam to cause the beam to wiggle or undulate as it travels generally along the beam axis and permanent magnets spaced adjacent the electromagnetic poles on each side of the axis of said particle beam in an orientation sufficient to reduce the saturation of the electromagnet poles whereby the field strength of the electromagnet poles can be increased beyond the normal saturation levels of the electromagnetic poles. 4 figs.

Halbach, K.

1987-01-30T23:59:59.000Z

290

Identification and characterization of tac5, a telomerase activation mutant, characterization of DNA damage responses and assessment of interactions between telomere-related proteins in Arabidopsis thaliana  

E-Print Network [OSTI]

in the genetically tractable Arabidopsis model may provide insight into the cellular response to dysfunctional telomeres. As explained in chapter IV, the yeast two-hybrid screen was utilized to confirm the interactions of ATR with AtPOT2 and Ku80 and to identify...

Jasti, Madhuri

2009-05-15T23:59:59.000Z

291

Electromagnetic Scattering by Spheres of Topological Insulators  

E-Print Network [OSTI]

The electromagnetic scattering properties of topological insulator (TI) spheres are systematically studied in this paper. Unconventional backward scattering caused by the topological magneto-electric (TME) effect of TIs are found in both Rayleigh and Mie scattering regimes. This enhanced backward scattering can be achieved by introducing an impedance-matched background which can suppress the bulk scattering. For the cross-polarized scattering coefficients, interesting antiresonances are found in the Mie scattering regime, wherein the cross-polarized electromagnetic fields induced by the TME effect are trapped inside TI spheres. In the Rayleigh limit, the quantized TME effect of TIs can be determined by measuring the electric-field components of scattered waves in the far field.

Ge, Lixin; Zi, Jian

2015-01-01T23:59:59.000Z

292

Electromagnetic or other directed energy pulse launcher  

DOE Patents [OSTI]

The physical realization of new solutions of wave propagation equations, such as Maxwell's equations and the scaler wave equation, produces localized pulses of wave energy such as electromagnetic or acoustic energy which propagate over long distances without divergence. The pulses are produced by driving each element of an array of radiating sources with a particular drive function so that the resultant localized packet of energy closely approximates the exact solutions and behaves the same.

Ziolkowski, Richard W. (Livermore, CA)

1990-01-01T23:59:59.000Z

293

Electromagnetic Dark Energy and Gravitoelectrodynamics of Superconductors  

E-Print Network [OSTI]

It is shown that Beck and Mackey electromagnetic model of dark energy in superconductors can account for the non-classical inertial properties of superconductors, which have been conjectured by the author to explain the Cooper pair's mass excess reported by Cabrera and Tate. A new Einstein-Planck regime for gravitation in condensed matter is proposed as a natural scale to host the gravitoelectrodynamic properties of superconductors.

Clovis Jacinto de Matos

2007-10-29T23:59:59.000Z

294

Velocity damper for electromagnetically levitated materials  

DOE Patents [OSTI]

A system for damping oscillatory and spinning motions induced in an electromagnetically levitated material is disclosed. Two opposed field magnets are located orthogonally to the existing levitation coils for providing a DC quadrupole field (cusp field) around the material. The material used for generating the DC quadrupole field must be nonconducting to avoid eddy-current heating and of low magnetic permeability to avoid distorting the induction fields providing the levitation. 1 fig.

Fox, R.J.

1994-06-07T23:59:59.000Z

295

Electromagnetic Isolation Solutions in Low Temperature Cofired Ceramic (LTCC)  

SciTech Connect (OSTI)

Low Temperature Cofired Ceramic (LTCC) is a commercial ceramic-glass multilayer technology with compelling advantages for microelectronics, microsystems and sensors. High frequency applications require good electrical properties such as low dielectric loss and newer applications require extreme isolation from electromagnetic interference (EMI) that is even difficult to measure (-150db). Approaches to providing this isolation, once provided by via fences, have included sidewall coating and full tape thickness features (FTTF) that have been introduced by the filling of slots with via-fill compositions. Several techniques for creating these structures have been modeled for stress and temperature effects in the face of other necessary attachments, such as metallic seal frames. The relative effects of attachment media, FTTF geometry, and alternative measures will be reported. Approaches for thick film and thin film implementations are described.

Krueger, Daniel; Peterson, Ken; Euler, Laurie

2011-10-09T23:59:59.000Z

296

Characterization of microstructure with low frequency electromagnetic techniques  

SciTech Connect (OSTI)

A new computational method for characterizing the relationship between surface crystallography and electrical conductivity in anisotropic materials with low frequency electromagnetic techniques is presented. The method is discussed from the standpoint of characterizing the orientation of a single grain, as well as characterizing statistical information about grain ensembles in the microstructure. Large-area electron backscatter diffraction (EBSD) data was obtained and used in conjunction with a synthetic aperture approach to simulate the eddy current response of beta annealed Ti-6Al-4V. Experimental eddy current results are compared to the computed eddy current approximations based on electron backscatter diffraction (EBSD) data, demonstrating good agreement. The detectability of notches in the presence of noise from microstructure is analyzed with the described simulation method and advantages and limitations of this method are discussed relative to other NDE techniques for such analysis.

Cherry, Matthew R.; Sathish, Shamachary [University of Dayton Research Institute, Structural Integrity Division, 300 College Park, Dayton, OH 45469-0020 (United States); Pilchak, Adam L.; Blodgett, Mark P. [Air Force Research Laboratory, Materials and Manufacturing Directorate (AFRL/RXCM), 2230 10th St., WPAFB, OH 45433 (United States); Cherry, Aaron J. [Southwest Ohio Council for Higher Education, 3155 Research Blvd., Suite 204, Dayton, OH 45420-4015 (United States)

2014-02-18T23:59:59.000Z

297

Enhanced ULF electromagnetic activity detected by DEMETER above seismogenic regions  

E-Print Network [OSTI]

In this paper we present results of a comparison between ultra low frequency (ULF) electromagnetic (EM) radiation, recorded by an electric field instrument (ICE) onboard the satellite DEMETER in the topside ionosphere, and the seismicity of regions with high and lower seiismic activity. In particular we evaluated the energy variations of the ULF Ez-electric field component during a period of four years (2006-2009), in order to examine check the possible relation of ULF EM radiation with seismogenic regions located in central America, Indonesia, Eastern Mediterranean Basin and Greece. As a tool of evaluating the ULF Ez energy variations we used Singular Spectrum Analysis (SSA) techniques. The results of our analysis clearly show a significant increase of the ULF EM energy emmited from regions of highest seismic activity at the tectonic plates boundaries. We interpret these results as suggesting that the highest ULF EM energy detected in the topside ionosphere is originated from seismic processes within Earth's...

Athanasiou, M; David, C; Anagnostopoulos, G

2013-01-01T23:59:59.000Z

298

Modulational instability of electromagnetic waves in a collisional quantum magnetoplasma  

SciTech Connect (OSTI)

The modulational instability of right-hand circularly polarized electromagnetic electron cyclotron (CPEM-EC) wave in a magnetized quantum plasma is studied taking into account the collisional effects. Employing quantum hydrodynamic and nonlinear Schrödinger equations, the dispersion relation of modulated CPEM-EC wave in a collisional plasma has been derived. It is found that this wave is unstable in such a plasma system and the growth rate of the associated instability depends on various parameters such as electron Fermi temperature, plasma number density, collision frequency, and modulation wavenumber. It is shown that while the increase of collision frequency leads to increase of the growth rate of instability, especially at large wavenumber limit, the increase of plasma number density results in more stable modulated CPEM-EC wave. It is also found that in contrast to collisionless plasma in which modulational instability is restricted to small wavenumbers, in collisional plasma, the interval of instability occurrence can be extended to a large domain.

Niknam, A. R., E-mail: a-niknam@sbu.ac.ir [Laser and Plasma Research Institute, Shahid Beheshti University, G.C., Tehran (Iran, Islamic Republic of); Rastbood, E.; Bafandeh, F.; Khorashadizadeh, S. M., E-mail: smkhorashadi@birjand.ac.ir [Physics Department of Birjand University, Birjand (Iran, Islamic Republic of)

2014-04-15T23:59:59.000Z

299

The progenitor of SN 2011ja: Clues from circumstellar interaction  

E-Print Network [OSTI]

Massive stars, possibly red supergiants, which retain extended hydrogen envelopes until the time of core collapse produce Type IIP (Plateau) supernovae. The ejecta from these explosions shock the circumstellar matter originating from the mass loss of the progenitor during the final phases of its life. This interaction accelerates particles to relativistic energies which then lose energy via synchrotron radiation in the shock-amplified magnetic fields and inverse Compton scattering against optical photons from the supernova. These processes produce different signatures in the radio and X-ray part of the electromagnetic spectrum. Observed together, they allow us to break the degeneracy between shock acceleration and magnetic field amplification. In this work we use X-rays observations from the Chandra and radio observations from the ATCA to study the relative importance of particle acceleration and magnetic fields in producing the non-thermal radiation from SN 2011ja. We use radio observations to constrain the ...

Chakraborti, Sayan; Smith, Randall; Ryder, Stuart; Yadav, Naveen; Sutaria, Firoza; Dwarkadas, Vikram V; Chandra, Poonam; Pooley, David; Roy, Rupak

2013-01-01T23:59:59.000Z

300

Assessment and Mitigation of Diagnostic-Generated Electromagnetic Interference at the National Ignition Facility  

SciTech Connect (OSTI)

Electromagnetic interference (EMI) is an ever-present challenge at laser facilities such as the National Ignition Facility (NIF). The major source of EMI at such facilities is laser-target interaction that can generate intense electromagnetic fields within, and outside of, the laser target chamber. In addition, the diagnostics themselves can be a source of EMI, even interfering with themselves. In this paper we describe EMI generated by ARIANE and DIXI, present measurements, and discuss effects of the diagnostic-generated EMI on ARIANE's CCD and on a PMT nearby DIXI. Finally we present some of the efforts we have made to mitigate the effects of diagnostic-generated EMI on NIF diagnostics.

Brown, C G; Ayers, M J; Felker, B; Ferguson, W; Holder, J P; Nagel, S R; Piston, K W; Simanovskaia, N; Throop, A L; Chung, M; Hilsabeck, T

2012-04-20T23:59:59.000Z

Note: This page contains sample records for the topic "interactive electromagnetic relations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Electromagnetic waves destabilized by runaway electrons in near-critical electric fields  

SciTech Connect (OSTI)

Runaway electron distributions are strongly anisotropic in velocity space. This anisotropy is a source of free energy that may destabilize electromagnetic waves through a resonant interaction between the waves and the energetic electrons. In this work, we investigate the high-frequency electromagnetic waves that are destabilized by runaway electron beams when the electric field is close to the critical field for runaway acceleration. Using a runaway electron distribution appropriate for the near-critical case, we calculate the linear instability growth rate of these waves and conclude that the obliquely propagating whistler waves are most unstable. We show that the frequencies, wave numbers, and propagation angles of the most unstable waves depend strongly on the magnetic field. Taking into account collisional and convective damping of the waves, we determine the number density of runaways that is required to destabilize the waves and show its parametric dependences.

Komar, A.; Pokol, G. I. [Department of Nuclear Techniques, Budapest University of Technology and Economics, Association EURATOM, H-1111 Budapest (Hungary); Fueloep, T. [Department of Applied Physics, Nuclear Engineering, Chalmers University of Technology and Euratom-VR Association, Goeteborg (Sweden)

2013-01-15T23:59:59.000Z

302

Electromagnetically-Induced Frame-Dragging around Astrophysical Objects  

E-Print Network [OSTI]

Frame dragging (Lense-Thirring effect) is generally associated with rotating astrophysical objects. However, it can also be generated by electromagnetic fields if electric and magnetic fields are simultaneously present. In most models of astrophysical objects, macroscopic charge neutrality is assumed and the entire electromagnetic field is characterized in terms of a magnetic dipole component. Hence, the purely electromagnetic contribution to the frame dragging vanishes. However, strange stars may posses independent electric dipole and neutron stars independent electric quadrupole moments that may lead to the presence of purely electromagnetic contributions to the frame dragging. Moreover, recent observations have shown that in stars with strong electromagnetic fields, the magnetic quadrupole may have a significant contribution to the dynamics of stellar processes. As an attempt to characterized and quantify the effect of electromagnetic frame-dragging in this kind of astrophysical objects, an analytic soluti...

Ruiz, Andrés F Gutiérrez

2015-01-01T23:59:59.000Z

303

Theoretical Determination of the $?N?$ Electromagnetic Transition Amplitudes in the $?(1232)$ Region  

E-Print Network [OSTI]

We utilize non-perturbative and fully relativistic methods to calculate the\\thinspace \\thinspace $\\Delta N\\gamma $ electromagnetic transition amplitudes $G_{M}^{*}(q^{2})$ (related to the magnetic dipole moment $% M_{1^{+}}^{3/2}(q^{2})$), $G_{E}^{*}(q^{2})$ (related to the electric quadrupole moment $E_{1^{+}}^{3/2}(q^{2})$), the electromagnetic ratio $% R_{EM}(q^{2})\\equiv -G_{E}^{*}(q^{2})/G_{M}^{*}(q^{2})=E_{1^{+}}^{3/2}(q^{2})/M_{1^{+}}^{3/2}(q^{2} ) $, and discuss their $q^{2}$ behavior in the $\\Delta (1232)$ mass region. These are very important quantities which arise in all viable quark, QCD, or perturbative QCD models of pion electroproduction and photoproduction.

Milton Dean Slaughter

1999-03-08T23:59:59.000Z

304

Motor Packaging with Consideration of Electromagnetic and Material...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Publications Alnico and Ferrite Hybrid Excitation Electric Machines Motor Packaging with Consideration of Electromagnetic and Material Characteristics Electric Machine R&D...

305

Electromagnetic scattering and induction models for spheroidal geometries  

E-Print Network [OSTI]

Electromagnetic scattering from a medium containing randomly distributed discrete dielectric spheroidal inclusions is studied. Also, the broadband magnetoquasistatic solution for the induced magnetic field from a conducting ...

Barrowes, Benjamin E., 1973-

2004-01-01T23:59:59.000Z

306

Analysis Of Factors Affecting Natural Source Slf Electromagnetic...  

Open Energy Info (EERE)

relationship between the sensor orientation and the received artificial electromagnetic interference, influence of weather conditions on the data quality and so on. The results...

307

Design Optimization of electromagnetic actuator by genetic algorithm  

E-Print Network [OSTI]

condition in the design or in the optimization of ... efficient linear electromagnetic actuator with an .... derivative of the stored magnetic energy with respect.

ELBEZ

2008-02-26T23:59:59.000Z

308

Time-Domain Electromagnetics At Neal Hot Springs Geothermal Area...  

Open Energy Info (EERE)

Activity: Time-Domain Electromagnetics At Neal Hot Springs Geothermal Area (Colorado School of Mines and Imperial College London, 2011) Exploration Activity Details Location Neal...

309

Overview Of Electromagnetic Methods Applied In Active Volcanic...  

Open Energy Info (EERE)

areas in the United States through electromagnetic geophysical studies received foundation from the many surveys done for geothermal exploration in the 1970's. Investigations...

310

Electromagnetic Soundings At Kilauea East Rift Geothermal Area...  

Open Energy Info (EERE)

of this study was to obtain a more complete model of the geologic structure and hydrology of Kilauea's east rift zone Notes Electromagnetic transient soundings were conducted...

311

6.013 Electromagnetics and Applications, Fall 2002  

E-Print Network [OSTI]

Electromagnetic phenomena are explored in modern applications including wireless communications, circuits, computer interconnects and peripherals, optical fiber links and components, microwave communications and radar, ...

Staelin, David H.

312

6.641 Electromagnetic Fields, Forces, and Motion, Spring 2003  

E-Print Network [OSTI]

Electric and magnetic quasistatic forms of Maxwell's equations applied to dielectric, conduction, and magnetization boundary value problems. Electromagnetic forces, force densities, and stress tensors, including magnetization ...

Zahn, Markus, 1946-

313

Novel resonance-assisted electromagnetic-transport phenomena  

E-Print Network [OSTI]

We first demonstrate theoretically and experimentally that electromagnetic resonators with high quality factors (Q) can be used to transfer power efficiently over distances substantially larger than the characteristic ...

Kurs, André B

2011-01-01T23:59:59.000Z

314

Electromagnetic Soundings At Dixie Valley Geothermal Area (Mallan...  

Open Energy Info (EERE)

Mallan, Et Al., 2001) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Electromagnetic Soundings At Dixie Valley Geothermal Area (Mallan, Et Al.,...

315

Electromagnetically induced transparency controlled by a microwave field  

E-Print Network [OSTI]

interferences in electromagnetically induced transparency. A simple theoretical model and a numerical simulation have been developed to explain the observed experimental results....

Li, Hebin; Sautenkov, Vladimir A.; Rostovtsev, Yuri V.; Welch, George R.; Hemmer, Philip R.; Scully, Marlan O.

2009-01-01T23:59:59.000Z

316

Electromagnetic wave scattering by small perfectly conducting particles and applications  

E-Print Network [OSTI]

A formula for the electromagnetic (EM) field in the medium, in which many small perfectly conducting particles of an arbitrary shape are distributed, is derived.

Alexander G. Ramm

2014-02-13T23:59:59.000Z

317

Electromagnetic wave scattering by many conducting small particles  

E-Print Network [OSTI]

A rigorous theory of electromagnetic (EM) wave scattering by small perfectly conducting particles is developed. The limiting case when the number of particles tends to infinity is discussed.

A. G. Ramm

2008-04-21T23:59:59.000Z

318

Unification of Gravity and Electromagnetism II A Geometric Theory  

E-Print Network [OSTI]

It is shown that unification of gravity and electromagnetism can be achieved using an affine non-symmetric connection $\\Gamma^\\lambda_{\\mu\

Partha Ghose

2014-08-05T23:59:59.000Z

319

IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, VOL. 44, NO. 4, NOVEMBER 2002 495 A New Nonlinear Model of EMI-Induced  

E-Print Network [OSTI]

predictions. Index Terms--Demodulation, electromagnetic compatibility (EMC), electromagnetic interference (EMI are useful in the sizing of electromagnetic interference (EMI) filtering structures. Usually, RFI distortion

320

IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, VOL. 55, NO. 5, OCTOBER 2013 883 Characterization of Changes in LDO  

E-Print Network [OSTI]

sensitive to electromagnetic interference (EMI) coupled onto the power supply, with concomitant output--Ageing, electromagnetic compatibility (EMC), electromagnetic interference (EMI), immunity drift, low dropout (LDO) voltage

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "interactive electromagnetic relations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Generalized Terminal Modeling of Electromagnetic Interference  

SciTech Connect (OSTI)

Terminal models have been used for various applications. In this paper, a three-terminal model is proposed for electromagnetic-interference (EMI) characterization. The model starts with a power electronic system at a particular operating condition and creates a unique linearized equivalent circuit. Impedances and current/voltage sources define the noise throughout the entire EMI frequency spectrum. All parameters needed to create the model are clearly defined to ensure convergence and maximize accuracy. In addition, the accuracy of the model is confirmed up to 100 MHz for a dc-dc boost converter using both simulation and experimental validation.

Baisden, Andrew Carson [IEEE Industrial Applications Society; Boroyevich, Dushan [Virginia Polytechnic Institute and State University (Virginia Tech); Wang, Fei [ORNL

2010-01-01T23:59:59.000Z

322

Physics with the ALICE Electromagnetic Calorimeter  

E-Print Network [OSTI]

I will present physics measurements which are achievable in the ALICE experiment at the LHC through the inclusion of a new electromagnetic calorimeter. I will focus on jet measurements in proton proton and heavy ion collisions. Detailed simulations have been performed on jet reconstruction, jet triggering, heavy flavor jet reconstruction through electron identification, gamma-jet reconstruction and the measurements of identified hadrons and resonances in jets. I will show the physics capabilities which are made possible through the combination of calorimeter information with the other detector components in ALICE.

Rene Bellwied; for the ALICE Collaboration

2009-07-17T23:59:59.000Z

323

Artificial Retina Project: Electromagnetic and Thermal Effects  

SciTech Connect (OSTI)

This award supported the investigation on electromagnetic and thermal effects associated with the artificial retina, designed in collaboration with national laboratories, universities, and private companies. Our work over the two years of support under this award has focused mainly on 1) Design of new telemetry coils for optimal power and data transfer between the implant and the external device while achieving a significant size reduction with respect to currently used coils; 2) feasibility study of the virtual electrode configuration 3) study the effect of pulse shape and duration on the stimulation efficacy.

Lazzi, Gianluca

2014-08-29T23:59:59.000Z

324

Electromagnetic wave scattering by small bodies  

E-Print Network [OSTI]

A reduction of the Maxwell's system to a Fredholm second-kind integral equation with weakly singular kernel is given for electromagnetic (EM) wave scattering by one and many small bodies. This equation is solved asymptotically as the characteristic size of the bodies tends to zero. The technique developed is used for solving the many-body EM wave scattering problem by rigorously reducing it to solving linear algebraic systems, completely bypassing the usage of integral equations. An equation is derived for the effective field in the medium, in which many small particles are embedded. A method for creating a desired refraction coefficient is outlined.

