Sample records for intensity hid high-intensity

  1. Electrodeless HID lamp study. Final report. [High intensity discharge

    SciTech Connect (OSTI)

    Anderson, J.M.; Johnson, P.D.; Jones, C.E.; Rautenberg, T.H.

    1985-01-01T23:59:59.000Z

    High intensity discharge lamps excited by solenoidal electric fields (SEF/HID) were examined for their ability to give high brightness, high efficacy and good color. Frequency of operation was 13.56 MHz (ISM Band) and power to the lamp plasma ranged from about 400 to 1000 W. Radio frequency transformers with air cores and with air core complemented by ferrite material in the magnetic path were used to provide the voltage for excitation. Electrical properties of the matching network and the lamp plasma were measured or calculated and total light from the lamp was measured by an integrating sphere. Efficacies calculated from measurement were found to agree well with the positive column efficacies of conventional HID lamps containing only mercury, and with additives of sodium, thallium, and scandium iodide. Recommendations for future work are given.

  2. High Intensity Polarized Electron Gun

    SciTech Connect (OSTI)

    Redwine, Robert

    2012-07-31T23:59:59.000Z

    The goal of the project was to investigate the possibility of building a very high intensity polarized electron gun for the Electron-Ion Collider. This development is crucial for the eRHIC project. The gun implements a large area cathode, ring-shaped laser beam and active cathode cooling. A polarized electron gun chamber with a large area cathode and active cathode cooling has been built and tested. A preparation chamber for cathode activation has been built and initial tests have been performed. Major parts for a load-lock chamber, where cathodes are loaded into the vacuum system, have been manufactured.

  3. Max Tech and Beyond: High-Intensity Discharge Lamps

    SciTech Connect (OSTI)

    Scholand, Michael

    2012-04-01T23:59:59.000Z

    High-intensity discharge (HID) lamps are most often found in industrial and commercial applications, and are the light source of choice in street and area lighting, and sports stadium illumination. HID lamps are produced in three types - mercury vapor (MV), high pressure sodium (HPS) and metal halide (MH). Of these, MV and MH are considered white-light sources (although the MV exhibits poor color rendering) and HPS produces a yellow-orange color light. A fourth lamp, low-pressure sodium (LPS), is not a HID lamp by definition, but it is used in similar applications and thus is often grouped with HID lamps. With the notable exception of MV which is comparatively inefficient and in decline in the US from both a sales and installed stock point of view; HPS, LPS and MH all have efficacies over 100 lumens per watt. The figure below presents the efficacy trends over time for commercially available HID lamps and LPS, starting with MV and LPS in 1930's followed by the development of HPS and MH in the 1960's. In HID lamps, light is generated by creating an electric arc between two electrodes in an arc tube. The particles in the arc are partially ionized, making them electrically conductive, and a light-emitting 'plasma' is created. This arc occurs within the arc tube, which for most HID lamps is enclosed within an evacuated outer bulb that thermally isolates and protects the hot arc tube from the surroundings. Unlike a fluorescent lamp that produces visible light through down-converting UV light with phosphors, the arc itself is the light source in an HID lamp, emitting visible radiation that is characteristic of the elements present in the plasma. Thus, the mixture of elements included in the arc tube is one critical factor determining the quality of the light emitted from the lamp, including its correlated color temperature (CCT) and color rendering index (CRI). Similar to fluorescent lamps, HID lamps require a ballast to start and maintain stable operating conditions, and this necessitates additional power beyond that used by the lamp itself. HID lamps offer important advantages compared to other lighting technologies, making them well suited for certain applications. HID lamps can be very efficient, have long operating lives, are relatively temperature-insensitive and produce a large quantity of light from a small package. For these reasons, HID lamps are often used when high levels of illumination are required over large areas and where operating and maintenance costs must be kept to a minimum. Furthermore, if the installation has a significant mounting height, high-power HID lamps can offer superior optical performance luminaires, reducing the number of lamps required to illuminate a given area. The indoor environments best suited to HID lamps are those with high ceilings, such as those commonly found in industrial spaces, warehouses, large retail spaces, sports halls and large public areas. Research into efficacy improvements for HID lighting technologies has generally followed market demand for these lamps, which is in decline for MV and LPS, has reached a plateau for HPS and is growing for MH. Several manufacturers interviewed for this study indicated that although solid-state lighting was now receiving the bulk of their company's R&D investment, there are still strong HID lamp research programs, which concentrate on MH technologies, with some limited amount of investment in HPS for specific niche applications (e.g., agricultural greenhouses). LPS and MV lamps are no longer being researched or improved in terms of efficacy or other performance attributes, although some consider MH HID lamps to be the next-generation MV lamp. Thus, the efficacy values of commercially available MV, LPS and HPS lamps are not expected to increase in the next 5 to 10 years. MH lamps, and more specifically, ceramic MH lamps are continuing to improve in efficacy as well as light quality, manufacturability and lamp life. Within an HID lamp, the light-producing plasma must be heated to sufficiently high temperatures to achieve high efficiencie

  4. Study of high frequency & low frequency electronic ballasts for HID lamps

    E-Print Network [OSTI]

    Peng, Hua

    1997-01-01T23:59:59.000Z

    High-intensity discharge (HID) lamp electronic ballasting is receiving increasing attention in the recent years as low wattage HID lighting systems are finding indoor applications. Advantages of high frequency electronic ballast for HID lamps...

  5. Delivering High IntensityDelivering High Intensity Proton Beam:Proton Beam

    E-Print Network [OSTI]

    McDonald, Kirk

    11 Delivering High IntensityDelivering High Intensity Proton Beam:Proton Beam: Lessons for the NextFACT08NuFACT08 ­­ 4 July4 July S. ChildressS. Childress ­­ Proton BeamsProton Beams 22 Presentation OutlinePresentation Outline Key Proton Beam ConsiderationsKey Proton Beam Considerations The First

  6. Radiation Reaction in High-Intense Fields

    E-Print Network [OSTI]

    Seto, Keita

    2015-01-01T23:59:59.000Z

    After the development of the radiating electron model by P. A. M. Dirac in 1938, many authors have tried to reformulate this model so-called radiation reaction. Recently, this effects has become important for ultra-intense laser-electron (plasma) interactions. In our recent research, we found a method for the stabilization of radiation reaction in quantum vacuum [PTEP 2014, 043A01 (2014), PTEP 2015, 023A01 (2015)]. In the other hand, the field modification by high-intense fields should be required under 10PW lasers, like ELI-NP facility. In this paper, I propose the combined method how to adopt the high-intense field correction with the stabilization by quantum vacuum as the extension from the model by Dirac.

  7. Fundamental Physics Explored with High Intensity Laser

    E-Print Network [OSTI]

    T. Tajima; K. Homma

    2012-09-13T23:59:59.000Z

    Over the last Century the method of particle acceleration to high energies has become the prime approach to explore the fundamental nature of matter in laboratory. It appears that the latest search of the contemporary accelerator based on the colliders shows a sign of saturation (or at least a slow-down) in increasing its energy and other necessary parameters to extend this frontier. We suggest two pronged approach enabled by the recent progress in high intensity lasers.

  8. High intensity performance of the Brookhaven AGS

    SciTech Connect (OSTI)

    Brennan, J.M.; Roser, T.

    1996-07-01T23:59:59.000Z

    Experience and results from recent high intensity proton running periods of the Brookhaven AGS, during which a record intensity for a proton synchrotron of 6.3 x 10{sup 13} protons/pulse was reached, is presented. This high beam intensity allowed for the simultaneous operation of three high precision rare kaon decay experiments. The record beam intensities were achieved after the 1.5 GeV Booster was commissioned and a transition jump system, a powerful transverse damper, and an rf upgrade in the AGS were completed. Recently even higher intensity proton synchrotrons are studied for neutron spallation sources or proton driver for a muon collider. Implications of the experiences from the AGS to these proposals and also possible future upgrades for the AGS are discussed.

  9. High intensity discharge device containing oxytrihalides

    DOE Patents [OSTI]

    Lapatovich, W.P.; Keeffe, W.M.; Liebermann, R.W.; Maya, J.

    1987-06-09T23:59:59.000Z

    A fill composition for a high intensity discharge device including mercury, niobium oxytrihalide, and a molecular stabilization agent is provided. The molar ratio of niobium oxytrihalide to the molecular stabilization agent in the fill is in the range of from about 5:1 to about 7.5:1. Niobium oxytrihalide is present in the fill in sufficient amount to produce, by dissociation in the discharge, atomic niobium, niobium oxide, NbO, and niobium dioxide, NbO[sub 2], with the molar ratio of niobium-containing vapor species to mercury in the fill being in the range of from about 0.01:1 to about 0.50:1; and mercury pressure of about 1 to about 50 atmospheres at lamp operating temperature. There is also provided a high intensity discharge device comprising a sealed light-transmissive arc tube; the arc tube including the above-described fill; and an energizing means for producing an electric discharge within the arc tube. 7 figs.

  10. High intensity neutrino oscillation facilities in Europe

    E-Print Network [OSTI]

    Edgecock, T R; Davenne, T; Densham, C; Fitton, M; Kelliher, D; Loveridge, P; Machida, S; Prior, C; Rogers, C; Rooney, M; Thomason, J; Wilcox, D; Wildner, E; Efthymiopoulos, I; Garoby, R; Gilardoni, S; Hansen, C; Benedetto, E; Jensen, E; Kosmicki, A; Martini, M; Osborne, J; Prior, G; Stora, T; Melo-Mendonca, T; Vlachoudis, V; Waaijer, C; Cupial, P; Chanc, A; Longhin, A; Payet, J; Zito, M; Baussan, E; Bobeth, C; Bouquerel, E; Dracos, M; Gaudiot, G; Lepers, B; Osswald, F; Poussot, P; Vassilopoulos, N; Wurtz, J; Zeter, V; Bielski, J; Kozien, M; Lacny, L; Skoczen, B; Szybinski, B; Ustrycka, A; Wroblewski, A; Marie-Jeanne, M; Balint, P; Fourel, C; Giraud, J; Jacob, J; Lamy, T; Latrasse, L; Sortais, P; Thuillier, T; Mitrofanov, S; Loiselet, M; Keutgen, Th; Delbar, Th; Debray, F; Trophine, C; Veys, S; Daversin, C; Zorin, V; Izotov, I; Skalyga, V; Burt, G; Dexter, A C; Kravchuk, V L; Marchi, T; Cinausero, M; Gramegna, F; De Angelis, G; Prete, G; Collazuol, G; Laveder, M; Mazzocco, M; Mezzetto, M; Signorini, C; Vardaci, E; Di Nitto, A; Brondi, A; La Rana, G; Migliozzi, P; Moro, R; Palladino, V; Gelli, N; Berkovits, D; Hass, M; Hirsh, T Y; Schaumann, M; Stahl, A; Wehner, J; Bross, A; Kopp, J; Neuffer, D; Wands, R; Bayes, R; Laing, A; Soler, P; Agarwalla, S K; Villanueva, A Cervera; Donini, A; Ghosh, T; Cadenas, J J Gmez; Hernndez, P; Martn-Albo, J; Mena, O; Burguet-Castell, J; Agostino, L; Buizza-Avanzini, M; Marafini, M; Patzak, T; Tonazzo, A; Duchesneau, D; Mosca, L; Bogomilov, M; Karadzhov, Y; Matev, R; Tsenov, R; Akhmedov, E; Blennow, M; Lindner, M; Schwetz, T; Martinez, E Fernndez; Maltoni, M; Menndez, J; Giunti, C; Garca, M C Gonzlez; Salvado, J; Coloma, P; Huber, P; Li, T; Lpez-Pavn, J; Orme, C; Pascoli, S; Meloni, D; Tang, J; Winter, W; Ohlsson, T; Zhang, H; Scotto-Lavina, L; Terranova, F; Bonesini, M; Tortora, L; Alekou, A; Aslaninejad, M; Bontoiu, C; Kurup, A; Jenner, L J; Long, K; Pasternak, J; Pozimski, J; Back, J J; Harrison, P; Beard, K; Bogacz, A; Berg, J S; Stratakis, D; Witte, H; Snopok, P; Bliss, N; Cordwell, M; Moss, A; Pattalwar, S; Apollonio, M

    2013-01-01T23:59:59.000Z

    The EUROnu project has studied three possible options for future, high intensity neutrino oscillation facilities in Europe. The first is a Super Beam, in which the neutrinos come from the decay of pions created by bombarding targets with a 4 MW proton beam from the CERN High Power Superconducting Proton Linac. The far detector for this facility is the 500 kt MEMPHYS water Cherenkov, located in the Fr\\'ejus tunnel. The second facility is the Neutrino Factory, in which the neutrinos come from the decay of {\\mu}+ and {\\mu}- beams in a storage ring. The far detector in this case is a 100 kt Magnetised Iron Neutrino Detector at a baseline of 2000 km. The third option is a Beta Beam, in which the neutrinos come from the decay of beta emitting isotopes, in particular 6He and 18Ne, also stored in a ring. The far detector is also the MEMPHYS detector in the Fr\\'ejus tunnel. EUROnu has undertaken conceptual designs of these facilities and studied the performance of the detectors. Based on this, it has determined the ph...

  11. The investigation of high intensity laser driven micro neutron sources

    E-Print Network [OSTI]

    Ghoniem, Nasr M.

    , access to high temperature states of mat- ter capable of thermonuclear fusion and/or the effi- cientThe investigation of high intensity laser driven micro neutron sources for fusion materials. The application of fast pulse, high intensity lasers to drive low cost DT point neutron sources for fusion

  12. Performances of BNL high-intensity synchrotrons

    SciTech Connect (OSTI)

    Weng, W.T.

    1998-03-01T23:59:59.000Z

    The AGS proton synchrotron was completed in 1960 with initial intensity in the 10 to the 10th power proton per pulse (ppp) range. Over the years, through many upgrades and improvements, the AGS now reached an intensity record of 6.3 {times} 10{sup 13} ppp, the highest world intensity record for a proton synchrotron on a single pulse basis. At the same time, the Booster reached 2.2 {times} 10{sup 13} ppp surpassing the design goal of 1.5 {times} 10{sup 13} ppp due to the introduction of second harmonic cavity during injection. The intensity limitation caused by space charge tune spread and its relationship to injection energy at 50 MeV, 200 MeV, and 1,500 MeV will be presented as well as many critical accelerator manipulations. BNL currently participates in the design of an accumulator ring for the SNS project at Oak Ridge. The status on the issues of halo formation, beam losses and collimation are also presented.

  13. High intensity electron cyclotron resonance proton source for low energy high intensity proton accelerator

    SciTech Connect (OSTI)

    Roychowdhury, P.; Chakravarthy, D. P. [Accelerator and Pulse Power Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2009-12-15T23:59:59.000Z

    Electron cyclotron resonance (ECR) proton source at 50 keV, 50 mA has been designed, developed, and commissioned for the low energy high intensity proton accelerator (LEHIPA). Plasma characterization of this source has been performed. ECR plasma was generated with 400-1100 W of microwave power at 2.45 GHz, with hydrogen as working gas. Microwave was fed in the plasma chamber through quartz window. Plasma density and temperature was studied under various operating conditions, such as microwave power and gas pressure. Langmuir probe was used for plasma characterization using current voltage variation. The typical hydrogen plasma density and electron temperature measured were 7x10{sup 11} cm{sup -3} and 6 eV, respectively. The total ion beam current of 42 mA was extracted, with three-electrode extraction geometry, at 40 keV of beam energy. The extracted ion current was studied as a function of microwave power and gas pressure. Depending on source pressure and discharge power, more than 30% total gas efficiency was achieved. The optimization of the source is under progress to meet the requirement of long time operation. The source will be used as an injector for continuous wave radio frequency quadrupole, a part of 20 MeV LEHIPA. The required rms normalized emittance of this source is less than 0.2 {pi} mm mrad. The simulated value of normalized emittance is well within this limit and will be measured shortly. This paper presents the study of plasma parameters, first beam results, and the status of ECR proton source.

  14. On the high intensity aspects of AGS Booster proton operation

    SciTech Connect (OSTI)

    Reece, R.K.; Ahrens, L.A.; Bleser, E.J.; Brennan, J.M.; Gardner, C.; Glenn, J.W.; Roser, T.; Shoji, Y.; van Asselt, W.; Weng, W.T.

    1993-01-01T23:59:59.000Z

    Observations of high intensity effects on the proton performance of the AGS Booster are presented, including present operational limits and correction methods. The transverse emittances, optimum tune working points, damping of coherent transverse oscillations and correction of stopband resonances through third-order are discussed in addition to the observed tune spread due to space charge forces. The initial longitudinal phase space distribution, capture and acceleration parameters and measurements are also given. Operational tools and strategies relevant to the high intensity setup are mentioned.

  15. On the high intensity aspects of AGS Booster proton operation

    SciTech Connect (OSTI)

    Reece, R.K.; Ahrens, L.A.; Bleser, E.J.; Brennan, J.M.; Gardner, C.; Glenn, J.W.; Roser, T.; Shoji, Y.; van Asselt, W.; Weng, W.T.

    1993-06-01T23:59:59.000Z

    Observations of high intensity effects on the proton performance of the AGS Booster are presented, including present operational limits and correction methods. The transverse emittances, optimum tune working points, damping of coherent transverse oscillations and correction of stopband resonances through third-order are discussed in addition to the observed tune spread due to space charge forces. The initial longitudinal phase space distribution, capture and acceleration parameters and measurements are also given. Operational tools and strategies relevant to the high intensity setup are mentioned.

  16. An improved high intensity recycling helium-3 beam source

    SciTech Connect (OSTI)

    Hedgeland, H.; Kole, P. R.; Allison, W.; Ellis, J.; Jardine, A. P. [Cavendish Laboratory, JJ Thomson Ave., Cambridge CB3 0HE (United Kingdom)

    2009-07-15T23:59:59.000Z

    We describe an improved high intensity, recycling, supersonic atomic beam source. Changes address several issues previously limiting performance and reliability of the apparatus, including the use of newly available vacuum pumps and modifications to the recycling system. We achieve a source intensity of 2.5x10{sup 19} atoms/s/sr, almost twice that previously achievable during recycling. Current limits on intensity are discussed.

  17. MATERIAL STUDIES FOR PULSED HIGH-INTENSITY PROTON BEAM TARGETS

    E-Print Network [OSTI]

    McDonald, Kirk

    /mechanical property changes experiment for baseline materials Carbon-Carbon composite This low-Z composite gives;PHASE I: Graphite & Carbon-Carbon Targets #12;E951 Results: ATJ Graphite vs. Carbon-Carbon CompositePLAN MATERIAL STUDIES FOR PULSED HIGH-INTENSITY PROTON BEAM TARGETS Nicholas Simos, Harold Kirk

  18. High-power, high-intensity laser propagation and interactions

    SciTech Connect (OSTI)

    Sprangle, Phillip [Plasma Physics Division, Naval Research Laboratory, Washington, DC 20375 (United States); Electrical and Computer Engineering and Physics, University of Maryland, College Park, Maryland 20740 (United States); Hafizi, Bahman [Plasma Physics Division, Naval Research Laboratory, Washington, DC 20375 (United States)

    2014-05-15T23:59:59.000Z

    This paper presents overviews of a number of processes and applications associated with high-power, high-intensity lasers, and their interactions. These processes and applications include: free electron lasers, backward Raman amplification, atmospheric propagation of laser pulses, laser driven acceleration, atmospheric lasing, and remote detection of radioactivity. The interrelated physical mechanisms in the various processes are discussed.

  19. Drift tube suspension for high intensity linear accelerators

    DOE Patents [OSTI]

    Liska, D.J.; Schamaun, R.G.; Clark, D.C.; Potter, R.C.; Frank, J.A.

    1980-03-11T23:59:59.000Z

    The disclosure relates to a drift tube suspension for high intensity linear accelerators. The system comprises a series of box-sections girders independently adjustably mounted on a linear accelerator. A plurality of drift tube holding stems are individually adjustably mounted on each girder.

  20. Conceptual design of a superconducting high-intensity proton linac

    SciTech Connect (OSTI)

    Dominic Chan, K.C.

    1996-09-01T23:59:59.000Z

    A SCRF (superconducting RF linac) has been developed for a high-intensity proton linac which will be used as the driver for neutron sources. This design is conservative, using current SCRF technologies. As well as lowering operating cost, the design offers performance advantages in availability, beam loss, and upgradability, which are important for the application as a neutron source.

  1. Note on the set of Bragg peaks with high intensity

    E-Print Network [OSTI]

    Daniel Lenz; Nicolae Strungaru

    2014-12-23T23:59:59.000Z

    We consider diffraction of Delone sets in Euclidean space. We show that the set of Bragg peaks with high intensity is always Meyer (if it is relatively dense). We use this to provide a new characterization for Meyer sets in terms of positive and positive definite measures. Our results are based on a careful study of positive definite measures, which may be of interest in its own right.

  2. Beam instrumentation for future high intense hadron accelerators at Fermilab

    SciTech Connect (OSTI)

    Wendt, M.; Hu, M.; Tassotto, G.; Thurman-Keup, R.; Scarpine, V.; Shin, S.; Zagel, J.; /Fermilab

    2008-08-01T23:59:59.000Z

    High intensity hadron beams of up to 2 MW beam power are a key element of new proposed experimental facilities at Fermilab. Project X, which includes a SCRF 8 GeV H{sup -} linac, will be the centerpiece of future HEP activities in the neutrino sector. After a short overview of this, and other proposed projects, we present the current status of the beam instrumentation activities at Fermilab with a few examples. With upgrades and improvements they can meet the requirements of the new beam facilities, however design and development of new instruments is needed, as shown by the prototype and conceptual examples in the last section.

  3. Summary of sessions B and F: High intensity linacs and frontend & proton drivers

    SciTech Connect (OSTI)

    Ferdinand, R.; /Saclay; Chou, W.; /Fermilab; Galambos, J.; /Oak Ridge

    2005-01-01T23:59:59.000Z

    This paper summarizes the sessions B&F of the 33rd ICFA Advanced Beam Dynamics Workshop on High Intensity & High Brightness Hadron Beams held in Bensheim, Germany. It covers high intensity linacs, front ends and proton driver topics.

  4. High-intensity positron microprobe at Jefferson Lab

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Golge, Serkan [North Carolina Central Univ., Durham, NC (United States); Vlahovic, Branislav [North Carolina Central Univ., Durham, NC (United States); Wojtsekhowski, Bogdan B. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2014-06-21T23:59:59.000Z

    We present a conceptual design for a novel continuous wave electron-linac based high-intensity slow-positron production source with a projected intensity on the order of 1010 e+/s. Reaching this intensity in our design relies on the transport of positrons (T+ below 600 keV) from the electron-positron pair production converter target to a low-radiation and low-temperature area for moderation in a high-efficiency cryogenic rare gas moderator, solid Ne. The performance of the integrated beamline has been verified through computational studies. The computational results include Monte Carlo calculations of the optimized electron/positron beam energies, converter target thickness, synchronized raster system, transport of the beam from the converter target to the moderator, extraction of the beam from the channel, and moderation efficiency calculations. For the extraction of positrons from the magnetic channel a magnetic field terminator plug prototype has been built and experimental data on the effectiveness of this prototype are presented. The dissipation of the heat away from the converter target and radiation protection measures are also discussed.

  5. High-intensity positron microprobe at Jefferson Lab

    SciTech Connect (OSTI)

    Golge, Serkan [North Carolina Central Univ., Durham, NC (United States); Vlahovic, Branislav [North Carolina Central Univ., Durham, NC (United States); Wojtsekhowski, Bogdan B. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2014-06-21T23:59:59.000Z

    We present a conceptual design for a novel continuous wave electron-linac based high-intensity slow-positron production source with a projected intensity on the order of 1010 e+/s. Reaching this intensity in our design relies on the transport of positrons (T+ below 600 keV) from the electron-positron pair production converter target to a low-radiation and low-temperature area for moderation in a high-efficiency cryogenic rare gas moderator, solid Ne. The performance of the integrated beamline has been verified through computational studies. The computational results include Monte Carlo calculations of the optimized electron/positron beam energies, converter target thickness, synchronized raster system, transport of the beam from the converter target to the moderator, extraction of the beam from the channel, and moderation efficiency calculations. For the extraction of positrons from the magnetic channel a magnetic field terminator plug prototype has been built and experimental data on the effectiveness of this prototype are presented. The dissipation of the heat away from the converter target and radiation protection measures are also discussed.

  6. High-intensity positron microprobe at Jefferson Lab

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Golge, Serkan; Vlahovic, Branislav; Wojtsekhowski, Bogdan B.

    2014-06-21T23:59:59.000Z

    We present a conceptual design for a novel continuous wave electron-linac based high-intensity slow-positron production source with a projected intensity on the order of 1010 e+/s. Reaching this intensity in our design relies on the transport of positrons (T+ below 600 keV) from the electron-positron pair production converter target to a low-radiation and low-temperature area for moderation in a high-efficiency cryogenic rare gas moderator, solid Ne. The performance of the integrated beamline has been verified through computational studies. The computational results include Monte Carlo calculations of the optimized electron/positron beam energies, converter target thickness, synchronized raster system, transport of themorebeam from the converter target to the moderator, extraction of the beam from the channel, and moderation efficiency calculations. For the extraction of positrons from the magnetic channel a magnetic field terminator plug prototype has been built and experimental data on the effectiveness of this prototype are presented. The dissipation of the heat away from the converter target and radiation protection measures are also discussed.less

  7. HIGH INTENSITY DISCHARGE (HID) SOLID STATE BALLAST PROGRAM PHASE I FINAL REPORT

    E-Print Network [OSTI]

    Ailing, W.R.

    2013-01-01T23:59:59.000Z

    A trapazoid for each type and lamp wattage is published bylamp wattage for the core-coil ballast was measured with a dynamometer type

  8. HIGH INTENSITY DISCHARGE (HID) SOLID STATE BALLAST PROGRAM PHASE I FINAL REPORT

    E-Print Network [OSTI]

    Ailing, W.R.

    2013-01-01T23:59:59.000Z

    change in the output power for the solid state ballast asof the solid state ballast's constant output power withswitching power supplies such as the solid state ballast.

  9. OBSERBATION OF HIGH INTENSITY X-RAYS IN INVERSE COMPTON SCATTERING EXPERIMENT

    E-Print Network [OSTI]

    OBSERBATION OF HIGH INTENSITY X-RAYS IN INVERSE COMPTON SCATTERING EXPERIMENT S. Kashiwagi, M the first results of high intensity x-ray generation using Inverse Laser Compton scattering. This experiment Synchrotron Source (LSS). It is based on inverse Compton scattering via interaction between pulsed high power

  10. Title of dissertation: NOVEL APPLICATIONS OF HIGH INTENSITY FEMTOSECOND LASERS

    E-Print Network [OSTI]

    Anlage, Steven

    -cycle seed pulse of terahertz radiation: a short, intense optical pulse (or sequence of pulses) aligns for amplification of few-cycle, high energy pulses of terahertz radiation. We report the development of corrugated the limitations of diffraction, phase matching, and material damage thresholds and promise to allow high

  11. FNAL Proton Source High Intensity Operations and Beam Loss Control

    E-Print Network [OSTI]

    Garcia, F G

    2014-01-01T23:59:59.000Z

    The 40-year-old Fermilab Proton Source machines, constituted by the Pre-Injector, Linac and the synchrotron Booster, have been the workhorse of the Fermi National Accelerator Laboratory (Fermilab). During this time, the High Energy Physics Program has demanded an increase in proton throughput, especially during the past decade with the beginning of the neutrino program at Fermilab. In order to achieve a successful program, major upgrades and changes were made in Booster. Once again, the Proton Source has been charged to double their beam throughput, while maintain the present residual activation levels, to meet the laboratory Intensity Frontier program goals until new machines are built and operational to replace the Proton Source machines. This paper discusses the present performance of Booster and the plans involved in reaching even higher intensities.

  12. Improved Heat Transfer and Performance of High Intensity Combustion Systems for Reformer Furnace Applications

    E-Print Network [OSTI]

    Williams, F. D. M.; Kondratas, H. M.

    1983-01-01T23:59:59.000Z

    and should enable substantial capital cost savings in new furnace applications. Recent performance improvements established from tests of high intensity combustion systems are described along with advances made in the analytical prediction of design...

  13. Neutralized Drift Compression Experiments (NDCX) with a High Intensity Ion Beam

    E-Print Network [OSTI]

    2006-01-01T23:59:59.000Z

    a High Intensity Ion Beam P. K. Roy 1* , S. S. Yu 1 , W. L.12 , 043102 (2005). [6] P. K. Roy et al. , Nucl. Instrum.2005), p.4006. [16] P. K. Roy, S. S. Yu, E. Henestroza, A.

  14. HIGH INTENSITY LOW-ENERGY POSITRON SOURCE AT JEFFERSON

    SciTech Connect (OSTI)

    Serkan Golge, Bogdan Wojtsekhowski, Branislav Vlahovic

    2012-07-01T23:59:59.000Z

    We present a novel concept of a low-energy e{sup +} source with projected intensity on the order of 10{sup 10} slow e{sup +}/s. The key components of this concept are a continuous wave e{sup -} beam, a rotating positron-production target, a synchronized raster/anti-raster, a transport channel, and extraction of e{sup +} into a field-free area through a magnetic plug for moderation in a cryogenic solid. Components were designed in the framework of GEANT4-based (G4beamline) Monte Carlo simulation and TOSCA magnetic field calculation codes. Experimental data to demonstrate the effectiveness of the magnetic plug is presented.

  15. Ultra-High Intensity Magnetic Field Generation in Dense Plasma

    SciTech Connect (OSTI)

    Fisch, Nathaniel J

    2014-01-08T23:59:59.000Z

    I. Grant Objective The main objective of this grant proposal was to explore the efficient generation of intense currents. Whereasthefficient generation of electric current in low-?energy-? density plasma has occupied the attention of the magnetic fusion community for several decades, scant attention has been paid to carrying over to high-?energy-? density plasma the ideas for steady-?state current drive developed for low-?energy-? density plasma, or, for that matter, to inventing new methodologies for generating electric current in high-?energy-?density plasma. What we proposed to do was to identify new mechanisms to accomplish current generation, and to assess the operation, physics, and engineering basis of new forms of current drive in regimes appropriate for new fusion concepts.

  16. High intensity proton acceleration at the Brookhaven AGS -- An update

    SciTech Connect (OSTI)

    Ahrens, L.; Alessi, J.; Blaskiewicz, M. [Brookhaven National Lab., Upton, NY (United States). AGS Dept.] [and others

    1997-07-01T23:59:59.000Z

    The AGS accelerator complex is into its third year of 60+ {times} 10{sup 12} (teraproton = Tp) per cycle operation. The hardware making up the complex as configured in 1997 is briefly mentioned. The present level of accelerator performance is discussed. This includes beam transfer efficiencies at each step in the acceleration process, i.e. losses; which are a serious issue at this intensity level. Progress made in understanding beam behavior at the Linac-to-Booster (LtB) injection, at the Booster-to-AGS (BtA) transfer as well as across the 450 ms AGS accumulation porch is presented. The state of transition crossing, with the gamma-tr jump is described. Coherent effects including those driven by space charge are important at all of these steps.

  17. Generation of Stable (3+1)-dimensional High-intensity Ultrashort Light Pulses

    SciTech Connect (OSTI)

    Todorov, T. P.; Koprinkov, I. G. [Department of Applied Physics, Technical University of Sofia, 1000 Sofia (Bulgaria); Todorova, M. E. [College of Energetics and Electronics, Technical University of Sofia, 1000 Sofia (Bulgaria); Todorov, M. D. [Faculty of Appl. Math. and Informatics, Technical University of Sofia, 1000 Sofia (Bulgaria)

    2010-11-25T23:59:59.000Z

    The spatiotemporal dynamics of high-intensity femtosecond laser pulses is studied within a rigorous physical model. The pulse propagation is described by the nonlinear envelope equation. The propagation and the material equations are solved self-consistently at realistic physical conditions. Self-compression of the pulse around single-cycle regime and dramatic increase of the pulse intensity is found. At certain conditions, the peak intensity, transversal width, time duration, and the spatiotemporal pulse shape remain stable with the propagation of the pulse, resembling a soliton formation process. This, to our knowledge, is the first simulation of high-intensity ultrashort soliton formation dynamics in the (3+1)-dimensional case.

  18. Overview of the High Intensity Neutrino Source Linac R&D program at Fermilab

    SciTech Connect (OSTI)

    Webber, R.C.; Appollinari, G.; Carneiro, J.P.; Gonin, I.; Hanna, B.; Hays, S.; Khabiboulline, T.; Lanfranco, G.; Madrak, R.L.; Moretti, A.; Nicol, T.; /Fermilab /Argonne

    2008-09-01T23:59:59.000Z

    The Fermilab High Intensity Neutrino Source (HINS) Linac R&D program is building a first-of-a-kind 60 MeV superconducting H- linac. The HINS Linac incorporates superconducting solenoids for transverse focusing, high power RF vector modulators for independent control of multiple cavities powered from a single klystron, and superconducting spoke-type accelerating cavities starting at 10 MeV. This will be the first application and demonstration of any of these technologies in a low-energy, high-intensity proton/H- linear accelerator. The HINS effort is relevant to a high intensity, superconducting H- linac that might serve the next generation of neutrino physics and muon storage ring/collider experiments. An overview of the HINS program, machine design, status, and outlook is presented.

  19. Fiber Bragg grating inscription by high-intensity femtosecond UV laser light: comparison

    E-Print Network [OSTI]

    Nikogosyan, David N.

    Fiber Bragg grating inscription by high-intensity femtosecond UV laser light: comparison with other 264-nm laser light and a phase mask technique, Bragg grating inscription in a range of different, that result in a significant photosensitivity enhancement of the in- vestigated fibers in comparison

  20. ECOS-LINCE: A HIGH INTENSITY MULTI-ION SUPERCONDUCTING LINAC FOR NUCLEAR STRUCTURE AND REACTIONS

    E-Print Network [OSTI]

    Boyer, Edmond

    ECOS-LINCE: A HIGH INTENSITY MULTI-ION SUPERCONDUCTING LINAC FOR NUCLEAR STRUCTURE AND REACTIONS I as part of the Long-Range Plan of the Nuclear-Physics community. LINCE will be a multi-user facility dedicated to ECOS science: fundamental physics, astrophysics, nuclear structure and reaction dynamics

  1. Investigation of long-period fiber gratings induced by high-intensity femtosecond UV laser pulses

    E-Print Network [OSTI]

    Nikogosyan, David N.

    efficiency with that for other existing meth- ods of recording. We studied the temperature sensing properties changes in the fiber core induced by thermal heating, were developed. They include the use of a CO2 laserInvestigation of long-period fiber gratings induced by high-intensity femtosecond UV laser pulses

  2. Proceedings of the third ICFA mini-workshop on high intensity, high brightness hadron accelerators

    SciTech Connect (OSTI)

    Roser, T.

    1997-11-01T23:59:59.000Z

    The third mini-workshop on high intensity, high brightness hadron accelerators was held at Brookhaven National Laboratory on May 7-9, 1997 and had about 30 participants. The workshop focussed on rf and longitudinal dynamics issues relevant to intense and/or bright hadron synchrotrons. A plenary session was followed by four sessions on particular topics. This document contains copies of the viewgraphs used as well as summaries written by the session chairs.

  3. Commissioning of the new high-intensity ultracold neutron source at the Paul Scherrer Institut

    E-Print Network [OSTI]

    Bernhard Lauss

    2010-11-17T23:59:59.000Z

    Commissioning of the new high-intensity ultracold neutron (UCN) source at the Paul Scherrer Institut (PSI) has started in 2009. The design goal of this new generation high intensity UCN source is to surpass by a factor of ~100 the current ultracold neutron densities available for fundamental physics research, with the greatest thrust coming from the search for a neutron electric dipole moment. The PSI UCN source is based on neutron production via proton induced lead spallation, followed by neutron thermalization in heavy water and neutron cooling in a solid deuterium crystal to cold and ultracold energies. A successful beam test with up to 2 mA proton beam on the spallation target was conducted recently. Most source components are installed, others being finally mounted. The installation is on the track for the first cool-down and UCN production in 2010.

  4. Ion source choices - an h- source for the high intensity neutrino source

    SciTech Connect (OSTI)

    Moehs, Douglas P.; /Fermilab; Welton, Robert F.; /SNS Project, Oak Ridge; Stockli, Martin P.; Peters, Jens; /DESY; Alessi, James; /Brookhaven

    2006-08-01T23:59:59.000Z

    The High Intensity Neutrino Source (HINS) program at Fermilab (formerly the Proton Driver) aims to develop a multi-mission linear accelerator (LINAC) capable of accelerate H{sup -} ions to 8 GeV. This paper touches on the ion source requirements for the HINS and discusses long pulse length testing of three ion sources which appear to have the capability of meeting these requirements.

  5. Numerical simulations of stripping effects in high-intensity hydrogen ion linacs

    SciTech Connect (OSTI)

    Carneiro, J.-P.; /Fermilab; Mustapha, B.; Ostroumov, P.N.; /Argonne

    2008-12-01T23:59:59.000Z

    Numerical simulations of H{sup -} stripping losses from blackbody radiation, electromagnetic fields, and residual gas have been implemented into the beam dynamics code TRACK. Estimates of the stripping losses along two high-intensity H{sup -} linacs are presented: the Spallation Neutron Source linac currently being operated at Oak Ridge National Laboratory and an 8 GeV superconducting linac currently being designed at Fermi National Accelerator Laboratory.

  6. ISSUANCE 2015-01-26: Energy Conservation Program: Energy Conservation Standards for High-Intensity Lamps, Notice to Reopen Comment Period

    Broader source: Energy.gov [DOE]

    Energy Conservation Program: Energy Conservation Standards for High-Intensity Lamps, Notice to Reopen Comment Period

  7. Fundamental physics on natures of the macroscopic vacuum under high intense electromagnetic fields with accelerators

    E-Print Network [OSTI]

    Kensuke Homma

    2009-11-30T23:59:59.000Z

    High intense electromagnetic fields can be unique probes to study natures of macroscopic vacua by themselves. Combining accelerators with the intense field can provide more fruitful probes which can neither be achieved by only intense fields nor only high energy accelerators. We will overview the natures of vacua which can be accessible via intense laser-laser and intense laser-electron interactions. In the case of the laser-laser interaction, we propose how to observe nonlinear QED effects and effects of new fields like light scalar and pseudo scalar fields which may contribute to a macroscopic nature of our universe such as dark energy. In the case of the laser-electron interaction, in addition to nonlinear QED effects, we can further discuss the nature of accelerating field in the vacuum where we can access physics related with event horizons such as Hawking-Unruh radiations. We will introduce a recent experimental trial to search for this kind of odd radiations.

  8. Observations of beam-beam effects at high intensities in the LHC

    E-Print Network [OSTI]

    Herr, W; Laface, E; Papotti, G; Pieloni, T; Alemany-Fernandez, R; Giachino, R; Schaumann, M

    2011-01-01T23:59:59.000Z

    First observations with colliding beams in the LHC with bunch intensities close to nominal and above are reported. In 2010 the LHC initially operated with few bunches spaced around the circumference. Beam-beam tune shifts exceeding significantly the design value have been observed. In a later stage crossing angles were introduced around the experiments to allow the collisions of bunch trains. We report the first experience with head-on as well as long range interactions of high intensity bunches and discuss the possible performance reach

  9. A Review of Loss Mechanisms and Key Design Choices for High Intensity Hadron Rings

    SciTech Connect (OSTI)

    Warsop, C.M. [Rutherford Appleton Laboratory, Oxfordshire (United Kingdom)

    2005-06-08T23:59:59.000Z

    The peak performance reached in a high intensity ring is closely related to the ability to minimise and control beam loss. The need to increase intensity has to be balanced against possible increased induction of radioactivity and the risk of interrupted operations. Losses are dependent on many factors and influence most aspects of machine design. In principle, only one aspect of low loss design needs to be sub-optimal to impose severe intensity limitations. Here, an outline is given of the key factors that need to be considered, focussing primarily on low to medium energy proton machines. Topics include space charge, instabilities, electron effects, injection and main lattice choices. Finally, we note that major progress has been made in refining low loss designs but there is still important work to be done in predicting loss levels and distributions in detail.

  10. High-intensity laser-driven proton acceleration enhancement from hydrogen containing ultrathin targets

    SciTech Connect (OSTI)

    Dollar, F.; Reed, S. A.; Matsuoka, T.; Bulanov, S. S.; Chvykov, V.; Kalintchenko, G.; McGuffey, C.; Rousseau, P.; Thomas, A. G. R.; Willingale, L.; Yanovsky, V.; Krushelnick, K.; Maksimchuk, A. [Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, Michigan 48109 (United States)] [Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, Michigan 48109 (United States); Litzenberg, D. W. [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan 48109 (United States)] [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan 48109 (United States)

    2013-09-30T23:59:59.000Z

    Laser driven proton acceleration experiments from micron and submicron thick targets using high intensity (2 10{sup 21} W/cm{sup 2}), high contrast (10{sup ?15}) laser pulses show an enhancement of maximum energy when hydrogen containing targets were used instead of non-hydrogen containing. In our experiments, using thin (<1?m) plastic foil targets resulted in maximum proton energies that were consistently 20%100% higher than when equivalent thickness inorganic targets, including Si{sub 3}N{sub 4} and Al, were used. Proton energies up to 20 MeV were measured with a flux of 10{sup 7} protons/MeV/sr.

  11. A focusable, convergent fast-electron beam from ultra-high-intensity laser-solid interactions

    E-Print Network [OSTI]

    Scott, R H H

    2015-01-01T23:59:59.000Z

    A novel scheme for the creation of a convergent, or focussing, fast-electron beam generated from ultra-high-intensity laser-solid interactions is described. Self-consistent particle-in-cell simulations are used to demonstrate the efficacy of this scheme in two dimensions. It is shown that a beam of fast-electrons of energy 500 keV - 3 MeV propagates within a solid-density plasma, focussing at depth. The depth of focus of the fast-electron beam is controlled via the target dimensions and focussing optics.

  12. Microwave power spectral density and its effects on exciting electrodeless high intensity discharge lamps

    SciTech Connect (OSTI)

    Butler, S.J.; Goss, H.H.; Lapatovich, W.P. [Osram Sylvania Inc., Salem, MA (United States)

    1995-12-31T23:59:59.000Z

    The effects of a microwave source generating a spectrally dense power spectrum on the operation of an electrodeless high intensity discharge lamp were measured. Spectrally pure sources operating within ISM bands at 915 MHz and 2.45 GHz produce stable capacitively coupled discharges useful for producing flicker-free light for numerous applications. The internal plasma temperature distribution and lamp geometry define acoustic resonance modes within the lamp which can be excited with power sidebands. The operation of lamps with commercially available power sources and custom built generators are discussed. Estimates of the spectral purity required for stable operation are provided.

  13. Commissioning the new high power rf system for the AGS with high intensity beam

    SciTech Connect (OSTI)

    Brennan, J.M.; Ciardullo, D.J.; Deng, D.P; Hayes, T.; Onillon, E.; Otis, A.; Sanders, R.T.; Zaltsman, A.

    1994-08-01T23:59:59.000Z

    A new high power rf system has been installed in the AGS in order to raise the beam loading limit to beyond 6 {times} 10{sup 13} protons per pulse. The old system was limited to 2.2 {times} 10{sup l3} ppp by: available real power, multi-loop instability, and transient beam loading during batch filling from the Booster. The key components of the new system are: new power amplifiers in the tunnel using the Thomson-CSF TH573 300kW tetrode, rf feedback around the power stage, and reduction of the 10 cavities` R/Q by 1.8 by additional gap capacitors. Commissioning of the new rf system with high intensity beam is described. The intensity goal for the 1994 running period is 4 {times} 10{sup 13} ppp. To date, 3.7 {times} 10{sup 13} ppp has been achieved.

  14. Backcoupling of acoustic streaming on the temperature field inside high-intensity discharge lamps

    E-Print Network [OSTI]

    Schwieger, Joerg; Wolff, Marcus; Manders, Freddy; Suijker, Jos

    2015-01-01T23:59:59.000Z

    Operating high-intensity discharge lamps in the high frequency range (20-300 kHz) provides energy-saving and cost reduction potentials. However, commercially available lamp drivers do not make use of this operating strategy because light intensity fluctuations and even lamp destruction are possible. The reason for the fluctuating discharge arc are acoustic resonances in this frequency range that are excited in the arc tube. The acoustic resonances in turn generate a fluid flow that is caused by the acoustic streaming effect. Here, we present a 3D multiphysics model to determine the influence of acoustic streaming on the temperature field in the vicinity of an acoustic eigenfrequency. In that case a transition from stable to instable behavior occurs. The model is able to predict when light flicker can be expected. The results are in very good accordance with accompanying experiments.

  15. Production of neutrons up to 18 MeV in high-intensity, short-pulse laser matter interactions

    E-Print Network [OSTI]

    Production of neutrons up to 18 MeV in high-intensity, short-pulse laser matter interactions D. P of neutrons up to 18 MeV in high-intensity, short-pulse laser matter interactions D. P. Higginson,1,2 J. M. Mc of laser energy in a 9 ps pulse. In this technique, a short-pulse, high-energy laser accelerates deuterons

  16. Epithermal Neutron Source for Neutron Resonance Spectroscopy (NRS) using High Intensity, Short Pulse Lasers

    SciTech Connect (OSTI)

    Higginson, D P; McNaney, J M; Swift, D C; Bartal, T; Hey, D S; Pape, S L; Mackinnon, A; Mariscal, D; Nakamura, H; Nakanii, N; Beg, F N

    2010-04-22T23:59:59.000Z

    A neutron source for neutron resonance spectroscopy (NRS) has been developed using high intensity, short pulse lasers. This measurement technique will allow for robust measurements of interior ion temperature of laser-shocked materials and provide insight into equation of state (EOS) measurements. The neutron generation technique uses protons accelerated by lasers off of Cu foils to create neutrons in LiF, through (p,n) reactions with {sup 7}Li and {sup 19}F. The distribution of the incident proton beam has been diagnosed using radiochromic film (RCF). This distribution is used as the input for a (p,n) neturon prediction code which is compared to experimentally measured neutron yields. From this calculation, a total fluence of 1.8 x 10{sup 9} neutrons is infered, which is shown to be a reasonable amount for NRS temperature measurement.

  17. MR-Guided High-Intensity Focused Ultrasound: Current Status of an Emerging Technology

    SciTech Connect (OSTI)

    Napoli, Alessandro, E-mail: napoli.alessandro@gmail.com; Anzidei, Michele, E-mail: michele.anzidei@gmail.com; Ciolina, Federica, E-mail: federica.ciolina@gmail.com; Marotta, Eugenio, E-mail: eugenio.marotta@gmail.com; Cavallo Marincola, Beatrice, E-mail: beatrice.cavalloamarincola@gmail.com; Brachetti, Giulia, E-mail: giuliabrachetti@gmail.com; Mare, Luisa Di, E-mail: luisadimare@gmail.com; Cartocci, Gaia, E-mail: gaia.cartocci@gmail.com; Boni, Fabrizio, E-mail: fabrizioboni00@gmail.com; Noce, Vincenzo, E-mail: vinc.noce@hotmail.it; Bertaccini, Luca, E-mail: lucaone84@libero.it; Catalano, Carlo, E-mail: carlo.catalano@uniroma1.it [Sapienza, University of Rome, Department of Radiological Sciences (Italy)] [Sapienza, University of Rome, Department of Radiological Sciences (Italy)

    2013-10-15T23:59:59.000Z

    The concept of ideal tumor surgery is to remove the neoplastic tissue without damaging adjacent normal structures. High-intensity focused ultrasound (HIFU) was developed in the 1940s as a viable thermal tissue ablation approach. In clinical practice, HIFU has been applied to treat a variety of solid benign and malignant lesions, including pancreas, liver, prostate, and breast carcinomas, soft tissue sarcomas, and uterine fibroids. More recently, magnetic resonance guidance has been applied for treatment monitoring during focused ultrasound procedures (magnetic resonance-guided focused ultrasound, MRgFUS). Intraoperative magnetic resonance imaging provides the best possible tumor extension and dynamic control of energy deposition using real-time magnetic resonance imaging thermometry. We introduce the fundamental principles and clinical indications of the MRgFUS technique; we also report different treatment options and personal outcomes.

