National Library of Energy BETA

Sample records for intensive observation periods

  1. Intensive Observation Period Projects Scheduled

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Intensive Observation Period Projects Scheduled Several IOP projects have been scheduled for the SGP CART site this spring. These projects either have already begun or will begin shortly. Radiosondes The RS-90 Transition IOP is currently under way. The RS-90 model radiosonde is gradually replacing the older RS-80 model. Radiosondes are instrument packages attached to and launched by weather balloons. The instruments measure atmospheric pressure, temperature, and relative humidity as the

  2. Remote Cloud Sensing Intensive Observation Period (RCS-IOP) millimeter-wave radar calibration and data intercomparison

    SciTech Connect (OSTI)

    Sekelsky, S.M.; Firda, J.M.; McIntosh, R.E.

    1996-04-01

    During April 1994, the University of Massachusetts (UMass) and the Pennsylvania State University (Penn State) fielded two millimeter-wave atmospheric radars in the Atmospheric Radiation Measurement Remote Cloud Sensing Intensive Operation Period (RCS-IOP) experiment. The UMass Cloud Profiling Radar System (CPRS) operates simultaneously at 33.12 GHz and 94.92 GHz through a single antenna. The Penn State radar operates at 93.95 GHz and has separate transmitting and receiving antennas. The two systems were separated by approximately 75 meters and simultaneously observed a variety of cloud types at verticle incidence over the course of the experiment. This abstract presents some initial results from our calibration efforts. An absolute calibration of the UMass radar was made from radar measurements of a trihedral corner reflector, which has a known radar cross-section. A relative calibration of between the Penn State and UMass radars is made from the statistical comparison of zenith pointing measurements of low altitude liquid clouds. Attenuation is removed with the aid of radiosonde data, and the difference in the calibration between the UMass and Penn State radars is determined by comparing the ratio of 94-GHz and 95-GHz reflectivity values to a model that accounts for parallax effects of the two antennas used in the Penn State system.

  3. Diffuse Shortwave Intensive Observation Period

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to the SuomiNet project. SuomiNet is a university-based, real-time national global positioning system (GPS) network for atmospheric research and education. (See June 2000 issue...

  4. Raman lidar measurements of water vapor and aerosols during the atmospheric radiation measurement (ARM) remote clouds sensing (RCS) intensive observation period (IOP)

    SciTech Connect (OSTI)

    Melfi, S.H.; Starr, D.O`C.; Whiteman, D.

    1996-04-01

    The first Atmospheric Radiation Measurement (ARM) remote Cloud Study (RCS) Intensive Operations Period (IOP) was held during April 1994 at the Southern Great Plains (SGP) site. This experiment was conducted to evaluate and calibrate state-of-the-art, ground based remote sensing instruments and to use the data acquired by these instruments to validate retrieval algorithms developed under the ARM program.

  5. Off-site Intensive Operational Period

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 ARM Participating in Off-site Intensive Operational Period The ARM Program is playing a role in the Cirrus Regional Study of Tropical Anvils and Cirrus Layers-Florida Area Cirrus Experiment (CRYSTAL-FACE) intensive operational period (IOP), under way through July in South Florida. The objective of CRYSTAL-FACE is to investigate the physical properties and formation processes of tropical cirrus clouds. The ARM Program has deployed a suite of ground-based instruments in Florida for CRYSTAL-FACE

  6. ARM Intensive Operational Period Scheduled to Validate New NASA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARM Intensive Operational Period Scheduled to Validate New NASA Satellite Beginning in ... On May 4, the National Aeronautics and Space Administration (NASA) launched Aqua, the ...

  7. The Great Plains low-level jet (LLJ) during the atmospheric radiation measurement (ARM) intensive observation period (IOP)-4 and simulations of land use pattern effect on the LLJ

    SciTech Connect (OSTI)

    Wu, Y.; Raman, S.

    1996-04-01

    The Great Plains low-level jet (LLJ) is an important element of the low-level atmospheric circulation. It transports water vapor from the Gulf of Mexico, which in turn affects the development of weather over the Great Plains of the central United States. The LLJ is generally recognized as a complex response of the atmospheric boundary layer to the diurnal cycle of thermal forcing. Early studies have attributed the Great Plains LLJ to the diurnal oscillations of frictional effect, buoyancy over sloping terrain, and the blocking effects of the Rocky Mountains. Recent investigations show that the speed of the LLJ is also affected by the soil type and soil moisture. Some studies also suggest that synoptic patterns may play an important role in the development of the LLJ. Land surface heterogeneties significantly affect mesoscale circulations by generating strong contrasts in surface thermal fluxes. Thus one would expect that the land use pattern should have effects on the LLJ`s development and structure. In this study, we try to determine the relative roles of the synoptic forcing, planetary boundary layers (PBL) processes, and the land use pattern in the formation of the LLJ using the observations from the Atmospheric Radiation Measurement (ARM) Intensive Operation Period (IOP)-4 and numerical sensitivity tests.

  8. SOLAR H{alpha} OSCILLATIONS FROM INTENSITY AND DOPPLER OBSERVATIONS...

    Office of Scientific and Technical Information (OSTI)

    SOLAR Halpha OSCILLATIONS FROM INTENSITY AND DOPPLER OBSERVATIONS Citation Details In-Document Search Title: SOLAR Halpha OSCILLATIONS FROM INTENSITY AND DOPPLER OBSERVATIONS ...

  9. Self-focusing of an intense laser pulse interacting with a periodic lattice of metallic nanoparticle

    SciTech Connect (OSTI)

    Sepehri Javan, N.

    2015-09-15

    The motivation for the present work is the study of self-focusing of an intense laser beam propagating through a periodic array of metallic nanoparticle. Using a perturbative method, a wave equation describing the nonlinear interaction of a laser beam with nanoparticles is derived. Evolution of laser spot size with the Gaussian profile for the circular and linear polarizations is considered. It is found that, in the same intensity, the linear polarization in a special interval of frequency resonantly acts better than the circular one.

  10. ISSUANCE 2015-01-26: Energy Conservation Program: Energy Conservation Standards for High-Intensity Lamps, Notice to Reopen Comment Period

    Broader source: Energy.gov [DOE]

    Energy Conservation Program: Energy Conservation Standards for High-Intensity Lamps, Notice to Reopen Comment Period

  11. Observation of objects under intense plasma background illumination

    SciTech Connect (OSTI)

    Buzhinsky, R. O.; Savransky, V. V.; Zemskov, K. I.; Isaev, A. A.; Buzhinsky, O. I.

    2010-12-15

    Experiments on the observation of a brightness-amplified image of an object through a masking arc discharge are presented. The copper-vapor laser active medium was used as an image brightness amplifier. It is shown that the image quality does not worsen under plasma background illumination.

  12. Surface Spectral Albedo Intensive Operational Period at the ARM SGP Site in august 2002: Results, Analysis, and Future Plans

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Spectral Albedo Intensive Operational Period at the ARM SGP Site in August 2002: Results, Analysis, and Future Plans A. P. Trishchenko and Y. Luo Canada Centre for Remote Sensing Ottawa, Ontario, Canada M. C. Cribb and Z. Li University of Maryland College Park, Maryland K. Hamm University of Oklahoma Norman, Oklahoma Introduction A surface spectral albedo Intensive Operational Period (IOP) at the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site was conducted during August

  13. Atmospheric Radiation Measurement (ARM) Data from Field Campaigns or Intensive Operational Periods (IOP)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    ARM Climate Research Facility users regularly conduct field campaigns to augment routine data acquisitions and to test and validate new instruments. Any field campaign which is proposed, planned, and implemented at one or more research sites is referred to as an intensive operational period (IOP). IOPs are held using the fixed and mobile sites; Southern Great Plains, North Slope of Alaska, Tropical Western Pacific, ARM Mobile Facility (AMF), and Aerial Vehicles Program (AVP). [Taken from http://www.arm.gov/science/fc.stm] Users may search with the specialized interface or browse campaigns/IOPs in table format. Browsing allows users to see the start date of the IOP, the status (Past, In Progress, etc.), the duration, the Principal Investigator, and the research site, along with the title of the campaign/IOP. Clicking on the title leads to a descriptive summary of the campaign, names of co-investigators, contact information, links to related websites, and a link to available data in the ARM Archive. Users will be requested to create a password, but the data files are free for viewing and downloading. The URL to go directly to the ARM Archive, bypassing the information pages, is http://www.archive.arm.gov/. The Office of Biological and Environmental Research in DOE's Office of Science is responsible for the ARM Program. The ARM Archive physically resides at the Oak Ridge National Laboratory.

  14. New X-Ray Matter Interaction Observed at Ultra-High Intensity | U.S. DOE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Office of Science (SC) New X-Ray Matter Interaction Observed at Ultra-High Intensity Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) Community Resources Contact Information Basic Energy Sciences U.S. Department of Energy SC-22/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3081 F: (301) 903-6594 E: Email Us More Information » 08.05.16 New

  15. Observation of Magnetized Soliton Remnants in the Wake of Intense Laser Pulse Propagation through Plasmas

    SciTech Connect (OSTI)

    Romagnani, L.; Bigongiari, A.; Kar, S.; Borghesi, M.; Bulanov, S. V.; Esirkepov, T. Zh.; Cecchetti, C. A.; Galimberti, M.; Jung, R.; Osterholz, J.; Willi, O.; Liseykina, T. V.; Macchi, A.; Pegoraro, F.

    2010-10-22

    Slowly evolving, regularly spaced patterns have been observed in proton projection images of plasma channels drilled by intense (> or approx. 10{sup 19} W cm{sup -2}) short ({approx}1 ps) laser pulses propagating in an ionized gas jet. The nature and geometry of the electromagnetic fields generating such patterns have been inferred by simulating the laser-plasma interaction and the following plasma evolution with a two-dimensional particle-in-cell code and the probe proton deflections by particle tracing. The analysis suggests the formation of rows of magnetized soliton remnants, with a quasistatic magnetic field associated with vortexlike electron currents resembling those of magnetic vortices.

  16. OBSERVATIONS OF INTENSITY FLUCTUATIONS ATTRIBUTED TO GRANULATION AND FACULAE ON SUN-LIKE STARS FROM THE KEPLER MISSION

    SciTech Connect (OSTI)

    Karoff, C.; Campante, T. L.; Ballot, J.; Kallinger, T.; Gruberbauer, M.; Garcia, R. A.

    2013-04-10

    Sun-like stars show intensity fluctuations on a number of timescales due to various physical phenomena on their surfaces. These phenomena can convincingly be studied in the frequency spectra of these stars-while the strongest signatures usually originate from spots, granulation, and p-mode oscillations, it has also been suggested that the frequency spectrum of the Sun contains a signature of faculae. We have analyzed three stars observed for 13 months in short cadence (58.84 s sampling) by the Kepler mission. The frequency spectra of all three stars, as for the Sun, contain signatures that we can attribute to granulation, faculae, and p-mode oscillations. The temporal variability of the signatures attributed to granulation, faculae, and p-mode oscillations was analyzed and the analysis indicates a periodic variability in the granulation and faculae signatures-comparable to what is seen in the Sun.

  17. IS COMPTON COOLING SUFFICIENT TO EXPLAIN EVOLUTION OF OBSERVED QUASI-PERIODIC OSCILLATIONS IN OUTBURST SOURCES?

    SciTech Connect (OSTI)

    Mondal, Santanu; Chakrabarti, Sandip K.; Debnath, Dipak E-mail: chakraba@bose.res.in

    2015-01-01

    In outburst sources, quasi-periodic oscillation (QPO) frequency is known to evolve in a certain way: in the rising phase, it monotonically goes up until a soft intermediate state is achieved. In the propagating oscillatory shock model, oscillation of the Compton cloud is thought to cause QPOs. Thus, in order to increase QPO frequency, the Compton cloud must collapse steadily in the rising phase. In decline phases, the exact opposite should be true. We investigate cause of this evolution of the Compton cloud. The same viscosity parameter that increases the Keplerian disk rate also moves the inner edge of the Keplerian component, thereby reducing the size of the Compton cloud and reducing the cooling timescale. We show that cooling of the Compton cloud by inverse Comptonization is enough for it to collapse sufficiently so as to explain the QPO evolution. In the two-component advective flow configuration of Chakrabarti-Titarchuk, centrifugal force-induced shock represents the boundary of the Compton cloud. We take the rising phase of 2010 outburst of Galactic black hole candidate H 1743-322 and find an estimation of variation of the α parameter of the sub-Keplerian flow to be monotonically rising from 0.0001 to 0.02, well within the range suggested by magnetorotational instability. We also estimate the inward velocity of the Compton cloud to be a few meters per second, which is comparable to what is found in several earlier studies of our group by empirically fitting the shock locations with the time of observations.

  18. Observation of plasma density dependence of electromagnetic soliton excitation by an intense laser pulse

    SciTech Connect (OSTI)

    Sarri, G.; Kar, S.; Kourakis, I.; Borghesi, M.; Romagnani, L.; Bulanov, S. V.; Cecchetti, C. A.; Gizzi, L. A.; Galimberti, M.; Heathcote, R.; Jung, R.; Osterholz, J.; Willi, O.; Schiavi, A.

    2011-08-15

    The experimental evidence of the correlation between the initial electron density of the plasma and electromagnetic soliton excitation at the wake of an intense (10{sup 19} W/cm{sup 2}) and short (1 ps) laser pulse is presented. The spatial distribution of the solitons, together with their late time evolution into post-solitons, is found to be dependent upon the background plasma parameters, in agreement with published analytical and numerical findings. The measured temporal evolution and electrostatic field distribution of the structures are consistent with their late time evolution and the occurrence of multiple merging of neighboring post-solitons.

  19. Kinetic description of intense nonneutral beam propagation through a periodic solenoidal focusing field based on the nonlinear Vlasov-Maxwell equations

    SciTech Connect (OSTI)

    Davidson, R.C.; Chen, C.

    1997-08-01

    A kinetic description of intense nonneutral beam propagation through a periodic solenoidal focusing field B{sup sol}({rvec x}) is developed. The analysis is carried out for a thin beam with characteristic beam radius r{sub b} {much_lt} S, and directed axial momentum {gamma}{sub b}m{beta}{sub b}c (in the z-direction) large compared with the transverse momentum and axial momentum spread of the beam particles. Making use of the nonlinear Vlasov-Maxwell equations for general distribution function f{sub b}({rvec x},{rvec p},t) and self-consistent electrostatic field consistent with the thin-beam approximation, the kinetic model is used to investigate detailed beam equilibrium properties for a variety of distribution functions. Examples are presented both for the case of a uniform solenoidal focusing field B{sub z}(z) = B{sub 0} = const. and for the case of a periodic solenoidal focusing field B{sub z}(z + S) = B{sub z}(z). The nonlinear Vlasov-Maxwell equations are simplified in the thin-beam approximation, and an alternative Hamiltonian formulation is developed that is particularly well-suited to intense beam propagation in periodic focusing systems. Based on the present analysis, the Vlasov-Maxwell description of intense nonneutral beam propagation through a periodic solenoidal focusing field {rvec B}{sup sol}({rvec x}) is found to be remarkably tractable and rich in physics content. The Vlasov-Maxwell formalism developed here can be extended in a straightforward manner to investigate detailed stability behavior for perturbations about specific choices of beam equilibria.

  20. Coordinated optical and ultraviolet observations of short period RS CVn and W UMa type stars

    SciTech Connect (OSTI)

    Newmark, J.S.

    1990-01-01

    Data from the Fiber Optic Echelle Charge Coupled Device (CCD) Spectrograph at KPNO as well as IUE data were analyzed in this study of short period RS CVn and W UMa type binaries. Optical data were analyzed using a spectral subtraction technique to find excess emission (or absorption) in the component spectra. Analysis of data for the W UMa type contact binary VW Cep strongly suggests the existence of extended material near the contact region but clearly outside the Roche lobes. This material is presumably confined in magnetic loops bridging the two components. Making simple assumptions, the density can be estimated at 4 to 5 times 10 {sup 12} cm (sup {minus}3). A possible prominence was also detected on the secondary component of the detached short period RS CVn system DH Leo.

  1. Effects of confinement on short-period surface waves: Observations from a new dataset

    SciTech Connect (OSTI)

    Hooper, H.; Bonner, J.; Leidig, M.

    2006-04-15

    The Source Phenomenology Experiment (SPE) was conducted during the summer of 2003 in Arizona. Single-fired chemical shots were detonated and recorded at two locations, including a coal mine in the Black Mesa district of northern Arizona. This article reports on research into the effects of confinement on the generation of short-period, fundamental-mode Rayleigh waves (Rg), using a subset of the SPE data. Results show important differences between the Rg amplitudes of confined and unconfined explosions which must be understood to develop discriminants for mining explosions, which are an important aspect of nuclear test monitoring. Rg energy and frequency content depend on explosive weight and confinement, and unconfined explosions generate up to eight times less energy than equivalent confined explosions. For this reason, unconfined mining explosions cannot be simulated using a Mueller and Murphy (1971) source without including an empirical chemical decoupling factor. Rg chemical decoupling factors for unconfined shots vary from 0.5 to 8.2 at frequencies between 0.5 and 11 Hz. The effects of the bench free face are evident in radiation patterns. Explosions on the topographic bench show increased spectral energies for Rg (by a factor of 1.5) at azimuths behind the bench. This suggests that a discriminant based on the relative azimuthal spectral energies of Rg may be a possibility.

  2. Tidally distorted exoplanets: Density corrections for short-period hot-Jupiters based solely on observable parameters

    SciTech Connect (OSTI)

    Burton, J. R.; Watson, C. A.; Fitzsimmons, A.; Moulds, V.; Pollacco, D.; Wheatley, P. J.; Littlefair, S. P.

    2014-07-10

    The close proximity of short-period hot-Jupiters to their parent star means they are subject to extreme tidal forces. This has a profound effect on their structure and, as a result, density measurements that assume that the planet is spherical can be incorrect. We have simulated the tidally distorted surface for 34 known short-period hot-Jupiters, assuming surfaces of constant gravitational equipotential for the planet, and the resulting densities have been calculated based only on observed parameters of the exoplanet systems. Comparing these results to the density values, assuming the planets are spherical, shows that there is an appreciable change in the measured density for planets with very short periods (typically less than two days). For one of the shortest-period systems, WASP-19b, we determine a decrease in bulk density of 12% from the spherical case and, for the majority of systems in this study, this value is in the range of 1%-5%. On the other hand, we also find cases where the distortion is negligible (relative to the measurement errors on the planetary parameters) even in the cases of some very short period systems, depending on the mass ratio and planetary radius. For high-density gas planets requiring apparently anomalously large core masses, density corrections due to tidal deformation could become important for the shortest-period systems.

  3. Observation of a periodic runaway in the reactive Ar/O{sub 2} high power impulse magnetron sputtering discharge

    SciTech Connect (OSTI)

    Shayestehaminzadeh, Seyedmohammad E-mail: shayesteh@mch.rwth-aachen.de; Arnalds, Unnar B.; Magnusson, Rögnvaldur L.; Olafsson, Sveinn

    2015-11-15

    This paper reports the observation of a periodic runaway of plasma to a higher density for the reactive discharge of the target material (Ti) with moderate sputter yield. Variable emission of secondary electrons, for the alternating transition of the target from metal mode to oxide mode, is understood to be the main reason for the runaway occurring periodically. Increasing the pulsing frequency can bring the target back to a metal (or suboxide) mode, and eliminate the periodic transition of the target. Therefore, a pulsing frequency interval is defined for the reactive Ar/O{sub 2} discharge in order to sustain the plasma in a runaway-free mode without exceeding the maximum power that the magnetron can tolerate.

  4. Near-earth injection of MeV electrons associated with intense dipolarization electric fields: Van Allen Probes observations

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dai, Lei; Wang, Chi; Duan, Suping; He, Zhaohai; Wygant, John R.; Cattell, Cynthia A.; Tao, Xin; Su, Zhenpeng; Kletzing, Craig; Baker, Daniel N.; et al

    2015-08-10

    Substorms generally inject tens to hundreds of keV electrons, but intense substorm electric fields have been shown to inject MeV electrons as well. An intriguing question is whether such MeV electron injections can populate the outer radiation belt. Here we present observations of a substorm injection of MeV electrons into the inner magnetosphere. In the premidnight sector at L~5.5, Van Allen Probes (Radiation Belt Storm Probes)-A observed a large dipolarization electric field (50 mV/m) over ~40 s and a dispersionless injection of electrons up to ~3 MeV. Pitch angle observations indicated betatron acceleration of MeV electrons at the dipolarization front.more » Corresponding signals of MeV electron injection were observed at LANL-GEO, THEMIS-D, and GOES at geosynchronous altitude. Through a series of dipolarizations, the injections increased the MeV electron phase space density by 1 order of magnitude in less than 3 h in the outer radiation belt (L > 4.8). Our observations provide evidence that deep injections can supply significant MeV electrons.« less

  5. Near-earth injection of MeV electrons associated with intense dipolarization electric fields: Van Allen Probes observations

    SciTech Connect (OSTI)

    Dai, Lei; Wang, Chi; Duan, Suping; He, Zhaohai; Wygant, John R.; Cattell, Cynthia A.; Tao, Xin; Su, Zhenpeng; Kletzing, Craig; Baker, Daniel N.; Li, Xinlin; Malaspina, David; Blake, J. Bernard; Fennell, Joseph; Claudepierre, Seth; Turner, Drew L.; Reeves, Geoffrey D.; Funsten, Herbert O.; Spence, Harlan E.; Angelopoulos, Vassilis; Fruehauff, Dennis; Chen, Lunjin; Thaller, Scott; Breneman, Aaron; Tang, Xiangwei

    2015-08-10

    Substorms generally inject tens to hundreds of keV electrons, but intense substorm electric fields have been shown to inject MeV electrons as well. An intriguing question is whether such MeV electron injections can populate the outer radiation belt. Here we present observations of a substorm injection of MeV electrons into the inner magnetosphere. In the premidnight sector at L~5.5, Van Allen Probes (Radiation Belt Storm Probes)-A observed a large dipolarization electric field (50 mV/m) over ~40 s and a dispersionless injection of electrons up to ~3 MeV. Pitch angle observations indicated betatron acceleration of MeV electrons at the dipolarization front. Corresponding signals of MeV electron injection were observed at LANL-GEO, THEMIS-D, and GOES at geosynchronous altitude. Through a series of dipolarizations, the injections increased the MeV electron phase space density by 1 order of magnitude in less than 3 h in the outer radiation belt (L > 4.8). Our observations provide evidence that deep injections can supply significant MeV electrons.

  6. Observation of a periodic array of flux-closure quadrants in strained ferroelectric PbTiO3 films

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tang, Y. L.; Zhu, Y. L; Ma, Xiuliang; Borisevich, Albina Y; Morozovska, A. N.; Eliseev, Eugene; Wang, W. Y; Wang, Yujia; Xu, Y. B.; Zhang, Z. D.; et al

    2015-05-01

    Nanoscale ferroelectrics are expected to exhibit various exotic domain configurations, such as the full flux-closure pattern that is well known in ferromagnetic materials. Here we observe not only the atomic morphology of the flux-closure quadrant but also a periodic array of flux closures in ferroelectric PbTiO3 films, mediated by tensile strain on a GdScO3 substrate. Using aberration-corrected scanning transmission electron microscopy, we directly visualize an alternating array of clockwise and counterclockwise flux closures, whose periodicity depends on the PbTiO3 film thickness. In the vicinity of the core, the strain is sufficient to rupture the lattice, with strain gradients up tomore » 109 per meter. We found engineering strain at the nanoscale may facilitate the development of nanoscale ferroelectric devices.« less

  7. Note: {sup 6}Li III light intensity observation for {sup 6}Li{sup 3+} ion beam operation at Hyper-Electron Cyclotron Resonance ion source

    SciTech Connect (OSTI)

    Muto, Hideshi; Ohshiro, Yukimitsu; Yamaka, Shoichi; Yamaguchi, Hidetoshi; Shimoura, Susumu; Watanabe, Shin-ichi; Oyaizu, Michihiro; Kobayashi, Kiyoshi; Kotaka, Yasuteru; Nishimura, Makoto; Kase, Masayuki; Kubono, Shigeru; Hattori, Toshiyuki

    2014-12-15

    The light intensity of {sup 6}Li III line spectrum at λ = 516.7 nm was observed during {sup 6}Li{sup 3+} beam tuning at the Hyper-Electron Cyclotron Resonance (ECR) ion source. Separation of ion species of the same charge to mass ratio with an electromagnetic mass analyzer is known to be an exceptionally complex process. However, {sup 6}Li III line intensity observation conducted in this study gives new insights into its simplification of this process. The light intensity of {sup 6}Li III line spectrum from the ECR plasma was found to have a strong correlation with the extracted {sup 6}Li{sup 3+} beam intensity from the RIKEN Azimuthal Varying Field cyclotron.

  8. Pulsations and period changes of the non-Blazhko RR lyrae variable Y oct observed from Dome A, Antarctica

    SciTech Connect (OSTI)

    Zhihua, Huang; Jianning, Fu; Weikai, Zong; Lingzhi, Wang; Zonghong, Zhu; M, Macri Lucas; Lifan, Wang; Ashley, Michael C. B.; S, Lawrence Jon; Daniel, Luong-Van; Xiangqun, Cui; Long-Long, Feng; Xuefei, Gong; Qiang, Liu; Huigen, Yang; Xiangyan, Yuan; Xu, Zhou; Zhenxi, Zhu; R, Pennypacker Carl; G, York Donald

    2015-01-01

    During the operation of the Chinese Small Telescope Array (CSTAR) in Dome A of Antarctica in the years 2008, 2009, and 2010, large amounts of photometric data have been obtained for variable stars in the CSTAR field. We present here the study of one of six RR Lyrae variables, Y Oct, observed with CSTAR in Dome A, Antarctica. Photometric data in the i band were obtained in 2008 and 2010, with a duty cycle (defined as the fraction of time representing scientifically available data to CSTAR observation time) of about 44% and 52%, respectively. In 2009, photometric data in the g and r bands were gathered for this star, with a duty cycle of 65% and 60%, respectively. Fourier analysis of the data in the three bands only shows the fundamental frequency and its harmonics, which is characteristic of the non-Blazhko RR Lyrae variables. Values of the fundamental frequency and the amplitudes, as well as the total pulsation amplitude, are obtained from the data in the three bands separately. The amplitude of the fundamental frequency and the total pulsation amplitude in the g band are the largest, and those in the i band the smallest. Two-hundred fifty-one times of maximum are obtained from the three seasons of data, which are analyzed together with 38 maximum times provided in the GEOS RR Lyrae database. A period change rate of −0.96 ± 0.07 days Myr{sup −1} is then obtained, which is a surprisingly large negative value. Based on relations available in the literature, the following physical parameters are derived: [Fe/H] = −1.41 ± 0.14, M{sub V} = 0.696 ± 0.014 mag, V−K = 1.182 ± 0.028 mag, logT{sub eff} = 3.802 ± 0.003 K, logg = 2.705 ± 0.004, logL/L{sub ⊙} = 1.625 ± 0.013, and logM/M{sub ⊙} = −0.240 ± 0.019.

  9. Quasi-periodic variations in x-ray emission and long-term radio observations: Evidence for a two-component jet in Sw J1644+57

    SciTech Connect (OSTI)

    Wang, Jiu-Zhou; Lei, Wei-Hua; Wang, Ding-Xiong; Zou, Yuan-Chuan; Huang, Chang-Yin; Zhang, Bing; Gao, He E-mail: dxwang@hust.edu.cn E-mail: zhang@physics.unlv.edu

    2014-06-10

    The continued observations of Sw J1644+57 in X-ray and radio bands accumulated a rich data set to study the relativistic jet launched in this tidal disruption event. The X-ray light curve of Sw J1644+57 from 5-30 days presents two kinds of quasi-periodic variations: a 200 s quasi-periodic oscillation (QPO) and a 2.7 day quasi-periodic variation. The latter has been interpreted by a precessing jet launched near the Bardeen-Petterson radius of a warped disk. Here we suggest that the ?200 s QPO could be associated with a second, narrower jet sweeping the observer line-of-sight periodically, which is launched from a spinning black hole in the misaligned direction with respect to the black hole's angular momentum. In addition, we show that this two-component jet model can interpret the radio light curve of the event, especially the re-brightening feature starting ?100 days after the trigger. From the data we infer that inner jet may have a Lorentz factor of ?{sub j} ? 5.5 and a kinetic energy of E {sub k,} {sub iso} ? 3.0 10{sup 52} erg, while the outer jet may have a Lorentz factor of ?{sub j} ? 2.5 and a kinetic energy of E{sub k,} {sub iso} ? 3.0 10{sup 53} erg.

  10. Observation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Velocity-Independent Electron Transport in the Reversed Field Pinch R. O'Connell, * D. J. Den Hartog, C. B. Forest, J. K. Anderson, T. M. Biewer, † B. E. Chapman, D. Craig, G. Fiksel, S. C. Prager, J. S. Sarff, and S. D. Terry ‡ Department of Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA R.W. Harvey CompX, San Diego, California, USA (Received 16 December 2002; published 24 July 2003) Confinement of runaway electrons has been observed for the first time in a reversed

  11. Observations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Observations of Multiple Magnetic Islands in the Core of a Reversed Field Pinch P. Franz, 1,2 L. Marrelli, 1,2 P. Piovesan, 1,2 B. E. Chapman, 3 P. Martin, 1,2 I. Predebon, 1,2 G. Spizzo, 1 R. B. White, 4 and C. Xiao 3,5 1 Consorzio RFX, Associazione EURATOM-ENEA sulla Fusione, Corso Stati Uniti, 4 35127 Padova, Italy * 2 Istituto Nazionale di Fisica della Materia, UdR Padova, Italy 3 Department of Physics, University of Wisconsin-Madison, 1150 University Avenue, Madison, Wisconsin 53706, USA 4

  12. Multi-satellite simultaneous observations of magnetopause and atmospheric losses of radiation belt electrons during an intense solar wind dynamic pressure pulse

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Xiang, Zheng; Ni, Binbin; Zhou, Chen; Zou, Zhengyang; Gu, Xudong; Zhao, Zhengyu; Zhang, Xianguo; Zhang, Xiaoxin; Zhang, Shenyi; Li, Xinlin; et al

    2016-05-03

    Radiation belt electron flux dropouts are a kind of drastic variation in the Earth's magnetosphere, understanding of which is of both scientific and societal importance. We report multi-satellite simultaneous observations of magnetopause and atmospheric losses of radiation belt electrons during an event of intense solar wind dynamic pressure pulse, using electron flux data from a group of 14 satellites. Moreover, when the pulse occurred, magnetopause and atmospheric loss could take effect concurrently contributing to the electron flux dropout. Losses through the magnetopause were observed to be efficient and significant at L ≳ 5, owing to the magnetopause intrusion into Lmore » ~6 and outward radial diffusion associated with sharp negative gradient in electron phase space density. Losses to the atmosphere were directly identified from the precipitating electron flux observations, for which pitch angle scattering by plasma waves could be mainly responsible. While the convection and substorm injections strongly enhanced the energetic electron fluxes up to hundreds of keV, they could delay other than avoid the occurrence of electron flux dropout at these energies. Finally, we demonstrate that the pulse-time radiation belt electron flux dropout depends strongly on the specific interplanetary and magnetospheric conditions and that losses through the magnetopause and to the atmosphere and enhancements of substorm injection play an essential role in combination, which should be incorporated as a whole into future simulations for comprehending the nature of radiation belt electron flux dropouts.« less

  13. Observation of a periodic array of flux-closure quadrants in strained ferroelectric PbTiO3 films

    SciTech Connect (OSTI)

    Tang, Y. L.; Zhu, Y. L; Ma, Xiuliang; Borisevich, Albina Y; Morozovska, A. N.; Eliseev, Eugene; Wang, W. Y; Wang, Yujia; Xu, Y. B.; Zhang, Z. D.; Pennycook, Stephen J

    2015-05-01

    Nanoscale ferroelectrics are expected to exhibit various exotic domain configurations, such as the full flux-closure pattern that is well known in ferromagnetic materials. Here we observe not only the atomic morphology of the flux-closure quadrant but also a periodic array of flux closures in ferroelectric PbTiO3 films, mediated by tensile strain on a GdScO3 substrate. Using aberration-corrected scanning transmission electron microscopy, we directly visualize an alternating array of clockwise and counterclockwise flux closures, whose periodicity depends on the PbTiO3 film thickness. In the vicinity of the core, the strain is sufficient to rupture the lattice, with strain gradients up to 109 per meter. We found engineering strain at the nanoscale may facilitate the development of nanoscale ferroelectric devices.

  14. Energy Intensity Indicators: Efficiency vs. Intensity | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Efficiency vs. Intensity Energy Intensity Indicators: Efficiency vs. Intensity Efficiency improvements in processes and equipment and other explanatory factors can contribute to observed changes in energy intensity. Within the category "other explanatory factors" we can identify two separate effects: structural changes and behavioral factors, which are further discussed in item 2) below. (1) Declines in energy intensity are a proxy for efficiency improvements, provided a)

  15. Effects of electron recirculation on a hard x-ray source observed during the interaction of a high intensity laser pulse with thin Au targets

    SciTech Connect (OSTI)

    Compant La Fontaine, A.; Courtois, C.; Lefebvre, E.; Bourgade, J. L.; Landoas, O.; Thorp, K.; Stoeckl, C.

    2013-12-15

    The interaction of a high intensity laser pulse on the preplasma of a high-Z solid target produced by the pulse's pedestal generates high-energy electrons. These electrons subsequently penetrate inside the solid target and produce bremsstrahlung photons, generating an x-ray source which can be used for photonuclear studies or to radiograph high area density objects. The source characteristics are compared for targets with thin (20 μm) and thick (100 μm) Au foils on the Omega EP laser at Laboratory for Laser Energetics. Simulations using the particle-in-cell code CALDER show that for a 20 μm thickness Au target, electrons perform multiple round-trips in the target under the effect of the laser ponderomotive potential and the target electrostatic potential. These relativistic electrons have random transverse displacements, with respect to the target normal, attributed to electrostatic fluctuation fields. As a result, the x-ray spot size is increased by a factor 2 for thin target compared to thick targets, in agreement with experimental results. In addition, the computed doses agree with the measured ones provided that electron recirculation in the thin target is taken into account. A dose increase by a factor 1.7 is then computed by allowing for recirculation. In the 100 μm target case, on the other hand, this effect is found to be negligible.

  16. Observation of multiple ionization pathways for OCS in an intense laser field resolved by three-dimensional covariance mapping and visualized by hierarchical ionization topology

    SciTech Connect (OSTI)

    Bryan, W. A.; Newell, W. R.; Sanderson, J. H.; Langley, A. J. [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom); Department of Physics, University of Waterloo, Waterloo, Ontario, N2L 3G1 (Canada); Central Laser Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX (United Kingdom)

    2006-11-15

    The two- and three-body Coulomb explosion of carbonyl sulfide (OCS) by 790 nm, 50 fs laser pulses focused to {approx_equal}10{sup 16} W cm{sup -2} has been investigated by the three-dimensional covariance mapping technique. In a triatomic molecule, a single charge state, in this case the trication, has been observed to dissociate into two distinct energy channels. With the aid of a three-dimensional visualization technique to reveal the ionization hierarchy, evidence is presented for the existence of two sets of ionization pathways resulting from these two initial states. While one group of ions can be modeled using a classical enhanced ionization model, the second group, consisting of mainly asymmetric channels, cannot. The results provide clear evidence that an enhanced ionization approach must also be accompanied by an appreciation of the effects of excited ionic states and multielectronic processes.

  17. Operation Periods: Single Column Model

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 Fall 2002 Intensive Operation Periods: Single Column Model and Unmanned Aerospace Vehicle In an Intensive Operation Period (IOP) on November 3-23, 2002, researchers at the SGP CART site are collecting a detailed data set for use in improving the Single Column Model (SCM), a scaled- down climate model. The SCM represents one vertical column of air above Earth's surface and requires less computation time than a full-scale global climate model. Researchers first use the SCM to efficiently improve

  18. Research Directed at Developing a Classical Theory to Describe Isotope Separation of Polyatomic Molecules Illuminated by Intense Infrared Radiation. Final Report for period May 7, 1979 to September 30, 1979; Extension December 31, 1997

    DOE R&D Accomplishments [OSTI]

    Lamb, W. E. Jr.

    1981-12-01

    This final report describes research on the theory of isotope separation produced by the illumination of polyatomic molecules by intense infrared laser radiation. This process is investigated by treating the molecule, sulfur hexafluoride, as a system of seven classical particles that obey the Newtonian equations of motion. A minicomputer is used to integrate these differential equations. The particles are acted on by interatomic forces, and by the time-dependent electric field of the laser. We have a very satisfactory expression for the interaction of the laser and the molecule which is compatible with infrared absorption and spectroscopic data. The interatomic potential is capable of improvement, and progress on this problem is still being made. We have made several computer runs of the dynamical behavior of the molecule using a reasonably good model for the interatomic force law. For the laser parameters chosen, we find that typically the molecule passes quickly through the resonance region into the quasi-continuum and even well into the real continuum before dissociation actually occurs. When viewed on a display terminal, the motions are exceedingly complex. As an aid to the visualization of the process, we have made a number of 16 mm movies depicting a three-dimensional representation of the motion of the seven particles. These show even more clearly the enormous complexity of the motions, and make clear the desirability of finding ways of characterizing the motion in simple ways without giving all of the numerical detail. One of the ways to do this is to introduce statistical parameters such as a temperature associated with the distribution of kinetic energies of the single particle. We have made such an analysis of our data runs, and have found favorable indications that such methods will prove useful in keeping track of the dynamical histories.

  19. Energy Intensity Indicators: Commercial Source Energy Consumption

    Broader source: Energy.gov [DOE]

    Figure C1 below reports as index numbers over the period 1970 through 2011: 1) commercial building floor space, 2) energy use based on source energy consumption, 3) energy intensity, and 4) the...

  20. Measuring Arithmetic Intensity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Measuring Arithmetic Intensity Measuring Arithmetic Intensity Arithmetic intensity is a measure of floating-point operations (FLOPs) performed by a given code (or code section) relative to the amount of memory accesses (Bytes) that are required to support those operations. It is most often defined as a FLOP per Byte ratio (F/B). This application note provides a methodology for determining arithmetic intensity using Intel's Software Development Emulator Toolkit (SDE) and VTune Amplifier (VTune)

  1. Observations of a cold front with strong vertical undulations during the ARM RCS-IOP

    SciTech Connect (OSTI)

    Starr, D.O`C.; Whiteman, D.N.; Melfi, S.H.

    1996-04-01

    Passage of a cold front was observed on the night of April 14-15, 1994, during the Atmospheric Radiation Measurement (ARM) Remote Cloud Sensing (RCS) Intensive Observatios Period (IOP) at the Southern Great Plains Cloud and Radiation Testbed (CART) site near Lamont, Oklahoma. The observations are described.

  2. ITP Energy Intensive Processes: Energy-Intensive Processes Portfolio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy-Intensive Processes Portfolio: Addressing Key Energy Challenges Across U.S. Industry ITP Energy Intensive Processes: Energy-Intensive Processes Portfolio: Addressing Key ...

  3. Energy Intensity Baselining and Tracking Guidance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    voluntary energy efficiency leadership initiative for U.S. manufacturers. The program encourages companies to commit to reduce the energy intensity of their U.S. manufacturing operations, usually by 25% over a 10-year period. Companies joining Better Plants are recognized by DOE for their leadership in implementing energy management practices and reducing their energy intensity. Better Plants Partners (Partners) receive access to a Technical Account Manager who can help companies establish

  4. Energy Intensity Baselining and Tracking Guidance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    voluntary energy efficiency leadership initiative for U.S. manufacturers. The program encourages companies to commit to reduce the energy intensity of their U.S. manufacturing operations, usually by 25% over a 10-year period. Companies joining Better Plants are recognized by DOE for their leadership in implementing energy management practices and reducing their energy intensity. Better Plants Partners (Partners) receive access to a Technical Account Manager who can help companies establish

  5. Building-Level Intensities

    U.S. Energy Information Administration (EIA) Indexed Site

    . Electricity Consumption and Expenditure Intensities for Non-Mall Buildings, 2003" ,"Electricity Consumption",,,,,,"Electricity Expenditures" ,"per Building (thousand kWh)","per...

  6. Intensity Frontier Instrumentation

    SciTech Connect (OSTI)

    Kettell S.; Rameika, R.; Tshirhart, B.

    2013-09-24

    The fundamental origin of flavor in the Standard Model (SM) remains a mystery. Despite the roughly eighty years since Rabi asked “Who ordered that?” upon learning of the discovery of the muon, we have not understood the reason that there are three generations or, more recently, why the quark and neutrino mixing matrices and masses are so different. The solution to the flavor problem would give profound insights into physics beyond the Standard Model (BSM) and tell us about the couplings and the mass scale at which the next level of insight can be found. The SM fails to explain all observed phenomena: new interactions and yet unseen particles must exist. They may manifest themselves by causing SM reactions to differ from often very precise predictions. The Intensity Frontier (1) explores these fundamental questions by searching for new physics in extremely rare processes or those forbidden in the SM. This often requires massive and/or extremely finely tuned detectors.

  7. Light intensity compressor

    DOE Patents [OSTI]

    Rushford, Michael C.

    1990-01-01

    In a system for recording images having vastly differing light intensities over the face of the image, a light intensity compressor is provided that utilizes the properties of twisted nematic liquid crystals to compress the image intensity. A photoconductor or photodiode material that is responsive to the wavelength of radiation being recorded is placed adjacent a layer of twisted nematic liquid crystal material. An electric potential applied to a pair of electrodes that are disposed outside of the liquid crystal/photoconductor arrangement to provide an electric field in the vicinity of the liquid crystal material. The electrodes are substantially transparent to the form of radiation being recorded. A pair of crossed polarizers are provided on opposite sides of the liquid crystal. The front polarizer linearly polarizes the light, while the back polarizer cooperates with the front polarizer and the liquid crystal material to compress the intensity of a viewed scene. Light incident upon the intensity compressor activates the photoconductor in proportion to the intensity of the light, thereby varying the field applied to the liquid crystal. The increased field causes the liquid crystal to have less of a twisting effect on the incident linearly polarized light, which will cause an increased percentage of the light to be absorbed by the back polarizer. The intensity of an image may be compressed by forming an image on the light intensity compressor.

  8. Energy Intensity and Carbon Intensity by the Numbers | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Intensity and Carbon Intensity by the Numbers Energy Intensity and Carbon Intensity by the Numbers

  9. Energy Intensity Indicators Data

    Broader source: Energy.gov [DOE]

    The files listed below contain energy intensity data and documentation that supports the information presented on this website. The files are in Microsoft® Excel® format (2007 and later versions).

  10. Period meter for reactors

    DOE Patents [OSTI]

    Rusch, Gordon K.

    1976-01-06

    An improved log N amplifier type nuclear reactor period meter with reduced probability for noise-induced scrams is provided. With the reactor at low power levels a sampling circuit is provided to determine the reactor period by measuring the finite change in the amplitude of the log N amplifier output signal for a predetermined time period, while at high power levels, differentiation of the log N amplifier output signal provides an additional measure of the reactor period.

  11. Scoping Period Closed

    Broader source: Energy.gov [DOE]

    The environmental impact statement (EIS) scoping period has ended. DOE is preparing a Draft EIS that will analyze and compare the potential environmental impacts of various alternative approaches...

  12. NEUTRON FLUX INTENSITY DETECTION

    DOE Patents [OSTI]

    Russell, J.T.

    1964-04-21

    A method of measuring the instantaneous intensity of neutron flux in the core of a nuclear reactor is described. A target gas capable of being transmuted by neutron bombardment to a product having a resonance absorption line nt a particular microwave frequency is passed through the core of the reactor. Frequency-modulated microwave energy is passed through the target gas and the attenuation of the energy due to the formation of the transmuted product is measured. (AEC)

  13. Intense fusion neutron sources

    SciTech Connect (OSTI)

    Kuteev, B. V.; Goncharov, P. R.; Sergeev, V. Yu.; Khripunov, V. I.

    2010-04-15

    The review describes physical principles underlying efficient production of free neutrons, up-to-date possibilities and prospects of creating fission and fusion neutron sources with intensities of 10{sup 15}-10{sup 21} neutrons/s, and schemes of production and application of neutrons in fusion-fission hybrid systems. The physical processes and parameters of high-temperature plasmas are considered at which optimal conditions for producing the largest number of fusion neutrons in systems with magnetic and inertial plasma confinement are achieved. The proposed plasma methods for neutron production are compared with other methods based on fusion reactions in nonplasma media, fission reactions, spallation, and muon catalysis. At present, intense neutron fluxes are mainly used in nanotechnology, biotechnology, material science, and military and fundamental research. In the near future (10-20 years), it will be possible to apply high-power neutron sources in fusion-fission hybrid systems for producing hydrogen, electric power, and technological heat, as well as for manufacturing synthetic nuclear fuel and closing the nuclear fuel cycle. Neutron sources with intensities approaching 10{sup 20} neutrons/s may radically change the structure of power industry and considerably influence the fundamental and applied science and innovation technologies. Along with utilizing the energy produced in fusion reactions, the achievement of such high neutron intensities may stimulate wide application of subcritical fast nuclear reactors controlled by neutron sources. Superpower neutron sources will allow one to solve many problems of neutron diagnostics, monitor nano-and biological objects, and carry out radiation testing and modification of volumetric properties of materials at the industrial level. Such sources will considerably (up to 100 times) improve the accuracy of neutron physics experiments and will provide a better understanding of the structure of matter, including that of the

  14. Genealogy of periodic trajectories

    SciTech Connect (OSTI)

    de Adguiar, M.A.M.; Maldta, C.P.; de Passos, E.J.V.

    1986-05-20

    The periodic solutions of non-integrable classical Hamiltonian systems with two degrees of freedom are numerically investigated. Curves of periodic families are given in plots of energy vs. period. Results are presented for this Hamiltonian: H = 1/2(p/sub x//sup 2/ + p/sub y//sup 2/) + 1/2 x/sup 2/ + 3/2 y/sup 2/ - x/sup 2/y + 1/12 x/sup 4/. Properties of the families of curves are pointed out. (LEW)

  15. ARM - Field Campaign - Water Cycle Pilot Study Intensive Observations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    sets, see below. Abstract The U.S. DOE Water Cycle Pilot Study (WCPS) is a 3-year feasibility investigation focused on accurately evaluating the water cycle components and using...

  16. Scoping Period Open

    Broader source: Energy.gov [DOE]

    DOE has published in the Federal Register a Notice of Intent to prepare an environmental impact statement (EIS), and the scoping period is open for public comment for at least 30 days. DOE requests...

  17. Holding Period Complete

    Broader source: Energy.gov [DOE]

    DOE has published a Final Environmental Impact Statement (EIS), and the 30-day waiting period has ended. DOE is preparing a Record of Decision to announce and explain its chosen project alternative...

  18. Comment Period Closed Explained

    Broader source: Energy.gov [DOE]

    The public comment period on the Draft Environmental Impact Statement (EIS) has ended, and DOE is preparing a Final EIS. The Final EIS will consider and respond to all timely public comments on the...

  19. French intensive truck garden

    SciTech Connect (OSTI)

    Edwards, T D

    1983-01-01

    The French Intensive approach to truck gardening has the potential to provide substantially higher yields and lower per acre costs than do conventional farming techniques. It was the intent of this grant to show that there is the potential to accomplish the gains that the French Intensive method has to offer. It is obvious that locally grown food can greatly reduce transportation energy costs but when there is the consideration of higher efficiencies there will also be energy cost reductions due to lower fertilizer and pesticide useage. As with any farming technique, there is a substantial time interval for complete soil recovery after there have been made substantial soil modifications. There were major crop improvements even though there was such a short time since the soil had been greatly disturbed. It was also the intent of this grant to accomplish two other major objectives: first, the garden was managed under organic techniques which meant that there were no chemical fertilizers or synthetic pesticides to be used. Second, the garden was constructed so that a handicapped person in a wheelchair could manage and have a higher degree of self sufficiency with the garden. As an overall result, I would say that the garden has taken the first step of success and each year should become better.

  20. General Observation Period 2007: Concept and first results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Orographically- induced Precipitation Study (COPS) AMF AMF Volker Wulfmeyer, Andreas Behrendt, and Hans-Stefan Bauer, University of Hohenheim Christoph Kottmeier and Ulrich Corsmeier, FZK Karlsruhe Gerhard Adrian, German Meteorological Service (DWD Alan Blyth, School of Environment, University of Leeds, UK George Craig, Ulrich Schumann, and Martin Hagen, DLR Susanne Crewell, University of Cologne Paolo Di Girolamo, Universita degli Studi della Basilicata, Potenza, Italy Cyrille Flamant,

  1. INTERACTIVE: Energy Intensity and Carbon Intensity by the Numbers |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy INTERACTIVE: Energy Intensity and Carbon Intensity by the Numbers INTERACTIVE: Energy Intensity and Carbon Intensity by the Numbers February 19, 2016 - 11:53am Addthis Daniel Wood Daniel Wood Data Visualization and Cartographic Specialist, Office of Public Affairs Watch our CO2 drop dramatically compared to other countries in this interactive Curious about the total amount of carbon we emit into the atmosphere? Compare countries from around the globe using this tool. If

  2. ON COMPUTING UPPER LIMITS TO SOURCE INTENSITIES

    SciTech Connect (OSTI)

    Kashyap, Vinay L.; Siemiginowska, Aneta [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States); Van Dyk, David A.; Xu Jin [Department of Statistics, University of California, Irvine, CA 92697-1250 (United States); Connors, Alanna [Eureka Scientific, 2452 Delmer Street, Suite 100, Oakland, CA 94602-3017 (United States); Freeman, Peter E. [Department of Statistics, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213 (United States); Zezas, Andreas, E-mail: vkashyap@cfa.harvard.ed, E-mail: asiemiginowska@cfa.harvard.ed, E-mail: dvd@ics.uci.ed, E-mail: jinx@ics.uci.ed, E-mail: aconnors@eurekabayes.co, E-mail: pfreeman@cmu.ed, E-mail: azezas@cfa.harvard.ed [Physics Department, University of Crete, P.O. Box 2208, GR-710 03, Heraklion, Crete (Greece)

    2010-08-10

    A common problem in astrophysics is determining how bright a source could be and still not be detected in an observation. Despite the simplicity with which the problem can be stated, the solution involves complicated statistical issues that require careful analysis. In contrast to the more familiar confidence bound, this concept has never been formally analyzed, leading to a great variety of often ad hoc solutions. Here we formulate and describe the problem in a self-consistent manner. Detection significance is usually defined by the acceptable proportion of false positives (background fluctuations that are claimed as detections, or Type I error), and we invoke the complementary concept of false negatives (real sources that go undetected, or Type II error), based on the statistical power of a test, to compute an upper limit to the detectable source intensity. To determine the minimum intensity that a source must have for it to be detected, we first define a detection threshold and then compute the probabilities of detecting sources of various intensities at the given threshold. The intensity that corresponds to the specified Type II error probability defines that minimum intensity and is identified as the upper limit. Thus, an upper limit is a characteristic of the detection procedure rather than the strength of any particular source. It should not be confused with confidence intervals or other estimates of source intensity. This is particularly important given the large number of catalogs that are being generated from increasingly sensitive surveys. We discuss, with examples, the differences between these upper limits and confidence bounds. Both measures are useful quantities that should be reported in order to extract the most science from catalogs, though they answer different statistical questions: an upper bound describes an inference range on the source intensity, while an upper limit calibrates the detection process. We provide a recipe for computing upper

  3. EVIDENCE OF FILAMENT UPFLOWS ORIGINATING FROM INTENSITY OSCILLATIONS ON THE SOLAR SURFACE

    SciTech Connect (OSTI)

    Cao, Wenda; Goode, Philip R.; Ning, Zongjun; Yurchyshyn, Vasyl; Ji Haisheng

    2010-08-10

    A filament footpoint rooted in an active region (NOAA 11032) was well observed for about 78 minutes with the 1.6 m New Solar Telescope at the Big Bear Solar Observatory on 2009 November 18 in H{alpha} {+-}0.75 A. This data set had high cadence ({approx}15 s) and high spatial resolution ({approx}0.''1) and offered a unique opportunity to study filament dynamics. As in previous findings from space observations, several dark intermittent upflows were identified, and they behave in groups at isolated locations along the filament. However, we have two new findings. First, we find that the dark upflows propagating along the filament channel are strongly associated with the intensity oscillations on the solar surface around the filament footpoints. The upflows start at the same time as the peak in the oscillations, illustrating that the upflow velocities are well correlated with the oscillations. Second, the intensity of one of the seven upflows detected in our data set exhibits a clear periodicity when the upflow propagates along the filament. The periods gradually vary from {approx}10 to {approx}5 minutes. Our results give observational clues on the driving mechanism of the upflows in the filament.

