Sample records for intense field short

  1. Electron acceleration by an intense short pulse laser in a static magnetic field in vacuum K. P. Singh*

    E-Print Network [OSTI]

    Roy, Subrata

    Electron acceleration by an intense short pulse laser in a static magnetic field in vacuum K. P by a laser pulse having Gaussian radial and temporal profiles of intensity has been studied in a static to be the same as that of the magnetic field of the laser pulse. The electron gains considerable energy

  2. Fast magnetic field annihilation in the relativistic collisionless regime driven by two ultra-short high-intensity laser pulses

    E-Print Network [OSTI]

    Gu, Y J; Kumar, D; Liu, Y; Singh, S K; Esirkepov, T Zh; Bulanov, S V; Weber, S; Korn, G

    2015-01-01T23:59:59.000Z

    The magnetic quadrupole structure formation during the interaction of two ultra-short high power laser pulses with a collisionless plasma is demonstrated with 2.5-dimensional particle-in-cell simulations. The subsequent expansion of the quadrupole is accompanied by magnetic field annihilation in the ultrarelativistic regime, when the magnetic field can not be sustained by the plasma current. This results in a dominant contribution of the displacement current exciting a strong large scale electric?field. This field leads to the conversion of magnetic energy into kinetic energy of accelerated electrons inside the thin current sheet.

  3. Compton Process in Intense Short Laser Pulses

    E-Print Network [OSTI]

    K. Krajewska; J. Z. Kaminski

    2012-06-05T23:59:59.000Z

    The spectra of Compton radiation emitted during electron scattering off an intense laser beam are calculated using the framework of strong-field quantum electrodynamics. We model these intense laser beams as finite length plane-wave-fronted pulses, similar to Neville and Rohrlich [Phys. Rev. D {\\bf 3}, 1692 (1971)], or as trains of such pulses. Expressions for energy and angular distributions of Compton photons are derived such that a comparison of both situations becomes meaningful. Comparing frequency distributions for both an isolated laser pulse and a laser pulse train, we find a very good agreement between the results for long pulse durations which breaks down however for ultrashort laser pulses. The dependence of angular distributions of emitted radiation on a pulse duration is also investigated. Pronounced asymmetries of angular distributions are found for very short laser pulses, which gradually disappear with increasing the number of laser field oscillations. Those asymmetries are attributed to asymmetries of the vector potential describing an incident laser beam.

  4. Short rise time intense electron beam generator

    DOE Patents [OSTI]

    Olson, Craig L. (Albuquerque, NM)

    1987-01-01T23:59:59.000Z

    A generator for producing an intense relativistic electron beam having a subnanosecond current rise time includes a conventional generator of intense relativistic electrons feeding into a short electrically conductive drift tube including a cavity containing a working gas at a low enough pressure to prevent the input beam from significantly ionizing the working gas. Ionizing means such as a laser simultaneously ionize the entire volume of working gas in the cavity to generate an output beam having a rise time less than one nanosecond.

  5. Short rise time intense electron beam generator

    DOE Patents [OSTI]

    Olson, C.L.

    1984-03-16T23:59:59.000Z

    A generator for producing an intense relativisitc electron beam having a subnanosecond current rise time includes a conventional generator of intense relativistic electrons feeding into a short electrically conductive drift tube including a cavity containing a working gas at a low enough pressure to prevent the input beam from significantly ionizing the working gas. Ionizing means such as a laser simultaneously ionize the entire volume of working gas in the cavity to generate an output beam having a rise time less than one nanosecond.

  6. Particle Acceleration by a Short-Intense Elliptically Polarized Electromagnetic

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Particle Acceleration by a Short-Intense Elliptically Polarized Electromagnetic Pulse Propagating to plasma physics and particle accelerators. The interaction physics of fields with particles has also been, Colchester CO4 3SQ, U.K. Abstract. The motion of a charged particle driven by an electromagnetic pulse

  7. Gamma radiation field intensity meter

    DOE Patents [OSTI]

    Thacker, L.H.

    1994-08-16T23:59:59.000Z

    A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode. 4 figs.

  8. Gamma radiation field intensity meter

    DOE Patents [OSTI]

    Thacker, Louis H. (Knoxville, TN)

    1995-01-01T23:59:59.000Z

    A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode.

  9. Gamma radiation field intensity meter

    DOE Patents [OSTI]

    Thacker, L.H.

    1995-10-17T23:59:59.000Z

    A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode. 4 figs.

  10. Gamma radiation field intensity meter

    DOE Patents [OSTI]

    Thacker, Louis H. (Knoxville, TN)

    1994-01-01T23:59:59.000Z

    A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode.

  11. PHYSICAL REVIEW A 83, 013405 (2011) Precision calculation of above-threshold multiphoton ionization in intense short-wavelength laser

    E-Print Network [OSTI]

    Chu, Shih-I

    2011-01-01T23:59:59.000Z

    in intense short-wavelength laser fields: The momentum-space approach and time-dependent generalized to the advance of the intense and short pulse laser technology, the study of ATI phenomenon continues to attract) dynamics of atomic systems driven by intense laser fields. In this approach, the electron wave function

  12. Field performance of 'populus' in short-rotation intensive culture plantations in the north-central US Forest Service research paper

    SciTech Connect (OSTI)

    Hansen, E.A.; Ostry, M.E.; Johnson, W.D.; Tolsted, D.N.; Netzer, D.A.

    1994-01-01T23:59:59.000Z

    The report describes a network of short-rotation Populus research and demonstration plantations that has been established across a 5-State region in the north-central U.S. to identify suitable hybrid poplar clones for large-scale biomass plantations in the region. Reports 6-year results.

  13. Making Relativistic Positrons Using Ultra-Intense Short Pulse Lasers

    SciTech Connect (OSTI)

    Chen, H; Wilks, S; Bonlie, J; Chen, C; Chen, S; Cone, K; Elberson, L; Gregori, G; Liang, E; Price, D; Van Maren, R; Meyerhofer, D D; Mithen, J; Murphy, C V; Myatt, J; Schneider, M; Shepherd, R; Stafford, D; Tommasini, R; Beiersdorfer, P

    2009-08-24T23:59:59.000Z

    This paper describes a new positron source produced using ultra-intense short pulse lasers. Although it has been studied in theory since as early as the 1970s, the use of lasers as a valuable new positron source was not demonstrated experimentally until recent years, when the petawatt-class short pulse lasers were developed. In 2008 and 2009, in a series of experiments performed at Lawrence Livermore National Laboratory, a large number of positrons were observed after shooting a millimeter thick solid gold target. Up to 2 x 10{sup 10} positrons per steradian ejected out the back of {approx}mm thick gold targets were detected. The targets were illuminated with short ({approx}1 ps) ultra-intense ({approx}1 x 10{sup 20} W/cm{sup 2}) laser pulses. These positrons are produced predominantly by the Bethe-Heitler process, and have an effective temperature of 2-4 MeV, with the distribution peaking at 4-7 MeV. The angular distribution of the positrons is anisotropic. For a wide range of applications, this new laser based positron source with its unique characteristics may complements the existing sources using radioactive isotopes and accelerators.

  14. Relativistic Positron Creation Using Ultra-Intense Short Pulse Lasers

    SciTech Connect (OSTI)

    Chen, H; Wilks, S; Bonlie, J; Liang, E; Myatt, J; Price, D; Meyerhofer, D; Beiersdorfer, P

    2008-08-25T23:59:59.000Z

    We measure up to 2 x 10{sup 10} positrons per steradian ejected out the back of {approx}mm thick gold targets when illuminated with short ({approx} 1 ps) ultra-intense ({approx} 1 x 10{sup 20} W/cm{sup 2}) laser pulses. Positrons produced predominately by the Bethe-Heitler process and have an effective temperature of 2-4 MeV, with the distribution peaking at 4-7 MeV. The angular distribution of the positrons is anisotropic. The measurements indicate the laser produced, relativistic positron densities ({approx} 10{sup 16} positrons/cm{sup 3}) are the highest ever created in the laboratory.

  15. Investigation of laser-driven proton acceleration using ultra-short, ultra-intense laser pulses

    E-Print Network [OSTI]

    Marjoribanks, Robin S.

    Investigation of laser-driven proton acceleration using ultra-short, ultra- intense laser pulses S;Investigation of laser-driven proton acceleration using ultra-short, ultra-intense laser pulses S. Fourmaux,1,a metallic foils irradiated by ultra-intense ultra-short laser pulses.8­10 Laser-driven ion beams take

  16. Radiation Reaction in High-Intense Fields

    E-Print Network [OSTI]

    Seto, Keita

    2015-01-01T23:59:59.000Z

    After the development of the radiating electron model by P. A. M. Dirac in 1938, many authors have tried to reformulate this model so-called radiation reaction. Recently, this effects has become important for ultra-intense laser-electron (plasma) interactions. In our recent research, we found a method for the stabilization of radiation reaction in quantum vacuum [PTEP 2014, 043A01 (2014), PTEP 2015, 023A01 (2015)]. In the other hand, the field modification by high-intense fields should be required under 10PW lasers, like ELI-NP facility. In this paper, I propose the combined method how to adopt the high-intense field correction with the stabilization by quantum vacuum as the extension from the model by Dirac.

  17. Photonuclear Reactions induced by Intense Short Laser Pulses

    E-Print Network [OSTI]

    B. Dietz; H. A. Weidenmueller

    2010-03-26T23:59:59.000Z

    A measurement of the decay in time of nuclei excited by an intense short laser pulse of energy E(0) yields the Fourier transform of the autocorrelation function of the associated scattering matrix. We determine the optimal length (in time) of the pulse and evaluate the time-decay function using random-matrix theory. That function is shown to contain information not otherwise available. We approximate that function in a manner that is useful for the analysis of data. For E(0) below the threshold energy E(n) of the first neutron channel, the time-decay function is exponential in time t while it is the product of an exponential and a power in t for E(0) > E(n). The comparison of the measured decay functions in both energy domains yields an unambiguous and novel test of random-matrix theory in nuclei.

  18. Title of Document: INTERACTION OF INTENSE SHORT LASER PULSES WITH GASES OF NANOSCALE

    E-Print Network [OSTI]

    Anlage, Steven

    ABSTRACT Title of Document: INTERACTION OF INTENSE SHORT LASER PULSES WITH GASES OF NANOSCALE-cluster interaction. #12;INTERACTION OF INTENSE SHORT LASER PULSES WITH GASES OF NANOSCALE ATOMIC AND MOLECULAR., Department of Electrical and Computer Engineering We study the interaction of intense laser pulses with gases

  19. ?-Decay in Ultra-Intense Laser Fields

    E-Print Network [OSTI]

    Serban Misicu; Margarit Rizea

    2013-07-05T23:59:59.000Z

    We investigate the \\alpha-decay of a spherical nucleus under the influence of an ultra-intense laser field for the case when the radius vector joining the center-of-masses of the \\alpha-particle and the daughter is aligned with the direction of the external field. The time-independent part of the \\alpha-daughter interaction is taken from elastic scattering compilations whereas the time-varying part describes the interaction between the decaying system with the laser field. The time-dependent Schr\\"odinger equation is solved numerically by appealing to a modified scheme of the Crank-Nicolson type where an additional first-order time derivative appears compared to the field-free case. The tunneling probability of the \\alpha-cluster, and derived quantities (decay rate, total flux) is determined for various laser intensities and frequencies for either continous waves or few-cycle pulses of envelope function F(t)=1. We show that in the latter case pulse sequences containing an odd number of half-cycles determine an enhancement of the tunneling probability compared to the field-free case and the continuous wave case. The present study is carried out taking as example the alpha decaying nucleus $^{106}$Te.

  20. Breit-Wheeler Process in Intense Short Laser Pulses

    E-Print Network [OSTI]

    K. Krajewska; J. Z. Kaminski

    2012-09-11T23:59:59.000Z

    Energy-angular distributions of electron-positron pair creation in collisions of a laser beam and a nonlaser photon are calculated using the $S$-matrix formalism. The laser field is modeled as a finite pulse, similar to the formulation introduced in our recent paper in the context of Compton scattering [Phys. Rev. A {\\bf 85}, 062102 (2012)]. The nonperturbative regime of pair creation is considered here. The energy spectra of created particles are compared with the corresponding spectra obtained using the modulated plane wave approximation for the driving laser field. A very good agreement in these two cases is observed, provided that the laser pulse is sufficiently long. For short pulse durations, this agreement breaks down. The sensitivity of pair production to the polarization of a driving pulse is also investigated. We show that in the nonperturbative regime, the pair creation yields depend on the polarization of the pulse, reaching their maximal values for the linear polarization. Therefore, we focus on this case. Specifically, we analyze the dependence of pair creation on the relative configuration of linear polarizations of the laser pulse and the nonlaser photon. Lastly, we investigate the carrier-envelope phase effect on angular distributions of created particles, suggesting the possibility of phase control in relation to the pair creation processes.

  1. Proton radiography of magnetic field produced by ultra-intense laser irradiating capacity-coil target

    E-Print Network [OSTI]

    Wang, W W; Chen, J; Cai, H B; He, S K; Zhou, W M; Shan, L Q; Lu, F; Wu, Y C; Hong, W; Liu, D X; Bi, B; Zhang, F; Xue, F B; Li, B Y; Zhang, B; He, Y L; He, W; Jiao, J L; Dong, K G; Zhang, F Q; Deng, Z G; Zhang, Z M; Cui, B; Han, D; Zhou, K N; Wang, X D; Zhao, Z Q; Cao, L F; Zhang, B H; He, X T; Gu, Y Q

    2014-01-01T23:59:59.000Z

    Ultra-intense ultra-short laser is firstly used to irradiate the capacity-coil target to generate magnetic field. The spatial structure and temporal evolution of huge magnetic fields were studied with time-gated proton radiography method. A magnetic flux density of 40T was measured by comparing the proton deflection and particle track simulations. Although the laser pulse duration is only 30fs, the generated magnetic field can last for over 100 picoseconds. The energy conversion efficiency from laser to magnetic field can reach as high as ~20%. The results indicate that tens of tesla (T) magnetic field could be produced in many ultra intense laser facilities around the world, and higher magnetic field could be produced by picosecond lasers.

  2. 1738 IEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. 36, NO. 4, AUGUST 2008 Propagation of a Short Intense Laser Pulse

    E-Print Network [OSTI]

    Strathclyde, University of

    , the propagation of a short intense laser pulse in a curved plasma channel is considered. The effects of the shape1738 IEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. 36, NO. 4, AUGUST 2008 Propagation of a Short Intense Laser Pulse in a Curved Plasma Channel Albert Reitsma and Dino Jaroszynski Abstract--In this paper

  3. ORIGINAL PAPER Short-term effect of tillage intensity on N2O and CO2 emissions

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ORIGINAL PAPER Short-term effect of tillage intensity on N2O and CO2 emissions Pascal Boeckx negative to positive. We studied the short-term effect of tillage intensity on N2O and CO2 emissions. We site, an intermediately aerated Luvisol in Belgium, were similar. Nitrous oxide and CO2 emissions were

  4. Production of neutrons up to 18 MeV in high-intensity, short-pulse laser matter interactions

    E-Print Network [OSTI]

    Production of neutrons up to 18 MeV in high-intensity, short-pulse laser matter interactions D. P of neutrons up to 18 MeV in high-intensity, short-pulse laser matter interactions D. P. Higginson,1,2 J. M. Mc of laser energy in a 9 ps pulse. In this technique, a short-pulse, high-energy laser accelerates deuterons

  5. Enhancement of x-ray line emission from plasmas produced by short high-intensity laser double pulses

    E-Print Network [OSTI]

    Limpouch, Jiri

    Enhancement of x-ray line emission from plasmas produced by short high-intensity laser double.25.Os, 52.65. y I. INTRODUCTION The advanced technology of short pulse lasers now pro- vides on experimental conditions. The enhancement of x-ray yield by short laser prepulses has been reported in several

  6. PHYSICAL REVIEW A 84, 043423 (2011) Dynamic of rescattering-electron wave packets in strong and short-wavelength laser fields

    E-Print Network [OSTI]

    2011-01-01T23:59:59.000Z

    and short-wavelength laser fields: Roles of Coulomb potential and excited states Yanjun Chen* Beijing and molecules exposed in strong and short- wavelength (shorter than 800 nm) laser fields. Our simulations show the potential, to explain the electronic response in intense and relatively high-frequency laser fields. DOI: 10

  7. Epithermal Neutron Source for Neutron Resonance Spectroscopy (NRS) using High Intensity, Short Pulse Lasers

    SciTech Connect (OSTI)

    Higginson, D P; McNaney, J M; Swift, D C; Bartal, T; Hey, D S; Pape, S L; Mackinnon, A; Mariscal, D; Nakamura, H; Nakanii, N; Beg, F N

    2010-04-22T23:59:59.000Z

    A neutron source for neutron resonance spectroscopy (NRS) has been developed using high intensity, short pulse lasers. This measurement technique will allow for robust measurements of interior ion temperature of laser-shocked materials and provide insight into equation of state (EOS) measurements. The neutron generation technique uses protons accelerated by lasers off of Cu foils to create neutrons in LiF, through (p,n) reactions with {sup 7}Li and {sup 19}F. The distribution of the incident proton beam has been diagnosed using radiochromic film (RCF). This distribution is used as the input for a (p,n) neturon prediction code which is compared to experimentally measured neutron yields. From this calculation, a total fluence of 1.8 x 10{sup 9} neutrons is infered, which is shown to be a reasonable amount for NRS temperature measurement.

  8. Rare-gas-cluster explosions under irradiation by intense short XUV pulses

    SciTech Connect (OSTI)

    Hoffmann, K.; Murphy, B.; Kandadai, N.; Erk, B.; Helal, A.; Keto, J.; Ditmire, T. [Department of Physics, Texas Center for High Intensity Laser Science, University of Texas at Austin, Austin, Texas 78712 (United States)

    2011-04-15T23:59:59.000Z

    High-intensity, extreme-ultraviolet (XUV) femtosecond interactions with large rare-gas clusters of xenon and argon have been studied at a wavelength of 38 nm. Pulses of XUV radiation with nJ energy are produced by high-order harmonic conversion from a 35-fs, near-infrared, terawatt laser. Mass resolved ion spectra show charge states up to Xe{sup 8+} and Ar{sup 4+}. Kinetic-energy measurements of ions and electrons indicate that a nanoplasma is formed and a hydrodynamic cluster explosion ensues after heating by the short wavelength pulse. It appears that the observed charge states and electron temperatures are consistent with sequential, single-photon ionization and collisional ionization of ions that have had their ionization potential depressed by plasma continuum lowering in the cluster nanoplasma.

  9. Signatures of Radiation Reaction in Ultra-Intense Laser Fields

    E-Print Network [OSTI]

    C. Harvey; T. Heinzl; M. Marklund

    2011-10-04T23:59:59.000Z

    We discuss radiation reaction effects on charges propagating in ultra-intense laser fields. Our analysis is based on an analytic solution of the Landau-Lifshitz equation. We suggest to measure radiation reaction in terms of a symmetry breaking parameter associated with the violation of null translation invariance in the direction opposite to the laser beam. As the Landau-Lifshitz equation is nonlinear the energy transfer within the pulse is rather sensitive to initial conditions. This is elucidated by comparing colliding and fixed target modes in electron laser collisions.

  10. Ion heating dynamics in solid buried layer targets irradiated by ultra-short intense laser pulses

    E-Print Network [OSTI]

    Huang, Lingen; Kluge, Thomas; Lei, Anle; Yu, Wei; Cowan, Thomas E

    2013-01-01T23:59:59.000Z

    We investigate bulk ion heating in solid buried layer targets irradiated by ultra-short laser pulses of relativistic intensities using particle-in-cell simulations. Our study focuses on a CD2-Al-CD2 sandwich target geometry. We find enhanced deuteron ion heating in a layer compressed by the expanding aluminium layer. A pressure gradient created at the Al-CD2 interface pushes this layer of deuteron ions towards the outer regions of the target. During its passage through the target, deuteron ions are constantly injected into this layer. Our simulations suggest that the directed collective outward motion of the layer is converted into thermal motion inside the layer, leading to deuteron temperatures higher than those found in the rest of the target. This enhanced heating can already be observed at laser pulse durations as low as 100 femtoseconds. Thus, detailed experimental surveys at repetition rates of several ten laser shots per minute are in reach at current high-power laser systems, which would allow for pr...

  11. West Short Pine Hills field, Harding County, South Dakota

    SciTech Connect (OSTI)

    Strothman, B.

    1988-07-01T23:59:59.000Z

    The West Short Pine Hills field is a shallow gas field that produces from the Shannon Sandstone Member, on the Camp Crook anticline in southwestern Harding County, South Dakota. The Alma McCutchin 1-17 Heikkila discovery was drilled in the NW1/4, Sec. 17, T16N, R2E, to a depth of 1600 ft and completed in October 1977 for 600 MCFGD from perforations at 1405-1411 ft. To date, 40 gas wells have been completed with total estimated reserves of more than 20 bcf. The field encompasses 12,000 ac, with a current drill-site spacing unit of 160 ac. The field boundaries are fairly well defined, except on the south edge of the field. The wells range in depth from 1250 to 2200 ft, and cost $60,000-$85,000 to drill and complete. Core and log analyses indicate that the field has 70 ft of net pay, with average porosity of 30% and average permeability of 114 md. Most wells have been completed with nitrogen-sand frac. Williston Basin Interstate Pipeline Company of Bismarck, North Dakota, operates a compressor station and 2.5 mi of 4-in. line that connects the field to their 160 in. north-south transmission line to the Rapid City area. Currently, producers are netting $1.10-$1.25/million Btu. The late Mathew T. Biggs of Casper, Wyoming, was the geologist responsible for mapping and finding this gas deposit.

  12. Title: Combined passive detection and ultrafast active imaging of cavitation events induced by short pulses of high intensity

    E-Print Network [OSTI]

    Boyer, Edmond

    1 Title: Combined passive detection and ultrafast active imaging of cavitation events induced by short pulses of high intensity ultrasound Authors: Jérôme GATEAU, Jean-François AUBRY, Mathieu PERNOT / INSERM, U979 / Université Denis Diderot, Paris VII Key words: single nucleation events, ultrafast active

  13. Electronic and structural response of InSb to ultra-short and ultra-intense laser pulses

    E-Print Network [OSTI]

    Burzo, Andrea Mihaela

    2001-01-01T23:59:59.000Z

    of the behavior of InSb following application of ultra-short and ultra-intense laser pulses. Motivated directly by these experiments, we have performed simulations of the electron-ion dynamics of InSb subjected to femtosecond-scale laser pulses. These simulations...

  14. Modeling scattered intensity from microspheres in evanescent field

    E-Print Network [OSTI]

    Shah, Suhani Kiran

    2008-10-10T23:59:59.000Z

    of the total scattered light intensity on microsphere size accounts for the scattered intensity distribution in a polydisperse microsphere sample. Understanding this variation in the scattered light with microsphere size will allow improved characterization...

  15. Asymmetries of azimuthal photon distributions in non-linear Compton scattering in ultra-short intense laser pulses

    E-Print Network [OSTI]

    Seipt, D

    2013-01-01T23:59:59.000Z

    Non-linear Compton scattering in ultra-short intense laser pulses is discussed with the focus on angular distributions of the emitted photon energy. This is an observable which is accessible easily experimentally. Asymmetries of the azimuthal distributions are predicted for both linear and circular polarization. We present a systematic survey of the influence of the laser intensity, the carrier envelope phase and the laser polarization on the emission spectra for single-cycle and few-cycle laser pulses. For linear polarization, the dominant direction of the emission changes from a perpendicular pattern with respect to the laser polarization at low-intensity to a dominantly parallel emission for high-intensity laser pulses.

  16. Asymmetries of azimuthal photon distributions in non-linear Compton scattering in ultra-short intense laser pulses

    E-Print Network [OSTI]

    D. Seipt; B. Kampfer

    2013-05-16T23:59:59.000Z

    Non-linear Compton scattering in ultra-short intense laser pulses is discussed with the focus on angular distributions of the emitted photon energy. This is an observable which is accessible easily experimentally. Asymmetries of the azimuthal distributions are predicted for both linear and circular polarization. We present a systematic survey of the influence of the laser intensity, the carrier envelope phase and the laser polarization on the emission spectra for single-cycle and few-cycle laser pulses. For linear polarization, the dominant direction of the emission changes from a perpendicular pattern with respect to the laser polarization at low-intensity to a dominantly parallel emission for high-intensity laser pulses.

  17. Electrons in a relativistic-intensity laser field: generation of zeptosecond electromagnetic pulses and energy spectrum of the accelerated electrons

    SciTech Connect (OSTI)

    Andreev, A A; Galkin, A L; Kalashnikov, M P; Korobkin, V V; Romanovsky, Mikhail Yu; Shiryaev, O B [A M Prokhorov General Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation)

    2011-08-31T23:59:59.000Z

    We study the motion of an electron and emission of electromagnetic waves by an electron in the field of a relativistically intense laser pulse. The dynamics of the electron is described by the Newton equation with the Lorentz force in the right-hand side. It is shown that the electrons may be ejected from the interaction region with high energy. The energy spectrum of these electrons and the technique of using the spectrum to assess the maximal intensity in the focus are analysed. It is found that electromagnetic radiation of an electron moving in an intense laser field occurs within a small angle around the direction of the electron trajectory tangent. The tangent quickly changes its direction in space; therefore, electromagnetic radiation of the electron in the far-field zone in a certain direction in the vicinity of the tangent is a short pulse with a duration as short as zeptoseconds. The calculation of the temporary and spectral distribution of the radiation field is carried out. (superintense laser fields)

  18. Molecular Dynamics of Methylamine, Methanol, and Methyl Fluoride Cations in Intense 7 Micron Laser Fields

    E-Print Network [OSTI]

    Schlegel, H. Bernhard

    Molecular Dynamics of Methylamine, Methanol, and Methyl Fluoride Cations in Intense 7 Micron Laser of methylamine (CH3NH2 + ), methanol (CH3OH+ ), and methyl fluoride (CH3F+ ) cations by short, intense laser 7 m laser pulses. This work is motivated by recent studies of methanol cations by Yamanouchi and co

  19. Self-focusing, channel formation, and high-energy ion generation in interaction of an intense short laser pulse with a He jet

    E-Print Network [OSTI]

    Umstadter, Donald

    A number of proposed applications of ultrahigh intensity short laser pulses require laser guiding-focusing related to plasma motion during the laser pulse. Although the self-focusing of a short laser pulse motion induced by a short relativistic laser pulse was studied in hydrodynamic simula

  20. Fundamental physics on natures of the macroscopic vacuum under high intense electromagnetic fields with accelerators

    E-Print Network [OSTI]

    Kensuke Homma

    2009-11-30T23:59:59.000Z

    High intense electromagnetic fields can be unique probes to study natures of macroscopic vacua by themselves. Combining accelerators with the intense field can provide more fruitful probes which can neither be achieved by only intense fields nor only high energy accelerators. We will overview the natures of vacua which can be accessible via intense laser-laser and intense laser-electron interactions. In the case of the laser-laser interaction, we propose how to observe nonlinear QED effects and effects of new fields like light scalar and pseudo scalar fields which may contribute to a macroscopic nature of our universe such as dark energy. In the case of the laser-electron interaction, in addition to nonlinear QED effects, we can further discuss the nature of accelerating field in the vacuum where we can access physics related with event horizons such as Hawking-Unruh radiations. We will introduce a recent experimental trial to search for this kind of odd radiations.

  1. Asymmetric explosion of clusters in intense laser fields

    SciTech Connect (OSTI)

    Kundu, M. [Institute for Plasma Research, Bhat, Gandhinagar 382 428, Gujarat (India)

    2012-08-15T23:59:59.000Z

    We examine asymmetric expansion of argon clusters illuminated by 800 nm laser pulses of duration Almost-Equal-To 23fs, using three-dimensional particle-in-cell (PIC) simulation. For this short pulse duration, laser energy absorption by cluster electrons is dominated by the nonlinear resonance (NLR) absorption process [Phys. Rev. Lett. 96, 123401 (2006)]. In this work, we concentrate, particularly, on the ionic outcome in the NLR regime and show that higher charge states of argon ions are produced along the laser polarization than in the transverse directions leading to the anisotropy (asymmetry) in the ion energy distribution. This anisotropy already established during the short pulse duration (or in the early duration of a long pulse) may contribute to the anisotropic ion emission reported in cluster experiments with pulse duration longer than 100 fs. Our PIC results are compared with a charged-sphere model showing that cluster explosion is mainly due to Coulomb repulsion between the cluster ions.

  2. Generation and search of axion-like light particle using intense crystalline field

    E-Print Network [OSTI]

    Wei Liao

    2011-07-19T23:59:59.000Z

    Intense electric field $\\sim 10^{10}-10^{11}$ V/cm in crystal has been known for a long time and has wide applications. We study the conversion of axion-like light particle and photon in the intense electric field in crystal. We find that the conversion of axion-like particle and photon happens for energy larger than keV range. We propose search of axion-like light particle using the intense crystalline field. We discuss the solar axion search experiment and a variety of shining-through-wall experiment using crystalline field. Due to the intense crystalline field which corresponds to magnetic field $\\sim 10^4-10^5$ Tesla these experiments are very interesting. In particular these experiments can probe the mass range of axion-like particle from eV to keV.

  3. Investigation of laser-driven proton acceleration using ultra-short, ultra-intense laser pulses

    SciTech Connect (OSTI)

    Fourmaux, S.; Gnedyuk, S.; Lassonde, P.; Payeur, S.; Pepin, H.; Kieffer, J. C. [INRS-EMT, Universite du Quebec, 1650 Lionel Boulet, Varennes, Quebec J3X 1S2 (Canada); Buffechoux, S.; Albertazzi, B. [INRS-EMT, Universite du Quebec, 1650 Lionel Boulet, Varennes, Quebec J3X 1S2 (Canada); LULI, UMR 7605, CNRS - CEA - Universite Paris 6 - Ecole Polytechnique, 91128 Palaiseau (France); Capelli, D.; Antici, P. [LULI, UMR 7605, CNRS - CEA - Universite Paris 6 - Ecole Polytechnique, 91128 Palaiseau (France); Dipartimento SBAI, Sapienza, Universita di Roma, Via Scarpa 16, 00161 Roma (Italy); Levy, A.; Fuchs, J. [LULI, UMR 7605, CNRS - CEA - Universite Paris 6 - Ecole Polytechnique, 91128 Palaiseau (France); Lecherbourg, L.; Marjoribanks, R. S. [Department of Physics and Institute for Optical Sciences, University of Toronto, Toronto, Ontario M5S 1A7 (Canada)

    2013-01-15T23:59:59.000Z

    We report optimization of laser-driven proton acceleration, for a range of experimental parameters available from a single ultrafast Ti:sapphire laser system. We have characterized laser-generated protons produced at the rear and front target surfaces of thin solid targets (15 nm to 90 {mu}m thicknesses) irradiated with an ultra-intense laser pulse (up to 10{sup 20} W Dot-Operator cm{sup -2}, pulse duration 30 to 500 fs, and pulse energy 0.1 to 1.8 J). We find an almost symmetric behaviour for protons accelerated from rear and front sides, and a linear scaling of proton energy cut-off with increasing pulse energy. At constant laser intensity, we observe that the proton cut-off energy increases with increasing laser pulse duration, then roughly constant for pulses longer than 300 fs. Finally, we demonstrate that there is an optimum target thickness and pulse duration.