A. G. Ramm

2008-04-21T23:59:59.000Z

325

Electromagnetic wave scattering by many small particles  

E-Print Network [OSTI]

Scattering of electromagnetic waves by many small particles of arbitrary shapes is reduced rigorously to solving linear algebraic system of equations bypassing the usual usage of integral equations. The matrix elements of this linear algebraic system have physical meaning. They are expressed in terms of the electric and magnetic polarizability tensors. Analytical formulas are given for calculation of these tensors with any desired accuracy for homogeneous bodies of arbitrary shapes. An idea to create a "smart" material by embedding many small particles in a given region is formulated.

A. G. Ramm

2006-08-18T23:59:59.000Z

326

Electromagnetic Dipole Strength in Transitional Nuclei  

E-Print Network [OSTI]

Electromagnetic dipole absorption cross-sections of transitional nuclei with large-amplitude shape fluctuations are calculated in a microscopic way by introducing the concept of Instantaneous Shape Sampling. The concept bases on the slow shape dynamics as compared to the fast dipole vibrations. The elctromagnetic dipole strength is calculated by means of RPA for the instantaneous shapes, the probability of which is obtained by means of IBA. Very good agreement with the experimental absorption cross sections near the nucleon emission threshold is obtained.

S. Q. Zhang; I. Bentley; S. Brant; F. Dönau; S. Frauendorf; B. Kämpfer; R. Schwengner; A. Wagner

2008-08-19T23:59:59.000Z

327

Electromagnetic wormholes and virtual magnetic monopoles  

E-Print Network [OSTI]

We describe new configurations of electromagnetic (EM) material parameters, the electric permittivity $\\epsilon$ and magnetic permeability $\\mu$, that allow one to construct from metamaterials objects that function as invisible tunnels. These allow EM wave propagation between two points, but the tunnels and the regions they enclose are not detectable to EM observations. Such devices function as wormholes with respect to Maxwell's equations and effectively change the topology of space vis-a-vis EM wave propagation. We suggest several applications, including devices behaving as virtual magnetic monopoles.

Allan Greenleaf; Yaroslav Kurylev; Matti Lassas; Gunther Uhlmann

2007-03-20T23:59:59.000Z

328

Electromagnetic Properties of the Early Universe  

E-Print Network [OSTI]

Detailed physical processes of magnetic field generation from density fluctuations in the pre-recombination era are studied. Solving Maxwell equations and the generalized Ohm's law, the evolutions of the net charge density, the electric current and the electromagnetic field are solved. Unlike most of previous works, we treat electrons and photons as separate components under the assumption of tight coupling. We find that generation of the magnetic field due to density fluctuations takes place only from the second order of both perturbation theory and the tight coupling approximation.

Keitaro Takahashi; Kiyotomo Ichiki; Naoshi Sugiyama

2008-05-29T23:59:59.000Z

329

Nonlocal Electromagnetic Response of Graphene Nanostructures  

E-Print Network [OSTI]

Nonlocal electromagnetic effects of graphene arise from its naturally dispersive dielectric response. We present semi-analytical solutions of nonlocal Maxwell's equations for graphene nano-ribbons array with features around 100 nm, where we found prominent departures from its local response. Interestingly, the nonlocal corrections are stronger for light polarization parallel to the ribbons, which manifests as additional broadening of the Drude peak. For the perpendicular polarization case, nonlocal effects lead to blue-shifts of the plasmon peaks. These manifestations provide a physical measure of nonlocal effects, and we quantify their dependence on ribbon width, doping and wavelength.

Fallahi, Arya; Tamagnone, Michele; Perruisseau-Carrier, Julien

2014-01-01T23:59:59.000Z

330

SANDAC V computer electromagnetic interface characteristics: Problems and solutions. [Sandia Airborne Computer (SANDAC)  

SciTech Connect (OSTI)

Electromagnetic Interference (EMI) problems have resulted in the redesign of the SANDAC V computer case and shielding of its connecting cables. In this report are detailed discussions on the use of computer models and of the tests performed to solve the EMI problems. Included is documentation on the specific changes made to the SANDAC V computer case and the shielding done on the connecting cables. Also documented are the current EMI capabilities relative to MIL Std. 461.

Russell, G.A.

1991-06-01T23:59:59.000Z

331

Radiation hardness qualification of PbWO4 scintillation crystals for the CMS Electromagnetic Calorimeter  

E-Print Network [OSTI]

Ensuring the radiation hardness of PbWO4 crystals was one of the main priorities during the construction of the electromagnetic calorimeter of the CMS experiment at CERN. The production on an industrial scale of radiation hard crystals and their certification over a period of several years represented a difficult challenge both for CMS and for the crystal suppliers. The present article reviews the related scientific and technological problems encountered.

The CMS Electromagnetic Calorimeter Group; P. Adzic; N. Almeida; D. Andelin; I. Anicin; Z. Antunovic; R. Arcidiacono; M. W. Arenton; E. Auffray; S. Argiro; A. Askew; S. Baccaro; S. Baffioni; M. Balazs; D. Bandurin; D. Barney; L. M. Barone; A. Bartoloni; C. Baty; S. Beauceron; K. W. Bell; C. Bernet; M. Besancon; B. Betev; R. Beuselinck; C. Biino; J. Blaha; P. Bloch; A. Borisevitch; A. Bornheim; J. Bourotte; R. M. Brown; M. Buehler; P. Busson; B. Camanzi; T. Camporesi; N. Cartiglia; F. Cavallari; A. Cecilia; P. Chang; Y. H. Chang; C. Charlot; E. A. Chen; W. T. Chen; Z. Chen; R. Chipaux; B. C. Choudhary; R. K. Choudhury; D. J. A. Cockerill; S. Conetti; S. Cooper; F. Cossutti; B. Cox; D. G. Cussans; I. Dafinei; D. R. Da Silva Di Calafiori; G. Daskalakis; A. David; K. Deiters; M. Dejardin; A. De Benedetti; G. Della Ricca; D. Del Re; D. Denegri; P. Depasse; J. Descamps; M. Diemoz; E. Di Marco; G. Dissertori; M. Dittmar; L. Djambazov; M. Djordjevic; L. Dobrzynski; A. Dolgopolov; S. Drndarevic; G. Drobychev; D. Dutta; M. Dzelalija; A. Elliott-Peisert; H. El Mamouni; I. Evangelou; B. Fabbro; J. L. Faure; J. Fay; A. Fedorov; F. Ferri; D. Franci; G. Franzoni; K. Freudenreich; W. Funk; S. Ganjour; S. Gascon; M. Gataullin; F. X. Gentit; A. Ghezzi; A. Givernaud; S. Gninenko; A. Go; B. Gobbo; N. Godinovic; N. Golubev; P. Govoni; N. Grant; P. Gras; M. Haguenauer; G. Hamel de Monchenault; M. Hansen; J. Haupt; H. F. Heath; B. Heltsley; W. Hintz; R. Hirosky; P. R. Hobson; A. Honma; G. W. S. Hou; Y. Hsiung; M. Huhtinen; B. Ille; Q. Ingram; A. Inyakin; P. Jarry; C. Jessop; D. Jovanovic; K. Kaadze; V. Kachanov; S. Kailas; S. K. Kataria; B. W. Kennedy; P. Kokkas; T. Kolberg; M. Korjik; N. Krasnikov; D. Krpic; Y. Kubota; C. M. Kuo; P. Kyberd; A. Kyriakis; M. Lebeau; P. Lecomte; P. Lecoq; A. Ledovskoy; M. Lethuillier; S. W. Lin; W. Lin; V. Litvine; E. Locci; E. Longo; D. Loukas; P. D. Luckey; W. Lustermann; Y. Ma; M. Malberti; J. Malclès; D. Maletic; N. Manthos; Y. Maravin; C. Marchica; N. Marinelli; A. Markou; C. Markou; M. Marone; V. Matveev; C. Mavrommatis; P. Meridiani; P. Milenovic; P. Miné; O. Missevitch; A. K. Mohanty; F. Moortgat; P. Musella; Y. Musienko; A. Nardulli; J. Nash; P. Nedelec; P. Negri; H. B. Newman; A. Nikitenko; F. Nessi-Tedaldi; M. M. Obertino; G. Organtini; T. Orimoto; M. Paganoni; P. Paganini; A. Palma; L. Pant; A. Papadakis; I. Papadakis; I. Papadopoulos; R. Paramatti; P. Parracho; N. Pastrone; J. R. Patterson; F. Pauss; J-P. Peigneux; E. Petrakou; D. G. Phillips II; P. Piroué; F. Ptochos; I. Puljak; A. Pullia; T. Punz; J. Puzovic; S. Ragazzi; S. Rahatlou; J. Rander; P. A. Razis; N. Redaelli; D. Renker; S. Reucroft; P. Ribeiro; C. Rogan; M. Ronquest; A. Rosowsky; C. Rovelli; P. Rumerio; R. Rusack; S. V. Rusakov; M. J. Ryan; L. Sala; R. Salerno; M. Schneegans; C. Seez; P. Sharp; C. H. Shepherd-Themistocleous; J. G. Shiu; R. K. Shivpuri; P. Shukla; C. Siamitros; D. Sillou; J. Silva; P. Silva; A. Singovsky; Y. Sirois; A. Sirunyan; V. J. Smith; F. Stöckli; J. Swain; T. Tabarelli de Fatis; M. Takahashi; V. Tancini; O. Teller; K. Theofilatos; C. Thiebaux; V. Timciuc; C. Timlin; M. Titov; A. Topkar; F. A. Triantis; S. Troshin; N. Tyurin; K. Ueno; A. Uzunian; J. Varela; P. Verrecchia; J. Veverka; T. Virdee; M. Wang; D. Wardrope; M. Weber; J. Weng; J. H. Williams; Y. Yang; I. Yaselli; R. Yohay; A. Zabi; S. Zelepoukine; J. Zhang; L. Y. Zhang; K. Zhu; R. Y. Zhu

2009-12-22T23:59:59.000Z

332

Hybrid electromagnetic transient simulation with the state variable representation of HVDC converter plant  

SciTech Connect (OSTI)

The two alternative methods in current use for the transient simulation of HVdc power systems are Electromagnetic Transient Programs and State Variable Analysis. A hybrid algorithm is described in this paper which combines the two methods selecting their best features. The relative performances of conventional and hybrid algorithms are discussed. Simulation results of typical back-to back HVdc link show that the hybrid representation provides more stable, accurate and efficient solutions.

Zavahir, J.M.; Arrillaga, J.; Watson, N.R. (Univ. of Canterbury, Christchurch (New Zealand))

1993-07-01T23:59:59.000Z

333

Evolution of event-by-event ET fluctuations over collision centrality in RHIC interactions  

SciTech Connect (OSTI)

Preliminary results are presented for two analyses of transverse energy (ET) production measured with the electromagnetic calorimeters (EMC) of the Pioneering High Energy Nuclear Interaction Experiment (PHENIX), in relativistic nuclear interactions in Au+Au heavy-ion collisions created by the Relativistic Heavy Ion Collider (RHIC), at Brookhaven National Laboratory. Event-by-event ET distributions made across collision centrality were used in (1) measurements of 200 GeV , and (2) measurements of 200 GeV and 62.4 GeV ET distribution relative fluctuations {sigma}/ and {sigma}2/, where {sigma} is the standard deviation, and {sigma}2 the variance of each semi-inclusive distribution. Event centrality was selected in 5% wide bins and each bin represented by a modeled mean number of participant nucleons .

Armendariz, Raul [Department of Physics, New Mexico State University, Las Cruces, NM (United States)

2006-07-11T23:59:59.000Z

334

Electromagnetic Interference from the ILC Beams  

SciTech Connect (OSTI)

Electromagnetic interference is an emerging problem of the future. This investigation analyzed the data collected from airborne radiation waves that caused electronic devices to fail. This investigation was set up at SLAC in End Station A and the data collected from the electromagnetic waves were received from antennas. In order to calibrate the antennas it required a signal generator to transmit the signals to the antenna and a digital oscilloscope to receive the radiation waves from the other antenna. The signal generator that was used was only able to generate signals between 1 and 1.45 GHz; therefore, the calibrations were not able to be completed. Instead, excel was used to create a curve fitting for the attenuation factors that were already factory calibrated. The function from the curve fitting was then used to extend the calibrations on the biconical and yagi antennas. A fast Fourier Transform was then ran in Matlab on the radiation waves received by the oscilloscope; in addition, the attenuation factors were calculated into the program to show the actual amplitudes of these radiation waves. For future research, the antennas will be manually calibrated and the results will be reanalyzed.

Brown, LaVonda N.; /Norfolk State U. /SLAC

2007-11-07T23:59:59.000Z

335

Progress In Electromagnetics Research B, Vol. 37, 205235, 2012 DERIVATION OF HOMOGENEOUS PERMITTIVITY OF  

E-Print Network [OSTI]

for engineering electromagnetic absorbing composite materials, for example, containing carbon fibers. The causal PERMITTIVITY OF COMPOSITE MATERIALS WITH ALIGNED CYLINDRI- CAL INCLUSIONS FOR CAUSAL ELECTROMAGNETIC Debye representation is important for incorporation of a composite material in numerical electromagnetic

Koledintseva, Marina Y.

336

Simulation and Modeling Techniques for Signal Integrity and Electromagnetic Interference on High Frequency Electronic Systems.  

E-Print Network [OSTI]

Simulation and Modeling Techniques for Signal Integrity and Electromagnetic Interference on High and Modeling Techniques for Signal Integrity and Electromagnetic Interference on High Frequency Electronic Integrity and Electromagnetic Interference on High Frequency Electronic Systems. by Luca Daniel Doctor

Daniel, Luca

337

Fast Electromagnetic Interference Analysis of Distributed Networks using Longitudinal Partitioning Based Waveform Relaxation  

E-Print Network [OSTI]

Fast Electromagnetic Interference Analysis of Distributed Networks using Longitudinal Partitioning -- In this paper, a waveform relaxation algorithm for the fast electromagnetic interference analysis of distributed is provided to demonstrate the validity of the proposed algorithm. Index Terms -- Electromagnetic interference

Roy, Sourajeet

338

PERGAMON Carbon 39 (2001) 279285 Electromagnetic interference shielding effectiveness of carbon  

E-Print Network [OSTI]

PERGAMON Carbon 39 (2001) 279­285 Review Electromagnetic interference shielding effectiveness materials for electromagnetic interference (EMI) shielding are reviewed. They include composite materials-structural and structural composites, colloi- dal graphite, as well as EMI gasket materials. Electromagnetic interference

Chung, Deborah D.L.

339

Electromagnetic interference shielding using continuous carbon-fiber carbon-matrix and polymer-matrix composites  

E-Print Network [OSTI]

Electromagnetic interference shielding using continuous carbon-fiber carbon-matrix and polymer electromagnetic interference (EMI) shielding material with shielding effectiveness 124 dB, low surface impedance interference shielding 1. Introduction Electromagnetic interference (EMI) shielding is receiv- ing increasing

Chung, Deborah D.L.

340

On the Casimir energy of the electromagnetic field in the dispersive and absorptive medium  

E-Print Network [OSTI]

The microscopic theory of the Casimir effect in the dielectric is studied in the framework when absorption is realized via a reservoir modeled by a set of oscillators with continuously distributed frquencies with the aim to see if the effects depend on the form of interaction with the reservoir. A simple case of the one-dimensional dielectric between two metallic plates is considered. Two possible models are investigated, the direct interaction of the electromagnetic field with the reservoir and indirect interaction via an intermediate oscillator imitating the atom. It is found that with the same dielectric constant the Casimir effect is different in these two cases, which implies that in the second model it cannot be entirely expressed via the dielectric constant as in the well-known Lifshitz formula.

M. A. Braun

2014-02-16T23:59:59.000Z

Note: This page contains sample records for the topic "interactive electromagnetic relations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Conceptual design for the STAR barrel electromagnetic calorimeter support rings  

SciTech Connect (OSTI)

The STAR electromagnetic calorimeter (EMC) will be used to measure the energy of photons and electrons from collisions of beams of particles in the RHIC accelerator under construction at Brookhaven National Laboratory. The present design is documented in the EMC Conceptual Design Report, and consists of a cylindrical barrel and two flat endcap calorimeter sections. The barrel EMC will consist of 120 modules, each subtending 6{degrees} in azimuthal angle about the beam ({phi}), and half the barrel length. Each module will be subdivided into ``towers`` of alternating scintillator and lead, which project to the nominal interaction point. There is a strong coupling between the designs for the EMC and for the conventional solenoidal magnet, which will be located immediately outside the barrel EMC. For example, the inner radius of the magnet must be minimized to lower costs and to reduce the STAR detector`s outer diameter to fit within constraints of the existing detector building. This condition requires the calorimeter modules to be just thick enough to accomplish physics goals and to support their weight with small deflections. This note describes progress in the design of the EMC support rings. Several ring designs and methods of construction have been considered. In addition, installation and alignment problems for both the rings and the rails have been considered in more depth. Finally, revised stress calculations for the recommended ring designs have been performed. Most of this work has been done in close collaboration with the STAR magnet subgroup.

Bielick, E.; Fornek, T.; Spinka, H.; Underwood, D.

1994-02-15T23:59:59.000Z

342

Effects of thermal motion on electromagnetically induced absorption  

E-Print Network [OSTI]

We describe the effect of thermal motion and buffer-gas collisions on a four-level closed N system interacting with strong pump(s) and a weak probe. This is the simplest system that experiences electromagnetically induced absorption (EIA) due to transfer of coherence via spontaneous emission from the excited to ground state. We investigate the influence of Doppler broadening, velocity-changing collisions (VCC), and phase-changing collisions (PCC) with a buffer gas on the EIA spectrum of optically active atoms. In addition to exact expressions, we present an approximate solution for the probe absorption spectrum, which provides physical insight into the behavior of the EIA peak due to VCC, PCC, and wave-vector difference between the pump and probe beams. VCC are shown to produce a wide pedestal at the base of the EIA peak, which is scarcely affected by the pump-probe angular deviation, whereas the sharp central EIA peak becomes weaker and broader due to the residual Doppler-Dicke effect. Using diffusion-like equations for the atomic coherences and populations, we construct a spatial-frequency filter for a spatially structured probe beam and show that Ramsey narrowing of the EIA peak is obtained for beams of finite width.

E. Tilchin; O. Firstenberg; A. D. Wilson-Gordon

2011-07-04T23:59:59.000Z

343

Electromagnetic models of the lightning return stroke Yoshihiro Baba1  

E-Print Network [OSTI]

Electromagnetic models of the lightning return stroke Yoshihiro Baba1 and Vladimir A. Rakov2] Lightning return-stroke models are needed for specifying the source in studying the production of transient-called engineering models, electromagnetic return-stroke models allow a self-consistent full-wave solution for both

Florida, University of

344

Electromagnetic Interference (EMI) Resisting Analog Integrated Circuit Design Tutorial  

E-Print Network [OSTI]

ELECTROMAGNETIC INTERFERENCE (EMI) RESISTING ANALOG INTEGRATED CIRCUIT DESIGN TUTORIAL A Thesis by JINGJING YU Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements... for the degree of MASTER OF SCIENCE August 2012 Major Subject: Electrical Engineering ELECTROMAGNETIC INTERFERENCE (EMI) RESISTING ANALOG INTEGRATED CIRCUIT DESIGN TUTORIAL A Thesis by JINGJING YU Submitted to the Office...

Yu, Jingjing

2012-10-19T23:59:59.000Z

345

On Generating Gravity Waves with Matter and Electromagnetic Waves  

E-Print Network [OSTI]

If a homogeneous plane light-like shell collides head-on with a homogeneous plane electromagnetic shock wave having a step-function profile then no backscattered gravitational waves are produced. We demonstrate, by explicit calculation, that if the matter is accompanied by a homogeneous plane electromagnetic shock wave with a step-function profile then backscattered gravitational waves appear after the collision.

C. Barrabes; P. A. Hogan

2008-04-05T23:59:59.000Z

346

Material Surface Design to Counter Electromagnetic Interrogation of Targets  

E-Print Network [OSTI]

Material Surface Design to Counter Electromagnetic Interrogation of Targets H.T. Banks, K. Ito, G and ferromagnetic layers coat- ing a conducting object to provide an attenuation capability against electro. Fresnel's law for the reflectance index is extended to the electromagnetic propagation in anisotropic

347

Electromagnetic space-time crystals. II. Fractal computational approach  

E-Print Network [OSTI]

A fractal approach to numerical analysis of electromagnetic space-time crystals, created by three standing plane harmonic waves with mutually orthogonal phase planes and the same frequency, is presented. Finite models of electromagnetic crystals are introduced, which make possible to obtain various approximate solutions of the Dirac equation. A criterion for evaluating accuracy of these approximate solutions is suggested.

G. N. Borzdov

2014-10-20T23:59:59.000Z

348

Electromagnetic Field Creation During EWPT Nucleation With Lepton Currents  

E-Print Network [OSTI]

We include the electromagnetic currents from fermion degrees of freedom in the equations of motion for electroweak MSSM with a right-handed Stop that we have recently investigated. It is found that near the surface of the bubble walls there are important effects on the electromagnetic fields produced during bubble nucleation.

