Powered by Deep Web Technologies
Note: This page contains sample records for the topic "intensities overview energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Energy End-Use Intensities in Commercial Buildings1992 -- Overview/End-Use  

U.S. Energy Information Administration (EIA) Indexed Site

> Overview > Overview 1992 Energy End-Use Intensities Overview Energy Consumption by End Use, 1992 Figure on Energy Consumption By End Use, 1992 Source: Energy Information Administration, Office of Energy Markets and End Use, Forms EIA-871A through F of the 1992 Commercial Buildings Energy Consumption Survey. End-Use Estimation Methodology The end-use estimates had two main sources: (1) survey data collected by the Commercial Buildings Energy Consumption Survey (CBECS) and (2) building energy simulations provided by the Facility Energy Decision Screening (FEDS) system. The CBECS provided data on building characteristics and total energy consumption (i.e., for all end uses) for a national sample of commercial buildings. Using data collected by the CBECS, the FEDS engineering modules were used to produce estimates of energy consumption by end use. The FEDS engineering estimates were then statistically adjusted to match the CBECS total energy consumption.

2

Energy Overview  

Gasoline and Diesel Fuel Update (EIA)

Overview Overview for CNA Panel Discussion May 8, 2013 | Crystal City, VA by Howard Gruenspecht, Deputy Administrator Non-OECD nations drive the increase in energy demand 2 world energy consumption quadrillion Btu Source: EIA, International Energy Outlook 2011 0 100 200 300 400 500 1990 1995 2000 2005 2010 2015 2020 2025 2030 2035 Non-OECD OECD 244 260 482 288 History Projections 2008 Howard Gruenspecht , CNA Panel May 8, 2013 Growth in income and population drive rising energy use; energy intensity improvements moderate increases in energy demand 3 average annual change (2008-2035) percent per year Source: EIA, International Energy Outlook 2011 -4 -3 -2 -1 0 1 2 3 4 5 6 7 U.S. OECD Europe Japan South Korea China India Brazil Middle East Africa Russia

3

World Primary Energy Overview  

Science Journals Connector (OSTI)

Overview of Energy Production and Consumption Energy can be defined as primary energy or secondary energy depending on the intensity of use and type of fuel source. Primary energy includes forms obtained from fou...

Charles E. Brown Ph.D.

2002-01-01T23:59:59.000Z

4

Changes in Energy Intensity 1985-1991  

Gasoline and Diesel Fuel Update (EIA)

Changes in Energy Intensity Changes in Energy Intensity 1985-1991 Overview Full Report The focus is on intensity of energy use measured by energy consumption relative to constant...

5

China-Energy Intensity Reduction Strategy | Open Energy Information  

Open Energy Info (EERE)

Website http:www.esmap.orgfilezpub Country China Eastern Asia References China Energy Intensity Reduction Strategy1 Overview "The study involves the development of...

6

Energy Efficiency Program Overview  

E-Print Network [OSTI]

Energy Efficiency Program Overview Clean Air Through Energy Efficiency CATEE Conference November 18-20, 2014 Dallas, TX ESL-KT-14-11-02 CATEE 2014: Clean Air Through Efficiency Conference, Dallas, Texas Nov. 18-20 General Overview State of Texas... enacted legislation requiring Transmission and Distribution utilities (TDUs) achieve annual goals for energy efficiency Public Utility Commission of Texas (PUCT) implemented rules and guidelines for consistency among the TDU programs Texas TDUs...

Mutiso,S.

2014-01-01T23:59:59.000Z

7

Annual Energy Outlook 2001 - Overview  

Gasoline and Diesel Fuel Update (EIA)

Overview Overview Key Energy Issues to 2020 Prices Consumption Energy Intensity Electricity Generation Production and Imports Carbon Dioxide Emissions Key Energy Issues to 2020 Currently, most attention in energy markets is focused on near-term issues of world oil supply and prices, U.S. natural gas prices, and the transition to restructured electricity markets in several regions of the country. The Annual Energy Outlook 2001 (AEO2001) addresses the longer-term trends of electricity industry restructuring, fossil fuel supply and prices, and the impacts of economic growth on projected energy use and carbon dioxide emissions. AEO2001 does not project short-term events, such as supply disruptions or severe weather. The AEO2001 projections assume a transition to full competitive pricing of

8

Superior Energy Performance Overview Slides  

Broader source: Energy.gov [DOE]

This presentation provides a comprehensive overview of the Superior Energy Performance (SEP) program.

9

Energy End-Use Intensities in Commercial Buildings 1992 - Index...  

U.S. Energy Information Administration (EIA) Indexed Site

2 Energy End-Use Intensities 1992 Energy End-Use Intensities Overview Tables National estimates of energy consumption by fuel (electricity and natural gas) and end use (heating,...

10

Energy Intensity Strategy  

E-Print Network [OSTI]

Our presentation will cover how we began the journey of conserving energy at our facility. Well discuss a basic layout of our energy intensity plan and the impact our team has had on the process, what tools were using, what goals have been...

Rappolee, D.; Shaw, J.

2008-01-01T23:59:59.000Z

11

ESMAP-China Energy Intensity Reduction Strategy | Open Energy Information  

Open Energy Info (EERE)

Intensity Reduction Strategy Intensity Reduction Strategy Jump to: navigation, search Name China-ESMAP Low Carbon Growth Country Studies Program Agency/Company /Organization Energy Sector Management Assistance Program of the World Bank Sector Energy, Land Focus Area Energy Efficiency, Renewable Energy, Forestry, Agriculture Topics Low emission development planning, Policies/deployment programs, Background analysis Website http://www.esmap.org/filez/pub Country China Eastern Asia References China Energy Intensity Reduction Strategy[1] Overview "The study involves the development of pragmatic "implementation" focused policy notes to support the Government of China's goal of reducing energy intensity in China focusing on: Reevaluation of renewable energy targets, growth path, and related

12

Lesson 2: Energy Sources Overview  

E-Print Network [OSTI]

Earth's internal heat; ­solar energy from the Sun; ­gravitaDonal energy · There are three sources of external energy: ­ solar energy: radiant energy from and some is converted to tsunami #12;Overview · Solar Energy: ­ Of the three

Chen, Po

13

An Energy Overview of Brazil  

SciTech Connect (OSTI)

The DOE Office of Fossil Energy is maintaining a web site that is meant to provide useful business- and energy-related information about countries and regions of the world for exporters, project developers, and researchers. The site consists of more than 130 country pages (organized into seven different world regions), with each country page having its own set of links to information sources about that country. There are also more than 30 Country Energy Overviews at the web site -- each of these is a comprehensive review of a specific country's entire energy situation, including sections on Energy Policy, Oil, Natural Gas, Coal, Hydroelectric/Renewables, Nuclear Power, Energy Transmission Infrastructure, Electricity, Electric Industry Overview, Environmental Activities, Privatization, Trade, and Economic Situation. The specific country highlighted in this Country Energy Overview is Brazil. The site is designed to be dynamic. Updates to the overviews will be made as need and resources permit.

anon.

2003-10-20T23:59:59.000Z

14

Unlocking energy intensive habits  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

energy intensive habits energy intensive habits Presentation at LBL Oct 10, 2013 by Hal Wilhite Professor and Research Director University of Oslo Centre for Development and the Environment Source: WWF US EIA Outlook 2011 Conventional framing of the energy consumption and savings * Sovereign consumers * Economically rational and persistentely reflexive. * Uninfluenced by social and material conditions of everyday life * Focus on efficiency and not on size and volume which is for the most part treated as an indifferent variable Cognitive reductionism The change of frame * From individual to socio-material * From rational/reflexive experience-based (practical) knowledge * From efficiency to reduction A theory of habit * Acknowledges the role of lived experience (history, both cultural and personal) in forming

15

National Fuel Cell and Hydrogen Energy Overview: Total Energy...  

Broader source: Energy.gov (indexed) [DOE]

and Hydrogen Energy Overview: Total Energy USA 2012 National Fuel Cell and Hydrogen Energy Overview: Total Energy USA 2012 Presentation by Sunita Satyapal at the Total Energy USA...

16

An Energy Overview of Bolivia  

SciTech Connect (OSTI)

The DOE Office of Fossil Energy maintained a web site that was meant to provide useful business- and energy-related information about countries and regions of the world for exporters, project developers, and researchers. The site consisted of more than 130 country pages (organized into seven different world regions), with each country page having its own set of links to information sources about that country. There were also more than 30 Country Energy Overviews at the web site -- each of these was a comprehensive review of a specific country's entire energy situation, including sections on Energy Policy, Oil, Natural Gas, Coal, Hydroelectric/Renewables, Nuclear Power, Energy Transmission Infrastructure, Electricity, Electric Industry Overview, Environmental Activities, Privatization, Trade, and Economic Situation. The specific country highlighted in this Country Energy Overview is Bolivia.

anon.

2003-08-13T23:59:59.000Z

17

National Fuel Cell and Hydrogen Energy Overview: Total Energy...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

National Fuel Cell and Hydrogen Energy Overview: Total Energy USA 2012 National Fuel Cell and Hydrogen Energy Overview: Total Energy USA 2012 Presentation by Sunita Satyapal at the...

18

Overview | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Overview Overview Overview The Asset Revitalization Initiative (ARI) focuses on communicating past efforts and lessons learned from DOE's long history of asset revitalization and focus current and future efforts to improve the efficiency and effectiveness of future land, asset and facility transfer and beneficial reuse. Since the 1950's, DOE and its predecessor agencies have completed 95 transfers of approximately 25,500 acres of land, facilities and other assets for beneficial reuse, including excess fire stations, water treatment plants, water production facilities and other land, assets and facilities that local communities are using to support their civic, economic and social needs. DOE has already supported the cleanup and closure of approximately 90 sites that were involved in US

19

Utility Energy Services Contracting Overview | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Contracting Overview Utility Energy Services Contracting Overview Presentation-given at the April 2012 Federal Utility Partnership Working Group (FUPWG) meeting-features an...

20

FUSRAP Overview | Department of Energy  

Office of Environmental Management (EM)

FUSRAP Overview FUSRAP Overview FUSRAP Overview (Waste Management Conference 2006) FUSRAP Overview (Waste Management Conference 2006) More Documents & Publications Process for...

Note: This page contains sample records for the topic "intensities overview energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

energy intensity | OpenEI  

Open Energy Info (EERE)

intensity intensity Dataset Summary Description Energy intensity data and documentation published by the U.S. DOE's office of Energy Efficiency and Renewable Energy (EERE). Energy intensity is defined as: amount of energy used in producing a given level of output or activity; expressed as energy per unit of output. This is the energy intensity of the the electricity sector, which is an energy consuming sector that generates electricity. Data are organized to separate electricity-only generators from combined heat and power (CHP) generators. Data is available for the period 1949 - 2004. Source EERE Date Released May 31st, 2006 (8 years ago) Date Updated Unknown Keywords Electricity Energy Consumption energy intensity fossil fuels renewable energy Data application/vnd.ms-excel icon electricity_indicators.xls (xls, 2.1 MiB)

22

Geothermal Energy Program overview  

SciTech Connect (OSTI)

The mission of the Geothermal Energy Program is to develop the science and technology necessary for tapping our nation's tremendous heat energy sources contained with the Earth. Geothermal energy is a domestic energy source that can produce clean, reliable, cost- effective heat and electricity for our nation's energy needs. Geothermal energy -- the heat of the Earth -- is one of our nation's most abundant energy resources. In fact, geothermal energy represents nearly 40% of the total US energy resource base and already provides an important contribution to our nation's energy needs. Geothermal energy systems can provide clean, reliable, cost-effective energy for our nation's industries, businesses, and homes in the form of heat and electricity. The US Department of Energy's (DOE) Geothermal Energy Program sponsors research aimed at developing the science and technology necessary for utilizing this resource more fully. Geothermal energy originates from the Earth's interior. The hottest fluids and rocks at accessible depths are associated with recent volcanic activity in the western states. In some places, heat comes to the surface as natural hot water or steam, which have been used since prehistoric times for cooking and bathing. Today, wells convey the heat from deep in the Earth to electric generators, factories, farms, and homes. The competitiveness of power generation with lower quality hydrothermal fluids, geopressured brines, hot dry rock, and magma ( the four types of geothermal energy) still depends on the technical advancements sought by DOE's Geothermal Energy Program.

Not Available

1991-12-01T23:59:59.000Z

23

Energy-Water Overview  

U.S. Energy Information Administration (EIA) Indexed Site

Emerging Issues and Challenges Emerging Issues and Challenges DOE/EIA 2010 Energy Conference Mike Hightower Sandia National Laboratories mmhight@sandia.gov, 505-844-5499 Energy and Water are ... Interdependent Water for Energy and Energy for Water Energy and power production require water: * Thermoelectric cooling * Hydropower * Energy minerals extraction/mining * Fuel Production (fossil fuels, H 2 , biofuels) * Emission control Water production, processing, distribution, and end-use require energy: * Pumping * Conveyance and Transport * Treatment * Use conditioning * Surface and Ground water Water Consumption by Sector U.S. Freshwater Consumption, 100 Bgal/day Livestock 3.3% Thermoelectric 3.3% Commercial 1.2% Domestic 7.1% Industrial 3.3% Mining 1.2% Irrigation 80.6% Energy uses 27 percent of all non-agricultural fresh water

24

Overview of Geothermal Energy Development  

Broader source: Energy.gov (indexed) [DOE]

Geothermal Energy Geothermal Energy Development Kermit Witherbee Geothermal Geologist/Analyst DOE Office of Indian Energy Webcast: Overview of Geothermal Energy Development Tuesday, January 10, 2012 Geothermal Geology and Resources Environmental Impacts Geothermal Technology - Energy Conversion Geothermal Leasing and Development 2 PRESENTATION OUTLINE GEOTHERMAL GEOLOGY AND RESOURCES 3 Geology - Plate Tectonics 4 Plate Tectonic Processes Schematic Cross-Section "Extensional" Systems- "Rifting" Basin and Range Rio Grand Rift Imperial Valley East Africa Rift Valley "Magmatic" Systems Cascade Range 6 Geothermal Resources(USGS Fact Sheet 2008-3062) 7 State Systems

25

Solid-State Energy Conversion Overview  

Broader source: Energy.gov (indexed) [DOE]

eere.energy.gov 1 Solid-State Energy Conversion Overview John W. Fairbanks Department of Energy Vehicle Technologies Annual Merit Review June 11, 2010 Vehicle Technologies Program...

26

ELECTRICITY DELIVERY AND ENERGY RELIABILITY Appropriation Overview  

Broader source: Energy.gov (indexed) [DOE]

ELECTRICITY DELIVERY AND ENERGY RELIABILITY Appropriation Overview Electricity Delivery and Energy Reliability (OE) drives electric grid modernization and resiliency in the energy...

27

ITP Energy Intensive Processes: Energy-Intensive Processes Portfolio...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

teChnologIes Program IntroduCtIon the research and development (r&d) portfolio for energy-Intensive Processes (eIP) addresses the top technology opportunities to save energy...

28

Department of Energy Office of Science Transportation Overview...  

Office of Environmental Management (EM)

Department of Energy Office of Science Transportation Overview Department of Energy Office of Science Transportation Overview Overview of the Office of Science for Transportation....

29

Energy Management System Implementation ? First Webinar- Overview  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

W1-1 | Advanced Manufacturing Office eere.energy.gov ADVANCED MANUFACTURING OFFICE Energy Management System Implementation - First Webinar- Overview Deann Desai and Ed Hardison 4...

30

Solar Program Overview Webinar | Department of Energy  

Office of Environmental Management (EM)

Solar Program Overview Webinar Solar Program Overview Webinar January 22, 2015 3:00PM to 4:00PM EST Hosted by the Energy Department and the U.S. Department of Agriculture (USDA),...

31

EIA-Annual Energy Outlook 2010 Early Release Overview  

Gasoline and Diesel Fuel Update (EIA)

Analyses > Annual Energy Outlook Early Release > Overview Analyses > Annual Energy Outlook Early Release > Overview Annual Energy Outlook Early Release Overview Full Printer-Friendly Version Overview Energy Trends to 2035 | Economic Growth | Energy Prices | Energy Consumption by Sector | Energy Consumption by Primary Fuel | Energy Intensity | Energy Production and Imports | Electricity Generation | Energy-Related Carbon Dioxide Emissions | Energy Trends to 2035 In preparing the Annual Energy Outlook 2010 (AEO2010), the Energy Information Administration (EIA) evaluated a wide range of trends and issues that could have major implications for U.S. energy markets. This overview focuses primarily on one case, the AEO2010 reference case, which is presented and compared with the updated Annual Energy Outlook 2009 (updated AEO2009) reference case released in April 20091 (see Table 1 below). Because of the uncertainties inherent in any energy market projection, particularly in periods of high price volatility, rapid market transformation, or active changes in legislation, the reference case results should not be viewed in isolation. Readers are encouraged to review the alternative cases when the complete AEO2010 publication is released in order to gain perspective on how variations in key assumptions can lead to different outlooks for energy markets.

32

Office of Energy Efficiency and Renewable Energy Overview Appropriatio...  

Office of Environmental Management (EM)

Office of Energy Efficiency and Renewable Energy Overview Appropriation Summary by Program for FY 2011 Congressional Budget Office of Energy Efficiency and Renewable Energy...

33

Office of Energy Efficiency and Renewable Energy Overview Appropriatio...  

Office of Environmental Management (EM)

Office of Energy Efficiency and Renewable Energy Overview Appropriation Summary by Program for FY 2012 Congressional Budget Office of Energy Efficiency and Renewable Energy...

34

Energy End-Use Intensities in Commercial Buildings 1992  

U.S. Energy Information Administration (EIA) Indexed Site

Overview > Tables Overview > Tables 1992 Energy End-Use Intensities Tables Energy Consumption by End Use, 1992 Figure on Energy Consumption By End Use, 1992 Source: Energy Information Administration, Office of Energy Markets and End Use, Forms EIA-871A through F of the 1992 Commercial Buildings Energy Consumption Survey. divider line To View and/or Print Reports (requires Adobe Acrobat Reader) - Download Adobe Acrobat Reader If you experience any difficulties, visit our Technical Frequently Asked Questions. divider line Tables - (file size 31,655 bytes), pages 6. - requires Adobe Acrobat Reader Consumption of All Major Fuels by End Uses, 1992 Energy End-Use Intensities for All Major Fuels, 1992 Consumption of Electricity by End Uses, 1992 Energy End-Use Intensities for Electricity, 1992

35

Annual Energy Outlook with Projections to 2025-Overview  

Gasoline and Diesel Fuel Update (EIA)

Overview Overview Annual Energy Outlook 2004 with Projections to 2025 Overview Index (click to jump links) Key Energy Issues to 2025 Economic Growth Energy Prices Energy Consumption Energy Intensity Electricity Generation Energy Production and Imports Carbon Dioxide Emissions Key Energy Issues to 2025 For almost 4 years, natural gas prices have remained at levels substantially higher than those of the 1990s. This has led to a reevaluation of expectations about future trends in natural gas markets, the economics of exploration and production, and the size of the natural gas resource. The Annual Energy Outlook 2004 (AEO2004) forecast reflects such revised expectations, projecting greater dependence on more costly alternative supplies of natural gas, such as imports of liquefied natural gas (LNG), with expansion of existing terminals and development of new facilities, and remote resources from Alaska and from the Mackenzie Delta in Canada, with completion of the Alaska Natural Gas Transportation System and the Mackenzie Delta pipeline.

36

LOW INCOME ENERGY EFFICIENCY PROGRAM OVERVIEW Background  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

314 LOW INCOME ENERGY EFFICIENCY PROGRAM OVERVIEW Background BPA's low income program began in 1980, serving the states of Oregon, Montana, Idaho, and Washington. Over time the...

37

Bioenergy Technologies Office Overview | Department of Energy  

Office of Environmental Management (EM)

More Documents & Publications Bioenergy Technologies Office Overview August 2014 Monthly News Blast Algal Biofuels: Long-Term Energy Benefits Drive U.S. Research...

38

Utility Energy Services Contracts: Enabling Documents Overview  

Broader source: Energy.gov (indexed) [DOE]

- Overview of Legislative Administrative Policy - Differences between ESPC and "DSM" - GSA Utility Incentives - Energy Policy Act of 1992 - Executive Order 12902 - ESPC...

39

Hydrogen for Energy Storage Analysis Overview (Presentation)  

SciTech Connect (OSTI)

Overview of hydrogen for energy storage analysis presented at the National Hydrogen Association Conference & Expo, May 3-6, 2010, Long Beach, CA.

Steward, D. M.; Ramsden, T.; Harrison, K.

2010-06-01T23:59:59.000Z

40

Ocean Energy Technology Overview: Federal Energy Management Program (FEMP)  

SciTech Connect (OSTI)

Introduction to and overview of ocean renewable energy resources and technologies prepared for the U.S. Department of Energy Federal Energy management Program.

Not Available

2009-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "intensities overview energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Annual Energy Outlook 1999 - Overview  

Gasoline and Diesel Fuel Update (EIA)

overview.gif (2907 bytes) overview.gif (2907 bytes) Key Issues A major issue in energy markets today is carbon emissions. Because the Kyoto Protocol has not been ratified by the United States and no specific policies for carbon reduction have been enacted, such policies are not included in the Annual Energy Outlook 1999 (AEO99), although the Protocol and EIA’s recent analysis of its potential impacts are discussed. Economic developments in Asia over the past 18 months have weakened worldwide oil demand and lowered world oil prices—a trend that is likely to continue for several years and, therefore, is included in the AEO99 analysis of oil markets and prices. As in AEO98, the projections in AEO99 reflect ongoing changes in the financial structure of the U.S. electricity industry and cost reductions that are becoming evident with increased competition. A transition to retail competitive pricing is assumed in five regions—California, New York, New England, the Mid-Atlantic Area Council (Pennsylvania, Delaware, New Jersey, and Maryland), and the Mid-America Interconnected Network (Illinois and parts of Wisconsin and Missouri). Provisions of the California legislation on stranded cost recovery and price caps are also included. In the other regions, stranded cost recovery is assumed to be phased out by 2008. No national renewable portfolio standard has been passed, but State standards and other programs intended to encourage renewables are included as enacted. The new standards for control of nitrogen oxide (NOx) emissions by electricity generators are also incorporated.

42

Overview of Federal Energy Management Policy and Mandates  

Broader source: Energy.gov (indexed) [DOE]

Overview of Federal Energy Management Policy and Mandates Overview of Federal Energy Management Policy and Mandates Energy Intensity Reduction Goal The National Energy Conservation Policy Act (NECPA), as amended, requires Federal agencies to improve energy management in their facilities and operations. (42 U.S.C. 8253) Amendments to NECPA made by the Federal Energy Management Improvement Act of 1988 (P.L. 100-615), required each agency to achieve a 10 percent reduction in energy consumption in its Federal buildings by FY 1995, when measured against a FY 1985 baseline on a Btu-per-gross-square-foot (Btu/GSF) basis. It also directed DOE to establish life-cycle costing methods and coordinate Federal conservation activities through the Interagency Energy Management Task Force. Section 543 of NECPA contained provisions requiring a reduction in Btu/GSF of 20 percent by 2000,

43

Overview of Federal Energy Management Policy and Mandates  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Overview of Federal Energy Management Policy and Mandates Overview of Federal Energy Management Policy and Mandates Energy Intensity Reduction Goal The National Energy Conservation Policy Act (NECPA), as amended, requires Federal agencies to improve energy management in their facilities and operations. (42 U.S.C. 8253) Amendments to NECPA made by the Federal Energy Management Improvement Act of 1988 (P.L. 100-615), required each agency to achieve a 10 percent reduction in energy consumption in its Federal buildings by FY 1995, when measured against a FY 1985 baseline on a Btu-per-gross-square-foot (Btu/GSF) basis. It also directed DOE to establish life-cycle costing methods and coordinate Federal conservation activities through the Interagency Energy Management Task Force. Section 543 of NECPA contained provisions requiring a reduction in Btu/GSF of 20 percent by 2000,

44

Fuel Cell Technologies Overview: March 2012 State Energy Advisory...  

Broader source: Energy.gov (indexed) [DOE]

Technologies Overview: March 2012 State Energy Advisory Board Meeting Fuel Cell Technologies Overview: March 2012 State Energy Advisory Board Meeting Presentation by Sunita...

45

Building Energy Codes Implementation Overview - 2014 BTO Peer...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Implementation Overview - 2014 BTO Peer Review Building Energy Codes Implementation Overview - 2014 BTO Peer Review Presenter: Jeremiah Williams, U.S. Department of Energy This...

46

Fuel Cell Technologies Overview: March 2012 State Energy Advisory...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuel Cell Technologies Overview: March 2012 State Energy Advisory Board Meeting Fuel Cell Technologies Overview: March 2012 State Energy Advisory Board Meeting Presentation by...

47

Energy Storage R&D Overview | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

R&D Overview Energy Storage R&D Overview 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington...

48

National Energy Modeling System: An Overview  

Gasoline and Diesel Fuel Update (EIA)

6) 6) Distribution Category UC-950 The National Energy Modeling System: An Overview March 1996 Energy Information Administration Office of Integrated Analysis and Forecasting U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should not be construed as advocating or reflecting any policy position of the Department of Energy or of any other organization. PREFACE The National Energy Modeling System: An Overview (Overview) provides a summary description of the National Energy Modeling System (NEMS), which was used to generate the forecasts of energy production, demand, imports, and prices through the year 2015 for the Annual Energy Outlook 1996 (AEO96), (DOE/EIA- 0383(96)), released in January

49

Annual Energy Outlook 2000 - Overview  

Gasoline and Diesel Fuel Update (EIA)

Homepage Homepage Key Issues Prices Consumption Energy Intensity Electricity Generation Production and Imports Carbon Emissions Key Issues Important energy issues addressed in the Annual Energy Outlook 2000 (AEO2000) include, among others, the ongoing restructuring of U.S. electricity markets, near-term prospects for world oil markets, and the impacts of energy use on carbon emissions. AEO2000 reflects the restructuring of U.S. electricity markets and the shift to increased competition by assuming changes in the financial structure of the industry. Ongoing efficiency and operating improvements are also assumed to continue. The projections assume a transition to full competitive pricing in States with specific deregulation plans—California, New York, New England, the Mid-Atlantic States, Illinois, Texas, Michigan, Ohio, Arizona, and New Mexico. Other States are assumed to continue cost-of-service electricity pricing. The provisions of the California legislation regarding stranded cost recovery and price caps are included. In other regions, stranded cost recovery is assumed to be phased out by 2008.

50

Iron and Steel Energy Intensities  

U.S. Energy Information Administration (EIA) Indexed Site

If you are having trouble, call 202-586-8800 for help. Home > >Energy Users > Energy Efficiency Page > Iron and Steel Energy Intensities First Use of Energy Blue Bullet First Use/Value of Production Blue Bullet First Use/Ton of steel End Uses of Consumption Blue Bullet Total End Use/Value of Production Blue Bullet Total End Use/Ton of Steel Boiler Fuel as End Use Blue Bullet Boiler Fuel /Value of Production Blue Bullet Boiler Fuel /Ton of Steel Process Heating as End Use Blue Bullet Process Heating Fuel /Ton of Steel Blue Bullet Process Heating /Value of Production Machine Drive as End Use Blue Bullet Machine Drive Fuel/Ton of Steel Blue Bullet Machine Drive Fuel /Value of Production Expenditures Blue Bullet Purchased Fuel /Ton of Steel Blue Bullet Purchased Fuel /Value of Production

51

Energy Intensity Baselining and Tracking Guidance  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Learn more at betterbuildings.energy.gov Energy Intensity Baselining and Tracking Guidance i Preface The U.S. Department of Energy's (DOE) Better Buildings, Better Plants Program...

52

Overview of BNL's Solar Energy Research Plans  

E-Print Network [OSTI]

Overview of BNL's Solar Energy Research Plans March 2011 #12;2 Why Solar Energy Research at BNL BNL's capabilities can advance solar energy In the Northeast #12;North Array Field South Array Field Variability and Non-Dispatchability · Solar energy varies · Solar generation cannot be dispatched when needed

Homes, Christopher C.

53

LOW INCOME ENERGY EFFICIENCY PROGRAM OVERVIEW Background  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

LOW INCOME ENERGY EFFICIENCY PROGRAM OVERVIEW Background BPA's low income program began in in the mid-80s, serving the states of Oregon, Montana, Idaho, and Washington. Over time...

54

Utility Energy Services Contracts: Enabling Documents Overview  

Broader source: Energy.gov [DOE]

Presentation covers the utility energy service contract (UESC) enabling documents overview and is given at the FUPWG 2006 Spring meeting, held on May 3-4, 2006 in Atlanta, Georgia.

55

Overview of BNL's Solar Energy Research Plansgy  

E-Print Network [OSTI]

Overview of BNL's Solar Energy Research Plansgy March 8, 2011, #12;Outline O i f th LISF S l PV P j Field LIPA Substation South Array Field LIPA Substation #12;#12;#12;BNL is developing a solar energy, February 2009 � EERE Renewable Systems interconnection Study, February 2008 � EERE Solar Energy Technology

Homes, Christopher C.

56

Wind energy: Program overview, FY 1992  

SciTech Connect (OSTI)

The DOE Wind Energy Program assists utilities and industry in developing advanced wind turbine technology to be economically competitive as an energy source in the marketplace and in developing new markets and applications for wind systems. This program overview describes the commercial development of wind power, wind turbine development, utility programs, industry programs, wind resources, applied research in wind energy, and the program structure.

Not Available

1993-06-01T23:59:59.000Z

57

Hanford ARI Overview | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Hanford ARI Overview Hanford ARI Overview Hanford ARI Overview The Hanford Site provides the opportunity for long-term sustainable energy and industry development. The area boasts a specialized workforce that is highly educated and well-established; is rich in resources including land, infrastructure, low-cost energy, and available workforce; more scientists and engineers per capita than any other area in the Pacific Northwest; and is an optimum location for the development of sustainable energy solutions. Hanford_Asset_Revitalization_Initiative.pdf More Documents & Publications $300,000 Block Grant Awarded to Tri-City Industrial Development Council (TRIDEC) Department of Energy Awards $300,000 to Tri-City Industrial Development Council in Washington State Department of Energy Awards $600,000 to Tri-City Industrial Development

58

Energy Intensity Baselining and Tracking Guidance  

Broader source: Energy.gov [DOE]

The Energy Intensity Baselining and Tracking Guidance for the Better Buildings, Better Plants Program helps companies meet the programs reporting requirements by describing the steps necessary to develop an energy consumption and energy intensity baseline and calculating consumption and intensity changes over time.

59

Program Overview | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Information Center » DOE Technical Standards Program » Program Information Center » DOE Technical Standards Program » Program Overview Program Overview Vision The culture of the DOE community will be based on standards. Technical standards will formally integrate part of all DOE facility, program and project activities. The DOE will be recognized as a participant in the use and development of technical standards. The Technical Standards Program will be a benchmark for efficiency, value and support for the DOE customer. Mission In support of the Department's Standards Program and in partnership with all stakeholders, the mission is to enhance DOE's transition to a standards-based culture by providing information, coordinating activities, and promoting the use of consensus standards, and when needed, the development of DOE technical standards.

60

Annual Energy Outlook 2002 with Projections to 2020 - Overview  

Gasoline and Diesel Fuel Update (EIA)

Overview Key Energy Issues to 2020 | Economic Growth | Energy Prices | Energy Consumption | Energy Intensity | Electricity Generation | Energy Production and Imports | Carbon Dioxide Emissions Key Energy Issues to 2020 Over the past year, energy markets have been extremely volatile, with high prices for oil and natural gas and concerns for energy shortages earlier in the year giving way to an economic slowdown and lower prices following the September terrorist attacks in the United States. Those events are incorporated in the short-term projections for the Annual Energy Outlook 2002 (AEO2002), but long-term volatility in energy markets is not expected to result from their impacts or from the impacts of such future events as supply disruptions or severe weather. AEO2002 focuses on long-term events,

Note: This page contains sample records for the topic "intensities overview energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Energy Systems Integration Facility Overview  

ScienceCinema (OSTI)

The U.S. Department of Energy's Energy Systems Integration Facility (ESIF) is located at the National Renewable Energy Laboratory is the right tool, at the right time... a first-of-its-kind facility that addresses the challenges of large-scale integration of clean energy technologies into the energy systems that power the nation.

Arvizu, Dan; Chistensen, Dana; Hannegan, Bryan; Garret, Bobi; Kroposki, Ben; Symko-Davies, Martha; Post, David; Hammond, Steve; Kutscher, Chuck; Wipke, Keith

2014-06-10T23:59:59.000Z

62

Department of Energy Corporate Overview - 2012 | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Department of Energy Corporate Overview - 2012 Department of Energy Corporate Overview - 2012 Department of Energy Corporate Overview - 2012 This book provides an overview of the Department of Energy (DOE). The opening sections describe the mission areas, organizational structure and upcoming critical issues of the Department, followed by brief descriptions of DOE's goals and programs. Later sections provide overviews of the Department's budget, staffing, contract management, project management, Congressional jurisdiction, Government Accountability Office (GAO) and DOE's Inspector General (IG) oversight and DOE high-visibility rulemakings. We hope that this document enables you to acquire useful information about DOE. If you have any questions, please contact the Office of Program Analysis and Evaluation, at 202-586-1911.

63

Conditioned Attics Overview | Building Energy Codes Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Conditioned Attics Overview Conditioned Attics Overview Adequate attic ventilation is a long-standing requirement in building codes. However, conditioned, unvented attics have the potential to reduce residential energy needs and are allowed by code under certain conditions. Such assemblies are sometimes called cathedralized attics because, as with cathedral ceilings, the insulation is in the rafters and/or roof deck. Publication Date: Wednesday, May 13, 2009 ta_conditioned_attics_overview.pdf Document Details Affiliation: DOE BECP Document Number: PNNL-SA-57260 Focus: Compliance Building Type: Residential Code Referenced: International Energy Conservation Code (IECC) Document type: Technical Articles Target Audience: Architect/Designer Builder Code Official Contractor Engineer Contacts Web Site Policies

64

Description of Energy Intensity Tables (12)  

U.S. Energy Information Administration (EIA) Indexed Site

3. Description of Energy Intensity Data Tables 3. Description of Energy Intensity Data Tables There are 12 data tables used as references for this report. Specifically, these tables are categorized as tables 1 and 2 present unadjusted energy-intensity ratios for Offsite-Produced Energy and Total Inputs of Energy for 1985, 1988, 1991, and 1994; along with the percentage changes between 1985 and the three subsequent years (1988, 1991, and 1994) tables 3 and 4 present 1988, 1991, and 1994 energy-intensity ratios that have been adjusted to the mix of products shipped from manufacturing establishments in 1985 tables 5 and 6 present unadjusted energy-intensity ratios for Offsite-Produced Energy and Total Inputs of Energy for 1988, 1991, and 1994; along with the percentage changes between 1988 and the two subsequent

65

World Best Practice Energy Intensity Values for Selected Industrial Sectors  

E-Print Network [OSTI]

world best practice energy intensity values for productionWorld best practice energy intensity values for productionWorld Best Practice Final Energy Intensity Values for Aluminium Production (

Worrell, Ernst; Price, Lynn; Neelis, Maarten; Galitsky, Christina; Zhou, Nan

2007-01-01T23:59:59.000Z

66

World Best Practice Energy Intensity Values for Selected Industrial Sectors  

E-Print Network [OSTI]

Best Practice Final Energy Intensity Values for Stand-AloneBest Practice Final Energy Intensity Values for Stand-AloneBest Practice Primary Energy Intensity Values for Stand-

Worrell, Ernst; Price, Lynn; Neelis, Maarten; Galitsky, Christina; Zhou, Nan

2007-01-01T23:59:59.000Z

67

Impact Factors of Energy Intensity in China  

E-Print Network [OSTI]

Energy intensity reflects energy usage efficiency in the production and consumption process, and leads to carbon dioxide emissions and the energy security of an economy. Liao et al. (2007) analyzed factors contribute to the fluctuation of Chinas energy intensity from 1997 to 2006, and found that efficiency effects and structural effects are the major impacting factors. Therefore, they suggested that China should attach more importance to optimizing its sectoral structure, and lowering its investment ratio in the future. However, economic development and energy intensity are influenced by many factors. In their research, Liao et al. (2007) omitted some important contributing factors to energy intensities, and their suggestions also had some practical limitations. First of all, Liao et al. (2007) did not analyze impacts from energy prices in energy usage efficiency. In the existing literature, Birol and Keppler (2000) applied economics theory and suggested that higher energy prices can induce the improvements in energy usage efficiency, thereby lowering energy intensity. Hang and Tu (2007) studied the influence of energy price on the Chinese economy's energy intensity and their empirical results also showed that higher energy prices can lower energy intensity. Because energy prices have been regulated by the

unknown authors

68

EIA - Annual Energy Outlook 2008 - Overview Section  

Gasoline and Diesel Fuel Update (EIA)

Overview Overview Annual Energy Outlook 2008 with Projections to 2030 Energy Trends to 2030 In preparing projections for the Annual Energy Outlook 2008 (AEO2008), the Energy Information Administration (EIA) evaluated a wide range of trends and issues that could have major implications for U.S. energy markets between today and 2030. This overview focuses on one case, the reference case, which is presented and compared with the Annual Energy Outlook 2007 (AEO2007) reference case (see Table 1). Readers are encouraged to review the full range of alternative cases included in other sections of AEO2008. As in previous editions of the Annual Energy Outlook (AEO), the reference case assumes that current policies affecting the energy sector remain unchanged throughout the projection period. The reference case provides a clear basis against which alternative cases and policies can be compared. Although current laws and regulations may change over the next 25 years, and new ones may be created, it is not possible to predict what they will be or how they will be implemented [1].

69

An Overview of Existing Wind Energy Ordinances | Open Energy Information  

Open Energy Info (EERE)

Existing Wind Energy Ordinances Existing Wind Energy Ordinances Jump to: navigation, search Name An Overview of Existing Wind Energy Ordinances Agency/Company /Organization National Renewable Energy Laboratory Focus Area People and Policy, Economic Development Phase Create a Vision, Develop Finance and Implement Projects Resource Type Templates Availability Publicly available--Free Publication Date 2008/12/01 Website http://www.nrel.gov/docs/fy09o Locality Communities in Illinois, Kansas, Michigan, Minnesota, New York, Pennsylvania, South Dakota, Wisconsin, Utah References An Overview of Existing Wind Energy Ordinances[1] Contents 1 Overview 2 Highlights 3 Environmental Aspects 4 References Overview This document provides a summary of existing wind energy ordinances that provides a foundation for state and local governments and policymakers when

70

National Fuel Cell and Hydrogen Energy Overview  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

National Fuel Cell and Hydrogen National Fuel Cell and Hydrogen Energy Overview Total Energy USA Houston, Texas Dr. Sunita Satyapal Director, Office of Fuel Cell Technologies Energy Efficiency and Renewable Energy U.S. Department of Energy 11/27/2012 National Support for Clean Energy "We've got to invest in a serious, sustained, all-of- - President Barack Obama "Advancing hydrogen and fuel cell technology is an important part of the Energy Department's efforts to support the President's all-of-the-above energy strategy, helping to diversify America's energy sector and reduce our dependence on foreign oil." - Energy Secretary Steven Chu "Fuel cells are an important part of our energy portfolio...deployments in early markets are helping to drive innovations in fuel cell technologies

71

Annual Energy Outlook with Projections to 2025-Overview  

Gasoline and Diesel Fuel Update (EIA)

With Projections to 2025 With Projections to 2025 Overview Key Energy Issues to 2025 | Economic Growth | Energy Prices | Energy Consumption | Energy Intensity | Electricity Generation | Energy Production and Imports | Carbon Dioxide Emissions Key Energy Issues to 2025 As has been typical over the past few years, energy prices were extremely volatile during 2002. Spot natural gas prices, about $2 per thousand cubic feet in January, rose to between $3 and $4 per thousand cubic feet by the fall. Average wellhead prices, which are moderated by the inclusion of natural gas bought under contract, also increased over the year. Crude oil prices also rose in 2002, mainly because of reduced production by the Organization of Petroleum Exporting Counties (OPEC) and, to a lesser degree, fears about the potential impact of military action in Iraq. Crude oil prices began 2002 at roughly $16 per barrel and were between $25 and $30 per barrel by the fall.