  4. Method of enhancing cyclotron beam intensity

    DOE Patents [OSTI]

    Hudson, Ed D.; Mallory, Merrit L.

    1977-01-01

    When an easily ionized support gas such as xenon is added to the cold cathode in sources of the Oak Ridge Isochronous Cyclotron, large beam enhancements are produced. For example, .sup.20 Ne.sup.7+ is increased from 0.05 enA to 27 enA, and .sup.16 O.sup.5+ intensities in excess of 35 e.mu.A have been extracted for periods up to 30 minutes. Approximately 0.15 cc/min of the easily ionized support gas is supplied to the ion source through a separate gas feed line and the primary gas flow is reduced by about 30%.

  5. Accelerators for Intensity Frontier Research

    SciTech Connect (OSTI)

    Derwent, Paul; /Fermilab

    2012-05-11

    In 2008, the Particle Physics Project Prioritization Panel identified three frontiers for research in high energy physics, the Energy Frontier, the Intensity Frontier, and the Cosmic Frontier. In this paper, I will describe how Fermilab is configuring and upgrading the accelerator complex, prior to the development of Project X, in support of the Intensity Frontier.

  6. Neutral particle beam intensity controller

    DOE Patents [OSTI]

    Dagenhart, W.K.

    1984-05-29

    The neutral beam intensity controller is based on selected magnetic defocusing of the ion beam prior to neutralization. The defocused portion of the beam is dumped onto a beam dump disposed perpendicular to the beam axis. Selective defocusing is accomplished by means of a magnetic field generator disposed about the neutralizer so that the field is transverse to the beam axis. The magnetic field intensity is varied to provide the selected partial beam defocusing of the ions prior to neutralization. The desired focused neutral beam portion passes along the beam path through a defining aperture in the beam dump, thereby controlling the desired fraction of neutral particles transmitted to a utilization device without altering the kinetic energy level of the desired neutral particle fraction. By proper selection of the magnetic field intensity, virtually zero through 100% intensity control of the neutral beam is achieved.

  7. Gamma radiation field intensity meter

    DOE Patents [OSTI]

    Thacker, L.H.

    1994-08-16

    A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode. 4 figs.

  8. Gamma radiation field intensity meter

    DOE Patents [OSTI]

    Thacker, Louis H.

    1995-01-01

    A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode.

  9. Gamma radiation field intensity meter

    DOE Patents [OSTI]

    Thacker, Louis H.

    1994-01-01

    A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode.

  10. Data-Intensive Benchmarking Suite

    Energy Science and Technology Software Center (OSTI)

    2008-11-26

    The Data-Intensive Benchmark Suite is a set of programs written for the study of data-or storage-intensive science and engineering problems, The benchmark sets cover: general graph searching (basic and Hadoop Map/Reduce breadth-first search), genome sequence searching, HTTP request classification (basic and Hadoop Map/Reduce), low-level data communication, and storage device micro-beachmarking

  11. Gamma radiation field intensity meter

    DOE Patents [OSTI]

    Thacker, L.H.

    1995-10-17

    A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode. 4 figs.

  12. Simulation Needs and Priorities of the Fermilab Intensity Frontier

    SciTech Connect (OSTI)

    Elvira, V. D.; Genser, K. L.; Hatcher, R.; Perdue, G.; Wenzel, H. J.; Yarba, J.

    2015-06-11

    Over a two-year period, the Physics and Detector Simulations (PDS) group of the Fermilab Scientific Computing Division (SCD), collected information from Fermilab Intensity Frontier experiments on their simulation needs and concerns. The process and results of these activities are documented here.

  13. GALACTIC COSMIC-RAY ENERGY SPECTRA AND COMPOSITION DURING THE 2009-2010 SOLAR MINIMUM PERIOD

    SciTech Connect (OSTI)

    Lave, K. A.; Binns, W. R.; Israel, M. H.; Wiedenbeck, M. E.; Christian, E. R.; De Nolfo, G. A.; Von Rosenvinge, T. T.; Cummings, A. C.; Davis, A. J.; Leske, R. A.; Mewaldt, R. A.; Stone, E. C.

    2013-06-20

    We report new measurements of the elemental energy spectra and composition of galactic cosmic rays during the 2009-2010 solar minimum period using observations from the Cosmic Ray Isotope Spectrometer (CRIS) onboard the Advanced Composition Explorer. This period of time exhibited record-setting cosmic-ray intensities and very low levels of solar activity. Results are given for particles with nuclear charge 5 {<=} Z {<=} 28 in the energy range {approx}50-550 MeV nucleon{sup -1}. Several recent improvements have been made to the earlier CRIS data analysis, and therefore updates of our previous observations for the 1997-1998 solar minimum and 2001-2003 solar maximum are also given here. For most species, the reported intensities changed by less than {approx}7%, and the relative abundances changed by less than {approx}4%. Compared with the 1997-1998 solar minimum relative abundances, the 2009-2010 abundances differ by less than 2{sigma}, with a trend of fewer secondary species observed in the more recent time period. The new 2009-2010 data are also compared with results of a simple ''leaky-box'' galactic transport model combined with a spherically symmetric solar modulation model. We demonstrate that this model is able to give reasonable fits to the energy spectra and the secondary-to-primary ratios B/C and (Sc+Ti+V)/Fe. These results are also shown to be comparable to a GALPROP numerical model that includes the effects of diffusive reacceleration in the interstellar medium.

  14. Atmospheric Radiation Measurement (ARM) Data from Field Campaigns or Intensive Operational Periods (IOP)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Office of Biological and Environmental Research in DOE's Office of Science is responsible for the ARM Program. The ARM Archive physically resides at the Oak Ridge National Laboratory.

  15. Parc Periodical | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Parc Periodical Parc Periodical PARC Periodical | Volume 7, Issue 2 PARC Periodical | Volume 7, Issue 1 PARC Periodical | Volume 6, Issue 6 PARC Periodical | Volume 6, Issue 5 PARC...

  16. Neutral particle beam intensity controller

    DOE Patents [OSTI]

    Dagenhart, William K. (Oak Ridge, TN)

    1986-01-01

    A neutral beam intensity controller is provided for a neutral beam generator in which a neutral beam is established by accelerating ions from an ion source into a gas neutralizer. An amplitude modulated, rotating magnetic field is applied to the accelerated ion beam in the gas neutralizer to defocus the resultant neutral beam in a controlled manner to achieve intensity control of the neutral beam along the beam axis at constant beam energy. The rotating magnetic field alters the orbits of ions in the gas neutralizer before they are neutralized, thereby controlling the fraction of neutral particles transmitted out of the neutralizer along the central beam axis to a fusion device or the like. The altered path or defocused neutral particles are sprayed onto an actively cooled beam dump disposed perpendicular to the neutral beam axis and having a central open for passage of the focused beam at the central axis of the beamline. Virtually zero therough 100% intensity control is achieved by varying the magnetic field strength without altering the ion source beam intensity or its species yield.

  17. Near-earth injection of MeV electrons associated with intense...

    Office of Scientific and Technical Information (OSTI)

    Van Allen Probes observations Citation Details In-Document Search Title: Near-earth injection of MeV electrons associated with intense dipolarization electric fields: Van Allen ...

  18. Energy Intensity Indicators: Highlights | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Highlights Energy Intensity Indicators: Highlights This page highlights the major changes in the overall energy intensity for the United States, as well as summarizing changes in energy intensity for major sectors. Economywide Energy Intensity Figure H1 below reports total energy use, GDP, and two alternative indexes to reflect overall changes in U.S. energy intensity, the first based on the energy-GDP ratio, and the second built up as part of the DOE-EERE system of energy intensity indicators.

  19. Shortest recurrence periods of novae

    SciTech Connect (OSTI)

    Kato, Mariko [Department of Astronomy, Keio University, Hiyoshi, Yokohama 223-8521 (Japan); Saio, Hideyuki [Astronomical Institute, Graduate School of Science, Tohoku University, Sendai 980-8578 (Japan); Hachisu, Izumi [Department of Earth Science and Astronomy, College of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902 (Japan); Nomoto, Ken'ichi, E-mail: mariko@educ.cc.keio.ac.jp [Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8583 (Japan)

    2014-10-01

    Stimulated by the recent discovery of the 1 yr recurrence period nova M31N 2008-12a, we examined the shortest recurrence periods of hydrogen shell flashes on mass-accreting white dwarfs (WDs). We discuss the mechanism that yields a finite minimum recurrence period for a given WD mass. Calculating the unstable flashes for various WD masses and mass accretion rates, we identified a shortest recurrence period of about two months for a non-rotating 1.38 M {sub ?} WD with a mass accretion rate of 3.6 10{sup 7} M {sub ?} yr{sup 1}. A 1 yr recurrence period is realized for very massive (? 1.3 M {sub ?}) WDs with very high accretion rates (? 1.5 10{sup 7} M {sub ?} yr{sup 1}). We revised our stability limit of hydrogen shell burning, which will be useful for binary evolution calculations toward Type Ia supernovae.

  20. Neutrino Observations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Observations from the Sudbury Neutrino Observatory A.W.P. Poon 1 Institute for Nuclear and Particle Astrophysics, Lawrence Berkeley National Laboratory, Berkeley, CA, USA Abstract. The Sudbury Neutrino Observatory (SNO) is a water imaging Cherenkov detector. Its usage of 1000 metric tons of D 2 O as target allows the SNO detector to make a solar-model independent test of the neutrino oscillation hypothesis by simultaneously measuring the solar ν e flux and the total flux of all active neutrino

  1. Energy Intensity Trends in AEO2010 (released in AEO2010)

    Reports and Publications (EIA)

    2010-01-01

    Energy intensity (energy consumption per dollar of real GDP) indicates how much energy a country uses to produce its goods and services. From the early 1950s to the early 1970s, U.S. total primary energy consumption and real GDP increased at nearly the same annual rate. During that period, real oil prices remained virtually flat. In contrast, from the mid-1970s to 2008, the relationship between energy consumption and real GDP growth changed, with primary energy consumption growing at less than one-third the previous average rate and real GDP growth continuing to grow at its historical rate. The decoupling of real GDP growth from energy consumption growth led to a decline in energy intensity that averaged 2.8% per year from 1973 to 2008. In the Annual Energy Outlook 2010 Reference case, energy intensity continues to decline, at an average annual rate of 1.9% from 2008 to 2035.

  2. High Intensity Polarized Electron Gun

    SciTech Connect (OSTI)

    Redwine, Robert P.

    2012-07-31

    The goal of the project was to investigate the possibility of building a very high intensity polarized electron gun for the Electron-Ion Collider. This development is crucial for the eRHIC project. The gun implements a large area cathode, ring-shaped laser beam and active cathode cooling. A polarized electron gun chamber with a large area cathode and active cathode cooling has been built and tested. A preparation chamber for cathode activation has been built and initial tests have been performed. Major parts for a load-lock chamber, where cathodes are loaded into the vacuum system, have been manufactured.

  3. Intense microwave pulses II. SPIE Volume 2154

    SciTech Connect (OSTI)

    Brandt, H.E.

    1994-12-31

    The primary purpose of this conference was to present and critically evaluate new and ongoing research on the generation and transmission of intense microwave pulses. Significant progress was reported on high-power, high-current relativistic klystron amplifier research and design. Other work presented at the conference, include research on a high-power relativistic magnetron driven by a high-current linear induction accelerator, derivation of a Pierce-type dispersion relation describing the interaction of an intense relativistic electron beam with a corrugated cylindrical slow-wave structure, experiments on an X-band backward-wave cyclotron maser oscillator, and observation of frequency chirping in a free electron laser amplifier. Other presentations included work on multiwave Cerenkov generator experiments, analysis of resonance characteristics of slow-wave structures in high-power Cerenkov devices, linear analysis and numerical simulation of Doppler-shifted cyclotron harmonics in a cyclotron autoresonance klystron, high-power virtual cathode oscillator theory and experiments, design of a sixth-harmonic gyrofrequency multiplier as a millimeter-wave source, and experiments on dielectric-loaded and multiwave slotted gyro-TWT amplifiers. A review was presented on innovative concepts which employ high-power microwaves in propulsion of space vehicles. Separate abstracts were prepared for 34 papers of this conference.

  4. Beam intensity upgrade at Fermilab

    SciTech Connect (OSTI)

    Marchionni, A.; /Fermilab

    2006-07-01

    The performance of the Fermilab proton accelerator complex is reviewed. The coming into operation of the NuMI neutrino line and the implementation of slip-stacking to increase the anti-proton production rate has pushed the total beam intensity in the Main Injector up to {approx} 3 x 10{sup 13} protons/pulse. A maximum beam power of 270 kW has been delivered on the NuMI target during the first year of operation. A plan is in place to increase it to 350 kW, in parallel with the operation of the Collider program. As more machines of the Fermilab complex become available with the termination of the Collider operation, a set of upgrades are being planned to reach first 700 kW and then 1.2 MW by reducing the Main Injector cycle time and by implementing proton stacking.

  5. Changes in energy intensity in the manufacturing sector 1985--1991

    SciTech Connect (OSTI)

    1995-09-15

    In this report, energy intensity is defined as the ratio of energy consumption per unit of output. Output is measured as the constant dollar of value of shipments and receipts, and two measures of energy consumption are presented in British thermal units (Btu): Offsite-Produced Energy and Total Inputs of Energy. A decrease in energy intensity from one period to another suggests an increase in energy efficiency, and vice versa. Energy efficiency can be defined and measured in various ways. Certain concepts of energy efficiency, especially those limited to equipment efficiencies, cannot be measured over time using changes in energy-intensity ratios. While improved energy efficiency will tend to reduce energy intensity, it is also true that a change in energy intensity can be due to factors unrelated to energy efficiency. For this report, energy intensity is used as a surrogate measure for energy efficiency, based on industry knowledge and current methodological analyses.

  6. PARC Periodical | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PARC Periodical PARC Periodical August 30, 2016 PARC Periodical | Volume 7, Issue 6 VIEW ARTICLE HERE Read more about PARC Periodical | Volume 7, Issue 6 June 1, 2016 PARC Periodical | Volume 7, Issue 5 VIEW ARTICLE HERE Read more about PARC Periodical | Volume 7, Issue 5 March 1, 2016 PARC Periodical | Volume 7, Issue 4 VIEW ARTICLE HERE Read more about PARC Periodical | Volume 7, Issue 4 February 16, 2016 PARC Periodical | Volume 7, Issue 3 VIEW ARTICLE HERE Read more about PARC Periodical |

  7. Down hole periodic seismic generator

    DOE Patents [OSTI]

    Hardee, Harry C.; Hills, Richard G.; Striker, Richard P.

    1989-01-01

    A down hole periodic seismic generator system for transmitting variable frequency, predominantly shear-wave vibration into earth strata surrounding a borehole. The system comprises a unitary housing operably connected to a well head by support and electrical cabling and contains clamping apparatus for selectively clamping the housing to the walls of the borehole. The system further comprises a variable speed pneumatic oscillator and a self-contained pneumatic reservoir for producing a frequency-swept seismic output over a discrete frequency range.

  8. Advanced downhole periodic seismic generator

    DOE Patents [OSTI]

    Hardee, Harry C.; Hills, Richard G.; Striker, Richard P.

    1991-07-16

    An advanced downhole periodic seismic generator system for transmitting variable frequency, predominantly shear-wave vibration into earth strata surrounding a borehole. The system comprises a unitary housing operably connected to a well head by support and electrical cabling and contains clamping apparatus for selectively clamping the housing to the walls of the borehole. The system further comprises a variable speed pneumatic oscillator and a self-contained pneumatic reservoir for producing a frequency-swept seismic output over a discrete frequency range.

  9. Neutral particle beam intensity controller

    SciTech Connect (OSTI)

    Dagenhart, W.K.

    1988-01-01

    A method is proposed in which an amplitude-modulated, rotating magnetic field is applied to an accelerated ion beam in a gas neutralizer to defocus the resultant neutral and ion beam in a controlled manner to control the intensity of the neutral beam along the beam axis at constant beam energy. Adjustments in the gas pressure determine the fraction of ions that is neutralized. The rotating magnetic field alters the orbits of the ions in the gas neutralizer before they are neutralized. By adjusting the gas pressure and the amplitude of the rotating magnetic field, one can control the fraction of neutral and ion particles transmitted out of the neutralizer along the central beam axis to a fusion device or other application. This method can also be used for applications where no neutralization gas is used and thus most of the beam remains in the ion state. The defocused neutral or ion particles are sprayed onto an actively cooled beam dump, which intercepts the deflected particles. The beam dump has a central opening for passage of the remaining beam along the central axis of the beam line. 4 refs., 4 figs.

  10. Forward modeling of gyrosynchrotron intensity perturbations by sausage modes

    SciTech Connect (OSTI)

    Reznikova, V. E.; Van Doorsselaere, T.; Antolin, P.

    2014-04-20

    To determine the observable radio signatures of the fast sausage standing wave, we examine gyrosynchrotron (GS) emission modulation using a linear three-dimensional magnetohydrodynamic model of a plasma cylinder. Effects of the line-of-sight angle and instrumental resolution on perturbations of the GS intensity are analyzed for two models: a base model with strong Razin suppression and a low-density model in which the Razin effect was unimportant. Our finding contradicts previous predictions made with simpler models: an in-phase variation of intensity between low (f < f {sub peak}) and high (f > f {sub peak}) frequencies is found for the low-density model and an anti-phase variation for the base model in the case of a viewing angle of 45. The spatially inhomogeneous character of the oscillating emission source and the spatial resolution of the model are found to have a significant effect on the resulting intensity.

  11. Periodic permanent magnet focused klystron

    DOE Patents [OSTI]

    Ferguson, Patrick; Read, Michael; Ives, R Lawrence

    2015-04-21

    A periodic permanent magnet (PPM) klystron has beam transport structures and RF cavity structures, each of which has permanent magnets placed substantially equidistant from a beam tunnel formed about the central axis, and which are also outside the extent of a cooling chamber. The RF cavity sections also have permanent magnets which are placed substantially equidistant from the beam tunnel, but which include an RF cavity coupling to the beam tunnel for enhancement of RF carried by an electron beam in the beam tunnel.

  12. Energy Intensity Indicators | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Data & Tools » Energy Intensity Indicators Energy Intensity Indicators Energy efficiency is a vital part of the nation's energy strategy and has been since the first oil crisis in 1973. As part of a national priority for improving energy efficiency, the Department of Energy's (DOE) Office of Energy Efficiency and Renewable Energy (EERE) has established a national system of indicators to track changes in the energy intensity of our economy and economic sectors over time. This system of

  13. Energy Intensity Baselining and Tracking Guidance

    Broader source: Energy.gov (indexed) [DOE]

    voluntary energy efficiency leadership initiative for U.S. manufacturers. The program encourages companies to commit to reduce the energy intensity of their U.S. manufacturing ...

  14. Groundwater Periodic Monitoring Reports | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Groundwater Periodic Monitoring Reports Groundwater Periodic Monitoring Reports Topic: David Rhodes DOE, Provided Information on the Watersheds at LANL and the Monitoring Schedule ...

  15. X-ray diffraction study of short-period AlN/GaN superlattices

    SciTech Connect (OSTI)

    Kyutt, R. N. Shcheglov, M. P.; Ratnikov, V. V.; Yagovkina, M. A.; Davydov, V. Yu.; Smirnov, A. N.; Rozhavskaya, M. M.; Zavarin, E. E.; Lundin, V. V.

    2013-12-15

    The structure of short-period hexagonal GaN/AlN superlattices (SLs) has been investigated by X-ray diffraction. The samples have been grown by metalorganic vapor-phase epitaxy (MOVPE) in a horizontal reactor at a temperature of 1050°C on (0001)Al{sub 2}O{sub 3} substrates using GaN and AlN buffer layers. The SL period changes from 2 to 6 nm, and the thickness of the structure varies in a range from 0.3 to 1 μm. The complex of X-ray diffraction techniques includes a measurement of θ-2θ rocking curves of symmetric Bragg reflection, the construction of intensity maps for asymmetric reflections, a measurement and analysis of peak broadenings in different diffraction geometries, a precise measurement of lattice parameters, and the determination of radii of curvature. The thickness and strain of separate SL layers are determined by measuring the θ-2θ rocking curves subsequent simulation. It is shown that most SL samples are completely relaxed as a whole. At the same time, relaxation is absent between sublayers, which is why strains in the AlN and GaN sublayers (on the order of 1.2 × 10{sup −2}) have different signs. An analysis of diffraction peak half-widths allows us to determine the densities of individual sets of dislocations and observe their change from buffer layers to SLs.

  16. Best Management Practice #13: Other Water-Intensive Processes...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    13: Other Water-Intensive Processes Best Management Practice 13: Other Water-Intensive Processes Many water-intensive processes beyond the Federal Energy Management Program's best ...

  17. Property:Maximum Wave Height(m) at Wave Period(s) | Open Energy...

    Open Energy Info (EERE)

    at Wave Period(s) Jump to: navigation, search Property Name Maximum Wave Height(m) at Wave Period(s) Property Type String Pages using the property "Maximum Wave Height(m) at Wave...

  18. USING RUNNING DIFFERENCE IMAGES TO TRACK PROPER MOTIONS OF XUV CORONAL INTENSITY ON THE SUN

    SciTech Connect (OSTI)

    Sheeley, N. R. Jr.; Warren, H. P.; Lee, J. E-mail: harry.warren@nrl.navy.mil; Chung, S.; Katz, J.; Namkung, M

    2014-12-20

    We have developed a procedure for observing and tracking proper motions of faint XUV coronal intensity on the Sun and have applied this procedure to study the collective motions of cellular plumes and the shorter-period waves in sunspots. Our space/time maps of cellular plumes show a series of tracks with the same 5-8minute repetition times and ?100kms{sup 1} sky-plane speeds found previously in active-region fans and in coronal hole plumes. By synchronizing movies and space/time maps, we find that the tracks are produced by elongated ejections from the unipolar flux concentrations at the bases of the cellular plumes and that the phases of these ejections are uncorrelated from cell to cell. Thus, the large-scale motion is not a continuous flow, but is more like a system of independent conveyor belts all moving in the same direction along the magnetic field. In contrast, the proper motions in sunspots are clearly waves resulting from periodic disturbances in the sunspot umbras. The periods are ?2.6minutes, but the sky-plane speeds and wavelengths depend on the heights of the waves above the sunspot. In the chromosphere, the waves decelerate from 35-45kms{sup 1} in the umbra to 7-8kms{sup 1} toward the outer edge of the penumbra, but in the corona, the waves accelerate to ?60-100kms{sup 1}. Because chromospheric and coronal tracks originate from the same space/time locations, the coronal waves must emerge from the same umbral flashes that produce the chromospheric waves.

  19. Explosive photodissociation of methane induced by ultrafast intense laser

    SciTech Connect (OSTI)

    Kong Fanao; Luo Qi; Xu Huailiang; Sharifi, Mehdi; Song Di; Chin, See Leang

    2006-10-07

    A new type of molecular fragmentation induced by femtosecond intense laser at the intensity of 2x10{sup 14} W/cm{sup 2} is reported. For the parent molecule of methane, ethylene, n-butane, and 1-butene, fluorescence from H (n=3{yields}2), CH (A {sup 2}{delta}, B {sup 2}{sigma}{sup -}, and C {sup 2}{sigma}{sup +}{yields}X {sup 2}{pi}), or C{sub 2} (d {sup 3}{pi}{sub g}{yields}a {sup 3}{pi}{sub u}) is observed in the spectrum. It shows that the fragmentation is a universal property of neutral molecule in the intense laser field. Unlike breaking only one or two chemical bonds in conventional UV photodissociation, the fragmentation caused by the intense laser undergoes vigorous changes, breaking most of the bonds in the molecule, like an explosion. The fragments are neutral species and cannot be produced through Coulomb explosion of multiply charged ion. The laser power dependence of CH (A{yields}X) emission of methane on a log-log scale has a slope of 10{+-}1. The fragmentation is thus explained as multiple channel dissociation of the superexcited state of parent molecule, which is created by multiphoton excitation.

  20. Collaborative Research: ARM observations for the development...

    Office of Scientific and Technical Information (OSTI)

    The principal focus of the observational component of this collaborative study during this funding period was on stratocumulus clouds over the SGP site and fair-weather cumuli over ...

  1. Techniques for optically compressing light intensity ranges

    DOE Patents [OSTI]

    Rushford, M.C.

    1989-03-28

    A pin hole camera assembly for use in viewing an object having a relatively large light intensity range, for example a crucible containing molten uranium in an atomic vapor laser isotope separator (AVLIS) system is disclosed herein. The assembly includes means for optically compressing the light intensity range appearing at its input sufficient to make it receivable and decipherable by a standard video camera. A number of different means for compressing the intensity range are disclosed. These include the use of photogray glass, the use of a pair of interference filters, and the utilization of a new liquid crystal notch filter in combination with an interference filter. 18 figs.

  2. Techniques for optically compressing light intensity ranges

    DOE Patents [OSTI]

    Rushford, Michael C.

    1989-01-01

    A pin hole camera assembly for use in viewing an object having a relatively large light intensity range, for example a crucible containing molten uranium in an atomic vapor laser isotope separator (AVLIS) system is disclosed herein. The assembly includes means for optically compressing the light intensity range appearing at its input sufficient to make it receivable and decipherable by a standard video camera. A number of different means for compressing the intensity range are disclosed. These include the use of photogray glass, the use of a pair of interference filters, and the utilization of a new liquid crystal notch filter in combination with an interference filter.

  3. Applications in Data-Intensive Computing

    SciTech Connect (OSTI)

    Shah, Anuj R.; Adkins, Joshua N.; Baxter, Douglas J.; Cannon, William R.; Chavarría-Miranda, Daniel; Choudhury, Sutanay; Gorton, Ian; Gracio, Deborah K.; Halter, Todd D.; Jaitly, Navdeep; Johnson, John R.; Kouzes, Richard T.; Macduff, Matt C.; Marquez, Andres; Monroe, Matthew E.; Oehmen, Christopher S.; Pike, William A.; Scherrer, Chad; Villa, Oreste; Webb-Robertson, Bobbie-Jo M.; Whitney, Paul D.; Zuljevic, Nino

    2010-04-01

    This book chapter, to be published in Advances in Computers, Volume 78, in 2010 describes applications of data intensive computing (DIC). This is an invited chapter resulting from a previous publication on DIC. This work summarizes efforts coming out of the PNNL's Data Intensive Computing Initiative. Advances in technology have empowered individuals with the ability to generate digital content with mouse clicks and voice commands. Digital pictures, emails, text messages, home videos, audio, and webpages are common examples of digital content that are generated on a regular basis. Data intensive computing facilitates human understanding of complex problems. Data-intensive applications provide timely and meaningful analytical results in response to exponentially growing data complexity and associated analysis requirements through the development of new classes of software, algorithms, and hardware.

  4. Energy Intensity Indicators: Caveats and Cautions

    Office of Energy Efficiency and Renewable Energy (EERE)

    This website contains a diverse collection of indicators that track changes in energy intensity at the national and end-use sector levels (after taking into account other explanatory factors)....

  5. Description of Energy Intensity Tables (12)

    U.S. Energy Information Administration (EIA) Indexed Site

    3. Description of Energy Intensity Data Tables There are 12 data tables used as references for this report. Specifically, these tables are categorized as tables 1 and 2 present...

  6. Energy Intensity Indicators: Methodology | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Methodology Energy Intensity Indicators: Methodology The files listed below contain methodology documentation and related studies that support the information presented on this website. The files are available to view and/or download as Adobe Acrobat PDF files. 2003. Energy Indicators System: Index Construction Methodology 2004. Changing the Base Year for the Index Boyd GA, and JM Roop. 2004. "A Note on the Fisher Ideal Index Decomposition for Structural Change in Energy Intensity."

  7. MODELING SUPER-FAST MAGNETOSONIC WAVES OBSERVED BY SDO IN ACTIVE REGION FUNNELS

    SciTech Connect (OSTI)

    Ofman, L.; Liu, W.; Title, A.; Aschwanden, M.

    2011-10-20

    Recently, quasi-periodic, rapidly propagating waves have been observed in extreme ultraviolet by the Solar Dynamics Observatory/Atmospheric Imaging Assembly (AIA) instrument in about 10 flare/coronal mass ejection (CME) events thus far. A typical example is the 2010 August 1 C3.2 flare/CME event that exhibited arc-shaped wave trains propagating in an active region (AR) magnetic funnel with {approx}5% intensity variations at speeds in the range of 1000-2000 km s{sup -1}. The fast temporal cadence and high sensitivity of AIA enabled the detection of these waves. We identify them as fast magnetosonic waves driven quasi-periodically at the base of the flaring region and develop a three-dimensional MHD model of the event. For the initial state we utilize the dipole magnetic field to model the AR and include gravitationally stratified density at coronal temperature. At the coronal base of the AR, we excite the fast magnetosonic wave by periodic velocity pulsations in the photospheric plane confined to a funnel of magnetic field lines. The excited fast magnetosonic waves have similar amplitude, wavelength, and propagation speeds as the observed wave trains. Based on the simulation results, we discuss the possible excitation mechanism of the waves, their dynamical properties, and the use of the observations for coronal MHD seismology.

  8. Data assimilation of a ten-day period during June 1993 over the Southern Great Plains Site using a nested mesoscale model

    SciTech Connect (OSTI)

    Dudhia, J.; Guo, Y.R.

    1996-04-01

    A goal of the Atmospheric Radiation Measurement (ARM) Program has been to obtain a complete representation of physical processes on the scale of a general circulation model (GCM) grid box in order to better parameterize radiative processes in these models. Since an observational network of practical size cannot be used alone to characterize the Cloud and Radiation Testbed (CART) site`s 3D structure and time development, data assimilation using the enhanced observations together with a mesoscale model is used to give a full 4D analysis at high resolution. The National Center for Atmospheric Research (NCAR)/Penn State Mesoscale Model (MM5) has been applied over a ten-day continuous period in a triple-nested mode with grid sizes of 60, 20 and 6.67 in. The outer domain covers the United States` 48 contiguous states; the innermost is a 480-km square centered on Lamont, Oklahoma. A simulation has been run with data assimilation using the Mesoscale Analysis and Prediction System (MAPS) 60-km analyses from the Forecast Systems Laboratory (FSL) of the National Ocean and Atmospheric Administration (NOAA). The nested domains take boundary conditions from and feed back continually to their parent meshes (i.e., they are two-way interactive). As reported last year, this provided a simulation of the basic features of mesoscale events over the CART site during the period 16-26 June 1993 when an Intensive Observation Period (IOP) was under way.

  9. SES Probationary Period | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Probationary Period SES Probationary Period An individual's initial appointment as an SES career appointee becomes final only after the individual has served a 1-year probationary period as a career appointee. That employee's rating official must perform an assessment of the new SES's performance during the probationary period. After the one year the selecting official must certify that the appointee performed at the level of excellence expected of a senior executive during the probationary

  10. What is Data-Intensive Science?

    SciTech Connect (OSTI)

    Critchlow, Terence J.; Kleese van Dam, Kerstin

    2013-06-03

    What is Data Intensive Science? Today we are living in a digital world, where scientists often no longer interact directly with the physical object of their research, but do so via digitally captured, reduced, calibrated, analyzed, synthesized and, at times, visualized data. Advances in experimental and computational technologies have lead to an exponential growth in the volumes, variety and complexity of this data and while the deluge is not happening everywhere in an absolute sense, it is in a relative one. Science today is data intensive. Data intensive science has the potential to transform not only how we do science, but how quickly we can translate scientific progress into complete solutions, policies, decisions and ultimately economic success. Critically, data intensive science touches some of the most important challenges we are facing. Consider a few of the grand challenges outlined by the U.S. National Academy of Engineering: make solar energy economical, provide energy from fusion, develop carbon sequestration methods, advance health informatics, engineer better medicines, secure cyberspace, and engineer the tools of scientific discovery. Arguably, meeting any of these challenges requires the collaborative effort of trans-disciplinary teams, but also significant contributions from enabling data intensive technologies. Indeed for many of them, advances in data intensive research will be the single most important factor in developing successful and timely solutions. Simple extrapolations of how we currently interact with and utilize data and knowledge are not sufficient to meet this need. Given the importance of these challenges, a new, bold vision for the role of data in science, and indeed how research will be conducted in a data intensive environment is evolving.

  11. A highly specific test for periodicity

    SciTech Connect (OSTI)

    Ansmann, Gerrit

    2015-11-15

    We present a method that allows to distinguish between nearly periodic and strictly periodic time series. To this purpose, we employ a conservative criterion for periodicity, namely, that the time series can be interpolated by a periodic function whose local extrema are also present in the time series. Our method is intended for the analysis of time series generated by deterministic time-continuous dynamical systems, where it can help telling periodic dynamics from chaotic or transient ones. We empirically investigate our method's performance and compare it to an approach based on marker events (or Poincaré sections). We demonstrate that our method is capable of detecting small deviations from periodicity and outperforms the marker-event-based approach in typical situations. Our method requires no adjustment of parameters to the individual time series, yields the period length with a precision that exceeds the sampling rate, and its runtime grows asymptotically linear with the length of the time series.

  12. Aerosol measurements at 60 m during April 1994 remote cloud study intensive operating period (RCS/IOP)

    SciTech Connect (OSTI)

    Leifer, R.; Albert, B.; Lee, N.; Knuth, R.H.

    1996-04-01

    Aerosol measurements were made at the Southern Great Plains Site of the Atmospheric Radiation Measurement (ARM) program. Many types of air masses pass over this area, and on the data acquisition day, extremly low aerosol scattering coefficients were seen. A major effort was placed on providing some characterization of the aerosol size distribution. Data is currently available from the experimental center.

  13. Seismic isolation of two dimensional periodic foundations

    SciTech Connect (OSTI)

    Yan, Y.; Mo, Y. L.; Laskar, A.; Cheng, Z.; Shi, Z.; Menq, F.; Tang, Y.

    2014-07-28

    Phononic crystal is now used to control acoustic waves. When the crystal goes to a larger scale, it is called periodic structure. The band gaps of the periodic structure can be reduced to range from 0.5?Hz to 50?Hz. Therefore, the periodic structure has potential applications in seismic wave reflection. In civil engineering, the periodic structure can be served as the foundation of upper structure. This type of foundation consisting of periodic structure is called periodic foundation. When the frequency of seismic waves falls into the band gaps of the periodic foundation, the seismic wave can be blocked. Field experiments of a scaled two dimensional (2D) periodic foundation with an upper structure were conducted to verify the band gap effects. Test results showed the 2D periodic foundation can effectively reduce the response of the upper structure for excitations with frequencies within the frequency band gaps. When the experimental and the finite element analysis results are compared, they agree well with each other, indicating that 2D periodic foundation is a feasible way of reducing seismic vibrations.

  14. Short rise time intense electron beam generator

    DOE Patents [OSTI]

    Olson, Craig L.

    1987-01-01

    A generator for producing an intense relativistic electron beam having a subnanosecond current rise time includes a conventional generator of intense relativistic electrons feeding into a short electrically conductive drift tube including a cavity containing a working gas at a low enough pressure to prevent the input beam from significantly ionizing the working gas. Ionizing means such as a laser simultaneously ionize the entire volume of working gas in the cavity to generate an output beam having a rise time less than one nanosecond.

  15. Short rise time intense electron beam generator

    DOE Patents [OSTI]

    Olson, C.L.

    1984-03-16

    A generator for producing an intense relativisitc electron beam having a subnanosecond current rise time includes a conventional generator of intense relativistic electrons feeding into a short electrically conductive drift tube including a cavity containing a working gas at a low enough pressure to prevent the input beam from significantly ionizing the working gas. Ionizing means such as a laser simultaneously ionize the entire volume of working gas in the cavity to generate an output beam having a rise time less than one nanosecond.

  16. Energy Intensity Indicators: Coverage | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Coverage Energy Intensity Indicators: Coverage This system of energy intensity indicators for total energy covers the economy as a whole and each of the major end-use sectors-transportation, industry, commercial, and residential, as well as the electric power sector. These sectors are shown in Figure 1. More detail for some of these sectors can be obtained by accessing the file "End-Use Sector Flowchart" below Figure 1. Five boxes are shown connected by lines. At the top of a vertical

  17. Fermilab computing at the Intensity Frontier

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Group, Craig; Fuess, S.; Gutsche, O.; Kirby, M.; Kutschke, R.; Lyon, A.; Norman, A.; Perdue, G.; Sexton-Kennedy, E.

    2015-12-23

    The Intensity Frontier refers to a diverse set of particle physics experiments using high- intensity beams. In this paper I will focus the discussion on the computing requirements and solutions of a set of neutrino and muon experiments in progress or planned to take place at the Fermi National Accelerator Laboratory located near Chicago, Illinois. In addition, the experiments face unique challenges, but also have overlapping computational needs. In principle, by exploiting the commonality and utilizing centralized computing tools and resources, requirements can be satisfied efficiently and scientists of individual experiments can focus more on the science and less onmore » the development of tools and infrastructure.« less

  18. Fermilab computing at the Intensity Frontier

    SciTech Connect (OSTI)

    Group, Craig; Fuess, S.; Gutsche, O.; Kirby, M.; Kutschke, R.; Lyon, A.; Norman, A.; Perdue, G.; Sexton-Kennedy, E.

    2015-12-23

    The Intensity Frontier refers to a diverse set of particle physics experiments using high- intensity beams. In this paper I will focus the discussion on the computing requirements and solutions of a set of neutrino and muon experiments in progress or planned to take place at the Fermi National Accelerator Laboratory located near Chicago, Illinois. In addition, the experiments face unique challenges, but also have overlapping computational needs. In principle, by exploiting the commonality and utilizing centralized computing tools and resources, requirements can be satisfied efficiently and scientists of individual experiments can focus more on the science and less on the development of tools and infrastructure.

  19. PARC Periodical | Vol. 6, Issue 4 | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PARC Periodical | Vol. 6, Issue 4 April 6, 2015 PARC Periodical | Vol. 6, Issue 4 VIEW PERIODICAL HERE

  20. Do triatomic molecules echo atomic periodicity?

    SciTech Connect (OSTI)

    Hefferlin, R. Barrow, J.

    2015-03-30

    Demonstrations of periodicity among triatomic-molecular spectroscopic constants underscore the role of the periodic law as a foundation of chemistry. The objective of this work is to prepare for another test using vibration frequencies ?{sub 1} of free, ground-state, main-group triatomic molecules. Using data from four data bases and from computation, we have collected ?{sub 1} data for molecules formed from second period atoms.

  1. Energy Intensity Indicators: Transportation Energy Consumption

    Broader source: Energy.gov [DOE]

    This section contains an overview of the aggregate transportation sector, combining both passenger and freight segments of this sector. The specific energy intensity indicators for passenger and freight can be obtained from the links, passenger transportation, or freight transportation. For further detail within the transportation sector, download the appropriate Trend Data worksheet containing detailed data and graphics for specific transportation modes.

  2. Performances of BNL high-intensity synchrotrons

    SciTech Connect (OSTI)

    Weng, W.T.

    1998-03-01

    The AGS proton synchrotron was completed in 1960 with initial intensity in the 10 to the 10th power proton per pulse (ppp) range. Over the years, through many upgrades and improvements, the AGS now reached an intensity record of 6.3 {times} 10{sup 13} ppp, the highest world intensity record for a proton synchrotron on a single pulse basis. At the same time, the Booster reached 2.2 {times} 10{sup 13} ppp surpassing the design goal of 1.5 {times} 10{sup 13} ppp due to the introduction of second harmonic cavity during injection. The intensity limitation caused by space charge tune spread and its relationship to injection energy at 50 MeV, 200 MeV, and 1,500 MeV will be presented as well as many critical accelerator manipulations. BNL currently participates in the design of an accumulator ring for the SNS project at Oak Ridge. The status on the issues of halo formation, beam losses and collimation are also presented.

  3. LARGE-SCALE PERIODIC VARIABILITY OF THE WIND OF THE WOLF-RAYET STAR WR 1 (HD 4004)

    SciTech Connect (OSTI)

    Chene, A.-N.

    2010-06-20

    We present the results of an intensive photometric and spectroscopic monitoring campaign of the WN4 Wolf-Rayet (WR) star WR 1 = HD 4004. Our broadband V photometry covering a timespan of 91 days shows variability with a period of P = 16.9{sup +0.6}{sub -0.3} days. The same period is also found in our spectral data. The light curve is non-sinusoidal with hints of a gradual change in its shape as a function of time. The photometric variations nevertheless remain coherent over several cycles and we estimate that the coherence timescale of the light curve is of the order of 60 days. The spectroscopy shows large-scale line-profile variability which can be interpreted as excess emission peaks moving from one side of the profile to the other on a timescale of several days. Although we cannot unequivocally exclude the unlikely possibility that WR 1 is a binary, we propose that the nature of the variability we have found strongly suggests that it is due to the presence in the wind of the WR star of large-scale structures, most likely corotating interaction regions (CIRs), which are predicted to arise in inherently unstable radiatively driven winds when they are perturbed at their base. We also suggest that variability observed in WR 6, WR 134, and WR 137 is of the same nature. Finally, assuming that the period of CIRs is related to the rotational period, we estimate the rotation rate of the four stars for which sufficient monitoring has been carried out, i.e., v{sub rot} = 6.5, 40, 70, and 275 km s{sup -1} for WR 1, WR 6, WR 134, and WR 137, respectively.

  4. 2014 call for NERSC's Data Intensive Computing Pilot Program...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NERSC's Data Intensive Computing Pilot Program 2014 call for NERSC's Data Intensive Computing Pilot Program Due December 10 November 18, 2013 by Francesca Verdier (0 Comments)...

  5. Energy-Intensive Processes Portfolio: Addressing Key Energy Challenges...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy-Intensive Processes Portfolio: Addressing Key Energy Challenges Across U.S. Industry Energy-Intensive Processes Portfolio: Addressing Key Energy Challenges Across U.S. ...

  6. High intensity beam operation of the Brookhaven AGS (Journal...

    Office of Scientific and Technical Information (OSTI)

    operated at record proton intensities. This high beam intensity allowed for the simultaneous operation of several high precision rare kaon decay experiments. The record beam ...

  7. Note: On the wavelength dependence of the intensity calibration...

    Office of Scientific and Technical Information (OSTI)

    Note: On the wavelength dependence of the intensity calibration factor of extreme ... Title: Note: On the wavelength dependence of the intensity calibration factor of extreme ...

  8. EIA Energy Efficiency-Residential Sector Energy Intensities,...

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Sector Energy Intensities RESIDENTIAL SECTOR ENERGY INTENSITIES: 1978-2005 Released Date: August 2004 Page Last Modified:June 2009 These tables provide estimates of...

  9. Energetic electron precipitation associated with pulsating aurora: EISCAT and Van Allen Probe observations

    SciTech Connect (OSTI)

    Miyoshi, Y.; Oyama, S.; Saito, S.; Kurita, S.; Fujiwara, H.; Kataoka, R.; Ebihara, Y.; Kletzing, C.; Reeves, G.; Santolik, O.; Clilverd, M.; Rodger, C. J.; Turunen, E.; Tsuchiya, F.

    2015-04-21

    Pulsating auroras show quasi-periodic intensity modulations caused by the precipitation of energetic electrons of the order of tens of keV. It is expected theoretically that not only these electrons but also subrelativistic/relativistic electrons precipitate simultaneously into the ionosphere owing to whistler mode wave-particle interactions. The height-resolved electron density profile was observed with the European Incoherent Scatter (EISCAT) Tromsø VHF radar on 17 November 2012. Electron density enhancements were clearly identified at altitudes >68 km in association with the pulsating aurora, suggesting precipitation of electrons with a broadband energy range from ~10 keV up to at least 200 keV. The riometer and network of subionospheric radio wave observations also showed the energetic electron precipitations during this period. During this period, the footprint of the Van Allen Probe-A satellite was very close to Tromsø and the satellite observed rising tone emissions of the lower band chorus (LBC) waves near the equatorial plane. Considering the observed LBC waves and electrons, we conducted a computer simulation of the wave-particle interactions. This showed simultaneous precipitation of electrons at both tens of keV and a few hundred keV, which is consistent with the energy spectrum estimated by the inversion method using the EISCAT observations. This result revealed that electrons with a wide energy range simultaneously precipitate into the ionosphere in association with the pulsating aurora, providing the evidence that pulsating auroras are caused by whistler chorus waves. We suggest that scattering by propagating whistler simultaneously causes both the precipitations of subrelativistic electrons and the pulsating aurora.

  10. Energetic electron precipitation associated with pulsating aurora: EISCAT and Van Allen Probe observations

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Miyoshi, Y.; Oyama, S.; Saito, S.; Kurita, S.; Fujiwara, H.; Kataoka, R.; Ebihara, Y.; Kletzing, C.; Reeves, G.; Santolik, O.; et al

    2015-04-21

    Pulsating auroras show quasi-periodic intensity modulations caused by the precipitation of energetic electrons of the order of tens of keV. It is expected theoretically that not only these electrons but also subrelativistic/relativistic electrons precipitate simultaneously into the ionosphere owing to whistler mode wave-particle interactions. The height-resolved electron density profile was observed with the European Incoherent Scatter (EISCAT) Tromsø VHF radar on 17 November 2012. Electron density enhancements were clearly identified at altitudes >68 km in association with the pulsating aurora, suggesting precipitation of electrons with a broadband energy range from ~10 keV up to at least 200 keV. The riometermore » and network of subionospheric radio wave observations also showed the energetic electron precipitations during this period. During this period, the footprint of the Van Allen Probe-A satellite was very close to Tromsø and the satellite observed rising tone emissions of the lower band chorus (LBC) waves near the equatorial plane. Considering the observed LBC waves and electrons, we conducted a computer simulation of the wave-particle interactions. This showed simultaneous precipitation of electrons at both tens of keV and a few hundred keV, which is consistent with the energy spectrum estimated by the inversion method using the EISCAT observations. This result revealed that electrons with a wide energy range simultaneously precipitate into the ionosphere in association with the pulsating aurora, providing the evidence that pulsating auroras are caused by whistler chorus waves. We suggest that scattering by propagating whistler simultaneously causes both the precipitations of subrelativistic electrons and the pulsating aurora.« less

  11. Energy Intensity Indicators: Residential Source Energy Consumption

    Broader source: Energy.gov [DOE]

    Figure R1 below reports as index numbers over the period 1970 through 2011: 1) the number of U.S. households, 2) the average size of those housing units, 3) residential source energy consumption, 4...

  12. LONG-TERM PERIODICITY VARIATIONS OF THE SOLAR RADIUS

    SciTech Connect (OSTI)

    Qu, Z. N.; Xie, J. L.

    2013-01-01

    In order to study the long-term periodicity variations of the solar radius, daily solar radius data from 1978 February to 2000 September at the Calern Observatory are used. Continuous observations of the solar radius are difficult due to the weather, seasonal effects, and instrument characteristics. Thus, to analyze these data, we first use the Dixon criterion to reject suspect values, then we measure the cross-correlation between the solar radius and sunspot numbers. The result indicates that the solar radius is in complete antiphase with the sunspot numbers and shows lead times of 74 months relative to the sunspot numbers. The Lomb-Scargle and date compensated discrete Fourier transform methods are also used to investigate the periodicity of the solar radius. Both methods yield similar significance periodicities around {approx}1 yr, {approx}2.6 yr, {approx}3.6 yr, and {approx}11 yr. Possible mechanisms for these periods are discussed. The possible physical cause of the {approx}11 yr period is the cyclic variation of the magnetic pressure of the concentrated flux tubes at the bottom of the solar convection zone.

  13. Assessing Internet energy intensity: A review of methods and results

    SciTech Connect (OSTI)

    Coroama, Vlad C.; Hilty, Lorenz M.; Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstr. 5, 9014 St. Gallen; Centre for Sustainable Communications, KTH Royal Institute of Technology, Lindstedtsvgen 5, 100 44 Stockholm

    2014-02-15

    Assessing the average energy intensity of Internet transmissions is a complex task that has been a controversial subject of discussion. Estimates published over the last decade diverge by up to four orders of magnitude from 0.0064 kilowatt-hours per gigabyte (kWh/GB) to 136 kWh/GB. This article presents a review of the methodological approaches used so far in such assessments: i) topdown analyses based on estimates of the overall Internet energy consumption and the overall Internet traffic, whereby average energy intensity is calculated by dividing energy by traffic for a given period of time, ii) model-based approaches that model all components needed to sustain an amount of Internet traffic, and iii) bottomup approaches based on case studies and generalization of the results. Our analysis of the existing studies shows that the large spread of results is mainly caused by two factors: a) the year of reference of the analysis, which has significant influence due to efficiency gains in electronic equipment, and b) whether end devices such as personal computers or servers are included within the system boundary or not. For an overall assessment of the energy needed to perform a specific task involving the Internet, it is necessary to account for the types of end devices needed for the task, while the energy needed for data transmission can be added based on a generic estimate of Internet energy intensity for a given year. Separating the Internet as a data transmission system from the end devices leads to more accurate models and to results that are more informative for decision makers, because end devices and the networking equipment of the Internet usually belong to different spheres of control. -- Highlights: Assessments of the energy intensity of the Internet differ by a factor of 20,000. We review topdown, model-based, and bottomup estimates from literature. Main divergence factors are the year studied and the inclusion of end devices. We argue

  14. PARC Periodical | Vol. 6, Issue 2 | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vol. 6, Issue 2 December 1, 2014 PARC Periodical | Vol. 6, Issue 2 View Periodical Here

  15. PARC Periodical | Vol. 6, Issue 3 | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vol. 6, Issue 3 February 9, 2015 PARC Periodical | Vol. 6, Issue 3 View Periodical Here

  16. The High Intensity Horizon at Fermilab

    SciTech Connect (OSTI)

    Tschirhart, R.S.; /Fermilab

    2012-05-01

    Fermilab's high intensity horizon is 'Project-X' which is a US led initiative with strong international participation that aims to realize a next generation proton source that will dramatically extend the reach of Intensity Frontier research. The Project-X research program includes world leading sensitivity in long-baseline and short-baseline neutrino experiments, a rich program of ultra-rare muon and kaon decays, opportunities for next-generation electric dipole moment experiments and other nuclear/particle physics probes, and a platform to investigate technologies for next generation energy applications. A wide range of R&D activities has supported mission critical accelerator subsystems, such as high-gradient superconducting RF accelerating structures, efficient RF power systems, cryo-modules and cryogenic refrigeration plants, advanced beam diagnostics and instrumentation, high-power targetry, as well as the related infrastructure and civil construction preparing for a construction start of a staged program as early as 2017.

  17. Correlated-Intensity velocimeter for Arbitrary Reflector

    DOE Patents [OSTI]

    Wang, Zhehui; Luo, Shengnian; Barnes, Cris W.; Paul, Stephen F.