  18. Industrial Fabrication of Medium-Beta SCRF Cavities for a High-Intensity Proton Linac

    E-Print Network [OSTI]

    Kuzminski, J; Gentzlinger, R C; Maccioni, P

    2000-01-01T23:59:59.000Z

    During 1999, four 700-MHz, medium-beta (b = 0.64), superconducting radio frequency (SCRF) cavities for a high-intensity proton linac project at Los Alamos National Laboratory (LANL) were manufactured by industry. The SCRF cavities were designed by a LANL team in Los Alamos, New Mexico, USA, and manufactured at a CERCA plant in Romans, France. The cavities were made of 4-mm-thick, solid niobium sheets with a residual resistivity ratio (RRR) greater than 250. These niobium sheets were supplied by Wah Chang (USA), Heraeus AG (Germany), and Tokyo Denkai (Japan). The SCRF cavities were shipped to LANL for performance testing. This paper describes the experience gained during the manufacturing process at CERCA.

  19. Left-Right Symmetric Models at the High-Intensity Frontier

    E-Print Network [OSTI]

    Castillo-Felisola, Oscar; Helo, Juan C; Kovalenko, Sergey G; Ortiz, Sebastian E

    2015-01-01T23:59:59.000Z

    We study constraints on Left-Right Symmetric models from searches of semileptonic decays of $D$, $D_{s}$, $B$ mesons, mediated by heavy neutrinos $N$ with masses $m_N\\sim $ GeV that go on their mass shell leading to a resonant enhancement of the rates. Using these processes we examine, as a function of $m_N$ and $M_{W_R}$, the physics reach of the recently proposed high-intensity beam dump experiment SHiP, which is expected to produce a large sample of $D_s$ mesons. We compare these results with the corresponding reach of neutrinoless double beta decay experiments, as well as like-sign dilepton searches with displaced vertices at the LHC. We conclude that the SHiP experiment has clear advantages in probing the Left-Right Symmetric models for heavy neutrinos in the GeV mass range.

  20. High-intensity positron microprobe at the Thomas Jefferson National Accelerator Facility

    SciTech Connect (OSTI)

    Golge, S., E-mail: serkan.golge@nasa.gov; Vlahovic, B. [North Carolina Central University, Durham, North Carolina 27707 (United States); Wojtsekhowski, B. [Jefferson Laboratory, 12000 Jefferson Ave., Newport News, Virginia 23606 (United States)

    2014-06-21T23:59:59.000Z

    We present a conceptual design for a novel continuous wave electron-linac based high-intensity high-brightness slow-positron production source with a projected intensity on the order of 10{sup 10?}e{sup +}/s. Reaching this intensity in our design relies on the transport of positrons (T{sub +} below 600?keV) from the electron-positron pair production converter target to a low-radiation and low-temperature area for moderation in a high-efficiency cryogenic rare gas moderator, solid Ne. This design progressed through Monte Carlo optimizations of: electron/positron beam energies and converter target thickness, transport of the e{sup +} beam from the converter to the moderator, extraction of the e{sup +} beam from the magnetic channel, a synchronized raster system, and moderator efficiency calculations. For the extraction of e{sup +} from the magnetic channel, a magnetic field terminator plug prototype has been built and experimental results on the effectiveness of the prototype are presented. The dissipation of the heat away from the converter target and radiation protection measures are also discussed.

  1. Production of high intensity electron bunches for the SLAC Linear Collider

    SciTech Connect (OSTI)

    James, M.B.

    1987-08-01T23:59:59.000Z

    This thesis describes the design and performance of a high intensity electron injecfor for the SLAC Linear Collider. Motivation for the collider and the specifications for the injector are discussed. An analytic theory of the bunching and capture of electrons by rf fields is discussed in the limit of low space charge and small signal. The design and performance of SLAC's main injector are described to illustrate a successful application of this theory. The bunching and capture of electrons by rf fields are then discussed in the limit of high space charge and large signal, and a description of the design of the collider injector follows. In the limit of high space charge forces and large rf signals, the beam dynamics are considerably more complex and numerical simulations are required to predict particle motion. A computer code which models the longitudinal dynamics of electrons in the presence of space charge and rf fields is described. The results of the simulations, the resulting collider injector design and the various components which make up the collider injector are described. These include the gun, subharmonic bunchers, traveling-wave buncher and velocity-of-light accelerator section. Finally, the performance of the injector is described including the beam intensity, bunch length, transverse emittance and energy spectrum. While the final operating conditions differ somewaht from the design, the performance of the collider injector is in good agreement with the numerical simulations and meets all of the collider specifications. 28 refs.

  2. Simulation of the Beam Dump for a High Intensity Electron Gun

    E-Print Network [OSTI]

    Doebert, S; Lefevre, T; Pepitone, K

    2014-01-01T23:59:59.000Z

    The CLIC Drive Beam is a high-intensity pulsed electron beam. A test facility for the Drive Beam electron gun will soon be commissioned at CERN. In this contribution we outline the design of a beam dump / Faraday cup capable of resisting the beams thermal load. The test facility will operate initially up to 140 keV. At such low energies, the electrons are absorbed very close to the surface of the dump, leading to a large energy deposition density in this thin layer. In order not to damage the dump, the beam must be spread over a large surface. For this reason, a small-angled cone has been chosen. Simulations using Geant4 have been performed to estimate the distribution of energy deposition in the dump. The heat transport both within the electron pulse and between pulses has been modelled using finite element methods to check the resistance of the dump at high repetition rates. In addition, the possibility of using a moveable dump to measure the beam profile and emittance is discussed.

  3. The botanical composition of cattle diets on a 7-pasture high-intensity low-frequency grazing system

    E-Print Network [OSTI]

    Taylor, Charles Andrew

    1973-01-01T23:59:59.000Z

    THE BOTANICAL COMPOSITION OF CATTLE DIETS ON A 7-PASTURE HIGH-INTENSITY LOW-FREQUENCY GRAZING SYSTEM A Thesis by CHARLES ANDREW TAYLOR, JR. Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement... for the degree of MASTER OF SCIENCE May, 1973 MaJor SubJect: Range Science THE BOTANICAL COYiPOSITION OF CATTLE DIETS ON A 7-PASTI|RE HIGH-INTENSITY LOW-FREQUENCY GRAZING SYSTFM A Thesis by CHARLES ANDREW TAYLOR, JR. Approved as to style and content by...

  4. Title: Combined passive detection and ultrafast active imaging of cavitation events induced by short pulses of high intensity

    E-Print Network [OSTI]

    Boyer, Edmond

    1 Title: Combined passive detection and ultrafast active imaging of cavitation events induced by short pulses of high intensity ultrasound Authors: Jérôme GATEAU, Jean-François AUBRY, Mathieu PERNOT / INSERM, U979 / Université Denis Diderot, Paris VII Key words: single nucleation events, ultrafast active

  5. Enhancement of x-ray line emission from plasmas produced by short high-intensity laser double pulses

    E-Print Network [OSTI]

    Limpouch, Jiri

    Enhancement of x-ray line emission from plasmas produced by short high-intensity laser double.25.Os, 52.65. y I. INTRODUCTION The advanced technology of short pulse lasers now pro- vides on experimental conditions. The enhancement of x-ray yield by short laser prepulses has been reported in several

  6. Head-on beam-beam collisions with high intensities and long range beam-beam studies in the LHC

    E-Print Network [OSTI]

    Albert, M; Assmann, R; Buffat, X; Calaga, R; Cornelis, K; Fitterer, M; Giachino, R; Herr, W; Miyamoto, R; Norman, L; Papotti, G; Pieloni, T; Ponce, L; Redaelli, S; Schaumann, M; Trad, G; Wollmann, D

    2011-01-01T23:59:59.000Z

    In two experiments we studied possible limitations due to the beam-beam effects in the LHC. In the first experiment we collided high intensity bunches head-on to explore the region for high luminosity collisions. In the second test we reduced the crossing angle in the presence of long range encounters to increase their effects.

  7. Laser-based proton acceleration on ultra-thin foil with a 100 TW class high intensity laser system

    E-Print Network [OSTI]

    Marjoribanks, Robin S.

    of electromagnetic fields in plasma, isotopes production or hadron therapy. The 100 TW class laser systemLaser-based proton acceleration on ultra-thin foil with a 100 TW class high intensity laser system. To characterize the plasma expansion, we monitor it with an imaging technique using a femtosecond laser probe

  8. Numerical Investigation of Symmetry Breaking and Critical Behavior of the Acoustic Streaming Field in High-Intensity Discharge Lamps

    E-Print Network [OSTI]

    Baumann, Bernd; Wolff, Marcus; Manders, Freddy; Suijker, Jos

    2014-01-01T23:59:59.000Z

    For energy efficiency and material cost reduction it is preferred to drive high-intensity discharge lamps at frequencies of approximately 300 kHz. However, operating lamps at these high frequencies bears the risk of stimulating acoustic resonances inside the arc tube, which can result in low frequency light flicker and even lamp destruction. The acoustic streaming effect has been identified as the link between high frequency resonances and low frequency flicker. A highly coupled 3D multiphysics model has been set up to calculate the acoustic streaming velocity field inside the arc tube of high-intensity discharge lamps. It has been found that the velocity field suffers a phase transition to an asymmetrical state at a critical acoustic streaming force. The system behaves similar to a ferromagnet near the Curie point. Furthermore, it is discussed how the model allows to investigate the light flicker phenomenon. Concerning computer resources the procedure is considerably less demanding than a direct approach wit...

  9. Observation of a Long-Wavelength Hosing Modulation of a High-Intensity Laser Pulse in Underdense Plasma

    E-Print Network [OSTI]

    Kaluza, M C; Thomas, A G R; Najmudin, Z; Dangor, A E; Murphy, C D; Collier, J L; Divall, E J; Foster, P S; Hooker, C J; Langley, A J; Smith, J; Krushelnick, K

    2010-01-01T23:59:59.000Z

    We report the first experimental observation of a long-wavelength hosing modulation of a high-intensity laser pulse. Side-view images of the scattered optical radiation at the fundamental wave-length of the laser reveal a transverse oscillation of the laser pulse during its propagation through underdense plasma. The wavelength of the oscillation \\lambda_hosing depends on the background plasma density n_e and scales as \\lambda_hosing~n_e^-3/2. Comparisons with an analytical model and 2-dimensional particle-in-cell simulations reveal that this laser hosing can be induced by a spatio-temporal asymmetry of the intensity distribution in the laser focus which can be caused by a misalignment of the parabolic focussing mirror or of the diffraction gratings in the pulse compressor.

  10. Calculation of synchrotron radiation from high intensity electron beam at eRHIC

    SciTech Connect (OSTI)

    Jing Y.; Chubar, O.; Litvinenko, V.

    2012-05-20T23:59:59.000Z

    The Electron-Relativistic Heavy Ion Collider (eRHIC) at Brookhaven National Lab is an upgrade project for the existing RHIC. A 30 GeV energy recovery linac (ERL) will provide a high charge and high quality electron beam to collide with proton and ion beams. This will improve the luminosity by at least 2 orders of magnitude. The synchrotron radiation (SR) from the bending magnets and strong quadrupoles for such an intense beam could be penetrating the vacuum chamber and producing hazards to electronic devices and undesired background for detectors. In this paper, we calculate the SR spectral intensity, power density distributions and heat load on the chamber wall. We suggest the wall thickness required to stop the SR and estimate spectral characteristics of the residual and scattered background radiation outside the chamber.

  11. Dominant deuteron acceleration with a high-intensity laser for isotope production and neutron generation

    SciTech Connect (OSTI)

    Maksimchuk, A.; Raymond, A.; Yu, F.; Dollar, F.; Willingale, L.; Zulick, C.; Krushelnick, K. [Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, Michigan 48109 (United States)] [Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, Michigan 48109 (United States); Petrov, G. M.; Davis, J. [Naval Research Laboratory, Plasma Physics Division, Washington, DC 20375 (United States)] [Naval Research Laboratory, Plasma Physics Division, Washington, DC 20375 (United States)

    2013-05-13T23:59:59.000Z

    Experiments on the interaction of an ultra-short pulse laser with heavy-water, ice-covered copper targets, at an intensity of 2 Multiplication-Sign 10{sup 19} W/cm{sup 2}, were performed demonstrating the generation of a 'pure' deuteron beam with a divergence of 20 Degree-Sign , maximum energy of 8 MeV, and a total of 3 Multiplication-Sign 10{sup 11} deuterons with energy above 1 MeV-equivalent to a conversion efficiency of 1.5%{+-} 0.2%. Subsequent experiments on irradiation of a {sup 10}B sample with deuterons and neutron generation from d-d reactions in a pitcher-catcher geometry, resulted in the production of {approx}10{sup 6} atoms of the positron emitter {sup 11}C and a neutron flux of (4{+-}1) Multiplication-Sign 10{sup 5} neutrons/sterad, respectively.

  12. High-intensity double-pulse X-ray free-electron laser

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Marinelli, A.; Ratner, D.; Lutman, A. A.; Turner, J.; Welch, J.; Decker, F. -J.; Loos, H.; Behrens, C.; Gilevich, S.; Miahnahri, A. A.; et al

    2015-03-06T23:59:59.000Z

    The X-ray free-electron laser has opened a new era for photon science, improving the X-ray brightness by ten orders of magnitude over previously available sources. Similar to an optical laser, the spectral and temporal structure of the radiation pulses can be tailored to the specific needs of many experiments by accurately manipulating the lasing medium, that is, the electron beam. Here we report the generation of mJ-level two-colour hard X-ray pulses of few femtoseconds duration with an XFEL driven by twin electron bunches at the Linac Coherent Light Source. This performance represents an improvement of over an order of magnitudemorein peak power over state-of-the-art two-colour XFELs. The unprecedented intensity and temporal coherence of this new two-colour X-ray free-electron laser enable an entirely new set of scientific applications, ranging from X-ray pump/X-ray probe experiments to the imaging of complex biological samples with multiple wavelength anomalous dispersion.less

  13. Modelling gamma-ray photon emission and pair production in high-intensity lasermatter interactions

    SciTech Connect (OSTI)

    Ridgers, C.P. [Clarendon Laboratory, University of Oxford, Parks Road, Oxford, OX1 3PU (United Kingdom) [Clarendon Laboratory, University of Oxford, Parks Road, Oxford, OX1 3PU (United Kingdom); Central Laser Facility, STFC Rutherford-Appleton Laboratory, Chilton, Didcot, Oxfordshire, OX11 0QX (United Kingdom); Kirk, J.G. [Max-Planck-Institut fr Kernphysik, Postfach 10 39 80, 69029 Heidelberg (Germany)] [Max-Planck-Institut fr Kernphysik, Postfach 10 39 80, 69029 Heidelberg (Germany); Duclous, R. [Commissariat l'Energie Atomique, DAM DIF, F-91297 Arpajon (France)] [Commissariat l'Energie Atomique, DAM DIF, F-91297 Arpajon (France); Blackburn, T.G. [Clarendon Laboratory, University of Oxford, Parks Road, Oxford, OX1 3PU (United Kingdom)] [Clarendon Laboratory, University of Oxford, Parks Road, Oxford, OX1 3PU (United Kingdom); Brady, C.S.; Bennett, K.; Arber, T.D. [Centre for Fusion, Space and Astrophysics, University of Warwick, Coventry, CV4 7AL (United Kingdom)] [Centre for Fusion, Space and Astrophysics, University of Warwick, Coventry, CV4 7AL (United Kingdom); Bell, A.R. [Clarendon Laboratory, University of Oxford, Parks Road, Oxford, OX1 3PU (United Kingdom) [Clarendon Laboratory, University of Oxford, Parks Road, Oxford, OX1 3PU (United Kingdom); Central Laser Facility, STFC Rutherford-Appleton Laboratory, Chilton, Didcot, Oxfordshire, OX11 0QX (United Kingdom)

    2014-03-01T23:59:59.000Z

    In high-intensity (>10{sup 21} Wcm{sup ?2}) lasermatter interactions gamma-ray photon emission by the electrons can strongly affect the electron's dynamics and copious numbers of electronpositron pairs can be produced by the emitted photons. We show how these processes can be included in simulations by coupling a Monte Carlo algorithm describing the emission to a particle-in-cell code. The Monte Carlo algorithm includes quantum corrections to the photon emission, which we show must be included if the pair production rate is to be correctly determined. The accuracy, convergence and energy conservation properties of the Monte Carlo algorithm are analysed in simple test problems.

  14. Management of Respiratory Motion in Extracorporeal High-Intensity Focused Ultrasound Treatment in Upper Abdominal Organs: Current Status and Perspectives

    SciTech Connect (OSTI)

    Muller, A., E-mail: arnaud.muller@chu-lyon.fr [Centre Hospitalier Lyon Sud, Service de Radiologie, Hospices Civils de Lyon (France); Petrusca, L.; Auboiroux, V. [University of Geneva, Department of Radiology, Faculty of Medicine (Switzerland)] [University of Geneva, Department of Radiology, Faculty of Medicine (Switzerland); Valette, P. J. [Centre Hospitalier Lyon Sud, Service de Radiologie, Hospices Civils de Lyon (France)] [Centre Hospitalier Lyon Sud, Service de Radiologie, Hospices Civils de Lyon (France); Salomir, R. [University of Geneva, Department of Radiology, Faculty of Medicine (Switzerland)] [University of Geneva, Department of Radiology, Faculty of Medicine (Switzerland); Cotton, F. [Centre Hospitalier Lyon Sud, Service de Radiologie, Hospices Civils de Lyon (France)] [Centre Hospitalier Lyon Sud, Service de Radiologie, Hospices Civils de Lyon (France)

    2013-12-15T23:59:59.000Z

    Extracorporeal high-intensity focused ultrasound (HIFU) is a minimally invasive therapy considered with increased interest for the ablation of small tumors in deeply located organs while sparing surrounding critical tissues. A multitude of preclinical and clinical studies have showed the feasibility of the method; however, concurrently they showed several obstacles, among which the management of respiratory motion of abdominal organs is at the forefront. The aim of this review is to describe the different methods that have been proposed for managing respiratory motion and to identify their advantages and weaknesses. First, we specify the characteristics of respiratory motion for the liver, kidneys, and pancreas and the problems it causes during HIFU planning, treatment, and monitoring. Second, we make an inventory of the preclinical and clinical approaches used to overcome the problem of organ motion. Third, we analyze their respective benefits and drawbacks to identify the remaining physical, technological, and clinical challenges. We thereby consider the outlook of motion compensation techniques and those that would be the most suitable for clinical use, particularly under magnetic resonance thermometry monitoring.

  15. Dynamic T{sub 2}-mapping during magnetic resonance guided high intensity focused ultrasound ablation of bone marrow

    SciTech Connect (OSTI)

    Waspe, Adam C.; Looi, Thomas; Mougenot, Charles; Amaral, Joao; Temple, Michael; Sivaloganathan, Siv; Drake, James M. [Centre for Image Guided Innovation and Therapeutic Intervention, The Hospital for Sick Children, Toronto, ON, M5G 1X8 (Canada); Philips Healthcare Canada, Markham, ON, L6C 2S3 (Canada); Centre for Image Guided Innovation and Therapeutic Intervention, The Hospital for Sick Children, Toronto, ON, M5G 1X8 (Canada); Department of Applied Mathematics, University of Waterloo, Waterloo, ON, N2L 3G1 (Canada); Centre for Image Guided Innovation and Therapeutic Intervention, The Hospital for Sick Children, Toronto, ON, M5G 1X8 (Canada)

    2012-11-28T23:59:59.000Z

    Focal bone tumor treatments include amputation, limb-sparing surgical excision with bone reconstruction, and high-dose external-beam radiation therapy. Magnetic resonance guided high intensity focused ultrasound (MR-HIFU) is an effective non-invasive thermotherapy for palliative management of bone metastases pain. MR thermometry (MRT) measures the proton resonance frequency shift (PRFS) of water molecules and produces accurate (<1 Degree-Sign C) and dynamic (<5s) thermal maps in soft tissues. PRFS-MRT is ineffective in fatty tissues such as yellow bone marrow and, since accurate temperature measurements are required in the bone to ensure adequate thermal dose, MR-HIFU is not indicated for primary bone tumor treatments. Magnetic relaxation times are sensitive to lipid temperature and we hypothesize that bone marrow temperature can be determined accurately by measuring changes in T{sub 2}, since T{sub 2} increases linearly in fat during heating. T{sub 2}-mapping using dual echo times during a dynamic turbo spin-echo pulse sequence enabled rapid measurement of T{sub 2}. Calibration of T{sub 2}-based thermal maps involved heating the marrow in a bovine femur and simultaneously measuring T{sub 2} and temperature with a thermocouple. A positive T{sub 2} temperature dependence in bone marrow of 20 ms/ Degree-Sign C was observed. Dynamic T{sub 2}-mapping should enable accurate temperature monitoring during MR-HIFU treatment of bone marrow and shows promise for improving the safety and reducing the invasiveness of pediatric bone tumor treatments.

  16. HILL: The High-Intensity Laser Laboratory Core Team's Reply to Questions from the NNSA Experimental Facilities Panel

    SciTech Connect (OSTI)

    Albright, B J [Los Alamos National Laboratory

    2012-08-02T23:59:59.000Z

    Question 1 - The type of physics regimes that HILL can access for weapons studies is quite interesting. The question that arises for the proposal team is what priority does this type of experimental data have versus data that can be obtained with NIF, and Z. How does HILL rank in priority compared to MARIE 1.0 in terms of the experimental data it will provide? We reiterate that isochoric heating experiments to be conducted with HILL are complementary to the high energy density physics experiments at NIF and Z and uniquely access states of matter that neither other facility can access. It is our belief that HILL will enable several important questions, e.g., as related to mix morphology, radiation transfer from corrugated surfaces, and equations of state, to be run to ground through carefully diagnosed, 'unit-physics' experiments. Such experiments will substantially improve confidence in our computer models and provide a rigorous science basis for certification. Question 2 - A secondary question relates to the interests of LLNL and SNL in the physics that HILL can address. This should be spelled out clearly. I would like to see the other labs be part of the discussion regarding how important this capability would be if built. Both sister Labs have a keen interest in the physics enabled by high-intensity, high-energy lasers, as evinced by the Z Petawatt and NIF ARC upgrades to their signature facilities. LANL scientists have teamed with scientists from both Laboratories in high-intensity laser 'first experiments' envisioned for HILL and we fully intend to continue these profitable discussions going forward. In the preparation of the HILL proposal, feedback was solicited from the broader HEDP and weapons science communities. The consensus view was that HILL filled a critical gap and that there was a need for a facility like HILL to address outstanding questions in weapons science. It was recognized that co-location of HILL with a facility such as MaRIE 1.0, Z, NIF, or Omega may offer additional advantages and we would expect these to be explored and evaluated during the CD process. Question 3 - A laser/optics experts group should review this proposal to ensure the level of R&D is reasonable to provide a sufficient chance of success (>50%). In the preparation of the HILL proposal, we sent our proposal and cost estimates to laser designers/scientists across the complex. Though risks were identified with our design, the prevailing view of those we engaged was that the risks were appropriately represented by the TRL levels assigned and that the enabling R&D planned in our proposal was adequate for risk mitigation. Question 4 - More data and peer review is needed from its sister facilities around the world. It is our specific intent to conduct both scientific and technical workshops with the user community if the High Intensity Science field is further encouraged as part of the NNSA Roadmap. Question 5 - Does HILL have to be co-located with MARIE 1.0? Is that feasible from the point of view of TA-53 real estate? Multiple siting options were considered for HILL, including co-location with MaRIE 1.0 (the most cost-effective and flexible option), as well as in a separate, stand-alone building and in a retro-fitted existing building. The cost estimate included these contingencies and candidate locations for HILL in TA-53 were identified. There is actually significant space at TA-53 on the hill in the northeast end of the mesa. Question 6 - What would be the impact on the weapons program if this facility were NOT built? An inability to elucidate aspects of weapons science in the dense plasma regime and validate computer models for same. This will lead to reduced confidence in the computer tools used for certification. Question 7 - Will HILL allow some of the x-ray vulnerability studies proposed by SPARC? If so what does Sandia's vulnerability group think of this method versus SPARC. It is possible that some of the scope envisioned for SPARC could be achieved on HILL, although likely that the energy produced at HILL not bei

  17. Effects of high-intensity ultrasound on Bi2Sr2CaCu2O8+x superconductor Tanya Prozorov

    E-Print Network [OSTI]

    Prozorov, Ruslan

    half of the speed of sound in liquid. Effective tem- peratures at the point of impact can easily exceed In liquid- powder slurries irradiated with high-intensity ultrasound, acoustic cavitation induces turbulent temperatures, 5000 K, and pressures, 300 Mpa,7­9 and the shockwaves launched into the liquid create high

  18. Propagation In Matter Of Currents Of Relativistic Electrons Beyond The Alfven Limit, Produced In Ultra-High-Intensity Short-Pulse Laser-Matter Interactions

    SciTech Connect (OSTI)

    Batani, D.; Manclossi, M. [Dipartimento di Fisica 'G.Occhialini', Universita di Milano-Bicocca (Italy); INFM, Universita di Milano-Bicocca (Italy); Laboratoire d'Optique Appliquee, UMR ENSTA-CNRS-Ecole Polytechnique, Palaiseau (France); Baton, S.D.; Amiranoff, F.; Koenig, M.; Gremillet, L.; Popescu, H. [Laboratoire pour l'Utilisation des Lasers Intenses, UMR 7605 CNRS-CEA-X-Paris VI, Ecole Polytechnique, Palaiseau (France); Santos, J.J. [Laboratoire d'Optique Appliquee, UMR ENSTA-CNRS-Ecole Polytechnique, Palaiseau (France); Laboratoire pour l'Utilisation des Lasers Intenses, UMR 7605 CNRS-CEA-X-Paris VI, Ecole Polytechnique, Palaiseau (France); Martinolli, E. [Dipartimento di Fisica 'G.Occhialini', Universita di Milano-Bicocca (Italy); INFM, Universita di Milano-Bicocca (Italy); Laboratoire pour l'Utilisation des Lasers Intenses, UMR 7605 CNRS-CEA-X-Paris VI, Ecole Polytechnique, Palaiseau (France); Antonicci, A. [Dipartimento di Fisica 'G.Occhialini', Universita di Milano-Bicocca (Italy); INFM, Universita di Milano-Bicocca (Italy); Rousseaux, C.; Rabec Le Gloahec, M. [Commissariat a l'Energie Atomique, Bruyeres-le-Chatel (France); Hall, T. [University of Essex, Wivenhoe Park, Colchester, Essex, CO4 3SQ (United Kingdom); Malka, V. [Laboratoire d'Optique Appliquee, UMR ENSTA-CNRS-Ecole Polytechnique, Palaiseau (France); Cowan, T.E.; Stephens, R. [Inertial Fusion Technology Division, Fusion Group, General Atomics, San Diego, CA (United States); Key, M. [Lawrence Livermore National Laboratory, Livermore CA (United States); King, J.; Freeman, R. [Department of Applied Sciences, University of California Davis, CA 95616 (United States)

    2004-12-01T23:59:59.000Z

    This paper reports the results of several experiments performed at the LULI laboratory (Palaiseau, France) concerning the propagation of large relativistic currents in matter from ultra-high-intensity laser pulse interaction with target. We present our results according to the type of diagnostics used in the experiments: 1) K{alpha} emission and K{alpha} imaging, 2) study of target rear side emission in the visible region, 3) time resolved optical shadowgraphy.

  19. Trapping and Destruction of Long-Range High-Intensity Optical Filaments by Molecular Quantum Wakes in Air

    E-Print Network [OSTI]

    Milchberg, Howard

    in Air S. Varma, Y.-H. Chen, and H. M. Milchberg Institute for Research in Electronics and Applied in atmospheric air on the long-range filamentary propagation of intense femtosecond laser pulses. In a pump following a pump pulse filamenting in air has a dramatic effect on the propagation of an intense probe pulse

  20. Searching for minicharged particles via birefringence, dichroism and Raman spectroscopy of the vacuum polarized by a high-intensity laser wave

    SciTech Connect (OSTI)

    Villalba-Chvez, S., E-mail: selymv@gmail.com; Mller, C., E-mail: c.mueller@tp1.uni-duesseldorf.de

    2013-12-15T23:59:59.000Z

    Absorption and dispersion of probe photons in the field of a high-intensity circularly polarized laser wave are investigated. The optical theorem is applied for determining the absorption coefficients in terms of the imaginary part of the vacuum polarization tensor. Compact expressions for the vacuum refraction indices and the photon absorption coefficients are obtained in various asymptotic regimes of interest. The outcomes of this analysis reveal that, far from the region relatively close to the threshold of the two-photon reaction, the birefringence and dichroism of the vacuum are small and, in some cases, strongly suppressed. On the contrary, in a vicinity of the region in which the photo-production of a pair occurs, these optical properties are manifest with lasers of moderate intensities. We take advantage of such a property in the search of minicharged particles by considering high-precision polarimetric experiments. In addition, Raman-like electromagnetic waves resulting from the inelastic part of the vacuum polarization tensor are suggested as an alternative form for finding exclusion limits on these hypothetical charge carriers. The envisaged parameters of upcoming high-intensity laser facilities are used for establishing upper bounds on the minicharged particles. -- Highlights: Via dichroism and birefringence of the vacuum by a strong laser wave, minicharged particles can be probed. The discovery potential is the highest in a vicinity of the first pair production threshold. As alternative observable, Raman scattered waves are put forward.

  1. Application of vane-type resonator to microwave powered electrodeless HID lamp

    SciTech Connect (OSTI)

    Hochi, Akira; Takeda, Mamoru

    1999-07-01T23:59:59.000Z

    A cavity resonator has been generally used as microwave applicator for an electrodeless high intensity discharge (HID) lamp. The size of a cavity resonator is determined by the wavelength of a microwave applied. For example, for a microwave of 2.45 GHz, an inner diameter of more than about 76 mm is necessary for obtaining a microwave resonant field, and then the size of a plasma arc capable of maintaining a stable discharge is experimentally limited at about 15 mm and above. Accordingly the microwave powered electrodeless HID lamp device using cavity resonator is inappropriate in applications where a point light source is required. A vane-type resonator is generally known as an anode of a magnetron, which decides the oscillation frequency of the magnetron. The authors used 3-D finite element method simulation for a design of a vane-type resonator with parabolic reflector to obtain a desired resonant frequency. According to the results of the simulation, the sizes of a 4-vanes resonator with the parabolic reflector were decided, and the resonator made of aluminum and copper was prepared. An electrodeless lamp with InBr and Ar gas enclosed in a spherical quartz glass tube having an inner diameter of about 4 mm was also prepared, and was set at center portion of the resonator. The total luminous flux was about 2,150 lm at microwave input of 27 W. Incidentally, the CRI and Tc for this lamp were 93 and 10,200 K, respectively. Thus, it becomes possible to efficiently couple microwave energy with a smaller-sized electrodeless HID lamp than conventional.

  2. Relativistic effects in the interaction of high intensity ultra-short laser pulse with collisional underdense plasma

    SciTech Connect (OSTI)

    Abedi, Samira [Physics Department, North Tehran Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Dorranian, Davoud [Laser Lab., Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Abari, Mehdi Etehadi [Physics Department, Science Faculty, Shahid Beheshti University, G.C., Evin, Tehran 19839 (Iran, Islamic Republic of); Shokri, Babak [Physics Department, Science Faculty, Shahid Beheshti University, G.C., Evin, Tehran 19839 (Iran, Islamic Republic of); Laser-Plasma Research Institute, Shahid Beheshti University, G.C., Evin, Tehran 19839 (Iran, Islamic Republic of)

    2011-09-15T23:59:59.000Z

    In this paper, the effect of weakly relativistic ponderomotive force in the interaction of intense laser pulse with nonisothermal, underdense, collisional plasma is studied. Ponderomotive force modifies the electron density and temperature distribution. By considering the weakly relativistic effect and ohmic heating of plasma electrons, the nonlinear dielectric permittivity of plasma medium is obtained and the equation of electromagnetic wave propagation in plasma is solved. It is shown that with considering the ohmic heating of electrons and collisions, the effect of ponderomotive force in weakly relativistic regime leads to steepening the electron density profile and increases the temperature of plasma electrons noticeably. Bunches of electrons in plasma become narrower. By increasing the laser pulse strength, the wavelength of density oscillations decreases. In this regime of laser-plasma interaction, electron temperature increases sharply by increasing the intensity of laser pulse. The amplitude of electric and magnetic fields increases by increasing the laser pulse energy while their wavelength decreases and they lost their sinusoidal form.

  3. Neutron Halo Isomers in Stable Nuclei and their Possible Application for the Production of Low Energy, Pulsed, Polarized Neutron Beams of High Intensity and High Brilliance

    E-Print Network [OSTI]

    D. Habs; M. Gross; P. G. Thirolf; P. Bni

    2010-09-30T23:59:59.000Z

    We propose to search for neutron halo isomers populated via $\\gamma$-capture in stable nuclei with mass numbers of about A=140-180 or A=40-60, where the $4s_{1/2}$ or $3s_{1/2}$ neutron shell model state reaches zero binding energy. These halo nuclei can be produced for the first time with new $\\gamma$-beams of high intensity and small band width ($\\le$ 0.1%) achievable via Compton back-scattering off brilliant electron beams thus offering a promising perspective to selectively populate these isomers with small separation energies of 1 eV to a few keV. Similar to single-neutron halo states for very light, extremely neutron-rich, radioactive nuclei \\cite{hansen95,tanihata96,aumann00}, the low neutron separation energy and short-range nuclear force allows the neutron to tunnel far out into free space much beyond the nuclear core radius. This results in prolonged half lives of the isomers for the $\\gamma$-decay back to the ground state in the 100 ps-$\\mu$s range. Similar to the treatment of photodisintegration of the deuteron, the neutron release from the neutron halo isomer via a second, low-energy, intense photon beam has a known much larger cross section with a typical energy threshold behavior. In the second step, the neutrons can be released as a low-energy, pulsed, polarized neutron beam of high intensity and high brilliance, possibly being much superior to presently existing beams from reactors or spallation neutron sources.

  4. Continuation of full-scale three-dimensional numerical experiments on high-intensity particle and laser beam-matter interactions

    SciTech Connect (OSTI)

    Mori, Warren, B.

    2012-12-01T23:59:59.000Z

    We present results from the grant entitled, ???¢????????Continuation of full-scale three-dimensional numerical experiments on high-intensity particle and laser beam-matter interactions.???¢??????? The research significantly advanced the understanding of basic high-energy density science (HEDS) on ultra intense laser and particle beam plasma interactions. This advancement in understanding was then used to to aid in the quest to make 1 GeV to 500 GeV plasma based accelerator stages. The work blended basic research with three-dimensions fully nonlinear and fully kinetic simulations including full-scale modeling of ongoing or planned experiments. The primary tool was three-dimensional particle-in-cell simulations. The simulations provided a test bed for theoretical ideas and models as well as a method to guide experiments. The research also included careful benchmarking of codes against experiment. High-fidelity full-scale modeling provided a means to extrapolate parameters into regimes that were not accessible to current or near term experiments, thereby allowing concepts to be tested with confidence before tens to hundreds of millions of dollars were spent building facilities. The research allowed the development of a hierarchy of PIC codes and diagnostics that is one of the most advanced in the world.

  5. Characterisation of a MeV Bremsstrahlung x-ray source produced from a high intensity laser for high areal density object radiography

    SciTech Connect (OSTI)

    Courtois, C.; Compant La Fontaine, A.; Bazzoli, S.; Bourgade, J. L.; Gazave, J.; Lagrange, J. M.; Landoas, O.; Dain, L. Le; Pichoff, N. [CEA, DAM, DIF, F-91297 Arpajon (France)] [CEA, DAM, DIF, F-91297 Arpajon (France); Edwards, R.; Aedy, C. [AWE Plc., Aldermaston, Reading RG7 4PR (United Kingdom)] [AWE Plc., Aldermaston, Reading RG7 4PR (United Kingdom); Mastrosimone, D.; Pien, G.; Stoeckl, C. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States)] [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States)

    2013-08-15T23:59:59.000Z

    Results of an experiment to characterise a MeV Bremsstrahlung x-ray emission created by a short (<10 ps) pulse, high intensity (1.4 10{sup 19} W/cm{sup 2}) laser are presented. X-ray emission is characterized using several diagnostics; nuclear activation measurements, a calibrated hard x-ray spectrometer, and dosimeters. Results from the reconstructed x-ray energy spectra are consistent with numerical simulations using the PIC and Monte Carlo codes between 0.3 and 30 MeV. The intense Bremsstrahlung x-ray source is used to radiograph an image quality indicator (IQI) heavily filtered with thick tungsten absorbers. Observations suggest that internal features of the IQI can be resolved up to an external areal density of 85 g/cm{sup 2}. The x-ray source size, inferred by the radiography of a thick resolution grid, is estimated to be approximately 400 ?m (full width half maximum of the x-ray source Point Spread Function)

  6. Relativistic self-focusing of ultra-high intensity X-ray laser beams in warm quantum plasma with upward density profile

    SciTech Connect (OSTI)

    Habibi, M., E-mail: habibi.physics@gmail.com [Young Researchers and Elite Club, Shirvan Branch, Islamic Azad University, Shirvan (Iran, Islamic Republic of); Ghamari, F. [Young Researchers and Elite Club, Khorramabad Branch, Islamic Azad University, Khorramabad (Iran, Islamic Republic of)

    2014-05-15T23:59:59.000Z

    The results of a numerical study of high-intensity X-ray laser beam interaction with warm quantum plasma (WQP) are presented. By means of an upward ramp density profile combined with quantum factors specially the Fermi velocity, we have demonstrated significant relativistic self-focusing (RSF) of a Gaussian electromagnetic beam in the WQP where the Fermi temperature term in the dielectric function is important. For this purpose, we have considered the quantum hydrodynamics model that modifies refractive index of inhomogeneous WQPs with the inclusion of quantum correction through the quantum statistical and diffraction effects in the relativistic regime. Also, to better illustration of the physical difference between warm and cold quantum plasmas and their effect on the RSF, we have derived the envelope equation governing the spot size of X-ray laser beam in Q-plasmas. In addition to the upward ramp density profile, we have found that the quantum effects would be caused much higher oscillation and better focusing of X-ray laser beam in the WQP compared to that of cold quantum case. Our computational results reveal the importance of the use of electrons density profile and Fermi speed in enhancing self-focusing of laser beam.

  7. High intensity illumination effects in LiNbO3 and KTiOPO4 waveguides D. Eger, M. A. Arbore, and M. M. Fejer

    E-Print Network [OSTI]

    Fejer, Martin M.

    ; accepted for publication 16 April 1997 Quasi-phase-matched waveguides are known to degrade when generating to oper- ate at relatively high optical intensities and short wave- lengths, is degradation a photovoltaic current (J) is generated and consequently an electric field is formed which modifies

  8. High-intensity beam collimation and targetry

    SciTech Connect (OSTI)

    Mokhov, N.V.; /Fermilab

    2006-11-01T23:59:59.000Z

    Principles, design criteria and realization of reliable collimation systems for the high-power accelerators and hadron colliders are described. Functionality of collimators as the key elements of the machine protection system are discussed along with the substantial progress on the crystal collimation front. The key issues are considered in design of high-power target systems and achieving their best performance. Simulation code requirements are presented.

  9. Aspects of a high intensity neutron source

    E-Print Network [OSTI]

    Chapman, Peter H. (Peter Henry)

    2010-01-01T23:59:59.000Z

    A unique methodology for creating a neutron source model was developed for deuterons and protons incident on solid phase beryllium and lithium targets. This model was then validated against experimental results already ...

  10. Plasma spectroscopic study of an electrodeless HID lamp containing Tl and Zn

    SciTech Connect (OSTI)

    Takeda, Mamoru; Horii, Shigeru; Hochi, Akira [Matsushita Electric Industrial Co., Ltd., Kyoto (Japan). Lighting Research Lab.

    1996-12-31T23:59:59.000Z

    Recently the electrodeless HID lamps excited by microwaves have been studied intensively. Tl is well known as a material having strong green emission lines. In this study, Tl spectra excited by microwaves were reported in the cases of Tl only and Tl + Zn. Using the Elenbaas`s method of high pressure Hg lamp, the cause of Tl continuous spectrum was examined. From the ratio of radiative intensities of two lines, an average arc temperature in the bulb was estimated. Then excitation level of the continuous emission spectrum near the 600nm wavelength was calculated from the dependence of the radiative intensities on these arc temperatures.

  11. T-547: Microsoft Windows Human Interface Device (HID) Vulnerability

    Broader source: Energy.gov [DOE]

    Microsoft Windows does not properly warn the user before enabling additional Human Interface Device (HID) functionality over USB, which allows user-assisted attackers to execute arbitrary programs via crafted USB data, as demonstrated by keyboard and mouse data sent by malware on a Smartphone that the user connected to the computer.

  12. Evaluation of a High Intensity Focused Ultrasound-Immobilized...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    is simple, reproducible, cost effective, and rapid, and thus well-suited for automation. Citation: Lopez-Ferrer D, KK Hixson, HS Smallwood, TC Squier, K Petritis, and RD...

  13. NEUTRALIZED TRANSPORT OF HIGH INTENSITY BEAMS E. Henestroza #

    E-Print Network [OSTI]

    Gilson, Erik

    for specific degrees of neutralization. PLASMA NEUTRALIZATION Neutralization is essential for focusing heavy (~ 10-3 Torr). Final focus magnet Target Volumetric plasma Converging ion beam Chamber Wall at the Heavy Ion Fusion Virtual National Laboratory is exploring the performance of neutralized final focus

  14. Max Tech and Beyond: High-Intensity Discharge Lamps

    E-Print Network [OSTI]

    Scholand, Michael

    2012-01-01T23:59:59.000Z

    Pressure Sodium Light Emitting Diode Lamp Lumen Depreciationit is expected that light emitting diode (LED) lamps willLED Technology Light emitting diodes (LEDs) are an emerging

  15. High-Intensity Discharge Lighting Basics | Department of Energy

    Energy Savers [EERE]

    lighting. Mercury vapor lamps provide about 50 lumens per watt. They cast a very cool bluegreen white light. Most indoor mercury vapor lamps in arenas and gymnasiums have been...

  16. A LIQUID FILM STRIPPER FOR HIGH INTENSITY HEAVY ION BEAMS

    E-Print Network [OSTI]

    Leemann, B.T.

    2010-01-01T23:59:59.000Z

    Alonso, b. T. Leemann, "Fluorocarbon Stripping of Low Betalower the viscosity of the fluorocarbon diffusion pump oil "

  17. FETSHIPSTER (Front End Test Stand High Intensity Proton Source for

    E-Print Network [OSTI]

    McDonald, Kirk

    . Activated samples would be supplied to collaborating institutes for post irradiation examination to a water cooled back plate Main Challenges Potentially high heat flux to cooling water Pulsed power density results in unsteady sample temperature Temperature difference between sample and cooling plate

  18. Very high efficacy electrodeless high intensity discharge lamps

    SciTech Connect (OSTI)

    Johnson, P.D.

    1987-11-10T23:59:59.000Z

    This patent describes an electrodeless arc lamp for forming a ring shaped plasma in a region therein during operation comprising a tube having a raised bottom center section, and an optically transparent outer jacket hermetically sealing the tube to protect the tube from cooling by convection. The raised center section rises centrally to form a ring shaped reservoir below the region in which the rig shaped plasma is formed to minimize wall cooling during operation of the lamp so that there is enhanced excitation near the center of the tube.

  19. Very high efficacy electrodeless high intensity discharge lamps

    DOE Patents [OSTI]

    Johnson, Peter D. (Schenectady, NY)

    1987-01-01T23:59:59.000Z

    An electrodeless arc lamp comprises an outer jacket hermetically sealing and thermally protecting an arc tube inside which has an upwardly convex bottom center section. The absence of chemically reactive electrode material makes it possible to use metal halides other than iodides. The tube contains chlorides, bromides or a mixture thereof of scandium and sodium in a nearly equimolar relationship in addition to mercury and an inert gas. Good color balance can be obtained at reduced reservoir temperature and with less power loss. Reduction in wall temperature makes it possible to attain longer lamp life.

  20. Max Tech and Beyond: High-Intensity Discharge Lamps

    E-Print Network [OSTI]

    Scholand, Michael

    2012-01-01T23:59:59.000Z

    light emitting diode (LED) lamps will eventually come toare also looking to make LED lamps compatible with standardelectronics design, an LED lamp can be made dimmable over a

  1. High-intensity drying processes: Impulse drying. Annual report

    SciTech Connect (OSTI)

    Orloff, D.I.; Phelan, P.M.

    1993-12-01T23:59:59.000Z

    Experiments were conducted on a sheet-fed pilot-scale shoe press to compare impulse drying and double-felted pressing. Both an IPST (Institute of Paper Science and Technology) ceramic coated and Beloit Type A press roll were evaluated for lienrboard sheet structures having a wide range of z-direction permeability. Purpose was to find ways of correcting sheet sticking problems observed in previous pilot-scale shoe press experiments. Results showed that impulse drying was superior to double felted pressing in both press dryness and in important paper physical properties. Impulse drying critical temperature was found to depend on specific surface of the heated layer of the sheet, thermal properties of the press roll surface, and choice of felt. Impulse drying of recycled and two-ply liner was demonstrated for both Southern Pile and Douglas fir-containing furnishes.

  2. Very high efficacy electrodeless high intensity discharge lamps

    DOE Patents [OSTI]

    Johnson, P.D.

    1985-10-03T23:59:59.000Z

    An electrodeless arc lamp comprises an outer jacket hermetically sealing and thermally protecting an arc tube inside which has an upwardly convex bottom center section. The absence of chemically reactive electrode material makes it possible to use metal halides other than iodides. The tube contains chlorides, bromides or a mixture thereof of scandium and sodium in a nearly equimolar relationship in addition to mercury and an inert gas. Good color balance can be obtained at reduced reservoir temperature and with less power loss. Reduction in wall temperature makes it possible to attain longer lamp life.

  3. PHOTOACOUSTIC IMAGING AND HIGH INTENSITY FOCUSED ULTRASOUND IN BIOMEDICAL APPLICATIONS

    E-Print Network [OSTI]

    Jo, Janggu

    2014-08-31T23:59:59.000Z

    Optical and acoustical technologies for biomedical devices have been developed rapidly in the past years. These non-invasive technologies are used for diagnostic and therapeutic studies with great potential for improving ...