72

EIA - The National Energy Modeling System: An Overview 2003-Industrial  

Gasoline and Diesel Fuel Update (EIA)

Industrial Demand Module Industrial Demand Module The National Energy Modeling System: An Overview 2003 Industrial Demand Module Figure 7. Industrial Demand Module Structure. Need help, contact the National Energy Information Center at 202-586-8800. Economic Subsectors Within the IDM Table. Need help, contact the National Energy Information Center at 202-586-8800. Industrial Demand Module Table. Need help, contact the National Energy Information Center at 202-586-8800. Fuel Consuming Activities for the Energy-Intensive Manufacturing Subsectors Table. Need help, contact the National Energy Information Center at 202-586-8800. The industrial demand module (IDM) forecasts energy consumption for fuels and feedstocks for nine manufacturing industries and six nonmanufactur- ing

73

Geothermal Technologies Program Overview | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Technologies Program Overview Geothermal Technologies Program Overview This overview of the Geothermal Technologies Program was given at the GTP Program Peer Review on May 18,...

74

Geothermal energy: 1992 program overview  

SciTech Connect (OSTI)

Geothermal energy is described in general terms with drawings illustrating the technology. A map of known and potential geothermal resources in the US is included. The 1992 program activities are described briefly. (MHR)

Not Available

1993-04-01T23:59:59.000Z

75

Ocean Energy Technology: Overview, Federal Energy Management Program (FEMP)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

femp.energy.gov femp.energy.gov Ocean Energy Technology Overview Prepared for the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Federal Energy Management Program July 2009 DOE/GO-102009-2823 Ocean Energy Technology Overview i Contacts Principal Investigators: Kari Burman Phone: 303-384-7558 E-mail: kari.burman@nrel.gov Andy Walker, PhD PE Phone: 303-384-7531 E-mail: andy.walker@nrel.gov Energy Management and Federal Markets Group National Renewable Energy Laboratory (NREL) MS 301 1617 Cole Boulevard Golden, CO 80401 Sponsor: U.S. Department of Energy Federal Energy Management Program Acknowledgements This work was sponsored by the U.S. Department of Energy (DOE) Federal Energy Management Program (FEMP). Research regarding ocean energy resources, status of wave and tidal power technologies, and

76

Built Environment Energy Analysis Tool Overview (Presentation)  

SciTech Connect (OSTI)

This presentation provides an overview of the Built Environment Energy Analysis Tool, which is designed to assess impacts of future land use/built environment patterns on transportation-related energy use and greenhouse gas (GHG) emissions. The tool can be used to evaluate a range of population distribution and urban design scenarios for 2030 and 2050. This tool was produced as part of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

Porter, C.

2013-04-01T23:59:59.000Z

77

Technology Transfer Overview | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Services » Technology Transfer and Procurement » Technology Services » Technology Transfer and Procurement » Technology Transfer & Intellectual Property » Technology Transfer Overview Technology Transfer Overview Through strategic investments in science and technology, the U.S. Department of Energy (DOE) helps power and secure America's future. DOE's capabilities, and the innovations it supports, help ensure the country's role as a leader in science and technology. In particular, technology transfer supports the maturation and deployment of DOE discoveries, providing ongoing economic, security and environmental benefits for all Americans. "Technology transfer" refers to the process by which knowledge, intellectual property, or capabilities developed at the Department of Energy's National Laboratories, single-purpose research facilities, plants,

78

20% Wind Energy by 2030 - Chapter 1: Executive Summary and Overview...  

Office of Environmental Management (EM)

1: Executive Summary and Overview Summary Slides 20% Wind Energy by 2030 - Chapter 1: Executive Summary and Overview Summary Slides Summary and overview slides for 20% Wind Energy...

79

Overview  

Broader source: Energy.gov (indexed) [DOE]

Overview Overview The mission of the Department of Energy is to ensure America's security and prosperity by addressing its energy, environmental and nuclear challenges through transformative science and technology solutions. A cornerstone of technology leadership and its accompanying jobs is a vibrant science and technology enterprise. To achieve this, the Department needs to cultivate the entire technology innovation chain, from enabling discoveries to research, development, demonstration, and deployment. The Department must create the conditions today that will harness the next generation of scientists and engineers to support its mission, administer its programs, and conduct the research that will support energy economic development and realize the nation's science, technology, and

80

Building Energy Codes Program Overview - 2014 BTO Peer Review...  

Broader source: Energy.gov (indexed) [DOE]

Jeremiah Williams, U.S. Department of Energy This presentation at the 2014 Peer Review provided an overview of the Building Technologies Office's Building Building Energy Codes...

Note: This page contains sample records for the topic "intensities overview energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Building Energy Codes Program Overview - 2014 BTO Peer Review...  

Broader source: Energy.gov (indexed) [DOE]

David Cohan, U.S. Department of Energy This presentation at the 2014 Peer Review provided an overview of the Building Technologies Office's Building Energy Codes Program. Through...

82

Energy Production and Trade: An Overview of Some Macroeconomic...  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Production and Trade: An Overview of Some Macroeconomic Issues Vipin Arora November 2014 Independent Statistics & Analysis www.eia.gov U.S. Energy Information Administration...

83

Geothermal: Sponsored by OSTI -- Broad Overview of Energy Efficiency...  

Office of Scientific and Technical Information (OSTI)

Broad Overview of Energy Efficiency and Renewable Energy Opportunities for Department of Defense Installations Geothermal Technologies Legacy Collection HelpFAQ | Site Map |...

84

EIA - Annual Energy Outlook 2011 - overview  

Gasoline and Diesel Fuel Update (EIA)

Annual Energy Outlook 2011 Annual Energy Outlook 2011 Release Date: April 26, 2011 | Next Early Release Date: January 23, 2012 | Report Number: DOE/EIA-0383(2011) Overview Data Reference Case Side Cases Interactive Table Viewer Topics Source Oil/Liquids Natural Gas Coal Electricity Renewable/Alternative Nuclear Sector Residential Commercial Industrial Transportation Energy Demand Other Emissions Prices Macroeconomic International Efficiency Publication Chapter Changes from Previous AEO Executive Summary Market Trends Issues in Focus Legislation & Regulations Comparison Appendices Annual Energy Outlook 2011 presents yearly projections and analysis of energy topics Download the complete April 2011 published report. Changes from previous AEO2010 Significant update of the technically recoverable U.S. shale gas

85

EIA - Annual Energy Outlook 2011 - overview  

Gasoline and Diesel Fuel Update (EIA)

Annual Energy Outlook 2011 Annual Energy Outlook 2011 Release Date: April 26, 2011 | Next Early Release Date: January 23, 2012 | Report Number: DOE/EIA-0383(2011) Overview Data Reference Case Side Cases Interactive Table Viewer Topics Source Oil/Liquids Natural Gas Coal Electricity Renewable/Alternative Nuclear Sector Residential Commercial Industrial Transportation Energy Demand Other Emissions Prices Macroeconomic International Efficiency Publication Chapter Changes from Previous AEO Executive Summary Market Trends Issues in Focus Legislation & Regulations Comparison Appendices Annual Energy Outlook 2011 presents yearly projections and analysis of energy topics Download the complete April 2011 published report. Changes from previous AEO2010 Significant update of the technically recoverable U.S. shale gas

86

Wind Resource Assessment Overview | Open Energy Information  

Open Energy Info (EERE)

Wind Resource Assessment Overview Wind Resource Assessment Overview Jump to: navigation, search Maps.jpg The first step in developing a wind project is to locate and quantify the wind resource. The magnitude of the wind and the characteristics of the resource are the largest factors in determining a potential site's economic and technical viability. There are three basic steps to identifying and characterizing the wind resource: prospecting, validating, and micrositing. The process of locating sites for wind energy development is similar to exploration for other resources, such as minerals and petroleum. Thus, the term prospecting is often used to describe the identification and preliminary evaluation of a wind resource area. Prospecting includes identifying potentially windy sites within a fairly large region - such

87

Retail: An Overview of Energy Use and Energy Efficiency Opportunities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Retail: An Overview of Energy Use and Retail: An Overview of Energy Use and Energy Efficiency Opportunities Of the almost 5 million commercial buildings in the U.S. 1 , retail buildings account for the largest energy costs - nearly $20 billion each year 1 - and are also responsible for the second largest percentage of greenhouse gas emissions, leading to global climate change. By becoming more energy efficient, retailers can increase the comfort of customers and productivity of employees, and achieve cost savings that enhance corporate profitability. By using the Environmental Protection Agency's (EPA) ENERGY STAR tools and resources, retailers can save money and fight global climate change by reducing their energy use through energy efficiency measures. Energy Efficiency Tips

88

Technical Change, Investment and Energy Intensity  

E-Print Network [OSTI]

This paper analyzes the role of different components of technical change on energy intensity by applying a Translog variable cost function setting to the new EU KLEMS dataset for 3 selected EU countries (Italy, Finland and ...

Kratena, Kurt

89

Sustaining Performance Improvements in Energy Intensive Industries  

E-Print Network [OSTI]

Experience has shown that significant opportunity for performance improvements exists in energy intensive operations. Often, efforts to improve efficiency focus on vendor-led initiatives to improve operations of particular equipment. This approach...

Moore, D. A.

2005-01-01T23:59:59.000Z

90

DOE Hydrogen Program Overview | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

DOE Hydrogen Program Overview DOE Hydrogen Program Overview A prospectus for biological H2 production for the DOE Annual Program Review Meeting. photobiological.pdf More Documents...

91

Standard Review Plan - Overview | Department of Energy  

Office of Environmental Management (EM)

Standard Review Plan - Overview Standard Review Plan - Overview The Office of Environmental Management (EM) is responsible for managing the design, construction, operation, and...

92

EPA Regulations Overview Website | Open Energy Information  

Open Energy Info (EERE)

Overview Website Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: EPA Regulations Overview Website Abstract This website contains information about laws...

93

Flow Cells for Energy Storage Workshop Overview  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electricity Delivery Electricity Delivery & Energy Reliability Organized by: Energy Efficiency & Renewable Energy W i t h h e l p b y : Agenda Day/Time Speaker Subject Wednesday, March 07, 2012 8:45-9:00 Adam Weber, LBNL Welcome and workshop overview 9:00-9:30 Various, EERE, OFCT Background, approach, and reversible fuel cells 9:30-9:55 Michael Perry, UTRC Renaissance in flow cells: opportunities 9:55-10:20 Joe Eto, LBNL Energy storage requirements for the smart grid 10:20-10:35 AM Break 10:35-11:00 Robert Savinell, CWRU Revisiting flow-battery R&D 11:00-11:25 Stephen Clarke, Applied Intellectual Capital Lessons learned and yet to be learned from 20 years in RFB R&D 11:25-11:45 Imre Gyuk, DOE OE Research and deployment of stationary storage at DOE

94

EIA - The National Energy Modeling System: An Overview 2003-Overview of  

Gasoline and Diesel Fuel Update (EIA)

Overview of NEMS Overview of NEMS The National Energy Modeling System: An Overview 2003 Overview of NEMS NEMS represents domestic energy markets by explicitly representing the economic decision making involved in the production, conversion, and consumption of energy products. Where possible, NEMS includes explicit representation of energy technologies and their characteristics. Summary of NEMS Detail Table. Need help, contact the National Energy Information Center at 202-586-8800. printer-friendly version Figure 1. Census Divisions. Need help, contact the National Energy Information Center at 202-586-8800. Figure 2. National Energy Modeling System. Need help, contact the National Energy Information Center at 202-586-8800. Since energy costs and availability and energy-consuming characteristics

95

EIA Energy Efficiency-Commercial Buildings Sector Energy Intensities,  

U.S. Energy Information Administration (EIA) Indexed Site

Commercial Buildings Sector Energy Intensities Commercial Buildings Sector Energy Intensities Commercial Buildings Sector Energy Intensities: 1992- 2003 Released Date: December 2004 Page Last Revised: August 2009 These tables provide estimates of commercial sector energy consumption and energy intensities for 1992, 1995, 1999 and 2003 based on the Commercial Buildings Energy Consumption Survey (CBECS). They also provide estimates of energy consumption and intensities adjusted for the effect of weather on heating, cooling, and ventilation energy use. Total Site Energy Consumption (U.S. and Census Region) Html Excel PDF bullet By Principal Building Activity (Table 1a) html Table 1a excel table 1a. pdf table 1a. Weather-Adjusted by Principal Building Activity (Table 1b) html table 1b excel table 1b pdf table 1b.

96

The National Energy Modeling System: An overview  

SciTech Connect (OSTI)

The National Energy Modeling System (NEMS) is a computer-based, energy-economy modeling system of US energy markets for the midterm period of 1990 to 2010. NEMS projects the production, imports, conversion, consumption, and prices of energy, subject to assumptions on macroeconomic and financial factors, world energy markets, resource availability and costs, behavioral and technological choice criteria, cost and performance characteristics of energy technologies, and demographics. This report presents an overview of the structure and methodology of NEMS and each of its components. The first chapter provides a description of the design and objectives of the system. The second chapter describes the modeling structure. The remainder of the report summarizes the methodology and scope of the component modules of NEMS. The model descriptions are intended for readers familiar with terminology from economics, operations research, and energy modeling. Additional background on the development of the system is provided in Appendix A of this report, which describes the EIA modeling systems that preceded NEMS. More detailed model documentation reports for all the NEMS modules are also available from EIA.

Not Available

1994-05-01T23:59:59.000Z

97

An overview of the progress in photoelectrochemical energy conversion  

Science Journals Connector (OSTI)

An overview of the progress in photoelectrochemical energy conversion ... Kinetic studies of carrier transport and recombination at the n-silicon methanol interface ...

Bruce Parkinson

1983-01-01T23:59:59.000Z

98

Analysis of the Energy Intensity of Industries in California  

E-Print Network [OSTI]

the aggregate energy-intensity of industry. Applied Energyindustries with final energy intensities of 12.3 Billion BtuAs mentioned, the energy intensity of this sector is much

Can, Stephane de la Rue du

2014-01-01T23:59:59.000Z

99

Measuring energy efficiency: Is energy intensity a good evidence base?  

Science Journals Connector (OSTI)

Abstract There is a widespread assumption in energy statistics and econometrics that energy intensity and energy efficiency are equivalent measures of energy performance of economies. The paper points to the discrepancy between the engineering concept of energy efficiency and the energy intensity as it is understood in macroeconomic statistics. This double discrepancy concerns definitions (while engineering concept of energy efficiency is based on the thermodynamic definition, energy intensity includes economic measures) and use. With regard to the latter, the authors conclude that energy intensity can only provide indirect and delayed evidence of technological and engineering energy efficiency of energy conversion processes, which entails shortcomings for management and policymaking. Therefore, we suggest to stop considering subsectoral, sectoral and other levels of energy intensities as aggregates of lower-level energy efficiency. It is suggested that the insufficiency of energy intensity indicators can be compensated with the introduction of thermodynamic indicators describing energy efficiency at the physical, technological, enterprise, sub-sector, sectoral and national levels without references to any economic or financial parameters. Structured statistical data on thermodynamic efficiency is offered as a better option for identifying break-through technologies and technological bottle-necks that constrain efficiency advancements. It is also suggested that macro-level thermodynamic indicators should be based on the thermodynamic first law efficiency and the energy quality problem may be left to enterprise-level thermoeconomic optimization.

L. Proskuryakova; A. Kovalev

2015-01-01T23:59:59.000Z

100

ITP Energy Intensive Processes: Improved Heat Recovery in Biomass...  

Broader source: Energy.gov (indexed) [DOE]

Energy Intensive Processes: Improved Heat Recovery in Biomass-Fired Boilers ITP Energy Intensive Processes: Improved Heat Recovery in Biomass-Fired Boilers biomass-firedboilers.pd...

Note: This page contains sample records for the topic "intensities overview energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Reducing Industrial Energy Intensity in the Southeast Project...  

Broader source: Energy.gov (indexed) [DOE]

Industrial Energy Intensity in the Southeast Project Fact Sheet Reducing Industrial Energy Intensity in the Southeast Project Fact Sheet This fact sheet contains details regarding...

102

Oak Ridge ARI Overview | Department of Energy  

Energy Savers [EERE]

Oak Ridge ARI Overview Oak Ridge ARI Overview This fact sheet covers the asset revitalization initiative in Oak Ridge, TN. OakridgeFactSheet.pdf More Documents & Publications ARI...

103

NATURALHY Project Overview | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Overview NATURALHY Project Overview Presentation by 05-Florisson to DOE Hydrogen Pipeline R&D Project Review Meeting held January 5-6, 2005 at Oak Ridge National Laboratory in...

104

DOE Hydrogen Program Overview | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Overview DOE Hydrogen Program Overview Presentation by 01-Paster to DOE Hydrogen Pipeline R&D Project Review Meeting held January 5-6, 2005 at Oak Ridge National Laboratory in...

105

Indiana - State Energy Profile Overview - U.S. Energy Information  

U.S. Energy Information Administration (EIA) Indexed Site

State Energy Profile Overview - U.S. Energy Information State Energy Profile Overview - U.S. Energy Information Administration (EIA) The page does not exist for . To view this page, please select a state: United States Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming The page does not exist for . To view this page, please select a state: Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida

106

Iowa - State Energy Profile Overview - U.S. Energy Information  

U.S. Energy Information Administration (EIA) Indexed Site

State Energy Profile Overview - U.S. Energy Information State Energy Profile Overview - U.S. Energy Information Administration (EIA) The page does not exist for . To view this page, please select a state: United States Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming The page does not exist for . To view this page, please select a state: Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida

107

Mississippi - State Energy Profile Overview - U.S. Energy Information  

U.S. Energy Information Administration (EIA) Indexed Site

State Energy Profile Overview - U.S. Energy Information State Energy Profile Overview - U.S. Energy Information Administration (EIA) The page does not exist for . To view this page, please select a state: United States Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming The page does not exist for . To view this page, please select a state: Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida

108

Alaska - State Energy Profile Overview - U.S. Energy Information  

U.S. Energy Information Administration (EIA) Indexed Site

State Energy Profile Overview - U.S. Energy Information State Energy Profile Overview - U.S. Energy Information Administration (EIA) The page does not exist for . To view this page, please select a state: United States Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming The page does not exist for . To view this page, please select a state: Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida

109

Minnesota - State Energy Profile Overview - U.S. Energy Information  

U.S. Energy Information Administration (EIA) Indexed Site

State Energy Profile Overview - U.S. Energy Information State Energy Profile Overview - U.S. Energy Information Administration (EIA) The page does not exist for . To view this page, please select a state: United States Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming The page does not exist for . To view this page, please select a state: Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida

110

Oklahoma - State Energy Profile Overview - U.S. Energy Information  

U.S. Energy Information Administration (EIA) Indexed Site

State Energy Profile Overview - U.S. Energy Information State Energy Profile Overview - U.S. Energy Information Administration (EIA) The page does not exist for . To view this page, please select a state: United States Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming The page does not exist for . To view this page, please select a state: Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida

111

Kansas - State Energy Profile Overview - U.S. Energy Information  

U.S. Energy Information Administration (EIA) Indexed Site

State Energy Profile Overview - U.S. Energy Information State Energy Profile Overview - U.S. Energy Information Administration (EIA) The page does not exist for . To view this page, please select a state: United States Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming The page does not exist for . To view this page, please select a state: Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida

112

Washington - State Energy Profile Overview - U.S. Energy Information  

U.S. Energy Information Administration (EIA) Indexed Site

State Energy Profile Overview - U.S. Energy Information State Energy Profile Overview - U.S. Energy Information Administration (EIA) The page does not exist for . To view this page, please select a state: United States Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming The page does not exist for . To view this page, please select a state: Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida

113

China energy issues : energy intensity, coal liquefaction, and carbon pricing  

E-Print Network [OSTI]

In my dissertation I explore three independent, but related, topics on China's energy issues. First, I examine the drivers for provincial energy-intensity trends in China, and finds that technology innovation is the key ...

Wu, Ning, Ph. D. Massachusetts Institute of Technology

2011-01-01T23:59:59.000Z

114

Energy use and carbon dioxide emissions in energy-intensive industries in key developing countries  

E-Print Network [OSTI]

R. Schaeffer, 1997, Energy Intensity in the Iron and Steelwhich is the ratio of the actual energy intensity to thebest practice energy intensity, where the best practice

Price, Lynn; Worrell, Ernst; Phylipsen, Dian

1999-01-01T23:59:59.000Z

115

Energy-Efficiency Technologies and Benchmarking the Energy Intensity for the Textile Industry  

E-Print Network [OSTI]

Benchmarking the Energy Intensity for the Textile Industryand Comparing the Energy Intensity in the Textile Industrywere visited. The energy intensity of each plant was

Hasanbeigi, Ali

2014-01-01T23:59:59.000Z

116

WTB & Spectrum Access Overview | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

WTB & Spectrum Access Overview More Documents & Publications An Introduction to Spectrum Engineering NBP RFI: Communications Requirements Reply Comments of Southern Company...

117

Utility Energy Services Contracting (UESC) Overview  

Broader source: Energy.gov (indexed) [DOE]

Contracting (UESC) Overview Michael Norton Huntsville Engineering and Support Center U.S. Army Corps of Engineers Federal Utility Partnership Working Group Spring 2012 Jekyll...

118

Overview of Fuels Technologies | Department of Energy  

Energy Savers [EERE]

Fuels Technologies Overview of Fuels Technologies 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation...

119

Technology Integration Overview | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting ti000smith2013o.pdf More Documents & Publications Technology Integration Overview Technology...

120

Overview of Aluminum | Department of Energy  

Energy Savers [EERE]

"Mega" Merit Review 2008 on February 25, 2008 in Bethesda, Maryland. merit08smith6.pdf More Documents & Publications Overview of LightweightingMaterials: Past, Present...

Note: This page contains sample records for the topic "intensities overview energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Technology Integration Overview | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting vtpn02tismith2012o.pdf More Documents & Publications Technology Integration Overview Technology...

122

Technology Integration Overview | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting ti000smith2012o.pdf More Documents & Publications Technology Integration Overview Technology...

123

Technology Integration Overview | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation ti000smith2011o.pdf More Documents & Publications Technology Integration Overview Technology...

124

An Energy Overview of the Kingdom of Thailand  

SciTech Connect (OSTI)

The DOE Office of Fossil Energy is maintaining a web site that is meant to provide useful business- and energy-related information about countries and regions of the world for exporters, project developers, and researchers. The site consists of more than 130 country pages (organized into seven different world regions), with each country page having its own set of links to information sources about that country. There are also more than 30 Country Energy Overviews at the web site -- each of these is a comprehensive review of a specific country's entire energy situation, including sections on Energy Policy, Oil, Natural Gas, Coal, Hydroelectric/Renewables, Nuclear Power, Energy Transmission Infrastructure, Electricity, Electric Industry Overview, Environmental Activities, Privatization, Trade, and Economic Situation. The specific country highlighted in this Country Energy Overview is Thailand. The site is designed to be dynamic. Updates to the overviews will be made as need and resource s permit.

anon.

2003-10-20T23:59:59.000Z

125

An Energy Overview of the Republic of Latvia  

SciTech Connect (OSTI)

The DOE Office of Fossil Energy is maintaining a web site that is meant to provide useful business- and energy-related information about countries and regions of the world for exporters, project developers, and researchers. The site consists of more than 130 country pages (organized into seven different world regions), with each country page having its own set of links to information sources about that country. There are also more than 30 Country Energy Overviews at the web site -- each of these is a comprehensive review of a specific country's entire energy situation, including sections on Energy Policy, Oil, Natural Gas, Coal, Hydroelectric/Renewables, Nuclear Power, Energy Transmission Infrastructure, Electricity, Electric Industry Overview, Environmental Activities, Privatization, Trade, and Economic Situation. The specific country highlighted in this Country Energy Overview is Latvia. The site is designed to be dynamic. Updates to the overviews will be made as need and resources permit.

anon.

2003-10-20T23:59:59.000Z

126

An Energy Overview of the Republic of Lithuania  

SciTech Connect (OSTI)

The DOE Office of Fossil Energy is maintaining a web site that is meant to provide useful business- and energy-related information about countries and regions of the world for exporters, project developers, and researchers. The site consists of more than 130 country pages (organized into seven different world regions), with each country page having its own set of links to information sources about that country. There are also more than 30 Country Energy Overviews at the web site -- each of these is a comprehensive review of a specific country's entire energy situation, including sections on Energy Policy, Oil, Natural Gas, Coal, Hydroelectric/Renewables, Nuclear Power, Energy Transmission Infrastructure, Electricity, Electric Industry Overview, Environmental Activities, Privatization, Trade, and Economic Situation. The specific country highlighted in this Country Energy Overview is Lithuania. The site is designed to be dynamic. Updates to the overviews will be made as need and resources permit.

anon.

2003-10-20T23:59:59.000Z

127

An Energy Overview of the Republic of Moldova  

SciTech Connect (OSTI)

The DOE Office of Fossil Energy is maintaining a web site that is meant to provide useful business- and energy-related information about countries and regions of the world for exporters, project developers, and researchers. The site consists of more than 130 country pages (organized into seven different world regions), with each country page having its own set of links to information sources about that country. There are also more than 30 Country Energy Overviews at the web site -- each of these is a comprehensive review of a specific country's entire energy situation, including sections on Energy Policy, Oil, Natural Gas, Coal, Hydroelectric/Renewables, Nuclear Power, Energy Transmission Infrastructure, Electricity, Electric Industry Overview, Environmental Activities, Privatization, Trade, and Economic Situation. The specific country highlighted in this Country Energy Overview is Moldova. The site is designed to be dynamic. Updates to the overviews will be made as need and resources permit.

anon.

2003-10-20T23:59:59.000Z

128

An Energy Overview of the Republic of Kazakhstan  

SciTech Connect (OSTI)

The DOE Office of Fossil Energy is maintaining a web site that is meant to provide useful business- and energy-related information about countries and regions of the world for exporters, project developers, and researchers. The site consists of more than 130 country pages (organized into seven different world regions), with each country page having its own set of links to information sources about that country. There are also more than 30 Country Energy Overviews at the web site -- each of these is a comprehensive review of a specific country's entire energy situation, including sections on Energy Policy, Oil, Natural Gas, Coal, Hydroelectric/Renewables, Nuclear Power, Energy Transmission Infrastructure, Electricity, Electric Industry Overview, Environmental Activities, Privatization, Trade, and Economic Situation. The specific country highlighted in this Country Energy Overview is Kazakhstan. The site is designed to be dynamic. Updates to the overviews will be made as need and resources permit.

anon.

2003-10-20T23:59:59.000Z

129

An Energy Overview of the Republic of Hungary  

SciTech Connect (OSTI)

The DOE Office of Fossil Energy is maintaining a web site that is meant to provide useful business- and energy-related information about countries and regions of the world for exporters, project developers, and researchers. The site consists of more than 130 country pages (organized into seven different world regions), with each country page having its own set of links to information sources about that country. There are also more than 30 Country Energy Overviews at the web site -- each of these is a comprehensive review of a specific country's entire energy situation, including sections on Energy Policy, Oil, Natural Gas, Coal, Hydroelectric/Renewables, Nuclear Power, Energy Transmission Infrastructure, Electricity, Electric Industry Overview, Environmental Activities, Privatization, Trade, and Economic Situation. The specific country highlighted in this Country Energy Overview is Hungary. The site is designed to be dynamic. Updates to the overviews will be made as need and resources permit.

anon.

2003-10-20T23:59:59.000Z

130

An Energy Overview of the Republic of Kyrgyzstan  

SciTech Connect (OSTI)

The DOE Office of Fossil Energy is maintaining a web site that is meant to provide useful business- and energy-related information about countries and regions of the world for exporters, project developers, and researchers. The site consists of more than 130 country pages (organized into seven different world regions), with each country page having its own set of links to information sources about that country. There are also more than 30 Country Energy Overviews at the web site -- each of these is a comprehensive review of a specific country's entire energy situation, including sections on Energy Policy, Oil, Natural Gas, Coal, Hydroelectric/Renewables, Nuclear Power, Energy Transmission Infrastructure, Electricity, Electric Industry Overview, Environmental Activities, Privatization, Trade, and Economic Situation. The specific country highlighted in this Country Energy Overview is Kyrgyzstan. The site is designed to be dynamic. Updates to the overviews will be made as need and resources permit.

anon.

2003-10-20T23:59:59.000Z

131

Overview  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Overview Overview Overview and Basic Description Jobs on Hopper execute on one or more "compute" nodes dedicated to that job. These nodes are distinct from the shared "login" nodes...

132

Energy use and energy intensity of the U.S. chemical industry  

E-Print Network [OSTI]

23 5.3 Energy Use and Energy Intensity of Chlorine44314 Energy Use and Energy Intensity of the U.S. ChemicalEnergy Use and Energy Intensity of the U.S. Chemical

Worrell, Ernst; Phylipsen, Dian; Einstein, Dan; Martin, Nathan

2000-01-01T23:59:59.000Z

133

Table 22. Energy Intensity, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Intensity, Projected vs. Actual" Energy Intensity, Projected vs. Actual" "Projected" " (quadrillion Btu / real GDP in billion 2005 chained dollars)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011 "AEO 1994",11.24893441,11.08565002,10.98332766,10.82852279,10.67400621,10.54170176,10.39583203,10.27184573,10.14478673,10.02575883,9.910410202,9.810812106,9.69894802,9.599821783,9.486985399,9.394733753,9.303329725,9.221322623 "AEO 1995",,10.86137373,10.75116461,10.60467959,10.42268977,10.28668187,10.14461664,10.01081222,9.883759026,9.759022105,9.627404949,9.513643295,9.400418762,9.311729546,9.226142899,9.147374752,9.071102491,8.99599906 "AEO 1996",,,10.71047701,10.59846153,10.43655044,10.27812088,10.12746866,9.9694713,9.824165152,9.714832565,9.621874334,9.532324916,9.428169355,9.32931308,9.232716414,9.170931044,9.086870061,9.019963901,8.945602337

134

Webinar for Tribes: Overview of U.S. Department of Energy Power...  

Broader source: Energy.gov (indexed) [DOE]

Webinar for Tribes: Overview of U.S. Department of Energy Power Marketing Administrations Webinar for Tribes: Overview of U.S. Department of Energy Power Marketing Administrations...

135

A Basic Overview of the Energy Employees Occupational Illness Compensation  

Broader source: Energy.gov (indexed) [DOE]

A Basic Overview of the Energy Employees Occupational Illness A Basic Overview of the Energy Employees Occupational Illness Compensation Program A Basic Overview of the Energy Employees Occupational Illness Compensation Program July 2009 A Basic Overview of the Energy Employees Occupational Illness Compensation Program This pamphlet is developed by the Department of Energy (DOE) as an outreach and awareness tool to assist former and current DOE Federal, contractor, and subcontractor employees to become familiar with and utilize the services and benefits authorized under the Energy Employees Occupational Illness Compensation Program Act (EEOIPCA). There are several Federal entities that support implementation of EEOICPA. Each of these entities serves a critical and unique role in this process. Briefly, the Department of Labor's (DOL) Office of Workers'

136

China's energy intensity and its determinants at the provincial level  

E-Print Network [OSTI]

Energy intensity is defined as the amount of energy consumed per dollar of GDP (Gross Domestic Product). The People's Republic of China's (China's) energy intensity has been declining significantly since the late 1970s. ...

Zhang, Xin, S.M. Massachusetts Institute of Technology

2009-01-01T23:59:59.000Z

137

GRR/Section 8 - Transmission Overview | Open Energy Information  

Open Energy Info (EERE)

GRR/Section 8 - Transmission Overview GRR/Section 8 - Transmission Overview < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 8 - Transmission Overview 08 - TransmissionOverview.pdf Click to View Fullscreen Contact Agencies Federal Energy Regulatory Commission Regulations & Policies FERC Order No. 2003 FERC Order No. 2006 Triggers None specified Click "Edit With Form" above to add content 08 - TransmissionOverview.pdf 08 - TransmissionOverview.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative The siting of an individual project can have a major impact on transmission and interconnection. 8.1 - Will the Power Plant Developer Negotiate an Interconnection

138

The National Energy Modeling System: An Overview 2003  

Gasoline and Diesel Fuel Update (EIA)

3) 3) The National Energy Modeling System: An Overview 2003 March 2003 Energy Information Administration Office of Integrated Analysis and Forecasting U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the U.S. Department of Energy. The information contained herein should be attributed to the Energy Information Administration and should not be construed as advocating or reflecting any policy position of the Department of Energy or any other organization. This publication is on the WEB at: www.eia.doe.gov/oiaf/aeo/overview/index.html The National Energy Modeling System: An Overview 2003 provides a summary description of the National En- ergy Modeling System (NEMS), which was used to generate the forecasts of energy production, demand, im- ports, and

139

Technology Integration Overview | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. ti000smith2010o.pdf More Documents & Publications Technology Integration Overview Technology...

140

Safety and Security Enforcement Process Overview | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Process Overview Process Overview Safety and Security Enforcement Process Overview August 1, 2012 This Enforcement Process Overview (EPO) sets forth the processes used by the U.S. Department of Energy (DOE) Office of Enforcement and Oversight (HS-40), within the Office of Health, Safety and Security (HSS), to implement DOE's regulatory obligations as authorized by the Atomic Energy Act. Over the years, the United States Congress has given the Secretary of Energy authority to promulgate rules to provide assurance that U.S. Department of Energy (DOE) contractors provide a workplace free from recognized hazards, that the operations of our nuclear facilities minimize potential danger to life and property, and that our classified matter is protected from disclosure in the interest of national

Note: This page contains sample records for the topic "intensities overview energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Overview of Light-Duty Vehicle Studies | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Studies Overview of Light-Duty Vehicle Studies Presented at the U.S. Department of Energy Light Duty Vehicle Workshop in Washington, D.C. on July 26, 2010. ldvpathways.pdf...

142

Overview  

Gasoline and Diesel Fuel Update (EIA)

8 8 First Quarter 2008 Key Findings Net Income $28.3 billion Revenues $343.4 billion Highlights Major energy companies reported an 18-percent increase in net income relative to first quarter of 2007 (42-percent increase relative to the first-quarter average for 2003- 2007). Return on sales (net income ÷ revenue) fell from 9.5 percent in the first quarter of 2007 to 8.2 percent in the first quarter of 2008 due to the 37 percent increase in revenue. The effects of higher oil and natural gas prices overwhelm lower worldwide oil production and U.S. refining margins. Overview Nineteen major energy companies [1] reported overall net income (excluding unusual items) of $28.3 billion on revenues of $343.4 billion during the first quarter of 2008 (Q108). The level of net income for Q108 was 18-

143

Overview  

Gasoline and Diesel Fuel Update (EIA)

8 8 Second Quarter 2008 Key Findings Net Income $30.4 billion Revenues $423.4 billion Highlights Major energy companies reported a 1-percent decline in net income relative to second quarter of 2007. However, this also represents a 31-percent increase relative to the second-quarter average for 2003-2007. Return on sales (net income ÷ revenue) fell from 10.5 percent in the second quarter of 2007 to 7.2 percent in the second quarter of 2008 due to the 44 percent increase in revenue. The effects of higher oil and natural gas prices overwhelm lower worldwide oil production and world-wide refining margins. Overview Nineteen major energy companies [1] reported overall net income (excluding unusual items) of $30.4 billion on revenues of $423.4 billion during the second quarter of 2008 (Q208). The level of net income for Q208 was 1-

144

An Energy Overview of the Republic of Azerbaijan  

SciTech Connect (OSTI)

The DOE Office of Fossil Energy had maintained a web site that was meant to provide useful business- and energy-related information about countries and regions of the world for exporters, project developers, and researchers. The site consisted of more than 130 country pages (organized into seven different world regions), with each country page having its own set of links to information sources about that country. There were also more than 30 Country Energy Overviews at the web site -- each of these was a comprehensive review of a specific country's entire energy situation, including sections on Energy Policy, Oil, Natural Gas, Coal, Hydroelectric/Renewables, Nuclear Power, Energy Transmission Infrastructure, Electricity, Electric Industry Overview, Environmental Activities, Privatization, Trade, and Economic Situation. The specific country highlighted in this Country Energy Overview is Azerbaijan.

anon.

2004-06-21T23:59:59.000Z

145

Allocating Allowances to Renewable Energy: Overview and Alternatives  

Wind Powering America (EERE)

Allocating Allowances to Renewable Allocating Allowances to Renewable Energy: Overview and Alternatives Joel Bluestein Energy and Environmental Analysis, Inc. January 12, 2006 Energy and Environmental Analysis, Inc. 2 Overview Structure and operation of emission trading programs Why allocate to renewables Allowance allocation options Energy and Environmental Analysis, Inc. 3 Command and Control Programs Specific emission limit set for each plant. - Emission rate or technology requirement Each plant must meet specific limit. Total emissions can increase as new plants are built. Implementation and enforcement can be complicated. Energy and Environmental Analysis, Inc. 4 Allowance Trading Programs Establish emissions tonnage cap for group of affected sources. Distribute emission allowances equal to

146

ANALYSIS ON THE MAJOR INFLUENCE FACTORS OF ENERGY INTENSITY CHANGING  

E-Print Network [OSTI]

Based on the energy intensity data of period 1990-2008, this paper uses impulse response function and variance decomposition model to empirical analysis the main influencing factors and effects of energy intensity,. The empirical results show that: the energy intensity of itself, and the proportion of secondary industry have a larger impact on energy intensity; the change of energy price and technological progress also play a certain impact on energy intensity; and the link with the internal relations and interaction mechanisms, which can play an active role in improving energy efficiency.