  4. Resonant absorption and not-so-resonant absorption in short, intense laser irradiated plasma

    SciTech Connect (OSTI)

    Ge, Z. Y.; Zhuo, H. B.; Ma, Y. Y.; Yang, X. H.; Yu, T. P.; Zou, D. B.; Yin, Y.; Shao, F. Q. [College of Science, National University of Defense Technology, Changsha 410073 (China)] [College of Science, National University of Defense Technology, Changsha 410073 (China); Yu, W.; Luan, S. X. [Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China)] [Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China); Zhou, C. T. [College of Science, National University of Defense Technology, Changsha 410073 (China) [College of Science, National University of Defense Technology, Changsha 410073 (China); Institute of Applied Physics and Computational Mathematics, Beijing 100088 (China); Peng, X. J. [Institute of Applied Physics and Computational Mathematics, Beijing 100088 (China)] [Institute of Applied Physics and Computational Mathematics, Beijing 100088 (China)

    2013-07-15T23:59:59.000Z

    An analytical model for laser-plasma interaction during the oblique incidence by an ultrashort ultraintense p-polarized laser on a solid-density plasma is proposed. Both the resonant absorption and not-so-resonant absorption are self-consistently included. Different from the previous theoretical works, the physics of resonant absorption is found to be valid in more general conditions as the steepening of the electron density profile is considered. Even for a relativistic intensity laser, resonant absorption can still exist under certain plasma scale length. For shorter plasma scale length or higher laser intensity, the not-so-resonant absorption tends to be dominant, since the electron density is steepened to a critical level by the ponderomotive force. The laser energy absorption rates for both mechanisms are discussed in detail, and the difference and transition between these two mechanisms are presented.

  5. RF performance of short channel graphene field-effect transistor

    E-Print Network [OSTI]

    Wu, Y. Q.

    In this paper, the authors present experimental studies on transport characteristics of graphene FETs with channel lengths down to 70 nm. The factors limiting the performance of short channel graphene devices are discussed. ...

  6. Extreme intensity pulses in a semiconductor laser with a short external cavity

    E-Print Network [OSTI]

    Jose A. Reinoso; Jordi Zamora-Munt; Cristina Masoller

    2013-05-30T23:59:59.000Z

    We present a numerical study of the pulses displayed by a semiconductor laser with optical feedback in the short cavity regime, such that the external cavity round trip time is smaller than the laser relaxation oscillation period. For certain parameters there are occasional pulses, which are high enough to be considered extreme events. We characterize the bifurcation scenario that gives rise to such extreme pulses and study the influence of noise. We demonstrate intermittency when the extreme pulses appear and hysteresis when the attractor that sustains these pulses is destroyed. We also show that this scenario is robust under the inclusion of noise.

  7. Electron Production and Collective Field Generation in Intense Particle Beams

    SciTech Connect (OSTI)

    Molvik, A W; Vay, J; Cohen, R; Friedman, A; Lee, E; Verboncoeur, J; Covo, M K

    2006-02-09T23:59:59.000Z

    Electron cloud effects (ECEs) are increasingly recognized as important, but incompletely understood, dynamical phenomena, which can severely limit the performance of present electron colliders, the next generation of high-intensity rings, such as PEP-II upgrade, LHC, and the SNS, the SIS 100/200, or future high-intensity heavy ion accelerators such as envisioned in Heavy Ion Inertial Fusion (HIF). Deleterious effects include ion-electron instabilities, emittance growth, particle loss, increase in vacuum pressure, added heat load at the vacuum chamber walls, and interference with certain beam diagnostics. Extrapolation of present experience to significantly higher beam intensities is uncertain given the present level of understanding. With coordinated LDRD projects at LLNL and LBNL, we undertook a comprehensive R&D program including experiments, theory and simulations to better understand the phenomena, establish the essential parameters, and develop mitigating mechanisms. This LDRD project laid the essential groundwork for such a program. We developed insights into the essential processes, modeled the relevant physics, and implemented these models in computational production tools that can be used for self-consistent study of the effect on ion beams. We validated the models and tools through comparison with experimental data, including data from new diagnostics that we developed as part of this work and validated on the High-Current Experiment (HCX) at LBNL. We applied these models to High-Energy Physics (HEP) and other advanced accelerators. This project was highly successful, as evidenced by the two paragraphs above, and six paragraphs following that are taken from our 2003 proposal with minor editing that mostly consisted of changing the tense. Further benchmarks of outstanding performance are: we had 13 publications with 8 of them in refereed journals, our work was recognized by the accelerator and plasma physics communities by 8 invited papers and we have 5 additional invitations for invited papers at upcoming conferences, we attracted collaborators who had SBIR funding, we are collaborating with scientists at CERN and GSI Darmstadt on gas desorption physics for submission to Physical Review Letters, and another PRL on absolute measurements of electron cloud density and Phys. Rev. ST-AB on electron emission physics are also being readied for submission.

  8. Ultra-High Intensity Magnetic Field Generation in Dense Plasma

    SciTech Connect (OSTI)

    Fisch, Nathaniel J

    2014-01-08T23:59:59.000Z

    I. Grant Objective The main objective of this grant proposal was to explore the efficient generation of intense currents. Whereasthefficient generation of electric current in low-­?energy-­? density plasma has occupied the attention of the magnetic fusion community for several decades, scant attention has been paid to carrying over to high-­?energy-­? density plasma the ideas for steady-­?state current drive developed for low-­?energy-­? density plasma, or, for that matter, to inventing new methodologies for generating electric current in high-­?energy-­?density plasma. What we proposed to do was to identify new mechanisms to accomplish current generation, and to assess the operation, physics, and engineering basis of new forms of current drive in regimes appropriate for new fusion concepts.

  9. Experimentally observed field–gas interaction in intense optical lattices

    SciTech Connect (OSTI)

    Graul, Jacob S.; Cornella, Barry M.; Ketsdever, Andrew D.; Lilly, Taylor C. [Department of Mechanical and Aerospace Engineering, University of Colorado Colorado Springs, Colorado Springs, Colorado 80918 (United States)] [Department of Mechanical and Aerospace Engineering, University of Colorado Colorado Springs, Colorado Springs, Colorado 80918 (United States); Shneider, Mikhail N. [Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544 (United States)] [Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544 (United States)

    2013-12-09T23:59:59.000Z

    When a gas perturbed by a laser interference pattern, an optical lattice, exhibits a periodic modulation of its refractive index, strong Bragg diffraction of the perturbing light can occur. This scattering reduces the field's ability to further manipulate the gas. Experimental observations of Bragg scattering, evidence of a two-way coupling, are compared to the evolution of the light fields calculated by solutions to the wave equation. Comparison indicates momentum deposition as a prime contributor to the shape of the scattering function vs. lattice velocity, a rationale further supported through additional direct simulation Monte Carlo simulation.

  10. Tiled-Grating Compressor with Uncompensated Dispersion for Near-Field-Intensity Smoothing

    SciTech Connect (OSTI)

    Huang, H.; Kessler, T.J.

    2007-07-02T23:59:59.000Z

    A tiled-grating compressor, in which the spatial dispersion is not completely compensated, reduces the near-field-intensity modulation caused by tiling gaps and provides near-field spatial filtering of the input laser beam, thus reducing the laser damage to the final optics.

  11. Accelerating Protons to Therapeutic Energies with Ultra-Intense Ultra-Clean and Ultra-Short Laser Pulses

    E-Print Network [OSTI]

    Bulanov, Stepan S; Bychenkov, Valery Yu; Chvykov, Vladimir; Kalinchenko, Galina; Matsuoka, Takeshi; Rousseau, Pascal; Reed, Stephen; Yanovsky, Victor; Krushelnick, Karl; Litzenberg, Dale William; Maksimchuk, Anatoly

    2008-01-01T23:59:59.000Z

    Proton acceleration by high-intensity laser pulses from ultra-thin foils for hadron therapy is discussed. With the improvement of the laser intensity contrast ratio to 10-11 achieved on Hercules laser at the University of Michigan, it became possible to attain laser-solid interactions at intensities up to 1022 W/cm2 that allows an efficient regime of laser-driven ion acceleration from submicron foils. Particle-In-Cell (PIC) computer simulations of proton acceleration in the Directed Coulomb explosion regime from ultra-thin double-layer (heavy ions / light ions) foils of different thicknesses were performed under the anticipated experimental conditions for Hercules laser with pulse energies from 3 to 15 J, pulse duration of 30 fs at full width half maximum (FWHM), focused to a spot size of 0.8 microns (FWHM). In this regime heavy ions expand predominantly in the direction of laser pulse propagation enhancing the longitudinal charge separation electric field that accelerates light ions. The dependence of the ma...

  12. X-ray spectroscopy of buried layer foils irradiated with an ultra high intensity short pulse laser

    E-Print Network [OSTI]

    Chen, Sophia Nan

    2009-01-01T23:59:59.000Z

    of hot dense matter in short-pulse laser-plasma interactionof hot dense matter in short-pulse laser-plasma interactiona better picture of short pulse laser produced plasmas can

  13. Non-filamentated ultra-intense and ultra-short pulse fronts in three-dimensional Raman seed amplification

    SciTech Connect (OSTI)

    Lehmann, G.; Spatschek, K. H. [Institut für Theoretische Physik, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf (Germany)] [Institut für Theoretische Physik, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf (Germany)

    2014-05-15T23:59:59.000Z

    Ultra-intense and ultra-short laser pulses may be generated up to the exawatt-zetawatt regime due to parametric processes in plasmas. The minimization of unwanted plasma processes leads to operational limits which are discussed here with respect to filamentation. Transverse filamentation, which originally was derived for plane waves, is being investigated for seed pulse propagation in the so called ?-pulse limit. A three-dimensional (3D) three-wave-interaction model is the basis of the present investigation. To demonstrate the applicability of the three-wave-interaction model, the 1D pulse forms are compared with those obtained from 1D particle in cell and Vlasov simulations. Although wave-breaking may occur, the kinetic simulations show that the leading pumped pulse develops a form similar to that obtained from the three-wave-interaction model. In the main part, 2D and 3D filamentation processes of (localized) pulses are investigated with the three-wave-interaction model. It is shown that the leading pulse front can stay filamentation-free, whereas the rear parts show transverse modulations.

  14. Relativistic effects in the interaction of high intensity ultra-short laser pulse with collisional underdense plasma

    SciTech Connect (OSTI)

    Abedi, Samira [Physics Department, North Tehran Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Dorranian, Davoud [Laser Lab., Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Abari, Mehdi Etehadi [Physics Department, Science Faculty, Shahid Beheshti University, G.C., Evin, Tehran 19839 (Iran, Islamic Republic of); Shokri, Babak [Physics Department, Science Faculty, Shahid Beheshti University, G.C., Evin, Tehran 19839 (Iran, Islamic Republic of); Laser-Plasma Research Institute, Shahid Beheshti University, G.C., Evin, Tehran 19839 (Iran, Islamic Republic of)

    2011-09-15T23:59:59.000Z

    In this paper, the effect of weakly relativistic ponderomotive force in the interaction of intense laser pulse with nonisothermal, underdense, collisional plasma is studied. Ponderomotive force modifies the electron density and temperature distribution. By considering the weakly relativistic effect and ohmic heating of plasma electrons, the nonlinear dielectric permittivity of plasma medium is obtained and the equation of electromagnetic wave propagation in plasma is solved. It is shown that with considering the ohmic heating of electrons and collisions, the effect of ponderomotive force in weakly relativistic regime leads to steepening the electron density profile and increases the temperature of plasma electrons noticeably. Bunches of electrons in plasma become narrower. By increasing the laser pulse strength, the wavelength of density oscillations decreases. In this regime of laser-plasma interaction, electron temperature increases sharply by increasing the intensity of laser pulse. The amplitude of electric and magnetic fields increases by increasing the laser pulse energy while their wavelength decreases and they lost their sinusoidal form.

  15. Magnetic Propulsion of Intense Lithium Streams in a Tokamak Magnetic Field

    E-Print Network [OSTI]

    Zakharov, Leonid E.

    Magnetic Propulsion of Intense Lithium Streams in a Tokamak Magnetic Field Leonid E. Zakharov the theory of magnetic propulsion of liquid lithium streams and their stability in tokamaks takes into account the propulsion e#11;ect, viscosity and the drag force due to magnetic pumping

  16. Infrared Two-Color Multicycle Laser Field Synthesis for Generating an Intense Attosecond Pulse

    SciTech Connect (OSTI)

    Takahashi, Eiji J.; Lan Pengfei; Nabekawa, Yasuo; Midorikawa, Katsumi [Extreme Photonics Research Group, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Muecke, Oliver D. [Photonics Institute, Vienna University of Technology, Gusshausstrasse 27-387, A-1040 Vienna (Austria)

    2010-06-11T23:59:59.000Z

    We propose and demonstrate the generation of a continuum high-order harmonic spectrum by mixing multicycle two-color (TC) laser fields with the aim of obtaining an intense isolated attosecond pulse. By optimizing the wavelength of a supplementary infrared pulse in a TC field, a continuum harmonic spectrum was created around the cutoff region without carrier-envelope phase stabilization. The obtained harmonic spectra clearly show the possibility of generating isolated attosecond pulses from a multicycle TC laser field, which is generated by an 800 nm, 30 fs pulse mixed with a 1300 nm, 40 fs pulse. Our proposed method enables us not only to relax the requirements for the pump pulse duration but also to reduce ionization of the harmonic medium. This concept opens the door to create an intense isolated attosecond pulse using a conventional femtosecond laser system.

  17. Optimization of infrared two-color multicycle field synthesis for intense-isolated-attosecond-pulse generation

    SciTech Connect (OSTI)

    Lan Pengfei; Takahashi, Eiji J.; Midorikawa, Katsumi [Extreme Photonics Research Group, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan)

    2010-11-15T23:59:59.000Z

    We present the optimization of the two-color synthesis method for generating an intense isolated attosecond pulse (IAP) in the multicycle regime. By mixing an infrared assistant pulse with a Ti:sapphire main pulse, we show that an IAP can be produced using a multicycle two-color pulse with a duration longer than 30 fs. We also discuss the influence of the carrier-envelope phase (CEP) and the relative intensity on the generation of IAPs. By optimizing the wavelength of the assistant field, IAP generation becomes insensitive to the CEP slip. Therefore, the optimized two-color method enables us to relax the requirements of pulse duration and easily produce the IAP with a conventional multicycle laser pulse. In addition, it enables us to markedly suppress the ionization of the harmonic medium. This is a major advantage for efficiently generating intense IAPs from a neutral medium by applying the appropriate phase-matching and energy-scaling techniques.

  18. 2nd conference on Intense field- Short Wavelength Atomic and Molecular

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch >InternshipDepartment ofAugustDecember8th Meeting of the14Processes -

  19. 2nd conference on Intense field- Short Wavelength Atomic and Molecular

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch >InternshipDepartment ofAugustDecember8th Meeting of the14Processes

  20. Electronic and intraband optical properties of single quantum rings under intense laser field radiation

    SciTech Connect (OSTI)

    Radu, A. [Department of Physics, Politehnica University of Bucharest, 313 Splaiul Independentei, Bucharest RO-060042 (Romania); Kirakosyan, A. A.; Baghramyan, H. M.; Barseghyan, M. G., E-mail: mbarsegh@ysu.am [Department of Solid State Physics, Yerevan State University, Alex Manoogian 1, 0025 Yerevan (Armenia); Laroze, D. [Instituto de Alta Investigación, Universidad de Tarapacá, Casilla 7D, Arica (Chile)

    2014-09-07T23:59:59.000Z

    The influence of an intense laser field on one-electron states and intraband optical absorption coefficients is investigated in two-dimensional GaAs/Ga{sub 0.7}Al{sub 0.3}As quantum rings. An analytical expression of the effective lateral confining potential induced by the laser field is obtained. The one-electron energy spectrum and wave functions are found using the effective mass approximation and exact diagonalization technique. We have shown that changes in the incident light polarization lead to blue- or redshifts in the intraband optical absorption spectrum. Moreover, we found that only blueshift is obtained with increasing outer radius of the quantum ring.

  1. Title: The recollision model in ultra-short light fields Prof. H.W. van der Hart Description

    E-Print Network [OSTI]

    Paxton, Anthony T.

    advances in laser technology have enabled scientists to create ultra-short light pulses with a durationTitle: The recollision model in ultra-short light fields Prof. H.W. van der Hart Description Recent of the current questions in attosecond physics is the question of how ultra-short light pulses can be shaped

  2. X-ray spectroscopy of buried layer foils irradiated with an ultra high intensity short pulse laser

    E-Print Network [OSTI]

    Chen, Sophia Nan

    2009-01-01T23:59:59.000Z

    Short Pulse Laser by Sophia Nan Chen Doctor of Philosophy inEngineering Physics) by Sophia Nan Chen Committee in charge:Tynan The dissertation of Sophia Nan Chen is approved, and

  3. Backcoupling of acoustic streaming on the temperature field inside high-intensity discharge lamps

    E-Print Network [OSTI]

    Schwieger, Joerg; Wolff, Marcus; Manders, Freddy; Suijker, Jos

    2015-01-01T23:59:59.000Z

    Operating high-intensity discharge lamps in the high frequency range (20-300 kHz) provides energy-saving and cost reduction potentials. However, commercially available lamp drivers do not make use of this operating strategy because light intensity fluctuations and even lamp destruction are possible. The reason for the fluctuating discharge arc are acoustic resonances in this frequency range that are excited in the arc tube. The acoustic resonances in turn generate a fluid flow that is caused by the acoustic streaming effect. Here, we present a 3D multiphysics model to determine the influence of acoustic streaming on the temperature field in the vicinity of an acoustic eigenfrequency. In that case a transition from stable to instable behavior occurs. The model is able to predict when light flicker can be expected. The results are in very good accordance with accompanying experiments.

  4. Calibration of a gated flat field spectrometer as a function of x-ray intensity

    SciTech Connect (OSTI)

    Xiong, Gang; Yang, Guohong; Li, Hang; Zhang, Jiyan, E-mail: zhangjiyanzjy@sina.com; Zhao, Yang; Hu, Zhimin; Wei, Minxi; Qing, Bo; Yang, Jiamin; Liu, Shenye; Jiang, Shaoen [Research Center of Laser Fusion, China Academy of Engineering Physics, P. O. Box 919-986, Mianyang 621900 (China)] [Research Center of Laser Fusion, China Academy of Engineering Physics, P. O. Box 919-986, Mianyang 621900 (China)

    2014-04-15T23:59:59.000Z

    We present an experimental determination of the response of a gated flat-field spectrometer at the Shenguang-II laser facility. X-rays were emitted from a target that was heated by laser beams and then were divided into different intensities with a step aluminum filter and collected by a spectrometer. The transmission of the filter was calibrated using the Beijing Synchrotron Radiation Facility. The response characteristics of the spectrometer were determined by comparing the counts recorded by the spectrometer with the relative intensities of the x-rays transmitted through the step aluminum filter. The response characteristics were used to correct the transmission from two shots of an opacity experiment using the same samples. The transmissions from the two shots are consistent with corrections, but discrepant without corrections.

  5. Short cycle pulse sequence for dynamical decoupling of local fields and dipole-dipole interactions

    E-Print Network [OSTI]

    S. A. Moiseev; V. A. Skrebnev

    2014-12-11T23:59:59.000Z

    We propose a new pulse sequence for dynamical averaging of the dipole-dipole interactions and inhomogeneities of the magnetic fields in the nuclear spin system. The sequence contains a short cycle of the periodic resonant pulse excitation that offers new possibilities for implementing the long-lived multi-qubit quantum memory on the condensed spin ensembles that are so important for construction of universal quantum computer and long-distance quantum communications.

  6. Ultra hard x rays from krypton clusters heated by intense laser fields R. C. Issac,a)

    E-Print Network [OSTI]

    Strathclyde, University of

    Ultra hard x rays from krypton clusters heated by intense laser fields R. C. Issac,a) G. Vieux, B of ultrashort laser pulses with krypton clusters at intensity up to 1.3 1018 Wcm 2 has been investigated. This is ascribed to the presence of a hot electron population, similar to that found in laser­solid interactions

  7. Enhanced water window x-ray emission from in situ formed carbon clusters irradiated by intense ultra-short laser pulses

    SciTech Connect (OSTI)

    Chakravarty, U.; Rao, B. S.; Arora, V.; Upadhyay, A.; Singhal, H.; Naik, P. A.; Chakera, J. A.; Mukherjee, C.; Gupta, P. D. [Raja Ramanna Centre for Advanced Technology, Indore, 452 013 Madhya Pradesh (India)] [Raja Ramanna Centre for Advanced Technology, Indore, 452 013 Madhya Pradesh (India)

    2013-07-29T23:59:59.000Z

    Enhanced water window x-ray emission (23–44 Å) from carbon clusters, formed in situ using a pre-pulse, irradiated by intense (I > 10{sup 17} W/cm{sup 2}) ultra-short laser pulse, is demonstrated. An order of magnitude x-ray enhancement over planar graphite target is observed in carbon clusters, formed by a sub-ns pre-pulse, interacting with intense main pulse after a delay. The effect of the delay and the duration of the main pulse is studied for optimizing the x-ray emission in the water window region. This x-ray source has added advantages of being an efficient, high repetition rate, and low debris x-ray source.

  8. Dimensional scaling treatment with relativistic corrections for stable multiply charged atomic ions in high-frequency super-intense laser fields

    E-Print Network [OSTI]

    Kais, Sabre

    in high-frequency super-intense laser fields Ross D. Hoehn, Jiaxiang Wang, and Sabre Kais Citation-intense laser fields Ross D. Hoehn,1 Jiaxiang Wang,2 and Sabre Kais1,a) 1 Departments of Chemistry and Physics

  9. Double-slit vacuum polarisation effects in ultra-intense laser fields

    E-Print Network [OSTI]

    B. King; A. Di Piazza; C. H. Keitel

    2013-01-29T23:59:59.000Z

    The influence of the strong laser-driven vacuum on a propagating electromagnetic probe wave has been studied in detail. We investigate two scenarios comprising a focused probe laser beam passing through a region of vacuum polarised by an ultra-intense laser field. By splitting this strong field into two, separated, monochromatic Gaussian pulses counter-propagating in a plane perpendicular to the probe field axis, we demonstrate a leading order light-by-light diffraction effect that generates an interference pattern reminiscent of the classic double-slit experiment. We calculate the total number of probe photons diffracted as well as the number diffracted into regions where the vacuum polarisation signal is higher than the probe background. In addition, we calculate the induced ellipticity and polarisation rotation in the probe beam and show how, in the realistic situation in which the centres of the two strong fields are not exactly aligned, certain ranges of beam separation and observation distance may actually lead to an increase over the idealised case of a single strong laser beam.

  10. Isolated short attosecond pulse generation in an orthogonally polarized multicycle chirped laser field

    SciTech Connect (OSTI)

    Xu Junjie [State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, P.O. Box 800-211, Shanghai 201800 (China)

    2011-03-15T23:59:59.000Z

    We theoretically demonstrate the generation of a high-order harmonic and isolated attosecond pulse in an orthogonally polarized laser field, which is synthesized by an 800-nm chirped laser pulse and an 800-nm chirp-free laser pulse. Owing to the instantaneous frequency increasingly reducing close to the center of the driving pulse, the extreme ultraviolet supercontinuum for the chirped synthesized field is even broader than that for an orthogonal chirp-free two-color laser field. It is found that the broadband supercontinuum spectrum can be achieved for the driving pulse with ten and above optical cycles. After phase compensation an isolated attosecond pulse with a duration of {approx}16 as is produced. Furthermore, the optimization of the chirping rate parameters is investigated to achieve cutoff extension and an isolated short attosecond pulse.

  11. Photoionization dynamics and angular squeezing phenomenon in intense long-wavelength laser fields

    E-Print Network [OSTI]

    Chu, Shih-I; Zhou, Zhongyuan

    2011-03-11T23:59:59.000Z

    distribution (PAD) of H2 in laser fields are also explored in order to have a further insight into the tunneling photoionization. We find that the PAD is squeezed with the increase of laser wavelength and/or intensity, and thus the photoelectrons focus... direction, and (e)–(h) PADs for different photoelectron energy. 033406-6 PHOTOIONIZATION DYNAMICS AND ANGULAR . . . PHYSICAL REVIEW A 83, 033406 (2011) 0 20 40 60 80 100 0.0 0.2 0.4 0.6 0.8 1.0 (a) ? = 660 nm d2 P/ dE d? E (eV) 0 20 40 60 80 100 0.0 0.2 0...

  12. Dynamics of an electron in a relativistically intense laser field including radiaion reaction

    SciTech Connect (OSTI)

    Galkin, A. L., E-mail: galkin@kapella.gpi.ru [Prokhorov General Physics Institute of the Russian Academy of Science (Russian Federation)

    2012-08-15T23:59:59.000Z

    The dynamics of an electron in a relativistically intense laser pulse field is described with the radiation reaction being taken into account. The study is based on solving the Newton equation with the Lorentz and the radiation reaction forces. Validation is provided for an iteration technique which makes it possible to remove the discrepancies found in the theoretical models of radiation reaction. It is demonstrated that an electron having a high initial velocity and colliding head-on with a laser pulse sheds a considerable part of its kinetic energy due to the radiation reaction. A broadening of the electromagnetic pulse emitted by the electron occurs as a result of the same effect. The findings obtained can be used to experimentally verify the effect of radiation reaction.

  13. Steel characteristics measurement system using Barkhausen jump sum rate and magnetic field intensity and method of using same

    DOE Patents [OSTI]

    Kohn, Gabriel (Omer, IL); Hicho, George (Derwood, MD); Swartzendruber, Lydon (New Carrollton, MD)

    1997-01-01T23:59:59.000Z

    A steel hardness measurement system and method of using same are provided for measuring at least one mechanical or magnetic characteristic of a ferromagnetic sample as a function of at least one magnetic characteristic of the sample. A magnetic field generator subjects the sample to a variable external magnetic field. The magnetic field intensity of the magnetic field generated by the magnetic field generating means is measured and a signal sensor is provided for measuring Barkhausen signals from the sample when the sample is subjected to the external magnetic field. A signal processing unit calculates a jump sum rate first moment as a function of the Barkhausen signals measured by the signal sensor and the magnetic field intensity, and for determining the at least one mechanical or magnetic characteristic as a function of the jump sum rate first moment.

  14. Steel characteristics measurement system using Barkhausen jump sum rate and magnetic field intensity and method of using same

    DOE Patents [OSTI]

    Kohn, G.; Hicho, G.; Swartzendruber, L.

    1997-04-08T23:59:59.000Z

    A steel hardness measurement system and method of using same are provided for measuring at least one mechanical or magnetic characteristic of a ferromagnetic sample as a function of at least one magnetic characteristic of the sample. A magnetic field generator subjects the sample to a variable external magnetic field. The magnetic field intensity of the magnetic field generated by the magnetic field generating means is measured and a signal sensor is provided for measuring Barkhausen signals from the sample when the sample is subjected to the external magnetic field. A signal processing unit calculates a jump sum rate first moment as a function of the Barkhausen signals measured by the signal sensor and the magnetic field intensity, and for determining the at least one mechanical or magnetic characteristic as a function of the jump sum rate first moment. 7 figs.

  15. Algorithm for Computation of Electromagnetic Fields of An Accelerated Short Bunch Inside a Rectangular Chamber

    SciTech Connect (OSTI)

    Novokhatski, Alexander; /SLAC; Sullivan, Michael; /SLAC; ,

    2010-09-14T23:59:59.000Z

    We discuss the feasibility of an application of an implicit finite-difference approximation to calculate the fields of a relativistic bunch moving with no restriction inside a vacuum chamber. We assume that a bunch trajectory is not straight but is inside a vacuum chamber or its branch. The bunch can be deflected by the fields of bending magnets. The bunch can be short enough to produce coherent synchrotron radiation (CSR). Accelerator physicists believe that electromagnetic phenomena of charged beams are governed by Maxwell's equations together with Newton's equations for particle dynamics. To understand the behavior of the beams and radiated fields we just need to find a solution to these equations for the case, which can fully describe the real accelerator environment. So, at first we make a model, which contains all the necessary components, but at the same time can be easily 'inserts' into the equations. Sometimes, it is possible to find analytical solutions, but usually they are only work for one-dimensional cases and rarer for two-dimension cases. To find a solution in general we may transform the equations into a equivalent finite-difference form and solve them using computers. We can find a lot of finite-difference schemes, which approximate Maxwell's equations since the first one that was published in 1966. Most of them are so called explicit schemes. That means that the value of the field at the new time step is calculated only by the field values at the previous time step. Stability conditions for these schemes do not allow a time step to be greater than or equal to a space (mesh) step. This limitation brings an additional troublesome effect for short wavelengths compared a mesh step. We state that this effect works like a frequency dispersion media, which is 'hidden' in the finite-difference equation.

  16. On the GCR intensity and the inversion of the heliospheric magnetic field during the periods of the high solar activity

    E-Print Network [OSTI]

    Krainev, M B

    2014-01-01T23:59:59.000Z

    We consider the long-term behavior of the solar and heliospheric parameters and the GCR intensity in the periods of high solar activity and the inversions of heliospheric magnetic field (HMF). The classification of the HMF polarity structures and the meaning of the HMF inversion are discussed. The procedure is considered how to use the known HMF polarity distribution for the GCR intensity modeling during the periods of high solar activity. We also briefly discuss the development and the nearest future of the sunspot activity and the GCR intensity in the current unusual solar cycle 24.

  17. Magnetic Fields in Gamma-Ray Bursts: A Short Racah Institute for Physics, The Hebrew University, Jerusalem, 91904 Israel

    E-Print Network [OSTI]

    Jensen, Grant J.

    Magnetic Fields in Gamma-Ray Bursts: A Short Overview Tsvi Piran Racah Institute for Physics Abstract. Magnetic fields play a crucial role in the physics of Gamma-Ray Bursts (GRBs). Strong thirty years, after the discovery of Gamma-Ray bursts (GRBs) we have now a reasonable GRB model

  18. Nonlinear dynamics of ionization stabilization of atoms in intense laser fields

    E-Print Network [OSTI]

    Michael Norman; C. Chandre; T. Uzer; Peijie Wang

    2014-12-06T23:59:59.000Z

    We revisit the stabilization of ionization of atoms subjected to a superintense laser pulse using nonlinear dynamics. We provide an explanation for the lack of complete ionization at high intensity and for the decrease of the ionization probability as intensity is increased. We investigate the role of each part of the laser pulse (ramp-up, plateau, ramp-down) in this process. We emphasize the role of the choice for the ionization criterion, energy versus distance criterion.

  19. Testing of Performance of Optical Fibers Under Irradiation in Intense Radiation Fields, When Subjected to Very High Temperatures

    SciTech Connect (OSTI)

    Blue, Thomas; Windl, Wolfgang; Dickerson, Bryan

    2013-01-03T23:59:59.000Z

    The primary objective of this project is to measure and model the performance of optical fibers in intense radiation fields when subjected to very high temperatures. This research will pave the way for fiber optic and optically based sensors under conditions expected in future high-temperature gas-cooled reactors. Sensor life and signal-to-noise ratios are susceptible to attenuation of the light signal due to scattering and absorbance in the fibers. This project will provide an experimental and theoretical study of the darkening of optical fibers in high-radiation and high-temperature environments. Although optical fibers have been studied for moderate radiation fluence and flux levels, the results of irradiation at very high temperatures have not been published for extended in-core exposures. Several previous multi-scale modeling efforts have studied irradiation effects on the mechanical properties of materials. However, model-based prediction of irradiation-induced changes in silica�s optical transport properties has only recently started to receive attention due to possible applications as optical transmission components in fusion reactors. Nearly all damage-modeling studies have been performed in the molecular-dynamics domain, limited to very short times and small systems. Extended-time modeling, however, is crucial to predicting the long-term effects of irradiation at high temperatures, since the experimental testing may not encompass the displacement rate that the fibers will encounter if they are deployed in the VHTR. The project team will pursue such extended-time modeling, including the effects of the ambient and recrystallization. The process will be based on kinetic MC modeling using the concept of amorphous material consisting of building blocks of defect-pairs or clusters, which has been successfully applied to kinetic modeling in amorphized and recrystallized silicon. Using this procedure, the team will model compensation for rate effects, and the interplay of rate effects with the effects of annealing, to accurately predict the fibers� reliability and expected lifetime

  20. Numerical Investigation of Symmetry Breaking and Critical Behavior of the Acoustic Streaming Field in High-Intensity Discharge Lamps

    E-Print Network [OSTI]

    Baumann, Bernd; Wolff, Marcus; Manders, Freddy; Suijker, Jos

    2014-01-01T23:59:59.000Z

    For energy efficiency and material cost reduction it is preferred to drive high-intensity discharge lamps at frequencies of approximately 300 kHz. However, operating lamps at these high frequencies bears the risk of stimulating acoustic resonances inside the arc tube, which can result in low frequency light flicker and even lamp destruction. The acoustic streaming effect has been identified as the link between high frequency resonances and low frequency flicker. A highly coupled 3D multiphysics model has been set up to calculate the acoustic streaming velocity field inside the arc tube of high-intensity discharge lamps. It has been found that the velocity field suffers a phase transition to an asymmetrical state at a critical acoustic streaming force. The system behaves similar to a ferromagnet near the Curie point. Furthermore, it is discussed how the model allows to investigate the light flicker phenomenon. Concerning computer resources the procedure is considerably less demanding than a direct approach wit...