  4. A High Intensity Positron Source at Saclay: The SOPHI Project

    SciTech Connect (OSTI)

    Rey, J.-M.; Blideanu, V.; Carty, M.; Coulloux, G.; Curtoni, A.; Delferriere, O.; Liszkay, L.; Perez, P.; Ruiz, N.; Sauce, Y. [CEA-Saclay, DSM/IRFU, 91191 Gif sur Yvette (France); Forest, F.; Lancelot, J. L.; Neuveglise, D. [SIGMAPHI, Z.I. du Prat, Rue des freres Montgolfier, Vannes, Morbihan 56000 (France)

    2009-03-10T23:59:59.000Z

    We are building the SOPHI experiment in Saclay, which is a device based on a small 5 MeV electron linac to produce positrons via pair production on a tungsten target. This device should provide 10{sup 8} slow e{sup +}/s, i.e. a factor 300 greater than the strongest activity Na{sub 22} based setup. The SOPHI system has been finalized at the end of 2006 and the main components have been studied and built during 2007. The experiment is currently being assembled and first results are expected for autumn 2008. The electron linac, positron beam production and transport system will be presented, and expected positron production rate reported.

  5. High Intensity Gamma-Ray Source (HIGS) Program Advisory Committee

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm) Harmonicbet WhenHiggs Boson May| Argonne

  6. Evaluation of High-intensity and Low-intensity Preconditioning Systems

    E-Print Network [OSTI]

    Orsak, Andrew Nathan

    2012-02-14T23:59:59.000Z

    times/wk; equivalent to 0.89 kg/steer per d) while grazing dormant warm season pasture (HF). Steers were weighed after overnight shrink on d 0, 28, and 56. The economic analysis was based on current local prices for cattle and inputs. Morbidity...

  7. The influence of high intensity white noise of free 17-hydroxycorticosteroid levels in dogs

    E-Print Network [OSTI]

    Thalken, Charles Edward

    1970-01-01T23:59:59.000Z

    , G, , and Foa, P. P. : Endocrine and Metabolic Response of Dogs to Whole-Body Vibration. AMRL-TDR-64-54, USAF, Biophysics Laboratory, AMRL, Wright-Patterson Air Force Base, Ohio, (June, 1964). 9. Bowman, R. E. : Ultramicro Method of Noncon.... , Bond, J. , and Webb, J. C. : Effects of Aircraft Sound on Swine. WADC-TR-59-200, USAF, Wright Air Development Center, Wright-Patterson Air Force Base, Ohio, (Aug. , 1959). 39. Zimmermann, W. : Bine Farbreaktion de Sexualhormone und ihre Anwendung...

  8. 2014-05-05 Issuance: Test Procedures for High-Intensity Discharge...

    Broader source: Energy.gov (indexed) [DOE]

    Documents & Publications 2014-05-16 Issuance: Test Procedures for Integrated Light-Emitting Diode Lamps; Supplemental Notice of Proposed Rulemaking 2014-06-18 Issuance: Test...

  9. High Intensity Compton Scattering in a strong plane wave field of general form

    E-Print Network [OSTI]

    A. Hartin; G. Moortgat-Pick

    2011-06-24T23:59:59.000Z

    Photon emission by an electron embedded in a strong external field of general form is studied theoretically. The external field considered is a plane wave electromagnetic field of any number of components, period and polarisation. Exact, Volkov solutions of the Dirac equation with the 4-potential of the general external field are obtained. The photon emission is considered in the usual perturbation theory using the Volkov solutions to represent the electron. An expression for the transition probability of this process is obtained after the usual spin and polarisation sums, trace calculation and phase space integration. The final transition probability in the general case contains a single sum over contributions from external field photons and an integration over one of the phase space components. The validity of the general expression is established by considering specific external fields. Known specific analytic forms of the transition probability are obtained after substitution of the 4-potential for a circularly polarised and constant crossed external field. As an example usage of the general result for the transition probability, the case of two phase separated, circularly polarised external fields is studied both analytically and numerically.

  10. Laser enhanced high-intensity focused ultrasound thrombolysis: An in vitro study

    E-Print Network [OSTI]

    Cui, Huizhong; Yang, Xinmai

    2013-01-17T23:59:59.000Z

    radiation, and ultrasound and laser parameters were optimized to achieve better thrombolysis efficiency. The results indicated that the thrombolysis efficiency increased when pulse length of HIFU wave, HIFU pressure, or laser fluence increases. Also...

  11. First observation of beam-beam interactions in high intensity collisions at the LHC

    E-Print Network [OSTI]

    Arduini, G; Jowett, J; Laface, E; Meddahi, M; Schmidt, F

    2010-01-01T23:59:59.000Z

    For the rst time bunches were collided in the LHC with close to nominal parameters and so experienced head-on beam-beam eects comparable to those expected with the nominal LHC parameters. Among other things, this provided an opportunity to test the procedure of separating beams at IP2 to reduce the luminosity and pile-up in the ALICE experiment. We report on the observations made during these runs and related tests.

  12. Workshop on Applications of High Intensity Proton Accelerators October 19 -21, 2009, FNAL

    E-Print Network [OSTI]

    McDonald, Kirk

    Adaptive mesh refinementp Physics models include Compressible and incompressible fluid dynamics, MHD Flows in porous media Phase transitions and turbulence models Turbulent fluid mixingTurbulent fluid of Energy 6 the interface) #12;Fusion Energy. ITER project: fuel pellet ablation ITER is a joint

  13. Benchmark of the IMPACT Code for High Intensity Beam DynamicsSimulation

    SciTech Connect (OSTI)

    Qiang, J.; Ryne, R.D.

    2006-11-16T23:59:59.000Z

    The IMPACT (Integrated Map and Particle Accelerator Tracking) code was first developed under Computational Grand Challenge project in the mid 1990s [1]. It started as a three-dimensional (3D) data parallel particle-in-cell (PIC) code written in High Performance Fortran. The code used a split-operator based method to solve the Hamiltonian equations of motion. It contained linear transfer maps for drifts, quadrupole magnets and rf cavities. The space-charge forces were calculated using an FFT-based method with 3D open boundary conditions and longitudinal periodic boundary conditions. This code was completely rewritten in the late 1990s based on a message passing parallel programming paradigm using Fortran 90 and MPI following an object-oriented software design. This improved the code's scalability on large parallel computer systems and also gave the code better software maintainability and extensibility [2]. In the following years, under the SciDAC-1 accelerator project, the code was extended to include more accelerating and focusing elements such as DTL, CCL, superconducting linac, solenoid, dipole, multipoles, and others. Besides the original split-operator based integrator, a direct integration of Lorentz equations of motion using a leap-frog algorithm was also added to the IMPACT code to handle arbitrary external nonlinear fields. This integrator can read in 3D electromagnetic fields in a Cartesian grid or in a cylindrical coordinate system. Using the Lorentz integrator, we also extended the original code to handle multiple charge-state beams. The space-charge solvers were also extended to include conducting wall effects for round and rectangular pipes with longitudinal open and periodic boundary conditions. Recently, it has also been extended to handle short-range wake fields (longitudinal monopole and transverse dipole) and longitudinal coherent synchrotron radiation wake fields. Besides the parallel macroparticle tracking code, an rf linac lattice design code, an envelope matching and analysis code, and a number of pre- and post-processing codes were also developed to form the IMPACT code suite. The IMPACT code suite has been used to study beam dynamics in the SNS linac, the J-PARC linac commissioning, the CERN superconducting linac design, the Los Alamos Low Energy Demonstration Accelerator (LEDA) halo experiment, the Rare Isotope Accelerator (RIA) driver linac design, and the FERMI{at}Elettra FEL linac design [3-8]. It has also been used to study space-charge resonance in anisotropic beams [9-11].

  14. Mechanical Damage from Cavitation in High Intensity Focused Ultrasound Accelerated Thrombolysis

    E-Print Network [OSTI]

    Weiss, Hope

    2012-01-01T23:59:59.000Z

    R 0 is the bubble equilibrium radius, the dot denotes a timeR 0 is the bubble equilibrium radius, the dot denotes a time

  15. Mechanical Damage from Cavitation in High Intensity Focused Ultrasound Accelerated Thrombolysis

    E-Print Network [OSTI]

    Weiss, Hope

    2012-01-01T23:59:59.000Z

    Mechanical Damage . . . . . . . . . . . . . . . . . .iiiMethod for Estimation of Cavitation Damage for an EmbeddedMethod for Estimation of Cavitation Damage for an Embedded

  16. The influence of high intensity white noise of free 17-hydroxycorticosteroid levels in dogs

    E-Print Network [OSTI]

    Thalken, Charles Edward

    1970-01-01T23:59:59.000Z

    , G, , and Foa, P. P. : Endocrine and Metabolic Response of Dogs to Whole-Body Vibration. AMRL-TDR-64-54, USAF, Biophysics Laboratory, AMRL, Wright-Patterson Air Force Base, Ohio, (June, 1964). 9. Bowman, R. E. : Ultramicro Method of Noncon.... , Bond, J. , and Webb, J. C. : Effects of Aircraft Sound on Swine. WADC-TR-59-200, USAF, Wright Air Development Center, Wright-Patterson Air Force Base, Ohio, (Aug. , 1959). 39. Zimmermann, W. : Bine Farbreaktion de Sexualhormone und ihre Anwendung...

  17. MATERIAL R&D FOR HIGH-INTENSITY PROTON BEAM PROGRESS REPORT

    E-Print Network [OSTI]

    McDonald, Kirk

    , 2005 #12;GOAL SEARCH for and evaluate under irradiation environment NEW materials or composites) Load(N) non treated Invar Temp (300 C) Temp (500 C) #12;PHASE II -TARGET MATERIAL R&D · Carbon-Carbon and property measurements) #12;Carbon-Carbon Composite Target Temp. % elongation 23 o C 0% 200 o C -0.023% 400o

  18. SUPER-INVAR AS A TARGET FOR A PULSED HIGH-INTENSITY PROTON BEAM

    E-Print Network [OSTI]

    McDonald, Kirk

    beam enters from the top. The irradiation was done at the Brookhaven Linac Iso- tope Producer (BLIP, with holder, were immersed in a water tank for target cooling purposes. In addition, water was directed

  19. Design Optimisation of a High Intensity Beam Facility and Feasibility Experiment of a Solid Fragmented Target

    E-Print Network [OSTI]

    Charitonidis, Nikolaos; Rivkin, Leonid

    2014-06-13T23:59:59.000Z

    The present PhD thesis describes the design, execution and results of the HRMT-10 experiment performed at the HiRadMat facility of the CERN/SPS complex. The ?rst part of the thesis covers the design optimization studies of the HiRadMat facility, focusing in particular on the radiation protection issues. A detailed Monte-Carlo model of the facility has been developed and validated through comparison with measurements. A very satisfactory agreement between the simulation and the experimental data is observed. In the second part of this thesis, a novel feasibility experiment of a fragmented solid target for a future Neutrino Factory or a Super Beam facility, able to support high beam powers ( 1 MW) is presented in detail. A solid granular target has been proposed as an interesting alternative to an open Hg jet target, presently considered as the baseline for such facilities, but posing considerable technical challenges. The HRMT-10 experiment seeks to address the lack of experimental data of the feasibility of...

  20. High power 325 MHz vector modulators for the Fermilab High Intensity Neutrino Source (HINS)

    SciTech Connect (OSTI)

    Madrak, Robyn Leigh; Wildman, David; /Fermilab

    2008-10-01T23:59:59.000Z

    One of the goals of the low energy 60 MeV section of the HINS H{sup -} linac [1] is to demonstrate that a total of {approx}40 RF cavities can be powered by a single 2.5 MW, 325 MHz klystron. This requires individual vector modulators at the input of each RF cavity to independently adjust the amplitude and phase of the RF input signal during the 3.5 ms RF pulse. Two versions of vector modulators have been developed; a 500 kW device for the radiofrequency quadrupole (RFQ) and a 75 kW modulator for the RF cavities. High power tests showing the vector modulator phase and amplitude responses will be presented.

  1. Nuclear {gamma}-ray coincidence experiments in high-intensity photon beams

    SciTech Connect (OSTI)

    Savran, D.; Loeher, B. [ExtreMe Matter Institute EMMI and Research Devision, GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany) and Frankfurt Institute for Advanced Studies FIAS, Frankfurt am Main (Germany)

    2012-07-09T23:59:59.000Z

    High energy photons are an important experimental probe in nuclear structure physics and have been used in the past decades for the investigation of low-spin structures of atomic nuclei. A topic of particular interest in recent years in this field is the Pygmy Dipole Resonance, an electric dipole (E1) excitation mode located well below the E1 giant resonance. Even though the PDR has been investigated systematically using high energy photons its decay properties were not accessible up to now. New experiments using the method of {gamma}-{gamma} coincidences will allow to study this important quantity in detail.

  2. Shock Tube Design for High Intensity Blast Waves for Laboratory Testing of Armor and Combat Materiel

    E-Print Network [OSTI]

    Courtney, Elijah; Courtney, Michael

    2015-01-01T23:59:59.000Z

    Shock tubes create simulated blast waves which can be directed and measured to study blast wave effects under laboratory conditions. It is desirable to increase available peak pressure from ~1 MPa to ~5 MPa to simulate closer blast sources and facilitate development and testing of personal and vehicle armors. Three methods were investigated to increase peak simulated blast pressure produced by an oxy-acetylene driven shock tube while maintaining suitability for laboratory studies. The first method is the addition of a Shchelkin spiral priming section which works by increasing the turbulent flow of the deflagration wave, thus increasing its speed and pressure. This approach increased the average peak pressure from 1.17 MPa to 5.33 MPa while maintaining a relevant pressure-time curve (Friedlander waveform). The second method is a bottleneck between the driving and driven sections. Coupling a 79 mm diameter driving section to a 53 mm driven section increased the peak pressure from 1.17 MPa to 2.25 MPa. Using a 1...

  3. HIGH INTENSITY DISCHARGE 400-WATT SODIUM BALLAST PHASE I FINAL REPORT

    E-Print Network [OSTI]

    Felper, G.

    2010-01-01T23:59:59.000Z

    Mean P =377W o Mean==0.7 8 o Bulb number XBL809~1933 FIGUREIANA~~;;;T TASK II (I) I\\) BULB LUE TEST I LIGHT REGULATIONII. They were Regulation Over Bulb Life and Light Regulation

  4. INVESTIGATION OF THERAPY IMPROVEMENT USING REAL-TIME PHOTOACOUSTIC IMAGING GUIDED HIGH INTENSITY FOCUSED ULTRASOUND

    E-Print Network [OSTI]

    Cui, Huizhong

    2013-05-31T23:59:59.000Z

    . Thus, we further investigated the laser enhanced technique in both HIFU heating and pulsed HIFU thrombolysis. In the HIFU therapy, laser light was employed to illuminate the sample concurrently with HIFU radiation. The resulting cavitation was detected...

  5. Mechanical Damage from Cavitation in High Intensity Focused Ultrasound Accelerated Thrombolysis

    E-Print Network [OSTI]

    Weiss, Hope

    2012-01-01T23:59:59.000Z

    3.3 Cavitation Model . . . . . . . . . . . . . . . . . . . .Field Characterization / Passive Cavitation Detection 2.3Method for Estimation of Cavitation Damage for an Embedded

  6. HIGH INTENSITY LINAC DRIVER FOR THE SPIRAL-2 PROJECT : DESIGN OF SUPERCONDUCTING 88 MHZ QUARTER WAVE

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    . For the high-energy section of the linac, a superconducting 88 MHz Quarter Wave Resonator (beta 0.12) has been WAVE RESONATORS (BETA 0.12), POWER COUPLERS AND CRYOMODULES T. Junquera, G. Olry, H. Saugnac, J Abstract A superconducting linac driver, delivering deuterons with an energy up to 40 MeV (5 mA) and heavy

  7. 2014-05-05 Issuance: Test Procedures for High-Intensity Discharge Lamps;

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015ofDepartment ofCBFO-13-3322(EE)Department ofNow4Procedures for Walk-In

  8. A New Proposal to the High Intensity Gamma-Ray Source (HIS) PAC-09

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less isNFebruaryOctober 2, AlgeriaQ1A Month toA NewA NewNewDickA

  9. Response of High-Tc Superconductor Metamaterials to High Intensity THz

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection TechnicalResonant Soft X-Ray Scattering of0October 17, 2014

  10. High-Intensity Silicon Vertical Multi-Junction Solar Cells | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGEND D e e p p a a r r t

  11. Transport of elliptic intense charged -particle beams

    E-Print Network [OSTI]

    Zhou, J. (Jing), 1978-

    2006-01-01T23:59:59.000Z

    The transport theory of high-intensity elliptic charged-particle beams is presented. In particular, the halo formation and beam loss problem associated with the high space charge and small-aperture structure is addressed, ...

  12. IEEE Power Electronics Specialists Conference, PESC-97, 39-45, St. Louis, 1997. A MHz Electronic Ballast for Automotive-Type HID Lamps

    E-Print Network [OSTI]

    Ballast for Automotive-Type HID Lamps Michael Gulko and Sam Ben-Yaakov* Power Electronics Laboratory lamps designated for automotive headlight applications was investigated theoretically, by simulation and experimentally. The study reveals that a based ballast (CS-PPRI) complies with the automotive requirement of very

  13. High intensity low temperature (HILT) performance of space concentrator GaInP/GaInAs/Ge MJ SCs

    SciTech Connect (OSTI)

    Shvarts, Maxim Z., E-mail: shvarts@scell.ioffe.ru; Kalyuzhnyy, Nikolay A.; Mintairov, Sergey A.; Soluyanov, Andrei A.; Timoshina, Nailya Kh. [Ioffe Physical-Technical Institute, 26 Polytekhnicheskaya str., St.-Petersburg, 194021 (Russian Federation); Gudovskikh, Alexander S. [Saint-Petersburg Academic University - Nanotechnology Research and Education Centre RAS, St. Petersburg, 194021 (Russian Federation); Luque, Antonio [Ioffe Physical-Technical Institute, 26 Polytekhnicheskaya str., St.-Petersburg, 194021, Russia and Instituto de Energia Solar, Universidad Politecnica de Madrid, Madrid (Spain)

    2014-09-26T23:59:59.000Z

    In the work, the results of an investigation of GaInP/GaInAs/Ge MJ SCs intended for converting concentrated solar radiation, when operating at low temperatures (down to ?190 C) are presented. A kink of the cell I-V characteristic has been observed in the region close to V{sub oc} starting from ?20C at operation under concentrated sunlight. The causes for its occurrence have been analyzed and the reasons for formation of a built-in potential barrier for majority charge carriers at the n-GaInP/n-Ge isotype hetero-interface are discussed. The effect of charge carrier transport in n-GaInP/n-pGe heterostructures on MJ SC output characteristics at low temperatures has been studied including EL technique.

  14. X-ray spectroscopy of buried layer foils irradiated with an ultra high intensity short pulse laser

    E-Print Network [OSTI]

    Chen, Sophia Nan

    2009-01-01T23:59:59.000Z

    manufacturing, while the latter, also known as then CPA technique, has been instrumental in pushing laser

  15. Laser-Energy Transfer and Enhancement of Plasma Waves and Electron Beams by Interfering High-Intensity Laser Pulses

    E-Print Network [OSTI]

    Umstadter, Donald

    603, Beijing 100080, People's Republic of China (Received 14 February 2003; published 25 November 2003 the higher-power to the lower-power pulse, increasing the amplitude of the plasma wave propagating- sible for the energy transfer in this case differs from that studied in previous long-pulse and low-power

  16. Impact of high energy high intensity proton beams on targets: Case studies for Super Proton Synchrotron and Large Hadron Collider

    E-Print Network [OSTI]

    Tahir, N A; Shutov, A; Schmidt, R; Piriz, A R

    2012-01-01T23:59:59.000Z

    The Large Hadron Collider (LHC) is designed to collide two proton beams with unprecedented particle energy of 7 TeV. Each beam comprises 2808 bunches and the separation between two neighboring bunches is 25 ns. The energy stored in each beam is 362 MJ, sufficient to melt 500 kg copper. Safety of operation is very important when working with such powerful beams. An accidental release of even a very small fraction of the beam energy can result in severe damage to the equipment. The machine protection system is essential to handle all types of possible accidental hazards; however, it is important to know about possible consequences of failures. One of the critical failure scenarios is when the entire beam is lost at a single point. In this paper we present detailed numerical simulations of the full impact of one LHC beam on a cylindrical solid carbon target. First, the energy deposition by the protons is calculated with the FLUKA code and this energy deposition is used in the BIG2 code to study the corresponding...

  17. X-ray spectroscopy of buried layer foils irradiated with an ultra high intensity short pulse laser

    E-Print Network [OSTI]

    Chen, Sophia Nan

    2009-01-01T23:59:59.000Z

    of hot dense matter in short-pulse laser-plasma interactionof hot dense matter in short-pulse laser-plasma interactiona better picture of short pulse laser produced plasmas can

  18. Fast magnetic field annihilation in the relativistic collisionless regime driven by two ultra-short high-intensity laser pulses

    E-Print Network [OSTI]

    Gu, Y J; Kumar, D; Liu, Y; Singh, S K; Esirkepov, T Zh; Bulanov, S V; Weber, S; Korn, G

    2015-01-01T23:59:59.000Z

    The magnetic quadrupole structure formation during the interaction of two ultra-short high power laser pulses with a collisionless plasma is demonstrated with 2.5-dimensional particle-in-cell simulations. The subsequent expansion of the quadrupole is accompanied by magnetic field annihilation in the ultrarelativistic regime, when the magnetic field can not be sustained by the plasma current. This results in a dominant contribution of the displacement current exciting a strong large scale electric?field. This field leads to the conversion of magnetic energy into kinetic energy of accelerated electrons inside the thin current sheet.

  19. PUBLISHED ONLINE: 4 DECEMBER 2011 | DOI: 10.1038/NPHYS2153 Focusing of short-pulse high-intensity

    E-Print Network [OSTI]

    Loss, Daniel

    production11 for positron emission tomography (PET) and proton oncology9 . Furthermore, energetic proton National Laboratory, Los Alamos, New Mexico 87545, USA, 4Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01314

  20. X-ray spectroscopy of buried layer foils irradiated with an ultra high intensity short pulse laser

    E-Print Network [OSTI]

    Chen, Sophia Nan

    2009-01-01T23:59:59.000Z

    Short Pulse Laser by Sophia Nan Chen Doctor of Philosophy inEngineering Physics) by Sophia Nan Chen Committee in charge:Tynan The dissertation of Sophia Nan Chen is approved, and

  1. Imaging of high-intensity focused ultrasound-induced lesions in soft biological tissue using thermoacoustic tomography

    E-Print Network [OSTI]

    Wang, Lihong

    thermoacoustic tomography Xing Jin, Yuan Xu, and Lihong V. Wanga) Optical Imaging Laboratory, Department December 2004) An imaging technology, thermoacoustic tomograpy (TAT), was applied to the visualization thermoacoustic sources in this tissue sample. The thermoacoustic signals were detected by an unfocused ultrasonic

  2. Simulating the effect of high-intensity sound on cetaceans: Modeling approach and a case study for Cuvier's beaked whale

    E-Print Network [OSTI]

    Krysl, Petr

    ; Balcomb and Claridge, 2003; Hilde- brand, 2005 . The overall pattern of these strandings has raised

  3. Submicro and Nano Structured Porous Materials for the Production of High-Intensity Exotic Radioactive Ion Beams

    E-Print Network [OSTI]

    Fernandes, Sandrina; Stora, Thierry

    2010-01-01T23:59:59.000Z

    ISOLDE, the CERN Isotope Separator On-line DEvice is a unique source of low energy beams of radioactive isotopes - atomic nuclei that have too many or too few neutrons to be stable. The facility is like a small chemical factory, giving the possibility of changing one element to another, by selecting the atomic mass of the required isotope beam in the mass separator, rather as the alchemists once imagined. It produces a total of more than 1000 different isotopes from helium to radium, with half-lives down to milliseconds, by impinging a 1.4 GeV proton beam from the Proton Synchrotron Booster (PSB) onto special targets, yielding a wide variety of atomic fragments. Different components then extract the nuclei and separate them according to mass. The post-accelerator REX (Radioactive beam EXperiment) at ISOLDE accelerates the radioactive beams up to 3 MeV/u for many experiments. A wide international user radioactive ion beam (RIB) community investigates fundamental aspects of nuclear physics, particle...

  4. Electron generation and transport in intense relativistic laser-plasma interactions relevant to fast ignition ICF

    E-Print Network [OSTI]

    Ma, Tammy Yee Wing

    2010-01-01T23:59:59.000Z

    Ultra-Short Pulse, Ultra-High In- tensity Lasers . . . . . . . . . . . . . . . . . . . . . . . .ignition), an ultra-intense short pulse laser is brought inof the ultra-high intensity, short-pulse laser has opened up

  5. Industrial Application of High Combustion Intensity Systems and Energy Conservation Implications

    E-Print Network [OSTI]

    Williams, F. D. M.; Anderson, L. E.

    1982-01-01T23:59:59.000Z

    process are quantified for vortex stabilized systems. Design analyses of the fuel injectors used with gaseous, liquid and pulverized coal fuels are also presented. The resulting high intensity combustion systems evolved are illustrated with photographs...

  6. CX-003524: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Energy Efficient Street Lighting Changeover - Light-Emitting Diode (LED)/High Intensity Discharge (HID)CX(s) Applied: A1, A9, B1.3, B5.1Date: 08/26/2010Location(s): Oak Harbor, OhioOffice(s): Electricity Delivery and Energy Reliability, National Energy Technology Laboratory

  7. A versatile source to produce high-intensity, pulsed supersonic radical beams for crossed-beam experiments: The cyanogen radical CN,,X2

    E-Print Network [OSTI]

    Kaiser, Ralf I.

    CN radicals in a low- pressure fast-flow chemical reactor. Although valuable ki- netic data of the ablated species with molecular nitrogen, which acts also as a seeding gas. A chopper wheel located after

  8. Mechanism and computational model for Lyman-{alpha}-radiation generation by high-intensity-laser four-wave mixing in Kr-Ar gas

    SciTech Connect (OSTI)

    Louchev, Oleg A.; Saito, Norihito; Wada, Satoshi [Advanced Science Institute, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198 (Japan); Bakule, Pavel [STFC, ISIS Facility, Rutherford Appleton Laboratory, Chilton, Oxfordshire OX11 0QX (United Kingdom); Yokoyama, Koji [Advanced Science Institute, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198 (Japan); Advanced Meson Science Laboratory, RIKEN Nishina Center, RIKEN, Wako, Saitama 351-0198 (Japan); Ishida, Katsuhiko; Iwasaki, Masahiko [Advanced Meson Science Laboratory, RIKEN Nishina Center, RIKEN, Wako, Saitama 351-0198 (Japan)

    2011-09-15T23:59:59.000Z

    We present a theoretical model combined with a computational study of a laser four-wave mixing process under optical discharge in which the non-steady-state four-wave amplitude equations are integrated with the kinetic equations of initial optical discharge and electron avalanche ionization in Kr-Ar gas. The model is validated by earlier experimental data showing strong inhibition of the generation of pulsed, tunable Lyman-{alpha} (Ly-{alpha}) radiation when using sum-difference frequency mixing of 212.6 nm and tunable infrared radiation (820-850 nm). The rigorous computational approach to the problem reveals the possibility and mechanism of strong auto-oscillations in sum-difference resonant Ly-{alpha} generation due to the combined effect of (i) 212.6-nm (2+1)-photon ionization producing initial electrons, followed by (ii) the electron avalanche dominated by 843-nm radiation, and (iii) the final breakdown of the phase matching condition. The model shows that the final efficiency of Ly-{alpha} radiation generation can achieve a value of {approx}5x10{sup -4} which is restricted by the total combined absorption of the fundamental and generated radiation.

  9. The use of a high intensity neutrino beam from the ESS proton linac for measurement of neutrino CP violation and mass hierarchy

    E-Print Network [OSTI]

    E. Baussan; M. Dracos; T. Ekelof; E. Fernandez Martinez; H. Ohman; N. Vassilopoulos

    2013-02-09T23:59:59.000Z

    It is proposed to complement the ESS proton linac with equipment that would enable the production, concurrently with the production of the planned ESS beam used for neutron production, of a 5 MW beam of 10$^{23}$ 2.5 GeV protons per year in microsecond short pulses to produce a neutrino Super Beam, and to install a megaton underground water Cherenkov detector in a mine to detect $\

  10. The use the a high intensity neutrino beam from the ESS proton linac for measurement of neutrino CP violation and mass hierarchy

    E-Print Network [OSTI]

    Baussan, E; Ekelof, T; Martinez, E Fernandez; Ohman, H; Vassilopoulos, N

    2012-01-01T23:59:59.000Z

    It is proposed to complement the ESS proton linac with equipment that would enable the production, concurrently with the production of the planned ESS beam used for neutron production, of a 5 MW beam of 10$^{23}$ 2.5 GeV protons per year in microsecond short pulses to produce a neutrino Super Beam, and to install a megaton underground water Cherenkov detector in a mine to detect $\

  11. JOURNAL OF GEOPHYSICAL RESEARCH: ATMOSPHERES, VOL. 118, 111, doi:10.1002/jgrd.50508, 2013 Highly intense lightning over the oceans: Estimated peak currents

    E-Print Network [OSTI]

    and rapid charge transfer, large voltage gradient, and impulsive electromagnetic field that are associated-known causes of damage to electrical systems and power transmission lines [Kappenman and Van House, 1996]. Airports must con- tinuously monitor nearby thunderstorm activity in order to cease outdoor operations

  12. Simulating the effect of high-intensity sound on cetaceans: Modeling, approach and a case study for Cuvier's beaked whale (Ziphius cavirostris)

    E-Print Network [OSTI]

    Krysl, P; Cranford, T W; Wiggins, S M; Hildebrand, John A

    2006-01-01T23:59:59.000Z

    E. , Baird, R. W. , Balcomb, K. , Barlow, J. , Caldwell,Meth- ods Eng. 49, 951976. Balcomb, K. C. III and Claridge,?Frantzis, 1998; NOAA, 2001; Balcomb and Claridge, 2003;

  13. ,,,"Incandescent","Standard Fluorescent","Compact Fluorescent","High-Intensity Discharge","Halogen"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventional Gasoline Sales toReformulated, Average0.9 Relative Standard Errors for Table98.

  14. ,,,"Incandescent","Standard Fluorescent","Compact Fluorescent","High-Intensity Discharge","Halogen"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventional Gasoline Sales toReformulated, Average0.9 Relative Standard Errors for Table98.B39.

  15. Masking line foregrounds in intensity mapping surveys

    E-Print Network [OSTI]

    Breysse, Patrick C; Kamionkowski, Marc

    2015-01-01T23:59:59.000Z

    We address the problem of line confusion in intensity mapping surveys and explore the possibility to mitigate line foreground contamination by progressively masking the brightest pixels in the observed map. We consider experiments targeting CO(1-0) at $z=3$, Ly$\\alpha$ at $z=7$, and CII at $z=7$, and use simulated intensity maps, which include both clustering and shot noise components of the signal and possible foregrounds, in order to test the efficiency of our method. We find that for CO and Ly$\\alpha$ it is quite possible to remove most of the foreground contribution from the maps via only 1%-3% pixel masking. The CII maps will be more difficult to clean, however, due to instrumental constraints and the high-intensity foreground contamination involved. While the masking procedure sacrifices much of the astrophysical information present in our maps, we demonstrate that useful cosmological information in the targeted lines can be successfully retrieved.

  16. 5/23/13 EBSCOhost ehis.ebscohost.com.libproxy.mit.edu/ehost/delivery?sid=24f6d6e6-10b5-495d-90c9-221fc19a83fe%40sessionmgr114&vid=5&hid=107 1/2

    E-Print Network [OSTI]

    Deutch, John

    technological applications. Secretary of Energy James Watkins has argued that "it takes vision and courage-221fc19a83fe%40sessionmgr114&vid=5&hid=107 1/2 Database: Section: Record: 1 A supercollision of interests. By: Deutch, John M. Technology Review (00401692). Nov/Dec92, Vol. 95 Issue 8, p66. 1p. 1 Black

  17. Nonlinear dynamics of ionization stabilization of atoms in intense laser fields

    E-Print Network [OSTI]

    Michael Norman; C. Chandre; T. Uzer; Peijie Wang

    2014-12-06T23:59:59.000Z

    We revisit the stabilization of ionization of atoms subjected to a superintense laser pulse using nonlinear dynamics. We provide an explanation for the lack of complete ionization at high intensity and for the decrease of the ionization probability as intensity is increased. We investigate the role of each part of the laser pulse (ramp-up, plateau, ramp-down) in this process. We emphasize the role of the choice for the ionization criterion, energy versus distance criterion.

  18. 5/23/13 EBSCOhost ehis.ebscohost.com.libproxy.mit.edu/ehost/delivery?sid=24f6d6e6-10b5-495d-90c9-221fc19a83fe%40sessionmgr114&vid=5&hid=107 1/2

    E-Print Network [OSTI]

    Deutch, John

    -221fc19a83fe%40sessionmgr114&vid=5&hid=107 1/2 Database: Section: Record: 1 Cool thoughts on global warming. By: Deutch, J.M. Technology Review (00401692). May/Jun92, Vol. 95 Issue 4, p73. 1p. 1 Black on actions-such as those encouraging energy efficiency-that cost little and that have other benefits besides

  19. 5/23/13 EBSCOhost ehis.ebscohost.com.libproxy.mit.edu/ehost/delivery?sid=24f6d6e6-10b5-495d-90c9-221fc19a83fe%40sessionmgr114&vid=7&hid=107 1/2

    E-Print Network [OSTI]

    Deutch, John

    strike plan, and the number and types of nuclear delivery systems required to meet future security needs power. U.S. nuclear forces can deter aggression in unstable regions of the world. Saddam Hussein hasd6e6-10b5-495d-90c9-221fc19a83fe%40sessionmgr114&vid=7&hid=107 2/2 hard-line leadership of China

  20. Transverse beam shape measurements of intense proton beams using optical transition radiation

    SciTech Connect (OSTI)

    Scarpine, Victor E.; /Fermilab

    2012-03-01T23:59:59.000Z

    A number of particle physics experiments are being proposed as part of the Department of Energy HEP Intensity Frontier. Many of these experiments will utilize megawatt level proton beams onto targets to form secondary beams of muons, kaons and neutrinos. These experiments require transverse size measurements of the incident proton beam onto target for each beam spill. Because of the high power levels, most beam intercepting profiling techniques will not work at full beam intensity. The possibility of utilizing optical transition radiation (OTR) for high intensity proton beam profiling is discussed. In addition, previous measurements of OTR beam profiles from the NuMI beamline are presented.

  1. VOLUME 88, NUMBER 7 P H Y S I C A L R E V I E W L E T T E R S 18 FEBRUARY 2002 Boosting Sonoluminescence with a High-Intensity Ultrasonic Pulse Focused

    E-Print Network [OSTI]

    Forterre, Yol

    was first proposed by Moss et al. [20] in the context of thermonuclear fusion reaction. However, his paper of higher energy or to ignite a nuclear fusion reaction. We present a new experimental approach where fusion reaction. Most of these trials have rapidly reached the boundaries of the narrow stability domain

  2. Light intensity compressor

    DOE Patents [OSTI]

    Rushford, Michael C. (Livermore, CA)

    1990-01-01T23:59:59.000Z

    In a system for recording images having vastly differing light intensities over the face of the image, a light intensity compressor is provided that utilizes the properties of twisted nematic liquid crystals to compress the image intensity. A photoconductor or photodiode material that is responsive to the wavelength of radiation being recorded is placed adjacent a layer of twisted nematic liquid crystal material. An electric potential applied to a pair of electrodes that are disposed outside of the liquid crystal/photoconductor arrangement to provide an electric field in the vicinity of the liquid crystal material. The electrodes are substantially transparent to the form of radiation being recorded. A pair of crossed polarizers are provided on opposite sides of the liquid crystal. The front polarizer linearly polarizes the light, while the back polarizer cooperates with the front polarizer and the liquid crystal material to compress the intensity of a viewed scene. Light incident upon the intensity compressor activates the photoconductor in proportion to the intensity of the light, thereby varying the field applied to the liquid crystal. The increased field causes the liquid crystal to have less of a twisting effect on the incident linearly polarized light, which will cause an increased percentage of the light to be absorbed by the back polarizer. The intensity of an image may be compressed by forming an image on the light intensity compressor.

  3. HID Laboratories Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEI ReferenceJumpEnergyStrategy | Open Energy Sector:Ergenics Inc

  4. The Intense Radiation Gas

    E-Print Network [OSTI]

    M. Marklund; P. K. Shukla; B. Eliasson

    2005-03-08T23:59:59.000Z

    We present a new dispersion relation for photons that are nonlinearly interacting with a radiation gas of arbitrary intensity due to photon-photon scattering. It is found that the photon phase velocity decreases with increasing radiation intensity, it and attains a minimum value in the limit of super-intense fields. By using Hamilton's ray equations, a self-consistent kinetic theory for interacting photons is formulated. The interaction between an electromagnetic pulse and the radiation gas is shown to produce pulse self-compression and nonlinear saturation. Implications of our new results are discussed.

  5. Solar radiation intensity calculations

    E-Print Network [OSTI]

    Levine, Randolph Steven

    1978-01-01T23:59:59.000Z

    SOLAR RADIATION INTENSITY CALCULATIONS A Thesis by RANDOLPH STEVEN LEVINE Submitted to the Graduate College of Texas A&M University in partia'l fulfillment of the requirement for the degree of MASTER OF SCIENCE December 1978 Major Subject...: Physics SOLAR RADIATION INTENSITY CALCULATIONS A Thesis by RANDOLPH STEVEN LEVINE Approved as to style and content by: (Chairman of Committee) (Member) (Member) ( member) (Head of Department) December 1978 f219 037 ABSTRACT Solar Radiation...

  6. Narrowband inverse Compton scattering x-ray sources at high laser intensities

    E-Print Network [OSTI]

    Seipt, D; Surzhykov, A; Fritzsche, S

    2014-01-01T23:59:59.000Z

    Narrowband x- and gamma-ray sources based on the inverse Compton scattering of laser pulses suffer from a limitation of the allowed laser intensity due to the onset of nonlinear effects that increase their bandwidth. It has been suggested that laser pulses with a suitable frequency modulation could compensate this ponderomotive broadening and reduce the bandwidth of the spectral lines, which would allow to operate narrowband Compton sources in the high-intensity regime. In this paper we, therefore, present the theory of nonlinear Compton scattering in a frequency modulated intense laser pulse. We systematically derive the optimal frequency modulation of the laser pulse from the scattering matrix element of nonlinear Compton scattering, taking into account the electron spin and recoil. We show that, for some particular scattering angle, an optimized frequency modulation completely cancels the ponderomotive broadening for all harmonics of the backscattered light. We also explore how sensitive this compensation ...

  7. Nonlinear relativistic single-electron Thomson scattering power spectrum for incoming laser of arbitrary intensity

    SciTech Connect (OSTI)

    Alvarez-Estrada, R. F. [Departamento de Fisica Teorica I, Facultad de Ciencias Fisicas, Universidad Complutense, 28040 Madrid (Spain); Pastor, I.; Guasp, J.; Castejon, F. [Asociacion Euratom/Ciemat para Fusion, Avenida Complutense 22, 28040 Madrid (Spain)

    2012-06-15T23:59:59.000Z

    The classical nonlinear incoherent Thomson scattering power spectrum from a single relativistic electron with incoming laser radiation of any intensity, investigated numerically by the present authors in a previous publication, displayed both an approximate quadratic behavior in frequency and a redshift of the power spectrum for high intensity incoming radiation. The present work is devoted to justify, in a more general setup, those numerical findings. Those justifications are reinforced by extending suitably analytical approaches, as developed by other authors. Moreover, our analytical treatment exhibits differences between the Doppler-like frequencies for linear and circular polarization of the incoming radiation. Those differences depend nonlinearly on the laser intensity and on the electron initial velocity and do not appear to have been displayed by previous authors. Those Doppler-like frequencies and their differences are validated by new Monte Carlo computations beyond our previuos ones and reported here.

  8. Optimum laser intensity for the production of energetic deuterium ions from laser-cluster interaction

    SciTech Connect (OSTI)

    Bang, W.; Dyer, G.; Quevedo, H. J.; Bernstein, A. C.; Gaul, E.; Rougk, J.; Aymond, F.; Donovan, M. E.; Ditmire, T. [Department of Physics, Center for High Energy Density Science, C1510, University of Texas at Austin, Austin, Texas 78712 (United States)] [Department of Physics, Center for High Energy Density Science, C1510, University of Texas at Austin, Austin, Texas 78712 (United States)

    2013-09-15T23:59:59.000Z

    We measured, using Petawatt-level pulses, the average ion energy and neutron yield in high-intensity laser interactions with molecular clusters as a function of laser intensity. The interaction volume over which fusion occurred (110 mm{sup 3}) was larger than previous investigations, owing to the high laser power. Possible effects of prepulses were examined by implementing a pair of plasma mirrors. Our results show an optimum laser intensity for the production of energetic deuterium ions both with and without the use of the plasma mirrors. We measured deuterium plasmas with 14 keV average ion energies, which produced 7.2 10{sup 6} and 1.6 10{sup 7} neutrons in a single shot with and without plasma mirrors, respectively. The measured neutron yields qualitatively matched the expected yields calculated using a cylindrical plasma model.

  9. FNAL Booster intensity, extraction, and synchronization control for collider operation

    SciTech Connect (OSTI)

    Ducar, R.J.; Lackey, J.R.; Tawzer, S.R.

    1987-03-01T23:59:59.000Z

    Booster operation for collider physics is considerably different than for fixed target operation. Various scenarios for collider physics, machine studies, and P-Bar targeting may require that the intensity vary from 5E10 PPP to 3E12 PPP at a 15 Hertz machine cycle rate. In addition to the normal Booster single turn extraction mode, collider operations require that the Booster inject into the Main Ring a small number of beam bunches for coalescing into a single high intensity bunch. These bunches must be synchronized such that the center bunch arrives in the RF bucket which corresponds to the zero phase of the coalescing cavity. The system implemented has the ability to deliver a precise fraction of the available 84 Booster beam bunches to Main Ring or to the P-Bar Debuncher via the newly installed AP-4 beam line for tune-up and studies. It is required that all of the various intensity and extraction scenarios be accommodated with minimal operator intervention.

  10. Efficient electronic structure calculation for molecular ionization dynamics at high x-ray intensity

    E-Print Network [OSTI]

    Hao, Yajiang; Hanasaki, Kota; Son, Sang-Kil; Santra, Robin

    2015-01-01T23:59:59.000Z

    We present the implementation of an electronic-structure approach dedicated to ionization dynamics of molecules interacting with x-ray free-electron laser (XFEL) pulses. In our scheme, molecular orbitals for molecular core-hole states are represented by linear combination of numerical atomic orbitals that are solutions of corresponding atomic core-hole states. We demonstrate that our scheme efficiently calculates all possible multiple-hole configurations of molecules formed during XFEL pulses. The present method is suitable to investigate x-ray multiphoton multiple ionization dynamics and accompanying nuclear dynamics, providing essential information on the chemical dynamics relevant for high-intensity x-ray imaging.

  11. Stationary self-focusing of intense laser beam in cold quantum plasma using ramp density profile

    SciTech Connect (OSTI)

    Habibi, M. [Department of Physics, Shirvan Branch, Islamic Azad University, Shirvan (Iran, Islamic Republic of); Ghamari, F. [Department of Physics, Khorramabad Branch, Islamic Azad University, Khorramabad (Iran, Islamic Republic of)

    2012-10-15T23:59:59.000Z

    By using a transient density profile, we have demonstrated stationary self-focusing of an electromagnetic Gaussian beam in cold quantum plasma. The paper is devoted to the prospects of using upward increasing ramp density profile of an inhomogeneous nonlinear medium with quantum effects in self-focusing mechanism of high intense laser beam. We have found that the upward ramp density profile in addition to quantum effects causes much higher oscillation and better focusing of laser beam in cold quantum plasma in comparison to that in the classical relativistic case. Our computational results reveal the importance and influence of formation of electron density profiles in enhancing laser self-focusing.

  12. Note: Emittance measurements of intense pulsed proton beam for different pulse length and repetition rate

    SciTech Connect (OSTI)

    Miracoli, R. [ESS Bilbao, Vizcaya (Spain); INFN - Laboratori Nazionali del Sud, via S. Sofia 62, 95123 Catania (Italy); Gammino, S.; Celona, L.; Mascali, D. [INFN - Laboratori Nazionali del Sud, via S. Sofia 62, 95123 Catania (Italy); Castro, G. [INFN - Laboratori Nazionali del Sud, via S. Sofia 62, 95123 Catania (Italy); Universita degli studi di Catania, Dipartimento di Fisica e Astronomia, V. S. Sofia 64, 95123 Catania (Italy); Gobin, R.; Delferriere, O.; Adroit, G.; Senee, F. [CEA-IRFU, Gif sur Yvette Cedex (France); Ciavola, G. [INFN - Laboratori Nazionali del Sud, via S. Sofia 62, 95123 Catania (Italy); CNAO, Str. Pr. Campeggi, Pavia (Italy)

    2012-05-15T23:59:59.000Z

    The high intensity ion source (SILHI), in operation at CEA-Saclay, has been used to produce a 90 mA pulsed proton beam with pulse length and repetition rates suitable for the European Spallation Source (ESS) linac. Typical r-r{sup '} rms normalized emittance values smaller than 0.2{pi} mm mrad have been measured for operation in pulsed mode (0.01 < duty cycle < 0.15 and 1 ms < pulse duration < 10 ms) that are relevant for the design update of the Linac to be used at the ESS in Lund.

  13. Advances in Lighting

    E-Print Network [OSTI]

    Tumber, A. J.

    1981-01-01T23:59:59.000Z

    colour rendition. The quartz-halogen incandescent lam s operate at higher temperatures, and have a somewhat higher efficacy, but they are rarely used except for special applicati ns. 3-2 High Intensity Discharge Lamps. Mercury is the grandfather... of the H.I.D. lamps. Its blue-green light, has been used almost exclusively for streetlighti and, often with colour-improving phospho it is still being used in industrial and commercial applications. Reactor-type ballasted mercury lamps can now...

  14. Energy Intensity Strategy

    E-Print Network [OSTI]

    Rappolee, D.; Shaw, J.

    2008-01-01T23:59:59.000Z

    Our presentation will cover how we began the journey of conserving energy at our facility. Well discuss a basic layout of our energy intensity plan and the impact our team has had on the process, what tools were using, what goals have been...

  15. Asymmetries of azimuthal photon distributions in non-linear Compton scattering in ultra-short intense laser pulses

    E-Print Network [OSTI]

    Seipt, D

    2013-01-01T23:59:59.000Z

    Non-linear Compton scattering in ultra-short intense laser pulses is discussed with the focus on angular distributions of the emitted photon energy. This is an observable which is accessible easily experimentally. Asymmetries of the azimuthal distributions are predicted for both linear and circular polarization. We present a systematic survey of the influence of the laser intensity, the carrier envelope phase and the laser polarization on the emission spectra for single-cycle and few-cycle laser pulses. For linear polarization, the dominant direction of the emission changes from a perpendicular pattern with respect to the laser polarization at low-intensity to a dominantly parallel emission for high-intensity laser pulses.