Xia Wang; Lu Tang

147

Intellectual Property Overview | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Intellectual Property Overview Intellectual Property Overview Intellectual Property Overview Copyrights A copyright is a federal right owned by every author to exclude others from reproducing, adapting, distributing, performing in public or displaying in public a work created by that author. However, works prepared by government employees as part of their official duties are not subject to copyright protection in the United States. See www.copyright.gov or www.cendi.gov for more information. For general guidance on the use of copyrighted materials by DOE employees please see our guidance on Use of Copyrighted Materials by Government Employees. The Office also reviews and prepares speaker release for DOE employees and counsel Departmental elements on non-disclosure agreements. For specific guidance, employees and program offices are

148

Risk Management Process Overview | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

» Risk Management Process Overview » Risk Management Process Overview Risk Management Process Overview figure depicting three tier risk management process The cybersecurity risk management process explained in the Electricity Sector Cybersecurity Risk Management Process (RMP) Guideline has two primary components: the risk management model and the the risk management cycle. The risk management model reflects the organization as a three-tiered structure and provides a comprehensive view for the electricity sector organization and how risk management activities are undertaken across the organization. This structure is simple enough that it can be applied to any electricity sector organization regardless of size or operations. The three tiers of the risk management model are: Tier 1: Organization

149

EIA - The National Energy Modeling System: An Overview 2003 - Preface  

Gasoline and Diesel Fuel Update (EIA)

Preface Preface The National Energy Modeling System: An Overview 2003 Preface The National Energy Modeling System: An Overview 2003 provides a summary description of the National Energy Modeling System (NEMS), which was used to generate the forecasts of energy production, demand, imports, and prices through the year 2025 for the Annual Energy Outlook 2003 (AEO2003), (DOE/EIA-0383(2003)), released in January 2003. AEO2003 presents national forecasts of energy markets for five primary cases—a reference case and four additional cases that assume higher and lower economic growth and higher and lower world oil prices than in the reference case. The Overview presents a brief description of the methodology and scope of each of the component modules of NEMS. The model documentation reports listed in the appendix of this document provide further details.

150

Overview of Solar Energy Research: 1990 to Present  

E-Print Network [OSTI]

ESL-TR-04/07-01 OVERVIEW OF SOLAR ENERGY RESEARCH: 1990 TO PRESENT Briefing Prepared for Dr. May Akrawi British Consulate Jeff S. Haberl, Ph.D., P.E., W. Dan Turner, Ph.D., P.E. Energy Systems Laboratory Texas A... Introduction: Energy Systems Laboratory ................................................................................................... 2 2 U.S.D.O.E. Thin Film Solar Test Bench (Riverside...

Haberl, J. S.; Turner, W. D.

2004-01-01T23:59:59.000Z

151

Costs of Generating Electrical Energy 1.0 Overview  

E-Print Network [OSTI]

period for coal, petroleum, and natural gas are by factors of 1.72, 7.27, and 1 "Conversion" here does1 Costs of Generating Electrical Energy 1.0 Overview The costs of electrical energy generation can of electric energy out of the power plant. 2.0 Fuels Fuel costs dominate the operating costs necessary

McCalley, James D.

152

Buildings and Energy in the 80's -- Overview  

U.S. Energy Information Administration (EIA) Indexed Site

's > Overview 's > Overview Overview Total Residential and Commercial Primary Consumption by Type of Building Total Residential and Commercial Primary Consumption by Type of Building Sources: Energy Information Administration, Office of Energy Markets and End Use, EIA-457 of the 1980 Residential Energy Consumption Survey and Form EIA-871 of the 1989 Commercial Buildings Energy Consumption Survey. divider line Introduction The Energy Information Administration (EIA) collects data on energy consumption, expenditures, and other energy-related topics in the major energy-consuming sectors of the U.S. economy. The residential and commercial sectors are two major sectors that many energy analysts like to consider together, as energy use is primarily related to the building shell and the stock of energy-consuming goods within the shell in these sectors. EIA conducts separate surveys for the two sectors, the Residential Energy Consumption Survey (RECS) and the Commercial Buildings Energy Consumption Survey (CBECS).1 Prior to the first CBECS, there was a very poor understanding of the complexities of energy use in commercial buildings, or the amount of energy consumed in the commercial sector. This report summarizes and synthesizes energy data that were collected by these two surveys during the 1980’s, when major changes in energy policy were implemented following the energy crisis decade of the 1970’s.

153

AN INTENSE LOW ENERGY MUON SOURCE FOR THE MUON COLLIDER  

E-Print Network [OSTI]

AN INTENSE LOW ENERGY MUON SOURCE FOR THE MUON COLLIDER D. Taqqu Paul Scherrer Institut, Villigen, CH Abstract A scheme for obtaining an intense source of low energy muons is described. It is based of the decay muons an intense intermediate energy muon beam is obtained. For the specific case of negative

McDonald, Kirk

154

Overview  

Gasoline and Diesel Fuel Update (EIA)

7 7 Third Quarter 2007 Key Findings Net Income $26.5 billion Revenues $301.8 billion Highlights 11-percent decrease in net income relative to third quarter of 2006 (25-percent increase relative to the third-quarter average for 2003-2006) effects of higher oil prices overwhelmed by lower worldwide oil production and U.S. refining margins Overview Twenty-two major energy companies 1 reported overall net income (excluding unusual items) of $26.5 billion on revenues of $301.8 billion during the third quarter of 2007 (Q307). The level of net income for Q307 was 11- percent lower than in the third quarter of 2006 (Q306) (Table 1), but was 25-percent higher than the third-quarter average for 2003-2006 after adjusting for price changes. Net income for Q307 decreased as the effects of lower

155

Overview  

Gasoline and Diesel Fuel Update (EIA)

Companies, First Quarter 2007 Companies, First Quarter 2007 Overview First Quarter 2007 Key Findings Net Income $23.9 billion Revenues $261.2 billion Trends Unchanged net income relative to first quarter of 2006 Lower oil and gas prices, higher oil and gas production Twenty major energy companies reported overall net income (excluding unusual items) of $23.9 billion on revenues of $261.2 billion during the first quarter of 2007 (Q107). The level of net income for Q107 was essentially unchanged relative to the first quarter of 2006 (Q106) (Table 1). Net income for Q107 was unchanged as the effects of lower prices were offset by the effects of higher worldwide production of crude oil and natural gas liquids, and increased domestic production of natural gas. Overall, the petroleum line of business (which includes both oil and natural gas production and

156

Overview  

Gasoline and Diesel Fuel Update (EIA)

2007 Overview Second Quarter 2007 Key Findings Net Income $30.7 billion Revenues $301.7 billion Trends 4-percent increase in net income relative to second quarter of 2006 Lower oil prices, and lower oil and gas production Twenty-two major energy companies a reported overall net income (excluding unusual items) of $30.7 billion on revenues of $301.7 billion during the second quarter of 2007 (Q207). The level of net income for Q207 was 4-percent higher than in the second quarter of 2006 (Q206) (Table 1). Net income for Q207 increased as the effects of higher natural gas prices and much higher refining margins offset the effects of lower oil prices, lower worldwide production of oil and natural gas, and lower refinery throughput. Overall, the petroleum line of business (which includes both oil and natural gas production and

157

Overview  

Gasoline and Diesel Fuel Update (EIA)

7 7 Fourth Quarter 2007 Key Findings Net Income $28.3 billion Revenues $329.6 billion Highlights 24-percent increase in net income relative to fourth quarter of 2006 (31-percent increase relative to the fourth-quarter average for 2003-2006) effects of higher oil and natural gas prices overwhelm lower worldwide oil production and U.S. refining margins Overview Sixteen major energy companies [1] reported overall net income (excluding unusual items) of $28.3 billion on revenues of $329.6 billion during the fourth quarter of 2007 (Q407). The level of net income for Q407 was 24- percent higher than in the fourth quarter of 2006 (Q406) (Table 1), and was 31-percent higher than the fourth- quarter average for 2003-2006 after adjusting for inflation. Net income for Q407 increased as the effects of lower

158

EIA - Annual Energy Outlook 2007 with Projections to 2030 - Overview  

Gasoline and Diesel Fuel Update (EIA)

Overview Overview Annual Energy Outlook 2007 with Projections to 2030 Energy Trends to 2030 EIA, in preparing projections for the AEO2007, evalu-ated a wide range of trends and issues that could have major implications for U.S. energy markets between today and 2030. This overview focuses on one case, the reference case, which is presented and compared with the AEO2006 reference case (see Table 1). Readers are encouraged to review the full range of alternative cases included in other sections of AEO2007. As in previous editions of the Annual Energy Outlook (AEO), the reference case assumes that current policies affecting the energy sector remain unchanged throughout the projection period. Some possible policy changes-notably, the adoption of policies to limit or reduce greenhouse gas emissions-could change the reference case projections significantly.

159

EIA - The National Energy Modeling System: An Overview 2003  

Gasoline and Diesel Fuel Update (EIA)

The National Energy Modeling System: An Overview 2003 This report provides a summary description of the NEMS which was used to generate the projections of energy production, demand, imports, and prices through the year 2025 for the Annual Energy Outlook 2003. Preface Introduction Overview of NEMS Carbon Dioxide and Methane Emissions Macroeconomic Activity Module International Energy Module Residential Demand Module Commercial Demand Module Industrial Demand Module Transportation Demand Module Electricity Market Module Renewable Fuels Module Oil and Gas Supply Module Natural Gas Transmission and Distribution Module Petroleum Market Module Coal Market Module Bibliography Download the Report NEMS: An Overview 2003 Cover. Need help, contact the National Energy Information Center at 202-586-8800.

160

Commercial Building Energy Asset Score: 2013 Pilot Overview  

Broader source: Energy.gov (indexed) [DOE]

Commercial Building Energy Asset Score: Commercial Building Energy Asset Score: 2013 Pilot Overview June 17, 2013 Joan Glickman, DOE Patty Kappaz, SRA 1 eere.energy.gov Agenda � Team Introduction � Commercial Building Energy Asset Score Update * Program overview * Progress to date * Objectives of the 2013 Pilot * Future plans � Process for Pilot Participation 2 I Energy Asset Score eere.energy.gov � � � � � � � Meet the Team U.S. Department of Energy (DOE) Project oversight Strategic direction Policy perspective Pacific Northwest National Laboratory (PNNL) Technical lead Scoring Tool development and maintenance SRA International (SRA) Pilot management Outreach and communications 3 I Energy Asset Score eere.energy.gov Program Goals * Develop a national energy asset rating to --

Note: This page contains sample records for the topic "intensities overview energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Energy End-Use Intensities in Commercial Buildings 1995 - Index...  

U.S. Energy Information Administration (EIA) Indexed Site

1995 End-Use Data 1995 End-Use Data Overview Tables National estimates of energy consumption by fuel (electricity and natural gas) and end use (heating, cooling, lighting, etc.)...

162

Fluidized Bed Technology - Overview | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Science & Innovation » Clean Coal » Advanced Combustion Science & Innovation » Clean Coal » Advanced Combustion Technologies » Fluidized Bed Technology - Overview Fluidized Bed Technology - Overview Fluidized beds suspend solid fuels on upward-blowing jets of air during the combustion process. The result is a turbulent mixing of gas and solids. The tumbling action, much like a bubbling fluid, provides more effective chemical reactions and heat transfer. Fluidized-bed combustion evolved from efforts to find a combustion process able to control pollutant emissions without external emission controls (such as scrubbers). The technology burns fuel at temperatures of 1,400 to 1,700 degrees F, well below the threshold where nitrogen oxides form (at approximately 2,500 degrees F, the nitrogen and oxygen atoms in the

163

Energy API and dataset overview | OpenEI Community  

Open Energy Info (EERE)

Energy API and dataset overview Energy API and dataset overview Home > Groups > Developer Rmckeel's picture Submitted by Rmckeel(297) Contributor 26 September, 2012 - 14:36 cleanweb hackathon resource webinar Today, Ian Kalin, a presidential innovation fellow, and the OpenEI team recorded an "energy resource" overview for developers of upcoming hackathon events at SXSW Eco and in New York City. You can find this recorded webinar with recent developer resources (APIs, datasets, content) at the links below. Streaming webinar link: https://mmancusa.webex.com/mmancusa/ldr.php?AT=pb&SP=MC&rID=48240102&rKey=40d5d5d42cbfd4e4 Download webinar link: https://mmancusa.webex.com/mmancusa/lsr.php?AT=dw&SP=MC&rID=48240102&rKey=2b23a089b99927fc Time: 13 minutes If you are an application developer in the energy space, or know one,

164

The National Energy Modeling System: An Overview 1998 - Overview of NEMS  

Gasoline and Diesel Fuel Update (EIA)

OVERVIEW OF NEMS OVERVIEW OF NEMS blueball.gif (205 bytes) Major Assumptions blueball.gif (205 bytes) NEMS Modular Structure blueball.gif (205 bytes) Integrating Module NEMS represents domestic energy markets by explicitly representing the economic decisionmaking involved in the production, conversion, and consumption of energy products. For example, the penetration of a new or advanced technology for electricity generation is projected only if the technology is deemed to be economic when considering the cost-minimizing mix of fuels over the life of the equipment. Since energy costs and availability and energy- consuming characteristics can vary widely across regions, considerable regional detail is included. Other details of production and consumption categories are represented to

165

Building Energy Codes Implementation Overview- 2014 BTO Peer Review  

Broader source: Energy.gov [DOE]

Presenter: Jeremiah Williams, U.S. Department of Energy This presentation at the 2014 Peer Review provided an overview of the Building Technologies Office's Building Energy Codes Implementation activities. Through robust feedback, the BTO Program Peer Review enhances existing efforts and improves future designs.

166

Building Energy Codes Program Overview- 2014 BTO Peer Review  

Broader source: Energy.gov [DOE]

Presenter: Jeremiah Williams, U.S. Department of Energy This presentation at the 2014 Peer Review provided an overview of the Building Technologies Office's Building Building Energy Codes Program activities. Through robust feedback, the BTO Program Peer Review enhances existing efforts and improves future designs.

167

Building Energy Codes Program Overview- 2014 BTO Peer Review  

Broader source: Energy.gov [DOE]

Presenter: David Cohan, U.S. Department of Energy This presentation at the 2014 Peer Review provided an overview of the Building Technologies Office's Building Energy Codes Program. Through robust feedback, the BTO Program Peer Review enhances existing efforts and improves future designs.

168

Overview of village scale, renewable energy powered desalination  

SciTech Connect (OSTI)

An overview of desalination technologies is presented, focusing on those technologies appropriate for use in remote villages, and how they can be powered using renewable energy. Technologies are compared on the basis of capital cost, lifecycle cost, operations and maintenance complexity, and energy requirements. Conclusions on the appropriateness of different technologies are drawn, and recommendations for future research are given.

Thomas, K.E.

1997-04-01T23:59:59.000Z

169

Renewable Energy Program Overview (Fact Sheet)  

SciTech Connect (OSTI)

Fact sheet describing how the U.S. Department of Energy's (DOE) Federal Energy Management Program (FEMP) providesFederal agencies with information, guidance, and assistance in using renewable energy.

Not Available

2009-07-01T23:59:59.000Z

170

EIA - The National Energy Modeling System: An Overview 2003-Introduction  

Gasoline and Diesel Fuel Update (EIA)

Introduction Introduction The National Energy Modeling System: An Overview 2003 Introduction The National Energy Modeling System (NEMS) is a computer-based, energy-economy modeling system of U.S. energy markets for the midterm period through 2025. NEMS projects the production, imports, conversion, consumption, and prices of energy, subject to assumptions on macroeconomic and financial factors, world energy markets, resource availability and costs, behavioral and technological choice criteria, cost and performance characteristics of energy technologies, and demographics. NEMS was designed and implemented by the Energy Information Administration (EIA) of the U.S. Department of Energy (DOE). The National Energy Modeling System: An Overview 2003 presents an overview of the structure and methodology of NEMS and each of its components. This chapter provides a description of the design and objectives of the system, followed by a chapter on the overall modeling structure and solution algorithm. The remainder of the report summarizes the methodology and scope of the component modules of NEMS. The model descriptions are intended for readers familiar with terminology from economics, operations research, and energy modeling. More detailed model documentation reports for all the NEMS modules are also available from EIA (Appendix, “Bibliography”).

171

Energy resource management for energy-intensive manufacturing industries  

SciTech Connect (OSTI)

A program to introduce energy resource management into an energy-intensive manufacturing industry is presented. The food industry (SIC No. 20) was chosen and 20 companies were selected for interviews, but thirteen were actually visited. The methodology for this program is detailed. Reasons for choosing the food industry are described. The substance of the information gained and the principal conclusions drawn from the interviews are given. Results of the model Energy Resource Management Plan applied to three companies are compiled at length. Strategies for dissemination of the information gained are described. (MCW)

Brenner, C.W.; Levangie, J.

1981-10-01T23:59:59.000Z

172

Table 23. Energy Intensity, Projected vs. Actual  

Gasoline and Diesel Fuel Update (EIA)

Energy Intensity, Projected vs. Actual Energy Intensity, Projected vs. Actual (quadrillion Btu / $Billion Nominal GDP) 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 AEO 1982 20.1 18.5 16.9 15.5 14.4 13.2 AEO 1983 19.9 18.7 17.4 16.2 15.1 14.0 9.5 AEO 1984 20.1 19.0 17.7 16.5 15.5 14.5 10.2 AEO 1985 20.0 19.1 18.0 16.9 15.9 14.7 13.7 12.7 11.8 11.0 10.3 AEO 1986 18.3 17.8 16.8 16.1 15.2 14.3 13.4 12.6 11.7 10.9 10.2 9.5 8.9 8.3 7.8 AEO 1987 17.6 17.0 16.3 15.4 14.5 13.7 12.9 12.1 11.4 8.2 AEO 1989* 16.9 16.2 15.2 14.2 13.3 12.5 11.7 10.9 10.2 9.6 9.0 8.5 8.0 AEO 1990 16.1 15.4 11.7 8.6 6.4 AEO 1991 15.5 14.9 14.2 13.6 13.0 12.5 11.9 11.3 10.8 10.3 9.7 9.2 8.7 8.3 7.9 7.4 7.0 6.7 6.3 6.0 AEO 1992 15.0 14.5 13.9 13.3 12.7 12.1 11.6 11.0 10.5 10.0 9.5 9.0 8.6 8.1 7.7 7.3 6.9 6.6 6.2 AEO 1993 14.7 13.9 13.4 12.8 12.3 11.8 11.2 10.7 10.2 9.6 9.2 8.7 8.3 7.8 7.4 7.1 6.7 6.4

173

Analysis and Decomposition of the Energy Intensity of Industries in California  

E-Print Network [OSTI]

World Best Practice Energy Intensity Values for Selectedworld-best-practice-energy-intensity-values- selected-2005. Changes in energy intensities of Thai industry between

Can, Stephane de la Rue de

2014-01-01T23:59:59.000Z

174

AEDG Recommendations - Lighting Overview | Building Energy Codes Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Lighting Overview Lighting Overview This course provides an overview of the lighting recommendations provided in the ASHRAE Advanced Energy Design Guides (30% Series). Estimated Length: 56 minutes Presenters: Michael Lane, Lighting Design Lab Original Webcast Date: Thursday, July 31, 2008 - 13:00 CEUs Offered: 1.0 AIA/CES LU (HSW); .10 CEUs towards ICC renewal certification. Course Type: Video Downloads: Presentation Slides Video Watch on YouTube Visit the BECP Online Training Center for instructions on how to obtain a certificate of completion. Building Type: Commercial Focus: Adoption Compliance Code Version: ASHRAE Standard 90.1-2004 Target Audience: Advocate Policy Maker State Official Contacts Web Site Policies U.S. Department of Energy USA.gov Last Updated: Wednesday, July 18, 2012 - 16:08

175

Linac Coherent Light Source Overview | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Linac Coherent Light Source Overview Linac Coherent Light Source Overview Linac Coherent Light Source Overview Addthis Description Take an animated tour of the Linac Coherent Light Source (LCLS). Follow the laser pulse from the injector gun all the way through to the Far Experimental Hall. Duration 5:50 Topic Physics Credit Energy Department Video MR. : The SLAC National Accelerator Laboratory is located in the heart of California's beautiful San Francisco Bay Area. Operated by Stanford University for the U.S. Department of Energy, SLAC has been home to the world's longest particle accelerator for nearly 50 years. In 2009 SLAC ushered in a new era in its long history of physics research with a new kind of laser called the Linac Coherent Light Source, or LCLS. The LCLS is the first laser in the world to produce hard X-rays, which can

176

Energy and Financial Markets Overview: Crude Oil Price Formation  

Gasoline and Diesel Fuel Update (EIA)

Richard Newell, Administrator Richard Newell, Administrator May 5, 2011 Energy and Financial Markets Overview: Crude Oil Price Formation EIA's Energy and Financial Markets Initiative 2 Richard Newell, May 5, 2011 * Collection of critical energy information to improve market transparency - improved petroleum storage capacity data - other improvements to data quality and coverage * Analysis of energy and financial market dynamics to improve understanding of what drives energy prices - internal analysis and sponsorship of external research * Outreach with other Federal agencies, experts, and the public - expert workshops - public sessions at EIA's energy conferences - solicitation of public comment on EIA's data collections

177

Automated Checkpointing for Enabling Intensive Applications on Energy Harvesting Devices  

E-Print Network [OSTI]

Automated Checkpointing for Enabling Intensive Applications on Energy Harvesting Devices Azalia intensive computation on ultra-low power devices with discontinuous energy-harvesting supplies. We devise on a battery-less RF energy-harvester platform. Extensive experiments targeting applications in medical implant

178

Overview of Existing Home Energy Labels  

Broader source: Energy.gov [DOE]

This analysis looks at home energy labeling programs around the world and highlights similarities and differences of various approaches.

179

Dark Energy Data Management System : Overview and  

E-Print Network [OSTI]

, Astronomy Computational Astrostatistics Workshop #12;2 Dark Energy Survey DES is 50002 degree grizY Imaging survey of Southern hemisphere to map out dark energy equation of state. CTIO Blanco 4m telescope. Replace-Starrs) Acknowledgements : Joe Mohr (LMU/UIUC), Bob Armstrong (UIUC), Emmanuel Bertin (IAP) Dark Energy Survey

180

BEAM INTENSITY AND ENERGY CONTROL FOR THE SPIRAL2 FACILITY  

E-Print Network [OSTI]

BEAM INTENSITY AND ENERGY CONTROL FOR THE SPIRAL2 FACILITY C. Jamet, T. Andre, B. Ducoudret, C to control both beam intensity and energy by non-interceptive methods at the linac exit. The beam current will range in intensity from a few 10 A to 1mA for ions, up to 5 mA for deuterons, and in energy from 0.75 up

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "intensities overview energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

ACE Learning Series - Overview | Building Energy Codes Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Overview Overview Buildings account for almost 40% of the energy used in the United States and, as a direct result of that use, our environment and economy are impacted. Building energy codes and standards provide an effective response. The Building Energy Codes Program designed the Adoption, Compliance, and Enforcement (ACE) Learning Series for those in the building industry having the greatest potential to influence the adoption of and compliance with building energy codes and standards. Each toolkit in the ACE Learning Series delivers essential information to enable designers, specifiers, builders, building owners, policy makers, code officials, and others involved in building design and construction to understand the important role building energy codes play in helping us all address our

182

Reducing Industrial Energy Intensity in the Southeast Project...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Authority and its project partners will establish the Southeastern Center for Industrial Energy Intensity Reduction (the Center) to inform industrial facilities about the U.S....

183

Comparison of International Energy Intensities across the G7...  

U.S. Energy Information Administration (EIA) Indexed Site

Comparison of International Energy Intensities across the G7 and other parts of Europe, including Ukraine Elizabeth Sendich November 2014 Independent Statistics & Analysis...

184

Overview of 2006 Department of Energy Strategic Plan | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Overview of 2006 Department of Energy Strategic Plan Overview of 2006 Department of Energy Strategic Plan Overview of 2006 Department of Energy Strategic Plan The Department of Energy (DOE) has a rich and diverse history with its lineage tracing back to the Manhattan Project and the race to develop an atomic bomb during World War II. Following that war, Congress created the Atomic Energy Commission (1946) to take control over the scientific and industrial complex supporting the Manhattan Project and to maintain civilian government control over atomic research and development. Overview of 2006 Department of Energy Strategic Plan More Documents & Publications U.S Department of Energy Strategic Plan The History of Nuclear Energy 2006 Department of Energy Strategic Plan - Scientific Discovery and Innovation

185

Waste-to-Energy and Fuel Cell Technologies Overview  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Waste-to-Energy and Fuel Cell Waste-to-Energy and Fuel Cell T h l i O i Innovation for Our Energy Future Technologies Overview Presented to: DOD-DOE Waste-to- Energy Workshop Energy Workshop Dr. Robert J. Remick J 13 2011 January 13, 2011 Capital Hilton Hotel Washington, DC NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Global Approach for Using Biogas Innovation for Our Energy Future Anaerobic Digestion of Organic Wastes is a Good Source of Methane. Organic waste + methanogenic bacteria → methane (CH 4 ) Issues: High levels of contamination Time varying output of gas quantity and quality Innovation for Our Energy Future Photo courtesy of Dos Rios Water Recycling Center, San Antonio, TX

186

Energy End-Use Intensities in Commercial Buildings 1989 -- Executive  

U.S. Energy Information Administration (EIA) Indexed Site

9 Energy End-Use Intensities > Executive Summary 9 Energy End-Use Intensities > Executive Summary Executive Summary Energy End Uses Ranked by Energy Consumption, 1989 Energy End Uses Ranked by Energy Consumption, 1989 Source: Energy Information Administration, Office of Energy Markets and End Use, Forms EIA-871A through F of the 1989 Commercial Buildings Energy Consumption Survey. divider line The demand for energy in U.S. stores, offices, schools, hospitals, and other commercial buildings has been increasing. This report examines energy intensities in commercial buildings for nine end uses: space heating, cooling, ventilation, lighting, water heating, cooking, refrigeration, office equipment, and "other." The objective of this analysis was to increase understanding of how energy is used in commercial buildings and to identify targets for greater energy efficiency which could moderate future growth in demand.

187

Hydrogen for Energy Storage Analysis Overview (Presentation)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

competing technologies for utility- scale energy storage systems. Explore the cost and GHG emissions impacts of interaction of hydrogen storage and variable renewable resources...

188

Department of Energy Office of Science Transportation Overview  

Broader source: Energy.gov (indexed) [DOE]

Department of Energy (DOE) Department of Energy (DOE) Office of Science (SC) Transportation Overview Jon W. Neuhoff, Director N B i k L b t New Brunswick Laboratory 1 DOE National Transportation Stakeholders Forum May 26, 2010 About the Office of Science The Office of Science (SC) with a budget of approximately $5 Billion...  Single largest supporter of basic research in the physical sciences in the U.S. (> 40% of the total funding) ( g)  Principal Federal funding agency for the Nation's research programs in high energy physics, nuclear physics, and fusion energy sciences  Manages fundamental research programs in basic energy sciences, biological and environmental sciences, and computational science

189

Transportation Energy Futures: Project Overview and Findings (Presentation)  

SciTech Connect (OSTI)

The U.S. Department of Energy-sponsored Transportation Energy Futures (TEF) project examines how combining multiple strategies could reduce both GHG emissions and petroleum use by 80%. The project's primary objective was to help inform domestic decisions about transportation energy strategies, priorities, and investments, with an emphasis on previously underexplored opportunities related to energy efficiency and renewable energy in light-duty vehicles, non-light-duty vehicles, fuels, and transportation demand. This PowerPoint provides an overview of the project and its findings.

Not Available

2013-03-01T23:59:59.000Z

190

BPA Energy Efficiency Emerging Technologies Program Overview  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

O N N E V I L L E P O W E R A D M I N I S T R A T I O N Emerging Technologies for Energy Efficiency Sponsored by its Technology Innovation initiative, BPA's Energy Efficiency...

191

The Modern History of Energy Conservation: An Overview for Information Professionals  

E-Print Network [OSTI]

The Modern History Of Energy Conservation: An Overview forCONSERVATION? THE EARLY HISTORY OF ENERGY CONSERVATION THErelated terms. THE EARLY HISTORY OF ENERGY CONSERVATION The

Wulfinghoff, Donald R.

2000-01-01T23:59:59.000Z

192

My Experience in the Energy Area: An Overview  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

My Experience in the Energy Area: An Overview My Experience in the Energy Area: An Overview Speaker(s): Debyani Ghosh Date: November 18, 2013 - 12:00pm - 1:00pm Location: 90-4133 Seminar Host/Point of Contact: Girish Ghatikar In this seminar, Dr. Ghosh will present her experience working on diverse projects in the energy field, over the course of her career. Dr. Ghosh will describe her role in leading and managing a number of Demand Response studies for prominent national and international clients, including regulatory agencies, utilities, system operators, government departments, and energy agencies. These cover market assessment and benchmarking analysis, estimating savings potential from DR programs, outlining DR program designs, assessing cost-effectiveness of DR options, conducting levelized cost analysis, and providing policy recommendations. In addition,

193

EPAct 2005 Metering Guidance Overview | Department of Energy  

Energy Savers [EERE]

EPAct 2005 Metering Guidance Overview EPAct 2005 Metering Guidance Overview Presentation covers an overview of the EPAct 2005 Metering Guidance and is given at the FUPWG 2006...

194

Residential Retrofit Design Guide Overview | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Residential Retrofit Design Guide Overview Residential Retrofit Design Guide Overview Residential Retrofit Design Guide Overview Webinar. Res Retro Design Guide Webinar 5-3-11...

195

Gamma Industry Processing Alliance Overview | Department of Energy  

Office of Environmental Management (EM)

Gamma Industry Processing Alliance Overview Gamma Industry Processing Alliance Overview Gamma Industry Processing Alliance Overview More Documents & Publications 2011 NTSF Meeting...

196

DOE Hydrogen and Fuel Cell Overview: 2011 Waste-to-Energy Using...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

DOE Hydrogen and Fuel Cell Overview: 2011 Waste-to-Energy Using Fuel Cells Workshop DOE Hydrogen and Fuel Cell Overview: 2011 Waste-to-Energy Using Fuel Cells Workshop Presentation...

197

Energy Efficiency Funds and Demand Response Programs - National Overview  

Broader source: Energy.gov (indexed) [DOE]

Funds and Demand Funds and Demand Response Programs - National Overview Charles Goldman Lawrence Berkeley National Laboratory November 2, 2006 Federal Utility Partnership Working Group San Francisco CA Overview of Talk * National Overview * Energy Efficiency Programs and Funds * Demand Response Programs and Funds * FEMP Resources on Public Benefit Funds *Suggestions for Federal Customers DSM Spending is increasing! * 2006 Utility DSM and Public Benefit spending is ~$2.5B$ - $1B for C&I EE programs * CA utilities account for 35% of total spending 0.0 0.5 1.0 1.5 2.0 2.5 3.0 1994 2000 2005 2006 Costs (in billion $) DSM Costs Load Management Gas EE Other States Electric EE California Electric EE EE Spending in 2006 (by State) $ Million < 1 (23) 1 - 10 (2) 11 - 50 (13) 51 - 100 (7) > 100 (5) 790 101 257

198

Overview of ARPA-E Energy Storage R&D | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

ARPA-E Energy Storage R&D Overview of ARPA-E Energy Storage R&D 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation...

199

U.S. Department of Energy Biomass Program: Overview of U.S. Energy...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

QuickTime(tm) and a Photo - JPEG decompressor are needed to see this picture. U.S. Department of Energy Biomass Program Overview of U.S. Energy Policies James Spaeth U.S....

200

Overview of Energy Development Opportunities for Wyoming  

SciTech Connect (OSTI)

An important opportunity exists for the energy future of Wyoming that will Maintain its coal industry Add substantive value to its indigenous coal and natural gas resources Improve dramatically the environmental impact of its energy production capability Increase its Gross Domestic Product These can be achieved through development of a carbon conversion industry that transforms coal and natural gas to synthetic transportation fuels, chemical feedstocks, and chemicals that are the building blocks for the chemical industry. Over the longer term, environmentally clean nuclear energy can provide the substantial energy needs of a carbon conversion industry and be part of the mix of replacement technologies for the current fleet of aging coal-fired electric power generating stations.

Larry Demick

2012-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "intensities overview energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Overview of energy-conservation research opportunities  

SciTech Connect (OSTI)

This document is a study of research opportunities that are important to developing advanced technologies for efficient energy use. The study's purpose is to describe a wide array of attractive technical areas from which specific research and development programs could be implemented. Research areas are presented for potential application in each of the major end-use sectors. The study develops and applies a systematic approach to identifying and screening applied energy conservation research opportunities. To broadly cover the energy end-use sectors, this study develops useful information relating to the areas where federally-funded applied research will most likely play an important role in promoting energy conservation. This study is not designed to produce a detailed agenda of specific recommended research activities. The general information presented allows uniform comparisons of disparate research areas and as such provides the basis for formulating a cost-effective, comprehensive federal-applied energy conservation research strategy. Chapter 2 discusses the various methodologies that have been used in the past to identify research opportunities and details the approach used here. In Chapters 3, 4, and 5 the methodology is applied to the buildings, transportation, and industrial end-use sectors and the opportunities for applied research in these sectors are discussed.Chapter 6 synthesizes the results of the previous three chapters to give a comprehensive picture of applied energy conservation research opportunities across all end-use sectors and presents the conclusions to the report.

Hopp, W.J.; Hauser, S.G.; Hane, G.J.; Gurwell, W.E.; Bird, S.P.; Cliff, W.C.; Williford, R.E.; Williams, T.A.; Ashton, W.B.

1981-12-01T23:59:59.000Z

202

Overview of the U.S. Department of Energy Formerly Utilized Sites Remedial Action Program  

Broader source: Energy.gov [DOE]

Overview of the U.S. Department of Energy Formerly Utilized Sites Remedial Action Program (March 2012)

203

China targets 20% reduction in energy intensity by 2010  

Science Journals Connector (OSTI)

Though China has made great achievement in energy conservation in the last two decades, its energy consumption is increasing rapidly. In March 2006, China's government set a target for reducing its energy intensity by 20% by 2010 compared to the 2005 value. In this paper, we analyse China's current energy efficiency situations, and put forward some policy implications on energy saving.

Hua Liao; Ying Fan; Yi-Ming Wei

2009-01-01T23:59:59.000Z

204

Overview of nuclear energy: Present and projected use  

SciTech Connect (OSTI)

Several factors will influence the contribution of nuclear energy to the future energy mix. Among them, the most important are the degree of global commitment to greenhouse gas reduction, continued vigilance in safety and safeguards, technological advances, economic competitiveness and innovative financing arrangements for new nuclear power plant constructions, the implementation of nuclear waste disposal, and, last but not least, public perception, information and education. The paper presents an overview of the current nuclear energy situation, possible development scenarios, of reactor technology, and of non-electric applications of nuclear energy.

Stanculescu, Alexander [Idaho National Laboratory 2525 North Fremont Avenue, Idaho Falls, Idaho 83415 (United States)

2012-06-19T23:59:59.000Z

205

Overview of Nuclear Energy: Present and Projected Use  

SciTech Connect (OSTI)

Several factors will influence the contribution of nuclear energy to the future energy mix. Among them, the most important are the degree of global commitment to greenhouse gas reduction, continued vigilance in safety and safeguards, technological advances, economic competitiveness and innovative financing arrangements for new nuclear power plant constructions, the implementation of nuclear waste disposal, and, last but not least, public perception, information and education. The paper presents an overview of the current nuclear energy situation, possible development scenarios, of reactor technology, and of non-electric applications of nuclear energy.

Alexander Stanculescu

2011-09-01T23:59:59.000Z

206

Overview of 2006 Department of Energy Strategic Plan | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Overview of 2006 Department of Energy Strategic Plan Overview of 2006 Department of Energy Strategic Plan Overview of 2006 Department of Energy Strategic Plan The Department of Energy (DOE) has a rich and diverse history with its lineage tracing back to the Manhattan Project and the race to develop an atomic bomb during World War II. Following that war, Congress created the Atomic Energy Commission (1946) to take control over the scientific and industrial complex supporting the Manhattan Project and to maintain civilian government control over atomic research and development. Overview of 2006 Department of Energy Strategic Plan More Documents & Publications U.S Department of Energy Strategic Plan Booklet, DOE Subject Area Indicators and Key Word List for RD and FRD - October 2005 FY 2008 Budget Justification

207

Analysis and Decomposition of the Energy Intensity of Industries in  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Decomposition of the Energy Intensity of Industries in and Decomposition of the Energy Intensity of Industries in California Title Analysis and Decomposition of the Energy Intensity of Industries in California Publication Type Journal Article Year of Publication 2012 Authors de la du Can, Stephane Rue, Ali Hasanbeigi, and Jayant A. Sathaye Journal Energy Policy Volume 46 Pagination 234-245 Keywords california, co2 emissions, energy intensity, energy use Abstract In 2008, the gross domestic product (GDP) of California industry was larger than GDP of industry in any other U.S. states. This study analyses the energy use of and output from seventeen industry subsectors in California and performs decomposition analysis to assess the influence of different factors on California industry energy use. The logarithmic mean Divisia index method is used for the decomposition analysis. The decomposition analysis results show that the observed reduction of energy use in California industry since 2000 is the result of two main factors: the intensity effect and the structural effect. The intensity effect has started pushing final energy use downward in 2000 and has since amplified. The second large effect is the structural effect. The significant decrease of the energy-intensive "Oil and Gas Extraction" subsector's share of total industry value added, from 15% in 1997 to 5% in 2008, and the increase of the non-energy intensive "Electric and electronic equipment manufacturing" sector's share of value added, from 7% in 1997 to 30% in 2008, both contributed to a decrease in the energy intensity in the industry sector

208

The National Energy Modeling System: An Overview 2000 - Introduction  

Gasoline and Diesel Fuel Update (EIA)

National Energy Modeling System (NEMS) is a computer-based, energy-economy modeling system of U.S. energy markets for the midterm period through 2020. NEMS projects the production, imports, conversion, consumption, and prices of energy, subject to assumptions on macroeconomic and financial factors, world energy markets, resource availability and costs, behavioral and technological choice criteria, cost and performance characteristics of energy technologies, and demographics. NEMS was designed and implemented by the Energy Information Administration (EIA) of the U.S. Department of Energy (DOE). National Energy Modeling System (NEMS) is a computer-based, energy-economy modeling system of U.S. energy markets for the midterm period through 2020. NEMS projects the production, imports, conversion, consumption, and prices of energy, subject to assumptions on macroeconomic and financial factors, world energy markets, resource availability and costs, behavioral and technological choice criteria, cost and performance characteristics of energy technologies, and demographics. NEMS was designed and implemented by the Energy Information Administration (EIA) of the U.S. Department of Energy (DOE). The National Energy Modeling System: An Overview presents an overview of the structure and methodology of NEMS and each of its components. This chapter provides a description of the design and objectives of the system, followed by a chapter on the overall modeling structure and solution algorithm. The remainder of the report summarizes the methodology and scope of the component modules of NEMS. The model descriptions are intended for readers familiar with terminology from economics, operations research, and energy modeling. More detailed model documentation reports for all the NEMS modules are also available from EIA (Appendix, “Bibliography”).

209

An Overview of the Commercial Buildings Energy Consumption Survey...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

1 2 3 4 5 6 7 U.S. OECD Europe Japan South Korea China India Brazil Middle East Africa Russia Energy Intensity GDP per capita Population Howard Gruenspecht, The Central Role of...