    2008-11-11

    A velocimetry apparatus and method comprising splitting incoming reflected laser light and directing the laser light into first and second arms, filtering the laser light with passband filters in the first and second arms, one having a positive passband slope and the other having a negative passband slope, and detecting the filtered laser light via light intensity detectors following the passband filters in the first and second arms

  18. PERI Auto-tuning Memory Intensive Kernels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PERI - Auto-tuning Memory Intensive Kernels for Multicore Samuel Williams † , Kaushik Datta † , Jonathan Carter , Leonid Oliker † , John Shalf , Katherine Yelick † , David Bailey CRD/NERSC, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA † Computer Science Division, University of California at Berkeley, Berkeley, CA 94720, USA E-mail: SWWilliams@lbl.gov, kdatta@eecs.berkeley.edu, JTCarter@lbl.gov, LOliker@lbl.gov, JShalf@lbl.gov, KAYelick@lbl.gov, DHBailey@lbl.gov

  19. Trapping of intense light in hollow shell

    SciTech Connect (OSTI)

    Luan, Shixia; Yu, Wei; Yu, M. Y.; Weng, Suming; Wang, Jingwei; Xu, Han; Zhuo, Hongbin; Wong, A. Y.

    2015-09-15

    A small hollow shell for trapping laser light is proposed. Two-dimensional particle-in-cell simulation shows that under appropriate laser and plasma conditions a part of the radiation fields of an intense short laser pulse can enter the cavity of a small shell through an over-critical density plasma in an adjacent guide channel and become trapped. The trapped light evolves into a circulating radial wave pattern until its energy is dissipated.

  20. Intensive Variables & Nanostructuring in Magnetostructural Materials

    SciTech Connect (OSTI)

    Lewis, Laura

    2014-08-13

    Over the course of this project, fundamental inquiry was carried out to investigate, understand and predict the effects of intensive variables, including the structural scale, on magnetostructural phase transitions in the model system of equiatomic FeRh. These transitions comprise simultaneous magnetic and structural phase changes that have their origins in very strong orbital-lattice coupling and thus may be driven by a plurality of effects.

  1. Position, rotation, and intensity invariant recognizing method

    DOE Patents [OSTI]

    Ochoa, E.; Schils, G.F.; Sweeney, D.W.

    1987-09-15

    A method for recognizing the presence of a particular target in a field of view which is target position, rotation, and intensity invariant includes the preparing of a target-specific invariant filter from a combination of all eigen-modes of a pattern of the particular target. Coherent radiation from the field of view is then imaged into an optical correlator in which the invariant filter is located. The invariant filter is rotated in the frequency plane of the optical correlator in order to produce a constant-amplitude rotational response in a correlation output plane when the particular target is present in the field of view. Any constant response is thus detected in the output plane to determine whether a particular target is present in the field of view. Preferably, a temporal pattern is imaged in the output plane with a optical detector having a plurality of pixels and a correlation coefficient for each pixel is determined by accumulating the intensity and intensity-square of each pixel. The orbiting of the constant response caused by the filter rotation is also preferably eliminated either by the use of two orthogonal mirrors pivoted correspondingly to the rotation of the filter or the attaching of a refracting wedge to the filter to remove the offset angle. Detection is preferably performed of the temporal pattern in the output plane at a plurality of different angles with angular separation sufficient to decorrelate successive frames. 1 fig.

  2. Variable-Period Undulators For Synchrotron Radiation

    DOE Patents [OSTI]

    Shenoy, Gopal; Lewellen, John; Shu, Deming; Vinokurov, Nikolai

    2005-02-22

    A new and improved undulator design is provided that enables a variable period length for the production of synchrotron radiation from both medium-energy and high-energy storage rings. The variable period length is achieved using a staggered array of pole pieces made up of high permeability material, permanent magnet material, or an electromagnetic structure. The pole pieces are separated by a variable width space. The sum of the variable width space and the pole width would therefore define the period of the undulator. Features and advantages of the invention include broad photon energy tunability, constant power operation and constant brilliance operation.

  3. Mo Year Report Period: EIA ID NUMBER:

    U.S. Energy Information Administration (EIA) Indexed Site

    Mo Year Report Period: EIA ID NUMBER: http:www.eia.govsurveyformeia14instructions.pdf Mailing Address: Secure File Transfer option available at: (e.g., PO Box, RR) https:...

  4. Total Estimated Contract Cost: Performance Period

    Office of Environmental Management (EM)

    FY2012 Fee Information Minimum Fee Maximum Fee September 2015 Contract Number: Cost Plus Incentive Fee Contractor: 3,264,909,094 Contract Period: EM Contractor Fee s Idaho...

  5. Long-period solar-terrestrial variability

    SciTech Connect (OSTI)

    Sonett, C.P. )

    1991-01-01

    Studies aimed at extending the record of solar-terrestrial variability to longer periods are discussed in a critical review of US research from the period 1987--1990. Sections are devoted to the sunspot index, radioactive carbon studies, a potential climate connection between radiocarbon changes and the solar irradiance cycle, Be-10 studies, geological laminae, solar neutrino counts, and the construction of data sets. Also included is a selective bibliography. 66 refs.

  6. Scheduled Maintenance Periods | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scheduled Maintenance Periods The CNM holds three maintenance periods per year. During these times certain CNM facilities may not be available for user activities. The Sector 26 beamline will not be available, the High-Performance Computing Cluster and nanofabrication facilities often are not available, and other facilities may undergo maintenance for only one or two days. Please contact your CNM Scientific Contact prior to arrival and plan your work visits and schedules accordingly. To better

  7. Energy Intensity Baselining and Tracking Guidance | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technical Assistance » Better Plants » Energy Intensity Baselining and Tracking Guidance Energy Intensity Baselining and Tracking Guidance The Energy Intensity Baselining and Tracking Guidance for the Better Buildings, Better Plants Program helps companies meet the program's reporting requirements by describing the steps necessary to develop an energy consumption and energy intensity baseline and calculating consumption and intensity changes over time. Most of the calculation steps described

  8. SWIFT OBSERVATIONS OF MAXI J1659-152: A COMPACT BINARY WITH A BLACK HOLE ACCRETOR

    SciTech Connect (OSTI)

    Kennea, J. A.; Romano, P.; Mangano, V.; Beardmore, A. P.; Evans, P. A.; Curran, P. A.; Markwardt, C. B.; Yamaoka, K.

    2011-07-20

    We report on the detection and follow-up high-cadence monitoring observations of MAXI J1659-152, a bright Galactic X-ray binary transient with a likely black hole accretor, by Swift over a 27 day period after its initial outburst detection. MAXI J1659-152 was discovered almost simultaneously by Swift and the Monitor of All-sky X-ray Image on 2010 September 25, and was monitored intensively from the early stages of the outburst through the rise to a brightness of {approx}0.5 Crab by the Swift X-ray, UV/Optical, and the hard X-ray Burst Alert Telescopes. We present temporal and spectral analysis of the Swift observations. The broadband light curves show variability characteristic of black hole candidate transients. We present the evolution of thermal and non-thermal components of the 0.5-150 keV combined X-ray spectra during the outburst. MAXI J1659-152 displays accretion state changes typically associated with black hole binaries, transitioning from its initial detection in the hard state, to the steep power-law state, followed by a slow evolution toward the thermal state, signified by an increasingly dominant thermal component associated with the accretion disk, although this state change did not complete before Swift observations ended. We observe an anti-correlation between the increasing temperature and decreasing radius of the inner edge of the accretion disk, suggesting that the inner edge of the accretion disk infalls toward the black hole as the disk temperature increases. We observed significant evolution in the absorption column during the initial rise of the outburst, with the absorption almost doubling, suggestive of the presence of an evolving wind from the accretion disk. We detect quasi-periodic oscillations that evolve with the outburst, as well as irregular shaped dips that recur with a period of 2.42 {+-} 0.09 hr, strongly suggesting an orbital period that would make MAXI J1659-152 the shortest period black hole binary yet known.

  9. THE CATALINA SURVEYS PERIODIC VARIABLE STAR CATALOG

    SciTech Connect (OSTI)

    Drake, A. J.; Graham, M. J.; Djorgovski, S. G.; Mahabal, A. A.; Donalek, C.; Williams, R.; Catelan, M.; Torrealba, G.; García-Álvarez, D.; Prieto, J. L.; Beshore, E.; Larson, S.; Christen sen, E.; Boattini, A.; Gibbs, A.; Hill, R.; Kowalski, R.; Johnson, J.; Belokurov, V.; Koposov, S. E.; and others

    2014-07-01

    We present ∼47,000 periodic variables found during the analysis of 5.4 million variable star candidates within a 20,000 deg{sup 2} region covered by the Catalina Surveys Data Release-1 (CSDR1). Combining these variables with type ab RR Lyrae from our previous work, we produce an online catalog containing periods, amplitudes, and classifications for ∼61,000 periodic variables. By cross-matching these variables with those from prior surveys, we find that >90% of the ∼8000 known periodic variables in the survey region are recovered. For these sources, we find excellent agreement between our catalog and prior values of luminosity, period, and amplitude as well as classification. We investigate the rate of confusion between objects classified as contact binaries and type c RR Lyrae (RRc's) based on periods, colors, amplitudes, metallicities, radial velocities, and surface gravities. We find that no more than a few percent of the variables in these classes are misidentified. By deriving distances for this clean sample of ∼5500 RRc's, we trace the path of the Sagittarius tidal streams within the Galactic halo. Selecting 146 outer-halo RRc's with SDSS radial velocities, we confirm the presence of a coherent halo structure that is inconsistent with current N-body simulations of the Sagittarius tidal stream. We also find numerous long-period variables that are very likely associated within the Sagittarius tidal stream system. Based on the examination of 31,000 contact binary light curves we find evidence for two subgroups exhibiting irregular light curves. One subgroup presents significant variations in mean brightness that are likely due to chromospheric activity. The other subgroup shows stable modulations over more than a thousand days and thereby provides evidence that the O'Connell effect is not due to stellar spots.

  10. Table 22. Energy Intensity, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Intensity, Projected vs. Actual" "Projected" " (quadrillion Btu / $Billion 2005 Chained GDP)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013 "AEO 1994",10.89145253,10.73335719,10.63428655,10.48440125,10.33479508,10.20669515,10.06546105,9.94541493,9.822393757,9.707148466,9.595465524,9.499032573,9.390723436,9.29474735,9.185496812,9.096176848,9.007677565,8.928276581 "AEO

  11. Intense steady state electron beam generator

    DOE Patents [OSTI]

    Hershcovitch, A.; Kovarik, V.J.; Prelec, K.

    1990-07-17

    An intense, steady state, low emittance electron beam generator is formed by operating a hollow cathode discharge plasma source at critical levels in combination with an extraction electrode and a target electrode that are operable to extract a beam of fast primary electrons from the plasma source through a negatively biased grid that is critically operated to repel bulk electrons toward the plasma source while allowing the fast primary electrons to move toward the target in the desired beam that can be successfully transported for relatively large distances, such as one or more meters away from the plasma source. 2 figs.

  12. Intense steady state electron beam generator

    DOE Patents [OSTI]

    Hershcovitch, Ady; Kovarik, Vincent J.; Prelec, Krsto

    1990-01-01

    An intense, steady state, low emittance electron beam generator is formed by operating a hollow cathode discharge plasma source at critical levels in combination with an extraction electrode and a target electrode that are operable to extract a beam of fast primary electrons from the plasma source through a negatively biased grid that is critically operated to repel bulk electrons toward the plasma source while allowing the fast primary electrons to move toward the target in the desired beam that can be successfully transported for relatively large distances, such as one or more meters away from the plasma source.

  13. High intensity, pulsed thermal neutron source

    DOE Patents [OSTI]

    Carpenter, J.M.

    1973-12-11

    This invention relates to a high intensity, pulsed thermal neutron source comprising a neutron-producing source which emits pulses of fast neutrons, a moderator block adjacent to the last neutron source, a reflector block which encases the fast neutron source and the moderator block and has a thermal neutron exit port extending therethrough from the moderator block, and a neutron energy- dependent decoupling reflector liner covering the interior surfaces of the thermal neutron exit port and surrounding all surfaces of the moderator block except the surface viewed by the thermal neutron exit port. (Official Gazette)

  14. COLLIMATION OPTIMIZATION IN HIGH INTENSITY RINGS.

    SciTech Connect (OSTI)

    CATALAN-LASHERAS,N.

    2001-06-18

    In high intensity proton rings, collimation is needed in order to maintain reasonable levels of residual activation and allow hands-on maintenance. Small acceptance to emittance ratio and restrained longitudinal space become important restrictions when dealing with low energy rings. The constraints and specifications when designing a collimation system for this type of machine will be reviewed. The SNS accumulator ring will serve as an examples long which we will illustrate the optimization path. Experimental studies of collimation with 1.3 GeV proton beams are currently under way in the U-70 machine in Protvino. The first results will be presented.

  15. Correlating sampling and intensity statistics in nanoparticle diffraction experiments

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Öztürk, Hande; Yan, Hanfei; Hill, John P.; Noyan, I. Cevdet

    2015-07-28

    It is shown in a previous article [Öztürk, Yan, Hill & Noyan (2014).J. Appl. Cryst.47, 1016–1025] that the sampling statistics of diffracting particle populations within a polycrystalline ensemble depended on the size of the constituent crystallites: broad X-ray peak breadths enabled some nano-sized particles to contribute more than one diffraction spot to Debye–Scherrer rings. Here it is shown that the equations proposed by Alexander, Klug & Kummer [J. Appl. Phys.(1948),19, 742–753] (AKK) to link diffracting particle and diffracted intensity statistics are not applicable if the constituent crystallites of the powder are below 10 nm. In this size range, (i) themore » one-to-one correspondence between diffracting particles and Laue spots assumed in the AKK analysis is not satisfied, and (ii) the crystallographic correlation between Laue spots originating from the same grain invalidates the assumption that all diffracting plane normals are randomly oriented and uncorrelated. Such correlation produces unexpected results in the selection of diffracting grains. For example, three or more Laue spots from a given grain for a particular reflection can only be observed at certain wavelengths. In addition, correcting the diffracted intensity values by the traditional Lorentz term, 1/cos θ, to compensate for the variation of particles sampled within a reflection band does not maintain fidelity to the number of poles contributing to the diffracted signal. A new term, cos θB/cos θ, corrects this problem.« less

  16. Making Relativistic Positrons Using Ultra-Intense Short Pulse Lasers

    SciTech Connect (OSTI)

    Chen, H; Wilks, S; Bonlie, J; Chen, C; Chen, S; Cone, K; Elberson, L; Gregori, G; Liang, E; Price, D; Van Maren, R; Meyerhofer, D D; Mithen, J; Murphy, C V; Myatt, J; Schneider, M; Shepherd, R; Stafford, D; Tommasini, R; Beiersdorfer, P

    2009-08-24

    This paper describes a new positron source produced using ultra-intense short pulse lasers. Although it has been studied in theory since as early as the 1970s, the use of lasers as a valuable new positron source was not demonstrated experimentally until recent years, when the petawatt-class short pulse lasers were developed. In 2008 and 2009, in a series of experiments performed at Lawrence Livermore National Laboratory, a large number of positrons were observed after shooting a millimeter thick solid gold target. Up to 2 x 10{sup 10} positrons per steradian ejected out the back of {approx}mm thick gold targets were detected. The targets were illuminated with short ({approx}1 ps) ultra-intense ({approx}1 x 10{sup 20} W/cm{sup 2}) laser pulses. These positrons are produced predominantly by the Bethe-Heitler process, and have an effective temperature of 2-4 MeV, with the distribution peaking at 4-7 MeV. The angular distribution of the positrons is anisotropic. For a wide range of applications, this new laser based positron source with its unique characteristics may complements the existing sources using radioactive isotopes and accelerators.

  17. Periodic subsystem density-functional theory

    SciTech Connect (OSTI)

    Genova, Alessandro; Pavanello, Michele; Ceresoli, Davide

    2014-11-07

    By partitioning the electron density into subsystem contributions, the Frozen Density Embedding (FDE) formulation of subsystem Density Functional Theory (DFT) has recently emerged as a powerful tool for reducing the computational scaling of Kohn–Sham DFT. To date, however, FDE has been employed to molecular systems only. Periodic systems, such as metals, semiconductors, and other crystalline solids have been outside the applicability of FDE, mostly because of the lack of a periodic FDE implementation. To fill this gap, in this work we aim at extending FDE to treat subsystems of molecular and periodic character. This goal is achieved by a dual approach. On one side, the development of a theoretical framework for periodic subsystem DFT. On the other, the realization of the method into a parallel computer code. We find that periodic FDE is capable of reproducing total electron densities and (to a lesser extent) also interaction energies of molecular systems weakly interacting with metallic surfaces. In the pilot calculations considered, we find that FDE fails in those cases where there is appreciable density overlap between the subsystems. Conversely, we find FDE to be in semiquantitative agreement with Kohn–Sham DFT when the inter-subsystem density overlap is low. We also conclude that to make FDE a suitable method for describing molecular adsorption at surfaces, kinetic energy density functionals that go beyond the GGA level must be employed.

  18. High intensity discharge device containing oxytrihalides

    DOE Patents [OSTI]

    Lapatovich, Walter P.; Keeffe, William M.; Liebermann, Richard W.; Maya, Jakob

    1987-01-01

    A fill composition for a high intensity discharge device including mercury, niobium oxytrihalide, and a molecular stabilization agent is provided. The molar ratio of niobium oxytrihalide to the molecular stabilization agent in the fill is in the range of from about 5:1 to about 7.5:1. Niobium oxytrihalide is present in the fill in sufficient amount to produce, by dissociation in the discharge, atomic niobium, niobium oxide, NbO, and niobium dioxide, NbO.sub.2, with the molar ratio of niobium-containing vapor species to mercury in the fill being in the range of from about 0.01:1 to about 0.50:1; and mercury pressure of about 1 to about 50 atmospheres at lamp operating temperature. There is also provided a high intensity discharge device comprising a sealed light-transmissive arc tube; the arc tube including the above-described fill; and an energizing means for producing an electric discharge within the arc tube.

  19. High intensity discharge device containing oxytrihalides

    DOE Patents [OSTI]

    Lapatovich, W.P.; Keeffe, W.M.; Liebermann, R.W.; Maya, J.

    1987-06-09

    A fill composition for a high intensity discharge device including mercury, niobium oxytrihalide, and a molecular stabilization agent is provided. The molar ratio of niobium oxytrihalide to the molecular stabilization agent in the fill is in the range of from about 5:1 to about 7.5:1. Niobium oxytrihalide is present in the fill in sufficient amount to produce, by dissociation in the discharge, atomic niobium, niobium oxide, NbO, and niobium dioxide, NbO[sub 2], with the molar ratio of niobium-containing vapor species to mercury in the fill being in the range of from about 0.01:1 to about 0.50:1; and mercury pressure of about 1 to about 50 atmospheres at lamp operating temperature. There is also provided a high intensity discharge device comprising a sealed light-transmissive arc tube; the arc tube including the above-described fill; and an energizing means for producing an electric discharge within the arc tube. 7 figs.

  20. Magnetomechanically induced long period fiber gratings

    SciTech Connect (OSTI)

    Causado-Buelvas, Jesus D.; Gomez-Cardona, Nelson D.; Torres, Pedro

    2008-04-15

    In this work, we report a simple, flexible method to create long period fiber gratings mechanically by controlling the repulsion/attraction force between two magnets that pressing a plate with a periodic array of small glass cylinders to a short length of optical fiber. Via the photoelastic effect, the pressure points induce the required periodic refractive index modulation to create the LPFG. We found that the induced device exhibits spectral characteristics similar to those of other types of LPFG. As the optical properties of LPFGs are directly related to the nature of the applied perturbations, we show, to our knowledge for the frrst time, how is the evolution of birefringence effects in mechanically induced LPFGs.

  1. INTENSITY ENHANCEMENT OF OVI ULTRAVIOLET EMISSION LINES IN SOLAR SPECTRA DUE TO OPACITY

    SciTech Connect (OSTI)

    Keenan, F. P.; Mathioudakis, M.; Doyle, J. G.; Madjarska, M. S.; Rose, S. J.; Bowler, L. A.; Britton, J.; McCrink, L.

    2014-04-01

    Opacity is a property of many plasmas. It is normally expected that if an emission line in a plasma becomes optically thick, then its intensity ratio to that of another transition that remains optically thin should decrease. However, radiative transfer calculations undertaken both by ourselves and others predict that under certain conditions the intensity ratio of an optically thick to an optically thin line can show an increase over the optically thin value, indicating an enhancement in the former. These conditions include the geometry of the emitting plasma and its orientation to the observer. A similar effect can take place between lines of differing optical depths. While previous observational studies have focused on stellar point sources, here we investigate the spatially resolved solar atmosphere using measurements of the I(1032 )/I(1038 ) intensity ratio of OVI in several regions obtained with the Solar Ultraviolet Measurements of Emitted Radiation instrument on board the Solar and Heliospheric Observatory satellite. We find several I(1032 )/I(1038 ) ratios observed on the disk to be significantly larger than the optically thin value of 2.0, providing the first detection (to our knowledge) of intensity enhancement in the ratio arising from opacity effects in the solar atmosphere. The agreement between observation and theory is excellent and confirms that the OVI emission originates from a slab-like geometry in the solar atmosphere, rather than from cylindrical structures.

  2. Quantum transport calculations using periodic boundaryconditions

    SciTech Connect (OSTI)

    Wang, Lin-Wang

    2004-06-15

    An efficient new method is presented to calculate the quantum transports using periodic boundary conditions. This method allows the use of conventional ground state ab initio programs without big changes. The computational effort is only a few times of a normal groundstate calculations, thus is makes accurate quantum transport calculations for large systems possible.

  3. Contract Periods of Performance Exceeding 5 Years

    Office of Energy Efficiency and Renewable Energy (EERE)

    Acquisition Letter 2010-5 has been revised to update references, make minor editorial changes, and clarify that the Director, Field Assistance and Oversight Division is the approval authority within Department of Energy for acquisition plans that contemplate a period of performance greater than 5 years.

  4. Performance Period Total Fee Paid FY2008

    Office of Environmental Management (EM)

    1,339,286 FY 2012 38,126 FY 2013 42,265 Cumulative Fee Paid 1,766,600 42,265 Cost Plus Incentive FeeCost Plus Fixed Fee 36,602,425 Contract Period: September 2007 -...

  5. SEMIREGULAR VARIABLES WITH PERIODS LYING BETWEEN THE PERIOD-LUMINOSITY SEQUENCES C', C, AND D

    SciTech Connect (OSTI)

    Soszynski, I.; Wood, P. R. E-mail: wood@mso.anu.edu.au

    2013-02-15

    We analyze the distribution of semiregular variables and Mira stars in the period-luminosity plane. Our sample consists of 6169 oxygen-rich long-period variables in the Large Magellanic Cloud included in the OGLE-III Catalog of Variable Stars. There are many stars with periods that lie between the well-known sequences C and C'. Most of these stars are multi-periodic and the period ratios suggest that these stars oscillate in the same mode as the sequence C stars. Models suggest that this mode is the fundamental radial pulsation mode. The stars with primary periods between sequences C and C' preferentially lie on an additional sequence (named F), and a large fraction of these stars also have long secondary periods (LSPs) that lie between sequences C and D. There are also a small number of stars with primary periods lying between sequences C and D. The origin of this long-period variability is unknown, as is the cause of sequence D variability. In addition, the origin of sequence F is unknown but we speculate that sequence F variability may be excited by the same phenomenon that causes the LSPs.

  6. THE CENTER FOR DATA INTENSIVE COMPUTING

    SciTech Connect (OSTI)

    GLIMM,J.

    2001-11-01

    CDIC will provide state-of-the-art computational and computer science for the Laboratory and for the broader DOE and scientific community. We achieve this goal by performing advanced scientific computing research in the Laboratory's mission areas of High Energy and Nuclear Physics, Biological and Environmental Research, and Basic Energy Sciences. We also assist other groups at the Laboratory to reach new levels of achievement in computing. We are ''data intensive'' because the production and manipulation of large quantities of data are hallmarks of scientific research in the 21st century and are intrinsic features of major programs at Brookhaven. An integral part of our activity to accomplish this mission will be a close collaboration with the University at Stony Brook.

  7. THE CENTER FOR DATA INTENSIVE COMPUTING

    SciTech Connect (OSTI)

    GLIMM,J.

    2003-11-01

    CDIC will provide state-of-the-art computational and computer science for the Laboratory and for the broader DOE and scientific community. We achieve this goal by performing advanced scientific computing research in the Laboratory's mission areas of High Energy and Nuclear Physics, Biological and Environmental Research, and Basic Energy Sciences. We also assist other groups at the Laboratory to reach new levels of achievement in computing. We are ''data intensive'' because the production and manipulation of large quantities of data are hallmarks of scientific research in the 21st century and are intrinsic features of major programs at Brookhaven. An integral part of our activity to accomplish this mission will be a close collaboration with the University at Stony Brook.

  8. Reconstruction of Intensity From Covered Samples

    SciTech Connect (OSTI)

    Barabash, Rozaliya; Watkins, Thomas R; Meisner, Roberta Ann; Burchell, Timothy D; Rosseel, Thomas M

    2015-01-01

    The safe handling of activated samples requires containment and covering the sample to eliminate any potential for contamination. Subsequent characterization of the surface with x-rays ideally necessitates a thin film. While many films appear visually transparent, they are not necessarily x-ray transparent. Each film material has a unique beam attenuation and sometimes have amorphous peaks that can superimpose with those of the sample. To reconstruct the intensity of the underlying activated sample, the x-ray attenuation and signal due to the film needs to be removed from that of the sample. This requires the calculation of unique deconvolution parameters for the film. The development of a reconstruction procedure for a contained/covered sample is described.

  9. Position, rotation, and intensity invariant recognizing method

    DOE Patents [OSTI]

    Ochoa, Ellen; Schils, George F.; Sweeney, Donald W.

    1989-01-01

    A method for recognizing the presence of a particular target in a field of view which is target position, rotation, and intensity invariant includes the preparing of a target-specific invariant filter from a combination of all eigen-modes of a pattern of the particular target. Coherent radiation from the field of view is then imaged into an optical correlator in which the invariant filter is located. The invariant filter is rotated in the frequency plane of the optical correlator in order to produce a constant-amplitude rotational response in a correlation output plane when the particular target is present in the field of view. Any constant response is thus detected in the output The U.S. Government has rights in this invention pursuant to Contract No. DE-AC04-76DP00789 between the U.S. Department of Energy and AT&T Technologies, Inc.

  10. THE CENTER FOR DATA INTENSIVE COMPUTING

    SciTech Connect (OSTI)

    GLIMM,J.

    2002-11-01

    CDIC will provide state-of-the-art computational and computer science for the Laboratory and for the broader DOE and scientific community. We achieve this goal by performing advanced scientific computing research in the Laboratory's mission areas of High Energy and Nuclear Physics, Biological and Environmental Research, and Basic Energy Sciences. We also assist other groups at the Laboratory to reach new levels of achievement in computing. We are ''data intensive'' because the production and manipulation of large quantities of data are hallmarks of scientific research in the 21st century and are intrinsic features of major programs at Brookhaven. An integral part of our activity to accomplish this mission will be a close collaboration with the University at Stony Brook.

  11. Production of high intensity radioactive beams

    SciTech Connect (OSTI)

    Nitschke, J.M.

    1990-04-01

    The production of radioactive nuclear beams world-wide is reviewed. The projectile fragmentation and the ISOL approaches are discussed in detail, and the luminosity parameter is used throughout to compare different production methods. In the ISOL approach a thin and a thick target option are distinguished. The role of storage rings in radioactive beam research is evaluated. It is concluded that radioactive beams produced by the projectile fragmentation and the ISOL methods have complementary characteristics and can serve to answer different scientific questions. The decision which kind of facility to build has to depend on the significance and breadth of these questions. Finally a facility for producing a high intensity radioactive beams near the Coulomb barrier is proposed, with an expected luminosity of {approximately}10{sup 39} cm{sup {minus}2} s{sup {minus}1}, which would yield radioactive beams in excess of 10{sup 11} s{sup {minus}1}. 9 refs., 3 figs., 7 tabs.

  12. Geo-neutrino Observation

    SciTech Connect (OSTI)

    Dye, S. T.; Alderman, M.; Batygov, M.; Learned, J. G.; Matsuno, S.; Mahoney, J. M.; Pakvasa, S.; Rosen, M.; Smith, S.; Varner, G.; McDonough, W. F.

    2009-12-17

    Observations of geo-neutrinos measure radiogenic heat production within the earth, providing information on the thermal history and dynamic processes of the mantle. Two detectors currently observe geo-neutrinos from underground locations. Other detection projects in various stages of development include a deep ocean observatory. This paper presents the current status of geo-neutrino observation and describes the scientific capabilities of the deep ocean observatory, with emphasis on geology and neutrino physics.

  13. Hot Pot Field Observations

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Lane, Michael

    Map of field observations including depressions, springs, evidence of former springs, travertine terraces and vegetation patterns. Map also contains interpretation of possible spring alignments.

  14. Hot Pot Field Observations

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Lane, Michael

    2013-06-28

    Map of field observations including depressions, springs, evidence of former springs, travertine terraces and vegetation patterns. Map also contains interpretation of possible spring alignments.

  15. Energy End-Use Intensities in Commercial Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    lighting intensities per lighted square foot-hour (Figure 23). * Food service and health care buildings had the highest water-heating intensities per square foot--more than...

  16. Short-term Human Vision Protection from Intense Light Sources...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Short-term Human Vision Protection from Intense Light Sources The primary objective of this invention is to minimize the sensitivity of the human eye to intense visible light by ...

  17. Fermilab | Science at Fermilab | Experiments & Projects | Intensity...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    One of the ways that researchers search for signals of new physics is to observe rarely ... This puts a limit on the maximum energy that the electrons can reach in such a machine. ...

  18. SYNCHROTRONS AND ACCUMULATORS FOR HIGH INTENSITY PROTONS: ISSUES AND EXPERIENCES.

    SciTech Connect (OSTI)

    WEI,J.

    2000-06-30

    This paper summarizes physical and engineering issues of high-intensity synchrotrons and accumulators, and discusses future applications and outlook.

  19. Energy Intensity Indicators: Overview of Concepts | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Overview of Concepts Energy Intensity Indicators: Overview of Concepts The Energy Intensity Indicators website reports changes in energy intensity in the United States since 1970. The website discusses, and presents data for, energy intensity trends by major end-use sectors, associated subsector for the economy as whole (economywide). Following the conventions used by the Department of Energy's Energy Information Administration, the four major end-use sectors are 1) residential, 2) commercial,

  20. Energy-Intensive Processes Portfolio: Addressing Key Energy Challenges

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Across U.S. Industry | Department of Energy Energy-Intensive Processes Portfolio: Addressing Key Energy Challenges Across U.S. Industry Energy-Intensive Processes Portfolio: Addressing Key Energy Challenges Across U.S. Industry eip_report_pg9.pdf (2.52 MB) More Documents & Publications ITP Energy Intensive Processes: Energy-Intensive Processes Portfolio: Addressing Key Energy Challenges Across U.S. Industry Energy Technology Solutions Energy Technology Solutions: Public-Private

  1. Periodically distributed objects with quasicrystalline diffraction pattern

    SciTech Connect (OSTI)

    Wolny, Janusz Strzalka, Radoslaw; Kuczera, Pawel

    2015-03-30

    It is possible to construct fully periodically distributed objects with a diffraction pattern identical to the one obtained for quasicrystals. These objects are probability distributions of distances obtained in the statistical approach to aperiodic structures distributed periodically. The diffraction patterns have been derived by using a two-mode Fourier transform—a very powerful method not used in classical crystallography. It is shown that if scaling is present in the structure, this two-mode Fourier transform can be reduced to a regular Fourier transform with appropriately rescaled scattering vectors and added phases. Detailed case studies for model sets 1D Fibonacci chain and 2D Penrose tiling are discussed. Finally, it is shown that crystalline, quasicrystalline, and approximant structures can be treated in the same way.

  2. Measuring galaxy clustering and the evolution of [C II] mean intensity with far-IR line intensity mapping during 0.5 < z < 1.5

    SciTech Connect (OSTI)

    Uzgil, B. D.; Aguirre, J. E.; Lidz, A.; Bradford, C. M.

    2014-10-01

    Infrared fine-structure emission lines from trace metals are powerful diagnostics of the interstellar medium in galaxies. We explore the possibility of studying the redshifted far-IR fine-structure line emission using the three-dimensional (3D) power spectra obtained with an imaging spectrometer. The intensity mapping approach measures the spatio-spectral fluctuations due to line emission from all galaxies, including those below the individual detection threshold. The technique provides 3D measurements of galaxy clustering and moments of the galaxy luminosity function. Furthermore, the linear portion of the power spectrum can be used to measure the total line emission intensity including all sources through cosmic time with redshift information naturally encoded. Total line emission, when compared to the total star formation activity and/or other line intensities, reveals evolution of the interstellar conditions of galaxies in aggregate. As a case study, we consider measurement of [C II] autocorrelation in the 0.5 < z < 1.5 epoch, where interloper lines are minimized, using far-IR/submillimeter balloon-borne and future space-borne instruments with moderate and high sensitivity, respectively. In this context, we compare the intensity mapping approach to blind galaxy surveys based on individual detections. We find that intensity mapping is nearly always the best way to obtain the total line emission because blind, wide-field galaxy surveys lack sufficient depth and deep pencil beams do not observe enough galaxies in the requisite luminosity and redshift bins. Also, intensity mapping is often the most efficient way to measure the power spectrum shape, depending on the details of the luminosity function and the telescope aperture.

  3. DOE'S geothermal division: A period of transition

    SciTech Connect (OSTI)

    Jelacic, Allan J.; Reed, Marshall

    1996-01-24

    The transition that the Department of Energy's geothemal research program is undergoing is discussed. This transitional period began last year and will continue at least through final implementation of the Department's reorganization and downsizing. Current and recently completed R&D programs are reviewed. New initiatives are outlined. The foci and direction of the Division's activities of particular interest to the geothermal research community are addressed.

  4. The transition mechanism from a symmetric single period discharge to a period-doubling discharge in atmospheric helium dielectric-barrier discharge

    SciTech Connect (OSTI)

    Zhang, Dingzong; Wang, Yanhui; Wang, Dezhen [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China)] [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China)

    2013-06-15

    Period-doubling and chaos phenomenon have been frequently observed in atmospheric-pressure dielectric-barrier discharges. However, how a normal single period discharge bifurcates into period-doubling state is still unclear. In this paper, by changing the driving frequency, we study numerically the transition mechanisms from a normal single period discharge to a period-doubling state using a one-dimensional self-consistent fluid model. The results show that before a discharge bifurcates into a period-doubling state, it first deviates from its normal operation and transforms into an asymmetric single period discharge mode. Then the weaker discharge in this asymmetric discharge will be enhanced gradually with increasing of the frequency until it makes the subsequent discharge weaken and results in the discharge entering a period-doubling state. In the whole transition process, the spatial distribution of the charged particle density and the electric field plays a definitive role. The conclusions are further confirmed by changing the gap width and the amplitude of the applied voltage.

  5. QUIET-SUN INTENSITY CONTRASTS IN THE NEAR-ULTRAVIOLET AS MEASURED FROM SUNRISE

    SciTech Connect (OSTI)

    Hirzberger, J.; Feller, A.; Riethmueller, T. L.; Schuessler, M.; Borrero, J. M.; Gandorfer, A.; Solanki, S. K.; Barthol, P.; Afram, N.; Unruh, Y. C.; Berdyugina, S. V.; Berkefeld, T.; Schmidt, W.; Bonet, J. A.; MartInez Pillet, V.; Knoelker, M.; Title, A. M.

    2010-11-10

    We present high-resolution images of the Sun in the near-ultraviolet spectral range between 214 nm and 397 nm as obtained from the first science flight of the 1 m SUNRISE balloon-borne solar telescope. The quiet-Sun rms intensity contrasts found in this wavelength range are among the highest values ever obtained for quiet-Sun solar surface structures-up to 32.8% at a wavelength of 214 nm. We compare the rms contrasts obtained from the observational data with theoretical intensity contrasts obtained from numerical magnetohydrodynamic simulations. For 388 nm and 312 nm the observations agree well with the numerical simulations whereas at shorter wavelengths discrepancies between observed and simulated contrasts remain.

  6. Correlating sampling and intensity statistics in nanoparticle diffraction experiments

    SciTech Connect (OSTI)

    Öztürk, Hande; Yan, Hanfei; Hill, John P.; Noyan, I. Cevdet

    2015-07-28

    It is shown in a previous article [Öztürk, Yan, Hill & Noyan (2014).J. Appl. Cryst.47, 1016–1025] that the sampling statistics of diffracting particle populations within a polycrystalline ensemble depended on the size of the constituent crystallites: broad X-ray peak breadths enabled some nano-sized particles to contribute more than one diffraction spot to Debye–Scherrer rings. Here it is shown that the equations proposed by Alexander, Klug & Kummer [J. Appl. Phys.(1948),19, 742–753] (AKK) to link diffracting particle and diffracted intensity statistics are not applicable if the constituent crystallites of the powder are below 10 nm. In this size range, (i) the one-to-one correspondence between diffracting particles and Laue spots assumed in the AKK analysis is not satisfied, and (ii) the crystallographic correlation between Laue spots originating from the same grain invalidates the assumption that all diffracting plane normals are randomly oriented and uncorrelated. Such correlation produces unexpected results in the selection of diffracting grains. For example, three or more Laue spots from a given grain for a particular reflection can only be observed at certain wavelengths. In addition, correcting the diffracted intensity values by the traditional Lorentz term, 1/cos θ, to compensate for the variation of particles sampled within a reflection band does not maintain fidelity to the number of poles contributing to the diffracted signal. A new term, cos θB/cos θ, corrects this problem.

  7. Data Intensive Architecture for Scalable Cyber Analytics

    SciTech Connect (OSTI)

    Olsen, Bryan K.; Johnson, John R.; Critchlow, Terence J.

    2011-12-19

    Cyber analysts are tasked with the identification and mitigation of network exploits and threats. These compromises are difficult to identify due to the characteristics of cyber communication, the volume of traffic, and the duration of possible attack. In this paper, we describe a prototype implementation designed to provide cyber analysts an environment where they can interactively explore a months worth of cyber security data. This prototype utilized On-Line Analytical Processing (OLAP) techniques to present a data cube to the analysts. The cube provides a summary of the data, allowing trends to be easily identified as well as the ability to easily pull up the original records comprising an event of interest. The cube was built using SQL Server Analysis Services (SSAS), with the interface to the cube provided by Tableau. This software infrastructure was supported by a novel hardware architecture comprising a Netezza TwinFin for the underlying data warehouse and a cube server with a FusionIO drive hosting the data cube. We evaluated this environment on a months worth of artificial, but realistic, data using multiple queries provided by our cyber analysts. As our results indicate, OLAP technology has progressed to the point where it is in a unique position to provide novel insights to cyber analysts, as long as it is supported by an appropriate data intensive architecture.

  8. RHESSI AND TRACE OBSERVATIONS OF MULTIPLE FLARE ACTIVITY IN AR 10656 AND ASSOCIATED FILAMENT ERUPTION

    SciTech Connect (OSTI)

    Joshi, Bhuwan; Kushwaha, Upendra; Cho, K.-S.; Veronig, Astrid M.

    2013-07-01

    We present Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) and Transition Region and Coronal Explorer (TRACE) observations of multiple flare activity that occurred in the NOAA active region 10656 over a period of 2 hr on 2004 August 18. Out of four successive flares, three were class C events, and the final event was a major X1.8 solar eruptive flare. The activities during the pre-eruption phase, i.e., before the X1.8 flare, are characterized by three localized episodes of energy release occurring in the vicinity of a filament that produces intense heating along with non-thermal emission. A few minutes before the eruption, the filament undergoes an activation phase during which it slowly rises with a speed of {approx}12 km s{sup -1}. The filament eruption is accompanied by an X1.8 flare, during which multiple hard X-ray (HXR) bursts are observed up to 100-300 keV energies. We observe a bright and elongated coronal structure simultaneously in E(UV) and 50-100 keV HXR images underneath the expanding filament during the period of HXR bursts, which provides strong evidence for ongoing magnetic reconnection. This phase is accompanied by very high plasma temperatures of {approx}31 MK, followed by the detachment of the prominence from the solar source region. From the location, timing, strength, and spectrum of HXR emission, we conclude that the prominence eruption is driven by the distinct events of magnetic reconnection occurring in the current sheet below the erupting prominence. These multi-wavelength observations also suggest that the localized magnetic reconnections associated with different evolutionary stages of the filament in the pre-eruption phase play an important role in destabilizing the active-region filament through the tether-cutting process, leading to large-scale eruption and X-class flare.

  9. Pulsation modes of long-period variables in the period-luminosity plane

    SciTech Connect (OSTI)

    Soszyński, I.; Udalski, A.; Wood, P. R. E-mail: udalski@astrouw.edu.pl

    2013-12-20

    We present a phenomenological analysis of long-period variables (LPVs) in the Large Magellanic Cloud with the aim of detecting pulsation modes associated with different period-luminosity (PL) relations. Among brighter LPVs, we discover a group of triple-mode semi-regular variables with the fundamental, first-overtone, and second-overtone modes simultaneously excited, which fall on PL sequences C, C', and B, respectively. The mode identification in the fainter red giants is more complicated. We demonstrate that the fundamental-mode pulsators partly overlap with the first-overtone modes. We show a possible range of fundamental mode and first overtone periods in the PL diagram.

  10. Life-cycle energy savings potential from aluminum-intensive vehicles

    SciTech Connect (OSTI)

    Stodolsky, F.; Vyas, A.; Cuenca, R.; Gaines, L.

    1995-07-01

    The life-cycle energy and fuel-use impacts of US-produced aluminum-intensive passenger cars and passenger trucks are assessed. The energy analysis includes vehicle fuel consumption, material production energy, and recycling energy. A model that stimulates market dynamics was used to project aluminum-intensive vehicle market shares and national energy savings potential for the period between 2005 and 2030. We conclude that there is a net energy savings with the use of aluminum-intensive vehicles. Manufacturing costs must be reduced to achieve significant market penetration of aluminum-intensive vehicles. The petroleum energy saved from improved fuel efficiency offsets the additional energy needed to manufacture aluminum compared to steel. The energy needed to make aluminum can be reduced further if wrought aluminum is recycled back to wrought aluminum. We find that oil use is displaced by additional use of natural gas and nonfossil energy, but use of coal is lower. Many of the results are not necessarily applicable to vehicles built outside of the United States, but others could be used with caution.

  11. Down-hole periodic seismic generator

    DOE Patents [OSTI]

    Hardee, H.C.; Hills, R.G.; Striker, R.P.

    1982-10-28

    A down hole periodic seismic generator system is disclosed for transmitting variable frequency, predominantly shear-wave vibration into earth strata surrounding a borehole. The system comprises a unitary housing operably connected to a well head by support and electrical cabling and contains clamping apparatus for selectively clamping the housing to the walls of the borehole. The system further comprises a variable speed pneumatic oscillator and a self-contained pneumatic reservoir for producing a frequency-swept seismic output over a discrete frequency range.

  12. Intensity-resolved ionization yields of aniline with femtosecond laser pulses

    SciTech Connect (OSTI)

    Strohaber, J.; Hart, N.; Zhu, F.; Nava, R.; Pham, F.; Kolomenskii, A. A.; Paulus, G. G.; Schuessler, H. A.; Mohamed, T.; Schroeder, H.

    2011-12-15

    We present experimental results for the ionization of aniline and benzene molecules subjected to intense ultrashort laser pulses. Measured parent molecular ions yields were obtained using a recently developed technique capable of three-dimensional imaging of ion distributions within the focus of a laser beam. By selecting ions originating from the central region of the focus, where the spatial intensity distribution is nearly uniform, volumetric-free intensity-dependent ionization yields were obtained. The measured data revealed a previously unseen resonance-enhanced multiphoton ionization (REMPI)-like process. Comparison of benzene, aniline, and Xe ion yields demonstrates that the observed intensity-dependent structures are not due to geometric artifacts in the focus. Finally for intensities greater than {approx}3x10{sup 13} W/cm{sup 2}, we attribute the ionization of aniline to a stepwise process going through the {pi}{sigma}{sup *} state which sits three photons above the ground state and two photons below the continuum.

  13. Foreground contamination in Ly? intensity mapping during the epoch of reionization

    SciTech Connect (OSTI)

    Gong, Yan; Cooray, Asantha; Silva, Marta; Santos, Mario G.

    2014-04-10

    The intensity mapping of Ly? emission during the epoch of reionization will be contaminated by foreground emission lines from lower redshifts. We calculate the mean intensity and the power spectrum of Ly? emission at z ? 7 and estimate the uncertainties according to the relevant astrophysical processes. We find that the low-redshift emission lines from 6563 H?, 5007 [O III], and 3727 [O II] will be strong contaminants on the observed Ly? power spectrum. We make use of both the star formation rate and luminosity functions to estimate the mean intensity and power spectra of the three foreground lines at z ? 0.5 for H?, z ? 0.9 for [O III], and z ? 1.6 for [O II], as they will contaminate the Ly? emission at z ? 7. The [O II] line is found to be the strongest. We analyze the masking of the bright survey pixels with a foreground line above some line intensity threshold as a way to reduce the contamination in an intensity mapping survey. We find that the foreground contamination can be neglected if we remove pixels with fluxes above 1.4 10{sup 20} W m{sup 2}.

  14. Property:Building/EndPeriod | Open Energy Information

    Open Energy Info (EERE)

    EndPeriod Jump to: navigation, search This is a property of type Date. End of the period (last day of the month) Pages using the property "BuildingEndPeriod" Showing 25 pages...

  15. Energy Intensity Indicators: Indicators for Major Sectors | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy for Major Sectors Energy Intensity Indicators: Indicators for Major Sectors This system of energy intensity indicators for total energy covers the economy as a whole and each of the major end-use sectors - transportation, industry, commercial, and residential, as well as the electric power sector. These sectors are shown in Figure 1. Please go to the menu below the figure to see a more detailed discussion of historical trends in the energy intensity indicator for a particular sector.

  16. Energy Department Funding Helping Energy-Intensive Dairy Industry |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Funding Helping Energy-Intensive Dairy Industry Energy Department Funding Helping Energy-Intensive Dairy Industry July 17, 2015 - 12:55pm Addthis Energy Department Funding Helping Energy-Intensive Dairy Industry Emiley Mallory Emiley Mallory Communications Specialist, Weatherization Assistance Program John Coggin John Coggin Communications Specialist, Weatherization and Intergovernmental Programs What are the key facts? The Colorado Energy Office implemented a Dairy and

  17. EIS-0374: Notice of Extension of Comment Period | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Comment Period EIS-0374: Notice of Extension of Comment Period Klondike IIIBiglow Canyon Wind Integration Project This notice extends the close of comment for scoping from the...

  18. Nanoscale Periodic Modulations on Sodium Chloride Induced by...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Nanoscale Periodic Modulations on Sodium Chloride Induced by Surface Charges Citation Details In-Document Search Title: Nanoscale Periodic Modulations on Sodium ...

  19. Negative Effective Gravity in Water Waves by Periodic Resonator...

    Office of Scientific and Technical Information (OSTI)

    Negative Effective Gravity in Water Waves by Periodic Resonator Arrays Prev Next Title: Negative Effective Gravity in Water Waves by Periodic Resonator Arrays Authors: Hu,...

  20. Periodic Trends in Highly Dispersed Groups IV and V Supported...

    Office of Scientific and Technical Information (OSTI)

    Periodic Trends in Highly Dispersed Groups IV and V Supported Metal Oxide Catalysts for ... Title: Periodic Trends in Highly Dispersed Groups IV and V Supported Metal Oxide Catalysts ...

  1. High Pressure Fuel Storage Cylinders Periodic Inspection and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Storage Cylinders Periodic Inspection and End of Life Issues High Pressure Fuel Storage Cylinders Periodic Inspection and End of Life Issues These slides were presented at the ...

  2. Laser-induced periodic annular surface structures on fused silica surface

    SciTech Connect (OSTI)

    Liu, Yi; Brelet, Yohann; Forestier, Benjamin; Houard, Aurelien; Yu, Linwei; Deng, Yongkai; Jiang, Hongbing

    2013-06-24

    We report on the formation of laser-induced periodic annular surface structures on fused silica irradiated with multiple femtosecond laser pulses. This surface morphology emerges after the disappearance of the conventional laser induced periodic surface structures, under successive laser pulse irradiation. It is independent of the laser polarization and universally observed for different focusing geometries. We interpret its formation in terms of the interference between the reflected laser field on the surface of the damage crater and the incident laser pulse.

  3. THE DECAYING LONG-PERIOD OSCILLATION OF A STELLAR MEGAFLARE

    SciTech Connect (OSTI)

    Anfinogentov, S.; Nakariakov, V. M.; Mathioudakis, M.; Van Doorsselaere, T.; Kowalski, A. F.

    2013-08-20

    We analyze and interpret the oscillatory signal in the decay phase of the U-band light curve of a stellar megaflare observed on 2009 January 16 on the dM4.5e star YZ CMi. The oscillation is well approximated by an exponentially decaying harmonic function. The period of the oscillation is found to be 32 minutes, the decay time about 46 minutes, and the relative amplitude 15%. As this observational signature is typical of the longitudinal oscillations observed in solar flares at extreme ultraviolet and radio wavelengths, associated with standing slow magnetoacoustic waves, we suggest that this megaflare may be of a similar nature. In this scenario, macroscopic variations of the plasma parameters in the oscillations modulate the ejection of non-thermal electrons. The phase speed of the longitudinal (slow magnetoacoustic) waves in the flaring loop or arcade, the tube speed, of about 230 km s{sup -1} would require a loop length of about 200 Mm. Other mechanisms, such as standing kink oscillations, are also considered.

  4. Logic elements for reactor period meter

    DOE Patents [OSTI]

    McDowell, William P.; Bobis, James P.

    1976-01-01

    Logic elements are provided for a reactor period meter trip circuit. For one element, first and second inputs are applied to first and second chopper comparators, respectively. The output of each comparator is O if the input applied to it is greater than or equal to a trip level associated with each input and each output is a square wave of frequency f if the input applied to it is less than the associated trip level. The outputs of the comparators are algebraically summed and applied to a bandpass filter tuned to f. For another element, the output of each comparator is applied to a bandpass filter which is tuned to f to give a sine wave of frequency f. The outputs of the filters are multiplied by an analog multiplier whose output is 0 if either input is 0 and a sine wave of frequency 2f if both inputs are a frequency f.

  5. Table C10. Electricity Consumption and Expenditure Intensities...

    U.S. Energy Information Administration (EIA) Indexed Site

    Electricity Consumption and Expenditure Intensities, 1999" ,"Electricity Consumption",,,,,,"Electricity Expenditures" ,"per Building (thousand kWh)","per Square Foot (kWh)","per...

  6. Energy End-Use Intensities in Commercial Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    Intensities The purpose of this section is to provide information on how energy was used for space conditioning--heating, cooling, and ventilation--in commercial...

  7. High intensity x-ray source using liquid gallium target

    DOE Patents [OSTI]

    Smither, Robert K.; Knapp, Gordon S.; Westbrook, Edwin M.; Forster, George A.

    1990-01-01

    A high intensity x-ray source that uses a flowing stream of liquid gallium as a target with the electron beam impinging directly on the liquid metal.

  8. Changes in Energy Intensity in the Manufacturing Sector 1985...

    U.S. Energy Information Administration (EIA) Indexed Site

    (34) Machinery (35) El. Equip.(36) Instruments (38) Misc. (39) Appendices Survey Design Quality of Data Sector Description Nonobservation Errors Glossary Intensity Sites...

  9. High-Intensity Discharge Lighting Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Intensity Discharge Lighting Basics High-Intensity Discharge Lighting Basics August 15, 2013 - 5:59pm Addthis Illustration of a high-intensity discharge (HID) lIllustration amp. The lamp is a tall cylindrical shape, and a cutout of the outer tube shows the materials inside. A long, thin cylinder called the arc tube runs through the lamp between two electrodes. The space around the arc tube is labeled as a vacuum. High-intensity discharge (HID) lighting can provide high efficacy and long

  10. ARM AOS Processing Status and Aerosol Intensive Properties VAP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AOS Processing Status and Aerosol Intensive Properties VAP A. S. Koontz and C. J. Flynn Pacific Northwest National Laboratory Richland, Washington J. A. Ogren, E. Andrews, and P....