  1. Intense Field Multiphoton Ionization via Complex Dressed States: Application to the H Atom

    E-Print Network [OSTI]

    Chu, Shih-I; Reinhardt, William P.

    1977-11-07T23:59:59.000Z

    Extension of Floquet theory to include continuum as well as bound atomic states yields a practical technique for computation of multiphoton ionization rates in the region where rms field strengths approach the strength of the internal atomic fields....

  2. Liquid Crystal Gel-Dispersed Quantum Dots: Reversible Modulation of Photoluminescence Intensity Using An Electric Field

    E-Print Network [OSTI]

    Zhao, Yue

    ) with QD and G1, G1 and CLC were first dissolved in the toluene solution of CdSe/ZnS (the QD came in toluene). After evaporation of toluene under reduced pressure, the mixture was redissolved in THF optical microscope, the mixture was exposed to low-intensity UV light (~ 340 nm, 0.07 mW cm-2 ) for 8 h

  3. High Intensity Compton Scattering in a strong plane wave field of general form

    E-Print Network [OSTI]

    A. Hartin; G. Moortgat-Pick

    2011-06-24T23:59:59.000Z

    Photon emission by an electron embedded in a strong external field of general form is studied theoretically. The external field considered is a plane wave electromagnetic field of any number of components, period and polarisation. Exact, Volkov solutions of the Dirac equation with the 4-potential of the general external field are obtained. The photon emission is considered in the usual perturbation theory using the Volkov solutions to represent the electron. An expression for the transition probability of this process is obtained after the usual spin and polarisation sums, trace calculation and phase space integration. The final transition probability in the general case contains a single sum over contributions from external field photons and an integration over one of the phase space components. The validity of the general expression is established by considering specific external fields. Known specific analytic forms of the transition probability are obtained after substitution of the 4-potential for a circularly polarised and constant crossed external field. As an example usage of the general result for the transition probability, the case of two phase separated, circularly polarised external fields is studied both analytically and numerically.

  4. Intense Femtosecond Laser Interactions with Ions in

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ), ultra-short laser light with atoms and molecules has led to the discovery of new phenomena such as bondIntense Femtosecond Laser Interactions with Ions in Beams and Traps A thesis presented through a re-scattering process where an electron is ionized, propagated in the laser field and is driven

  5. SU-E-T-08: A Convolution Model for Head Scatter Fluence in the Intensity Modulated Field

    SciTech Connect (OSTI)

    Chen, M; Mo, X; Chen, Y; Parnell, D; Key, S; Olivera, G; Galmarini, W; Lu, W

    2014-06-01T23:59:59.000Z

    Purpose: To efficiently calculate the head scatter fluence for an arbitrary intensity-modulated field with any source distribution using the source occlusion model. Method: The source occlusion model with focal and extra focal radiation (Jaffray et al, 1993) can be used to account for LINAC head scatter. In the model, the fluence map of any field shape at any point can be calculated via integration of the source distribution within the visible range, as confined by each segment, using the detector eye's view. A 2D integration would be required for each segment and each fluence plane point, which is time-consuming, as an intensity-modulated field contains typically tens to hundreds of segments. In this work, we prove that the superposition of the segmental integrations is equivalent to a simple convolution regardless of what the source distribution is. In fact, for each point, the detector eye's view of the field shape can be represented as a function with the origin defined at the point's pinhole reflection through the center of the collimator plane. We were thus able to reduce hundreds of source plane integration to one convolution. We calculated the fluence map for various 3D and IMRT beams and various extra-focal source distributions using both the segmental integration approach and the convolution approach and compared the computation time and fluence map results of both approaches. Results: The fluence maps calculated using the convolution approach were the same as those calculated using the segmental approach, except for rounding errors (<0.1%). While it took considerably longer time to calculate all segmental integrations, the fluence map calculation using the convolution approach took only ?1/3 of the time for typical IMRT fields with ?100 segments. Conclusions: The convolution approach for head scatter fluence calculation is fast and accurate and can be used to enhance the online process.

  6. Nonlinear photoemission from metal surfaces induced by short laser pulses: the effect of field enhancement by surface plasmons

    E-Print Network [OSTI]

    Sandor Varro; Norbert Kroo

    2013-01-09T23:59:59.000Z

    Nonlinear electron emission processes induced by surface plasmon oscillations have been studied both experimentally and theoretically. The measured above-threshold electron spectra extend up to energies whose appearance cannot be explained solely by standard non-perturbative methods, which predict photon energy separated discrete energy line spectra with the known fast fall - plateau - cutoff envelope shape, even when taking the large field enhancement into account. The theoretical analysis of our data, based on the concept of plasmon-induced near-field effects, gives reasonably good explanation and qualitative agreement in the whole intensity range.

  7. Floquet theory and complex quasivibrational energy formalism for intense field molecular photodissociation

    E-Print Network [OSTI]

    Chu, Shih-I

    1981-01-01T23:59:59.000Z

    the solution of Eq. (1) by expanding it(r, R, t) in terms of the field-free basis {~J, .v(r, R, t) = La,,(t)~,,(r, R) " Substituting Eq. (7) into Eq. (1), multiplying both sides by ~1(r,R)=xj(R)lJij(r,R) and integrating over drdR, we find i Ifdaj.... To the extent that enough Floquet blocks are included to obtain convergence, all relevant pro- ·o.Z ·0.3 ·0.40!.-~--!--~"""'Z~~-!:-3-~...J4:-~-±-5~~~6:-~--:!7 R(OoI FIG. 7. Electronic-field representation of photodissociation in Hi with field...

  8. Enhanced collective focusing of intense neutralized ion beam pulses in the presence of weak solenoidal magnetic fields

    SciTech Connect (OSTI)

    Dorf, Mikhail A. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Davidson, Ronald C.; Kaganovich, Igor D.; Startsev, Edward A. [Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)

    2012-05-15T23:59:59.000Z

    The design of ion drivers for warm dense matter and high energy density physics applications and heavy ion fusion involves transverse focusing and longitudinal compression of intense ion beams to a small spot size on the target. To facilitate the process, the compression occurs in a long drift section filled with a dense background plasma, which neutralizes the intense beam self-fields. Typically, the ion bunch charge is better neutralized than its current, and as a result a net self-pinching (magnetic) force is produced. The self-pinching effect is of particular practical importance, and is used in various ion driver designs in order to control the transverse beam envelope. In the present work we demonstrate that this radial self-focusing force can be significantly enhanced if a weak (B {approx} 100 G) solenoidal magnetic field is applied inside the neutralized drift section, thus allowing for substantially improved transport. It is shown that in contrast to magnetic self-pinching, the enhanced collective self-focusing has a radial electric field component and occurs as a result of the overcompensation of the beam charge by plasma electrons, whereas the beam current becomes well-neutralized. As the beam leaves the neutralizing drift section, additional transverse focusing can be applied. For instance, in the neutralized drift compression experiments (NDCX) a strong (several Tesla) final focus solenoid is used for this purpose. In the present analysis we propose that the tight final focus in the NDCX experiments may possibly be achieved by using a much weaker (few hundred Gauss) magnetic lens, provided the ion beam carries an equal amount of co-moving neutralizing electrons from the preceding drift section into the lens. In this case the enhanced focusing is provided by the collective electron dynamics strongly affected by a weak applied magnetic field.

  9. Floquet-Liouville supermatrix approach: Time development of density-matrix operator and multiphoton resonance fluorescence spectra in intense laser fields

    E-Print Network [OSTI]

    Ho, Tak-San; Wang, Kwanghsi; Chu, Shih-I

    1986-03-01T23:59:59.000Z

    A Floquet-Liouville supermatrix (FLSM) approach is presented for nonperturbative treatment of the time development of the density-matrix operator of atoms and molecules exposed to intense polychromatic fields. By extending ...

  10. Strong-field approximation for intense-laser-atom processes: The choice of gauge

    SciTech Connect (OSTI)

    Bauer, D. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Milosevic, D.B. [Faculty of Science, University of Sarajevo, Zmaja od Bosne 35, 71000 Sarajevo (Bosnia and Herzegowina); Becker, W. [Max-Born-Institut, Max-Born-Strasse 2a, 12489 Berlin (Germany)

    2005-08-15T23:59:59.000Z

    The strong-field approximation (SFA) can be and has been applied in both length gauge and velocity gauge with quantitatively conflicting answers. For ionization of negative ions with a ground state of odd parity, the predictions of the two gauges differ qualitatively: in the envelope of the angular-resolved energy spectrum, dips in one gauge correspond to humps in the other. We show that the length-gauge SFA matches the exact numerical solution of the time-dependent Schroedinger equation.

  11. Magnetic Propulsion of Intense Lithium Streams in a Tokamak Magnetic Field

    SciTech Connect (OSTI)

    Leonid E. Zakharov

    2002-03-13T23:59:59.000Z

    The paper gives the theory of magnetic propulsion of liquid lithium streams and their stability in tokamaks. In the approximation of a thin flowing layer the MHD equations are reduced to one integro-differential equation which takes into account the propulsion effect, viscosity and the drag force due to magnetic pumping and other interactions with the magnetic field. A criterion is obtained for the stabilization of the ''sausage'' instability of the streams by centrifugal force.

  12. Time-Resolved Imaging and Manipulation of H{sub 2} Fragmentation in Intense Laser Fields

    SciTech Connect (OSTI)

    Ergler, Th.; Rudenko, A.; Feuerstein, B.; Zrost, K.; Schroeter, C.D.; Moshammer, R.; Ullrich, J. [Max-Planck-Institut fuer Kernphysik, D-69029 Heidelberg (Germany)

    2005-08-26T23:59:59.000Z

    We report on the experimental realization of time-resolved coincident Coulomb explosion imaging of H{sub 2} fragmentation in 10{sup 14} W/cm{sup 2} laser fields. Combining a high-resolution 'reaction microscope' and a fs pump-probe setup, we map the motion of wave packets dissociating via one- or two-photon channels, respectively, and observe a new region of enhanced ionization. The long-term interferometric stability of our system allows us to extend pump-probe experiments into the region of overlapping pulses, which offers new possibilities for the manipulation of ultrafast molecular fragmentation dynamics.

  13. Inversion symmetry breaking of atomic bound states in strong and short laser fields

    E-Print Network [OSTI]

    Stooß, Veit; Ott, Christian; Blättermann, Alexander; Ding, Thomas; Pfeifer, Thomas

    2015-01-01T23:59:59.000Z

    In any atomic species, the spherically symmetric potential originating from the charged nucleus results in fundamental symmetry properties governing the structure of atomic states and transition rules between them. If atoms are exposed to external electric fields, these properties are modified giving rise to energy shifts such as the AC Stark-effect in varying fields and, contrary to this in a constant (DC) electric field for high enough field strengths, the breaking of the atomic symmetry which causes fundamental changes in the atom's properties. This has already been observed for atomic Rydberg states with high principal quantum numbers. Here, we report on the observation of symmetry breaking effects in Helium atoms for states with principal quantum number n=2 utilizing strong visible laser fields. These findings were enabled by temporally resolving the dynamics better than the sub-optical cycle of the applied laser field, utilizing the method of attosecond transient absorption spectroscopy (ATAS). We ident...

  14. Stable Mean Field Solution of a Short-Range Interacting SO(3) Quantum Heisenberg Spin-Glass

    E-Print Network [OSTI]

    C. M. S. da Conceição; E. C. Marino

    2008-02-03T23:59:59.000Z

    We present a mean-field solution for a quantum, short-range interacting, disordered, SO(3) Heisenberg spin model, in which the Gaussian distribution of couplings is centered in an AF coupling $\\bar J>0$, and which, for weak disorder, can be treated as a perturbation of the pure AF Heisenberg system. The phase diagram contains, apart from a N\\'eel phase at T=0, spin-glass and paramagnetic phases whose thermodynamic stability is demonstrated by an analysis of the Hessian matrix of the free-energy. The magnetic susceptibilities exhibit the typical cusp of a spin-glass transition.

  15. Analytically derived limits on short-range fifth forces from quantum states of neutrons in the Earth's gravitational field

    E-Print Network [OSTI]

    Alexander Westphal; Hartmut Abele; Stefan Baessler

    2007-03-12T23:59:59.000Z

    Recently, quantum states of ultra-cold neutrons in the Earth's gravitational field have been observed for the first time. From the fact that they are consistent with Newtonian gravity on the 10 %-level, analytical limits on alpha and lambda of short-range Yukawa-like additional interactions are derived between lambda = 1 micrometer and 1 mm. We arrive for lambda > 10 micrometer at alpha < 2 \\cdot 10^11 at 90 % confidence level. This translates into a limit g_s g_p / (\\hbar c) < 2 \\cdot 10^{-15} on the pseudo-scalar coupling of axions in the previously experimentally unaccessible astrophysical axion window.

  16. Instabilities and generation of a quasistationary magnetic field by the interaction of relativistically intense electromagnetic wave with a plasma

    SciTech Connect (OSTI)

    Gillani, S. S. A.; Shah, H. A. [Department of Physics, Government College University, Lahore 54000 (Pakistan); Tsintsadze, N. L. [Department of Physics, Government College University, Lahore 54000 (Pakistan); Salam Chair in Physics, Government College University, Lahore 54000 (Pakistan); Institute of Physics, Tbilisi 380077 (Georgia); Razzaq, M. [Department of Physics, Government College University, Lahore 54000 (Pakistan); Salam Chair in Physics, Government College University, Lahore 54000 (Pakistan)

    2010-08-15T23:59:59.000Z

    It is shown that the interaction of the superstrong laser radiation with an isotropic plasma leads to the generation of low frequency electromagnetic (EM) waves and in particular a quasistationary magnetic field. When the relativistic circularly polarized transverse EM wave propagates along z-axis, it creates a ponderomotive force, which affects the motion of particles along the direction of its propagation. On the other hand, motion of the particles across the direction of propagation is defined by the ponderomotive potential. The dispersion relation for the transverse EM wave using a special distribution function, which has an anisotropic form, is derived. The dispersion relation is subsequently investigated for a number of special cases. In general, it is shown that the growth rate of the EM wave strongly depends upon its intensity.

  17. An evaluation of the Gilian TRACEAIR Organic Vapor Monitoring Diffusive Badge in measuring short-term exposure levels of benzene under field conditions 

    E-Print Network [OSTI]

    Pierce, Mark Edward

    1996-01-01T23:59:59.000Z

    The objective of this research is to evaluate the performance of the Gilian TRACEAIR Organic Vapor Monitoring I (OVMI) Diffusive Badge in measuring short-term benzene exposures under field conditions. In general, a diffusive badge is a device which...

  18. Laboratory Studies of the Short-term Responses of Freshwater Fish to Electromagnetic Fields

    SciTech Connect (OSTI)

    Bevelhimer, Mark S [ORNL; Cada, Glenn F [ORNL; Fortner, Allison M [ORNL; Schweizer, Peter E [ORNL; Riemer, Kristina P [ORNL

    2013-01-01T23:59:59.000Z

    Hydrokinetic energy technologies are being proposed as an environmentally preferred means of generating electricity from river and tidal currents. Among the potential issues that must be investigated in order to resolve environmental concerns are the effects on aquatic organisms of electromagnetic fields created by underwater generators and transmission cables. The behavioral responses of common freshwater fishes to static and variable electromagnetic fields (EMF) that may be emitted by hydrokinetic projects were evaluated in laboratory experiments. Various fish species were exposed to either static (DC) EMF fields created by a permanent bar magnet or variable (AC) EMF fields created by a switched electromagnet for 48 h, fish locations were recorded with a digital imaging system, and changes in activity level and distribution relative to the magnet position were quantified at 5-min intervals. Experiments with fathead minnows, redear sunfish, striped bass, lake sturgeon, and channel catfish produced mixed results. Except for fathead minnows there was no effect on activity level. Only redear sunfish and channel catfish exhibited a change in distribution relative to the position of the magnet with an apparent attraction to the EMF source. In separate experiments, rapid behavioral responses of paddlefish and lake sturgeon to onset of the AC field were recorded with high-speed video. Paddlefish did not react to a variable, 60-Hz magnetic field like that which would be emitted by an AC generator or cable, but lake sturgeon consistently responded to the variable, AC-generated magnetic field with a variety of altered swimming behaviors. These results will be useful for determining under what circumstances cables or generators need to be positioned to minimize interactions with sensitive species.

  19. ASHRAE Transactions: Symposia 617 The field validation of a short time step temperature

    E-Print Network [OSTI]

    Ghajar, Afshin J.

    consumption, based on predicted and measured heat pump entering fluid temperatures,is compared and discussed heat exchanger borehole (Yavuzturk et al. 1999), a comparison of model predictions to actual field data response factor model is presented using actual operational data from an elementary school building

  20. Propagation In Matter Of Currents Of Relativistic Electrons Beyond The Alfven Limit, Produced In Ultra-High-Intensity Short-Pulse Laser-Matter Interactions

    SciTech Connect (OSTI)

    Batani, D.; Manclossi, M. [Dipartimento di Fisica 'G.Occhialini', Universita di Milano-Bicocca (Italy); INFM, Universita di Milano-Bicocca (Italy); Laboratoire d'Optique Appliquee, UMR ENSTA-CNRS-Ecole Polytechnique, Palaiseau (France); Baton, S.D.; Amiranoff, F.; Koenig, M.; Gremillet, L.; Popescu, H. [Laboratoire pour l'Utilisation des Lasers Intenses, UMR 7605 CNRS-CEA-X-Paris VI, Ecole Polytechnique, Palaiseau (France); Santos, J.J. [Laboratoire d'Optique Appliquee, UMR ENSTA-CNRS-Ecole Polytechnique, Palaiseau (France); Laboratoire pour l'Utilisation des Lasers Intenses, UMR 7605 CNRS-CEA-X-Paris VI, Ecole Polytechnique, Palaiseau (France); Martinolli, E. [Dipartimento di Fisica 'G.Occhialini', Universita di Milano-Bicocca (Italy); INFM, Universita di Milano-Bicocca (Italy); Laboratoire pour l'Utilisation des Lasers Intenses, UMR 7605 CNRS-CEA-X-Paris VI, Ecole Polytechnique, Palaiseau (France); Antonicci, A. [Dipartimento di Fisica 'G.Occhialini', Universita di Milano-Bicocca (Italy); INFM, Universita di Milano-Bicocca (Italy); Rousseaux, C.; Rabec Le Gloahec, M. [Commissariat a l'Energie Atomique, Bruyeres-le-Chatel (France); Hall, T. [University of Essex, Wivenhoe Park, Colchester, Essex, CO4 3SQ (United Kingdom); Malka, V. [Laboratoire d'Optique Appliquee, UMR ENSTA-CNRS-Ecole Polytechnique, Palaiseau (France); Cowan, T.E.; Stephens, R. [Inertial Fusion Technology Division, Fusion Group, General Atomics, San Diego, CA (United States); Key, M. [Lawrence Livermore National Laboratory, Livermore CA (United States); King, J.; Freeman, R. [Department of Applied Sciences, University of California Davis, CA 95616 (United States)

    2004-12-01T23:59:59.000Z

    This paper reports the results of several experiments performed at the LULI laboratory (Palaiseau, France) concerning the propagation of large relativistic currents in matter from ultra-high-intensity laser pulse interaction with target. We present our results according to the type of diagnostics used in the experiments: 1) K{alpha} emission and K{alpha} imaging, 2) study of target rear side emission in the visible region, 3) time resolved optical shadowgraphy.

  1. Coherent control and giant enhancement of multiphoton ionization and high-order-harmonic generation driven by intense frequency-comb laser fields: An ab initio theoretical investigation

    E-Print Network [OSTI]

    Chu, Shih-I; Zhao, Di; Li, Fu-li

    2013-04-11T23:59:59.000Z

    the intensity of the driving frequency-comb laser fields. However, the two-level model does not take into account the effects of multilevel structure and ionization, which are inherent in real atomic and/or molecular systems driven by intense laser fields... function. In general, the carrier frequency ?c is not necessarily one of the comb frequencies nor does it equal ?0. Due to the incommensuration between the time period (=2?/?c) of the carrier wave and the time interval ? of the pulse envelope, there is a...

  2. Quantum field theory solution for a short-range interacting SO(3) quantum spin-glass

    E-Print Network [OSTI]

    C. M. S. da Conceição; E. C. Marino

    2009-03-02T23:59:59.000Z

    We study the quenched disordered magnetic system, which is obtained from the 2D SO(3) quantum Heisenberg model, on a square lattice, with nearest neighbors interaction, by taking a Gaussian random distribution of couplings centered in an antiferromagnetic coupling, $\\bar J>0$ and with a width $\\Delta J$. Using coherent spin states we can integrate over the random variables and map the system onto a field theory, which is a generalization of the SO(3) nonlinear sigma model with different flavors corresponding to the replicas, coupling parameter proportional to $\\bar J$ and having a quartic spin interaction proportional to the disorder ($\\Delta J$). After deriving the CP$^1$ version of the system, we perform a calculation of the free energy density in the limit of zero replicas, which fully includes the quantum fluctuations of the CP$^1$ fields $z_i$. We, thereby obtain the phase diagram of the system in terms of ($T, \\bar J, \\Delta J$). This presents an ordered antiferromagnetic (AF) phase, a paramagnetic (PM) phase and a spin-glass (SG) phase. A critical curve separating the PM and SG phases ends at a quantum critical point located between the AF and SG phases, at T=0. The Edwards-Anderson order parameter, as well as the magnetic susceptibilities are explicitly obtained in each of the three phases as a function of the three control parameters. The magnetic susceptibilities show a Curie-type behavior at high temperatures and exhibit a clear cusp, characteristic of the SG transition, at the transition line. The thermodynamic stability of the phases is investigated by a careful analysis of the Hessian matrix of the free energy. We show that all principal minors of the Hessian are positive in the limit of zero replicas, implying in particular that the SG phase is stable.

  3. Many-mode Floquet theoretical approach for coherent control of multiphoton dynamics driven by intense frequency-comb laser fields

    E-Print Network [OSTI]

    Son, Sang-Kil; Chu, Shih-I

    2008-06-05T23:59:59.000Z

    .07#3;?8#4; 2.92 2.41#3;?3#4; 2.92 1.33#3;?6#4; 2.92 2.01#3;?3#4; 5.00 4.53#3;?20#4; 4.91 3.42#3;?12#4; 5.00 6.62#3;?15#4; 4.93 3.39#3;?10#4; 5.00 1.28#3;?12#4; 4.94 2.07#3;?9#4; 7.02 1.99#3;?28#4; 6.92 1.83#3;?20#4; 7.00 3.10#3;?21#4; 6.93 1.82#3;?16#4; 7.00 4...Many-mode Floquet theoretical approach for coherent control of multiphoton dynamics driven by intense frequency-comb laser fields Sang-Kil Son (???#1;1,* and Shih-I Chu (???#1;1,2,† 1Department of Chemistry, University of Kansas, Lawrence, Kansas...

  4. Measurement of laser intensities approaching 1015 with an accuracy of 1%

    E-Print Network [OSTI]

    Kheifets, Anatoli

    , 2013) Accurate knowledge of the intensity of focused ultra-short laser pulses is crucial to the correctMeasurement of laser intensities approaching 1015 W/cm2 with an accuracy of 1% M. G. Pullen1,2 , W interpretation of experimental results in strong-field physics. We have developed a technique to measure laser

  5. New photon science and extreme field physics: volumetric interaction of ultra-intense laser pulses with over-dense targets

    SciTech Connect (OSTI)

    Hegelich, Bjorn M [Los Alamos National Laboratory

    2010-11-24T23:59:59.000Z

    The constantly improving capabilities of ultra-high power lasers are enabling interactions of matter with ever extremer fields. As both the on target intensity and the laser contrast are increasing, new physics regimes are becoming accessible and new effects materialize, which in turn enable a host of applications. A first example is the realization of interactions in the transparent-overdense regime (TOR), which is reached by interacting a highly relativistic (a{sub 0} > 10), ultra high contrast laser pulse with a solid density, nanometer target. Here, a still overdense target is turned transparent to the laser by the relativistic mass increase of the electrons, increasing the skin depth beyond the target thickness and thus enabling volumetric interaction of the laser with the entire target instead of only a small interaction region at the critical density surface. This increases the energy coupling, enabling a range of effects, including relativistic optics and pulse shaping, mono-energetic electron acceleration, highly efficient ion acceleration in the break-out afterburner regime, the generation of relativistic and forward directed surface harmonics. In this talk we will show the theoretical framework for this regime, explored by multi-D, high resolution and high density PIC simulations as well as analytic theory and present measurements and experimental demonstrations of direct relativistic optics, relativistic HHG, electron acceleration, and BOA ion acceleration in the transparent overdense regime. These effects can in turn be used in a host of applications including laser pulse shaping, ICF diagnostics, coherent x-ray sources, and ion sources for fast ignition (IFI), homeland security applications and medical therapy. This host of applications already makes transparent-overdense regime one of general interest, a situation reinforced by the fact that the TOR target undergoes an extremely wide HEDP parameter space during interaction ranging from WDM conditions (e.g . brown dwarfs) early in the interaction to extremely high energy densities of {approx}10{sup 11} J/cm{sup 3} at peak, dropping back to the underdense but extremely hot parameter range of gamma-ray bursts. Furthermore, whereas today this regime can only be accessed on very few dedicated facilities, employing special targets and pulse cleaning technology, the next generation of laser facilities like RAL-10PW, ELI, or Gekko-Exa will operate in this regime by default, turning its understanding in a necessity rather than a curiosity.

  6. Enhanced subthreshold electron-positron production in short laser pulses

    E-Print Network [OSTI]

    A. I. Titov; H. Takabe; B. Kampfer; A. Hosaka

    2012-05-17T23:59:59.000Z

    The emission of electron-positron pairs off a probe photon propagating through a polarized short-pulsed electromagnetic (e.g.\\ laser) wave field is analyzed. A significant increase of the total cross section of pair production in the subthreshold region is found for decreasing laser pulse duration even in case of moderate laser pulse intensities.

  7. Temperature field analysis of single layer TiO{sub 2} film components induced by long-pulse and short-pulse lasers

    SciTech Connect (OSTI)

    Wang Bin; Zhang Hongchao; Qin Yuan; Wang Xi; Ni Xiaowu; Shen Zhonghua; Lu Jian

    2011-07-10T23:59:59.000Z

    To study the differences between the damaging of thin film components induced by long-pulse and short-pulse lasers, a model of single layer TiO{sub 2} film components with platinum high-absorptance inclusions was established. The temperature rises of TiO{sub 2} films with inclusions of different sizes and different depths induced by a 1 ms long-pulse and a 10 ns short-pulse lasers were analyzed based on temperature field theory. The results show that there is a radius range of inclusions that corresponds to high temperature rises. Short-pulse lasers are more sensitive to high-absorptance inclusions and long-pulse lasers are more easily damage the substrate. The first-damage decision method is drawn from calculations.

  8. Phase retrieval using radiation and matter-wave fields: Validity of Teague's method for solution of the transport-of-intensity equation

    SciTech Connect (OSTI)

    Schmalz, Jelena A. [School of Science and Technology, University of New England, Armidale, NSW 2351 (Australia); Gureyev, Timur E. [CSIRO Materials Science and Engineering, PB 33, Clayton South MDC, VIC 3169 (Australia); School of Science and Technology, University of New England, Armidale, NSW 2351 (Australia); Paganin, David M. [School of Physics, Monash University, VIC 3800 (Australia); Pavlov, Konstantin M. [School of Science and Technology, University of New England, Armidale, NSW 2351 (Australia); School of Physics, Monash University, VIC 3800 (Australia)

    2011-08-15T23:59:59.000Z

    Although originally developed for coherent paraxial scalar electromagnetic radiation in the visible-light regime, phase retrieval using the transport-of-intensity equation has been successfully applied to a range of paraxial radiation and matter-wave fields. Such applications include using electron wave fields to quantitatively image magnetic skyrmions and spin ices, propagation-based phase-contrast imaging using cold neutrons and hard x-rays, and visible-light refractive imaging of the projected column density of cold-atom clouds. Teague's method for phase retrieval using the transport-of-intensity equation, which renders the phase of a paraxial complex wave indirectly measurable via the existence of a conserved current, has been applied to a broad variety of situations which include all of the experiments described above. However, these applications have been undertaken without a thorough analysis of the underlying validity of the method. Here we derive sufficient conditions for the phase-retrieval solution provided by Teague's method to coincide with the true phase of the paraxial radiation or matter-wave field. We also present a sufficient condition guaranteeing that the discrepancy between the true phase function and that reconstructed using Teague's solution is small. These conditions demonstrate that, in most practical cases, for phase-amplitude retrieval using the transport-of-intensity equation, the Teague solution is very close to the exact solution. However, we also describe a counter example in the context of phase-amplitude retrieval using hard x-rays, in which the relative root-mean-square difference between the exact solution and that obtained using Teague's method is 9%. These findings clarify the foundations of one of the most widely applied methods for propagation-based phase retrieval of both paraxial matter and radiation wave fields and define a region for its applicability.

  9. Radial profile measurement of electron temperature in edge stochastic magnetic field layer of LHD using intensity ratio of extreme ultraviolet line emissions

    SciTech Connect (OSTI)

    Wang Erhui [Department of Fusion Science, Graduate University for Advanced Studies, Toki 509-5292, Gifu (Japan); Morita, Shigeru; Kobayashi, Masahiko; Murakami, Izumi; Goto, Motoshi [Department of Fusion Science, Graduate University for Advanced Studies, Toki 509-5292, Gifu (Japan); National Institute for Fusion Science, Toki 509-5292, Gifu (Japan); Dong Chunfeng [National Institute for Fusion Science, Toki 509-5292, Gifu (Japan)

    2012-10-15T23:59:59.000Z

    Vertical profile of neon line emissions in 30-650 A wavelength range has been observed in horizontally elongated plasma cross section of Large Helical Device (LHD). Intensity ratio between the neon line emissions is studied to measure the radial profile of electron temperature in the edge stochastic magnetic field layer of LHD. The edge temperature profile successfully obtained from the line ratio of NeVIII 2s-3p to 2p-3s transitions is compared with the simulation based on three-dimensional edge transport code. The result shows a reasonably good agreement with the edge temperature profile analyzed from atomic data and analysis structure code. The electron temperature at last closed flux surface measured from the intensity ratio is also in good agreement with that measured from Thomson scattering.