  16. Asymmetries of azimuthal photon distributions in non-linear Compton scattering in ultra-short intense laser pulses

    E-Print Network [OSTI]

    D. Seipt; B. Kampfer

    2013-05-16T23:59:59.000Z

    Non-linear Compton scattering in ultra-short intense laser pulses is discussed with the focus on angular distributions of the emitted photon energy. This is an observable which is accessible easily experimentally. Asymmetries of the azimuthal distributions are predicted for both linear and circular polarization. We present a systematic survey of the influence of the laser intensity, the carrier envelope phase and the laser polarization on the emission spectra for single-cycle and few-cycle laser pulses. For linear polarization, the dominant direction of the emission changes from a perpendicular pattern with respect to the laser polarization at low-intensity to a dominantly parallel emission for high-intensity laser pulses.

  17. Electron Production and Collective Field Generation in Intense Particle Beams

    SciTech Connect (OSTI)

    Molvik, A W; Vay, J; Cohen, R; Friedman, A; Lee, E; Verboncoeur, J; Covo, M K

    2006-02-09T23:59:59.000Z

    Electron cloud effects (ECEs) are increasingly recognized as important, but incompletely understood, dynamical phenomena, which can severely limit the performance of present electron colliders, the next generation of high-intensity rings, such as PEP-II upgrade, LHC, and the SNS, the SIS 100/200, or future high-intensity heavy ion accelerators such as envisioned in Heavy Ion Inertial Fusion (HIF). Deleterious effects include ion-electron instabilities, emittance growth, particle loss, increase in vacuum pressure, added heat load at the vacuum chamber walls, and interference with certain beam diagnostics. Extrapolation of present experience to significantly higher beam intensities is uncertain given the present level of understanding. With coordinated LDRD projects at LLNL and LBNL, we undertook a comprehensive R&D program including experiments, theory and simulations to better understand the phenomena, establish the essential parameters, and develop mitigating mechanisms. This LDRD project laid the essential groundwork for such a program. We developed insights into the essential processes, modeled the relevant physics, and implemented these models in computational production tools that can be used for self-consistent study of the effect on ion beams. We validated the models and tools through comparison with experimental data, including data from new diagnostics that we developed as part of this work and validated on the High-Current Experiment (HCX) at LBNL. We applied these models to High-Energy Physics (HEP) and other advanced accelerators. This project was highly successful, as evidenced by the two paragraphs above, and six paragraphs following that are taken from our 2003 proposal with minor editing that mostly consisted of changing the tense. Further benchmarks of outstanding performance are: we had 13 publications with 8 of them in refereed journals, our work was recognized by the accelerator and plasma physics communities by 8 invited papers and we have 5 additional invitations for invited papers at upcoming conferences, we attracted collaborators who had SBIR funding, we are collaborating with scientists at CERN and GSI Darmstadt on gas desorption physics for submission to Physical Review Letters, and another PRL on absolute measurements of electron cloud density and Phys. Rev. ST-AB on electron emission physics are also being readied for submission.

  18. The interaction of intense subpicosecond laser pulses with underdense plasmas

    SciTech Connect (OSTI)

    Coverdale, C.A.

    1995-05-11T23:59:59.000Z

    Laser-plasma interactions have been of interest for many years not only from a basic physics standpoint, but also for their relevance to numerous applications. Advances in laser technology in recent years have resulted in compact laser systems capable of generating (psec), 10{sup 16} W/cm{sup 2} laser pulses. These lasers have provided a new regime in which to study laser-plasma interactions, a regime characterized by L{sub plasma} {ge} 2L{sub Rayleigh} > c{tau}. The goal of this dissertation is to experimentally characterize the interaction of a short pulse, high intensity laser with an underdense plasma (n{sub o} {le} 0.05n{sub cr}). Specifically, the parametric instability known as stimulated Raman scatter (SRS) is investigated to determine its behavior when driven by a short, intense laser pulse. Both the forward Raman scatter instability and backscattered Raman instability are studied. The coupled partial differential equations which describe the growth of SRS are reviewed and solved for typical experimental laser and plasma parameters. This solution shows the growth of the waves (electron plasma and scattered light) generated via stimulated Raman scatter. The dispersion relation is also derived and solved for experimentally accessible parameters. The solution of the dispersion relation is used to predict where (in k-space) and at what frequency (in {omega}-space) the instability will grow. Both the nonrelativistic and relativistic regimes of the instability are considered.

  19. Hole boring in a DT pellet and fast ion ignition with ultra-intense laser pulses

    E-Print Network [OSTI]

    Naumova, N; Tikhonchuk, V T; Labaune, C; Sokolov, I V; Mourou, G; 10.1103/PhysRevLett.102.025002

    2009-01-01T23:59:59.000Z

    Recently achieved high intensities of short laser pulses open new prospects in their application to hole boring in inhomogeneous overdense plasmas and for ignition in precompressed DT fusion targets. A simple analytical model and numerical simulations demonstrate that pulses with intensities exceeding 1022 W/cm2 may penetrate deeply into the plasma as a result of efficient ponderomotive acceleration of ions in the forward direction. The penetration depth as big as hundreds of microns depends on the laser fluence, which has to exceed a few tens of GJ/cm2. The fast ions, accelerated at the bottom of the channel with an efficiency of more than 20%, show a high directionality and may heat the precompressed target core to fusion conditions.

  20. Isochoric heating of reduced mass targets by ultra-intense laser produced relativistic electrons

    SciTech Connect (OSTI)

    Neumayer, P; Lee, H J; Offerman, D; Shipton, E; Kemp, A; Kritcher, A L; Doppner, T; Back, C A; Glenzer, S H

    2009-02-04T23:59:59.000Z

    We present measurements of the chlorine K-alpha emission from reduced mass targets, irradiated with ultra-high intensity laser pulses. Chlorinated plastic targets with diameters down to 50 micrometers and mass of a few 10{sup -8} g were irradiated with up to 7 J of laser energy focused to intensities of several 10{sup 19} W/cm{sup 2}. The conversion of laser energy to K-alpha radiation is measured, as well as high resolution spectra that allow observation of line shifts, indicating isochoric heating of the target up to 18 eV. A zero-dimensional 2-temperature equilibration model, combined with electron impact K-shell ionization and post processed spectra from collisional radiative calculations reproduces the observed K-alpha yields and line shifts, and shows the importance of target expansion due to the hot electron pressure.

  1. Intensity Frontier Instrumentation

    SciTech Connect (OSTI)

    Kettell S.; Rameika, R.; Tshirhart, B.

    2013-09-24T23:59:59.000Z

    The fundamental origin of flavor in the Standard Model (SM) remains a mystery. Despite the roughly eighty years since Rabi asked Who ordered that? upon learning of the discovery of the muon, we have not understood the reason that there are three generations or, more recently, why the quark and neutrino mixing matrices and masses are so different. The solution to the flavor problem would give profound insights into physics beyond the Standard Model (BSM) and tell us about the couplings and the mass scale at which the next level of insight can be found. The SM fails to explain all observed phenomena: new interactions and yet unseen particles must exist. They may manifest themselves by causing SM reactions to differ from often very precise predictions. The Intensity Frontier (1) explores these fundamental questions by searching for new physics in extremely rare processes or those forbidden in the SM. This often requires massive and/or extremely finely tuned detectors.

  2. System for obtaining smooth laser beams where intensity variations are reduced by spectral dispersion of the laser light (SSD)

    DOE Patents [OSTI]

    Skupsky, Stanley (Rochester, NY); Kessler, Terrance J. (Rochester, NY); Short, Robert W. (Rochester, NY); Craxton, Stephen (Rochester, NY); Letzring, Samuel A. (Honeoye Falls, NY); Soures, John (Pittsford, NY)

    1991-01-01T23:59:59.000Z

    In an SSD (smoothing by spectral dispersion) system which reduces the time-averaged spatial variations in intensity of the laser light to provide uniform illumination of a laser fusion target, an electro-optic phase modulator through which a laser beam passes produces a broadband output beam by imposing a frequency modulated bandwidth on the laser beam. A grating provides spatial and angular spectral dispersion of the beam. Due to the phase modulation, the frequencies ("colors") cycle across the beam. The dispersed beam may be amplified and frequency converted (e.g., tripled) in a plurality of beam lines. A distributed phase plate (DPP) in each line is irradiated by the spectrally dispersed beam and the beam is focused on the target where a smooth (uniform intensity) pattern is produced. The color cycling enhances smoothing and the use of a frequency modulated laser pulse prevents the formation of high intensity spikes which could damage the laser medium in the power amplifiers.

  3. A proposal to extend the intensity frontier of nuclear and particle physics to 45 GeV (LAMPF 2)

    SciTech Connect (OSTI)

    Not Available

    1984-12-01T23:59:59.000Z

    It is proposed to construct and operate a high-intensity, medium energy synchrotron addition to the Clinton P. Anderson Meson Physics Facility. The addition is to consist of a 6-GeV, 170-..mu..A booster and a 45-GeV, 34-..mu..A, 3-Hz main synchrotron with 50% duty factor. The physics of strong and electroweak interactions to be studied at the facility is discussed, as well as accelerator design, scope of experimental area facilities, and cost estimates and schedule. (LEW)

  4. Accelerators for Intensity Frontier Research

    SciTech Connect (OSTI)

    Derwent, Paul; /Fermilab

    2012-05-11T23:59:59.000Z

    In 2008, the Particle Physics Project Prioritization Panel identified three frontiers for research in high energy physics, the Energy Frontier, the Intensity Frontier, and the Cosmic Frontier. In this paper, I will describe how Fermilab is configuring and upgrading the accelerator complex, prior to the development of Project X, in support of the Intensity Frontier.

  5. ITP Energy Intensive Processes: Energy-Intensive Processes Portfolio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    teChnologIes Program IntroduCtIon the research and development (r&d) portfolio for energy-Intensive Processes (eIP) addresses the top technology opportunities to save energy...

  6. Intensity-Intensity Correlations of Classically Entangled Light

    E-Print Network [OSTI]

    Partha Ghose; Anirban Mukherjee

    2014-01-03T23:59:59.000Z

    An experiment is proposed to show that after initial frequency and polarization selection, classical thermal light from two independent sources can be made path-polarization entangled. Such light will show new intensity-intensity correlations involving both path and polarization phases, formally similar to those for four-particle GHZ states. For fixed polarization phases, the correlations reduce to the Hanbury Brown-Twiss phase correlations. It is also shown that these classical correlations violate noncontextuality.

  7. Rare-gas-cluster explosions under irradiation by intense short XUV pulses

    SciTech Connect (OSTI)

    Hoffmann, K.; Murphy, B.; Kandadai, N.; Erk, B.; Helal, A.; Keto, J.; Ditmire, T. [Department of Physics, Texas Center for High Intensity Laser Science, University of Texas at Austin, Austin, Texas 78712 (United States)

    2011-04-15T23:59:59.000Z

    High-intensity, extreme-ultraviolet (XUV) femtosecond interactions with large rare-gas clusters of xenon and argon have been studied at a wavelength of 38 nm. Pulses of XUV radiation with nJ energy are produced by high-order harmonic conversion from a 35-fs, near-infrared, terawatt laser. Mass resolved ion spectra show charge states up to Xe{sup 8+} and Ar{sup 4+}. Kinetic-energy measurements of ions and electrons indicate that a nanoplasma is formed and a hydrodynamic cluster explosion ensues after heating by the short wavelength pulse. It appears that the observed charge states and electron temperatures are consistent with sequential, single-photon ionization and collisional ionization of ions that have had their ionization potential depressed by plasma continuum lowering in the cluster nanoplasma.

  8. Iron and Steel Energy Intensities

    U.S. Energy Information Administration (EIA) Indexed Site

    If you are having trouble, call 202-586-8800 for help. Home > >Energy Users > Energy Efficiency Page > Iron and Steel Energy Intensities First Use of Energy Blue Bullet First Use...

  9. Gamma radiation field intensity meter

    DOE Patents [OSTI]

    Thacker, L.H.

    1994-08-16T23:59:59.000Z

    A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode. 4 figs.

  10. Gamma radiation field intensity meter

    DOE Patents [OSTI]

    Thacker, Louis H. (Knoxville, TN)

    1995-01-01T23:59:59.000Z

    A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode.

  11. Gamma radiation field intensity meter

    DOE Patents [OSTI]

    Thacker, L.H.

    1995-10-17T23:59:59.000Z

    A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode. 4 figs.

  12. Gamma radiation field intensity meter

    DOE Patents [OSTI]

    Thacker, Louis H. (Knoxville, TN)

    1994-01-01T23:59:59.000Z

    A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode.

  13. Neutrino physics with an intense \

    E-Print Network [OSTI]

    R. Henning

    2010-11-16T23:59:59.000Z

    We study some of the physics potential of an intense $1\\,\\mathrm{MCi}$ $^{51}\\mathrm{Cr}$ source combined with the {\\sc Majorana Demonstrator} enriched germanium detector array. The {\\sc Demonstrator} will consist of detectors with ultra-low radioactive backgrounds and extremely low energy thresholds of~$\\sim 400\\,\\mathrm{eV}$. We show that it can improve the current limit on the neutrino magnetic dipole moment. We briefly discuss physics applications of the charged-current reaction of the $^{51}\\mathrm{Cr} neutrino with the $^{73}\\mathrm{Ge} isotope. Finally, we argue that the rate from a realistic, intense tritium source is below the detectable limit of even a tonne-scale HPGe experiment

  14. Hanford Identification (HID) PIA, Richland Operations Office | Department

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 RussianBy: Thomas P. D'Agostino,GlenLearning and DevelopmentDepartmentof

  15. RAPID/Roadmap/18-HI-d | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ | Roadmap Jump to: navigation, search RAPIDaUT-abb <HI-d

  16. RAPID/Roadmap/3-HI-d | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ | Roadmap Jump to: navigation, searche < (1)NV-a3ed <

  17. RAPID/Roadmap/6-HI-d | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ | Roadmap Jump to: navigation, searcheWA-a < RAPID‎cd

  18. RAPID/Roadmap/14-HI-d | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformation TexasTexas)ID-a <RAPID/Roadmap/14adFD-cad

  19. Intensive Observation Period Projects Scheduled

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn Other NewsSpin andInterimInvokingInspector XE 20131 Intensive

  20. Experimental transport of intensity diffraction tomography

    E-Print Network [OSTI]

    Lee, Justin Wu

    2011-01-01T23:59:59.000Z

    In this thesis, I perform intensity-based tomographic phase imaging in two ways. First, I utilize the paraxial transport of intensity equation (TIE) to construct phase maps of a phase object at multiple projection angles ...

  1. Beam intensity upgrade at Fermilab

    SciTech Connect (OSTI)

    Marchionni, A.; /Fermilab

    2006-07-01T23:59:59.000Z

    The performance of the Fermilab proton accelerator complex is reviewed. The coming into operation of the NuMI neutrino line and the implementation of slip-stacking to increase the anti-proton production rate has pushed the total beam intensity in the Main Injector up to {approx} 3 x 10{sup 13} protons/pulse. A maximum beam power of 270 kW has been delivered on the NuMI target during the first year of operation. A plan is in place to increase it to 350 kW, in parallel with the operation of the Collider program. As more machines of the Fermilab complex become available with the termination of the Collider operation, a set of upgrades are being planned to reach first 700 kW and then 1.2 MW by reducing the Main Injector cycle time and by implementing proton stacking.

  2. Inelastic X-ray Scattering Measurements of Ionization in Warm, Dense Matter

    E-Print Network [OSTI]

    Davis, Paul

    2012-01-01T23:59:59.000Z

    of ultrashort, ultra-intense laser light by solids andpulses, ultra-high intensity lasers have revolutionizedpresent in ultra-high-intensity laser-matter interaction

  3. System for obtaining smooth laser beams where intensity variations are reduced by spectral dispersion of the laser light (SSD)

    DOE Patents [OSTI]

    Skupsky, S.; Kessler, T.J.; Short, R.W.; Craxton, S.; Letzring, S.A.; Soures, J.

    1991-09-10T23:59:59.000Z

    In an SSD (smoothing by spectral dispersion) system which reduces the time-averaged spatial variations in intensity of the laser light to provide uniform illumination of a laser fusion target, an electro-optic phase modulator through which a laser beam passes produces a broadband output beam by imposing a frequency modulated bandwidth on the laser beam. A grating provides spatial and angular spectral dispersion of the beam. Due to the phase modulation, the frequencies (''colors'') cycle across the beam. The dispersed beam may be amplified and frequency converted (e.g., tripled) in a plurality of beam lines. A distributed phase plate (DPP) in each line is irradiated by the spectrally dispersed beam and the beam is focused on the target where a smooth (uniform intensity) pattern is produced. The color cycling enhances smoothing and the use of a frequency modulated laser pulse prevents the formation of high intensity spikes which could damage the laser medium in the power amplifiers. 8 figures.

  4. Accelerating Protons to Therapeutic Energies with Ultra-Intense Ultra-Clean and Ultra-Short Laser Pulses

    E-Print Network [OSTI]

    Bulanov, Stepan S; Bychenkov, Valery Yu; Chvykov, Vladimir; Kalinchenko, Galina; Matsuoka, Takeshi; Rousseau, Pascal; Reed, Stephen; Yanovsky, Victor; Krushelnick, Karl; Litzenberg, Dale William; Maksimchuk, Anatoly

    2008-01-01T23:59:59.000Z

    Proton acceleration by high-intensity laser pulses from ultra-thin foils for hadron therapy is discussed. With the improvement of the laser intensity contrast ratio to 10-11 achieved on Hercules laser at the University of Michigan, it became possible to attain laser-solid interactions at intensities up to 1022 W/cm2 that allows an efficient regime of laser-driven ion acceleration from submicron foils. Particle-In-Cell (PIC) computer simulations of proton acceleration in the Directed Coulomb explosion regime from ultra-thin double-layer (heavy ions / light ions) foils of different thicknesses were performed under the anticipated experimental conditions for Hercules laser with pulse energies from 3 to 15 J, pulse duration of 30 fs at full width half maximum (FWHM), focused to a spot size of 0.8 microns (FWHM). In this regime heavy ions expand predominantly in the direction of laser pulse propagation enhancing the longitudinal charge separation electric field that accelerates light ions. The dependence of the ma...

  5. IC-BASED CONTROLS FOR ENERGY-EFFICIENT LIGHTING

    SciTech Connect (OSTI)

    Richard Zhang

    2005-03-01T23:59:59.000Z

    A new approach for driving high frequency energy saving ballasts is developed and documented in this report. The developed approach utilizes an IC-based platform that provides the benefits of reduced system cost, reduced ballast size, and universal application to a wide range of lamp technologies, such as linear fluorescent lamps (LFL), compact fluorescent lamps (CFL) and high intensity discharge lamps (HID). The control IC chip set developed for the platform includes dual low voltage (LV) IC gate drive that provides gate drive for high and low side power switches in typical ballast circuits, and ballast controller IC that provides control functionalities optimal for different lamps and digital interface for future extension to more sophisticated control and communication.

  6. Energy Intensity Baselining and Tracking Guidance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Learn more at betterbuildings.energy.gov Energy Intensity Baselining and Tracking Guidance i Preface The U.S. Department of Energy's (DOE's) Better Buildings, Better Plants Program...

  7. Fundamental Physics at the Intensity Frontier

    E-Print Network [OSTI]

    J. L. Hewett; H. Weerts; R. Brock; J. N. Butler; B. C. K. Casey; J. Collar; A. de Gouvea; R. Essig; Y. Grossman; W. Haxton; J. A. Jaros; C. K. Jung; Z. T. Lu; K. Pitts; Z. Ligeti; J. R. Patterson; M. Ramsey-Musolf; J. L. Ritchie; A. Roodman; K. Scholberg; C. E. M. Wagner; G. P. Zeller; S. Aefsky; A. Afanasev; K. Agashe; C. Albright; J. Alonso; C. Ankenbrandt; M. Aoki; C. A. Arguelles; N. Arkani-Hamed; J. R. Armendariz; C. Armendariz-Picon; E. Arrieta Diaz; J. Asaadi; D. M. Asner; K. S. Babu; K. Bailey; O. Baker; B. Balantekin; B. Baller; M. Bass; B. Batell; J. Beacham; J. Behr; N. Berger; M. Bergevin; E. Berman; R. Bernstein; A. J. Bevan; M. Bishai; M. Blanke; S. Blessing; A. Blondel; T. Blum; G. Bock; A. Bodek; G. Bonvicini; F. Bossi; J. Boyce; R. Breedon; M. Breidenbach; S. J. Brice; R. A. Briere; S. Brodsky; C. Bromberg; A. Bross; T. E. Browder; D. A. Bryman; M. Buckley; R. Burnstein; E. Caden; P. Campana; R. Carlini; G. Carosi; C. Castromonte; R. Cenci; I. Chakaberia; M. C. Chen; C. H. Cheng; B. Choudhary; N. H. Christ; E. Christensen; M. E. Christy; T. E. Chupp; E. Church; D. B. Cline; T. E. Coan; P. Coloma; J. Comfort; L. Coney; J. Cooper; R. J. Cooper; R. Cowan; D. F. Cowen; D. Cronin-Hennessy; A. Datta; G. S. Davies; M. Demarteau; D. P. DeMille; A. Denig; R. Dermisek; A. Deshpande; M. S. Dewey; R. Dharmapalan; J. Dhooghe; M. R. Dietrich; M. Diwan; Z. Djurcic; S. Dobbs; M. Duraisamy; B. Dutta; H. Duyang; D. A. Dwyer; M. Eads; B. Echenard; S. R. Elliott; C. Escobar; J. Fajans; S. Farooq; C. Faroughy; J. E. Fast; B. Feinberg; J. Felde; G. Feldman; P. Fierlinger; P. Fileviez Perez; B. Filippone; P. Fisher; B. T. Flemming; K. T. Flood; R. Forty; M. J. Frank; A. Freyberger; A. Friedland; R. Gandhi; K. S. Ganezer; A. Garcia; F. G. Garcia; S. Gardner; L. Garrison; A. Gasparian; S. Geer; V. M. Gehman; T. Gershon; M. Gilchriese; C. Ginsberg; I. Gogoladze; M. Gonderinger; M. Goodman; H. Gould; M. Graham; P. W. Graham; R. Gran; J. Grange; G. Gratta; J. P. Green; H. Greenlee; R. C. Group; E. Guardincerri; V. Gudkov; R. Guenette; A. Haas; A. Hahn; T. Han; T. Handler; J. C. Hardy; R. Harnik; D. A. Harris; F. A. Harris; P. G. Harris; J. Hartnett; B. He; B. R. Heckel; K. M. Heeger; S. Henderson; D. Hertzog; R. Hill; E. A Hinds; D. G. Hitlin; R. J. Holt; N. Holtkamp; G. Horton-Smith; P. Huber; W. Huelsnitz; J. Imber; I. Irastorza; J. Jaeckel; I. Jaegle; C. James; A. Jawahery; D. Jensen; C. P. Jessop; B. Jones; H. Jostlein; T. Junk; A. L. Kagan; M. Kalita; Y. Kamyshkov; D. M. Kaplan; G. Karagiorgi; A. Karle; T. Katori; B. Kayser; R. Kephart; S. Kettell; Y. K. Kim; M. Kirby; K. Kirch; J. Klein; J. Kneller; A. Kobach; M. Kohl; J. Kopp; M. Kordosky; W. Korsch; I. Kourbanis; A. D. Krisch; P. Krizan; A. S. Kronfeld; S. Kulkarni; K. S. Kumar; Y. Kuno; T. Kutter; T. Lachenmaier; M. Lamm; J. Lancaster; M. Lancaster; C. Lane; K. Lang; P. Langacker; S. Lazarevic; T. Le; K. Lee; K. T. Lesko; Y. Li; M. Lindgren; A. Lindner; J. Link; D. Lissauer; L. S. Littenberg; B. Littlejohn; C. Y. Liu; W. Loinaz; W. Lorenzon; W. C. Louis; J. Lozier; L. Ludovici; L. Lueking; C. Lunardini; D. B. MacFarlane; P. A. N. Machado; P. B. Mackenzie; J. Maloney; W. J. Marciano; W. Marsh; M. Marshak; J. W. Martin; C. Mauger; K. S. McFarland; C. McGrew; G. McLaughlin; D. McKeen; R. McKeown; B. T. Meadows; R. Mehdiyev; D. Melconian; H. Merkel; M. Messier; J. P. Miller; G. Mills; U. K. Minamisono; S. R. Mishra; I. Mocioiu; S. Moed Sher; R. N. Mohapatra; B. Monreal; C. D. Moore; J. G. Morfin; J. Mousseau; L. A. Moustakas; G. Mueller; P. Mueller; M. Muether; H. P. Mumm; C. Munger; H. Murayama; P. Nath; O. Naviliat-Cuncin; J. K. Nelson; D. Neuffer; J. S. Nico; A. Norman; D. Nygren; Y. Obayashi; T. P. O'Connor; Y. Okada; J. Olsen; L. Orozco; J. L. Orrell; J. Osta; B. Pahlka; J. Paley; V. Papadimitriou; M. Papucci; S. Parke; R. H. Parker; Z. Parsa; K. Partyka; A. Patch; J. C. Pati; R. B. Patterson; Z. Pavlovic; G. Paz; G. N. Perdue; D. Perevalov; G. Perez; R. Petti; W. Pettus; A. Piepke; M. Pivovaroff; R. Plunkett; C. C. Polly; M. Pospelov; R. Povey; A. Prakesh; M. V. Purohit; S. Raby; J. L. Raaf; R. Rajendran; S. Rajendran; G. Rameika; R. Ramsey; A. Rashed; B. N. Ratcliff; B. Rebel; J. Redondo; P. Reimer; D. Reitzner; F. Ringer; A. Ringwald; S. Riordan; B. L. Roberts; D. A. Roberts; R. Robertson; F. Robicheaux; M. Rominsky; R. Roser; J. L. Rosner; C. Rott; P. Rubin; N. Saito; M. Sanchez; S. Sarkar; H. Schellman; B. Schmidt; M. Schmitt; D. W. Schmitz; J. Schneps; A. Schopper; P. Schuster; A. J. Schwartz; M. Schwarz; J. Seeman; Y. K. Semertzidis; K. K. Seth; Q. Shafi; P. Shanahan; R. Sharma; S. R. Sharpe; M. Shiozawa; V. Shiltsev; K. Sigurdson; P. Sikivie; J. Singh; D. Sivers; T. Skwarnicki; N. Smith; J. Sobczyk; H. Sobel; M. Soderberg; Y. H. Song; A. Soni; P. Souder; A. Sousa; J. Spitz; M. Stancari; G. C. Stavenga; J. H. Steffen

    2012-05-11T23:59:59.000Z

    The Proceedings of the 2011 workshop on Fundamental Physics at the Intensity Frontier. Science opportunities at the intensity frontier are identified and described in the areas of heavy quarks, charged leptons, neutrinos, proton decay, new light weakly-coupled particles, and nucleons, nuclei, and atoms.

  8. Fundamental Physics at the Intensity Frontier

    E-Print Network [OSTI]

    Hewett, J L; Brock, R; Butler, J N; Casey, B C K; Collar, J; de Gouvea, A; Essig, R; Grossman, Y; Haxton, W; Jaros, J A; Jung, C K; Lu, Z T; Pitts, K; Ligeti, Z; Patterson, J R; Ramsey-Musolf, M; Ritchie, J L; Roodman, A; Scholberg, K; Wagner, C E M; Zeller, G P; Aefsky, S; Afanasev, A; Agashe, K; Albright, C; Alonso, J; Ankenbrandt, C; Aoki, M; Arguelles, C A; Arkani-Hamed, N; Armendariz, J R; Armendariz-Picon, C; Diaz, E Arrieta; Asaadi, J; Asner, D M; Babu, K S; Bailey, K; Baker, O; Balantekin, B; Baller, B; Bass, M; Batell, B; Beacham, J; Behr, J; Berger, N; Bergevin, M; Berman, E; Bernstein, R; Bevan, A J; Bishai, M; Blanke, M; Blessing, S; Blondel, A; Blum, T; Bock, G; Bodek, A; Bonvicini, G; Bossi, F; Boyce, J; Breedon, R; Breidenbach, M; Brice, S J; Briere, R A; Brodsky, S; Bromberg, C; Bross, A; Browder, T E; Bryman, D A; Buckley, M; Burnstein, R; Caden, E; Campana, P; Carlini, R; Carosi, G; Castromonte, C; Cenci, R; Chakaberia, I; Chen, M C; Cheng, C H; Choudhary, B; Christ, N H; Christensen, E; Christy, M E; Chupp, T E; Church, E; Cline, D B; Coan, T E; Coloma, P; Comfort, J; Coney, L; Cooper, J; Cooper, R J; Cowan, R; Cowen, D F; Cronin-Hennessy, D; Datta, A; Davies, G S; Demarteau, M; DeMille, D P; Denig, A; Dermisek, R; Deshpande, A; Dewey, M S; Dharmapalan, R; Dhooghe, J; Dietrich, M R; Diwan, M; Djurcic, Z; Dobbs, S; Duraisamy, M; Dutta, B; Duyang, H; Dwyer, D A; Eads, M; Echenard, B; Elliott, S R; Escobar, C; Fajans, J; Farooq, S; Faroughy, C; Fast, J E; Feinberg, B; Felde, J; Feldman, G; Fierlinger, P; Perez, P Fileviez; Filippone, B; Fisher, P; Flemming, B T; Flood, K T; Forty, R; Frank, M J; Freyberger, A; Friedland, A; Gandhi, R; Ganezer, K S; Garcia, A; Garcia, F G; Gardner, S; Garrison, L; Gasparian, A; Geer, S; Gehman, V M; Gershon, T; Gilchriese, M; Ginsberg, C; Gogoladze, I; Gonderinger, M; Goodman, M; Gould, H; Graham, M; Graham, P W; Gran, R; Grange, J; Gratta, G; Green, J P; Greenlee, H; Guardincerri, E; Gudkov, V; Guenette, R; Haas, A; Hahn, A; Han, T; Handler, T; Hardy, J C; Harnik, R; Harris, D A; Harris, F A; Harris, P G; Hartnett, J; He, B; Heckel, B R; Heeger, K M; Henderson, S; Hertzog, D; Hill, R; Hinds, E A; Hitlin, D G; Holt, R J; Holtkamp, N; Horton-Smith, G; Huber, P; Huelsnitz, W; Imber, J; Irastorza, I; Jaeckel, J; Jaegle, I; James, C; Jawahery, A; Jensen, D; Jessop, C P; Jones, B; Jostlein, H; Junk, T; Kagan, A L; Kalita, M; Kamyshkov, Y; Kaplan, D M; Karagiorgi, G; Karle, A; Katori, T; Kayser, B; Kephart, R; Kettell, S; Kim, Y K; Kirby, M; Kirch, K; Klein, J; Kneller, J; Kobach, A; Kohl, M; Kopp, J; Kordosky, M; Korsch, W; Kourbanis, I; Krisch, A D; Krizan, P; Kronfeld, A S; Kulkarni, S; Kumar, K S; Kuno, Y; Kutter, T; Lachenmaier, T; Lamm, M; Lancaster, J; Lancaster, M; Lane, C; Lang, K; Langacker, P; Lazarevic, S; Le, T; Lee, K; Lesko, K T; Li, Y; Lindgren, M; Lindner, A; Link, J; Lissauer, D; Littenberg, L S; Littlejohn, B; Liu, C Y; Loinaz, W; Lorenzon, W; Louis, W C; Lozier, J; Ludovici, L; Lueking, L; Lunardini, C; MacFarlane, D B; Machado, P A N; Mackenzie, P B; Maloney, J; Marciano, W J; Marsh, W; Marshak, M; Martin, J W; Mauger, C; McFarland, K S; McGrew, C; McLaughlin, G; McKeen, D; McKeown, R; Meadows, B T; Mehdiyev, R; Melconian, D; Merkel, H; Messier, M; Miller, J P; Mills, G; Minamisono, U K; Mishra, S R; Mocioiu, I; Sher, S Moed; Mohapatra, R N; Monreal, B; Moore, C D; Morfin, J G; Mousseau, J; Moustakas, L A; Mueller, G; Mueller, P; Muether, M; Mumm, H P; Munger, C; Murayama, H; Nath, P; Naviliat-Cuncin, O; Nelson, J K; Neuffer, D; Nico, J S; Norman, A; Nygren, D; Obayashi, Y; O'Connor, T P; Okada, Y; Olsen, J; Orozco, L; Orrell, J L; Osta, J; Pahlka, B; Paley, J; Papadimitriou, V; Papucci, M; Parke, S; Parker, R H; Parsa, Z; Partyka, K; Patch, A; Pati, J C; Patterson, R B; Pavlovic, Z; Paz, G; Perdue, G N; Perevalov, D; Perez, G; Petti, R; Pettus, W; Piepke, A; Pivovaroff, M; Plunkett, R; Polly, C C; Pospelov, M; Povey, R; Prakesh, A; Purohit, M V; Raby, S; Raaf, J L; Rajendran, R; Rajendran, S; Rameika, G; Ramsey, R; Rashed, A; Ratcliff, B N; Rebel, B; Redondo, J; Reimer, P; Reitzner, D; Ringer, F; Ringwald, A; Riordan, S; Roberts, B L; Roberts, D A; Robertson, R; Robicheaux, F; Rominsky, M; Roser, R; Rosner, J L; Rott, C; Rubin, P; Saito, N; Sanchez, M; Sarkar, S; Schellman, H; Schmidt, B; Schmitt, M; Schmitz, D W; Schneps, J; Schopper, A; Schuster, P; Schwartz, A J; Schwarz, M; Seeman, J; Semertzidis, Y K; Seth, K K; Shafi, Q; Shanahan, P; Sharma, R; Sharpe, S R; Shiozawa, M; Shiltsev, V; Sigurdson, K; Sikivie, P; Singh, J; Sivers, D; Skwarnicki, T; Smith, N; Sobczyk, J; Sobel, H; Soderberg, M; Song, Y H; Soni, A; Souder, P; Sousa, A; Spitz, J; Stancari, M; Stavenga, G C; Steffen, J H; Stepanyan, S; Stoeckinger, D; Stone, S; Strait, J; Strassler, M; Sulai, I A; Sundrum, R; Svoboda, R; Szczerbinska, B; Szelc, A; Takeuchi, T; Tanedo, P

    2012-01-01T23:59:59.000Z

    The Proceedings of the 2011 workshop on Fundamental Physics at the Intensity Frontier. Science opportunities at the intensity frontier are identified and described in the areas of heavy quarks, charged leptons, neutrinos, proton decay, new light weakly-coupled particles, and nucleons, nuclei, and atoms.

  9. Modeling Data-Intensive Web Sites 259 ModelingData-Intensive

    E-Print Network [OSTI]

    Bouras, Christos

    Modeling Data-Intensive Web Sites 259 ChapterXII ModelingData-Intensive Web Sites-by-stepapproachtothedesign,implementation and management of a Data-Intensive Web Site (DIWS). The approach introduces five data formulation is that of "Web fragments," that is an information decomposition technique that aids design, implementation

  10. Semiconductor lasers with uniform longitudinal intensity distribution

    SciTech Connect (OSTI)

    Schrans, T.; Yariv, A. (Department of Applied Physics 128-95, California Institute of Technology, Pasadena, California 91125 (USA))

    1990-04-16T23:59:59.000Z

    Power-dependent nonuniform longitudinal intensity distribution leading to spectral and spatial instabilities is a major problem in semiconductor lasers. It is shown theoretically that a proper choice of the longitudinal distribution of the gain as well as that of the magnitude of the grating coupling coefficient will lead to a uniform intensity distribution in distributed feedback lasers. We also show that the widely used phase, rather than magnitude, control of the coupling coefficient cannot lead to a uniform intensity distribution when the facet reflectivities are zero.

  11. Physics Prospects with an Intense Neutrino Experiment

    E-Print Network [OSTI]

    N. Solomey

    2000-06-16T23:59:59.000Z

    With new forthcoming intense neutrino beams, for the study of neutrino oscillations, it is possible to consider other physics experiments that can be done with these extreme neutrino fluxes available close to the source.

  12. Computational phase imaging based on intensity transport

    E-Print Network [OSTI]

    Waller, Laura A. (Laura Ann)

    2010-01-01T23:59:59.000Z

    Light is a wave, having both an amplitude and a phase. However, optical frequencies are too high to allow direct detection of phase; thus, our eyes and cameras see only real values - intensity. Phase carries important ...

  13. Building dependability arguments for software intensive systems

    E-Print Network [OSTI]

    Seater, Robert Morrison

    2009-01-01T23:59:59.000Z

    A method is introduced for structuring and guiding the development of end-to-end dependability arguments. The goal is to establish high-level requirements of complex software-intensive systems, especially properties that ...

  14. Midlevel ventilation's constraint on tropical cyclone intensity

    E-Print Network [OSTI]

    Tang, Brian Hong-An

    2010-01-01T23:59:59.000Z

    Midlevel ventilation, or the flux of low-entropy air into the inner core of a tropical cyclone (TC), is a hypothesized mechanism by which environmental vertical wind shear can constrain a TC's intensity. An idealized ...

  15. Midlevel Ventilation's Constraint on Tropical Cyclone Intensity

    E-Print Network [OSTI]

    Tang, Brian Hong-An

    Midlevel ventilation, or the flux of low-entropy air into the inner core of a tropical cyclone (TC), is a hypothesized mechanism by which environmental vertical wind shear can constrain a tropical cyclones intensity. An ...

  16. Absolute vs. intensity-based emission caps

    E-Print Network [OSTI]

    Ellerman, A. Denny.

    Cap-and-trade systems limit emissions to some pre-specified absolute quantity. Intensity-based limits, that restrict emissions to some pre-specified rate relative to input or output, are much more widely used in environmental ...

  17. Laser intensity effects in noncommutative QED

    E-Print Network [OSTI]

    Thomas Heinzl; Anton Ilderton; Mattias Marklund

    2010-02-17T23:59:59.000Z

    We discuss a two-fold extension of QED assuming the presence of strong external fields provided by an ultra-intense laser and noncommutativity of spacetime. While noncommutative effects leave the electron's intensity induced mass shift unchanged, the photons change significantly in character: they acquire a quasi-momentum that is no longer light-like. We study the consequences of this combined noncommutative strong-field effect for basic lepton-photon interactions.

  18. Distributed Storage Systems for Data Intensive Computing

    SciTech Connect (OSTI)

    Vazhkudai, Sudharshan S [ORNL; Butt, Ali R [Virginia Polytechnic Institute and State University (Virginia Tech); Ma, Xiaosong [ORNL

    2012-01-01T23:59:59.000Z

    In this chapter, the authors present an overview of the utility of distributed storage systems in supporting modern applications that are increasingly becoming data intensive. Their coverage of distributed storage systems is based on the requirements imposed by data intensive computing and not a mere summary of storage systems. To this end, they delve into several aspects of supporting data-intensive analysis, such as data staging, offloading, checkpointing, and end-user access to terabytes of data, and illustrate the use of novel techniques and methodologies for realizing distributed storage systems therein. The data deluge from scientific experiments, observations, and simulations is affecting all of the aforementioned day-to-day operations in data-intensive computing. Modern distributed storage systems employ techniques that can help improve application performance, alleviate I/O bandwidth bottleneck, mask failures, and improve data availability. They present key guiding principles involved in the construction of such storage systems, associated tradeoffs, design, and architecture, all with an eye toward addressing challenges of data-intensive scientific applications. They highlight the concepts involved using several case studies of state-of-the-art storage systems that are currently available in the data-intensive computing landscape.

  19. IPAC15 Jefferson Lab - International Particle Accelerator Conference...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    D07 High Intensity Circular Machines - Space Charge, Halos D08 High Intensity in Linear Accelerators - Space Charge, Halos D09 Emittance manipulation, Bunch Compression...

  20. What is Data-Intensive Science?

    SciTech Connect (OSTI)

    Critchlow, Terence J.; Kleese van Dam, Kerstin

    2013-06-03T23:59:59.000Z

    What is Data Intensive Science? Today we are living in a digital world, where scientists often no longer interact directly with the physical object of their research, but do so via digitally captured, reduced, calibrated, analyzed, synthesized and, at times, visualized data. Advances in experimental and computational technologies have lead to an exponential growth in the volumes, variety and complexity of this data and while the deluge is not happening everywhere in an absolute sense, it is in a relative one. Science today is data intensive. Data intensive science has the potential to transform not only how we do science, but how quickly we can translate scientific progress into complete solutions, policies, decisions and ultimately economic success. Critically, data intensive science touches some of the most important challenges we are facing. Consider a few of the grand challenges outlined by the U.S. National Academy of Engineering: make solar energy economical, provide energy from fusion, develop carbon sequestration methods, advance health informatics, engineer better medicines, secure cyberspace, and engineer the tools of scientific discovery. Arguably, meeting any of these challenges requires the collaborative effort of trans-disciplinary teams, but also significant contributions from enabling data intensive technologies. Indeed for many of them, advances in data intensive research will be the single most important factor in developing successful and timely solutions. Simple extrapolations of how we currently interact with and utilize data and knowledge are not sufficient to meet this need. Given the importance of these challenges, a new, bold vision for the role of data in science, and indeed how research will be conducted in a data intensive environment is evolving.

  1. Intensity Limitations in Fermilab Main Injector

    SciTech Connect (OSTI)

    Chan, W.

    1997-06-01T23:59:59.000Z

    The design beam intensity of the FNAL Main Injector (MI) is 3 x 10{sup 13} ppp. This paper investigates possible limitations in the intensity upgrade. These include the space charge, transition crossing, microwave instability, coupled bunch instability, resistive wall, beam loading (static and transient), rf power, aperture (physical and dynamic), coalescing, particle losses and radiation shielding, etc. It seems that to increase the intensity by a factor of two from the design value is straightforward. Even a factor of five is possible provided that the following measures are to be taken: an rf power upgrade, a {gamma}{sub t}-jump system, longitudinal and transverse feedback systems, rf feedback and feedforward, stopband corrections and local shieldings.

  2. Short rise time intense electron beam generator

    DOE Patents [OSTI]

    Olson, Craig L. (Albuquerque, NM)

    1987-01-01T23:59:59.000Z

    A generator for producing an intense relativistic electron beam having a subnanosecond current rise time includes a conventional generator of intense relativistic electrons feeding into a short electrically conductive drift tube including a cavity containing a working gas at a low enough pressure to prevent the input beam from significantly ionizing the working gas. Ionizing means such as a laser simultaneously ionize the entire volume of working gas in the cavity to generate an output beam having a rise time less than one nanosecond.

  3. Short rise time intense electron beam generator

    DOE Patents [OSTI]

    Olson, C.L.

    1984-03-16T23:59:59.000Z

    A generator for producing an intense relativisitc electron beam having a subnanosecond current rise time includes a conventional generator of intense relativistic electrons feeding into a short electrically conductive drift tube including a cavity containing a working gas at a low enough pressure to prevent the input beam from significantly ionizing the working gas. Ionizing means such as a laser simultaneously ionize the entire volume of working gas in the cavity to generate an output beam having a rise time less than one nanosecond.

  4. Quantitative Infrared Intensity Studies of Vapor-PhaseGlyoxal...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Infrared Intensity Studies of Vapor-Phase Glyoxal,Methylglyoxal, and 2,3-Butanedione (Diacetyl) with Quantitative Infrared Intensity Studies of Vapor-Phase Glyoxal,Methylglyoxal,...

  5. Absolute integrated intensities of vapor-phase hydrogen peroxide...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Absolute integrated intensities of vapor-phase hydrogen peroxide (H202) in the mid-infrared at atmospheric pressure. Absolute integrated intensities of vapor-phase hydrogen...

  6. EIA Energy Efficiency-Commercial Buildings Sector Energy Intensities...

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Buildings Sector Energy Intensities Commercial Buildings Sector Energy Intensities: 1992- 2003 Released Date: December 2004 Page Last Revised: August 2009 These tables...

  7. airglow intensities measured: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mark I 2013-01-01 23 Strongly Intensive Measures for Transverse Momentum and Particle Number Fluctuations Nuclear Experiment (arXiv) Summary: The strongly intensive measures ...

  8. MERcury Intense Target (MERIT) Van Graves, ORNL

    E-Print Network [OSTI]

    McDonald, Kirk

    OF ENERGY Airline Hydraulics 28 Oct 2005 Hg System Schematic Double Window (2) Primary Containment SecondaryMERcury Intense Target (MERIT) Overview Van Graves, ORNL Syringe Procurement Kickoff Meeting Airline Hydraulics Bensalem, PA Oct 28, 2005 #12;2 OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT

  9. WHERE ARE THE MOST INTENSE THUNDERSTORMS

    E-Print Network [OSTI]

    Nesbitt, Steve

    provided unparalleled information on the global distribution of intense convective storms. T he Tropical-alti- tude, non-sun-synchronous orbit permits sampling throughout the diurnal cycle of precipitation. The cloud-top temperature of storms has been measured using infrared (IR) bright- ness temperature (Tb

  10. Name of Lecture Intensive Thermal Engineering

    E-Print Network [OSTI]

    Name of Lecture Intensive Thermal Engineering Term 2nd semester (October) Units 2-0-0 Lecturers' understanding of the essential part of thermal engineering, comprehensively. The classes are given by three in Thermal Engineering field require the students to have fundamental concepts of thermodynamics and heat

  11. Intense Femtosecond Laser Interactions with Ions in

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    ), ultra-short laser light with atoms and molecules has led to the discovery of new phenomena such as bondIntense Femtosecond Laser Interactions with Ions in Beams and Traps A thesis presented through a re-scattering process where an electron is ionized, propagated in the laser field and is driven

  12. Energy Intensity of Agriculture and Food Systems

    E-Print Network [OSTI]

    Wang, Changlu

    dependencies in the light of energy price volatility and concerns as to long-term fossil energy availabilities ENERGY USE. . . . . . . . . . 232 6. FOOD WASTE AND ENERGY USE. . . . . . . . . . . . . Energy Intensity of Agriculture and Food Systems Nathan Pelletier,1 Eric Audsley,2 Sonja Brodt,3

  13. Correlated-Intensity velocimeter for Arbitrary Reflector

    DOE Patents [OSTI]

    Wang, Zhehui (Los Alamos, NM); Luo, Shengnian (Los Alamos, NM); Barnes, Cris W. (Arlington, VA); Paul, Stephen F. (West Orange, NJ)

    2008-11-11T23:59:59.000Z

    A velocimetry apparatus and method comprising splitting incoming reflected laser light and directing the laser light into first and second arms, filtering the laser light with passband filters in the first and second arms, one having a positive passband slope and the other having a negative passband slope, and detecting the filtered laser light via light intensity detectors following the passband filters in the first and second arms

  14. Intensive Variables & Nanostructuring in Magnetostructural Materials

    SciTech Connect (OSTI)

    Lewis, Laura

    2014-08-13T23:59:59.000Z

    Over the course of this project, fundamental inquiry was carried out to investigate, understand and predict the effects of intensive variables, including the structural scale, on magnetostructural phase transitions in the model system of equiatomic FeRh. These transitions comprise simultaneous magnetic and structural phase changes that have their origins in very strong orbital-lattice coupling and thus may be driven by a plurality of effects.