  11. Dynamic Potential Intensity: An improved representation of the...

    Office of Scientific and Technical Information (OSTI)

    Citation Details In-Document Search Title: Dynamic Potential Intensity: An improved ... average of temperature down to a fixed depth was proposed as a replacement for SST ...

  12. Energy End-Use Intensities in Commercial Buildings 1989 -- Executive...

    U.S. Energy Information Administration (EIA) Indexed Site

    9 Energy End-Use Intensities > Executive Summary Executive Summary Energy End Uses Ranked by Energy Consumption, 1989 Energy End Uses Ranked by Energy Consumption, 1989 Source:...

  13. The Fermilab Main Injector: high intensity operation and beam...

    Office of Scientific and Technical Information (OSTI)

    operation and beam loss control Citation Details In-Document Search Title: The Fermilab Main Injector: high intensity operation and beam loss control You are accessing a ...

  14. Energy End-Use Intensities in Commercial Buildings 1989

    U.S. Energy Information Administration (EIA) Indexed Site

    1989 Energy End-Use Intensities Overview Full Report Tables National estimates and analysis of energy consumption by fuel (electricity, natural gas, fuel oil, and district...

  15. Ionized channel generation of an intense-relativistic electron beam

    DOE Patents [OSTI]

    Frost, Charles A.; Leifeste, Gordon T.; Shope, Steven L.

    1988-01-01

    A foilless intense relativistic electron beam generator uses an ionized cnel to guide electrons from a cathode passed an anode to a remote location.

  16. China-Energy Intensity Reduction Strategy | Open Energy Information

    Open Energy Info (EERE)

    Intensity Reduction Strategy Jump to: navigation, search Name China-ESMAP Low Carbon Growth Country Studies Program AgencyCompany Organization Energy Sector Management Assistance...

  17. The Fermilab Main Injector: high intensity operation and beam...

    Office of Scientific and Technical Information (OSTI)

    Title: The Fermilab Main Injector: high intensity operation and beam loss control Authors: Brown, Bruce C. ; Adamson, Philip ; Capista, David ; Chou, Weiren ; Kourbanis, Ioanis ; ...

  18. A Network-Aware Distributed Storage Cache for Data Intensive...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Network-Aware Distributed Storage Cache for Data Intensive Environments 1 Brian L. ... visualizing, and analyzing massive amounts of data at multiple sites around the world. ...

  19. Ultrafast Charge Dynamics Initiated by High-Intensity, Ultrashort...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Ultrafast Charge Dynamics Initiated by High-Intensity, Ultrashort Laser-Matter Interaction Citation ... We report results of recent experiment in which such charge ...

  20. Formation of laser-induced periodic surface structures on niobium by femtosecond laser irradiation

    SciTech Connect (OSTI)

    Pan, A.; Dias, A.; Gomez-Aranzadi, M.; Olaizola, S. M.; Rodriguez, A.

    2014-05-07

    The surface morphology of a Niobium sample, irradiated in air by a femtosecond laser with a wavelength of 800 nm and pulse duration of 100 fs, was examined. The period of the micro/nanostructures, parallel and perpendicularly oriented to the linearly polarized fs-laser beam, was studied by means of 2D Fast Fourier Transform analysis. The observed Laser-Induced Periodic Surface Structures (LIPSS) were classified as Low Spatial Frequency LIPSS (periods about 600 nm) and High Spatial Frequency LIPSS, showing a periodicity around 300 nm, both of them perpendicularly oriented to the polarization of the incident laser wave. Moreover, parallel high spatial frequency LIPSS were observed with periods around 100 nm located at the peripheral areas of the laser fingerprint and overwritten on the perpendicular periodic gratings. The results indicate that this method of micro/nanostructuring allows controlling the Niobium grating period by the number of pulses applied, so the scan speed and not the fluence is the key parameter of control. A discussion on the mechanism of the surface topology evolution was also introduced.

  1. Earth System Observations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 Earth System Observations Research comprises Earth, ocean, and atmospheric sciences to better understand and predict climate change's impact on ecosystems and to study subsurface geological materials and their interactions. Deploying research facilities globally Forecasting forests' responses to climate change Monitoring terrestrial ecosystems Contact Us Group Leader Claudia Mora Email Deputy Group Leader Bob Roback Email Profile pages header Search our Profile pages Investigating carbon

  2. Safety Observations Achieve Results

    Energy Science and Technology Software Center (OSTI)

    2000-01-16

    The SOAR web application provides a multi-checklist capability where focused observations can be created to address risk-likely work environments, tasks, etc. The SOAR web application has numerous reports to sort the data by key word, multiple factors (i.e., location, team, behavior, checklist, work environment, etc.), and the highest frequency of behaviors and error-likely predecessors, etc. Other performance indicators are also provided.

  3. Short-period pulsar oscillations following a glitch

    SciTech Connect (OSTI)

    Van Eysden, C. A.

    2014-07-10

    Following a glitch, the crust and magnetized plasma in the outer core of a neutron star are believed to rapidly establish a state of co-rotation within a few seconds by process analogous to classical Ekman pumping. However, in ideal magnetohydrodynamics, a final state of co-rotation is inconsistent with conservation of energy of the system. We demonstrate that, after the Ekman-like spin up is completed, magneto-inertial waves continue to propagate throughout the star, exciting torsional oscillations in the crust and plasma. The crust oscillation is irregular and quasi-periodic, with a dominant frequency of the order of seconds. Crust oscillations commence after an Alfvn crossing time, approximately half a minute at the magnetic pole, and are subsequently damped by the electron viscosity over approximately an hour. In rapidly rotating stars, the magneto-inertial spectrum in the core approaches a continuum, and crust oscillations are damped by resonant absorption analogous to quasi-periodic oscillations in magnetars. The oscillations predicted are unlikely to be observed in timing data from existing radio telescopes, but may be visible to next generation telescope arrays.

  4. Enhanced dense attosecond electron bunch generation by irradiating an intense laser on a cone target

    SciTech Connect (OSTI)

    Hu, Li-Xiang; Yu, Tong-Pu Shao, Fu-Qiu; Zou, De-Bin; Yin, Yan

    2015-03-15

    By using two-dimensional particle-in-cell simulations, we demonstrate enhanced spatially periodic attosecond electron bunches generation with an average density of about 10n{sub c} and cut-off energy up to 380 MeV. These bunches are acquired from the interaction of an ultra-short ultra-intense laser pulse with a cone target. The laser oscillating field pulls out the cone surface electrons periodically and accelerates them forward via laser pondermotive force. The inner cone wall can effectively guide these bunches and lead to their stable propagation in the cone, resulting in overdense energetic attosecond electron generation. We also consider the influence of laser and cone target parameters on the bunch properties. It indicates that the attosecond electron bunch acceleration and propagation could be significantly enhanced without evident divergency by attaching a plasma capillary to the original cone tip.

  5. Connecting CO intensity mapping to molecular gas and star formation in the epoch of galaxy assembly

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Li, Tony Y.; Wechsler, Risa H.; Devaraj, Kiruthika; Church, Sarah E.

    2016-01-29

    Intensity mapping, which images a single spectral line from unresolved galaxies across cosmological volumes, is a promising technique for probing the early universe. Here we present predictions for the intensity map and power spectrum of the CO(1–0) line from galaxies atmore » $$z\\sim 2.4$$–2.8, based on a parameterized model for the galaxy–halo connection, and demonstrate the extent to which properties of high-redshift galaxies can be directly inferred from such observations. We find that our fiducial prediction should be detectable by a realistic experiment. Motivated by significant modeling uncertainties, we demonstrate the effect on the power spectrum of varying each parameter in our model. Using simulated observations, we infer constraints on our model parameter space with an MCMC procedure, and show corresponding constraints on the $${L}_{\\mathrm{IR}}$$–$${L}_{\\mathrm{CO}}$$ relation and the CO luminosity function. These constraints would be complementary to current high-redshift galaxy observations, which can detect the brightest galaxies but not complete samples from the faint end of the luminosity function. Furthermore, by probing these populations in aggregate, CO intensity mapping could be a valuable tool for probing molecular gas and its relation to star formation in high-redshift galaxies.« less

  6. A search for the sulphur hexafluoride cation with intense, few cycle laser pulses

    SciTech Connect (OSTI)

    Dota, Krithika; Mathur, Deepak; Centre for Atomic and Molecular Physics, Manipal University, Manipal 576 104 ; Dharmadhikari, Aditya K.; Dharmadhikari, Jayashree A.; Patra, Kaustuv; Tiwari, Ashwani K.

    2013-11-21

    It is well established that upon ionization of sulphur hexafluoride, the SF{sub 6}{sup +} ion is never observed in mass spectra. Recent work with ultrashort intense laser pulses has offered indications that when strong optical field are used, the resulting bond hardening can induce changes in the potential energy surfaces of molecular cations such that molecular ions that are normally unstable may, indeed, become metastable enough to enable their detection by mass spectrometry. Do intense, ultrashort laser pulses permit formation of SF{sub 6}{sup +}? We have utilized intense pulses of 5 fs, 11 fs, and 22 fs to explore this possibility. Our results are negative: no evidence is discovered for SF{sub 6}{sup +}. However, multiply charged sulphur and fluorine ions from highly charged SF{sub 6}{sup q+} ions are observed that enable us to resolve the controversy regarding the kinetic energy release accompanying formation of F{sup +} fragment ions. Quantum chemical computations of field-distorted potential energy curves of SF{sub 6} and its molecular ion enable us to rationalize our non-observation of SF{sub 6}{sup +}. Our findings have implications for high harmonic generation from SF{sub 6} in the few-cycle regime.

  7. PARC Periodical | Volume 6, Issue 6 | Photosynthetic Antenna Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center 6, Issue 6 August 20, 2015 PARC Periodical | Volume 6, Issue 6

  8. PARC Periodical | Volume 7, Issue 1 | Photosynthetic Antenna Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center 7, Issue 1 October 12, 2015 PARC Periodical | Volume 7, Issue 1

  9. PARC Periodical | Volume 7, Issue 2 | Photosynthetic Antenna Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center 2 December 7, 2015 PARC Periodical | Volume 7, Issue 2 VIEW ARTICLE HERE

  10. PARC Periodical | Volume 7, Issue 3 | Photosynthetic Antenna Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center 3 February 16, 2016 PARC Periodical | Volume 7, Issue 3 VIEW ARTICLE HERE

  11. Periodic magnetic structures generated by spinpolarized currents in nanostripes

    SciTech Connect (OSTI)

    Volkov, Oleksii M. Sheka, Denis D.; Kravchuk, Volodymyr P.; Gaididei, Yuri; Mertens, Franz G.

    2013-11-25

    The influence of a transverse spinpolarized current on long ferromagnetic nanostripes is studied numerically. The magnetization behavior is analyzed for all range of the applied currents, up to the saturation. It is shown that the saturation current is a nonmonotonic function of the stripe width. A number of stable periodic magnetization structures are observed below the saturation. Type of the periodical structure depends on the stripe width. Besides the onedimensional domain structure, typical for narrow wires, and the twodimensional vortexantivortex lattice, typical for wide films, a number of intermediate structures are observed, e.g., crosstie and diamond state.

  12. Changes in Energy Intensity in the Manufacturing Sector 1985...

    U.S. Energy Information Administration (EIA) Indexed Site

    1. Introduction Rankeda EI Numbers of Total Inputs of Energy SIC Codeb Intensity for 1985c Intensity for 1994c 29 18.11 25.85 26 17.82 17.71 33 19.57 16.27 32 14.75 14.69 28 11.09...

  13. A Comprehensive System of U.S. Energy Intensity Indicators

    Broader source: Energy.gov [DOE]

    This report describes a comprehensive system of energy intensity indicators for the United States that has been developed for the Department of Energy's Office of Energy Efficiency and Renewable Energy (EERE) over the past decade. This system of indicators is hierarchical in nature, beginning with detailed indexes of energy intensity for various sectors of the economy, which are ultimately aggregated to an overall energy intensity index for the economy as a whole. The aggregation of energy intensity indexes to higher levels in the hierarchy is performed with a version of the Log Mean Divisia index (LMDI) method. Based upon the data and methods in the system of indicators, the economy-wide energy intensity index shows a decline of about 14% in 2011 relative to a 1985 base year.

  14. Reciprocal-Space Analysis of Compositional Modulation in Short-Period Superlattices Using Position-Sensitive X-Ray Detection

    SciTech Connect (OSTI)

    Ahrenkiel, S.P.; Follstaedt, D.M.; Lee, S.R.; Millunchick, J.M.; Norman, A.G.; Reno, J.L.; Twesten, R.D.

    1998-11-10

    Epitaxial growth of AlAs-InAs short-period superlattices on (001) InP can lead to heterostructures exhibiting strong, quasi-periodic, lateral modulation of the alloy composition; transverse satellites arise in reciprocal space as a signature of the compositional modulation. Using an x-ray diffractometer equipped with a position-sensitive x-ray detector, we demonstrate reciprocal-space mapping of these satellites as an efficient, nondestructive means for detecting and characterizing the occurrence of compositional modulation. Systematic variations in the compositional modulation due to the structural design and the growth conditions of the short-period superlattice are characterized by routine mapping of the lateral satellites. Spontaneous compositional modulation occurs along the growth front during molecular-beam epitaxy of (AlAs) (InAs)n short-period superlattices. The modulation is quasi-periodic and forms a lateral superlattice superimposed on the intended SPS structure. Corresponding transverse satellites arise about each reciprocal lattice point, and x-ray diffraction can be routinely used to map their local reciprocal-space structure. The integrated intensity, spacing, orientation, and shape of these satellites provide a reliable means for nondestructively detecting and characterizing the compositional modulation in short-period superlattices. The analytical efficiency afforded by the use of a PSD has enabled detailed study of systematic vacations in compositional modulation as a function of the average composition, the period, and the growth rate of the short- period superlattice

  15. Simulation of period doubling of recurrent solar wind structures

    SciTech Connect (OSTI)

    Whang, Y.C. ); Burlaga, L.F. )

    1990-12-01

    In 1974, IMP, Pioneer 11 and Pioneer 10 observed a recurrent solar wind structure over five consecutive solar rotations at three different trajectories between 1 and 6 AU. Using MHD simulations and input functions generated from plasma and magnetic field data observed from Pioneer 11. The authors study the continuing evolution of this solar wind structure between 5 and 20 AU. This simulation uses the shock interactions model which treats MHD shocks as discontinuity surfaces with zero thickness and which uses the exact Rankine-Hugoniot relations to describe the jump conditions. The model can calculate the collision and merging of shocks and the dynamical evolution of the solar wind in the outer heliosphere. The simulation result shows that between 5 and 10 AU there is an evolution from two corotating interaction regions per solar rotation to one merged interaction region (MIR) per solar rotation near 10 AU, i.e., period doubling has occurred. Each MIR was bounded by a forward and a reverse shock and additional weaker shocks may exist inside the MIR. Between 10 and 20 AU the structure of one MIR per solar rotation appears as a very persistent structure.

  16. Near Field Intensity Trends of Main Laser Alignment Images in the National Ignition Facility (NIF)

    SciTech Connect (OSTI)

    Leach, R R; Beltsar, I; Burkhart, S; Lowe-Webb, R; Kamm, V M; Salmon, T; Wilhelmsen, K

    2015-01-22

    The National Ignition Facility (NIF) utilizes 192 high-energy laser beams focused with enough power and precision on a hydrogen-filled spherical, cryogenic target to potentially initiate a fusion reaction. NIF has been operational for six years; during that time, thousands of successful laser firings or shots have been executed. Critical instrument measurements and camera images are carefully recorded for each shot. The result is a massive and complex database or ‘big data’ archive that can be used to investigate the state of the laser system at any point in its history or to locate and track trends in the laser operation over time. In this study, the optical light throughput for more than 1600 NIF shots for each of the 192 main laser beams and 48 quads was measured over a three year period from January 2009 to October 2012. The purpose was to verify that the variation in the transmission of light through the optics over time performed within design expectations during this time period. Differences between average or integrated intensity from images recorded by the input sensor package (ISP) and by the output sensor package (OSP) in the NIF beam-line were examined. A metric is described for quantifying changes in the integrated intensity measurements and was used to view potential trends. Results are presented for the NIF input and output sensor package trends and changes over the three year time-frame.

  17. Measurement and interpretation of threshold stress intensity factors for steels in high-pressure hydrogen gas.

    SciTech Connect (OSTI)

    Nibur, Kevin A.

    2010-11-01

    Threshold stress intensity factors were measured in high-pressure hydrogen gas for a variety of low alloy ferritic steels using both constant crack opening displacement and rising crack opening displacement procedures. The sustained load cracking procedures are generally consistent with those in ASME Article KD-10 of Section VIII Division 3 of the Boiler and Pressure Vessel Code, which was recently published to guide design of high-pressure hydrogen vessels. Three definitions of threshold were established for the two test methods: K{sub THi}* is the maximum applied stress intensity factor for which no crack extension was observed under constant displacement; K{sub THa} is the stress intensity factor at the arrest position for a crack that extended under constant displacement; and K{sub JH} is the stress intensity factor at the onset of crack extension under rising displacement. The apparent crack initiation threshold under constant displacement, K{sub THi}*, and the crack arrest threshold, K{sub THa}, were both found to be non-conservative due to the hydrogen exposure and crack-tip deformation histories associated with typical procedures for sustained-load cracking tests under constant displacement. In contrast, K{sub JH}, which is measured under concurrent rising displacement and hydrogen gas exposure, provides a more conservative hydrogen-assisted fracture threshold that is relevant to structural components in which sub-critical crack extension is driven by internal hydrogen gas pressure.

  18. Measurement and interpretation of threshold stress intensity factors for steels in high-pressure hydrogen gas.

    SciTech Connect (OSTI)

    Dadfarnia, Mohsen; Nibur, Kevin A.; San Marchi, Christopher W.; Sofronis, Petros; Somerday, Brian P.; Foulk, James W., III; Hayden, Gary A.

    2010-07-01

    Threshold stress intensity factors were measured in high-pressure hydrogen gas for a variety of low alloy ferritic steels using both constant crack opening displacement and rising crack opening displacement procedures. The sustained load cracking procedures are generally consistent with those in ASME Article KD-10 of Section VIII Division 3 of the Boiler and Pressure Vessel Code, which was recently published to guide design of high-pressure hydrogen vessels. Three definitions of threshold were established for the two test methods: K{sub THi}* is the maximum applied stress intensity factor for which no crack extension was observed under constant displacement; K{sub THa} is the stress intensity factor at the arrest position for a crack that extended under constant displacement; and K{sub JH} is the stress intensity factor at the onset of crack extension under rising displacement. The apparent crack initiation threshold under constant displacement, K{sub THi}*, and the crack arrest threshold, K{sub THa}, were both found to be non-conservative due to the hydrogen exposure and crack-tip deformation histories associated with typical procedures for sustained-load cracking tests under constant displacement. In contrast, K{sub JH}, which is measured under concurrent rising displacement and hydrogen gas exposure, provides a more conservative hydrogen-assisted fracture threshold that is relevant to structural components in which sub-critical crack extension is driven by internal hydrogen gas pressure.

  19. Fermilab | Science at Fermilab | Experiments & Projects | Intensity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Frontier | MINERvA In this Section: Energy Frontier Intensity Frontier Experiments at the Intensity Frontier ArgoNeuT MicroBooNE MINERvA MINOS NOvA LBNF/DUNE Cosmic Frontier Proposed Projects and Experiments MINERvA MINERvA Intensity Frontier MINERvA MINERvA is a neutrino-scattering experiment that uses the NuMI beamline at Fermilab to search for low-energy neutrino interactions. It is designed to study neutrino-nucleus interactions with unprecedented detail. The number of neutrinos that

  20. Channeling of intense laser beams in underdense plasmas

    SciTech Connect (OSTI)

    Feit, M.D.; Garrison, J.C.; Rubenchik, A.M.

    1997-09-01

    A hydrodynamic simulation is used to show that intense laser pulses propagating in underdense plasmas create stable, long-lived, and completely evacuated channels. At low intensities, I=10{sup 17} W/cm{sup 2}, self focusing seriously distorts the temporal envelope of the pulse, but channeling still occurs. At high intensities, I=10{sup 19} W/cm{sup 2}, channeling can proceed over many diffraction lengths with significant distortion restricted to the leading edge of the pulse. {copyright} {ital 1997} {ital The American Physical Society}

  1. Time series monitoring of water quality and microalgal diversity in a tropical bay under intense anthropogenic interference (SW coast of the Bay of Bengal, India)

    SciTech Connect (OSTI)

    Shaik, Aziz ur Rahman; Biswas, Haimanti; Reddy, N.P.C.; Srinivasa Rao, V.; Bharathi, M.D.; Subbaiah, Ch.V.

    2015-11-15

    In recent decades, material fluxes to coastal waters from various land based anthropogenic activities have significantly been enhanced around the globe which can considerably impact the coastal water quality and ecosystem health. Hence, there is a critical need to understand the links between anthropogenic activities in watersheds and its health. Kakinada Bay is situated at the SW part of the Bay of Bengal, near to the second largest mangrove cover in India with several fertilizer industries along its bank and could be highly vulnerable to different types of pollutants. However, virtually, no data is available so far reporting its physicochemical status and microalgal diversity at this bay. In order to fill this gap, we conducted three time series observations at a fixed station during January, December and June 2012, at this bay measuring more than 15 physical, chemical and biological parameters in every 3 h over a period of 36 h in both surface (0 m) and subsurface (4.5 m) waters. Our results clearly depict a strong seasonality between three sampling months; however, any abnormal values of nutrients, biological oxygen demand or dissolved oxygen level was not observed. A Skeletonema costatum bloom was observed in December which was probably influenced by low saline, high turbid and high Si input through the river discharge. Otherwise, smaller diatoms like Thalassiosira decipiens, Thalassiothrix frauenfeldii, and Thalassionema nitzschioides dominated the bay. It is likely that the material loading can be high at the point sources due to intense anthropogenic activities, however, gets diluted with biological, chemical and physical processes in the offshore waters. - Highlights: • No signature of enormous nutrient loading was observed over the diel cycle • Dissolved oxygen and BOD concentrations did not show any exceptional trend • Diatoms dominated more than 90% of the total phytoplankton communities • A Skeletonema Costatum (a centric diatom) bloom was

  2. A validated model to predict microalgae growth in outdoor pond cultures subjected to fluctuating light intensities and water temperatures

    SciTech Connect (OSTI)

    Huesemann, Michael H.; Crowe, Braden J.; Waller, Peter; Chavis, Aaron R.; Hobbs, Samuel J.; Edmundson, Scott J.; Wigmosta, Mark S.

    2015-12-11

    Here, a microalgae biomass growth model was developed for screening novel strains for their potential to exhibit high biomass productivities under nutrient-replete conditions in outdoor ponds subjected to fluctuating light intensities and water temperatures. Growth is modeled by first estimating the light attenuation by biomass according to a scatter-corrected Beer-Lambert Law, and then calculating the specific growth rate in discretized culture volume slices that receive declining light intensities due to attenuation. The model requires the following experimentally determined strain-specific input parameters: specific growth rate as a function of light intensity and temperature, biomass loss rate in the dark as a function of temperature and average light intensity during the preceding light period, and the scatter-corrected biomass light absorption coefficient. The model was successful in predicting the growth performance and biomass productivity of three different microalgae species (Chlorella sorokiniana, Nannochloropsis salina, and Picochlorum sp.) in raceway pond cultures (batch and semi-continuous) subjected to diurnal sunlight intensity and water temperature variations. Model predictions were moderately sensitive to minor deviations in input parameters. To increase the predictive power of this and other microalgae biomass growth models, a better understanding of the effects of mixing-induced rapid light dark cycles on photo-inhibition and short-term biomass losses due to dark respiration in the aphotic zone of the pond is needed.

  3. A validated model to predict microalgae growth in outdoor pond cultures subjected to fluctuating light intensities and water temperatures

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Huesemann, Michael H.; Crowe, Braden J.; Waller, Peter; Chavis, Aaron R.; Hobbs, Samuel J.; Edmundson, Scott J.; Wigmosta, Mark S.

    2015-12-11

    Here, a microalgae biomass growth model was developed for screening novel strains for their potential to exhibit high biomass productivities under nutrient-replete conditions in outdoor ponds subjected to fluctuating light intensities and water temperatures. Growth is modeled by first estimating the light attenuation by biomass according to a scatter-corrected Beer-Lambert Law, and then calculating the specific growth rate in discretized culture volume slices that receive declining light intensities due to attenuation. The model requires the following experimentally determined strain-specific input parameters: specific growth rate as a function of light intensity and temperature, biomass loss rate in the dark as amore » function of temperature and average light intensity during the preceding light period, and the scatter-corrected biomass light absorption coefficient. The model was successful in predicting the growth performance and biomass productivity of three different microalgae species (Chlorella sorokiniana, Nannochloropsis salina, and Picochlorum sp.) in raceway pond cultures (batch and semi-continuous) subjected to diurnal sunlight intensity and water temperature variations. Model predictions were moderately sensitive to minor deviations in input parameters. To increase the predictive power of this and other microalgae biomass growth models, a better understanding of the effects of mixing-induced rapid light dark cycles on photo-inhibition and short-term biomass losses due to dark respiration in the aphotic zone of the pond is needed.« less

  4. Nonlinear photoresponse of field effect transistors terahertz detectors at high irradiation intensities

    SciTech Connect (OSTI)

    But, D. B.; Drexler, C.; Ganichev, S. D.; Sakhno, M. V.; Sizov, F. F.; Dyakonova, N.; Drachenko, O.; Gutin, A.; Knap, W.

    2014-04-28

    Terahertz power dependence of the photoresponse of field effect transistors, operating at frequencies from 0.1 to 3 THz for incident radiation power density up to 100?kW/cm{sup 2} was studied for Si metaloxidesemiconductor field-effect transistors and InGaAs high electron mobility transistors. The photoresponse increased linearly with increasing radiation intensity up to the kW/cm{sup 2} range. Nonlinearity followed by saturation of the photoresponse was observed for all investigated field effect transistors for intensities above several kW/cm{sup 2}. The observed photoresponse nonlinearity is explained by nonlinearity and saturation of the transistor channel current. A theoretical model of terahertz field effect transistor photoresponse at high intensity was developed. The model explains quantitative experimental data both in linear and nonlinear regions. Our results show that dynamic range of field effect transistors is very high and can extend over more than six orders of magnitudes of power densities (from ?0.5 mW/cm{sup 2} to ?5?kW/cm{sup 2})

  5. Energy End-Use Intensities in Commercial Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    as buildings of the 1980's. In this section, intensities are based upon the entire building stock, not just those buildings using a particular fuel for a given end use. This...

  6. User Training for Data Intensive Science Co-Chairs: Fernanda...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    User Training for Data Intensive Science Co-Chairs: Fernanda Foertter, Tim Fahey 1 ... L2, disk, tape..... * SharingLeveraging training efforts at other laboratories; don't ...

  7. Examination of Beryllium Under Intense High Energy Proton Beam...

    Office of Scientific and Technical Information (OSTI)

    Examination of Beryllium Under Intense High Energy Proton Beam at CERN's HiRadMat Facility ... 6th International Particle Accelerator Conference. Richmond, Virginia, USA, 3-8 May 2015.

  8. Intensity Pattern of Diffuse X-Ray Scattering From Thermally...

    Office of Scientific and Technical Information (OSTI)

    Populated Phonons in Fcc d-Pu-Ga Citation Details In-Document Search Title: Intensity Pattern of Diffuse X-Ray Scattering From Thermally Populated Phonons in Fcc d-Pu-Ga ...

  9. Engineering Strength, Porosity, and Emission Intensity of Nanostructur...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Engineering Strength, Porosity, and Emission Intensity of Nanostructured CdSe Networks by Altering the Building-Block Shape Home Author: H. Yu, R. Bellair, R. M. Kannan, S. L....

  10. ITP Energy Intensive Processes: Improved Heat Recovery in Biomass...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Improved Heat Recovery in Biomass-Fired Boilers ITP Energy Intensive Processes: Improved Heat Recovery in Biomass-Fired Boilers biomass-firedboilers.pdf (177.31 KB) More Documents ...

  11. Energy-Intensive Processes Portfolio: Addressing Key Energy Challenges...

    Broader source: Energy.gov (indexed) [DOE]

    research and development (r&d) portfolio for energy-Intensive Processes (eIP) addresses the top technology opportunities to save energy and reduce carbon emissions across the ...

  12. Fourth order resonance of a high intensity linear accelerator...

    Office of Scientific and Technical Information (OSTI)

    For a high intensity beam, the 4nu1 resonance of a linear accelerator is manifested through the octupolar term of space charge potential when the depressed phase advance sigma ...

  13. Property:Wave Period Range(s) | Open Energy Information

    Open Energy Info (EERE)

    Property Edit with form History Property:Wave Period Range(s) Jump to: navigation, search Property Name Wave Period Range(s) Property Type String Pages using the property "Wave...

  14. Periods of Congestion in Quark Cafe During Lunch Service: June...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Periods of Congestion in Quark Cafe During Lunch Service: June 15-17 Periods of Congestion in Quark Cafe During Lunch Service: June 15-17 Quark Cafe may experience intermittent ...

  15. Property:Building/StartPeriod | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search This is a property of type Date. Start of the period (first day o the month) Pages using the property "BuildingStartPeriod" Showing 25 pages using this...

  16. Energy Intensity Indicators: Indicators Data | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Data Energy Intensity Indicators: Indicators Data The files listed below contain energy intensity data and documentation that supports the information presented on this website. The files are in Microsoft® Excel® format (2007 and later versions) and are available to view and/or download. The entire set of files is also available for download as a zipped* (compressed) file. Economywide Transportation Sector Industrial Sector Residential Buildings Sector Commercial Buildings Sector Electricity

  17. Energy Intensity Indicators: Terminology and Definitions | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Terminology and Definitions Energy Intensity Indicators: Terminology and Definitions The Energy Intensity Indicators website uses the following terms with their associated definitions. The terms related to various definitions of energy are discussed first. Three separate definitions of energy are used in the system of indicators: 1) delivered, 2) source, and 3) source, adjusted for electricity generation efficiency change. These definitions are discussed below. Delivered energy is the

  18. Intensity Frontier| U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Intensity Frontier High Energy Physics (HEP) HEP Home About Research Science Drivers of Particle Physics Energy Frontier Intensity Frontier Experiments Cosmic Frontier Theoretical and Computational Physics Advanced Technology R&D Accelerator Stewardship Facilities Science Highlights Benefits of HEP Funding Opportunities Advisory Committees Community Resources Contact Information High Energy Physics U.S. Department of Energy SC-25/Germantown Building 1000 Independence Ave., SW Washington, DC

  19. Influence of Intense Beam in High Pressure Hydrogen Gas Filled RF Cavities

    SciTech Connect (OSTI)

    Yonehara, K.; Chung, M.; Collura, M.G.; Jana, M.R.; Leonova, M.; Moretti, A.; Popovic, M.; Schwarz, T.; Tollestrup, A.; Johnson, R.P.; Franagan, G.; /Muons, Inc. /IIT

    2012-05-01

    The influence of an intense beam in a high-pressure gas filled RF cavity has been measured by using a 400 MeV proton beam in the Mucool Test Area at Fermilab. The ionization process generates dense plasma in the cavity and the resultant power loss to the plasma is determined by measuring the cavity voltage on a sampling oscilloscope. The energy loss has been observed with various peak RF field gradients (E), gas pressures (p), and beam intensities in nitrogen and hydrogen gases. Observed RF energy dissipation in single electron (dw) in N{sub 2} and H{sub 2} gases was 2 10{sup -17} and 3 10{sup -17} Joules/RF cycle at E/p = 8 V/cm/Torr, respectively. More detailed dw measurement have been done in H{sub 2} gas at three different gas pressures. There is a clear discrepancy between the observed dw and analytical one. The discrepancy may be due to the gas density effect that has already been observed in various experiments.

  20. FIRST SIMULTANEOUS DETECTION OF MOVING MAGNETIC FEATURES IN PHOTOSPHERIC INTENSITY AND MAGNETIC FIELD DATA

    SciTech Connect (OSTI)

    Lim, Eun-Kyung; Yurchyshyn, Vasyl; Goode, Philip

    2012-07-01

    The formation and the temporal evolution of a bipolar moving magnetic feature (MMF) was studied with high-spatial and temporal resolution. The photometric properties were observed with the New Solar Telescope at Big Bear Solar Observatory using a broadband TiO filter (705.7 nm), while the magnetic field was analyzed using the spectropolarimetric data obtained by Hinode. For the first time, we observed a bipolar MMF simultaneously in intensity images and magnetic field data, and studied the details of its structure. The vector magnetic field and the Doppler velocity of the MMF were also studied. A bipolar MMF with its positive polarity closer to the negative penumbra formed, accompanied by a bright, filamentary structure in the TiO data connecting the MMF and a dark penumbral filament. A fast downflow ({<=}2 km s{sup -1}) was detected at the positive polarity. The vector magnetic field obtained from the full Stokes inversion revealed that a bipolar MMF has a U-shaped magnetic field configuration. Our observations provide a clear intensity counterpart of the observed MMF in the photosphere, and strong evidence of the connection between the MMF and the penumbral filament as a serpentine field.

  1. PARC Periodical | Volume 6, Issue 5 | Photosynthetic Antenna Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center Volume 6, Issue 5 June 3, 2015 PARC Periodical | Volume 6, Issue 5 VIEW ARTICLE HERE

  2. EIS-0431: Extension of public comment period; Notice of public...

    Energy Savers [EERE]

    Notice of public hearing (Correction) Hydrogen Energy California's Integrated ... Period and Public Hearing for the Hydrogen Energy California's Integrated ...

  3. EIS-0431: Extension of Public Comment Period | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Public Comment Period EIS-0431: Extension of Public Comment Period Hydrogen Energy California's Integrated Gasification Combined Cycle and Carbon Capture and Sequestration Project, CA The U.S. Department of Energy (DOE) published a notice of availability on July 22, 2013 (78 FR 43870) that provided for a comment period ending September 3, 2013. DOE is extending the public comment period to October 1, 2013, and announces public hearings for the Hydrogen Energy California's Integrated Gasification

  4. Recommendation 186: Option Periods in Prime Contract Language

    Broader source: Energy.gov [DOE]

    The inclusion of option periods in the language of all future DOE Request for Proposals for prime contracts when appropriate.

  5. Nonlinear electron dynamics of gold ultrathin films induced by intense terahertz waves

    SciTech Connect (OSTI)

    Minami, Yasuo Takeda, Jun; Katayama, Ikufumi; Dao, Thang Duy; Nagao, Tadaaki; Kitajima, Masahiro

    2014-12-15

    Linear and nonlinear electron dynamics of polycrystalline gold (Au) ultrathin films with thicknesses ranging from 1.4 to 5.8?nm were investigated via transmittance terahertz (THz) spectroscopy with intense electric field transients. We prepared ultrathin films with low surface roughness formed on a Si(7??7) reconstructed surface, leading to the observation of monotonic decrease in THz transmittance with respect to film thickness. Furthermore, at all tested thicknesses, the transmittance decreased nonlinearly by 10%30% with the application if high-intensity THz electric fields. Based on a Drude-model analysis, we found a significant decrease in the damping constant induced by the THz electric field, indicating that electrons are driven beyond the polycrystalline grain boundaries in Au thin films, and consequently leading to the suppression of the electronboundary scattering rate.

  6. Determining X-ray source intensity and confidence bounds in crowded fields

    SciTech Connect (OSTI)

    Primini, F. A.; Kashyap, V. L.

    2014-11-20

    We present a rigorous description of the general problem of aperture photometry in high-energy astrophysics photon-count images, in which the statistical noise model is Poisson, not Gaussian. We compute the full posterior probability density function for the expected source intensity for various cases of interest, including the important cases in which both source and background apertures contain contributions from the source, and when multiple source apertures partially overlap. A Bayesian approach offers the advantages of allowing one to (1) include explicit prior information on source intensities, (2) propagate posterior distributions as priors for future observations, and (3) use Poisson likelihoods, making the treatment valid in the low-counts regime. Elements of this approach have been implemented in the Chandra Source Catalog.

  7. High harmonic generation in underdense plasmas by intense laser pulses with orbital angular momentum

    SciTech Connect (OSTI)

    Mendonça, J. T.; Vieira, J.

    2015-12-15

    We study high harmonic generation produced by twisted laser pulses, with orbital angular momentum in the relativistic regime, for pulse propagation in underdense plasma. We consider fast time scale processes associated with an ultra-short pulse, where the ion motion can be neglected. We use both analytical models and numerical simulations using a relativistic particle-in-cell code. The present description is valid for relativistic laser intensities, when the normalized field amplitude is much larger than one, a ≫ 1. We also discuss two distinct processes associated with linear and circular polarization. Using both analytical solutions and particle-in-cell simulations, we are able to show that, for laser pulses in a well defined Laguerre-Gauss mode, angular momentum conservation is observed during the process of harmonic generation. Intensity modulation of the harmonic spectrum is also verified, as imposed by the nonlinear time-scale for energy transfer between different harmonics.

  8. PARC Periodical | Volume 7, Issue 4 | Photosynthetic Antenna Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center PARC Periodical | Volume 7, Issue 4 March 1, 2016 PARC Periodical | Volume 7, Issue 4 VIEW ARTICLE HERE http://us6.campaign-archive1.com/?u=8d1be2560b66e88d2fd6e4351&id=53703d9619&e=7d... News/Media PARC Periodical

  9. THEORETICAL CEPHEID PERIOD-LUMINOSITY AND PERIOD-COLOR RELATIONS IN SPITZER IRAC BANDS

    SciTech Connect (OSTI)

    Ngeow, Chow-Choong; Marconi, Marcella; Musella, Ilaria; Cignoni, Michele; Kanbur, Shashsi M.

    2012-02-01

    In this paper, the synthetic period-luminosity (P-L) relations in Spitzer's IRAC bands, based on a series of theoretical pulsation models with varying metal and helium abundance, were investigated. Selected sets of these synthetic P-L relations were compared to the empirical IRAC band P-L relations recently determined from Galactic and Magellanic Clouds Cepheids. For the Galactic case, synthetic P-L relations from model sets with (Y = 0.26, Z = 0.01), (Y = 0.26, Z = 0.02), and (Y = 0.28, Z = 0.02) agree with the empirical Galactic P-L relations derived from the Hubble Space Telescope parallaxes. For Magellanic Cloud Cepheids, the synthetic P-L relations from model sets with (Y = 0.25, Z = 0.008) agree with both of the empirical Large Magellanic Cloud (LMC) and Small Magellanic Cloud P-L relations. Analysis of the synthetic P-L relations from all model sets suggested that the IRAC band P-L relations may not be independent of metallicity, as the P-L slopes and intercepts could be affected by the metallicity and/or helium abundance. We also derive the synthetic period-color (P-C) relations in the IRAC bands. Non-vanishing synthetic P-C relations were found for certain combinations of IRAC band filters and metallicity. However, the synthetic P-C relations disagreed with the [3.6]-[8.0] P-C relation recently found for the Galactic Cepheids. The synthetic [3.6]-[4.5] P-C slope from the (Y = 0.25, Z = 0.008) model set, on the other hand, is in excellent agreement to the empirical LMC P-C counterpart, if a period range 1.0 < log (P) < 1.8 is adopted.

  10. High intensity electron cyclotron resonance proton source for low energy high intensity proton accelerator

    SciTech Connect (OSTI)

    Roychowdhury, P.; Chakravarthy, D. P.

    2009-12-15

    Electron cyclotron resonance (ECR) proton source at 50 keV, 50 mA has been designed, developed, and commissioned for the low energy high intensity proton accelerator (LEHIPA). Plasma characterization of this source has been performed. ECR plasma was generated with 400-1100 W of microwave power at 2.45 GHz, with hydrogen as working gas. Microwave was fed in the plasma chamber through quartz window. Plasma density and temperature was studied under various operating conditions, such as microwave power and gas pressure. Langmuir probe was used for plasma characterization using current voltage variation. The typical hydrogen plasma density and electron temperature measured were 7x10{sup 11} cm{sup -3} and 6 eV, respectively. The total ion beam current of 42 mA was extracted, with three-electrode extraction geometry, at 40 keV of beam energy. The extracted ion current was studied as a function of microwave power and gas pressure. Depending on source pressure and discharge power, more than 30% total gas efficiency was achieved. The optimization of the source is under progress to meet the requirement of long time operation. The source will be used as an injector for continuous wave radio frequency quadrupole, a part of 20 MeV LEHIPA. The required rms normalized emittance of this source is less than 0.2 {pi} mm mrad. The simulated value of normalized emittance is well within this limit and will be measured shortly. This paper presents the study of plasma parameters, first beam results, and the status of ECR proton source.

  11. Numerical and experimental study of atomic transport and Balmer line intensity in Linac4 negative ion source

    SciTech Connect (OSTI)

    Shibata, T. Nishida, K.; Hatayama, A.; Mattei, S.; Lettry, J.

    2015-04-08

    Time structure of Balmer H{sub ?} line intensity in Linac4 RF plasma has been analyzed by the combined simulation model of atomic transport and Collisional-Radiative models. As a preliminary result, time variation of the line intensity in the ignition phase of RF plasma is calculated and compared with the experimental results by photometry. For the comparison, spatial distribution of the local H{sub ?} photon emission rate at each time is calculated from the numerical model. The contribution of the local photon emission rates to the observed line intensity via optical viewing port is also investigated by application of the mock-up of the optical viewing port and the known light source. It has been clarified from the analyses that the higher and the lower peaks of the H{sub ?} line intensity observed during 1 RF cycle is mainly due to the different spatial distributions in the electron energy distribution function and the resultant local photon emission rate. These results support previous suggestion that the existence of the capacitive electric field in axial direction leads to the higher/lower peaks of the line intensity.

  12. Total Estimated Contract Price: Contract Option Periods: Performance

    Office of Environmental Management (EM)

    Price: Contract Option Periods: Performance Period Fee Earned Base Period "A" $0 Base Period "B" Option 1 Option 2 Option 3 Cumulative Fee $0 EM Contractor Fee June 2015 Site: Office of River Protection, Richland, WA Contract Name: Hanford 222-S Laboratory Analysis and Testing Services Contractor: Wastren Advantage, Inc Contract Number: DE-EM0003722 Contract Type: Hybrid Contract with Award Fee Fee Available $44,562,457 Base Contract Period: November 21, 2016 to September 20,

  13. Lithospheric Thickness Modeled from Long Period Surface Wave Dispersion

    SciTech Connect (OSTI)

    Pasyanos, M E

    2008-05-15

    The behavior of surface waves at long periods is indicative of subcrustal velocity structure. Using recently published dispersion models, we invert surface wave group velocities for lithospheric structure, including lithospheric thickness, over much of the Eastern Hemisphere, encompassing Eurasia, Africa, and the Indian Ocean. Thicker lithosphere under Precambrian shields and platforms are clearly observed, not only under the large cratons (West Africa, Congo, Baltic, Russia, Siberia, India), but also under smaller blocks like the Tarim Basin and Yangtze craton. In contrast, it is found that remobilized Precambrian structures like the Saharan Shield and Sino-Korean Paraplatform do not have well-established lithospheric keels. The thinnest lithospheric thickness is found under oceanic and continental rifts, as well as along convergence zones. We compare our results to thermal models of continental lithosphere, lithospheric cooling models of oceanic lithosphere, lithosphere-asthenosphere boundary (LAB) estimates from S-wave receiver functions, and velocity variations of global tomography models. In addition to comparing results for the broad region, we examine in detail the regions of Central Africa, Siberia, and Tibet. While there are clear differences in the various estimates, overall the results are generally consistent. Inconsistencies between the estimates may be due to a variety of reasons including lateral and depth resolution differences and the comparison of what may be different lithospheric features.

  14. Femtosecond laser induced periodic surface structures on multi-layer graphene

    SciTech Connect (OSTI)

    Beltaos, Angela Kova?evi?, Aleksander G.; Matkovi?, Aleksandar; Ralevi?, Uro; Savi?-evi?, Svetlana; Jovanovi?, Djordje; Jelenkovi?, Branislav M.; Gaji?, Rado

    2014-11-28

    In this work, we present an observation of laser induced periodic surface structures (LIPSS) on graphene. LIPSS on other materials have been observed for nearly 50 years, but until now, not on graphene. Our findings for LIPSS on multi-layer graphene were consistent with previous reports of LIPSS on other materials, thus classifying them as high spatial frequency LIPSS. LIPSS on multi-layer graphene were generated in an air environment by a linearly polarized femtosecond laser with excitation wavelength ? of 840?nm, pulse duration ? of ?150 fs, and a fluence F of ?4.34.4 mJ/cm{sup 2}. The observed LIPSS were perpendicular to the laser polarization and had dimensions of width w of ?3040?nm and length l of ?0.51.5??m, and spatial periods ? of ?70100?nm (??/8?/12), amongst the smallest of spatial periods reported for LIPSS on other materials. The spatial period and width of the LIPSS were shown to decrease for an increased number of laser shots. The experimental results support the leading theory behind high spatial frequency LIPSS formation, implying the involvement of surface plasmon polaritons. This work demonstrates a new way to pattern multi-layer graphene in a controllable manner, promising for a variety of emerging graphene/LIPSS applications.

  15. Fermi LAT Observations of LS 5039

    SciTech Connect (OSTI)

    Abdo, A.A.; Ackermann, M.; Ajello, M.; Atwood, W.B.; Axelsson, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Baughman, B.M.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Blandford, R.D.; Bloom, E.D.; Bonamente, E.; Borgland, A.W.; Bregeon, J.; Brez, A.; Brigida, M.; Bruel, P.; /more authors..

    2012-03-29

    The first results from observations of the high-mass X-ray binary LS 5039 using the Fermi Gamma-ray Space Telescope data between 2008 August and 2009 June are presented. Our results indicate variability that is consistent with the binary period, with the emission being modulated with a period of 3.903 {+-} 0.005 days; the first detection of this modulation at GeV energies. The light curve is characterized by a broad peak around superior conjunction in agreement with inverse Compton scattering models. The spectrum is represented by a power law with an exponential cutoff, yielding an overall flux (100 MeV-300 GeV) of 4.9 {+-} 0.5(stat) {+-} 1.8(syst) x 10{sup -7} photon cm{sup -2} s{sup -1}, with a cutoff at 2.1 {+-} 0.3(stat) {+-} 1.1(syst) GeV and photon index {Gamma} = 1.9 {+-} 0.1(stat) {+-} 0.3(syst). The spectrum is observed to vary with orbital phase, specifically between inferior and superior conjunction. We suggest that the presence of a cutoff in the spectrum may be indicative of magnetospheric emission similar to the emission seen in many pulsars by Fermi.

  16. Intense Muon Beams for Experiments at Project X

    SciTech Connect (OSTI)

    C.M. Ankenbrandt, R.P. Johnson, C. Y. Yoshikawa, V.S. Kashikhin, D.V. Neuffer, J. Miller, R.A. Rimmer

    2011-03-01

    A coherent approach for providing muon beams to several experiments for the intensity-frontier program at Project X is described. Concepts developed for the front end of a muon collider/neutrino factory facility, such as phase rotation and ionization cooling, are applied, but with significant differences. High-intensity experiments typically require high-duty-factor beams pulsed at a time interval commensurate with the muon lifetime. It is challenging to provide large RF voltages at high duty factor, especially in the presence of intense radiation and strong magnetic fields, which may preclude the use of superconducting RF cavities. As an alternative, cavities made of materials such as ultra-pure Al and Be, which become very good but not super conductors at cryogenic temperatures, can be used.

  17. Collaborative, Data-Intensive Science Key to Science & Commerce Challenges

    SciTech Connect (OSTI)

    Kleese van Dam, Kerstin

    2013-05-28

    This article coincides with the release of "Data-Intensive Science," co-edited by Dr. Kerstin Kleese van Dam. In the piece, Dr. Kleese van Dam explains how data-intensive science has the potential to transform not only how we do science but how quickly we can translate scientific progress into complete solutions, policies, decisions and, ultimately, economic success. In the article, she states it is clear that nations that can most effectively transform tons of scientific data into actionable knowledge are going to be the leaders in the future of science and commerce and how creating the required new insights for complex challenges cannot be done without effective collaboration. Because many science domains already are unable to explore all of the data they collect (or which is relevant to their research), progress in collaborative, data-intensive science is crucial toward unlocking the potential of big data.

  18. Femtosecond laser-induced periodic surface structure on the Ti-based nanolayered thin films

    SciTech Connect (OSTI)

    Petrovi?, Suzana M.; Gakovi?, B.; Peruko, D.; Stratakis, E.; Department of Materials Science and Technology, University of Crete, 710 03 Heraklion, Crete ; Bogdanovi?-Radovi?, I.; ?ekada, M.; Fotakis, C.; Department of Physics, University of Crete, 714 09 Heraklion, Crete ; Jelenkovi?, B.

    2013-12-21

    Laser-induced periodic surface structures (LIPSSs) and chemical composition changes of Ti-based nanolayered thin films (Al/Ti, Ni/Ti) after femtosecond (fs) laser pulses action were studied. Irradiation is performed using linearly polarized Ti:Sapphire fs laser pulses of 40 fs pulse duration and 800 nm wavelength. The low spatial frequency LIPSS (LSFL), oriented perpendicular to the laser polarization with periods slightly lower than the irradiation wavelength, was typically formed at elevated laser fluences. On the contrary, high spatial frequency LIPSS (HSFL) with uniform period of 155 nm, parallel to the laser light polarization, appeared at low laser fluences, as well as in the wings of the Gaussian laser beam distribution for higher used fluence. LSFL formation was associated with the material ablation process and accompanied by the intense formation of nanoparticles, especially in the Ni/Ti system. The composition changes at the surface of both multilayer systems in the LSFL area indicated the intermixing between layers and the substrate. Concentration and distribution of all constitutive elements in the irradiated area with formed HSFLs were almost unchanged.

  19. RED SUPERGIANT STARS IN THE LARGE MAGELLANIC CLOUD. I. THE PERIOD-LUMINOSITY RELATION

    SciTech Connect (OSTI)

    Yang Ming; Jiang, B. W. E-mail: bjiang@bnu.edu.cn

    2011-01-20

    From previous samples of red supergiants (RSGs) by various groups, 191 objects are assembled to compose a large sample of RSG candidates in LMC. For 189 of them, the identity as an RSG is verified by their brightness and color indexes in several near- and mid-infrared bands related to the Two Micron All Sky Survey (2MASS) JHK{sub S} bands and the Spitzer/IRAC and Spitzer/MIPS bands. From the visual time-series photometric observations by the ASAS and MACHO projects which cover nearly 8-10 years, the period and amplitude of light variation are analyzed carefully using both the phase dispersion minimization and Period04 methods. According to the properties of light variation, these objects are classified into five categories: (1) 20 objects are saturated in photometry or located in crowded stellar field with poor photometric results, (2) 35 objects with too complex variation to have any certain period, (3) 23 objects with irregular variation, (4) 16 objects with semi-regular variation, and (5) 95 objects with long secondary period (LSP) among which 31 have distinguishable short period and 51 have a long period shorter than 3000 days that can be determined with reasonable accuracy. For the semi-regular variables and the LSP variables with distinguishable short periods, the period-luminosity (P-L) relation is analyzed in the visual, near-infrared, and mid-infrared bands. It is found that the P-L relation is tight in the infrared bands such as the 2MASS JHK{sub S} bands and the Spitzer/IRAC bands, in particular in the Spitzer/IRAC [3.6] and [4.5] bands; meanwhile, the P-L relation is relatively sparse in the V band which may be caused by inhomogeneous interstellar extinction. The results are compared with others' P-L relationships for RSGs and the P-L sequences of red giants in LMC.