Leonard S. Kisslinger; Sameer Walawalkar; Ernest M. Henley; Mikkel B. Johnson

2005-10-11T23:59:59.000Z

349

Electromagnetic field at Finite Temperature: A first order approach  

E-Print Network [OSTI]

In this work we study the electromagnetic field at Finite Temperature via the massless DKP formalism. The constraint analysis is performed and the partition function for the theory is constructed and computed. When it is specialized to the spin 1 sector we obtain the well-known result for the thermodynamic equilibrium of the electromagnetic field.

R. Casana; B. M. Pimentel; J. S. Valverde

2007-02-04T23:59:59.000Z

350

Electromagnetic Wellbore Heating C. Sean Bohun, The Pennsylvania State University,  

E-Print Network [OSTI]

Electromagnetic Wellbore Heating C. Sean Bohun, The Pennsylvania State University, Bruce McGee, Mc Workshop, June 2000. 1 Introduction In this paper we derive a simple model that describes the recovery of petroleum fluids from an oil reservoir by the method of electromagnetic heating. By its very nature

Bohun, C. Sean

351

Electromagnetic actuator to reduce vibration sources Thibaut Chailloux*  

E-Print Network [OSTI]

in an FE- Tuned Magnetic Equivalent Circuit of an Electromagnetic Relay, Sixdenier F., Raulet M.-A., MarionElectromagnetic actuator to reduce vibration sources Thibaut Chailloux* , L. Morel* , F. Sixdenier In order to improve passenger comfort, a reduction of vibration sources in vehicles is being considered

Paris-Sud XI, Université de

352

Line geometry and electromagnetism III: groups of transformations  

E-Print Network [OSTI]

The role of linear and projective groups of transformations in line geometry and electromagnetism is examined in accordance with Klein's Erlanger Programm for geometries. The group of collineations of real projective space is chosen as the most general group, and reductions to some of its various subgroups are then detailed according to their relevance to electromagnetic fields, and especially wave-like ones.

D. H. Delphenich

2014-04-16T23:59:59.000Z

353

Double-sided electromagnetic pump with controllable normal force for rapid solidification of liquid metals  

DOE Patents [OSTI]

A system for casting liquid metals is provided with an electromagnetic pump which includes a pair of primary blocks each having a polyphase winding and being positioned to form a gap through which a movable conductive heat sink passes. A solidifying liquid metal sheet is deposited on the heat sink and the heat sink and sheet are held in compression by forces produced as a result of current flow through the polyphase windings. Shaded-pole interaction between the primary windings, heat sink and solidifying strip produce transverse forces which act to center the strip on the heat sink. 5 figs.

Kuznetsov, S.B.

1987-01-13T23:59:59.000Z

354

Electromagnetic induction pump for pumping liquid metals and other conductive liquids  

DOE Patents [OSTI]

An electromagnetic induction pump is described in which an electrically conductive liquid is made to flow by means of a force created by interaction of a permanent magnetic field and a DC current. The pump achieves high efficiency through combination of: powerful permanent magnet materials which provide a high strength field that is uniform and constant; steel tubing formed into a coil which is constructed to carry conducting liquids with minimal electrical resistance and heat; and application of a voltage to induce a DC current which continuously produces a force in the direction of the desired flow.

Smither, R.K.

1993-05-11T23:59:59.000Z

355

Electro-Optical Sensing Apparatus and Method for Characterizing Free-Space Electromagnetic Radiation  

DOE Patents [OSTI]

Apparatus and methods for characterizing free-space electromagnetic energy, and in particular, apparatus/method suitable for real-time two-dimensional far-infrared imaging applications are presented. The sensing technique is based on a non-linear coupling between a low-frequency electric field and a laser beam in an electro-optic crystal. In addition to a practical counter-propagating sensing technique, a co-linear approach is described which provides longer radiated field--optical beam interaction length, thereby making imaging applications practical.

Zhang, Xi-Cheng; Libelo, Louis Francis; Wu, Qi

1999-09-14T23:59:59.000Z

356

Electromagnetic induction pump for pumping liquid metals and other conductive liquids  

DOE Patents [OSTI]

An electromagnetic induction pump in which an electrically conductive liquid is made to flow by means of a force created by interaction of a permanent magnetic field and a DC current. The pump achieves high efficiency through combination of: powerful permanent magnet materials which provide a high strength field that is uniform and constant; steel tubing formed into a coil which is constructed to carry conducting liquids with minimal electrical resistance and heat; and application of a voltage to induce a DC current which continuously produces a force in the direction of the desired flow.

Smither, Robert K. (Hinsdale, IL)

1993-01-01T23:59:59.000Z

357

Double-sided electromagnetic pump with controllable normal force for rapid solidification of liquid metals  

DOE Patents [OSTI]

A system for casting liquid metals is provided with an electromagnetic pump which includes a pair of primary blocks each having a polyphase winding and being positioned to form a gap through which a movable conductive heat sink passes. A solidifying liquid metal sheet is deposited on the heat sink and the heat sink and sheet are held in compression by forces produced as a result of current flow through the polyphase windings. Shaded-pole interaction between the primary windings, heat sink and solidifying strip produce transverse forces which act to center the strip on the heat sink.

Kuznetsov, Stephen B. (Pittsburgh, PA)

1987-01-01T23:59:59.000Z

358

Electromagnetic Field in de Sitter Expanding Universe: Majorana--Oppenheimer Formalism, Exact Solutions in non-Static Coordinates  

E-Print Network [OSTI]

Tetrad-based generalized complex formalism by Majorana--Oppenheimer is applied to treat electromagnetic field in extending de Sitter Universe in on-static spherically-symmetric coordinates. With the help of Wigner D-functions, we separate angular dependence in the complex vector field E_{j}(t,r)+i B_{j}(t,r) from (t,r)-dependence. The separation parameter arising here instead of frequency \\omega in Minkowski space-time is quantized, non-static geometry of the de Sitter model leads to definite dependence of electromagnetic modes on the time variable. Relation of 3-vector complex approach to 10-dimensional Duffin-Kemmer-Petiau formalism is considered. On this base, the electromagnetic waves of magnetic and electric type have been constructed in both approaches. In Duffin-Kemmer-Petiau approach, there are constructed gradient-type solutions in Lorentz gauge.

O. V. Veko; N. D Vlasii; Yu. A. Sitenko; E. M. Ovsiyuk; V. M. Red'kov

2014-10-30T23:59:59.000Z

359

Electromagnetic Field in de Sitter Expanding Universe: Majorana--Oppenheimer Formalism, Exact Solutions in non-Static Coordinates  

E-Print Network [OSTI]

Tetrad-based generalized complex formalism by Majorana--Oppenheimer is applied to treat electromagnetic field in extending de Sitter Universe in on-static spherically-symmetric coordinates. With the help of Wigner D-functions, we separate angular dependence in the complex vector field E_{j}(t,r)+i B_{j}(t,r) from (t,r)-dependence. The separation parameter arising here instead of frequency \\omega in Minkowski space-time is quantized, non-static geometry of the de Sitter model leads to definite dependence of electromagnetic modes on the time variable. Relation of 3-vector complex approach to 10-dimensional Duffin-Kemmer-Petiau formalism is considered. On this base, the electromagnetic waves of magnetic and electric type have been constructed in both approaches. In Duffin-Kemmer-Petiau approach, there are constructed gradient-type solutions in Lorentz gauge.

Veko, O V; Sitenko, Yu A; Ovsiyuk, E M; Red'kov, V M

2014-01-01T23:59:59.000Z

360

Discrimination of partial discharge electromagnetic signal in SF{sub 6} gas from external noises using phase gate control method  

SciTech Connect (OSTI)

The authors proposed phase gate control method for distinguishing frequency spectrum of electromagnetic wave caused by partial discharge (PD) in SF{sub 6} gas from external noises. They investigated the dependence of the polarity and phase angle of ac voltage on the electromagnetic wave spectrum. They derived the frequency region where PD spectrum caused by SF{sub 6} gas can be detected under noisy conditions. The authors also related quantitatively the gain of electromagnetic wave spectrum to the maximum PD charge simultaneously occurring in both SF{sub 6} gas and air. On the basis of these results, they determined the minimum detectable PD level in SF{sub 6} gas under noisy conditions as a function of measuring frequency.

Hikita, M.; Hoshino, T.; Kato, T.; Hayakawa, N.; Okubo, H. [Nagoya Univ. (Japan); Ueda, T. [Chubu Electric Power Co., Inc., Nagoya (Japan)

1996-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "interactive electromagnetic relations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

THE PROGENITOR OF SN 2011ja: CLUES FROM CIRCUMSTELLAR INTERACTION  

SciTech Connect (OSTI)

Massive stars, possibly red supergiants, which retain extended hydrogen envelopes until core collapse, produce Type II plateau (IIP) supernovae. The ejecta from these explosions shocks the circumstellar matter originating from the mass loss of the progenitor during the final phases of its life. This interaction accelerates particles to relativistic energies which then lose energy via synchrotron radiation in the shock-amplified magnetic fields and inverse Compton scattering against optical photons from the supernova. These processes produce different signatures in the radio and X-ray parts of the electromagnetic spectrum. Observed together, they allow us to break the degeneracy between shock acceleration and magnetic field amplification. In this work, we use X-rays observations from the Chandra and radio observations from the Australia Telescope Compact Array to study the relative importance of processes which accelerate particles and those which amplify magnetic fields in producing the non-thermal radiation from SN 2011ja. We use radio observations to constrain the explosion date. Multiple Chandra observations allow us to probe the history of variable mass loss from the progenitor. The ejecta expands into a low-density bubble followed by interaction with a higher density wind from a red supergiant consistent with M{sub ZAMS} {approx}> 12 M{sub Sun }. Our results suggest that a fraction of Type IIP supernovae may interact with circumstellar media set up by non-steady winds.

Chakraborti, Sayan [Institute for Theory and Computation, Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Ray, Alak; Yadav, Naveen [Tata Institute of Fundamental Research, 1 Homi Bhabha Road, Colaba, Mumbai 400 005 (India); Smith, Randall [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Ryder, Stuart [Australian Astronomical Observatory, P.O. Box 915, North Ryde, NSW 1670 (Australia); Sutaria, Firoza [Indian Institute of Astrophysics, Koramangala, Bangalore (India); Dwarkadas, Vikram V. [Department of Astronomy and Astrophysics, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); Chandra, Poonam [Department of Physics, Royal Military College of Canada, Kingston, ON K7K 7B4 (Canada); Pooley, David [Department of Physics, Sam Houston State University, Huntsville, TX (United States); Roy, Rupak, E-mail: schakraborti@fas.harvard.edu [Aryabhatta Research Institute of Observational Sciences, Manora Peak, Nainital (India)

2013-09-01T23:59:59.000Z

362

E-Print Network 3.0 - ac electromagnetic field Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Topics (time permitting). 12;The Nature of Electromagnetism Electric and magnetic fields... that are coupled; they are then referred to as an electromagnetic field....

363

E-Print Network 3.0 - active electromagnetic interference Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

electromagnetic interference Search Powered by Explorit Topic List Advanced Search Sample search results for: active electromagnetic interference Page: << < 1 2 3 4 5 > >> 1...

364

Medium Voltage Overhead Power-line Broadband Communications; Transmission Capacity and Electromagnetic Interference  

E-Print Network [OSTI]

and Electromagnetic Interference P. Amirshahi and M. Kavehrad (FIEEE) The Pennsylvania State University, Department distribution networks for broadband power-line communications applications. Electromagnetic interference

Kavehrad, Mohsen

365

1. Shielding against Electromagnetic Interference With telecommunication networks connecting wireless devices around the globe, there  

E-Print Network [OSTI]

#12;1. Shielding against Electromagnetic Interference With telecommunication networks connecting electromagnetic interference (EMI) across the airwaves. These communication networks are ubiquitous and dynamic

Rincon-Mora, Gabriel A.

366

E-Print Network 3.0 - account electromagnetic transient Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

electromagnetic transient Search Powered by Explorit Topic List Advanced Search Sample search results for: account electromagnetic transient Page: << < 1 2 3 4 5 > >> 1 Frontiers...

367

Susceptibility of digital instrumentation and control systems to disruption by electromagnetic interference  

SciTech Connect (OSTI)

The potential for disruption of safety-related digital instrumentation and control (I&C) systems by electromagnetic interference/radio-frequency interference (EMI/RFI) bears directly on the safe operation of advanced reactors. It is anticipated that the use of digital I&C equipment for safety and control functions will be substantially greater for advanced reactor designs than for current-generation nuclear reactors, which primarily use analog I&C equipment. In the absence of significant operational experience, the best available indication of the potential vulnerability of advanced digital safety systems to EMI/RFI comes from environmental testing of an experimental digital safety channel (EDSC) by the Oak Ridge National Laboratory (ORNL). The EDSC is a prototypical system representative of advanced reactor safety system designs with regard to architecture, functionality and communication protocols, and board and component fabrication technologies. An understanding of the electromagnetic environment to be expected for advanced reactors can be drawn from ORNL`s survey of ambient EMI/RFI conditions in the current Generation of nuclear power plants. A summary of the results from these research efforts is reported in this paper. The lessons learned from the EMI/RFI survey and the EDSC tests contribute significantly to determining the best approach to assuring electromagnetic compatibility for the safety-related I&C systems of advanced reactors. 16 refs., 2 figs., 3 tabs.

Kercel, S.W.; Korsah, K.; Wood, R.T. [Oak Ridge National Lab., TN (United States)

1997-12-01T23:59:59.000Z

368

Susceptibility of digital instrumentation and control systems to disruption by electromagnetic interference  

SciTech Connect (OSTI)

The potential for disruption of safety-related digital instrumentation and control (I and C) systems by electromagnetic interference/radio-frequency interface (EMI/RFI) bears directly on the safe operation of advanced reactors. It is anticipated that the use of digital I and C equipment for safety and control functions will be substantially greater for advanced reactor designs than for current-generation nuclear reactors, which primarily use analog I and C equipment. In the absence of significant operational experience, the best available indication of the potential vulnerability of advanced digital safety systems to EMI/RFI comes from environmental testing of an experimental digital safety channel (EDSC) by the Oak Ridge National Laboratory (ORNL). The EDSC is a prototypical system representative of advanced reactor safety system designs with regard to architecture, functionality and communication protocols, and board and component fabrication technologies. An understanding of the electromagnetic environment to be expected for advanced reactors can be drawn from ORNL`s survey of ambient EMI/RFI conditions in the current generation of nuclear power plants. A summary of the results from these research efforts is reported in this paper. The lessons learned from the EMI/RFI survey and the EDSC tests contribute significantly to determining the best approach to assuring electromagnetic compatibility for the safety-related I and C systems of advanced reactors.

Kercel, S.W.; Korsah, K.; Wood, R.T.

1997-10-01T23:59:59.000Z

369

Electromagnetic matrix elements for negative parity nucleons  

E-Print Network [OSTI]

Here we present preliminary results for the evaluation of the electromagnetic form factors for the lowest-lying negative-parity, spin-$\\frac{1}{2}$ nucleons, namely the $S_{11}(1535)$ and $S_{11}(1650)$, through the use of the variational method. We find that the characteristics of the electric form factor, $G_{E}$, are similar between these states, however significant differences are observed between the quark-sector contributions to the magnetic form factor, $G_{M}$. Within simple constituent quark models, these states are understood to be admixtures of $s=\\frac{1}{2}$ and $s=\\frac{3}{2}$ states coupled to orbital angular momentum $\\ell = 1$. Our results reveal a qualitative difference in the manner in which the singly-represented quark sector contributes to these baryon magnetic form factors.

Benjamin Owen; Waseem Kamleh; Derek Leinweber; Selim Mahbub; Benjamin Menadue

2014-12-15T23:59:59.000Z

370

Electromagnetic mass difference on the lattice  

E-Print Network [OSTI]

We calculate electromagnetic mass difference of mesons using a method proposed by Duncan {\\it et al}. The RG-improved gauge action and the non-compact Abelian gauge action are employed to generate configurations. Quark propagators in the range of $m_{PS}/m_{V}=0.76-0.51$ are obtained with the meanfield-improved clover quark action. Chiral and continuum extrapolations are performed and the results are compared with experiments. Finite size effects are also examined. Quark masses are extracted from the measured spectrum. Our preliminary values for light quark masses are $m_{u}^{\\bar{MS}}(\\mu =2 {GeV}) = 3.03(19)$ MeV, $m_{d}^{\\bar{MS}}(\\mu = 2 {GeV}) = 4.44(28)$ MeV, $m_{s}^{\\bar{MS}}(\\mu = 2 {GeV}) = 99.2(52)$ MeV.

Yusuke Namekawa; Yoshio Kikukawa

2005-09-24T23:59:59.000Z

371

INNOVATIVE ELECTROMAGNETIC SENSORS FOR PIPELINE CRAWLERS  

SciTech Connect (OSTI)

Internal inspection of pipelines is an important tool for ensuring safe and reliable delivery of fossil energy products. Current inspection systems that are propelled through the pipeline by the product flow cannot be used to inspect all pipelines because of the various physical barriers they encounter. Recent development efforts include a new generation of powered inspection platforms that crawl slowly inside a pipeline and are able to maneuver past the physical barriers that can limit inspection. At Battelle, innovative electromagnetic sensors are being designed and tested for these new pipeline crawlers. The various sensor types can be used to assess a wide range of pipeline anomalies including corrosion, mechanical damage, and cracks. The Applied Energy Systems Group at Battelle is concluding the first year of work on a projected three-year development effort. In this first year, two innovative electromagnetic inspection technologies were designed and tested. Both were based on moving high-strength permanent magnets to generate inspection energy. One system involved translating permanent magnets towards the pipe. A pulse of electric current would be induced in the pipe to oppose the magnetization according to Lenz's Law. The decay of this pulse would indicate the presence of defects in the pipe wall. This inspection method is similar to pulsed eddy current inspection methods, with the fundamental difference being the manner in which the current is generated. Details of this development effort were reported in the first semiannual report on this project. This second semiannual report focuses on the development of a second inspection methodology, based on rotating permanent magnets. During this period, a rotating permanent magnet exciter was designed and built. The exciter unit produces strong eddy currents in the pipe wall. The tests have shown that at distances of a pipe diameter or more, the currents flow circumferentially, and that these circumferential currents are deflected by pipeline defects such as corrosion and axially aligned cracks. Simple sensors are used to detect the change in current densities in the pipe wall.

J. Bruce Nestleroth

2004-11-05T23:59:59.000Z

372

Dihydropyridine-sensitive calcium channel activity related to prolactin, growth hormone, and luteinizing hormone release from anterior pituitary cells in culture: interactions with somatostatin, dopamine, and estrogens  

SciTech Connect (OSTI)

In the present work, we determined the activity of voltage-dependent dihydropyridine (DHP)-sensitive Ca2+ channels related to PRL, GH, and LH secretion in primary cultures of pituitary cells from male or female rats. We investigated their modulation by 17 beta-estradiol (E2) and their involvement in dopamine (DA) and somatostatin (SRIF) inhibition of PRL and GH release. BAY-K-8644 (BAYK), a DHP agonist which increases the opening time of already activated channels, stimulated PRL and GH secretion in a dose-dependent manner. The effect was more pronounced on PRL than on GH release. BAYK-evoked hormone secretion was further amplified by simultaneous application of K+ (30 or 56 mM) to the cell cultures; in parallel, BAYK-induced 45Ca uptake by the cells was potentiated in the presence of depolarizing stimuli. In contrast, BAYK was unable to stimulate LH secretion from male pituitary cells, but it potentiated LHRH- as well as K+-induced LH release; it had only a weak effect on LH secretion from female cell cultures. Basal and BAYK-induced pituitary hormone release were blocked by the Ca2+ channel antagonist nitrendipine. Under no condition did BAYK affect the hydrolysis of phosphoinositides or cAMP formation. Pretreatment of female pituitary cell cultures with E2 (10(-9) M) for 72 h enhanced LH and PRL responses to BAYK, but was ineffective on GH secretion. DA (10(-7) M) inhibited basal and BAYK-induced PRL release from male or female pituitary cells treated or not treated with E2 (10(-9) M). SRIF (10(-9) and 10(-8) M) reversed BAYK-evoked GH release to the same extent in cell cultures derived from male or female animals. It was ineffective on BAYK-induced PRL secretion in the absence of E2, but antagonized it after E2 pretreatment. The effect was dependent upon the time of steroid treatment and was specific, since 17 alpha-estradiol was inactive.

Drouva, S.V.; Rerat, E.; Bihoreau, C.; Laplante, E.; Rasolonjanahary, R.; Clauser, H.; Kordon, C.

1988-12-01T23:59:59.000Z

373

Inferring black hole charge from backscattered electromagnetic radiation  

E-Print Network [OSTI]

We compute the scattering cross section of Reissner-Nordstr\\"om black holes for the case of an incident electromagnetic wave. We describe how scattering is affected by both the conversion of electromagnetic to gravitational radiation, and the parity-dependence of phase shifts induced by the black hole charge. The latter effect creates a helicity-reversed scattering amplitude that is non-zero in the backward direction. We show that from the character of the electromagnetic wave scattered in the backward direction it is possible, in principle, to infer if a static black hole is charged.