  15. Laser intensity effects in noncommutative QED

    SciTech Connect (OSTI)

    Heinzl, Thomas [School of Computing and Mathematics, University of Plymouth, Plymouth PL4 8AA (United Kingdom); Ilderton, Anton; Marklund, Mattias [Department of Physics, Umeaa University, SE-901 87 Umeaa (Sweden)

    2010-03-01T23:59:59.000Z

    We discuss a twofold extension of QED assuming the presence of strong external fields provided by an ultraintense laser and noncommutativity of spacetime. While noncommutative effects leave the electron's intensity induced mass shift unchanged, photons change significantly in character: they acquire a quasimomentum that is no longer lightlike. We study the consequences of this combined noncommutative strong-field effect for the basic lepton-photon interactions.

  16. Fan-beam intensity modulated proton therapy

    SciTech Connect (OSTI)

    Hill, Patrick [Department of Radiation Oncology, University of Iowa Hospitals and Clinics, Iowa City, Iowa 52242 (United States)] [Department of Radiation Oncology, University of Iowa Hospitals and Clinics, Iowa City, Iowa 52242 (United States); Westerly, David [Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, Colorado 80045 (United States)] [Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, Colorado 80045 (United States); Mackie, Thomas [Medical Devices, Morgridge Institute for Research, University of Wisconsin, Madison, Wisconsin 53715 (United States)] [Medical Devices, Morgridge Institute for Research, University of Wisconsin, Madison, Wisconsin 53715 (United States)

    2013-11-15T23:59:59.000Z

    Purpose: This paper presents a concept for a proton therapy system capable of delivering intensity modulated proton therapy using a fan beam of protons. This system would allow present and future gantry-based facilities to deliver state-of-the-art proton therapy with the greater normal tissue sparing made possible by intensity modulation techniques.Methods: A method for producing a divergent fan beam of protons using a pair of electromagnetic quadrupoles is described and particle transport through the quadrupole doublet is simulated using a commercially available software package. To manipulate the fan beam of protons, a modulation device is developed. This modulator inserts or retracts acrylic leaves of varying thickness from subsections of the fan beam. Each subsection, or beam channel, creates what effectively becomes a beam spot within the fan area. Each channel is able to provide 0255 mm of range shift for its associated beam spot, or stop the beam and act as an intensity modulator. Results of particle transport simulations through the quadrupole system are incorporated into the MCNPX Monte Carlo transport code along with a model of the range and intensity modulation device. Several design parameters were investigated and optimized, culminating in the ability to create topotherapy treatment plans using distal-edge tracking on both phantom and patient datasets.Results: Beam transport calculations show that a pair of electromagnetic quadrupoles can be used to create a divergent fan beam of 200 MeV protons over a distance of 2.1 m. The quadrupole lengths were 30 and 48 cm, respectively, with transverse field gradients less than 20 T/m, which is within the range of water-cooled magnets for the quadrupole radii used. MCNPX simulations of topotherapy treatment plans suggest that, when using the distal edge tracking delivery method, many delivery angles are more important than insisting on narrow beam channel widths in order to obtain conformal target coverage. Overall, the sharp distal falloff of a proton depth-dose distribution was found to provide sufficient control over the dose distribution to meet objectives, even with coarse lateral resolution and channel widths as large as 2 cm. Treatment plans on both phantom and patient data show that dose conformity suffers when treatments are delivered from less than approximately ten angles. Treatment time for a sample prostate delivery is estimated to be on the order of 10 min, and neutron production is estimated to be comparable to that found for existing collimated systems.Conclusions: Fan beam proton therapy is a method of delivering intensity modulated proton therapy which may be employed as an alternative to magnetic scanning systems. A fan beam of protons can be created by a set of quadrupole magnets and modified by a dual-purpose range and intensity modulator. This can be used to deliver inversely planned treatments, with spot intensities optimized to meet user defined dose objectives. Additionally, the ability of a fan beam delivery system to effectively treat multiple beam spots simultaneously may provide advantages as compared to spot scanning deliveries.

  17. Surface plasmon assisted electron acceleration in photoemission from gold nanopillars

    E-Print Network [OSTI]

    Nagel, Phillip M.

    2013-01-01T23:59:59.000Z

    high intensity, ultrafast laser pulses. Lasers that generateexcited directly by ultrafast laser pulses without requiring

  18. Intense steady state electron beam generator

    DOE Patents [OSTI]

    Hershcovitch, A.; Kovarik, V.J.; Prelec, K.

    1990-07-17T23:59:59.000Z

    An intense, steady state, low emittance electron beam generator is formed by operating a hollow cathode discharge plasma source at critical levels in combination with an extraction electrode and a target electrode that are operable to extract a beam of fast primary electrons from the plasma source through a negatively biased grid that is critically operated to repel bulk electrons toward the plasma source while allowing the fast primary electrons to move toward the target in the desired beam that can be successfully transported for relatively large distances, such as one or more meters away from the plasma source. 2 figs.

  19. Compton Process in Intense Short Laser Pulses

    E-Print Network [OSTI]

    K. Krajewska; J. Z. Kaminski

    2012-06-05T23:59:59.000Z

    The spectra of Compton radiation emitted during electron scattering off an intense laser beam are calculated using the framework of strong-field quantum electrodynamics. We model these intense laser beams as finite length plane-wave-fronted pulses, similar to Neville and Rohrlich [Phys. Rev. D {\\bf 3}, 1692 (1971)], or as trains of such pulses. Expressions for energy and angular distributions of Compton photons are derived such that a comparison of both situations becomes meaningful. Comparing frequency distributions for both an isolated laser pulse and a laser pulse train, we find a very good agreement between the results for long pulse durations which breaks down however for ultrashort laser pulses. The dependence of angular distributions of emitted radiation on a pulse duration is also investigated. Pronounced asymmetries of angular distributions are found for very short laser pulses, which gradually disappear with increasing the number of laser field oscillations. Those asymmetries are attributed to asymmetries of the vector potential describing an incident laser beam.

  20. ?-Decay in Ultra-Intense Laser Fields

    E-Print Network [OSTI]

    Serban Misicu; Margarit Rizea

    2013-07-05T23:59:59.000Z

    We investigate the \\alpha-decay of a spherical nucleus under the influence of an ultra-intense laser field for the case when the radius vector joining the center-of-masses of the \\alpha-particle and the daughter is aligned with the direction of the external field. The time-independent part of the \\alpha-daughter interaction is taken from elastic scattering compilations whereas the time-varying part describes the interaction between the decaying system with the laser field. The time-dependent Schr\\"odinger equation is solved numerically by appealing to a modified scheme of the Crank-Nicolson type where an additional first-order time derivative appears compared to the field-free case. The tunneling probability of the \\alpha-cluster, and derived quantities (decay rate, total flux) is determined for various laser intensities and frequencies for either continous waves or few-cycle pulses of envelope function F(t)=1. We show that in the latter case pulse sequences containing an odd number of half-cycles determine an enhancement of the tunneling probability compared to the field-free case and the continuous wave case. The present study is carried out taking as example the alpha decaying nucleus $^{106}$Te.

  1. China's energy intensity and its determinants at the provincial level

    E-Print Network [OSTI]

    Zhang, Xin, S.M. Massachusetts Institute of Technology

    2009-01-01T23:59:59.000Z

    Energy intensity is defined as the amount of energy consumed per dollar of GDP (Gross Domestic Product). The People's Republic of China's (China's) energy intensity has been declining significantly since the late 1970s. ...

  2. Modeling scattered intensity from microspheres in evanescent field

    E-Print Network [OSTI]

    Shah, Suhani Kiran

    2008-10-10T23:59:59.000Z

    of the total scattered light intensity on microsphere size accounts for the scattered intensity distribution in a polydisperse microsphere sample. Understanding this variation in the scattered light with microsphere size will allow improved characterization...

  3. INERTIAL FUSION DRIVEN BY INTENSE HEAVY-ION BEAMS

    E-Print Network [OSTI]

    Sharp, W. M.

    2011-01-01T23:59:59.000Z

    HIFAN 1830 INERTIAL FUSION DRIVEN BY INTENSE HEAVY-ION BEAMSAC02-05CH11231. INERTIAL FUSION DRIVEN BY INTENSE HEAVY-ION467 (1992). [38] R. W. Moir, Fusion Tech. 25, 5 (1994) [39

  4. Position, rotation, and intensity invariant recognizing method

    DOE Patents [OSTI]

    Ochoa, Ellen (Pleasanton, CA); Schils, George F. (San Ramon, CA); Sweeney, Donald W. (Alamo, CA)

    1989-01-01T23:59:59.000Z

    A method for recognizing the presence of a particular target in a field of view which is target position, rotation, and intensity invariant includes the preparing of a target-specific invariant filter from a combination of all eigen-modes of a pattern of the particular target. Coherent radiation from the field of view is then imaged into an optical correlator in which the invariant filter is located. The invariant filter is rotated in the frequency plane of the optical correlator in order to produce a constant-amplitude rotational response in a correlation output plane when the particular target is present in the field of view. Any constant response is thus detected in the output The U.S. Government has rights in this invention pursuant to Contract No. DE-AC04-76DP00789 between the U.S. Department of Energy and AT&T Technologies, Inc.

  5. Data Intensive Architecture for Scalable Cyber Analytics

    SciTech Connect (OSTI)

    Olsen, Bryan K.; Johnson, John R.; Critchlow, Terence J.

    2011-12-19T23:59:59.000Z

    Cyber analysts are tasked with the identification and mitigation of network exploits and threats. These compromises are difficult to identify due to the characteristics of cyber communication, the volume of traffic, and the duration of possible attack. In this paper, we describe a prototype implementation designed to provide cyber analysts an environment where they can interactively explore a months worth of cyber security data. This prototype utilized On-Line Analytical Processing (OLAP) techniques to present a data cube to the analysts. The cube provides a summary of the data, allowing trends to be easily identified as well as the ability to easily pull up the original records comprising an event of interest. The cube was built using SQL Server Analysis Services (SSAS), with the interface to the cube provided by Tableau. This software infrastructure was supported by a novel hardware architecture comprising a Netezza TwinFin for the underlying data warehouse and a cube server with a FusionIO drive hosting the data cube. We evaluated this environment on a months worth of artificial, but realistic, data using multiple queries provided by our cyber analysts. As our results indicate, OLAP technology has progressed to the point where it is in a unique position to provide novel insights to cyber analysts, as long as it is supported by an appropriate data intensive architecture.

  6. Intense ultraviolet perturbations on aquatic primary producers

    E-Print Network [OSTI]

    Guimarais, Mayrene; Horvath, Jorge

    2010-01-01T23:59:59.000Z

    During the last decade, the hypothesis that one or more biodiversity drops in the Phanerozoic eon, evident in the geological record, might have been caused by the most powerful kind of stellar explosion so far known (Gamma Ray Bursts) has been discussed in several works. These stellar explosions could have left an imprint in the biological evolution on Earth and in other habitable planets. In this work we calculate the short-term lethality that a GRB would produce in the aquatic primary producers on Earth. This effect on life appears as a result of ultraviolet (UV) re-transmission in the atmosphere of a fraction of the gamma energy, resulting in an intense UV flash capable of penetrating ~ tens of meters in the water column in the ocean. We focus on the action of the UV flash on phytoplankton, as they are the main contributors to global aquatic primary productivity. Our results suggest that the UV flash could cause an hemispheric reduction of phytoplankton biomass in the upper mixed layer of the World Ocean o...

  7. Physics of intense, high energy radiation effects.

    SciTech Connect (OSTI)

    Hjalmarson, Harold Paul; Hartman, E. Frederick; Magyar, Rudolph J.; Crozier, Paul Stewart

    2011-02-01T23:59:59.000Z

    This document summarizes the work done in our three-year LDRD project titled 'Physics of Intense, High Energy Radiation Effects.' This LDRD is focused on electrical effects of ionizing radiation at high dose-rates. One major thrust throughout the project has been the radiation-induced conductivity (RIC) produced by the ionizing radiation. Another important consideration has been the electrical effect of dose-enhanced radiation. This transient effect can produce an electromagnetic pulse (EMP). The unifying theme of the project has been the dielectric function. This quantity contains much of the physics covered in this project. For example, the work on transient electrical effects in radiation-induced conductivity (RIC) has been a key focus for the work on the EMP effects. This physics in contained in the dielectric function, which can also be expressed as a conductivity. The transient defects created during a radiation event are also contained, in principle. The energy loss lead the hot electrons and holes is given by the stopping power of ionizing radiation. This information is given by the inverse dielectric function. Finally, the short time atomistic phenomena caused by ionizing radiation can also be considered to be contained within the dielectric function. During the LDRD, meetings about the work were held every week. These discussions involved theorists, experimentalists and engineers. These discussions branched out into the work done in other projects. For example, the work on EMP effects had influence on another project focused on such phenomena in gases. Furthermore, the physics of radiation detectors and radiation dosimeters was often discussed, and these discussions had impact on related projects. Some LDRD-related documents are now stored on a sharepoint site (https://sharepoint.sandia.gov/sites/LDRD-REMS/default.aspx). In the remainder of this document the work is described in catergories but there is much overlap between the atomistic calculations, the continuum calculations and the experiments.

  8. EIA Energy Efficiency-Residential Sector Energy Intensities,...

    U.S. Energy Information Administration (EIA) Indexed Site

    2009 These tables provide estimates of residential sector energy consumption and energy intensities for 1978 -1984, 1987, 1990, 1993, 1997, 2001 and 2005 based on the...

  9. ITP Energy Intensive Processes: Improved Heat Recovery in Biomass...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Improved Heat Recovery in Biomass-Fired Boilers ITP Energy Intensive Processes: Improved Heat Recovery in Biomass-Fired Boilers biomass-firedboilers.pdf More Documents &...

  10. Engineering Strength, Porosity, and Emission Intensity of Nanostructur...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the porosity, mechanical strength, and luminescence intensity of metal chalcogenide aerogels was probed by comparison of CdSe aerogels prepared from spherical and rod-shaped...

  11. Robust optimization of intensity modulated proton therapy

    SciTech Connect (OSTI)

    Liu Wei; Zhang Xiaodong; Li Yupeng; Mohan, Radhe [Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas 77030 (United States)

    2012-02-15T23:59:59.000Z

    Purpose: Intensity modulated proton therapy (IMPT) is highly sensitive to range uncertainties and uncertainties caused by setup variation. The conventional inverse treatment planning of IMPT optimized based on the planning target volume (PTV) is not often sufficient to ensure robustness of treatment plans. In this paper, a method that takes the uncertainties into account during plan optimization is used to mitigate the influence of uncertainties in IMPT. Methods: The authors use the so-called ''worst-case robust optimization'' to render IMPT plans robust in the face of uncertainties. For each iteration, nine different dose distributions are computed--one each for {+-} setup uncertainties along anteroposterior (A-P), lateral (R-L) and superior-inferior (S-I) directions, for {+-} range uncertainty, and the nominal dose distribution. The worst-case dose distribution is obtained by assigning the lowest dose among the nine doses to each voxel in the clinical target volume (CTV) and the highest dose to each voxel outside the CTV. Conceptually, the use of worst-case dose distribution is similar to the dose distribution achieved based on the use of PTV in traditional planning. The objective function value for a given iteration is computed using this worst-case dose distribution. The objective function used has been extended to further constrain the target dose inhomogeneity. Results: The worst-case robust optimization method is applied to a lung case, a skull base case, and a prostate case. Compared with IMPT plans optimized using conventional methods based on the PTV, our method yields plans that are considerably less sensitive to range and setup uncertainties. An interesting finding of the work presented here is that, in addition to reducing sensitivity to uncertainties, robust optimization also leads to improved optimality of treatment plans compared to the PTV-based optimization. This is reflected in reduction in plan scores and in the lower normal tissue doses for the same coverage of the target volume when subjected to uncertainties. Conclusions: The authors find that the worst-case robust optimization provides robust target coverage without sacrificing, and possibly even improving, the sparing of normal tissues. Our results demonstrate the importance of robust optimization. The authors assert that all IMPT plans should be robustly optimized.

  12. UMass Lowell Intensive Spanish Language & Culture in Cdiz, Spain

    E-Print Network [OSTI]

    Massachusetts at Lowell, University of

    UMass Lowell Intensive Spanish Language & Culture in Cádiz, Spain Program Description Travel to Spain and study at the University of Cádiz in a specialized intensive language program established Lowell During the Summer in Cádiz, Spain! Complete Levels 1-4 (12 credit) of Spanish language in one

  13. A new acoustic three dimensional intensity and energy density probe

    E-Print Network [OSTI]

    Boyer, Edmond

    A new acoustic three dimensional intensity and energy density probe F. Aymea , C. Carioub , M is a great advantage. In this frame, a new intensity acoustic probe has been developed to compute acoustic quantities which can be input data for energetic identification methods. 1 Introduction Noise matters

  14. Intensive Summer Spanish Courses in Barcelona for Erasmus & University .

    E-Print Network [OSTI]

    Greifswald, Ernst-Moritz-Arndt-Universitt

    Intensive Summer Spanish Courses in Barcelona for Erasmus & University . 2014 -AUGUST 11th -SEPTEMBER- OCTOBER SpainBcn-Programs in Barcelona, is the best place to learn Spanish fast, in a warm in Barcelona or elsewhere in Spain (many students attending Spanish Universities take a 2/3/4 weeks Intensive

  15. Laser Guiding at Relativistic Intensities and Wakefield Particle Acceleration

    E-Print Network [OSTI]

    Geddes, Cameron Guy Robinson

    Laser Guiding at Relativistic Intensities and Wakefield Particle Acceleration in Plasma Channels C for the first time in a high gradient laser wakefield accelerator by guiding the drive laser pulse. Channels formed by hydrodynamic shock were used to guide acceleration relevant laser intensities of at least 1E18

  16. Probing the quantum vacuum with ultra intense laser pulses

    E-Print Network [OSTI]

    B. Manuel Hegelich; Gerard Mourou; Johann Rafelski

    2014-12-28T23:59:59.000Z

    This article presents: 1) The theoretical background of strong field physics and vacuum structure and stability; 2) The instrumental developments in the area of pulse lasers and considers the physics case for ultra intense laser facilities; and 3) Discussion of the applied and fundamental uses of ultra-intense lasers.

  17. Probing the quantum vacuum with ultra intense laser pulses

    E-Print Network [OSTI]

    Hegelich, B Manuel; Rafelski, Johann

    2014-01-01T23:59:59.000Z

    This article presents: 1) The theoretical background of strong field physics and vacuum structure and stability; 2) The instrumental developments in the area of pulse lasers and considers the physics case for ultra intense laser facilities; and 3) Discussion of the applied and fundamental uses of ultra-intense lasers.

  18. Studies of fast electron transport in the problems of inertial fusion energy

    E-Print Network [OSTI]

    Frolov, Boris K.

    2006-01-01T23:59:59.000Z

    in the generation of ultra-intense laser pulses using theexperiments with ultra-high intensity laser [10]. The modeldot, and then ultra-high intensity single laser is used to

  19. Spectral variations of the X-ray binary pulsar LMC X-4 during its long period intensity variation and a comparison with Her X-1

    E-Print Network [OSTI]

    S. Naik; B. Paul

    2003-01-13T23:59:59.000Z

    We present spectral variations of the binary X-ray pulsar LMC X-4 using the RXTE/PCA observations at different phases of its 30.5 day long super-orbital period. Only out of eclipse data were used for this study. During the high state of the super-orbital period of LMC X-4, the spectrum is well described by a high energy cut-off power-law with a photon index in the range of 0.7-1.0 and an iron emission line. In the low state, the spectrum is found to be flatter with power-law photon index in the range 0.5-0.7. A direct correlation is detected between the continuum flux in 7-25 keV energy band and the iron emission line flux. The equivalent width of the iron emission line is found to be highly variable during low intensity state, whereas it remains almost constant during the high intensity state of the super-orbital period. It is observed that the spectral variations in LMC X-4 are similar to those of Her X-1 (using RXTE/PCA data). These results suggest that the geometry of the region where the iron line is produced and its visibility with respect to the phase of the super-orbital period is similar in LMC X-4 and Her X-1. A remarkable difference between these two systems is a highly variable absorption column density with phase of the super-orbital period that is observed in Her X-1 but not in LMC X-4.

  20. Resonant high-order harmonic generation from plasma ablation: Laser intensity dependence of the harmonic intensity and phase

    SciTech Connect (OSTI)

    Milosevic, D. B. [Faculty of Science, University of Sarajevo, Zmaja od Bosne 35, 71000 Sarajevo (Bosnia and Herzegowina); Max-Born-Institut, Max-Born-Str. 2a, D-12489 Berlin (Germany)

    2010-02-15T23:59:59.000Z

    Experimentally observed strong enhancement of a single high-order harmonic in harmonic generation from low-ionized laser plasma ablation is explained as resonant harmonic generation. The resonant harmonic intensity increases regularly with the increase of the laser intensity, while the phase of the resonant harmonic is almost independent of the laser intensity. This is in sharp contrast with the usual plateau and cutoff harmonics, the intensity of which exhibits wild oscillations while its phase changes rapidly with the laser intensity. The temporal profile of a group of harmonics, which includes the resonant harmonic, has the form of a broad peak in each laser-field half cycle. These characteristics of resonant harmonics can have an important application in attoscience. We illustrate our results using examples of Sn and Sb plasmas.

  1. Capacity planning and admission control policies for intensive care units

    E-Print Network [OSTI]

    Chaiwanon, Wongsakorn

    2010-01-01T23:59:59.000Z

    Poor management of the patient flow in intensive care units (ICUs) causes service rejections and presents significant challenges from the standpoint of capacity planning and management in ICUs. This thesis reports on the ...

  2. Intense ion beam propagation in a reactor sized chamber

    E-Print Network [OSTI]

    Vay, J.L.; Deutsch, C.

    2000-01-01T23:59:59.000Z

    beams in a heavy ion fusion reactor chamber filled with lowIon Fusion, Intense Ion Beams, Reaction Chamber. P.A.C.S.heavy ion beam propagation in the reaction chamber, Fus.

  3. The Gamma Intensity Monitor at the Crystal-Barrel-Experiment

    E-Print Network [OSTI]

    McGehee, William R

    2008-01-01T23:59:59.000Z

    This thesis details the motivation, design, construction, and testing of the Gamma Intensity Monitor (GIM) for the Crystal-Barrel-Experiment at the Universitt Bonn. The CB-ELSA collaboration studies the baryon excitation ...

  4. China energy issues : energy intensity, coal liquefaction, and carbon pricing

    E-Print Network [OSTI]

    Wu, Ning, Ph. D. Massachusetts Institute of Technology

    2011-01-01T23:59:59.000Z

    In my dissertation I explore three independent, but related, topics on China's energy issues. First, I examine the drivers for provincial energy-intensity trends in China, and finds that technology innovation is the key ...

  5. abscess requiring intensive: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the journey of conserving energy at our facility. We?ll discuss a basic layout of our energy intensity plan... 75846 Ph 903 626-6242 Fax 903 626-6293 Dick.rappolee@nstexas.com...

  6. Energy intensity in China's iron and steel sector

    E-Print Network [OSTI]

    Xu, Jingsi, M.C.P. Massachusetts Institute of Technology

    2011-01-01T23:59:59.000Z

    In this study, I examine the spatial and economic factors that influence energy intensity in China's iron and steel sector, namely industrial value added, renovation investment, coke consumption, and local coke supply. ...

  7. Thesis Oral Energy-efficient Data-intensive

    E-Print Network [OSTI]

    Thesis Oral Energy-efficient Data-intensive Computing with a Fast Array of Wimpy Nodes Vijay classification and workload analysis showing when FAWN can be more energyefficient and under what workload

  8. Estimating material and energy intensities of urban areas

    E-Print Network [OSTI]

    Quinn, David James, Ph. D. Massachusetts Institute of Technology

    2012-01-01T23:59:59.000Z

    The objective of this thesis is to develop methods to estimate, analyze and visualize the resource intensity of urban areas. Understanding the resource consumption of the built environment is particularly relevant in cities ...

  9. abdominal intensity modulated: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Optics, John Wiley, New York, NY, USA. ... Webb, S.: 2001a, Intensity-Modulated Radiation Therapy, Institute of Physics ... Ying X 2004-05-25 2 Trellis coded modulation and...

  10. accelerated hypofractionated intensity-modulated: Topics by E...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Optics, John Wiley, New York, NY, USA. ... Webb, S.: 2001a, Intensity-Modulated Radiation Therapy, Institute of Physics ... Ying X 2004-05-25 2 High Datarate in Multimode...

  11. VACUUM PRESSURE RISE WITH INTENSE ION BEAMS IN RHIC.

    SciTech Connect (OSTI)

    FISCHER,W.; BAI,M.; BRENNAN,J.M.; BLASKIEWICZ,M.; CAMERON,P.; HSEUH,H.C.; HUANG,H.; MACKAY,W.; ROSER,T.; SATOGATA,T.; SMART,L.A.; TRBOJEVIC,D.; ZHANG,S.Y.

    2002-06-02T23:59:59.000Z

    When RHIC is filled with bunches of intense ion beams a pressure rise is observed. The pressure rise exceeds the acceptable limit for operation with the design intensities. Observations of events leading to a pressure rise are summarized. Relevant parameters include ion species, charge per bunch, bunch spacing, and the location in the ring. Effects that contribute to a pressure rise are discussed, including beam gas ionization and ion desorption, loss-induced gas desorption, and electron desorption from electron clouds.

  12. The effects of pre-formed plasma on the generation and transport of fast electrons in relativistic laser-solid interactions

    E-Print Network [OSTI]

    Paradkar, Bhooshan S.

    2012-01-01T23:59:59.000Z

    Langdon. Absorption of ultra-intense laser pulses. Physicalproton generation in ultra-intense lasersolid interactions.heating in ultra high intensity laser-plasma interaction.

  13. Numerical solution of transient eddy current problems with input current intensities as boundary data

    E-Print Network [OSTI]

    Rodríguez, Rodolfo

    Numerical solution of transient eddy current problems with input current intensities as boundary to solve transient eddy current problems with input current intensities as data, formulated in terms: Eddy current problems, time-dependent electromagnetic problems, input current intensities, finite

  14. Spicules Intensity Oscillations in SOT/HINODE Observations

    E-Print Network [OSTI]

    Tavabi, E; Maralani, A R Ahangarzadeh; Zeighami, S

    2015-01-01T23:59:59.000Z

    Aims. We study the coherency of solar spicules intensity oscillations with increasing height above the solar limb in quiet Sun, active Sun and active region using observations from HINODE/SOT. Existence of coherency up to transition region strengthens the theory of the coronal heating and solar wind through energy transport and photospheric oscillations. Methods. Using time sequences from the HINODE/SOT in Ca II H line, we investigate oscillations found in intensity profiles at different heights above the solar limb. We use the Fourier and wavelet analysis to measure dominant frequency peaks of intensity at the heights, and phase difference between oscillations at two certain heights, to find evidence for the coherency of the oscillations. Finally, we can calculate the energy and the mass transported by spicules providing energy equilibrium, according to density values of spicules at different heights. To extend this work, we can also consider coherent oscillations at different latitudes and suggest to study ...

  15. Measurement of Dynamic Light Scattering Intensity in Gels

    E-Print Network [OSTI]

    Rochas, Cyrille

    2015-01-01T23:59:59.000Z

    In the scientific literature little attention has been given to the use of dynamic light scattering (DLS) as a tool for extracting the thermodynamic information contained in the absolute intensity of light scattered by gels. In this article we show that DLS yields reliable measurements of the intensity of light scattered by the thermodynamic fluctuations, not only in aqueous polymer solutions, but also in hydrogels. In hydrogels, light scattered by osmotic fluctuations is heterodyned by that from static or slowly varying inhomogeneities. The two components are separable owing to their different time scales, giving good experimental agreement with macroscopic measurements of the osmotic pressure. DLS measurements in gels are, however, tributary to depolarised light scattering from the network as well as to multiple light scattering. The paper examines these effects, as well as the instrumental corrections required to determine the osmotic modulus. For guest polymers trapped in a hydrogel the measured intensity...

  16. Interpreting the unresolved intensity of cosmologically redshifted line radiation

    E-Print Network [OSTI]

    Switzer, Eric R; Masui, Kiyoshi W; Pen, Ue-Li; Voytek, Tabitha C

    2015-01-01T23:59:59.000Z

    Intensity mapping experiments survey the spectrum of diffuse line radiation rather than detect individual objects at high signal-to-noise. Spectral maps of unresolved atomic and molecular line radiation contain three-dimensional information about the density and environments of emitting gas, and efficiently probe cosmological volumes out to high redshift. Intensity mapping survey volumes also contain all other sources of radiation at the frequencies of interest. Continuum foregrounds are typically ~10^2-10^3 times brighter than the cosmological signal. The instrumental response to bright foregrounds will produce new spectral degrees of freedom that are not known in advance, nor necessarily spectrally smooth. The intrinsic spectra of foregrounds may also not be well-known in advance. We describe a general class of quadratic estimators to analyze data from single-dish intensity mapping experiments, and determine contaminated spectral modes from the data itself. The key attribute of foregrounds is not that they ...

  17. Energy Intensity Trends in AEO2010 (released in AEO2010)

    Reports and Publications (EIA)

    2010-01-01T23:59:59.000Z

    Energy intensity (energy consumption per dollar of real GDP) indicates how much energy a country uses to produce its goods and services. From the early 1950s to the early 1970s, U.S. total primary energy consumption and real GDP increased at nearly the same annual rate. During that period, real oil prices remained virtually flat. In contrast, from the mid-1970s to 2008, the relationship between energy consumption and real GDP growth changed, with primary energy consumption growing at less than one-third the previous average rate and real GDP growth continuing to grow at its historical rate. The decoupling of real GDP growth from energy consumption growth led to a decline in energy intensity that averaged 2.8% per year from 1973 to 2008. In the Annual Energy Outlook 2010 Reference case, energy intensity continues to decline, at an average annual rate of 1.9% from 2008 to 2035.

  18. FY06 LDRD Final Report Data Intensive Computing

    SciTech Connect (OSTI)

    Abdulla, G M

    2007-02-13T23:59:59.000Z

    The goal of the data intensive LDRD was to investigate the fundamental research issues underlying the application of High Performance Computing (HPC) resources to the challenges of data intensive computing. We explored these issues through four targeted case studies derived from growing LLNL programs: high speed text processing, massive semantic graph analysis, streaming image feature extraction, and processing of streaming sensor data. The ultimate goal of this analysis was to provide scalable data management algorithms to support the development of a predictive knowledge capability consistent with the direction of Aurora.

  19. Data-intensive computing laying foundation for biological breakthroughs

    SciTech Connect (OSTI)

    Hachigian, David J.

    2007-06-18T23:59:59.000Z

    Finding a different way is the goal of the Data-Intensive Computing for Complex Biological Systems (Biopilot) projecta joint research effort between the Pacific Northwest National Laboratory (PNNL) and Oak Ridge National Laboratory funded by the U.S. Department of Energys Office of Advanced Scientific Computing Research. The two national laboratories, both of whom are world leaders in computing and computational sciences, are teaming to support areas of biological research in urgent need of data-intensive computing capabilities.

  20. Electron generation and transport in intense relativistic laser-plasma interactions relevant to fast ignition ICF

    E-Print Network [OSTI]

    Ma, Tammy Yee Wing

    2010-01-01T23:59:59.000Z

    Transport of Energy by Ultra-Intense Laser-Generated tronsof Energy by Ultra-Intense Laser-Generated Electrons inUltra-High In- tensity Lasers . . . . . . . . . . . . . . . . . . . . . . . .

  1. Gamma Ray Bursts Sudden, intense flashes of gamma rays

    E-Print Network [OSTI]

    Washington at Seattle, University of - Department of Physics, Electroweak Interaction Research Group

    Gamma Ray Bursts #12;The Case Sudden, intense flashes of gamma rays come from nowhere and disappear with out a trace. Incredibly powerful: A single gamma ray burst is hundreds of times brighter a supernova #12;Who Vela (1960's) Looking for arms testing, found gamma ray bursts Compton Gamma Ray Observatory

  2. Title of Dissertation: CONTROL AND TRANSPORT OF INTENSE ELECTRON BEAMS

    E-Print Network [OSTI]

    Anlage, Steven

    ABSTRACT Title of Dissertation: CONTROL AND TRANSPORT OF INTENSE ELECTRON BEAMS Hui Li, Doctor of Philosophy, 2004 Dissertation Directed By: Professor, Patrick G. O'Shea Department of Electrical and Computer throughout the strong focusing lattice. We describe in this dissertation the main beam control techniques

  3. PNNL Data-Intensive Computing for a Smarter Energy Grid

    ScienceCinema (OSTI)

    Carol Imhoff; Zhenyu (Henry) Huang; Daniel Chavarria

    2012-12-31T23:59:59.000Z

    The Middleware for Data-Intensive Computing (MeDICi) Integration Framework, an integrated platform to solve data analysis and processing needs, supports PNNL research on the U.S. electric power grid. MeDICi is enabling development of visualizations of grid operations and vulnerabilities, with goal of near real-time analysis to aid operators in preventing and mitigating grid failures.

  4. PNNLs Data Intensive Computing research battles Homeland Security threats

    ScienceCinema (OSTI)

    David Thurman; Joe Kielman; Katherine Wolf; David Atkinson

    2012-12-31T23:59:59.000Z

    The Pacific Northwest National Laboratorys (PNNL's) approach to data intensive computing (DIC) is focused on three key research areas: hybrid hardware architecture, software architectures, and analytic algorithms. Advancements in these areas will help to address, and solve, DIC issues associated with capturing, managing, analyzing and understanding, in near real time, data at volumes and rates that push the frontiers of current technologies.

  5. Solar panels are cost intensive, have limitations with respect to

    E-Print Network [OSTI]

    Langendoen, Koen

    Solar panels are cost intensive, have limitations with respect to where they can be integrated to a building as solar panels on a roof or facades are. Ref. TU Delft OCT-13-022 TU Delft / Valorisation Centre of the window, integrated in the window frames, strip-shaped CIGS PV solar cells convert the light

  6. Intensity Modulated Beam Radiation Therapy Dose Optimization with Multiobjective

    E-Print Network [OSTI]

    Coello, Carlos A. Coello

    Intensity Modulated Beam Radiation Therapy Dose Optimization with Multiobjective Evolutionary will be di- agnosed with cancer. Half of these will be treated with radiation therapy [1]. In teletherapy or external radiotherapy beams of penetrating radiation are directed at the tumor. Along their path through

  7. PNNL pushing scientific discovery through data intensive computing breakthroughs

    ScienceCinema (OSTI)

    Deborah Gracio; David Koppenaal; Ruby Leung

    2012-12-31T23:59:59.000Z

    The Pacific Northwest National Laboratorys approach to data intensive computing (DIC) is focused on three key research areas: hybrid hardware architectures, software architectures, and analytic algorithms. Advancements in these areas will help to address, and solve, DIC issues associated with capturing, managing, analyzing and understanding, in near real time, data at volumes and rates that push the frontiers of current technologies.

  8. Intensive neutrino source on the base of lithium converter

    E-Print Network [OSTI]

    Lyashuk, V I

    2015-01-01T23:59:59.000Z

    An intensive antineutrino source with a hard spectrum (with energy up to 13 MeV, average energy 6.5 MeV) can be realized on the base of beta-decay of short living isotope 8Li (0.84 s). The 8Li isotope (generated in activation of 7Li isotope) is a prime perspective antineutrino source owing to the hard antineutrino spectrum and square dependence of cross section on the energy. Up today nuclear reactors are the most intensive neutrino sources. Antineutrino reactor spectra have large uncertainties in the summary antineutrino spectrum at energy E>6 MeV. Use of 8Li isotope allows to decrease sharply the uncertainties or to exclude it completely. An intensive neutron fluxes are requested for rapid generation of 8Li isotope. The installations on the base of nuclear reactors can be an alternative for nuclear reactors as traditional neutron sources. It is possible creation of neutrino sources another in principle: on the base of tandem of accelerators, neutron generating targets and lithium converter. An intensive neu...

  9. Computer-intensive rate estimation, diverging statistics, and scanning

    E-Print Network [OSTI]

    Politis, Dimitris N.

    Computer-intensive rate estimation, diverging statistics, and scanning Tucker McElroy U.S. Bureau in a very general setting without requiring the choice of a tun- ing parameter. The notion of scanning method is ap- plied to different scans, and the resulting estimators are then combined to improve

  10. Continuous Snow Depth, Intensive Site 1, Barrow, Alaska

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Cable, William; Romanovsky, Vladimir; Hinzman, Larry; Busey, Bob

    Continuous Snow depth data are being collected at several points within four intensive study areas in Barrow, Alaska. These data are being collected to better understand the energy dynamics above the active layer and permafrost. They complement in-situ snow and soil measurements at this location. The data could also be used as supporting measurements for other research and modeling activities.

  11. How Fish Communities Differ Across Stream Restoration Intensities

    E-Print Network [OSTI]

    Vallino, Joseph J.

    ! ! ! ! How Fish Communities Differ Across Stream Restoration Intensities Andrew Miano1 Mentor to their natural function. This is known as stream restoration. Unfortunately, ecological concepts can be left out during stream restoration JK$>*!*1!$9:!'LLMN. This is in part due to the fact that ecologists still do

  12. Intense Lithium Streams in Tokamaks 1 Leonid E. Zakharov,

    E-Print Network [OSTI]

    Zakharov, Leonid E.

    Intense Lithium Streams in Tokamaks 1 Leonid E. Zakharov, Princeton University, Princeton Plasma. Temperature of the streams. 2. Lithium jets. 3. Injection into vacuum chamber. 4. Propulsion inside the vacuum chamber. 5. Stability of the lithium streams. 6. Expulsion of the lithium. 7. Summary. PRINCETON PLASMA

  13. The Synoptic Regulation of Dryline Intensity DAVID M. SCHULTZ

    E-Print Network [OSTI]

    Schultz, David

    1 The Synoptic Regulation of Dryline Intensity DAVID M. SCHULTZ Cooperative Institute for Mesoscale, Texas PAUL M. HOFFMAN Massachusetts Institute of Technology, Cambridge, Massachusetts An Article of synoptic-scale processes in regulating the strength of the dryline, a dataset is constructed of all

  14. Intensity Histogram CMOS Image Sensor for Adaptive Optics

    E-Print Network [OSTI]

    Cauwenberghs, Gert

    Intensity Histogram CMOS Image Sensor for Adaptive Optics Yu M. Chi, Gary Carhart , Mikhail AAODisturbanceSource Update/Optimize Fig. 1. Intended real-time optical control application. The sensor computes histogram of Bioengineering University of California, San Diego La Jolla, CA 92093 Intelligent Optics Lab U.S. Army Research

  15. Particle Acceleration by a Short-Intense Elliptically Polarized Electromagnetic

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    Particle Acceleration by a Short-Intense Elliptically Polarized Electromagnetic Pulse Propagating to plasma physics and particle accelerators. The interaction physics of fields with particles has also been, Colchester CO4 3SQ, U.K. Abstract. The motion of a charged particle driven by an electromagnetic pulse

  16. Cavitation level-acoustic intensity hysteresis: experimental and numerical characterization

    E-Print Network [OSTI]

    Boyer, Edmond

    Cavitation level-acoustic intensity hysteresis: experimental and numerical characterization P such as sonoporation, inertial cavitation is commonly considered as the main candidate inducing membrane poration. Thus, characterizing inertial cavitation, as related to bubble size distribution and medium history, is of great

  17. Global warming and hurricane intensity and frequency: The debate continues

    E-Print Network [OSTI]

    Kareem, Ahsan

    Global warming and hurricane intensity and frequency: The debate continues Megan Mc of these changes. Some scientists believe that global warming and increased sea surface temperatures are to blame, global warming and increased sea surface temperatures do appear to have influenced hurricane frequency

  18. Biomaterials Design for Control of Cell Behavior by Femtosecond Laser Processing

    E-Print Network [OSTI]

    Jeon, Hojeong

    2011-01-01T23:59:59.000Z

    hybrid polymers with ultra-short laser pulses. PhysicaWhen highly intense ultra-short laser pulses are focusedWhen highly intense ultra-short laser pulses are focused

  19. Center for Beam Physics

    E-Print Network [OSTI]

    Chattopadhyay, S.

    2010-01-01T23:59:59.000Z

    interactions, ultra-high intensity lasers, 3D Laser Imagingconcepts, ultra-high intensity lasers, x-ray generation,interests: Ultra-high vacuum, particle beam and laser beam

  20. Statistical mechanics of hot dense matter

    SciTech Connect (OSTI)

    More, R.

    1986-10-01T23:59:59.000Z

    Research on properties of hot dense matter produced with high intensity laser radiation is described in a brief informal review.

  1. A TWO-PHASE HEAT SPREADER FOR COOLING HIGH HEAT FLUX SOURCES Mitsuo Hashimoto, Hiroto Kasai, Yuichi Ishida, Hiroyuki Ryoson, a

    E-Print Network [OSTI]

    -power lasers, high-intensity light-emitting diodes (LEDs), and semiconductor power devices. The heat spreader

  2. A Juarez drug lord saved my life. Confessions of an accidental narco

    E-Print Network [OSTI]

    Cruz Rosas, Monica

    2013-01-01T23:59:59.000Z

    Organizations: Sinaloa Cartel West Texas High Intensity Drugarchive/ndic/dmas/West_Texas_DMA-2011(U).pdf Drug

  3. Benthic Invertebrate Community Composition in Four Stream across a Restoration Intensity Gradient

    E-Print Network [OSTI]

    Vallino, Joseph J.

    Benthic Invertebrate Community Composition in Four Stream across a Restoration Intensity Gradient of cranberry farming on streams. These restoration projects vary in their intensity from low restoration streams with varying degrees of restoration intensity to determine if increased restoration intensity more

  4. Atlas of uranium emission intensities in a hollow cathode discharge

    SciTech Connect (OSTI)

    Palmer, B.A.; Keller, R.A.; Engleman, R. Jr.

    1980-07-01T23:59:59.000Z

    The uranium emission spectrum from a hollow cathode discharge is displayed from 11,000 to 26,000 cm/sup -1/. This atlas lists 4928 spectral lines of uranium; 3949 are classified to the neutral spectrum and 431 are classified to the singly ionized spectrum. Listed wavenumbers are accurate to +-0.003 cm/sup -1/ and the listed relative intensities to +-8%. The richness of the spectrum makes this atlas useful for wavenumber calibration of lasers, spectrographs, and monochromators to an accuracy of 1 part in 10/sup 7/. This atlas is also useful as a guide to the uranium spectrum, and relative oscillator strengths (gf values) can be calculated from the intensities to a precision of +-20%.

  5. Response of GaAs to fast intense laser pulses

    E-Print Network [OSTI]

    Graves, JS; Allen, Roland E.

    1998-01-01T23:59:59.000Z

    . The Hamiltonian is H ~ r !5 S ?1 V~r ! V ~ r ! ?2 D , ~1.1! so the bonding and antibonding states have energies ? 6 5 1 2 ~?11?2!6 1 2 @~?12?2! 2 14V ~ r !2#1/2. ~1.2! PRB 580163-1829/98/58~20!/13627~7!/$15.00 t intense laser pulses R. E... to TABLE II. Repulsive potential parameters for GaAs and Si. These values are appropriate when distances are measured in ? and energies in eV. a b g GaAs 263.7 -1227.5 3653.1 Si 263.2 -1027.0 2631.8 PRB 58D R. E. ALLEN an intense laser pulse...

  6. Device for imaging scenes with very large ranges of intensity

    DOE Patents [OSTI]

    Deason, Vance Albert (Idaho Falls, ID)

    2011-11-15T23:59:59.000Z

    A device for imaging scenes with a very large range of intensity having a pair of polarizers, a primary lens, an attenuating mask, and an imaging device optically connected along an optical axis. Preferably, a secondary lens, positioned between the attenuating mask and the imaging device is used to focus light on the imaging device. The angle between the first polarization direction and the second polarization direction is adjustable.

  7. Intensive neutrino source on the base of lithium converter

    E-Print Network [OSTI]

    V. I. Lyashuk; Yu. S Lutostansky

    2015-04-13T23:59:59.000Z

    An intensive antineutrino source with a hard spectrum (with energy up to 13 MeV, average energy 6.5 MeV) can be realized on the base of beta-decay of short living isotope 8Li (0.84 s). The 8Li isotope (generated in activation of 7Li isotope) is a prime perspective antineutrino source owing to the hard antineutrino spectrum and square dependence of cross section on the energy. Up today nuclear reactors are the most intensive neutrino sources. Antineutrino reactor spectra have large uncertainties in the summary antineutrino spectrum at energy E>6 MeV. Use of 8Li isotope allows to decrease sharply the uncertainties or to exclude it completely. An intensive neutron fluxes are requested for rapid generation of 8Li isotope. The installations on the base of nuclear reactors can be an alternative for nuclear reactors as traditional neutron sources. It is possible creation of neutrino sources another in principle: on the base of tandem of accelerators, neutron generating targets and lithium converter. An intensive neutron flux (i.e., powerful neutron source) is requested for realization of considered neutrino sources (neutrino factories). Different realizations of lithium antineutrino sources (lithium converter on the base of high purified 7Li isotope) are discussed: static regime (i.e., without transport of 8Li isotope to the neutrino detector); dynamic regime (transport of 8Li isotope to the remote detector in a closed cycle); an operation of lithium converter in tandem of accelerator with a neutron-producing target on the base of tungsten, lead or bismuth. Different chemical compounds of lithium (as the substance of the converter) are considered. Heavy water solution of LiOD is proposed as a serious alternative to high-pure 7Li in a metallic state.

  8. Intensive neutrino source on the base of lithium converter

    E-Print Network [OSTI]

    V. I. Lyashuk; Yu. S Lutostansky

    2015-03-04T23:59:59.000Z

    An intensive antineutrino source with a hard spectrum (with energy up to 13 MeV, average energy 6.5 MeV) can be realized on the base of beta-decay of short living isotope 8Li (0.84 s). The 8Li isotope (generated in activation of 7Li isotope) is a prime perspective antineutrino source owing to the hard antineutrino spectrum and square dependence of cross section on the energy. Up today nuclear reactors are the most intensive neutrino sources. Antineutrino reactor spectra have large uncertainties in the summary antineutrino spectrum at energy E>6 MeV. Use of 8Li isotope allows to decrease sharply the uncertainties or to exclude it completely. An intensive neutron fluxes are requested for rapid generation of 8Li isotope. The installations on the base of nuclear reactors can be an alternative for nuclear reactors as traditional neutron sources. It is possible creation of neutrino sources another in principle: on the base of tandem of accelerators, neutron generating targets and lithium converter. An intensive neutron flux (i.e., powerful neutron source) is requested for realization of considered neutrino sources (neutrino factories). Different realizations of lithium antineutrino sources (lithium converter on the base of high purified 7Li isotope) are discussed: static regime (i.e., without transport of 8Li isotope to the neutrino detector); dynamic regime (transport of 8Li isotope to the remote detector in a closed cycle); an operation of lithium converter in tandem of accelerator with a neutron-producing target on the base of tungsten, lead or bismuth. Different chemical compounds of lithium (as the substance of the converter) are considered. Heavy water solution of LiOD is proposed as a serious alternative to high-pure 7Li in a metallic state.

  9. Dynamic Fiber Optic Sensors Under Intense Radioactive Environments

    SciTech Connect (OSTI)

    Allison, S.W.; Earl, D.D.; Haines, J.R.; Tsai, C.C.