  20. Demonstration of sawtooth period control with EC waves in KSTAR plasma

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jeong, J. H.; Bae, Y. S.; Joung, M.; Kim, D.; Goodman, T. P.; Sauter, O.; Sakamoto, K.; Kajiwara, K.; Oda, Y.; Kwak, J. G.; et al

    2015-03-12

    The sawtooth period control in tokamak is important issue in recent years because the sawtooth crash can trigger TM/NTM instabilities and drive plasmas unstable. The control of sawtooth period by the modification of local current profile near the q=1 surface using ECCD has been demonstrated in a number of tokamaks [1, 2] including KSTAR. As a result, developing techniques to control the sawtooth period as a way of controlling the onset of NTM has been an important area of research in recent years [3]. In 2012 KSTAR plasma campaign, the sawtooth period control is carried out by the different depositionmore » position of EC waves across the q=1 surface. The sawtooth period is shortened by on-axis co-ECCD (destabilization), and the stabilization of the sawtooth is also observed by off-axis co-ECCD at outside q=1 surface. In 2013 KSTAR plasma campaign, the sawtooth locking experiment with periodic forcing of 170 GHz EC wave is carried out to control the sawtooth period. The optimal target position which lengthens the sawtooth period is investigated by performing a scan of EC beam deposition position nearby q=1 surface at the toroidal magnetic field of 2.9 T and plasma current of 0.7 MA. The sawtooth locking by the modulated EC beam is successfully demonstrated as in [3-5] with the scan of modulation-frequency and duty-ratio at the low beta (βN~0.5) plasma. In this paper, the sawteeth behavior by the location of EC beam and the preliminary result of the sawtooth locking experiments in KSTAR will be presented.« less

  1. Demonstration of sawtooth period control with EC waves in KSTAR plasma

    SciTech Connect (OSTI)

    Jeong, J. H.; Bae, Y. S.; Joung, M.; Kim, D.; Goodman, T. P.; Sauter, O.; Sakamoto, K.; Kajiwara, K.; Oda, Y.; Kwak, J. G.; Namkung, W.; Cho, M. H.; Park, H.; Hosea, J.; Ellis, R.

    2015-03-12

    The sawtooth period control in tokamak is important issue in recent years because the sawtooth crash can trigger TM/NTM instabilities and drive plasmas unstable. The control of sawtooth period by the modification of local current profile near the q=1 surface using ECCD has been demonstrated in a number of tokamaks [1, 2] including KSTAR. As a result, developing techniques to control the sawtooth period as a way of controlling the onset of NTM has been an important area of research in recent years [3]. In 2012 KSTAR plasma campaign, the sawtooth period control is carried out by the different deposition position of EC waves across the q=1 surface. The sawtooth period is shortened by on-axis co-ECCD (destabilization), and the stabilization of the sawtooth is also observed by off-axis co-ECCD at outside q=1 surface. In 2013 KSTAR plasma campaign, the sawtooth locking experiment with periodic forcing of 170 GHz EC wave is carried out to control the sawtooth period. The optimal target position which lengthens the sawtooth period is investigated by performing a scan of EC beam deposition position nearby q=1 surface at the toroidal magnetic field of 2.9 T and plasma current of 0.7 MA. The sawtooth locking by the modulated EC beam is successfully demonstrated as in [3-5] with the scan of modulation-frequency and duty-ratio at the low beta (βN~0.5) plasma. In this paper, the sawteeth behavior by the location of EC beam and the preliminary result of the sawtooth locking experiments in KSTAR will be presented.

  2. Periodicals collection management using a decision support system

    SciTech Connect (OSTI)

    Compton, M.L.; Moser, E.C.

    1993-12-31

    Sandia National Laboratories is a multiprogram national laboratory established in 1949. The Library currently uses DOBIS for its automated system, including the Periodicals Control function for periodical check-in. DOBIS performs processing and control functions adequately, but could not meet our reporting needs. Therefore the Library`s Periodicals Decision Team decided that they needed another ``system`` for collection management. A Periodicals Decision Support System was created using information downloaded from DOBIS and uploaded into dBASE IV. The Periodical Decision Support System functions as an information-processing system that has aided us in making collection management decisions for periodicals. It certainly allows us to do interactive ad-hoc analysis; although there are no modeling tools currently incorporated in the system. We hope that these modeling tools will come later. We have been gathering information and developing needed reports to achieve this goal.

  3. High intensity proton operation at the Brookhaven AGS accelerator complex

    SciTech Connect (OSTI)

    Ahrens, L.A.; Blaskiewicz, M.; Bleser, E.; Brennan, J.M.; Gardner, C.; Glenn, J.W.; Onillon, E.; Reece, R.K.; Roser, T.; Soukas, A.

    1994-08-01

    With the completion of the AGS rf upgrade, and the implementation of a transition {open_quotes}jump{close_quotes}, all of accelerator systems were in place in 1994 to allow acceleration of the proton intensity available from the AGS Booster injector to AGS extraction energy and delivery to the high energy users. Beam commissioning results with these new systems are presented. Progress in identifying and overcoming other obstacles to higher intensity are given. These include a careful exploration of the stopband strengths present on the AGS injection magnetic porch, and implementation of the AGS single bunch transverse dampers throughout the acceleration cycle.

  4. PARC Periodical | Volume 7, Issue 6 | Photosynthetic Antenna Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center PARC Periodical | Volume 7, Issue 6 August 30, 2016 PARC Periodical | Volume 7, Issue 6 VIEW ARTICLE HERE http://us6.campaign-archive1.com/?u=8d1be2560b66e88d2fd6e4351&id=03b6c7eb11&e=41... News/Media PARC Periodical

  5. Extension of Comment Period on the Draft Integrated, Interagency...

    Energy Savers [EERE]

    of Comment Period on the Draft Integrated, Interagency Pre-Application (IIP) Process for Electric Transmission Projects Requiring Federal Authorizations Extension of Comment...

  6. Notice of Extension of Public Comment Period for Application...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Extension of Public Comment Period for Application for Proposed Project for Clean Line Plains & Eastern Transmission Line: Federal Register Notice, Volume 80, No. 116 - Jun. 17, ...

  7. Department of Energy Extends Public Comment Period | Department...

    Office of Environmental Management (EM)

    Administration Nevada Site Office is extending the public comment period for the Draft Site-Wide Environmental Impact Statement (SWEIS) for the Nevada National Security ...

  8. "Period","Annual Production Capacity",,"Monthly B100 Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Biodiesel production capacity and production" "million gallons" "Period","Annual ... is the industry designation for pure biodiesel; a biodiesel blend contains both pure ...

  9. CEQ Extends Comment Period on Revised Draft Guidance on Consideration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Greenhouse Gas Emissions and the Effects of Climate Change in NEPA Reviews CEQ Extends Comment Period on Revised Draft Guidance on Consideration of Greenhouse Gas ...

  10. EIS-0391: Extension of the Public Comment Period | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Tank Closure and Waste Management for the Hanford Site, Richland, WA Extension of the Public Comment Period for the Draft Tank Closure and Waste Management Environmental Impact...

  11. EIS-0489: Notice of Comment Period Extension and Additional Scoping...

    Broader source: Energy.gov (indexed) [DOE]

    FERC announces the extension of the public comment periond and additional scoping meetings. The comment period has been extended from September 4, 2012 to October 29, 2012. For ...

  12. EIS-0463: Extension of Scoping Period | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transmission LLC: Public Scoping Period Reopened: Federal Register Volume 73, No. 183 - Jun. 15, 2011 EIS-0463: Notice of Intent to Prepare a Supplement to the Draft Environmental...

  13. EIS-0403: Notice to Extend Public Comment Period | Department...

    Broader source: Energy.gov (indexed) [DOE]

    States The Department of Energy and the Bureau of Land Management (BLM) (the Agencies) extended the public comment period for the Programmatic Environmental Impact Statement to...

  14. Concept of quasi-periodic undulator - control of radiation spectrum

    SciTech Connect (OSTI)

    Sasaki, Shigemi

    1995-02-01

    A new type of undulator, the quasi-periodic undulator (QPU) is considered which generates the irrational harmonics in the radiation spectrum. This undulator consists of the arrays of magnet blocks aligned in a quasi-periodic order, and consequentially lead to a quasi-periodic motion of electron. A combination of the QPU and a conventional crystal/grating monochromator provides pure monochromatic photon beam for synchrotron radiation users because the irrational harmonics do not be diffracted in the same direction by a monochromator. The radiation power and width of each radiation peak emitted from this undulator are expected to be comparable with those of the conventional periodic undulator.

  15. Observation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    tearing mode deceleration and locking due to eddy currents induced in a conducting shell B. E. Chapman Department of Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706 R. Fitzpatrick Institute for Fusion Studies, Department of Physics, University of Texas at Austin, Austin, Texas 78712 D. Craig Department of Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706 P. Martin Consorzio RFX, Associazione EURATOM-ENEA sulla Fusione, Corso Stati Uniti 4, 35127 Padova, Italy

  16. Observation

    Office of Scientific and Technical Information (OSTI)

    to an Orbital-Selective Mott Phase in A x Fe 2-y Se 2 (AK, Rb) Superconductors M. Yi, 1, 2 D. H. Lu, 3 R. Yu, 4 S. C. Riggs, 1, 2 J.-H. Chu, 1, 2 B. Lv, 5 Z. Liu, 1, 2 M. Lu,...

  17. Optimal observation time window for forecasting the next earthquake

    SciTech Connect (OSTI)

    Omi, Takahiro; Shinomoto, Shigeru; Kanter, Ido

    2011-02-15

    We report that the accuracy of predicting the occurrence time of the next earthquake is significantly enhanced by observing the latest rate of earthquake occurrences. The observation period that minimizes the temporal uncertainty of the next occurrence is on the order of 10 hours. This result is independent of the threshold magnitude and is consistent across different geographic areas. This time scale is much shorter than the months or years that have previously been considered characteristic of seismic activities.

  18. Field observations and lessons learned

    SciTech Connect (OSTI)

    Nielsen, Joh B

    2010-01-01

    This presentation outlines observations and lessons learned from the Megaports program. It provides: (1) details of field and technical observations collected during LANL field activities at ports around the world and details of observations collected during radiation detections system testing at Los Alamos National Laboratory; (2) provides suggestions for improvement and efficiency; and (3) discusses possible program execution changes for more effective operations.

  19. Spectroscopic study of gold nanoparticle formation through high intensity laser irradiation of solution

    SciTech Connect (OSTI)

    Nakamura, Takahiro Sato, Shunichi; Herbani, Yuliati; Ursescu, Daniel; Banici, Romeo; Dabu, Razvan Victor

    2013-08-15

    A spectroscopic study of the gold nanoparticle (NP) formation by high-intensity femtosecond laser irradiation of a gold ion solution was reported. The effect of varying energy density of the laser on the formation of gold NPs was also investigated. The surface plasmon resonance (SPR) peak of the gold nanocolloid in real-time UV-visible absorption spectra during laser irradiation showed a distinctive progress; the SPR absorption peak intensity increased after a certain irradiation time, reached a maximum and then gradually decreased. During this absorption variation, at the same time, the peak wavelength changed from 530 to 507 nm. According to an empirical equation derived from a large volume of experimental data, the estimated mean size of the gold NPs varied from 43.4 to 3.2 nm during the laser irradiation. The mean size of gold NPs formed at specific irradiation times by transmission electron microscopy showed the similar trend as that obtained in the spectroscopic analysis. From these observations, the formation mechanism of gold NPs during laser irradiation was considered to have two steps. The first is a reduction of gold ions by reactive species produced through a non-linear reaction during high intensity laser irradiation of the solution; the second is the laser fragmentation of produced gold particles into smaller pieces. The gold nanocolloid produced after the fragmentation by excess irradiation showed high stability for at least a week without the addition of any dispersant because of the negative charge on the surface of the nanoparticles probably due to the surface oxidation of gold nanoparticles. A higher laser intensity resulted in a higher efficiency of gold NPs fabrication, which was attributed to a larger effective volume of the reaction.

  20. ARM - Field Campaign - Biomass Burning Observation Project - BBOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsBiomass Burning Observation Project - BBOP Campaign Links BBOP Website Final Campaign Report ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Biomass Burning Observation Project - BBOP 2013.07.01 - 2013.10.24 Website : http://www.arm.gov/campaigns/bbop/ Lead Scientist : Larry Kleinman For data sets, see below. Abstract This field campaign will address multiple uncertainties in aerosol intensive

  1. DIRECT IMAGING OF QUASI-PERIODIC FAST PROPAGATING WAVES OF {approx}2000 km s{sup -1} IN THE LOW SOLAR CORONA BY THE SOLAR DYNAMICS OBSERVATORY ATMOSPHERIC IMAGING ASSEMBLY

    SciTech Connect (OSTI)

    Liu Wei; Title, Alan M.; Schrijver, Carolus J.; Aschwanden, Markus J.; De Pontieu, Bart; Tarbell, Theodore D.; Zhao Junwei; Ofman, Leon

    2011-07-20

    Quasi-periodic propagating fast mode magnetosonic waves in the solar corona were difficult to observe in the past due to relatively low instrument cadences. We report here evidence of such waves directly imaged in EUV by the new Atmospheric Imaging Assembly instrument on board the Solar Dynamics Observatory. In the 2010 August 1 C3.2 flare/coronal mass ejection event, we find arc-shaped wave trains of 1%-5% intensity variations (lifetime {approx}200 s) that emanate near the flare kernel and propagate outward up to {approx}400 Mm along a funnel of coronal loops. Sinusoidal fits to a typical wave train indicate a phase velocity of 2200 {+-} 130 km s{sup -1}. Similar waves propagating in opposite directions are observed in closed loops between two flare ribbons. In the k-{omega} diagram of the Fourier wave power, we find a bright ridge that represents the dispersion relation and can be well fitted with a straight line passing through the origin. This k-{omega} ridge shows a broad frequency distribution with power peaks at 5.5, 14.5, and 25.1 mHz. The strongest signal at 5.5 mHz (period 181 s) temporally coincides with quasi-periodic pulsations of the flare, suggesting a common origin. The instantaneous wave energy flux of (0.1-2.6) x 10{sup 7} erg cm{sup -2} s{sup -1} estimated at the coronal base is comparable to the steady-state heating requirement of active region loops.

  2. State observer for synchronous motors

    DOE Patents [OSTI]

    Lang, Jeffrey H.

    1994-03-22

    A state observer driven by measurements of phase voltages and currents for estimating the angular orientation of a rotor of a synchronous motor such as a variable reluctance motor (VRM). Phase voltages and currents are detected and serve as inputs to a state observer. The state observer includes a mathematical model of the electromechanical operation of the synchronous motor. The characteristics of the state observer are selected so that the observer estimates converge to the actual rotor angular orientation and velocity, winding phase flux linkages or currents.

  3. Drift tube suspension for high intensity linear accelerators

    DOE Patents [OSTI]

    Liska, Donald J.; Schamaun, Roger G.; Clark, Donald C.; Potter, R. Christopher; Frank, Joseph A.

    1982-01-01

    The disclosure relates to a drift tube suspension for high intensity linear accelerators. The system comprises a series of box-sections girders independently adjustably mounted on a linear accelerator. A plurality of drift tube holding stems are individually adjustably mounted on each girder.

  4. Drift tube suspension for high intensity linear accelerators

    DOE Patents [OSTI]

    Liska, D.J.; Schamaun, R.G.; Clark, D.C.; Potter, R.C.; Frank, J.A.

    1980-03-11

    The disclosure relates to a drift tube suspension for high intensity linear accelerators. The system comprises a series of box-sections girders independently adjustably mounted on a linear accelerator. A plurality of drift tube holding stems are individually adjustably mounted on each girder.

  5. Continuous Snow Depth, Intensive Site 1, Barrow, Alaska

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Bob Busey; Larry Hinzman; Vladimir Romanovsky; William Cable

    2014-11-06

    Continuous Snow depth data are being collected at several points within four intensive study areas in Barrow, Alaska. These data are being collected to better understand the energy dynamics above the active layer and permafrost. They complement in-situ snow and soil measurements at this location. The data could also be used as supporting measurements for other research and modeling activities.

  6. Continuous Snow Depth, Intensive Site 1, Barrow, Alaska

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Bob Busey; Larry Hinzman; Vladimir Romanovsky; William Cable

    Continuous Snow depth data are being collected at several points within four intensive study areas in Barrow, Alaska. These data are being collected to better understand the energy dynamics above the active layer and permafrost. They complement in-situ snow and soil measurements at this location. The data could also be used as supporting measurements for other research and modeling activities.

  7. PNNL Data-Intensive Computing for a Smarter Energy Grid

    ScienceCinema (OSTI)

    Carol Imhoff; Zhenyu (Henry) Huang; Daniel Chavarria

    2012-12-31

    The Middleware for Data-Intensive Computing (MeDICi) Integration Framework, an integrated platform to solve data analysis and processing needs, supports PNNL research on the U.S. electric power grid. MeDICi is enabling development of visualizations of grid operations and vulnerabilities, with goal of near real-time analysis to aid operators in preventing and mitigating grid failures.

  8. PNNL pushing scientific discovery through data intensive computing breakthroughs

    ScienceCinema (OSTI)

    Deborah Gracio; David Koppenaal; Ruby Leung

    2012-12-31

    The Pacific Northwest National Laboratorys approach to data intensive computing (DIC) is focused on three key research areas: hybrid hardware architectures, software architectures, and analytic algorithms. Advancements in these areas will help to address, and solve, DIC issues associated with capturing, managing, analyzing and understanding, in near real time, data at volumes and rates that push the frontiers of current technologies.

  9. Energy Intensity of Federal Buildings Slashed 25% in Past Decade

    Broader source: Energy.gov [DOE]

    The U.S. General Services Administration (GSA), which builds and manages federal buildings, recently announced that it cut federal energy spending by $65.5 million in fiscal year (FY) 2012 by reducing the energy use intensity levels in its buildings by nearly 25% since FY 2003.

  10. PNNLs Data Intensive Computing research battles Homeland Security threats

    ScienceCinema (OSTI)

    David Thurman; Joe Kielman; Katherine Wolf; David Atkinson

    2012-12-31

    The Pacific Northwest National Laboratorys (PNNL's) approach to data intensive computing (DIC) is focused on three key research areas: hybrid hardware architecture, software architectures, and analytic algorithms. Advancements in these areas will help to address, and solve, DIC issues associated with capturing, managing, analyzing and understanding, in near real time, data at volumes and rates that push the frontiers of current technologies.

  11. ARCADE 2 OBSERVATIONS OF GALACTIC RADIO EMISSION

    SciTech Connect (OSTI)

    Kogut, A.; Fixsen, D. J.; Mirel, P.; Wollack, E.; Levin, S. M.; Limon, M.; Seiffert, M.; Lubin, P. M.; Singal, J.; Villela, T.; Wuensche, C. A.

    2011-06-10

    We use absolutely calibrated data from the ARCADE 2 flight in 2006 July to model Galactic emission at frequencies 3, 8, and 10 GHz. The spatial structure in the data is consistent with a superposition of free-free and synchrotron emission. Emission with spatial morphology traced by the Haslam 408 MHz survey has spectral index {beta}{sub synch} = -2.5 {+-} 0.1, with free-free emission contributing 0.10 {+-} 0.01 of the total Galactic plane emission in the lowest ARCADE 2 band at 3.15 GHz. We estimate the total Galactic emission toward the polar caps using either a simple plane-parallel model with csc |b| dependence or a model of high-latitude radio emission traced by the COBE/FIRAS map of C II emission. Both methods are consistent with a single power law over the frequency range 22 MHz to 10 GHz, with total Galactic emission toward the north polar cap T{sub Gal} = 10.12 {+-} 0.90 K and spectral index {beta} = -2.55 {+-} 0.03 at reference frequency 0.31 GHz. Emission associated with the plane-parallel structure accounts for only 30% of the observed high-latitude sky temperature, with the residual in either a Galactic halo or an isotropic extragalactic background. The well-calibrated ARCADE 2 maps provide a new test for spinning dust emission, based on the integrated intensity of emission from the Galactic plane instead of cross-correlations with the thermal dust spatial morphology. The Galactic plane intensity measured by ARCADE 2 is fainter than predicted by models without spinning dust and is consistent with spinning dust contributing 0.4 {+-} 0.1 of the Galactic plane emission at 23 GHz.

  12. THE QUASI-BIENNIAL PERIODICITY AS A WINDOW ON THE SOLAR MAGNETIC DYNAMO CONFIGURATION

    SciTech Connect (OSTI)

    Simoniello, R.; Turck-Chieze, S.; Baldner, C.; Finsterle, W.

    2013-03-10

    Manifestations of the solar magnetic activity through periodicities of about 11 and 2 years are now clearly seen in all solar activity indices. In this paper, we add information about the mechanism driving the 2-year period by studying the time and latitudinal properties of acoustic modes that are sensitive probes of the subsurface layers. We use almost 17 years of high-quality resolved data provided by the Global Oscillation Network Group to investigate the solar cycle changes in p-mode frequencies for spherical degrees l from 0 to 120 and 1600 {mu}Hz {<=}{nu} {<=} 3500 {mu}Hz. For both periodic components of solar activity, we locate the origin of the frequency shift in the subsurface layers and find evidence that a sudden enhancement in amplitude occurs in just the last few hundred kilometers. We also show that, in both cases, the size of the shift increases toward equatorial latitudes and from minimum to maximum solar activity, but, in agreement with previous findings, the quasi-biennial periodicity (QBP) causes a weaker shift in mode frequencies and a slower enhancement than that caused by the 11-year cycle. We compare our observational findings with the features predicted by different models, that try to explain the origin of this QBP and conclude that the observed properties could result from the beating between a dipole and quadrupole magnetic configuration of the dynamo.

  13. Periodic striations on beryllium and tungsten surfaces by indirect femtosecond laser irradiation

    SciTech Connect (OSTI)

    Lungu, C. P.; Ticoş, C. M. Poroşnicu, C.; Jepu, I.; Lungu, M.; Marcu, A.; Luculescu, C.; Cojocaru, G.; Ursescu, D.; Bănici, R.; Ungureanu, G. R.

    2014-03-10

    Femtosecond laser pulses with λ = 800 nm were focused in air at one atmosphere and in deuterium (D) at low pressure. Submicron periodic structures were observed on surfaces made of Be, W and a mixture of Be-W immersed in these gases and placed nearly parallel with the laser beam, at 300 μm from the focal spot. In air, no structures were observed on Be. For the Be-W mixture, the periodic structures were uniform and parallel when formed in D but irregular in air. In this last case the striations were organized into small patches of 1 to 2 μm in size.

  14. Period-doubling reconstructions of semiconductor partial dislocations

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Park, Ji -Sang; Huang, Bing; Wei, Su -Huai; Kang, Joongoo; McMahon, William E.

    2015-09-18

    Atomic-scale understanding and control of dislocation cores is of great technological importance, because they act as recombination centers for charge carriers in optoelectronic devices. Using hybrid density-functional calculations, we present period-doubling reconstructions of a 90° partial dislocation in GaAs, for which the periodicity of like-atom dimers along the dislocation line varies from one to two, to four dimers. The electronic properties of a dislocation change drastically with each period doubling. The dimers in the single-period dislocation are able to interact, to form a dispersive one-dimensional band with deep-gap states. However, the inter-dimer interaction for the double-period dislocation becomes significantly reduced;more » hence, it is free of mid-gap states. The Ga core undergoes a further period-doubling transition to a quadruple-period reconstruction induced by the formation of small hole polarons. Lastly, the competition between these dislocation phases suggests a new passivation strategy via population manipulation of the detrimental single-period phase.« less

  15. Quantum coherent switch utilizing commensurate nanoelectrode and charge density periodicities

    DOE Patents [OSTI]

    Harrison, Neil; Singleton, John; Migliori, Albert

    2008-08-05

    A quantum coherent switch having a substrate formed from a density wave (DW) material capable of having a periodic electron density modulation or spin density modulation, a dielectric layer formed onto a surface of the substrate that is orthogonal to an intrinsic wave vector of the DW material; and structure for applying an external spatially periodic electrostatic potential over the dielectric layer.

  16. Period-doubling reconstructions of semiconductor partial dislocations

    SciTech Connect (OSTI)

    Park, Ji -Sang; Huang, Bing; Wei, Su -Huai; Kang, Joongoo; McMahon, William E.

    2015-09-18

    Atomic-scale understanding and control of dislocation cores is of great technological importance, because they act as recombination centers for charge carriers in optoelectronic devices. Using hybrid density-functional calculations, we present period-doubling reconstructions of a 90° partial dislocation in GaAs, for which the periodicity of like-atom dimers along the dislocation line varies from one to two, to four dimers. The electronic properties of a dislocation change drastically with each period doubling. The dimers in the single-period dislocation are able to interact, to form a dispersive one-dimensional band with deep-gap states. However, the inter-dimer interaction for the double-period dislocation becomes significantly reduced; hence, it is free of mid-gap states. The Ga core undergoes a further period-doubling transition to a quadruple-period reconstruction induced by the formation of small hole polarons. Lastly, the competition between these dislocation phases suggests a new passivation strategy via population manipulation of the detrimental single-period phase.

  17. 2014-05-05 Issuance: Test Procedures for High-Intensity Discharge...

    Energy Savers [EERE]

    Test Procedures for High-Intensity Discharge Lamps; Supplemental Notice of Proposed Rulemaking 2014-05-05 Issuance: Test Procedures for High-Intensity Discharge Lamps; Supplemental ...

  18. A high-resolution imaging X-ray crystal spectrometer for intense...

    Office of Scientific and Technical Information (OSTI)

    for intense laser plasma interaction experiments Citation Details In-Document Search Title: A high-resolution imaging X-ray crystal spectrometer for intense laser plasma ...

  19. Observation of Instabilities of Coherent Transverse Ocillations in the Fermilab Booster

    SciTech Connect (OSTI)

    Alexahin, Y.; Eddy, N.; Gianfelice-Wendt, E.; Lebedev, V.; Marsh, W.; Pellico, W.; Triplett, K.; /Fermilab

    2012-05-01

    The Fermilab Booster - built more than 40 years ago - operates well above the design proton beam intensity of 4 {center_dot} 10{sup 12} ppp. Still, the Fermilab neutrino experiments call for even higher intensity exceeding 5.5 {center_dot} 10{sup 12} ppp. A multitude of intensity related effects must be overcome in order to meet this goal including suppression of coherent dipole instabilities of transverse oscillations which manifest themselves as a sudden drop in the beam current. In this report we present the results of observation of these instabilities at different tune, coupling and chromaticity settings and discuss possible cures.

  20. MAGNETIC ROSSBY WAVES IN THE SOLAR TACHOCLINE AND RIEGER-TYPE PERIODICITIES

    SciTech Connect (OSTI)

    Zaqarashvili, Teimuraz V.; Carbonell, Marc; Oliver, Ramon; Ballester, Jose Luis E-mail: marc.carbonell@uib.e E-mail: joseluis.ballester@uib.e

    2010-02-01

    Apart from the eleven-year solar cycle, another periodicity around 155-160 days was discovered during solar cycle 21 in high-energy solar flares, and its presence in sunspot areas and strong magnetic flux has been also reported. This periodicity has an elusive and enigmatic character, since it usually appears only near the maxima of solar cycles, and seems to be related with a periodic emergence of strong magnetic flux at the solar surface. Therefore, it is probably connected with the tachocline, a thin layer located near the base of the solar convection zone, where a strong dynamo magnetic field is stored. We study the dynamics of Rossby waves in the tachocline in the presence of a toroidal magnetic field and latitudinal differential rotation. Our analysis shows that the magnetic Rossby waves are generally unstable and that the growth rates are sensitive to the magnetic field strength and to the latitudinal differential rotation parameters. Variation of the differential rotation and the magnetic field strength throughout the solar cycle enhance the growth rate of a particular harmonic in the upper part of the tachocline around the maximum of the solar cycle. This harmonic is symmetric with respect to the equator and has a period of 155-160 days. A rapid increase of the wave amplitude could give rise to a magnetic flux emergence leading to observed periodicities in solar activity indicators related to magnetic flux.

  1. NS&T MANAGEMENT OBSERVATIONS

    SciTech Connect (OSTI)

    Gianotto, David

    2014-06-01

    The INL Management Observation Program (MOP) is designed to improve managers and supervisors understanding of work being performed by employees and the barriers impacting their success. The MOP also increases workers understanding of managements’ expectations as they relate to safety, security, quality, and work performance. Management observations (observations) are designed to improve the relationship and trust between employees and managers through increased engagement and interactions between managers and researchers in the field. As part of continuous improvement, NS&T management took initiative to focus on the participation and quality of observations in FY 14. This quarterly report is intended to (a) summarize the participation and quality of management’s observations, (b) assess observations for commonalities or trends related to facility or process barriers impacting research, and (c) provide feedback and make recommendations for improvements NS&T’s MOP.

  2. NS&T Management Observations

    SciTech Connect (OSTI)

    Gianotto, David

    2014-09-01

    The INL Management Observation Program (MOP) is designed to improve managers and supervisors understanding of work being performed by employees and the barriers impacting their success. The MOP also increases workers understanding of managements’ expectations as they relate to safety, security, quality, and work performance. Management observations (observations) are designed to improve the relationship and trust between employees and managers through increased engagement and interactions between managers and researchers in the field. As part of continuous improvement, NS&T management took initiative to focus on the participation and quality of observations in FY 14. This quarterly report is intended to (a) summarize the participation and quality of management’s observations, (b) assess observations for commonalities or trends related to facility or process barriers impacting research, and (c) provide feedback and make recommendations for improvements NS&T’s MOP.

  3. Periodicities in the X-ray emission from the solar corona

    SciTech Connect (OSTI)

    Chowdhury, Partha; Jain, Rajmal; Awasthi, Arun K. E-mail: parthares@gmail.com E-mail: awasthi@prl.res.in

    2013-11-20

    We have studied the time series of full disk integrated soft and hard X-ray emission from the solar corona during 2004 January to 2008 December, covering the entire descending phase of solar cycle 23 from a global point of view. We employ the daily X-ray index derived from 1 s cadence X-ray observations from the Si and CZT detectors of the 'Solar X-ray Spectrometer' mission in seven different energy bands ranging between 6 and 56 keV. X-ray data in the energy bands 6-7, 7-10, 10-20, and 4-25 keV from the Si detector are considered, while 10-20, 20-30, and 30-56 keV high energy observations are taken from the CZT detector. The daily time series is subjected to power spectrum analysis after appropriate correction for noise. The Lomb-Scargle periodogram technique has shown prominent periods of ?13.5 days, ?27 days, and a near-Rieger period of ?181 days and ?1.24 yr in all energy bands. In addition to this, other periods like ?31, ?48, ?57, ?76, ?96, ?130, ?227, and ?303 days are also detected in different energy bands. We discuss our results in light of previous observations and existing numerical models.

  4. A Lightweight, High-performance I/O Management Package for Data-intensive Computing

    SciTech Connect (OSTI)

    Wang, Jun

    2011-06-22

    Our group has been working with ANL collaborators on the topic ??bridging the gap between parallel file system and local file system? during the course of this project period. We visited Argonne National Lab -- Dr. Robert Ross??s group for one week in the past summer 2007. We looked over our current project progress and planned the activities for the incoming years 2008-09. The PI met Dr. Robert Ross several times such as HEC FSIO workshop 08, SC??08 and SC??10. We explored the opportunities to develop a production system by leveraging our current prototype to (SOGP+PVFS) a new PVFS version. We delivered SOGP+PVFS codes to ANL PVFS2 group in 2008.We also talked about exploring a potential project on developing new parallel programming models and runtime systems for data-intensive scalable computing (DISC). The methodology is to evolve MPI towards DISC by incorporating some functions of Google MapReduce parallel programming model. More recently, we are together exploring how to leverage existing works to perform (1) coordination/aggregation of local I/O operations prior to movement over the WAN, (2) efficient bulk data movement over the WAN, (3) latency hiding techniques for latency-intensive operations. Since 2009, we start applying Hadoop/MapReduce to some HEC applications with LANL scientists John Bent and Salman Habib. Another on-going work is to improve checkpoint performance at I/O forwarding Layer for the Road Runner super computer with James Nuetz and Gary Gridder at LANL. Two senior undergraduates from our research group did summer internships about high-performance file and storage system projects in LANL since 2008 for consecutive three years. Both of them are now pursuing Ph.D. degree in our group and will be 4th year in the PhD program in Fall 2011 and go to LANL to advance two above-mentioned works during this winter break. Since 2009, we have been collaborating with several computer scientists (Gary Grider, John bent, Parks Fields, James Nunez

  5. Biomass Burning Observation Project Specifically,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pacific Northwest region and in the vicinity of Memphis, Tennessee, as part of the Biomass Burning Observation Project (BBOP). The aircraft will fly through smoke plumes from...

  6. Channeling of microwave radiation in a double line containing a plasma filament produced by intense femtosecond laser pulses in air

    SciTech Connect (OSTI)

    Bogatov, N A; Kuznetsov, A I; Smirnov, A I; Stepanov, A N

    2009-10-31

    The channeling of microwave radiation is demonstrated experimentally in a double line in which a plasma filament produced in air by intense femtosecond laser pulses serves as one of the conductors. It is shown that during the propagation of microwave radiation in this line, ultrashort pulses are formed, their duration monotonically decreasing with increasing the propagation length (down to the value comparable with the microwave field period). These effects can be used for diagnostics of plasma in a filament. (laser applications and other topics in quantum electronics)

  7. Decay of multispin multiple-quantum coherent states in the NMR of a solid and the stabilization of their intensity profile with time

    SciTech Connect (OSTI)

    Zobov, V. E.; Lundin, A. A.

    2011-12-15

    Variations, experimentally observed in [14], in the intensity profiles of multiple-quantum (MQ) coherences in the presence of two special types of perturbations are explained on the basis of the theory, earlier developed by the authors, of the growth of the effective size of correlated clusters (the number of correlated spins) and the relaxation of MQ coherent states [23]. The intensity and the character of perturbation were controlled by the experimenters. It is shown that the observed stabilization of profiles with time is not associated with the stabilization of the cluster size. Quite the contrary, a cluster of correlated spins monotonically grows, while the observed variations in the intensity profile and its stabilization with time are attributed to the dependence of the decay rate of an MQ coherence on its order (its position in the MQ spectrum). The results of the theory are in good agreement with the experimental data.

  8. Development of Seismic Isolation Systems Using Periodic Materials

    SciTech Connect (OSTI)

    Yan, Yiqun; Mo, Yi-Lung; Menq, Farn-Yuh; Stokoe, II, Kenneth H.; Perkins, Judy; Tang, Yu

    2014-12-10

    Advanced fast nuclear power plants and small modular fast reactors are composed of thin-walled structures such as pipes; as a result, they do not have sufficient inherent strength to resist seismic loads. Seismic isolation, therefore, is an effective solution for mitigating earthquake hazards for these types of structures. Base isolation, on which numerous studies have been conducted, is a well-defined structure protection system against earthquakes. In conventional isolators, such as high-damping rubber bearings, lead-rubber bearings, and friction pendulum bearings, large relative displacements occur between upper structures and foundations. Only isolation in a horizontal direction is provided; these features are not desirable for the piping systems. The concept of periodic materials, based on the theory of solid-state physics, can be applied to earthquake engineering. The periodic material is a material that possesses distinct characteristics that prevent waves with certain frequencies from being transmitted through it; therefore, this material can be used in structural foundations to block unwanted seismic waves with certain frequencies. The frequency band of periodic material that can filter out waves is called the band gap, and the structural foundation made of periodic material is referred to as the periodic foundation. The design of a nuclear power plant, therefore, can be unified around the desirable feature of a periodic foundation, while the continuous maintenance of the structure is not needed. In this research project, three different types of periodic foundations were studied: one-dimensional, two-dimensional, and three-dimensional. The basic theories of periodic foundations are introduced first to find the band gaps; then the finite element methods are used, to perform parametric analysis, and obtain attenuation zones; finally, experimental programs are conducted, and the test data are analyzed to verify the theory. This procedure shows that the

  9. Dynamic characteristic of intense short microwave propagation in an atmosphere

    SciTech Connect (OSTI)

    Yee, J.H.; Alvarez, R.A.; Mayhall, D.J.; Madsen, N.K.; Cabayan, H.S.

    1983-07-01

    The dynamic behavior of an intense microwave pulse which propagates through the atmosphere will be presented. Our theoretical results are obtained by solving Maxwell's equations, together with the electron fluid equations. Our calculations show that although large portions of the initial energy are absorbed by the electrons that are created through the avalanche process, a significant amount of energy is still able to reach the earth's surface. The amount of energy that reaches the earth's surface as a function of initial energy and wave shape after having propagated through 100 km in the atmosphere are investigated. Results for the air breakdown threshold intensity as a function of the pressure for different pulse widths and different frequencies will also be presented. In addition, we will present a comparison between the theoretical and the experimental results for the pulse shape of a short microwave pulse after it has traveled through a rectangular wave guide which contains a section of air. 23 references, 9 figures.

  10. New particle observations in SELEX

    SciTech Connect (OSTI)

    Jun, Soon Yung; /Carnegie Mellon U.

    2004-12-01

    Particle observations in data from SELEX, the charm hadro-production experiment (E781) at Fermilab are reviewed. These include observations of the doubly charmed baryon {Xi}{sub cc}{sup +}(3520) and the charmed strange meson D{sub sJ}{sup +}(2632).

  11. Data Intensive Computing and Climate Science -- a team sport | Argonne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Leadership Computing Facility Data Intensive Computing and Climate Science -- a team sport Event Sponsor: Argonne Leadership Computing Facility Seminar Start Date: Aug 2 2016 - 2:00pm Building/Room: Building 240/Room 1404-1405 Location: Argonne National Laboratory Speaker(s): Anke Kamrath Speaker(s) Title: National Center for Atmospheric Research Host: Rick Stevens The presentation will cover the NCAR Climate Computing workflow and the challenges that are encountered across the simulation

  12. Device for imaging scenes with very large ranges of intensity

    DOE Patents [OSTI]

    Deason, Vance Albert

    2011-11-15

    A device for imaging scenes with a very large range of intensity having a pair of polarizers, a primary lens, an attenuating mask, and an imaging device optically connected along an optical axis. Preferably, a secondary lens, positioned between the attenuating mask and the imaging device is used to focus light on the imaging device. The angle between the first polarization direction and the second polarization direction is adjustable.

  13. HIGH-INTENSITY, HIGH CHARGE-STATE HEAVY ION SOURCES

    SciTech Connect (OSTI)

    ALESSI,J.G.

    2004-08-16

    There are many accelerator applications for high intensity heavy ion sources, with recent needs including dc beams for RIA, and pulsed beams for injection into synchrotrons such as RHIC and LHC. The present status of sources producing high currents of high charge state heavy ions is reviewed. These sources include ECR, EBIS, and Laser ion sources. Benefits and limitations for these type sources are described. Possible future improvements in these sources are also mentioned.

  14. Transverse Focussing of Intense Charged Particle Beams with Chromatic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Effects for Heavy Ion Fusion Inventors..--.. James M. Mitrani, Igor D, Kaganovich, Ronald C, Davidson. | Princeton Plasma Physics Lab Transverse Focussing of Intense Charged Particle Beams with Chromatic Effects for Heavy Ion Fusion Inventors..--.. James M. Mitrani, Igor D, Kaganovich, Ronald C, Davidson. A two solenoid lens designed has been designed for tranverse focusing of charged particle beams. Solenoids focus the charged particles in the transverse direction, but chromatic effects in

  15. Energy Intensity Indicators: Methodology Downloads | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Indicators: Methodology Downloads Energy Intensity Indicators: Methodology Downloads The files listed below contain methodology documentation and related studies that support the information presented on this website. The files are available to view and/or download as Adobe Acrobat PDF files. Energy Indicators System: Index Construction Methodology (101.17 KB) Changing the Base Year for the Index (23.98 KB) "A Note on the Fisher Ideal Index Decomposition for Structural Change in Energy

  16. Intensity-Dependent Dynamics in Fermilab and CERN Accelerators | Argonne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Leadership Computing Facility Synergia simulation of a bunched beam including particles (green) and self-fields (purple). Synergia simulation of a bunched beam including particles (green) and self-fields (purple). James Amundson, Fermilab Intensity-Dependent Dynamics in Fermilab and CERN Accelerators PI Name: James Amundson PI Email: amundson@fnal.gov Institution: Fermilab Allocation Program: INCITE Allocation Hours at ALCF: 50 Million Year: 2014 Research Domain: Physics Particle

  17. High-intensity positron microprobe at Jefferson Lab

    SciTech Connect (OSTI)

    Golge, Serkan; Vlahovic, Branislav; Wojtsekhowski, Bogdan B.

    2014-06-19

    We present a conceptual design for a novel continuous wave electron-linac based high-intensity slow-positron production source with a projected intensity on the order of 1010 e+/s. Reaching this intensity in our design relies on the transport of positrons (T+ below 600 keV) from the electron-positron pair production converter target to a low-radiation and low-temperature area for moderation in a high-efficiency cryogenic rare gas moderator, solid Ne. The performance of the integrated beamline has been verified through computational studies. The computational results include Monte Carlo calculations of the optimized electron/positron beam energies, converter target thickness, synchronized raster system, transport of the beam from the converter target to the moderator, extraction of the beam from the channel, and moderation efficiency calculations. For the extraction of positrons from the magnetic channel a magnetic field terminator plug prototype has been built and experimental data on the effectiveness of this prototype are presented. The dissipation of the heat away from the converter target and radiation protection measures are also discussed.

  18. High-intensity positron microprobe at Jefferson Lab

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Golge, Serkan; Vlahovic, Branislav; Wojtsekhowski, Bogdan B.

    2014-06-19

    We present a conceptual design for a novel continuous wave electron-linac based high-intensity slow-positron production source with a projected intensity on the order of 1010 e+/s. Reaching this intensity in our design relies on the transport of positrons (T+ below 600 keV) from the electron-positron pair production converter target to a low-radiation and low-temperature area for moderation in a high-efficiency cryogenic rare gas moderator, solid Ne. The performance of the integrated beamline has been verified through computational studies. The computational results include Monte Carlo calculations of the optimized electron/positron beam energies, converter target thickness, synchronized raster system, transport of themore » beam from the converter target to the moderator, extraction of the beam from the channel, and moderation efficiency calculations. For the extraction of positrons from the magnetic channel a magnetic field terminator plug prototype has been built and experimental data on the effectiveness of this prototype are presented. The dissipation of the heat away from the converter target and radiation protection measures are also discussed.« less

  19. Linear Scaling Electronic Structure Methods with Periodic Boundary Conditions

    SciTech Connect (OSTI)

    Gustavo E. Scuseria

    2008-02-08

    The methodological development and computational implementation of linear scaling quantum chemistry methods for the accurate calculation of electronic structure and properties of periodic systems (solids, surfaces, and polymers) and their application to chemical problems of DOE relevance.

  20. Property:Building/MeanAnnualTempCalculationPeriod | Open Energy...

    Open Energy Info (EERE)

    Property Edit with form History Property:BuildingMeanAnnualTempCalculationPeriod Jump to: navigation, search This is a property of type Number. Mean annual temperature during the...

  1. Progress report for the period October 1981-September 1982

    SciTech Connect (OSTI)

    Not Available

    1983-02-01

    The mission-related activities of the DOE New Brunswick Laboratory involving development, calibration, and evaluation of nuclear material measurement technology and providing measurement-related services for the Government during the period are described and summarized.

  2. EIS-0463: Reopening of Scoping Period for the Environmental Impact...

    Broader source: Energy.gov (indexed) [DOE]

    ends on June 14, 2011. For more information see the project page at: http:energy.govnode300109. Download Document EIS-0463: Reopening of Scoping Period for the Environmental...

  3. Award Fee Evaluation Period 5 Determination Scorecard Contractor...

    Office of Environmental Management (EM)

    5 Determination Scorecard Contractor: Fluor-BWXT Portsmouth LLC Contract: DE-AC30-10CC40017 Award Fee Evaluation Period: Fiscal Year 2015 (October 1, 2014 to September 30, 2015) ...

  4. Award Fee Evaluation Period 6 Determination Scorecard Contractor...

    Office of Environmental Management (EM)

    6 Determination Scorecard Contractor: Wastren-EnergX Mission Support, LLC Contract: DE-CI0000004 Award Fee Evaluation Period: Fiscal Year 2015 (October 1, 2014 to September 30, ...

  5. Notice of extension of public comment period for reply comments...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Notice of extension of public comment period for reply comments. On July 27, 2010, the ... incidents.The NOI provided a September 27, 2010, deadline for comments, which was ...

  6. Observed hemispheric asymmetry in global sea ice changes

    SciTech Connect (OSTI)

    Cavalieri, D.J.; Gloersen, P.; Parkinson, C.L.; Comiso, J.C.; Zwally, H.J.

    1997-11-07

    From November 1978 through December 1996, the areal extent of sea ice decreased by 2.9 {+-} 0.4 percent decade in the Arctic and increased by 1.3 {+-} 0.2 percent per decade in the Antarctic. The observed hemispheric asymmetry in these trends is consistent with a modeled response to a carbon dioxide-induced climate warming. The interannual variations, which are 2.3 percent of the annual mean in the Arctic, with a predominant period of about 5 years, and 3.4 percent of the annual mean in the Antarctic, with a predominant period of about 3 years, are uncorrelated. 29 refs., 2 figs., 1 tab.

  7. Extension of Comment Period on Improving Performance of Federal Permitting

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Review of Infrastructure Projects: Federal Register Notice Volume 78, No. 186 - September 25, 2013 | Department of Energy Extension of Comment Period on Improving Performance of Federal Permitting and Review of Infrastructure Projects: Federal Register Notice Volume 78, No. 186 - September 25, 2013 Extension of Comment Period on Improving Performance of Federal Permitting and Review of Infrastructure Projects: Federal Register Notice Volume 78, No. 186 - September 25, 2013 On August 29,

  8. DOE Extends Public Comment Period for Uranium Program Environmental Impact

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Statement | Department of Energy Uranium Program Environmental Impact Statement DOE Extends Public Comment Period for Uranium Program Environmental Impact Statement April 18, 2013 - 1:08pm Addthis Contractor, Bob Darr, S.M. Stoller Corporation Public Affairs, (720) 377-9672, ULinfo@lm.doe.gov GRAND JUNCTION, Colo. - The U.S. Department of Energy (DOE) today announced that the public comment period for the Draft Uranium Leasing Program Programmatic Environmental Impact Statement (ULP PEIS)

  9. WASP-19b: THE SHORTEST PERIOD TRANSITING EXOPLANET YET DISCOVERED

    SciTech Connect (OSTI)

    Hebb, L.; Collier-Cameron, A.; Enoch, B.; Horne, K.; Triaud, A.H.M.J.; Gillon, M.; Queloz, D.; Mayor, M.; Pepe, F.; Segransan, D.; Lister, T.A.; Smalley, B.; Maxted, P.F.L.; Hellier, C.; Anderson, D.R.; Bentley, S.; Pollacco, D.; West, R.G.; Haswell, C.A.; Skillen, I.

    2010-01-01

    We report on the discovery of a new extremely short period transiting extrasolar planet, WASP-19b. The planet has mass M{sub pl} = 1.15 +- 0.08 M{sub J} , radius R{sub pl} = 1.31 +- 0.06 R{sub J} , and orbital period P = 0.7888399 +- 0.0000008 days. Through spectroscopic analysis, we determine the host star to be a slightly super-solar metallicity ([M/H] = 0.1 +- 0.1 dex) G-dwarf with T{sub eff} = 5500 +- 100 K. In addition, we detect periodic, sinusoidal flux variations in the light curve which are used to derive a rotation period for the star of P{sub rot} = 10.5 +- 0.2 days. The relatively short stellar rotation period suggests that either WASP-19 is somewhat young (approx 600 Myr old) or tidal interactions between the two bodies have caused the planet to spiral inward over its lifetime resulting in the spin-up of the star. Due to the detection of the rotation period, this system has the potential to place strong constraints on the stellar tidal quality factor, Q'{sub s}, if a more precise age is determined.

  10. Optical monitor for observing turbulent flow

    DOE Patents [OSTI]

    Albrecht, Georg F.; Moore, Thomas R.

    1992-01-01

    The present invention provides an apparatus and method for non-invasively monitoring turbulent fluid flows including anisotropic flows. The present invention uses an optical technique to filter out the rays travelling in a straight line, while transmitting rays with turbulence induced fluctuations in time. The output is two dimensional, and can provide data regarding the spectral intensity distribution, or a view of the turbulence in real time. The optical monitor of the present invention comprises a laser that produces a coherent output beam that is directed through a fluid flow, which phase-modulates the beam. The beam is applied to a temporal filter that filters out the rays in the beam that are straight, while substantially transmitting the fluctuating, turbulence-induced rays. The temporal filter includes a lens and a photorefractive crystal such as BaTiO.sub.3 that is positioned in the converging section of the beam near the focal plane. An imaging system is used to observe the filtered beam. The imaging system may take a photograph, or it may include a real time camera that is connected to a computer. The present invention may be used for many purposes including research and design in aeronautics, hydrodynamics, and combustion.

  11. Nocturnal Low-Level-Jet-Dominated Atmospheric Boundary Layer Observed by a Doppler Lidar Over Oklahoma City during JU2003

    SciTech Connect (OSTI)

    Wang, Yansen; Klipp, Cheryl L.; Garvey, Dennis M.; Ligon, David; Williamson, Chatt C.; Chang, Sam S.; Newsom, Rob K.; Calhoun, Ron

    2007-12-01

    Boundary layer wind data observed by a Doppler lidar and sonic anemometers during the mornings of three intensive observational periods (IOP2, IOP3, and IOP7) of the Joint Urban 2003 (JU2003) field experiment are analyzed to extract the mean and turbulent characteristics of airflow over Oklahoma City, Oklahoma. A strong nocturnal low-level jet (LLJ) dominated the flow in the boundary layer over the measurement domain from midnight to the morning hours. Lidar scans through the LLJ taken after sunrise indicate that the LLJ elevation shows a gradual increase of 25-100 m over the urban area relative to that over the upstream suburban area. The mean wind speed beneath the jet over the urban area is about 10%-15% slower than that over the suburban area. Sonic anemometer observations combined with Doppler lidar observations in the urban and suburban areas are also analyzed to investigate the boundary layer turbulence production in the LLJ-dominated atmospheric boundary layer. The turbulence kinetic energy was higher over the urban domain mainly because of the shear production of building surfaces and building wakes. Direct transport of turbulent momentum flux from the LLJ to the urban street level was very small because of the relatively high elevation of the jet. However, since the LLJ dominated the mean wind in the boundary layer, the turbulence kinetic energy in the urban domain is correlated directly with the LLJ maximum speed and inversely with its height. The results indicate that the jet Richardson number is a reasonably good indicator for turbulent kinetic energy over the urban domain in the LLJ-dominated atmospheric boundary layer.

  12. 2014 call for NERSC's Data Intensive Computing Pilot Program Due December

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    10 NERSC's Data Intensive Computing Pilot Program 2014 call for NERSC's Data Intensive Computing Pilot Program Due December 10 November 18, 2013 by Francesca Verdier NERSC's Data Intensive Computing Pilot Program is now open for its second round of allocations to projects in data intensive science. This pilot aims to support and enable scientists to tackle their most demanding data intensive challenges. Selected projects will be piloting new methods and technologies targeting data

  13. Shortwave Hyperspectral Observations during MAGIC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... The black contours show percent cloud absorption at 1600 nm calculated with SBDART. These ... surface-based observations of marine clouds make the MAGIC data interesting as a whole. ...