  10. Generation of higher order nonclassical states via interaction of intense electromagnetic field with third order nonlinear medium

    E-Print Network [OSTI]

    Anirban Pathak

    2007-02-24T23:59:59.000Z

    Interaction of intense laser beam with an inversion symmetric third order nonlinear medium is modeled as a quartic anharmonic oscillator. A first order operator solution of the model Hamiltonian is used to study the possibilities of generation of higher order nonclassical states. It is found that the higher order squeezed and higher order antibunched states can be produced by this interaction. It is also shown that the higher order nonclassical states may appear separately, i.e. a higher order antibunched state is not essentially higher order squeezed state and vice versa.

  11. Subthreshold pair production in short laser pulses

    E-Print Network [OSTI]

    T. Nousch; D. Seipt; B. Kampfer; A. I. Titov

    2012-06-01T23:59:59.000Z

    The $e^+e^-$ pair production by a probe photon traversing a linearly polarized laser pulse is treated as generalized nonlinear Breit-Wheeler process. For short laser pulses with very few oscillations of the electromagnetic field we find below the perturbative weak-field threshold $\\sqrt{s} = 2m$ a similar enhancement of the pair production rate as for circular polarization. The strong subthreshold enhancement is traced back to the finite bandwidth of the laser pulse. A folding model is developed which accounts for the interplay of the frequency spectrum and the intensity distribution in the course of the pulse.

  12. Light intensity compressor

    DOE Patents [OSTI]

    Rushford, Michael C. (Livermore, CA)

    1990-01-01T23:59:59.000Z

    In a system for recording images having vastly differing light intensities over the face of the image, a light intensity compressor is provided that utilizes the properties of twisted nematic liquid crystals to compress the image intensity. A photoconductor or photodiode material that is responsive to the wavelength of radiation being recorded is placed adjacent a layer of twisted nematic liquid crystal material. An electric potential applied to a pair of electrodes that are disposed outside of the liquid crystal/photoconductor arrangement to provide an electric field in the vicinity of the liquid crystal material. The electrodes are substantially transparent to the form of radiation being recorded. A pair of crossed polarizers are provided on opposite sides of the liquid crystal. The front polarizer linearly polarizes the light, while the back polarizer cooperates with the front polarizer and the liquid crystal material to compress the intensity of a viewed scene. Light incident upon the intensity compressor activates the photoconductor in proportion to the intensity of the light, thereby varying the field applied to the liquid crystal. The increased field causes the liquid crystal to have less of a twisting effect on the incident linearly polarized light, which will cause an increased percentage of the light to be absorbed by the back polarizer. The intensity of an image may be compressed by forming an image on the light intensity compressor.

  13. Electron generation and transport in intense relativistic laser-plasma interactions relevant to fast ignition ICF

    E-Print Network [OSTI]

    Ma, Tammy Yee Wing

    2010-01-01T23:59:59.000Z

    Ultra-Short Pulse, Ultra-High In- tensity Lasers . . . . . . . . . . . . . . . . . . . . . . . .ignition), an ultra-intense short pulse laser is brought inof the ultra-high intensity, short-pulse laser has opened up

  14. Ion heating, burnout of the HF field and ion sound generation under the development of a modulation instability of an intense Langmuir wave in a plasma

    E-Print Network [OSTI]

    Kirichok, A V; Pryimak, A V; Zagorodny, A G

    2015-01-01T23:59:59.000Z

    The development of one-dimensional parametric instabilities of intense long-wave plasma waves is considered in terms of the so-called hybrid models, when electrons are treated as a fluid and ions are regarded as particles. The analysis is performed for both cases when the average plasma field energy is lower (Zakharov's hybrid model -- ZHM) or greater (Silin's hybrid model -- SHM) than the plasma thermal energy. The efficiency of energy transfer to ions and to ion perturbations under the development of the instability is considered for various values of electron-to-ion mass ratios. The energy of low-frequency (LF) oscillations (ion-sound waves) is found to be much lower than the final ion kinetic energy. We also discuss the influence of the changes in the damping rate of the high-frequency (HF) field on the instability development. Reduced absorption of the HF field leads to the retardation of the HF field burnout within plasma density cavities and to the broadening of the HF spectrum. At the same time, the i...

  15. Precision calculation of above-threshold multiphoton ionization in intense short-wavelength laser fields: The momentum-space approach and time-dependent generalized pseudospectral method

    E-Print Network [OSTI]

    Chu, Shih-I; Zhou, Zhongyuan

    2011-01-19T23:59:59.000Z

    . Villoresi, M. Nisoli, S. Stagira, E. Priori, and S. De Silvestri, Nature (London) 414, 182 (2001). [26] G. G. Paulus, F. Lindner, H. Walther, A. Baltuska, E. Goulielmakis, M. Lezius, and F. Krausz, Phys. Rev. Lett. 91, 253004 (2003). [27] A. Rudenko, K.... Zrost, C. D. Schro¨ter, V. L. B. de Jesus, B. Feuerstein, R. Moshammer, and J. Ullrich, J. Phys. B 37, L407 (2004). [28] A. Rudenko, K. Zrost, T. Ergler, A. B. Voitkiv, B. Najjari, V. L. B. de Jesus, B. Feuerstein, C. D. Schro¨ter, R. Moshammer, and J...

  16. Short-Term Energy Outlook Supplement: Status of Libyan Loading Ports and Oil and Natural Gas Fields

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz9 SeptemberSetting theSheldonOctoberOutlookShort-Term

  17. The Intense Radiation Gas

    E-Print Network [OSTI]

    M. Marklund; P. K. Shukla; B. Eliasson

    2005-03-08T23:59:59.000Z

    We present a new dispersion relation for photons that are nonlinearly interacting with a radiation gas of arbitrary intensity due to photon-photon scattering. It is found that the photon phase velocity decreases with increasing radiation intensity, it and attains a minimum value in the limit of super-intense fields. By using Hamilton's ray equations, a self-consistent kinetic theory for interacting photons is formulated. The interaction between an electromagnetic pulse and the radiation gas is shown to produce pulse self-compression and nonlinear saturation. Implications of our new results are discussed.

  18. Use of radial self-field geometry for intense pulsed ion beam generation above 6 MeV on Hermes III.

    SciTech Connect (OSTI)

    Renk, Timothy Jerome; Harper-Slaboszewicz, Victor Jozef; Ginn, William Craig; Mikkelson, Kenneth A.; Schall, Michael; Cooper, Gary Wayne

    2012-12-01T23:59:59.000Z

    We investigate the generation and propagation of intense pulsed ion beams at the 6 MeV level and above using the Hermes III facility at Sandia National Laboratories. While high-power ion beams have previously been produced using Hermes III, we have conducted systematic studies of several ion diode geometries for the purpose of maximizing focused ion energy for a number of applications. A self-field axial-gap diode of the pinch reflex type and operated in positive polarity yielded beam power below predicted levels. This is ascribed both to power flow losses of unknown origin upstream of the diode load in Hermes positive polarity operation, and to anomalies in beam focusing in this configuration. A change to a radial self-field geometry and negative polarity operation resulted in greatly increased beam voltage (> 6 MeV) and estimated ion current. A comprehensive diagnostic set was developed to characterize beam performance, including both time-dependent and time-integrated measurements of local and total beam power. A substantial high-energy ion population was identified propagating in reverse direction, i.e. from the back side of the anode in the electron beam dump. While significant progress was made in increasing beam power, further improvements in assessing the beam focusing envelope will be required before ultimate ion generation efficiency with this geometry can be completely determined.

  19. Multiphoton ionization and high-order harmonic generation of He, Ne, and Ar atoms in intense pulsed laser fields: Self-interaction-free time-dependent density-functional theoretical approach

    E-Print Network [OSTI]

    Chu, Shih-I; Tong, Xiao-Min

    2001-06-12T23:59:59.000Z

    We present a detailed study of the multiphoton ionization and high-order harmonic generation (HHG) processes of rare-gas atoms (He, Ne, and Ar) in intense pulsed laser fields by means of a self-interaction-free time-dependent density...

  20. Dosimetric and Clinical Outcomes of Involved-Field Intensity-Modulated Radiotherapy After Chemotherapy for Early-Stage Hodgkin's Lymphoma With Mediastinal Involvement

    SciTech Connect (OSTI)

    Lu Ningning [Department of Radiation Oncology, Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (China)] [Department of Radiation Oncology, Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (China); Li Yexiong, E-mail: yexiong@yahoo.com [Department of Radiation Oncology, Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (China); Wu Runye; Zhang Ximei; Wang Weihu; Jin Jing; Song Yongwen; Fang Hui; Ren Hua; Wang Shulian; Liu Yueping; Liu Xinfan; Chen Bo; Dai Jianrong; Yu Zihao [Department of Radiation Oncology, Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (China)] [Department of Radiation Oncology, Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (China)

    2012-09-01T23:59:59.000Z

    Purpose: To evaluate the dosimetric and clinical outcomes of involved-field intensity-modulated radiotherapy (IF-IMRT) for patients with early-stage Hodgkin's lymphoma (HL) with mediastinal involvement. Methods and Materials: Fifty-two patients with early-stage HL that involved the mediastinum were reviewed. Eight patients had Stage I disease, and 44 patients had Stage II disease. Twenty-three patients (44%) presented with a bulky mediastinum, whereas 42 patients (81%) had involvement of both the mediastinum and either cervical or axillary nodes. All patients received combination chemotherapy followed by IF-IMRT. The prescribed radiation dose was 30-40 Gy. The dose-volume histograms of the target volume and critical normal structures were evaluated. Results: The median mean dose to the primary involved regions (planning target volume, PTV1) and boost area (PTV2) was 37.5 Gy and 42.1 Gy, respectively. Only 0.4% and 1.3% of the PTV1 and 0.1% and 0.5% of the PTV2 received less than 90% and 95% of the prescribed dose, indicating excellent PTV coverage. The median mean lung dose and V20 to the lungs were 13.8 Gy and 25.9%, respectively. The 3-year overall survival, local control, and progression-free survival rates were 100%, 97.9%, and 96%, respectively. No Grade 4 or 5 acute or late toxicities were reported. Conclusions: Despite the large target volume, IF-IMRT gave excellent dose coverage and a favorable prognosis, with mild toxicity in patients with early-stage mediastinal HL.

  1. Breit-Wheeler process in very short electromagnetic pulses

    E-Print Network [OSTI]

    A. I. Titov; B. Kampfer; H. Takabe; A. Hosaka

    2013-03-26T23:59:59.000Z

    The generalized Breit-Wheeler process, i.e. the emission of $e^+e^-$ pairs off a probe photon propagating through a polarized short-pulsed electromagnetic (e.g.\\ laser) wave field, is analyzed. We show that the production probability is determined by the interplay of two dynamical effects. The first one is related to the shape and duration of the pulse and the second one is the non-linear dynamics of the interaction of $e^\\pm$ with the strong electromagnetic field. The first effect manifests itself most clearly in the weak-field regime, where the small field intensity is compensated by the rapid variation of the electromagnetic field in a limited space-time region, which intensifies the few-photon events and can enhance the production probability by orders of magnitude compared to an infinitely long pulse. Therefore, short pulses may be considered as a powerful amplifier. The non-linear dynamics in the multi-photon Breit-Wheeler regime plays a decisive role at large field intensities, where effects of the pulse shape and duration are less important. In the transition regime, both effects must be taken into account simultaneously. We provide suitable expressions for the $e^+e^-$ production probability for kinematic regions which can be used in transport codes.

  2. Volumetric-modulated arc therapy vs conventional fixed-field intensity-modulated radiotherapy in a whole-ventricular irradiation: A planning comparison study

    SciTech Connect (OSTI)

    Sakanaka, Katsuyuki [Department of Radiation Oncology and Image-Applied Therapy, Kyoto University Graduate School of Medicine, Kyoto (Japan); Mizowaki, Takashi, E-mail: mizo@kuhp.kyoto-u.ac.jp [Department of Radiation Oncology and Image-Applied Therapy, Kyoto University Graduate School of Medicine, Kyoto (Japan); Sato, Sayaka; Ogura, Kengo; Hiraoka, Masahiro [Department of Radiation Oncology and Image-Applied Therapy, Kyoto University Graduate School of Medicine, Kyoto (Japan)

    2013-07-01T23:59:59.000Z

    This study evaluated the dosimetric difference between volumetric-modulated arc therapy (VMAT) and conventional fixed-field intensity-modulated radiotherapy (cIMRT) in whole-ventricular irradiation. Computed tomography simulation data for 13 patients were acquired to create plans for VMAT and cIMRT. In both plans, the same median dose (100% = 24 Gy) was prescribed to the planning target volume (PTV), which comprised a tumor bed and whole ventricles. During optimization, doses to the normal brain and body were reduced, provided that the dose constraints of the target coverage were satisfied. The dose-volume indices of the PTV, normal brain, and body as well as monitor units were compared between the 2 techniques by using paired t-tests. The results showed no significant difference in the homogeneity index (0.064 vs 0.065; p = 0.824) of the PTV and conformation number (0.78 vs 0.77; p = 0.065) between the 2 techniques. In the normal brain and body, the dose-volume indices showed no significant difference between the 2 techniques, except for an increase in the volume receiving a low dose in VMAT; the absolute volume of the normal brain and body receiving 1 Gy of radiation significantly increased in VMAT by 1.6% and 8.3%, respectively, compared with that in cIMRT (1044 vs 1028 mL for the normal brain and 3079.2 vs 2823.3 mL for the body; p<0.001). The number of monitor units to deliver a 2.0-Gy fraction was significantly reduced in VMAT compared with that in cIMRT (354 vs 873, respectively; p<0.001). In conclusion, VMAT delivers IMRT to complex target volumes such as whole ventricles with fewer monitor units, while maintaining target coverage and conformal isodose distribution comparable to cIMRT; however, in addition to those characteristics, the fact that the volume of the normal brain and body receiving a low dose would increase in VMAT should be considered.

  3. Strong-Field Excitation of Liquid and Solid Xe Using Intense Femtosecond Pulses M. Pettersson, R. Zadoyan, J. Eloranta, N. Schwentner,| and V. A. Apkarian*

    E-Print Network [OSTI]

    Apkarian, V. Ara

    -axis spectral profile of the excitonic emission. I. Introduction With the accessibility of lasers with ultra-short in the extreme limits to laser fusion.13 In bulk applications, the important distinctions arise from as supercontinuum generation15 or ablation,16 and clearly must play an integral part in the design of controlled

  4. High intensity illumination effects in LiNbO3 and KTiOPO4 waveguides D. Eger, M. A. Arbore, and M. M. Fejer

    E-Print Network [OSTI]

    Fejer, Martin M.

    ; accepted for publication 16 April 1997 Quasi-phase-matched waveguides are known to degrade when generating to oper- ate at relatively high optical intensities and short wave- lengths, is degradation a photovoltaic current (J) is generated and consequently an electric field is formed which modifies

  5. Dynamics of entropy and nonclassicality features of the interaction between a $\\diamondsuit$-type four-level atom and a single-mode field in the presence of intensity-dependent coupling and Kerr nonlinearity

    E-Print Network [OSTI]

    H R Baghshahi; M K Tavassoly; A Behjat

    2014-08-13T23:59:59.000Z

    The interaction between a $\\diamondsuit$-type four-level atom and a single-mode field in the presence of Kerr medium with intensity-dependent coupling involving multi-photon processes has been studied. Using the generalized (nonlinear) Jaynes-Cummings model, the exact analytical solution of the wave function for the considered system under particular condition, has been obtained when the atom is initially excited to the topmost level and the field is in a coherent state. Some physical properties of the atom-field entangled state such as linear entropy showing the entanglement degree, Mandel parameter, mean photon number and normal squeezing of the resultant state have been calculated. The effects of Kerr medium, detuning and the intensity-dependent coupling on the temporal behavior of the latter mentioned nonclassical properties have been investigated. It is shown that by appropriately choosing the evolved parameters in the interaction process, each of the above nonclassicality features, which are of special interest in quantum optics as well as quantum information processing, can be revealed.

  6. Quantum dynamics of molecular multiphoton excitation in intense laser and static electric fields: Floquet theory, quasienergy spectra, and application to the HF molecule

    E-Print Network [OSTI]

    Chu, Shih-I; Tietz, James V.; Datta, Krishna K.

    1982-01-01T23:59:59.000Z

    of the HF molecule as functions of field strengths and frequency. Nonlinear effects such as power broadening, dynamic Stark shift, Autler–Townes multiplet splitting, hole burning, and S?hump behaviors, etc., are observed and discussed in terms of quasienergy...

  7. The Timber Mountain magmato-thermal event: An intense widespread culmination of magmatic and hydrothermal activity at the southwestern Nevada volcanic field

    SciTech Connect (OSTI)

    Jackson, M.R. Jr.

    1988-05-01T23:59:59.000Z

    Eruption of the Rainier Mesa and Ammonia Tanks Members Timber Mountain Tuff at about 11.5 and 11.3 Ma, respectively, resulted in formation of the timber Mountain (TM) caldera; new K-Ar ages show that volcanism within and around the TM caldera continued for about 1 m.y. after collapse. Some TM age magmatic activity took place west and southeast of the TM caldera in the Beatty -- Bullfrog Hills and Shoshone Mountain areas, suggesting that volcanic activity at the TM caldera was an intense expression of an areally extensive magmatic system active from about 11.5 to 10Ma. Epithermal Au-Ag, Hg and fluorite mineralization and hydrothermal alteration are found in both within and surrounding the Timber Mountain -- Oasis Valley caldera complex. New K-Ar ages date this hydrothermal activity between about 13 and 10 Ma, largely between about 11.5 and 10 Ma, suggesting a genetic relation of hydrothermal activity to the TM magmatic system.

  8. Short-Pulse Laser-Produced Plasmas Jean-Claude Gauthier

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Short-Pulse Laser-Produced Plasmas Jean-Claude Gauthier Centre Lasers Intenses et Applications Summary. In this review, the physics of short-pulse laser-produced plasmas at moderate intensities-ray sources [14]. In this short review, we concentrate on "low" (non-relativistic) laser in- tensities, i.e. I

  9. Laser intensity effects in noncommutative QED

    E-Print Network [OSTI]

    Thomas Heinzl; Anton Ilderton; Mattias Marklund

    2010-02-17T23:59:59.000Z

    We discuss a two-fold extension of QED assuming the presence of strong external fields provided by an ultra-intense laser and noncommutativity of spacetime. While noncommutative effects leave the electron's intensity induced mass shift unchanged, the photons change significantly in character: they acquire a quasi-momentum that is no longer light-like. We study the consequences of this combined noncommutative strong-field effect for basic lepton-photon interactions.

  10. Isolated short attosecond pulse generated using a two-color laser and a high-order pulse

    SciTech Connect (OSTI)

    Du, Hongchuan; Hu, Bitao [School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000 (China); Wang, Huiqiao [Institute of Theoretical Physics, Lanzhou University, Lanzhou 730000 (China)

    2010-06-15T23:59:59.000Z

    An efficient method to generate an isolated short attosecond pulse is investigated theoretically. A broadband extreme ultraviolet supercontinuum harmonics can be generated when a model He{sup +} ion is exposed to the combination of an intense few-cycle laser pulse and a low-frequency field. By properly adding a 27th harmonics pulse to resonantly excite the He{sup +} ion, the intensity of the high-order harmonic generation (HHG) plateau is enhanced by 3-4 orders of magnitude. As a result, an isolated 24-as pulse with a bandwidth of 138 eV can be obtained directly from the supercontinuum around the cutoff of HHG.

  11. Diminished Short Channel Effects in Nanoscale Double-Gate Silicon-on-Insulator MetalOxideSemiconductor Field-Effect-Transistors

    E-Print Network [OSTI]

    Kumar, M. Jagadesh

    ) and the back-gate oxide (tb) thickness is 2 nm. The doping in the p-type body and n+ source/drain regions­Oxide­Semiconductor Field-Effect-Transistors due to Induced Back-Gate Step Potential M. Jagadesh KUMAR Ã and G. Venkateshwar surface potential profile at the back gate of an asymmetrical double gate (DG) silicon-on-insulator (SOI

  12. Quantum Field Theory & Gravity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Quantum Field Theory & Gravity Quantum Field Theory & Gravity Understanding discoveries at the Energy, Intensity, and Cosmic Frontiers Get Expertise Rajan Gupta (505) 667-7664...

  13. Magnet Coil Shorted Turn Detector

    SciTech Connect (OSTI)

    Dinkel, J.A.; Biggs, J.E.

    1994-03-01T23:59:59.000Z

    The Magnet Coil Shorted Turn Detector has been developed to facilitate the location of shorted turns in magnet coils. Finding these shorted turns is necessary to determine failure modes that are a necessary step in developing future production techniques. Up to this point, coils with shorted turns had the insulation burned off without the fault having been located. This disassembly process destroyed any chance of being able to find the fault. In order to maintain a flux balance in a coupled system such as a magnet coil, the current in a shorted turn must be opposed to the incident current. If the direction of the current in each conductor can be measured relative to the incident current, then the exact location of the short can be determined. In this device, an AC voltage is applied to the magnet under test. A small hand held B-dot pickup coil monitors the magnetic field produced by current in the individual magnet conductors. The relative phase of this pickup coil voltage is compared to a reference signal derived from the input current to detect a current reversal as the B-dot pickup coil is swept over the conductors of the coil under test. This technique however, is limited to only those conductors that are accessible to the hand held probe.

  14. Kinetic-energy-angle differential distribution of photofragments in multiphoton above-threshold dissociation of D{sub 2}{sup +} by linearly polarized 400-nm intense laser fields: Effects of highly excited electronic states

    SciTech Connect (OSTI)

    Khan, Basir Ahamed; Saha, Samir; Bhattacharyya, S. S. [Atomic and Molecular Physics Section, Department of Materials Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032 (India)

    2006-02-15T23:59:59.000Z

    We have performed a detailed calculation of the double-differential angular-kinetic-energy distribution of photofragments in above threshold dissociation (ATD) of D{sub 2}{sup +} from initial vibrational-rotational levels v{sub i}=4,5 and J{sub i}=0,1 in an intense linearly polarized laser field of wavelength 400 nm and intensity 3x10{sup 13} W/cm{sup 2}. The calculation used a time-independent close-coupling (CC) formalism with eight (ten) electronic states included in the basis-set expansion of the molecular wave function. The molecular electronic states included, apart from the two lowest 1s{sigma}{sub g} and 2p{sigma}{sub u} states, were 2p{pi}{sub u}{sup {+-}}, 2s{sigma}{sub g}, 3p{sigma}{sub u}, 3d{sigma}{sub g}, 3d{pi}{sub g}{sup {+-}}, and 4f{sigma}{sub u}. All the higher electronic states dissociate to the atomic state D(2l). A sufficient number of photon absorption channels, n=0-7, and molecular rotational quantum numbers J=0-11 were taken into account to ensure the convergence of the multiphoton ATD probability. Altogether 198 coupled channels had to be considered in the calculation. The calculations reveal signatures of significant ejection of the photodissociation fragments away from the laser polarization direction due to the inclusion of the higher excited electronic states. The ratio of the photofragments perpendicular to and along the polarization axis shows good quantitative agreement with the experimental result. The angular distributions show considerable structures depending on the relative kinetic energies of the photofragments, and the fragments with different kinetic energies show peaks at different dissociation angles.

  15. Absolute intensity calibration of flat-field space-resolved extreme ultraviolet spectrometer using radial profiles of visible and extreme ultraviolet bremsstrahlung continuum emitted from high-density plasmas in Large Helical Device

    SciTech Connect (OSTI)

    Dong Chunfeng; Wang Erhui [Department of Fusion Science, Graduate University for Advanced Studies, Toki 509-5292, Gifu (Japan); Morita, Shigeru; Goto, Motoshi [Department of Fusion Science, Graduate University for Advanced Studies, Toki 509-5292, Gifu (Japan); National Institute for Fusion Science, Toki 509-5292, Gifu (Japan)

    2011-11-15T23:59:59.000Z

    A precise absolute intensity calibration of a flat-field space-resolved extreme ultraviolet (EUV) spectrometer working in wavelength range of 60-400 A is carried out using a new calibration technique based on radial profile measurement of the bremsstrahlung continuum in Large Helical Device. A peaked vertical profile of the EUV bremsstrahlung continuum has been successfully observed in high-density plasmas (n{sub e}{>=} 10{sup 14} cm{sup -3}) with hydrogen ice pellet injection. The absolute calibration can be done by comparing the EUV bremsstrahlung profile with the visible bremsstrahlung profile of which the absolute value has been already calibrated using a standard lamp. The line-integrated profile of measured visible bremsstrahlung continuum is firstly converted into the local emissivity profile by considering a magnetic surface distortion due to the plasma pressure, and the local emissivity profile of EUV bremsstrahlung is secondly calculated by taking into account the electron temperature profile and free-free gaunt factor. The line-integrated profile of the EUV bremsstrahlung continuum is finally calculated from the local emissivity profile in order to compare with measured EUV bremsstrahlung profile. The absolute intensity calibration can be done by comparing measured and calculated EUV bremsstrahlung profiles. The calibration factor is thus obtained as a function of wavelength with excellent accuracy. It is also found in the profile analysis that the grating reflectivity of EUV emissions is constant along the direction perpendicular to the wavelength dispersion. Uncertainties on the calibration factor determined with the present method are discussed including charge-coupled device operation modes.

  16. Molecular near-field antenna effect in resonance hyper-Raman scattering: Intermolecular vibronic intensity borrowing of solvent from solute through dipole-dipole and dipole-quadrupole interactions

    SciTech Connect (OSTI)

    Shimada, Rintaro; Hamaguchi, Hiro-o, E-mail: hhama@nctu.edu.tw [Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan (China)

    2014-05-28T23:59:59.000Z

    We quantitatively interpret the recently discovered intriguing phenomenon related to resonance Hyper-Raman (HR) scattering. In resonance HR spectra of all-trans-?-carotene (?-carotene) in solution, vibrations of proximate solvent molecules are observed concomitantly with the solute ?-carotene HR bands. It has been shown that these solvent bands are subject to marked intensity enhancements by more than 5 orders of magnitude under the presence of ?-carotene. We have called this phenomenon the molecular-near field effect. Resonance HR spectra of ?-carotene in benzene, deuterated benzene, cyclohexane, and deuterated cyclohexane have been measured precisely for a quantitative analysis of this effect. The assignments of the observed peaks are made by referring to the infrared, Raman, and HR spectra of neat solvents. It has been revealed that infrared active and some Raman active vibrations are active in the HR molecular near-field effect. The observed spectra in the form of difference spectra (between benzene/deuterated benzene and cyclohexane/deuterated cyclohexane) are quantitatively analyzed on the basis of the extended vibronic theory of resonance HR scattering. The theory incorporates the coupling of excited electronic states of ?-carotene with the vibrations of a proximate solvent molecule through solute–solvent dipole–dipole and dipole–quadrupole interactions. It is shown that the infrared active modes arise from the dipole–dipole interaction, whereas Raman active modes from the dipole–quadrupole interaction. It is also shown that vibrations that give strongly polarized Raman bands are weak in the HR molecular near-field effect. The observed solvent HR spectra are simulated with the help of quantum chemical calculations for various orientations and distances of a solvent molecule with respect to the solute. The observed spectra are best simulated with random orientations of the solvent molecule at an intermolecular distance of 10 Å.

  17. Industrial Energy Auditing - A Short Course for Engineers 

    E-Print Network [OSTI]

    Witte, L. C.

    1979-01-01T23:59:59.000Z

    This paper describes an intensive five day short course, directed toward engineers currently working in industry, which provides the participants with the rudiments of industrial energy auditing. Experience has shown that this format of training can...

  18. Propagation of Partially Coherent Photons in an Ultra-Intense Radiation Gas

    E-Print Network [OSTI]

    Mattias Marklund

    2005-03-03T23:59:59.000Z

    The scattering of photons off photons at the one-loop level is investigated. We give a short review of the weak field limit, as given by the first order term in the series expansion of the Heisenberg-Euler Lagrangian. The dispersion relation for a photon in a radiation gas is presented. Based on this, a wave kinetic equation and a set of fluid equations is formulated. These equations describe the interaction between a partially coherent electromagnetic pulse and an intense radiation gas. The implications of the results are discussed.

  19. Volumetric-modulated arc therapy (RapidArc) vs. conventional fixed-field intensity-modulated radiotherapy for {sup 18}F-FDG-PET-guided dose escalation in oropharyngeal cancer: A planning study

    SciTech Connect (OSTI)

    Teoh, May, E-mail: m.teoh@nhs.net [Department of Oncology, St. Luke's Cancer Centre, Royal Surrey County Hospital, Guildford, Surrey (United Kingdom); Beveridge, Sabeena [Department of Medical Physics, St. Luke's Cancer Centre, Royal Surrey County Hospital, Guildford, Surrey (United Kingdom); Wood, Katie; Whitaker, Stephen [Department of Oncology, St. Luke's Cancer Centre, Royal Surrey County Hospital, Guildford, Surrey (United Kingdom); Adams, Elizabeth; Rickard, Donna; Jordan, Tom; Nisbet, Andrew [Department of Medical Physics, St. Luke's Cancer Centre, Royal Surrey County Hospital, Guildford, Surrey (United Kingdom); Clark, Catharine H. [Department of Medical Physics, St. Luke's Cancer Centre, Royal Surrey County Hospital, Guildford, Surrey (United Kingdom); National Physical Laboratory, Hampton Road, Teddington, Middlesex (United Kingdom)

    2013-04-01T23:59:59.000Z

    Fluorine-18-fluorodeoxyglucose-positron emission tomography ({sup 18}F-FDG-PET)–guided focal dose escalation in oropharyngeal cancer may potentially improve local control. We evaluated the feasibility of this approach using volumetric-modulated arc therapy (RapidArc) and compared these plans with fixed-field intensity-modulated radiotherapy (IMRT) focal dose escalation plans. Materials and methods: An initial study of 20 patients compared RapidArc with fixed-field IMRT using standard dose prescriptions. From this cohort, 10 were included in a dose escalation planning study. Dose escalation was applied to {sup 18}F-FDG-PET–positive regions in the primary tumor at dose levels of 5% (DL1), 10% (DL2), and 15% (DL3) above standard radical dose (65 Gy in 30 fractions). Fixed-field IMRT and double-arc RapidArc plans were generated for each dataset. Dose-volume histograms were used for plan evaluation and comparison. The Paddick conformity index (CI{sub Paddick}) and monitor units (MU) for each plan were recorded and compared. Both IMRT and RapidArc produced clinically acceptable plans and achieved planning objectives for target volumes. Dose conformity was significantly better in the RapidArc plans, with lower CI{sub Paddick} scores in both primary (PTV1) and elective (PTV2) planning target volumes (largest difference in PTV1 at DL3; 0.81 ± 0.03 [RapidArc] vs. 0.77 ± 0.07 [IMRT], p = 0.04). Maximum dose constraints for spinal cord and brainstem were not exceeded in both RapidArc and IMRT plans, but mean doses were higher with RapidArc (by 2.7 ± 1 Gy for spinal cord and 1.9 ± 1 Gy for brainstem). Contralateral parotid mean dose was lower with RapidArc, which was statistically significant at DL1 (29.0 vs. 29.9 Gy, p = 0.01) and DL2 (29.3 vs. 30.3 Gy, p = 0.03). MU were reduced by 39.8–49.2% with RapidArc (largest difference at DL3, 641 ± 94 vs. 1261 ± 118, p < 0.01). {sup 18}F-FDG-PET–guided focal dose escalation in oropharyngeal cancer is feasible with RapidArc. Compared with conventional fixed-field IMRT, RapidArc can achieve better dose conformity, improve contralateral parotid sparing, and uses fewer MU.

  20. Solar radiation intensity calculations

    E-Print Network [OSTI]

    Levine, Randolph Steven

    1978-01-01T23:59:59.000Z

    SOLAR RADIATION INTENSITY CALCULATIONS A Thesis by RANDOLPH STEVEN LEVINE Submitted to the Graduate College of Texas A&M University in partia'l fulfillment of the requirement for the degree of MASTER OF SCIENCE December 1978 Major Subject...: Physics SOLAR RADIATION INTENSITY CALCULATIONS A Thesis by RANDOLPH STEVEN LEVINE Approved as to style and content by: (Chairman of Committee) (Member) (Member) ( member) (Head of Department) December 1978 f219 037 ABSTRACT Solar Radiation...