210

EIA - AEO2010 - Energy intensity trends in AEO2010  

Gasoline and Diesel Fuel Update (EIA)

intensity trends in AEO2010 intensity trends in AEO2010 Annual Energy Outlook 2010 with Projections to 2035 Figure 17. Trends in U.S. oil prices, energy consumption, and economic output, 1950-2035 Click to enlarge » Figure source and data excel logo Energy intensity trends in AEO2010 Energy intensity—energy consumption per dollar of real GDP—indicates how much energy a country uses to produce its goods and services. From the early 1950s to the early 1970s, U.S. total primary energy consumption and real GDP increased at nearly the same annual rate (Figure 17). During that period, real oil prices remained virtually flat. In contrast, from the mid-1970s to 2008, the relationship between energy consumption and real GDP growth changed, with primary energy consumption growing at less than one-third the previous average rate and real GDP growth continuing to grow at its historical rate. The decoupling of real GDP growth from energy consumption growth led to a decline in energy intensity that averaged 2.8 percent per year from 1973 to 2008. In the AEO2010 Reference case, energy intensity continues to decline, at an average annual rate of 1.9 percent from 2008 to 2035.

211

EIA - The National Energy Modeling System: An Overview 2003-Residential  

Gasoline and Diesel Fuel Update (EIA)

Residential Demand Module Residential Demand Module The National Energy Modeling System: An Overview 2003 Residential Demand Module Figure 5. Residential Demand Module Structure. Need help, contact the National Energy Information Center at 202-586-8800. Residential Demand Module Table. Need help, contact the National Energy Information Center at 202-586-8800. NEMS Residential Module Equipment Summary Table. Need help, contact the National Energy Information Center at 202-586-8800. Characteristics of Selected Equipment Table. Need help, contact the National Energy Information Center at 202-586-8800. printer-friendly version The residential demand module (RDM) forecasts energy consumption by Census division for seven marketed energy sources plus solar and geothermal energy. RDM is a structural model and its forecasts are built up from

212

EIA - The National Energy Modeling System: An Overview 2003-Petroleum  

Gasoline and Diesel Fuel Update (EIA)

Petroleum Market Module Petroleum Market Module The National Energy Modeling System: An Overview 2003 Petroleum Market Module Figure 17. Petroleum Market Module Structure. Need help, contact the National Energy Information Center. Need help, contact the National Energy Information Center at 202-586-8800. Figure 18. Petroleum Administration for Defense Districts. Need help, contact the National Energy Information Center at 202-586-8800. Petroleum Market Module Table. Need help, contact the National Energy Information Center at 202-586-8800. Petroleum Products Modeled in PMM. Need help, contact the National Energy Information Center at 202-586-8800. Crude Oil Categories in PMM Table. Need help, contact the National Energy Information Center at 202-586-8800. Refinery Processing Units Modeled in PMM. Need help, contact the National Energy Information Center at 202-586-8800.

213

A Comparison of Iron and Steel Production Energy Intensity in China and the U.S  

E-Print Network [OSTI]

of Iron and Steel Production Energy Use and Energy Intensityof Iron and Steel Production Energy Intensity in China andof Iron and Steel Production Energy Intensity in China and

Price, Lynn

2014-01-01T23:59:59.000Z

214

Southeastern Center for Industrial Energy Intensity Reduction  

Broader source: Energy.gov [DOE]

The U.S. Department of Energys (DOEs) Advanced Manufacturing Office (AMO; formerly the Industrial Technologies Program) has developed multiple resources and a best practices suite of tools to...

215

Overview of Levelized Cost of Energy in the AEO  

U.S. Energy Information Administration (EIA) Indexed Site

Presented to the EIA Energy Conference Presented to the EIA Energy Conference June 17, 2013 Chris Namovicz Assessing the Economic Value of New Utility-Scale Renewable Generation Projects Overview * Levelized cost of energy (LCOE) has been used by planners, analysts, policymakers, advocates and others to assess the economic competitiveness of technology options in the electric power sector * While of limited usefulness in the analysis of "conventional" utility systems, this approach is not generally appropriate when considering "unconventional" resources like wind and solar * EIA is developing a new framework to address the major weaknesses of LCOE analysis

216

High-Intensity Discharge Lighting Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

High-Intensity Discharge Lighting Basics High-Intensity Discharge Lighting Basics High-Intensity Discharge Lighting Basics August 15, 2013 - 5:59pm Addthis High-intensity discharge (HID) lighting provides the highest efficacy and longest service life of any lighting type. It can save 75%-90% of lighting energy when it replaces incandescent lighting. Illustration of a high-intensity discharge (HID) lIllustration amp. The lamp is a tall cylindrical shape, and a cutout of the outer tube shows the materials inside. A long, thin cylinder called the arc tube runs through the lamp between two electrodes. The space around the arc tube is labeled as a vacuum. In a high-intensity discharge lamp, electricity arcs between two electrodes, creating an intensely bright light. Mercury, sodium, or metal halide gas

217

20% Wind Energy by 2030 - Chapter 1: Executive Summary and Overview...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

1: Executive Summary and Overview Summary Slides 20% Wind Energy by 2030: technical report Explores one scenario for reaching 20% wind energy by 2030 (20% Wind Scenario) and...

218

EIA - The National Energy Modeling System: An Overview 2003-Electricity  

Gasoline and Diesel Fuel Update (EIA)

Electricity Market Module Electricity Market Module The National Energy Modeling System: An Overview 2003 Electricity Market Module Figure 9. Electricity Market Module Structure. Need help, contact the National Energy Information Center at 202-586-8800. Figure 10. Electricity Market Module Supply Regions. Need help, contact the National Energy Information Center at 202-586-8800. Electricity Market Module Table. Need help, contact the National Energy Information Center at 202-586-8800. Central-Station Generating Technologies. Need help, contact the National Energy Information Center at 202-586-8800. 2002 Overnight Capital Costs (including Contingencies), 2002 Heat Rates, and Online Year by Technology for the AEO2003 Reference Case Table. Need help, contact the National Energy Information Center at 202-586-8800.

219

Energy Policy 35 (2007) 52675286 The implications of the historical decline in US energy intensity  

E-Print Network [OSTI]

Energy Policy 35 (2007) 5267­5286 The implications of the historical decline in US energy intensity 2007 Abstract This paper analyzes the influence of the long-run decline in US energy intensity change) and adjustments in the energy demand of individual industries (intensity change), and identifies

220

National Renewable Energy Laboratory's Energy Systems Integration Facility Overview  

Broader source: Energy.gov [DOE]

This brochure describes the Energy Systems Integration Facility at National Renewable Energy Laboratory.

Note: This page contains sample records for the topic "intensities overview energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

High Energy Astrophysics: Overview 1/47 High Energy Astrophysics in Context  

E-Print Network [OSTI]

High Energy Astrophysics: Overview 1/47 High Energy Astrophysics in Context 1 Some references The following set of volumes is an outstanding summary of the field of High Energy Astrophysics and its relation to the rest of Astrophysics High Energy Astrophysics, Vols. 1,2 and 3. M.S. Longair, Cam- bridge University

Bicknell, Geoff

222

DOD Facilities Energy: FY 2009 Annual Energy Report Overview and Status on NDAA 2010 Studies  

Broader source: Energy.gov [DOE]

Presentation covers the FY 2009 Annual Energy Report Overview and Status on NDAA 2010 Studies, and is given at the Spring 2010 Federal Utility Partnership Working Group (FUPWG) meeting in Providence, Rhode Island.

223

U.S. Department of Energy Biomass Program: Overview of U.S. Energy...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Program: Overview of U.S. Energy Policies At the February 13, 2008 joint quarterly Web conference for DOE's Biomass and Clean Cities programs, Jim Spaeth (DOEs Golden Field...

224

Overview of the Electrical Energy Segment of the Energy Information Administration/ Manufacturing Consumption Report  

E-Print Network [OSTI]

, liquefied petroleum gas, coke and breeze, coal, and electricity, only the electricity segment is overviewed. Along with pure electrical energy consumption information, newly available data covers methods that manufacturers used to purchase and modify...

Lockhead, S.

225

Energy Market Impacts of Alternative Greenhouse Gas Intensity Reduction Goals  

Gasoline and Diesel Fuel Update (EIA)

1 1 Energy Market Impacts of Alternative Greenhouse Gas Intensity Reduction Goals March 2006 Energy Information Administration Office of Integrated Analysis and Forecasting U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should be attributed to the Energy Information Administration and should not be construed as advocating or reflecting any policy position of the Department of Energy or any other organization. Service Reports are prepared by the Energy Information Administration upon special request and are based on assumptions specified by the requester. Energy Information Administration / Energy Market Impacts of Alternative Greenhouse Gas Intensity Reduction Goals

226

Energy intensity in China's iron and steel sector  

E-Print Network [OSTI]

In this study, I examine the spatial and economic factors that influence energy intensity in China's iron and steel sector, namely industrial value added, renovation investment, coke consumption, and local coke supply. ...

Xu, Jingsi, M.C.P. Massachusetts Institute of Technology

2011-01-01T23:59:59.000Z

227

High energy density physics generated by intense heavy ion beams  

Science Journals Connector (OSTI)

Intense ion beams from accelerators are now available to generate high energy density matter and to study astrophysical phenomena in the laboratory under controlled and reproducible conditions. A detailed unde...

D. H. H. Hoffmann; V. E. Fortov; M. Kuster; V. Mintsev

2009-08-01T23:59:59.000Z

228

Some Intensive and Extensive Quantities in High-Energy Collisions  

E-Print Network [OSTI]

We review the evolution of some statistical and thermodynamical quantities measured in difference sizes of high-energy collisions at different energies. We differentiate between intensive and extensive quantities and discuss the importance of their distinguishability in characterizing possible critical phenomena of nuclear collisions at various energies with different initial conditions.

A. Tawfik

2013-10-02T23:59:59.000Z

229

Thesis Oral Energy-efficient Data-intensive  

E-Print Network [OSTI]

Thesis Oral Energy-efficient Data-intensive Computing with a Fast Array of Wimpy Nodes Vijay has raised datacenter energy demand and created an increasingly large financial burden and scaling challenge: Peak energy requirements today are a significant cost of provisioning

230

A Comparison of Iron and Steel Production Energy Intensity in China and the U.S  

E-Print Network [OSTI]

Production Energy Use and Energy Intensity in China and theGJ/t crude steel Primary Energy Intensity* kgce/t GJ/t crudeChina U.S. Final Energy Intensity No. 5b Scenarios Country

Price, Lynn

2014-01-01T23:59:59.000Z

231

Department of Energy Commercial Building Benchmarks (New Construction): Energy Use Intensities, May 5, 2009  

Broader source: Energy.gov [DOE]

This file contains the energy use intensities (EUIs) for the benchmark building files by building type and climate zone.

232

File:03MTCEncroachmentOverview.pdf | Open Energy Information  

Open Energy Info (EERE)

MTCEncroachmentOverview.pdf Jump to: navigation, search File File history File usage Metadata File:03MTCEncroachmentOverview.pdf Size of this preview: 463 599 pixels. Other...

233

FY 2011 OIG Recovery Act Plan Overview | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

FY 2011 OIG Recovery Act Plan Overview FY 2011 OIG Recovery Act Plan Overview The primary objective of the Office of Inspector General's oversight strategy involves the...

234

2012 Peer Review Overview Agenda | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

2012 Peer Review Overview Agenda 2012 Peer Review Overview Agenda Agenda for May 7-11, 2012 Peer Review Meeting peerreviewagenda.pdf More Documents & Publications 2013 Peer...

235

Low Cost Carbon Fiber Overview | Department of Energy  

Energy Savers [EERE]

Low Cost Carbon Fiber Overview Low Cost Carbon Fiber Overview 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation...

236

An overview of hydrogen gas production from solar energy  

Science Journals Connector (OSTI)

Hydrogen production plays a very important role in the development of hydrogen economy. Hydrogen gas production through solar energy which is abundant, clean and renewable is one of the promising hydrogen production approaches. This article overviews the available technologies for hydrogen generation using solar energy as main source. Photochemical, electrochemical and thermochemical processes for producing hydrogen with solar energy are analyzed from a technological environmental and economical point of view. It is concluded that developments of improved processes for hydrogen production via solar resource are likely to continue in order to reach competitive hydrogen production costs. Hybrid thermochemical processes where hydrocarbons are exclusively used as chemical reactants for the production of syngas and the concentrated solar radiation is used as a heat source represent one of the most promising alternatives: they combine conventional and renewable energy representing a proper transition towards a solar hydrogen economy.

Simon Koumi Ngoh; Donatien Njomo

2012-01-01T23:59:59.000Z

237

Overview  

Broader source: Energy.gov (indexed) [DOE]

-------------------------Chapter 7.3 (September, 2013) ACQUISITION PLANNING IN THE M&O ENVIRONMENT Overview The purpose of this chapter is to discuss the unique acquisition planning and approval requirements associated with the Management and Operating (M&O) form of contract. References 1. FAR Part 7 Acquisition Planning 2. FAR Subpart 17.6 Management and Operating Contracts 3. DEAR 970.1706 Management and Operating Contracts 4. DOE Acquisition Guide, Chapter 7.1 Acquisition Planning 5. DOE Acquisition Guide, Chapter 71.1 Headquarters Business Clearance Process Background Subpart 17.6 of the FAR prescribes policies and procedures for the award, renewal, and extension of M&O contracts. Section 17.602 permits Heads of Agencies to award and renew

238

EIA - Annual Energy Outlook 2008 (Early Release)-Energy Intensity Section  

Gasoline and Diesel Fuel Update (EIA)

Intensity Intensity Annual Energy Outlook 2008 (Early Release) Energy Intensity Figure 7. Energy use per capita and per dollar of gross domestic product, 1980-2030 (index, 1980 = 1). Need help, contact the National Energy Information Center at 202-586-8800. figure data Energy intensity, measured as energy use (in thousand Btu) per dollar of GDP (in 2000 dollars), is projected to decline at an average annual rate of 1.6 percent from 2006 to 2030 in the AEO2008 reference case (Figure 7). Although energy use generally increases as the economy grows, continuing improvement in the energy efficiency of the U.S. economy and a shift to less energy-intensive activities are projected to keep the rate of energy consumption growth lower than the rate of GDP growth. Since 1992, the energy intensity of the U.S. economy has declined on

239

An overview of solar photovoltaic energy in Mexico and Germany  

Science Journals Connector (OSTI)

Abstract Energy is essential for our preservation and the improvement of our life-style. Today all major production of energy is generated from fossil fuels, which are non-renewable and significantly pollute the environment. Access to clean and reliable energy is crucial for assuring the development of countries such as Mexico. Mexico's economy is based on producing energy from fossil fuels11 91% of Mexico's energy is produced from non-renewable energy sources. Moreover, 36% of primarily renewable energy corresponds to the use of firewood for cooking used in a non-healthy and non-sustainable way [42]. GTZ is the Deutsche Gesellschaft fr Technische Zusammenarbeit (GTZ) GmbH (German Technical Cooperation, German Federal Ministry for Economic Cooperation and Development). and the change to sustainable ways of life is still uncertain. It becomes essential to look at developed countries where the transition to sustainability has been rapidly increasing. This paper gives an overview of energy policies and the potential of solar photovoltaic energy in two countries: Germany, a world leader in the generation and development of photovoltaic technology; and Mexico, a country with great solar photovoltaic potential. It also describes the characteristics, advantages and disadvantages of photovoltaic technology, including BIPV systems.

Julia Mundo-Hernndez; Benito de Celis Alonso; Julia Hernndez-lvarez; Benito de Celis-Carrillo

2014-01-01T23:59:59.000Z

240

Energy Intensity of Federal Buildings Slashed 25% in Past Decade  

Broader source: Energy.gov [DOE]

The U.S. General Services Administration (GSA), which builds and manages federal buildings, recently announced that it cut federal energy spending by $65.5 million in fiscal year (FY) 2012 by reducing the energy use intensity levels in its buildings by nearly 25% since FY 2003.

Note: This page contains sample records for the topic "intensities overview energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Target Allocation Methodology for China's Provinces: Energy Intensity in the 12th FIve-Year Plan  

E-Print Network [OSTI]

projections of energy and intensity for the 12 th FYP werelevel projections of energy and intensity for the 12 th FYPth APPENDIX Table A-2 Energy Intensity Target Allocation

Ohshita, Stephanie

2011-01-01T23:59:59.000Z

242

U.S. Energy Information Administration | Annual Energy Outlook 2011 Early Release Overview  

Gasoline and Diesel Fuel Update (EIA)

1 Early Release Overview 1 Early Release Overview AEO2011 Early Release Overview Executive summary Projections in the Annual Energy Outlook 2011 (AEO2011) Reference case focus on the factors that shape U.S. energy markets in the long term. Under the assumption that current laws and regulations will remain generally unchanged throughout the projections, the AEO2011 Reference case provides the basis for examination and discussion of energy market trends and the direction they may take in the future. It also serves as a starting point for analysis of potential changes in energy policies, rules, or regulations. Some of the highlights in the AEO2011 Reference case are summarized in this Executive Summary. A higher updated estimate of domestic shale gas resources supports increased natural gas production at prices below those in last

243

Overview  

Office of Environmental Management (EM)

3 billion metric tons cumulatively by 2030-equiva- lent to nearly one-half of the carbon pollution from the entire U.S. energy sector for one year-while continuing to cut...

244

SCENARIOS WITH AN INTENSIVE CONTRIBUTION OF NUCLEAR ENERGY TO THE WORLD ENERGY SUPPLY  

E-Print Network [OSTI]

1 SCENARIOS WITH AN INTENSIVE CONTRIBUTION OF NUCLEAR ENERGY TO THE WORLD ENERGY SUPPLY H of primary energy demand by 250% in 2050 we find that a nuclear intensive scenario assuming the development level. Electricity production amounts to almost 40% of the primary energy supplyi , mostly i Here

Paris-Sud XI, Université de

245

B. Appendix: Scaling of Cost with Energy and Intensity  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

B. Appendix: Scaling of Cost with Energy and Intensity B. Appendix: Scaling of Cost with Energy and Intensity With the two ongoing studies, one for the physics program, [1] and one for the accelerator and facilities [2] on the "Neutrino Factory Based on a Muon Storage Ring", a number of interesting suggestions and ideas came up. Almost immediately the question of scaling cost with the storage ring energy and with intensity came up. Nevertheless, it was impossible to explore all those questions in great detail, either in the report or in the preliminary cost estimate that is presented in Appendix A. During the study it became more and more clear, that one of the unique features of a neutrino source, namely the possibility to balance the cost of the accelerator with the cost of the detector, would urge the accelerator people to find an answer to this

246

Energy Use and Energy Intensity of the U.S. Chemical Industry | ENERGY STAR  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Intensity of the U.S. Chemical Industry Intensity of the U.S. Chemical Industry Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources Success stories

247

Renewable Energy Policy in China: Overview; Renewable Energy in China. NREL International Programs Fact Sheet.  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Continues > Continues > PIX01870, Credit: Roger Taylor Academy of Science building in Beijing. Renewable Energy Policy in China: Overview China's policies on renewable energy devel- opment fall into three categories. Similar to the way renewable policies are set in the United States, China's central government establishes the first two levels of policy. Local governments, including provincial, munici-

248

Wave Energy Conversion Overview and it's Renewable Energy Potential for the Oil and Gas Industry  

E-Print Network [OSTI]

Ocean energy conversion has been of interest for many years. Recent developments such as concern over global warming have renewed interest in the topic. Part II provides an overview of the energy density found in ocean waves and how it is calculated...

Pastor, J.; Liu, Y.; Dou, Y.

2014-01-01T23:59:59.000Z

249

EIA - The National Energy Modeling System: An Overview 2003-Macroeconomic  

Gasoline and Diesel Fuel Update (EIA)

Macroeconomic Activity Module Macroeconomic Activity Module The National Energy Modeling System: An Overview 2003 Macroeconomic Activity Module The Macroeconomic Activity Module (MAM) links NEMS to the rest of the economy by providing projections of economic driver variables for use by the supply, demand, and conversion modules of NEMS. The derivation of the baseline macroeconomic forecast lays a foundation for the determination of the energy demand and supply forecast. MAM is used to present alternative macroeconomic growth cases to provide a range of uncertainty about the growth potential for the economy and its likely consequences for the energy system. MAM is also able to address the macroeconomic impacts associated with changing energy market conditions, such as alternative world oil price assumptions. Outside of the Annual Energy Outlook setting, MAM represents a system of linked modules which can assess the potential impacts on the economy of changes in energy events or policy proposals. These economic impacts then feed back into NEMS for an integrated solution. MAM consists of five modules:

250

The decline of the worlds energy intensity  

Science Journals Connector (OSTI)

Energy intensity of the total primary energy supply (TPES), total final energy consumption (TFC) and LOSSES in the conversion from TPES to TFC were analyzed for the World, OECD and Rest of the World (ROW) countries. LOSSES increased significantly for all groups of countries due to the increase of electricity production from coal in the period studied (19712008). Electricity share final consumption almost doubled, increasing from 8.8% to 17.2% in the period studied. However the energy intensity of LOSSES remained practically constant, which reflects the fact that the efficiency of electricity generation from coal (the main source of electricity) remained practically constant in that period. Despite the attractiveness of end-use devices running on electricity such as computers, which is typical of modern societies, the CO2 emissions are bound to increase unless coal is replaced by less carbon emitting sources such as natural gas, renewables and nuclear energy.

Jos Goldemberg; Luiz Tado Siqueira Prado

2011-01-01T23:59:59.000Z

251

A Comparison of Iron and Steel Production Energy Use and Energy Intensity in China and the U.S.  

E-Print Network [OSTI]

23 5. Comparison of Energy Intensity of Iron and Steelthe U.S. . 27 5.1. Energy Intensity of Iron and27 5.2. Energy Intensity of Iron and Steel Production in

Hasanbeigi, Ali

2012-01-01T23:59:59.000Z

252

Low Cost Carbon Fiber Overview | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Low Cost Carbon Fiber Overview Low Cost Carbon Fiber Overview 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010...

253

Energy prices and energy intensity in China : a structural decomposition analysis and econometric study  

E-Print Network [OSTI]

Since the start of its economic reforms in 1978, China's energy prices relative to other prices have increased. At the same time, its energy intensity, i.e., physical energy consumption per unit of Gross Domestic Product ...

Shi, Xiaoyu, M.C.P. Massachusetts Institute of Technology

2005-01-01T23:59:59.000Z

254

The energy required to produce materials: constraints on energy-intensity improvements, parameters of demand  

Science Journals Connector (OSTI)

...processes. Data for iron energy intensity are adapted...are adapted from Choate Green-[16]. Production...15 Smil, V . 2008 Energy in nature and society...Choate, WT , and JAS Green. 2003 US energy requirements for aluminum...

2013-01-01T23:59:59.000Z

255

Energy prices and energy intensity in China : a structural decomposition analysis and econometrics study  

E-Print Network [OSTI]

Since the start of its economic reforms in 1978, China's energy prices relative to other prices have increased. At the same time, its energy intensity, i.e., energy consumption per unit of Gross Domestic Product (GDP), has ...

Shi, Xiaoyu

2006-01-01T23:59:59.000Z

256

National Level Co-Control Study of the Targets for Energy Intensity and Sulfur Dioxide in China  

E-Print Network [OSTI]

world-best-practice-energy- intensity-values-selected-World Best Practice Energy Intensity Values for Selectedof the Targets for Energy Intensity and Sulfur Dioxide in

Zhou, Nan

2013-01-01T23:59:59.000Z

257

RAPID/Overview/Geothermal/Exploration/Idaho | Open Energy Information  

Open Energy Info (EERE)

< RAPID | Overview | Geothermal | Exploration(Redirected from RAPIDAtlasGeothermalExplorationIdaho) Redirect page Jump to: navigation, search REDIRECT RAPID...

258

RAPID/Overview/Geothermal/Exploration/Oregon | Open Energy Information  

Open Energy Info (EERE)

Oregon < RAPID | Overview | Geothermal | Exploration(Redirected from RAPIDAtlasGeothermalExplorationOregon) Redirect page Jump to: navigation, search REDIRECT...

259

RAPID/Overview/Geothermal/Exploration/Colorado | Open Energy...  

Open Energy Info (EERE)

Overview | Geothermal | Exploration(Redirected from RAPIDAtlasGeothermalExplorationColorado) Redirect page Jump to: navigation, search REDIRECT RAPIDGeothermal...

260

RAPID/Overview/Geothermal/Exploration/Nevada | Open Energy Information  

Open Energy Info (EERE)

< RAPID | Overview | Geothermal | Exploration(Redirected from RAPIDAtlasGeothermalExplorationNevada) Redirect page Jump to: navigation, search REDIRECT RAPID...

Note: This page contains sample records for the topic "intensities overview energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

RAPID/Overview/Geothermal/Exploration/Texas | Open Energy Information  

Open Energy Info (EERE)

< RAPID | Overview | Geothermal | Exploration(Redirected from RAPIDAtlasGeothermalExplorationTexas) Redirect page Jump to: navigation, search REDIRECT RAPID...

262

RAPID/Overview/Geothermal/Exploration/Montana | Open Energy Informatio...  

Open Energy Info (EERE)

Montana < RAPID | Overview | Geothermal | Exploration(Redirected from RAPIDAtlasGeothermalExplorationMontana) Redirect page Jump to: navigation, search REDIRECT...

263

A Comparison of Iron and Steel Production Energy Use and Energy Intensity  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A Comparison of Iron and Steel Production Energy Use and Energy Intensity A Comparison of Iron and Steel Production Energy Use and Energy Intensity in China and the U.S. Title A Comparison of Iron and Steel Production Energy Use and Energy Intensity in China and the U.S. Publication Type Report Year of Publication 2011 Authors Hasanbeigi, Ali, Lynn K. Price, Nathaniel T. Aden, Zhang Chunxia, Li Xiuping, and Shangguan Fangqin Date Published June/2011 Publisher Lawrence Berkeley National Laboratory; Iron & Steel Research Institute, Iron and Steel Industry Keywords energy intensity, energy use, Low Emission & Efficient Industry Abstract Production of iron and steel is an energy-intensive manufacturing process. In 2006, the iron and steel industry accounted for 13.6% and 1.4% of primary energy consumption in China and the U.S., respectively (U.S. DOE/EIA, 2010a; Zhang et al., 2010). The energy efficiency of steel production has a direct impact on overall energy consumption and related carbon dioxide (CO2) emissions. The goal of this study is to develop a methodology for making an accurate comparison of the energy intensity (energy use per unit of steelproduced) of steel production. The methodology is applied to the steel industry in China and the U.S. The methodology addresses issues related to boundary definitions, conversion factors, and indicators in order industry energy use to develop a common framework for comparing steel intensity energy use.

264

Optimization of Power-Intensive Energy Systems with Carbon Capture  

Science Journals Connector (OSTI)

Optimization of Power-Intensive Energy Systems with Carbon Capture ... Three concepts for capturing CO2 from natural gas-fired combined gas/steam turbine power plants are evaluated and compared in this paper: (A) sepn. of CO2 from exhaust gas coming from a std. ...

Xuesong Zheng; Jin-Kuk Kim

2011-09-07T23:59:59.000Z

265

Commercial Real Estate: An Overview of Energy Use and Energy Efficiency Opportunities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Commercial Real Estate: An Overview of Energy Commercial Real Estate: An Overview of Energy Use and Energy Efficiency Opportunities Energy Use in Commercial Real Estate Commercial real estate is any multi-family residential, office, industrial, or retail property that can be bought or sold in a real estate market. Energy use is the single largest operating expense in commercial office buildings, representing approximately one-third of typical operating budgets and accounting for almost 20 percent of the nation's annual greenhouse gas emissions. By becoming more energy efficient, commercial real estate (CRE) organizations can reduce operating expenses, increase property asset value, and enhance the comfort of their tenants. They can also demonstrate their commitment to the environment by reducing

266

Overview  

Gasoline and Diesel Fuel Update (EIA)

Producers, Third Quarter 2010 Producers, Third Quarter 2010 Third Quarter 2010 Key Findings Net Income $17.4 billion Revenues $285.0 billion Highlights Twenty major energy producers reported a 32-percent increase in third-quarter net income relative to the third quarter of 2009 (Q309). This percentage increase in the third quarter of 2010 (Q310) was primarily because net income in Q309 was unusually low. Q310 income was 41- percent lower than the third-quarter average for 2005- 2009. The effects of higher crude oil and natural gas prices, higher foreign oil and worldwide natural gas production, higher U.S. refining margins, and higher U.S. refinery throughput overwhelmed the effects of lower U.S. crude oil production and lower foreign refinery throughput and led to higher net income.

267

2 - Overview of Energy Requirements for Rural Communities  

Science Journals Connector (OSTI)

Publisher Summary Energy supply in rural communities has to meet the needs of the people and ensure economic and social development. The basic elements of the needs of such communities are illustrated in the chapter in a figure. Heat can be generated from biomass or solar thermal to create both high-temperature steam and low-temperature heat for space heating, domestic and industrial hot water, pool heating, desalination, cooking, and crop drying. Electric power can be generated from solar photovoltaics (PVs), solar thermal systems, biomass, wind, and micro-hydro systems. A table in the chapter gives an overview of the daily electricity demand for the three classes of the needs for electrification in villages: basic needs, extended needs, and normal needs. An example for electricity supply of small villages with approximately 50 inhabitants is given, in which every third household has a refrigerator. An essential component of a modular supply system is the battery inverter such as the Sunny Island with a nominal power of 3.3 kW each. The advanced battery inverter Sunny Island is the grid master and the central component of a modular supply system and enables small-scale island utilities for remote areas. To be able to size the power supply properly, the peak power, the daily energy consumption, and the annual energy growth should be estimated.

Nasir El Bassam; Preben Maegaard

2004-01-01T23:59:59.000Z

268

Geothermal energy technology and current status: an overview  

Science Journals Connector (OSTI)

Geothermal energy is the energy contained as heat in the Earths interior. This overview describes the internal structure of the Earth together with the heat transfer mechanisms inside mantle and crust. It also shows the location of geothermal fields on specific areas of the Earth. The Earths heat flow and geothermal gradient are defined, as well as the types of geothermal fields, the geologic environment of geothermal energy, and the methods of exploration for geothermal resources including drilling and resource assessment. Geothermal energy, as natural steam and hot water, has been exploited for decades to generate electricity, and both in space heating and industrial processes. The geothermal electrical installed capacity in the world is 7974 \\{MWe\\} (year 2000), and the electrical energy generated is 49.3 billion kWh/year, representing 0.3 % of the world total electrical energy which was 15,342 billion kWh in 2000. In developing countries, where total installed electrical power is still low, geothermal energy can play a significant role: in the Philippines 21% of electricity comes from geothermal steam, 20% in El Salvador, 17% in Nicaragua, 10% in Costa Rica and 8% in Kenya. Electricity is produced with an efficiency of 1017%. The geothermal kWh is generally cost-competitive with conventional sources of energy, in the range 210 UScents/kWh, and the geothermal electrical capacity installed in the world (1998) was 1/5 of that from biomass, but comparable with that from wind sources. The thermal capacity in non-electrical uses (greenhouses, aquaculture, district heating, industrial processes) is 15,14 \\{MWt\\} (year 2000). Financial investments in geothermal electrical and non-electrical uses world-wide in the period 19731992 were estimated at about US$22,000 million. Present technology makes it possible to control the environmental impact of geothermal exploitation, and an effective and easily implemented policy to encourage geothermal energy development, and the abatement of carbon dioxide emissions would take advantage from the imposition of a carbon tax. The future use of geothermal energy from advanced technologies such as the exploitation of hot dry rock/hot wet rock systems, magma bodies and geopressured reservoirs, is briefly discussed. While the viability of hot dry rock technology has been proven, research and development are still necessary for the other two sources. A brief discussion on training of specialists, geothermal literature, on-line information, and geothermal associations concludes the review.

Enrico Barbier

2002-01-01T23:59:59.000Z

269

GRR/Section 6 - Construction Permits Overview | Open Energy Information  

Open Energy Info (EERE)

6 - Construction Permits Overview 6 - Construction Permits Overview < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 6 - Construction Permits Overview 06 - ConstructionPermitsOverview.pdf Click to View Fullscreen Triggers None specified Click "Edit With Form" above to add content 06 - ConstructionPermitsOverview.pdf 06 - ConstructionPermitsOverview.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative Constructing a geothermal power plant requires numerous permits from Federal, state, and local governments, related to transporting construction materials, encroaching upon Federal and state right-of-ways, demolishing existing structures and building new structures.

270

North Dakota - State Energy Profile Overview - U.S. Energy Information  

U.S. Energy Information Administration (EIA) Indexed Site

State Energy Profile Overview - U.S. Energy Information State Energy Profile Overview - U.S. Energy Information Administration (EIA) The page does not exist for . To view this page, please select a state: United States Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming The page does not exist for . To view this page, please select a state: Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida

271

EV Everywhere Grand Challenge Overview | Department of Energy  

Office of Environmental Management (EM)

2danielsoncaci.pdf More Documents & Publications EV Everywhere Grand Challenge Introduction for Electric Drive Workshop EV Everywhere Grand Challenge Overview EV Everywhere Grand...

272

Overview of the DOE Health Impacts Research | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

the DOE Health Impacts Research Overview of the DOE Health Impacts Research 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer...

273

Overview of the DOE Health Impacts Research | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

the DOE Health Impacts Research Overview of the DOE Health Impacts Research 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting,...

274

RAPID/Overview/BulkTransmission/Siting/Colorado | Open Energy...  

Open Energy Info (EERE)

Colorado < RAPID | Overview | BulkTransmission | Siting(Redirected from RAPIDAtlasBulkTransmissionSitingColorado) Redirect page Jump to: navigation, search REDIRECT...

275

RAPID/Overview/Geothermal/Exploration/Utah | Open Energy Information  

Open Energy Info (EERE)

Overview | Geothermal | Exploration(Redirected from RAPIDAtlasGeothermalExplorationUtah) Redirect page Jump to: navigation, search REDIRECT RAPIDGeothermalExploration...

276

Energy end-use intensities in commercial buildings  

SciTech Connect (OSTI)

This report examines energy intensities in commercial buildings for nine end uses: space heating, cooling, ventilation, lighting, water heating, cooking, refrigeration, office equipment, and other. The objective of this analysis was to increase understanding of how energy is used in commercial buildings and to identify targets for greater energy efficiency which could moderate future growth in demand. The source of data for the analysis is the 1989 Commercial Buildings Energy Consumption survey (CBECS), which collected detailed data on energy-related characteristics and energy consumption for a nationally representative sample of approximately 6,000 commercial buildings. The analysis used 1989 CBECS data because the 1992 CBECS data were not yet available at the time the study was initiated. The CBECS data were fed into the Facility Energy Decision Screening (FEDS) system, a building energy simulation program developed by the US Department of Energy`s Pacific Northwest Laboratory, to derive engineering estimates of end-use consumption for each building in the sample. The FEDS estimates were then statistically adjusted to match the total energy consumption for each building. This is the Energy Information Administration`s (EIA) first report on energy end-use consumption in commercial buildings. This report is part of an effort to address customer requests for more information on how energy is used in buildings, which was an overall theme of the 1992 user needs study. The end-use data presented in this report were not available for publication in Commercial Buildings Energy Consumption and Expenditures 1989 (DOE/EIA-0318(89), Washington, DC, April 1992). However, subsequent reports on end-use energy consumption will be part of the Commercial Buildings Energy Consumption and Expenditures series, beginning with a 1992 data report to be published in early 1995.

Not Available

1994-09-01T23:59:59.000Z

277

EIA Energy Efficiency-Residential Sector Energy Intensities, 1978-2001  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Sector Energy Intensities Residential Sector Energy Intensities RESIDENTIAL SECTOR ENERGY INTENSITIES: 1978-2005 Released Date: August 2004 Page Last Modified:June 2009 These tables provide estimates of residential sector energy consumption and energy intensities for 1978 -1984, 1987, 1990, 1993, 1997, 2001 and 2005 based on the Residential Energy Consumption Survey (RECS). Total Site Energy Consumption (U.S. and Census Region) Html Excel PDF By Type of Housing Unit (Table 1a) html Table 1a excel table 1a. excel table 1a. Weather-Adjusted by Type of Housing Unit (Table 1b) html table 1b excel table 1b excel table 1b Total Primary Energy Consumption (U.S. and Census Region) By Type of Housing Unit (Table 1c) html Table 1c excel table 1c excel table 1c Weather-Adjusted by Type of Housing Unit (Table 1d)

278

Table 6. Energy intensity by state (2000 - 2010  

U.S. Energy Information Administration (EIA) Indexed Site

Energy intensity by state (2000 - 2010)" Energy intensity by state (2000 - 2010)" "thousand Btu per dollar of GDP" ,,,,,,,,,,,,"Change" ,,,,,,,,,,,,"2000 to 2010" "State",2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percent","Absolute" "Alabama",18.27258197,17.12573602,17.40982338,17.21199023,16.87274619,16.36600572,16.26201029,16.16667416,15.88996309,15.31511861,15.97051076,-0.1259849985,-2.302071213 "Alaska",21.74118991,20.61708506,19.78031734,20.18143227,20.28953911,21.09573287,18.72961653,17.79373817,15.85124571,14.13669694,14.24461661,-0.3448097058,-7.496573297 "Arizona",8.723022426,8.474435286,8.399371812,7.993493579,8.274516227,7.602521438,7.232690272,7.328159916,7.62679414,7.507000095,7.628169778,-0.1255129924,-1.094852647

279

GRR/Section 5 - Drilling Overview | Open Energy Information  

Open Energy Info (EERE)

GRR/Section 5 - Drilling Overview GRR/Section 5 - Drilling Overview < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 5 - Drilling Overview 05DrillingPermittingOverview.pdf Click to View Fullscreen Contact Agencies BLM Regulations & Policies 30 USC § 1001 Triggers None specified On top of acquiring the correct drilling permits a developer needs to consider issues such as land and mineral ownership and right of way access. 05DrillingPermittingOverview.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative 5.1 - Review Potential Construction Permits In addition to drilling permits, the developer may require other

280

GRR/Section 4 - Exploration Overview | Open Energy Information  

Open Energy Info (EERE)

4 - Exploration Overview 4 - Exploration Overview < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 4 - Exploration Overview 04ExplorationPermittingOverview (3).pdf Click to View Fullscreen Contact Agencies BLM United States Forest Service Regulations & Policies 30 USC § 1001 Triggers None specified Click "Edit With Form" above to add content 04ExplorationPermittingOverview (3).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative The exploration process requires consideration of right of way access, geothermal leasing, and state and federal exploration permits. 4.1 and 4.2 - Will the Developer Engage in Coproduction on an Existing

Note: This page contains sample records for the topic "intensities overview energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

GRR/Section 20 - Plant Decommissioning Overview | Open Energy Information  

Open Energy Info (EERE)

20 - Plant Decommissioning Overview 20 - Plant Decommissioning Overview < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 20 - Plant Decommissioning Overview 20PlantDecommissioningOverview (1).pdf Click to View Fullscreen Contact Agencies BLM Regulations & Policies 43 CFR 3263.10-3263.15: Well Abandonment Geothermal Resources Operational Order No.3 Triggers None specified Click "Edit With Form" above to add content 20PlantDecommissioningOverview (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative State and federal laws have specific requirements for the decommissioning process. 20.1 to 20.2 - Will a Geothermal Well be Abandoned?