  14. Distant Observer - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Thermal Solar Thermal Energy Analysis Energy Analysis Find More Like This Return to Search Distant Observer Tool Quickly Identifies Costly Flaws in Concentrating Solar Power (CSP) Fields National Renewable Energy Laboratory Contact NREL About This Technology Technology Marketing Summary As we pursue efforts to lower the capital and installation costs of parabolic trough solar collectors, it is essential to maintain high optical performance. The Distant Observer (DO) tool, developed by

  15. Filtering with Marked Point Process Observations via Poisson Chaos Expansion

    SciTech Connect (OSTI)

    Sun Wei; Zeng Yong; Zhang Shu

    2013-06-15

    We study a general filtering problem with marked point process observations. The motivation comes from modeling financial ultra-high frequency data. First, we rigorously derive the unnormalized filtering equation with marked point process observations under mild assumptions, especially relaxing the bounded condition of stochastic intensity. Then, we derive the Poisson chaos expansion for the unnormalized filter. Based on the chaos expansion, we establish the uniqueness of solutions of the unnormalized filtering equation. Moreover, we derive the Poisson chaos expansion for the unnormalized filter density under additional conditions. To explore the computational advantage, we further construct a new consistent recursive numerical scheme based on the truncation of the chaos density expansion for a simple case. The new algorithm divides the computations into those containing solely system coefficients and those including the observations, and assign the former off-line.

  16. THE NEAR-INFRARED BACKGROUND INTENSITY AND ANISOTROPIES DURING THE EPOCH OF REIONIZATION

    SciTech Connect (OSTI)

    Cooray, Asantha; Gong Yan; Smidt, Joseph; Santos, Mario G.

    2012-09-01

    A fraction of the extragalactic near-infrared (near-IR) background light involves redshifted photons from the ultraviolet (UV) emission from galaxies present during reionization at redshifts above 6. The absolute intensity and the anisotropies of the near-IR background provide an observational probe of the first-light galaxies and their spatial distribution. We estimate the extragalactic background light intensity during reionization by accounting for the stellar and nebular emission from first-light galaxies. We require the UV photon density from these galaxies to generate a reionization history that is consistent with the optical depth to electron scattering from cosmic microwave background measurements. We also require the bright-end luminosity function (LF) of galaxies in our models to reproduce the measured Lyman-dropout LFs at redshifts of 6-8. The absolute intensity is about 0.1-0.4 nW m{sup -2} sr{sup -1} at the peak of its spectrum at {approx}1.1 {mu}m. We also discuss the anisotropy power spectrum of the near-IR background using a halo model to describe the galaxy distribution. We compare our predictions for the anisotropy power spectrum to existing measurements from deep near-IR imaging data from Spitzer/IRAC, Hubble/NICMOS, and AKARI. The predicted rms fluctuations at tens of arcminute angular scales are roughly an order of magnitude smaller than the existing measurements. While strong arguments have been made that the measured fluctuations do not have an origin involving faint low-redshift galaxies, we find that measurements in the literature are also incompatible with galaxies present during the era of reionization. The measured near-IR background anisotropies remain unexplained with an unknown origin.

  17. Expanding the Discovery Potential of VERITAS via Moonlight Observations

    SciTech Connect (OSTI)

    Benbow, Wystan R. [PI

    2014-10-27

    This grant partially supported the base research efforts of the Smithsonian Astrophysical Observatory (SAO), Very-High-Energy (VHE; E > 100 GeV) gamma-ray research group from 8/1/09 to 7/31/14. During the project period, the SAO gamma-ray group carried out a wide-range of research efforts, but focused on VHE observations of extragalactic sources with VERITAS. The SAO group led or co-lead nearly all VERITAS extragalactic working groups and the observations addressed themes in Particle Physics and Fundamental Laws, Cosmology, and Black Holes. The primary topics of this research were processes in exotic galaxies, especially active galactic nuclei and starburst galaxies, which have implications for cosmology and Lorentz invariance violation, as well as indirect dark matter detection via VERITAS observations of dwarf spheroidal galaxies. In addition, the SAO group let the development of unique capabilities for VERITAS to observe during all periods of moonlight. Overall, this has increased the VERITAS data yield by 60% and these data are both scientifically useful and regularly published. This grant funded research that led to contributions towards the publication of 51 refereed journal articles during the project period, including several led by, or with significant contributions from, the SAO group.

  18. Ultrafast laser induced periodic sub-wavelength aluminum surface structures and nanoparticles in air and liquids

    SciTech Connect (OSTI)

    Kuladeep, Rajamudili; Dar, Mudasir H.; Rao, D. Narayana E-mail: dnr-laserlab@yahoo.com; Deepak, K. L. N.

    2014-09-21

    In this communication, we demonstrate the generation of laser-induced periodic sub-wavelength surface structures (LIPSS) or ripples on a bulk aluminum (Al) and Al nanoparticles (NPs) by femtosecond (fs) laser direct writing technique. Laser irradiation was performed on Al surface at normal incidence in air and by immersing in ethanol (C₂H₅OH) and water (H₂O) using linearly polarized Ti:sapphire fs laser pulses of ~110 fs pulse duration and ~800 nm wavelength. Field emission scanning electron microscope is utilized for imaging surface morphology of laser written structures and it reveals that the spatial periodicity as well as the surface morphology of the LIPSS depends on the surrounding dielectric medium and also on the various laser irradiation parameters. The observed LIPSS have been classified as low spatial frequency LIPSS which are perpendicularly oriented to the laser polarization with a periodicity from 460 to 620 nm and high spatial frequency LIPSS which spectacles a periodicity less than 100 nm with the orientation parallel to the polarization of the incident laser beam. Fabricated colloidal solutions, which contain the Al NPs, were characterized by UV-Vis absorption spectroscopy and transmission electron microscopy (TEM). TEM results reveal the formation of internal cavities in Al NPs both in ethanol and water. Formation mechanism of LIPSS and cavities inside the nanoparticles are discussed in detail.

  19. Estimates of U.S. Commercial Building Electricity Intensity Trends: Issues Related to End-Use and Supply Surveys

    SciTech Connect (OSTI)

    Belzer, David B.

    2004-09-04

    This report examines measurement issues related to the amount of electricity used by the commercial sector in the U.S. and the implications for historical trends of commercial building electricity intensity (kWh/sq. ft. of floor space). The report compares two (Energy Information Administration) sources of data related to commercial buildings: the Commercial Building Energy Consumption Survey (CBECS) and the reporting by utilities of sales to commercial customers (survey Form-861). Over past two decades these sources suggest significantly different trend rates of growth of electricity intensity, with the supply (utility)-based estimate growing much faster than that based only upon the CBECS. The report undertakes various data adjustments in an attempt to rationalize the differences between these two sources. These adjustments deal with: 1) periodic reclassifications of industrial vs. commercial electricity usage at the state level and 2) the amount of electricity used by non-enclosed equipment (non-building use) that is classified as commercial electricity sales. In part, after applying these adjustments, there is a good correspondence between the two sources over the the past four CBECS (beginning with 1992). However, as yet, there is no satisfactory explanation of the differences between the two sources for longer periods that include the 1980s.

  20. Fermi-LAT γ-ray anisotropy and intensity explained by unresolved radio-loud active galactic nuclei

    SciTech Connect (OSTI)

    Mauro, Mattia Di; Cuoco, Alessandro; Donato, Fiorenza; Siegal-Gaskins, Jennifer M. E-mail: alessandro.cuoco@to.infn.it E-mail: jsg@tapir.caltech.edu

    2014-11-01

    Radio-loud active galactic nuclei (AGN) are expected to contribute substantially to both the intensity and anisotropy of the isotropic γ-ray background (IGRB). In turn, the measured properties of the IGRB can be used to constrain the characteristics of proposed contributing source classes. We consider individual subclasses of radio-loud AGN, including low-, intermediate-, and high-synchrotron-peaked BL Lacertae objects, flat-spectrum radio quasars, and misaligned AGN. Using updated models of the γ-ray luminosity functions of these populations, we evaluate the energy-dependent contribution of each source class to the intensity and anisotropy of the IGRB. We find that collectively radio-loud AGN can account for the entirety of the IGRB intensity and anisotropy as measured by the Fermi Large Area Telescope (LAT). Misaligned AGN provide the bulk of the measured intensity but a negligible contribution to the anisotropy, while high-synchrotron-peaked BL Lacertae objects provide the dominant contribution to the anisotropy. In anticipation of upcoming measurements with the Fermi-LAT and the forthcoming Cherenkov Telescope Array, we predict the anisotropy in the broader energy range that will be accessible to future observations.

  1. WE-G-18C-05: Characterization of Cross-Vendor, Cross-Field Strength MR Image Intensity Variations

    SciTech Connect (OSTI)

    Paulson, E; Prah, D

    2014-06-15

    Purpose: Variations in MR image intensity and image intensity nonuniformity (IINU) can challenge the accuracy of intensity-based image segmentation and registration algorithms commonly applied in radiotherapy. The goal of this work was to characterize MR image intensity variations across scanner vendors and field strengths commonly used in radiotherapy. Methods: ACR-MRI phantom images were acquired at 1.5T and 3.0T on GE (450w and 750, 23.1), Siemens (Espree and Verio, VB17B), and Philips (Ingenia, 4.1.3) scanners using commercial spin-echo sequences with matched parameters (TE/TR: 20/500 ms, rBW: 62.5 kHz, TH/skip: 5/5mm). Two radiofrequency (RF) coil combinations were used for each scanner: body coil alone, and combined body and phased-array head coils. Vendorspecific B1- corrections (PURE/Pre-Scan Normalize/CLEAR) were applied in all head coil cases. Images were transferred offline, corrected for IINU using the MNI N3 algorithm, and normalized. Coefficients of variation (CV=σ/μ) and peak image uniformity (PIU = 1−(Smax−Smin)/(Smax+Smin)) estimates were calculated for one homogeneous phantom slice. Kruskal-Wallis and Wilcoxon matched-pairs tests compared mean MR signal intensities and differences between original and N3 image CV and PIU. Results: Wide variations in both MR image intensity and IINU were observed across scanner vendors, field strengths, and RF coil configurations. Applying the MNI N3 correction for IINU resulted in significant improvements in both CV and PIU (p=0.0115, p=0.0235). However, wide variations in overall image intensity persisted, requiring image normalization to improve consistency across vendors, field strengths, and RF coils. These results indicate that B1- correction routines alone may be insufficient in compensating for IINU and image scaling, warranting additional corrections prior to use of MR images in radiotherapy. Conclusions: MR image intensities and IINU vary as a function of scanner vendor, field strength, and RF coil

  2. Fermilab | Science at Fermilab | Experiments & Projects | Intensity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Frontier | ArgoNeuT ArgoNeuT ArgoNeut detector at Proton Assembly Building Intensity Frontier ArgoNeuT The Argon Neutrino Teststand or ArgoNeuT detector, nicknamed for Jason and the Argonauts of Greek mythology, is a liquid argon neutrino detector at Fermilab. Argon is a noble, non-toxic element that in its gaseous form constitutes about 1 percent of air. It exists as a colorless liquid only in the narrow temperature range of minus 186 to minus 189 degrees Celsius. Neutrinos passing through

  3. A Simulation Study of Fast Ignition with Ultrahigh Intensity Lasers |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne Leadership Computing Facility Simulation Study of Fast Ignition with Ultrahigh Intensity Lasers Authors: Tonge, J., May, J., Mori, B., Fiuza, F., Martins, S.F., Fonseca, R.A., Silva, L.O., Ren, C. The coupling efficiency between the ignition laser and the target core for the fast ignition concept is studied using two-dimensional particle-in-cell simulations. The details of the energy transport within the weakly collisional overdense plasma of a fast ignition target are examined by

  4. LED intense headband light source for fingerprint analysis

    DOE Patents [OSTI]

    Villa-Aleman, Eliel

    2005-03-08

    A portable, lightweight and high-intensity light source for detecting and analyzing fingerprints during field investigation. On-site field analysis requires long hours of mobile analysis. In one embodiment, the present invention comprises a plurality of light emitting diodes; a power source; and a personal attachment means; wherein the light emitting diodes are powered by the power source, and wherein the power source and the light emitting diodes are attached to the personal attachment means to produce a personal light source for on-site analysis of latent fingerprints. The present invention is available for other applications as well.

  5. Fire Intensity Data for Validation of the Radiative Transfer Equation

    SciTech Connect (OSTI)

    Blanchat, Thomas K.; Jernigan, Dann A.

    2016-01-01

    A set of experiments and test data are outlined in this report that provides radiation intensity data for the validation of models for the radiative transfer equation. The experiments were performed with lightly-sooting liquid hydrocarbon fuels that yielded fully turbulent fires 2 m diameter). In addition, supplemental measurements of air flow and temperature, fuel temperature and burn rate, and flame surface emissive power, wall heat, and flame height and width provide a complete set of boundary condition data needed for validation of models used in fire simulations.

  6. Intense transient magnetic-field generation by laser plasma

    SciTech Connect (OSTI)

    Benjamin, R.F.

    1981-08-18

    In a laser system, the return current of a laser generated plasma is conducted near a target to subject that target to the magnetic field thereof. In alternate embodiments the target may be either a small non-fusion object for testing under the magnetic field or a laser-fusion pellet. In the laser-fusion embodiment, the laser-fusion pellet is irradiated during the return current flow and the intense transient magnetic field is used to control the hot electrons thereof to hinder them from striking and heating the core of the irradiated laser-fusion pellet.

  7. Inertial Fusion Driven by Intense Heavy-Ion Beams

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    INERTIAL FUSION DRIVEN BY INTENSE HEAVY-ION BEAMS * W. M. Sharp # , A. Friedman, D. P. Grote, J. J. Barnard, R. H. Cohen, M. A. Dorf, S. M. Lund, L. J. Perkins, M. R. Terry, LLNL, Livermore, CA, USA B. G. Logan, F. M. Bieniosek, A. Faltens, E. Henestroza, J.-Y. Jung, J. W. Kwan, E. P. Lee, S. M. Lidia, P. A. Ni, L. L. Reginato, P. K. Roy, P. A. Seidl, J. H. Takakuwa, J.-L. Vay, W. L. Waldron, LBNL, Berkeley, CA, USA R. C. Davidson, E. P. Gilson, I. D. Kaganovich, H. Qin, E. Startsev, PPPL,

  8. Joint Facilities User Forum on Data Intensive Computing Lessons Learned

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    User Forum on Data Intensive Computing Lessons Learned - NERSC/JGI Partnership Kjiersten Fagnan, NERSC User Services/JGI --- 1 --- June 1 7, 2 013 Outline * Overview o f N ERSC/JGI P artnership - DOE J GI b ackground - Team o verview - Compute r esources * CompuBng S trategic P lan - JGI G oals - NERSC G oals * Lessons Learned --- 2 --- DOE Joint Genome Institute 3 DOE JGI, Serving as a genomic user facility in support of the DOE missions: * Walnut Creek, CA facility opened in 1999 * 250

  9. Joint Facilities User Forum on Data-Intensive Computing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Using the Adaptable I/O System (ADIOS) Joint Facilities User Forum on Data-Intensive Computing June 18, 2014 Norbert Podhorszki Thanks to: H. Abbasi, S. Ahern, C. S. Chang, J. Chen, S. Ethier, B. Geveci, J. Kim, T. Kurc, S. Klasky, J. Logan, Q. Liu, K. Mu, G. Ostrouchov, M. Parashar, D. Pugmire, J. Saltz, N. Samatova, K. Schwan, A. Shoshani, W. Tang, Y. Tian, M. Taufer, W. Xue, M. Wolf + many more Subtle m essage o f t he f orum a genda . . . . . . . . . What i s A DIOS? * ADaptable I /O S ystem

  10. Solar wind-magnetosphere coupling during intense magnetic storms (1978--1979)

    SciTech Connect (OSTI)

    Gonzalez, W.D. ); Tsurutani, B.T.; Gonzalez, A.L.C.; Smith, E.J.; Tang, F.; Akasofu, S.

    1989-07-01

    The solar wind-magnetosphere coupling problem is investigated for the ten intense magnetic storms (Dst {lt}{minus}100 nT) that occurred during the 500 days (August 16, 1978 to December 28, 1979) studied by Gonzalez and Tsurutani (1987). This investigation concentrates on the ring current energization in terms of solar wind parameters, in order to explain the {vert bar} {minus}Dst {vert bar} growth observed during these storms. Thus several coupling functions are tested as energy input and several sets of the ring current decay time-constant {tau} are searched to find best correlations with the Dst response. From the fairly large correlation coefficients found in this study, there is strong evidence that large scale magnetopause reconnection operates during such intense storm events and that the solar wind ram pressure plays an important role in the ring current energization. Thus a ram pressure correction factor is suggested for expressions concerning the reconnection power during time intervals with large ram pressure variations.

  11. Intensity, duration, and frequency of precipitation extremes under 21st-century warming scenarios

    SciTech Connect (OSTI)

    Kao, Shih-Chieh; Ganguly, Auroop R

    2011-01-01

    Recent research on the projection of precipitation extremes has either focused on conceptual physical mechanisms that generate heavy precipitation or rigorous statistical methods that extrapolate tail behavior. However, informing both climate prediction and impact assessment requires concurrent physically and statistically oriented analysis. A combined examination of climate model simulations and observation-based reanalysis data sets suggests more intense and frequent precipitation extremes under 21st-century warming scenarios. Utilization of statistical extreme value theory and resampling-based uncertainty quantification combined with consideration of the Clausius-Clapeyron relationship reveals consistently intensifying trends for precipitation extremes at a global-average scale. However, regional and decadal analyses reveal specific discrepancies in the physical mechanisms governing precipitation extremes, as well as their statistical trends, especially in the tropics. The intensifying trend of precipitation extremes has quantifiable impacts on intensity-duration-frequency curves, which in turn have direct implications for hydraulic engineering design and water-resources management. The larger uncertainties at regional and decadal scales suggest the need for caution during regional-scale adaptation or preparedness decisions. Future research needs to explore the possibility of uncertainty reduction through higher resolution global climate models, statistical or dynamical downscaling, as well as improved understanding of precipitation extremes processes.

  12. Synchronisation and desynchronisation of self-modulation oscillations in a ring chip laser under the action of a periodic signal and noise

    SciTech Connect (OSTI)

    Dudetskiy, V Yu; Lariontsev, E G; Chekina, S N

    2014-09-30

    The effect of pump noise on the synchronisation of selfmodulation oscillations in a solid-state ring laser with periodic pump modulation is studied numerically and experimentally. It is found that, in contrast to desynchronisation that usually occurs under action of noise in the case of 1/1 synchronisation of self-oscillations by a periodic signal, the effect of noise on 1/2 synchronisation may be positive, namely, at a sufficiently low intensity, pump noise is favourable for synchronisation of self-oscillations, for narrowing of their spectrum, and for increasing the signal-to-noise ratio. (lasers)

  13. EIS-0236-S4: Extension of Comment Period | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Extension of Comment Period EIS-0236-S4: Extension of Comment Period Complex Transformation Extension of Comment Period for the Draft Complex Transformation Supplemental...

  14. Ultra-short period binaries from the Catalina Surveys

    SciTech Connect (OSTI)

    Drake, A. J.; Djorgovski, S. G.; Graham, M. J.; Mahabal, A. A.; Donalek, C.; Williams, R.; García-Álvarez, D.; Catelan, M.; Torrealba, G.; Prieto, J. L.; Abraham, S.; Larson, S.; Christensen, E.

    2014-08-01

    We investigate the properties of 367 ultra-short period binary candidates selected from 31,000 sources recently identified from Catalina Surveys data. Based on light curve morphology, along with WISE, Sloan Digital Sky Survey, and GALEX multi-color photometry, we identify two distinct groups of binaries with periods below the 0.22 day contact binary minimum. In contrast to most recent work, we spectroscopically confirm the existence of M dwarf+M dwarf contact binary systems. By measuring the radial velocity variations for five of the shortest-period systems, we find examples of rare cool white dwarf (WD)+M dwarf binaries. Only a few such systems are currently known. Unlike warmer WD systems, their UV flux and optical colors and spectra are dominated by the M-dwarf companion. We contrast our discoveries with previous photometrically selected ultra-short period contact binary candidates and highlight the ongoing need for confirmation using spectra and associated radial velocity measurements. Overall, our analysis increases the number of ultra-short period contact binary candidates by more than an order of magnitude.

  15. Time-periodic solutions of the Benjamin-Ono equation

    SciTech Connect (OSTI)

    Ambrose , D.M.; Wilkening, Jon

    2008-04-01

    We present a spectrally accurate numerical method for finding non-trivial time-periodic solutions of non-linear partial differential equations. The method is based on minimizing a functional (of the initial condition and the period) that is positive unless the solution is periodic, in which case it is zero. We solve an adjoint PDE to compute the gradient of this functional with respect to the initial condition. We include additional terms in the functional to specify the free parameters, which, in the case of the Benjamin-Ono equation, are the mean, a spatial phase, a temporal phase and the real part of one of the Fourier modes at t = 0. We use our method to study global paths of non-trivial time-periodic solutions connecting stationary and traveling waves of the Benjamin-Ono equation. As a starting guess for each path, we compute periodic solutions of the linearized problem by solving an infinite dimensional eigenvalue problem in closed form. We then use our numerical method to continue these solutions beyond the realm of linear theory until another traveling wave is reached (or until the solution blows up). By experimentation with data fitting, we identify the analytical form of the solutions on the path connecting the one-hump stationary solution to the two-hump traveling wave. We then derive exact formulas for these solutions by explicitly solving the system of ODE's governing the evolution of solitons using the ansatz suggested by the numerical simulations.

  16. Laboratory Astrophysics Using High Intensity Particle and Photon...

    Office of Scientific and Technical Information (OSTI)

    Visit OSTI to utilize additional information resources in energy science and technology. A ... History has shown that the symbiosis between direct observations and laboratory studies is ...

  17. Laboratory Astrophysics Using High Intensity Particle and Photon...

    Office of Scientific and Technical Information (OSTI)

    History has shown that the symbiosis between direct observations and laboratory studies is ... Publisher: Fermilab Colloquia Online: 2000 to the Present Videos of Science Lecture and ...

  18. National Weatherization Assistance Program Characterization Describing the Recovery Act Period

    SciTech Connect (OSTI)

    Tonn, Bruce Edward; Rose, Erin M.; Hawkins, Beth A.

    2015-10-01

    This report characterizes the U.S. Department of Energy s Weatherization Assistance Program (WAP) during the American Recovery and Reinvestment Act of 2009 (Recovery Act) period. This research was one component of the Recovery Act evaluation of WAP. The report presents the results of surveys administered to Grantees (i.e., state weatherization offices) and Subgrantees (i.e., local weatherization agencies). The report also documents the ramp up and ramp down of weatherization production and direct employment during the Recovery Act period and other challenges faced by the Grantees and Subgrantees during this period. Program operations during the Recovery Act (Program Year 2010) are compared to operations during the year previous to the Recovery Act (Program Year 2008).

  19. Optical Fiber High Temperature Sensor Instrumentation for Energy Intensive Industries

    SciTech Connect (OSTI)

    Cooper, Kristie L.; Wang, Anbo; Pickrell, Gary R.

    2006-11-14

    This report summarizes technical progress during the program Optical Fiber High Temperature Sensor Instrumentation for Energy Intensive Industries, performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. The objective of this program was to use technology recently invented at Virginia Tech to develop and demonstrate the application of self-calibrating optical fiber temperature and pressure sensors to several key energy-intensive industries where conventional, commercially available sensors exhibit greatly abbreviated lifetimes due primarily to environmental degradation. A number of significant technologies were developed under this program, including a laser bonded silica high temperature fiber sensor with a high temperature capability up to 700C and a frequency response up to 150 kHz, the worlds smallest fiber Fabry-Perot high temperature pressure sensor (125 x 20 ?m) with 700C capability, UV-induced intrinsic Fabry-Perot interferometric sensors for distributed measurement, a single crystal sapphire fiber-based sensor with a temperature capability up to 1600C. These technologies have been well demonstrated and laboratory tested. Our work plan included conducting major field tests of these technologies at EPRI, Corning, Pratt & Whitney, and Global Energy; field validation of the technology is critical to ensuring its usefulness to U.S. industries. Unfortunately, due to budget cuts, DOE was unable to follow through with its funding commitment to support Energy Efficiency Science Initiative projects and this final phase was eliminated.

  20. The interaction of intense subpicosecond laser pulses with underdense plasmas

    SciTech Connect (OSTI)

    Coverdale, C.A.

    1995-05-11

    Laser-plasma interactions have been of interest for many years not only from a basic physics standpoint, but also for their relevance to numerous applications. Advances in laser technology in recent years have resulted in compact laser systems capable of generating (psec), 10{sup 16} W/cm{sup 2} laser pulses. These lasers have provided a new regime in which to study laser-plasma interactions, a regime characterized by L{sub plasma} {ge} 2L{sub Rayleigh} > c{tau}. The goal of this dissertation is to experimentally characterize the interaction of a short pulse, high intensity laser with an underdense plasma (n{sub o} {le} 0.05n{sub cr}). Specifically, the parametric instability known as stimulated Raman scatter (SRS) is investigated to determine its behavior when driven by a short, intense laser pulse. Both the forward Raman scatter instability and backscattered Raman instability are studied. The coupled partial differential equations which describe the growth of SRS are reviewed and solved for typical experimental laser and plasma parameters. This solution shows the growth of the waves (electron plasma and scattered light) generated via stimulated Raman scatter. The dispersion relation is also derived and solved for experimentally accessible parameters. The solution of the dispersion relation is used to predict where (in k-space) and at what frequency (in {omega}-space) the instability will grow. Both the nonrelativistic and relativistic regimes of the instability are considered.

  1. ORBIT : BEAM DYNAMICS CALCULATIONS FOR HIGH - INTENSITY RINGS.

    SciTech Connect (OSTI)

    HOLMES,J.A.; DANILOV,V.; GALAMBOS,J.; SHISHLO,A.; COUSINEAU,S.; CHOU,W.; MICHELOTTI,L.; OSTIGUY,F.; WEI,J.

    2002-06-03

    We are developing a computer code, ORBIT, specifically for beam dynamics calculations in high-intensity rings. Our approach allows detailed simulation of realistic accelerator problems. ORBIT is a particle-in-cell tracking code that transports bunches of interacting particles through a series of nodes representing elements, effects, or diagnostics that occur in the accelerator lattice. At present, ORBIT contains detailed models for strip-foil injection including painting and foil scattering; rf focusing and acceleration; transport through various magnetic elements; longitudinal and transverse impedances; longitudinal, transverse, and three-dimensional space charge forces; collimation and limiting apertures; and the calculation of many useful diagnostic quantities. ORBIT is an object-oriented code, written in C++ and utilizing a scripting interface for the convenience of the user. Ongoing improvements include the addition of a library of accelerator maps, BEAMLINE/MXYZPTLK the introduction of a treatment magnet errors and fringe fields; the conversion of the scripting interface to the standard scripting language, Python; and the parallelization of the computations using MPI. The ORBIT code is an open source, powerful, and convenient tool for studying beam dynamics in high-intensity rings.

  2. Variability of radiatively forced diurnal cycle of intense convection in the tropical west pacific

    SciTech Connect (OSTI)

    Gray, W.M.; Sheaffer, J.D.; Thorson, W.B.

    1996-04-01

    Strong differences occur in daytime versus nighttime (DVN) net radiative cooling in clear versus cloudy areas of the tropical atmosphere. Daytime average cooling is approximately -0.7{degrees}C/day, whereas nighttime net tropospheric cooling rates are about -1.5{degrees}C/day, an approximately two-to-one difference. The comparatively strong nocturnal cooling in clear areas gives rise to a diurnally varying vertical circulation and horizontal convergence cycle. Various manifestations of this cyclic process include the observed early morning heavy rainfall maxima over the tropical oceans. The radiatively driven DVN circulation appears to strongly modulate the resulting diurnal cycle of intense convection which creates the highest, coldest cloudiness over maritime tropical areas and is likely a fundamental mechanism governing both small and large scale dynamics over much of the tropical environment.

  3. Intense femtosecond photoexcitation of bulk and monolayer MoS{sub 2}

    SciTech Connect (OSTI)

    Paradisanos, I.; Fotakis, C.; Kymakis, E.; Kioseoglou, G.; Stratakis, E.

    2014-07-28

    The effect of femtosecond laser irradiation on bulk and single-layer MoS{sub 2} on silicon oxide is studied. Optical, field emission scanning electron microscopy and Raman microscopy were used to quantify the damage. The intensity of A{sub 1g} and E{sub 2g}{sup 1} vibrational modes was recorded as a function of the number of irradiation pulses. The observed behavior was attributed to laser-induced bond breaking and subsequent atoms removal due to electronic excitations. The single-pulse optical damage threshold was determined for the monolayer and bulk under 800 nm and 1030 nm pulsed laser irradiation, and the role of two-photon versus one photon absorption effects is discussed.

  4. Intense terahertz emission from molecular beam epitaxy-grown GaAs/GaSb(001)

    SciTech Connect (OSTI)

    Sadia, Cyril P.; Laganapan, Aleena Maria; Agatha Tumanguil, Mae; Estacio, Elmer; Somintac, Armando; Salvador, Arnel; Que, Christopher T.; Yamamoto, Kohji; Tani, Masahiko

    2012-12-15

    Intense terahertz (THz) electromagnetic wave emission was observed in undoped GaAs thin films deposited on (100) n-GaSb substrates via molecular beam epitaxy. GaAs/n-GaSb heterostructures were found to be viable THz sources having signal amplitude 75% that of bulk p-InAs. The GaAs films were grown by interruption method during the growth initiation and using various metamorphic buffer layers. Reciprocal space maps revealed that the GaAs epilayers are tensile relaxed. Defects at the i-GaAs/n-GaSb interface were confirmed by scanning electron microscope images. Band calculations were performed to infer the depletion region and electric field at the i-GaAs/n-GaSb and the air-GaAs interfaces. However, the resulting band calculations were found to be insufficient to explain the THz emission. The enhanced THz emission is currently attributed to a piezoelectric field induced by incoherent strain and defects.

  5. Total Estimated Contract Cost: Performance Period Total Fee Paid

    Office of Environmental Management (EM)

    Performance Period Total Fee Paid FY2008 $134,832 FY2009 $142,578 FY2010 $299,878 FY2011 $169,878 Cumulative Fee Paid $747,166 Contract Period: September 2007 - October 2012 $31,885,815 C/P/E Environmental Services, LLC DE-AM09-05SR22405/DE-AT30-07CC60011/SL14 Contractor: Contract Number: Contract Type: Cost Plus Award Fee $357,223 $597,797 $894,699 EM Contractor Fee Site: Stanford Linear Accelerator Center (SLAC) Contract Name: SLAC Environmental Remediation December 2012 $1,516,646 Fee

  6. Department of Energy Support of Energy Intensive Manufacturing Related to Refractory Research

    SciTech Connect (OSTI)

    Hemrick, James Gordon

    2013-01-01

    For many years, the United States Department of Energy (DOE) richly supported refractory related research to enable greater energy efficiency processes in energy intensive manufacturing industries such as iron and steel, glass, aluminum and other non-ferrous metal production, petrochemical, and pulp and paper. Much of this support came through research projects funded by the former DOE Energy Efficiency and Renewable Energy (EERE) Office of Industrial Technologies (OIT) under programs such as Advanced Industrial Materials (AIM), Industrial Materials of the Future (IMF), and the Industrial Technologies Program (ITP). Under such initiatives, work was funded at government national laboratories such as Oak Ridge National Laboratory (ORNL), at universities such as West Virginia University (WVU) and the Missouri University of Science and Technology (MS&T) which was formerly the University of Missouri Rolla, and at private companies engaged in these manufacturing areas once labeled industries of the future by DOE due to their strategic and economic importance to American industry. Examples of such projects are summarized below with information on the scope, funding level, duration, and impact. This is only a sampling of representative efforts funded by the DOE in which ORNL was involved over the period extending from 1996 to 2011. Other efforts were also funded during this time at various other national laboratories, universities and private companies under the various programs mentioned above. Discussion of the projects below was chosen because I was an active participant in them and it is meant to give a sampling of the magnitude and scope of investments made by DOE in refractory related research over this time period.

  7. PARC Periodical | Volume 7, Issue 5 | Photosynthetic Antenna Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center 5 June 1, 2016 PARC Periodical | Volume 7, Issue 5 VIEW ARTICLE HERE http://us6.campaign-archive1.com/?u=8d1be2560b66e88d2fd6e4351&id=d20f3cc561&e=7d...

  8. HINODE/EXTREME-ULTRAVIOLET IMAGING SPECTROMETER OBSERVATIONS OF THE TEMPERATURE STRUCTURE OF THE QUIET CORONA

    SciTech Connect (OSTI)

    Brooks, David H.; Warren, Harry P. [Space Science Division, Code 7673, Naval Research Laboratory, Washington, DC 20375 (United States); Williams, David R. [Mullard Space Science Laboratory, University College London, Holmbury St Mary, Dorking, Surrey RH5 6NT (United Kingdom); Watanabe, Tetsuya, E-mail: dhbrooks@ssd5.nrl.navy.mi [National Astronomical Observatory of Japan, Osawa, Mitaka, Tokyo 181-8588 (Japan)

    2009-11-10

    We present a differential emission measure (DEM) analysis of the quiet solar corona on disk using data obtained by the Extreme-ultraviolet Imaging Spectrometer (EIS) on Hinode. We show that the expected quiet-Sun DEM distribution can be recovered from judiciously selected lines, and that their average intensities can be reproduced to within 30%. We present a subset of these selected lines spanning the temperature range log T = 5.6-6.4 K that can be used to derive the DEM distribution reliably, including a subset of iron lines that can be used to derive the DEM distribution free of the possibility of uncertainties in the elemental abundances. The subset can be used without the need for extensive measurements, and the observed intensities can be reproduced to within the estimated uncertainty in the pre-launch calibration of EIS. Furthermore, using this subset, we also demonstrate that the quiet coronal DEM distribution can be recovered on size scales down to the spatial resolution of the instrument (1'' pixels). The subset will therefore be useful for studies of small-scale spatial inhomogeneities in the coronal temperature structure, for example, in addition to studies requiring multiple DEM derivations in space or time. We apply the subset to 45 quiet-Sun data sets taken in the period 2007 January to April, and show that although the absolute magnitude of the coronal DEM may scale with the amount of released energy, the shape of the distribution is very similar up to at least log T approx 6.2 K in all cases. This result is consistent with the view that the shape of the quiet-Sun DEM is mainly a function of the radiating and conducting properties of the plasma and is fairly insensitive to the location and rate of energy deposition. This universal DEM may be sensitive to other factors such as loop geometry, flows, and the heating mechanism, but if so they cannot vary significantly from quiet-Sun region to region.

  9. High intensity neutrino source superconducting solenoid cyrostat design

    SciTech Connect (OSTI)

    Page, T.M.; Nicol, T.H.; Feher, S.; Terechkine, I.; Tompkins, J.; /Fermilab

    2006-06-01

    Fermi National Accelerator Laboratory (FNAL) is involved in the development of a 100 MeV superconducting linac. This linac is part of the High Intensity Neutrino Source (HINS) R&D Program. The initial beam acceleration in the front end section of the linac is achieved using room temperature spoke cavities, each of which is combined with a superconducting focusing solenoid. These solenoid magnets are cooled with liquid helium at 4.5K, operate at 250 A and have a maximum magnetic field strength of 7.5 T. The solenoid cryostat will house the helium vessel, suspension system, thermal shield, multilayer insulation, power leads, instrumentation, a vacuum vessel and cryogenic distribution lines. This paper discusses the requirements and detailed design of these superconducting solenoid cryostats.

  10. Towards phasing using high X-ray intensity

    SciTech Connect (OSTI)

    Galli, Lorenzo; Son, Sang-Kil; Barends, Thomas R. M.; White, Thomas A.; Barty, Anton; Botha, Sabine; Boutet, Sébastien; Caleman, Carl; Doak, R. Bruce; Nanao, Max H.; Nass, Karol; Shoeman, Robert L.; Timneanu, Nicusor; Santra, Robin; Schlichting, Ilme; Chapman, Henry N.

    2015-09-30

    X-ray free-electron lasers (XFELs) show great promise for macromolecular structure determination from sub-micrometre-sized crystals, using the emerging method of serial femtosecond crystallography. The extreme brightness of the XFEL radiation can multiply ionize most, if not all, atoms in a protein, causing their scattering factors to change during the pulse, with a preferential `bleaching' of heavy atoms. This paper investigates the effects of electronic damage on experimental data collected from a Gd derivative of lysozyme microcrystals at different X-ray intensities, and the degree of ionization of Gd atoms is quantified from phased difference Fourier maps. A pattern sorting scheme is proposed to maximize the ionization contrast and the way in which the local electronic damage can be used for a new experimental phasing method is discussed.

  11. HIGH INTENSITY LOW-ENERGY POSITRON SOURCE AT JEFFERSON

    SciTech Connect (OSTI)

    Serkan Golge, Bogdan Wojtsekhowski, Branislav Vlahovic

    2012-07-01

    We present a novel concept of a low-energy e{sup +} source with projected intensity on the order of 10{sup 10} slow e{sup +}/s. The key components of this concept are a continuous wave e{sup -} beam, a rotating positron-production target, a synchronized raster/anti-raster, a transport channel, and extraction of e{sup +} into a field-free area through a magnetic plug for moderation in a cryogenic solid. Components were designed in the framework of GEANT4-based (G4beamline) Monte Carlo simulation and TOSCA magnetic field calculation codes. Experimental data to demonstrate the effectiveness of the magnetic plug is presented.

  12. Intensity limitations in compact H{sup minus} cyclotrons

    SciTech Connect (OSTI)

    Baartman, R.A.

    1995-12-31

    At TRIUMF, we have demonstrated 2.5 mA in a compact H{sup -} cyclotron. It is worthwhile to explore possibility of going to even higher intensity. In small cyclotrons, vertical focusing vanishes at the center. The space charge tune shift further reduces vertical focusing, thus determining an upper limit on instantaneous current. Limit on average current is of course also dependent upon phase acceptance, but this can be made quite large in an H{sup -} cyclotron. Longitudinal space charge on the first turn can reduce the phase acceptance as well. For finite ion source brightness, another limit comes from bunching efficiency in presence of space charge forces. We present methods of calculating and optimizing these limits. In particular, we show that it is possible to achieve 10mA in a 50 MeV compact H{sup -} cyclotron.

  13. Ultra-High Intensity Magnetic Field Generation in Dense Plasma

    SciTech Connect (OSTI)

    Fisch, Nathaniel J

    2014-01-08

    I. Grant Objective The main objective of this grant proposal was to explore the efficient generation of intense currents. Whereasthefficient generation of electric current in low-­‐energy-­‐ density plasma has occupied the attention of the magnetic fusion community for several decades, scant attention has been paid to carrying over to high-­‐energy-­‐ density plasma the ideas for steady-­‐state current drive developed for low-­‐energy-­‐ density plasma, or, for that matter, to inventing new methodologies for generating electric current in high-­‐energy-­‐density plasma. What we proposed to do was to identify new mechanisms to accomplish current generation, and to assess the operation, physics, and engineering basis of new forms of current drive in regimes appropriate for new fusion concepts.

  14. Working Group Report: Computing for the Intensity Frontier

    SciTech Connect (OSTI)

    Rebel, B.; Sanchez, M.C.; Wolbers, S.

    2013-10-25

    This is the report of the Computing Frontier working group on Lattice Field Theory prepared for the proceedings of the 2013 Community Summer Study ("Snowmass"). We present the future computing needs and plans of the U.S. lattice gauge theory community and argue that continued support of the U.S. (and worldwide) lattice-QCD effort is essential to fully capitalize on the enormous investment in the high-energy physics experimental program. We first summarize the dramatic progress of numerical lattice-QCD simulations in the past decade, with some emphasis on calculations carried out under the auspices of the U.S. Lattice-QCD Collaboration, and describe a broad program of lattice-QCD calculations that will be relevant for future experiments at the intensity and energy frontiers. We then present details of the computational hardware and software resources needed to undertake these calculations.

  15. Towards phasing using high X-ray intensity

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Galli, Lorenzo; Son, Sang -Kil; Barends, Thomas R. M.; White, Thomas A.; Barty, Anton; Botha, Sabine; Boutet, Sébastien; Caleman, Carl; Doak, R. Bruce; Nanao, Max H.; et al

    2015-09-30

    X-ray free-electron lasers (XFELs) show great promise for macromolecular structure determination from sub-micrometre-sized crystals, using the emerging method of serial femtosecond crystallography. The extreme brightness of the XFEL radiation can multiply ionize most, if not all, atoms in a protein, causing their scattering factors to change during the pulse, with a preferential `bleaching' of heavy atoms. This paper investigates the effects of electronic damage on experimental data collected from a Gd derivative of lysozyme microcrystals at different X-ray intensities, and the degree of ionization of Gd atoms is quantified from phased difference Fourier maps. In conclusion, a pattern sorting schememore » is proposed to maximize the ionization contrast and the way in which the local electronic damage can be used for a new experimental phasing method is discussed.« less

  16. Accessing defect dynamics using intense, nanosecond pulsed ion beams

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Persaud, A.; Barnard, J. J.; Guo, H.; Hosemann, P.; Lidia, S.; Minor, A. M.; Seidl, P. A.; Schenkel, T.

    2015-06-18

    Gaining in-situ access to relaxation dynamics of radiation induced defects will lead to a better understanding of materials and is important for the verification of theoretical models and simulations. We show preliminary results from experiments at the new Neutralized Drift Compression Experiment (NDCX-II) at Lawrence Berkeley National Laboratory that will enable in-situ access to defect dynamics through pump-probe experiments. Here, the unique capabilities of the NDCX-II accelerator to generate intense, nanosecond pulsed ion beams are utilized. Preliminary data of channeling experiments using lithium and potassium ions and silicon membranes are shown. We compare these data to simulation results using Crystalmore » Trim. Furthermore, we discuss the improvements to the accelerator to higher performance levels and the new diagnostics tools that are being incorporated.« less

  17. Accessing defect dynamics using intense, nanosecond pulsed ion beams

    SciTech Connect (OSTI)

    Persaud, A.; Barnard, J. J.; Guo, H.; Hosemann, P.; Lidia, S.; Minor, A. M.; Seidl, P. A.; Schenkel, T.

    2015-06-18

    Gaining in-situ access to relaxation dynamics of radiation induced defects will lead to a better understanding of materials and is important for the verification of theoretical models and simulations. We show preliminary results from experiments at the new Neutralized Drift Compression Experiment (NDCX-II) at Lawrence Berkeley National Laboratory that will enable in-situ access to defect dynamics through pump-probe experiments. Here, the unique capabilities of the NDCX-II accelerator to generate intense, nanosecond pulsed ion beams are utilized. Preliminary data of channeling experiments using lithium and potassium ions and silicon membranes are shown. We compare these data to simulation results using Crystal Trim. Furthermore, we discuss the improvements to the accelerator to higher performance levels and the new diagnostics tools that are being incorporated.

  18. INERTIAL FUSION DRIVEN BY INTENSE HEAVY-ION BEAMS

    SciTech Connect (OSTI)

    Sharp, W. M.; Friedman, A.; Grote, D. P.; Barnard, J. J.; Cohen, R. H.; Dorf, M. A.; Lund, S. M.; Perkins, L. J.; Terry, M. R.; Logan, B. G.; Bieniosek, F. M.; Faltens, A.; Henestroza, E.; Jung, J. Y.; Kwan, J. W.; Lee, E. P.; Lidia, S. M.; Ni, P. A.; Reginato, L. L.; Roy, P. K.; Seidl, P. A.; Takakuwa, J. H.; Vay, J.-L.; Waldron, W. L.; Davidson, R. C.; Gilson, E. P.; Kaganovich, I. D.; Qin, H.; Startsev, E.; Haber, I.; Kishek, R. A.; Koniges, A. E.

    2011-03-31

    Intense heavy-ion beams have long been considered a promising driver option for inertial-fusion energy production. This paper briefly compares inertial confinement fusion (ICF) to the more-familiar magnetic-confinement approach and presents some advantages of using beams of heavy ions to drive ICF instead of lasers. Key design choices in heavy-ion fusion (HIF) facilities are discussed, particularly the type of accelerator. We then review experiments carried out at Lawrence Berkeley National Laboratory (LBNL) over the past thirty years to understand various aspects of HIF driver physics. A brief review follows of present HIF research in the US and abroad, focusing on a new facility, NDCX-II, being built at LBNL to study the physics of warm dense matter heated by ions, as well as aspects of HIF target physics. Future research directions are briefly summarized.

  19. Towards phasing using high X-ray intensity

    SciTech Connect (OSTI)

    Galli, Lorenzo; Son, Sang -Kil; Barends, Thomas R. M.; White, Thomas A.; Barty, Anton; Botha, Sabine; Boutet, Sébastien; Caleman, Carl; Doak, R. Bruce; Nanao, Max H.; Nass, Karol; Shoeman, Robert L.; Timneanu, Nicusor; Santra, Robin; Schlichting, Ilme; Chapman, Henry N.

    2015-09-30

    X-ray free-electron lasers (XFELs) show great promise for macromolecular structure determination from sub-micrometre-sized crystals, using the emerging method of serial femtosecond crystallography. The extreme brightness of the XFEL radiation can multiply ionize most, if not all, atoms in a protein, causing their scattering factors to change during the pulse, with a preferential `bleaching' of heavy atoms. This paper investigates the effects of electronic damage on experimental data collected from a Gd derivative of lysozyme microcrystals at different X-ray intensities, and the degree of ionization of Gd atoms is quantified from phased difference Fourier maps. In conclusion, a pattern sorting scheme is proposed to maximize the ionization contrast and the way in which the local electronic damage can be used for a new experimental phasing method is discussed.

  20. Resolving microstructures in Z pinches with intensity interferometry

    SciTech Connect (OSTI)

    Apruzese, J. P.; Kroupp, E.; Maron, Y.; Giuliani, J. L.; Thornhill, J. W.

    2014-03-15

    Nearly 60 years ago, Hanbury Brown and Twiss [R. Hanbury Brown and R. Q. Twiss, Nature 178, 1046 (1956)] succeeded in measuring the 30 nrad angular diameter of Sirius using a new type of interferometry that exploited the interference of photons independently emitted from different regions of the stellar disk. Its basis was the measurement of intensity correlations as a function of detector spacing, with no beam splitting or preservation of phase information needed. Applied to Z pinches, X pinches, or laser-produced plasmas, this method could potentially provide spatial resolution under one micron. A quantitative analysis based on the work of Purcell [E. M. Purcell, Nature 178, 1449 (1956)] reveals that obtaining adequate statistics from x-ray interferometry of a Z-pinch microstructure would require using the highest-current generators available. However, using visible light interferometry would reduce the needed photon count and could enable its use on sub-MA machines.

  1. Observation of an Antimatter Hypernucleus

    SciTech Connect (OSTI)

    STAR Collaboration; Abelev, Betty

    2010-07-05

    Nuclear collisions recreate conditions in the universe microseconds after the Big Bang. Only a very small fraction of the emitted fragments are light nuclei, but these states are of fundamental interest. We report the observation of antihypertritons - composed of an antiproton, antineutron, and antilambda hyperon - produced by colliding gold nuclei at high energy. Our analysis yields 70 {+-} 17 antihypertritons ({sub {bar {Lambda}}}{sup 3}{bar H}) and 157 {+-} 30 hypertritons ({sub {Lambda}}{sup 3}H). The measured yields of {sub {Lambda}}{sup 3}H ({sub {bar {Lambda}}}{sup 3}{bar H}) and {sup 3}He ({sup 3}{ovr He}) are similar, suggesting an equilibrium in coordinate and momentum space populations of up, down, and strange quarks and antiquarks, unlike the pattern observed at lower collision energies. The production and properties of antinuclei, and nuclei containing strange quarks, have implications spanning nuclear/particle physics, astrophysics, and cosmology.

  2. ARM - Surface Aerosol Observing System

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FacilitiesSurface Aerosol Observing System AMF Information Science Architecture Baseline Instruments AMF1 AMF2 AMF3 MAOS AMF Fact Sheet Images Contacts AMF Deployments McMurdo Station, Antarctica, 2015-2016 Pearl Harbor, Hawaii, to San Francisco, California, 2015 Hyytiälä, Finland, 2014 Manacapuru, Brazil, 2014 Oliktok Point, Alaska, 2013 Los Angeles, California, to Honolulu, Hawaii, 2012 Cape Cod, Massachusetts, 2012 Gan Island, Maldives, 2011 Ganges Valley, India, 2011 Steamboat Springs,

  3. Nonlinear increase of X-ray intensities from thin foils irradiated...

    Office of Scientific and Technical Information (OSTI)

    increase of X-ray intensities from thin foils irradiated with a 200 TW femtosecond laser Citation Details In-Document Search Title: Nonlinear increase of X-ray intensities...

  4. Intense Super-radiant X-rays from a Compact Source using a Nanocathode...

    Office of Scientific and Technical Information (OSTI)

    Intense Super-radiant X-rays from a Compact Source using a Nanocathode Array and Emittance Exchange Citation Details In-Document Search Title: Intense Super-radiant X-rays from a ...

  5. Matter wave switching in Bose-Einstein condensates via intensity redistribution soliton interactions

    SciTech Connect (OSTI)

    Rajendran, S.; Lakshmanan, M.; Muruganandam, P.

    2011-02-15

    Using time dependent nonlinear (s-wave scattering length) coupling between the components of a weakly interacting two component Bose-Einstein condensate (BEC), we show the possibility of matter wave switching (fraction of atoms transfer) between the components via shape changing/intensity redistribution (matter redistribution) soliton interactions. We investigate the exact bright-bright N-soliton solution of an effective one-dimensional (1D) two component BEC by suitably tailoring the trap potential, atomic scattering length, and atom gain or loss. In particular, we show that the effective 1D coupled Gross-Pitaevskii equations with time dependent parameters can be transformed into the well known completely integrable Manakov model described by coupled nonlinear Schroedinger equations by effecting a change of variables of the coordinates and the wave functions under certain conditions related to the time dependent parameters. We obtain the one-soliton solution and demonstrate the shape changing/matter redistribution interactions of two and three-soliton solutions for the time-independent expulsive harmonic trap potential, periodically modulated harmonic trap potential, and kinklike modulated harmonic trap potential. The standard elastic collision of solitons occur only for a specific choice of soliton parameters.

  6. Observation of Nonlinear Compton Scattering

    SciTech Connect (OSTI)

    Kotseroglou, T.

    2003-12-19

    This experiment tests Quantum Electrodynamics in the strong field regime. Nonlinear Compton scattering has been observed during the interaction of a 46.6 GeV electron beam with a 10{sup 18} W/cm{sup 2} laser beam. The strength of the field achieved was measured by the parameter {eta} = e{var_epsilon}{sub rms}/{omega}mc = 0.6. Data were collected with infrared and green laser photons and circularly polarized laser light. The timing stabilization achieved between the picosecond laser and electron pulses has {sigma}{sub rms} = 2 ps. A strong signal of electrons that absorbed up to 4 infrared photons (or up to 3 green photons) at the same point in space and time, while emitting a single gamma ray, was observed. The energy spectra of the scattered electrons and the nonlinear dependence of the electron yield on the field strength agreed with the simulation over 3 orders of magnitude. The detector could not resolve the nonlinear Compton scattering from the multiple single Compton scattering which produced rates of scattered electrons of the same order of magnitude. Nevertheless, a simulation has studied this difference and concluded that the scattered electron rates observed could not be accounted for only by multiple ordinary Compton scattering; nonlinear Compton scattering processes are dominant for n {ge} 3.

  7. Category:Observation Wells | Open Energy Information

    Open Energy Info (EERE)

    Observation Wells Jump to: navigation, search Geothermalpower.jpg Looking for the Observation Wells page? For detailed information on Observation Wells, click here....

  8. Observational evidence of dust evolution in galactic extinction curves

    SciTech Connect (OSTI)

    Cecchi-Pestellini, Cesare; Casu, Silvia; Mulas, Giacomo; Zonca, Alberto E-mail: silvia@oa-cagliari.inaf.it E-mail: azonca@oa-cagliari.inaf.it

    2014-04-10

    Although structural and optical properties of hydrogenated amorphous carbons are known to respond to varying physical conditions, most conventional extinction models are basically curve fits with modest predictive power. We compare an evolutionary model of the physical properties of carbonaceous grain mantles with their determination by homogeneously fitting observationally derived Galactic extinction curves with the same physically well-defined dust model. We find that a large sample of observed Galactic extinction curves are compatible with the evolutionary scenario underlying such a model, requiring physical conditions fully consistent with standard density, temperature, radiation field intensity, and average age of diffuse interstellar clouds. Hence, through the study of interstellar extinction we may, in principle, understand the evolutionary history of the diffuse interstellar clouds.