    1998-10-15T23:59:59.000Z

    A liquid mercury target will be used as the neutron source for the proposed Spallation Neutron Source facility. This target is subjected to bombardment by short-pulse, high-energy proton beams. The intense thermal loads caused by interaction of the pulsed proton beam with the mercury create an enormous rate of temperature rise ({approximately}10{sup 7} K/s) during a very brief beam pulse ({approximately } 0.5 {micro}s). The resulting pressure waves in the mercury will interact with the walls of the mercury target and may lead to large stresses. To gain confidence in the mercury target design concept and to benchmark the computer design codes, we tested various electrical and optical sensors for measuring the transient strains on the walls of a mercury container and the pressures in the mercury. The sensors were attached on several sample mercury targets that were tested at various beam facilities: Oak Ridge Electron Linear Accelerator, Los Alamos Neutron Science Center-Weapons Neutron Research, and Brookhaven National Laboratory's Alternating Gradient Synchrotron. The effects of intense background radiation on measured signals for each sensor are described and discussed. Preliminary results of limited tests at these facilities indicate that the fiber optic sensors function well in this intense radiation environment, whereas conventional electrical sensors are dysfunctional.

  10. Excitation of intense acoustic waves in hexagonal crystals

    SciTech Connect (OSTI)

    Alshits, V. I., E-mail: alshits@ns.crys.ras.ru; Bessonov, D. A.; Lyubimov, V. N. [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation)] [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation)

    2013-11-15T23:59:59.000Z

    Resonant excitation of an intense elastic wave using reflection of a pump wave from a free surface of hexagonal crystal is described. A resonance arises in the case of specially chosen propagation geometry where the reflecting boundary slightly deviates from symmetric orientation and the propagation direction of an intense reflected wave is close to that of an exceptional bulk wave, which satisfies the free boundary condition in unperturbed symmetric orientation. It is shown that, in crystals with elastic moduli c{sub 44}>c{sub 66}, a resonance arises when the initial boundary is chosen parallel to the hexagonal axis 6, whereas in crystals characterized by the relation c{sub 44}intensity can be increased by a factor of 5-10 at sufficiently high frequencies, with beam divergence remaining acceptable.

  11. Relativistic Positron Creation Using Ultra-Intense Short Pulse Lasers

    SciTech Connect (OSTI)

    Chen, H; Wilks, S; Bonlie, J; Liang, E; Myatt, J; Price, D; Meyerhofer, D; Beiersdorfer, P

    2008-08-25T23:59:59.000Z

    We measure up to 2 x 10{sup 10} positrons per steradian ejected out the back of {approx}mm thick gold targets when illuminated with short ({approx} 1 ps) ultra-intense ({approx} 1 x 10{sup 20} W/cm{sup 2}) laser pulses. Positrons produced predominately by the Bethe-Heitler process and have an effective temperature of 2-4 MeV, with the distribution peaking at 4-7 MeV. The angular distribution of the positrons is anisotropic. The measurements indicate the laser produced, relativistic positron densities ({approx} 10{sup 16} positrons/cm{sup 3}) are the highest ever created in the laboratory.

  12. Investigation of storm intensity by means of sferics

    E-Print Network [OSTI]

    Sievers, Henry Emmett

    1959-01-01T23:59:59.000Z

    was about 0. 02. On 15 May, a funnel aloft was sight- ed neer Fort Sherman~ Grayson County~ at a time when 175 kc ratio was about 0. 32. On 18 May~ a funnel aloft occurred at Port Neches when sferics ratio was 0. 1; on the 28th~ a funnel aloft occurred... LIBRARy' A & M COLLEGE OF TEXAS INVESTIGATION OF STORM INTENSITY BY MEANS OF SFERICS A Thesis By HENRY EMMETT SIEVERS Major U. S. A. F. Submitted to the Graduate School of the Agricultural and Mechanical College of Texas in partial...

  13. Energy resource management for energy-intensive manufacturing industries

    SciTech Connect (OSTI)

    Brenner, C.W.; Levangie, J.

    1981-10-01T23:59:59.000Z

    A program to introduce energy resource management into an energy-intensive manufacturing industry is presented. The food industry (SIC No. 20) was chosen and 20 companies were selected for interviews, but thirteen were actually visited. The methodology for this program is detailed. Reasons for choosing the food industry are described. The substance of the information gained and the principal conclusions drawn from the interviews are given. Results of the model Energy Resource Management Plan applied to three companies are compiled at length. Strategies for dissemination of the information gained are described. (MCW)

  14. Assessing Internet energy intensity: A review of methods and results

    SciTech Connect (OSTI)

    Coroama, Vlad C., E-mail: vcoroama@gmail.com [Instituto Superior Tcnico, Universidade Tcnica de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa (Portugal); Hilty, Lorenz M. [Department of Informatics, University of Zurich, Binzmhlestrasse 14, 8050 Zurich (Switzerland) [Department of Informatics, University of Zurich, Binzmhlestrasse 14, 8050 Zurich (Switzerland); Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstr. 5, 9014 St. Gallen (Switzerland); Centre for Sustainable Communications, KTH Royal Institute of Technology, Lindstedtsvgen 5, 100 44 Stockholm (Sweden)

    2014-02-15T23:59:59.000Z

    Assessing the average energy intensity of Internet transmissions is a complex task that has been a controversial subject of discussion. Estimates published over the last decade diverge by up to four orders of magnitude from 0.0064 kilowatt-hours per gigabyte (kWh/GB) to 136 kWh/GB. This article presents a review of the methodological approaches used so far in such assessments: i) topdown analyses based on estimates of the overall Internet energy consumption and the overall Internet traffic, whereby average energy intensity is calculated by dividing energy by traffic for a given period of time, ii) model-based approaches that model all components needed to sustain an amount of Internet traffic, and iii) bottomup approaches based on case studies and generalization of the results. Our analysis of the existing studies shows that the large spread of results is mainly caused by two factors: a) the year of reference of the analysis, which has significant influence due to efficiency gains in electronic equipment, and b) whether end devices such as personal computers or servers are included within the system boundary or not. For an overall assessment of the energy needed to perform a specific task involving the Internet, it is necessary to account for the types of end devices needed for the task, while the energy needed for data transmission can be added based on a generic estimate of Internet energy intensity for a given year. Separating the Internet as a data transmission system from the end devices leads to more accurate models and to results that are more informative for decision makers, because end devices and the networking equipment of the Internet usually belong to different spheres of control. -- Highlights: Assessments of the energy intensity of the Internet differ by a factor of 20,000. We review topdown, model-based, and bottomup estimates from literature. Main divergence factors are the year studied and the inclusion of end devices. We argue against extending the Internet system boundary beyond data transmission. Decision-makers need data that differentiates between end devices and transmission.

  15. Light induced modulation instability of surfaces under intense illumination

    SciTech Connect (OSTI)

    Burlakov, V. M., E-mail: burlakov@maths.ox.ac.uk; Goriely, A. [Mathematical Institute, University of Oxford, Woodstock Road, Oxford OX2 6GG (United Kingdom)] [Mathematical Institute, University of Oxford, Woodstock Road, Oxford OX2 6GG (United Kingdom); Foulds, I. [4700 King Abdullah University of Science and Technology, Thuwal 23955-6900 (Saudi Arabia)] [4700 King Abdullah University of Science and Technology, Thuwal 23955-6900 (Saudi Arabia)

    2013-12-16T23:59:59.000Z

    We show that a flat surface of a polymer in rubber state illuminated with intense electromagnetic radiation is unstable with respect to periodic modulation. Initial periodic perturbation is amplified due to periodic thermal expansion of the material heated by radiation. Periodic heating is due to focusing-defocusing effects caused by the initial surface modulation. The surface modulation has a period longer than the excitation wavelength and does not require coherent light source. Therefore, it is not related to the well-known laser induced periodic structures on polymer surfaces but may contribute to their formation and to other phenomena of light-matter interaction.

  16. Calibrating X-ray Imaging Devices for Accurate Intensity Measurement

    SciTech Connect (OSTI)

    Haugh, M. J.

    2011-07-28T23:59:59.000Z

    The purpose of the project presented is to develop methods to accurately calibrate X-ray imaging devices. The approach was to develop X-ray source systems suitable for this endeavor and to develop methods to calibrate solid state detectors to measure source intensity. NSTec X-ray sources used for the absolute calibration of cameras are described, as well as the method of calibrating the source by calibrating the detectors. The work resulted in calibration measurements for several types of X-ray cameras. X-ray camera calibration measured efficiency and efficiency variation over the CCD. Camera types calibrated include: CCD, CID, back thinned (back illuminated), front illuminated.

  17. Signatures of Radiation Reaction in Ultra-Intense Laser Fields

    E-Print Network [OSTI]

    C. Harvey; T. Heinzl; M. Marklund

    2011-10-04T23:59:59.000Z

    We discuss radiation reaction effects on charges propagating in ultra-intense laser fields. Our analysis is based on an analytic solution of the Landau-Lifshitz equation. We suggest to measure radiation reaction in terms of a symmetry breaking parameter associated with the violation of null translation invariance in the direction opposite to the laser beam. As the Landau-Lifshitz equation is nonlinear the energy transfer within the pulse is rather sensitive to initial conditions. This is elucidated by comparing colliding and fixed target modes in electron laser collisions.

  18. Fermilab | Science at Fermilab | Experiments & Projects | Intensity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.New Mexico Feb. 13, 2013Focusreceives .1Grid IntensityFermilab

  19. Precision monitoring of relative beam intensity for Mu2e

    SciTech Connect (OSTI)

    Evans, N.J.; Kopp, S.E.; /Texas U.; Prebys, E.; /Fermilab

    2011-04-01T23:59:59.000Z

    For future experiments at the intensity frontier, precise and accurate knowledge of beam time structure will be critical to understanding backgrounds. The proposed Mu2e experiment will utilize {approx}200 ns (FW) bunches of 3 x 10{sup 7} protons at 8 GeV with a bunch-to-bunch period of 1695 ns. The out-of-bunch beam must be suppressed by a factor of 10{sup -10} relative to in-bunch beam and continuously monitored. I propose a Cerenkov-based particle telescope to measure secondary production from beam interactions in a several tens of microns thick foil. Correlating timing information with beam passage will allow the determination of relative beam intensity to arbitrary precision given a sufficiently long integration time. The goal is to verify out-of-bunch extinction to the level 10{sup -6} in the span of several seconds. This will allow near real-time monitoring of the initial extinction of the beam resonantly extracted from Fermilabs Debuncher before a system of AC dipoles and collimators, which will provide the final extinction. The effect on beam emittance is minimal, allowing the necessary continuous measurement. I will present the detector design and some concerns about bunch growth during the resonant extraction.

  20. Making Relativistic Positrons Using Ultra-Intense Short Pulse Lasers

    SciTech Connect (OSTI)

    Chen, H; Wilks, S; Bonlie, J; Chen, C; Chen, S; Cone, K; Elberson, L; Gregori, G; Liang, E; Price, D; Van Maren, R; Meyerhofer, D D; Mithen, J; Murphy, C V; Myatt, J; Schneider, M; Shepherd, R; Stafford, D; Tommasini, R; Beiersdorfer, P

    2009-08-24T23:59:59.000Z

    This paper describes a new positron source produced using ultra-intense short pulse lasers. Although it has been studied in theory since as early as the 1970s, the use of lasers as a valuable new positron source was not demonstrated experimentally until recent years, when the petawatt-class short pulse lasers were developed. In 2008 and 2009, in a series of experiments performed at Lawrence Livermore National Laboratory, a large number of positrons were observed after shooting a millimeter thick solid gold target. Up to 2 x 10{sup 10} positrons per steradian ejected out the back of {approx}mm thick gold targets were detected. The targets were illuminated with short ({approx}1 ps) ultra-intense ({approx}1 x 10{sup 20} W/cm{sup 2}) laser pulses. These positrons are produced predominantly by the Bethe-Heitler process, and have an effective temperature of 2-4 MeV, with the distribution peaking at 4-7 MeV. The angular distribution of the positrons is anisotropic. For a wide range of applications, this new laser based positron source with its unique characteristics may complements the existing sources using radioactive isotopes and accelerators.

  1. Optical Fiber High Temperature Sensor Instrumentation for Energy Intensive Industries

    SciTech Connect (OSTI)

    Cooper, Kristie L.; Wang, Anbo; Pickrell, Gary R.

    2006-11-14T23:59:59.000Z

    This report summarizes technical progress during the program Optical Fiber High Temperature Sensor Instrumentation for Energy Intensive Industries, performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. The objective of this program was to use technology recently invented at Virginia Tech to develop and demonstrate the application of self-calibrating optical fiber temperature and pressure sensors to several key energy-intensive industries where conventional, commercially available sensors exhibit greatly abbreviated lifetimes due primarily to environmental degradation. A number of significant technologies were developed under this program, including a laser bonded silica high temperature fiber sensor with a high temperature capability up to 700C and a frequency response up to 150 kHz, the worlds smallest fiber Fabry-Perot high temperature pressure sensor (125 x 20 ?m) with 700C capability, UV-induced intrinsic Fabry-Perot interferometric sensors for distributed measurement, a single crystal sapphire fiber-based sensor with a temperature capability up to 1600C. These technologies have been well demonstrated and laboratory tested. Our work plan included conducting major field tests of these technologies at EPRI, Corning, Pratt & Whitney, and Global Energy; field validation of the technology is critical to ensuring its usefulness to U.S. industries. Unfortunately, due to budget cuts, DOE was unable to follow through with its funding commitment to support Energy Efficiency Science Initiative projects and this final phase was eliminated.

  2. Ferroplasmons: Intense Localized Surface Plasmons in Metal-Ferromagnetic Nanoparticles

    SciTech Connect (OSTI)

    Sachan, Ritesh [University of Tennessee, Knoxville (UTK); Malasi, Abhinav [ORNL; Ge, Jingxuan [Materials Science and Engineering Department, University of Tennessee, Knoxville, TN, USA; Yadavali, Sagar P [ORNL; Gangopadhyay, Anup [Washington University, St. Louis; Krishna, Dr. Hare [Washington University, St. Louis; Garcia, Hernando [Southern Illinois University; Duscher, Gerd J M [ORNL; Kalyanaraman, Ramki [University of Tennessee, Knoxville (UTK)

    2014-01-01T23:59:59.000Z

    Interaction of photons with matter at length scales far below their wavelengths has given rise to many novel phenomena, including localized surface plasmon resonance (LSPR). However, LSPR with narrow bandwidth (BW) is observed only in a select few noble metals, and ferromagnets are not among them. Here, we report the discovery of LSPR in ferromagnetic Co and CoFe alloy (8% Fe) in contact with Ag in the form of bimetallic nanoparticles prepared by pulsed laser dewetting. These plasmons in metal-erromagnetic nanostructures, or ferroplasmons (FP) for short, are in the visible spectrum with comparable intensity and BW to those of the LSPRs from the Ag regions. This finding was enabled by electron energy-loss mapping across individual nanoparticles in a monochromated scanning transmission electron microscope. The appearance of the FP is likely due to plasmonic interaction between the contacting Ag and Co nanoparticles. Since there is no previous evidence for materials that simultaneously show ferromagnetism and such intense LSPRs, this discovery may lead to the design of improved plasmonic materials and applications. It also demonstrates that materials with interesting plasmonic properties can be synthesized using bimetallic nanostructures in contact with each other.

  3. Detecting hazardous intensive care patient episodes using real-time mortality models

    E-Print Network [OSTI]

    Hug, Caleb W. (Caleb Wayne)

    2009-01-01T23:59:59.000Z

    The modern intensive care unit (ICU) has become a complex, expensive, data-intensive environment. Caregivers maintain an overall assessment of their patients based on important observations and trends. If an advanced ...

  4. Detecting Hazardous Intensive Care Patient Episodes Using Real-time Mortality Models

    E-Print Network [OSTI]

    Hug, Caleb

    2009-08-26T23:59:59.000Z

    The modern intensive care unit (ICU) has become a complex, expensive, data-intensive environment. Caregivers maintain an overall assessment of their patients based on important observations and trends. If an advanced ...

  5. Quantifying Regional Economic Impacts of CO2 Intensity Targets in China

    E-Print Network [OSTI]

    Zhang, Da

    2012-09-01T23:59:59.000Z

    To address rising energy use and CO2 emissions, Chinas leadership has enacted energy and CO2 intensity

  6. Department of Energy Commercial Building Benchmarks (New Construction): Energy Use Intensities, May 5, 2009

    Broader source: Energy.gov [DOE]

    This file contains the energy use intensities (EUIs) for the benchmark building files by building type and climate zone.

  7. Parametric cascade downconverter for intense ultrafast mid-infrared generation beyond the ManleyRowe

    E-Print Network [OSTI]

    Boyer, Edmond

    codes: 190.2620, 190.4970, 320.7160, 320.7110. Intense and ultrafast optical pulses (durations typ of optical sources that directly produce ultrafast intense pulses at long wavelengths. One technique that has from in- tense ultrafast pulses in the near infrared 800 nm . Recent results that produce intense

  8. Western North Pacific Tropical Cyclone Intensity and ENSO SUZANA J. CAMARGO

    E-Print Network [OSTI]

    Sobel, Adam

    intensity in the western North Pacific basin is examined. Accumulated cyclone energy (ACE), constructed from cyclones that are both more intense and longer-lived than in La Niña years. ACE leads ENSO indices: duringWestern North Pacific Tropical Cyclone Intensity and ENSO SUZANA J. CAMARGO International Research

  9. Title of Document: INTERACTION OF INTENSE SHORT LASER PULSES WITH GASES OF NANOSCALE

    E-Print Network [OSTI]

    Anlage, Steven

    ABSTRACT Title of Document: INTERACTION OF INTENSE SHORT LASER PULSES WITH GASES OF NANOSCALE-cluster interaction. #12;INTERACTION OF INTENSE SHORT LASER PULSES WITH GASES OF NANOSCALE ATOMIC AND MOLECULAR., Department of Electrical and Computer Engineering We study the interaction of intense laser pulses with gases

  10. Ultrahigh-Intensity Optical Slow-Wave Structure B. D. Layer,1,3

    E-Print Network [OSTI]

    Milchberg, Howard

    Ultrahigh-Intensity Optical Slow-Wave Structure B. D. Layer,1,3 A. York,1,3 T. M. Antonsen,2,3 S on the extended diffraction- suppressed propagation of extreme intensity laser pulses in plasma optical guiding structures. Plasma waveguides for intense optical pulses were first generated through the radial hydrodynamic

  11. Extracting mode components in laser intensity distribution by independent component analysis

    E-Print Network [OSTI]

    Hefei Institute of Intelligent Machines

    Extracting mode components in laser intensity distribution by independent component analysis Hai, a reliable method to charac- terize the intensity distribution of the laser beam has become a more and more important task. However, traditional optic and electronic methods can offer only a laser beam intensity

  12. Passive Network Performance Estimation for Large-Scale, Data-Intensive Computing

    E-Print Network [OSTI]

    Weissman, Jon

    --Distributed computing applications are increasingly utilizing distributed data sources. However, the unpredictable cost- intensive scientific workflows [3], [4]. For such data- intensive tasks, data access cost is a significant to consider data access cost in launching data-intensive computing applications. Large-scale computing

  13. Investigation of laser-driven proton acceleration using ultra-short, ultra-intense laser pulses

    E-Print Network [OSTI]

    Marjoribanks, Robin S.

    Investigation of laser-driven proton acceleration using ultra-short, ultra- intense laser pulses S;Investigation of laser-driven proton acceleration using ultra-short, ultra-intense laser pulses S. Fourmaux,1,a metallic foils irradiated by ultra-intense ultra-short laser pulses.810 Laser-driven ion beams take

  14. Ultra-high-contrast laser acceleration of relativistic electrons in solid targets

    E-Print Network [OSTI]

    Higginson, Drew Pitney

    2013-01-01T23:59:59.000Z

    Intensities with Short-Pulse Lasers 1.2 Inertial Confinementhigh-power, short laser pulse, D. . . . . . . . . . Figurea high-intensity short-pulse laser to produce relativistic

  15. Plasma-based accelerator structures

    E-Print Network [OSTI]

    Schroeder, C.B.

    2011-01-01T23:59:59.000Z

    by a self- modulated intense short laser pulse. Phys. Rev.High Intensity Short Pulse Laser Plasma Experiments. [39]Instabilities of Short-Pulse Laser Propagation through

  16. LANSCE | Lujan Center | Instruments | HIPD

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Intensity Powder Diffractometer | HIPD Local Structure, Magnetism, and Nanomaterials HIPD is a high intensity and medium resolution powder diffractometer designed for studies on...

  17. Photonuclear Reactions induced by Intense Short Laser Pulses

    E-Print Network [OSTI]

    B. Dietz; H. A. Weidenmueller

    2010-03-26T23:59:59.000Z

    A measurement of the decay in time of nuclei excited by an intense short laser pulse of energy E(0) yields the Fourier transform of the autocorrelation function of the associated scattering matrix. We determine the optimal length (in time) of the pulse and evaluate the time-decay function using random-matrix theory. That function is shown to contain information not otherwise available. We approximate that function in a manner that is useful for the analysis of data. For E(0) below the threshold energy E(n) of the first neutron channel, the time-decay function is exponential in time t while it is the product of an exponential and a power in t for E(0) > E(n). The comparison of the measured decay functions in both energy domains yields an unambiguous and novel test of random-matrix theory in nuclei.

  18. INERTIAL FUSION DRIVEN BY INTENSE HEAVY-ION BEAMS

    SciTech Connect (OSTI)

    Sharp, W. M.; Friedman, A.; Grote, D. P.; Barnard, J. J.; Cohen, R. H.; Dorf, M. A.; Lund, S. M.; Perkins, L. J.; Terry, M. R.; Logan, B. G.; Bieniosek, F. M.; Faltens, A.; Henestroza, E.; Jung, J. Y.; Kwan, J. W.; Lee, E. P.; Lidia, S. M.; Ni, P. A.; Reginato, L. L.; Roy, P. K.; Seidl, P. A.; Takakuwa, J. H.; Vay, J.-L.; Waldron, W. L.; Davidson, R. C.; Gilson, E. P.; Kaganovich, I. D.; Qin, H.; Startsev, E.; Haber, I.; Kishek, R. A.; Koniges, A. E.

    2011-03-31T23:59:59.000Z

    Intense heavy-ion beams have long been considered a promising driver option for inertial-fusion energy production. This paper briefly compares inertial confinement fusion (ICF) to the more-familiar magnetic-confinement approach and presents some advantages of using beams of heavy ions to drive ICF instead of lasers. Key design choices in heavy-ion fusion (HIF) facilities are discussed, particularly the type of accelerator. We then review experiments carried out at Lawrence Berkeley National Laboratory (LBNL) over the past thirty years to understand various aspects of HIF driver physics. A brief review follows of present HIF research in the US and abroad, focusing on a new facility, NDCX-II, being built at LBNL to study the physics of warm dense matter heated by ions, as well as aspects of HIF target physics. Future research directions are briefly summarized.

  19. Working Group Report: Computing for the Intensity Frontier

    SciTech Connect (OSTI)

    Rebel, B.; Sanchez, M.C.; Wolbers, S.

    2013-10-25T23:59:59.000Z

    This is the report of the Computing Frontier working group on Lattice Field Theory prepared for the proceedings of the 2013 Community Summer Study ("Snowmass"). We present the future computing needs and plans of the U.S. lattice gauge theory community and argue that continued support of the U.S. (and worldwide) lattice-QCD effort is essential to fully capitalize on the enormous investment in the high-energy physics experimental program. We first summarize the dramatic progress of numerical lattice-QCD simulations in the past decade, with some emphasis on calculations carried out under the auspices of the U.S. Lattice-QCD Collaboration, and describe a broad program of lattice-QCD calculations that will be relevant for future experiments at the intensity and energy frontiers. We then present details of the computational hardware and software resources needed to undertake these calculations.

  20. Measuring beam intensity and lifetime in BESSY II

    E-Print Network [OSTI]

    Bakker, R; Kuske, P; Kuszynski, J

    2000-01-01T23:59:59.000Z

    The measurement of the intensity of the beam in the transfer lines and the storage ring are based on current transformers. The pulsed current in the transfer lines is measured with passive Integrating Beam Current Transformers (ICT). The bunch charge is transferred to a DC-voltage and sampled with a multifunction I/O-board of a PC. The beam current of the storage ring is measured with a high precision Parametric Current Transformer (PCT) and sampled by a high quality digital volt meter (DVM). A stand alone PC is used for synchronisation, real-time data acquisition and signal processing. Current and lifetime data are updated every second and send via CAN- bus to the BESSY II control system. All PC programs are written in LabVIEW.

  1. Contributions of weather and fuel mix to recent declines in U.S. energy and carbon intensity

    E-Print Network [OSTI]

    Davis, W. Bart; Sanstad, Alan H.; Koomey, Jonathan G.

    2002-01-01T23:59:59.000Z

    in a lower energy-and-carbon-intensive mix of economicintensity into fuel mix and energy intensity terms. Thisof fuel mix and weather on energy and carbon intensity using

  2. Intense Ion Beam for Warm Dense Matter Physics

    SciTech Connect (OSTI)

    Coleman, Joshua Eugene

    2008-05-23T23:59:59.000Z

    The Neutralized Drift Compression Experiment (NDCX) at Lawrence Berkeley National Laboratory is exploring the physical limits of compression and focusing of ion beams for heating material to warm dense matter (WDM) and fusion ignition conditions. The NDCX is a beam transport experiment with several components at a scale comparable to an inertial fusion energy driver. The NDCX is an accelerator which consists of a low-emittance ion source, high-current injector, solenoid matching section, induction bunching module, beam neutralization section, and final focusing system. The principal objectives of the experiment are to control the beam envelope, demonstrate effective neutralization of the beam space-charge, control the velocity tilt on the beam, and understand defocusing effects, field imperfections, and limitations on peak intensity such as emittance and aberrations. Target heating experiments with space-charge dominated ion beams require simultaneous longitudinal bunching and transverse focusing. A four-solenoid lattice is used to tune the beam envelope to the necessary focusing conditions before entering the induction bunching module. The induction bunching module provides a head-to-tail velocity ramp necessary to achieve peak axial compression at the desired focal plane. Downstream of the induction gap a plasma column neutralizes the beam space charge so only emittance limits the focused beam intensity. We present results of beam transport through a solenoid matching section and simultaneous focusing of a singly charged K{sup +} ion bunch at an ion energy of 0.3 MeV. The results include a qualitative comparison of experimental and calculated results after the solenoid matching section, which include time resolved current density, transverse distributions, and phase-space of the beam at different diagnostic planes. Electron cloud and gas measurements in the solenoid lattice and in the vicinity of intercepting diagnostics are also presented. Finally, comparisons of improved experimental and calculated axial focus (> 100 x axial compression, < 2 ns pulses) and higher peak energy deposition on target are also presented. These achievements demonstrate the capabilities for near term target heating experiments to T{sub e} {approx} 0.1 eV and for future ion accelerators to heat targets to T{sub e} > 1 eV.

  3. MARS15 Code Developments Driven by the Intensity Frontier Needs

    E-Print Network [OSTI]

    Mokhov, N V; Rakhno, I L; Striganov, S I; Tropin, I S; Eidelman, Yu I; Aarnio, P; Gudima, K K; Konobeev, A Yu

    2014-01-01T23:59:59.000Z

    The MARS15(2012) is the latest version of a multi-purpose Monte-Carlo code developed since 1974 for detailed simulation of hadronic and electromagnetic cascades in an arbitrary 3-D geometry of shielding, accelerator, detector and spacecraft components with energy ranging from a fraction of an electronvolt to 100 TeV. Driven by needs of the intensity frontier projects with their Megawatt beams, e.g., ESS, FAIR and Project X, the code has been recently substantially improved and extended. These include inclusive and exclusive particle event generators in the 0.7 to 12 GeV energy range, proton inelastic interaction modeling below 20 MeV, implementation of the EGS5 code for electromagnetic shower simulation at energies from 1 keV to 20 MeV, stopping power description in compound materials, new module for DPA calculations for neutrons from a fraction of eV to 20-150 MeV, user-friendly DeTra-based method to calculate nuclide inventories, and new ROOT-based geometry.

  4. Neutron production enhancements for the Intense Pulsed Neutron Source.

    SciTech Connect (OSTI)

    Iverson, E. B.

    1999-01-04T23:59:59.000Z

    The Intense Pulsed Neutron Source (IPNS) was the first high energy spallation neutron source in the US dedicated to materials research. It has operated for sixteen years, and in that time has had a very prolific record concerning the development of new target and moderator systems for pulsed spallation sources. IPNS supports a very productive user program on its thirteen instruments, which are oversubscribed by more than two times, meanwhile having an excellent overall reliability of 95%. Although the proton beam power is relatively low at 7 kW, the target and moderator systems are very efficient. The typical beam power which gives an equivalent flux for long-wavelength neutrons is about 60 kW, due to the use of a uranium target and liquid and solid methane moderators, precluded at some sources due to a higher accelerator power. The development of new target and moderator systems is by no means stagnant at IPNS. They are presently considering numerous enhancements to the target and moderators that offer prospects for increasing the useful neutron production by substantial factors. Many of these enhancements could be combined, although their combined benefit has not yet been well established. Meanwhile, IPNS is embarking on a coherent program of study concerning these improvements and their possible combination and implementation. Moreover, any improvements accomplished at IPNS would immediately increase the performance of IPNS instruments.

  5. Industrial Sector Energy Demand: Revisions for Non-Energy-Intensive Manufacturing (released in AEO2007)

    Reports and Publications (EIA)

    2007-01-01T23:59:59.000Z

    For the industrial sector, the Energy Information Administration's (EIA) analysis and projection efforts generally have focused on the energy-intensive industriesfood, bulk chemicals, refining, glass, cement, steel, and aluminumwhere energy cost averages 4.8% of annual operating cost. Detailed process flows and energy intensity indicators have been developed for narrowly defined industry groups in the energy-intensive manufacturing sector. The non-energy-intensive manufacturing industries, where energy cost averages 1.9% of annual operating cost, previously have received somewhat less attention, however. In Annual Energy Outlook 2006 (AEO), energy demand projections were provided for two broadly aggregated industry groups in the non-energy-intensive manufacturing sector: metal-based durables and other non-energy-intensive. In the AEO2006 projections, the two groups accounted for more than 50% of the projected increase in industrial natural gas consumption from 2004 to 2030.

  6. Prostate Bed Motion During Intensity-Modulated Radiotherapy Treatment

    SciTech Connect (OSTI)

    Klayton, Tracy; Price, Robert; Buyyounouski, Mark K.; Sobczak, Mark [Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania (United States)] [Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania (United States); Greenberg, Richard [Department of Urologic Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania (United States)] [Department of Urologic Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania (United States); Li, Jinsheng; Keller, Lanea; Sopka, Dennis [Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania (United States)] [Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania (United States); Kutikov, Alexander [Department of Urologic Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania (United States)] [Department of Urologic Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania (United States); Horwitz, Eric M., E-mail: eric.horwitz@fccc.edu [Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania (United States)

    2012-09-01T23:59:59.000Z

    Purpose: Conformal radiation therapy in the postprostatectomy setting requires accurate setup and localization of the prostatic fossa. In this series, we report prostate bed localization and motion characteristics, using data collected from implanted radiofrequency transponders. Methods and Materials: The Calypso four-dimensional localization system uses three implanted radiofrequency transponders for daily target localization and real-time tracking throughout a course of radiation therapy. We reviewed the localization and tracking reports for 20 patients who received ultrasonography-guided placement of Calypso transponders within the prostate bed prior to a course of intensity-modulated radiation therapy at Fox Chase Cancer Center. Results: At localization, prostate bed displacement relative to bony anatomy exceeded 5 mm in 9% of fractions in the anterior-posterior (A-P) direction and 21% of fractions in the superior-inferior (S-I) direction. The three-dimensional vector length from skin marks to Calypso alignment exceeded 1 cm in 24% of all 652 fractions with available setup data. During treatment, the target exceeded the 5-mm tracking limit for at least 30 sec in 11% of all fractions, generally in the A-P or S-I direction. In the A-P direction, target motion was twice as likely to move posteriorly, toward the rectum, than anteriorly. Fifteen percent of all treatments were interrupted for repositioning, and 70% of patients were repositioned at least once during their treatment course. Conclusion: Set-up errors and motion of the prostatic fossa during radiotherapy are nontrivial, leading to potential undertreatment of target and excess normal tissue toxicity if not taken into account during treatment planning. Localization and real-time tracking of the prostate bed via implanted Calypso transponders can be used to improve the accuracy of plan delivery.

  7. HIGH ENERGY DENSITY PHYSICS EXPERIMENTS WITH INTENSE HEAVY ION BEAMS

    SciTech Connect (OSTI)

    Bieniosek, F.M.; Henestroza, E.; Leitner, M.; Logan, B.G.; More, R.M.; Roy, P.K.; Ni, P.; Seidl, P.A.; Waldron, W.L.; Barnard, J.J.

    2008-08-01T23:59:59.000Z

    The US heavy ion fusion science program has developed techniques for heating ion-beam-driven warm dense matter (WDM) targets. The WDM conditions are to be achieved by combined longitudinal and transverse space-charge neutralized drift compression of the ion beam to provide a hot spot on the target with a beam spot size of about 1 mm, and pulse length about 1-2 ns. As a technique for heating volumetric samples of matter to high energy density, intense beams of heavy ions are capable of delivering precise and uniform beam energy deposition dE/dx, in a relatively large sample size, and the ability to heat any solid-phase target material. Initial experiments use a 0.3 MeV K+ beam (below the Bragg peak) from the NDCX-I accelerator. Future plans include target experiments using the NDCX-II accelerator, which is designed to heat targets at the Bragg peak using a 3-6 MeV lithium ion beam. The range of the beams in solid matter targets is about 1 micron, which can be lengthened by using porous targets at reduced density. We have completed the fabrication of a new experimental target chamber facility for WDM experiments, and implemented initial target diagnostics to be used for the first target experiments in NDCX-1. The target chamber has been installed on the NDCX-I beamline. The target diagnostics include a fast multi-channel optical pyrometer, optical streak camera, VISAR, and high-speed gated cameras. Initial WDM experiments will heat targets by compressed NDCX-I beams and will explore measurement of temperature and other target parameters. Experiments are planned in areas such as dense electronegative targets, porous target homogenization and two-phase equation of state.

  8. Intensity Modulated Radiation Therapy With Dose Painting to Treat Rhabdomyosarcoma

    SciTech Connect (OSTI)

    Yang, Joanna C.; Dharmarajan, Kavita V. [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States)] [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Wexler, Leonard H. [Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, New York, New York (United States)] [Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); La Quaglia, Michael P. [Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York (United States)] [Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Happersett, Laura [Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York (United States)] [Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Wolden, Suzanne L., E-mail: woldens@mskcc.org [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States)

    2012-11-01T23:59:59.000Z

    Purpose: To examine local control and patterns of failure in rhabdomyosarcoma patients treated with intensity modulated radiation therapy (RT) with dose painting (DP-IMRT). Patients and Methods: A total of 41 patients underwent DP-IMRT with chemotherapy for definitive treatment. Nineteen also underwent surgery with or without intraoperative RT. Fifty-six percent had alveolar histologic features. The median interval from beginning chemotherapy to RT was 17 weeks (range, 4-25). Very young children who underwent second-look procedures with or without intraoperative RT received reduced doses of 24-36 Gy in 1.4-1.8-Gy fractions. Young adults received 50.4 Gy to the primary tumor and lower doses of 36 Gy in 1.8-Gy fractions to at-risk lymph node chains. Results: With 22 months of median follow-up, the actuarial local control rate was 90%. Patients aged {<=}7 years who received reduced overall and fractional doses had 100% local control, and young adults had 79% (P=.07) local control. Three local failures were identified in young adults whose primary target volumes had received 50.4 Gy in 1.8-Gy fractions. Conclusions: DP-IMRT with lower fractional and cumulative doses is feasible for very young children after second-look procedures with or without intraoperative RT. DP-IMRT is also feasible in adolescents and young adults with aggressive disease who would benefit from prophylactic RT to high-risk lymph node chains, although dose escalation might be warranted for improved local control. With limited follow-up, it appears that DP-IMRT produces local control rates comparable to those of sequential IMRT in patients with rhabdomyosarcoma.

  9. Target Allocation Methodology for China's Provinces: Energy Intensity in the 12th FIve-Year Plan

    E-Print Network [OSTI]

    Ohshita, Stephanie

    2011-01-01T23:59:59.000Z

    to construction and heavy industry, contrary to the 20%intensive construction and heavy industry sectors, theand production in heavy industry and shift toward lower-

  10. FINAL FOCUS ION BEAM INTENSITY FROM TUNGSTEN FOIL CALORIMETER AND SCINTILLATOR IN NDCX-I

    E-Print Network [OSTI]

    Lidia, S.M.

    2010-01-01T23:59:59.000Z

    FOCUS ION BEAM INTENSITY FROM TUNGSTEN FOIL CALORIMETER ANDtemperature rise in the tungsten foil. A cross-calibrationis obtained with a 3m thick tungsten foil calorimeter and

  11. Considering Possible Outcomes and the User's Environment in Designing User Interfaces to Data Intensive Systems

    E-Print Network [OSTI]

    Renaud, K.V.

    Renaud,K.V. Cooper,R.L. User Interfaces to Data Intensive Systems. UIDIS'01. ETH, Zurich. 31 May - 1 June 2001. IEEE

  12. E-Print Network 3.0 - argonne intense pulsed Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    laboratory with both types of facilities: the Intense Pulsed Neutron Source (IPNS) for neutron scattering... Argonne Update 1 Hardest, strongest materials combined UPDATE The...

  13. Parallel In Situ Indexing for Data-intensive Computing

    SciTech Connect (OSTI)

    Kim, Jinoh; Abbasi, Hasan; Chacon, Luis; Docan, Ciprian; Klasky, Scott; Liu, Qing; Podhorszki, Norbert; Shoshani, Arie; Wu, Kesheng

    2011-09-09T23:59:59.000Z

    As computing power increases exponentially, vast amount of data is created by many scientific re- search activities. However, the bandwidth for storing the data to disks and reading the data from disks has been improving at a much slower pace. These two trends produce an ever-widening data access gap. Our work brings together two distinct technologies to address this data access issue: indexing and in situ processing. From decades of database research literature, we know that indexing is an effective way to address the data access issue, particularly for accessing relatively small fraction of data records. As data sets increase in sizes, more and more analysts need to use selective data access, which makes indexing an even more important for improving data access. The challenge is that most implementations of in- dexing technology are embedded in large database management systems (DBMS), but most scientific datasets are not managed by any DBMS. In this work, we choose to include indexes with the scientific data instead of requiring the data to be loaded into a DBMS. We use compressed bitmap indexes from the FastBit software which are known to be highly effective for query-intensive workloads common to scientific data analysis. To use the indexes, we need to build them first. The index building procedure needs to access the whole data set and may also require a significant amount of compute time. In this work, we adapt the in situ processing technology to generate the indexes, thus removing the need of read- ing data from disks and to build indexes in parallel. The in situ data processing system used is ADIOS, a middleware for high-performance I/O. Our experimental results show that the indexes can improve the data access time up to 200 times depending on the fraction of data selected, and using in situ data processing system can effectively reduce the time needed to create the indexes, up to 10 times with our in situ technique when using identical parallel settings.

  14. Fabrication of nano-structural arrays by channeling pulsed atomic beams through an intensity-modulated

    E-Print Network [OSTI]

    Zhu, Xiangdong

    Fabrication of nano-structural arrays by channeling pulsed atomic beams through an intensity-dimensional nano-structure arrays by passing a pulsed atomic beam through an intensity-modulated continuous of ``cooling'' along the longitudinal direction. This enables fabrication of vertically heterogeneous nano

  15. A Tale of Two Data-Intensive Paradigms: Applications, Abstractions, and Architectures

    E-Print Network [OSTI]

    A Tale of Two Data-Intensive Paradigms: Applications, Abstractions, and Architectures Shantenu Jha1 for data-intensive applications, here- after referred to as the high-performance computing and the Apache of understanding and charac- terizing the most common application workloads found across the two paradigms. We

  16. Influence of local and remote SST on North Atlantic tropical cyclone potential intensity

    E-Print Network [OSTI]

    Camargo, Suzana J.

    Influence of local and remote SST on North Atlantic tropical cyclone potential intensity Suzana J of local and remote sea surface temperature (SST) on the tropical cyclone potential intensity in the North Atlantic using a suite of model simulations, while separating the impact of anthropogenic (external

  17. Midlevel Ventilation's Constraint on Tropical Cyclone Intensity BRIAN TANG AND KERRY EMANUEL

    E-Print Network [OSTI]

    Emanuel, Kerry A.

    Midlevel Ventilation's Constraint on Tropical Cyclone Intensity BRIAN TANG AND KERRY EMANUEL ventilation, or the flux of low-entropy air into the inner core of a tropical cyclone (TC), is a hy to assess how ventilation affects tropical cyclone intensity via two possible pathways: the first through

  18. Generation of mega-electron-volt electron beams by an ultrafast intense laser pulse

    E-Print Network [OSTI]

    Umstadter, Donald

    Generation of mega-electron-volt electron beams by an ultrafast intense laser pulse Xiaofang Wang emission from the interaction of an ultrafast ( 29 fs), intense ( 1018 W/cm2 ) laser pulse with underdense of such an ultrafast laser pulse with matter and possible new approaches to MeV electron generation. In this paper we

  19. Energy Policy 35 (2007) 52675286 The implications of the historical decline in US energy intensity

    E-Print Network [OSTI]

    2007-01-01T23:59:59.000Z

    on the projected expansion of the world's economies and their demand for energy from fossil fuels. Making progress, which, some have argued, has been the major influence on the intensity of fossil fuel use change) and adjustments in the energy demand of individual industries (intensity change), and identifies

  20. Storage of water on vegetation under simulated rainfall of varying intensity

    E-Print Network [OSTI]

    Keim, Richard

    Storage of water on vegetation under simulated rainfall of varying intensity R.F. Keim a,*, A Little is understood about how storage of water on forest canopies varies during rainfall, even though storage changes intensity of throughfall and thus affects a variety of hydrological processes

  1. sonorensis | winter 2005 11 As the intense heat of day in the Sonoran Desert

    E-Print Network [OSTI]

    Medelln, Rodrigo

    sonorensis | winter 2005 11 As the intense heat of day in the Sonoran Desert gives way to cooler and fruit. Once the intense Sonoran Desert heat ebbs, and fall encroaches, the bats head southward, back as threatened in 1994. FORECAST FOR THE LESSER LONG-NOSED BAT A USFWS recovery plan in 1994 listed conservation

  2. Consumption-Based Adjustment of China's Emissions-Intensity Targets: An

    E-Print Network [OSTI]

    China's Twelfth Five-Year Plan (20112015) aims to achieve a national carbon intensity reduction of 17's provinces is complicated by the fact that more than half of China's national carbon emissions are embodiedConsumption-Based Adjustment of China's Emissions-Intensity Targets: An Analysis of its Potential

  3. The Kuznets-Kaldor-Puzzle and Neutral Cross-Capital-Intensity

    E-Print Network [OSTI]

    Gting, Ralf Hartmut

    The Kuznets-Kaldor-Puzzle and Neutral Cross-Capital-Intensity Structural Change by Denis Stijepic://www.fernuni-hagen.de/ls_wagner/en/ #12;The Kuznets-Kaldor-Puzzle and Neutral Cross- Capital-Intensity Structural Change* Denis Stijepic The Kuznets-Kaldor stylized facts are one of the most striking empirical observations about the development

  4. U.S. Greenhouse Gas Intensity and the Global Climate Change Initiative (released in AEO2005)

    Reports and Publications (EIA)

    2005-01-01T23:59:59.000Z

    On February 14, 2002, President Bush announced the Administrations Global Climate Change Initiative. A key goal of the Climate Change Initiative is to reduce U.S. greenhouse gas intensity by 18% over the 2002 to 2012 time frame. For the purposes of the initiative, greenhouse gas intensity is defined as the ratio of total U.S. greenhouse gas emissions to economic output.

  5. Molecular Dynamics of Methylamine, Methanol, and Methyl Fluoride Cations in Intense 7 Micron Laser Fields

    E-Print Network [OSTI]

    Schlegel, H. Bernhard

    Molecular Dynamics of Methylamine, Methanol, and Methyl Fluoride Cations in Intense 7 Micron Laser of methylamine (CH3NH2 + ), methanol (CH3OH+ ), and methyl fluoride (CH3F+ ) cations by short, intense laser 7 m laser pulses. This work is motivated by recent studies of methanol cations by Yamanouchi and co

  6. Optimization Intensive Energy Harvesting Mahsan Rofouei, Mohammad Ali Ghodrat, Miodrag Potkonjak

    E-Print Network [OSTI]

    Potkonjak, Miodrag

    Optimization Intensive Energy Harvesting Mahsan Rofouei, Mohammad Ali Ghodrat, Miodrag Potkonjak of primary limiting factors of MSs is their energy sensitivity. In order to overcome this limitation, we have developed an optimization intensive approach for energy harvesting. Our goal is to size and position

  7. Extreme organic carbon burial fuels intense methane bubbling in a temperate reservoir

    E-Print Network [OSTI]

    Wehrli, Bernhard

    Extreme organic carbon burial fuels intense methane bubbling in a temperate reservoir Sebastian. Wehrli (2012), Extreme organic carbon burial fuels intense methane bubbling in a temperate reservoir; revised 25 November 2011; accepted 30 November 2011; published 4 January 2012. [1] Organic carbon (OC

  8. Light intensity, prey detection and foraging mechanisms of age 0 year yellow perch

    E-Print Network [OSTI]

    Mensinger, Allen F.

    Light intensity, prey detection and foraging mechanisms of age 0 year yellow perch H. E. RICHMOND feeding trials at varying light intensities. Perch were highly effective predators and captured Daphnia pulicaria with 94% overall foraging success at light levels ranging from 0 to 3400lx. Maximum average

  9. Measurement of laser intensities approaching 1015 with an accuracy of 1%

    E-Print Network [OSTI]

    Kheifets, Anatoli

    , 2013) Accurate knowledge of the intensity of focused ultra-short laser pulses is crucial to the correctMeasurement of laser intensities approaching 1015 W/cm2 with an accuracy of 1% M. G. Pullen1,2 , W interpretation of experimental results in strong-field physics. We have developed a technique to measure laser

  10. Oecologia (2000) 124:270279 Springer-Verlag 2000 Abstract Disturbance frequency, intensity, and areal ex-

    E-Print Network [OSTI]

    McCabe, Declan

    2000-01-01T23:59:59.000Z

    Oecologia (2000) 124:270279 Springer-Verlag 2000 Abstract Disturbance frequency, intensity The intensity, frequency, and area of disturbance may de- termine the abundance and species richness of an assem for recoloniza- tion. If disturbance frequency is greater than the rate of competitive exclusion, diversity may

  11. An Empirical Analysis of Energy Intensity and Its Determinants at the State Level

    E-Print Network [OSTI]

    1 An Empirical Analysis of Energy Intensity and Its Determinants at the State Level Gilbert E in energy use within a sector and changes in sectoral activ- ity over time. As part of my analysis, I. Metcalf* Aggregate energy intensity in the United States has been declining steadily since the mid-1970s

  12. Measurement of proton and anti-proton intensities in the Tevatron Collider

    SciTech Connect (OSTI)

    Stephen Pordes et al.