282

GRR/Section 9 - Environmental Overview | Open Energy Information  

Open Energy Info (EERE)

GRR/Section 9 - Environmental Overview GRR/Section 9 - Environmental Overview < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 9 - Environmental Overview 09EnvironmentalOverview.pdf Click to View Fullscreen Contact Agencies United States Environmental Protection Agency BLM United States Forest Service DOE United States Department of Defense Regulations & Policies National Environmental Policy Act 40 CFR 1508.18 Major Federal Action Triggers None specified Click "Edit With Form" above to add content 09EnvironmentalOverview.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative The National Environmental Policy Act (NEPA) was signed into law on January

283

Webinar for Tribes: Overview of U.S. Department of Energy Power Marketing  

Broader source: Energy.gov (indexed) [DOE]

Webinar for Tribes: Overview of U.S. Department of Energy Power Webinar for Tribes: Overview of U.S. Department of Energy Power Marketing Administrations Webinar for Tribes: Overview of U.S. Department of Energy Power Marketing Administrations November 18, 2011 - 2:45pm Addthis The U.S. Department of Energy (DOE) - Office of Indian Energy Policy and Programs, the DOE Tribal Energy Program, and the Western Area Power Administration (Western) are conducting a webinar to provide tribes with an overview of power marketing administrations (PMAs), including their service territories, their power resources, their role in delivering federal power to customers, and the methods of determining power rates. The webinar will also include a discussion of preference customer qualifications. More Addthis Related Articles April 24 Webinar to Explore How Power Marketing Administrations Work with

284

Overview of the U.S. Department of Energy Formerly Utilized Sites Remedial  

Broader source: Energy.gov (indexed) [DOE]

Overview of the U.S. Department of Energy Formerly Utilized Sites Overview of the U.S. Department of Energy Formerly Utilized Sites Remedial Action Program Overview of the U.S. Department of Energy Formerly Utilized Sites Remedial Action Program Paper presented at the Waste Management 2012 Conference. February 26 through March 1, 2012, Phoenix, Arizona. Christopher Clayton, Vijendra Kothari, and Ken Starr, U.S. Department of Energy Office of Legacy Management Joey Gillespie and Michael Widdop, S.M. Stoller Corporation, Contractor for the U.S. Department of Energy Office of Legacy Management 12189a.pdf More Documents & Publications Overview of the U.S. Department of Energy Formerly Utilized Sites Remedial Action Program Recent Developments in DOE FUSRAP Evaluation of Final Radiological Conditions at Areas of the Niagara Falls

285

Colorado/Transmission/Regulatory Overview | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Colorado/Transmission/Regulatory Overview < Colorado‎ | Transmission Jump to: navigation, search Colorado Transmission Transmission Regulatory Overview Roadmap State Data Regulatory Overview General Transmission Permitting at a Glance In Colorado, local governments (counties and municipalities) have the authority to site high-voltage transmission lines. The State's authority in siting is limited to a backstop appeal process, by which utilities may submit an appeal to local government decisions to the Colorado Public Utilities Commission (CPUC) for review and resolution.

286

Built Environment Energy Analysis Tool Overview (Presentation), NREL (National Renewable Energy Laboratory)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Built Environment Built Environment Energy Analysis Tool Overview Prepared by: Chris Porter Cambridge Systematics, Inc. Cambridge, Massachusetts NREL Technical Monitor: Laura Vimmerstedt March 2013 NREL/PR-6A20-58101 2 Built Environment Energy Analysis Tool Overview Subcontractor: Chris Porter Cambridge Systematics, Inc. 100 Cambridge Park Drive, Suite 400 Cambridge, MA 02140 Period of Performance: June 2011-February 2013 NREL Technical Monitor: Laura Vimmerstedt Prepared under Subcontract No. DGJ-1-11857-01 This publication was reproduced from the best available copy submitted by the subcontractor and received no editorial review at NREL. NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the

287

A2E: Adaptively Aggressive Energy Efficient DVFS Scheduling for Data Intensive Applications  

E-Print Network [OSTI]

A2E: Adaptively Aggressive Energy Efficient DVFS Scheduling for Data Intensive Applications Li Tan strategy to achieve energy efficiency for data intensive applications, and further save energy via five memory and disk access intensive benchmarks with imbalanced branches against another two energy

288

GRR/Section 1 - Land Use Overview | Open Energy Information  

Open Energy Info (EERE)

1 - Land Use Overview 1 - Land Use Overview < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 1 - Land Use Overview 01LandUseOverview.pdf Click to View Fullscreen Contact Agencies Bureau of Land Management U S Army Corps of Engineers United States Environmental Protection Agency Fish and Wildlife Service United States Department of Defense Regulations & Policies Federal Land Policy and Management Act of 1976 Endangered Species Act Clean Water Act Clean Air Act Farmland Protection Policy Act Sikes Act National Historic Preservation Act (NHPA) - specifically, Section 106 Native American Graves Protection Act Archaeological Resource Protection Act Triggers None specified Click "Edit With Form" above to add content

289

File:03UTCStateEncroachmentOverview.pdf | Open Energy Information  

Open Energy Info (EERE)

UTCStateEncroachmentOverview.pdf UTCStateEncroachmentOverview.pdf Jump to: navigation, search File File history File usage File:03UTCStateEncroachmentOverview.pdf Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Full resolution ‎(1,275 × 1,650 pixels, file size: 25 KB, MIME type: application/pdf) File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 11:13, 30 August 2012 Thumbnail for version as of 11:13, 30 August 2012 1,275 × 1,650 (25 KB) Jnorris (Talk | contribs) You cannot overwrite this file. Edit this file using an external application (See the setup instructions for more information) File usage The following 2 pages link to this file: GRR/Flowcharts GRR/Section 3-UT-c - State Encroachment Overview

290

AVTA: ARRA EV Project Overview Reports | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

together made up the largest ever deployment of plug-in electric vehicles and charging infrastructure in the U.S. The following reports provide summary overviews of the EV...

291

Advanced Research Projects Agency-Energy (ARPA-E) Overview |...  

Office of Environmental Management (EM)

(ARPA-E) Acting Director Dr. Cheryl Martin at the 2014 SunShot Grand Challenge Summit and Peer Review in Anaheim, CA. This presentation is an overview of ARPA-E and its research...

292

Overview of Battery R&D Activities | Department of Energy  

Energy Savers [EERE]

of Battery R&D Activities Overview of Battery R&D Activities 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation...

293

Overview of Battery R&D Activities | Department of Energy  

Energy Savers [EERE]

of Battery R&D Activities Overview of Battery R&D Activities 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation...

294

Program Overview Shane Johnson Office of Nuclear Energy, Science and Technology  

Broader source: Energy.gov (indexed) [DOE]

Program Overview Program Overview Shane Johnson Office of Nuclear Energy, Science and Technology April 15, 2002 Presentation to the Nuclear Energy Research Advisory Committee Office of Nuclear Energy, Science and Technology Johnson/April15_02 NP 2010 to NERAC.ppt 2 Nuclear Power 2010 Overview Nuclear Power 2010 Overview Goals 6 Orders for one or more new nuclear plants by 2005 6 Operation of new nuclear power plants by 2010 6 New program initiative unveiled February 2002 6 Based on Near-Term Deployment Roadmap 6 Public/private partnership to: ! Develop advanced reactor technologies ! Explore sites that could host new nuclear power plants ! Demonstrate new Nuclear Regulatory Commission (NRC) regulatory processes Office of Nuclear Energy, Science and Technology Johnson/April15_02 NP 2010 to NERAC.ppt 3

295

Home Energy Score Program Overview for the American Gas Association Webinar (Text Version)  

Broader source: Energy.gov [DOE]

Below is the text version of the webinar, Home Energy Score Program Overview for the American Gas Association, presented on July 30, 2013. In addition to this text version of the audio, you can...

296

Overview of BSM Higgs measurements at LHC, and prospects for the LHC high Energy run  

E-Print Network [OSTI]

slides for the 35+5' talk titled "Overview of BSM Higgs measurements at LHC, and prospects for the LHC high Energy run" for the Higgs to Dark Matter conference in Geilo, Norway, 14-17/12/14

ATLAS Collaboration; The ATLAS collaboration

2014-01-01T23:59:59.000Z

297

Welcome and Overview of Workshop and Energy Innovation Hubs Video (Text Version)  

Broader source: Energy.gov [DOE]

This is a text version of the welcome and overview of the workshop and energy innovation hubs video presented at the Critical Materials Workshop, held on April 3, 2012 in Arlington, Virginia.

298

June 18 ESTAP Webinar: An Overview of the Energy Storage Handbook |  

Broader source: Energy.gov (indexed) [DOE]

June 18 ESTAP Webinar: An Overview of the Energy Storage Handbook June 18 ESTAP Webinar: An Overview of the Energy Storage Handbook June 18 ESTAP Webinar: An Overview of the Energy Storage Handbook June 14, 2013 - 3:27pm Addthis On Tuesday, June 18 from 2 - 3 p.m. ET, Clean Energy States Alliance will host a webinar introducing the recently updated Electricity Storage Handbook released by Sandia National Laboratories and published by the U.S. Department of Energy. Titled "Highlights of the DOE/EPRI 2013 Electricity Storage Handbook in Collaboration with NRECA," the webinar will be introduced by by Dr. Imre Gyuk, Energy Storage Program Manager in the Office of Electricity Delivery and Energy Reliability. This webinar will highlight the various topical areas of the 2013 edition of the Electricity Storage Handbook. This is a how-to guide for utility

299

Fact #554: January 19, 2009 Energy Intensity of Light Rail Transit...  

Broader source: Energy.gov (indexed) [DOE]

4: January 19, 2009 Energy Intensity of Light Rail Transit Systems Fact 554: January 19, 2009 Energy Intensity of Light Rail Transit Systems According to the 2007 National Transit...

300

Contributions of weather and fuel mix to recent declines in U.S. energy and carbon intensity  

E-Print Network [OSTI]

of the decrease in energy intensity during the study period,trends in U. S. energy intensity: An index number analysis,industry structure and energy intensity, Energy Economics

Davis, W. Bart; Sanstad, Alan H.; Koomey, Jonathan G.

2002-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "intensities overview energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Property:OpenEI/CETSI/Overview | Open Energy Information  

Open Energy Info (EERE)

Property Name OpenEI/CETSI/Overview Property Name OpenEI/CETSI/Overview Property Type Text Description A brief description of the resource. Pages using the property "OpenEI/CETSI/Overview" Showing 25 pages using this property. (previous 25) (next 25) A A Guide to Community Solar: Utility, Private, and Non-profit Project Development + This guide provides information for communities interested in developing community solar projects. Community solar is the term used to describe a "solar-electric system that, through a voluntary program, provides power and/or financial benefit to, or is owned by, multiple community members." This document overviews three sponsorship models commonly used for community solar projects: the utility-sponsored model; the special purpose entity model; and the non-profit "buy a brick" model. Advantages and disadvantages of each model are discussed, as are key financial, legal and implementation considerations. Examples of communities implementing each model are also provided. Additionally, this guide provides an overview of the state policies (e.g., group billing, virtual net metering, and joint ownership policies) that encourage community solar projects. State and federal tax policies and incentives available to community solar systems are also discussed, as are securities compliance considerations.

302

File:06HIDOtherOverview.pdf | Open Energy Information  

Open Energy Info (EERE)

6HIDOtherOverview.pdf 6HIDOtherOverview.pdf Jump to: navigation, search File File history File usage File:06HIDOtherOverview.pdf Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Full resolution ‎(1,275 × 1,650 pixels, file size: 28 KB, MIME type: application/pdf) File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 11:25, 23 October 2012 Thumbnail for version as of 11:25, 23 October 2012 1,275 × 1,650 (28 KB) Dklein2012 (Talk | contribs) You cannot overwrite this file. Edit this file using an external application (See the setup instructions for more information) File usage The following page links to this file: GRR/Section 6-HI-d - Other Overview Retrieved from "http://en.openei.org/w/index.php?title=File:06HIDOtherOverview.pdf&oldid=528994

303

GRR/Section 3 - Land Access Process Overview | Open Energy Information  

Open Energy Info (EERE)

GRR/Section 3 - Land Access Process Overview GRR/Section 3 - Land Access Process Overview < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 3 - Land Access Process Overview 03LandAccessOverview (4).pdf Click to View Fullscreen Contact Agencies Bureau of Land Management United States Forest Service Bureau of Indian Affairs Fish and Wildlife Service Bureau of Reclamation United States Department of Energy United States Department of Defense Regulations & Policies National Environmental Policy Act (NEPA) Energy Policy Act of 2005 (EPAct) Energy Policy Act, Section 1835 - Split Estate Geothermal Steam Act of 1970 Federal Geothermal Leasing - 2007 Rules (43 CFR Part 3200) 43 C.F.R. 3203 Competitive Leasing 43 C.F.R. 3104 Performance Bond

304

Overview of Carbon Storage Research | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Overview of Overview of Carbon Storage Research Overview of Carbon Storage Research The Carbon Storage Program is focused on ensuring the safe and permanent storage and/or utilization of CO2 captured from point sources. The Carbon Storage Program is focused on ensuring the safe and permanent storage and/or utilization of CO2 captured from point sources. Roughly one third of the United States' carbon emissions come from power plants and other large point sources, such as industrial facilities. The Carbon Storage Program is focused on ensuring the safe and permanent storage and/or utilization of CO2 captured from point sources. This effort is organized into two broad areas: Cooperative Advancement, which involves working with other organizations and governments to advance CCS worldwide, and

305

Category:Regulatory Roadmap Overview Sections | Open Energy Information  

Open Energy Info (EERE)

Sections Sections Jump to: navigation, search GRR-logo.png Looking for the Geothermal Regulatory Roadmap? Click here for a user-friendly list of Geothermal Regulatory Roadmap pages. This is the Regulatory Roadmap Overview Sections category. Add.png Add an Section Pages in category "Regulatory Roadmap Overview Sections" The following 22 pages are in this category, out of 22 total. G GRR/Section 1 - Land Use Overview GRR/Section 10 - On-Site Evaluation Process GRR/Section 11 - Cultural Resource Assessment GRR/Section 12 - Flora & Fauna Resource Assessment Process GRR/Section 13 - Land Use Assessment Process GRR/Section 14 - Water Resource Assessment GRR/Section 15 - Air Quality Assessment Process GRR/Section 16 - Geological Resources Assessment Process G cont.

306

A STAGED MUON-BASED FACILITY TO ENABLE INTENSITY AND ENERGY FRONTIER SCIENCE IN THE US*  

E-Print Network [OSTI]

A STAGED MUON-BASED FACILITY TO ENABLE INTENSITY AND ENERGY FRONTIER SCIENCE IN THE US* Jean. It requires facilities at both high energy and high intensity frontiers. Neutrino oscillations are irrefutable precision flavour physics at the high intensity frontier. At the high energy frontier, a multi-TeV lepton

McDonald, Kirk

307

Multi-energy CT Based on a Prior Rank, Intensity and Sparsity Model (PRISM)  

E-Print Network [OSTI]

Multi-energy CT Based on a Prior Rank, Intensity and Sparsity Model (PRISM) Hao Gao1 , Hengyong Yu2 spectrum. Besides, the energy-dependent intensity information can be incorporated into the PRISM in terms on the generalized rank and sparsity of a multi-energy image, and intensity/spectral characteristics of base

Soatto, Stefano

308

Energy Integration Describes Sound-Intensity Coding in an Insect Auditory System  

E-Print Network [OSTI]

Energy Integration Describes Sound-Intensity Coding in an Insect Auditory System Tim Gollisch receptor; hearing; sound intensity; energy; model; locust Auditory receptor cells are commonly measurements of intensity-duration tradeoffs sug- gest that the stimulus energy is the crucial variable (Garner

Benda, Jan

309

Effect of pulse intensity distributions on fragment internal energy in the infrared multiphoton dissociation of vinyl  

E-Print Network [OSTI]

Effect of pulse intensity distributions on fragment internal energy in the infrared multiphoton of laser intensity on the production of fragment energy distribu- tions. Laser induced fluorescence (LIF pumping is pro- portional to the light intensity, the final energy of the parent molecule

Zare, Richard N.

310

EIA Energy Efficiency-Iron and Steel Energy Intensity, 1998-2002  

Gasoline and Diesel Fuel Update (EIA)

Iron and Steel Manufacturing Energy Intensities, 1998, 2002, and 2006 Below are data for iron and steel industry from the 1998, 2002, and 2006 Manufacturing Energy Consumption Survey (MECS). The tables provide estimates for energy consumed for all purposes, end uses of fuel consumption, offsite-produced fuel consumption, expenditures for purchased energy, as well as energy intensities per value of production and per ton of steel. Energy Consumption 1998, 2002, and 2006 Table 1. Consumption of Energy for All Purposes (First Use) html Table 1 excel table 1. pdf table 1. Table 2. End Uses of Fuel Consumption html table 2. excel table 2. pdf table 2. Table 3. Offsite-Produced Fuel Consumption html table 3. excel table 3. pdf table 3. Table 4. Expenditures for Purchased Energy

311

Target Allocation Methodology for China's Provinces: Energy Intensity in the 12th FIve-Year Plan  

E-Print Network [OSTI]

energy intensity (energy per unit GDP) in the 11 th FYP. Forintensity (total energy per unit GDP)  industrial energyof total (primary) energy per unit GDP in fixed 2005 RMB [

Ohshita, Stephanie

2011-01-01T23:59:59.000Z

312

HIGH INTENSITY LOW-ENERGY POSITRON SOURCE AT JEFFERSON  

SciTech Connect (OSTI)

We present a novel concept of a low-energy e{sup +} source with projected intensity on the order of 10{sup 10} slow e{sup +}/s. The key components of this concept are a continuous wave e{sup -} beam, a rotating positron-production target, a synchronized raster/anti-raster, a transport channel, and extraction of e{sup +} into a field-free area through a magnetic plug for moderation in a cryogenic solid. Components were designed in the framework of GEANT4-based (G4beamline) Monte Carlo simulation and TOSCA magnetic field calculation codes. Experimental data to demonstrate the effectiveness of the magnetic plug is presented.

Serkan Golge, Bogdan Wojtsekhowski, Branislav Vlahovic

2012-07-01T23:59:59.000Z

313

Buildings Performance Database Overview  

Broader source: Energy.gov [DOE]

Buildings Performance Database Overview, from the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy.

314

The energy required to produce materials: constraints on energy-intensity improvements, parameters of demand  

Science Journals Connector (OSTI)

...data for embodied energy comes from Ashby-[10], for material prices for metals from the...10]. Plastic prices are for year 2011...2009. Figure 7. Energy intensity e versus...Natl Acad. Sci. USA 107, 20 905-20...an environmental history of the twentieth-century...

2013-01-01T23:59:59.000Z

315

Contributions of weather and fuel mix to recent declines in U.S. energy and carbon intensity  

E-Print Network [OSTI]

in a lower energy-and-carbon-intensive mix of economicintensity into fuel mix and energy intensity terms. Thisof fuel mix and weather on energy and carbon intensity using

Davis, W. Bart; Sanstad, Alan H.; Koomey, Jonathan G.

2002-01-01T23:59:59.000Z

316

Overview Of The Lake City, California Geothermal System | Open Energy  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Overview Of The Lake City, California Geothermal System Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Overview Of The Lake City, California Geothermal System Details Activities (1) Areas (1) Regions (0) Abstract: Following a spectacular mud volcano eruption in 1951, the Lake City geothermal system has been intermittently explored for 44 years. A discovery well was drilled 30 years ago. The geothermal system is associated with a two mile-long, north-south trending, abnormally complex section of the active Surprise Valley fault zone that has uplifted the

317

The National Energy Modeling System: An Overview 2000 - Overview of NEMS  

Gasoline and Diesel Fuel Update (EIA)

NEMS represents domestic energy markets by explicitly representing the economic decision making involved in the production, conversion, and consumption of energy products. Where possible, NEMS includes explicit representation of energy technologies and their characteristics. NEMS represents domestic energy markets by explicitly representing the economic decision making involved in the production, conversion, and consumption of energy products. Where possible, NEMS includes explicit representation of energy technologies and their characteristics. Since energy costs and availability and energy-consuming characteristics can vary widely across regions, considerable regional detail is included. Other details of production and consumption categories are represented to facilitate policy analysis and ensure the validity of the results. A summary of the detail provided in NEMS is shown below. Summary Table Major Assumptions Each module of NEMS embodies many assumptions and data to characterize the future production, conversion, or consumption of energy in the United States. Two major assumptions concern economic growth in the United States and world oil prices, as determined by world oil supply and demand.

318

File:09EnvironmentalOverview.pdf | Open Energy Information  

Open Energy Info (EERE)

9EnvironmentalOverview.pdf 9EnvironmentalOverview.pdf Jump to: navigation, search File File history File usage Metadata File:09EnvironmentalOverview.pdf Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Full resolution ‎(1,275 × 1,650 pixels, file size: 38 KB, MIME type: application/pdf) File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 13:54, 31 July 2013 Thumbnail for version as of 13:54, 31 July 2013 1,275 × 1,650 (38 KB) Abergfel (Talk | contribs) 13:33, 31 July 2013 Thumbnail for version as of 13:33, 31 July 2013 1,275 × 1,650 (38 KB) Abergfel (Talk | contribs) 13:32, 30 October 2012 Thumbnail for version as of 13:32, 30 October 2012 1,275 × 1,650 (63 KB) Dklein2012 (Talk | contribs)

319

File:03COCEncroachmentOverview.pdf | Open Energy Information  

Open Energy Info (EERE)

COCEncroachmentOverview.pdf COCEncroachmentOverview.pdf Jump to: navigation, search File File history File usage Metadata File:03COCEncroachmentOverview.pdf Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Full resolution ‎(1,275 × 1,650 pixels, file size: 31 KB, MIME type: application/pdf) File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 13:33, 10 July 2013 Thumbnail for version as of 13:33, 10 July 2013 1,275 × 1,650 (31 KB) Alevine (Talk | contribs) 16:59, 26 March 2013 Thumbnail for version as of 16:59, 26 March 2013 1,275 × 1,650 (48 KB) Dfitzger (Talk | contribs) 12:55, 12 February 2013 Thumbnail for version as of 12:55, 12 February 2013 1,275 × 1,650 (47 KB) Dfitzger (Talk | contribs)

320

File:06MTDOtherOverview.pdf | Open Energy Information  

Open Energy Info (EERE)

6MTDOtherOverview.pdf 6MTDOtherOverview.pdf Jump to: navigation, search File File history File usage Metadata File:06MTDOtherOverview.pdf Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Full resolution ‎(1,275 × 1,650 pixels, file size: 40 KB, MIME type: application/pdf) File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 14:06, 2 April 2013 Thumbnail for version as of 14:06, 2 April 2013 1,275 × 1,650 (40 KB) Dfitzger (Talk | contribs) 11:12, 1 October 2012 Thumbnail for version as of 11:12, 1 October 2012 1,275 × 1,650 (27 KB) Dklein2012 (Talk | contribs) You cannot overwrite this file. Edit this file using an external application (See the setup instructions for more information)

Note: This page contains sample records for the topic "intensities overview energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

File:06 - ConstructionPermitsOverview.pdf | Open Energy Information  

Open Energy Info (EERE)

ConstructionPermitsOverview.pdf ConstructionPermitsOverview.pdf Jump to: navigation, search File File history File usage Metadata File:06 - ConstructionPermitsOverview.pdf Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Go to page 1 2 Go! next page → next page → Full resolution ‎(1,275 × 1,650 pixels, file size: 70 KB, MIME type: application/pdf, 2 pages) File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 12:03, 12 July 2013 Thumbnail for version as of 12:03, 12 July 2013 1,275 × 1,650, 2 pages (70 KB) Apalazzo (Talk | contribs) 12:01, 12 July 2013 Thumbnail for version as of 12:01, 12 July 2013 1,275 × 1,650, 3 pages (115 KB) Apalazzo (Talk | contribs) 14:28, 30 October 2012 Thumbnail for version as of 14:28, 30 October 2012 1,275 × 1,650, 2 pages (83 KB) Dklein2012 (Talk | contribs)

322

File:01LandUseOverview.pdf | Open Energy Information  

Open Energy Info (EERE)

LandUseOverview.pdf LandUseOverview.pdf Jump to: navigation, search File File history File usage Metadata File:01LandUseOverview.pdf Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Full resolution ‎(1,275 × 1,650 pixels, file size: 42 KB, MIME type: application/pdf) File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 09:54, 28 March 2013 Thumbnail for version as of 09:54, 28 March 2013 1,275 × 1,650 (42 KB) Dfitzger (Talk | contribs) 14:23, 30 October 2012 Thumbnail for version as of 14:23, 30 October 2012 1,275 × 1,650 (41 KB) Dklein2012 (Talk | contribs) 15:55, 11 September 2012 Thumbnail for version as of 15:55, 11 September 2012 1,275 × 1,650 (34 KB) Djenne (Talk | contribs)

323

File:03AKCEncroachmentOverview.pdf | Open Energy Information  

Open Energy Info (EERE)

AKCEncroachmentOverview.pdf AKCEncroachmentOverview.pdf Jump to: navigation, search File File history File usage File:03AKCEncroachmentOverview.pdf Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Go to page 1 2 Go! next page → next page → Full resolution ‎(1,275 × 1,650 pixels, file size: 83 KB, MIME type: application/pdf, 2 pages) File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 18:09, 8 November 2012 Thumbnail for version as of 18:09, 8 November 2012 1,275 × 1,650, 2 pages (83 KB) Dfitzger (Talk | contribs) 11:03, 18 October 2012 Thumbnail for version as of 11:03, 18 October 2012 1,275 × 1,650 (42 KB) Jnorris (Talk | contribs) You cannot overwrite this file. Edit this file using an external application (See the setup

324

File:08 - TransmissionOverview.pdf | Open Energy Information  

Open Energy Info (EERE)

TransmissionOverview.pdf TransmissionOverview.pdf Jump to: navigation, search File File history File usage Metadata File:08 - TransmissionOverview.pdf Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Go to page 1 2 Go! next page → next page → Full resolution ‎(1,275 × 1,650 pixels, file size: 65 KB, MIME type: application/pdf, 2 pages) File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 12:20, 1 August 2013 Thumbnail for version as of 12:20, 1 August 2013 1,275 × 1,650, 2 pages (65 KB) Apalazzo (Talk | contribs) 15:43, 1 July 2013 Thumbnail for version as of 15:43, 1 July 2013 1,275 × 1,650, 2 pages (65 KB) Apalazzo (Talk | contribs) 17:37, 16 January 2013 Thumbnail for version as of 17:37, 16 January 2013 1,275 × 1,650, 2 pages (66 KB) Dfitzger (Talk | contribs)

325

File:05DrillingPermittingOverview.pdf | Open Energy Information  

Open Energy Info (EERE)

DrillingPermittingOverview.pdf DrillingPermittingOverview.pdf Jump to: navigation, search File File history File usage File:05DrillingPermittingOverview.pdf Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Full resolution ‎(1,275 × 1,650 pixels, file size: 54 KB, MIME type: application/pdf) File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 14:27, 30 October 2012 Thumbnail for version as of 14:27, 30 October 2012 1,275 × 1,650 (54 KB) Dklein2012 (Talk | contribs) 15:59, 25 October 2012 Thumbnail for version as of 15:59, 25 October 2012 1,275 × 1,650 (54 KB) Dklein2012 (Talk | contribs) 15:21, 11 September 2012 Thumbnail for version as of 15:21, 11 September 2012 1,275 × 1,650 (33 KB) Djenne (Talk | contribs) Reverted to version as of 19:08, 11 July 2012

326

Energy intensity and the energy mix: What works for the environment?  

Science Journals Connector (OSTI)

Abstract In the absence of carbon sequestration, mitigating carbon emissions can be achieved through a mix of two broad policy approaches: (i) reducing energy intensity by improving energy efficiency and conservation, and (ii) changing the fuel mix. This paper investigates the long-run relationship between energy intensity, the energy mix, and per capita carbon emissions; while controlling for the level of economic activity, the economic structure measured by the relative size of the manufacturing sector, and the differences in institutional qualities across countries. We aim to answer two particularly important policy questions. First, to what extent these policy approaches are effective in mitigating emissions in the long-run? Second, which institutional qualities significantly contribute to better long-run environmental performance? We use historical data for 131 countries in a heterogeneous panel framework for the period 19722010. We find that less dependence on fossil fuel and lower energy intensity reduce emissions in the long run. A goal of 10% reduction in CO2 levels in the long-run requires reducing the share of fossil fuel in total energy use by 11%, or reducing energy intensity by 13%. In addition, specific institutional qualities such as better corruption control and judiciary independence contribute to mitigating levels of emissions.

Amany A. El Anshasy; Marina-Selini Katsaiti

2014-01-01T23:59:59.000Z

327

Present and future perspectives for high energy density physics with intense heavy ion and laser beams  

E-Print Network [OSTI]

Present and future perspectives for high energy density physics with intense heavy ion and laser18, deliver an intense uranium beam that deposit about 1 kJ0g specific energy in solid matter. Using 2004! Abstract Intense heavy ion beams from the Gesellschaft für Schwerionenforschung ~GSI, Darmstadt

328

Physics of neutralization of intense high-energy ion beam pulses by electronsa...  

E-Print Network [OSTI]

Physics of neutralization of intense high-energy ion beam pulses by electronsa... I. D. Kaganovich beams,13 the physics of solar flares,14 high-intensity high- energy particle beam propagation Neutralization and focusing of intense charged particle beam pulses by electrons form the basis for a wide range

Kaganovich, Igor

329

ISSUANCE 2015-01-26: Energy Conservation Program: Energy Conservation Standards for High-Intensity Lamps, Notice to Reopen Comment Period  

Broader source: Energy.gov [DOE]

Energy Conservation Program: Energy Conservation Standards for High-Intensity Lamps, Notice to Reopen Comment Period

330

An Analysis of Residential Energy Intensity in Iran, A System Dynamics Approach  

E-Print Network [OSTI]

Abstract: substantial development of counties needs to use the resources in an efficient way. One indicator that shows the degree of efficient use of energy resources is energy intensity. Statistics show that Irans energy intensity was in a bad situation during past years and if this manner of using energy resources continues, it will get worse.In this study a system dynamics approach is used to model changes of energy intensity in residential sector in Iran. By implementation and simulation of this model we found some reasons of this problem in Iran. Then we tried to introduce some policies to make steady improvement in energy intensity in the future. Keywords:

Mohamed M. Jamshidi

331

ITP Energy Intensive Processes: Energy-Intensive Processes Portfolio: Addressing Key Energy Challenges Across U.S. Industry  

Broader source: Energy.gov [DOE]

Portfolio of projects focused on investments in high-impact, crosscutting opportunities that provide significant energy savings and carbon reductions across a broad industrial base

332

Careers in Energy 2013 Employer Overview Sept. 23-27, 2013 Job Fair Sept. 25, 5-8 PM  

E-Print Network [OSTI]

Careers in Energy 2013 Employer Overview Sept. 23-27, 2013 Job Fair Sept. 25, 5-8 PM Subject Bachelors, Masters, Doctorate Internship, Full Time, Student Jobs, Possible Research, Temp. ASRC Energy Not Required Internship #12;Careers in Energy 2013 Employer Overview Sept. 23-27, 2013 Job Fair Sept. 25, 5

Wagner, Diane

333

DOD Facilities Energy: FY 2009 Annual Energy Report Overview and Status on NDAA 2010 Studies  

Broader source: Energy.gov (indexed) [DOE]

Facilities Energy Facilities Energy FY 2009 Annual Energy Report: Overview and Status on NDAA 2010 Studies Brian J. Lally, P.E. Deputy Director, Facilities Energy and Utilities Privatization Deputy Under Secretary of Defense for Installations and Environment FUPWG: 14-15 April 2010 FY 09-08 Facilities Total Delivered Energy (Billions Btu) 2 5,000 30,000 55,000 80,000 105,000 130,000 155,000 180,000 205,000 DoD Army Air Force Dept Navy Other DoD FY 09 FY 08 FY 09 Site Delivered Energy By Type (Billions Btu) 3 0 10,000 20,000 30,000 40,000 50,000 60,000 70,000 80,000 90,000 100,000 Electricity Natural Gas Fuel Oil Coal Purchased Steam LPG/Propane & Renewables DoD Army Air Force Dept Navy Other DoD All Facilities Site Delivered Energy By Type (BTU) Electricity 46% Natural Gas 33% Fuel Oil 9% Coal 7% Purchased Steam

334

Table 22. Energy Intensity, Projected vs. Actual Projected  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Intensity, Projected vs. Actual Energy Intensity, Projected vs. Actual Projected (quadrillion Btu / real GDP in billion 2005 chained dollars) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 AEO 1994 11.2 11.1 11.0 10.8 10.7 10.5 10.4 10.3 10.1 10.0 9.9 9.8 9.7 9.6 9.5 9.4 9.3 9.2 AEO 1995 10.9 10.8 10.6 10.4 10.3 10.1 10.0 9.9 9.8 9.6 9.5 9.4 9.3 9.2 9.1 9.1 9.0 AEO 1996 10.7 10.6 10.4 10.3 10.1 10.0 9.8 9.7 9.6 9.5 9.4 9.3 9.2 9.2 9.1 9.0 8.9 AEO 1997 10.3 10.3 10.2 10.1 9.9 9.8 9.7 9.6 9.5 9.4 9.3 9.2 9.2 9.1 9.0 8.9 AEO 1998 10.1 10.1 10.1 10.0 9.9 9.8 9.7 9.6 9.5 9.5 9.4 9.3 9.2 9.1 9.0 AEO 1999 9.6 9.7 9.7 9.7 9.6 9.4 9.3 9.1 9.0 8.9 8.8 8.7 8.6 8.5 AEO 2000 9.4 9.4 9.3 9.2 9.1 9.0 8.9 8.8 8.7 8.7 8.6 8.5 8.4 AEO 2001 8.7 8.6 8.5 8.4 8.3 8.1 8.0 7.9 7.8 7.6 7.5 7.4

335

Lighting Group: Overview  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Overview Overview Overview of the Lighting Research Group The Lighting Research Group at Lawrence Berkeley National Laboratory performs research aimed at improving the energy efficiency of lighting systems in buildings and homes, throughout the State of California and across the Nation. The goal is to reduce lighting energy consumption by 50% over twenty years by improving the efficiency of light sources, and controlling and delivering illumination so that it is available, where and when needed, and at the required intensity. Research in the Lighting Group falls into three main areas: Sources and Ballasts, Light Distribution Systems and Controls and Communications. Click on a link below for more information about each of these research areas. Sources and Ballasts investigates next generation light sources, such as

336

Overview of Variable Renewable Energy Regulatory Issues: A Clean Energy Regulators Initiative Report  

SciTech Connect (OSTI)

This CERI report aims to provide an introductory overview of key regulatory issues associated with the deployment of renewable energy -- particularly variable renewable energy (VRE) sources such wind and solar power. The report draws upon the research and experiences from various international contexts, and identifies key ideas that have emerged from the growing body of VRE deployment experience and regulatory knowledge. The report assumes basic familiarity with regulatory concepts, and although it is not written for a technical audience, directs the reader to further reading when available. VRE deployment generates various regulatory issues: substantive, procedural, and public interest issues, and the report aims to provide an empirical and technical grounding for all three types of questions as appropriate.

Miller, M.; Cox, S.

2014-05-01T23:59:59.000Z

337

Could energy-intensive industries be powered by carbon-free electricity?  

Science Journals Connector (OSTI)

...Gutowski and Ernst Worrell Could energy-intensive industries be powered...MacKay, DJC . 2008 Sustainable energy-without the hot air. Cambridge...com . 3 Gallman, PG . 2011 Green alternatives and national energy strategy: the facts behind the...

2013-01-01T23:59:59.000Z

338

Determinants of energy intensity in industrialized countries : a comparison of China and India  

E-Print Network [OSTI]

The amount of final energy per unit of economic output (usually in terms of gross domestic product, or GDP), known as energy intensity, is often used to measure the effectiveness of energy use and the consumption patterns ...

Huang, Feiya

2006-01-01T23:59:59.000Z

339

The National Energy Modeling System: An Overview 1998 - Appendix:  

Gasoline and Diesel Fuel Update (EIA)

APPENDIX: APPENDIX: BIBLIOGRAPHY The National Energy Modeling System is documented in a series of model documentation reports, available by contacting the National Energy Information Center (202/586-8800). Energy Information Administration, National Energy Modeling System Integrating Module Documentation Report, DOE/EIA-M057(97) (Washington, DC, May 1997). Energy Information Administration, Model Documentation Report: Macroeconomic Activity Module (MAM) of the National Energy Modeling System, DOE/EIA-M065(97) (Washington, DC, December 1996). Energy Information Administration, Model Developer's Appendix to the Model Documentation Report: NEMS Macroeconomic Activity Module, DOE/EIA-M065A (Washington, DC, July 1994). Energy Information Administration, Documentation of the DRI Model of the

340

Overview of Demand Side Response | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

and Energy Officials Need to Know High Electric Demand Days: Clean Energy Strategies for Improving Air Quality Demand Response in U.S. Electricity Markets: Empirical Evidence...

Note: This page contains sample records for the topic "intensities overview energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Going beyond energy intensity to understand the energy metabolism of nations: The case of Argentina  

Science Journals Connector (OSTI)

The link between energy consumption and economic growth has been widely studied in the economic literature. Understanding this relationship is important from both an environmental and a socio-economic point of view, as energy consumption is crucial to economic activity and human environmental impact. This relevance is even higher for developing countries, since energy consumption per unit of output varies through the phases of development, increasing from an agricultural stage to an industrial one and then decreasing for certain service based economies. In the Argentinean case, the relevance of energy consumption to economic development seems to be particularly important. While energy intensity seems to exhibit a U-Shaped curve from 1990 to 2003 decreasing slightly after that year, total energy consumption increases along the period of analysis. Why does this happen? How can we relate this result with the sustainability debate? All these questions are very important due to Argentinean hydrocarbons dependence and due to the recent reduction in oil and natural gas reserves, which can lead to a lack of security of supply. In this paper we study Argentinean energy consumption pattern for the period 19902007, to discuss current and future energy and economic sustainability. To this purpose, we developed a conventional analysis, studying energy intensity, and a non conventional analysis, using the Multi-Scale Integrated Analysis of Societal and Ecosystem Metabolism (MuSIASEM) accounting methodology. Both methodologies show that the development process followed by Argentina has not been good enough to assure sustainability in the long term. Instead of improving energy use, energy intensity has increased. The current composition of its energy mix, and the recent economic crisis in Argentina, as well as its development path, are some of the possible explanations.

Marina Recalde; Jess Ramos-Martin

2012-01-01T23:59:59.000Z

342

CHEM 740: ENERGIES, INTENSITIES AND POTENTIALS: CONCEPTS AND TOOLS IN SPECTROSCOPY  

E-Print Network [OSTI]

1 CHEM 740: ENERGIES, INTENSITIES AND POTENTIALS: CONCEPTS AND TOOLS IN SPECTROSCOPY Fall 2001 Instructor: R.J. Le Roy Wednesday Evenings The patterns of energy levels and transition intensities observed energy curves or surfaces characterizing the forces between the component atoms. This course will discuss

Le Roy, Robert J.