Luís C. B. Crispino; Sam R. Dolan; Atsushi Higuchi; Ednilton S. de Oliveira

2014-09-16T23:59:59.000Z

374

Electromagnetic quasinormal modes of D-dimensional black holes II  

E-Print Network [OSTI]

By using the sixth order WKB approximation we calculate for an electromagnetic field propagating in D-dimensional Schwarzschild and Schwarzschild de Sitter black holes its quasinormal frequencies for the fundamental mode and first overtones. We study the dependence of these QN frequencies on the value of the cosmological constant and the spacetime dimension. We also compare with the known results for the gravitational perturbations propagating in the same background. Moreover we exactly compute the QN frequencies of the electromagnetic field propagating in D-dimensional massless topological black hole and for charged D-dimensional Nariai spacetime we exactly calculate the QN frequencies of the coupled electromagnetic and gravitational perturbations.

A. López-Ortega

2007-06-20T23:59:59.000Z

375

A Full Review of the Theory of Electromagnetism  

E-Print Network [OSTI]

We will provide detailed arguments showing that the set of Maxwell equations, and the corresponding wave equations, do not properly describe the evolution of electromagnetic wave-fronts. We propose a nonlinear corrected version that is proven to be far more appropriate for the modellization of electromagnetic phenomena. The suitability of this approach will soon be evident to the reader, through a sequence of astonishing congruences, making the model as elegant as Maxwell's, but with increased chances of development. Actually, the new set of equations will allow us to explain many open questions, and find links between electromagnetism and other theories that have been searched for a long time, or not even imagined.

D. Funaro

2005-05-09T23:59:59.000Z

376

Gravitation and Special Relativity D. H. Sattinger  

E-Print Network [OSTI]

of Maxwell's equations for gravitation, based on a mathematical proof of Faraday's Law, is presentedGravitation and Special Relativity D. H. Sattinger Department of Mathematics University of Arizona of the perturbation theory of Ein- stein's equations, puts the gravitational and electromagnetic fields on an equal

Zakharov, Vladimir

377

Electromagnetic material changes for remote detection and monitoring: a feasibility study: Progress report  

SciTech Connect (OSTI)

A new concept for radiation detection is proposed, allowing a decoupling of the sensing medium and the readout. An electromagnetic material, such as a magnetic ceramic ferrite, is placed near a source to be tracked such as a shipping container. The electromagnetic material changes its properties, in this case its magnetic permeability, as a function of radiation. This change is evident as a change in reflection frequency and magnitude when probed using a microwave/millimeter-wave source. This brief report discusses modeling of radiation interaction of various candidate materials using a radiation detector modeling code Geant4, system design considerations for the remote readout, and some theory of the material interaction physics. The theory of radiation change in doped magnetic insulator ferrites such as yttrium iron garnet (YIG) seems well founded based on literature documentation of the photomagnetic effect. The literature also suggests sensitivity of permittivity to neutrons in some ferroelectrics. Research to date indicates that experimental demonstration of these effects in the context of radiation detection is warranted.

McCloy, John S.; Jordan, David V.; Kelly, James F.; McMakin, Douglas L.; Johnson, Bradley R.; Campbell, Luke W.

2009-09-01T23:59:59.000Z

378

About consistence between pi N Delta spin-3/2 gauge couplings and electromagnetic gauge invariance  

E-Print Network [OSTI]

We analyze the consistence between the recently proposed "spin 3/2 gauge" interaction for the Delta resonance with nucleons and pions, and the fundamental electromagnetic gauge invariance in any radiative amplitude. Chiral symmetric pion-derivative pi N Delta couplings can be substituted through a linear transformation to get Delta-derivative ones, which have the property of decoupling the 1/2 field components of the Delta propagator. Nevertheless, the electromagnetic gauge invariance introduced through minimal substitution in all derivatives, can only be fulfilled at a given order n without destroying the spin 3/2 one by dropping n+1 order terms within an effective field theory (EFT) framework with a defined power counting. In addition, we show that the Ward identity for the gamma Delta gamma vertex cannot be fulfilled with a trimmed 3/2 propagator, which should be necessary in order to keep the spin 3/2 gauge symmetry in the radiative case for the gamma Delta gamma amplitude. Finally, it is shown that radiative corrections of the spin 3/2 gauge strong vertexes at one loop, reintroduce the conventional interaction.

D. Badagnani; C. Barbero; A. Mariano

2015-03-05T23:59:59.000Z

379

Gyrokinetic Particle Simulation of Compressible Electromagnetic Turbulence in High-? Plasmas  

SciTech Connect (OSTI)

Supported by this award, the PI and his research group at the University of California, Irvine (UCI) have carried out computational and theoretical studies of instability, turbulence, and transport in laboratory and space plasmas. Several massively parallel, gyrokinetic particle simulation codes have been developed to study electromagnetic turbulence in space and laboratory plasmas. In space plasma projects, the simulation codes have been successfully applied to study the spectral cascade and plasma heating in kinetic Alfven wave turbulence, the linear and nonlinear properties of compressible modes including mirror instability and drift compressional mode, and the stability of the current sheet instabilities with finite guide field in the context of collisionless magnetic reconnection. The research results have been published in 25 journal papers and presented at many national and international conferences. Reprints of publications, source codes, and other research-related information are also available to general public on the PI’s webpage (http://phoenix.ps.uci.edu/zlin/). Two PhD theses in space plasma physics are highlighted in this report.

Lin, Zhihong

2014-03-13T23:59:59.000Z

380

ON THE INFLUENCE OF THE GEOMETRY ON SKIN EFFECT IN ELECTROMAGNETISM  

E-Print Network [OSTI]

ON THE INFLUENCE OF THE GEOMETRY ON SKIN EFFECT IN ELECTROMAGNETISM GABRIEL CALOZ, MONIQUE DAUGE, ERWAN FAOU, VICTOR P´ERON ABSTRACT. We consider the equations of electromagnetism set on a domain made in electromagnetism. This effect describes the rapid decay of electromagnetic fields with depth inside a metallic

Dauge, Monique

Note: This page contains sample records for the topic "interactive electromagnetic relations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Graphene-based nano-antennas for electromagnetic nanocommunications in the terahertz band  

E-Print Network [OSTI]

graphene-based electronics have opened the door to electromagnetic communications in the nanoscale. In this

Josep Miquel Jornet; Ian F. Akyildiz

2010-01-01T23:59:59.000Z

382

Frame Indifferent Formulation of Maxwell's Elastic Fluid and the Rational Continuum Mechanics of the Electromagnetic Field  

E-Print Network [OSTI]

We show that the linearized equations of the incompressible elastic medium admit a `Maxwell form' in which the shear component of the stress vector plays the role of the electric field, and the vorticity plays the role of the magnetic field. Conversely, the set of dynamic Maxwell equations are strict mathematical corollaries from the governing equations of the incompressible elastic medium. This suggests that the nature of `electromagnetic field' may actually be related to an elastic continuous medium. The analogy is complete if the medium is assumed to behave as fluid in shear motions, while it may still behave as elastic solid under compressional motions. Then the governing equations of the elastic fluid are re-derived in the Eulerian frame by replacing the partial time derivatives by the properly invariant (frame indifferent) time rates. The `Maxwell from' of the frame indifferent formulation gives the frame indifferent system that is to replace the Maxwell system. This new system comprises terms already present in the classical Maxwell equations, alongside terms that are the progenitors of the Biot--Savart, Oersted--Ampere's, and Lorentz--force laws. Thus a frame indifferent (truly covariant) formulation of electromagnetism is achieved from a single postulate that the electromagnetic field is a kind of elastic (partly liquid partly solid) continuum.

Christo I. Christov

2011-03-06T23:59:59.000Z

383

Electromagnetic Extraction and Annihilation of Antiprotons for Spacecraft Propulsion  

E-Print Network [OSTI]

. Zayas, Raymond J. Sedwick May, 2008 SSL # 3-08 #12;#12;Electromagnetic Extraction and Annihilation of Antiprotons for Spacecraft Propulsion Daniel A. Zayas, Raymond J. Sedwick May, 2008 SSL # 3-08 This work

384

Low-cost electromagnetic tagging : design and implementation  

E-Print Network [OSTI]

Several implementations of chipless RFID (Radio Frequency Identification) tags are presented and discussed as low-cost alternatives to chip-based RFID tags and sensors. An overview of present-day near-field electromagnetic ...

Fletcher, Richard R. (Richard Ribon)

2002-01-01T23:59:59.000Z

385

Exploring the Last Electromagnetic Frontier with the Long Wavelength Array  

E-Print Network [OSTI]

LWA Science with the Long Wavelength Demonstrator Array Radio transients offer a new frontier for next-generationExploring the Last Electromagnetic Frontier with the Long Wavelength Array The University of New. All solar system giant planets generate

Ellingson, Steven W.

386

Design of high temperature high speed electromagnetic axial thrust bearing  

E-Print Network [OSTI]

DESIGN OF HIGH TEMPERATURE HIGH SPEED ELECTROMAGNETIC AXIAL THRUST BEARING A Thesis by MOHAMMAD WAQAR MOHIUDDIN Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree... of MASTER OF SCIENCE December 2002 Major Subject: Mechanical Engineering DESIGN OF HIGH TEMPERATURE HIGH SPEED ELECTROMAGNETIC AXIAL THRUST BEARING A Thesis by MOHAMMAD WAQAR MOHIUDDIN Submitted to Texas A&M University in partial fulfillment...

Mohiuddin, Mohammad Waqar

2002-01-01T23:59:59.000Z

387

Electromagnetic quasinormal modes of an asymptotically Lifshitz black hole  

E-Print Network [OSTI]

Motivated by the recent interest in the study of the spacetimes that are asymptotically Lifshitz and in order to extend some previous results, we calculate exactly the quasinormal frequencies of the electromagnetic field in a D-dimensional asymptotically Lifshitz black hole. Based on the values obtained for the quasinormal frequencies we discuss the classical stability of the quasinormal modes. We also study whether the electromagnetic field possesses unstable modes in the D-dimensional Lifshitz spacetime.

A. Lopez-Ortega

2014-06-01T23:59:59.000Z

388

Electromagnetic quasinormal modes of D-dimensional black holes  

E-Print Network [OSTI]

Using the monodromy method we calculate the asymptotic quasinormal (QN) frequencies of an electromagnetic field moving in D-dimensional Schwarzschild and Schwarzschild de Sitter (SdS) black holes ($D\\geq 4$). For the D-dimensional Schwarzschild anti-de Sitter (SadS) black hole we also compute these frequencies with a similar method. Moreover, we calculate the electromagnetic normal modes of the D-dimensional anti-de Sitter (AdS) spacetime.

A. López-Ortega

2006-11-02T23:59:59.000Z

389

Electromagnetic vertex function of the pion at T > 0  

E-Print Network [OSTI]

The matrix element of the electromagnetic current between pion states is calculated in quenched lattice QCD at a temperature of $T = 0.93 T_c$. The nonperturbatively improved Sheikholeslami-Wohlert action is used together with the corresponding ${\\cal O}(a)$ improved vector current. The electromagnetic vertex function is extracted for pion masses down to $360 {\\rm MeV}$ and momentum transfers $Q^2 \\le 2.7 {\\rm GeV}^2$.

J. van der heide; J. H. Koch; E. Laermann

2005-12-23T23:59:59.000Z

390

Effects of Electromagnetic Fields on Fish and Invertebrates  

SciTech Connect (OSTI)

In this progress report, we describe the preliminary experiments conducted with three fish and one invertebrate species to determine the effects of exposure to electromagnetic fields. During fiscal year 2010, experiments were conducted with coho salmon (Onchrohychus kisutch), California halibut (Paralicthys californicus), Atlantic halibut (Hippoglossus hippoglossus), and Dungeness crab (Cancer magister). The work described supports Task 2.1.3: Effects on Aquatic Organisms, Subtask 2.1.3.1: Electromagnetic Fields.

Schultz, Irvin R.; Woodruff, Dana L.; Marshall, Kathryn E.; Pratt, William J.; Roesijadi, Guritno

2010-10-13T23:59:59.000Z

391

The Stability of a Shearing Viscous Star with Electromagnetic Field  

E-Print Network [OSTI]

We analyze the role of electromagnetic field for the stability of shearing viscous star with spherical symmetry. Matching conditions are given for the interior and exterior metrics. We use perturbation scheme to construct the collapse equation. The range of instability is explored in Newtonian and post Newtonian (pN) limits. We conclude that the electromagnetic field diminishes the effects of shearing viscosity in the instability range and makes the system more unstable at both Newtonian and post Newtonian approximations.

M. Sharif; M. Azam

2013-12-04T23:59:59.000Z

392

Calibrating Accelerometers Using an Electromagnetic Launcher  

SciTech Connect (OSTI)

A Pulse Forming Network (PFN), Helical Electromagnetic Launcher (HEML), Command Module (CM), and Calibration Table (CT) were built and evaluated for the combined ability to calibrate an accelerometer. The PFN has a maximum stored energy of 19.25 kJ bank and is fired by a silicon controlled rectifier (SCR), with appropriate safety precautions. The HEML is constructed out of G-10 fiberglass and is designed to accelerate 600 grams to 10 meters per second. The CM is microcontroller based running Arduino Software. The CM has a keypad input and 7 segment outputs of the bank voltage and desired voltage. After entering a desired bank voltage, the CM controls the charge of the PFN. When the two voltages are equal it allows the fire button to send a pulse to the SCR to fire the PFN and in turn, the HEML. The HEML projectile's tip hits a target that is held by the CT. The CT consists of a table to hold the PFN and HEML, a vacuum chuck, air bearing, velocity meter and catch pot. The Target is held with the vacuum chuck awaiting impact. After impact, the air bearing allows the target to fall freely for the velocity meter to get an accurate reading. A known acceleration is determined from the known change in velocity of the target. Thus, if an accelerometer was attached to the target, the measured value can be compared to the known value.

Erik Timpson

2012-05-13T23:59:59.000Z

393

Electromagnetic Studies of Mesons, Nucleons, and Nuclei  

SciTech Connect (OSTI)

Professor Baker was a faculty member at Hampton University in Hampton, Virginia, and, jointly, a Staff Physicist at Jefferson Lab in nearby Newport News from September 1989 to July 2006. The Department of Energy (DOE) funded the grant DE-FG02-97ER41035 Electromagnetic Studies of Mesons, Nucleons, and Nuclei, while Baker was in this joint appointment. Baker sent a closeout report on these activities to Hampton University’s Sponsored Research Office some years ago, shortly after joining Yale University in 2006. In the period around 2001, the research grant with Baker as the Principal Investigator (PI) was put under the supervision of Professor Liguang Tang at Hampton University. Baker continued to pursue the research while in this join appointment, however the administrative responsibilities with the DOE and with Hampton University rested with Professor Tang after 2001, to my recollection. What is written in this document is from Baker’s memory of the research activities, which he has not pursued since joining the Yale University faculty.

Baker, Oliver K.

2013-08-20T23:59:59.000Z

394

Electromagnetic anti-jam telemetry tool  

DOE Patents [OSTI]

A mud-pulse telemetry tool includes a tool housing, a motor disposed in the tool housing, and a magnetic coupling coupled to the motor and having an inner shaft and an outer shaft. The tool may also include a stator coupled to the tool housing, a restrictor disposed proximate the stator and coupled to the magnetic coupling, so that the restrictor and the stator adapted to generate selected pulses in a drilling fluid when the restrictor is selectively rotated. The tool may also include a first anti-jam magnet coupled to the too housing, and an second anti-jam magnet disposed proximate the first anti-jam magnet and coupled to the inner shaft and/or the outer shaft, wherein at least one of the first anti-jam magnet and the second anti-jam magnet is an electromagnet, and wherein the first anti-jam magnet and the second anti-jam magnet are positioned with adjacent like poles.

Ganesan, Harini (Sugar Land, TX); Mayzenberg, Nataliya (Missouri City, TX)

2008-02-12T23:59:59.000Z

395

Nucleon Structure Studies with Electromagnetic Probes  

SciTech Connect (OSTI)

Summarized in this report is the progress achieved during the period from March 1, 2008 to June 14, 2009 under contract number DE-FG02-03ER41252. This is the final technical report under this contract. The experimental work described here is part of the electromagnetic nuclear physics program of the CEBAF Large Acceptance Spectrometer (CLAS) Collaboration at the Thomas Jefferson National Accelerator Facility (Jefferson Lab) that published 17 journal articles during the period of this report. One of these journal articles reported on the results of precise measurements of the neutron magnetic form factor. I was a spokesperson on this experiment and the publication of these results is the culmination of years of effort by a small subset of the CLAS Collaboration. As usual, undergraduate students were involved in all aspects of this work. Three Union College students participated in this program during the window of this report and one presented a paper on his work at the 2009 National Conference on Undergraduate Research (NCUR22). In this report, I discuss recent progress on the measurements of the neutron magnetic form factor and describe my service work for the CLAS Collaboration.

Vineyard, Michael F.

2011-03-31T23:59:59.000Z

396

Horizontal electromagnetic casting of thin metal sheets  

DOE Patents [OSTI]

Thin metal sheets are cast by magnetically suspending molten metal deposited within a ferromagnetic yoke and between AC conducting coils and linearly displacing the magnetically levitated liquid metal while it is being cooled to form a solid metal sheet. Magnetic flux increases as the molten metal sheet moves downward and decreases as the molten metal sheet moves upward to stabilize the sheet and maintain it in equilibrium as it is linearly displaced and solidified by cooling gases. A conducting shield is electrically coupled to the molten metal sheet by means of either metal sheet engaging rollers or brushes on the solidified metal, and by means of an electrode in the vessel containing the molten metal thereby providing a return path for the eddy currents induced in the metal sheet by the AC coil generated magnetic flux. Variation in the geometry of the conducting shield allows the magnetic flux between the metal sheet and the conducting shield to be varied and the thickness in surface quality of the metal sheet to be controlled. Side guards provide lateral containment for the molten metal sheet and stabilize and shape the magnetic field while a leader sheet having electromagnetic characteristics similar to those of the metal sheet is used to start the casting process and precedes the molten metal sheet through the magnet and forms a continuous sheet therewith. The magnet may be either U-shaped with a single racetrack coil or may be rectangular with a pair of facing bedstead coils.

Hull, John R. (Hinsdale, IL); Lari, Robert J. (Aurora, IL); Praeg, Walter F. (Palos Park, IL); Turner, Larry R. (Naperville, IL)

1987-01-01T23:59:59.000Z

397

Horizontal electromagnetic casting of thin metal sheets  

DOE Patents [OSTI]

Thin metal sheets are cast by magnetically suspending molten metal deposited within a ferromagnetic yoke and between AC conducting coils and linearly displacing the magnetically levitated liquid metal while it is being cooled to form a solid metal sheet. Magnetic flux increases as the molten metal sheet moves downward and decreases as the molten metal sheet moves upward to stabilize the sheet and maintain it in equilibrium as it is linearly displaced and solidified by cooling gases. A conducting shield is electrically coupled to the molten metal sheet by means of either metal sheet engaging rollers or brushes on the solidified metal, and by means of an electrode in the vessel containing the molten metal thereby providing a return path for the eddy currents induced in the metal sheet by the AC coil generated magnetic flux. Variation in the geometry of the conducting shield allows the magnetic flux between the metal sheet and the conducting shield to be varied and the thickness in surface quality of the metal sheet to be controlled. Side guards provide lateral containment for the molten metal sheet and stabilize and shape the magnetic field while a leader sheet having electromagnetic characteristics similar to those of the metal sheet is used to start the casting process and precedes the molten metal sheet through the magnet and forms a continuous sheet therewith. The magnet may be either U-shaped with a single racetrack coil or may be rectangular with a pair of facing bedstead coils.

Hull, John R. (Hinsdale, IL); Lari, Robert J. (Aurora, IL); Praeg, Walter F. (Palos Park, IL); Turner, Larry R. (Naperville, IL)

1988-01-01T23:59:59.000Z

398

Development of an electromagnetically actuated mercury microvalve  

SciTech Connect (OSTI)

The development of microscale fluid handling components has been recognized as a crucial element in the design of microscale chemical detection systems. Recently, work has been undertaken at Sandia National Laboratories to construct a valve that uses a small mercury droplet to control the flow of gas through capillary passages. Electromagnetic forces that are provided by small permanent magnets and a current supply are used to drive the mercury into position. Driving the mercury droplet into a tapered passage halts gas flow through a capillary, while surface tension forces prevent the mercury from passing through the passage. Models have been developed to describe the movement of the mercury droplet and the sealing of the gas passage, and millimeter-scale units have been tested to explore design options. Predictions from the model show that a valve with 10 micron sized features can seal against pressures up to 1.5 atmospheres. Experiments have highlighted the promise of mercury valves and demonstrated problems that can arise from contamination of the mercury.

Adkins, D.R.; Wong, C.C.

1998-08-01T23:59:59.000Z

399

OPTI-583: Computational Optics I: Ultrafast pulses and strong-field light-matter interactions.  