  1. Polarization operator approach to pair creation in short laser pulses

    E-Print Network [OSTI]

    Sebastian Meuren; Karen Z. Hatsagortsyan; Christoph H. Keitel; Antonino Di Piazza

    2015-01-28T23:59:59.000Z

    Short-pulse effects are investigated for the nonlinear Breit-Wheeler process, i.e. the production of an electron-positron pair induced by a gamma photon inside an intense plane-wave laser pulse. To obtain the total pair-creation probability we verify (to leading-order) the cutting rule for the polarization operator in the realm of strong-field QED by an explicit calculation. Using a double-integral representation for the leading-order contribution to the polarization operator, compact expressions for the total pair-creation probability inside an arbitrary plane-wave background field are derived. Correspondingly, the photon wave function including leading-order radiative corrections in the laser field is obtained via the Schwinger-Dyson equation in the quasistatic approximation. Moreover, the influence of the carrier-envelope phase and of the laser pulse shape on the total pair-creation probability in a linearly polarized laser pulse is investigated, and the validity of the (local) constant-crossed field approximation analyzed. It is shown that with presently available technology pair-creation probabilities of the order of ten percent could be reached for a single gamma photon.

  2. Field Theory and Standard Model

    E-Print Network [OSTI]

    W. Buchmüller; C. Lüdeling

    2006-09-18T23:59:59.000Z

    This is a short introduction to the Standard Model and the underlying concepts of quantum field theory.

  3. Source of coherent short wavelength radiation

    DOE Patents [OSTI]

    Villa, Francesco (Alameda, CA)

    1990-01-01T23:59:59.000Z

    An apparatus for producing coherent radiation ranging from X-rays to the far ultraviolet (i.e., 1 Kev to 10 eV) utilizing the Compton scattering effect. A photon beam from a laser is scattered on a high energy electron bunch from a pulse power linac. The short wavelength radiation produced by such scattering has sufficient intensity and spatial coherence for use in high resolution applications such as microscopy.

  4. HETEROGENEITY IN SHORT GAMMA-RAY BURSTS

    SciTech Connect (OSTI)

    Norris, Jay P. [Physics and Astronomy Department, University of Denver, Denver, CO 80208 (United States); Gehrels, Neil [Astroparticle Physics Laboratory, NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Scargle, Jeffrey D. [Space Science and Astrobiology Division, NASA/Ames Research Center, Moffett Field, CA 94035-1000 (United States)

    2011-07-01T23:59:59.000Z

    We analyze the Swift/BAT sample of short gamma-ray bursts, using an objective Bayesian Block procedure to extract temporal descriptors of the bursts' initial pulse complexes (IPCs). The sample is comprised of 12 and 41 bursts with and without extended emission (EE) components, respectively. IPCs of non-EE bursts are dominated by single pulse structures, while EE bursts tend to have two or more pulse structures. The medians of characteristic timescales-durations, pulse structure widths, and peak intervals-for EE bursts are factors of {approx}2-3 longer than for non-EE bursts. A trend previously reported by Hakkila and colleagues unifying long and short bursts-the anti-correlation of pulse intensity and width-continues in the two short burst groups, with non-EE bursts extending to more intense, narrower pulses. In addition, we find that preceding and succeeding pulse intensities are anti-correlated with pulse interval. We also examine the short burst X-ray afterglows as observed by the Swift/X-Ray Telescope (XRT). The median flux of the initial XRT detections for EE bursts ({approx}6x10{sup -10} erg cm{sup -2} s{sup -1}) is {approx}>20x brighter than for non-EE bursts, and the median X-ray afterglow duration for EE bursts ({approx}60,000 s) is {approx}30x longer than for non-EE bursts. The tendency for EE bursts toward longer prompt-emission timescales and higher initial X-ray afterglow fluxes implies larger energy injections powering the afterglows. The longer-lasting X-ray afterglows of EE bursts may suggest that a significant fraction explode into denser environments than non-EE bursts, or that the sometimes-dominant EE component efficiently powers the afterglow. Combined, these results favor different progenitors for EE and non-EE short bursts.

  5. Energy Intensity Strategy 

    E-Print Network [OSTI]

    Rappolee, D.; Shaw, J.

    2008-01-01T23:59:59.000Z

    Our presentation will cover how we began the journey of conserving energy at our facility. We’ll discuss a basic layout of our energy intensity plan and the impact our team has had on the process, what tools we’re using, what goals have been...

  6. Laser intensity effects in noncommutative QED

    SciTech Connect (OSTI)

    Heinzl, Thomas [School of Computing and Mathematics, University of Plymouth, Plymouth PL4 8AA (United Kingdom); Ilderton, Anton; Marklund, Mattias [Department of Physics, Umeaa University, SE-901 87 Umeaa (Sweden)

    2010-03-01T23:59:59.000Z

    We discuss a twofold extension of QED assuming the presence of strong external fields provided by an ultraintense laser and noncommutativity of spacetime. While noncommutative effects leave the electron's intensity induced mass shift unchanged, photons change significantly in character: they acquire a quasimomentum that is no longer lightlike. We study the consequences of this combined noncommutative strong-field effect for the basic lepton-photon interactions.

  7. Name of Lecture Intensive Thermal Engineering

    E-Print Network [OSTI]

    Name of Lecture Intensive Thermal Engineering Term 2nd semester (October) Units 2-0-0 Lecturers' understanding of the essential part of thermal engineering, comprehensively. The classes are given by three in Thermal Engineering field require the students to have fundamental concepts of thermodynamics and heat

  8. Title of dissertation: NOVEL APPLICATIONS OF HIGH INTENSITY FEMTOSECOND LASERS

    E-Print Network [OSTI]

    Anlage, Steven

    -cycle seed pulse of terahertz radiation: a short, intense optical pulse (or sequence of pulses) aligns for amplification of few-cycle, high energy pulses of terahertz radiation. We report the development of corrugated the limitations of diffraction, phase matching, and material damage thresholds and promise to allow high

  9. Probing the quantum vacuum with ultra intense laser pulses

    E-Print Network [OSTI]

    B. Manuel Hegelich; Gerard Mourou; Johann Rafelski

    2014-12-28T23:59:59.000Z

    This article presents: 1) The theoretical background of strong field physics and vacuum structure and stability; 2) The instrumental developments in the area of pulse lasers and considers the physics case for ultra intense laser facilities; and 3) Discussion of the applied and fundamental uses of ultra-intense lasers.

  10. Probing the quantum vacuum with ultra intense laser pulses

    E-Print Network [OSTI]

    Hegelich, B Manuel; Rafelski, Johann

    2014-01-01T23:59:59.000Z

    This article presents: 1) The theoretical background of strong field physics and vacuum structure and stability; 2) The instrumental developments in the area of pulse lasers and considers the physics case for ultra intense laser facilities; and 3) Discussion of the applied and fundamental uses of ultra-intense lasers.

  11. SHORT REVIEW Ecological genomics: understanding gene and

    E-Print Network [OSTI]

    Kaufman, Glennis A.

    SHORT REVIEW Ecological genomics: understanding gene and genome function in the natural environment MC Ungerer, LC Johnson and MA Herman Division of Biology, Ecological Genomics Institute, Kansas State University, Manhattan, KS, USA The field of ecological genomics seeks to understand the genetic mechanisms

  12. Intensity Frontier Instrumentation

    SciTech Connect (OSTI)

    Kettell S.; Rameika, R.; Tshirhart, B.

    2013-09-24T23:59:59.000Z

    The fundamental origin of flavor in the Standard Model (SM) remains a mystery. Despite the roughly eighty years since Rabi asked “Who ordered that?” upon learning of the discovery of the muon, we have not understood the reason that there are three generations or, more recently, why the quark and neutrino mixing matrices and masses are so different. The solution to the flavor problem would give profound insights into physics beyond the Standard Model (BSM) and tell us about the couplings and the mass scale at which the next level of insight can be found. The SM fails to explain all observed phenomena: new interactions and yet unseen particles must exist. They may manifest themselves by causing SM reactions to differ from often very precise predictions. The Intensity Frontier (1) explores these fundamental questions by searching for new physics in extremely rare processes or those forbidden in the SM. This often requires massive and/or extremely finely tuned detectors.

  13. Resonant third-harmonic generation of a short-pulse laser from electron-hole plasmas

    SciTech Connect (OSTI)

    Kant, Niti [Department of Physics, Lovely Professional University, Phagwara, Punjab 144 402 (India); Nandan Gupta, Devki [Department of Physics and Astrophysics, University of Delhi, Delhi 110 007 (India); Suk, Hyyong [Advanced Photonics Research Institute (APRI) and Graduate Program of Photonics and Applied Physics, Gwangju Institute of Science and Technology, Gwangju 500 712 (Korea, Republic of)

    2012-01-15T23:59:59.000Z

    In semiconductors, free carriers are created in pairs in inter-band transitions and consist of an electron and its corresponding hole. At very high carrier densities, carrier-carrier collisions dominate over carrier-lattice collisions and carriers begin to behave collectively to form plasma. Here, we apply a short-pulse laser to generate third-harmonic radiation from a semiconductor plasma (electron-hole plasma) in the presence of a transverse wiggler magnetic-field. The process of third-harmonic generation of an intense short-pulse laser is resonantly enhanced by the magnetic wiggler, i.e., wiggler magnetic field provides the necessary momentum to third-harmonic photons. In addition, a high-power laser radiation, propagating through a semiconductor imparts an oscillatory velocity to the electrons and exerts a ponderomotive force on electrons at the third-harmonic frequency of the laser. This oscillatory velocity produces a third-harmonic longitudinal current. And due to the beating of the longitudinal electron velocity and the wiggler magnetic field, a transverse third-harmonic current is produced that drives third-harmonic electromagnetic radiation. It is finally observed that for a specific wiggler wave number value, the phase-matching conditions for the process are satisfied, leading to resonant enhancement in the energy conversion efficiency.

  14. Short wavelength laser

    DOE Patents [OSTI]

    Hagelstein, P.L.

    1984-06-25T23:59:59.000Z

    A short wavelength laser is provided that is driven by conventional-laser pulses. A multiplicity of panels, mounted on substrates, are supported in two separated and alternately staggered facing and parallel arrays disposed along an approximately linear path. When the panels are illuminated by the conventional-laser pulses, single pass EUV or soft x-ray laser pulses are produced.

  15. Ion Acceleration by Short Chirped Laser Pulses

    E-Print Network [OSTI]

    Li, Jian-Xing; Keitel, Christoph H; Harman, Zoltán

    2015-01-01T23:59:59.000Z

    Direct laser acceleration of ions by short frequency-chirped laser pulses is investigated theoretically. We demonstrate that intense beams of ions with a kinetic energy broadening of about 1 % can be generated. The chirping of the laser pulse allows the particles to gain kinetic energies of hundreds of MeVs, which is required for hadron cancer therapy, from pulses of energies of the order of 100 J. It is shown that few-cycle chirped pulses can accelerate ions more efficiently than long ones, i.e. higher ion kinetic energies are reached with the same amount of total electromagnetic pulse energy.

  16. Short wavelength laser

    DOE Patents [OSTI]

    Hagelstein, Peter L. (Livermore, CA)

    1986-01-01T23:59:59.000Z

    A short wavelength laser (28) is provided that is driven by conventional-laser pulses (30, 31). A multiplicity of panels (32), mounted on substrates (34), are supported in two separated and alternately staggered facing and parallel arrays disposed along an approximately linear path (42). When the panels (32) are illuminated by the conventional-laser pulses (30, 31), single pass EUV or soft x-ray laser pulses (44, 46) are produced.

  17. Accelerators for Intensity Frontier Research

    SciTech Connect (OSTI)

    Derwent, Paul; /Fermilab

    2012-05-11T23:59:59.000Z

    In 2008, the Particle Physics Project Prioritization Panel identified three frontiers for research in high energy physics, the Energy Frontier, the Intensity Frontier, and the Cosmic Frontier. In this paper, I will describe how Fermilab is configuring and upgrading the accelerator complex, prior to the development of Project X, in support of the Intensity Frontier.

  18. Nonlinear pair production in scattering of photons on ultra-short laser pulses at high energy

    E-Print Network [OSTI]

    Tuchin, Kirill

    2009-01-01T23:59:59.000Z

    We consider scattering of a photon on a short intense laser pulse at high energy. We argue that for ultra-short laser pulses the interaction is coherent over the entire length of the pulse. At low pulse intensity $I$ the total cross section for electron-positron pair production is proportional to $I$. However, at pulse intensities higher than the characteristic value $I_s$, the total cross section saturates -- it becomes proportional to the logarithm of intensity. This nonlinear effect is due to multi-photon interactions. We derive the total cross section for pair production at high energies by resuming the multi-photon amplitudes to all orders in intensity. We calculate the saturation intensity $I_s$ and show that it is significantly lower than the Schwinger's critical value. We discuss possible experimental tests.

  19. Nonlinear pair production in scattering of photons on ultra-short laser pulses at high energy

    E-Print Network [OSTI]

    Kirill Tuchin

    2010-02-15T23:59:59.000Z

    We consider scattering of a photon on a short intense laser pulse at high energy. We argue that for ultra-short laser pulses the interaction is coherent over the entire length of the pulse. At low pulse intensity $I$ the total cross section for electron-positron pair production is proportional to $I$. However, at pulse intensities higher than the characteristic value $I_s$, the total cross section saturates -- it becomes proportional to the logarithm of intensity. This nonlinear effect is due to multi-photon interactions. We derive the total cross section for pair production at high energies by resuming the multi-photon amplitudes to all orders in intensity. We calculate the saturation intensity $I_s$ and show that it is significantly lower than the Schwinger's critical value. We discuss possible experimental tests.

  20. Position, rotation, and intensity invariant recognizing method

    DOE Patents [OSTI]

    Ochoa, Ellen (Pleasanton, CA); Schils, George F. (San Ramon, CA); Sweeney, Donald W. (Alamo, CA)

    1989-01-01T23:59:59.000Z

    A method for recognizing the presence of a particular target in a field of view which is target position, rotation, and intensity invariant includes the preparing of a target-specific invariant filter from a combination of all eigen-modes of a pattern of the particular target. Coherent radiation from the field of view is then imaged into an optical correlator in which the invariant filter is located. The invariant filter is rotated in the frequency plane of the optical correlator in order to produce a constant-amplitude rotational response in a correlation output plane when the particular target is present in the field of view. Any constant response is thus detected in the output The U.S. Government has rights in this invention pursuant to Contract No. DE-AC04-76DP00789 between the U.S. Department of Energy and AT&T Technologies, Inc.

  1. Two types of the relation between the intensity and the life time of photoluminescence of core/shell semiconductor quantum dots: Important role of Coulomb field and tunneling transitions

    SciTech Connect (OSTI)

    Osad'ko, I. S., E-mail: osadko@isan.troitsk.ru [Institute for spectroscopy RAS, Troitsk, 142190 Moscow (Russian Federation)

    2014-10-28T23:59:59.000Z

    It has been recently found [Gh. Galland, Y. Ghosh, A. Steinbrück, M. Sykora, J. A. Hollingsworth, and V. I. Klimov, Nature (London) 479, 203 (2011)] that semiconductor core/shell nanocrystals (NCs) with blinking photoluminescence (PL) can be of “A” or “B” type. NCs of A-type exhibit correlation between the intensity of PL and the life time. In NCs of B-type such correlation is absent. Simple model based on combination of the charging model and the two-level system model is proposed for describing emissive properties of NCs of both types. The model invokes fluctuations of emission ability ?{sub em} of NC to explain the emissive properties of NCs of B-type. Our combined model is also in agreement with anticorrelation between the duration ?{sub off} of off intervals and PL life time t{sub off} in off intervals found recently for NCs of A-type in the experiment [A. A. Cordones, T. J. Bixby, and S. R. Leone, Nano Lett. 11, 3366 (2011)].

  2. ITP Energy Intensive Processes: Energy-Intensive Processes Portfolio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    teChnologIes Program IntroduCtIon the research and development (r&d) portfolio for energy-Intensive Processes (eIP) addresses the top technology opportunities to save energy...

  3. Observation of a strong correlation between electromagnetic soliton formation and relativistic self-focusing for ultra-short laser pulses propagating through an under-dense plasma

    SciTech Connect (OSTI)

    Zhu Bin; Wu Yuchi; Dong Kegong; Hong Wei; Teng Jian; Zhou Weimin; Cao Leifeng; Gu Yuqiu [Science and Technology on Plasma Physics Laboratory, Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang (China)

    2012-10-15T23:59:59.000Z

    A strong correlation is observed between the formation of electromagnetic solitons, generated during the interaction of a short intense laser pulse (30 fs, {approx}10{sup 18} W/cm{sup 2}) with a rarefied (<0.1n{sub c}) plasma, and pulse self-focusing. Pulse defocusing, which occurs after soliton generation, results in laser-pulse energy depletion. The role of stimulated Raman scattering in soliton generation is analyzed from 2D particle-in-cell simulations. An observed relationship between initial plasma density and soliton generation is presented that might have relevance to wake-field accelerators.

  4. Intensity-Intensity Correlations of Classically Entangled Light

    E-Print Network [OSTI]

    Partha Ghose; Anirban Mukherjee

    2014-01-03T23:59:59.000Z

    An experiment is proposed to show that after initial frequency and polarization selection, classical thermal light from two independent sources can be made path-polarization entangled. Such light will show new intensity-intensity correlations involving both path and polarization phases, formally similar to those for four-particle GHZ states. For fixed polarization phases, the correlations reduce to the Hanbury Brown-Twiss phase correlations. It is also shown that these classical correlations violate noncontextuality.

  5. Short Baseline Neutrino Oscillation Experiments

    E-Print Network [OSTI]

    Katori, Teppei

    2014-01-01T23:59:59.000Z

    Series of short baseline neutrino oscillation experiments provided unexpected results, and now they are called short baseline anomalies, and all indicates an existence of sterile neutrinos with a mass scale around 1~eV. The signals of short baseline anomalies are reported from 4 different classes of experiments. However, at this moment, there is no convincing theoretical model to explain such sterile neutrinos, and a single experiment to confirm 1~eV sterile neutrinos may be challenging. In this short note, we describe classes of short baseline neutrino oscillation experiments and their goals.

  6. Resonant high-order harmonic generation from plasma ablation: Laser intensity dependence of the harmonic intensity and phase

    SciTech Connect (OSTI)

    Milosevic, D. B. [Faculty of Science, University of Sarajevo, Zmaja od Bosne 35, 71000 Sarajevo (Bosnia and Herzegowina); Max-Born-Institut, Max-Born-Str. 2a, D-12489 Berlin (Germany)

    2010-02-15T23:59:59.000Z

    Experimentally observed strong enhancement of a single high-order harmonic in harmonic generation from low-ionized laser plasma ablation is explained as resonant harmonic generation. The resonant harmonic intensity increases regularly with the increase of the laser intensity, while the phase of the resonant harmonic is almost independent of the laser intensity. This is in sharp contrast with the usual plateau and cutoff harmonics, the intensity of which exhibits wild oscillations while its phase changes rapidly with the laser intensity. The temporal profile of a group of harmonics, which includes the resonant harmonic, has the form of a broad peak in each laser-field half cycle. These characteristics of resonant harmonics can have an important application in attoscience. We illustrate our results using examples of Sn and Sb plasmas.

  7. Iron and Steel Energy Intensities

    U.S. Energy Information Administration (EIA) Indexed Site

    If you are having trouble, call 202-586-8800 for help. Home > >Energy Users > Energy Efficiency Page > Iron and Steel Energy Intensities First Use of Energy Blue Bullet First Use...

  8. TESLA Report 2003-19 THE SHORT-RANGE TRANSVERSE WAKE

    E-Print Network [OSTI]

    TESLA Report 2003-19 THE SHORT-RANGE TRANSVERSE WAKE FUNCTION FOR TESLA ACCELERATING STRUCTURE T of a Free Electron Laser in TESLA project requires very short bunches. It results in a very long interaction calculate the short-range transverse wakefields of the TESLA linac accelerating structure. Wake fields

  9. Computational materials science and engineering (CMSE) is a relatively young field. The first-known case study of materials that used digital computers was made shortly after the Second World

    E-Print Network [OSTI]

    Li, Mo

    ~~ * ~~ Computational materials science and engineering (CMSE) is a relatively young field branches of materials science and engineering. As its impact has grown, it has gained a reputation as being such tedious work as data acquisition and data analysis. Computational materials science and engineering is

  10. Electrodeless short pulse laser

    SciTech Connect (OSTI)

    Proud, J.M.; Baird, D.H.; Kramer, J.M.; Lester, J.E.

    1986-06-03T23:59:59.000Z

    A system is described for the generation of coherent beams of radiation, which consists of: a tube defining a resonant cavity containing a discharge plasma capable of producing coherent radiation, the tube having an elongated shape along an optical axis along the longitudinal axis of the tube, the tube having end portions and an elongated constricted portion connecting the end portions, and the tube having laser windows sealing the end portions to form a closed envelope containing the discharge plasma, a mirror on the optical axis near at least one end of the tube, first and second external electrode means on the outside surfaces of the tube adjacent the opposite ends of the tube, the external electrode means being capacitively coupled to the discharge plasma, and means for providing a source of short pulses electrically to the first external electrode means and means for coupling the second external electrode means to a point of reference potential, further characterized by first and second internal electrode means respectively adjacent the first and second external electrode means and capacitively coupled thereto, the tube having end portions sealed to form a closed envelope containing the discharge plasma and the internal electrode means.

  11. Nonlinear Compton scattering in ultra-short laser pulses

    E-Print Network [OSTI]

    Mackenroth, F

    2010-01-01T23:59:59.000Z

    A detailed analysis of the photon emission spectra of an electron scattered by a laser pulse containing only very few cycles of the carrying electromagnetic field is presented. The analysis is performed in the framework of strong-field quantum electrodynamics, with the laser field taken into account exactly in the calculations. We consider different emission regimes depending on the laser intensity, placing special emphasis on the regime of one-cycle beams and of high laser intensities, where the emission spectra depend nonperturbatively on the laser intensity. In this regime we in particular present an accurate stationary phase analysis of the integrals that are shown to determine the computed emission spectra. The emission spectra show significant differences with respect to those in a long pulsed or monochromatic laser field: the emission lines obtained here are much broader and, more important, no dressing of the electron mass is observed.

  12. Nonlinear Compton scattering in ultra-short laser pulses

    E-Print Network [OSTI]

    F. Mackenroth; A. Di Piazza

    2011-03-10T23:59:59.000Z

    A detailed analysis of the photon emission spectra of an electron scattered by a laser pulse containing only very few cycles of the carrying electromagnetic field is presented. The analysis is performed in the framework of strong-field quantum electrodynamics, with the laser field taken into account exactly in the calculations. We consider different emission regimes depending on the laser intensity, placing special emphasis on the regime of one-cycle beams and of high laser intensities, where the emission spectra depend nonperturbatively on the laser intensity. In this regime we in particular present an accurate stationary phase analysis of the integrals that are shown to determine the computed emission spectra. The emission spectra show significant differences with respect to those in a long pulsed or monochromatic laser field: the emission lines obtained here are much broader and, more important, no dressing of the electron mass is observed.

  13. SHACKLING SHORT SELLERS: THE 2008 SHORTING BAN Ekkehart Boehmer

    E-Print Network [OSTI]

    Lin, Xiaodong

    degradation in market quality, as measured by spreads, price impacts, and intraday volatility. Prices,000 financial stocks. In this paper, we study changes in stock prices, the rate of short sales most short sales in nearly 1,000 financial stocks. In this paper, we study changes in stock prices

  14. LibShortText: A Library for Short-text Classification and Analysis LibShortText: A Library for Short-text Classification and

    E-Print Network [OSTI]

    Lin, Chih-Jen

    LibShortText: A Library for Short-text Classification and Analysis LibShortText: A Library for Short-text Classification and Analysis Hsiang-Fu Yu rofuyu@cs.utexas.edu Department of Computer Science University, Taipei 106, Taiwan Editor: Editor name Abstract LibShortText is an open source library for short

  15. Tamper to delay motion and decrease ionization of a sample during short pulse x-ray imaging

    DOE Patents [OSTI]

    London, Richard A. (Orinda, CA); Szoke; Abraham (Fremont, CA), Hau-Riege; Stefan P. (Fremont, CA), Chapman; Henry N. (Livermore, CA)

    2007-06-26T23:59:59.000Z

    A system for x-ray imaging of a small sample comprising positioning a tamper so that it is operatively connected to the sample, directing short intense x-ray pulses onto the tamper and the sample, and detecting an image from the sample. The tamper delays the explosive motion of the sample during irradiation by the short intense x-ray pulses, thereby extending the time to obtain an x-ray image of the original structure of the sample.

  16. Intense ultraviolet perturbations on aquatic primary producers

    E-Print Network [OSTI]

    Guimarais, Mayrene; Horvath, Jorge

    2010-01-01T23:59:59.000Z

    During the last decade, the hypothesis that one or more biodiversity drops in the Phanerozoic eon, evident in the geological record, might have been caused by the most powerful kind of stellar explosion so far known (Gamma Ray Bursts) has been discussed in several works. These stellar explosions could have left an imprint in the biological evolution on Earth and in other habitable planets. In this work we calculate the short-term lethality that a GRB would produce in the aquatic primary producers on Earth. This effect on life appears as a result of ultraviolet (UV) re-transmission in the atmosphere of a fraction of the gamma energy, resulting in an intense UV flash capable of penetrating ~ tens of meters in the water column in the ocean. We focus on the action of the UV flash on phytoplankton, as they are the main contributors to global aquatic primary productivity. Our results suggest that the UV flash could cause an hemispheric reduction of phytoplankton biomass in the upper mixed layer of the World Ocean o...

  17. Fan-beam intensity modulated proton therapy

    SciTech Connect (OSTI)

    Hill, Patrick [Department of Radiation Oncology, University of Iowa Hospitals and Clinics, Iowa City, Iowa 52242 (United States)] [Department of Radiation Oncology, University of Iowa Hospitals and Clinics, Iowa City, Iowa 52242 (United States); Westerly, David [Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, Colorado 80045 (United States)] [Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, Colorado 80045 (United States); Mackie, Thomas [Medical Devices, Morgridge Institute for Research, University of Wisconsin, Madison, Wisconsin 53715 (United States)] [Medical Devices, Morgridge Institute for Research, University of Wisconsin, Madison, Wisconsin 53715 (United States)

    2013-11-15T23:59:59.000Z

    Purpose: This paper presents a concept for a proton therapy system capable of delivering intensity modulated proton therapy using a fan beam of protons. This system would allow present and future gantry-based facilities to deliver state-of-the-art proton therapy with the greater normal tissue sparing made possible by intensity modulation techniques.Methods: A method for producing a divergent fan beam of protons using a pair of electromagnetic quadrupoles is described and particle transport through the quadrupole doublet is simulated using a commercially available software package. To manipulate the fan beam of protons, a modulation device is developed. This modulator inserts or retracts acrylic leaves of varying thickness from subsections of the fan beam. Each subsection, or beam channel, creates what effectively becomes a beam spot within the fan area. Each channel is able to provide 0–255 mm of range shift for its associated beam spot, or stop the beam and act as an intensity modulator. Results of particle transport simulations through the quadrupole system are incorporated into the MCNPX Monte Carlo transport code along with a model of the range and intensity modulation device. Several design parameters were investigated and optimized, culminating in the ability to create topotherapy treatment plans using distal-edge tracking on both phantom and patient datasets.Results: Beam transport calculations show that a pair of electromagnetic quadrupoles can be used to create a divergent fan beam of 200 MeV protons over a distance of 2.1 m. The quadrupole lengths were 30 and 48 cm, respectively, with transverse field gradients less than 20 T/m, which is within the range of water-cooled magnets for the quadrupole radii used. MCNPX simulations of topotherapy treatment plans suggest that, when using the distal edge tracking delivery method, many delivery angles are more important than insisting on narrow beam channel widths in order to obtain conformal target coverage. Overall, the sharp distal falloff of a proton depth-dose distribution was found to provide sufficient control over the dose distribution to meet objectives, even with coarse lateral resolution and channel widths as large as 2 cm. Treatment plans on both phantom and patient data show that dose conformity suffers when treatments are delivered from less than approximately ten angles. Treatment time for a sample prostate delivery is estimated to be on the order of 10 min, and neutron production is estimated to be comparable to that found for existing collimated systems.Conclusions: Fan beam proton therapy is a method of delivering intensity modulated proton therapy which may be employed as an alternative to magnetic scanning systems. A fan beam of protons can be created by a set of quadrupole magnets and modified by a dual-purpose range and intensity modulator. This can be used to deliver inversely planned treatments, with spot intensities optimized to meet user defined dose objectives. Additionally, the ability of a fan beam delivery system to effectively treat multiple beam spots simultaneously may provide advantages as compared to spot scanning deliveries.

  18. Time-resolved diffraction profiles and atomic dynamics in short-pulse laser-induced structural transformations: Molecular dynamics study

    E-Print Network [OSTI]

    Zhigilei, Leonid V.

    Time-resolved diffraction profiles and atomic dynamics in short-pulse laser-induced structural Short pico- and femtosecond pulse laser irradiation has the ability to bring material into a highly dynamics simulations of a 20 nm Au film irradiated with 200 fs laser pulses of different intensity

  19. Neutrino physics with an intense \

    E-Print Network [OSTI]

    R. Henning

    2010-11-16T23:59:59.000Z

    We study some of the physics potential of an intense $1\\,\\mathrm{MCi}$ $^{51}\\mathrm{Cr}$ source combined with the {\\sc Majorana Demonstrator} enriched germanium detector array. The {\\sc Demonstrator} will consist of detectors with ultra-low radioactive backgrounds and extremely low energy thresholds of~$\\sim 400\\,\\mathrm{eV}$. We show that it can improve the current limit on the neutrino magnetic dipole moment. We briefly discuss physics applications of the charged-current reaction of the $^{51}\\mathrm{Cr} neutrino with the $^{73}\\mathrm{Ge} isotope. Finally, we argue that the rate from a realistic, intense tritium source is below the detectable limit of even a tonne-scale HPGe experiment

  20. Nonlinear magneto-optic polarization rotation with intense laser fields

    E-Print Network [OSTI]

    Hsu, Paul S.; Patnaik, Anil K.; Welch, George R.

    2008-01-01T23:59:59.000Z

    spectroscopy measurements #3;1,2#4;, both for fun- damental and practical reasons such as optical magnetometry #3;3#4;. The sensitivity of optical pumping magnetometers #1;OPMs#2; has already achieved 10?9 G /#5;Hz under laboratory conditions #3...;4,5#4;. Also, nonlinear magneto-optic rotation has been used in magnetometry to reach very high sensitivity #3;6#4;. In such devices, the Zeeman level shift measurements are based on light absorption #3;7#4;, but the sensitivity is limited if the absorption...

  1. ARM - Field Campaign - Shortwave Radiation and Aerosol Intensive

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- Polarization DiversityPolarization RadargovCampaignsSGPObservation Periods

  2. ARM - Field Campaign - Water Cycle Pilot Study Intensive Observations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- PolarizationgovCampaignsSummer Single ColumngovCampaignsWater Cycle Pilot Study

  3. Short-Term Energy Outlook

    U.S. Energy Information Administration (EIA) Indexed Site

    Chart Gallery for April 2015 Short-Term Energy Outlook U.S. Energy Information Administration Independent Statistics & Analysis 0 20 40 60 80 100 120 140 160 180 200 220 Jan 2014...