343

Optimization Intensive Energy Harvesting Mahsan Rofouei, Mohammad Ali Ghodrat, Miodrag Potkonjak  

E-Print Network [OSTI]

Optimization Intensive Energy Harvesting Mahsan Rofouei, Mohammad Ali Ghodrat, Miodrag Potkonjak of primary limiting factors of MSs is their energy sensitivity. In order to overcome this limitation, we have developed an optimization intensive approach for energy harvesting. Our goal is to size and position

Potkonjak, Miodrag

344

Changes in Energy Intensity in the Manufacturing Sector 1985-1994  

U.S. Energy Information Administration (EIA) Indexed Site

Changes in Energy Intensity in the Manufacturing Sector 1985 - 1994 Full Report Introduction Summary of Data Data Tables Data Summaries All (20-39) Food (20) Textiles (22) Apparel (23) Lumber (24) Furniture (25) Paper (26) Printing (27) Chemicals (28) Refineries (29) Rubber (30) Stone (32) Metals (33) Fab. Metals (34) Machinery (35) El. Equip.(36) Instruments (38) Misc. (39) Appendices Survey Design Quality of Data Sector Description Nonobservation Errors Glossary Intensity Sites Commercial Residential Transportation International Manufacturing Energy Intensity Changes in Energy Intensity Click for Full Graph Manufacturing Energy Consumption Consumption of Energy Click for Full Graph Manufacturing Shipments History of Shipments Click for Full Graph The focus of this data report is on intensity of energy use, measured by energy consumption relative to constant dollar shipments of manufactured products -- commonly called energy intensities (EI) by energy analysts. This report explicitly relates changes in two energy measures of energy intensity to efficiency, while being cognizant that there are structural and behavioral effects enmeshed in those measures of energy efficiency. Reporting EI serves to continue the Intensity Change report series.

345

Annual Energy Outlook 2006 with Projections to 2030 - Overview  

Gasoline and Diesel Fuel Update (EIA)

Energy Demand Energy Demand Annual Energy Outlook 2006 with Projections to 2030 Average Energy Use per Person Increases Through 2030 Figure 31. Energy use per capita and per dollar of gross domestic product, 1980-2030 (index, 1980 = 1). Having problems, call our National Energy Information Center at 202-586-8800 for help. Figure data Population growth is a key determinant of total energy consumption, closely linked to rising demand for housing, services, and travel. Energy consumption per capita, controlling for population growth, shows the combined effect of other factors, such as economic growth and technology improvement. In the AEO2006 reference case, energy consumption per capita grows faster than it has in recent history (Figure 31), as a result of continued growth in disposable income.

346

The National Energy Modeling System: An Overview 1998 - Introduction  

Gasoline and Diesel Fuel Update (EIA)

INTRODUCTION INTRODUCTION blueball.gif (205 bytes) Purpose of NEMS blueball.gif (205 bytes) Representations of Energy Market blueball.gif (205 bytes) Technology Representation blueball.gif (205 bytes) External Availability The National Energy Modeling System (NEMS) is a computer-based, energy-economy modeling system of U.S. energy markets for the midterm period through 2020. NEMS projects the production, imports, conversion, consumption, and prices of energy, subject to assumptions on macroeconomic and financial factors, world energy markets, resource availability and costs, behavioral and technological choice criteria, cost and performance characteristics of energy technologies, and demographics. NEMS was designed and implemented by the Energy Information Administration (EIA) of the U.S.

347

Home Energy Score Program Overview for the American Gas Association...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

home, heating, cooling, and hot water, and we do a calculation using DOE-2, which is an energy simulation tool. We estimate how much energy that home will likely use under...

348

Overview of Ocean Wave and Tidal Energy Lingchuan Mei  

E-Print Network [OSTI]

resources such as solar and wind energy, waves and tides have the advantages of having much higher power stronger energy conversion devices lower in capital cost than for other renewable technologies and creating more job opportunities. For these major benefits the marine energy can provide us with, a great

Lavaei, Javad

349

The National Energy Modeling System: An Overview 2000 - Residential Demand  

Gasoline and Diesel Fuel Update (EIA)

residential demand module (RDM) forecasts energy consumption by Census division for seven marketed energy sources plus solar and geothermal energy. RDM is a structural model and its forecasts are built up from projections of the residential housing stock and of the energy-consuming equipment contained therein. The components of RDM and its interactions with the NEMS system are shown in Figure 5. NEMS provides forecasts of residential energy prices, population, and housing starts, which are used by RDM to develop forecasts of energy consumption by fuel and Census division. residential demand module (RDM) forecasts energy consumption by Census division for seven marketed energy sources plus solar and geothermal energy. RDM is a structural model and its forecasts are built up from projections of the residential housing stock and of the energy-consuming equipment contained therein. The components of RDM and its interactions with the NEMS system are shown in Figure 5. NEMS provides forecasts of residential energy prices, population, and housing starts, which are used by RDM to develop forecasts of energy consumption by fuel and Census division. Figure 5. Residential Demand Module Structure RDM incorporates the effects of four broadly-defined determinants of energy consumption: economic and demographic effects, structural effects, technology turnover and advancement effects, and energy market effects. Economic and demographic effects include the number, dwelling type (single-family, multi-family or mobile homes), occupants per household, and location of housing units. Structural effects include increasing average dwelling size and changes in the mix of desired end-use services provided by energy (new end uses and/or increasing penetration of current end uses, such as the increasing popularity of electronic equipment and computers). Technology effects include changes in the stock of installed equipment caused by normal turnover of old, worn out equipment with newer versions which tend to be more energy efficient, the integrated effects of equipment and building shell (insulation level) in new construction, and in the projected availability of even more energy-efficient equipment in the future. Energy market effects include the short-run effects of energy prices on energy demands, the longer-run effects of energy prices on the efficiency of purchased equipment and the efficiency of building shells, and limitations on minimum levels of efficiency imposed by legislated efficiency standards.

350

Reducing Industrial Energy Intensity in the Southeast Project Fact Sheet  

Broader source: Energy.gov [DOE]

This fact sheet contains details regarding a Save Energy Now industrial energy efficiency project that the U.S. Department of Energy funded in Mississippi.

351

The National Energy Modeling System: An Overview 2000 - appendix  

Gasoline and Diesel Fuel Update (EIA)

The National Energy Modeling System is documented in a series of model documentation reports, available on the EIA Web site at http://www.eia.doe. gov/bookshelf/docs.html or by contacting the National Energy Information Center (202/586-8800). The National Energy Modeling System is documented in a series of model documentation reports, available on the EIA Web site at http://www.eia.doe. gov/bookshelf/docs.html or by contacting the National Energy Information Center (202/586-8800). Energy Information Administration, Integrating Module of the National Energy Modeling System: Model Documentation DOE/EIA-M057(2000) (Washington, DC, December 1999). Energy Information Administration, Model Documentation Report: Macroeconomic Activity Module (MAM) of the National Energy Modeling System, DOE/EIA-M065(2000) (Washington, DC, December 1999). Energy Information Administration, Documentation of the DRI Model of the U.S. Economy, DOE/EIA- M061 (Washington, DC, December 1993). Energy Information Administration, NEMS International Energy Module: Model Documentation Report, DOE/EIA-M071(99) (Washington, DC, February 1999).

352

Utility Partnerships Program Overview (Brochure), Federal Energy Management Program (FEMP)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

agencies in meeting energy efficiency, agencies in meeting energy efficiency, renewable energy, and water conser- vation goals. Laws and Regulations The following legislative and execu- tive authorities support contracting for utility services: * Energy Policy Act (EPAct) of 1992 (42 U.S.C. Section 8256): Agencies are authorized and encouraged to participate in programs to increase energy efficiency and water con- servation or the management of electricity demand conducted by gas, water, or electric utilities and generally available to customers of such utilities. Agencies may accept any financial incentive, good, or service generally available from any utility. * 10 U.S.C. Section 2913: Outlines energy savings contracts and related activities, shared energy savings contracts, participation in gas or

353

Utility Partnerships Program Overview (Brochure), Federal Energy Management Program (FEMP)  

Broader source: Energy.gov (indexed) [DOE]

agencies in meeting energy efficiency, agencies in meeting energy efficiency, renewable energy, and water conser- vation goals. Laws and Regulations The following legislative and execu- tive authorities support contracting for utility services: * Energy Policy Act (EPAct) of 1992 (42 U.S.C. Section 8256): Agencies are authorized and encouraged to participate in programs to increase energy efficiency and water con- servation or the management of electricity demand conducted by gas, water, or electric utilities and generally available to customers of such utilities. Agencies may accept any financial incentive, good, or service generally available from any utility. * 10 U.S.C. Section 2913: Outlines energy savings contracts and related activities, shared energy savings contracts, participation in gas or

354

World Best Practice Energy Intensity Values for Selected Industrial Sectors  

E-Print Network [OSTI]

report describes best practices in energy efficiency for keyImproving Energy Efficiency of shape casting. Best practice

Worrell, Ernst; Price, Lynn; Neelis, Maarten; Galitsky, Christina; Zhou, Nan

2007-01-01T23:59:59.000Z

355

Hawaii Energy Resource Overviews. Volume 5. Social and economic impacts of geothermal development in Hawaii  

SciTech Connect (OSTI)

The overview statement of the socio-economic effects of developing geothermal energy in the State of Hawaii is presented. The following functions are presented: (1) identification of key social and economic issues, (2) inventory of all available pertinent data, (3) analysis and assessment of available data, and (4) identification of what additional information is required for adequate assessment.

Canon, P.

1980-06-01T23:59:59.000Z

356

North American Overview - Heat Pumps Role in Buildings Energy Efficiency Improvement  

SciTech Connect (OSTI)

A brief overview of the situation in North America regarding buildings energy use and the current and projected heat pump market is presented. R&D and deployment strategies for heat pumps, and the impacts of the housing market and efficiency regulations on the heating and cooling equipment market are summarized as well.

Baxter, Van D [ORNL; Bouza, Antonio [U.S. Department of Energy; Gigure, Daniel [Natural Resources Canada; Hosatte, Sophie [Natural Resources Canada

2011-01-01T23:59:59.000Z

357

TASK 40: Sustainable International Bio Energy Trade: securing supply Overview of the task  

E-Print Network [OSTI]

Page 1 TASK 40: Sustainable International Bio Energy Trade: securing supply and demand Overview-term security. Participating countries (status end 2005): · Belgium, Brazil, Canada, Finland, Netherlands, Utrecht University, the Netherlands Martijn Wagener (until October 2005), Alf van Weereld, Peter

358

Estimating material and energy intensities of urban areas  

E-Print Network [OSTI]

The objective of this thesis is to develop methods to estimate, analyze and visualize the resource intensity of urban areas. Understanding the resource consumption of the built environment is particularly relevant in cities ...

Quinn, David James, Ph. D. Massachusetts Institute of Technology

2012-01-01T23:59:59.000Z

359

The National Energy Modeling System: An Overview 1998 - Commercial Demand  

Gasoline and Diesel Fuel Update (EIA)

COMMERCIAL DEMAND MODULE COMMERCIAL DEMAND MODULE blueball.gif (205 bytes) Floorspace Submodule blueball.gif (205 bytes) Energy Service Demand Submodule blueball.gif (205 bytes) Equipment Choice Submodule blueball.gif (205 bytes) Energy Consumption Submodule The commercial demand module (CDM) forecasts energy consumption by Census division for eight marketed energy sources plus solar thermal energy. For the three major commercial sector fuels, electricity, natural gas and distillate oil, the CDM is a "structural" model and its forecasts are built up from projections of the commercial floorspace stock and of the energy-consuming equipment contained therein. For the remaining five marketed "minor fuels," simple econometric projections are made. The commercial sector encompasses business establishments that are not

360

The National Energy Modeling System: An Overview 2000 - Macroeconomic  

Gasoline and Diesel Fuel Update (EIA)

Macroeconomic assessment at EIA involves several modes of analysis. The first type of analysis, used in forecasting the Annual Energy Outlook where energy prices change, uses kernel regression and response surface techniques to mimic the response of larger macroeconomic and industrial models. This mode of analysis requires a given economic baseline and then calculates the economic impacts of changing energy prices, calculated from the chosen growth path. The economic growth cases are derived from the larger core models and can reflect either high, low, or reference case growth assumptions. Analyzing economic impacts from energy price changes uses the macroeconomic activity module (MAM) within NEMS and provides a subset of the macroeconomic variables available in the larger core models. The composition of the subset is determined by the other energy modules in NEMS, as they use various macroeconomic concepts as assumptions to their particular energy model.

Note: This page contains sample records for the topic "intensities overview energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Waste-to-Energy and Fuel Cell Technologies Overview  

Broader source: Energy.gov [DOE]

Presentation by Robert Remick, NREL, at the DOE-DOD Waste-to-Energy Using Fuel Cells Workshop held Jan. 13, 2011

362

Overview of Pump Systems Matter | Department of Energy  

Energy Savers [EERE]

Pump Systems Matter Pump Systems Matter (PSM) is a non-profit (501(c) 3) educational foundation, established to educate the marketplace and promote pumping systems energy...

363

Overview on Energy Storage Projects at ARPA-E  

Broader source: Energy.gov (indexed) [DOE]

Dane Boysen - Program Director (BEEST, SBIR) Ilan Gur - Program Director (AMPED) Mark Johnson, Dane Boysen, John Lemmon (SBIR) EV Everywhere Energy Storage Workshop Chicago, IL...

364

1.0 Motivation............................................................................................................2 1.1Overview of Energy Supply and Demand in the 21st  

E-Print Network [OSTI]

............................................................................................................2 1.1Overview of Energy Supply and Demand in the 21st Century..........................2 1.2 UK Energy ...................................................................................24 6.6 Correlation between Wind Strength and Demand for Electricity..................24 6

365

Energy and Financial Markets Overview: Crude Oil Price Formation  

U.S. Energy Information Administration (EIA) Indexed Site

John Maples John Maples 2011 EIA Energy Conference April 26, 2011 Transportation and the Environment Light-duty vehicle combined Corporate Average Fuel Economy Standards (CAFE) in three cases, 2005-2035 2 0 20 40 60 80 2005 2010 2015 2020 2025 2030 2035 miles per gallon Source: EIA, Annual Energy Outlook 2011 CAFE6 CAFE3 Reference John Maples, April 26, 2011 Light-duty vehicle delivered energy consumption and total transportation carbon dioxide emissions, 2005-2035 3 0 5 10 15 20 2005 2010 2015 2020 2025 2030 2035 Reference CAFE3 CAFE6 quadrillion Btu 0 500 1000 1500 2000 2500 2005 2010 2015 2020 2025 2030 2035 million metric tons carbon dioxide equivalent Source: EIA, Annual Energy Outlook 2011 John Maples, April 26, 2011 Distribution of new light-duty vehicle sales by price, 2010 and 2025 (2009$) 4 Source: EIA, Annual Energy Outlook 2011

366

The National Energy Modeling System: An Overview 1998 - Residential Demand  

Gasoline and Diesel Fuel Update (EIA)

RESIDENTIAL DEMAND MODULE RESIDENTIAL DEMAND MODULE blueball.gif (205 bytes) Housing Stock Submodule blueball.gif (205 bytes) Appliance Stock Submodule blueball.gif (205 bytes) Technology Choice Submodule blueball.gif (205 bytes) Shell Integrity Submodule blueball.gif (205 bytes) Fuel Consumption Submodule The residential demand module (RDM) forecasts energy consumption by Census division for seven marketed energy sources plus solar thermal and geothermal energy. The RDM is a structural model and its forecasts are built up from projections of the residential housing stock and of the energy-consuming equipment contained therein. The components of the RDM and its interactions with the NEMS system are shown in Figure 5. NEMS provides forecasts of residential energy prices, population, and housing starts,

367

Improved Product Energy Intensity Benchmarking Metrics for Thermally Concentrated Food Products  

Science Journals Connector (OSTI)

Improved Product Energy Intensity Benchmarking Metrics for Thermally Concentrated Food Products ... Sogut, Z.; Ilten, N.; Oktay, Z.Energetic and exergetic performance evaluation of the quadruple-effect evaporator unit in tomato paste evaporation Energy 2010, 35, 3821 3826 ...

Michael E. Walker; Craig S. Arnold; David J. Lettieri; Margot J. Hutchins; Eric Masanet

2014-09-12T23:59:59.000Z

368

The National Energy Modeling System: An Overview 2000 - Industrial Demand  

Gasoline and Diesel Fuel Update (EIA)

industrial demand module (IDM) forecasts energy consumption for fuels and feedstocks for nine manufacturing industries and six nonmanufactur- ing industries, subject to delivered prices of energy and macroeconomic variables representing the value of output for each industry. The module includes industrial cogeneration of electricity that is either used in the industrial sector or sold to the electricity grid. The IDM structure is shown in Figure 7. industrial demand module (IDM) forecasts energy consumption for fuels and feedstocks for nine manufacturing industries and six nonmanufactur- ing industries, subject to delivered prices of energy and macroeconomic variables representing the value of output for each industry. The module includes industrial cogeneration of electricity that is either used in the industrial sector or sold to the electricity grid. The IDM structure is shown in Figure 7. Figure 7. Industrial Demand Module Structure Industrial energy demand is projected as a combination of “bottom up” characterizations of the energy-using technology and “top down” econometric estimates of behavior. The influence of energy prices on industrial energy consumption is modeled in terms of the efficiency of use of existing capital, the efficiency of new capital acquisitions, and the mix of fuels utilized, given existing capital stocks. Energy conservation from technological change is represented over time by trend-based “technology possibility curves.” These curves represent the aggregate efficiency of all new technologies that are likely to penetrate the future markets as well as the aggregate improvement in efficiency of 1994 technology.

369

Geothermal energy program summary: Volume 1: Overview Fiscal Year 1988  

SciTech Connect (OSTI)

Geothermal energy is a here-and-now technology for use with dry steam resources and high-quality hydrothermal liquids. These resources are supplying about 6% of all electricity used in California. However, the competitiveness of power generation using lower quality hydrothermal fluids, geopressured brines, hot dry rock, and magma still depends on the technology improvements sought by the DOE Geothermal Energy R and D Program. The successful outcome of the R and D initiatives will serve to benefit the US public in a number of ways. First, if a substantial portion of our geothermal resources can be used economically, they will add a very large source of secure, indigenous energy to the nation's energy supply. In addition, geothermal plants can be brought on line quickly in case of a national energy emergency. Geothermal energy is also a highly reliable resource, with very high plant availability. For example, new dry steam plants at The Geysers are operable over 99% of the time, and the small flash plant in Hawaii, only the second in the United States, has an availability factor of 98%. Geothermal plants also offer a viable baseload alternative to fossil and nuclear plants -- they are on line 24 hours a day, unaffected by diurnal or seasonal variations. The hydrothermal power plants with modern emission control technology have proved to have minimal environmental impact. The results to date with geopressured and hot dry rock resources suggest that they, too, can be operated so as to reduce environmental effects to well within the limits of acceptability. Preliminary studies on magma are also encouraging. In summary, the character and potential of geothermal energy, together with the accomplishments of DOE's Geothermal R and D Program, ensure that this huge energy resource will play a major role in future US energy markets. 7 figs.

Not Available

1989-02-01T23:59:59.000Z

370

Optically Interconnected Data Center Architecture for Bandwidth Intensive Energy Efficient Networking  

E-Print Network [OSTI]

Optically Interconnected Data Center Architecture for Bandwidth Intensive Energy Efficient) 854 2900, e-mail: howard@ee.columbia.edu ABSTRACT The relentless rise of data-intensive cloud will either be prohibitively costly, overly complex, or result in unsustainable energy requirements. Network

Bergman, Keren

371

Mapping the Energy Distribution of SERRS Hot Spots from Anti-Stokes to Stokes Intensity Ratios  

E-Print Network [OSTI]

Mapping the Energy Distribution of SERRS Hot Spots from Anti- Stokes to Stokes Intensity Ratios in the anti-Stokes to Stokes intensity ratios in single-molecule surface-enhanced resonance Raman scattering-enhanced Raman scattering. Moreover, a methodology to estimate the distribution of resonance energies

Brolo, Alexandre G.

372

World Best Practice Energy Intensity Values for Selected Industrial Sectors  

E-Print Network [OSTI]

and 30% of total energy consumption in China. During the30 kWh/ADt 54 for total energy consumption of 11.2 GJ/ADt (leads to a total overall energy consumption value of 11.1

Worrell, Ernst; Price, Lynn; Neelis, Maarten; Galitsky, Christina; Zhou, Nan

2007-01-01T23:59:59.000Z

373

EFRC Overview | University of Texas Energy Frontier Research...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

About the EFRC The Center for Nano- and Molecular Science and Technology (CNM) at The University of Texas at Austin is the site of an Energy Frontier Research Center (EFRC) funded...

374

An Overview of the Building Energy Retrofit Research Program  

E-Print Network [OSTI]

Ridge National Labora- tory (ORNL) and multi-family (MF) research led by Lawrence Berkeley Laboratory. Other participants include Princeton University, the Solar Energy Research Institute, the Alliance to Save Energy (ASE), and Pacific Northwest.... The ORNL experiments on radiant barriers were conducted in three unoccupied houses. One was used as the control house with no barrier, while the other two houses were used to test two different methods for installing radiant barriers. In one house...

Mixon, W. R.

1987-01-01T23:59:59.000Z

375

Modelling of CO2 content in the atmosphere until 2300: influence of energy intensity of gross domestic product and carbon intensity of energy  

Science Journals Connector (OSTI)

The study provides a model of CO2 content in the atmosphere based on the global carbon cycle and the Kaya identity. The influences of: 1) energy intensity of GDP; 2) carbon intensity of energy on CO2 trajectories are given under four scenarios. The results from the most optimistic and technologically challenging scenario show that the atmospheric CO2 concentration can stabilise at 610 ppmv. It is also shown that the annual growth rates of atmospheric CO2 peak for all the scenarios before 2100 due to the expected world population peak in 2075 and the large share of fossil fuel energy.

Wojciech M. Budzianowski

2013-01-01T23:59:59.000Z

376

The National Energy Modeling System: An Overview 2000 - Introduction  

Gasoline and Diesel Fuel Update (EIA)

A part of the integrating module, the carbon emissions submodule (CEM), computes the carbon emissions from the combustion of energy. The coefficients for carbon emissions are derived from Energy Information Administration, Emissions of Greenhouse Gases in the United States 1998,14 published in October 1999. The coefficients account for the fact that some fossil fuels are used for nonfuel purposes, such as feedstocks, and thus the carbon in the fuel is sequestered in the end product. A part of the integrating module, the carbon emissions submodule (CEM), computes the carbon emissions from the combustion of energy. The coefficients for carbon emissions are derived from Energy Information Administration, Emissions of Greenhouse Gases in the United States 1998,14 published in October 1999. The coefficients account for the fact that some fossil fuels are used for nonfuel purposes, such as feedstocks, and thus the carbon in the fuel is sequestered in the end product. CEM also allows for several carbon policy evaluation options to be analyzed within NEMS. Although these policy options are not assumed in the Annual Energy Outlook 2000, the options have been used in special analyses to simulate potential market-based approaches to meet national carbon emission objectives. The policy options implemented in CEM are as follows:

377

State energy price system. Volume I: overview and technical documentation  

SciTech Connect (OSTI)

This study utilizes existing data sources and previous analyses of state-level energy prices to develop consistent state-level energy prices series by fuel type and by end-use sector. The fuels are electricity, natural gas, coal, distillate fuel oil, motor gasoline, diesel, kerosene, jet fuel, residual fuel, and liquefied petroleum gas. The end-use sectors are residential, commercial, industrial, transportation, and electric utility. Based upon an evaluation of existing data sources, recommendations were formulated on the feasible approaches for developing a consistent state energy price series. The data series were compiled based upon the approaches approved after a formal EIA review. Detailed documentation was provided, including annual updating procedures. Recommendations were formulated for future improvements in the collection of data or in data processing. Generally, the geographical coverage includes the 50 states and the District of Columbia. Information on state-level energy use was generally taken from the State Energy Data System (SEDS). Corresponding average US prices are also developed using volumes reported in SEDS. To the extent possible, the prices developed are quantity weighted average retail prices. Both a Btu price series and a physical unit price series are developed for each fuel. The period covered by the data series is 1970 through 1980 for most fuels, though prices for electricity and natural gas extend back to 1960. (PSB)

Fang, J.M.; Nieves, L.A.; Sherman, K.L.; Hood, L.J.

1982-06-01T23:59:59.000Z

378

The National Energy Modeling System: An Overview 1998 - Carbon Emissions  

Gasoline and Diesel Fuel Update (EIA)

CARBON EMISSIONS CARBON EMISSIONS A part of the integrating module, the carbon emissions submodule (CEM) computes the carbon emissions due to the combustion of energy. The coefficients for carbon emissions are derived from Energy Information Administration, Emissions of Greenhouse Gases in the United States 1996, published in October 1997. The calculations account for the fact that some fossil fuels are used for nonfuel purposes, such as feedstocks, and thus the carbon in the fuel is sequestered in the end product. CEM also allows for several carbon policy evaluation options to be imposed within NEMS. Although none of the policy options are assumed in the Annual Energy Outlook 1998, the options can be used in special analyses to simulate potential market-based approaches to meet national carbon emission

379

PNNL Data-Intensive Computing for a Smarter Energy Grid  

SciTech Connect (OSTI)

The Middleware for Data-Intensive Computing (MeDICi) Integration Framework, an integrated platform to solve data analysis and processing needs, supports PNNL research on the U.S. electric power grid. MeDICi is enabling development of visualizations of grid operations and vulnerabilities, with goal of near real-time analysis to aid operators in preventing and mitigating grid failures.

Carol Imhoff; Zhenyu (Henry) Huang [Henry; Daniel Chavarria

2009-11-01T23:59:59.000Z

380

PNNL Data-Intensive Computing for a Smarter Energy Grid  

ScienceCinema (OSTI)

The Middleware for Data-Intensive Computing (MeDICi) Integration Framework, an integrated platform to solve data analysis and processing needs, supports PNNL research on the U.S. electric power grid. MeDICi is enabling development of visualizations of grid operations and vulnerabilities, with goal of near real-time analysis to aid operators in preventing and mitigating grid failures.

Carol Imhoff; Zhenyu (Henry) Huang; Daniel Chavarria

2012-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "intensities overview energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Costs of Generating Electrical Energy 1.0 Overview  

E-Print Network [OSTI]

uranium (3.5% U-235) in a light water reactor has an energy content of 960MWhr/kg [2], or multiplying by 3.41 MBTU/MWhr, we get 3274MBTU/kg. The total cost of bringing uranium to the fuel rods of a nuclear power plant, considering mining, transportation, conversion1 , enrichment, and fabrication, has been estimated

McCalley, James D.

382

Institutions in European and Asian energy markets: A methodological overview  

Science Journals Connector (OSTI)

Abstract This article introduces a methodological framework to study institutions in European and Asian energy markets with a comparative case study on the EU and east Asia. A distinction is made between informal and three types of formal institutions; and their transaction cost reducing, order creating and ecological/climatic functions. The operation of energy markets is explained through the structure of institutions, their types and functions. It is found that order-creating institutions guarantee enough stability, (mutual) trust and solidarity among EU Member States to support the competitive markets institution and supranational formal institutions as the underpinnings of trade in the internal energy market, which nevertheless retains some corporatist features. In the east Asian markets the nature of order-creating institutions sovereignty, energy diplomacy and great power management prevents the emergence of supranational formal institutions and a shared idea of trade. The prevailing structure has a large number of sub-regional organisations with overlapping tasks and few powers. In both markets the functions of institutions signify more than their number; transaction cost reducing institutions are dependent on order-creating institutions, while both of these functions are better realised on the regional level than ecological/climatic functions; ultimately informal institutions are most influential.

Pami Aalto

2014-01-01T23:59:59.000Z

383

1 - Energy storage devicesa general overview  

Science Journals Connector (OSTI)

Abstract This chapter provides a quick and essential revision on simple fundamentals applicable to energy storage devices (ESDs). Device equivalent circuits, time constants, and requirements for maximum power transfer are discussed with an introduction to Ragone plots. Different types of \\{ESDs\\} are introduced in relation to state of the art.

Nihal Kularatna

2015-01-01T23:59:59.000Z

384

A Comparison of Iron and Steel Production Energy Use and Energy Intensity in China and the U.S.  

E-Print Network [OSTI]

to be world average energy intensities for the production ofWorld Steel Association (worldsteel) since imported products can be from different countries and will thus vary in their energy consumption during production

Hasanbeigi, Ali

2012-01-01T23:59:59.000Z

385

DRAFT DO NOT QUOTE Energy Prices and Energy Intensity in China: A Structural Decomposition Analysis and Econometrics Study  

E-Print Network [OSTI]

Since the start of its economic reforms in 1978, China's energy prices relative to other prices have increased. At the same time, its energy intensity, i.e., energy consumption per unit of Gross Domestic Product (GDP), has declined dramatically, by about 70%, in spite of increases in energy consumption. Is this just a coincidence? Or does a systematic relationship exist between energy prices and energy intensity? In this study, we examine whether and how Chinas energy price changes affect its energy intensity trend during 1980-2002 at a macro level. We conduct the research by using two complementary economic models: the input-output-based structural decomposition analysis (SDA) and econometric regression models and by using a decomposition method of own-price elasticity of energy intensity. Findings include a negative own-price elasticity of energy intensity, a price-inducement effect on energyefficiency improvement, and a greater sensitivity (in terms of the reaction of energy intensity towards changes in energy prices) of the industry sector, compared to the overall economy. Analysts can use these results as a starting point for China's energy and carbon

Xiaoyu Shi; Karen R. Polenske; Xiaoyu Shi; Karen R. Polenske

2005-01-01T23:59:59.000Z

386

The National Energy Modeling System: An Overview 2000 - International  

Gasoline and Diesel Fuel Update (EIA)

international energy module (IEM) consists of four submodules (Figure 4) that perform the following functions: international energy module (IEM) consists of four submodules (Figure 4) that perform the following functions: world oil market submodule—calculates the average annual world oil price (imported refiner acquisition cost) that is consistent with worldwide petroleum demand and supply availability crude oil supply submodule—provides im- ported crude oil supply curves for five crude oil quality classes petroleum products supply submodule—pro- vides imported refined product supply curves for eleven types of refined products oxygenates supply submodule—provides imported oxygenates supply curves for methyl tertiary butyl ether (MTBE) and methanol. Figure 4. International Energy Module Structure The world oil price that is generated by the world oil market submodule is used by all the modules of NEMS as well as the other submodules of IEM. The import supply curves for crude oils, refined products, and oxygenates are used by the petroleum market module.

387

Energy Production, Frictional Dissipation, and Maximum Intensity of a Numerically Simulated Tropical Cyclone  

E-Print Network [OSTI]

0 Energy Production, Frictional Dissipation, and Maximum Intensity of a Numerically Simulated) viewed as a heat engine converts heat energy extracted from the ocean to kinetic energy of the TC, which is eventually dissipated due to surface friction. Since the energy production rate is a linear function while

Wang, Yuqing

388

Energy Production, Frictional Dissipation, and Maximum Intensity of a Numerically Simulated Tropical Cyclone*  

E-Print Network [OSTI]

Energy Production, Frictional Dissipation, and Maximum Intensity of a Numerically Simulated as a heat engine converts heat energy extracted from the ocean into the kinetic energy of the TC, which is eventually dissipated due to surface friction. Since the energy production rate is a linear function while

Wang, Yuqing

389

Systems Overview  

Broader source: Energy.gov (indexed) [DOE]

Partnership Program Partnership Program Presented to the Nuclear Energy Advisory Committee Paul Lisowski Deputy Assistant Secretary for Fuel Cycle Technology/GNEP Deputy Program Manager Office of Nuclear Energy U.S. Department of Energy April 21, 2008 April 21, 2007 NEAC GNEP Overview 2 Outline The Global Nuclear Energy Partnership Program - GNEP Program overview - Major Program Accomplishments - Summary Industry Input - Dan Stout - DOE Research and Development Program - Phillip Finck INL International Program - Ed McGinnis - DOE April 21, 2007 NEAC GNEP Overview 3 World energy demand is growing substantially, especially in developing nations World energy consumption is predicted by the Energy Information Administration to increase by 57 percent through 2030. Total energy consumption in non-

390

Energy End-Use Intensities in Commercial Buildings 1989 data -- Publication  

U.S. Energy Information Administration (EIA) Indexed Site

End-Use Intensities Executive Summary > Publication and Tables End-Use Intensities Executive Summary > Publication and Tables Publication and Tables Energy End Uses Ranked by Energy Consumption, 1989 Figure on Energy End Uses Ranked by Energy Consumption, 1989 Source: Energy Information Administration, Office of Energy Markets and End Use, Forms EIA-871A through F of the 1989 Commercial Buildings Energy Consumption Survey. Divider Bar To View and/or Print Reports (requires Adobe Acrobat Reader) - Download Adobe Acrobat Reader If you experience any difficulties, visit our Technical Frequently Asked Questions. Divider Bar You have the option of downloading the entire report or selected sections of the report. Full Report - Energy End-Use Intensities in Commercial Buildings (1989 data) (file size .89 MB) pages: 140

391

The National Energy Modeling System: An Overview 2000 - Transportation  

Gasoline and Diesel Fuel Update (EIA)

transportation demand module (TRAN) forecasts the consumption of transportation sector fuels by transportation mode, including the use of renewables and alternative fuels, subject to delivered prices of energy fuels and macroeconomic variables, including disposable personal income, gross domestic product, level of imports and exports, industrial output, new car and light truck sales, and population. The structure of the module is shown in Figure 8. transportation demand module (TRAN) forecasts the consumption of transportation sector fuels by transportation mode, including the use of renewables and alternative fuels, subject to delivered prices of energy fuels and macroeconomic variables, including disposable personal income, gross domestic product, level of imports and exports, industrial output, new car and light truck sales, and population. The structure of the module is shown in Figure 8. Figure 8. Transportation Demand Module Structure NEMS projections of future fuel prices influence the fuel efficiency, vehicle-miles traveled, and alternative-fuel vehicle (AFV) market penetration for the current fleet of vehicles. Alternative-fuel shares are projected on the basis of a multinomial logit vehicle attribute model, subject to State and Federal government mandates.

392

The National Energy Modeling System: An Overview 2000 - Renewable Fuels  

Gasoline and Diesel Fuel Update (EIA)

renewable fuels module (RFM) consists of five submodules that represent the various types of renewable energy technologies used for grid-connected U.S. electricity supply (Figure 11). Since most renewables (wind, solar, and geothermal) are used to generate electricity, the interaction with the electricity market module (EMM) is important for modeling grid-connected renewable-electric applications. The penetration of grid-connected generation technologies, with the exception of municipal solid waste, is determined by EMM. Hydropower is included in EMM directly. renewable fuels module (RFM) consists of five submodules that represent the various types of renewable energy technologies used for grid-connected U.S. electricity supply (Figure 11). Since most renewables (wind, solar, and geothermal) are used to generate electricity, the interaction with the electricity market module (EMM) is important for modeling grid-connected renewable-electric applications. The penetration of grid-connected generation technologies, with the exception of municipal solid waste, is determined by EMM. Hydropower is included in EMM directly. Figure 11. Renewable Fuels Module Structure Each submodule of RFM is solved independently of the rest. Because variable operation and maintenance costs for renewable technologies are lower than for any other major generating technology and they produce almost no air pollution, all available renewable generating capacity is dispatched first by EMM.

393

The Borrower's Guide to Financing Solar Energy Systems: A Federal Overview: Second Edition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

FINANCING FINANCING SOLAR ENERGY SYSTEMS S E C O N D E D I T I O N PREPARED BY THE U.S. DEPARTMENT OF ENERGY T H E B O R R O W E R ' S G U I D E T O a federal overview C O N T E N T S Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Quick Guide to Financing Programs . . . . . . . . . . 4 About Today's Solar Systems . . . . . . . . . . . . . . . . 7 Photovoltaic Power Systems . . . . . . . . . . . . . . . . . . 7 Solar Thermal Systems . . . . . . . . . . . . . . . . . . . . . . 8 About the Financing Programs . . . . . . . . . . . . . 10 Fannie Mae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Federal Home Mortgage Loan Corporation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 U.S. Department of Agriculture . . . . . . . . . . . . . . 14 U.S. Department of Energy

394

Policies for eliminating low-efficiency production capacities and improving energy efficiency of energy-intensive industries in China  

Science Journals Connector (OSTI)

Abstract China faced the greatest challenge in balancing its economic growth, energy and resource security as well as environmental pollution. The energy-intensive industries, which used to be the major force driving China?s economic growth, had seriously exhausted the countries? natural resources and energy, and at the same time polluted the environment because of the severe surplus of low-efficiency production capacities. As a result, the Chinese government had initiated multiple economic and administrative policies to eliminate these low-efficiency production capacities intended to improve the energy efficiency of energy-intensive industries. These policies are summarized in this paper, along with export tax rebating rate, resource tax, administrative audit and approvals, differential electric power pricing and shutting down the low-efficiency production capacities. The paper also evaluates the effects of these policies by analyzing several key indicators about the energy-intensive industries, including fixed asset investment growth rate, energy-intensity of industrial added-value, waste gas emission-intensity of industrial added-value. The VALDEX methodology is selected to examine the improving trends of energy-efficiency for energy-intensive industries. The analyzing results show that firstly the development of low-efficiency capacities tends to be more sensitive to the policies, so the policies that China had enacted really exert very important effects on improving the energy-efficiency of energy-intensive industries. However, the effects of economic policies seem more faster and obvious than the fiscal policies. Besides, the results also show that polices which are designed to reserve energy may not necessarily exert the same effects on reducing emissions. There is still large room for improving the energy efficiency of energy-intensive industries, substantial improvement still needs to be done for current policies system. Some suggestions for future work are provided.

Li Li; Jianjun Wang; Zhongfu Tan; Xinquan Ge; Jian Zhang; Xiaozhe Yun

2014-01-01T23:59:59.000Z

395

The National Energy Modeling System: An Overview 1998 - Transportation  

Gasoline and Diesel Fuel Update (EIA)

TRANSPORTATION DEMAND MODULE TRANSPORTATION DEMAND MODULE blueball.gif (205 bytes) Fuel Economy Submodule blueball.gif (205 bytes) Regional Sales Submodule blueball.gif (205 bytes) Alternative-Fuel Vehicle Submodule blueball.gif (205 bytes) Light-Duty Vehicle Stock Submodule blueball.gif (205 bytes) Vehicle-Miles Traveled (VMT) Submodule blueball.gif (205 bytes) Light-Duty Vehicle Commercial Fleet Submodule blueball.gif (205 bytes) Commercial Light Truck Submodule blueball.gif (205 bytes) Air Travel Demand Submodule blueball.gif (205 bytes) Aircraft Fleet Efficiency Submodule blueball.gif (205 bytes) Freight Transport Submodule blueball.gif (205 bytes) Miscellaneous Energy Use Submodule The transportation demand module (TRAN) forecasts the consumption of transportation sector fuels by transportation mode, including the use of

396

The National Energy Modeling System: An Overview 2000 - Petroleum Market  

Gasoline and Diesel Fuel Update (EIA)

petroleum market module (PMM) represents domestic refinery operations and the marketing of petroleum products to consumption regions. PMM solves for petroleum product prices, crude oil and product import activity (in conjunction with the international energy module and the oil and gas supply module), and domestic refinery capacity expansion and fuel consumption. The solution is derived, satisfying the demand for petroleum products and incorporating the prices for raw material inputs and imported petroleum products, the costs of investment, and the domestic production of crude oil and natural gas liquids. The relationship of PMM to other NEMS modules is illustrated in Figure 17. petroleum market module (PMM) represents domestic refinery operations and the marketing of petroleum products to consumption regions. PMM solves for petroleum product prices, crude oil and product import activity (in conjunction with the international energy module and the oil and gas supply module), and domestic refinery capacity expansion and fuel consumption. The solution is derived, satisfying the demand for petroleum products and incorporating the prices for raw material inputs and imported petroleum products, the costs of investment, and the domestic production of crude oil and natural gas liquids. The relationship of PMM to other NEMS modules is illustrated in Figure 17. Figure 17. Petroleum Market Module Structure PMM is a regional, linear-programming representation of the U.S. petroleum market. Refining operations are represented by a three-region linear programming formulation of the five Petroleum Administration for Defense Districts (PADDs) (Figure 18). PADDs I and V are each treated as single regions, while PADDs II, III, and IV are aggregated into one region. Each region is considered as a single firm where more than 30 distinct refinery processes are modeled. Refining capacity is allowed to expand in each region, but the model does not distinguish between additions to existing refineries or the building of new facilities. Investment criteria are developed exogenously, although the decision to invest is endogenous.