E-Print Network [OSTI]

OPTI-583: Computational Optics I: Ultrafast pulses and strong-field light-matter interactions. Time-power femtosecond pulses. Prerequisites: Knowledge of basic electromagnetic theory (e.g. Phys-241). While previous that govern the interaction of ultrashort pulses with var- ious media, and the Numerical methods track

Arizona, University of

400

Innovative Electromagnetic Sensors for Pipeline Crawlers  

SciTech Connect (OSTI)

Internal inspection of pipelines is an important tool for ensuring safe and reliable delivery of fossil energy products. Current inspection systems that are propelled through the pipeline by the product flow cannot be used to inspect all pipelines because of the various physical barriers they encounter. Recent development efforts include a new generation of powered inspection platforms that crawl slowly inside a pipeline and are able to maneuver past the physical barriers that can limit inspection. At Battelle, innovative electromagnetic sensors are being designed and tested for these new pipeline crawlers. The various sensor types can be used to assess a wide range of pipeline anomalies including corrosion, mechanical damage, and cracks. Battelle is in the final year on a projected three-year development effort. In the first year, two innovative electromagnetic inspection technologies were designed and tested. Both were based on moving high-strength permanent magnets to generate inspection energy. One system involved translating permanent magnets towards the pipe. A pulse of electric current would be induced in the pipe to oppose the magnetization according to Lenz's Law. The decay of this pulse would indicate the presence of defects in the pipe wall. This inspection method is similar to pulsed eddy current inspection methods, with the fundamental difference being the manner in which the current is generated. Details of this development effort were reported in the first semiannual report on this project. The second inspection methodology is based on rotating permanent magnets. The rotating exciter unit produces strong eddy currents in the pipe wall. At distances of a pipe diameter or more from the rotating exciter, the currents flow circumferentially. These circumferential currents are deflected by pipeline defects such as corrosion and axially aligned cracks. Simple sensors are used to detect the change in current densities in the pipe wall. The second semiannual report on this project reported on experimental and modeling results. The results showed that the rotating system was more adaptable to pipeline inspection and therefore only this system will be carried into the second year of the sensor development. In the third reporting period, the rotating system inspection was further developed. Since this is a new inspection modality without published fundamentals to build upon, basic analytical and experimental investigations were performed. A closed form equation for designing rotating exciters and positioning sensors was derived from fundamental principles. Also signal processing methods were investigated for detection and assessment of pipeline anomalies. A lock in amplifier approach was chosen as the method for detecting the signals. Finally, mechanical implementations for passing tight restrictions such as plug valves were investigated. This inspection concept is new and unique; a United States patent application has been submitted. In this reporting period, a general design of the rotating permanent magnet inspection system is presented. The rotating permanent magnet inspection system is feasible for pipes ranging in diameter from 8 to 18 inches using a two pole configuration. Experimental results and theoretical calculations provide the basis for selection of the critical design parameters. The parameters include a significant magnet to pipe separation that will facilitate the passage of pipeline features. With the basic values of critical components established, the next step is a detailed mechanical design of a pipeline ready inspection system.

J. Bruce Nestleroth

2006-05-04T23:59:59.000Z

Note: This page contains sample records for the topic "interactive electromagnetic relations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

INNOVATIVE ELECTROMAGNETIC SENSORS FOR PIPELINE CRAWLERS  

SciTech Connect (OSTI)

Internal inspection of pipelines is an important tool for ensuring safe and reliable delivery of fossil energy products. Current inspection systems that are propelled through the pipeline by the product flow cannot be used to inspect all pipelines because of the various physical barriers they encounter. Recent development efforts include a new generation of powered inspection platforms that crawl slowly inside a pipeline and are able to maneuver past the physical barriers that can limit inspection. At Battelle, innovative electromagnetic sensors are being designed and tested for these new pipeline crawlers. The various sensor types can be used to assess a wide range of pipeline anomalies including corrosion, mechanical damage, and cracks. The Applied Energy Systems Group at Battelle is in the second year of work on a projected three-year development effort. In the first year, two innovative electromagnetic inspection technologies were designed and tested. Both were based on moving high-strength permanent magnets to generate inspection energy. One system involved translating permanent magnets towards the pipe. A pulse of electric current would be induced in the pipe to oppose the magnetization according to Lenz's Law. The decay of this pulse would indicate the presence of defects in the pipe wall. This inspection method is similar to pulsed eddy current inspection methods, with the fundamental difference being the manner in which the current is generated. Details of this development effort were reported in the first semiannual report on this project. The second inspection methodology is based on rotating permanent magnets. The rotating exciter unit produces strong eddy currents in the pipe wall. At distances of a pipe diameter or more from the rotating exciter, the currents flow circumferentially. These circumferential currents are deflected by pipeline defects such as corrosion and axially aligned cracks. Simple sensors are used to detect the change in current densities in the pipe wall. The second semiannual report on this project reported on experimental and modeling results. The results showed that the rotating system was more adaptable to pipeline inspection and therefore only this system will be carried into the second year of the sensor development. In this third reporting period, the rotating system inspection was further developed. Since this is a new inspection modality without published fundamentals to build upon, basic analytical and experimental investigations were performed. A closed form equation for designing rotating exciters and positioning sensors was derived from fundamental principles. Also signal processing methods were investigated for detection and assessment of pipeline anomalies. A lock in amplifier approach was chosen as the method for detecting the signals. Finally, mechanical implementations for passing tight restrictions such as plug valves were investigated. This inspection concept is new and unique; a United States patent application has been submitted.

J. Bruce Nestleroth; Richard J. Davis

2005-05-23T23:59:59.000Z

402

INNOVATIVE ELECTROMAGNETIC SENSORS FOR PIPELINE CRAWLERS  

SciTech Connect (OSTI)

Internal inspection of pipelines is an important tool for ensuring safe and reliable delivery of fossil energy products. Current inspection systems that are propelled through the pipeline by the product flow cannot be used to inspect all pipelines because of the various physical barriers they encounter. Recent development efforts include a new generation of powered inspection platforms that crawl slowly inside a pipeline and are able to maneuver past the physical barriers that can limit inspection. At Battelle, innovative electromagnetic sensors are being designed and tested for these new pipeline crawlers. The various sensor types can be used to assess a wide range of pipeline anomalies including corrosion, mechanical damage, and cracks. Battelle has completed the second year of work on a projected three-year development effort. In the first year, two innovative electromagnetic inspection technologies were designed and tested. Both were based on moving high-strength permanent magnets to generate inspection energy. One system involved translating permanent magnets towards the pipe. A pulse of electric current would be induced in the pipe to oppose the magnetization according to Lenz's Law. The decay of this pulse would indicate the presence of defects in the pipe wall. This inspection method is similar to pulsed eddy current inspection methods, with the fundamental difference being the manner in which the current is generated. Details of this development effort were reported in the first semiannual report on this project. The second inspection methodology is based on rotating permanent magnets. The rotating exciter unit produces strong eddy currents in the pipe wall. At distances of a pipe diameter or more from the rotating exciter, the currents flow circumferentially. These circumferential currents are deflected by pipeline defects such as corrosion and axially aligned cracks. Simple sensors are used to detect the change in current densities in the pipe wall. The second semiannual report on this project reported on experimental and modeling results. The results showed that the rotating system was more adaptable to pipeline inspection and therefore only this system will be carried into the second year of the sensor development. In the third reporting period, the rotating system inspection was further developed. Since this is a new inspection modality without published fundamentals to build upon, basic analytical and experimental investigations were performed. A closed form equation for designing rotating exciters and positioning sensors was derived from fundamental principles. Also signal processing methods were investigated for detection and assessment of pipeline anomalies. A lock in amplifier approach was chosen as the method for detecting the signals. Finally, mechanical implementations for passing tight restrictions such as plug valves were investigated. This inspection concept is new and unique; a United States patent application has been submitted. In this fourth reporting period, the rotating system inspection was further developed. A multichannel real-time data recorder system was implemented and fundamental experiments were conducted to provide data to aid in the design of the rotating magnetizer system. An unexpected but beneficial result was achieved when examining the separation between the rotating magnet and the pipe wall; separations of over an inch could be tolerated. Essentially no change in signal from corrosion anomalies could be detected for separations up to 1.35 inches. The results presented in this report will be used to achieve the next deliverable, designs of components of the rotating inspection system that will function with inspection crawlers in a pipeline environment.

J. Bruce Nestleroth

2005-11-30T23:59:59.000Z

403

Electromagnetic Casimir piston in higher dimensional spacetimes  

E-Print Network [OSTI]

We consider the Casimir effect of the electromagnetic field in a higher dimensional spacetime of the form $M\\times \\mathcal{N}$, where $M$ is the 4-dimensional Minkowski spacetime and $\\mathcal{N}$ is an $n$-dimensional compact manifold. The Casimir force acting on a planar piston that can move freely inside a closed cylinder with the same cross section is investigated. Different combinations of perfectly conducting boundary conditions and infinitely permeable boundary conditions are imposed on the cylinder and the piston. It is verified that if the piston and the cylinder have the same boundary conditions, the piston is always going to be pulled towards the closer end of the cylinder. However, if the piston and the cylinder have different boundary conditions, the piston is always going to be pushed to the middle of the cylinder. By taking the limit where one end of the cylinder tends to infinity, one obtains the Casimir force acting between two parallel plates inside an infinitely long cylinder. The asymptotic behavior of this Casimir force in the high temperature regime and the low temperature regime are investigated for the case where the cross section of the cylinder in $M$ is large. It is found that if the separation between the plates is much smaller than the size of $\\mathcal{N}$, the leading term of the Casimir force is the same as the Casimir force on a pair of large parallel plates in the $(4+n)$-dimensional Minkowski spacetime. However, if the size of $\\mathcal{N}$ is much smaller than the separation between the plates, the leading term of the Casimir force is $1+h/2$ times the Casimir force on a pair of large parallel plates in the 4-dimensional Minkowski spacetime, where $h$ is the first Betti number of $\\mathcal{N}$. In the limit the manifold $\\mathcal{N}$ vanishes, one does not obtain the Casimir force in the 4-dimensional Minkowski spacetime if $h$ is nonzero.

L. P. Teo

2011-02-22T23:59:59.000Z

404

Superluminal, subluminal, and negative velocities in free-space electromagnetic propagation  

E-Print Network [OSTI]

In this Chapter the time-domain analysis of the velocity of the electromagnetic field pulses generated by a spatially compact source in free space is presented. Recent simulations and measurements of anomalous superluminal, subluminal, and negative velocities are discussed. It is shown that such velocities are local and instantaneous in nature and do not violate either causality or special relativity. Although these effects are mainly confined to the near- and intermediate-field zones, some of them seem paradoxical and still lack adequate physical interpretation.

Budko, Neil V

2010-01-01T23:59:59.000Z

405

Essential state of the electromagnetic field and the double-slit experiment  

E-Print Network [OSTI]

A new class of generalized solutions related to the essential spectrum of linear Maxwell's equations is presented. The essential modes are given in terms of normalized singular Weyl's sequences, whose square represents Dirac's delta functions in spatial and angular frequency domains. The action integral associated with essential modes is well-defined. We claim that these modes represent the collapsed state of the electromagnetic field and, with some additional assumptions on the conservation of action, are suitable for describing the double-slit experiment in accordance with the orthodox point of view.

Budko, N V; Budko, Neil V.; Samokhin, Alexander B.

2006-01-01T23:59:59.000Z

406

Essential state of the electromagnetic field and the double-slit experiment  

E-Print Network [OSTI]

A new class of generalized solutions related to the essential spectrum of linear Maxwell's equations is presented. The essential modes are given in terms of normalized singular Weyl's sequences, whose square represents Dirac's delta functions in spatial and angular frequency domains. The action integral associated with essential modes is well-defined. We claim that these modes represent the collapsed state of the electromagnetic field and, with some additional assumptions on the conservation of action, are suitable for describing the double-slit experiment in accordance with the orthodox point of view.

Neil V. Budko; Alexander B. Samokhin

2006-10-02T23:59:59.000Z

407

Recoil Polarization Measurements of the Proton Electromagnetic Form Factor Ratio to High Momentum Transfer  

SciTech Connect (OSTI)

The electromagnetic form factors of the nucleon characterize the effect of its internal structure on its response to an electromagnetic probe as studied in elastic electronnucleon scattering. These form factors are functions of the squared four-momentum transfer Q2 between the electron and the proton. The two main classes of observables of this reaction are the scattering cross section and polarization asymmetries, both of which are sensitive to the form factors in different ways. When considering large f momentum transfers, double-polarization observables offer superior sensitivity to the electric form factor. This thesis reports the results of a new measurement of the ratio of the electric and magnetic form factors of the proton at high momentum transfer using the recoil polarization technique. A polarized electron beam was scattered from a liquid hydrogen target, transferring polarization to the recoiling protons. These protons were detected in a magnetic spectrometer which was used to reconstruct their kinematics, including their scattering angles and momenta, and the position of the interaction vertex. A proton polarimeter measured the polarization of the recoiling protons by measuring the azimuthal asymmetry in the angular distribution of protons scattered in CH2 analyzers. The scattered electron was detected in a large acceptance electromagnetic calorimeter in order to suppress inelastic backgrounds. The measured ratio of the transverse and longitudinal polarization components of the scattered proton is directly proportional to the ratio of form factors GpE=GpM. The measurements reported in this thesis took place at Q2 =5.2, 6.7, and 8.5 GeV2, and represent the most accurate measurements of GpE in this Q2 region to date.

Andrew Puckett

2010-02-01T23:59:59.000Z

408

Pair and Impar, Even and Odd Form Fields and Electromagnetism  

E-Print Network [OSTI]

In this paper after reviewing the Schouten and de Rham definition of impair and pair differential form fields (not to be confused with differential form fields of even and odd grades) we prove that in a relativistic spacetime it is possible (despite claims in contrary) to coherently formulate electromagnetism (and we believe any other physical theory) using only pair form fields or, if one wishes, using pair and impair form fields together, in an appropriate way. Those two distinct descriptions involve only a mathematical choice and do not seem to lead to any observable physical consequence if due care is taken. Moreover, we show in details that a formulation of electromagnetic theory in the Clifford bundle formalism of differential forms where the two Maxwell equations of the so called free metric approach becomes a single equation is compatible with both formulations of electromagnetism just mentioned above. Moreover we derive directly from Maxwell equation the density of force (coupling of the electromagnetic field with the charge current) that is a postulate in the free metric approach to electromagnetism. We recall also a formulation of the engineering version of Maxwell equations using electric and magnetic fields as objects of the same nature, i.e., without using polar and axial vectors.

Roldao da Rocha; Waldyr A. Rodrigues Jr

2009-08-13T23:59:59.000Z

409

Lattice p-Form Electromagnetism and Chain Field Theory  

E-Print Network [OSTI]

Since Wilson's work on lattice gauge theory in the 1970s, discrete versions of field theories have played a vital role in fundamental physics. But there is recent interest in certain higher dimensional analogues of gauge theory, such as p-form electromagnetism, including the Kalb-Ramond field in string theory, and its nonabelian generalizations. It is desirable to discretize such `higher gauge theories' in a way analogous to lattice gauge theory, but with the fundamental geometric structures in the discretization boosted in dimension. As a step toward studying discrete versions of more general higher gauge theories, we consider the case of p-form electromagnetism. We show that discrete p-form electromagnetism admits a simple algebraic description in terms of chain complexes of abelian groups. Moreover, the model allows discrete spacetimes with quite general geometry, in contrast to the regular cubical lattices usually associated with lattice gauge theory. After constructing a suitable model of discrete spacetime for p-form electromagnetism, we quantize the theory using the Euclidean path integral formalism. The main result is a description of p-form electromagnetism as a `chain field theory' -- a theory analogous to topological quantum field theory, but with chain complexes replacing manifolds. This, in particular, gives a notion of time evolution from one `spacelike slice' of discrete spacetime to another.

Derek K. Wise

2005-10-08T23:59:59.000Z

410

Studies of solid liner stability in electromagnetic implosions  

SciTech Connect (OSTI)

The authors have conducted a series of experiments involving electromagnetic implosion of solid aluminum liners on the Pegasus II capacitor bank. These experiments consisted of liners on which single wavelength perturbations had been cut into the outer surface. Typical liner thickness was 400 mm and the usual material was the 1100 aluminum alloy. This alloy is relatively soft with a high conductivity. Recently comparisons have been made with harder but more resistive alloys. The sinusoidal perturbations ranged in amplitude between 10--100 mm and their wavelength between 0.5 and 2.0 mm. Radiographs of the imploding liners showed that the initial perturbations grew to amplitudes of 2000--4000 mm before completely rupturing and injecting flux into the region interior to the liner. Throughout the growth of the perturbations, there was virtually no coupling to other wavelengths. Even after liner disruption, the series of disk-like structures that resulted remained at the same scale length until impact with a center conductor. Two-dimensional MHD simulations of these experiments with the high conductivity Al-1100 alloy have yielded consistently good agreement, both qualitatively and quantitatively. Because the magnetic diffusion time in this alloy is comparable to or longer than the growth time, they find that the dynamics can be approximated by theories of Rayleigh-Taylor instability for which strength has been included. Recently, the authors have conducted two experiments with other aluminum alloys. These alloys have a significantly higher tensile yield strength than the 1100 alloy, but also somewhat high resistivity. Because the magnetic diffusion, ohmic heating, and loss of strength all occur on shorter times than does the growth, the forces acting on the liner are more distributed throughout the liner thickness than on the previous experiments. Qualitatively different features have been observed in the radiographs of these experiments. Two-dimensional MHD simulations and analysis will be presented of both sets of experiments and interpretations of the effect of conductivity on liner stability will be given.

Atchison, W.L.; Faehl, R.J.; Rienovsky, R.E.; Morgan, D. [Los Alamos National Lab., NM (United States)

1998-12-31T23:59:59.000Z

411

Hadronization of QCD and effective interactions  

SciTech Connect (OSTI)

An introductory treatment of hadronization through functional integral calculus and bifocal Bose fields is given. Emphasis is placed on the utility of this approach for providing a connection between QCD and effective hadronic field theories. The hadronic interactions obtained by this method are nonlocal due to the QCD substructure, yet, in the presence of an electromagnetic field, maintain the electromagnetic gauge invariance manifest at the quark level. A local chiral model which is structurally consistent with chiral perturbation theory is obtained through a derivative expansion of the nonlocalities with determined, finite coefficients. Tree-level calculations of the pion form factor and {pi} {minus} {pi} scattering, which illustrate the dual constituent-quark-chiral-model nature of this approach, are presented.

Frank, M.R.

1994-07-01T23:59:59.000Z

412

Transverse electromagnetic horn antenna with resistively-loaded exterior surfaces  

DOE Patents [OSTI]

An improved transverse electromagnetic (TEM) horn antenna comprises a resistive loading material on the exterior surfaces of the antenna plates. The resistive loading material attenuates or inhibits currents on the exterior surfaces of the TEM horn antenna. The exterior electromagnetic fields are of opposite polarity in comparison to the primary and desired interior electromagnetic field, thus inherently cause partial cancellation of the interior wave upon radiation or upon reception. Reducing the exterior fields increases the radiation efficiency of the antenna by reducing the cancellation of the primary interior field (supported by the interior surface currents). This increases the transmit gain and receive sensitivity of the TEM horn antenna, as well as improving the transient (time-domain) response.

Aurand, John F. (Edgewood, NM)

1999-01-01T23:59:59.000Z

413

The momentum of an electromagnetic wave inside a dielectric  

SciTech Connect (OSTI)

The problem of assigning a momentum to an electromagnetic wave packet propagating inside an insulator has become known under the name of the Abraham–Minkowski controversy. In the present paper we re-examine this issue making the hypothesis that the forces exerted on an insulator by an electromagnetic field do not distinguish between polarization and free charges. Under this assumption we show that the Abraham expression for the radiation mechanical momentum is highly favored. -- Highlights: •We discuss an approximation to treat electrodynamics of a dielectric material. •We support the Abraham form for the electromagnetic momentum. •We deduce Snell’s law from the conservation of the Abraham momentum. •We show how to deal with the electric field discontinuity at the dielectric boundary.

Testa, Massimo, E-mail: massimo.testa@roma1.infn.it

2013-09-15T23:59:59.000Z

414

A Continuous Field Theory of Matter and Electromagnetism  

E-Print Network [OSTI]

A continuous field theory of matter and electromagnetism is developed. The starting point of the theory is the classical Maxwell equations which are directly tied to the Riemann-Christoffel curvature tensor. This is done through the derivatives of the Maxwell tensor which are equated to a vector field contracted with the curvature tensor. The electromagnetic portion of the theory is shown to be equivalent to the classical Maxwell equations with the addition of a hidden variable. Because the proposed equations describing electromagnetism and matter differ from the classical Maxwell-Einstein equations, their ability to describe classical physics is shown for several situations by direct calculation. The inclusion of antimatter and the possibility of particle-like solutions exhibiting both quantized charge and mass are discussed.