  4. Author's personal copy Short communication

    E-Print Network [OSTI]

    s gives J, the air-earth current density J in the global electric circuit, J ¼ sP (1) which is sustainedAuthor's personal copy Short communication Smoke emissions from industrial western Scotland in 1859

  5. Short-Term Energy Outlook

    Gasoline and Diesel Fuel Update (EIA)

    day Forecast -1.0 2012 2013 2014 OPEC countries North America Russia and Caspian Sea Latin America North Sea Other Non-OPEC Source: Short-Term Energy Outlook, November 2013 -1 0...

  6. Enrichment short courses and special

    E-Print Network [OSTI]

    Enrichment short courses and special events specially developed for folks 50 and better. Look better way to spend your summer than expanding your knowledge and enriching your life with an Osher

  7. Beam instrumentation for future high intense hadron accelerators at Fermilab

    SciTech Connect (OSTI)

    Wendt, M.; Hu, M.; Tassotto, G.; Thurman-Keup, R.; Scarpine, V.; Shin, S.; Zagel, J.; /Fermilab

    2008-08-01T23:59:59.000Z

    High intensity hadron beams of up to 2 MW beam power are a key element of new proposed experimental facilities at Fermilab. Project X, which includes a SCRF 8 GeV H{sup -} linac, will be the centerpiece of future HEP activities in the neutrino sector. After a short overview of this, and other proposed projects, we present the current status of the beam instrumentation activities at Fermilab with a few examples. With upgrades and improvements they can meet the requirements of the new beam facilities, however design and development of new instruments is needed, as shown by the prototype and conceptual examples in the last section.

  8. Intensive neutrino source on the base of lithium converter

    E-Print Network [OSTI]

    Lyashuk, V I

    2015-01-01T23:59:59.000Z

    An intensive antineutrino source with a hard spectrum (with energy up to 13 MeV, average energy 6.5 MeV) can be realized on the base of beta-decay of short living isotope 8Li (0.84 s). The 8Li isotope (generated in activation of 7Li isotope) is a prime perspective antineutrino source owing to the hard antineutrino spectrum and square dependence of cross section on the energy. Up today nuclear reactors are the most intensive neutrino sources. Antineutrino reactor spectra have large uncertainties in the summary antineutrino spectrum at energy E>6 MeV. Use of 8Li isotope allows to decrease sharply the uncertainties or to exclude it completely. An intensive neutron fluxes are requested for rapid generation of 8Li isotope. The installations on the base of nuclear reactors can be an alternative for nuclear reactors as traditional neutron sources. It is possible creation of neutrino sources another in principle: on the base of tandem of accelerators, neutron generating targets and lithium converter. An intensive neu...

  9. Short-term Human Vision Protection from Intense Light Sources | Princeton

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz9 SeptemberSettingUncertainties in the3 1

  10. Abstract --Developing software for mobile or ad hoc scenarios is very cost intensive. Different software and

    E-Print Network [OSTI]

    Steimann, Friedrich

    for an appropriate development support for devices with short life cycles. Third-party solutions often do not reachAbstract -- Developing software for mobile or ad hoc scenarios is very cost intensive. Different processors and big memories are available in principle, they con- sume a great amount of valuable battery

  11. High Intensity Polarized Electron Gun

    SciTech Connect (OSTI)

    Redwine, Robert

    2012-07-31T23:59:59.000Z

    The goal of the project was to investigate the possibility of building a very high intensity polarized electron gun for the Electron-Ion Collider. This development is crucial for the eRHIC project. The gun implements a large area cathode, ring-shaped laser beam and active cathode cooling. A polarized electron gun chamber with a large area cathode and active cathode cooling has been built and tested. A preparation chamber for cathode activation has been built and initial tests have been performed. Major parts for a load-lock chamber, where cathodes are loaded into the vacuum system, have been manufactured.

  12. Intensive Observation Period Projects Scheduled

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn Other NewsSpin andInterimInvokingInspector XE 20131 Intensive

  13. The role of short-rotation woody crops in sustainable development

    SciTech Connect (OSTI)

    Shepard, J.P. [National Council of the Paper Industry for Air and Stream Improvement, Medford, MA (United States); Tolbert, V.R. [Oak Ridge National Lab., TN (United States)

    1996-12-31T23:59:59.000Z

    One answer to increase wood production is by increasing management intensity on existing timberland, especially in plantation forests. Another is to convert land currently in agriculture to timberland. Short-rotation woody crops can be used in both cases. But, what are the environmental consequences? Short-rotation woody crops can provide a net improvement in environmental quality at both local and global scales. Conversion of agricultural land to short-rotation woody crops can provide the most environmental quality enhancement by reducing erosion, improving soil quality, decreasing runoff, improving groundwater quality, and providing better wildlife habitat. Forest products companies can use increased production from intensively managed short-rotation woody crop systems to offset decreased yield from the portion of their timberland that is managed less intensively, e.g. streamside management zones and other ecologically sensitive or unique areas. At the global scale, use of short-rotation woody crops for bioenergy is part of the solution to reduce greenhouse gases produced by burning fossil fuels. Incorporating short-rotation woody crops into the agricultural landscape also increases storage of carbon in the soil, thus reducing atmospheric concentrations. In addition, use of wood instead of alternatives such as steel, concrete, and plastics generally consumes less energy and produces less greenhouse gases. Cooperative research can be used to achieve energy, fiber, and environmental goals. This paper will highlight several examples of ongoing cooperative research projects that seek to enhance the environmental aspects of short-rotation woody crop systems. Government, industry, and academia are conducting research to study soil quality, use of mill residuals, nutrients in runoff and groundwater, and wildlife use of short-rotation woody crop systems in order to assure the role of short-rotation crops as a sustainable way of meeting society`s needs.

  14. The interaction of intense subpicosecond laser pulses with underdense plasmas

    SciTech Connect (OSTI)

    Coverdale, C.A.

    1995-05-11T23:59:59.000Z

    Laser-plasma interactions have been of interest for many years not only from a basic physics standpoint, but also for their relevance to numerous applications. Advances in laser technology in recent years have resulted in compact laser systems capable of generating (psec), 10{sup 16} W/cm{sup 2} laser pulses. These lasers have provided a new regime in which to study laser-plasma interactions, a regime characterized by L{sub plasma} {ge} 2L{sub Rayleigh} > c{tau}. The goal of this dissertation is to experimentally characterize the interaction of a short pulse, high intensity laser with an underdense plasma (n{sub o} {le} 0.05n{sub cr}). Specifically, the parametric instability known as stimulated Raman scatter (SRS) is investigated to determine its behavior when driven by a short, intense laser pulse. Both the forward Raman scatter instability and backscattered Raman instability are studied. The coupled partial differential equations which describe the growth of SRS are reviewed and solved for typical experimental laser and plasma parameters. This solution shows the growth of the waves (electron plasma and scattered light) generated via stimulated Raman scatter. The dispersion relation is also derived and solved for experimentally accessible parameters. The solution of the dispersion relation is used to predict where (in k-space) and at what frequency (in {omega}-space) the instability will grow. Both the nonrelativistic and relativistic regimes of the instability are considered.

  15. Experimental transport of intensity diffraction tomography

    E-Print Network [OSTI]

    Lee, Justin Wu

    2011-01-01T23:59:59.000Z

    In this thesis, I perform intensity-based tomographic phase imaging in two ways. First, I utilize the paraxial transport of intensity equation (TIE) to construct phase maps of a phase object at multiple projection angles ...

  16. Physics of intense, high energy radiation effects.

    SciTech Connect (OSTI)

    Hjalmarson, Harold Paul; Hartman, E. Frederick; Magyar, Rudolph J.; Crozier, Paul Stewart

    2011-02-01T23:59:59.000Z

    This document summarizes the work done in our three-year LDRD project titled 'Physics of Intense, High Energy Radiation Effects.' This LDRD is focused on electrical effects of ionizing radiation at high dose-rates. One major thrust throughout the project has been the radiation-induced conductivity (RIC) produced by the ionizing radiation. Another important consideration has been the electrical effect of dose-enhanced radiation. This transient effect can produce an electromagnetic pulse (EMP). The unifying theme of the project has been the dielectric function. This quantity contains much of the physics covered in this project. For example, the work on transient electrical effects in radiation-induced conductivity (RIC) has been a key focus for the work on the EMP effects. This physics in contained in the dielectric function, which can also be expressed as a conductivity. The transient defects created during a radiation event are also contained, in principle. The energy loss lead the hot electrons and holes is given by the stopping power of ionizing radiation. This information is given by the inverse dielectric function. Finally, the short time atomistic phenomena caused by ionizing radiation can also be considered to be contained within the dielectric function. During the LDRD, meetings about the work were held every week. These discussions involved theorists, experimentalists and engineers. These discussions branched out into the work done in other projects. For example, the work on EMP effects had influence on another project focused on such phenomena in gases. Furthermore, the physics of radiation detectors and radiation dosimeters was often discussed, and these discussions had impact on related projects. Some LDRD-related documents are now stored on a sharepoint site (https://sharepoint.sandia.gov/sites/LDRD-REMS/default.aspx). In the remainder of this document the work is described in catergories but there is much overlap between the atomistic calculations, the continuum calculations and the experiments.

  17. Extreme rainfall intensities and long-term rainfall risk from tropical cyclones

    E-Print Network [OSTI]

    Langousis, Andreas, 1981-

    2009-01-01T23:59:59.000Z

    We develop a methodology for the frequency of extreme rainfall intensities caused by tropical cyclones (TCs) in coastal areas. The mean rainfall field associated with a TC with maximum tangential wind speed Vmax, radius ...

  18. Manipulation of the Raman process via incoherent pump, tunable intensity, and phase control

    E-Print Network [OSTI]

    Wang, Li-Gang; Qamar, Sajid; Zhu, Shi-Yao; Zubairy, M. Suhail

    2008-01-01T23:59:59.000Z

    We present a proposal to manipulate the Raman process via incoherent pump, tunable intensity, and phase control of the driving fields. It is found that Raman absorptive peaks can become Raman gain peaks by controlling the incoherent pump...

  19. Hybrid intensity and time-of-flight signal processing techniques for intelligent distance sensors

    E-Print Network [OSTI]

    Hiromi, Itariu

    2013-01-01T23:59:59.000Z

    With the advent of "smart" consumer electronics, distance sensing is an increasingly important field in optical sensing. A novel approach to active infrared(IR) 1D distance sensing is proposed, employing both intensity and ...

  20. Generation of intense isolated sub-40-as pulses from a coherent superposition state by quantum path control in the multicycle regime

    SciTech Connect (OSTI)

    Chen Jigen; Liang Huaqiu [Department of Physics and Materials Engineering, Taizhou University, Taizhou 318000 (China); Yang Yujun [Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012 (China); Zeng Siliang [Institute of Applied Physics and Computational Mathematics, Beijing 100088 (China)

    2011-02-15T23:59:59.000Z

    We theoretically investigate high-order harmonic generation and attosecond pulses by numerically solving the three-dimensional time-dependent Schroedinger equation from a helium ion in a two-color laser field, which is synthesized by adding a 1600-nm laser pulse to a multicycle 800-nm laser pulse. The numerical results show that the short quantum path selection and broadband continuum spectra are achieved by adjusting the relative phase between two laser pulses, and isolated attosecond pulses can be generated successfully. Compared with the case of He{sup +} ions from the 1s ground state, the emission efficiency of the continuous harmonics and the intensity of the isolated attosecond pulse are enhanced approximately thirteen orders of magnitude by preparing He{sup +} ions in a coherent superposition of the states 1s and 2s. Furthermore, the bandwidth of the continuum spectrum is further broadened by increasing the intensity of the 1600-nm laser pulse, and an intense 38-as isolated pulse with a bandwidth of 109 eV is straightforwardly obtained.

  1. Beam intensity upgrade at Fermilab

    SciTech Connect (OSTI)

    Marchionni, A.; /Fermilab

    2006-07-01T23:59:59.000Z

    The performance of the Fermilab proton accelerator complex is reviewed. The coming into operation of the NuMI neutrino line and the implementation of slip-stacking to increase the anti-proton production rate has pushed the total beam intensity in the Main Injector up to {approx} 3 x 10{sup 13} protons/pulse. A maximum beam power of 270 kW has been delivered on the NuMI target during the first year of operation. A plan is in place to increase it to 350 kW, in parallel with the operation of the Collider program. As more machines of the Fermilab complex become available with the termination of the Collider operation, a set of upgrades are being planned to reach first 700 kW and then 1.2 MW by reducing the Main Injector cycle time and by implementing proton stacking.

  2. SHORT REVIEW Butterfly genomics eclosing

    E-Print Network [OSTI]

    Beldade, Patrícia

    SHORT REVIEW Butterfly genomics eclosing P Beldade1 , WO McMillan2 and A Papanicolaou3 1 Section to an explosion of genomic data and the emergence of new research avenues. Evolutionary and ecological functional genomics, with its focus on the genes that affect ecological success and adaptation in natural populations

  3. University Policy Process Short Version

    E-Print Network [OSTI]

    Mohanty, Saraju P.

    Rev. 5/09 University Policy Process Short Version Conduct Analysis Draft Documents Get Approvals. Identify policy owner 3. Assemble team 4. Engage Stakeholders 5. Draft policy 6. Submit proposed policy approves (or not) Do we need a policy? 11. Plan communication & training 12. UPO posts approved policy

  4. Setting in the Modern Short Story

    E-Print Network [OSTI]

    Hodgson, Elizabeth

    1913-06-05T23:59:59.000Z

    . Thompson , D~'I G. The Ph1losophY ot Fiation. Lo on" l8~. Wh1tcomb , S. L. st of th Novei . Boston, 1 ·5. II. II. L short-starl: AI 'bright, ].'velyn 1La.Y . Tltle Short story. N. Y., 1 O? Barrett , Chas. P. Short story Writing . N. ., 188. Canby... . III. Matthews, Brander . The Short - st ory. N. :x.., 1 07 . Patton, Wm. International Short-stori e , 2 vols • • Y., 1 ~lO. Short-stor y Classios--Amerlcan , 5 vols ., N. Y. t 1':;)05 . , , Short-story Clas8~cs--Foreign , 5 vole . N. ¥ . ! II...

  5. SHORT COMMUNICATION Fatigue Assessment in the Field: Validation of a

    E-Print Network [OSTI]

    Psychomotor Vigilance Task Nicole Lamond, Drew Dawson, and Gregory D. Roach LAMOND N, DAWSON D, ROACH GD

  6. On the Survival of Short-Period Terrestrial Planets

    E-Print Network [OSTI]

    Rosemary A. Mardling; D. N. C. Lin

    2004-06-30T23:59:59.000Z

    The currently feasible method of detection of Earth-mass planets is transit photometry, with detection probability decreasing with a planet's distance from the star. The existence or otherwise of short-period terrestrial planets will tell us much about the planet formation process, and such planets are likely to be detected first if they exist. Tidal forces are intense for short-period planets, and result in decay of the orbit on a timescale which depends on properties of the star as long as the orbit is circular. However, if an eccentric companion planet exists, orbital eccentricity ($e_i$) is induced and the decay timescale depends on properties of the short-period planet, reducing by a factor of order $10^5 e_i^2$ if it is terrestrial. Here we examine the influence companion planets have on the tidal and dynamical evolution of short-period planets with terrestrial structure, and show that the relativistic potential of the star is fundamental to their survival.

  7. Dynamic Fiber Optic Sensors Under Intense Radioactive Environments

    SciTech Connect (OSTI)

    Allison, S.W.; Earl, D.D.; Haines, J.R.; Tsai, C.C.

    1998-10-15T23:59:59.000Z

    A liquid mercury target will be used as the neutron source for the proposed Spallation Neutron Source facility. This target is subjected to bombardment by short-pulse, high-energy proton beams. The intense thermal loads caused by interaction of the pulsed proton beam with the mercury create an enormous rate of temperature rise ({approximately}10{sup 7} K/s) during a very brief beam pulse ({approximately } 0.5 {micro}s). The resulting pressure waves in the mercury will interact with the walls of the mercury target and may lead to large stresses. To gain confidence in the mercury target design concept and to benchmark the computer design codes, we tested various electrical and optical sensors for measuring the transient strains on the walls of a mercury container and the pressures in the mercury. The sensors were attached on several sample mercury targets that were tested at various beam facilities: Oak Ridge Electron Linear Accelerator, Los Alamos Neutron Science Center-Weapons Neutron Research, and Brookhaven National Laboratory's Alternating Gradient Synchrotron. The effects of intense background radiation on measured signals for each sensor are described and discussed. Preliminary results of limited tests at these facilities indicate that the fiber optic sensors function well in this intense radiation environment, whereas conventional electrical sensors are dysfunctional.

  8. Semiclassical description of nonlinear electron-positron photoproduction in strong laser fields

    E-Print Network [OSTI]

    Sebastian Meuren; Christoph H. Keitel; Antonino Di Piazza

    2015-03-11T23:59:59.000Z

    The nonlinear Breit-Wheeler process is studied in the presence of strong and short laser pulses. We show that for a relativistically intense plane-wave laser field many aspects of the momentum distribution for the produced electron-positron pair like its extend, region of highest probability and carrier-envelope phase effects can be explained from the classical evolution of the created particles in the background field. To this end we verify that the local constant-crossed field approximation is also appropriate for the calculation of the spectrum if applied on the probability-amplitude level. To compare the exact expressions with the semiclassical approach, we introduce a very fast numerical scheme, which makes it feasible to completely resolve the interference structure of the spectrum over the available multidimensional phase space.

  9. Semiclassical description of nonlinear electron-positron photoproduction in strong laser fields

    E-Print Network [OSTI]

    Meuren, Sebastian; Di Piazza, Antonino

    2015-01-01T23:59:59.000Z

    The nonlinear Breit-Wheeler process is studied in the presence of strong and short laser pulses. We show that for a relativistically intense plane-wave laser field many aspects of the momentum distribution for the produced electron-positron pair like its extend, region of highest probability and carrier-envelope phase effects can be explained from the classical evolution of the created particles in the background field. To this end we verify that the local constant-crossed field approximation is also appropriate for the calculation of the spectrum if applied on the probability-amplitude level. To compare the exact expressions with the semiclassical approach, we introduce a very fast numerical scheme, which makes it feasible to completely resolve the interference structure of the spectrum over the available multidimensional phase space.

  10. Intensive neutrino source on the base of lithium converter

    E-Print Network [OSTI]

    V. I. Lyashuk; Yu. S Lutostansky

    2015-04-13T23:59:59.000Z

    An intensive antineutrino source with a hard spectrum (with energy up to 13 MeV, average energy 6.5 MeV) can be realized on the base of beta-decay of short living isotope 8Li (0.84 s). The 8Li isotope (generated in activation of 7Li isotope) is a prime perspective antineutrino source owing to the hard antineutrino spectrum and square dependence of cross section on the energy. Up today nuclear reactors are the most intensive neutrino sources. Antineutrino reactor spectra have large uncertainties in the summary antineutrino spectrum at energy E>6 MeV. Use of 8Li isotope allows to decrease sharply the uncertainties or to exclude it completely. An intensive neutron fluxes are requested for rapid generation of 8Li isotope. The installations on the base of nuclear reactors can be an alternative for nuclear reactors as traditional neutron sources. It is possible creation of neutrino sources another in principle: on the base of tandem of accelerators, neutron generating targets and lithium converter. An intensive neutron flux (i.e., powerful neutron source) is requested for realization of considered neutrino sources (neutrino factories). Different realizations of lithium antineutrino sources (lithium converter on the base of high purified 7Li isotope) are discussed: static regime (i.e., without transport of 8Li isotope to the neutrino detector); dynamic regime (transport of 8Li isotope to the remote detector in a closed cycle); an operation of lithium converter in tandem of accelerator with a neutron-producing target on the base of tungsten, lead or bismuth. Different chemical compounds of lithium (as the substance of the converter) are considered. Heavy water solution of LiOD is proposed as a serious alternative to high-pure 7Li in a metallic state.

  11. Intensive neutrino source on the base of lithium converter

    E-Print Network [OSTI]

    V. I. Lyashuk; Yu. S Lutostansky

    2015-03-04T23:59:59.000Z

    An intensive antineutrino source with a hard spectrum (with energy up to 13 MeV, average energy 6.5 MeV) can be realized on the base of beta-decay of short living isotope 8Li (0.84 s). The 8Li isotope (generated in activation of 7Li isotope) is a prime perspective antineutrino source owing to the hard antineutrino spectrum and square dependence of cross section on the energy. Up today nuclear reactors are the most intensive neutrino sources. Antineutrino reactor spectra have large uncertainties in the summary antineutrino spectrum at energy E>6 MeV. Use of 8Li isotope allows to decrease sharply the uncertainties or to exclude it completely. An intensive neutron fluxes are requested for rapid generation of 8Li isotope. The installations on the base of nuclear reactors can be an alternative for nuclear reactors as traditional neutron sources. It is possible creation of neutrino sources another in principle: on the base of tandem of accelerators, neutron generating targets and lithium converter. An intensive neutron flux (i.e., powerful neutron source) is requested for realization of considered neutrino sources (neutrino factories). Different realizations of lithium antineutrino sources (lithium converter on the base of high purified 7Li isotope) are discussed: static regime (i.e., without transport of 8Li isotope to the neutrino detector); dynamic regime (transport of 8Li isotope to the remote detector in a closed cycle); an operation of lithium converter in tandem of accelerator with a neutron-producing target on the base of tungsten, lead or bismuth. Different chemical compounds of lithium (as the substance of the converter) are considered. Heavy water solution of LiOD is proposed as a serious alternative to high-pure 7Li in a metallic state.

  12. Diffuse Shortwave Intensive Observation Period

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign: Potential ApplicationYu,Energy Innovation Portal Solar31

  13. Energy Intensity Baselining and Tracking Guidance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Learn more at betterbuildings.energy.gov Energy Intensity Baselining and Tracking Guidance i Preface The U.S. Department of Energy's (DOE's) Better Buildings, Better Plants Program...

  14. Investigation of astrophysical phenomena in short time scales with "Pi of the Sky" apparatus

    E-Print Network [OSTI]

    Marcin Sokolowski

    2008-10-07T23:59:59.000Z

    In this thesis the data analysis designed by author for the "Pi of the Sky" experiment is presented. The data analysis consists of data reduction and specific algorithms for identification of short time scale astrophysical processes. The algorithms have been tested and their efficiency has been determined and described. The "Pi of the Sky" prototype is collecting data since June 2004 and algorithms could be intensively studied and improved during over 700 nights. A few events of confirmed astrophysical origin and above 100 events in 10s time scale of unknown nature have been discovered. During the data collection period 3 Gamma Ray Bursts (out of 231) occurred in the field of view of the telescope, but no optical counterpart has been found. The upper limits for brightness of the optical counterpart have been determined. The continuous monitoring of the sky and own trigger for optical flashes allowed to determine limits on the number of GRBs without corresponding gamma-ray detection. This allowed determining limits on the ratio of emission collimation in optical and gamma bands, which is R >= 4.4. The perspectives of the full "Pi of the Sky" system has been studied and number of positive detections has been estimated on the level of ~ 2.5 events per year.

  15. Hard probes of short-range nucleon-nucleon correlations

    E-Print Network [OSTI]

    J. Arrington; D. W. Higinbotham; G. Rosner; M. Sargsian

    2012-03-26T23:59:59.000Z

    One of the primary goals of nuclear physics is providing a complete description of the structure of atomic nuclei. While mean-field calculations provide detailed information on the nuclear shell structure for a wide range of nuclei, they do not capture the complete structure of nuclei, in particular the impact of small, dense structures in nuclei. The strong, short-range component of the nucleon-nucleon potential yields hard interactions between nucleons which are close together, generating a high-momentum tail to the nucleon momentum distribution, with momenta well in excess of the Fermi momentum. This high-momentum component of the nuclear wave-function is one of the most poorly understood parts of nuclear structure. Utilizing high-energy probes, we can isolate scattering from high-momentum nucleons, and use these measurements to examine the structure and impact of short-range nucleon-nucleon correlations. Over the last decade we have moved from looking for evidence of such short-range structures to mapping out their strength in nuclei and examining their isospin structure. This has been made possible by high-luminosity and high-energy accelerators, coupled with an improved understanding of the reaction mechanism issues involved in studying these structures. We review the general issues related to short-range correlations, survey recent experiments aimed at probing these short-range structures, and lay out future possibilities to further these studies.

  16. On Storage Rings for Short Wavelength FELs

    E-Print Network [OSTI]

    Chattopadhyay, S.

    2010-01-01T23:59:59.000Z

    for a hypothetical 144 m long storage ring optimized for FELin the Proceedings On Storage Rings for Short WavelengthLBL-28483 ESG Note-92 ON STORAGE RINGS FOR SHORT WAVELENGTH

  17. Gasoline prices decrease (Short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin:DeploymentSite Name:24, 2014 Gasoline pricesGasolineShort

  18. SHORT-TERM EVOLUTION OF CORONAL HOLE BOUNDARIES

    SciTech Connect (OSTI)

    Krista, Larisza D.; Gallagher, Peter T.; Bloomfield, D. Shaun [Astrophysics Research Group, School of Physics, Trinity College Dublin, Dublin 2 (Ireland)

    2011-04-20T23:59:59.000Z

    The interaction of open and closed field lines at coronal hole (CH) boundaries is widely accepted to be due to interchange magnetic reconnection. To date, it is unclear how the boundaries vary on short timescales and at what velocity this occurs. Here, we describe an automated boundary tracking method used to determine CH boundary displacements on short timescales. The boundary displacements were found to be isotropic and to have typical expansion/contraction speeds of {<=}2 km s{sup -1}, which indicate magnetic reconnection rates of {<=}3 x 10{sup -3}. The observed displacements were used in conjunction with the interchange reconnection model to derive typical diffusion coefficients of {<=}3 x 10{sup 13} cm{sup 2} s{sup -1}. These results are consistent with an interchange reconnection process in the low corona driven by the random granular motions of open and closed fields in the photosphere.

  19. Fundamental Physics at the Intensity Frontier

    E-Print Network [OSTI]

    J. L. Hewett; H. Weerts; R. Brock; J. N. Butler; B. C. K. Casey; J. Collar; A. de Gouvea; R. Essig; Y. Grossman; W. Haxton; J. A. Jaros; C. K. Jung; Z. T. Lu; K. Pitts; Z. Ligeti; J. R. Patterson; M. Ramsey-Musolf; J. L. Ritchie; A. Roodman; K. Scholberg; C. E. M. Wagner; G. P. Zeller; S. Aefsky; A. Afanasev; K. Agashe; C. Albright; J. Alonso; C. Ankenbrandt; M. Aoki; C. A. Arguelles; N. Arkani-Hamed; J. R. Armendariz; C. Armendariz-Picon; E. Arrieta Diaz; J. Asaadi; D. M. Asner; K. S. Babu; K. Bailey; O. Baker; B. Balantekin; B. Baller; M. Bass; B. Batell; J. Beacham; J. Behr; N. Berger; M. Bergevin; E. Berman; R. Bernstein; A. J. Bevan; M. Bishai; M. Blanke; S. Blessing; A. Blondel; T. Blum; G. Bock; A. Bodek; G. Bonvicini; F. Bossi; J. Boyce; R. Breedon; M. Breidenbach; S. J. Brice; R. A. Briere; S. Brodsky; C. Bromberg; A. Bross; T. E. Browder; D. A. Bryman; M. Buckley; R. Burnstein; E. Caden; P. Campana; R. Carlini; G. Carosi; C. Castromonte; R. Cenci; I. Chakaberia; M. C. Chen; C. H. Cheng; B. Choudhary; N. H. Christ; E. Christensen; M. E. Christy; T. E. Chupp; E. Church; D. B. Cline; T. E. Coan; P. Coloma; J. Comfort; L. Coney; J. Cooper; R. J. Cooper; R. Cowan; D. F. Cowen; D. Cronin-Hennessy; A. Datta; G. S. Davies; M. Demarteau; D. P. DeMille; A. Denig; R. Dermisek; A. Deshpande; M. S. Dewey; R. Dharmapalan; J. Dhooghe; M. R. Dietrich; M. Diwan; Z. Djurcic; S. Dobbs; M. Duraisamy; B. Dutta; H. Duyang; D. A. Dwyer; M. Eads; B. Echenard; S. R. Elliott; C. Escobar; J. Fajans; S. Farooq; C. Faroughy; J. E. Fast; B. Feinberg; J. Felde; G. Feldman; P. Fierlinger; P. Fileviez Perez; B. Filippone; P. Fisher; B. T. Flemming; K. T. Flood; R. Forty; M. J. Frank; A. Freyberger; A. Friedland; R. Gandhi; K. S. Ganezer; A. Garcia; F. G. Garcia; S. Gardner; L. Garrison; A. Gasparian; S. Geer; V. M. Gehman; T. Gershon; M. Gilchriese; C. Ginsberg; I. Gogoladze; M. Gonderinger; M. Goodman; H. Gould; M. Graham; P. W. Graham; R. Gran; J. Grange; G. Gratta; J. P. Green; H. Greenlee; R. C. Group; E. Guardincerri; V. Gudkov; R. Guenette; A. Haas; A. Hahn; T. Han; T. Handler; J. C. Hardy; R. Harnik; D. A. Harris; F. A. Harris; P. G. Harris; J. Hartnett; B. He; B. R. Heckel; K. M. Heeger; S. Henderson; D. Hertzog; R. Hill; E. A Hinds; D. G. Hitlin; R. J. Holt; N. Holtkamp; G. Horton-Smith; P. Huber; W. Huelsnitz; J. Imber; I. Irastorza; J. Jaeckel; I. Jaegle; C. James; A. Jawahery; D. Jensen; C. P. Jessop; B. Jones; H. Jostlein; T. Junk; A. L. Kagan; M. Kalita; Y. Kamyshkov; D. M. Kaplan; G. Karagiorgi; A. Karle; T. Katori; B. Kayser; R. Kephart; S. Kettell; Y. K. Kim; M. Kirby; K. Kirch; J. Klein; J. Kneller; A. Kobach; M. Kohl; J. Kopp; M. Kordosky; W. Korsch; I. Kourbanis; A. D. Krisch; P. Krizan; A. S. Kronfeld; S. Kulkarni; K. S. Kumar; Y. Kuno; T. Kutter; T. Lachenmaier; M. Lamm; J. Lancaster; M. Lancaster; C. Lane; K. Lang; P. Langacker; S. Lazarevic; T. Le; K. Lee; K. T. Lesko; Y. Li; M. Lindgren; A. Lindner; J. Link; D. Lissauer; L. S. Littenberg; B. Littlejohn; C. Y. Liu; W. Loinaz; W. Lorenzon; W. C. Louis; J. Lozier; L. Ludovici; L. Lueking; C. Lunardini; D. B. MacFarlane; P. A. N. Machado; P. B. Mackenzie; J. Maloney; W. J. Marciano; W. Marsh; M. Marshak; J. W. Martin; C. Mauger; K. S. McFarland; C. McGrew; G. McLaughlin; D. McKeen; R. McKeown; B. T. Meadows; R. Mehdiyev; D. Melconian; H. Merkel; M. Messier; J. P. Miller; G. Mills; U. K. Minamisono; S. R. Mishra; I. Mocioiu; S. Moed Sher; R. N. Mohapatra; B. Monreal; C. D. Moore; J. G. Morfin; J. Mousseau; L. A. Moustakas; G. Mueller; P. Mueller; M. Muether; H. P. Mumm; C. Munger; H. Murayama; P. Nath; O. Naviliat-Cuncin; J. K. Nelson; D. Neuffer; J. S. Nico; A. Norman; D. Nygren; Y. Obayashi; T. P. O'Connor; Y. Okada; J. Olsen; L. Orozco; J. L. Orrell; J. Osta; B. Pahlka; J. Paley; V. Papadimitriou; M. Papucci; S. Parke; R. H. Parker; Z. Parsa; K. Partyka; A. Patch; J. C. Pati; R. B. Patterson; Z. Pavlovic; G. Paz; G. N. Perdue; D. Perevalov; G. Perez; R. Petti; W. Pettus; A. Piepke; M. Pivovaroff; R. Plunkett; C. C. Polly; M. Pospelov; R. Povey; A. Prakesh; M. V. Purohit; S. Raby; J. L. Raaf; R. Rajendran; S. Rajendran; G. Rameika; R. Ramsey; A. Rashed; B. N. Ratcliff; B. Rebel; J. Redondo; P. Reimer; D. Reitzner; F. Ringer; A. Ringwald; S. Riordan; B. L. Roberts; D. A. Roberts; R. Robertson; F. Robicheaux; M. Rominsky; R. Roser; J. L. Rosner; C. Rott; P. Rubin; N. Saito; M. Sanchez; S. Sarkar; H. Schellman; B. Schmidt; M. Schmitt; D. W. Schmitz; J. Schneps; A. Schopper; P. Schuster; A. J. Schwartz; M. Schwarz; J. Seeman; Y. K. Semertzidis; K. K. Seth; Q. Shafi; P. Shanahan; R. Sharma; S. R. Sharpe; M. Shiozawa; V. Shiltsev; K. Sigurdson; P. Sikivie; J. Singh; D. Sivers; T. Skwarnicki; N. Smith; J. Sobczyk; H. Sobel; M. Soderberg; Y. H. Song; A. Soni; P. Souder; A. Sousa; J. Spitz; M. Stancari; G. C. Stavenga; J. H. Steffen

    2012-05-11T23:59:59.000Z

    The Proceedings of the 2011 workshop on Fundamental Physics at the Intensity Frontier. Science opportunities at the intensity frontier are identified and described in the areas of heavy quarks, charged leptons, neutrinos, proton decay, new light weakly-coupled particles, and nucleons, nuclei, and atoms.