397

World Best Practice Energy Intensity Values for Selected Industrial Sectors  

E-Print Network [OSTI]

Heat of reaction Steam, heating and losses Fractionation and compression Separation Total Note: Primary energy includes electricity generation, transmission, and distribution losses

Worrell, Ernst; Price, Lynn; Neelis, Maarten; Galitsky, Christina; Zhou, Nan

2007-01-01T23:59:59.000Z

398

ITP Energy Intensive Processes: Improved Heat Recovery in Biomass...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

INDUSTRIAL TECHNOLOGIES PROGRAM Improved Heat Recovery in Biomass-Fired Boilers Reducing Superheater Corrosion to Enable Maximum Energy Effi ciency This project will develop...

399

The structure and intensity of energy use: Trends in five OECD nations  

SciTech Connect (OSTI)

This paper examines trends in the structure and intensity of final energy demand in five OECD nations between 1973 and 1988. Our focus is on primary energy use, which weights fuels by their thermal content and multiplies district heat and electricity by factors of 1.15 and 3.24 to approximate the losses that occur in the conversion and distribution of these energy carriers. Growth in the level of energy-using activities, given 1973 energy intensities (energy use per unit of activity), would have raised primary energy use by 47% in the US, 44% in Norway, 33% in Denmark, 37% in West Germany, and 54% in Japan. Reductions in end-use energy intensities, given 1973 activity levels, would have reduced primary energy use by 20% in the US, 3% in Norway, 20% in Denmark, 17% in West Germany, and 14% in Japan. Growth in national income parallelled increases in a weighted index of energy-using activities in the US, West Germany, and Denmark but substantially outstripped activity growth in Norway and Japan. We conclude that changes in the structure of a nation's economy may lead to substantial changes in its energy/GDP ratio that are unrelated to changes in the technical efficiency of energy utilization. Similarly, changes in energy intensities may be greater or less than the aggregate change in the energy/GDP ratio of a given country, a further warning that this ratio may be an unreliable indicator of technical efficiency.

Howarth, R.B.; Schipper, L.; Andersson, B.

1992-06-01T23:59:59.000Z

400

The structure and intensity of energy use: Trends in five OECD nations  

SciTech Connect (OSTI)

This paper examines trends in the structure and intensity of final energy demand in five OECD nations between 1973 and 1988. Our focus is on primary energy use, which weights fuels by their thermal content and multiplies district heat and electricity by factors of 1.15 and 3.24 to approximate the losses that occur in the conversion and distribution of these energy carriers. Grouch in the level of energy-using activities, given 1973 energy intensities (energy use per unit of activity), would have raised primary energy use by 46% in the US, 42% in Norway, 33% in Denmark, 37% in West Germany, and 53% in Japan. Reductions in end-use energy intensities, given 1973 activity levels, would have reduced primary energy use by 19% in the US, 3% in Norway, 20% in Denmark, 15% in West Germany, and l4% in Japan. Growth in national income parallelled increases in a weighted index of energy-using activities in the US, West Germany, and Denmark but substantially outstripped activity growth in Norway and Japan. We conclude that changes in the structure of a nation's economy may lead to substantial changes in its energy/GDP ratio that are unrelated to changes in the technical efficiency of energy utilization. Similarly, changes in energy intensities may be greater or less than the aggregate change in the energy/GDP ratio of a given country, a further warning that this ratio may be an unreliable indicator of technical efficiency.

Howarth, R.B.; Schipper, L. (Lawrence Berkeley Lab., CA (United States)); Andersson, B. (Stockholm School of Economics (Sweden))

1992-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "intensities overview energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

The structure and intensity of energy use: Trends in five OECD nations  

SciTech Connect (OSTI)

This paper examines trends in the structure and intensity of final energy demand in five OECD nations between 1973 and 1988. Our focus is on primary energy use, which weights fuels by their thermal content and multiplies district heat and electricity by factors of 1.15 and 3.24 to approximate the losses that occur in the conversion and distribution of these energy carriers. Growth in the level of energy-using activities, given 1973 energy intensities (energy use per unit of activity), would have raised primary energy use by 47% in the US, 44% in Norway, 33% in Denmark, 37% in West Germany, and 54% in Japan. Reductions in end-use energy intensities, given 1973 activity levels, would have reduced primary energy use by 20% in the US, 3% in Norway, 20% in Denmark, 17% in West Germany, and 14% in Japan. Growth in national income parallelled increases in a weighted index of energy-using activities in the US, West Germany, and Denmark but substantially outstripped activity growth in Norway and Japan. We conclude that changes in the structure of a nation`s economy may lead to substantial changes in its energy/GDP ratio that are unrelated to changes in the technical efficiency of energy utilization. Similarly, changes in energy intensities may be greater or less than the aggregate change in the energy/GDP ratio of a given country, a further warning that this ratio may be an unreliable indicator of technical efficiency.

Howarth, R.B.; Schipper, L.; Andersson, B.

1992-06-01T23:59:59.000Z

402

The structure and intensity of energy use: Trends in five OECD nations. Revision  

SciTech Connect (OSTI)

This paper examines trends in the structure and intensity of final energy demand in five OECD nations between 1973 and 1988. Our focus is on primary energy use, which weights fuels by their thermal content and multiplies district heat and electricity by factors of 1.15 and 3.24 to approximate the losses that occur in the conversion and distribution of these energy carriers. Grouch in the level of energy-using activities, given 1973 energy intensities (energy use per unit of activity), would have raised primary energy use by 46% in the US, 42% in Norway, 33% in Denmark, 37% in West Germany, and 53% in Japan. Reductions in end-use energy intensities, given 1973 activity levels, would have reduced primary energy use by 19% in the US, 3% in Norway, 20% in Denmark, 15% in West Germany, and l4% in Japan. Growth in national income parallelled increases in a weighted index of energy-using activities in the US, West Germany, and Denmark but substantially outstripped activity growth in Norway and Japan. We conclude that changes in the structure of a nation`s economy may lead to substantial changes in its energy/GDP ratio that are unrelated to changes in the technical efficiency of energy utilization. Similarly, changes in energy intensities may be greater or less than the aggregate change in the energy/GDP ratio of a given country, a further warning that this ratio may be an unreliable indicator of technical efficiency.

Howarth, R.B.; Schipper, L. [Lawrence Berkeley Lab., CA (United States); Andersson, B. [Stockholm School of Economics (Sweden)

1992-09-01T23:59:59.000Z

403

Carbon dioxide emissions intensity of Portuguese industry and energy sectors: A convergence analysis and econometric approach  

Science Journals Connector (OSTI)

Abstract Given the relevance of energy and pollution issues for industrialised countries and the importance of industry and energy sectors to the achievement of their economic and environmental goals, it is important to know if there is a common pattern of emissions intensity, fuel intensity and energy intensity, between industries, to know if it justifies a more specific application of energy policies between sectors, which sectors have the greatest potential for reducing energy use and which are the long term effects of those specific variables on the mitigation of emissions. We found that although there is literature on decomposition of effects that affect emissions, the study of the convergence and of the relationships between these variables does not include ratios or effects that result from the decomposition analysis. Thus, the above questions are not answered, much less for the Portuguese reality. The purpose of this paper is to study: (i) the existence of convergence of some relevant ratios as Carbon Dioxide (CO2) emissions intensity, CO2 emissions by fossil fuel consumption, fossil fuel intensity, energy intensity and economic structure, between industry and energy sectors in Portugal, and (ii) the influence that the consumption of fossil fuels, the consumption of aggregate energy and GDP have on CO2 emissions, and the influence that the ratios in which CO2 emissions intensity decomposes can affect that variable, using an econometric approach, namely Panel corrected standard errors estimator. We concluded that there is sigma convergence for all ratios with exception of fossil fuel intensity. Gamma convergence verifies for all ratios, with exception of CO2 emissions by fossil fuel. From the econometric approach we concluded that the considered variables have a significant importance in explaining CO2 emissions and CO2 emissions intensity.

Victor Moutinho; Margarita Robaina-Alves; Jorge Mota

2014-01-01T23:59:59.000Z

404

A Comparison of Iron and Steel Production Energy Intensity in China and the  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A Comparison of Iron and Steel Production Energy Intensity in China and the A Comparison of Iron and Steel Production Energy Intensity in China and the U.S Title A Comparison of Iron and Steel Production Energy Intensity in China and the U.S Publication Type Conference Proceedings Year of Publication 2011 Authors Price, Lynn K., Ali Hasanbeigi, Nathaniel T. Aden, Zhang Chunxia, Li Xiuping, and Shangguan Fangqin Conference Name ACEEE Industrial Summer Study Date Published 07/2011 Publisher American Council for an Energy-Efficient Economy Conference Location New York Keywords china, energy intensity, iron and steel, Low Emission & Efficient Industry, united states Abstract The goal of this study was to develop a methodology for making an accurate comparison of the energy intensity of steel production in China and the U.S. The methodology addresses issues related to boundary definitions, conversion factors, and industry structure. In addition to the base case analysis, six scenarios were developed to assess the effect of different factors such as the share of electric arc furnace (EAF) steel production, conversion factors for the embodied energy of imported and exported intermediary and auxiliary products, and the differences in net calorific values of the fuels. The results of the analysis show that for the whole iron and steel production process, the final energy intensity in 2006 was equal to 14.90 GJ/tonne crude steel in the U.S. and 23.11 GJ/tonne crude steel in China in the base scenario. In another scenario that assumed the Chinese share of electric arc furnace production in 2006 (i.e. 10.5%) in the U.S., the energy intensity of steel production in the U.S. increased by 54% to 22.96GJ/tonne crude steel. Thus, when comparing the energy intensity of the U.S and Chinese steel industry,the structure of the industry should be taken into account.

405

SWITCH Model Capability Overview Renewable and Appropriate Energy Laboratory http://rael.berkeley.edu/switch November 2012  

E-Print Network [OSTI]

SWITCH Model Capability Overview Renewable and Appropriate Energy Laboratory · http the investment framework captures aspects of wind and solar variability and mitigation measures, Wyoming, Nevada, Colorado, Arizona, New Mexico, Baja Mexico Norte, British Columbia, Alberta Expand

Kammen, Daniel M.

406

IESNA LM-80-08 An Overview of the Test Procedure and How it is Used for ENERGY STAR  

Broader source: Energy.gov [DOE]

This October 30, 2008 webcast provided an overview of LM-80-08, Approved Method for Measuring Lumen Maintenance of LED Light Sources, and how DOE's ENERGY STAR program for Solid-State Lighting (SSL...

407

CBECS 1989 - Energy End-use Intensities in Commercial Buildings -- Detailed  

U.S. Energy Information Administration (EIA) Indexed Site

Publication > Detailed Tables Publication > Detailed Tables 1989 Energy End-Use Intensities Detailed Tables Energy End Uses Ranked by Energy Consumption, 1989 Energy End Uses Ranked by Energy Consumption, 1989 Source: Energy Information Administration, Office of Energy Markets and End Use, Forms EIA-871A through F of the 1989 Commercial Buildings Energy Consumption Survey. Table Organization The following 13 tables present detailed energy end-use consumption data from the 1989 CBECS. Summary tables for all major fuels (electricity, natural gas, fuel oil, and district heat) appear first, followed by separate tables for each of the four major fuels. Within each energy source’s group of tables, there is a table showing end-use consumption, a table showing end-use intensities (consumption per square foot), and a table (except for fuel oil and district heat) showing the end-use shares of total consumption.

408

The role of energy intensity improvement in the AR4 GHG stabilization scenarios  

Science Journals Connector (OSTI)

This study analyzes the role of energy intensity improvement in the short term (to the year 2020) and midterm (to the year 2050) in the context of long-term greenhouse gases (GHG) stabilization scenarios. The dat...

Tatsuya Hanaoka; Mikiko Kainuma; Yuzuru Matsuoka

2009-05-01T23:59:59.000Z

409

Cost Minimization in an Energy-Intensive Plant Using Mathematical Programming Approaches  

Science Journals Connector (OSTI)

Cost Minimization in an Energy-Intensive Plant Using Mathematical Programming Approaches ... This creates a potential opportunity to reduce average operating costs by changing the operating mode and production rates depending on the power costs. ...

M. G. Ierapetritou; D. Wu; J. Vin; P. Sweeney; M. Chigirinskiy

2002-09-24T23:59:59.000Z

410

Energy Policy 30 (2002) 151163 Aggregating physical intensity indicators: results of applying the  

E-Print Network [OSTI]

indicators measure the energy used per dollar of GDP produced by some sector, sub-sector, industry or productEnergy Policy 30 (2002) 151­163 Aggregating physical intensity indicators: results of applying School of Resource and Environmental Management, Energy Research Group, Simon Fraser University, Burnaby

411

Energy use and carbon dioxide emissions in energy-intensive industries in key developing countries  

SciTech Connect (OSTI)

The industrial sector is the most important end-use sector in developing countries in terms of energy use and was responsible for 50% of primary energy use and 53% of associated carbon dioxide emissions in 1995 (Price et al., 1999). The industrial sector is extremely diverse, encompassing the extraction of natural resources, conversion of these resources into raw materials, and manufacture of finished products. Five energy-intensive industrial subsectors account for the bulk of industrial energy use and related carbon dioxide emissions: iron and steel, chemicals, petroleum refining, pulp and paper, and cement. In this paper, we focus on the steel and cement sectors in Brazil, China, India, and Mexico.1 We review historical trends, noting that China became the world's largest producer of cement in 1985 and of steel in 1996. We discuss trends that influence energy consumption, such as the amount of additives in cement (illustrated through the clinker/cement ratio), the share of electric arc furnaces, and the level of adoption of continuous casting. To gauge the potential for improvement in production of steel and cement in these countries, we calculate a ''best practice'' intensity based on use of international best practice technology to produce the mix of products manufactured in each country in 1995. We show that Brazil has the lowest potential for improvement in both sectors. In contrast, there is significant potential for improvement in Mexico, India, and especially China, where adoption of best practice technologies could reduce energy use and carbon dioxide emissions from steel production by 50% and cement production by 37%. We conclude by comparing the identified potential for energy efficiency improvement and carbon dioxide emissions reduction in these key developing countries to that of the U.S. This comparison raises interesting questions related to efforts to improve energy efficiency in developing countries, such as: what is the appropriate role of industrialized countries in promoting the adoption of low carbon technologies, how do international steel and cement companies influence the situation, and how can such information be used in the context of Clean Development Mechanism in the Kyoto Protocol?

Price, Lynn; Worrell, Ernst; Phylipsen, Dian

1999-09-01T23:59:59.000Z

412

EIA - The National Energy Modeling System: An Overview 2003-Renewable Fuels  

Gasoline and Diesel Fuel Update (EIA)

Renewable Fuelsl Module Renewable Fuelsl Module The National Energy Modeling System: An Overview 2003 Renewable Fuels Module Figure 11. Renewable Fuels Module Structure. Need help, contact the National Energy Information Center at 202-586-8800. Renewable Fuels Module Table. Need help, contact the National Energy Information Center at 202-586-8800. The renewable fuels module (RFM) represents renewable energy resoures and large–scale technologies used for grid-connected U.S. electricity supply (Figure 11). Since most renewables (biomass, conventional hydroelectricity, geothermal, landfill gas, solar photovoltaics, solar thermal, and wind) are used to generate electricity, the RFM primarily interacts with the electricity market module (EMM). New renewable energy generating capacity is either model–determined or

413

EIA - The National Energy Modeling System: An Overview 2003-Coal Market  

Gasoline and Diesel Fuel Update (EIA)

Coal Market Module Coal Market Module The National Energy Modeling System: An Overview 2003 Coal Market Module Figure 19. Coal Market Module Demand Regions. Need help, contact the National Energy Information Center at 202-586-8800. Figure 20. Coal Market Module Supply Regions. Need help, contact the National Energy Information Center at 202-586-8800. Figure 21. Coal Market Module Structure. Need help, contact the National Energy Information Center at 202-586-8800. Coal Market Module Table. Need help, contact the National Energy Information Center at 202-586-8800. The coal market module (CMM) represents the mining, transportation, and pricing of coal, subject to end–use demand. Coal supplies are differentiated by heat and sulfur content. CMM also determines the minimum cost pattern of coal supply to meet exogenously defined U.S. coal

414

Refining intensity, energy consumption, and pulp quality in two-stage chip refining  

SciTech Connect (OSTI)

This paper reports on thermomechanical pulps produced in two pilot plant installations. Both installations were conventional two-stage systems in which the first stage was pressurized and the second was atmospheric. At a given specific energy, pulp quality was improved. Alternatively, for a given pulp quality, the energy consumption was reduced when refining in the first stage was carried out at a high refining intensity. High refining intensity was reached by operating the first stage either at a high rotational speed or low consistency. There were indications that these benefits could be enhanced if the second stage were operated at a low refining intensity.

Miles, K.B.; May, W.D.; Karnis, A. (Pulp and Paper Research Inst. of Canada, 570 St. John's Boulevard, Pointe Claire, Quebec H9R 3J9 (CA))

1991-03-01T23:59:59.000Z

415

Could energy intensive industries be powered by carbonfree electricity?  

E-Print Network [OSTI]

chemical services -- for example, coal, converted to coke, acts as a reducing agent in blast furnaces.) (a comes from coal, oil, and natural gas. What infrastructure would be required to deliver the same amount to Royal Society T E X Paper #12; 2 David J C MacKay FRS Primary energy consumption: 2740TWh/y Coal: 475TWh

MacKay, David J.C.

416

Solar?energy conversion at high solar intensities  

Science Journals Connector (OSTI)

The concentration of sunlight offers distinct advantages for solarelectrical generation either by thermal conversion or by photovoltaics. A large variety of concentration techniques are available with concentration ratios of 11000. Concentration is required for thermal conversion systems to attain the high temperatures needed for efficiencies in the desired range of about 25%35%. The projected costs for some of the solar thermal systems (especially the central receiver and the fixed mirror) indicate that they could be economically competitive in the southwestern states. The southwest may be required for these high?concentration systems to overcome the main disadvantage of concentration which is the use of the direct component of sunlight only. Other concerns of high?intensity systems are in tracking requirements reflective surface accuracy and material lifetimes of both the reflecting and absorbing components. Selective surface absorbers will be required for systems with concentration ratios below a few hundred. The present high cost of solar?cell?generated electricity can be reduced considerably by using concentrators. Cells can be used with any of the concentrator designs and the major concern is keeping them at acceptable operating temperatures. Planar silicon cells vertical multijunction and galliumaluminumarsenide cells all look attractive for concentrating systems.

Charles E. Backus

1975-01-01T23:59:59.000Z

417

Energy Intensity Development of the German Iron and Steel Industry between 1991 and 2007 Marlene Arensa), 1)  

E-Print Network [OSTI]

1 Energy Intensity Development of the German Iron and Steel Industry between 1991 and 2007 Marlene industry, energy intensity 1) Corresponding Author. Tel: +49 721 6809 408, fax: +49 721 6809 272, marlene a decomposition method [25]. Kim and Worrell (2002) compared energy and CO2intensity in the steel sector among

Paris-Sud XI, Université de

418

Energy Intense Equipment Purchasing Behaviour: A Review of the Literature i How do consumers and firms purchase equipment  

E-Print Network [OSTI]

Energy Intense Equipment Purchasing Behaviour: A Review of the Literature i CIEEDAC How do, 2007 #12;Energy Intense Equipment Purchasing Behaviour: A Review of the Literature ii Executive Summary Energy intense equipment purchasing behaviour: A review of the literature. CIEEDAC has been charged

419

Overview of DOE Emission Control R&D | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Evaluation ace00bhowden2011o.pdf More Documents & Publications Overview of DOE Emission Control R&D Overview of DOE Emission Control R&D Overview of the Advanced Combustion...

420

AO Role-Based Training Part I, DAA Overview | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AO Role-Based Training Part I, DAA Overview AO Role-Based Training Part I, DAA Overview AO Role-Based Training AO Role-Based Training Part I, DAA Overview More Documents &...

Note: This page contains sample records for the topic "intensities overview energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

EIA - The National Energy Modeling System: An Overview 2003-Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas Transmission and Distribution Module Natural Gas Transmission and Distribution Module The National Energy Modeling System: An Overview 2003 Natural Gas Transmission and Distribution Module Figure 15. Natural Gas Transmission and Distribution Module Structure. Need help, contact the National Energy Information Center at 202-586-8800. Figure 16. Natural Gas Transmission and distribution Module Network. Need help, contact the National Energy Information Center at 202-586-8800. Natural Gas Transmission and distribution Module Table. Need help, contact the National Energy Information Center at 202-586-8800. The natural gas transmission and distribution module (NGTDM) of NEMS represents the natural gas market and determines regional market–clearing prices for natural gas supplies and for end–use consumption, given the

422

EIA - The National Energy Modeling System: An Overview 2003-Oil and Gas  

Gasoline and Diesel Fuel Update (EIA)

Oil and Gas Supply Module Oil and Gas Supply Module The National Energy Modeling System: An Overview 2003 Oil and Gas Supply Module The oil and gas supply module (OGSM) consists of a series of process submodules that project the availability of: Domestic crude oil production and dry natural gas production from onshore, offshore, and Alaskan reservoirs Imported pipeline–quality gas from Mexico and Canada Imported liquefied natural gas. Figure 12. Oil and Gas Supply Module Regions. Need help, contact the National Energy Information Center at 202-202-586-8800. Figure 13. Oil and Gas Suppply Module Structure. Need help, contact the National Energy Information Center at 202-586-8800. Oil and Gas Supply Module Table. Need help, contact the National Energy Information Center at 202-586-8800.

423

Experimental Observation of Electrons Accelerated in Vacuum to Relativistic Energies by a High-Intensity Laser  

Science Journals Connector (OSTI)

Free electrons have been accelerated in vacuum to MeV energies by a high-intensity subpicosecond laser pulse ( 1019 W/cm2, 300 fs). The experimental data are in good agreement with the relativistic motion of electrons in a spatially and temporally finite electromagnetic field, both in terms of maximum energy and scattering angle.

G. Malka; E. Lefebvre; J. L. Miquel

1997-04-28T23:59:59.000Z

424

Explaining Long-Run Changes in the Energy Intensity of the U.S. Economy  

E-Print Network [OSTI]

Recent events have revived interest in explaining the long-run changes in the energy intensity of the U.S. economy. We use a KLEM dataset for 35 industries over 39 years to decompose changes in the aggregate energy-GDP ...

Sue Wing, Ian.

425

Changes in Energy Intensity in the Manufacturing Sector 1985-1994  

U.S. Energy Information Administration (EIA) Indexed Site

1. Introduction Rankeda EI Numbers of Total Inputs of Energy SIC Codeb Intensity for 1985c Intensity for 1994c 29 18.11 25.85 26 17.82 17.71 33 19.57 16.27 32 14.75 14.69 28 11.09 12.14 All 5.34 5.77 24 5.24 5.05 22 4.07 3.82 20 2.41 2.72 30 2.81 2.22 34 1.91 1.98 25 1.37 1.16 39 1.14 1.16 38 0.92 1.10 36 1.11 0.90 35 1.14 0.86 27 0.62 0.74 23 0.47 0.38 c For this report, all energy-intensity ratios are presented in units of thousands of Btu per 1992 constant dollars. Source: Table 12 of this report. The focus of this data report is on energy consumption relative to constant dollar shipments of manufactured products -- commonly called energy intensities (EI) by energy analysts. This report presents two measures of energy consumption, Offsite-Produced Energy and Total Inputs of Energy,

426

Changes in Energy Intensity in the Manufacturing Sector 1985-1994  

U.S. Energy Information Administration (EIA) Indexed Site

1. Introduction Rankeda EI Numbers of Total Inputs of Energy SIC Codeb Intensity for 1985c Intensity for 1994c 29 18.11 25.85 26 17.82 17.71 33 19.57 16.27 32 14.75 14.69 28 11.09 12.14 All 5.34 5.77 24 5.24 5.05 22 4.07 3.82 20 2.41 2.72 30 2.81 2.22 34 1.91 1.98 25 1.37 1.16 39 1.14 1.16 38 0.92 1.10 36 1.11 0.90 35 1.14 0.86 27 0.62 0.74 23 0.47 0.38 c For this report, all energy-intensity ratios are presented in units of thousands of Btu per 1992 constant dollars. Source: Table 12 of this report. The focus of this data report is on energy consumption relative to constant dollar shipments of manufactured products -- commonly called energy intensities (EI) by energy analysts. This report presents two measures of energy consumption, Offsite-Produced Energy and Total Inputs of Energy,

427

Climate Policy Design for Energy-Intensive Industries - And The Rest of Us  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Climate Policy Design for Energy-Intensive Industries - And The Rest of Us Climate Policy Design for Energy-Intensive Industries - And The Rest of Us Speaker(s): Holmes Hummel Date: January 8, 2009 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Richard Diamond Driving the U.S. energy system toward climate stabilization requires integration of multiple policy instruments in a staged series of legislative and regulatory policy vehicles. Qualifying the limitations of a cap-and-trade approach, Dr. Hummel will present a framework for orienting and organizing a multi-faceted policy development process. After surveying key design recommendations for specific sectors, the presentation will drill deeper into the specific challenge of engaging energy-intensive industries subject to global competition. After briefly discussing some of

428

Energy intensities, \\{EROIs\\} (energy returned on invested), and energy payback times of electricity generating power plants  

Science Journals Connector (OSTI)

The energy returned on invested, EROI, has been evaluated for typical power plants representing wind energy, photovoltaics, solar thermal, hydro, natural gas, biogas, coal and nuclear power. The strict exergy concept with no primary energy weighting, updated material databases, and updated technical procedures make it possible to directly compare the overall efficiency of those power plants on a uniform mathematical and physical basis. Pump storage systems, needed for solar and wind energy, have been included in the EROI so that the efficiency can be compared with an unbuffered scenario. The results show that nuclear, hydro, coal, and natural gas power systems (in this order) are one order of magnitude more effective than photovoltaics and wind power.

D. Weibach; G. Ruprecht; A. Huke; K. Czerski; S. Gottlieb; A. Hussein

2013-01-01T23:59:59.000Z

429

Portfolio Manager Technical Reference: U.S. National Energy Use Intensity |  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

U.S. National Energy Use U.S. National Energy Use Intensity Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources Success stories Target Finder

430

National Level Co-Control Study of the Targets for Energy Intensity and  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

National Level Co-Control Study of the Targets for Energy Intensity and National Level Co-Control Study of the Targets for Energy Intensity and Sulfur Dioxide in China Title National Level Co-Control Study of the Targets for Energy Intensity and Sulfur Dioxide in China Publication Type Report LBNL Report Number LBNL-5253E Year of Publication 2011 Authors Zhou, Nan, Lynn K. Price, Nina Zheng, Jing Ke, and Ali Hasanbeigi Date Published 10/2011 Publisher Lawrence Berkerley National Laboratory ISBN Number LBNL-5253E Keywords china, china energy, co-control, energy intensity, industrial energy efficiency, iron and steel industry, Low Emission & Efficient Industry, policy studies, sulfur dioxide Abstract Since 2006, China has set goals of reducing energy intensity, emissions, and pollutants in multiple guidelines and in the Five Year Plans. Various strategies and measures have then been taken to improve the energy efficiency in all sectors and to reduce pollutants. Since controlling energy, CO2 emissions, and pollutants falls under the jurisdiction of different government agencies in China, many strategies are being implemented to fulfill only one of these objectives.Co-controls or integrated measures could simultaneously reduce greenhouse gas (GHG)emissions and criteria air pollutant emissions. The targets could be met in a more cost effective manner if the integrated measures can be identified and prioritized. This report provides analysis and insights regarding how these targets could be met via co-control measures focusing on both CO2 and SO2 emissions in the cement, iron & steel, and power sectors to 2030 in China. An integrated national energy and emission model was developed in order to establish a baseline scenario that was used to assess the impact of actions already taken by the Chinese government as well as planned and expected actions. In addition, CO2 mitigation scenarios and SO2 control scenarios were also established to evaluate the impact of each of the measures and the combined effects.

431

ESS 2012 Peer Review - Energy Storage Program Overview - Ross Guttromson, SNL  

Broader source: Energy.gov (indexed) [DOE]

Photos placed in horizontal position Photos placed in horizontal position with even amount of white space between photos and header Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP Energy Storage Program Overview Ross Guttromson September 26, 2012 Breadth of SNL Energy Storage 2 Sandia's ES research activities span the scale from nanometer-scale investigations to national policy analysis Research and Development * Focus on Na-based batteries, advanced lead-acid batteries & flow batteries * Development of new technologies, such as MetlLs

432

A High Intensity Linear e+ e- Collider Facility at Low Energy  

E-Print Network [OSTI]

I discuss a proposal for a high intensity $e^+e^-$ linear collider operated at low center of mass energies $\\sqrt{s}intensity beams. Such a facility would provide high statistics samples of (charmed) vector mesons and would permit searches for LFV with unprecedented precision in decays of $\\tau$ leptons and mesons. Implications on the design of the linear accelerator are discussed together with requirements to achieve luminosities of $10^{35}$ cm$^{-2}$s$^{-1}$ or more.

A. Schoning

2006-10-23T23:59:59.000Z

433

A Comparison of Iron and Steel Production Energy Use and Energy Intensity in China and the U.S.  

SciTech Connect (OSTI)

Production of iron and steel is an energy-intensive manufacturing process. In 2006, the iron and steel industry accounted for 13.6% and 1.4% of primary energy consumption in China and the U.S., respectively (U.S. DOE/EIA, 2010a; Zhang et al., 2010). The energy efficiency of steel production has a direct impact on overall energy consumption and related carbon dioxide (CO2) emissions. The goal of this study is to develop a methodology for making an accurate comparison of the energy intensity (energy use per unit of steel produced) of steel production. The methodology is applied to the steel industry in China and the U.S. The methodology addresses issues related to boundary definitions, conversion factors, and indicators in order to develop a common framework for comparing steel industry energy use. This study uses a bottom-up, physical-based method to compare the energy intensity of China and U.S. crude steel production in 2006. This year was chosen in order to maximize the availability of comparable steel-sector data. However, data published in China and the U.S. are not always consistent in terms of analytical scope, conversion factors, and information on adoption of energy-saving technologies. This study is primarily based on published annual data from the China Iron & Steel Association and National Bureau of Statistics in China and the Energy Information Agency in the U.S. This report found that the energy intensity of steel production is lower in the United States than China primarily due to structural differences in the steel industry in these two countries. In order to understand the differences in energy intensity of steel production in both countries, this report identified key determinants of sector energy use in both countries. Five determinants analyzed in this report include: share of electric arc furnaces in total steel production, sector penetration of energy-efficiency technologies, scale of production equipment, fuel shares in the iron and steel industry, and final steel product mix in both countries. The share of lower energy intensity electric arc furnace production in each country was a key determinant of total steel sector energy efficiency. Overall steel sector structure, in terms of average plant vintage and production capacity, is also an important variable though data were not available to quantify this in a scenario. The methodology developed in this report, along with the accompanying quantitative and qualitative analyses, provides a foundation for comparative international assessment of steel sector energy intensity.

Hasanbeigi, Ali; Price, Lynn; Aden, Nathaniel; Chunxia, Zhang; Xiuping, Li; Fangqin, Shangguan

2011-06-15T23:59:59.000Z

434

RPWG Overview  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

RPWG RPWG Overview of the Radiative Processes Working Group Dave Turner RPWG Chair 2008 ARM Science Team Meeting 11 March 2008 Norfolk, Virginia Overview of the RPWG RPWG Steering Group * Bob Ellingson * Chuck Long * Sally McFarlane * Andy Vogelmann Represent about 40 RPWG members Overview of the RPWG ARM Program Objectives * Relate observed radiative energy (spectrally and temporally resolved) to temperature and composition of the atmosphere * Develop and test parameterizations of the radiative properties and processes of water vapor, clouds, and aerosols, and incorporate these parameterizations in GCMs ARM Science Plan October 2004 Overview of the RPWG Clear-sky GCM vs observations comparisons Wild, Long, Ohmura, 2006, JGR Improved agreement for clear-sky SW from AMIP1

435

Applications of nanotechnology in renewable energiesA comprehensive overview and understanding  

Science Journals Connector (OSTI)

Abstract One of the great technological challenges in 21st century is the development of renewable energy technologies due to serious problems related with the production and use of energy. A new promising area of research grows rapidly which is called Nanotechnologies are considered nowadays one of the most recommended choices to solve this problem. This review aims to introduce several significant applications of nanotechnology in renewable energy systems. Papers reviewed including theoretical and experimental works related with nanotechnology applications in solar, hydrogen, wind, biomass, geothermal and tidal energies. A lot of literature are reviewed and summarized carefully in a useful tables to give a panoramic overview about the role of nanotechnology in improving the various sources of renewable energies. We think that this paper can be considered as an important bridge between nanotechnology and all available kinds of renewable energies. From the other side, further researches are required to study the effect of nanotechnology to enhance the renewable energy industry especially in geothermal, wind and tidal energies, since the available papers in these fields are limited.

Ahmed Kadhim Hussein

2015-01-01T23:59:59.000Z

436

In-situ determination of energy species yields of intense particle beams  

DOE Patents [OSTI]

An arrangement is provided for the in-situ determination of energy species yields of intense particle beams. The beam is directed onto a target surface of known composition, such that Rutherford backscattering of the beam occurs. The yield-energy characteristic response of the beam to backscattering from the target is analyzed using Rutherford backscattering techniques to determine the yields of energy species components of the beam.

Kugel, Henry W. (Somerset, NJ); Kaita, Robert (Englishtown, NJ)

1987-01-01T23:59:59.000Z

437

Energy intensities and CO2 emissions in Catalonia: a SAM analysis  

Science Journals Connector (OSTI)

In this paper, we estimate sectoral energy intensities and CO2 emissions for the Catalonian economy. In order to evaluate energy intensities, we use the SAM (Social Accounting Matrix) multiplier analysis applied to a SAM of the economy. CO2 emissions are estimated by means of the Leontief input-output submodel of the SAM, together with a table of coefficients of emissions per unit of monetary expenditures. This new methodology allows us to dispense with energy input-output tables for the base period. Our results are of the same order of magnitude as others obtained by physical measurement methods. We also simulate how changes in demand and energy energy efficiency parameters may affect CO2 emissions for the economy.

Antonio Manresa; Ferran Sancho

2004-01-01T23:59:59.000Z

438

Effect of biomass feedstock chemical and physical properties on energy conversion processes: Volume 1, Overview  

SciTech Connect (OSTI)

Pacific Northwest Laboratory has completed an initial investigation of the effects of physical and chemical properties of biomass feedstocks relative to their performance in biomass energy conversion systems. Both biochemical conversion routes (anaerobic digestion and ethanol fermentation) and thermochemical routes (combustion, pyrolysis, and gasification) were included in the study. Related processes including chemical and physical pretreatment to improve digestibility, and size and density modification processes such as milling and pelletizing were also examined. This overview report provides background and discussion of feedstock and conversion relationships, along with recommendations for future research. The recommendations include (1) coordinate production and conversion research programs; (2) quantify the relationship between feedstock properties and conversion priorities; (3) develop a common framework for evaluating and characterizing biomass feedstocks; (4) include conversion effects as part of the criteria for selecting feedstock breeding programs; and (5) continue emphasis on multiple feedstock/conversion options for biomass energy systems. 9 refs., 3 figs., 2 tabs.

Butner, R.S.; Elliott, D.C.; Sealock, L.J. Jr.; Pyne, J.W.

1988-12-01T23:59:59.000Z

439

The relationship between maximum tolerated light intensity and photoprotective energy dissipation in the photosynthetic antenna: chloroplast gains and losses  

Science Journals Connector (OSTI)

...tolerated light intensity and photoprotective energy dissipation in the photosynthetic antenna...photoinhibition by non-photochemical energy dissipation (NPQ) has been recently...membrane. protective non-photochemical energy dissipation|thylakoid membrane|photosystem...

2014-01-01T23:59:59.000Z

440

Malaysia energy strategy towards sustainability: A panoramic overview of the benefits and challenges  

Science Journals Connector (OSTI)

Abstract Sustainable energy supply is essential for actualizing Malaysia?s vision to become a high-income country. The current power production and demand trends show that Malaysia has a reserve margin that will only last for the next few years. This calls for further investment, research and development in the country?s power sector in order to meet the ever increasing energy demand. The government?s diversification policy and power sector expansion plan emphasizes on the incorporation of renewable energy sources (RESs) and other less CO2 emitting sources like nuclear into the national energy mix. However, the environmental ramifications of this policy should be part of any future expansion plan of national grid. This paper presents a panoramic overview of the Malaysian energy sector, the energy policy revolution and the power sector expansion strategy towards secure sustainability. We want to bring into focus the benefits and challenges of Malaysia?s power sector expansion plan with the aim of stimulating further discussion and research on the environmental ramifications of the plan.

Nor Afifah Basri; Ahmad Termizi Ramli; Abubakar Sadiq Aliyu

2015-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "intensities overview energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Commercial Building Energy Asset Score Program Overview and Technical Protocol (Version 1.1)  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) is developing a voluntary national scoring system for commercial buildings to help building owners and managers assess a buildings energy-related systems independent of operations. The goal of the score is to facilitate cost-effective investment in energy efficiency improvements of commercial buildings. The system, known as the Commercial Building Energy Asset Score, will allow building owners and managers to compare their building infrastructure against peers and track building upgrades over time. The system will also help other building stakeholders (e.g., building investors, tenants, financiers, and appraisers) understand the relative efficiency of different buildings in a way that is independent from operations and occupancy. This report outlines the technical protocol used to generate the energy asset score, explains the scoring methodology, and provides additional details regarding the energy asset scoring tool. The alternative methods that were considered prior to developing the current approach are described in the Program Overview and Technical Protocol Version 1.0.