Raymond J. Beach

2012-08-31T23:59:59.000Z

415

Method for imaging with low frequency electromagnetic fields  

DOE Patents [OSTI]

A method is described for imaging with low frequency electromagnetic fields, and for interpreting the electromagnetic data using ray tomography, in order to determine the earth conductivity with high accuracy and resolution. The imaging method includes the steps of placing one or more transmitters, at various positions in a plurality of transmitter holes, and placing a plurality of receivers in a plurality of receiver holes. The transmitters generate electromagnetic signals which diffuse through a medium, such as earth, toward the receivers. The measured diffusion field data H is then transformed into wavefield data U. The travel times corresponding to the wavefield data U, are then obtained, by charting the wavefield data U, using a different regularization parameter [alpha] for each transform. The desired property of the medium, such as conductivity, is then derived from the velocity, which in turn is constructed from the wavefield data U using ray tomography. 13 figures.

Lee, K.H.; Xie, G.Q.

1994-12-13T23:59:59.000Z

416

Method for imaging with low frequency electromagnetic fields  

DOE Patents [OSTI]

A method for imaging with low frequency electromagnetic fields, and for interpreting the electromagnetic data using ray tomography, in order to determine the earth conductivity with high accuracy and resolution. The imaging method includes the steps of placing one or more transmitters, at various positions in a plurality of transmitter holes, and placing a plurality of receivers in a plurality of receiver holes. The transmitters generate electromagnetic signals which diffuse through a medium, such as earth, toward the receivers. The measured diffusion field data H is then transformed into wavefield data U. The traveltimes corresponding to the wavefield data U, are then obtained, by charting the wavefield data U, using a different regularization parameter .alpha. for each transform. The desired property of the medium, such as conductivity, is then derived from the velocity, which in turn is constructed from the wavefield data U using ray tomography.

Lee, Ki H. (Lafayette, CA); Xie, Gan Q. (Berkeley, CA)

1994-01-01T23:59:59.000Z

417

Comment on ''Chaotic electron trajectories in an electromagnetic wiggler free-electron laser with ion-channel guiding'' [Phys. Plasmas 17, 093103 (2010)  

SciTech Connect (OSTI)

The chaotic electron dynamics in a free-electron laser with electromagnetic-wave wiggler and ion-channel has been recently reported by A. Taghavi et al.[Phys. Plasmas 17, 093103 (2010)]. We comment on the authors use of a set of initial condition that is not correct based on the dispersion relation and steady-state orbits.

Nasr, N.; Hasanbeigi, A. [Department of Physics and Institute for Plasma Research, Tarbiat Moallem University, 49 Dr Mofatteh Avenue, Tehran 15614 (Iran, Islamic Republic of)

2011-05-15T23:59:59.000Z

418

Interactive Environments  

E-Print Network [OSTI]

project assignment of an interactive social space, built up from autonomously operating smart building, interactive spaces in which people and buildings engage in a mutual relationship with one other. By connecting the data and experiences that develop though this relationship between buildings and their inhabitants

419

Graded pitch electromagnetic pump for thin strip metal casting systems  

DOE Patents [OSTI]

A metal strip casing system is provided with an electromagnetic pump which includes a pair of primary blocks having a graded pole pitch, polyphase ac winding and being arranged on opposite sides of a movable heat sink. A nozzle is provided for depositing liquid metal on the heat sink such that the resulting metal strip and heat sink combination is subjected to a longitudinal electromagnetic field which increases in wavelength in the direction of travel of the heat sink, thereby subjecting the metal and heat sink to a longitudinal force having a magnitude which increases in the direction of travel. 4 figs.

Kuznetsov, S.B.

1986-04-01T23:59:59.000Z

420

Characteristics of electromagnetic interference generated during discharge of Mylar samples  

SciTech Connect (OSTI)

This paper discusses the measurements of the electromagnetic interference (EMI) generated during discharges of Mylar samples. The two components of EMI, the conducted emission and the radiated emission, are characterized by the replacement current and the radiated RF spectrum respectively. The measured radiated RF spectra reveal important information on the source of the electromagnetic radiation. The possible sources are the replacement current pulse and the discharged generated plasma. The scaling of the amplitudes of the EMI, as a function of the area of the test sample, is also discussed.

Leung, P.L.

1984-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "interactive electromagnetic relations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Graded pitch electromagnetic pump for thin strip metal casting systems  

DOE Patents [OSTI]

A metal strip casing system is provided with an electromagnetic pump which includes a pair of primary blocks having a graded pole pitch, polyphase ac winding and being arranged on opposite sides of a movable heat sink. A nozzle is provided for depositing liquid metal on the heat sink such that the resulting metal strip and heat sink combination is subjected to a longitudinal electromagnetic field which increases in wavelength in the direction of travel of the heat sink, thereby subjecting the metal and heat sink to a longitudinal force having a magnitude which increases in the direction of travel.

Kuznetsov, Stephen B. (Pittsburgh, PA)

1986-01-01T23:59:59.000Z

422

Giant Electromagnet Move at Brookhaven Lab, June 22, 2013  

SciTech Connect (OSTI)

On Saturday, June 22, 2013, a 50-foot-wide, circular electromagnet began its 3,200-mile land and sea voyage from Brookhaven National Laboratory in New York to a new home at Fermilab in Illinois. There, scientists will use it to study the properties of muons, subatomic particles that live only 2.2 millionths of a second, and the results could open the door to new realms of particle physics. In the first part of the move, Emmert International and a team of Fermilab and Brookhaven Lab scientists and engineers transported the electromagnet across the Brookhaven Lab site to a staging area by its main gate.

None

2013-06-22T23:59:59.000Z

423

Beam dynamics studies for transverse electromagnetic mode type rf deflectors  

DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

We have performed three-dimensional simulations of beam dynamics for transverse electromagnetic mode (TEM) type rf deflectors: normal and superconducting. The compact size of these cavities as compared to the conventional TM110 type structures is more attractive particularly at low frequency. Highly concentrated electromagnetic fields between the parallel bars provide strong electrical stability to the beam for any mechanical disturbance. An array of six 2-cell normal conducting cavities or a single cell superconducting structure is enough to produce the required vertical displacement at the target point. Both the normal and superconducting structures show very small emittance dilution due to the vertical kick of the beam.

Ahmed, Shahid; Krafft, Geoffrey A.; Deitrick, Kirsten; De Silva, Subashini U.; Delayen, Jean R.; Spata, Mike; Tiefenback, Michael; Hofler, Alicia; Beard, Kevin

2012-02-01T23:59:59.000Z

424

Reverse Time Migration for Extended Obstacles: Electromagnetic Waves  

E-Print Network [OSTI]

We propose a new single frequency reverse time migration (RTM) algorithm for imaging extended targets using electromagnetic waves. The imaging functional is defined as the imaginary part of the cross-correlation of the Green function for Helmholtz equation and the back-propagated electromagnetic field. The resolution of our RTM method for both penetrable and non-penetrable extended targets is studied by virtue of Helmholtz-Kirchhoff identity for the time-harmonic Maxwell equation. The analysis implies that our imaging functional is always positive and thus may have better stability properties. Numerical examples are provided to demonstrate the powerful imaging quality and confirm our theoretical results.

Junqing Chen; Zhiming Chen; Guanghui Huang

2014-06-10T23:59:59.000Z

425

Electromagnetic leptogenesis at the TeV scale  

E-Print Network [OSTI]

We construct an explicit model implementing electromagnetic leptogenesis. In a simple extension of the Standard Model, a discrete symmetry forbids the usual decays of the right-handed neutrinos, while allowing for an effective coupling between the left-handed and right-handed neutrinos through the electromagnetic dipole moment. This generates correct leptogenesis with resonant enhancement and also the required neutrino mass via a TeV scale seesaw mechanism. The model is consistent with low energy phenomenology and would have distinct signals in the next generation colliders, and, perhaps even the LHC.

Debajyoti Choudhury; Namit Mahajan; Sudhanwa Patra; Utpal Sarkar

2011-04-11T23:59:59.000Z

426

Electromagnetic nucleon form factors in instant and point form  

E-Print Network [OSTI]

We present a study of the electromagnetic structure of the nucleons with constituent quark models in the framework of relativistic quantum mechanics. In particular, we address the construction of spectator-model currents in the instant and point forms. Corresponding results for the elastic nucleon electromagnetic form factors as well as charge radii and magnetic moments are presented. We also compare results obtained by different realistic nucleon wave functions stemming from alternative constituent quark models. Finally, we discuss the theoretical uncertainties that reside in the construction of spectator-model transition operators.

T. Melde; K. Berger; L. Canton; W. Plessas; R. F. Wagenbrunn

2007-09-30T23:59:59.000Z

427

Electromagnetic Field Quantization in Time-Dependent Dielectric Media  

E-Print Network [OSTI]

We present a Gupta-Bleuler quantization scheme for the electromagnetic field in time-dependent dielectric media. Starting from the Maxwell equations, a generalization of the Lorentz gauge condition adapted to time varying dielectrics is derived. Using this gauge, a Gupta-Bleuler approach to quantize all polarizations of the radiation field and the corresponding constraint condition are introduced. This new approach is different from the quantized electromagnetic field in vacuum in the sense that here the contributions of unphysical photons cannot be thoroughly eliminated, which further lead to a surface charge density. Finally, a discussion of potential experimental tests and possible implication is also made.

Xiao-Min Bei; Zhong-Zhu Liu

2011-04-18T23:59:59.000Z

428

Electromagnetic field quantization in a linear dielectric medium  

E-Print Network [OSTI]

By modeling a dielectric medium with two independent reservoirs, i.e., electric and magnetic reservoirs, the electromagnetic field is quantized in a linear dielectric medium consistently. A Hamiltonian is proposed from which using the Heisenberg equations, not only the Maxwell equations but also the structural equations can be obtained. Using the Laplace transformation, the wave equation for the electromagnetic vector potential is solved in the case of a homogeneous dielectric medium. Some examples are considered showing the applicability of the model to both absorptive and nonabsorptive dielectrics.

F. Kheirandish; M. Amooshahi

2005-11-13T23:59:59.000Z

429

Electromagnetically Induced Transparency from a Single Atom in Free Space  

E-Print Network [OSTI]

We report an absorption spectroscopy experiment and the observation of electromagnetically induced transparency from a single trapped atom. We focus a weak and narrowband Gaussian light beam onto an optically cooled Barium ion using a high numerical aperture lens. Extinction of this beam is observed with measured values of up to 1.3 %. We demonstrate electromagnetically induced transparency of the ion by tuning a strong control beam over a two-photon resonance in a three-level lambda-type system. The probe beam extinction is inhibited by more than 75 % due to population trapping.

L. Slodicka; G. Hetet; S. Gerber; M. Hennrich; R. Blatt

2010-05-18T23:59:59.000Z

430

Statistics of the electromagnetic response of a chaotic reverberation chamber  

E-Print Network [OSTI]

This article presents a study of the electromagnetic response of a chaotic reverberation chamber (RC) in the presence of losses. By means of simulations and of experiments, the fluctuations in the maxima of the field obtained in a conventional mode-stirred RC are compared with those in a chaotic RC in the neighborhood of the Lowest Useable Frequency (LUF). The present work illustrates that the universal spectral and spatial statistical properties of chaotic RCs allow to meet more adequately the criteria required by the Standard IEC 61000-4-21 to perform tests of electromagnetic compatibility.

J. -B. Gros; U. Kuhl; O. Legrand; F. Mortessagne; O. Picon; E. Richalot

2014-09-20T23:59:59.000Z

431

Spectrally isomorphic Dirac systems: graphene in electromagnetic field  

E-Print Network [OSTI]

We construct the new one-dimensional Dirac Hamiltonians that are spectrally isomorphic (not isospectral) with the known exactly solvable models. Explicit formulas for their spectra and eigenstates are provided. The operators are utilized for description of Dirac fermions in graphene in presence of an inhomogeneous electromagnetic field. We discuss explicit, physically relevant, examples of spectrally isomorphic systems with both non-periodic and periodic electromagnetic barriers. In the latter case, spectrally isomorphic two- and three-gap systems associated with the Ablowitz-Kaup-Newell-Segur hierarchy are considered.

Jakubsky, Vit

2014-01-01T23:59:59.000Z

432

Improved Magnetic Fusion Energy Economics via Massive Resistive Electromagnets  

SciTech Connect (OSTI)

Abandoning superconductors for magnetic fusion reactors and instead using resistive magnet designs based on cheap copper or aluminum conductor material operating at "room temperature" (300 K) can reduce the capital cost per unit fusion power and simplify plant operations. By increasing unit size well beyond that of present magnetic fusion energy conceptual designs using superconducting electromagnets, the recirculating power fraction needed to operate resistive electromagnets can be made as close to zero as needed for economy without requiring superconductors. Other advantages of larger fusion plant size, such as very long inductively driven pulses, may also help reduce the cost per unit fusion power.

Woolley, R.D.

1998-08-19T23:59:59.000Z

433

Energy or Mass and Interaction  

E-Print Network [OSTI]

A review. Problems: 1-Many empirical parameters and large dimension number; 2-Gravitation and Electrodynamics are challenged by dark matter and energy. Energy and nonlinear electrodynamics are fundamental in a unified nonlinear interaction. Nuclear energy appears as nonlinear SU(2) magnetic energy. Gravitation and electromagnetism are unified giving Einstein's equation and a geometric energy momentum tensor. A solution energy in the newtonian limit gives the gravitational constant G. Outside of this limit G is variable. May be interpreted as dark matter or energy. In vacuum, known gravitational solutions are obtained. Electromagnetism is an SU(2) subgroup. A U(1) limit gives Maxwell's equations. Geometric fields determine a generalized Dirac equation and are the germ of quantum physics. Planck's h and of Einstein's c are given by the potential and the metric. Excitations have quanta of charge, flux and spin determining the FQHE. There are only three stable 1/2 spin fermions. Mass is a form of energy. The rest energies of the fermions give the proton/electron mass ratio. Potential excitations have energies equal to the weak boson masses allowing a geometric interpretation of Weinberg's angle. SU(2) gives the anomalous magnetic moments of proton, electron, neutron and generates nuclear range attractive potentials strong enough to produce the binding energies of the deuteron and other nuclides. Lepton and meson masses are due to topological excitations. The geometric mass spectrum is satisfactory. The proton has a triple structure. The alpha constant is a geometric number.

Gustavo R Gonzalez-Martin

2010-07-19T23:59:59.000Z

434

Technical basis for acceptance criteria on the susceptibility of digital systems to electromagnetic interference  

SciTech Connect (OSTI)

This paper discusses the development of the technical basis for establishing acceptance criteria on the susceptibility of digital systems to electromagnetic interference (EMI). The effort is sponsored by the US Nuclear Regulatory Commission and stems from the safety-related issues that need to be addressed with the application of digital instrumentation and controls systems in nuclear power plants. Designers of digital circuits are incorporating increasingly higher clock frequencies and lower logic voltage levels, thereby leading to the risk of susceptibility when spurious interference is misinterpreted as legitimate logic. Development of the technical basis for acceptance criteria centers around establishing good engineering practices to ensure that sufficient levels of electromagnetic compatibility (EMC) are maintained between the nuclear power plant`s electronic and electromechanical systems. First, good EMC design and installation practices are needed to control the emissions from interference sources and their impact on other nearby circuits and systems. Then, a test and evaluation program is needed to outline the EMI tests to be performed, the associated test methods to be followed, and adequate test limits to ensure that the circuit or system under test meets the recommended guidelines. Test and evaluation should be followed by periodic maintenance to assess whether the recommended EMI control practices continue to be adhered to as part of the routine operation of the nuclear power plant. By following these steps, the probability of encountering safety-related problems associated with EMI will be greatly reduced.

Ewing, P.D.; Korsah, K. [Oak Ridge National Lab., TN (US); Antonescu, C. [Nuclear Regulatory Commission, Rockville, MD (US). Office of Nuclear Regulatory Research

1992-12-31T23:59:59.000Z

435

Status of NRC approval of EPRI electromagnetic interference susceptibility testing guidelines for digital equipment  

SciTech Connect (OSTI)

Historically, nuclear power plants installing digital equipment have been required to conduct expensive, site-specific electromagnetic interference (EMI) surveys to demonstrate that EMI will not affect the operation of sensitive electronic equipment. Consequently, EPRI formed a Utility Working Group which developed a set of generic EMI susceptibility testing guidelines, which were published as an EPRI report in September 1994. These guidelines are based upon EMI survey data obtained from several different plants and include criteria for determining their applicability. The Working Group interacted with NRC staff to obtain NRC approval. In April 1996, the NRC issued a Safety Evaluation Report (SER) endorsing the guidelines as a valid means of demonstrating EMI compatibility. The issuance of this SER was conditional on issuing a revision to the EPRI EMI Guidelines. This paper summarizes the guidelines, the NRC SER, and the current status of Revision 1 to the report.

James, R.W. [Electric Power Research Institute, Palo Alto, CA (United States); Shank, J.W. [Public Service Electric & Gas Company, Hancock`s Bridge, NJ (United States); Yoder, C. [Baltimore Gas & Electric, Lusby, MD (United States)

1996-12-31T23:59:59.000Z

436

Photoelectron emission from LiF surfaces by ultrashort electromagnetic pulses  

SciTech Connect (OSTI)

Energy- and angle-resolved electron emission spectra produced by incidence of ultrashort electromagnetic pulses on a LiF(001) surface are studied by employing a distorted-wave method named the crystal surface-Volkov (CSV) approximation. The theory makes use of the Volkov phase to describe the action of the external electric field on the emitted electron, while the electron-surface interaction is represented within the tight-binding model. The CSV approach is applied to investigate the effects introduced by the crystal lattice when the electric field is oriented parallel to the surface plane. These effects are essentially governed by the vector potential of the external field, while the influence of the crystal orientation was found to be negligible.

Acuna, M. A. [Instituto de Astronomia y Fisica del Espacio, Consejo Nacional de Investigaciones Cientificas y Tecnicas, Universidad de Buenos Aires, Buenos Aires (Argentina); Gravielle, M. S. [Instituto de Astronomia y Fisica del Espacio, Consejo Nacional de Investigaciones Cientificas y Tecnicas, Universidad de Buenos Aires, Buenos Aires (Argentina); Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (Argentina)

2011-03-15T23:59:59.000Z

437

Recoil polarization measurements of the proton electromagnetic form factor ratio to high momentum transfer  

E-Print Network [OSTI]

The electromagnetic form factors of the nucleon characterize the effect of its internal structure on its response to an electromagnetic probe as studied in elastic electronnucleon scattering. These form factors are functions ...

Puckett, Andrew James Ruehe

2010-01-01T23:59:59.000Z

438

Electromagnetic compatibility and electrical noise control for the DOE Hanford site  

SciTech Connect (OSTI)

This document was written by MDM Corp., Richland, WA to provide recommended electromagnetic interference and electromagnetic compatibility for double shell tank and waste feed delivery project requirements. Minimally acceptable requirements for facility design are suggested.

DEICHELBOHRER, P.

2003-02-26T23:59:59.000Z

439

Recording speech articulation in dialogue: Evaluating a synchronized double electromagnetic articulography setup  

E-Print Network [OSTI]

is the severity of electromagnetic interference between the two machines. Our results suggest that the synchronization method used yields an accuracy of approximately 1 ms. Electromagnetic interference was derived

Edinburgh, University of

440

Cryogenic heat pipe for cooling high temperature superconductors with application to Electromagnetic Formation Flight Satellites  

E-Print Network [OSTI]

An emerging method of propellant-less formation flight propulsion is the use of electromagnets coupled with reaction wheels. This technique is called Electromagnetic Formation Flight (EMFF). In order to create a large ...

Kwon, Daniel W., 1980-

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "interactive electromagnetic relations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Rayleigh-Taylor-Induced electromagnetic fields in laser-produced plasmas  

E-Print Network [OSTI]

Spontaneous electromagnetic fields can be important to the dynamic evolution of a plasma by directing heat flow as well as providing additional pressures on the conducting fluids through the Lorentz force. Electromagnetic ...

Manuel, Mario John-Errol

2013-01-01T23:59:59.000Z

442

Electro-optical and Magneto-optical Sensing Apparatus and Method for Characterizing Free-space Electromagnetic Radiation  

DOE Patents [OSTI]

Apparatus and methods for characterizing free-space electromagnetic energy, and in particular, apparatus/method suitable for real-time two-dimensional far-infrared imaging applications are presented. The sensing technique is based on a non-linear coupling between a low-frequency electric (or magnetic) field and a laser beam in an electro-optic (or magnetic-optic) crystal. In addition to a practical counter-propagating sensing technique, a co-linear approach is described which provides longer radiated field-optical beam interaction length, thereby making imaging applications practical.

Zhang, Xi-Cheng; Riordan, Jenifer Ann; Sun, Feng-Guo

2000-08-29T23:59:59.000Z

443

Spontaneous emission of a two-level static atom coupling with the electromagnetic vacuum fluctuations outside a high-dimensional Einstein Gauss-Bonnet black hole  

E-Print Network [OSTI]

In present paper, by using the generalized DDC formalism, we investigate the spontaneous excitation of an static atom interacting with electromagnetic vacuum fluctuations outside a EGB black hole in $d$-dimensions. We find that spontaneous excitation does not occur in Boulware vacuum. The Gauss-Bonnet term has no effect on the stability of the atom. Finally, we discuss the contribution of the coupling constant and dimensional factor to the results in three different kinds of spacetime.