  20. Fundamental Physics at the Intensity Frontier

    E-Print Network [OSTI]

    Hewett, J L; Brock, R; Butler, J N; Casey, B C K; Collar, J; de Gouvea, A; Essig, R; Grossman, Y; Haxton, W; Jaros, J A; Jung, C K; Lu, Z T; Pitts, K; Ligeti, Z; Patterson, J R; Ramsey-Musolf, M; Ritchie, J L; Roodman, A; Scholberg, K; Wagner, C E M; Zeller, G P; Aefsky, S; Afanasev, A; Agashe, K; Albright, C; Alonso, J; Ankenbrandt, C; Aoki, M; Arguelles, C A; Arkani-Hamed, N; Armendariz, J R; Armendariz-Picon, C; Diaz, E Arrieta; Asaadi, J; Asner, D M; Babu, K S; Bailey, K; Baker, O; Balantekin, B; Baller, B; Bass, M; Batell, B; Beacham, J; Behr, J; Berger, N; Bergevin, M; Berman, E; Bernstein, R; Bevan, A J; Bishai, M; Blanke, M; Blessing, S; Blondel, A; Blum, T; Bock, G; Bodek, A; Bonvicini, G; Bossi, F; Boyce, J; Breedon, R; Breidenbach, M; Brice, S J; Briere, R A; Brodsky, S; Bromberg, C; Bross, A; Browder, T E; Bryman, D A; Buckley, M; Burnstein, R; Caden, E; Campana, P; Carlini, R; Carosi, G; Castromonte, C; Cenci, R; Chakaberia, I; Chen, M C; Cheng, C H; Choudhary, B; Christ, N H; Christensen, E; Christy, M E; Chupp, T E; Church, E; Cline, D B; Coan, T E; Coloma, P; Comfort, J; Coney, L; Cooper, J; Cooper, R J; Cowan, R; Cowen, D F; Cronin-Hennessy, D; Datta, A; Davies, G S; Demarteau, M; DeMille, D P; Denig, A; Dermisek, R; Deshpande, A; Dewey, M S; Dharmapalan, R; Dhooghe, J; Dietrich, M R; Diwan, M; Djurcic, Z; Dobbs, S; Duraisamy, M; Dutta, B; Duyang, H; Dwyer, D A; Eads, M; Echenard, B; Elliott, S R; Escobar, C; Fajans, J; Farooq, S; Faroughy, C; Fast, J E; Feinberg, B; Felde, J; Feldman, G; Fierlinger, P; Perez, P Fileviez; Filippone, B; Fisher, P; Flemming, B T; Flood, K T; Forty, R; Frank, M J; Freyberger, A; Friedland, A; Gandhi, R; Ganezer, K S; Garcia, A; Garcia, F G; Gardner, S; Garrison, L; Gasparian, A; Geer, S; Gehman, V M; Gershon, T; Gilchriese, M; Ginsberg, C; Gogoladze, I; Gonderinger, M; Goodman, M; Gould, H; Graham, M; Graham, P W; Gran, R; Grange, J; Gratta, G; Green, J P; Greenlee, H; Guardincerri, E; Gudkov, V; Guenette, R; Haas, A; Hahn, A; Han, T; Handler, T; Hardy, J C; Harnik, R; Harris, D A; Harris, F A; Harris, P G; Hartnett, J; He, B; Heckel, B R; Heeger, K M; Henderson, S; Hertzog, D; Hill, R; Hinds, E A; Hitlin, D G; Holt, R J; Holtkamp, N; Horton-Smith, G; Huber, P; Huelsnitz, W; Imber, J; Irastorza, I; Jaeckel, J; Jaegle, I; James, C; Jawahery, A; Jensen, D; Jessop, C P; Jones, B; Jostlein, H; Junk, T; Kagan, A L; Kalita, M; Kamyshkov, Y; Kaplan, D M; Karagiorgi, G; Karle, A; Katori, T; Kayser, B; Kephart, R; Kettell, S; Kim, Y K; Kirby, M; Kirch, K; Klein, J; Kneller, J; Kobach, A; Kohl, M; Kopp, J; Kordosky, M; Korsch, W; Kourbanis, I; Krisch, A D; Krizan, P; Kronfeld, A S; Kulkarni, S; Kumar, K S; Kuno, Y; Kutter, T; Lachenmaier, T; Lamm, M; Lancaster, J; Lancaster, M; Lane, C; Lang, K; Langacker, P; Lazarevic, S; Le, T; Lee, K; Lesko, K T; Li, Y; Lindgren, M; Lindner, A; Link, J; Lissauer, D; Littenberg, L S; Littlejohn, B; Liu, C Y; Loinaz, W; Lorenzon, W; Louis, W C; Lozier, J; Ludovici, L; Lueking, L; Lunardini, C; MacFarlane, D B; Machado, P A N; Mackenzie, P B; Maloney, J; Marciano, W J; Marsh, W; Marshak, M; Martin, J W; Mauger, C; McFarland, K S; McGrew, C; McLaughlin, G; McKeen, D; McKeown, R; Meadows, B T; Mehdiyev, R; Melconian, D; Merkel, H; Messier, M; Miller, J P; Mills, G; Minamisono, U K; Mishra, S R; Mocioiu, I; Sher, S Moed; Mohapatra, R N; Monreal, B; Moore, C D; Morfin, J G; Mousseau, J; Moustakas, L A; Mueller, G; Mueller, P; Muether, M; Mumm, H P; Munger, C; Murayama, H; Nath, P; Naviliat-Cuncin, O; Nelson, J K; Neuffer, D; Nico, J S; Norman, A; Nygren, D; Obayashi, Y; O'Connor, T P; Okada, Y; Olsen, J; Orozco, L; Orrell, J L; Osta, J; Pahlka, B; Paley, J; Papadimitriou, V; Papucci, M; Parke, S; Parker, R H; Parsa, Z; Partyka, K; Patch, A; Pati, J C; Patterson, R B; Pavlovic, Z; Paz, G; Perdue, G N; Perevalov, D; Perez, G; Petti, R; Pettus, W; Piepke, A; Pivovaroff, M; Plunkett, R; Polly, C C; Pospelov, M; Povey, R; Prakesh, A; Purohit, M V; Raby, S; Raaf, J L; Rajendran, R; Rajendran, S; Rameika, G; Ramsey, R; Rashed, A; Ratcliff, B N; Rebel, B; Redondo, J; Reimer, P; Reitzner, D; Ringer, F; Ringwald, A; Riordan, S; Roberts, B L; Roberts, D A; Robertson, R; Robicheaux, F; Rominsky, M; Roser, R; Rosner, J L; Rott, C; Rubin, P; Saito, N; Sanchez, M; Sarkar, S; Schellman, H; Schmidt, B; Schmitt, M; Schmitz, D W; Schneps, J; Schopper, A; Schuster, P; Schwartz, A J; Schwarz, M; Seeman, J; Semertzidis, Y K; Seth, K K; Shafi, Q; Shanahan, P; Sharma, R; Sharpe, S R; Shiozawa, M; Shiltsev, V; Sigurdson, K; Sikivie, P; Singh, J; Sivers, D; Skwarnicki, T; Smith, N; Sobczyk, J; Sobel, H; Soderberg, M; Song, Y H; Soni, A; Souder, P; Sousa, A; Spitz, J; Stancari, M; Stavenga, G C; Steffen, J H; Stepanyan, S; Stoeckinger, D; Stone, S; Strait, J; Strassler, M; Sulai, I A; Sundrum, R; Svoboda, R; Szczerbinska, B; Szelc, A; Takeuchi, T; Tanedo, P

    2012-01-01T23:59:59.000Z

    The Proceedings of the 2011 workshop on Fundamental Physics at the Intensity Frontier. Science opportunities at the intensity frontier are identified and described in the areas of heavy quarks, charged leptons, neutrinos, proton decay, new light weakly-coupled particles, and nucleons, nuclei, and atoms.

  1. SHORT DYNAMIC FIBRILS IN SUNSPOT CHROMOSPHERES

    SciTech Connect (OSTI)

    Rouppe van der Voort, L. [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029 Blindern, N-0315 Oslo (Norway); De la Cruz Rodríguez, J. [Department of Physics and Astronomy, Uppsala University, Box 516, SE-75120 Uppsala (Sweden)

    2013-10-10T23:59:59.000Z

    Sunspot chromospheres display vigorous oscillatory signatures when observed using chromospheric diagnostics such as the strong Ca II lines and H?. New high-resolution sunspot observations from the Swedish 1 m Solar Telescope show the ubiquitous presence of small-scale, periodic, jet-like features that move up and down. This phenomenon has not been described before. The typical width of these features is about 0.''3 and they display clear parabolic trajectories in space-time diagrams. The maximum extension of the top of the jets is lowest in the umbra, a few 100 km, and progressively longer further away from the umbra in the penumbra, with the longest extending more than 1000 km. These jets resemble the dynamic fibrils found in plage regions but at smaller extensions. Local thermodynamic equilibrium inversion of spectropolarimetric Ca II 8542 observations enabled a comparison of the magnetic field inclination and properties of these short jets. We find that the most extended of these jets also have longer periods and tend to be located in regions with more horizontal magnetic fields. These results are direct observational confirmation of the mechanism of long-period waves propagating along inclined magnetic fields into the solar chromosphere. This mechanism was identified earlier as the driver of dynamic fibrils in plage, part of the mottles in the quiet Sun, and the type I spicules at the limb. The sunspot dynamic fibrils that we report here represent a new class of manifestation of this mechanism, distinct from the transient penumbral and umbral micro-jets reported earlier.

  2. High intensity performance of the Brookhaven AGS

    SciTech Connect (OSTI)

    Brennan, J.M.; Roser, T.

    1996-07-01T23:59:59.000Z

    Experience and results from recent high intensity proton running periods of the Brookhaven AGS, during which a record intensity for a proton synchrotron of 6.3 x 10{sup 13} protons/pulse was reached, is presented. This high beam intensity allowed for the simultaneous operation of three high precision rare kaon decay experiments. The record beam intensities were achieved after the 1.5 GeV Booster was commissioned and a transition jump system, a powerful transverse damper, and an rf upgrade in the AGS were completed. Recently even higher intensity proton synchrotrons are studied for neutron spallation sources or proton driver for a muon collider. Implications of the experiences from the AGS to these proposals and also possible future upgrades for the AGS are discussed.

  3. High intensity electron cyclotron resonance proton source for low energy high intensity proton accelerator

    SciTech Connect (OSTI)

    Roychowdhury, P.; Chakravarthy, D. P. [Accelerator and Pulse Power Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2009-12-15T23:59:59.000Z

    Electron cyclotron resonance (ECR) proton source at 50 keV, 50 mA has been designed, developed, and commissioned for the low energy high intensity proton accelerator (LEHIPA). Plasma characterization of this source has been performed. ECR plasma was generated with 400-1100 W of microwave power at 2.45 GHz, with hydrogen as working gas. Microwave was fed in the plasma chamber through quartz window. Plasma density and temperature was studied under various operating conditions, such as microwave power and gas pressure. Langmuir probe was used for plasma characterization using current voltage variation. The typical hydrogen plasma density and electron temperature measured were 7x10{sup 11} cm{sup -3} and 6 eV, respectively. The total ion beam current of 42 mA was extracted, with three-electrode extraction geometry, at 40 keV of beam energy. The extracted ion current was studied as a function of microwave power and gas pressure. Depending on source pressure and discharge power, more than 30% total gas efficiency was achieved. The optimization of the source is under progress to meet the requirement of long time operation. The source will be used as an injector for continuous wave radio frequency quadrupole, a part of 20 MeV LEHIPA. The required rms normalized emittance of this source is less than 0.2 {pi} mm mrad. The simulated value of normalized emittance is well within this limit and will be measured shortly. This paper presents the study of plasma parameters, first beam results, and the status of ECR proton source.

  4. Modeling Data-Intensive Web Sites 259 ModelingData-Intensive

    E-Print Network [OSTI]

    Bouras, Christos

    Modeling Data-Intensive Web Sites 259 ChapterXII ModelingData-Intensive Web Sites-by-stepapproachtothedesign,implementation and management of a Data-Intensive Web Site (DIWS). The approach introduces five data formulation is that of "Web fragments," that is an information decomposition technique that aids design, implementation

  5. Ferroplasmons: Intense Localized Surface Plasmons in Metal-Ferromagnetic Nanoparticles

    SciTech Connect (OSTI)

    Sachan, Ritesh [University of Tennessee, Knoxville (UTK); Malasi, Abhinav [ORNL; Ge, Jingxuan [Materials Science and Engineering Department, University of Tennessee, Knoxville, TN, USA; Yadavali, Sagar P [ORNL; Gangopadhyay, Anup [Washington University, St. Louis; Krishna, Dr. Hare [Washington University, St. Louis; Garcia, Hernando [Southern Illinois University; Duscher, Gerd J M [ORNL; Kalyanaraman, Ramki [University of Tennessee, Knoxville (UTK)

    2014-01-01T23:59:59.000Z

    Interaction of photons with matter at length scales far below their wavelengths has given rise to many novel phenomena, including localized surface plasmon resonance (LSPR). However, LSPR with narrow bandwidth (BW) is observed only in a select few noble metals, and ferromagnets are not among them. Here, we report the discovery of LSPR in ferromagnetic Co and CoFe alloy (8% Fe) in contact with Ag in the form of bimetallic nanoparticles prepared by pulsed laser dewetting. These plasmons in metal-erromagnetic nanostructures, or ferroplasmons (FP) for short, are in the visible spectrum with comparable intensity and BW to those of the LSPRs from the Ag regions. This finding was enabled by electron energy-loss mapping across individual nanoparticles in a monochromated scanning transmission electron microscope. The appearance of the FP is likely due to plasmonic interaction between the contacting Ag and Co nanoparticles. Since there is no previous evidence for materials that simultaneously show ferromagnetism and such intense LSPRs, this discovery may lead to the design of improved plasmonic materials and applications. It also demonstrates that materials with interesting plasmonic properties can be synthesized using bimetallic nanostructures in contact with each other.

  6. Drop short control of electrode gap

    DOE Patents [OSTI]

    Fisher, Robert W. (Albuquerque, NM); Maroone, James P. (Albuquerque, NM); Tipping, Donald W. (Albuquerque, NM); Zanner, Frank J. (Sandia Park, NM)

    1986-01-01T23:59:59.000Z

    During vacuum consumable arc remelting the electrode gap between a consumable electrode and a pool of molten metal is difficult to control. The present invention monitors drop shorts by detecting a decrease in the voltage between the consumable electrode and molten pool. The drop shorts and their associated voltage reductions occur as repetitive pulses which are closely correlated to the electrode gap. Thus, the method and apparatus of the present invention controls electrode gap based upon drop shorts detected from the monitored anode-cathode voltage. The number of drop shorts are accumulated, and each time the number of drop shorts reach a predetermined number, the average period between drop shorts is calculated from this predetermined number and the time in which this number is accumulated. This average drop short period is used in a drop short period electrode gap model which determines the actual electrode gap from the drop short. The actual electrode gap is then compared with a desired electrode gap which is selected to produce optimum operating conditions and the velocity of the consumable error is varied based upon the gap error. The consumable electrode is driven according to any prior art system at this velocity. In the preferred embodiment, a microprocessor system is utilized to perform the necessary calculations and further to monitor the duration of each drop short. If any drop short exceeds a preset duration period, the consumable electrode is rapidly retracted a predetermined distance to prevent bonding of the consumable electrode to the molten remelt.

  7. Zeiss-Meta -1-Short instructions Short instructions for the Zeiss-META

    E-Print Network [OSTI]

    Manstein, Dietmar J.

    #12;Zeiss-Meta -2- Short instructions 1. Laser safety Safety notes for operating the laser scanningZeiss-Meta -1- Short instructions Short instructions for the Zeiss-META Version 080708 This short information on laser safety and general guidelines. Content: 1. Laser safety Page 2 2. General guidelines Page

  8. Olympus FV1000 -1-Short instructions Short instructions. Olympus FV1000

    E-Print Network [OSTI]

    Manstein, Dietmar J.

    the microscope Page 7 #12;Olympus FV1000 -2- Short instructions 1. Laser safety Safety notes for operatingOlympus FV1000 -1- Short instructions Short instructions. Olympus FV1000 Version 110608 This short information on laser safety and general guidelines. Content: 1. Laser safety Page 2 2. General guidelines Page

  9. Olympus FV1000 -1-Short instructions Short instructions. Olympus FV1000

    E-Print Network [OSTI]

    Manstein, Dietmar J.

    the microscope Page 7 #12;Olympus FV1000 -2- Short instructions 1. Laser safety Safety notes for operatingOlympus FV1000 -1- Short instructions Short instructions. Olympus FV1000 Version 140416 This short information on laser safety and general guidelines. Content: 1. Laser safety Page 2 2. General guidelines Page

  10. Polarization operator approach to pair creation in short laser pulses

    E-Print Network [OSTI]

    Meuren, Sebastian; Keitel, Christoph H; Di Piazza, Antonino

    2014-01-01T23:59:59.000Z

    We investigate the nonlinear Breit-Wheeler process inside short laser pulses, i.e. the creation of an electron-positron pair induced by a gamma photon inside a plane-wave background field. To obtain the total pair-creation probability we verify (to leading-order) the cutting rule for the polarization operator in the realm of strong-field QED by an explicit calculation. Furthermore, a double-integral representation for the leading-order contribution to the field-dependent part of the polarization operator is derived. The combination of both results yields a compact expression for the total pair-creation probability inside an arbitrary plane-wave background field. It is shown numerically that with presently available technology pair-creation probabilities of the order of ten percent could be reached for a single gamma photon.

  11. Semiconductor lasers with uniform longitudinal intensity distribution

    SciTech Connect (OSTI)

    Schrans, T.; Yariv, A. (Department of Applied Physics 128-95, California Institute of Technology, Pasadena, California 91125 (USA))

    1990-04-16T23:59:59.000Z

    Power-dependent nonuniform longitudinal intensity distribution leading to spectral and spatial instabilities is a major problem in semiconductor lasers. It is shown theoretically that a proper choice of the longitudinal distribution of the gain as well as that of the magnitude of the grating coupling coefficient will lead to a uniform intensity distribution in distributed feedback lasers. We also show that the widely used phase, rather than magnitude, control of the coupling coefficient cannot lead to a uniform intensity distribution when the facet reflectivities are zero.

  12. Using X-ray free-electron lasers for probing of complex interaction dynamics of ultra-intense lasers with solid matter

    SciTech Connect (OSTI)

    Kluge, T., E-mail: t.kluge@hzdr.de; Huang, L. G.; Metzkes, J.; Bussmann, M. [Helmholtz-Zentrum Dresden-Rossendorf e.V., D-01328 Dresden (Germany)] [Helmholtz-Zentrum Dresden-Rossendorf e.V., D-01328 Dresden (Germany); Gutt, C. [Universität Siegen, D-57068 Siegen (Germany)] [Universität Siegen, D-57068 Siegen (Germany); Schramm, U.; Cowan, T. E. [Helmholtz-Zentrum Dresden-Rossendorf e.V., D-01328 Dresden (Germany) [Helmholtz-Zentrum Dresden-Rossendorf e.V., D-01328 Dresden (Germany); Technische Universität Dresden, D-01062 Dresden (Germany)

    2014-03-15T23:59:59.000Z

    We demonstrate the potential of X-ray free-electron lasers (XFEL) to advance the understanding of complex plasma dynamics by allowing for the first time nanometer and femtosecond resolution at the same time in plasma diagnostics. Plasma phenomena on such short timescales are of high relevance for many fields of physics, in particular in the ultra-intense ultra-short laser interaction with matter. Highly relevant yet only partially understood phenomena become directly accessible in experiment. These include relativistic laser absorption at solid targets, creation of energetic electrons and electron transport in warm dense matter, including the seeding and development of surface and beam instabilities, ambipolar expansion, shock formation, and dynamics at the surfaces or at buried layers. In this paper, we focus on XFEL plasma probing for high power laser matter interactions based on quantitative calculations using synthesized data and evaluate the feasibility of various imaging and scattering techniques with special focus on the small angle X-ray scattering technique.

  13. Fermilab | Science at Fermilab | Experiments & Projects | Intensity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.New Mexico Feb. 13, 2013Focusreceives .1Grid IntensityFermilab

  14. Physics Prospects with an Intense Neutrino Experiment

    E-Print Network [OSTI]

    N. Solomey

    2000-06-16T23:59:59.000Z

    With new forthcoming intense neutrino beams, for the study of neutrino oscillations, it is possible to consider other physics experiments that can be done with these extreme neutrino fluxes available close to the source.

  15. Computational phase imaging based on intensity transport

    E-Print Network [OSTI]

    Waller, Laura A. (Laura Ann)

    2010-01-01T23:59:59.000Z

    Light is a wave, having both an amplitude and a phase. However, optical frequencies are too high to allow direct detection of phase; thus, our eyes and cameras see only real values - intensity. Phase carries important ...

  16. Building dependability arguments for software intensive systems

    E-Print Network [OSTI]

    Seater, Robert Morrison

    2009-01-01T23:59:59.000Z

    A method is introduced for structuring and guiding the development of end-to-end dependability arguments. The goal is to establish high-level requirements of complex software-intensive systems, especially properties that ...

  17. Midlevel ventilation's constraint on tropical cyclone intensity

    E-Print Network [OSTI]

    Tang, Brian Hong-An

    2010-01-01T23:59:59.000Z

    Midlevel ventilation, or the flux of low-entropy air into the inner core of a tropical cyclone (TC), is a hypothesized mechanism by which environmental vertical wind shear can constrain a TC's intensity. An idealized ...

  18. Midlevel Ventilation's Constraint on Tropical Cyclone Intensity

    E-Print Network [OSTI]

    Tang, Brian Hong-An

    Midlevel ventilation, or the flux of low-entropy air into the inner core of a tropical cyclone (TC), is a hypothesized mechanism by which environmental vertical wind shear can constrain a tropical cyclone’s intensity. An ...

  19. Transport of elliptic intense charged -particle beams

    E-Print Network [OSTI]

    Zhou, J. (Jing), 1978-

    2006-01-01T23:59:59.000Z

    The transport theory of high-intensity elliptic charged-particle beams is presented. In particular, the halo formation and beam loss problem associated with the high space charge and small-aperture structure is addressed, ...

  20. Absolute vs. intensity-based emission caps

    E-Print Network [OSTI]

    Ellerman, A. Denny.

    Cap-and-trade systems limit emissions to some pre-specified absolute quantity. Intensity-based limits, that restrict emissions to some pre-specified rate relative to input or output, are much more widely used in environmental ...

  1. ANNOUNCEMENT Short-Term Course

    E-Print Network [OSTI]

    Srivastava, Kumar Vaibhav

    to reduction in underground-based carbon resources. This has propelled the development of advanced engine-treatment such as selective catalyst reduction and NOx storage catalysts · Oxidation catalysts for VOC, and hydrocarbon-2). There will be a book exhibition on one evening. The first day of the course i.e. 28th June will be for the field visit

  2. ANNOUNCEMENT Short-Term Course

    E-Print Network [OSTI]

    Srivastava, Kumar Vaibhav

    to reduction in underground-based carbon resources. This has propelled the development of advanced engine traps · Selective catalytic reduction technique · NOx storage catalysts · engine system strategies will be for the field visit to Engine Development Directorate, RDSO Lucknow, Ministry of Railways (Not compulsory

  3. ANNOUNCEMENT Short-Term Course

    E-Print Network [OSTI]

    Srivastava, Kumar Vaibhav

    to reduction in underground- based carbon resources. This has propelled the development of advanced engine traps · Selective catalytic reduction technique · NOx storage catalysts · engine system strategies will be for the field visit to Engine Development Directorate, RDSO Lucknow, Ministry of Railways (Not compulsory

  4. Distributed Storage Systems for Data Intensive Computing

    SciTech Connect (OSTI)

    Vazhkudai, Sudharshan S [ORNL; Butt, Ali R [Virginia Polytechnic Institute and State University (Virginia Tech); Ma, Xiaosong [ORNL

    2012-01-01T23:59:59.000Z

    In this chapter, the authors present an overview of the utility of distributed storage systems in supporting modern applications that are increasingly becoming data intensive. Their coverage of distributed storage systems is based on the requirements imposed by data intensive computing and not a mere summary of storage systems. To this end, they delve into several aspects of supporting data-intensive analysis, such as data staging, offloading, checkpointing, and end-user access to terabytes of data, and illustrate the use of novel techniques and methodologies for realizing distributed storage systems therein. The data deluge from scientific experiments, observations, and simulations is affecting all of the aforementioned day-to-day operations in data-intensive computing. Modern distributed storage systems employ techniques that can help improve application performance, alleviate I/O bandwidth bottleneck, mask failures, and improve data availability. They present key guiding principles involved in the construction of such storage systems, associated tradeoffs, design, and architecture, all with an eye toward addressing challenges of data-intensive scientific applications. They highlight the concepts involved using several case studies of state-of-the-art storage systems that are currently available in the data-intensive computing landscape.

  5. High-intensity positron microprobe at Jefferson Lab

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Golge, Serkan [North Carolina Central Univ., Durham, NC (United States); Vlahovic, Branislav [North Carolina Central Univ., Durham, NC (United States); Wojtsekhowski, Bogdan B. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2014-06-21T23:59:59.000Z

    We present a conceptual design for a novel continuous wave electron-linac based high-intensity slow-positron production source with a projected intensity on the order of 1010 e+/s. Reaching this intensity in our design relies on the transport of positrons (T+ below 600 keV) from the electron-positron pair production converter target to a low-radiation and low-temperature area for moderation in a high-efficiency cryogenic rare gas moderator, solid Ne. The performance of the integrated beamline has been verified through computational studies. The computational results include Monte Carlo calculations of the optimized electron/positron beam energies, converter target thickness, synchronized raster system, transport of the beam from the converter target to the moderator, extraction of the beam from the channel, and moderation efficiency calculations. For the extraction of positrons from the magnetic channel a magnetic field terminator plug prototype has been built and experimental data on the effectiveness of this prototype are presented. The dissipation of the heat away from the converter target and radiation protection measures are also discussed.

  6. High-intensity positron microprobe at Jefferson Lab

    SciTech Connect (OSTI)

    Golge, Serkan [North Carolina Central Univ., Durham, NC (United States); Vlahovic, Branislav [North Carolina Central Univ., Durham, NC (United States); Wojtsekhowski, Bogdan B. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2014-06-21T23:59:59.000Z

    We present a conceptual design for a novel continuous wave electron-linac based high-intensity slow-positron production source with a projected intensity on the order of 1010 e+/s. Reaching this intensity in our design relies on the transport of positrons (T+ below 600 keV) from the electron-positron pair production converter target to a low-radiation and low-temperature area for moderation in a high-efficiency cryogenic rare gas moderator, solid Ne. The performance of the integrated beamline has been verified through computational studies. The computational results include Monte Carlo calculations of the optimized electron/positron beam energies, converter target thickness, synchronized raster system, transport of the beam from the converter target to the moderator, extraction of the beam from the channel, and moderation efficiency calculations. For the extraction of positrons from the magnetic channel a magnetic field terminator plug prototype has been built and experimental data on the effectiveness of this prototype are presented. The dissipation of the heat away from the converter target and radiation protection measures are also discussed.

  7. High-intensity positron microprobe at Jefferson Lab

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Golge, Serkan; Vlahovic, Branislav; Wojtsekhowski, Bogdan B.

    2014-06-21T23:59:59.000Z

    We present a conceptual design for a novel continuous wave electron-linac based high-intensity slow-positron production source with a projected intensity on the order of 1010 e+/s. Reaching this intensity in our design relies on the transport of positrons (T+ below 600 keV) from the electron-positron pair production converter target to a low-radiation and low-temperature area for moderation in a high-efficiency cryogenic rare gas moderator, solid Ne. The performance of the integrated beamline has been verified through computational studies. The computational results include Monte Carlo calculations of the optimized electron/positron beam energies, converter target thickness, synchronized raster system, transport of themore »beam from the converter target to the moderator, extraction of the beam from the channel, and moderation efficiency calculations. For the extraction of positrons from the magnetic channel a magnetic field terminator plug prototype has been built and experimental data on the effectiveness of this prototype are presented. The dissipation of the heat away from the converter target and radiation protection measures are also discussed.« less

  8. SHORT COMMUNICATION: LARGER CLIQUES FOR A DIMACS ...

    E-Print Network [OSTI]

    SHORT COMMUNICATION: LARGER CLIQUES FOR A. DIMACS TEST. A. GROSSO, M. LOCATELLI, W. J. PULLAN. 1. The new cliques. DIMACS benchmarks ...

  9. Modulation compression for short wavelength harmonic generation

    E-Print Network [OSTI]

    Qiang, J.

    2010-01-01T23:59:59.000Z

    Wavelength Harmonic Generation Ji Qiang Lawrence Berkeleyform a basis for fourth generation light source. Currently,e?ciency was proposed for generation of short wavelength

  10. HIGH INTENSITY LOW-ENERGY POSITRON SOURCE AT JEFFERSON

    SciTech Connect (OSTI)

    Serkan Golge, Bogdan Wojtsekhowski, Branislav Vlahovic

    2012-07-01T23:59:59.000Z

    We present a novel concept of a low-energy e{sup +} source with projected intensity on the order of 10{sup 10} slow e{sup +}/s. The key components of this concept are a continuous wave e{sup -} beam, a rotating positron-production target, a synchronized raster/anti-raster, a transport channel, and extraction of e{sup +} into a field-free area through a magnetic plug for moderation in a cryogenic solid. Components were designed in the framework of GEANT4-based (G4beamline) Monte Carlo simulation and TOSCA magnetic field calculation codes. Experimental data to demonstrate the effectiveness of the magnetic plug is presented.