Wang, Na; Goel, Supriya; Makhmalbaf, Atefe

2013-08-09T23:59:59.000Z

442

Update and Overview of the U.S. Department of Energy's Rulemakings for ASHRAE 90.1 Equipment Presentation, dated June 26, 2011  

Broader source: Energy.gov [DOE]

This document is the U.S. Department of Energys presentation titled Update and Overview of the U.S. Department of Energy's Rulemakings for ASHRAE 90.1 Equipment?, date 6/26/2011.

443

Department of Energy Commercial Building Benchmarks (New Construction): Energy Use Intensities, May 5, 2009  

Broader source: Energy.gov (indexed) [DOE]

Benchmarks Benchmarks New Construction Energy Use Intensities (EUIs) [kBtu/ft 2 /yr] May 5, 2009 Miami Houston Phoenix Atlanta Los Angeles Las Vegas San Francisco Baltimore Albuquerque Seattle Chicago Denver Minneapolis Helena Duluth Fairbanks 2003 CBECS Avg. Climate Zone 1A 2A 2B 3A 3B 3B 3C 4A 4B 4C 5A 5B 6A 6B 7 8 Large Office 39 42 40 39 32 40 34 43 39 37 43 38 47 44 49 62 99 Medium Office 38 44 42 44 35 41 40 51 43 46 53 47 59 54 62 82 94 Small Office 46 48 49 46 36 44 38 53 47 47 61 52 70 62 77 110 80 Warehouse 15 15 15 16 14 16 14 18 17 16 21 20 26 23 27 43 48 Stand-alone Retail 48 46 46 41 34 41 35 45 42 40 48 45 54 51 61 88 70 Strip Mall 46 44 44 44 35 43 38 48 45 42 51 47 60 55 66 99 110 Primary School 65 71 69 69 57 65 71 78 68 65 85 74 99 88 107 147 68 Secondary School 69 74 74 73 50 68 67 87 72 72 99 81 117 101 128 181 80 Supermarket 161 171 161 175 155 162 171 191 174 186 206 188 224 209 240

444

GRR/Section 19-TX-a - Water Access and Water Issues Overview | Open Energy  

Open Energy Info (EERE)

9-TX-a - Water Access and Water Issues Overview 9-TX-a - Water Access and Water Issues Overview < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 19-TX-a - Water Access and Water Issues Overview 19TXAWaterAccessAndWaterRightsIssuesOverview.pdf Click to View Fullscreen Contact Agencies Texas Commission on Environmental Quality Regulations & Policies Tex. Water Code § 11 Triggers None specified Click "Edit With Form" above to add content 19TXAWaterAccessAndWaterRightsIssuesOverview.pdf 19TXAWaterAccessAndWaterRightsIssuesOverview.pdf 19TXAWaterAccessAndWaterRightsIssuesOverview.pdf 19TXAWaterAccessAndWaterRightsIssuesOverview.pdf Flowchart Narrative In the late 1960's Texas transitioned its water law system, switching

445

EIA - The National Energy Modeling System: An Overview 2003-Carbon Dioxide  

Gasoline and Diesel Fuel Update (EIA)

Carbon Dioxide and Methane Emissions Carbon Dioxide and Methane Emissions The National Energy Modeling System: An Overview 2003 Carbon Dioxide and Methane Emissions The emissions policy submodule, part of the integrating module, estimates the energy–related emissions of carbon dioxide and methane. Carbon dioxide emissions are dependent on the fossil fuel consumed, the carbon content of the fuel, and the fraction of the fuel consumed in combustion. The product of the carbon dioxide coefficient and the combustion fraction yields a carbon dioxide emission factor. For fuel uses of fossil energy, the combustion fractions are assumed to be 0.99 for liquid fuels and 0.995 for gaseous fuels. The carbon dioxide potential of nonfuel uses of energy, such as asphalt and petrochemical feedstocks, is assumed to be sequestered in the product and not released to the atmosphere. The coefficients for carbon dioxide emissions are updated each year from the Energy Information Administration’s annual, Emissions of Greenhouse Gases in the United States.17

446

Renewable Project Overview  

Broader source: Energy.gov (indexed) [DOE]

Project Overview Project Overview Federal Utility Partnership Working Group 5/6/09 Chandra Shah, NREL 303-384-7557, chandra.shah@nrel.gov National Renewable Energy Laboratory Innovation for Our Energy Future Presentation Overview Federal and utility renewable requirements Power Purchase Agreements (PPA) Western Area Power Administration Federal Renewable Program UESC and renewables * Participating in utility renewable programs - Opportunity Announcement process Renewable projects implemented using appropriations National Renewable Energy Laboratory Innovation for Our Energy Future Biomass Resource

447

Smart Grid as a Driver for Energy-Intensive Industries: A Data Center Case  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Smart Grid as a Driver for Energy-Intensive Industries: A Data Center Case Smart Grid as a Driver for Energy-Intensive Industries: A Data Center Case Study Title Smart Grid as a Driver for Energy-Intensive Industries: A Data Center Case Study Publication Type Conference Paper LBNL Report Number LBNL-6104E Year of Publication 2012 Authors Ganti, Venkata, and Girish Ghatikar Conference Name Grid-Interop 2012 Date Published 12/2012 Conference Location Irving, TX Keywords data centers, market sectors, technologies Abstract The Smart Grid facilitates integration of supply- and demand-side services, allowing the end-use loads to be dynamic and respond to changes in electricity generation or meet localized grid needs. Expanding from previous work, this paper summarizes the results from field tests conducted to identify demand response opportunities in energy-intensive industrial facilities such as data centers. There is a significant opportunity for energy and peak-demand reduction in data centers as hardware and software technologies, sensing, and control methods can be closely integrated with the electric grid by means of demand response. The paper provides field test results by examining distributed and networked data center characteristics, end-use loads and control systems, and recommends opportunities and challenges for grid integration. The focus is on distributed data centers and how loads can be "migrated" geographically in response to changing grid supply (increase/decrease). In addition, it examines the enabling technologies and demand-response strategies of high performance computing data centers. The findings showed that the studied data centers provided average load shed of up to 10% with short response times and no operational impact. For commercial program participation, the load-shed strategies must be tightly integrated with data center automation tools to make them less resource-intensive.

448

Energy Policy, Volume 38: Issue 11. November 2010 Overview of Current Energy Efficiency Policies in China  

E-Print Network [OSTI]

, the period 2002-2005 saw energy use per unit of GDP increase an average of 3.8% per year. To stem this out to significantly limit energy demand growth through aggressive energy efficiency programs. Energy use per unit of gross domestic product (GDP) declined by approximately 5% per year during this period. However

449

A multivariate analysis of the energy intensity of sprawl versus compact living in the U.S. for 2003  

E-Print Network [OSTI]

Household energy consumption Sprawl Compact living Energy impact We explore the energy intensity of sprawl versus compact living by analyzing the total energy requirements of U.S. households for the year 2003. The methods used are based on previous studies on energy cost of living. Total energy requirement

Vermont, University of

450

Laser-Energy Transfer and Enhancement of Plasma Waves and Electron Beams by Interfering High-Intensity Laser Pulses  

E-Print Network [OSTI]

Laser-Energy Transfer and Enhancement of Plasma Waves and Electron Beams by Interfering High-Intensity) The effects of interference due to crossed laser beams were studied experimentally in the high- intensity regime. Two ultrashort (400 fs), high-intensity (4 1017 and 1:6 1018 W=cm2) and 1 m wavelength laser

Umstadter, Donald

451

Overview of the US Department of Energy Light Water Reactor Sustainability Program  

SciTech Connect (OSTI)

The US Department of Energy Light Water Reactor Sustainability Program is focused on the long-term operation of US commercial power plants. It encompasses two facets of long-term operation: (1) manage the aging of plant systems, structures, and components so that nuclear power plant lifetimes can be extended and the plants can continue to operate safely, efficiently, and economically; and (2) provide science-based solutions to the nuclear industry that support implementation of performance improvement technologies. An important aspect of the Light Water Reactor Sustainability Program is partnering with industry and the Nuclear Regulatory Commission to support and conduct the long-term research needed to inform major component refurbishment and replacement strategies, performance enhancements, plant license extensions, and age-related regulatory oversight decisions. The Department of Energy research, development, and demonstration role focuses on aging phenomena and issues that require long-term research and/or unique Department of Energy laboratory expertise and facilities and are applicable to all operating reactors. This paper gives an overview of the Department of Energy Light Water Reactor Sustainability Program, including vision, goals, and major deliverables.

K. A. McCarthy; D. L. Williams; R. Reister

2012-05-01T23:59:59.000Z

452

Energy-Efficiency Technologies and Benchmarking the Energy Intensity for the Textile Industry  

E-Print Network [OSTI]

Energy-Efficiency Technologies and Benchmarking the EnergyEnvironmental Energy Technologies Division Lawrence BerkeleyIsfahan University of Technology Mohamad Abdolrazaghi,

Hasanbeigi, Ali

2014-01-01T23:59:59.000Z

453

Energy use and energy intensity of the U.S. chemical industry  

E-Print Network [OSTI]

costs, fixed costs and ethylene price Purchased energy costsfeedstock and energy prices, ethylene yield (per unit ofof ethylene produced) and the generally higher energy prices

Worrell, Ernst; Phylipsen, Dian; Einstein, Dan; Martin, Nathan

2000-01-01T23:59:59.000Z

454

National Fuel Cell and Hydrogen Energy Overview: Total Energy USA 2012  

Broader source: Energy.gov [DOE]

Presentation by Sunita Satyapal at the Total Energy USA 2012 meeting in Houston, Texas, on November 27, 2012.

455

Clean energy funds: An overview of state support for renewable energy  

E-Print Network [OSTI]

sustainable renewable energy marketplace it needed to target multiple facets of the market simultaneously, including marketing, education,

Bolinger, Mark; Wiser, Ryan; Milford, Lew; Stoddard, Michael; Porter, Kevin

2001-01-01T23:59:59.000Z

456

Overview of Two Hydrogen Energy Storage Studies: Wind Hydrogen in California and Blending in Natural Gas Pipelines (Presentation)  

SciTech Connect (OSTI)

This presentation provides an overview of two NREL energy storage studies: Wind Hydrogen in California: Case Study and Blending Hydrogen Into Natural Gas Pipeline Networks: A Review of Key Issues. The presentation summarizes key issues, major model input assumptions, and results.

Melaina, M. W.

2013-05-01T23:59:59.000Z

457

A Comprehensive System of Energy Intensity Indicators for the U.S.: Methods, Data and Key Trends  

SciTech Connect (OSTI)

This report describes a comprehensive system of energy intensity indicators for the United States that has been developed for the Department of Energys Office of Energy Efficiency and Renewable Energy (EERE) over the past decade. This system of indicators is hierarchical in nature, beginning with detailed indexes of energy intensity for various sectors of the economy, which are ultimately aggregated to an overall energy intensity index for the economy as a whole. The aggregation of energy intensity indexes to higher levels in the hierarchy is performed with a version of the Log Mean Divisia Index (LMDI) method. Based upon the data and methods in the system of indicators, the economy-wide energy intensity index shows a decline of about 14% in 2010 relative to a 1985 base year. Discussion of energy intensity indicators for each of the broad end-use sectors of the economyresidential, commercial, industrial, and transportationis presented in the report. An analysis of recent changes in the efficiency of electricity generation in the U.S. is also included. A detailed appendix describes the data sources and methodology behind the energy intensity indicators for each sector.

Belzer, David B.

2014-08-31T23:59:59.000Z

458

Analyzing intramolecular vibrational energy redistribution via the overlap intensity-level velocity correlator  

E-Print Network [OSTI]

Numerous experimental and theoretical studies have established that intramolecular vibrational energy redistribution (IVR) in isolated molecules has a heirarchical tier structure. The tier structure implies strong correlations between the energy level motions of a quantum system and its intensity-weighted spectrum. A measure, which explicitly accounts for this correaltion, was first introduced by one of us as a sensitive probe of phase space localization. It correlates eigenlevel velocities with the overlap intensities between the eigenstates and some localized state of interest. A semiclassical theory for the correlation is developed for systems that are classically integrable and complements earlier work focusing exclusively on the chaotic case. Application to a model two dimensional effective spectroscopic Hamiltonian shows that the correlation measure can provide information about the terms in the molecular Hamiltonian which play an important role in an energy range of interest and the character of the dynamics. Moreover, the correlation function is capable of highlighting relevant phase space structures including the local resonance features associated with a specific bright state. In addition to being ideally suited for multidimensional systems with a large density of states, the measure can also be used to gain insights into the phase space transport and localization. It is argued that the overlap intensity-level velocity correlation function provides a novel way of studying vibrational energy redistribution in isolated molecules. The correlation function is ideally suited to analyzing the parametric spectra of molecules in external fields.

Srihari Keshavamurthy; Nicholas R. Cerruti; Steven Tomsovic

2002-02-02T23:59:59.000Z

459

Comparison Study of Energy Intensity in the Textile Industry: A Case Study in Five Textile Sub-sectors  

E-Print Network [OSTI]

This paper contributes to the understanding of energy use in the textile industry by comparing the energy intensity of textile plants in five major sub-sectors, i.e. spinning, weaving, wet-processing, worsted fabric manufacturing, and carpet...

Hasanbeigi, A.; Hasanabadi, A.; Abdorrazaghi, M.

2011-01-01T23:59:59.000Z

460

Exploring the Effect of Inter-Stop Transport Distances on Traction Energy Cost Intensities of Freight Trains  

Science Journals Connector (OSTI)

With a computer-aided simulation approach, this research analyzes the change of the traction energy cost intensity of a typically formed Chinese freight ... than 20.00km to decrease the traction energy cost per ...

Xuesong Feng; Haidong Liu; Keqi Wu

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "intensities overview energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Renewable Energy Program Overview, Federal Energy Management Program (FEMP) (Fact Sheet)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Goals and Requirements Goals and Requirements Energy Policy Act (EPAct) of 2005: Defines renewable energy as: "electric energy generated from solar, wind, biomass, landfill gas, ocean (including tidal, wave, current, and thermal), geothermal, municipal solid waste, or new hydroelectric generation capacity achieved from increased efficiency or additions of new capacity at an existing hydroelectric project." Using this definition, EPAct 2005 requires the following percentages of total electricity consumed by the Federal Government to come from renewable energy: * Not less than 3 percent in fiscal year (FY) 2007-2009 * Not less than 5 percent in FY 2010-2012 * Not less than 7.5 percent in FY 2013 and thereafter

462

GRR/Section 6-MT-d - Other Overview | Open Energy Information  

Open Energy Info (EERE)

GRR/Section 6-MT-d - Other Overview GRR/Section 6-MT-d - Other Overview < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 6-MT-d - Other Overview 06MTDOtherOverview.pdf Click to View Fullscreen Contact Agencies Montana Department of Natural Resources & Conservation Montana Department of Environmental Quality Montana Fish, Wildlife & Parks Triggers None specified Click "Edit With Form" above to add content 06MTDOtherOverview.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative This overview is intended to direct the developer to additional construction permits. For projects intended near waterways, Montana also provides a joint

463

Technology Integration Overview  

Broader source: Energy.gov (indexed) [DOE]

-Technology Integration Overview - Dennis A. Smith Connie Bezanson U. S. Department of Energy Headquarters Office - Washington, D.C. May 2013 Project ID: TI000 2013 Department of...

464

2011 Intensity -1 INTENSITY OF SOUND  

E-Print Network [OSTI]

the rate at which energy is passing a certain point. This concept involves sound intensity. Consider the sound intensity. Recall the time rate of energy transfer is called "power". Thus, sound intensity2011 Intensity - 1 INTENSITY OF SOUND The objectives of this experiment are: · To understand

Glashausser, Charles

465

Baryon Acoustic Oscillation Intensity Mapping as a Test of Dark Energy  

E-Print Network [OSTI]

The expansion of the universe appears to be accelerating, and the mysterious anti-gravity agent of this acceleration has been called ``dark energy''. To measure the dynamics of dark energy, Baryon Acoustic Oscillations (BAO) can be used. Previous discussions of the BAO dark energy test have focused on direct measurements of redshifts of as many as $10^9$ individual galaxies, by observing the 21cm line or by detecting optical emission. Here we show how the study of acoustic oscillation in the 21 cm brightness can be accomplished by economical three dimensional intensity mapping. If our estimates gain acceptance they may be the starting point for a new class of dark energy experiments dedicated to large angular scale mapping of the radio sky, shedding light on dark energy.

Tzu-Ching Chang; Ue-Li Pen; Jeffrey B. Peterson; Patrick McDonald

2008-01-27T23:59:59.000Z

466

The relationship between energy intensity and income levels: Forecasting long term energy demand in Asian emerging countries  

SciTech Connect (OSTI)

This paper analyzes long-term trends in energy intensity for ten Asian emerging countries to test for a non-monotonic relationship between energy intensity and income in the author's sample. Energy demand functions are estimated during 1973--1990 using a quadratic function of log income. The long-run coefficient on squared income is found to be negative and significant, indicating a change in trend of energy intensity. The estimates are then used to evaluate a medium-term forecast of energy demand in the Asian countries, using both a log-linear and a quadratic model. It is found that in medium to high income countries the quadratic model performs better than the log-linear, with an average error of 9% against 43% in 1995. For the region as a whole, the quadratic model appears more adequate with a forecast error of 16% against 28% in 1995. These results are consistent with a process of dematerialization, which occurs as a result of a reduction of resource use per unit of GDP once an economy passes some threshold level of GDP per capita.

Galli, R. (Birkbeck Coll., London (United Kingdom) Univ. della Svizzera Italiana, Lugano (Switzerland). Facolta di Scienze Economiche)

1998-01-01T23:59:59.000Z

467

Energy Use Intensity and its Influence on the Integrated Daylighting Design of a Large Net Zero Energy Building: Preprint  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Use Intensity and its Use Intensity and its Influence on the Integrated Daylighting Design of a Large Net Zero Energy Building Preprint Rob Guglielmetti, Jennifer Scheib, Shanti D. Pless, and Paul Torcellini National Renewable Energy Laboratory Rachel Petro RNL Design Presented at the ASHRAE Winter Conference Las Vegas, Nevada January 29 - February 2, 2011 Conference Paper NREL/CP-5500-49103 March 2011 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC (Alliance), a contractor of the US Government under Contract No. DE-AC36-08GO28308. Accordingly, the US Government and Alliance retain a nonexclusive royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for US Government purposes.

468

Enhanced Geothermal Systems Subprogram Overview  

Broader source: Energy.gov (indexed) [DOE]

Geothermal Systems Subprogram Overview May 18, 2010 Geothermal Technologies Program Peer Review Crystal City, VA Energy Efficiency & Renewable Energy eere.energy.gov Technology...

469

GAMUT: A computer code for. gamma. -ray energy and intensity analysis  

SciTech Connect (OSTI)

GAMUT is a computer code to analyze {gamma}-ray energies and intensities. It does a linear least-squares fit of measured {gamma}-ray energies from one or more experiments to the level scheme. GAMUT also performs a non-linear least-squares analysis of branching intensities. For both energy and intensity data, a statistical Chi-square analysis is performed with an iterative uncertainty adjustment. The uncertainties of outlying measured values and sets of measurements with x{sup 2}/f>1 are increased, and the calculation is repeated until the uncertainties are consistent with the fitted values. GAMUT accepts input from standard or special-format ENSDF data sets. The special-format ENSDF data sets were designed to permit analysis of more than one set of measurements associated with a single ENSDF data set. GAMUT prepares a standard ENSDF format output data set containing the adjusted values. If more than one input ENSDF data set is provided, GAMUT creates an ADOPTED LEVELS, GAMMAS data set containing the adjusted level and {gamma}-ray energies and branching intensities from each level normalized to 100 for the strongest {gamma}-ray. GAMUT also provides a summary of the results and an extensive log of the iterative analysis. GAMUT is interactive prompting the user for input and output file names and for default calculation options. This version of GAMUT has adjustable dimensions so that any maximum number of data sets, levels, and {gamma}-rays can be established at the time of implementation. 6 refs.

Firestone, R.B.

1991-05-01T23:59:59.000Z

470

Transportation Energy Futures: Project Overview and Findings (Presentation), NREL (National Renewable Energy Laboratory)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Transportation currently accounts for 71% of total U.S. petroleum use and 33% of the Transportation currently accounts for 71% of total U.S. petroleum use and 33% of the nation's total carbon emissions. Energy-efficient transportation strategies and renewable fuels have the potential to simultaneously reduce petroleum consumption and greenhouse gas (GHG) emissions. The U.S. Department of Energy's (DOE) Transportation Energy Futures (TEF) project examines how a combination of multiple strategies could achieve deep reductions in petroleum use and GHG emissions. The project's primary objective is to help inform domestic decisions about transportation energy strategies, priorities, and investments, with an emphasis on underexplored opportunities related to energy efficiency

471

An overview of Boeing flywheel energy storage systems with high-temperature  

Science Journals Connector (OSTI)

An overview summary of recent Boeing work on high-temperature superconducting (HTS) bearings is presented. A design is presented for a small flywheel energy storage system that is deployable in a field installation. The flywheel is suspended by a HTS bearing whose stator is conduction cooled by connection to a cryocooler. At full speed, the flywheel has 5kWh of kinetic energy, and it can deliver 3kW of three-phase 208V power to an electrical load. The entire system, which includes a containment structure, is compatible with transportation by forklift or crane. Laboratory measurements of the bearing loss are combined with the parasitic loads to estimate the efficiency of the system. Improvements in structural composites are expected to enable the operation of flywheels with very high rim velocities. Small versions of such flywheels will be capable of very high rotational rates and will likely require the low loss inherent in HTS bearings to achieve these speeds. We present results of experiments with small-diameter rotors that use HTS bearings for levitation and rotate in vacuum at kHz rates. Bearing losses are presented as a function of rotor speed.

M Strasik; J R Hull; J A Mittleider; J F Gonder; P E Johnson; K E McCrary; C R McIver

2010-01-01T23:59:59.000Z

472

Overview of U. S. Department of Energy Program in Industrial Energy Conservation Technology Development  

E-Print Network [OSTI]

but it is important to note that many other prograJs into focus the varied and dispersed Federal activi- of the Department have an impact on industrial I ties related to energy is a major change in our conservation, for instance, fluidized bed combusti... technologies in as short a time and regulations on energy production and use, de- substitute, where possible, abund~ntas possible; (2) i I minimize the energr and the Energy Regulatory Administration, impact most10ss embodied in waste streams of all types...

Massey, R. G.

1980-01-01T23:59:59.000Z

473

Energy use and carbon dioxide emissions in energy-intensive industries in key developing countries  

E-Print Network [OSTI]

Egypt, and Iran. The methodologies described here were developed through collaboration with international energy efficiency

Price, Lynn; Worrell, Ernst; Phylipsen, Dian

1999-01-01T23:59:59.000Z

474

Differential directional intensities of low energy cosmic ray muons near sea level  

E-Print Network [OSTI]

DIFFERENTIAL DIRECTIOiNAL INTEiNSITIES OF LOW ENERGY COSMIC RAY MUONS liR SEA LEVEL A Thesis by DAVID RUDOLPH DURDA Submitted to the Graduate College of Texas ASM University in partial fulfillment of the requirement for the degree of MASTER... OF SCIENCE May 1970 Physics DIFFERENTIAL DIRECTIONAL INTENSITIES OF LOW ENERGY COSMIC RAY MUONS NEAR SEA LEVEL A Thesis by DAVID RUDOLPH DURDA Approved as to style and content by: C airman o Committee Hea o Department Me er Mem er May 1970...

Durda, David Rudolph

2012-06-07T23:59:59.000Z

475

Clean energy funds: An overview of state support for renewable energy  

E-Print Network [OSTI]

a plan to market that wind power to commercial customers inrenewable energy (such as wind power to drive equipment),marketing blocks of wind power to commercial customers in

Bolinger, Mark; Wiser, Ryan; Milford, Lew; Stoddard, Michael; Porter, Kevin

2001-01-01T23:59:59.000Z

476

EIA - Greenhouse Gas Emissions Overview  

Gasoline and Diesel Fuel Update (EIA)

Greenhouse Gas Tables (1990-2009) Greenhouse Gas Tables (1990-2009) Table Title Formats Overview 1 U.S. emissions of greenhouse gases, based on global warming potential 2 U.S. greenhouse gas intensity and related factors 3 Distribution of total U.S. greenhouse gas emissions by end-use sector 4 World energy-related carbon dioxide emissions by region 5 Greenhouse gases and 100-year net global warming potentials Carbon dioxide emissions 6 U.S. carbon dioxide emissions from energy and industry 7 U.S. energy-related carbon dioxide emissions by end-use sector 8 U.S. carbon dioxide emission from residential sector energy consumption 9 U.S. carbon dioxide emissions from commercial sector energy consumption 10 U.S. carbon dioxide emissions from industrial sector energy consumption

477

GRR/Section 6-HI-d - Other Overview | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » GRR/Section 6-HI-d - Other Overview < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 6-HI-d - Other Overview 06HIDOtherOverview.pdf Click to View Fullscreen Triggers None specified Click "Edit With Form" above to add content 06HIDOtherOverview.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative Add Text Print PDF Retrieved from "http://en.openei.org/w/index.php?title=GRR/Section_6-HI-d_-_Other_Overview&oldid=685852"

478

GRR/Section 11-CO-a - State Cultural Considerations Overview | Open Energy  

Open Energy Info (EERE)

GRR/Section 11-CO-a - State Cultural Considerations Overview GRR/Section 11-CO-a - State Cultural Considerations Overview < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 11-CO-a - State Cultural Considerations Overview 11COAStateCulturalConsiderationsOverview.pdf Click to View Fullscreen Contact Agencies Colorado Office of Archaeology and Historic Preservation Regulations & Policies CRS 24-80-1301, et seq. Triggers None specified Click "Edit With Form" above to add content 11COAStateCulturalConsiderationsOverview.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative 11-CO-a.1 - Have Potential Human Remains Been Discovered?

479

GRR/Section 3-MT-c - Encroachment Overview | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » GRR/Section 3-MT-c - Encroachment Overview < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 3-MT-c - Encroachment Overview 03MTCEncroachmentOverview.pdf Click to View Fullscreen Contact Agencies Montana Department of Natural Resources & Conservation Triggers None specified Click "Edit With Form" above to add content 03MTCEncroachmentOverview.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative There are several individual right of way or encroachment procedures in Montana. This overview is intended to lead the developer to the appropriate

480

GRR/Section 19 - Water Access & Water Rights Overview | Open Energy  

Open Energy Info (EERE)

- Water Access & Water Rights Overview - Water Access & Water Rights Overview < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 19 - Water Access & Water Rights Overview 19WaterAccessWaterRightsOverview.pdf Click to View Fullscreen Triggers None specified Click "Edit With Form" above to add content 19WaterAccessWaterRightsOverview.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative A developer may require water for such uses as dust suppression for roads, construction activities, drilling operations, extraction of geothermal resources, plant cooling operations, etc. Water access and water rights are predominantly handled by state law.

Note: This page contains sample records for the topic "intensities overview energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

GRR/Section 11-TX-a - State Cultural Considerations Overview | Open Energy  

Open Energy Info (EERE)

GRR/Section 11-TX-a - State Cultural Considerations Overview GRR/Section 11-TX-a - State Cultural Considerations Overview < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 11-TX-a - State Cultural Considerations Overview 11TXAStateCulturalConsiderationsOverview.pdf Click to View Fullscreen Contact Agencies Texas Historical Commission Regulations & Policies NRC Ch. 191: Antiquities Code CCP Ch. 49: Inquests Upon Dead Bodies Triggers None specified Click "Edit With Form" above to add content 11TXAStateCulturalConsiderationsOverview.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative 11-TX-a.1 - Have Potential Human Remains Been Discovered?

482

GRR/Section 3-WA-b - Land Access Overview | Open Energy Information  

Open Energy Info (EERE)

GRR/Section 3-WA-b - Land Access Overview GRR/Section 3-WA-b - Land Access Overview < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 3-WA-b - Land Access Overview 3-WA-b - Land Access Overview.pdf Click to View Fullscreen Contact Agencies Washington State Department of Natural Resources Triggers None specified Any developer that needs access to or through state lands must obtain the appropriate permit or lease. The developer will obtain such permit or lease through the Washington State Department of Natural Resources. 3-WA-b - Land Access Overview.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative

483

GRR/Section 3-UT-c - State Encroachment Overview | Open Energy Information  

Open Energy Info (EERE)

GRR/Section 3-UT-c - State Encroachment Overview GRR/Section 3-UT-c - State Encroachment Overview < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 3-UT-c - State Encroachment Overview 03UTCStateEncroachmentOverview.pdf Click to View Fullscreen Contact Agencies Utah Department of Transportation Triggers None specified Click "Edit With Form" above to add content 03UTCStateEncroachmentOverview.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative The Utah Department of Transportation's Region Permits Offices protect the State's right-of-way and facilitate and coordinate other highway users and provide for safe and efficient operation of Utah's highways. The

484

National Renewable Energy Laboratory's Energy Systems Integration...  

Broader source: Energy.gov (indexed) [DOE]

National Renewable Energy Laboratory's Energy Systems Integration Facility Overview National Renewable Energy Laboratory's Energy Systems Integration Facility Overview This...

485

INL Overview  

ScienceCinema (OSTI)

Sure, we're the nation's leading nuclear-energy research lab ? but we're so much more than that! Check out INL's new hi-def overview video, which breaks down who we are and what we do. You might also want to surf on over to our facebook site http://www.facebook.com/idahonationallaboratory to see what kind of job openings we may have for you.

None

2013-05-28T23:59:59.000Z

486

The causes of the high energy intensity of the Kazakh economy: A characterization of its energy system  

Science Journals Connector (OSTI)

Abstract The primary energy intensity of Kazakhstan is among the highest in the world. The aim of this paper is to explore, in a quantitative way, the reasons for this condition, and to highlight the opportunities for improvement. To do so, we have developed a detailed bottom-up model of the Kazakh energy sector. With this model, we have calculated the potential energy savings on both the demand and supply sides, and for all the economy sectors. This potential is defined as the difference between the current energy consumption in each sector/activity and the energy consumption if best available technologies or energy efficiency standards prevailing in developed countries were adopted in Kazakhstan. We conclude that the main causes of the energy inefficiency in Kazakhstan are: the excessive energy demand of buildings (especially for space heating) in the household and service sector, the inefficiency of the industry sector, particularly in the iron and steel and non-ferrous metals subsectors, the obsolescence of the heating and power generation assets, and the inefficient management of associated gas (flaring and re-injection in oil wells). With current energy efficiency standards prevailing in developed countries, the primary energy consumption in Kazakhstan in 2010 would be reduced by 48.6%, from 75.4 to 38.7Mtoe.

Antonio Gmez; Csar Dopazo; Norberto Fueyo

2014-01-01T23:59:59.000Z

487

Overview Brochures  

Office of Science (SC) Website

Brochures Brochures Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) News & Resources Program Summaries Brochures Reports Accomplishments Presentations BES and Congress Science for Energy Flow Seeing Matter Scale of Things Chart Contact Information Basic Energy Sciences U.S. Department of Energy SC-22/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3081 F: (301) 903-6594 E: sc.bes@science.doe.gov More Information » News & Resources Brochures Print Text Size: A A A RSS Feeds FeedbackShare Page The Basic Energy Sciences (BES) informational brochures provide an overview of BES research areas, scientific user facilities, and the relevance of the

488

Energy-Intensive Processes Portfolio: Addressing Key Energy Challenges Across U.S. Industry  

Broader source: Energy.gov [DOE]

Portfolio of projects focused on investments in high-impact, crosscutting opportunities that provide significant energy savings and carbon reductions across a broad industrial base

489

Sewage Sludge as a Biomass Resource for the Production of Energy: Overview and Assessment of the Various Options  

Science Journals Connector (OSTI)

Sewage Sludge as a Biomass Resource for the Production of Energy: Overview and Assessment of the Various Options ... This effort simultaneously proceeded with an enforcement of the industry and households to reduce or eliminate the discharge of toxic pollutants into the sewer. ... A lot of effort has been put into the manufacturing of valuable products by thermal solidification of the inorganic sludge compounds, especially in Japan. ...

Wim Rulkens

2007-09-25T23:59:59.000Z

490

Coherent backscattering of intense light by cold atoms with degenerate energy levels: Diagrammatic treatment  

E-Print Network [OSTI]

We present a generalization of the diagrammatic pump-probe approach to coherent backscattering (CBS) of intense laser light for atoms with degenerate energy levels. We employ this approach for a characterization of the double scattering signal from optically pumped atoms with the transition $J_g\\rightarrow J_e=J_g+1$ in the helicity preserving polarization channel. We show that, in the saturation regime, the internal degeneracy becomes manifest for atoms with $J_g\\geq 1$, leading to a faster decrease of the CBS enhancement factor with increasing saturation parameter than in the non-degenerate case.

V. N. Shatokhin; R. Blattmann; T. Wellens; A. Buchleitner

2014-07-10T23:59:59.000Z

491

High-energy-density physics experiments with intense heavy ion beams  

Science Journals Connector (OSTI)

In this paper we discuss physical and technical issues of high-energy-density physics (HEDP) experiments with intense heavy ion beams that are being performed at the Gesellschaft fr Schwerionenforschung (GSI), Darmstadt. Special attention is given to a comparison of some recent results on expansion dynamics of evaporating lead that have been obtained in heavy ion beam driven HIHEX (Heavy-Ion Heating and Expansion) experiments at GSI-Darmstadt and in high-explosive driven shock wave loading and release experiments at IPCPChernogolovka.

D. Varentsov; V. Ya. Ternovoi; M. Kulish; D. Fernengel; A. Fertman; A. Hug; J. Menzel; P. Ni; D.N. Nikolaev; N. Shilkin; V. Turtikov; S. Udrea; V.E. Fortov; A.A. Golubev; V.K. Gryaznov; D.H.H. Hoffmann; V. Kim; I.V. Lomonosov; V. Mintsev; B.Yu. Sharkov; A. Shutov; P. Spiller; N.A. Tahir; H. Wahl

2007-01-01T23:59:59.000Z

492

Management Overview  

Broader source: Energy.gov (indexed) [DOE]

Partnership Partnership Status of Industry Engagement Nuclear Energy Advisory Committee (NEAC) Dan Stout Director of Nuclear Fuel Recycling Office of Nuclear Energy April 21, 2008 April 21, 2008 NEAC Meeting 2 Outline Industry Engagement Activities Funding Opportunity Announcement (FOA) - Scope, Design Requirements, Selection Criteria Industry Teams Awarded Cooperative Agreements DOE Evaluation of Industry Deliverables - Overview, initial facilities, approaches, issues and summary Next Steps April 21, 2008 NEAC Meeting 3 GNEP Industry Engagement Activities Expressions of Interest (2006) - Requested August 2006 - Received responses in September 2006 - Description: * Confidence that large facilities could be deployed by 2020 (using mature technologies) * Submittals were "proprietary"

493

GRR/Section 11-WA-a - State Cultural Considerations Overview | Open Energy  

Open Energy Info (EERE)

GRR/Section 11-WA-a - State Cultural Considerations Overview GRR/Section 11-WA-a - State Cultural Considerations Overview < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 11-WA-a - State Cultural Considerations Overview 11-WA-a - State Cultural Considerations Overview.pdf Click to View Fullscreen Triggers None specified The developer will be required to comply with Washington state law when human remains or other cultural resources are discovered on a project site. Cultural resources include both historic and archaeological resources and sites. The discovery of cultural resources may require obtaining a permit and providing public notice and notice to Indian Tribes. Once the necessary procedures have been followed, the developer may continue with the project.

494

GRR/Section 3-CO-c - Encroachment Overview | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » GRR/Section 3-CO-c - Encroachment Overview < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 3-CO-c - Encroachment Overview 03COCEncroachmentOverview.pdf Click to View Fullscreen Contact Agencies Colorado Department of Transportation Regulations & Policies Rule 2.2.1.1 Triggers None specified Click "Edit With Form" above to add content 03COCEncroachmentOverview.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

495

Overview of DOE Emission Control R&D | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of DOE Emission Control R&D Overview of DOE Emission Control R&D 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11,...

496

Overview of DOE Fuel Technologies R&D | Department of Energy  

Office of Environmental Management (EM)

DOE Fuel Technologies R&D Overview of DOE Fuel Technologies R&D 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May...

497

GRR/Section 19-WA-a - Water Access and Water Rights Overview | Open Energy  

Open Energy Info (EERE)

9-WA-a - Water Access and Water Rights Overview 9-WA-a - Water Access and Water Rights Overview < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 19-WA-a - Water Access and Water Rights Overview 19-WA-a - Water Access and Water Rights Overview.pdf Click to View Fullscreen Contact Agencies Washington State Department of Ecology Regulations & Policies Revised Code of Washington Chapter 90.03 Revised Code of Washington Chapter 90.44 RCW 90.44.050 Triggers None specified Similar to many western states, only a small amount of water is available for appropriation in Washington. As a result, Washington has developed a comprehensive regulatory scheme for the distribution of water rights and use of water in the state. Washington employs a prior appropriation or

498

ESPC PPA Overview  

Broader source: Energy.gov [DOE]

Presentation-given at the April 2012 Federal Utility Partnership Working Group (FUPWG) meetingprovides an overview on an energy savings performance contract (ESPCs) with a purchase power agreement (PPA) energy conservation measure (ECM).

499

Neutron-scattering study of the magnon energies and intensities in iron  

Science Journals Connector (OSTI)

The magnetic inelastic neutron scattering at low temperatures has been measured from a large single crystal of Fe54(12 at.% Si) up to energy transfers of 100 meV using the constant-Q spectrometer at the Los Alamos pulsed neutron source. The spin-wave energies and intensities were obtained from the data by using a multichannel maximum-entropy technique, and we show that much more detailed information can be obtained from the maximum-entropy analysis. The observed spin-wave dispersion relations obtained in the present experiment are in excellent agreement with earlier data, and we observe a sharp falloff of the (001) magnon intensity at approximately 80 meV, which is in accord with previous experimental measurements and multiband theoretical calculations of the dynamic susceptibility of iron. We also compare the data rate obtained with the constant-Q spectrometer to a triple-axis instrument and find that the spectrometer is competitive for this type of measurement.

M. Yethiraj; R. A. Robinson; D. S. Sivia; J. W. Lynn; H. A. Mook

1991-02-01T23:59:59.000Z

500

Efficiency and Intensity in the AEO 2010  

U.S. Energy Information Administration (EIA) Indexed Site

Session 9 Session 9 Energy Efficiency: Measuring Gains and Quantifying Opportunities April 7, 2010 2010 Energy Conference Washington, DC Steve Wade, Economist Efficiency and Intensity in the AEO 2010 Steve Wade, 2010 Energy Conference, April 7, 2010 2 * What are the sources of efficiency in the AEO 2010? * What is the contribution of energy efficiency to projected U.S. energy intensity? * How do AEO scenarios relate to technical potential? Overview Steve Wade, 2010 Energy Conference, April 7, 2010 3 * Technology - Stock turnover - Progress and learning * Mandates - CAFÉ, efficiency standards (NAECA, EPACT), building codes... - Renewable fuel standards * Incentives - Tax credits, loan guarantees, grants, ...  Energy efficiency and renewables - ACESA, ARRA (stimulus bill) ...  Investment tax credits