    2003-06-04T23:59:59.000Z

    This paper describes the techniques used to measure the intensities of the proton (p) and anti-proton ({bar p}) beams in the Tevatron collider. The systems provide simultaneous measurements of the intensity of the 36 proton and 36 antiproton bunches and their longitudinal profiles.

  13. Issues and R&D Required for the Intensity Frontier Accelerators

    SciTech Connect (OSTI)

    Shiltsev, V.; Henderson, S.; Hurh, P.; Kourbanis, I.; Lebedev, V.

    2013-09-26T23:59:59.000Z

    Operation, upgrade and development of accelerators for Intensity Frontier face formidable challenges in order to satisfy both the near-term and long-term Particle Physics program. Here we discuss key issues and R&D required for the Intensity Frontier accelerators.

  14. MOVEMENT OF FEMALE WHITE-TAILED DEER: EFFECTS OF CLIMATE AND INTENSIVE ROW-CROP AGRICULTURE

    E-Print Network [OSTI]

    1099 MOVEMENT OF FEMALE WHITE-TAILED DEER: EFFECTS OF CLIMATE AND INTENSIVE ROW-CROP AGRICULTURE in intensively (>80%) cultivated areas. From January 2001 to August 2002, we monitored movements of 77 (61 adult of seasonal migration, whereas crop emergence and harvest had minimal effects. Four deer (8%) dispersed a mean

  15. Consistent parametric estimation of the intensity of a spatial-temporal point process.

    E-Print Network [OSTI]

    Schoenberg, Frederic Paik (Rick)

    Consistent parametric estimation of the intensity of a spatial-temporal point process. Frederic under which parametric estimates of the intensity of a spatial-temporal point process are consistent. Although the actual point process being estimated may not be Poisson, an estimate involving maximizing

  16. Baker-Barry Tunnel Lighting: Evaluation of a Potential GATEWAY Demonstrations Project

    SciTech Connect (OSTI)

    Tuenge, Jason R.

    2011-06-28T23:59:59.000Z

    The U.S. Department of Energy is evaluating the Baker-Barry Tunnel as a potential GATEWAY Demonstrations project for deployment of solid-state lighting (SSL) technology. The National Park Service views this project as a possible proving ground and template for implementation of light-emitting diode (LED) luminaires in other tunnels, thereby expanding the estimated 40% energy savings from 132 MWh/yr to a much larger figure nationally. Most of the energy savings in this application is attributable to the instant-restrike capability of LED products and to their high tolerance for frequent on/off switching, used here to separately control either end of the tunnel during daytime hours. Some LED luminaires rival or outperform their high-intensity discharge (HID) counterparts in terms of efficacy, but options are limited, and smaller lumen packages preclude true one-for-one equivalence. However, LED products continue to improve in efficacy and affordability at a rate unmatched by other light source technologies; the estimated simple payback period of eight years (excluding installation costs and maintenance savings) can be expected to improve with time. The proposed revisions to the existing high-pressure sodium (HPS) lighting system would require slightly increased controls complexity and significantly increased luminaire types and quantities. In exchange, substantial annual savings (from reduced maintenance and energy use) would be complemented by improved quantity and quality of illumination. Although advanced lighting controls could offer additional savings, it is unclear whether such a system would prove cost-effective; this topic may be explored in future work.

  17. Plasma lighting, fiber optics, and daylight collectors: Toward the next revolution in high-efficiency illumination

    SciTech Connect (OSTI)

    Audin, L. [Columbia Univ., New York, NY (United States)

    1995-06-01T23:59:59.000Z

    Combining three recently marketed innovations may provide the next revolution in illumination, making many other recent advances eventually obsolete. The first is plasma lighting, pioneered by Fusion Lighting Inc. of Rockville, Maryland, and first commercially applied by Hutchins International Ltd. of Mississauga, Ontario. This microwave-generated light source yields very high-quality light with efficacies at or beyond high intensity discharge (HID) lamps. The source uses no mercury, thus eliminating lamp disposal problems, and has no cathode, thereby providing very long lamp life. Using no phosphors, it also has very short start and re-strike periods, and is dimmable. The second innovation is in the distribution of light. Commercial developments in fiber optics and light guides now provide products that transfer light from a remote point and distribute it like standard light fixtures. Advances in fiber optic communications and applications to decorative lighting have supplied relatively economical systems for mounting and directing light from both electric light sources and the sun. The third advance is a result of efforts to harness daylight. Unlike architectural daylighting that directs sunlight into perimeter areas through glazing, daylight collectors are roof-mounted devices that supply light to interior and underground spaces through hollow columns and open chases. Aided by improvements and cost reductions in sun-tracking (i.e., heliostatic) controls that capture and concentrate sunlight, such collectors offer a source of free light to locations that might otherwise never receive it. When combined together, these three options could offer a centralized building lighting system that pipes lumens to distribution devices replacing many existing lamps and fixtures.

  18. Performance Characteristics Of An Intensity Modulated Advanced X-Ray Source (IMAXS) For Homeland Security Applications

    SciTech Connect (OSTI)

    Langeveld, Willem G. J.; Brown, Craig; Condron, Cathie; Ingle, Mike [Rapiscan Laboratories, Inc., 520 Almanor Ave., Sunnyvale, CA 94085 (United States); Christensen, Phil A.; Johnson, William A.; Owen, Roger D. [HESCO/PTSE Inc., 2501 Monarch St., Alameda, CA 94501 (United States); Hernandez, Michael; Schonberg, Russell G. [XScell Corp., 2134 Old Middlefield Way, Mountain View, CA 94043 (United States); Ross, Randy [Stangenes Industries, Inc., 1052 East Meadow Circle, Palo Alto, CA 94303 (United States)

    2011-06-01T23:59:59.000Z

    X-ray cargo inspection systems for the detection and verification of threats and contraband must address stringent, competitive performance requirements. High x-ray intensity is needed to penetrate dense cargo, while low intensity is desirable to minimize the radiation footprint, i.e. the size of the controlled area, required shielding and the dose to personnel. In a collaborative effort between HESCO/PTSE Inc., XScell Corp., Stangenes Industries, Inc. and Rapiscan Laboratories, Inc., an Intensity Modulated Advanced X-ray Source (IMAXS) was designed and produced. Cargo inspection systems utilizing such a source have been projected to achieve up to 2 inches steel-equivalent greater penetration capability, while on average producing the same or smaller radiation footprint as present fixed-intensity sources. Alternatively, the design can be used to obtain the same penetration capability as with conventional sources, but reducing the radiation footprint by about a factor of three. The key idea is to anticipate the needed intensity for each x-ray pulse by evaluating signal strength in the cargo inspection system detector array for the previous pulse. The IMAXS is therefore capable of changing intensity from one pulse to the next by an electronic signal provided by electronics inside the cargo inspection system detector array, which determine the required source intensity for the next pulse. We report on the completion of a 9 MV S-band (2998 MHz) IMAXS source and comment on its performance.

  19. A sensitivity study of the thermodynamic environment on GFDL model hurricane intensity: Implications for global warming

    SciTech Connect (OSTI)

    Shen, W.; Tuleya, R.E.; Ginis, I.

    2000-01-01T23:59:59.000Z

    In this study, the effect of thermodynamic environmental changes on hurricane intensity is extensively investigated with the National Oceanic and Atmospheric Administration Geophysical Fluid Dynamics Laboratory hurricane model for a suite of experiments with different initial upper-tropospheric temperature anomalies up to {+-}4 C and sea surface temperatures ranging from 26 to 31 C given the same relative humidity profile. The results indicate that stabilization in the environmental atmosphere and sea surface temperature (SST) increase cause opposing effects on hurricane intensity. The offsetting relationship between the effects of atmospheric stability increase (decrease) and SST increase (decrease) is monotonic and systematic in the parameter space. This implies that hurricane intensity increase due to a possible global warming associated with increased CO{sub 2} is considerably smaller than that expected from warming of the oceanic waters alone. The results also indicate that the intensity of stronger (weaker) hurricanes is more (less) sensitive to atmospheric stability and SST changes. The model-attained hurricane intensity is found to be well correlated with the maximum surface evaporation and the large-scale environmental convective available potential energy. The model-attained hurricane intensity if highly correlated with the energy available from wet-adiabatic ascent near the eyewall relative to a reference sounding in the undisturbed environment for all the experiments. Coupled hurricane-ocean experiments show that hurricane intensity becomes less sensitive to atmospheric stability and SST changes since the ocean coupling causes larger (smaller) intensity reduction for stronger (weaker) hurricanes. This implies less increase of hurricane intensity related to a possible global warming due to increased CO{sub 2}.

  20. Bragg cell laser intensity modulation: effect on laser Doppler velocimetry measurements

    SciTech Connect (OSTI)

    Mychkovsky, Alexander G.; Chang, Natasha A.; Ceccio, Steven L.

    2009-06-20T23:59:59.000Z

    In most laser Doppler velocimetry (LDV) systems, the frequency of one of the two laser beams that intersect to create the probe volume is shifted with an acousto-optic element. It is shown here that Bragg shifting can impose a problematic fluctuation in intensity on the frequency-shifted beam, producing spurious velocity measurements. This fluctuation occurs at twice the Bragg cell frequency, and its relative amplitude to the time average intensity is a function of the ratio of the laser beam diameter to the Bragg cell acoustic wavelength. A physical model and a configuration procedure to minimize adverse effects of the intensity modulations are presented.

  1. Absolute vs. Intensity Limits for CO2 Emission Control: Performance Under Uncertainty

    E-Print Network [OSTI]

    Sue Wing, Ian.

    We elucidate the differences between absolute and intensity-based limits of CO2 emission when there is uncertainty about the future. We demonstrate that the two limits are identical under certainty, and rigorously establish ...

  2. A proposed second harmonic acceleration system for the Intense Pulsed Neutron Source Rapid Cycling Synchrotron

    SciTech Connect (OSTI)

    Norem, J.; Brandeberry, F.; Rauchas, A.

    1983-08-01T23:59:59.000Z

    The Rapid Cycling Synchrotron (RCS) of the Intense Pulsed Neutron Source (IPNS) operating at Argonne National Laboratory is presently producing intensities of 2-2.5 x 10/sup 12/ protons per pulse (ppp) with the addition of a new ion source. This intensity is close to the space charge limit of the machine, estimated at about 3 x 10/sup 12/ ppp, depending somewhat on the available aperture. With the present good performance in mind, accelerator improvements are being directed at increasing beam intensities for neutron science, lowering acceleration losses to minimize activation, and gaining better control of the beam so that losses can be made to occur when and where they can be most easily controlled. On the basis of preliminary measurements, the authors are now proposing a third cavity for the RF system which would provide control of the longitudinal bunch shape during the cycle which would permit raising the effective space charge limit of the accelerator and reducing losses.

  3. Factorial Switching Kalman Filters for Condition Monitoring in Neonatal Intensive Care

    E-Print Network [OSTI]

    Williams, Christopher; Quinn, J.; McIntosh, N.

    The observed physiological dynamics of an infant receiving intensive care are affected by many possible factors, including interventions to the baby, the operation of the monitoring equipment and the state of health. The Factorial Switching Kalman...

  4. Extreme rainfall intensities and long-term rainfall risk from tropical cyclones

    E-Print Network [OSTI]

    Langousis, Andreas, 1981-

    2009-01-01T23:59:59.000Z

    We develop a methodology for the frequency of extreme rainfall intensities caused by tropical cyclones (TCs) in coastal areas. The mean rainfall field associated with a TC with maximum tangential wind speed Vmax, radius ...

  5. Determinants of energy intensity in industrialized countries : a comparison of China and India

    E-Print Network [OSTI]

    Huang, Feiya

    2006-01-01T23:59:59.000Z

    The amount of final energy per unit of economic output (usually in terms of gross domestic product, or GDP), known as energy intensity, is often used to measure the effectiveness of energy use and the consumption patterns ...

  6. Correlation of intensity fluctuations in beams generated by quasi-homogeneous sources

    E-Print Network [OSTI]

    Visser, Taco D.

    of intensity fluctuations (the Hanbury BrownTwiss effect) that occurs in electromagnetic beams.1364/JOSAA.31.002152 1. INTRODUCTION In the mid-1950s Hanbury Brown and Twiss (HBT) deter- mined the angular

  7. Predicting Hurricane Intensity and Structure Changes Associated with Eyewall Replacement Cycles

    E-Print Network [OSTI]

    Kossin, James P.

    Predicting Hurricane Intensity and Structure Changes Associated with Eyewall Replacement Cycles replacement cycles are commonly observed in tropical cyclones and are well known to cause fluctuations associated with eyewall replacement cycles in Atlantic Ocean hurricanes. The model input comprises

  8. Self-organizing discovery, recognition, and prediction of hemodynamic patterns in the intensive care unit

    E-Print Network [OSTI]

    Spencer, Ronald Glen

    1994-01-01T23:59:59.000Z

    In order to properly care for critically ill patients in the intensive care unit (ICU), clinicians must be aware of hemodynamic patterns. In a typical ICU a variety of physiologic measurements are made continuously and intermittently in an attempt...

  9. Ultrahigh intensity laser-plasma interaction: A Lagrangian approach* J.-M. Flax+

    E-Print Network [OSTI]

    instability leading to collisionless heating. Second, in the generation of plasma wakes using ultrahigh of the wake amplitude occurs. Third, in the generation of third-harmonic waves using ultrahigh intensity, long should also consider a fourth regime, (iv) SW

  10. Sensitivity of Tropical Cyclone Intensity to Ventilation in an Axisymmetric Model

    E-Print Network [OSTI]

    Tang, Brian

    The sensitivity of tropical cyclone intensity to ventilation of cooler, drier air into the inner core is examined using an axisymmetric tropical cyclone model with parameterized ventilation. Sufficiently strong ventilation ...

  11. A high frequency polarization intensity electrooptic modulator in BSTN ferroelectric crystal

    E-Print Network [OSTI]

    Wilson, Erik James

    1996-01-01T23:59:59.000Z

    of 78% have been realized. Optical intensity modulation up to 1.5 GHz has been observed, and a 3-dB frequency value of 1.28 GHz has been achieved....

  12. Bulk ablation of soft tissue with intense ultrasound: Modeling and experiments

    E-Print Network [OSTI]

    Mast, T. Douglas

    , the thermal de- struction of large tissue volumes is most commonly per- formed using radiofrequency RF ablation electromagnetic radiation in the 400700 kHz range .3,4 Intense ultrasound treatment, first

  13. Manipulation of the Raman process via incoherent pump, tunable intensity, and phase control

    E-Print Network [OSTI]

    Wang, Li-Gang; Qamar, Sajid; Zhu, Shi-Yao; Zubairy, M. Suhail

    2008-01-01T23:59:59.000Z

    We present a proposal to manipulate the Raman process via incoherent pump, tunable intensity, and phase control of the driving fields. It is found that Raman absorptive peaks can become Raman gain peaks by controlling the incoherent pump...

  14. Manpower planning and cycle-time reduction of a labor-intensive assembly line

    E-Print Network [OSTI]

    Oh, Shao Chong

    2010-01-01T23:59:59.000Z

    The demand for Gas Lift Mandrels(GLM) in the oil and gas industry is expected to increase over the next few years, requiring Schlumberger's GLM assembly line to increase their manufacturing capacity. Given the labor-intensive ...

  15. Energy prices and energy intensity in China : a structural decomposition analysis and econometrics study

    E-Print Network [OSTI]

    Shi, Xiaoyu

    2006-01-01T23:59:59.000Z

    Since the start of its economic reforms in 1978, China's energy prices relative to other prices have increased. At the same time, its energy intensity, i.e., energy consumption per unit of Gross Domestic Product (GDP), has ...

  16. Energy prices and energy intensity in China : a structural decomposition analysis and econometric study

    E-Print Network [OSTI]

    Shi, Xiaoyu, M.C.P. Massachusetts Institute of Technology

    2005-01-01T23:59:59.000Z

    Since the start of its economic reforms in 1978, China's energy prices relative to other prices have increased. At the same time, its energy intensity, i.e., physical energy consumption per unit of Gross Domestic Product ...

  17. Multi-objective fuel policies: Renewable fuel standards versus Fuel greenhouse gas intensity standards

    E-Print Network [OSTI]

    Rajagopal, Deepak

    2010-01-01T23:59:59.000Z

    GHG intensity among fossil fuels. We ?nd that the relativeunder a RFS while world fossil fuel price is the same orwith the more-polluting fossil fuels being consumed abroad

  18. Generation and search of axion-like light particle using intense crystalline field

    E-Print Network [OSTI]

    Wei Liao

    2011-07-19T23:59:59.000Z

    Intense electric field $\\sim 10^{10}-10^{11}$ V/cm in crystal has been known for a long time and has wide applications. We study the conversion of axion-like light particle and photon in the intense electric field in crystal. We find that the conversion of axion-like particle and photon happens for energy larger than keV range. We propose search of axion-like light particle using the intense crystalline field. We discuss the solar axion search experiment and a variety of shining-through-wall experiment using crystalline field. Due to the intense crystalline field which corresponds to magnetic field $\\sim 10^4-10^5$ Tesla these experiments are very interesting. In particular these experiments can probe the mass range of axion-like particle from eV to keV.

  19. Recognizing targets from infrared intensity scan patterns using artificial neural networks

    E-Print Network [OSTI]

    Barshan, Billur

    Recognizing targets from infrared intensity scan patterns using artificial neural networks Tayfun complicating the localization and recognition process. We employ artificial neural networks to deter- mine differentiation; artificial neural networks; optimal brain surgeon; pattern recognition. Paper 080450R received

  20. Optically Interconnected Data Center Architecture for Bandwidth Intensive Energy Efficient Networking

    E-Print Network [OSTI]

    Bergman, Keren

    sophisticated cooling systems, further reducing overall data center energy efficiencies. Moreover, measurements feasibility of the system. Keywords: optical network architecture, data center networks, reconfigurableOptically Interconnected Data Center Architecture for Bandwidth Intensive Energy Efficient

  1. Intensity-based Valuation of Residential Mortgages: an Analytically Tractable Model

    E-Print Network [OSTI]

    MacIver, Malcolm A.

    Intensity-based Valuation of Residential Mortgages: an Analytically Tractable Model Vyacheslav in Mathematical Finance Abstract This paper presents an analytically tractable valuation model for residential. Our solution method is based on explicitly constructing an eigenfunction expansion of the pricing

  2. Zone folding effect in Raman G-band intensity of twisted bilayer graphene

    E-Print Network [OSTI]

    Dresselhaus, Mildred

    The G-band Raman intensity is calculated for twisted bilayer graphene as a function of laser excitation energy based on the extended tight binding method. Here we explicitly consider the electron-photon and electron-phonon ...

  3. Temperature Measurements Through Dust or Steam for Energy-Intensive Industries

    E-Print Network [OSTI]

    Stephan, K. D.; Pearce, J. A.; Wang, L.; Ryza, E.

    2005-01-01T23:59:59.000Z

    The precise measurement of temperature in energy-intensive processes can lead to energy conservation and improvements in the quality and consistency of products. While temperature measurement instruments are available for a wide variety...

  4. Hybrid intensity and time-of-flight signal processing techniques for intelligent distance sensors

    E-Print Network [OSTI]

    Hiromi, Itariu

    2013-01-01T23:59:59.000Z

    With the advent of "smart" consumer electronics, distance sensing is an increasingly important field in optical sensing. A novel approach to active infrared(IR) 1D distance sensing is proposed, employing both intensity and ...

  5. Intensity-resolved Above Threshold Ionization Yields of Atoms with Ultrashort Laser Pulses

    E-Print Network [OSTI]

    Hart, Nathan Andrew

    2012-10-19T23:59:59.000Z

    The above threshold ionization (ATI) spectra provide a diversity of information about a laser-atom ionization process such as laser intensity, pulse duration, carrier envelope phase, and atomic energy level spacing. However, the spatial distribution...

  6. Vehicle Technologies Office Merit Review 2015: Magnesium-Intensive Front End Sub-Structure Development

    Broader source: Energy.gov [DOE]

    Presentation given by USAMP at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about magnesium-intensive front end sub...

  7. aperture-based intensity modulation: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Optics, John Wiley, New York, NY, USA. ... Webb, S.: 2001a, Intensity-Modulated Radiation Therapy, Institute of Physics ... Ying X 2004-05-25 2 Trellis coded modulation and...

  8. The effects of stocking density on two Tilapia species raised in an intensive culture system

    E-Print Network [OSTI]

    Henderson-Arzapalo, Anne

    1979-01-01T23:59:59.000Z

    THE EFFECTS'OF STOCKING DENSITY ON TWO TILAPIA SPECIES RAISED IN AN INTENSIVE CULTURE SYSTEM A Thesis by ANNE HENDERSON-ARZAPALO Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement... for the degree of MASTER OF SCIENCE December l979 Major Subject: Wildlife and Fisheries Science THE EFFECTS OF STOCKING DENSITY ON TWO TILAPIA SPECIES RAISED IN AN INTENSIVE CULTURE SYSTEM A Thesis by ANNE HENDERSON-ARZAPALO Approved as to style...

  9. Gregorian optical system with non-linear optical technology for protection against intense optical transients

    DOE Patents [OSTI]

    Ackermann, Mark R. (Albuquerque, NM); Diels, Jean-Claude M. (Albuquerque, NM)

    2007-06-26T23:59:59.000Z

    An optical system comprising a concave primary mirror reflects light through an intermediate focus to a secondary mirror. The secondary mirror re-focuses the image to a final image plane. Optical limiter material is placed near the intermediate focus to optically limit the intensity of light so that downstream components of the optical system are protected from intense optical transients. Additional lenses before and/or after the intermediate focus correct optical aberrations.

  10. Drift Compression of an Intense Neutralized Ion Beam P. K. Roy,1

    E-Print Network [OSTI]

    Gilson, Erik

    Drift Compression of an Intense Neutralized Ion Beam P. K. Roy,1 S. S. Yu,1 E. Henestroza,1 A. Waldron,1 D. R. Welch,2 C. Thoma,2 A. B. Sefkow,3 E. P. Gilson,3 P. C. Efthimion,3 and R. C. Davidson3 1 of a velocity-tailored, intense neutralized K beam at 300 keV, 25 mA has been demonstrated. The compression

  11. Operation of the intensity monitors in beam transport lines at Fermilab during Run II

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Crisp, J; Fellenz, B; Fitzgerald, J; Heikkinen, D; Ibrahim, M A.

    2011-10-01T23:59:59.000Z

    The intensity of charged particle beams at Fermilab must be kept within pre-determined safety and operational envelopes in part by assuring all beam within a few percent has been transported from any source to destination. Beam instensity monitors with toroidial pickups provide such beam intensity measurements in the transport lines between accelerators at FNAL. During Run II, much effort was made to continually improve the resolution and accuracy of the system.

  12. Nighttime atmospheric stability changes and their effects on the temporal intensity of a mesoscale convective complex

    E-Print Network [OSTI]

    Hovis, Jeffrey Scott

    1988-01-01T23:59:59.000Z

    NIGHTTIME ATMOSPHERIC STABILITY CHANGES AND THEIR EFFECTS ON THE TEMPORAL INTENSITY OF A MESOSCALE CONVECTIVE COMPLEX A Thesis JEFFREY SCOTT HOVIS Submitted to the Graduate College of Texas A&M University in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE May 1988 Major Subject: Meteorology NIGHTTIME ATMOSPHERIC STABILITY CHANGES AND THEIR EFFECTS ON THE TEMPORAL INTENSITY OF A MESOSCALE CONVECTIVE COMPLEX A Thesis JEFFREY SCOTT HOVIS Approved as to style...

  13. Comparison of the Evolution of Energy Intensity in Spain and in the EU15. Why is Spain Different?

    E-Print Network [OSTI]

    Ocaa, Carlos

    Energy intensity in Spain has increased since 1990, while the opposite has happened in the EU15. Decomposition analysis of primary energy intensity ratios has been used to identify which are the key sectors driving the ...

  14. Intensity-dependent enhancements in high-order above-threshold ionization

    SciTech Connect (OSTI)

    Milosevic, D. B. [Faculty of Science, University of Sarajevo, Zmaja od Bosne 35, 71000 Sarajevo (Bosnia and Herzegowina); Max-Born-Institut, Max-Born-Strasse 2a, 12489 Berlin (Germany); Hasovic, E.; Gazibegovic-Busuladzic, A. [Faculty of Science, University of Sarajevo, Zmaja od Bosne 35, 71000 Sarajevo, Bosnia and Herzegovina (Bosnia and Herzegowina); Busuladzic, M. [Medical Faculty, University of Sarajevo, Cekalusa 90, 71000 Sarajevo (Bosnia and Herzegowina); Becker, W. [Max-Born-Institut, Max-Born-Strasse 2a, 12489 Berlin (Germany)

    2007-11-15T23:59:59.000Z

    The very pronounced intensity-dependent enhancements of groups of peaks of high-order above-threshold-ionization spectra of rare-gas atoms are investigated using an improved version of the strong-field approximation, which realistically models the respective atom. Two types of enhancements are found and explained in terms of constructive interference of the contributions of a large number of long quantum orbits. The first type is observed for intensities slightly below channel closings. Its intensity dependence is comparatively smooth and it is generated by comparatively few (of the order of 20) orbits. The second type occurs precisely at channel closings and exhibits an extremely sharp intensity dependence. It requires constructive interference of a very large number of long orbits (several hundreds) and generates cusps in the electron spectrum at integer multiples of the laser-photon energy. An interpretation of these enhancements as a threshold phenomenon is also given. An interplay of different types of the threshold anomalies is observed. The position of both types of enhancements, in the photoelectron-energy--laser-intensity plane, shifts to the next channel closing intensity with the change of the ground-state parity. The enhancements gradually disappear with decreasing laser pulse duration. This confirms the interpretation of enhancements as a consequence of the interference of long strong-laser-field-induced quantum orbits.

  15. Intensity inhomogeneity correction for magnetic resonance imaging of human brain at 7T

    SciTech Connect (OSTI)

    Uwano, Ikuko; Yamashita, Fumio; Higuchi, Satomi; Ito, Kenji; Sasaki, Makoto [Division of Ultrahigh Field MRI, Institute for Biomedical Sciences, Iwate Medical University, Yahaba, Iwate 028-3694 (Japan)] [Division of Ultrahigh Field MRI, Institute for Biomedical Sciences, Iwate Medical University, Yahaba, Iwate 028-3694 (Japan); Kudo, Kohsuke, E-mail: kkudo@huhp.hokudai.ac.jp; Goodwin, Jonathan; Harada, Taisuke [Division of Ultrahigh Field MRI, Institute for Biomedical Sciences, Iwate Medical University, Yahaba, Iwate 028-3694, Japan and Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo, Hokkaido 060-8648 (Japan)] [Division of Ultrahigh Field MRI, Institute for Biomedical Sciences, Iwate Medical University, Yahaba, Iwate 028-3694, Japan and Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo, Hokkaido 060-8648 (Japan); Ogawa, Akira [Department of Neurosurgery, Iwate Medical University, Morioka, Iwate 020-8505 (Japan)] [Department of Neurosurgery, Iwate Medical University, Morioka, Iwate 020-8505 (Japan)

    2014-02-15T23:59:59.000Z

    Purpose: To evaluate the performance and efficacy for intensity inhomogeneity correction of various sequences of the human brain in 7T MRI using the extended version of the unified segmentation algorithm. Materials: Ten healthy volunteers were scanned with four different sequences (2D spin echo [SE], 3D fast SE, 2D fast spoiled gradient echo, and 3D time-of-flight) by using a 7T MRI system. Intensity inhomogeneity correction was performed using the New Segment module in SPM8 with four different values (120, 90, 60, and 30 mm) of full width at half maximum (FWHM) in Gaussian smoothness. The uniformity in signals in the entire white matter was evaluated using the coefficient of variation (CV); mean signal intensities between the subcortical and deep white matter were compared, and contrast between subcortical white matter and gray matter was measured. The length of the lenticulostriate (LSA) was measured on maximum intensity projection (MIP) images in the original and corrected images. Results: In all sequences, the CV decreased as the FWHM value decreased. The differences of mean signal intensities between subcortical and deep white matter also decreased with smaller FWHM values. The contrast between white and gray matter was maintained at all FWHM values. LSA length was significantly greater in corrected MIP than in the original MIP images. Conclusions: Intensity inhomogeneity in 7T MRI can be successfully corrected using SPM8 for various scan sequences.

  16. Common Patterns in the Evolution between the Luminous Neutron Star Low-Mass X-ray Binary Subclasses

    E-Print Network [OSTI]

    Fridriksson, Joel K; Remillard, Ronald A

    2015-01-01T23:59:59.000Z

    The X-ray transient XTE J1701-462 was the first source seen to evolve through all known subclasses of low-magnetic-field neutron star low-mass X-ray binaries (NS-LMXBs), as a result of large changes in its mass accretion rate. To investigate to what extent similar evolution is seen in other NS-LMXBs we have performed a detailed study of the color-color and hardness-intensity diagrams (CDs and HIDs) of Cyg X-2, Cir X-1, and GX 13+1 -- three luminous X-ray binaries, containing weakly magnetized neutron stars, known to exhibit strong secular changes in their CD/HID tracks. Using the full set of Rossi X-ray Timing Explorer Proportional Counter Array data collected for the sources over the 16-year duration of the mission, we show that Cyg X-2 and Cir X-1 display CD/HID evolution with close similarities to XTE J1701-462. Although GX 13+1 shows behavior that is in some ways unique, it also exhibits similarities to XTE J1701-462, and we conclude that its overall CD/HID properties strongly indicate that it should be c...

  17. PHYSICAL REVIEW A 83, 013405 (2011) Precision calculation of above-threshold multiphoton ionization in intense short-wavelength laser

    E-Print Network [OSTI]

    Chu, Shih-I

    2011-01-01T23:59:59.000Z

    in intense short-wavelength laser fields: The momentum-space approach and time-dependent generalized to the advance of the intense and short pulse laser technology, the study of ATI phenomenon continues to attract) dynamics of atomic systems driven by intense laser fields. In this approach, the electron wave function

  18. Polarization dependence of two-photon transition intensities in rare-earth doped crystals

    SciTech Connect (OSTI)

    Le Nguyen, An-Dien

    1996-05-01T23:59:59.000Z

    A polarization dependence technique has been developed as a tool to investigate phonon scattering (PS), electronic Raman scattering (ERS), and two-photon absorption (TPA) transition intensities in vanadate and phosphate crystals. A general theory for the polarization dependence (PD) of two-photon transition intensities has been given. Expressions for the polarization dependent behavior of two-photon transition intensities have been tabulated for the 32 crystallographic point groups. When the wavefunctions for the initial and final states of a rare-earth doped in crystals are known, explicit PD expressions with no unknown parameters can be obtained. A spectroscopic method for measuring and interpreting phonon and ERS intensities has been developed to study PrVO{sub 4}, NdVO{sub 4}, ErVO{sub 4}, and TmVO{sub 4} crystals. Relative phonon intensities with the polarization of the incident and scattered light arbitrarily varied were accurately predicted and subsequently used for alignment and calibration in ERS measurements in these systems for the first time. Since ERS and PS intensities generally follow different polarization curves as a function of polar angles, the two can be uniquely identified by comparing their respective polarization behavior. The most crucial application of the technique in ERS spectroscopy is the establishment of a stringent test for the Axe theory. For the first time, the F{sub 1}/F{sub 2} ratio extracted from the experimental fits of the ERS intensities were compared with those predicted by theories which include both the second- and third-order contributions. Relatively good agreement between the fitted values of F{sub 1}/F{sub 2} and the predicted values using the second-order theory has been found.

  19. On the description of the GCR intensity in the last three solar minima

    E-Print Network [OSTI]

    Kalinin, M S; Krainev, M B; Svirzhevskaya, A K; Svirzhevsky, N S

    2014-01-01T23:59:59.000Z

    We discuss the main characteristic features in the heliospheric parameters important for the GCR intensity modulation for the last three solar minima (1986--1987, 1996--1997 and 2008--2009). The model for the GCR intensity modulation is considered and the set of the model parameters is chosen which allows the description of the observed GCR intensity distributions at the moments of the maximum GCR intensity in two solar minima (1987 and 1997) normal for the second half of the last century. Then we try to describe with the above model and set of parameters the unusually soft GCR energy spectra at the moments of the maximum GCR intensity in the last solar minimum between cycles 23 and 24 (2009). Our main conclusion is that the most simple way to do so is to reduce the size of the modulation region and, probably, change the rigidity dependence of the diffusion coefficient. The change of both parameters is substantiated by the observations of the solar wind and heliospheric magnetic field.

  20. Intensity-resolved ionization yields of aniline with femtosecond laser pulses

    SciTech Connect (OSTI)

    Strohaber, J.; Hart, N.; Zhu, F.; Nava, R.; Pham, F.; Kolomenskii, A. A.; Paulus, G. G.; Schuessler, H. A. [Texas A and M University, Department of Physics, College Station, Texas 77843-4242 (United States); Mohamed, T. [Physics Department, Faculty of Science, BeniSuef University (Egypt); Schroeder, H. [Max-Planck-Institut fuer Quantenoptik, Hans-Kopfermann-Strasse 1, DE-85748 Garching (Germany)

    2011-12-15T23:59:59.000Z

    We present experimental results for the ionization of aniline and benzene molecules subjected to intense ultrashort laser pulses. Measured parent molecular ions yields were obtained using a recently developed technique capable of three-dimensional imaging of ion distributions within the focus of a laser beam. By selecting ions originating from the central region of the focus, where the spatial intensity distribution is nearly uniform, volumetric-free intensity-dependent ionization yields were obtained. The measured data revealed a previously unseen resonance-enhanced multiphoton ionization (REMPI)-like process. Comparison of benzene, aniline, and Xe ion yields demonstrates that the observed intensity-dependent structures are not due to geometric artifacts in the focus. Finally for intensities greater than {approx}3x10{sup 13} W/cm{sup 2}, we attribute the ionization of aniline to a stepwise process going through the {pi}{sigma}{sup *} state which sits three photons above the ground state and two photons below the continuum.

  1. Public Meetings and Comment Deadlines | Department of Energy

    Energy Savers [EERE]

    and Comment Deadlines Activity Meeting Date Comment Period Close Rulemaking Page Energy Conservation Program: Energy Conservation Standards for High-Intensity Discharge Lamps;...

  2. acquisition technology development: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Platform for High Intensity Accelerator Experiments CERN Preprints Summary: Data logging at an upgraded KEKB accelerator or the J-PARC facility, currently under...

  3. CX-000473: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Science, Argonne Site Office The proposed project will investigate the effect of solar radiation, simulated by a high intensity light source, on photoactive devices and...

  4. Both the October and November Fall Science Series Lectures Were...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Shinn On Oct. 15, Michelle Shinn, chief optics scientist for Jefferson Lab's Free-Electron Laser, will present "Exploring the Nature of Matter Along the High-Intensity...

  5. Energy Savings Potential for Street Lighting in India

    E-Print Network [OSTI]

    Johnson, Alissa K.

    2014-01-01T23:59:59.000Z

    M. B. Kostic, Light-emitting diodes in street and roadwayCompact fluorescent Light emitting diode High intensityCompact fluorescent Light emitting diode Mercury Vapor High

  6. acari eriophyidae damage: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    resistant to particle beams. Their strength deteriorates with time due to radiation damage and low-cycle thermal fatigue. In case of high intensity beams this process can...

  7. Constant-intensity waves and their modulation instability in non-Hermitian potentials

    E-Print Network [OSTI]

    Makris, Konstantinos G; Christodoulides, Demetrios N; Rotter, Stefan

    2015-01-01T23:59:59.000Z

    In all of the diverse areas of science where waves play an important role, one of the most fundamental solutions of the corresponding wave equation is a stationary wave with constant intensity. The most familiar example is that of a plane wave propagating in free space. In the presence of any Hermitian potential, a wave's constant intensity is, however, immediately destroyed due to scattering. Here we show that this fundamental restriction is conveniently lifted when working with non-Hermitian potentials. In particular, we present a whole new class of waves that have constant intensity in the presence of linear as well as of nonlinear inhomogeneous media with gain and loss. These solutions allow us to study, for the first time, the fundamental phenomenon of modulation instability in an inhomogeneous environment. Our results pose a new challenge for the experiments on non-Hermitian scattering that have recently been put forward.

  8. Constant-intensity waves and their modulation instability in non-Hermitian potentials

    E-Print Network [OSTI]

    Konstantinos G. Makris; Ziad H. Musslimani; Demetrios N. Christodoulides; Stefan Rotter

    2015-03-31T23:59:59.000Z

    In all of the diverse areas of science where waves play an important role, one of the most fundamental solutions of the corresponding wave equation is a stationary wave with constant intensity. The most familiar example is that of a plane wave propagating in free space. In the presence of any Hermitian potential, a wave's constant intensity is, however, immediately destroyed due to scattering. Here we show that this fundamental restriction is conveniently lifted when working with non-Hermitian potentials. In particular, we present a whole new class of waves that have constant intensity in the presence of linear as well as of nonlinear inhomogeneous media with gain and loss. These solutions allow us to study, for the first time, the fundamental phenomenon of modulation instability in an inhomogeneous environment. Our results pose a new challenge for the experiments on non-Hermitian scattering that have recently been put forward.

  9. Increase in the Intensity of Postmonsoon Bay of Bengal Tropical Cyclones

    SciTech Connect (OSTI)

    Balaguru, Karthik; Taraphdar, Sourav; Leung, Lai-Yung R.; Foltz, Gregory R.

    2014-05-28T23:59:59.000Z

    The post-monsoon (October-November) tropical cyclone (TC) season in the Bay of Bengal has spawned many of the deadliest storms in recorded history. Here it is shown that the intensity of post-monsoon Bay of Bengal TCs, and the contribution of major TCs to total TC power, increased during 1981-2010. It is found that changes in environmental parameters are responsible for the observed increases in TC intensity. Increases in sea surface temperature and upper ocean heat content made the ocean more conducive to TC development, while enhanced convective instability made the atmosphere more favorable for the growth of TCs. The largest changes in the atmosphere and ocean occurred in the eastern Bay of Bengal, where nearly all major TCs form. These changes are part of positive linear trends, suggesting that the intensity of post-monsoon Bay of Bengal TCs may continue to increase in the future.

  10. The effects of oxygen concentration and light intensity on the photostability of zwitterionic chromophores

    SciTech Connect (OSTI)

    Raymond, S. G.; Williams, G. V. M.; Lochocki, B.; Bhuiyan, M. D. H.; Kay, A. J.; Quilty, J. W. [Photonics Group, Industrial Research Ltd., P.O. Box 31310, Lower Hutt 5040 (New Zealand)

    2009-06-01T23:59:59.000Z

    Photostability measurements at different oxygen partial pressures and light intensities have been made on host-guest films containing amorphous polycarbonate and an organic chromophore with a high second order nonlinear optical figure of merit. We find that the photodegradation quantum efficiency dramatically increases with increasing oxygen partial pressure. At very low oxygen partial pressures (8x10{sup -6} bar) the average number of photons required to photodegrade a chromophore is as high as 2x10{sup 8} at 655 nm. The photodegradation quantum efficiency in air is observed to decrease with increasing optical intensity. We show that this is due to a reduced oxygen content in the film caused by chromophore photodegradation rather than ground state bleaching. There is an anomalous increase and then decrease in the photoluminescence intensity that cannot easily be explained.

  11. Optimization of infrared two-color multicycle field synthesis for intense-isolated-attosecond-pulse generation

    SciTech Connect (OSTI)

    Lan Pengfei; Takahashi, Eiji J.; Midorikawa, Katsumi [Extreme Photonics Research Group, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan)

    2010-11-15T23:59:59.000Z

    We present the optimization of the two-color synthesis method for generating an intense isolated attosecond pulse (IAP) in the multicycle regime. By mixing an infrared assistant pulse with a Ti:sapphire main pulse, we show that an IAP can be produced using a multicycle two-color pulse with a duration longer than 30 fs. We also discuss the influence of the carrier-envelope phase (CEP) and the relative intensity on the generation of IAPs. By optimizing the wavelength of the assistant field, IAP generation becomes insensitive to the CEP slip. Therefore, the optimized two-color method enables us to relax the requirements of pulse duration and easily produce the IAP with a conventional multicycle laser pulse. In addition, it enables us to markedly suppress the ionization of the harmonic medium. This is a major advantage for efficiently generating intense IAPs from a neutral medium by applying the appropriate phase-matching and energy-scaling techniques.

  12. Multiple hot images from an obscuration in an intense laser beam through cascaded Kerr medium disks

    SciTech Connect (OSTI)

    Wang Youwen; Wen Shuangchun; You Kaiming; Tang Zhixiang; Deng Jianqin; Zhang Lifu; Fan Dianyuan

    2008-10-20T23:59:59.000Z

    We present a theoretical investigation on the formation of hot images in an intense laser beam through cascaded Kerr medium disks, to disclose the distribution and intensity of hot images in high-power disk amplifiers. It is shown that multiple hot images from an obscuration may be formed, instead of one hot image as reported previously in the literature. This gives a clear explanation for the curious damage pattern of hot images, namely, damage sites appearing on alternating optics in periodic trains. Further analysis demonstrates that the distribution and intensity of hot images depend closely on the number of Kerr medium disks, the distance from the obscuration to the front of the first disk downstream, the space between two neighboring disks, and the thickness and B integral of each disk. Moreover, we take two cascaded Kerr medium disks for example to detail multiple hot images from an obscuration and confirm the theoretical results by numerical simulations.

  13. Intensive Observation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn Other NewsSpin andInterimInvokingInspector XE 2013

  14. RECORD-SETTING COSMIC-RAY INTENSITIES IN 2009 AND 2010

    SciTech Connect (OSTI)

    Mewaldt, R. A.; Davis, A. J.; Leske, R. A.; Stone, E. C.; Cummings, A. C.; Labrador, A. W. [California Institute of Technology, Pasadena, CA 91125 (United States); Lave, K. A.; Binns, W. R.; Israel, M. H. [Washington University, St. Louis, MO 63130 (United States); Wiedenbeck, M. E. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Christian, E. R.; De Nolfo, G. A.; Von Rosenvinge, T. T. [NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2010-11-01T23:59:59.000Z

    We report measurements of record-setting intensities of cosmic-ray nuclei from C to Fe, made with the Cosmic Ray Isotope Spectrometer carried on the Advanced Composition Explorer in orbit about the inner Sun-Earth Lagrangian point. In the energy interval from {approx}70 to {approx}450 MeV nucleon{sup -1}, near the peak in the near-Earth cosmic-ray spectrum, the measured intensities of major species from C to Fe were each 20%-26% greater in late 2009 than in the 1997-1998 minimum and previous solar minima of the space age (1957-1997). The elevated intensities reported here and also at neutron monitor energies were undoubtedly due to several unusual aspects of the solar cycle 23/24 minimum, including record-low interplanetary magnetic field (IMF) intensities, an extended period of reduced IMF turbulence, reduced solar-wind dynamic pressure, and extremely low solar activity during an extended solar minimum. The estimated parallel diffusion coefficient for cosmic-ray transport based on measured solar-wind properties was 44% greater in 2009 than in the 1997-1998 solar-minimum period. In addition, the weaker IMF should result in higher cosmic-ray drift velocities. Cosmic-ray intensity variations at 1 AU are found to lag IMF variations by 2-3 solar rotations, indicating that significant solar modulation occurs inside {approx}20 AU, consistent with earlier galactic cosmic-ray radial-gradient measurements. In 2010, the intensities suddenly decreased to 1997 levels following increases in solar activity and in the inclination of the heliospheric current sheet. We describe the conditions that gave cosmic rays greater access to the inner solar system and discuss some of their implications.

  15. Unveiling temporal correlations characteristic to phase transition in the intensity of a fibre laser radiation

    E-Print Network [OSTI]

    Andres Aragoneses; Laura Carpi; Nikita Tarasov; Dmitry V. Churkin; M. C. Torrent; Cristina Masoller; Sergei K. Turitsyn

    2015-06-09T23:59:59.000Z

    We use advanced statistical tools of time-series analysis to characterize the dynamical complexity of the transition to optical wave turbulence in a fibre laser. Ordinal analysis and the horizontal visibility graph applied to the experimentally measured laser output intensity reveal the presence of temporal correlations during the transition from the laminar to the turbulent lasing regimes. Both methods unveil coherent structures with well defined time-scales and strong correlations both, in the timing of the laser pulses and in their peak intensities. Our approach is generic and may be used in other complex systems that undergo similar transitions involving the generation of extreme fluctuations.

  16. Effect of turbulent velocity on the \\HI intensity fluctuation power spectrum from spiral galaxies

    E-Print Network [OSTI]

    Dutta, Prasun

    2015-01-01T23:59:59.000Z

    We use numerical simulations to investigate effect of turbulent velocity on the power spectrum of \\HI intensity from external galaxies when (a) all emission is considered, (b) emission with velocity range smaller than the turbulent velocity dispersion is considered. We found that for case (a) the intensity fluctuation depends directly only on the power spectrum of the column density, whereas for case (b) it depends only on the turbulent velocity fluctuation. We discuss the implications of this result in real observations of \\HI fluctuations.

  17. Picosecond buildup and relaxation of intense stimulated emission in GaAs

    SciTech Connect (OSTI)

    Ageeva, N. N.; Bronevoi, I. L., E-mail: bil@cplire.ru; Zabegaev, D. N.; Krivonosov, A. N. [Russian Academy of Sciences, Kotelnikov Institute of Radio Engineering and Electronics (Russian Federation)

    2013-04-15T23:59:59.000Z

    In support of the idea developed previously based on circumstantial evidence, we have found that stimulated emission emerges in GaAs and its intensity increases with a picosecond delay relative to the front of powerful picosecond optical pumping that produced a dense electron-hole plasma. The emission intensity relaxes with decreasing pumping with a characteristic time of {approx}10 ps. We have derived the dependences of the delay time, the relaxation time, and the duration of the picosecond emission pulse on its photon energy. The estimates based on the fact that the relaxation of emission is determined by electron-hole plasma cooling correspond to the measured relaxation time.