Ming Zhang; Zhan-Ying Yang; Rui-Hong Yue

2014-07-04T23:59:59.000Z

444

Noise Reduction and Design Methodology in Mixed-Signal Systems with Alternating Impedance Electromagnetic Bandgap (AI-EBG)  

E-Print Network [OSTI]

integrity as well as electromagnetic interference (EMI). In this paper, excellent noise suppression with AI, electromagnetic interference. I. INTRODUCTION The integration of wireless technologies in handset and mobile

Swaminathan, Madhavan

445

Early detection of critical material degradation by means of electromagnetic multi-parametric NDE  

SciTech Connect (OSTI)

With an increasing number of power plants operated in excess of their original design service life an early recognition of critical material degradation in components will gain importance. Many years of reactor safety research allowed for the identification and development of electromagnetic NDE methods which detect precursors of imminent damage with high sensitivity, at elevated temperatures and in a radiation environment. Regarding low-alloy heat-resistant steel grade WB 36 (1.6368, 15NiCuMoNb5), effects of thermal and thermo-mechanical aging on mechanical-technological properties and several micromagnetic parameters have been thoroughly studied. In particular knowledge regarding the process of copper precipitation and its acceleration under thermo-mechanical load has been enhanced. Whilst the Cu-rich WB 36 steel is an excellent model material to study and understand aging effects related to neutron radiation without the challenge of handling radioactive specimens in a hot cell, actually neutron-irradiated reactor pressure vessel materials were investigated as well. The neutron fluence experienced and the resulting shift of the ductile-brittle transition temperature were determined electromagnetically, and it was shown that weld and base material can be distinguished from the cladded side of the RPV wall. Low-cycle fatigue of the austenitic stainless steel AISI 347 (1.4550, X6CrNiNb18-10) has been characterized with electromagnetic acoustic transducers (EMATs) at temperatures of up to 300 °C. Time-of-flight and amplitude of the transmitted ultrasound signal were evaluated against the number of load cycles applied and observed as an indication of the imminent material failure significantly earlier than monitoring stresses or strains.

Szielasko, Klaus; Tschuncky, Ralf; Rabung, Madalina; Altpeter, Iris; Dobmann, Gerd [Fraunhofer Institute for Nondestructive Testing (IZFP), Campus E3 1, 66123 Saarbrücken (Germany); Seiler, Georg; Herrmann, Hans-Georg; Boller, Christian [Fraunhofer Institute for Nondestructive Testing (IZFP), Campus E3 1, 66123 Saarbrücken, Germany and Saarland University, Chair of NDT and Quality Assurance, Campus E3 1, 66123 Saarbrücken (Germany)

2014-02-18T23:59:59.000Z

446

A proposed approach for developing next-generation computational electromagnetics software  

SciTech Connect (OSTI)

Computations have become a tool coequal with mathematics and measurements as a means of performing electromagnetic analysis and design. This is demonstrated by the volume of articles and meeting presentations in which computational electromagnetics (CEM) is routinely employed to address an increasing variety of problems. Yet, in spite of the substantial resources invested in CEM software over the past three decades, little real progress seems to have been made towards providing the EM engineer software tools having a functionality equivalent to that expected of hardware instrumentation. Furthermore, the bulk of CEM software now available is generally of limited applicability to large, complex problems because most modeling codes employ a single field propagator, or analytical form, of Maxwell`s Equations. The acknowledged advantages of hybrid models, i.e., those which employ different propagators in differing regions of a problem, are relatively unexploited. The thrust of this discussion is to propose a new approach designed to address both problems outlined above, integrating advances being made in both software and hardware development. After briefly reviewing the evolution of modeling CEM software to date and pointing out the deficiencies thereof, we describe an approach for making CEM tools more truly ``user friendly`` called EMSES (Electromagnetic Modeling and Simulation Environment for Systems). This will be achieved through two main avenues. One is developing a common problem-description language implemented in a visual programming environment working together with a translator that produces the specific model description needed by various numerical treatments, in order to optimize user efficiency. The other is to employ a new modeling paradigm based on the idea of field propagators to expedite the development of the hybrid models that are needed to optimize computation efficiency.

Miller, E.K.; Kruger, R.P. [Los Alamos National Lab., NM (United States); Moraites, S. [Simulated Life Systems, Inc., Chambersburg, PA (United States)

1993-02-01T23:59:59.000Z

447

A proposed approach for developing next-generation computational electromagnetics software  

SciTech Connect (OSTI)

Computations have become a tool coequal with mathematics and measurements as a means of performing electromagnetic analysis and design. This is demonstrated by the volume of articles and meeting presentations in which computational electromagnetics (CEM) is routinely employed to address an increasing variety of problems. Yet, in spite of the substantial resources invested in CEM software over the past three decades, little real progress seems to have been made towards providing the EM engineer software tools having a functionality equivalent to that expected of hardware instrumentation. Furthermore, the bulk of CEM software now available is generally of limited applicability to large, complex problems because most modeling codes employ a single field propagator, or analytical form, of Maxwell's Equations. The acknowledged advantages of hybrid models, i.e., those which employ different propagators in differing regions of a problem, are relatively unexploited. The thrust of this discussion is to propose a new approach designed to address both problems outlined above, integrating advances being made in both software and hardware development. After briefly reviewing the evolution of modeling CEM software to date and pointing out the deficiencies thereof, we describe an approach for making CEM tools more truly user friendly'' called EMSES (Electromagnetic Modeling and Simulation Environment for Systems). This will be achieved through two main avenues. One is developing a common problem-description language implemented in a visual programming environment working together with a translator that produces the specific model description needed by various numerical treatments, in order to optimize user efficiency. The other is to employ a new modeling paradigm based on the idea of field propagators to expedite the development of the hybrid models that are needed to optimize computation efficiency.

Miller, E.K.; Kruger, R.P. (Los Alamos National Lab., NM (United States)); Moraites, S. (Simulated Life Systems, Inc., Chambersburg, PA (United States))

1993-01-01T23:59:59.000Z

448

Heating of ions by high frequency electromagnetic waves in magnetized plasmas  

SciTech Connect (OSTI)

The heating of ions by high frequency electrostatic waves in magnetically confined plasmas has been a paradigm for studying nonlinear wave-particle interactions. The frequency of the waves is assumed to be much higher than the ion cyclotron frequency and the waves are taken to propagate across the magnetic field. In fusion type plasmas, electrostatic waves, like the lower hybrid wave, cannot access the core of the plasma. That is a domain for high harmonic fast waves or electron cyclotron waves—these are primarily electromagnetic waves. Previous studies on heating of ions by two or more electrostatic waves are extended to two electromagnetic waves that propagate directly across the confining magnetic field. While the ratio of the frequency of each wave to the ion cyclotron frequency is large, the frequency difference is assumed to be near the ion cyclotron frequency. The nonlinear wave-particle interaction is studied analytically using a two time-scale canonical perturbation theory. The theory elucidates the effects of various parameters on the gain in energy by the ions—parameters such as the amplitudes and polarizations of the waves, the ratio of the wave frequencies to the cyclotron frequency, the difference in the frequency of the two waves, and the wave numbers associated with the waves. For example, the ratio of the phase velocity of the envelope formed by the two waves to the phase velocity of the carrier wave is important for energization of ions. For a positive ratio, the energy range is much larger than for a negative ratio. So waves like the lower hybrid waves will impart very little energy to ions. The theoretical results are found to be in good agreement with numerical simulations of the exact dynamical equations. The analytical results are used to construct mapping equations, simplifying the derivation of the motion of ions, which are, subsequently, used to follow the evolution of an ion distribution function. The heating of ions can then be properly quantified in terms of the wave parameters and can be conveniently used to find ideal conditions needed to heat ions by high frequency electromagnetic waves.

Zestanakis, P. A.; Kominis, Y.; Hizanidis, K. [School of Electrical and Computer Engineering, National Technical University of Athens, Association EURATOM-Hellenic Republic, Zographou GR-15773 (Greece)] [School of Electrical and Computer Engineering, National Technical University of Athens, Association EURATOM-Hellenic Republic, Zographou GR-15773 (Greece); Ram, A. K. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)] [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

2013-07-15T23:59:59.000Z

449

Efficient Coupling of Thermal Electron Bernstein Waves to the Ordinary Electromagnetic Mode on the National Spherical Torus Experiment (NSTX)  

SciTech Connect (OSTI)

Efficient coupling of thermal electron Bernstein waves (EBW) to ordinary mode (Omode) electromagnetic radiation has been measured in plasmas heated by energetic neutral beams and high harmonic fast waves in the National Spherical Torus Experiment (NSTX) [M. Ono, S. Kaye, M. Peng, et al., Proceedings 17th IAEA Fusion Energy Conference (IAEA, Vienna, Austria, 1999), Vol.3, p. 1135]. The EBW to electromagnetic mode coupling efficiency was measured to be 0.8 {+-} 0.2, compared to a numerical EBW modeling prediction of 0.65. The observation of efficient EBW coupling to O-mode, in relatively good agreement with numerical modeling, is a necessary prerequisite for implementing a proposed high power EBW current drive system on NSTX.

G. Taylor; P.C. Efthimion; B.P. LeBlanc; M.D. Carter; J.B. Caughman; J.B. Wilgen; J. Preinhaelter; R.W. Harvey; S.A. Sabbagh

2005-02-02T23:59:59.000Z

450

Beams of electromagnetic radiation carrying angular momentum: The Riemann-Silberstein vector and the classical-quantum correspondence  

E-Print Network [OSTI]

All beams of electromagnetic radiation are made of photons. Therefore, it is important to find a precise relationship between the classical properties of the beam and the quantum characteristics of the photons that make a particular beam. It is shown that this relationship is best expressed in terms of the Riemann-Silberstein vector -- a complex combination of the electric and magnetic field vectors -- that plays the role of the photon wave function. The Whittaker representation of this vector in terms of a single complex function satisfying the wave equation greatly simplifies the analysis. Bessel beams, exact Laguerre-Gauss beams, and other related beams of electromagnetic radiation can be described in a unified fashion. The appropriate photon quantum numbers for these beams are identified. Special emphasis is put on the angular momentum of a single photon and its connection with the angular momentum of the beam.

Iwo Bialynicki-Birula; Zofia Bialynicka-Birula

2006-01-12T23:59:59.000Z

451

Measurement of Electromagnetic Parameters and FDTD Modeling of Ferrite Cores  

E-Print Network [OSTI]

Measurement of Electromagnetic Parameters and FDTD Modeling of Ferrite Cores Jianfeng Xu #1 products based on magneto-dielectric (ferrite) materials with desirable frequency responses that satisfy simulation tool that could deal with frequency- dispersive materials. An example of a ferrite material

Koledintseva, Marina Y.

452

CONTROL ORIENTATED SYNTHESIS OF ELECTROMAGNETIC SHUNT IMPEDANCES FOR  

E-Print Network [OSTI]

a mass-spring-damper as a mechanical filter. Active isolation control systems typically include to the terminals of an electromagnetic coil, the rela- tive mechanical velocity between the coil and magnet can xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx mx dk y (a) (b) Fig. 2. Simple-mass-spring-damper isolation system: (a) unforced and (b) forced

Fleming, Andrew J.

453

Electromagnetic Generators for Portable Power Applications Matthew Kurt Senesky  

E-Print Network [OSTI]

or turbines paired with electrical generators. Producing such a system to run efficiently on the milli to power tools to electric vehicle drives to wind power generation -- that would benefit from highElectromagnetic Generators for Portable Power Applications by Matthew Kurt Senesky B.A. (Dartmouth

Sanders, Seth

454

Spacetime algebra as a powerful tool for electromagnetism  

E-Print Network [OSTI]

We present a comprehensive introduction to spacetime algebra that emphasizes its practicality and power as a tool for the study of electromagnetism. We carefully develop this natural (Clifford) algebra of the Minkowski spacetime geometry, with a particular focus on its intrinsic (and often overlooked) complex structure. Notably, the scalar imaginary that appears throughout the electromagnetic theory properly corresponds to the unit 4-volume of spacetime itself, and thus has physical meaning. The electric and magnetic fields are combined into a single complex and frame-independent bivector field, which generalizes the Riemann-Silberstein complex vector that has recently resurfaced in studies of the single photon wavefunction. The complex structure of spacetime also underpins the emergence of electromagnetic waves, circular polarizations, the normal variables for canonical quantization, the distinction between electric and magnetic charge, complex spinor representations of Lorentz transformations, and the dual (electric-magnetic field exchange) symmetry that produces helicity conservation in vacuum fields. This latter symmetry manifests as an arbitrary global phase of the complex field, motivating the use of a complex vector potential, along with an associated transverse and gauge-invariant bivector potential, as well as complex (bivector and scalar) Hertz potentials. Our detailed treatment aims to encourage the use of spacetime algebra as a readily available and mature extension to existing vector calculus and tensor methods that can greatly simplify the analysis of fundamentally relativistic objects like the electromagnetic field.

Justin Dressel; Konstantin Y. Bliokh; Franco Nori

2014-12-03T23:59:59.000Z

455

Weak-electromagnetic interference in polarized eD scattering  

SciTech Connect (OSTI)

Observation of parity non-conservation in deep-inelastic scattering of polarized electrons from deuterium was reported in an experiment at SLAC in 1978. The events at SLAC and elsewhere leading to the successful search for parity non-conservation in the electromagnetic processes are described.

Prescott, C.Y.

1992-09-01T23:59:59.000Z

456

Electromagnetically and Thermally Driven Flow Phenomena in Electroslag Welding  

E-Print Network [OSTI]

) Electromagnetically and Thermally Driven Flow Phenomena in Electroslag Welding A. H. DILAWARI, J for the Electroslag Welding Process. In the formulation, allowance has been made {or both etee- tromagnetic and b in the use of electroslag welding (ESW), particularly for the construction of thick walled pressure vessels

Eagar, Thomas W.

457

Electromagnetic pump stator frame having power crossover struts  

DOE Patents [OSTI]

A stator frame for an electromagnetic pump includes a casing joined to a hub by a plurality of circumferentially spaced apart struts. At least one electrically insulated power crossover lead extends through the hub, through a crossover one of the struts, and through the casing for carrying electrical current therethrough.

Fanning, Alan W. (San Jose, CA); Olich, Eugene E. (Aptos, CA)

1995-01-01T23:59:59.000Z

458

1D subsurface electromagnetic fields excited by energized steel casing  

E-Print Network [OSTI]

1D subsurface electromagnetic fields excited by energized steel casing Wei Yang1 , Carlos Torres the possibility of enabling steel-cased wells as galvanic sources to detect and quantify spatial variations of electrical conductivity in the subsurface. The study assumes a vertical steel-cased well that penetrates

Torres-Verdín, Carlos

459

Practical Electromagnetic Template Attack on Pierre-Alain Fouque1  

E-Print Network [OSTI]

Practical Electromagnetic Template Attack on HMAC Pierre-Alain Fouque1 , Gaëtan Leurent1 , Denis efficient side channel attack against HMAC. Our attack assumes the presence of a side channel that reveals and can configure it, the attack recovers the secret key by monitoring a single execution of HMAC- SHA-1

Paris-Sud XI, Université de

460

ELECTROMAGNETIC RADIATION FROM A STRONG DC ELECTRIC FIELD  

E-Print Network [OSTI]

ELECTROMAGNETIC RADIATION FROM A STRONG DC ELECTRIC FIELD Manuel G¨udel 1 and Donat G. Wentzel 2 1 accelerated by a strong dc electric field show not only very efficient generation of beam waves but also emission of o­mode radiation. We present a set of particle simulations for which we study the behavior

Guedel, Manuel

Note: This page contains sample records for the topic "interactive electromagnetic relations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Behavior of Electric Current Subjected to ELF Electromagnetic Radiation  

E-Print Network [OSTI]

Gravitational effects produced by ELF electromagnetic radiation upon the electric current in a conductor are studied. An apparatus has been constructed to test the behavior of current subjected to ELF radiation. The experimental results are in agreement with theoretical predictions and show that ELF radiation can cause transitory interruptions in electric current conduction.

Fran De Aquino

2002-10-05T23:59:59.000Z

462

Soft Tempest: Hidden Data Transmission Using Electromagnetic Emanations  

E-Print Network [OSTI]

- ernment programme aimed at attacking the problem, the electromagnetic broad- cast of data has been to join the European Economic Community, and the Prime Minister was worried that French president De Gaulle would block Britain's entry. He therefore asked the intelligence community to determine the French

Kuhn, Markus

463

Construction, assembly and tests of the ATLAS electromagnetic barrel calorimeter  

E-Print Network [OSTI]

The construction and assembly of the two half barrels of the ATLAS central electromagnetic calorimeter and their insertion into the barrel cryostat are described. The results of the qualification tests of the calorimeter before installation in the LHC ATLAS pit are given.

Aubert, B; Colas, Jacques; Delebecque, P; Di Ciaccio, L; El-Kacimi, M; Ghez, P; Girard, C; Gouanère, M; Goujdami, D; Jérémie, A; Jézéquel, S; Lafaye, R; Massol, N; Perrodo, P; Przysiezniak, H; Sauvage, G; Thion, J; Wingerter-Seez, I; Zitoun, R; Zolnierowski, Y; Alforque, R; Chen, H; Farrell, J; Gordon, H; Grandinetti, R; Hackenburg, R W; Hoffmann, A; Kierstead, J A; Köhler, J; Lanni, F; Lissauer, D; Ma, H; Makowiecki, D S; Müller, T; Norton, S; Radeka, V; Rahm, David Charles; Rehak, M; Rajagopalan, S; Rescia, S; Sexton, K; Sondericker, J; Stumer, I; Takai, H; Belymam, A; Benchekroun, D; Driouichi, C; Hoummada, A; Hakimi, M; Knee, Michael; Stroynowski, R; Wakeland, B; Datskov, V I; Drobin, V; Aleksa, Martin; Bremer, J; Carli, T; Chalifour, M; Chevalley, J L; Djama, F; Ema, L; Fabre, C; Fassnacht, P; Gianotti, F; Gonidec, A; Hansen, J B; Hervás, L; Hott, T; Lacaste, C; Marin, C P; Pailler, P; Pleskatch, A; Sauvagey, D; Vandoni, Giovanna; Vuillemin, V; Wilkens, H; Albrand, S; Belhorma, B; Collot, J; de Saintignon, P; Dzahini, D; Ferrari, A; Fulachier, J; Gallin-Martel, M L; Hostachy, J Y; Laborie, G; Ledroit-Guillon, F; Martin, P; Muraz, J F; Ohlsson-Malek, F; Saboumazrag, S; Viret, S; Othegraven, R; Zeitnitz, C; Banfi, D; Carminati, L; Cavalli, D; Citterio, M; Costa, G; Delmastro, M; Fanti, M; Mandelli, L; Mazzanti, M; Tartarelli, F; Augé, E; Baffioni, S; Bonis, J; Bonivento, W; Bourdarios, C; de La Taille, C; Fayard, L; Fournier, D; Guilhem, G; Imbert, P; Iconomidou-Fayard, L; Le Meur, G; Mencik, M; Noppe, J M; Parrour, G; Puzo, P; Rousseau, D; Schaffer, A C; Seguin-Moreau, N; Serin, L; Unal, G; Veillet, J J; Wicek, F; Zerwas, D; Astesan, F; Bertoli, W; Canton, B; Fleuret, F; Imbault, D; Lacour, D; Laforge, B; Schwemling, P; Abouelouafa, M; Ben-Mansour, A; Cherkaoui, R; El-Mouahhidi, Y; Ghazlane, H; Idrissi, A; Bazizi, K; England, D; Glebov, V; Haelen, T; Lobkowicz, F; Slattery, P F; Belorgey, J; Besson, N; Boonekamp, M; Durand, D; Ernwein, J; Mansoulié, B; Molinie, F; Meyer, J P; Perrin, P; Schwindling, J; Taguet, J P; Zaccone, Henri; Lund-Jensen, B; Rydström, S; Tayalati, Y; Botchev, B; Finocchiaro, G; Hoffman, J; McCarthy, R L; Rijssenbeek, M; Steffens, J; Zdrazil, M; Braun, H M

2006-01-01T23:59:59.000Z

464

"Light" or the Electromagnetic spectrum www.nasa.gov  

E-Print Network [OSTI]

(absorbed then emitted light) · About the solar atmosphere · About comet tails · About our galaxy · About#12;"Light" or the Electromagnetic spectrum www.nasa.gov #12;Diffraction and Light · When passed through a prism or grating, light is separated into its component wavelengths · This looks like a rainbow

Mojzsis, Stephen J.

465

Electromagnetic fields and transport coefficients in a hot pion gas  

E-Print Network [OSTI]

We present recent results on finite temperature electromagnetic form factors and the electrical conductivity in a pion gas. The standard Chiral Perturbation Theory power counting needs to be modified for transport coefficients. We pay special attention to unitarity and to possible applications for dilepton and photon production.

A. Gomez Nicola; D. Fernandez-Fraile

2006-08-24T23:59:59.000Z

466

The modified electromagnetism and the emergent longitudinal wave  

E-Print Network [OSTI]

The classical theory of electromagnetism has been revisited and the possibility of longitudinal photon wave is explored. It is shown that the emergence of longitudinal wave is a consequence of Lorenz gauge (condition) violation. Proca, Vlaenderen & Waser and Arbab theories are investigated.