  9. Department of Energy Commercial Building Benchmarks (New Construction): Energy Use Intensities, May 5, 2009

    Broader source: Energy.gov [DOE]

    This file contains the energy use intensities (EUIs) for the benchmark building files by building type and climate zone.

  10. Strategies for the Commercialization & Deployment of GHG Intensity-Reducing Technologies & Practices

    Office of Energy Efficiency and Renewable Energy (EERE)

    This report looks at the best methods of commercializing and deploying energy technologies that reduce greenhouse gas intensity.

  11. MEASURING BARYON ACOUSTIC OSCILLATIONS ON 21 cm INTENSITY FLUCTUATIONS AT MODERATE REDSHIFTS

    SciTech Connect (OSTI)

    Mao Xiaochun

    2012-06-20

    After reionization, emission in the 21 cm hyperfine transition provides a direct probe of neutral hydrogen distributed in galaxies. Different from galaxy redshift surveys, observation of baryon acoustic oscillations in the cumulative 21 cm emission may offer an attractive method for constraining dark energy properties at moderate redshifts. Keys to this program are techniques to extract the faint cosmological signal from various contaminants, such as detector noise and continuum foregrounds. In this paper, we investigate the possible systematic and statistical errors in the acoustic scale estimates using ground-based radio interferometers. Based on the simulated 21 cm interferometric measurements, we analyze the performance of a Fourier-space, light-of-sight algorithm in subtracting foregrounds, and further study the observing strategy as a function of instrumental configurations. Measurement uncertainties are presented from a suite of simulations with a variety of parameters, in order to have an estimate of what behaviors will be accessible in the future generation of hydrogen surveys. We find that 10 separate interferometers, each of which contains {approx}300 dishes, observing an independent patch of the sky and producing an instantaneous field of view (FOV) of {approx}100 deg{sup 2}, can be used to make a significant detection of acoustic features over a period of a few years. Compared to optical surveys, the broad bandwidth, wide FOV, and multi-beam observation are all unprecedented capabilities of low-frequency radio experiments.

  12. Long-lived periodic revivals of coherence in an interacting Bose-Einstein condensate

    SciTech Connect (OSTI)

    Egorov, M.; Ivannikov, V.; Opanchuk, B.; Drummond, P.; Hall, B. V.; Sidorov, A. I. [ARC Centre of Excellence for Quantum-Atom Optics and Centre for Atom Optics and Ultrafast Spectroscopy, Swinburne University of Technology, Melbourne 3122 (Australia); Anderson, R. P. [ARC Centre of Excellence for Quantum-Atom Optics and Centre for Atom Optics and Ultrafast Spectroscopy, Swinburne University of Technology, Melbourne 3122 (Australia); School of Physics, Monash University, Victoria 3800 (Australia)

    2011-08-15

    We observe the coherence of an interacting two-component Bose-Einstein condensate (BEC) surviving for seconds in a trapped Ramsey interferometer. Mean-field-driven collective oscillations of two components lead to periodic dephasing and rephasing of condensate wave functions with a slow decay of the interference fringe visibility. We apply spin echo synchronous with the self-rephasing of the condensate to reduce the influence of state-dependent atom losses, significantly enhancing the visibility up to 0.75 at the evolution time of 1.5 s. Mean-field theory consistently predicts higher visibility than experimentally observed values. We quantify the effects of classical and quantum noise and infer a coherence time of 2.8 s for a trapped condensate of 5.5x10{sup 4} interacting atoms.

  13. QUASI-PERIODIC OSCILLATIONS AND BROADBAND VARIABILITY IN SHORT MAGNETAR BURSTS

    SciTech Connect (OSTI)

    Huppenkothen, Daniela; Watts, Anna L.; Uttley, Phil; Van der Horst, Alexander J.; Van der Klis, Michiel; Kouveliotou, Chryssa; Goegues, Ersin; Granot, Jonathan; Vaughan, Simon; Finger, Mark H.

    2013-05-01

    The discovery of quasi-periodic oscillations (QPOs) in magnetar giant flares has opened up prospects for neutron star asteroseismology. However, with only three giant flares ever recorded, and only two with data of sufficient quality to search for QPOs, such analysis is seriously data limited. We set out a procedure for doing QPO searches in the far more numerous, short, less energetic magnetar bursts. The short, transient nature of these bursts requires the implementation of sophisticated statistical techniques to make reliable inferences. Using Bayesian statistics, we model the periodogram as a combination of red noise at low frequencies and white noise at high frequencies, which we show is a conservative approach to the problem. We use empirical models to make inferences about the potential signature of periodic and QPOs at these frequencies. We compare our method with previously used techniques and find that although it is on the whole more conservative, it is also more reliable in ruling out false positives. We illustrate our Bayesian method by applying it to a sample of 27 bursts from the magnetar SGR J0501+4516 observed by the Fermi Gamma-ray Burst Monitor, and we find no evidence for the presence of QPOs in any of the bursts in the unbinned spectra, but do find a candidate detection in the binned spectra of one burst. However, whether this signal is due to a genuine quasi-periodic process, or can be attributed to unmodeled effects in the noise is at this point a matter of interpretation.

  14. THE FREQUENCY OF LOW-MASS EXOPLANETS. III. TOWARD {eta}{sub +} AT SHORT PERIODS

    SciTech Connect (OSTI)

    Wittenmyer, Robert A.; Tinney, C. G.; Bailey, J.; Horner, J.; Butler, R. P.; O'Toole, Simon J.; Jones, H. R. A.; Carter, B. D.

    2011-09-01

    Determining the occurrence rate of 'super-Earth' planets (m sin i < 10 M{sub +}) is a critically important step on the path toward determining the frequency of Earth-like planets ({eta}{sub +}), and hence the uniqueness of our solar system. Current radial-velocity surveys, achieving precisions of 1 m s{sup -1}, are now able to detect super-Earths and provide meaningful estimates of their occurrence rate. We present an analysis of 67 solar-type stars from the Anglo-Australian Planet Search specifically targeted for very high precision observations. When corrected for incompleteness, we find that the planet occurrence rate increases sharply with decreasing planetary mass. Our results are consistent with those from other surveys: in periods shorter than 50 days, we find that 3.0% of stars host a giant (msin i > 100 M{sub +}) planet, and that 17.4% of stars host a planet with msin i < 10 M{sub +}. The preponderance of low-mass planets in short-period orbits is in conflict with formation simulations in which the majority of super-Earths reside at larger orbital distances. This work gives a hint as to the size of {eta}{sub +}, but to make meaningful predictions on the frequency of terrestrial planets in longer, potentially habitable orbits, low-mass terrestrial planet searches at periods of 100-200 days must be made an urgent priority for ground-based Doppler planet searches in the years ahead.

  15. Quasi-periodic quantum dot arrays produced by electrochemical synthesis

    SciTech Connect (OSTI)

    Bandyopadhyay, S.; Miller, A.E.; Yue, D.F.; Banerjee, G.; Ricker, R.E.; Jones, S.; Eastman, J.A.; Baugher, E.; Chandrasekhar, M.

    1994-06-01

    We discuss a ``gentle`` electrochemical technique for fabricating quasi-periodic quantum dot arrays. The technique exploits a self-organizing phenomenon to produce quasi-periodic arrangement of dots and provides excellent control over dot size and interdot spacing. Unlike conventional nanolithography, it does not cause radiation damage to the structures during exposure to pattern delineating beams (e-beam, ion-beam or x-ray). Moreover, it does not require harsh processing steps like reactive ion etching, offers a minimum feature size of {approximately}40 {angstrom}, allows the fabrication of structures on nonplanar surfaces (e.g. spherical or cylindrical substrates), is amenable to mass production (millions of wafers can be processed simultaneously) and is potentially orders of magnitude cheaper than conventional nanofabrication. In this paper, we describe our initial results and show the promise of this technique for low-cost and high-yield nanosynthesis.

  16. Enforcement Policy Statement: Compliance Period for Regional Standards

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Compliance Period for Regional Standards Applicable to Central Air Conditioners April 24, 2014 On June 27, 2011, the U.S. Department of Energy (DOE) published in the Federal Register a direct final rule (DFR) under the Energy Policy and Conservation Act (EPCA), 42 U.S.C. §§ 6291-6309, which set forth amended energy conservation standards for residential furnaces, central air conditioners, and heat pumps, including regional standards for different product types in indicated States. 76 FR 37408.

  17. Solvent vapor recovery by pressure swing adsorption. 1: Experimental transient and periodic dynamics of the butane-activated carbon system

    SciTech Connect (OSTI)

    Liu, Y.; Holland, C.E.; Ritter, J.A.

    1998-11-01

    An experimental investigation was carried out for the separation and recovery of butane vapor (10 to 40 vol%) from nitrogen using Westvaco BAX activated carbon in a twin-bed pressure swing adsorption (PSA) system utilizing a 4-step Skarstrom-type cycle. Twenty-four runs, covering a broad range of process and initial column conditions, were performed to investigate the transient and period process dynamics. In all cases the approach to the periodic state was very slow, taking up to 160 cycles depending on the initial condition of the beds; and peak bed temperatures of up to 105 C were observed depending on both the initial condition of the beds and the process conditions. Also, the periodic state of each run was unique when approaching a new periodic state from less contaminated beds. The uniqueness of the periodic states, together with the exceedingly high peak temperatures, inferred much about the practice of preconditioning beds to avoid high temperature excursions. The periodic enriched butane vapor concentration histories also gave considerable insight into new cycle designs for improved solvent vapor enrichment.

  18. THE COSMIC-RAY INTENSITY NEAR THE ARCHEAN EARTH

    SciTech Connect (OSTI)

    Cohen, O.; Drake, J. J.; Kota, J.

    2012-11-20

    We employ three-dimensional state-of-the-art magnetohydrodynamic models of the early solar wind and heliosphere and a two-dimensional model for cosmic-ray transport to investigate the cosmic-ray spectrum and flux near the Archean Earth. We assess how sensitive the cosmic-ray spectrum is to changes in the sunspot placement and magnetic field strength, the large-scale dipole magnetic field strength, the wind ram pressure, and the Sun's rotation period. Overall, our results confirm earlier work that suggested the Archean Earth would have experienced a greatly reduced cosmic-ray flux than is the case today. The cosmic-ray reduction for the early Sun is mainly due to the shorter solar rotation period and tighter winding of the Parker spiral, and to the different surface distribution of the more active solar magnetic field. These effects lead to a global reduction of the cosmic-ray flux at 1 AU by up to two orders of magnitude or more. Variations in the sunspot magnetic field have more effect on the flux than variations in the dipole field component. The wind ram pressure affects the cosmic-ray flux through its influence on the size of the heliosphere via the pressure balance with the ambient interstellar medium. Variations in the interstellar medium pressure experienced by the solar system in orbit through the Galaxy could lead to order of magnitude changes in the cosmic-ray flux at Earth on timescales of a few million years.

  19. Optimizing the emission, propagation, and focusing of an intense electron beam

    SciTech Connect (OSTI)

    Pepitone, K. Gardelle, J. Modin, P.

    2015-05-14

    Intense electron beams can be used to study the dynamical response of materials under shocks in order to adjust the models developed for hydrodynamics simulations. We present in this paper a characterization of beams produced in a field emission diode coupled to the generator RKA at CEA/CESTA. Cherenkov emission, produced by the beam interacting in a fused silica disk, was observed by fast optical cameras to estimate beam homogeneity. GEANT4 simulations were performed to estimate the transfer function of the silica target and to optimize the anode foil. First, we chose the best cathode material available among the most common materials used in field emission systems. In addition, we found that by optimization of the anode thickness, we could improve the spatial homogeneity of the beam which is of prime importance for computing the interaction of the beam with materials. Next, we changed the beam fluence by increasing the beam current and by reducing the beam radius. Finally, we studied the propagation and focusing of the electron beam in low pressure gases and observed that we could use self-magnetic field focusing in order to increase beam fluence at the target location. The experimental results are in good agreement with PIC simulations.

  20. Selective breaking of bonds in water with intense, 2-cycle, infrared laser pulses

    SciTech Connect (OSTI)

    Mathur, D. Dharmadhikari, A. K.; Dota, K.; Dey, D.; Tiwari, A. K.; Dharmadhikari, J. A.; De, S.; Vasa, P.

    2015-12-28

    One of the holy grails of contemporary science has been to establish the possibility of preferentially breaking one of several bonds in a molecule. For instance, the two O–H bonds in water are equivalent: given sufficient energy, either one of them is equally likely to break. We report bond-selective molecular fragmentation upon application of intense, 2-cycle pulses of 800 nm laser light: we demonstrate up to three-fold enhancement for preferential bond breaking in isotopically substituted water (HOD). Our experimental observations are rationalized by means of ab initio computations of the potential energy surfaces of HOD, HOD{sup +}, and HOD{sup 2+} and explorations of the dissociation limits resulting from either O–H or O–D bond rupture. The observations we report present a formidable theoretical challenge that need to be taken up in order to gain insights into molecular dynamics, strong field physics, chemical physics, non-adiabatic processes, mass spectrometry, and time-dependent quantum chemistry.

  1. Intense Ion Beam for Warm Dense Matter Physics

    SciTech Connect (OSTI)

    Coleman, Joshua Eugene

    2008-05-23

    The Neutralized Drift Compression Experiment (NDCX) at Lawrence Berkeley National Laboratory is exploring the physical limits of compression and focusing of ion beams for heating material to warm dense matter (WDM) and fusion ignition conditions. The NDCX is a beam transport experiment with several components at a scale comparable to an inertial fusion energy driver. The NDCX is an accelerator which consists of a low-emittance ion source, high-current injector, solenoid matching section, induction bunching module, beam neutralization section, and final focusing system. The principal objectives of the experiment are to control the beam envelope, demonstrate effective neutralization of the beam space-charge, control the velocity tilt on the beam, and understand defocusing effects, field imperfections, and limitations on peak intensity such as emittance and aberrations. Target heating experiments with space-charge dominated ion beams require simultaneous longitudinal bunching and transverse focusing. A four-solenoid lattice is used to tune the beam envelope to the necessary focusing conditions before entering the induction bunching module. The induction bunching module provides a head-to-tail velocity ramp necessary to achieve peak axial compression at the desired focal plane. Downstream of the induction gap a plasma column neutralizes the beam space charge so only emittance limits the focused beam intensity. We present results of beam transport through a solenoid matching section and simultaneous focusing of a singly charged K{sup +} ion bunch at an ion energy of 0.3 MeV. The results include a qualitative comparison of experimental and calculated results after the solenoid matching section, which include time resolved current density, transverse distributions, and phase-space of the beam at different diagnostic planes. Electron cloud and gas measurements in the solenoid lattice and in the vicinity of intercepting diagnostics are also presented. Finally, comparisons

  2. Clinical Implementation of Intensity Modulated Proton Therapy for Thoracic Malignancies

    SciTech Connect (OSTI)

    Chang, Joe Y.; Li, Heng; Zhu, X. Ronald; Liao, Zhongxing; Zhao, Lina; Liu, Amy; Li, Yupeng; Sahoo, Narayan; Poenisch, Falk; Gomez, Daniel R.; Wu, Richard; Gillin, Michael; Zhang, Xiaodong

    2014-11-15

    Purpose: Intensity modulated proton therapy (IMPT) can improve dose conformality and better spare normal tissue over passive scattering techniques, but range uncertainties complicate its use, particularly for moving targets. We report our early experience with IMPT for thoracic malignancies in terms of motion analysis and management, plan optimization and robustness, and quality assurance. Methods and Materials: Thirty-four consecutive patients with lung/mediastinal cancers received IMPT to a median 66 Gy(relative biological equivalence [RBE]). All patients were able to undergo definitive radiation therapy. IMPT was used when the treating physician judged that IMPT conferred a dosimetric advantage; all patients had minimal tumor motion (<5 mm) and underwent individualized tumor-motion dose-uncertainty analysis and 4-dimensional (4D) computed tomographic (CT)-based treatment simulation and motion analysis. Plan robustness was optimized by using a worst-case scenario method. All patients had 4D CT repeated simulation during treatment. Results: IMPT produced lower mean lung dose (MLD), lung V{sub 5} and V{sub 20}, heart V{sub 40}, and esophageal V{sub 60} than did IMRT (P<.05) and lower MLD, lung V{sub 20}, and esophageal V{sub 60} than did passive scattering proton therapy (PSPT) (P<.05). D{sub 5} to the gross tumor volume and clinical target volume was higher with IMPT than with intensity modulated radiation therapy or PSPT (P<.05). All cases were analyzed for beam-angle-specific motion, water-equivalent thickness, and robustness. Beam angles were chosen to minimize the effect of respiratory motion and avoid previously treated regions, and the maximum deviation from the nominal dose-volume histogram values was kept at <5% for the target dose and met the normal tissue constraints under a worst-case scenario. Patient-specific quality assurance measurements showed that a median 99% (range, 95% to 100%) of the pixels met the 3% dose/3 mm distance criteria for the

  3. Observation of the Top Quark

    DOE R&D Accomplishments [OSTI]

    Kim, S. B.

    1995-08-01

    Top quark production is observed in{bar p}p collisions at{radical}s= 1.8 TeV at the Fermilab Tevatron. The Collider Detector at Fermilab (CDF) and D{O} observe signals consistent with t{bar t} to WWb{bar b}, but inconsistent with the background prediction by 4.8{sigma} (CDF), 4.6a (D{O}). Additional evidence for the top quark Is provided by a peak in the reconstructed mass distribution. The kinematic properties of the excess events are consistent with the top quark decay. They measure the top quark mass to be 176{plus_minus}8(stat.){plus_minus}10(sys.) GeV/c{sup 2} (CDF), 199{sub -21}{sup+19}(stat.){plus_minus}22(sys.) GeV/c{sup 2} (D{O}), and the t{bar t} production cross section to be 6.8{sub -2.4}{sup+3.6}pb (CDF), 6.4{plus_minus}2.2 pb (D{O}).

  4. THE FREQUENCY OF LOW-MASS EXOPLANETS. II. THE 'PERIOD VALLEY'

    SciTech Connect (OSTI)

    Wittenmyer, Robert A.; Tinney, C. G.; Bailey, J.; O'Toole, Simon J.; Jones, H. R. A.; Butler, R. P.; Carter, B. D.

    2010-10-20

    Radial-velocity planet search campaigns are now beginning to detect low-mass 'Super-Earth' planets, with minimum masses M sin i{approx}< 10 M{sub +}. Using two independently developed methods, we have derived detection limits from nearly four years of the highest-precision data on 24 bright, stable stars from the Anglo-Australian Planet Search. Both methods are more conservative than a human analyzing an individual observed data set, as is demonstrated by the fact that both techniques would detect the radial-velocity signals announced as exoplanets for the 61 Vir system in 50% of trials. There are modest differences between the methods which can be recognized as arising from particular criteria that they adopt. What both processes deliver is a quantitative selection process such that one can use them to draw quantitative conclusions about planetary frequency and orbital parameter distribution from a given data set. Averaging over all 24 stars, in the period range P< 300 days and the eccentricity range 0.0 < e < 0.6, we could detect 99% of planets with velocity amplitudes K{approx}> 7.1 m s{sup -1}. For the best stars in the sample, we are able to detect or exclude planets with K{approx}> 3 m s{sup -1}, corresponding to minimum masses of 8 M{sub +} (P = 5 days) or 17 M{sub +} (P = 50 days). Our results indicate that the observed 'period valley', a lack of giant planets (M > 100 M{sub +}) with periods between 10 and 100 days, is indeed real. However, for planets in the mass range 10-100 M{sub +}, our results suggest that the deficit of such planets may be a result of selection effects.

  5. Fundamental physics at the intensity frontier. Report of the workshop held December 2011 in Rockville, MD.

    SciTech Connect (OSTI)

    Hewett, J.L.; Weerts, H.; Brock, R.; Butler, J.N.; Casey, B.C.K.; Lu, Z.T.; Wagner, C.E.M.; Dietrich, M.R.; Djurcic, Z.; Goodman, M.; Green, J.P.; Holt, R.J.; Mueller, P.; Paley, J.; Reimer, P.; Singh, J.; Upadhye, A.

    2012-06-05

    Particle physics aims to understand the universe around us. The Standard Model of particle physics describes the basic structure of matter and forces, to the extent we have been able to probe thus far. However, it leaves some big questions unanswered. Some are within the Standard Model itself, such as why there are so many fundamental particles and why they have different masses. In other cases, the Standard Model simply fails to explain some phenomena, such as the observed matter-antimatter asymmetry in the universe, the existence of dark matter and dark energy, and the mechanism that reconciles gravity with quantum mechanics. These gaps lead us to conclude that the universe must contain new and unexplored elements of Nature. Most of particle and nuclear physics is directed towards discovering and understanding these new laws of physics. These questions are best pursued with a variety of approaches, rather than with a single experiment or technique. Particle physics uses three basic approaches, often characterized as exploration along the cosmic, energy, and intensity frontiers. Each employs different tools and techniques, but they ultimately address the same fundamental questions. This allows a multi-pronged approach where attacking basic questions from different angles furthers knowledge and provides deeper answers, so that the whole is more than a sum of the parts. A coherent picture or underlying theoretical model can more easily emerge, to be proven correct or not. The intensity frontier explores fundamental physics with intense sources and ultra-sensitive, sometimes massive detectors. It encompasses searches for extremely rare processes and for tiny deviations from Standard Model expectations. Intensity frontier experiments use precision measurements to probe quantum effects. They typically investigate very large energy scales, even higher than the kinematic reach of high energy particle accelerators. The science addresses basic questions, such as: Are there

  6. Total Absorption Gamma-ray Spectrometer (TAGS) Intensity Distributions from INL's Gamma-Ray Spectrometry Center

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Greenwood, R. E.

    A 252Cf fission-product source and the INL on-line isotope separator were used to supply isotope-separated fission-product nuclides to a total absorption -ray spectrometer. This spectrometer consisted of a large (25.4-cm diameter x 30.5-cm long) NaI(Tl) detector with a 20.3-cm deep axial well in which is placed a 300-mm2 x 1.0-mm Si detector. The spectra from the NaI(Tl) detector are collected both in the singles mode and in coincidence with the B-events detected in the Si detector. Ideally, this detector would sum all the energy of the B- rays in each cascade following the population of daughter level by B- decay, so that the event could be directly associated with a particular daughter level. However, there are losses of energy from attenuation of the rays before they reach the detector, transmission of rays through the detector, escape of secondary photons from Compton scattering, escape of rays through the detector well, internal conversion, etc., and the measured spectra are thus more complicated than the ideal case and the analysis is more complex. Analysis methods have been developed to simulate all of these processes and thus provide a direct measure of the B- intensity distribution as a function of the excitation energy in the daughter nucleus. These data yield more accurate information on the B- distribution than conventional decay-scheme studies for complex decay schemes with large decay energies, because in the latter there are generally many unobserved and observed but unplaced rays. The TAGS data have been analyzed and published [R. E. Greenwood et al., Nucl Instr. and metho. A390(1997)] for 40 fission product-nuclides to determine the B- intensity distributions. [Copied from the TAGS page at http://www.inl.gov/gammaray/spectrometry/tags.shtml]. Those values are listed on this page for quick reference.

  7. Intense beams from gases generated by a permanent magnet ECR ion source at PKU

    SciTech Connect (OSTI)

    Ren, H. T.; Chen, J. E.; Peng, S. X.; Lu, P. N.; Yan, S.; Zhou, Q. F.; Zhao, J.; Yuan, Z. X.; Guo, Z. Y.

    2012-02-15

    An electron cyclotron resonance (ECR) ion source is designed for the production of high-current ion beams of various gaseous elements. At the Peking University (PKU), the primary study is focused on developing suitable permanent magnet ECR ion sources (PMECRs) for separated function radio frequency quadrupole (SFRFQ) accelerator and for Peking University Neutron Imaging Facility. Recently, other kinds of high-intensity ion beams are required for new acceleration structure demonstration, simulation of fusion reactor material irradiation, aviation bearing modification, and other applications. So we expanded the ion beam category from O{sup +}, H{sup +}, and D{sup +} to N{sup +}, Ar{sup +}, and He{sup +}. Up to now, about 120 mA of H{sup +}, 83 mA of D{sup +}, 50 mA of O{sup +}, 63 mA of N{sup +}, 70 mA of Ar{sup +}, and 65 mA of He{sup +} extracted at 50 kV through a {phi} 6 mm aperture were produced by the PMECRs at PKU. Their rms emittances are less than 0.2 {pi} mm mrad. Tungsten samples were irradiated by H{sup +} or He{sup +} beam extracted from this ion source and H/He holes and bubbles have been observed on the samples. A method to produce a high intensity H/He mixed beam to study synergistic effect is developed for nuclear material irradiation. To design a He{sup +} beam injector for coupled radio frequency quadruple and SFRFQ cavity, He{sup +} beam transmission experiments were carried out on PKU low energy beam transport test bench and the transmission was less than 50%. It indicated that some electrode modifications must be done to decrease the divergence of He{sup +} beam.

  8. Table 22. Energy Intensity, Projected vs. Actual Projected

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Intensity, Projected vs. Actual Projected (quadrillion Btu / $Billion 2005 Chained GDP) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 10.9 10.7 10.6 10.5 10.3 10.2 10.1 9.9 9.8 9.7 9.6 9.5 9.4 9.3 9.2 9.1 9.0 8.9 AEO 1995 10.5 10.4 10.3 10.1 10.0 9.8 9.7 9.6 9.4 9.3 9.2 9.1 9.0 8.9 8.9 8.8 8.7 AEO 1996 10.4 10.3 10.1 10.0 9.8 9.7 9.5 9.4 9.3 9.2 9.1 9.0 8.9 8.9 8.8 8.7 8.7 8.6 8.5 AEO 1997 10.0 9.9 9.8 9.7 9.6 9.5 9.4

  9. The WARP Code: Modeling High Intensity Ion Beams

    SciTech Connect (OSTI)

    Grote, David P.; Friedman, Alex; Vay, Jean-Luc; Haber, Irving

    2005-03-15

    The Warp code, developed for heavy-ion driven inertial fusion energy studies, is used to model high intensity ion (and electron) beams. Significant capability has been incorporated in Warp, allowing nearly all sections of an accelerator to be modeled, beginning with the source. Warp has as its core an explicit, three-dimensional, particle-in-cell model. Alongside this is a rich set of tools for describing the applied fields of the accelerator lattice, and embedded conducting surfaces (which are captured at sub-grid resolution). Also incorporated are models with reduced dimensionality: an axisymmetric model and a transverse 'slice' model. The code takes advantage of modern programming techniques, including object orientation, parallelism, and scripting (via Python). It is at the forefront in the use of the computational technique of adaptive mesh refinement, which has been particularly successful in the area of diode and injector modeling, both steady-state and time-dependent. In the presentation, some of the major aspects of Warp will be overviewed, especially those that could be useful in modeling ECR sources. Warp has been benchmarked against both theory and experiment. Recent results will be presented showing good agreement of Warp with experimental results from the STS500 injector test stand. Additional information can be found on the web page http://hif.lbl.gov/theory/WARP{sub s}ummary.html.

  10. The WARP Code: Modeling High Intensity Ion Beams

    SciTech Connect (OSTI)

    Grote, D P; Friedman, A; Vay, J L; Haber, I

    2004-12-09

    The Warp code, developed for heavy-ion driven inertial fusion energy studies, is used to model high intensity ion (and electron) beams. Significant capability has been incorporated in Warp, allowing nearly all sections of an accelerator to be modeled, beginning with the source. Warp has as its core an explicit, three-dimensional, particle-in-cell model. Alongside this is a rich set of tools for describing the applied fields of the accelerator lattice, and embedded conducting surfaces (which are captured at sub-grid resolution). Also incorporated are models with reduced dimensionality: an axisymmetric model and a transverse ''slice'' model. The code takes advantage of modern programming techniques, including object orientation, parallelism, and scripting (via Python). It is at the forefront in the use of the computational technique of adaptive mesh refinement, which has been particularly successful in the area of diode and injector modeling, both steady-state and time-dependent. In the presentation, some of the major aspects of Warp will be overviewed, especially those that could be useful in modeling ECR sources. Warp has been benchmarked against both theory and experiment. Recent results will be presented showing good agreement of Warp with experimental results from the STS500 injector test stand. Additional information can be found on the web page http://hif.lbl.gov/theory/WARP{_}summary.html.

  11. Active system area networks for data intensive computations. Final report

    SciTech Connect (OSTI)

    2002-04-01

    The goal of the Active System Area Networks (ASAN) project is to develop hardware and software technologies for the implementation of active system area networks (ASANs). The use of the term ''active'' refers to the ability of the network interfaces to perform application-specific as well as system level computations in addition to their traditional role of data transfer. This project adopts the view that the network infrastructure should be an active computational entity capable of supporting certain classes of computations that would otherwise be performed on the host CPUs. The result is a unique network-wide programming model where computations are dynamically placed within the host CPUs or the NIs depending upon the quality of service demands and network/CPU resource availability. The projects seeks to demonstrate that such an approach is a better match for data intensive network-based applications and that the advent of low-cost powerful embedded processors and configurable hardware makes such an approach economically viable and desirable.

  12. INTENSITY MAPPING OF MOLECULAR GAS DURING COSMIC REIONIZATION

    SciTech Connect (OSTI)

    Carilli, C. L.

    2011-04-01

    I present a simple calculation of the expected mean CO brightness temperature from the large-scale distribution of galaxies during cosmic reionization. The calculation is based on the cosmic star formation rate density required to reionize, and keep ionized, the intergalactic medium, and uses standard relationships between star formation rate, IR luminosity, and CO luminosity derived for star-forming galaxies over a wide range in redshift. I find that the mean CO brightness temperature resulting from the galaxies that could reionize the universe at z = 8 is T{sub B} {approx} 1.1(C/5)(f{sub esc}/0.1){sup -1}{mu}K, where f{sub esc} is the escape fraction of ionizing photons from the first galaxies and C is the IGM clumping factor. Intensity mapping of the CO emission from the large-scale structure of the star-forming galaxies during cosmic reionization on scales of order 10{sup 2} to 10{sup 3} deg{sup 2}, in combination with H I 21 cm imaging of the neutral IGM, will provide a comprehensive study of the earliest epoch of galaxy formation.

  13. Modeling the neutral hydrogen distribution in the post-reionization Universe: intensity mapping

    SciTech Connect (OSTI)

    Villaescusa-Navarro, Francisco; Viel, Matteo; Datta, Kanan K.; Choudhury, T. Roy, E-mail: villaescusa@oats.inaf.it, E-mail: viel@oats.inaf.it, E-mail: kanan@ncra.tifr.res.in, E-mail: tirth@ncra.tifr.res.in

    2014-09-01

    We model the distribution of neutral hydrogen (HI) in the post-reionization era and investigate its detectability in 21 cm intensity mapping with future radio telescopes like the Square Kilometer array (SKA). We rely on high resolution hydrodynamical N-body simulations that have a state-of-the-art treatment of the low density photoionized gas in the inter-galactic medium (IGM). The HI is assigned a-posteriori to the gas particles following two different approaches: a halo-based method in which HI is assigned only to gas particles residing within dark matter halos; a particle-based method that assigns HI to all gas particles using a prescription based on the physical properties of the particles. The HI statistical properties are then compared to the observational properties of Damped Lyman-? Absorbers (DLAs) and of lower column density systems and reasonable good agreement is found for all the cases. Among the halo-based method, we further consider two different schemes that aim at reproducing the observed properties of DLAs by distributing HI inside halos: one of this results in a much higher bias for DLAs, in agreement with recent observations, which boosts the 21 cm power spectrum by a factor ? 4 with respect to the other recipe. Furthermore, we quantify the contribution of HI in the diffuse IGM to both ?{sub HI} and the HI power spectrum finding to be subdominant in both cases. We compute the 21 cm power spectrum from the simulated HI distribution and calculate the expected signal for both SKA1-mid and SKA1-low configurations at 2.4 ? z ? 4. We find that SKA will be able to detect the 21 cm power spectrum, in the non-linear regime, up to k ? 1h/Mpc for SKA1-mid and k ? 5h/Mpc for SKA1-low with 100 hours of observations. We also investigate the perspective of imaging the HI distribution. Our findings indicate that SKA1-low could detect the most massive HI peaks with a signal to noise ratio (SNR) higher than 5 for an observation time of about 1000 hours at z = 4

  14. Comet tail formation: Giotto observations

    SciTech Connect (OSTI)

    Wilken, B.; Jockers, K.; Johnstone, A.; Coates, A.; Heath, J.; Formisano, V.; Amata, E.; Winningham, J.D.; Thomsen, M.; Bryant, D.A.

    1986-01-01

    The process of mass loading of the solar wind by cometary ions, which forms comet tails, has been observed throughout the coma of comet Halley. Three distinct regimes were found where the nature of the energy and momentum coupling between solar wind and cometary ions is different. Outside the bow shock, where there is little angular scattering of the freshly ionized particles, the coupling is described by the simple pickup trajectory and the energy is controlled by the angle between the flow and the magnetic field. Just inside the bow shock, there is considerable scattering accompanied by another acceleration process which raises some particle energies well above the straightforward pickup value. Finally, closer to the nucleus, the amount of scattering decreases and the coupling is once more controlled by the magnetic field direction. 4 refs., 3 figs.

  15. Aerosol Observing System (AOS) Handbook

    SciTech Connect (OSTI)

    Jefferson, A

    2011-01-17

    The Aerosol Observing System (AOS) is a suite of in situ surface measurements of aerosol optical and cloud-forming properties. The instruments measure aerosol properties that influence the earths radiative balance. The primary optical measurements are those of the aerosol scattering and absorption coefficients as a function of particle size and radiation wavelength and cloud condensation nuclei (CCN) measurements as a function of percent supersaturation. Additional measurements include those of the particle number concentration and scattering hygroscopic growth. Aerosol optical measurements are useful for calculating parameters used in radiative forcing calculations such as the aerosol single-scattering albedo, asymmetry parameter, mass scattering efficiency, and hygroscopic growth. CCN measurements are important in cloud microphysical models to predict droplet formation.

  16. Device for providing high-intensity ion or electron beam

    DOE Patents [OSTI]

    McClanahan, Edwin D.; Moss, Ronald W.

    1977-01-01

    A thin film of a low-thermionic-work-function material is maintained on the cathode of a device for producing a high-current, low-pressure gas discharge by means of sputter deposition from an auxiliary electrode. The auxiliary electrode includes a surface with a low-work-function material, such as thorium, uranium, plutonium or one of the rare earth elements, facing the cathode but at a disposition and electrical potential so as to extract ions from the gas discharge and sputter the low-work-function material onto the cathode. By continuously replenishing the cathode film, high thermionic emissions and ion plasmas can be realized and maintained over extended operating periods.

  17. DURING THIS REPORTING PERIOD, WE ISSUED 39 REPORTS; IDENTIFIED

    Energy Savers [EERE]

    39 REPORTS; IDENTIFIED $12.6 MILLION IN FUNDS PUT TO BETTER USE AND $19.3 MILLION IN QUESTIONED COSTS; OBTAINED $6.2 MILLION IN FINES, SETTLEMENTS, AND RECOVERIES, 6 CRIMINAL CONVICTIONS, 20 SUSPENSIONS AND DEBARMENTS, AND 51 CIVIL AND ADMINISTRATIVE ACTIONS; AND RECEIVED 1,679 HOTLINE CONTACTS. DURING THIS REPORTING PERIOD, WE ISSUED 39 REPORTS; IDENTIFIED $12.6 MILLION IN FUNDS PUT TO BETTER US AND $19.3 MILLION IN QUESTIONED COSTS; OBTAINED $6.2 MILLION IN FINES, SETTLEMENTS, AND RECOVERIES,

  18. Beyond periodic orbits: An example in nonhydrogenic atoms

    SciTech Connect (OSTI)

    Dando, P.A.; Monteiro, T.S.; Delande, D.; Taylor, K.T. (Department of Mathematics, Royal Holloway, University of London, Egham, Surrey, TW20 0EX (United Kingdom) Laboratoire Kastler-Brossel, Universite Pierre et Marie Curie, 4 place Jussieu, F-75005 Paris (France) Department of Applied Mathematics and Theoretical Physics, Queen's University Belfast, Belfast, BT7 1NN (United Kingdom))

    1995-02-13

    The spectrum of hydrogen in a magnetic field is a paradigm of quantum chaos and may be analyzed accurately by periodic-orbit-type theories. In nonhydrogenic atoms, the core induces pure quantum effects, especially additional spectral modulations, which cannot be analyzed reliably in terms of classical orbits and their stability parameters. Provided core-scattered waves are included consistently, core-scattered modulations as well as corrected amplitudes for primitive orbits are in excellent agreement with quantum results. We consider whether these systems correspond to quantum chaos.

  19. A cooperative control algorithm for camera based observational systems.

    SciTech Connect (OSTI)

    Young, Joseph G.

    2012-01-01

    Over the last several years, there has been considerable growth in camera based observation systems for a variety of safety, scientific, and recreational applications. In order to improve the effectiveness of these systems, we frequently desire the ability to increase the number of observed objects, but solving this problem is not as simple as adding more cameras. Quite often, there are economic or physical restrictions that prevent us from adding additional cameras to the system. As a result, we require methods that coordinate the tracking of objects between multiple cameras in an optimal way. In order to accomplish this goal, we present a new cooperative control algorithm for a camera based observational system. Specifically, we present a receding horizon control where we model the underlying optimal control problem as a mixed integer linear program. The benefit of this design is that we can coordinate the actions between each camera while simultaneously respecting its kinematics. In addition, we further improve the quality of our solution by coupling our algorithm with a Kalman filter. Through this integration, we not only add a predictive component to our control, but we use the uncertainty estimates provided by the filter to encourage the system to periodically observe any outliers in the observed area. This combined approach allows us to intelligently observe the entire region of interest in an effective and thorough manner.

  20. Possibilities for Nuclear Photo-Science with Intense Lasers

    SciTech Connect (OSTI)

    Barty, C J; Hartemann, F V; McNabb, D P; Messerly, M; Siders, C; Anderson, S; Barnes, P; Betts, S; Gibson, D; Hagmann, C; Hernandez, J; Johnson, M; Jovanovic, I; Norman, R; Pruet, J; Rosenswieg, J; Shverdin, M; Tremaine, A

    2006-06-26

    The interaction of intense laser light with relativistic electrons can produce unique sources of high-energy x rays and gamma rays via Thomson scattering. ''Thomson-Radiated Extreme X-ray'' (T-REX) sources with peak photon brightness (photons per unit time per unit bandwidth per unit solid angle per unit area) that exceed that available from world's largest synchrotrons by more than 15 orders of magnitude are possible from optimally designed systems. Such sources offer the potential for development of ''nuclear photo-science'' applications in which the primary photon-atom interaction is with the nucleons and not the valence electrons. Applications include isotope-specific detection and imaging of materials, inverse density radiography, transmutation of nuclear waste and fundamental studies of nuclear structure. Because Thomson scattering cross sections are small, < 1 barn, the output from a T-REX source is optimized when the laser spot size and the electron spot size are minimized and when the electron and laser pulse durations are similar and short compared to the transit time through the focal region. The principle limitation to increased x-ray or gamma-ray brightness is ability to focus the electron beam. The effects of space charge on electron beam focus decrease approximately linearly with electron beam energy. For this reason, T-REX brightness increases rapidly as a function of the electron beam energy. As illustrated in Figure 1, above 100 keV these sources are unique in their ability to produce bright, narrow-beam, tunable, narrow-band gamma rays. New, intense, short-pulse, laser technologies for advanced T-REX sources are currently being developed at LLNL. The construction of a {approx}1 MeV-class machine with this technology is underway and will be used to excite nuclear resonance fluorescence in variety of materials. Nuclear resonance fluorescent spectra are unique signatures of each isotope and provide an ideal mechanism for identification of nuclear

  1. Prostate Bed Motion During Intensity-Modulated Radiotherapy Treatment

    SciTech Connect (OSTI)

    Klayton, Tracy; Price, Robert; Buyyounouski, Mark K.; Sobczak, Mark; Greenberg, Richard; Li, Jinsheng; Keller, Lanea; Sopka, Dennis; Kutikov, Alexander; Horwitz, Eric M.

    2012-09-01

    Purpose: Conformal radiation therapy in the postprostatectomy setting requires accurate setup and localization of the prostatic fossa. In this series, we report prostate bed localization and motion characteristics, using data collected from implanted radiofrequency transponders. Methods and Materials: The Calypso four-dimensional localization system uses three implanted radiofrequency transponders for daily target localization and real-time tracking throughout a course of radiation therapy. We reviewed the localization and tracking reports for 20 patients who received ultrasonography-guided placement of Calypso transponders within the prostate bed prior to a course of intensity-modulated radiation therapy at Fox Chase Cancer Center. Results: At localization, prostate bed displacement relative to bony anatomy exceeded 5 mm in 9% of fractions in the anterior-posterior (A-P) direction and 21% of fractions in the superior-inferior (S-I) direction. The three-dimensional vector length from skin marks to Calypso alignment exceeded 1 cm in 24% of all 652 fractions with available setup data. During treatment, the target exceeded the 5-mm tracking limit for at least 30 sec in 11% of all fractions, generally in the A-P or S-I direction. In the A-P direction, target motion was twice as likely to move posteriorly, toward the rectum, than anteriorly. Fifteen percent of all treatments were interrupted for repositioning, and 70% of patients were repositioned at least once during their treatment course. Conclusion: Set-up errors and motion of the prostatic fossa during radiotherapy are nontrivial, leading to potential undertreatment of target and excess normal tissue toxicity if not taken into account during treatment planning. Localization and real-time tracking of the prostate bed via implanted Calypso transponders can be used to improve the accuracy of plan delivery.

  2. SU-E-T-409: Intensity Modulated Robotic Radiotherapy

    SciTech Connect (OSTI)

    Wang, B; Jin, L; Li, J; Chen, L; Ma, C; Fan, J; Zhang, C

    2014-06-01

    Purpose: As compared with the IRIS-based models, the MLC-based CyberKnife system allows more efficient treatment delivery due to its improved coverage of large lesions and intensity modulation. The treatment delivery efficiency is mainly determined by the number of selected nodes. This study aimed to demonstrate that relatively small sets of optimally selected nodes could produce high-quality plans. Methods: The full body path of the CyberKnife system consists of 110 nodes, from which we selected various sets for 4 prostate cancer cases using our in-house beamselection software. With the selected nodes we generated IMRT plans using our in-house beamlet-based inverse-planning optimization program. We also produced IMRT plans using the MultiPlan treatment planning system (version 5.0) for the same cases. Furthermore, the nodes selected by MultiPlan were used to produce plans with our own optimization software so that we could compare the quality of the selected sets of nodes. Results: Our beam-selection program selected one node-set for each case, with the number of nodes ranging from 23 to 34. The IMRT plans based on the selected nodes and our in-house optimization program showed adequate target coverage, with favorable critical structure sparing for the cases investigated. Compared with the plans using the nodes selected by MultiPlan, the plans generated with our selected beams provided superior rectum/bladder sparing for 75% of the cases. The plans produced by MultiPlan with various numbers of nodes also suggested that the plan quality was not compromised significantly when the number of nodes was reduced. Conclusion: Our preliminary results showed that with beamletbased planning optimization, one could produce high-quality plans with an optimal set of nodes for MLC-based robotic radiotherapy. Furthermore, our beam-selection strategy could help further improve critical structure sparing.

  3. Data-intensive management and analysis for scientifc simulations.

    SciTech Connect (OSTI)

    Hudson, R.; Norris, J.; Reid, L. B.; Cal Jordan IV, G.; Weide, K.; Papka, M. E.

    2011-01-01

    Scientific simulations can produce enormous amounts of data, making the analysis of results and management of files a difficult task for scientists. The simulation management and analysis system (Smaash) described here is designed to allow scientists to easily capture, store, organize, monitor, and analyze simulation results. The system is automatic, standardized, and secure. Smaash was built using open-source tools and modularized to be independent of the scientific simulation. The web-based front-end allows the scientist to easily interact with the data, and has proved its usefulness in improving the efficiency of a scientific team's workflow. High performance parallel computing allows scientists to solve complex physical problems through computer simulation. However, the massive amounts of data generated and the complex computing environment can create additional complications. A recent review by Ludaescher et al.(2009) describes how scientific workflows can assist scientists in extracting knowledge from these data-intensive operations by automating components within pipelines. Within the fusion community, Klasky et al.(2008) and colleagues have developed a system that handles the storage management, data movement, metadata generation and management, and a means to analyze the results. In response to scientists needs, a simulation management and analysis system (Smaash) was developed at the University of Chicago and Argonne National Laboratory (USA). Smaash provides an integrated way to monitor simulations and analyze computational results; catalog, store, and retrieve simulations; and prepare output for publications. The system is independent of the particular simulation code, accessible from many HPC and browser-based platforms, and built around open-source software tools. Data security and provenance is considered throughout. The analysis components are hidden behind a web-based front end, enabling scientists to focus on their results and not get bogged down

  4. Glass Strengthening via High-Intensity Plasma-Arc Heating

    SciTech Connect (OSTI)

    Wereszczak, Andrew A; Harper, David C; Duty, Chad E; Patel, P

    2010-01-01

    The use of a high-intensity plasma-arc lamp was used to irradiate the surface of soda-lime silicate glass tiles to determine if an increase in strength could be achieved. The lamp had a power density of 3500 W/cm2, a processing area of 1 cm x 10 cm, irradiated near-infrared heating at a wavelength between 0.2 1.4 m, and was controlled to unidirectionally sweep across 50-mm-square tiles at a constant speed of 8 mm/s. Ring-on-ring (RoR) equibiaxial flexure and 4 pt uni-directional flexure testings of entire tiles were used to measure and compare failure stress distributions of treated and untreated glass. Even with non-optimized processing conditions, RoR failure stress increased by approximately 25% and the 4 pt bend failure stress increased by approximately 65%. Strengthening was due to a fire-polishing-like mechanism. The arc-lamp heat-treatment caused the location of the strength-limiting flaws in the 4-pt-bend tiles to change; namely, failure initiation occurred on the gage section surface for the treated glass whereas it occurred at a gage section edge for the untreated. Arc-lamp heat-treatment is attractive not only because it provides strengthening, but because it can (non-contact) process large amounts of glass quickly and inexpensively, and is a process that either a glass manufacturer or end-user can readily employ.

  5. Energy end-use intensities in commercial buildings

    SciTech Connect (OSTI)

    Not Available

    1994-09-01

    This report examines energy intensities in commercial buildings for nine end uses: space heating, cooling, ventilation, lighting, water heating, cooking, refrigeration, office equipment, and other. The objective of this analysis was to increase understanding of how energy is used in commercial buildings and to identify targets for greater energy efficiency which could moderate future growth in demand. The source of data for the analysis is the 1989 Commercial Buildings Energy Consumption survey (CBECS), which collected detailed data on energy-related characteristics and energy consumption for a nationally representative sample of approximately 6,000 commercial buildings. The analysis used 1989 CBECS data because the 1992 CBECS data were not yet available at the time the study was initiated. The CBECS data were fed into the Facility Energy Decision Screening (FEDS) system, a building energy simulation program developed by the US Department of Energy`s Pacific Northwest Laboratory, to derive engineering estimates of end-use consumption for each building in the sample. The FEDS estimates were then statistically adjusted to match the total energy consumption for each building. This is the Energy Information Administration`s (EIA) first report on energy end-use consumption in commercial buildings. This report is part of an effort to address customer requests for more information on how energy is used in buildings, which was an overall theme of the 1992 user needs study. The end-use data presented in this report were not available for publication in Commercial Buildings Energy Consumption and Expenditures 1989 (DOE/EIA-0318(89), Washington, DC, April 1992). However, subsequent reports on end-use energy consumption will be part of the Commercial Buildings Energy Consumption and Expenditures series, beginning with a 1992 data report to be published in early 1995.

  6. Dosimetrically Triggered Adaptive Intensity Modulated Radiation Therapy for Cervical Cancer

    SciTech Connect (OSTI)

    Lim, Karen; Stewart, James; Kelly, Valerie; Xie, Jason; Brock, Kristy K.; Moseley, Joanne; Cho, Young-Bin; Fyles, Anthony; Lundin, Anna; Rehbinder, Henrik; Lf, Johan; Jaffray, David A.; Milosevic, Michael

    2014-09-01

    Purpose: The widespread use of intensity modulated radiation therapy (IMRT) for cervical cancer has been limited by internal target and normal tissue motion. Such motion increases the risk of underdosing the target, especially as planning margins are reduced in an effort to reduce toxicity. This study explored 2 adaptive strategies to mitigate this risk and proposes a new, automated method that minimizes replanning workload. Methods and Materials: Thirty patients with cervical cancer participated in a prospective clinical study and underwent pretreatment and weekly magnetic resonance (MR) scans over a 5-week course of daily external beam radiation therapy. Target volumes and organs at risk (OARs) were contoured on each of the scans. Deformable image registration was used to model the accumulated dose (the real dose delivered to the target and OARs) for 2 adaptive replanning scenarios that assumed a very small PTV margin of only 3mm to account for setup and internal interfractional motion: (1)a preprogrammed, anatomy-driven midtreatment replan (A-IMRT); and (2) a dosimetry-triggered replan driven by target dose accumulation over time (D-IMRT). Results: Across all 30 patients, clinically relevant target dose thresholds failed for 8 patients (27%) if 3-mm margins were used without replanning. A-IMRT failed in only 3 patients and also yielded an additional small reduction in OAR doses at the cost of 30 replans. D-IMRT assured adequate target coverage in all patients, with only 23 replans in 16 patients. Conclusions: A novel, dosimetry-triggered adaptive IMRT strategy for patients with cervical cancer can minimize the risk of target underdosing in the setting of very small margins and substantial interfractional motion while minimizing programmatic workload and cost.

  7. Intense x-ray machine for penetrating radiography

    SciTech Connect (OSTI)

    Lucht, R.A.; Eckhouse, S.

    1989-01-01

    Penetrating radiography has been used for many years in the nuclear weapons research programs. In frequently penetrating radiography has been used in conventional weapons research programs. For example the Los Alamos PHERMEX machine was used to view uranium rods penetrating steel for the GAU-8 program, and the Ector machine was used to see low-density regions in forming metal jets. The armor/anti-armor program at Los Alamos has created a need for an intense flash x-ray machine that can be dedicated to conventional weapons research. The Balanced Technology Initiative, through DARPA, has funded the design and construction of such a machine at Los Alamos. It will be an 8- to 10-MeV diode machine capable of delivering a dose of 500 R at 1 m with a spot size of less than 5 mm. The machine used an 87.5-stage low-inductance Marx generator that charges up a 7.4-/Omega/, 32-ns water line. The water line is discharged through a self-breakdown oil switch into a 12.4-/Omega/ water line that rings up the voltage into the high-impendance x-ray diode. A long (233-cm) vacuum drift tube is used to separate the large-diameter oil-insulated diode region from the x-ray source area that may be exposed to high overpressures by the explosive experiments. The electron beam is self-focused at the target area using a low-pressure background gas. 15 refs., 11 figs.

  8. Production of intense beams of singly charged radioactive ions

    SciTech Connect (OSTI)

    Kuznetsov, G.; Batazova, M.; Gubin, K.; Logachev, P.; Martyshkin, P.