  18. Measurement of the atmospheric muon depth intensity relation with the NEMO Phase-2 tower

    E-Print Network [OSTI]

    S. Aiello; F. Ameli; M. Anghinolfi; G. Barbarino; E. Barbarito; F. Barbato; N. Beverini; S. Biagi; B. Bouhadef; C. Bozza; G. Cacopardo; M. Calamai; C. Cal; A. Capone; F. Caruso; A. Ceres; T. Chiarusi; M. Circella; R. Cocimano; R. Coniglione; M. Costa; G. Cuttone; C. D'Amato; A. D'Amico; G. De Bonis; V. De Luca; N. Deniskina; G. De Rosa; F. Di Capua; C. Distefano; P. Fermani; L. A. Fusco; F. Garufi; V. Giordano; A. Gmerk; R. Grasso; G. Grella; C. Hugon; M. Imbesi; V. Kulikovskiy; G. Larosa; D. Lattuada; K. P. Leismueller; E. Leonora; P. Litrico; A. Lonardo; F. Longhitano; D. Lo Presti; E. Maccioni; A. Margiotta; A. Martini; R. Masullo; P. Migliozzi; E. Migneco; A. Miraglia; C. M. Mollo; M. Mongelli; M. Morganti; P. Musico; M. Musumeci; C. A. Nicolau; A. Orlando; R. Papaleo; C. Pellegrino; M. G. Pellegriti; C. Perrina; P. Piattelli; C. Pugliatti; S. Pulvirenti; A. Orselli; F. Raffaelli; N. Randazzo; G. Riccobene; A. Rovelli; M. Sanguineti; P. Sapienza; V. Sciacca; I. Sgura; F. Simeone; V. Sipala; F. Speziale; M. Spina; A. Spitaleri; M. Spurio; S. M. Stellacci; M. Taiuti; G. Terreni; L. Trasatti; A. Trovato; C. Ventura; P. Vicini; S. Viola; D. Vivolo

    2014-12-03T23:59:59.000Z

    The results of the analysis of the data collected with the NEMO Phase-2 tower, deployed at 3500 m depth about 80 km off-shore Capo Passero (Italy), are presented. Cherenkov photons detected with the photomultipliers tubes were used to reconstruct the tracks of atmospheric muons. Their zenith-angle distribution was measured and the results compared with Monte Carlo simulations. An evaluation of the systematic effects due to uncertainties on environmental and detector parameters is also included. The associated depth intensity relation was evaluated and compared with previous measurements and theoretical predictions. With the present analysis, the muon depth intensity relation has been measured up to 13 km of water equivalent.

  19. Production of intense negative hydrogen beams with polarized nuclei by selective neutralization of cold negative ions

    DOE Patents [OSTI]

    Hershcovitch, A.

    1984-02-13T23:59:59.000Z

    A process for selectively neutralizing H/sup -/ ions in a magnetic field to produce an intense negative hydrogen ion beam with spin polarized protons. Characteristic features of the process include providing a multi-ampere beam of H/sup -/ ions that are

  20. The increasing intensity of the strongest tropical James B. Elsner1

    E-Print Network [OSTI]

    Kossin, James P.

    cyclones. We note separate upward trends in the estimated lifetime-maximum wind speeds of the veryLETTERS The increasing intensity of the strongest tropical cyclones James B. Elsner1 , James P. Kossin2 & Thomas H. Jagger1 Atlantic tropical cyclones are getting stronger on average, with a 30-year

  1. Preliminary tests of a second harmonic rf system for the intense pulsed neutron source synchrotron

    SciTech Connect (OSTI)

    Norem, J.; Brandeberry, F.

    1983-01-01T23:59:59.000Z

    The Rapid Cycling Synchrotron (RCS) of the Intense Pulsed Neutron Source (IPNS) operating at Argonne National Laboratory is presently producing intensities of 2 to 2.5 x 10/sup 12/ protons per pulse (ppp) with the addition of a new ion source. This intensity is close to the space charge limit of the machine, estimated at approx. 3 x 10/sup 12/ ppp, depending somewhat on the available aperture. Accelerator improvements are being directed at (1) increasing beam intensities for neutron science, (2) lowering acceleration losses to minimize activation, and (3) gaining better control of the beam so that losses can be made to occur when and where they can be most easily controlled. We are now proposing a third cavity for the RF system which would provide control of the longitudinal bunch shape during the cycle which would permit raising the effective space charge limit of the accelerator and reducing losses by providing more RF voltage at maximum acceleration. This paper presents an outline of the expected benefits together with recent results obtained during low energy operation with one of the two existing cavities operating at the second harmonic (2f/sub 0/).

  2. Proposed second harmonic acceleration system for the intense pulsed neutron source rapid cycling synchrotron

    SciTech Connect (OSTI)

    Norem, J.; Brandeberry, F.; Rauchas, A.

    1983-01-01T23:59:59.000Z

    The Rapid Cycling Synchrotron (RCS) of the Intense Pulsed Neutron Source (IPNS) operating at Argonne National Laboratory is presently producing intensities of 2 to 2.5 x 10/sup 12/ protons per pulse (ppp) with the addition of a new ion source. This intensity is close to the space charge limit of the machine, estimated at approx.3 x 10/sup 12/ ppp, depending somewhat on the available aperture. With the present good performance in mind, accelerator improvements are being directed at: (1) increasing beam intensities for neutron science; (2) lowering acceleration losses to minimize activation; and (3) gaining better control of the beam so that losses can be made to occur when and where they can be most easily controlled. On the basis of preliminary measurements, we are now proposing a third cavity for the RF systems which would provide control of the longitudinal bunch shape during the cycle which would permit raising the effective space charge limit of the accelerator and reducing losses.

  3. Request for Support for the Conference on Super Intense Laser Atom Physics

    SciTech Connect (OSTI)

    Todd Ditmire

    2004-10-21T23:59:59.000Z

    The Conference on Super Intense Laser Atom Physics (SILAP) was held in November 2003 in Dallas, Texas. The venue for the meeting was South Fork Ranch in the outskirts of Dallas. The topics of the meeting included high harmonic generation and attosecond pulse generation, strong field interactions with molecules and clusters, particle acceleration, and relativistic laser atom interactions.

  4. Nonlinear plasma waves excitation by intense ion beams in background plasma

    E-Print Network [OSTI]

    Kaganovich, Igor

    describe the plasma perturbations well.5 Here, we focus on the general case where the plasma density hasNonlinear plasma waves excitation by intense ion beams in background plasma Igor D. Kaganovich, Edward A. Startsev, and Ronald C. Davidson Plasma Physics Laboratory, Princeton University, Princeton

  5. Systems for controlling the intensity variations in a laser beam and for frequency conversion thereof

    DOE Patents [OSTI]

    Skupsky, Stanley (Rochester, NY); Craxton, R. Stephen (Rochester, NY); Soures, John (Pittsford, NY)

    1990-01-01T23:59:59.000Z

    In order to control the intensity of a laser beam so that its intensity varies uniformly and provides uniform illumination of a target, such as a laser fusion target, a broad bandwidth laser pulse is spectrally dispersed spatially so that the frequency components thereof are spread apart. A disperser (grating) provides an output beam which varies spatially in wavelength in at least one direction transverse to the direction of propagation of the beam. Temporal spread (time delay) across the beam is corrected by using a phase delay device (a time delay compensation echelon). The dispersed beam may be amplified with laser amplifiers and frequency converted (doubled, tripled or quadrupled in frequency) with nonlinear optical elements (birefringent crystals). The spectral variation across the beam is compensated by varying the angle of incidence on one of the crystals with respect to the crystal optical axis utilizing a lens which diverges the beam. Another lens after the frequency converter may be used to recollimate the beam. The frequency converted beam is recombined so that portions of different frequency interfere and, unlike interference between waves of the same wavelength, there results an intensity pattern with rapid temoral oscillations which average out rapidly in time thereby producing uniform illumination on target. A distributed phase plate (also known as a random phase mask), through which the spectrally dispersed beam is passed and then focused on a target, is used to provide the interference pattern which becomes nearly modulation free and uniform in intensity in the direction of the spectral variation.

  6. Title of dissertation: Precision Control of Intense Electron Beams in a Low-Energy Ring

    E-Print Network [OSTI]

    Anlage, Steven

    ABSTRACT Title of dissertation: Precision Control of Intense Electron Beams in a Low-Energy Ring. Research reported in this dissertation was done on the University of Maryland Electron Ring (UMER ELECTRON BEAMS IN A LOW-ENERGY RING by Chao Wu Dissertation submitted to the Faculty of the Graduate School

  7. Dirty Little Secrets: Inferring Fossil-Fuel Subsidies from Patterns in Emission Intensities1

    E-Print Network [OSTI]

    Spino, Claude

    Dirty Little Secrets: Inferring Fossil-Fuel Subsidies from Patterns in Emission Intensities1 database of directly measured fossil-fuel subsidies exists at the in- ternational level. I develop and to develop a database of comparable fossil-fuel subsidies for 155 countries from 1980 to 2010. Finally, I

  8. Dynamic Load Balancing for I/O-and Memory-Intensive Workload in Clusters Using a

    E-Print Network [OSTI]

    Zhu, Yifeng

    Load-Balancing Scheme We consider the issue of a feedback control method in a cluster, M = {M1, ..., Mn/O, respectively, without any resource sharing. For a newly arrived job j at a node i, load balancing schemesDynamic Load Balancing for I/O- and Memory-Intensive Workload in Clusters Using a Feedback Control

  9. Explaining Long-Run Changes in the Energy Intensity of the U.S. Economy

    E-Print Network [OSTI]

    Sue Wing, Ian.

    Recent events have revived interest in explaining the long-run changes in the energy intensity of the U.S. economy. We use a KLEM dataset for 35 industries over 39 years to decompose changes in the aggregate energy-GDP ...

  10. Operation of the DC current transformer intensity monitors at FNAL during run II

    SciTech Connect (OSTI)

    Crisp, J.; Fellenz, B.; Heikkinen, D.; Ibrahim, M.A.; Meyer, T.; Vogel, G.; /Fermilab

    2012-01-01T23:59:59.000Z

    Circulating beam intensity measurements at FNAL are provided by five DC current transformers (DCCT), one per machine. With the exception of the DCCT in the Recycler, all DCCT systems were designed and built at FNAL. This paper presents an overview of both DCCT systems, including the sensor, the electronics, and the front-end instrumentation software, as well as their performance during Run II.

  11. Grazing intensity impacts soil carbon and nitrogen storage of continental steppe

    E-Print Network [OSTI]

    Yu, Qiang

    100049 China Abstract. Recent studies have underscored the importance of grasslands as potential carbon in the grasslands of northern China. Key words: carbon; carbon sequestration; carbon storage; grassland; grazingGrazing intensity impacts soil carbon and nitrogen storage of continental steppe N. P. HE,1,2 Y. H

  12. Intensity dependence narrowing of electromagnetically induced absorption in a Doppler-broadened medium

    SciTech Connect (OSTI)

    Dimitrijevic, J.; Arsenovic, D.; Jelenkovic, B. M. [Institute of Physics, 11080 Belgrade (Serbia)

    2007-07-15T23:59:59.000Z

    In this paper, we present a theoretical model for studying the interaction between linearly polarized laser light and near-degenerated Zeeman sublevels for a multiple V-type atomic system of {sup 2}S{sub 1/2}F{sub g}=2{yields}{sup 2}P{sub 3/2}F{sub e}=3 transition in {sup 87}Rb. We have calculated the laser absorption in a Hanle configuration, as well as the amplitudes and the widths of electromagnetically induced absorption (EIA) in the range of laser intensities from 0.01 to 40 mW/cm{sup 2}. Our results, showing nonvanishing EIA amplitude, a nonmonotonic increase of the EIA width for the increase of laser intensity, and pronounced shape differences of the Hanle EIA curves at different laser intensities, are in good agreement with recent experimental results. We have found that the EIA behaves differently than the electromagnetically induced transparency (EIT) as a function of the laser intensity. Both the amplitude and width of the EIA have narrow maximums at 1 to 2 mW/cm{sup 2}. We have shown the strong influence of Doppler broadening of atomic transition on Hanle resonances and have suggested the explanation of it.

  13. DataRover: A Taxonomy Based Crawler for Automated Data Extraction from Data-Intensive Websites

    E-Print Network [OSTI]

    Davulcu, Hasan

    DataRover: A Taxonomy Based Crawler for Automated Data Extraction from Data-Intensive Websites H created a trend that brought thousands of catalogs online. Most of these websites are "taxonomy-directed". A Web site is said to be ``taxonomy- directed'' if it contains at least one taxonomy for organizing its

  14. Probing the spectral and temporal structures of high-order harmonic generation in intense laser pulses

    E-Print Network [OSTI]

    Chu, Shih-I

    understanding of the origin of the har- monics with energies much in excess of the ionization po- tential Ip of the electronic wave packet with the parent ionic core. Based on this model, the cutoff energy is predicted in intense pulsed laser fields. Accurate time-dependent wave functions are obtained by means of the time

  15. Life-cycle energy savings potential from aluminum-intensive vehicles

    SciTech Connect (OSTI)

    Stodolsky, F.; Vyas, A.; Cuenca, R.; Gaines, L.

    1995-07-01T23:59:59.000Z

    The life-cycle energy and fuel-use impacts of US-produced aluminum-intensive passenger cars and passenger trucks are assessed. The energy analysis includes vehicle fuel consumption, material production energy, and recycling energy. A model that stimulates market dynamics was used to project aluminum-intensive vehicle market shares and national energy savings potential for the period between 2005 and 2030. We conclude that there is a net energy savings with the use of aluminum-intensive vehicles. Manufacturing costs must be reduced to achieve significant market penetration of aluminum-intensive vehicles. The petroleum energy saved from improved fuel efficiency offsets the additional energy needed to manufacture aluminum compared to steel. The energy needed to make aluminum can be reduced further if wrought aluminum is recycled back to wrought aluminum. We find that oil use is displaced by additional use of natural gas and nonfossil energy, but use of coal is lower. Many of the results are not necessarily applicable to vehicles built outside of the United States, but others could be used with caution.

  16. Why did China's Energy Intensity Increase during 1998-2006: Decomposition and Policy Analysis

    E-Print Network [OSTI]

    Edwards, Paul N.

    takes up about 70 percent of the total energy consumption. Per capita oil, natural gas and coal deposits1 Why did China's Energy Intensity Increase during 1998-2006: Decomposition and Policy Analysis Xiaoli Zhaoa,b, , Chunbo Mac, a Business School, North China Electric Power University, Beijing, 102206

  17. Fractal dynamics of light scattering intensity fluctuation in disordered dusty plasmas

    SciTech Connect (OSTI)

    Safaai, S. S.; Muniandy, S. V.; Chew, W. X.; Asgari, H.; Yap, S. L.; Wong, C. S. [Plasma Technology Research Centre, Department of Physics, University of Malaya, 50603 Kuala Lumpur (Malaysia)] [Plasma Technology Research Centre, Department of Physics, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2013-10-15T23:59:59.000Z

    Dynamic light scattering (DLS) technique is a simple and yet powerful technique for characterizing particle properties and dynamics in complex liquids and gases, including dusty plasmas. Intensity fluctuation in DLS experiments often studied using correlation analysis with assumption that the fluctuation is statistically stationary. In this study, the temporal variation of the nonstationary intensity fluctuation is analyzed directly to show the existence of fractal characteristics by employing wavelet scalogram approach. Wavelet based scale decomposition approach is used to separate non-scaling background noise (without dust) from scaling intensity fluctuation from dusty plasma. The Hurst exponents for light intensity fluctuation in dusty plasma at different neutral gas pressures are determined. At low pressures, weaker damping of dust motions via collisions with neutral gases results in stronger persistent behavior in the fluctuation of DLS time series. The fractal scaling Hurst exponent is demonstrated to be useful for characterizing structural phases in complex disordered dusty plasma, especially when particle configuration or sizes are highly inhomogeneous which makes the standard pair-correlation function difficult to interpret. The results from fractal analysis are compared with alternative interpretation of disorder based on approximate entropy and particle transport using mean square displacement.

  18. U.S. Greenhouse Gas Intensity and the Global Climate Change Initiative (released in AEO2006)

    Reports and Publications (EIA)

    2006-01-01T23:59:59.000Z

    On February 14, 2002, President Bush announced the Administrations Global Climate Change Initiative. A key goal of the Climate Change Initiative is to reduce U.S. greenhouse gas (GHG) intensity-defined as the ratio of total U.S. GHG emissions to economic output-by 18% over the 2002 to 2012 time frame.

  19. Results on intense beam focusing and neutralization from the neutralized beam experimenta...

    E-Print Network [OSTI]

    Gilson, Erik

    Results on intense beam focusing and neutralization from the neutralized beam experimenta... P. K. Roy, S. S. Yu,b) S. Eylon, E. Henestroza, A. Anders, F. M. Bieniosek, W. G. Greenway, B. G. Logan, W, Albuquerque, New Mexico 87110-3946 R. C. Davidson, P. C. Efthimion, E. P. Gilson, and A. B. Sefkow Princeton

  20. Examining food webs and trophic dynamics across a stream restoration intensity gradient

    E-Print Network [OSTI]

    Vallino, Joseph J.

    Examining food webs and trophic dynamics across a stream restoration intensity gradient Lena Weiss restoration, food webs, trophic dynamics Abstract: Stream ecosystems provide a plethora of important services in the stream channel itself. While there has been a recent push towards restoring these heavily degraded

  1. Development status of triple-junction solar cells optimized for low intensity low temperature applications

    E-Print Network [OSTI]

    -- III-V semiconductor materials, Jupiter, photovoltaic cells, temperature dependence, radiation effects the limit of the feasibility of photovoltaics due to the very low solar intensities (45-50W/m2 compared on the degradation behavior of the solar cells due to particle irradiation under LILT conditions which basically

  2. MODELLING THE VERTICAL WIND SPEED AND TURBULENCE INTENSITY PROFILES AT PROSPECTIVE OFFSHORE WIND FARM SITES

    E-Print Network [OSTI]

    Heinemann, Detlev

    in Europe will come from offshore sites. The first large offshore wind farms are currently being builtMODELLING THE VERTICAL WIND SPEED AND TURBULENCE INTENSITY PROFILES AT PROSPECTIVE OFFSHORE WIND for conditions important for offshore wind energy utilisation are compared and tested: Four models

  3. MODELLING THE VERTICAL WIND SPEED AND TURBULENCE INTENSITY PROFILES AT PROSPECTIVE OFFSHORE WIND FARM SITES

    E-Print Network [OSTI]

    Heinemann, Detlev

    MODELLING THE VERTICAL WIND SPEED AND TURBULENCE INTENSITY PROFILES AT PROSPECTIVE OFFSHORE WIND important for offshore wind energy utilisation are discussed and tested: Four models for the surface tested with data from the offshore field measurement Rdsand by extrapolating the measured 10 m wind

  4. Nestling begging intensity and parental effort in relation to prelaying carotenoid availability

    E-Print Network [OSTI]

    Richner, Heinz

    Nestling begging intensity and parental effort in relation to prelaying carotenoid availability with their utilization for themselves. Carotenoid availability is thus likely to de- termine both the levels of yolk and the growing nestling, and it can be hypothesized that an increase in carotenoid availability during laying

  5. A TEST OF THE PRECIPITATION AMOUNT AND INTENSITY MEASUREMENTS WITH THE OTT PLUVIO

    E-Print Network [OSTI]

    Wauben, Wiel

    A TEST OF THE PRECIPITATION AMOUNT AND INTENSITY MEASUREMENTS WITH THE OTT PLUVIO Wiel M.F. Wauben precipitation sensor of Ott has been tested at KNMI in order to find out whether it is a suitable candidate for replacing the current operational KNMI precipitation gauge. Tests performed at the calibration facilities

  6. Injection of harmonics generated in gas in a free-electron laser providing intense and

    E-Print Network [OSTI]

    Loss, Daniel

    LETTERS Injection of harmonics generated in gas in a free-electron laser providing intense lasers promise to extend this down to femtosecond timescales. The process by which free-electron lasers of the free-electron laser saturation length, and the generation of nonlinear harmonics13 at 54 nm and 32 nm

  7. NOAA Technical Memorandum NWS TPC-4 THE DEADLIEST, COSTLIEST, AND MOST INTENSE UNITED

    E-Print Network [OSTI]

    significant revisions to the period 1900-1914 and a revised intensity of Hurricane Andrew [Landsea et al TROPICAL CYCLONES FROM 1851 TO 2004 (AND OTHER FREQUENTLY REQUESTED HURRICANE FACTS) Updated August 2005) Christopher W. Landsea, HRD Miami Tropical Prediction Center National Hurricane Center Miami, Florida August

  8. Energy Production, Frictional Dissipation, and Maximum Intensity of a Numerically Simulated Tropical Cyclone*

    E-Print Network [OSTI]

    Wang, Yuqing

    Energy Production, Frictional Dissipation, and Maximum Intensity of a Numerically Simulated is eventually dissipated due to surface friction. Since the energy production rate is a linear function while frictional dissipation rate balances the energy production rate near the radius of maximum wind (RMW

  9. Energy Production, Frictional Dissipation, and Maximum Intensity of a Numerically Simulated Tropical Cyclone

    E-Print Network [OSTI]

    Wang, Yuqing

    0 Energy Production, Frictional Dissipation, and Maximum Intensity of a Numerically Simulated is eventually dissipated due to surface friction. Since the energy production rate is a linear function while frictional dissipation rate balances the energy production rate near the radius of maximum wind (RMW

  10. Modeling proton intensity gradients and radiation dose equivalents in the inner

    E-Print Network [OSTI]

    Pringle, James "Jamie"

    Modeling proton intensity gradients and radiation dose equivalents in the inner heliosphere using exposure in IP space. In this paper, we utilize EMMREM to study the radial dependence of proton peak crossfield diffusion at large radial distances. Our results show that radial dependencies of proton peak

  11. Mul$-scale Demand-Side Management for Con$nuous Power-intensive Processes

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    $on of Renewables (Distributed) Co-genera$on of electricity and heat Storage Microgrids21 Mul$-scale Demand-Side Management for Con$nuous Power-intensive Processes Megan, Nikhil Arora #12;Facing the challenge of variability, the power grid

  12. Submitted to Strain, July 2006, revised October 2006 STRESS INTENSITY FACTOR GAUGING BY

    E-Print Network [OSTI]

    in the evaluation of the crack tip position (uncertainty of about 20 m for a 14.5-mm crack), stress intensity opening, identification technique, integrated approach, Photomechanics. 2 #12;1. Introduction One yielding. In many materials, small scale yielding arises in the vicinity of the crack tip. Therefore

  13. Effects of grazing intensity on soil carbon stocks following deforestation of a Hawaiian dry tropical forest

    E-Print Network [OSTI]

    Elmore, Andrew J.

    Effects of grazing intensity on soil carbon stocks following deforestation of a Hawaiian dry to changes in C inputs following deforestation. Soil C stocks were also reduced in pastures relative, tropical deforestation Received 4 October 2005; revised version received 24 February 2006; accepted 23

  14. Math 421, Fourier Analysis Suppose we sample a periodically varying quantity such as an intensity or

    E-Print Network [OSTI]

    Offin, Dan

    Math 421, Fourier Analysis Suppose we sample a periodically varying quantity such as an intensity tone 200 400 600 800 100012001400 5 10 15 20 25 The Fourier analysis of the tone Which button was pressed? A general method was found by Jean Baptiste Joseph Fourier (1768 - 1830) in 1807. His method

  15. In addition to the intensive focus on operational energy reduction, the client and

    E-Print Network [OSTI]

    In addition to the intensive focus on operational energy reduction, the client and design team carbon emissions of the building materials as well as the produced carbon emissions resulting from energy decommissioned Sebastiani vineyard wine vats. Due to the tight- grained quality of this old-growth wood no sealer

  16. Superlinear growth of Rayleigh scattering-induced intensity noise in single-mode fibers

    E-Print Network [OSTI]

    Cahill, James P; Zhou, Weimin; Menyuk, Curtis R; Carter, Gary M

    2015-01-01T23:59:59.000Z

    Rayleigh scattering generates intensity noise close to an optical carrier that propagates in a single-mode optical fiber. This noise degrades the performance of optoelectronic oscillators and RF-photonic links. When using a broad linewidth laser, we previously found that the intensity noise power scales linearly with optical power and fiber length, which is consistent with guided entropy mode Rayleigh scattering (GEMRS), a third order nonlinear scattering process, in the spontaneous limit. In this work, we show that this behavior changes significantly with the use of a narrow linewidth laser. Using a narrow linewidth laser, we measured the bandwidth of the intensity noise plateau to be 10 kHz. We found that the scattered noise power scales superlinearly with fiber length up to lengths of 10 km in the frequency range of 500 Hz to 10 kHz, while it scales linearly in the frequency range of 10 Hz to 100 Hz. These results suggest that the Rayleigh-scattering-induced intensity noise cannot be explained by third-ord...

  17. Impact of Low-Level Jets on the Nocturnal Urban Heat Island Intensity in Oklahoma City

    E-Print Network [OSTI]

    Xue, Ming

    Impact of Low-Level Jets on the Nocturnal Urban Heat Island Intensity in Oklahoma City XIAO-MING HU Center for Analysis and Prediction of Storms, University of Oklahoma, Norman, Oklahoma PETRA M. KLEIN AND MING XUE Center for Analysis and Prediction of Storms and School of Meteorology, University of Oklahoma

  18. Magnetic Propulsion of Intense Lithium Streams in a Tokamak Magnetic Field

    E-Print Network [OSTI]

    Zakharov, Leonid E.

    Magnetic Propulsion of Intense Lithium Streams in a Tokamak Magnetic Field Leonid E. Zakharov the theory of magnetic propulsion of liquid lithium streams and their stability in tokamaks takes into account the propulsion e#11;ect, viscosity and the drag force due to magnetic pumping

  19. IEEE TRANSACTIONS ON MOBILE COMPUTING 1 Mobile Relay Configuration in Data-intensive

    E-Print Network [OSTI]

    Torng, Eric

    such as batteries or small solar panels. Therefore, a key chal- lenge faced by data-intensive WSNs is to minimize limited power supplies. We propose using low-cost disposable mobile relays to reduce the energy, it does not require complex motion planning of mobile nodes, so it can be implemented on a number of low-cost

  20. Temporary Acceleration of Electrons While Inside an Intense Electromagnetic Pulse Kirk T. McDonald

    E-Print Network [OSTI]

    McDonald, Kirk

    Temporary Acceleration of Electrons While Inside an Intense Electromagnetic Pulse Kirk T. Mc. In tense electromagnetic pulses of astrophysical origin can lead to very energetic photons via potential'' associated with the envelope of the electromagnetic pulse [3]. The resulting temporary energy

  1. Temporary Acceleration of Electrons While Inside an Intense Electromagnetic Pulse Kirk T. McDonald

    E-Print Network [OSTI]

    McDonald, Kirk

    Temporary Acceleration of Electrons While Inside an Intense Electromagnetic Pulse Kirk T. Mc. In- tense electromagnetic pulses of astrophysical origin can lead to very energetic photons via of the electromagnetic pulse [3]. The resulting temporary energy transfer to the longitudinal motion of the electron can

  2. Systems for controlling the intensity variations in a laser beam and for frequency conversion thereof

    DOE Patents [OSTI]

    Skupsky, S.; Craxton, R.S.; Soures, J.

    1990-10-02T23:59:59.000Z

    In order to control the intensity of a laser beam so that its intensity varies uniformly and provides uniform illumination of a target, such as a laser fusion target, a broad bandwidth laser pulse is spectrally dispersed spatially so that the frequency components thereof are spread apart. A disperser (grating) provides an output beam which varies spatially in wavelength in at least one direction transverse to the direction of propagation of the beam. Temporal spread (time delay) across the beam is corrected by using a phase delay device (a time delay compensation echelon). The dispersed beam may be amplified with laser amplifiers and frequency converted (doubled, tripled or quadrupled in frequency) with nonlinear optical elements (birefringent crystals). The spectral variation across the beam is compensated by varying the angle of incidence on one of the crystals with respect to the crystal optical axis utilizing a lens which diverges the beam. Another lens after the frequency converter may be used to recollimate the beam. The frequency converted beam is recombined so that portions of different frequency interfere and, unlike interference between waves of the same wavelength, there results an intensity pattern with rapid temporal oscillations which average out rapidly in time thereby producing uniform illumination on target. A distributed phase plate (also known as a random phase mask), through which the spectrally dispersed beam is passed and then focused on a target, is used to provide the interference pattern which becomes nearly modulation free and uniform in intensity in the direction of the spectral variation. 16 figs.

  3. Measurement and interpretation of threshold stress intensity factors for steels in high-pressure hydrogen gas.

    SciTech Connect (OSTI)

    Dadfarnia, Mohsen (University of Illinois at Urbana-Champaign, Urbana, IL); Nibur, Kevin A.; San Marchi, Christopher W.; Sofronis, Petros (University of Illinois at Urbana-Champaign, Urbana, IL); Somerday, Brian P.; Foulk, James W., III; Hayden, Gary A. (CP Industries, McKeesport, PA)

    2010-07-01T23:59:59.000Z

    Threshold stress intensity factors were measured in high-pressure hydrogen gas for a variety of low alloy ferritic steels using both constant crack opening displacement and rising crack opening displacement procedures. The sustained load cracking procedures are generally consistent with those in ASME Article KD-10 of Section VIII Division 3 of the Boiler and Pressure Vessel Code, which was recently published to guide design of high-pressure hydrogen vessels. Three definitions of threshold were established for the two test methods: K{sub THi}* is the maximum applied stress intensity factor for which no crack extension was observed under constant displacement; K{sub THa} is the stress intensity factor at the arrest position for a crack that extended under constant displacement; and K{sub JH} is the stress intensity factor at the onset of crack extension under rising displacement. The apparent crack initiation threshold under constant displacement, K{sub THi}*, and the crack arrest threshold, K{sub THa}, were both found to be non-conservative due to the hydrogen exposure and crack-tip deformation histories associated with typical procedures for sustained-load cracking tests under constant displacement. In contrast, K{sub JH}, which is measured under concurrent rising displacement and hydrogen gas exposure, provides a more conservative hydrogen-assisted fracture threshold that is relevant to structural components in which sub-critical crack extension is driven by internal hydrogen gas pressure.

  4. Revised: 6 November 1991 Trends in the Consumption of Energy-Intensive Basic Materials

    E-Print Network [OSTI]

    Revised: 6 November 1991 Trends in the Consumption of Energy-Intensive Basic Materials on the consumption, rather than production, of materials. Earlier analyses of trends in basic materials consumption materials consumption patterns on energy use is the recognition that physical units (kilograms) are more

  5. STABLE FREQUENCY RESPONSE TO VARYING STIMULUS INTENSITY IN A MODEL OF THE RAT OLFACTORY BULB

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    STABLE FREQUENCY RESPONSE TO VARYING STIMULUS INTENSITY IN A MODEL OF THE RAT OLFACTORY BULB Thomas Neurosciences et Systmes sensoriels, CNRS UMR 5020, Lyon, France ABSTRACT In the rat olfactory bulb (OB), fast. Introduction The rat olfactory bulb (OB) is a rich and complex sensory processing system that shows stimulus

  6. Journal of Philosophy, Inc. A Note on Extension, Intension, and Truth

    E-Print Network [OSTI]

    Belnap, Nuel

    Journal of Philosophy, Inc. A Note on Extension, Intension, and Truth Author(s): Anil Gupta and Nuel Belnap Source: The Journal of Philosophy, Vol. 84, No. 3 (Mar., 1987), pp. 168-174 Published by: Journal of Philosophy, Inc. Stable URL: http://www.jstor.org/stable/2026597 Accessed: 28/05/2009 11

  7. The potential for intensity interferometry with {gamma}-ray telescope arrays

    SciTech Connect (OSTI)

    Wit, W. J. de; Hinton, J. A.; White, R. J.; Daniel, M. K. [School of Physics and Astronomy, University of Leeds, LS2 9JT (United Kingdom); Le Bohec, S. [Department of Physics, University of Utah, 115 S 1400 E, Salt Lake City, UT 84112-0830 (United States); Holder, J. [Department of Physics and Astronomy, University of Delaware, Newark, Delaware (United States)

    2008-02-22T23:59:59.000Z

    Intensity interferometry exploits a quantum optical effect in order to measure objects with extremely small angular scales. The first experiment to use this technique was the Narrabri intensity interferometer, which was successfully used in the 1970s to measure 32 stellar diameters at optical wavelengths; some as small as 0.4 milli-arcseconds. The advantage of this technique, in comparison with Michelson interferometers, is that it requires only relatively crude, but large, light collectors equipped with fast (nanosecond) photon detectors. Ground-based {gamma}-ray telescope arrays have similar specifications, and a number of these observatories are now operating worldwide, with more extensive installations planned for the future. These future instruments (CTA, AGIS, completion 2015) with 30-90 telescopes will provide 400-4000 different baselines that range in length between 50 m and a kilometre. Intensity interferometry with such arrays of telescopes attains 50 {mu}-arcsecond resolution for a limiting m{sub v}{approx}8.5. Phase information can be extracted from the interferometric measurement with phase closure, allowing image reconstruction. This technique opens the possibility of a wide range of studies amongst others, probing the stellar surface activity and the dynamic AU scale circumstellar environment of stars in various crucial evolutionary stages. Here we focuse on the astrophysical potential of an intensity interferometer utilising planned new {gamma}-ray instrumentation.

  8. A reduced voltage polarization intensity electrooptic modulator in SBN:60 utilizing a step strain waveguide

    E-Print Network [OSTI]

    Ottinger, Tina Lynette

    1997-01-01T23:59:59.000Z

    . Electrooptic modulation via the linear electrooptic effect has been demonstrated by polarization intensity modulation at 0.633 gm wavelength in both substrates. LiNbo3 devices require a v,, of 10.75 V for a Tc-radian phase shift. SBN devices require a voltage...

  9. Tiled-Grating Compressor with Uncompensated Dispersion for Near-Field-Intensity Smoothing

    SciTech Connect (OSTI)

    Huang, H.; Kessler, T.J.

    2007-07-02T23:59:59.000Z

    A tiled-grating compressor, in which the spatial dispersion is not completely compensated, reduces the near-field-intensity modulation caused by tiling gaps and provides near-field spatial filtering of the input laser beam, thus reducing the laser damage to the final optics.

  10. Abstract --Developing software for mobile or ad hoc scenarios is very cost intensive. Different software and

    E-Print Network [OSTI]

    Steimann, Friedrich

    for an appropriate development support for devices with short life cycles. Third-party solutions often do not reachAbstract -- Developing software for mobile or ad hoc scenarios is very cost intensive. Different processors and big memories are available in principle, they con- sume a great amount of valuable battery

  11. Energy use and energy intensity of the U.S. chemical industry

    SciTech Connect (OSTI)

    Worrell, E.; Phylipsen, D.; Einstein, D.; Martin, N.

    2000-04-01T23:59:59.000Z

    The U.S. chemical industry is the largest in the world, and responsible for about 11% of the U.S. industrial production measured as value added. It consumes approximately 20% of total industrial energy consumption in the U.S. (1994), and contributes in similar proportions to U.S. greenhouse gas emissions. Surprisingly, there is not much information on energy use and energy intensity in the chemical industry available in the public domain. This report provides detailed information on energy use and energy intensity for the major groups of energy-intensive chemical products. Ethylene production is the major product in terms of production volume of the petrochemical industry. The petrochemical industry (SIC 2869) produces a wide variety of products. However, most energy is used for a small number of intermediate compounds, of which ethylene is the most important one. Based on a detailed assessment we estimate fuel use for ethylene manufacture at 520 PJ (LHV), excluding feedstock use. Energy intensity is estimated at 26 GJ/tonne ethylene (LHV), excluding feedstocks.The nitrogenous fertilizer production is a very energy intensive industry, producing a variety of fertilizers and other nitrogen-compounds. Ammonia is the most important intermediate chemical compound, used as basis for almost all products. Fuel use is estimated at 268 PJ (excluding feedstocks) while 368 PJ natural gas is used as feedstock. Electricity consumption is estimated at 14 PJ. We estimate the energy intensity of ammonia manufacture at 39.3 GJ/tonne (including feedstocks, HHV) and 140 kWh/tonne, resulting in a specific primary energy consumption of 40.9 GJ/tonne (HHV), equivalent to 37.1 GJ/tonne (LHV). Excluding natural gas use for feedstocks the primary energy consumption is estimated at 16.7 GJ/tonne (LHV). The third most important product from an energy perspective is the production of chlorine and caustic soda. Chlorine is produced through electrolysis of a salt-solution. Chlorine production is the main electricity consuming process in the chemical industry, next to oxygen and nitrogen production. We estimate final electricity use at 173 PJ (48 TWh) and fuel use of 38 PJ. Total primary energy consumption is estimated at 526 PJ (including credits for hydrogen export). The energy intensity is estimated at an electricity consumption of 4380 kWh/tonne chlorine and fuel consumption of 3.45 GJ/tonne chlorine, where all energy use is allocated to chlorine production. Assuming an average power generation efficiency of 33% the primary energy consumption is estimated at 47.8 GJ/tonne chlorine (allocating all energy use to chlorine).

  12. Target Allocation Methodology for China's Provinces: Energy Intensity in the 12th FIve-Year Plan

    SciTech Connect (OSTI)

    Ohshita, Stephanie; Price, Lynn

    2011-03-21T23:59:59.000Z

    Experience with China's 20% energy intensity improvement target during the 11th Five-Year Plan (FYP) (2006-2010) has shown the challenges of rapidly setting targets and implementing measures to meet them. For the 12th FYP (2011-2015), there is an urgent need for a more scientific methodology to allocate targets among the provinces and to track physical and economic indicators of energy and carbon saving progress. This report provides a sectoral methodology for allocating a national energy intensity target - expressed as percent change in energy per unit gross domestic product (GDP) - among China's provinces in the 12th FYP. Drawing on international experience - especially the European Union (EU) Triptych approach for allocating Kyoto carbon targets among EU member states - the methodology here makes important modifications to the EU approach to address an energy intensity rather than a CO{sub 2} emissions target, and for the wider variation in provincial energy and economic structure in China. The methodology combines top-down national target projections and bottom-up provincial and sectoral projections of energy and GDP to determine target allocation of energy intensity targets. Total primary energy consumption is separated into three end-use sectors - industrial, residential, and other energy. Sectoral indicators are used to differentiate the potential for energy saving among the provinces. This sectoral methodology is utilized to allocate provincial-level targets for a national target of 20% energy intensity improvement during the 12th FYP; the official target is determined by the National Development and Reform Commission. Energy and GDP projections used in the allocations were compared with other models, and several allocation scenarios were run to test sensitivity. The resulting allocations for the 12th FYP offer insight on past performance and offer somewhat different distributions of provincial targets compared to the 11th FYP. Recommendations for reporting and monitoring progress on the targets, and methodology improvements, are included.

  13. Correlation time of ocean ambient noise intensity in San Diego Bay and target recognition in acoustic daylight images

    E-Print Network [OSTI]

    Wadsworth, Adam J.

    2010-01-01T23:59:59.000Z

    Intensity Data Chapter 3 Acoustic Daylight Image TargetC. L. Epifanio. Acoustic Daylight: Passive Acoustic ImagingRecognition in Acoustic Daylight Images A Thesis submitted

  14. Rapidly pulsed TRIGA reactor: an intense source for neutron scattering experiments

    SciTech Connect (OSTI)

    Whittemore, William L. [General Atomics, San Diego, CA (United States)

    1994-07-01T23:59:59.000Z

    The need for ever increasing intensities of thermal neutron beams for neutron scattering experiments has stimulated the development of intense steady state research reactors such as the 53-MW ILL reactor at Grenoble. The source flux at the reactor end of the beam ports is typically 10{sup 15}n/cm{sup 2}.s for its thermal neutron beams. To achieve still higher source fluxes of neutrons, the family of pulsing IBR was developed. In this type of facility the pulse repetition rate is low ({approx}5/sec) typically but the instantaneous peak fluxes are high, ranging up to 5 x 10{sup 15}n/cm{sup 2}.s at the surface of the moderator. Another type of intense neutron source is that exemplified by the proton synchrotron accelerators with their spallation targets. The first of these has been the IPNS at Argonne National laboratory. This neutron source produces 30 pulses per second with an individual peak thermal neutron intensity of 4 x 10{sup 14}n/cm{sup 2}.s from the moderator. An equivalent, alternative intense neutron source can be based on a rapidly pulsed TRIGA reactor. With a pulsed thermal neutron intensity of more than 10{sup 15}n/cm{sup 2}.s occurring 50 times per second at the source end of beam ports, the rapidly pulsed TRIGA reactor combines some of the best features of the pulsed fast reactors such as IBR-2 and the spallation neutron sources but with the safety of a thermal neutron reactor with a large, prompt, negative temperature coefficient of reactivity. The initial concept of the rapidly pulsed TRIGA reactor was developed and initially reported in 1966. Subsequently, the standard fuel format for U-ZrH{sub x} fuel has been developed to include a small diameter fuel particularly well suited for the rapidly pulsed application. This fuel is LEU, satisfying all the requirements for non proliferation, and has a very long core life time. In the proposed application, the peak fuel temperature does not vary more than 1 deg. C from the average peak fuel temperatures during each pulse. Hence long term metallurgical stability is thus assured. With a core lifetime that can be designed for up to 10,000 MWD, operation at an average power of 10 MW (with peak pulsed powers of {approx}50 MW) with an equilibrium core can be conducted for 1000 full power days. (author)

  15. Surfaces in the interaction of intense long wavelength laser light with plasmas

    SciTech Connect (OSTI)

    Jones, R.D.

    1985-01-01T23:59:59.000Z

    The role of surface in the interaction of intense CO/sub 2/ laser light with plasmas is reviewed. The collisionless absorption of long wavelength light is discussed. Specific comments on the role of ponderomotive forces and profile steepening on resonant absorption are made. It is shown that at intensities above 10/sup 15/W/cm/sup 2/ the absorption is determined by ion acoustic-like surface modes. It is demonstrated experimentally that harmonics up to the forty-sixth can be generated in steep density profiles. Computer simulations and theoretical mechanisms for this phenomena are presented. The self generation of magnetic fields on surfaces is discussed. The role these fields play in the lateral transport of energy, the insulation of the target from hot electrons, and the acceleration of fast ions is discussed.

  16. Investigation of laser-driven proton acceleration using ultra-short, ultra-intense laser pulses

    SciTech Connect (OSTI)

    Fourmaux, S.; Gnedyuk, S.; Lassonde, P.; Payeur, S.; Pepin, H.; Kieffer, J. C. [INRS-EMT, Universite du Quebec, 1650 Lionel Boulet, Varennes, Quebec J3X 1S2 (Canada); Buffechoux, S.; Albertazzi, B. [INRS-EMT, Universite du Quebec, 1650 Lionel Boulet, Varennes, Quebec J3X 1S2 (Canada); LULI, UMR 7605, CNRS - CEA - Universite Paris 6 - Ecole Polytechnique, 91128 Palaiseau (France); Capelli, D.; Antici, P. [LULI, UMR 7605, CNRS - CEA - Universite Paris 6 - Ecole Polytechnique, 91128 Palaiseau (France); Dipartimento SBAI, Sapienza, Universita di Roma, Via Scarpa 16, 00161 Roma (Italy); Levy, A.; Fuchs, J. [LULI, UMR 7605, CNRS - CEA - Universite Paris 6 - Ecole Polytechnique, 91128 Palaiseau (France); Lecherbourg, L.; Marjoribanks, R. S. [Department of Physics and Institute for Optical Sciences, University of Toronto, Toronto, Ontario M5S 1A7 (Canada)

    2013-01-15T23:59:59.000Z

    We report optimization of laser-driven proton acceleration, for a range of experimental parameters available from a single ultrafast Ti:sapphire laser system. We have characterized laser-generated protons produced at the rear and front target surfaces of thin solid targets (15 nm to 90 {mu}m thicknesses) irradiated with an ultra-intense laser pulse (up to 10{sup 20} W Dot-Operator cm{sup -2}, pulse duration 30 to 500 fs, and pulse energy 0.1 to 1.8 J). We find an almost symmetric behaviour for protons accelerated from rear and front sides, and a linear scaling of proton energy cut-off with increasing pulse energy. At constant laser intensity, we observe that the proton cut-off energy increases with increasing laser pulse duration, then roughly constant for pulses longer than 300 fs. Finally, we demonstrate that there is an optimum target thickness and pulse duration.

  17. World Best Practice Energy Intensity Values for SelectedIndustrial Sectors

    SciTech Connect (OSTI)

    Worrell, Ernst; Price, Lynn; Neelis, Maarten; Galitsky,Christina; Zhou, Nan

    2007-06-05T23:59:59.000Z

    "World best practice" energy intensity values, representingthe most energy-efficient processes that are in commercial use in atleast one location worldwide, are provided for the production of iron andsteel, aluminium, cement, pulp and paper, ammonia, and ethylene. Energyintensity is expressed in energy use per physical unit of output for eachof these commodities; most commonly these are expressed in metric tonnes(t). The energy intensity values are provided by major energy-consumingprocesses for each industrial sector to allow comparisons at the processlevel. Energy values are provided for final energy, defined as the energyused at the production facility as well as for primary energy, defined asthe energy used at the production facility as well as the energy used toproduce the electricity consumed at the facility. The "best practice"figures for energy consumption provided in this report should beconsidered as indicative, as these may depend strongly on the materialinputs.

  18. Breaking of relativistically intense longitudinal space charge waves: A description using Dawson sheet model

    SciTech Connect (OSTI)

    Sengupta, Sudip, E-mail: sudip@ipr.res.in [Institute for Plasma Research, Bhat , Gandhinagar - 382428 (India)

    2014-02-11T23:59:59.000Z

    Spatio-temporal evolution of relativistically intense longitudinal space charge waves in a cold homogeneous plasma is studied analytically as well as numerically, as an initial value problem, using Dawson sheet model. It is found that, except for very special initial conditions which generates the well known longitudinal Akhiezer-Polovin mode, for all other initial conditions, the waves break through a novel mechanism called phase mixing at an amplitude well below the Akhiezer-Polovin limit. An immediate consequence of this is, that Akhiezer-Polovin waves break when subjected to arbitrarily small longitudinal perturbations. We demonstrate this by performing extensive numerical simulations. This result may be of direct relevance to ultrashort, ultraintense laser/beam pulse-plasma interaction experiments where relativistically intense waves are routinely excited.

  19. HOT ELECTRON ENERGY DISTRIBUTIONS FROM ULTRA-INTENSE LASER SOLID INTERACTIONS

    SciTech Connect (OSTI)

    Chen, H; Wilks, S C; Kruer, W; Patel, P; Shepherd, R

    2008-10-08T23:59:59.000Z

    Measurements of electron energy distributions from ultra-intense (>10{sup 19} W/cm{sup 2}) laser-solid interactions using an electron spectrometer are presented. These measurements were performed on the Vulcan petawatt laser at Rutherford Appleton Laboratory and the Callisto laser at Lawrence Livermore National Laboratory. The effective hot electron temperatures (T{sub hot}) have been measured for laser intensities (I{lambda}{sup 2}) from 10{sup 18} W/cm{sup 2} {micro}m{sup 2} to 10{sup 21} W/cm{sup 2} {micro}m{sup 2} for the first time, and T{sub hot} is found to increase as (I{lambda}{sup 2}){sup 0.34} {+-} 0.4. This scaling agrees well with the empirical scaling published by Beg et al. (1997), and is explained by a simple physical model that gives good agreement with experimental results and particle-in-cell simulations.

  20. Spectral Intensities of Antiprotons and the lifetime of Cosmic Rays in the Galaxy

    E-Print Network [OSTI]

    Cowsik, Ramanath

    2015-01-01T23:59:59.000Z

    In this paper we note that the spectral intensities of antiprotons observed in Galactic cosmic rays in the energy range ~ 1-100 GeV by BESS, PAMELA and AMS instruments display nearly the same spectral shape as that generated by primary cosmic rays through their interaction with matter in the interstellar medium, without any significant modifications. More importantly, a constant residence time of ~ 2.5 +/-0.7 million years in the Galactic volume, independent of the energy of cosmic rays, matches the observed intensities. A small additional component of secondary antiprotons in the energy below 10 GeV, generated in cocoon-like regions surrounding the cosmic-ray sources, seems to be present. We discuss this result in the context of observations of other secondary components like positrons and Boron, and conclude with general remarks about the origins and propagation of cosmic rays.