Arbab I Arbab; Mudhahir Al-Ajmi

2014-01-22T23:59:59.000Z

467

Electromagnetic Waves Propagation in 3D Plasma Configurations  

E-Print Network [OSTI]

Electromagnetic Waves Propagation in 3D Plasma Configurations Pavel Popovich, W. Anthony Cooper in a plasma strongly depends on the frequency, therefore the tools used for wave propagation studies are very that will allow for the calculation of the fields and energy deposition of a low-frequency wave propagating

468

Optical geometry analysis of the electromagnetic self-force  

E-Print Network [OSTI]

We present an analysis of the behaviour of the electromagnetic self-force for charged particles in a conformally static spacetime, interpreting the results with the help of optical geometry. Some conditions for the vanishing of the local terms in the self-force are derived and discussed.

Sebastiano Sonego; Marek A. Abramowicz

2006-02-17T23:59:59.000Z

469

Optical Eigenmodes; Exploiting the quadratic nature of the energy flux and of scattering interactions  

E-Print Network [OSTI]

We report a mathematically rigorous technique which facilitates the optimization of various optical properties of electromagnetic fields in free space and including scattering interactions. The technique exploits the linearity of electromagnetic fields along with the quadratic nature of the intensity to define specific Optical Eigenmodes (OEi) that are pertinent to the interaction considered. Key applications include the optimization of the size of a focused spot, the transmission through sub-wavelength apertures, and of the optical force acting on microparticles. We verify experimentally the OEi approach by minimising the size of a focused optical field using a superposition of Bessel beams.

M. Mazilu; J. Baumgartl; S. Kosmeier; K. Dholakia

2011-01-10T23:59:59.000Z

470

Modelling anisotropic fluid spheres in general relativity  

E-Print Network [OSTI]

We argue that an arbitrary general relativistic anisotropic fluid sphere, (spherically symmetric but with transverse pressure not equal to radial pressure), can nevertheless be successfully modelled by suitable linear combinations of quite ordinary classical matter: an isotropic perfect fluid, a classical electromagnetic field, and a classical (minimally coupled) scalar field. While the most general decomposition is not unique, a preferred minimal decomposition can be constructed that is unique. We show how the classical energy conditions for the anisotropic fluid sphere can be related to energy conditions for the isotropic perfect fluid, electromagnetic field, and scalar field components of the model. Furthermore we show how this decomposition relates to the distribution of electric charge density and scalar charge density throughout the model that is used to mimic the anisotropic fluid sphere. Consequently, we can build physically reasonable matter models for almost any spherically symmetric spacetime.

Boonserm, Petarpa; Visser, Matt

2015-01-01T23:59:59.000Z

471

Combined Use of Magnetic and Electrically Conductive Fillers in a Polymer Matrix for Electromagnetic Interference Shielding  

E-Print Network [OSTI]

for Electromagnetic Interference Shielding JUNHUA WU1,2 and D.D.L. CHUNG1,3 1.--Composite Materials Research for electromagnetic interference shielding than the use of a highly magnetic filler alone or the use of a highly, magnetic, electrical resistivity, nickel, mumetal, graphite INTRODUCTION Electromagnetic interference (EMI

Chung, Deborah D.L.

472

Electromagnetic interference shielding reaching 70 dB in steel fiber cement  

E-Print Network [OSTI]

Electromagnetic interference shielding reaching 70 dB in steel fiber cement Sihai Wen, D.D.L. Chung; Silica fume; Shielding 1. Introduction Electromagnetic interference (EMI) shielding [1­4] is in critical, NY 14260-4400, USA Received 9 January 2002; accepted 14 August 2003 Abstract An electromagnetic

Chung, Deborah D.L.

473

The influence of single-walled carbon nanotube structure on the electromagnetic interference shielding  

E-Print Network [OSTI]

The influence of single-walled carbon nanotube structure on the electromagnetic interference.01­15%) have been evaluated for electromagnetic interference (EMI) shielding effectiveness (SE) in the X and aerospace sectors with uses such as electrostatic dissipation, electromagnetic interference (EMI) shielding

Gao, Hongjun

474

A Zero-Sum Electromagnetic Evader-Interrogator Differential Game with Uncertainty  

E-Print Network [OSTI]

A Zero-Sum Electromagnetic Evader-Interrogator Differential Game with Uncertainty H.T. Banks-8212 In Memoriam of Prof. L. D. Berkovitz February 21, 2011 Abstract We consider dynamic electromagnetic evasion23, 49N70, 49N90, 65M32, 68T37, 60J70. Key Words: Electromagnetic evasion-pursuit, uncertainty

475

Electromagnetic Interrogation and the Doppler Shift Using the Method of Mappings  

E-Print Network [OSTI]

Electromagnetic Interrogation and the Doppler Shift Using the Method of Mappings H.T. Banks, Shuhua University Raleigh, NC 27695-8212 December 11, 2009 Abstract We consider the electromagnetic detection of a Doppler shift for an electromagnetic wave reflecting from a moving interface. This entails solving Maxwell

476

Introduction Framework Multiscale Expansion Axisymmetric Problems FEM Simulations Postprocessing A Transmission Problem in Electromagnetism with a  

E-Print Network [OSTI]

A Transmission Problem in Electromagnetism with a Singular Interface GABRIEL CALOZ 2 MONIQUE DAUGE 2 ERWAN FAOU 2´eron A Transmission Problem in Electromagnetism with a Singular Interface 1 / 33 inria-00528523,version1-22Oct2010 of electromagnetic fields with depth inside the conductor. The Skin Depth : () = 2/µ0 V. P´eron A Transmission

Paris-Sud XI, Université de

477

THIN LAYER MODELS FOR ELECTROMAGNETISM MARC DURUFLE, VICTOR PERON, AND CLAIR POIGNARD  

E-Print Network [OSTI]

THIN LAYER MODELS FOR ELECTROMAGNETISM MARC DURUFL´E, VICTOR P´ERON, AND CLAIR POIGNARD ABSTRACT of electromagnetic waves in domains with thin layer. These models appear as first order approximations of the electromagnetic field. They are obtained thanks to a multiscale expansion of the exact solution with respect

Paris-Sud XI, Université de

478

DERIVATION OF PARTICLE, STRING AND MEMBRANE MOTIONS FROM THE BORN-INFELD ELECTROMAGNETISM  

E-Print Network [OSTI]

DERIVATION OF PARTICLE, STRING AND MEMBRANE MOTIONS FROM THE BORN-INFELD ELECTROMAGNETISM YANN a rigorous asymptotic analysis of the Born-Infeld nonlinear electromagnetic theory. We first add to the Born introduced in [1] as a nonlinear correc- tion to the standard linear Maxwell equations for electromagnetism

Brenier, Yann

479

ON MIMO CHANNEL CAPACITY, SPATIAL SAMPLING AND THE LAWS OF ELECTROMAGNETISM  

E-Print Network [OSTI]

ON MIMO CHANNEL CAPACITY, SPATIAL SAMPLING AND THE LAWS OF ELECTROMAGNETISM Sergey Loyka School by the laws of electromagnetism on achievable MIMO channel capacity in its general form. Our approach is a two expansion of a generic electromagnetic wave combined with Nyquist sampling theorem in the spatial domain, we

Loyka, Sergey

480

Electromagnetic Shunt Damping S. Behrens A. J. Fleming S. O. Reza Moheimani  

E-Print Network [OSTI]

Electromagnetic Shunt Damping S. Behrens A. J. Fleming S. O. Reza Moheimani School of Electricalqhzfdvwoh1hgx1dx Abstract A method for electromagnetic shunt damping (EMSD) will be presented in this paper. A passive control strategy is validated through experi- mentation on a simple electromagnetic mass

Fleming, Andrew J.

Note: This page contains sample records for the topic "interactive electromagnetic relations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

ORIGINAL PAPER A new discrete electromagnetism-based meta-heuristic  

E-Print Network [OSTI]

ORIGINAL PAPER A new discrete electromagnetism-based meta-heuristic for solving Electromagnetism-like Mechanism (SEM) is one of the swarm-based optimization methods which is examined Electromagnetism-like Mechanism is proposed which utilizes Genetic Algorithm (GA) operators to work in discrete

Li, Xiaodong

482

Electromagnetically induced torque on a large ring in the microwave range  

E-Print Network [OSTI]

Electromagnetically induced torque on a large ring in the microwave range Olivier EMILE1) Abstract We report on the exchange of Orbital Angular Momentum between an electromagnetic wave and a 30 cm in the detection of angular momentum in electromagnetics, in acoustics and also in the magnetization

Boyer, Edmond

483

ElEctromagnEtic analysis and testing Flap, inside Front cover  

E-Print Network [OSTI]

#12;ElEctromagnEtic analysis and testing Flap, inside Front cover Sandia National Laboratories, homeland security, nonproliferation, and industrial competitiveness. ElEctromagnEtic analysis and testing #12;ElEctromagnEtic analysis and testingElEctromagnEtic analysis and testing Technology that harnesses

Fuerschbach, Phillip

484

developments. interactive  

E-Print Network [OSTI]

interactive course: ffl web­pages for hyper­linked lecture notes, student exercises and projects, ffl java teachers: ffl public on the web y : lecture notes including the JBONE applet, ffl on demand: source Java

Jaun, André

485

Interaction of biological systems with static and ELF electric and magnetic fields  

SciTech Connect (OSTI)

Although background levels of atmospheric electric and geomagnetic field levels are extremely low, over the past several decades, human beings and other life forms on this planet have been subjected to a dramatically changing electromagnetic milieu. An exponential increase in exposure to electromagnetic fields has occurred, largely because of such technological advances as the growth of electrical power generation and transmission systems, the increased use of wireless communications, and the use of radar. In addition, electromagnetic field generating devices have proliferated in industrial plants, office buildings, homes, public transportation systems, and elsewhere. Although significant increases have occurred in electromagnetic field strenghths spanning all frequency ranges, this symposium addresses only the impact of these fields at static and extremely low frequencies (ELF), primarily 50 and 60 Hz. This volume contains the proceedings of the symposium entitled /open quotes/Interaction of biological systems with static and ELF electric and magnetic fields/close quotes/. The purpose of the symposium was to provide a forum for discussions of all aspects of research on the interaction of static and ELF electromagnetic fields with biological systems. These systems include simple biophysical models, cell and organ preparations, whole animals, and man. Dosimetry, exposure system design, and artifacts in ELF bioeffects research were also addressed, along with current investigations that examine fundamental mechanisms of interactions between the fields and biological processes. Papers are indexed separately.

Anderson, L.E.; Kelman, B.J.; Weigel, R.J. (eds.)

1987-01-01T23:59:59.000Z

486

EMI (electromagnetic interference) potential of proposed 115KV line near B-691  

SciTech Connect (OSTI)

The Laser Operated Diamond Turning Machine (LODTM) is housed in Building 691. This facility contains electronic measurement and control systems which could be susceptible to interfering electromagnetic interference (EMI) generated by sources external to B-691. In particular, concern has been expressed that such harmful EMI signals could be produced by the proposed WAPA 115KV feeder line which would be routed approximately 30 feet from the East side of the facility. Also, there has been some concern expressed about the effects of the resulting electromagnetic (EM) fields on personnel in the proximity of the power line. Since it is necessary to measure the EM fields to ascertain if a hazard does indeed exist, and since we in ERD have been performing such field measurements for many years, we were contacted to determine the field levels from the line that might be expected inside and close to B-691. This report describes our approach, equipment and calibration procedures, analysis techniques used, results, and suggestions for future work in related areas. 9 refs., 41 figs.

Latorre, V.R.; Wythe, D.M.

1989-07-27T23:59:59.000Z

487

HOT ELECTROMAGNETIC OUTFLOWS. II. JET BREAKOUT  

SciTech Connect (OSTI)

We consider the interaction between radiation, matter, and a magnetic field in a compact, relativistic jet. The entrained matter accelerates outward as the jet breaks out of a star or other confining medium. In some circumstances, such as gamma-ray bursts (GRBs), the magnetization of the jet is greatly reduced by an advected radiation field while the jet is optically thick to scattering. Where magnetic flux surfaces diverge rapidly, a strong outward Lorentz force develops and radiation and matter begin to decouple. The increase in magnetization is coupled to a rapid growth in Lorentz factor. We take two approaches to this problem. The first examines the flow outside the fast magnetosonic critical surface, and calculates the flow speed and the angular distribution of the radiation field over a range of scattering depths. The second considers the flow structure on both sides of the critical surface in the optically thin regime, using a relaxation method. In both approaches, we find how the terminal Lorentz factor and radial profile of the outflow depend on the radiation intensity and optical depth at breakout. The effect of bulk Compton scattering on the radiation spectrum is calculated by a Monte Carlo method, while neglecting the effects of internal dissipation. The peak of the scattered spectrum sits near the seed peak if radiation pressure dominates the acceleration, but is pushed to a higher frequency if the Lorentz force dominates. The unscattered seed radiation can form a distinct, low-frequency component of the spectrum, especially if the magnetic Poynting flux dominates.

Russo, Matthew [Department of Physics, University of Toronto, 60 St. George Street, Toronto, ON M5S 1A7 (Canada); Thompson, Christopher [Canadian Institute for Theoretical Astrophysics, 60 St. George Street, Toronto, ON M5S 3H8 (Canada)

2013-08-20T23:59:59.000Z

488

Casimir interaction from magnetically coupled eddy currents  

E-Print Network [OSTI]

We study the Casimir interaction due to eddy (Foucault) currents in thick metallic plates. The Drude model is used to describe the optical response of the metal at low frequencies. A repulsive force arises from the electromagnetic coupling between chargeless currents filling the metallic half-spaces. We show that these overdamped modes are entirely responsible for the thermal anomalies of the Casimir force between good conductors. It turns out that the applicability of the Nernst heat theorem (third law of thermodynamics) must be reviewed since the ground state of the coupled metal+field system can become highly degenerate at zero temperature.

Intravaia, Francesco

2009-01-01T23:59:59.000Z

489

Electromagnetic partner of the gravitational signal during accretion onto black holes  

E-Print Network [OSTI]

We investigate the generation of electromagnetic and gravitational radiation in the vicinity of a perturbed Schwarzschild black hole. The gravitational perturbations and the electromagnetic field are studied by solving the Teukolsky master equation with sources, which we take to be locally charged, radially infalling, matter. Our results show that, in addition to the gravitational wave generated as the matter falls into the black hole, there is also a burst of electromagnetic radiation. This electromagnetic field has a characteristic set of quasinormal frequencies, and the gravitational radiation has the quasinormal frequencies of a Schwarzschild black hole. This scenario allows us to compare the gravitational and electromagnetic signals that are generated by a common source.

Juan Carlos Degollado; Victor Gualajara; Claudia Moreno; Darío Núñez

2014-10-21T23:59:59.000Z

490

Bi-Plasma Interactions on Femtosecond Time-Scales  

SciTech Connect (OSTI)

Ultrafast THz radiation has important applications in materials science studies, such as characterizing transport properties, studying the vibrational response of materials, and in recent years, controlling materials and elucidating their response in intense electromagnetic fields. THz fields can be generated in a lab setting using various plasma-based techniques. This study seeks to examine the interaction of two plasmas in order to better understand the fundamental physics associated with femtosecond filamentation processes and to achieve more efficient THz generation in a lab setting. The intensity of fluorescence in the region of overlap was measured as a function of polarization, power, and relative time delay of the two plasma-generating laser beams. Results of time dependent intensity studies indicate strikingly similar behaviors across polarizations and power levels; a sudden intensity spike was observed at time-zero, followed by a secondary maxima and subsequent decay to the initial plasma intensity. Dependence of the intensity on the power through either beam arm was also observed. Spectral studies of the enhanced emission were also carried out. Although this physical phenomenon is still not fully understood, future studies, including further spectral analysis of the fluorescence overlap, could yield new insight into the ultrafast processes occurring at the intersection of femtosecond filaments, and would provide a better understanding of the mechanisms for enhanced THz production.

Not Available

2011-06-22T23:59:59.000Z

491

Study of Dispersion of Mass Distribution of Ultra-High Energy Cosmic Rays using a Surface Array of Muon and Electromagnetic Detectors  

E-Print Network [OSTI]

We consider a hypothetical observatory of ultra-high energy cosmic rays consisting of two surface detector arrays that measure independently electromagnetic and muon signals induced by air showers. Using the constant intensity cut method, sets of events ordered according to each of both signal sizes are compared giving the number of matched events. Based on its dependence on the zenith angle, a parameter sensitive to the dispersion of the distribution of the logarithmic mass of cosmic rays is introduced. The results obtained using two post-LHC models of hadronic interactions are very similar and indicate a weak dependence on details of these interactions.

Vícha, Jakub; Nosek, Dalibor; Ebr, Jan

2015-01-01T23:59:59.000Z

492

Slanted Annular Aperture Arrays as enhanced-transmission metamaterials: excitation of the plasmonic transverse electromagnetic guided mode  

E-Print Network [OSTI]

transverse electromagnetic guided mode Abdoulaye Ndao1, Abderrahmane Belkhir2, Roland Salut1 and Fadi I

Boyer, Edmond

493

Dike/Drift Interactions  

SciTech Connect (OSTI)

This report presents and documents the model components and analyses that represent potential processes associated with propagation of a magma-filled crack (dike) migrating upward toward the surface, intersection of the dike with repository drifts, flow of magma in the drifts, and post-magma emplacement effects on repository performance. The processes that describe upward migration of a dike and magma flow down the drift are referred to as the dike intrusion submodel. The post-magma emplacement processes are referred to as the post-intrusion submodel. Collectively, these submodels are referred to as a conceptual model for dike/drift interaction. The model components and analyses of the dike/drift interaction conceptual model provide the technical basis for assessing the potential impacts of an igneous intrusion on repository performance, including those features, events, and processes (FEPs) related to dike/drift interaction (Section 6.1).

E. Gaffiney

2004-11-23T23:59:59.000Z

494

Constraints on new interactions from neutron scattering experiments  

E-Print Network [OSTI]

Constraints for the constants of hypothetical Yukawa-type corrections to the Newtonian gravitational potential are obtained from analysis of neutron scattering experiments. Restrictions are obtained for the interaction range between 10^{-12} and 10^{-7} cm, where Casimir force experiments and atomic force microscopy are not sensitive. Experimental limits are obtained also for non-electromagnetic inverse power law neutron-nucleus potential. Some possibilities are discussed to strengthen these constraints.

Yu. N. Pokotilovski

2006-01-19T23:59:59.000Z

495

Electromagnetic two-dimensional analysis of trapped-ion eigenmodes  

SciTech Connect (OSTI)

A two-dimensional electromagnetic analysis of the trapped-ion instability for the tokamak case with ..beta.. not equal to 0 has been made, based on previous work in the electrostatic limit. The quasineutrality condition and the component of Ampere's law along the equilibrium magnetic field are solved for the perturbed electrostatic potential and the component of the perturbed vector potential along the equilibrium magnetic field. The general integro-differential equations are converted into a matrix eigenvalue-eigenfunction problem by expanding in cubic B-spline finite elements in the minor radius and in Fourier harmonics in the poloidal angle. A model MHD equilibrium with circular, concentric magnetic surfaces and large aspect ratio is used which is consistent with our assemption that B << 1. The effect on the trapped-ion mode of including these electromagnetic extensions to the calculation is considered, and the temperature (and ..beta..) scaling of the mode frequency is shown and discussed.

Kim, D.; Rewoldt, G.

1984-11-01T23:59:59.000Z

496

Laser photon merging in an electromagnetic field inhomogeneity  

E-Print Network [OSTI]

We study the effect of laser photon merging, or equivalently high harmonic generation, in the quantum vacuum subject to inhomogeneous electromagnetic fields. Such a process is facilitated by the effective nonlinear couplings arising from charged particle-antiparticle fluctuations in the quantum vacuum subject to strong electromagnetic fields. We derive explicit results for general kinematic and polarization configurations involving optical photons. Concentrating on merged photons in reflected channels which are preferable in experiments for reasons of noise suppression, we demonstrate that photon merging is typically dominated by the competing nonlinear process of quantum reflection, though appropriate polarization and signal filtering could specifically search for the merging process. As a byproduct, we devise a novel systematic expansion of the photon polarization tensor in plane wave fields.

Holger Gies; Felix Karbstein; Rashid Shaisultanov

2014-08-13T23:59:59.000Z

497

Electromagnetic solitary pulses in a magnetized electron-positron plasma  

SciTech Connect (OSTI)

A theory for large amplitude compressional electromagnetic solitary pulses in a magnetized electron-positron (e-p) plasma is presented. The pulses, which propagate perpendicular to the external magnetic field, are associated with the compression of the plasma density and the wave magnetic field. Here the solitary wave magnetic field pressure provides the restoring force, while the inertia comes from the equal mass electrons and positrons. The solitary pulses are formed due to a balance between the compressional wave dispersion arising from the curl of the inertial forces in Faraday's law and the nonlinearities associated with the divergence of the electron and positron fluxes, the nonlinear Lorentz forces, the advection of the e-p fluids, and the nonlinear plasma