    2006-03-15

    An apparatus for the production of intense beams of singly charged radioactive ions operating in on-line regime is proposed. The radioactive atoms are produced in a uranium-graphite (UC) target bombarded with neutrons. The neutron flux is generated by a graphite neutron converter, which is bombarded with protons. The atoms of the produced isotopes are ionized in the electron beam generated with the electron gun and the ions of interest are extracted in a separator. The apparatus consists of the following parts. (1) Rotating converter dissipating a substantial power of proton beam. (2) UC target placed in a graphite container at high temperature. The atoms of radioactive isotopes can be extracted with a flow of noble gas. (3) Triode electron gun with ionization channel is placed inside the solenoid forming a focusing magnetic field. The cathode of the electron gun is a spout of the graphite container. The atoms of radioactive isotopes are carried with gas flow through the spout into the electron beam. (4) Correction coil located near the gun matches the electron beam with the ionization channel. (5) The first anode has a potential of 1-4 kV with respect to the cathode, and the second anode has some lower potential than the first anode and it is the tube of ionization channel. (6) Electron collector dissipates the electron-beam power. (7) Uranium-graphite target, the gun, the ionization channel as well as solenoid are located on an isolated platform with potential of 30-60 kV with respect to ground. The beam of singly charged ions from the ionization channel passes the collector, goes through the extractor, acquires energy of 30-60 keV, and gets transported to the separator where the required species are selected.

  9. Intensity Modulated Radiation Therapy With Dose Painting to Treat Rhabdomyosarcoma

    SciTech Connect (OSTI)

    Yang, Joanna C.; Dharmarajan, Kavita V.; Wexler, Leonard H.; La Quaglia, Michael P.; Happersett, Laura; Wolden, Suzanne L.

    2012-11-01

    Purpose: To examine local control and patterns of failure in rhabdomyosarcoma patients treated with intensity modulated radiation therapy (RT) with dose painting (DP-IMRT). Patients and Methods: A total of 41 patients underwent DP-IMRT with chemotherapy for definitive treatment. Nineteen also underwent surgery with or without intraoperative RT. Fifty-six percent had alveolar histologic features. The median interval from beginning chemotherapy to RT was 17 weeks (range, 4-25). Very young children who underwent second-look procedures with or without intraoperative RT received reduced doses of 24-36 Gy in 1.4-1.8-Gy fractions. Young adults received 50.4 Gy to the primary tumor and lower doses of 36 Gy in 1.8-Gy fractions to at-risk lymph node chains. Results: With 22 months of median follow-up, the actuarial local control rate was 90%. Patients aged {<=}7 years who received reduced overall and fractional doses had 100% local control, and young adults had 79% (P=.07) local control. Three local failures were identified in young adults whose primary target volumes had received 50.4 Gy in 1.8-Gy fractions. Conclusions: DP-IMRT with lower fractional and cumulative doses is feasible for very young children after second-look procedures with or without intraoperative RT. DP-IMRT is also feasible in adolescents and young adults with aggressive disease who would benefit from prophylactic RT to high-risk lymph node chains, although dose escalation might be warranted for improved local control. With limited follow-up, it appears that DP-IMRT produces local control rates comparable to those of sequential IMRT in patients with rhabdomyosarcoma.

  10. HIGH ENERGY DENSITY PHYSICS EXPERIMENTS WITH INTENSE HEAVY ION BEAMS

    SciTech Connect (OSTI)

    Henestroza, E.; Leitner, M.; Logan, B.G.; More, R.M.; Roy, P.K.; Ni, P.; Seidl, P.A.; Waldron, W.L.; Barnard, J.J.

    2010-03-16

    The US heavy ion fusion science program has developed techniques for heating ion-beam-driven warm dense matter (WDM) targets. The WDM conditions are to be achieved by combined longitudinal and transverse space-charge neutralized drift compression of the ion beam to provide a hot spot on the target with a beam spot size of about 1 mm, and pulse length about 1-2 ns. As a technique for heating volumetric samples of matter to high energy density, intense beams of heavy ions are capable of delivering precise and uniform beam energy deposition dE/dx, in a relatively large sample size, and the ability to heat any solid-phase target material. Initial experiments use a 0.3 MeV K+ beam (below the Bragg peak) from the NDCX-I accelerator. Future plans include target experiments using the NDCX-II accelerator, which is designed to heat targets at the Bragg peak using a 3-6 MeV lithium ion beam. The range of the beams in solid matter targets is about 1 micron, which can be lengthened by using porous targets at reduced density. We have completed the fabrication of a new experimental target chamber facility for WDM experiments, and implemented initial target diagnostics to be used for the first target experiments in NDCX-1. The target chamber has been installed on the NDCX-I beamline. The target diagnostics include a fast multi-channel optical pyrometer, optical streak camera, VISAR, and high-speed gated cameras. Initial WDM experiments will heat targets by compressed NDCX-I beams and will explore measurement of temperature and other target parameters. Experiments are planned in areas such as dense electronegative targets, porous target homogenization and two-phase equation of state.

  11. HIGH ENERGY DENSITY PHYSICS EXPERIMENTS WITH INTENSE HEAVY ION BEAMS

    SciTech Connect (OSTI)

    Bieniosek, F.M.; Henestroza, E.; Leitner, M.; Logan, B.G.; More, R.M.; Roy, P.K.; Ni, P.; Seidl, P.A.; Waldron, W.L.; Barnard, J.J.

    2008-08-01

    The US heavy ion fusion science program has developed techniques for heating ion-beam-driven warm dense matter (WDM) targets. The WDM conditions are to be achieved by combined longitudinal and transverse space-charge neutralized drift compression of the ion beam to provide a hot spot on the target with a beam spot size of about 1 mm, and pulse length about 1-2 ns. As a technique for heating volumetric samples of matter to high energy density, intense beams of heavy ions are capable of delivering precise and uniform beam energy deposition dE/dx, in a relatively large sample size, and the ability to heat any solid-phase target material. Initial experiments use a 0.3 MeV K+ beam (below the Bragg peak) from the NDCX-I accelerator. Future plans include target experiments using the NDCX-II accelerator, which is designed to heat targets at the Bragg peak using a 3-6 MeV lithium ion beam. The range of the beams in solid matter targets is about 1 micron, which can be lengthened by using porous targets at reduced density. We have completed the fabrication of a new experimental target chamber facility for WDM experiments, and implemented initial target diagnostics to be used for the first target experiments in NDCX-1. The target chamber has been installed on the NDCX-I beamline. The target diagnostics include a fast multi-channel optical pyrometer, optical streak camera, VISAR, and high-speed gated cameras. Initial WDM experiments will heat targets by compressed NDCX-I beams and will explore measurement of temperature and other target parameters. Experiments are planned in areas such as dense electronegative targets, porous target homogenization and two-phase equation of state.

  12. Periodicity of the solar full-disk magnetic fields

    SciTech Connect (OSTI)

    Xiang, N. B.; Qu, Z. N.; Zhai, Q.

    2014-07-01

    A full-disk solar magnetogram has been measured each day since 1970 January 19, and the daily Magnetic Plage Strength Index (MPSI) and the daily Mount Wilson Sunspot Index (MWSI) were calculated for each magnetogram at the Mount Wilson Observatory. The MPSI and MWSI are used to investigate the periodicity of the solar full-disk magnetic activity through autocorrelation analyses. Just two periods, the solar cycle and the rotation cycle, are determined in both the MPSI (the solar full-disk weak magnetic field activity) and MWSI (the solar full-disk strong magnetic field activity) with no annual signal found. The solar cycle for MPSI (10.83 yr) is found to be obviously longer than that for MWSI (9.77 yr). The rotation cycle is determined to be 26.8 ± 0.63 sidereal days for MPSI and 27.4 ± 2.4 sidereal days for MWSI. The rotation cycle length for MPSI is found to fluctuate around 27 days within a very small amplitude, but for MWSI it obviously temporally varies with a rather large amplitude. The rotation cycle for MWSI seems longer near solar minimum than at solar maximum. Cross-correlation analyses of daily MPSI and MWSI are carried out, and it is inferred that the MPSI components partly come from relatively early MWSI measurements.

  13. Budget Period 2 Summary Report Part 2: Hywind Maine Project

    SciTech Connect (OSTI)

    Driscoll, Frederick; Platt, Andrew; Sirnivas, Senu

    2015-08-15

    This project was performed under the Work for Others—Funds in Agreement FIA-14-1793 between Statoil and the Alliance for Sustainable Energy, manager and operator of the National Renewable Energy Laboratory (NREL). To support the development of a 6-MW spar-mounted offshore wind turbine, Statoil funded NREL to perform tasks in the following three categories: 1. Design and analysis 2. Wake modeling 3. Concept resource assessment. This study expands upon the work conducted in Budget Period 1 (BP1) to investigate the influence of the wake generated from an upstream turbine on a downstream turbine using Computational Fluid Dynamics (CFD) high-fidelity modeling tool. Simulator fOr Wind Farms Application (SOWFA) [1] is an NREL high fidelity modeling tool that couples OpenFOAM [2] CFD and NREL’s Aero-Elastic code Fatigue, Aerodynamics, Structures, and Turbulence (FAST)[3]. In BP1 the configuration was based on Hywind-3MW at 140 m water depth in the Gulf of Maine; however this study for Budget Period 2 (BP2) the configuration investigated is based on Hywind-6MW at 220 m water depth off the coast of Boston. The objectives were to perform two-turbines One-Way Coupling (OWC), three-turbines Two-Way Coupling (TWC), and to investigate wind power plant optimization.

  14. FORTE log periodic antenna. Phase 1, Final report

    SciTech Connect (OSTI)

    Not Available

    1993-04-22

    This report summarizes the results of ABLE`s design study of the FORTE deployable log periodic antenna. The resulting Baseline Design of the antenna is the basis for ABLE`s proposal for Phase II of this program. ABLE`s approach to meeting the requirements is to use a coilable ABLE mast as the deployable structure ``backbone`` of the antenna and to use deployable tubes for. the log periodic dipole elements of the antenna. This general approach was adopted at the outset of the Phase I Design Study. The remainder of the study was devoted to detailed design and analysis to properly size these types of mast and antenna elements and to design their deployment mechanisms. Demonstration models of the mast and antenna element deployer were fabricated as part of Phase I study. The study showed that ABLE`s design approach is feasible and can meet all the specified design requirements except the mass limit of 13.5 kg. Results of the design and analysis studies are summarized in this report. The mast and dipole element deployer are to be demonstrated to LANL personnel at the conclusion of this Phase I study.

  15. PULSATION PERIOD VARIATIONS IN THE RRc LYRAE STAR KIC 5520878

    SciTech Connect (OSTI)

    Hippke, Michael; Learned, John G.; Zee, A.; Edmondson, William H.; Lindner, John F.; Kia, Behnam; Ditto, William L.; Stevens, Ian R. E-mail: jgl@phys.hawaii.edu E-mail: w.h.edmondson@bham.ac.uk E-mail: wditto@hawaii.edu E-mail: irs@star.sr.bham.ac.uk

    2015-01-01

    Learned et al. proposed that a sufficiently advanced extra-terrestrial civilization may tickle Cepheid and RR Lyrae variable stars with a neutrino beam at the right time, thus causing them to trigger early and jogging the otherwise very regular phase of their expansion and contraction. This would turn these stars into beacons to transmit information throughout the galaxy and beyond. The idea is to search for signs of phase modulation (in the regime of short pulse duration) and patterns, which could be indicative of intentional, omnidirectional signaling. We have performed such a search among variable stars using photometric data from the Kepler space telescope. In the RRc Lyrae star KIC 5520878, we have found two such regimes of long and short pulse durations. The sequence of period lengths, expressed as time series data, is strongly autocorrelated, with correlation coefficients of prime numbers being significantly higher (p = 99.8%). Our analysis of this candidate star shows that the prime number oddity originates from two simultaneous pulsation periods and is likely of natural origin. Simple physical models elucidate the frequency content and asymmetries of the KIC 5520878 light curve. Despite this SETI null result, we encourage testing of other archival and future time-series photometry for signs of modulated stars. This can be done as a by-product to the standard analysis, and can even be partly automated.

  16. New photodisintegration threshold observable in

    SciTech Connect (OSTI)

    E.A. Wulf; R.S. Canon; Sally J. Gaff; J.H. Kelley; R.M. Prior; E.C. Schreiber; M. Spraker; D.R. Tilley; H.R. Weller; M. Viviani; A. Kievsky; S. Rosati; Rocco Schiavilla

    2000-02-01

    Measurements of the cross section, vector, and tensor analyzing powers, and linear gamma-ray polarization in the radiative capture reactions D(p,y){sup 3} He and p(d,y){sup 3}He at c.m. energies in the range 0-53 keV allow the determination of the reduced matrix elements (RMEs) relevant for these transitions. From these RMEs the value of the integral which determines the Gerasimov-Drell-Hearn sum rule for He is obtained in the threshold region, corresponding to two-body breakup, and compared with the results of an ab initio microscopic three-body model calculation.The theoretical predictions for the value of this integral based on a ''nucleons-only'' assumption are an order of magnitude smaller than experiment. The discrepancy is reduced to about a factor of 2 when two-body currents are taken into account. This factor of 2 is due to an almost exact cancellation between the dominant E1 RMEs in the theoretical calculation. The excess E1 strength observed experimentally could provide useful insights into the nuclear interaction at low energies.

  17. SDSS J001153.08–064739.2, A cataclysmic variable with an evolved donor in the period gap

    SciTech Connect (OSTI)

    Rebassa-Mansergas, A.; Parsons, S. G.; Schreiber, M. R.; Copperwheat, C. M.; Justham, S.; Gänsicke, B. T.; Marsh, T. R.; Dhillon, V. S.

    2014-07-20

    Secondary stars in cataclysmic variables (CVs) follow a well-defined period-density relation. Thus, canonical donor stars in CVs are generally low-mass stars of spectral type M. However, several CVs have been observed containing secondary stars that are too hot for their inferred masses. This particular configuration can be explained if the donor stars in these systems underwent significant nuclear evolution before they reached contact. In this paper, we present SDSS J001153.08–064739.2 as an additional example belonging to this peculiar type of CV and discuss in detail its evolutionary history. We perform spectroscopic and photometric observations and make use of available Catalina Real-Time Transient Survey photometry to measure the orbital period of SDSS J001153.08–064739.2 as 2.4 hr and estimate the white dwarf (M{sub wd} > 0.65 M{sub ☉}) and donor star (0.21 M{sub ☉} < M{sub don} < 0.45 M{sub ☉}) masses, the mass ratio (q = 0.32 ± 0.08), the orbital inclination (47° < i < 70°); derive an accurate orbital ephemeris (T{sub 0} = 2453383.578(1) + E × 0.10028081(8)); and report the detection of an outburst. We show that SDSS J001153.08–064739.2 is one of the most extreme cases in which the donor star is clearly too hot for its mass. SDSS J001153.08–064739.2 is therefore not only a peculiar CV containing an evolved donor star, but also an accreting CV within the period gap. Intriguingly, approximately half of the total currently observed sample of these peculiar CVs are located in the period gap with nearly the same orbital period.

  18. GNEP Partners and Observers | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    GNEP Partners and Observers GNEP Partners and Observers A list of GNEP partners and observers. GNEP Partners and Observers (45.67 KB) More Documents & Publications Microsoft PowerPoint - GNEP PARTNERS CANDIDATE PARTNERS AND OBSERVERS.PPT Senior Delegation Officials From All GNEP Participants Meeting Materials: April 21, 2008

  19. Special Emphasis Observances | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Diversity and Inclusion » Special Emphasis Observances Special Emphasis Observances The Energy Department celebrates special emphasis observances regularly, inviting guest speakers to highlight how the agency's mission benefits from diversity and inclusion. The Energy Department celebrates special emphasis observances regularly, inviting guest speakers to highlight how the agency's mission benefits from diversity and inclusion. The Department of Energy observes special days, weeks, and months

  20. Periodic local MP2 method employing orbital specific virtuals

    SciTech Connect (OSTI)

    Usvyat, Denis Schütz, Martin; Maschio, Lorenzo

    2015-09-14

    We introduce orbital specific virtuals (OSVs) to represent the truncated pair-specific virtual space in periodic local Møller-Plesset perturbation theory of second order (LMP2). The OSVs are constructed by diagonalization of the LMP2 amplitude matrices which correspond to diagonal Wannier-function (WF) pairs. Only a subset of these OSVs is adopted for the subsequent OSV-LMP2 calculation, namely, those with largest contribution to the diagonal pair correlation energy and with the accumulated value of these contributions reaching a certain accuracy. The virtual space for a general (non diagonal) pair is spanned by the union of the two OSV sets related to the individual WFs of the pair. In the periodic LMP2 method, the diagonal LMP2 amplitude matrices needed for the construction of the OSVs are calculated in the basis of projected atomic orbitals (PAOs), employing very large PAO domains. It turns out that the OSVs are excellent to describe short range correlation, yet less appropriate for long range van der Waals correlation. In order to compensate for this bias towards short range correlation, we augment the virtual space spanned by the OSVs by the most diffuse PAOs of the corresponding minimal PAO domain. The Fock and overlap matrices in OSV basis are constructed in the reciprocal space. The 4-index electron repulsion integrals are calculated by local density fitting and, for distant pairs, via multipole approximation. New procedures for determining the fit-domains and the distant-pair lists, leading to higher efficiency in the 4-index integral evaluation, have been implemented. Generally, and in contrast to our previous PAO based periodic LMP2 method, the OSV-LMP2 method does not require anymore great care in the specification of the individual domains (to get a balanced description when calculating energy differences) and is in that sense a black box procedure. Discontinuities in potential energy surfaces, which may occur for PAO-based calculations if one is not

  1. Property:OpenEI/UtilityRate/DemandChargePeriod1 | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search This is a property of type Number. Name: Demand Charge Period 1 Pages using the property "OpenEIUtilityRateDemandChargePeriod1"...

  2. Parallel In Situ Indexing for Data-intensive Computing

    SciTech Connect (OSTI)

    Kim, Jinoh; Abbasi, Hasan; Chacon, Luis; Docan, Ciprian; Klasky, Scott; Liu, Qing; Podhorszki, Norbert; Shoshani, Arie; Wu, Kesheng

    2011-09-09

    As computing power increases exponentially, vast amount of data is created by many scientific re- search activities. However, the bandwidth for storing the data to disks and reading the data from disks has been improving at a much slower pace. These two trends produce an ever-widening data access gap. Our work brings together two distinct technologies to address this data access issue: indexing and in situ processing. From decades of database research literature, we know that indexing is an effective way to address the data access issue, particularly for accessing relatively small fraction of data records. As data sets increase in sizes, more and more analysts need to use selective data access, which makes indexing an even more important for improving data access. The challenge is that most implementations of in- dexing technology are embedded in large database management systems (DBMS), but most scientific datasets are not managed by any DBMS. In this work, we choose to include indexes with the scientific data instead of requiring the data to be loaded into a DBMS. We use compressed bitmap indexes from the FastBit software which are known to be highly effective for query-intensive workloads common to scientific data analysis. To use the indexes, we need to build them first. The index building procedure needs to access the whole data set and may also require a significant amount of compute time. In this work, we adapt the in situ processing technology to generate the indexes, thus removing the need of read- ing data from disks and to build indexes in parallel. The in situ data processing system used is ADIOS, a middleware for high-performance I/O. Our experimental results show that the indexes can improve the data access time up to 200 times depending on the fraction of data selected, and using in situ data processing system can effectively reduce the time needed to create the indexes, up to 10 times with our in situ technique when using identical parallel settings.

  3. H- Ion Sources for High Intensity Proton Drivers

    SciTech Connect (OSTI)

    Johnson, Rolland Paul; Dudnikov, Vadim

    2015-02-20

    Existing RF Surface Plasma Sources (SPS) for accelerators have specific efficiencies for H+ and H- ion generation around 3 to 5 mA/cm2 per kW, where about 50 kW of RF power is typically needed for 50 mA beam current production. The Saddle Antenna (SA) SPS described here was developed to improve H- ion production efficiency, reliability and availability for pulsed operation as used in the ORNL Spallation Neutron Source . At low RF power, the efficiency of positive ion generation in the plasma has been improved to 200 mA/cm2 per kW of RF power at 13.56 MHz. Initial cesiation of the SPS was performed by heating cesium chromate cartridges by discharge as was done in the very first versions of the SPS. A small oven to decompose cesium compounds and alloys was developed and tested. After cesiation, the current of negative ions to the collector was increased from 1 mA to 10 mA with RF power 1.5 kW in the plasma (6 mm diameter emission aperture) and up to 30 mA with 4 kW RF power in the plasma and 250 Gauss longitudinal magnetic field. The ratio of electron current to negative ion current was improved from 30 to 2. Stable generation of H- beam without intensity degradation was demonstrated in the aluminum nitride (AlN) discharge chamber for 32 days at high discharge power in an RF SPS with an external antenna. Some modifications were made to improve the cooling and cesiation stability. The extracted collector current can be increased significantly by optimizing the longitudinal magnetic field in the discharge chamber. While this project demonstrated the advantages of the pulsed version of the SA RF SPS as an upgrade to the ORNL Spallation Neutron Source, it led to a possibility for upgrades to CW machines like the many cyclotrons used for commercial applications. Four appendices contain important details of the work carried out under this grant.

  4. Industrial Sector Energy Demand: Revisions for Non-Energy-Intensive Manufacturing (released in AEO2007)

    Reports and Publications (EIA)

    2007-01-01

    For the industrial sector, the Energy Information Administration's (EIA) analysis and projection efforts generally have focused on the energy-intensive industriesfood, bulk chemicals, refining, glass, cement, steel, and aluminumwhere energy cost averages 4.8% of annual operating cost. Detailed process flows and energy intensity indicators have been developed for narrowly defined industry groups in the energy-intensive manufacturing sector. The non-energy-intensive manufacturing industries, where energy cost averages 1.9% of annual operating cost, previously have received somewhat less attention, however. In Annual Energy Outlook 2006 (AEO), energy demand projections were provided for two broadly aggregated industry groups in the non-energy-intensive manufacturing sector: metal-based durables and other non-energy-intensive. In the AEO2006 projections, the two groups accounted for more than 50% of the projected increase in industrial natural gas consumption from 2004 to 2030.

  5. Enterprise Assessments Operational Awareness Record of Observations...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Enterprise Assessments Operational Awareness Record of Observations of the Design and ... March 2016 Enterprise Assessments Operational Awareness Record of Observations of the ...

  6. First Observation of Plasmarons in Graphene

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    First Observation of Plasmarons in Graphene First Observation of Plasmarons in Graphene Print Wednesday, 30 June 2010 00:00 An international team of scientists performing...

  7. Instrumentation to Monitor Transient Developing Periodic Flow in Newtonian Slurries

    SciTech Connect (OSTI)

    Bamberger, Judith A.; Enderlin, Carl W.

    2014-08-03

    This paper describes measurement techniques developed and applied to characterize solids mobilization and mixing of Newtonian slurries that are subjected to transient, periodic, developing flows. Metrics to characterize mobilization and mixing are the just suspended velocity (UJS) and the cloud height (HC). Two ultrasonic instruments to characterize pulse jet mixing of slurries were developed and deployed to measure related metrics: the thickness of the settled bed (used to determine mobilization) and the concentration within the cloud as a function of elevation [C(Z)]. A second method, continuous sample extraction, characterization, and reinsertion was successfully used to measure average density and characterize the concentration within the cloud. Testing focused on mixing vessels using intermitent jet mixers oriented vertically downward. Descriptions of the instruments and instrument performance are presented. These techniques were an effective approach to characterize mixing phenomena, determine mixing energy required to fully mobilize vessel contents, and to determine mixing times for process evaluation.

  8. Total Estimated Contract Cost: Contract Option Period: Performance

    Office of Environmental Management (EM)

    Performance Period Fee Earned FY2000 thru 2008 $102,622,325 FY2009 $12,259,719 FY2010 $35,789,418 FY2011 $24,126,240 FY2012 $24,995,209 FY2013 $6,340,762 FY2014 $16,285,867 FY2015 $35,931,000 $8,595,000 FY2016 $20,891,000 $9,310,000 FY2017 $24,849,000 FY2018 $99,100,000 FY2019 $129,700,000 Cumulative Fee $240,324,540 $595,298,540 $12,259,719 $35,789,418 $38,554,240 $41,785,209 $16,698,762 $37,117,867 Maximum Fee $595,298,540 Fee Available $102,622,325 $10,921,302,346 Completion Contract:

  9. Transverse commensurability effect for vortices on periodic pinning arrays

    SciTech Connect (OSTI)

    Reichhardt, Charles; Reichhardt, Cynthia J

    2008-01-01

    Using computer simulations, we demonstrate a type of commensurability that occurs for vortices moving longitudinally through periodic pinning arrays in the presence of an additional transverse driving force. As a function of vortex density, there is a series of broad maxima in the transverse critical depinning force that do not fall at the matching fields where the number of vortices equals an integer multiple of the number of pinning sites. The commensurability effects are associated with dynamical states in which evenly spaced structures consisting of one or more moving rows of vortices form between rows of pinning sites. Remarkably, the critical transverse depinning force can be more than an order of magnitude larger than the longitudinal depinning force.

  10. Chaotic dynamics in a periodically driven spin-1 condensate

    SciTech Connect (OSTI)

    Cheng Jing [Department of Physics, South China University of Technology, Guangzhou 510640 (China); Kavli Institute for Theoretical Physics China, CAS, Beijing 100190 (China)

    2010-02-15

    We use periodically modulated magnetic fields to drive spin-1 Bose-Einstein condensates (BECs) and study the corresponding spin-mixing dynamics. Due to the time-dependent driving, this system permits chaotic dynamics depending on the drive parameters, which could not occur in previous studies. From the investigation of the Poincare sections, we find there exist complex trajectories in the phase space, leading to very complicated structures of the phase space with mixed regular and chaotic regions. By calculating the quasienergy levels of the corresponding Floquet operators, the signatures of quantum chaos are also found in this system. The level spacing distribution is very close to the Poisson distribution or Wigner distribution when the corresponding classical dynamics is regular or chaotic.

  11. Physics Division progress report for period ending September 30, 1984

    SciTech Connect (OSTI)

    Livingston, A.B. (ed.)

    1985-01-01

    The research activities of the Division are centered primarily in three areas: experimental nuclear physics, experimental atomic physics, and theoretical nuclear and atomic physics. The largest of these efforts, experimental nuclear physics, is dominated by the heavy ion research program. A major responsibility under this program is the operation of the Holifield Heavy Ion Research Facility as a national user facility. During the period of this report, the facility has begun routine operation for the experimental program. The experimental atomic physics program has two components: the accelerator-based studies of basic collisional phenomena and the studies in support of the controlled fusion program. Also associated with the fusion-related studies are a plasma diagnostics program and the operation of an atomic physics data center. The theoretical physics program, both nuclear and atomic, is covered. This program has benefited this year from the success of the VAX-AP computer system and from the increase in manpower provided by the ORNL/University of Tennessee Distinguished Scientist Program. Smaller programs in applications and high-energy physics are summarized. During the period of this report, we continued to explore possible future extensions of the Holifield Facility. We retain a strong interest in a relativistic heavy-ion collider in the 10 x 10 GeV/nuclear energy range. The ideas for such a facility, described in last year's report, have been modified to utilize the HHIRF 25 MV tandem accelerator as the first stage. Finally, the report concludes with some general information on publications, Division activities, and personnel changes.

  12. IUPAC Periodic Table of Isotopes for the Educational Community

    SciTech Connect (OSTI)

    Holden N. E.; Holden,N.E.; Coplen,T.B.

    2012-07-15

    John Dalton first proposed the concept of atomic weights of the elements in the first decade of the nineteenth century. These atomic weights of the chemical elements were thought of as constants of nature, similar to the speed of light. Dmitri Mendeleev arranged the atomic weights of the elements in ascending order of value and used the systematic variation of their chemical properties to produce his Periodic Table of the Elements in 1869. Measurement of atomic weight values became an important chemical activity for a century and a half. Theodore Richards received a Noble Prize for his work in this area. In 1913, Fredrick Soddy found a species of radium, which had an atomic weight value of 228, compared to the familiar radium gas value of 226. Soddy coined the term 'isotope' (Greek for 'in the same place') to account for this second atomic weight value in the radium position of the Periodic Table. Both of these isotopes of radium are radioactive. Radioactive isotopes are energetically unstable and will decay (disintegrate) over time. The time it takes for one half of a sample of a given radioactive isotope to decay is the half-life of that isotope. In addition to having different atomic weight values, radium-226 and radium-228 also have different half-life values. Around the same time as Soddy's work, J.J. Thomson (discoverer of the electron) identified two stable (non-radioactive) isotopes of the same element, neon. Over the next 40 years, the majority of the known chemical elements were found to have two or more stable (or long-lived radioactive isotopes that contribute significantly to the determination of the atomic weights of the elements).

  13. Fact #554: January 19, 2009 Energy Intensity of Light Rail Transit Systems

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy 4: January 19, 2009 Energy Intensity of Light Rail Transit Systems Fact #554: January 19, 2009 Energy Intensity of Light Rail Transit Systems According to the 2007 National Transit Databases, the energy intensity of light transit rail systems in the U.S. ranges from about 2,000 Btu per passenger-mile to about 31,000 Btu per passenger-mile. There are only four light rail systems with energy intensity over 10,000 Btu per passenger-mile. These systems may have improved

  14. Table 8. Carbon intensity of the economy by State (2000-2011

    U.S. Energy Information Administration (EIA) Indexed Site

    Carbon intensity of the economy by State (2000-2011)" "metric tons energy-related carbon dioxide per million dollars of GDP" ,,,"Change" ,,,"2000 to 2011"...

  15. Table 7. Carbon intensity of the energy supply by State (2000...

    U.S. Energy Information Administration (EIA) Indexed Site

    Carbon intensity of the energy supply by State (2000-2011)" "kilograms of energy-related carbon dioxide per million Btu" ,,,"Change" ,,,"2000 to 2011"...

  16. Development of Time Resolved X-ray Spectroscopy in High Intensity...

    Office of Scientific and Technical Information (OSTI)

    Title: Development of Time Resolved X-ray Spectroscopy in High Intensity Laser-Plasma Interactions Authors: Notley, M ; Weber, R ; Fell, B ; Jefferies, J ; Freeman, R ; Mackinnon, ...

  17. Intense Super-radiant X-rays from a Compact Source using a Nanocathode...

    Office of Scientific and Technical Information (OSTI)

    This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and ... A novel method of producing intense short wavelength radiation from relativistic electrons ...

  18. Flexible pulse delay control up to picosecond for high-intensity...

    Office of Scientific and Technical Information (OSTI)

    Title: Flexible pulse delay control up to picosecond for high-intensity twin electron bunches Authors: Zhang, Zhen ; Ding, Yuantao ; Emma, Paul ; Huang, Zhirong ; Marinelli, ...

  19. Beam-beam observations in the Relativistic Heavy Ion Collider

    SciTech Connect (OSTI)

    Luo, Y.; Fischer, W.; White, S.

    2015-06-24

    The Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory has been operating since 2000. Over the past decade, thanks to the continuously increased bunch intensity and reduced β*s at the interaction points, the maximum peak luminosity in the polarized proton operation has been increased by more than two orders of magnitude. In this article, we first present the beam-beam observations in the previous RHIC polarized proton runs. Then we analyze the mechanisms for the beam loss and emittance growth in the presence of beam-beam interaction. The operational challenges and limitations imposed by beam-beam interaction and their remedies are also presented. In the end, we briefly introduce head-on beam-beam compensation with electron lenses in RHIC.

  20. Chandra X-ray Observations of WZ Sge in Superoutburst

    SciTech Connect (OSTI)

    Wheatley, P J; Mauche, C W

    2004-10-13

    We present seven separate Chandra observations of the 2001 superoutburst of WZ Sge. The high-energy outburst was dominated by intense EUV emission lines, which we interpret as boundary layer emission scattered into our line of sight in an accretion disc wind. The direct boundary layer emission was hidden from view, presumably by the accretion disc. The optical outburst orbital hump was detected in the EUV, but the common superhump was not, indicating a geometric mechanism in the former and a dissipative mechanism in the latter. X-rays detected during outburst were not consistent with boundary layer emission and we argue that there must be a second source of X-rays in dwarf novae in outburst.

  1. Condition for production of circulating proton beam with intensity greater than space charge limit.

    SciTech Connect (OSTI)

    Vadim Dudnikov

    2002-11-19

    Transverse e-p instability in proton rings could be damped by increasing the beam density and the rate of secondary particles production above the threshold level, with the corresponding decrease of unstable wavelength {lambda} below the transverse beam size h (increase of beam density n{sub b} and ion density n{sub i} above the threshold level: n{sub b} + n{sub i} > {beta}{sup 2}/(r{sub e} h{sup 2}), where r{sub e} = e{sup 2}/mc{sup 2}). Such island of stability can be reached by a fast charge-exchange injection without painting and enhanced generation of secondary plasma, which was demonstrated in a small scale Proton Storage Ring (PSR) at the Institute of Nuclear Physics, Novosibirsk, Russia. With successful damping of e-p instability, the intensity of circulating proton beam, with a space charge neutralization was increased up to 6 times above a space charge limit. Corresponding tune shift without space charge neutralization should be up to {Delta}v=0.85 x 6 (in the ring with v = 0.85). In this paper, they review experimental observations of transverse instability of proton beams in various rings. they also discuss methods which can be used to damp the instability. Such experimental data could be useful for verification of computer simulation tools developed for the studies of the space charge and instabilities in realistic conditions.

  2. Characterization of the fast electrons distribution produced in a high intensity laser target interaction

    SciTech Connect (OSTI)

    Westover, B.; Lawrence Livermore National Laboratory, Livermore, California 94550 ; Chen, C. D.; Patel, P. K.; McLean, H.; Beg, F. N.

    2014-03-15

    Experiments on the Titan laser (?150?J, 0.7ps, 2נ10{sup 20}Wcm{sup ?2}) at the Lawrence Livermore National Laboratory were carried out in order to study the properties of fast electrons produced by high-intensity, short pulse laser interacting with matter under conditions relevant to Fast Ignition. Bremsstrahlung x-rays produced by these fast electrons were measured by a set of compact filter-stack based x-ray detectors placed at three angles with respect to the target. The measured bremsstrahlung signal allows a characterization of the fast electron beam spectrum, conversion efficiency of laser energy into fast electron kinetic energy and angular distribution. A Monte Carlo code Integrated Tiger Series was used to model the bremsstrahlung signal and infer a laser to fast electron conversion efficiency of 30%, an electron slope temperature of about 2.2?MeV, and a mean divergence angle of 39. Simulations were also performed with the hybrid transport code ZUMA which includes fields in the target. In this case, a conversion efficiency of laser energy to fast electron energy of 34% and a slope temperature between 1.5?MeV and 4?MeV depending on the angle between the target normal direction and the measuring spectrometer are found. The observed temperature of the bremsstrahlung spectrum, and therefore the inferred electron spectrum are found to be angle dependent.

  3. High-order harmonics from bow wave caustics driven by a high-intensity laser

    SciTech Connect (OSTI)

    Pirozhkov, A.S.; Kando, M.; Esirkepov, T.Zh.; and others

    2012-07-11

    We propose a new mechanism of high-order harmonic generation during an interaction of a high-intensity laser pulse with underdense plasma. A tightly focused laser pulse creates a cavity in plasma pushing electrons aside and exciting the wake wave and the bow wave. At the joint of the cavity wall and the bow wave boundary, an annular spike of electron density is formed. This spike surrounds the cavity and moves together with the laser pulse. Collective motion of electrons in the spike driven by the laser field generates high-order harmonics. A strong localization of the electron spike, its robustness to oscillations imposed by the laser field and, consequently, its ability to produce high-order harmonics is explained by catastrophe theory. The proposed mechanism explains the experimental observations of high-order harmonics with the 9 TW J-KAREN laser (JAEA, Japan) and the 120 TW Astra Gemini laser (CLF RAL, UK) [A. S. Pirozhkov, et al., arXiv:1004.4514 (2010); A. S. Pirozhkov et al, AIP Proceedings, this volume]. The theory is corroborated by high-resolution two-and three-dimensional particle-in-cell simulations.

  4. Intial characterization fo a commerical electron gun for profiling high intensity proton beams in Project X

    SciTech Connect (OSTI)

    Thurman-Keup, R.; Johnson, A.S.; Lumpkin, A.H.; Thangaraj, J.C.T.; Zhang, D.; Blokland, W.; /Oak Ridge

    2011-03-01

    Measuring the profile of a high-intensity proton beam is problematic in that traditional invasive techniques such as flying wires don't survive the encounter with the beam. One alternative is the use of an electron beam as a probe of the charge distribution in the proton beam as was done at the Spallation Neutron Source at ORNL. Here we present an initial characterization of the beam from a commercial electron gun from Kimball Physics, intended for use in the Fermilab Main Injector for Project X. Despite the fact that the horizontal spot size is abnormally large in the high current measurement, the spot size at the downstream cross X2 is reasonable in the context of measuring the deflection. A thin foil OTR would help with the beam heating and should be tried. The next phase of this experiment is to simulate the proton beam with a pair of current carrying wires and to design and construct a fast deflector. Some of the remaining issues to be considered include determining the minimum beam current needed to observe the deflected beam for a given sweep time and the impact of longitudinal variations in the charge density of the bunch.

  5. Prompt-period measurement of the Annular Core Research Reactor prompt neutron generation time

    SciTech Connect (OSTI)

    Coats, R.L.; Talley, D.G.; Trowbridge, F.R.

    1994-07-01

    The prompt neutron generation time for the Annular Core Research Reactor was experimentally determined using a prompt-period technique. The resultant value of 25.5 {mu}s agreed well with the analytically determined value of 24 {mu}s. The three different methods of reactivity insertion determination yielded {+-}5% agreement in the experimental values of the prompt neutron generation time. Discrepancies observed in reactivity insertion values determined by the three methods used (transient rod position, relative delayed critical control rod positions, and relative transient rod and control rod positions) were investigated to a limited extent. Rod-shadowing and low power fuel/coolant heat-up were addressed as possible causes of the discrepancies.

  6. PROPERTIES OF THE 24 DAY MODULATION IN GX 13+1 FROM NEAR-INFRARED AND X-RAY OBSERVATIONS

    SciTech Connect (OSTI)

    Corbet, Robin H. D.; Pearlman, Aaron B.; Buxton, Michelle; Levine, Alan M. E-mail: aaronp1@umbc.ed

    2010-08-10

    A 24 day period for the low-mass X-ray binary (LMXB) GX 13+1 was previously proposed on the basis of seven years of RXTE All-Sky Monitor (ASM) observations and it was suggested that this was the orbital period of the system. This would make it one of the longest known orbital periods for a Galactic LMXB powered by Roche lobe overflow. We present here the results of (1) K-band photometry obtained with the SMARTS Consortium CTIO 1.3 m telescope on 68 nights over a 10 month interval; (2) continued monitoring with the RXTE ASM, analyzed using a semi-weighted power spectrum instead of the data filtering technique previously used; and (3) Swift Burst Alert Telescope (BAT) hard X-ray observations. Modulation near 24 days is seen in both the K band and additional statistically independent ASM X-ray observations. However, the modulation in the ASM is not strictly periodic. The periodicity is also not detected in the Swift BAT observations, but modulation at the same relative level as seen with the ASM cannot be ruled out. If the 24 day period is the orbital period of system, this implies that the X-ray modulation is caused by structure that is not fixed in location. A possible mechanism for the X-ray modulation is the dipping behavior recently reported from XMM-Newton observations.

  7. High-intensity drying processes: Impulse drying. Annual report

    SciTech Connect (OSTI)

    Orloff, D.I.; Phelan, P.M.

    1993-12-01

    Experiments were conducted on a sheet-fed pilot-scale shoe press to compare impulse drying and double-felted pressing. Both an IPST (Institute of Paper Science and Technology) ceramic coated and Beloit Type A press roll were evaluated for lienrboard sheet structures having a wide range of z-direction permeability. Purpose was to find ways of correcting sheet sticking problems observed in previous pilot-scale shoe press experiments. Results showed that impulse drying was superior to double felted pressing in both press dryness and in important paper physical properties. Impulse drying critical temperature was found to depend on specific surface of the heated layer of the sheet, thermal properties of the press roll surface, and choice of felt. Impulse drying of recycled and two-ply liner was demonstrated for both Southern Pile and Douglas fir-containing furnishes.

  8. On the origin of super-hot electrons from intense laser interactions with solid targets having moderate scale length preformed plasmas

    SciTech Connect (OSTI)

    Krygier, A. G.; Schumacher, D. W.; Freeman, R. R.

    2014-02-15

    We use particle-in-cell modeling to identify the acceleration mechanism responsible for the observed generation of super-hot electrons in ultra-intense laser-plasma interactions with solid targets with pre-formed plasma. We identify several features of direct laser acceleration that drive the generation of super-hot electrons. We find that, in this regime, electrons that become super-hot are primarily injected by a looping mechanism that we call loop-injected direct acceleration.

  9. Energy Conservation Program for Consumer Products: Test Procedures for Furnaces and Boilers, Comment Period Extension

    Broader source: Energy.gov [DOE]

    Energy Conservation Program for Consumer Products: Test Procedures for Furnaces and Boilers, Comment Period Extension

  10. Xenon plasma sustained by pulse-periodic laser radiation

    SciTech Connect (OSTI)

    Rudoy, I. G.; Solovyov, N. G.; Soroka, A. M.; Shilov, A. O.; Yakimov, M. Yu.

    2015-10-15

    The possibility of sustaining a quasi-stationary pulse-periodic optical discharge (POD) in xenon at a pressure of p = 10–20 bar in a focused 1.07-μm Yb{sup 3+} laser beam with a pulse repetition rate of f{sub rep} ⩾ 2 kHz, pulse duration of τ ⩾ 200 μs, and power of P = 200–300 W has been demonstrated. In the plasma development phase, the POD pulse brightness is generally several times higher than the stationary brightness of a continuous optical discharge at the same laser power, which indicates a higher plasma temperature in the POD regime. Upon termination of the laser pulse, plasma recombines and is then reinitiated in the next pulse. The initial absorption of laser radiation in successive POD pulses is provided by 5p{sup 5}6s excited states of xenon atoms. This kind of discharge can be applied in plasma-based high-brightness broadband light sources.

  11. An optimized periodic inspection program for condensers and feedwater heaters

    SciTech Connect (OSTI)

    Reinhart, E.R.; Kaminski, S.

    1996-12-31

    Tube failures in steam plant surface condensers and feedwater heaters are a significant reliability problem for the electric power industry. Tube failures can also result in an increase in replacement power costs. In addition, condenser leaks from failed tubes have potentially harmful effects on major components such as steam generators and turbines. To reduce the number of tube failures and consequent leakage, periodic maintenance programs have used the nondestructive evaluation (NDE) method of eddy-current testing (ET) to inspect the condition of the tubes from the water side. This NDE method can identify tubes that have experienced major degradation and should be plugged to prevent in-service failure. However, the use of NDE methods in plant maintenance of condensers and feedwater heaters is not standard practice and varies significantly throughout the utility industry. Variability of inspection results and difficulty in inspecting some types of tubing (monel, carbon steel) have caused many utility sites to question the value of in-service inspection of heat transfer tubing from the water side. Recognizing the above problem, advanced ET systems have been developed that use multi-frequency, remote field and digital data processing techniques to inspect a wide variety of tubing materials and produce on-site inspection reports. Recent field examination results will be presented.

  12. Highly compressible 3D periodic graphene aerogel microlattices

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhu, Cheng; Han, T. Yong-Jin; Duoss, Eric B.; Golobic, Alexandra M.; Kuntz, Joshua D.; Spadaccini, Christopher M.; Worsley, Marcus A.

    2015-04-22

    Graphene is a two-dimensional material that offers a unique combination of low density, exceptional mechanical properties, large surface area and excellent electrical conductivity. Recent progress has produced bulk 3D assemblies of graphene, such as graphene aerogels, but they possess purely stochastic porous networks, which limit their performance compared with the potential of an engineered architecture. Here we report the fabrication of periodic graphene aerogel microlattices, possessing an engineered architecture via a 3D printing technique known as direct ink writing. The 3D printed graphene aerogels are lightweight, highly conductive and exhibit supercompressibility (up to 90% compressive strain). Moreover, the Young’s modulimore » of the 3D printed graphene aerogels show an order of magnitude improvement over bulk graphene materials with comparable geometric density and possess large surface areas. Ultimately, adapting the 3D printing technique to graphene aerogels realizes the possibility of fabricating a myriad of complex aerogel architectures for a broad range of applications.« less

  13. Physics division. Progress report for period ending September 30, 1996

    SciTech Connect (OSTI)

    Ball, S.J.

    1997-04-01

    This report covers the research and development activities of the Physics Division for the 1995 and 1996 fiscal years, beginning October 1, 1994, and ending September 30, 1996. The activities of the Division continue to be concentrated in the areas of experimental nuclear physics, experimental atomic physics, and theoretical nuclear and atomic physics. In addition, there are smaller programs in plasma diagnostics and data compilation and evaluation. During the period of this report, there has been considerable success in bringing the Holifield Radioactive Ion Beam Facility (HRIBF) into routine operation. The budgets of the nuclear physics portion of the Division have increased each year in nearly all areas, and several new members have been added to the Division research and development staff. On August 30, 1996, the HRIBF successfully accelerated its first radioactive ion beams, {sup 69}As and {sup 70}As. Prior to this, the heart of the facility, the RIB injector system, was completed, including installation of a remote handling system for the target/ion source assembly. Target and ion source development is likely to be the technical key to success of the HRIBF. We have expanded our efforts in those development areas. Of special note is the development of highly permeable composite targets which have now been shown to allow release of difficult-to-produce radioactive ions such as {sup 17,18}F. A summary of the HRIBF work is provided in Chapter 1, along with supporting activities of the Joint Institute for Heavy Ion Research.

  14. Ion Acceleration from the Interaction of Ultra-Intense Lasers with Solid Foils

    SciTech Connect (OSTI)

    Allen, M

    2004-11-24

    The discovery that ultra-intense laser pulses (I > 10{sup 18} W/cm{sup 2}) can produce short pulse, high energy proton beams has renewed interest in the fundamental mechanisms that govern particle acceleration from laser-solid interactions. Experiments have shown that protons present as hydrocarbon contaminants on laser targets can be accelerated up to energies > 50 MeV. Different theoretical models that explain the observed results have been proposed. One model describes a front-surface acceleration mechanism based on the ponderomotive potential of the laser pulse. At high intensities (I > 10{sup 18} W/cm{sup 2}), the quiver energy of an electron oscillating in the electric field of the laser pulse exceeds the electron rest mass, requiring the consideration of relativistic effects. The relativistically correct ponderomotive potential is given by U{sub p} = ([1 + I{lambda}{sup 2}/1.3 x 10{sup 18}]{sup 1/2} - 1) m{sub o}c{sup 2}, where I{lambda}{sup 2} is the irradiance in W {micro}m{sup 2}/cm{sup 2} and m{sub o}c{sup 2} is the electron rest mass. At laser irradiance of I{lambda}{sup 2} {approx} 10{sup 20} W {micro}m{sup 2}/cm{sup 2}, the ponderomotive potential can be of order several MeV. A few recent experiments--discussed in Chapter 3 of this thesis--consider this ponderomotive potential sufficiently strong to accelerate protons from the front surface of the target to energies up to tens of MeV. Another model, known as Target Normal Sheath Acceleration (TNSA), describes the mechanism as an electrostatic sheath on the back surface of the laser target. According to the TNSA model, relativistic hot electrons created at the laser-solid interaction penetrate the foil where a few escape to infinity. The remaining hot electrons are retained by the target potential and establish an electrostatic sheath on the back surface of the target. In this thesis we present several experiments that study the accelerated ions by affecting the contamination layer from which they

  15. ISSUANCE 2015-12-02: Energy Conservation Program: Energy Conservation Standards for High-Intensity Discharge Lamps, Final Determination

    Broader source: Energy.gov [DOE]

    Energy Conservation Program: Energy Conservation Standards for High-Intensity Discharge Lamps, Final Determination

  16. 2nd conference on Intense field- Short Wavelength Atomic and Molecular

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Processes - ISWAMP2 nd conference on Intense field- Short Wavelength Atomic and Molecular Processes - ISWAMP2 2nd conference on Intense field- Short Wavelength Atomic and Molecular Processes - ISWAMP2 Print http://iswamp2.jlu.edu.cn/ July 20-22, 2013; Xi'an, China

  17. U.S. Greenhouse Gas Intensity and the Global Climate Change Initiative (released in AEO2005)

    Reports and Publications (EIA)

    2005-01-01

    On February 14, 2002, President Bush announced the Administrations Global Climate Change Initiative. A key goal of the Climate Change Initiative is to reduce U.S. greenhouse gas intensity by 18% over the 2002 to 2012 time frame. For the purposes of the initiative, greenhouse gas intensity is defined as the ratio of total U.S. greenhouse gas emissions to economic output.

  18. Measurement of proton and anti-proton intensities in the Tevatron Collider

    SciTech Connect (OSTI)

    Stephen Pordes et al.

    2003-06-04

    This paper describes the techniques used to measure the intensities of the proton (p) and anti-proton ({bar p}) beams in the Tevatron collider. The systems provide simultaneous measurements of the intensity of the 36 proton and 36 antiproton bunches and their longitudinal profiles.

  19. Max Tech and Beyond: High-Intensity Discharge Lamps

    SciTech Connect (OSTI)

    Scholand, Michael

    2012-04-01

    High-intensity discharge (HID) lamps are most often found in industrial and commercial applications, and are the light source of choice in street and area lighting, and sports stadium illumination. HID lamps are produced in three types - mercury vapor (MV), high pressure sodium (HPS) and metal halide (MH). Of these, MV and MH are considered white-light sources (although the MV exhibits poor color rendering) and HPS produces a yellow-orange color light. A fourth lamp, low-pressure sodium (LPS), is not a HID lamp by definition, but it is used in similar applications and thus is often grouped with HID lamps. With the notable exception of MV which is comparatively inefficient and in decline in the US from both a sales and installed stock point of view; HPS, LPS and MH all have efficacies over 100 lumens per watt. The figure below presents the efficacy trends over time for commercially available HID lamps and LPS, starting with MV and LPS in 1930's followed by the development of HPS and MH in the 1960's. In HID lamps, light is generated by creating an electric arc between two electrodes in an arc tube. The particles in the arc are partially ionized, making them electrically conductive, and a light-emitting 'plasma' is created. This arc occurs within the arc tube, which for most HID lamps is enclosed within an evacuated outer bulb that thermally isolates and protects the hot arc tube from the surroundings. Unlike a fluorescent lamp that produces visible light through down-converting UV light with phosphors, the arc itself is the light source in an HID lamp, emitting visible radiation that is characteristic of the elements present in the plasma. Thus, the mixture of elements included in the arc tube is one critical factor determining the quality of the light emitted from the lamp, including its correlated color temperature (CCT) and color rendering index (CRI). Similar to fluorescent lamps, HID lamps require a ballast to start and maintain stable operating conditions, and

  20. RADAR OBSERVATIONS OF COMET 103P/HARTLEY 2

    SciTech Connect (OSTI)

    Harmon, John K.; Nolan, Michael C.; Howell, Ellen S.; Taylor, Patrick A.; Giorgini, Jon D.

    2011-06-10

    Comets rarely come close enough to be studied intensively with Earth-based radar. The most recent such occurrence was when Comet 103P/Hartley 2 passed within 0.12 AU in late 2010 October, less than two weeks before the EPOXI flyby. This offered a unique opportunity to improve pre-encounter trajectory knowledge and obtain complementary physical data for a spacecraft-targeted comet. 103P/Hartley 2 is only the fourth comet nucleus to be imaged with radar and already the second to be identified as an elongated, bilobate object based on its delay-Doppler signature. The images show the dominant spin mode to be a rotation about the short axis with a period of 18.2 hr. The nucleus has a low radar albedo consistent with a surface density of 0.5-1.0 g cm{sup -3}. A separate echo component was detected from large (>cm) grains ejected anisotropically with velocities of several to tens of meters per second. Radar shows that, in terms of large-grain production, 103P/Hartley 2 is an unusually active comet for its size.