  11. Scattering of short laser pulses from trapped fermions

    E-Print Network [OSTI]

    T. Wong; Ozgur Mustecaplioglu; L. You; M. Lewenstein

    2000-03-28T23:59:59.000Z

    We investigate the scattering of intense short laser pulses off trapped cold fermionic atoms. We discuss the sensitivity of the scattered light to the quantum statistics of the atoms. The temperature dependence of the scattered light spectrum is calculated. Comparisons are made with a system of classical atoms who obey Maxwell-Boltzmann statistics. We find the total scattering increases as the fermions become cooler but eventually tails off at very low temperatures (far below the Fermi temperature). At these low temperatures the fermionic degeneracy plays an important role in the scattering as it inhibits spontaneous emission into occupied energy levels below the Fermi surface. We demonstrate temperature dependent qualitative changes in the differential and total spectrum can be utilized to probe quantum degeneracy of trapped Fermi gas when the total number of atoms are sufficiently large $(\\geq 10^6)$. At smaller number of atoms, incoherent scattering dominates and it displays weak temperature dependence.

  12. What is Data-Intensive Science?

    SciTech Connect (OSTI)

    Critchlow, Terence J.; Kleese van Dam, Kerstin

    2013-06-03T23:59:59.000Z

    What is Data Intensive Science? Today we are living in a digital world, where scientists often no longer interact directly with the physical object of their research, but do so via digitally captured, reduced, calibrated, analyzed, synthesized and, at times, visualized data. Advances in experimental and computational technologies have lead to an exponential growth in the volumes, variety and complexity of this data and while the deluge is not happening everywhere in an absolute sense, it is in a relative one. Science today is data intensive. Data intensive science has the potential to transform not only how we do science, but how quickly we can translate scientific progress into complete solutions, policies, decisions and ultimately economic success. Critically, data intensive science touches some of the most important challenges we are facing. Consider a few of the grand challenges outlined by the U.S. National Academy of Engineering: make solar energy economical, provide energy from fusion, develop carbon sequestration methods, advance health informatics, engineer better medicines, secure cyberspace, and engineer the tools of scientific discovery. Arguably, meeting any of these challenges requires the collaborative effort of trans-disciplinary teams, but also significant contributions from enabling data intensive technologies. Indeed for many of them, advances in data intensive research will be the single most important factor in developing successful and timely solutions. Simple extrapolations of how we currently interact with and utilize data and knowledge are not sufficient to meet this need. Given the importance of these challenges, a new, bold vision for the role of data in science, and indeed how research will be conducted in a data intensive environment is evolving.

  13. Optical Fiber High Temperature Sensor Instrumentation for Energy Intensive Industries

    SciTech Connect (OSTI)

    Cooper, Kristie L.; Wang, Anbo; Pickrell, Gary R.

    2006-11-14T23:59:59.000Z

    This report summarizes technical progress during the program “Optical Fiber High Temperature Sensor Instrumentation for Energy Intensive Industries”, performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. The objective of this program was to use technology recently invented at Virginia Tech to develop and demonstrate the application of self-calibrating optical fiber temperature and pressure sensors to several key energy-intensive industries where conventional, commercially available sensors exhibit greatly abbreviated lifetimes due primarily to environmental degradation. A number of significant technologies were developed under this program, including • a laser bonded silica high temperature fiber sensor with a high temperature capability up to 700°C and a frequency response up to 150 kHz, • the world’s smallest fiber Fabry-Perot high temperature pressure sensor (125 x 20 ?m) with 700°C capability, • UV-induced intrinsic Fabry-Perot interferometric sensors for distributed measurement, • a single crystal sapphire fiber-based sensor with a temperature capability up to 1600°C. These technologies have been well demonstrated and laboratory tested. Our work plan included conducting major field tests of these technologies at EPRI, Corning, Pratt & Whitney, and Global Energy; field validation of the technology is critical to ensuring its usefulness to U.S. industries. Unfortunately, due to budget cuts, DOE was unable to follow through with its funding commitment to support Energy Efficiency Science Initiative projects and this final phase was eliminated.

  14. Short-time Dynamics of Frictional Strength in Dry Friction O. Ben-David, G. Cohen and J. Fineberg

    E-Print Network [OSTI]

    Fineberg, Jay

    Short-time Dynamics of Frictional Strength in Dry Friction O. Ben-David, G. Cohen and J. Fineberg interface that separates two PMMA blocks in dry frictional contact. At applied shear forces significantly weakening 1. Introduction The short-time dynamics of dry friction are of fundamental interest in fields

  15. Short-time Dynamics of Frictional Strength in Dry Friction O. Ben-David and J. Fineberg

    E-Print Network [OSTI]

    Fineberg, Jay

    Short-time Dynamics of Frictional Strength in Dry Friction O. Ben-David and J. Fineberg The Racah that separates two PMMA blocks in dry frictional contact. At applied shear forces significantly below the static The short-time dynamics of dry friction are of fundamental interest in fields ranging from hard drive disk

  16. Title of Dissertation: A Search for Short Duration Very High Energy Emission from Gamma-Ray Bursts

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    of GRBs. #12;A Search for Short Duration Very High Energy Emission from Gamma-Ray Bursts by David NoyesABSTRACT Title of Dissertation: A Search for Short Duration Very High Energy Emission from Gamma-Ray by gamma rays with primary energies of approximately 100 GeV and higher. The wide field of view ( 2 sr

  17. Shielding, Levitation, Propulsion G. W. Jewell, Chariman Method for expanding the uniformly shielded area in a short-length

    E-Print Network [OSTI]

    Paperno, Eugene

    Shielding, Levitation, Propulsion G. W. Jewell, Chariman Method for expanding the uniformly shielded area in a short-length open-ended cylindrical magnetic shield K. Oshita, I. Sasada,a) H. Naka shielded area of the axial magnetic field in a relatively short, open-structure axial magnetic shield can

  18. Intensity-dependent enhancements in high-order above-threshold ionization

    SciTech Connect (OSTI)

    Milosevic, D. B. [Faculty of Science, University of Sarajevo, Zmaja od Bosne 35, 71000 Sarajevo (Bosnia and Herzegowina); Max-Born-Institut, Max-Born-Strasse 2a, 12489 Berlin (Germany); Hasovic, E.; Gazibegovic-Busuladzic, A. [Faculty of Science, University of Sarajevo, Zmaja od Bosne 35, 71000 Sarajevo, Bosnia and Herzegovina (Bosnia and Herzegowina); Busuladzic, M. [Medical Faculty, University of Sarajevo, Cekalusa 90, 71000 Sarajevo (Bosnia and Herzegowina); Becker, W. [Max-Born-Institut, Max-Born-Strasse 2a, 12489 Berlin (Germany)

    2007-11-15T23:59:59.000Z

    The very pronounced intensity-dependent enhancements of groups of peaks of high-order above-threshold-ionization spectra of rare-gas atoms are investigated using an improved version of the strong-field approximation, which realistically models the respective atom. Two types of enhancements are found and explained in terms of constructive interference of the contributions of a large number of long quantum orbits. The first type is observed for intensities slightly below channel closings. Its intensity dependence is comparatively smooth and it is generated by comparatively few (of the order of 20) orbits. The second type occurs precisely at channel closings and exhibits an extremely sharp intensity dependence. It requires constructive interference of a very large number of long orbits (several hundreds) and generates cusps in the electron spectrum at integer multiples of the laser-photon energy. An interpretation of these enhancements as a threshold phenomenon is also given. An interplay of different types of the threshold anomalies is observed. The position of both types of enhancements, in the photoelectron-energy--laser-intensity plane, shifts to the next channel closing intensity with the change of the ground-state parity. The enhancements gradually disappear with decreasing laser pulse duration. This confirms the interpretation of enhancements as a consequence of the interference of long strong-laser-field-induced quantum orbits.

  19. Intensity Limitations in Fermilab Main Injector

    SciTech Connect (OSTI)

    Chan, W.

    1997-06-01T23:59:59.000Z

    The design beam intensity of the FNAL Main Injector (MI) is 3 x 10{sup 13} ppp. This paper investigates possible limitations in the intensity upgrade. These include the space charge, transition crossing, microwave instability, coupled bunch instability, resistive wall, beam loading (static and transient), rf power, aperture (physical and dynamic), coalescing, particle losses and radiation shielding, etc. It seems that to increase the intensity by a factor of two from the design value is straightforward. Even a factor of five is possible provided that the following measures are to be taken: an rf power upgrade, a {gamma}{sub t}-jump system, longitudinal and transverse feedback systems, rf feedback and feedforward, stopband corrections and local shieldings.

  20. Masking line foregrounds in intensity mapping surveys

    E-Print Network [OSTI]

    Breysse, Patrick C; Kamionkowski, Marc

    2015-01-01T23:59:59.000Z

    We address the problem of line confusion in intensity mapping surveys and explore the possibility to mitigate line foreground contamination by progressively masking the brightest pixels in the observed map. We consider experiments targeting CO(1-0) at $z=3$, Ly$\\alpha$ at $z=7$, and CII at $z=7$, and use simulated intensity maps, which include both clustering and shot noise components of the signal and possible foregrounds, in order to test the efficiency of our method. We find that for CO and Ly$\\alpha$ it is quite possible to remove most of the foreground contribution from the maps via only 1%-3% pixel masking. The CII maps will be more difficult to clean, however, due to instrumental constraints and the high-intensity foreground contamination involved. While the masking procedure sacrifices much of the astrophysical information present in our maps, we demonstrate that useful cosmological information in the targeted lines can be successfully retrieved.

  1. Interaction of intense fields with plasmaInteraction of intense fields with plasma Strathclyde Intense Laser Interaction Studies (SILIS) Group, Department Of PhysicsStrathclyde Intense Laser Interaction Studies (SILIS) Group, Department Of Physics

    E-Print Network [OSTI]

    Strathclyde, University of

    . Large scale thermonuclear fusion processes, involving l i f i t t i tt t In an operating fusion reactor fusion is the process in which two or more atomic nuclei join together, or "fuse", to form a single at very high densities and temperatures. fusion reaction. It is one of the earliest controlled fusion

  2. Round Mountain Field, Short Radius Lateral Drilling in the Vedder Sand Round Mountain Field, California

    SciTech Connect (OSTI)

    Chenot P.E., David W.

    2002-03-10T23:59:59.000Z

    A 3-D simulation model study was run using CMG's STARS thermal model, and showed that a 122 meter (400 foot) horizontal well should produce up to 64 cubic meters per day of oil (400 B/D) when the heated oil bank hits the well.

  3. Physics of Giant ElectroMagnetic Pulse generation in short pulse laser experiments

    E-Print Network [OSTI]

    Poyé, Alexandre; Bailly-Grandvaux, Mathieu; Dubois, Jean-Luc; Ribolzi, Jérôme; Raffestin, Didier; Bardon, Matthieu; Lubrano-Lavaderci, Frédéric; D'Humières, Emmanuel; Santos, Joao Jorge; Nicolaï, Philippe; Tikhonchuk, Vladimir

    2015-01-01T23:59:59.000Z

    In this paper we describe the physical processes that lead to the generation of Giant Electro- Magnetic Pulses (GEMP) on powerful laser facilities. Our study is based on experimental mea- surements of both the charging of a solid target irradiated by an ultra-short, ultra-intense laser and the detection of the electromagnetic emission in the GHz domain. An unambiguous correlation between the neutralisation current in the target holder and the electromagnetic emission shows that the source of the GEMP is the remaining positive charge inside the target after the escape of fast electrons accelerated by the ultra-intense laser. A simple model for calculating this charge in the thick target case is presented. From this model and knowing the geometry of the target holder, it becomes possible to estimate the intensity and the dominant frequencies of the GEMP on any facility.

  4. Delivering High IntensityDelivering High Intensity Proton Beam:Proton Beam

    E-Print Network [OSTI]

    McDonald, Kirk

    11 Delivering High IntensityDelivering High Intensity Proton Beam:Proton Beam: Lessons for the NextFACT08NuFACT08 ­­ 4 July4 July S. ChildressS. Childress ­­ Proton BeamsProton Beams 22 Presentation OutlinePresentation Outline Key Proton Beam ConsiderationsKey Proton Beam Considerations The First

  5. Quantitative Infrared Intensity Studies of Vapor-PhaseGlyoxal...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Infrared Intensity Studies of Vapor-Phase Glyoxal,Methylglyoxal, and 2,3-Butanedione (Diacetyl) with Quantitative Infrared Intensity Studies of Vapor-Phase Glyoxal,Methylglyoxal,...

  6. Absolute integrated intensities of vapor-phase hydrogen peroxide...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Absolute integrated intensities of vapor-phase hydrogen peroxide (H202) in the mid-infrared at atmospheric pressure. Absolute integrated intensities of vapor-phase hydrogen...

  7. EIA Energy Efficiency-Commercial Buildings Sector Energy Intensities...

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Buildings Sector Energy Intensities Commercial Buildings Sector Energy Intensities: 1992- 2003 Released Date: December 2004 Page Last Revised: August 2009 These tables...

  8. airglow intensities measured: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mark I 2013-01-01 23 Strongly Intensive Measures for Transverse Momentum and Particle Number Fluctuations Nuclear Experiment (arXiv) Summary: The strongly intensive measures ...

  9. Performances of BNL high-intensity synchrotrons

    SciTech Connect (OSTI)

    Weng, W.T.

    1998-03-01T23:59:59.000Z

    The AGS proton synchrotron was completed in 1960 with initial intensity in the 10 to the 10th power proton per pulse (ppp) range. Over the years, through many upgrades and improvements, the AGS now reached an intensity record of 6.3 {times} 10{sup 13} ppp, the highest world intensity record for a proton synchrotron on a single pulse basis. At the same time, the Booster reached 2.2 {times} 10{sup 13} ppp surpassing the design goal of 1.5 {times} 10{sup 13} ppp due to the introduction of second harmonic cavity during injection. The intensity limitation caused by space charge tune spread and its relationship to injection energy at 50 MeV, 200 MeV, and 1,500 MeV will be presented as well as many critical accelerator manipulations. BNL currently participates in the design of an accumulator ring for the SNS project at Oak Ridge. The status on the issues of halo formation, beam losses and collimation are also presented.

  10. MERcury Intense Target (MERIT) Van Graves, ORNL

    E-Print Network [OSTI]

    McDonald, Kirk

    OF ENERGY Airline Hydraulics 28 Oct 2005 Hg System Schematic Double Window (2) Primary Containment SecondaryMERcury Intense Target (MERIT) Overview Van Graves, ORNL Syringe Procurement Kickoff Meeting Airline Hydraulics Bensalem, PA Oct 28, 2005 #12;2 OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT

  11. WHERE ARE THE MOST INTENSE THUNDERSTORMS

    E-Print Network [OSTI]

    Nesbitt, Steve

    provided unparalleled information on the global distribution of intense convective storms. T he Tropical-alti- tude, non-sun-synchronous orbit permits sampling throughout the diurnal cycle of precipitation. The cloud-top temperature of storms has been measured using infrared (IR) bright- ness temperature (Tb

  12. Energy Intensity of Agriculture and Food Systems

    E-Print Network [OSTI]

    Wang, Changlu

    dependencies in the light of energy price volatility and concerns as to long-term fossil energy availabilities ENERGY USE. . . . . . . . . . 232 6. FOOD WASTE AND ENERGY USE. . . . . . . . . . . . . Energy Intensity of Agriculture and Food Systems Nathan Pelletier,1 Eric Audsley,2 Sonja Brodt,3

  13. Short-Distance Structure of Nuclei

    E-Print Network [OSTI]

    D. W. Higinbotham; E. Piasetzky; S. A. Wood

    2009-08-02T23:59:59.000Z

    One of Jefferson Lab's original missions was to further our understanding of the short-distance structure of nuclei. In particular, to understand what happens when two or more nucleons within a nucleus have strongly overlapping wave-functions; a phenomena commonly referred to as short-range correlations. Herein, we review the results of the (e,e'), (e,e'p) and (e,e'pN) reactions that have been used at Jefferson Lab to probe this short-distance structure as well as provide an outlook for future experiments.

  14. Production of intense negative hydrogen beams with polarized nuclei by selective neutralization of cold negative ions

    DOE Patents [OSTI]

    Hershcovitch, A.

    1984-02-13T23:59:59.000Z

    A process for selectively neutralizing H/sup -/ ions in a magnetic field to produce an intense negative hydrogen ion beam with spin polarized protons. Characteristic features of the process include providing a multi-ampere beam of H/sup -/ ions that are

  15. Request for Support for the Conference on Super Intense Laser Atom Physics

    SciTech Connect (OSTI)

    Todd Ditmire

    2004-10-21T23:59:59.000Z

    The Conference on Super Intense Laser Atom Physics (SILAP) was held in November 2003 in Dallas, Texas. The venue for the meeting was South Fork Ranch in the outskirts of Dallas. The topics of the meeting included high harmonic generation and attosecond pulse generation, strong field interactions with molecules and clusters, particle acceleration, and relativistic laser atom interactions.

  16. Probing the spectral and temporal structures of high-order harmonic generation in intense laser pulses

    E-Print Network [OSTI]

    Chu, Shih-I

    understanding of the origin of the har- monics with energies much in excess of the ionization po- tential Ip of the electronic wave packet with the parent ionic core. Based on this model, the cutoff energy is predicted in intense pulsed laser fields. Accurate time-dependent wave functions are obtained by means of the time

  17. MODELLING THE VERTICAL WIND SPEED AND TURBULENCE INTENSITY PROFILES AT PROSPECTIVE OFFSHORE WIND FARM SITES

    E-Print Network [OSTI]

    Heinemann, Detlev

    MODELLING THE VERTICAL WIND SPEED AND TURBULENCE INTENSITY PROFILES AT PROSPECTIVE OFFSHORE WIND important for offshore wind energy utilisation are discussed and tested: Four models for the surface tested with data from the offshore field measurement Rødsand by extrapolating the measured 10 m wind

  18. Quantum Field Theory in Graphene

    E-Print Network [OSTI]

    I. V. Fialkovsky; D. V. Vassilevich

    2011-11-18T23:59:59.000Z

    This is a short non-technical introduction to applications of the Quantum Field Theory methods to graphene. We derive the Dirac model from the tight binding model and describe calculations of the polarization operator (conductivity). Later on, we use this quantity to describe the Quantum Hall Effect, light absorption by graphene, the Faraday effect, and the Casimir interaction.

  19. 8 Short life stories: Dorti Peterson

    E-Print Network [OSTI]

    Leonard, Stephen Pax

    last updated on Monday, 4 April 2011 Accession Form for Individual Recordings: Collection / Collector Name Stephen Leonard Tape No. / Track / Item No. 8 Length of track 33 minutes Title of track Short life stories: Dorti Peterson Translation...

  20. Short-Term Energy Outlook September 2013

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    day Forecast -0.9 2012 2013 2014 OPEC countries North America Russia and Caspian Sea Latin America North Sea Other Non-OPEC Source: Short-Term Energy Outlook, September 2013 -1...

  1. Texas Watershed Planning Short Course Final Report 

    E-Print Network [OSTI]

    Wagner, Kevin

    2010-01-01T23:59:59.000Z

    Planning Short Course to water resource professionals throughout Texas. #31;e Planning Team met quarterly to discuss project status, provide input, and coordinate project activities. Planning Team meeting dates, agendas and sign-in sheet can be found.... Considerable progress was made on the short course agenda from input obtained at the third Planning Team meeting on October 1, 2007 at TCEQ in Austin. #30;e Planning Team and representatives from the TCEQ NPS and TMDL Teams, TWRI, AgriLife Research, TSSWCB...

  2. Another short-burst host galaxy with an optically obscured high star formation rate: The case of GRB 071227

    SciTech Connect (OSTI)

    Nicuesa Guelbenzu, A.; Klose, S.; Kann, D. A.; Rossi, A.; Schmidl, S. [Thüringer Landessternwarte Tautenburg, Sternwarte 5, D-07778 Tautenburg (Germany); Micha?owski, M. J.; McKenzie, M. R. G. [Scottish Universities Physics Alliance, Institute for Astronomy, University of Edinburgh, Royal Observatory, Edinburgh, EH9 3HJ (United Kingdom); Savaglio, S.; Greiner, J. [Max-Planck-Institut für Extraterrestrische Physik, Giessenbachstraße, D-85748 Garching (Germany); Hunt, L. K. [INAF-Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, I-50125 Firenze (Italy); Gorosabel, J. [Instituto de Astrofísica de Andalucía, Consejo Superior de Investigaciones Científicas (IAA-CSIC), Glorieta de la Astronomía s/n, E-18008 Granada (Spain); Palazzi, E. [INAF-IASF Bologna, Via Gobetti 101, I-40129 Bologna (Italy)

    2014-07-01T23:59:59.000Z

    We report on radio continuum observations of the host galaxy of the short gamma-ray burst 071227 (z = 0.381) with the Australia Telescope Compact Array. We detect the galaxy in the 5.5 GHz band with an integrated flux density of F {sub ?} = 43 ± 11 ?Jy, corresponding to an unobscured star-formation rate of about 24 M {sub ?} yr{sup –1}, 40 times higher than what was found from optical emission lines. Among the ?30 well-identified and studied host galaxies of short bursts this is the third case where the host is found to undergo an episode of intense star formation. This suggests that a fraction of all short-burst progenitors hosted in star-forming galaxies could be physically related to recent star formation activity, implying a relatively short merger timescale.

  3. X-ray spectroscopy of buried layer foils irradiated with an ultra high intensity short pulse laser

    E-Print Network [OSTI]

    Chen, Sophia Nan

    2009-01-01T23:59:59.000Z

    manufacturing, while the latter, also known as then CPA technique, has been instrumental in pushing laser

  4. PUBLISHED ONLINE: 4 DECEMBER 2011 | DOI: 10.1038/NPHYS2153 Focusing of short-pulse high-intensity

    E-Print Network [OSTI]

    Loss, Daniel

    production11 for positron emission tomography (PET) and proton oncology9 . Furthermore, energetic proton National Laboratory, Los Alamos, New Mexico 87545, USA, 4Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01314

  5. Two-dimensional electron momentum spectra of argon ionized by short intense lasers: Comparison of theory with experiment

    E-Print Network [OSTI]

    Lin, Chii-Dong

    by Rudenko et al. 11 show complex structures in the low-electron energy region. Arbó et al. 14 suggested

  6. Hole boring in a DT pellet and fast ion ignition with ultra-intense laser pulses

    E-Print Network [OSTI]

    Naumova, N; Tikhonchuk, V T; Labaune, C; Sokolov, I V; Mourou, G; 10.1103/PhysRevLett.102.025002

    2009-01-01T23:59:59.000Z

    Recently achieved high intensities of short laser pulses open new prospects in their application to hole boring in inhomogeneous overdense plasmas and for ignition in precompressed DT fusion targets. A simple analytical model and numerical simulations demonstrate that pulses with intensities exceeding 1022 W/cm2 may penetrate deeply into the plasma as a result of efficient ponderomotive acceleration of ions in the forward direction. The penetration depth as big as hundreds of microns depends on the laser fluence, which has to exceed a few tens of GJ/cm2. The fast ions, accelerated at the bottom of the channel with an efficiency of more than 20%, show a high directionality and may heat the precompressed target core to fusion conditions.

  7. Confinement and the Short Type I' Flux Tube

    E-Print Network [OSTI]

    Shyamoli Chaudhuri

    2000-07-18T23:59:59.000Z

    We show that the recent world-sheet analysis of the quantum fluctuations of a short flux tube in type II string theory leads to a simple and precise description of a pair of stuck D0branes in an orientifold compactification of the type I' string theory. The existence of a stable type I' flux tube of sub-string-scale length is a consequence of the confinement of quantized flux associated with the scalar dualized ten-form background field strength *F_{10}, evidence for a -2brane in the BPS spectrum of M theory. Using heterotic-type I duality, we infer the existence of an M2brane of finite width O(\\sqrt{\\alpha'}) in M-theory, the strong coupling resolution of a spacetime singularity in the D=9 twisted and toroidally compactified E_8 x E_8 heterotic string. This phenomenon has a bosonic string analog in the existence of a stable short electric flux tube arising from the confinement of photons due to tachyon field dynamics. The appendix clarifies the appearance of nonperturbative states and enhanced gauge symmetry in toroidal compactifications of the type I' string. We account for all of the known disconnected components of the moduli space of theories with sixteen supercharges, in striking confirmation of heterotic-type I duality.

  8. Fundamental Physics Explored with High Intensity Laser

    E-Print Network [OSTI]

    T. Tajima; K. Homma

    2012-09-13T23:59:59.000Z

    Over the last Century the method of particle acceleration to high energies has become the prime approach to explore the fundamental nature of matter in laboratory. It appears that the latest search of the contemporary accelerator based on the colliders shows a sign of saturation (or at least a slow-down) in increasing its energy and other necessary parameters to extend this frontier. We suggest two pronged approach enabled by the recent progress in high intensity lasers.

  9. Correlated-Intensity velocimeter for Arbitrary Reflector

    DOE Patents [OSTI]

    Wang, Zhehui (Los Alamos, NM); Luo, Shengnian (Los Alamos, NM); Barnes, Cris W. (Arlington, VA); Paul, Stephen F. (West Orange, NJ)

    2008-11-11T23:59:59.000Z

    A velocimetry apparatus and method comprising splitting incoming reflected laser light and directing the laser light into first and second arms, filtering the laser light with passband filters in the first and second arms, one having a positive passband slope and the other having a negative passband slope, and detecting the filtered laser light via light intensity detectors following the passband filters in the first and second arms

  10. Intensive Variables & Nanostructuring in Magnetostructural Materials

    SciTech Connect (OSTI)

    Lewis, Laura

    2014-08-13T23:59:59.000Z

    Over the course of this project, fundamental inquiry was carried out to investigate, understand and predict the effects of intensive variables, including the structural scale, on magnetostructural phase transitions in the model system of equiatomic FeRh. These transitions comprise simultaneous magnetic and structural phase changes that have their origins in very strong orbital-lattice coupling and thus may be driven by a plurality of effects.

  11. Electrodeless HID lamp study. Final report. [High intensity discharge

    SciTech Connect (OSTI)

    Anderson, J.M.; Johnson, P.D.; Jones, C.E.; Rautenberg, T.H.

    1985-01-01T23:59:59.000Z

    High intensity discharge lamps excited by solenoidal electric fields (SEF/HID) were examined for their ability to give high brightness, high efficacy and good color. Frequency of operation was 13.56 MHz (ISM Band) and power to the lamp plasma ranged from about 400 to 1000 W. Radio frequency transformers with air cores and with air core complemented by ferrite material in the magnetic path were used to provide the voltage for excitation. Electrical properties of the matching network and the lamp plasma were measured or calculated and total light from the lamp was measured by an integrating sphere. Efficacies calculated from measurement were found to agree well with the positive column efficacies of conventional HID lamps containing only mercury, and with additives of sodium, thallium, and scandium iodide. Recommendations for future work are given.

  12. Working Group Report: Computing for the Intensity Frontier

    SciTech Connect (OSTI)

    Rebel, B.; Sanchez, M.C.; Wolbers, S.

    2013-10-25T23:59:59.000Z

    This is the report of the Computing Frontier working group on Lattice Field Theory prepared for the proceedings of the 2013 Community Summer Study ("Snowmass"). We present the future computing needs and plans of the U.S. lattice gauge theory community and argue that continued support of the U.S. (and worldwide) lattice-QCD effort is essential to fully capitalize on the enormous investment in the high-energy physics experimental program. We first summarize the dramatic progress of numerical lattice-QCD simulations in the past decade, with some emphasis on calculations carried out under the auspices of the U.S. Lattice-QCD Collaboration, and describe a broad program of lattice-QCD calculations that will be relevant for future experiments at the intensity and energy frontiers. We then present details of the computational hardware and software resources needed to undertake these calculations.

  13. Femtosecond-scale Synchronisation of Ultra-Intense Focused Laser Beams

    E-Print Network [OSTI]

    Corvan, D J; Cole, J; Ahmed, H; Krushelnick, K; Mangles, S P D; Najmudin, Z; Symes, D; Thomas, A G R; Yeung, M; Zepf, M; Zhao, Z; Sarri, G

    2014-01-01T23:59:59.000Z

    Synchronising ultra-short (~fs) and focussed laser pulses is a particularly difficult task, as this timescale lies orders of magnitude below the typical range of fast electronic devices. Here we present an optical technique that allows for femtosecond-scale synchronisation of the focal planes of two focussed laser pulses. This technique is virtually applicable to any focussing geometry and relative intensity of the two lasers. Experimental implementation of this technique provides excellent quantitative agreement with theoretical expectations. The proposed technique will prove highly beneficial for the next generation of multiple, petawatt class laser systems.

  14. Means for limiting and ameliorating electrode shorting

    DOE Patents [OSTI]

    Van Konynenburg, Richard A. (Livermore, CA); Farmer, Joseph C. (Tracy, CA)

    1999-01-01T23:59:59.000Z

    A fuse and filter arrangement for limiting and ameliorating electrode shorting in capacitive deionization water purification systems utilizing carbon aerogel, for example. This arrangement limits and ameliorates the effects of conducting particles or debonded carbon aerogel in shorting the electrodes of a system such as a capacitive deionization water purification system. This is important because of the small interelectrode spacing and the finite possibility of debonding or fragmentation of carbon aerogel in a large system. The fuse and filter arrangement electrically protect the entire system from shutting down if a single pair of electrodes is shorted and mechanically prevents a conducting particle from migrating through the electrode stack, shorting a series of electrode pairs in sequence. It also limits the amount of energy released in a shorting event. The arrangement consists of a set of circuit breakers or fuses with one fuse or breaker in the power line connected to one electrode of each electrode pair and a set of screens of filters in the water flow channels between each set of electrode pairs.

  15. Means for limiting and ameliorating electrode shorting

    SciTech Connect (OSTI)

    Konynenburg, R.A. van; Farmer, J.C.

    1999-11-09T23:59:59.000Z

    A fuse and filter arrangement is described for limiting and ameliorating electrode shorting in capacitive deionization water purification systems utilizing carbon aerogel, for example. This arrangement limits and ameliorates the effects of conducting particles or debonded carbon aerogel in shorting the electrodes of a system such as a capacitive deionization water purification system. This is important because of the small interelectrode spacing and the finite possibility of debonding or fragmentation of carbon aerogel in a large system. The fuse and filter arrangement electrically protect the entire system from shutting down if a single pair of electrodes is shorted and mechanically prevents a conducting particle from migrating through the electrode stack, shorting a series of electrode pairs in sequence. It also limits the amount of energy released in a shorting event. The arrangement consists of a set of circuit breakers or fuses with one fuse or breaker in the power line connected to one electrode of each electrode pair and a set of screens of filters in the water flow channels between each set of electrode pairs.

  16. Electricity storage for short term power system service (Smart...

    Open Energy Info (EERE)

    storage for short term power system service (Smart Grid Project) Jump to: navigation, search Project Name Electricity storage for short term power system service Country Denmark...

  17. Short Wavelength Seeding through Compression for Fee Electron Lasers

    E-Print Network [OSTI]

    Qiang, Ji

    2010-01-01T23:59:59.000Z

    tunable short wavelength free electron lasers (FELs) providereduces the laser power needed for the generation of shortbetween the laser ?eld and the electron beam inside a short

  18. Orientational ordering of short LC rods in an anisotropic liquid crystalline polymer glass

    E-Print Network [OSTI]

    Cao, Jianshu

    Orientational ordering of short LC rods in an anisotropic liquid crystalline polymer glass Lorin the glass transition is determined by field theory. Microscopic anisotropic interactions can align the LC the glass transition. Host anisotropic glass formers made of mesogens with side chains were studied recently

  19. IEEE SIGNAL PROCESSING LETTERS, VOL. 15, 2008 461 Exploiting Conjugate Symmetry of the Short-Time

    E-Print Network [OSTI]

    -Time Fourier Spectrum for Speech Enhancement Kamil Wójcicki, Mitar Milacic, Anthony Stark, James Lyons, and Kuldip Paliwal, Member, IEEE Abstract--Typical speech enhancement algorithms operate on the short, speech en- hancement. I. INTRODUCTION IN the field of speech enhancement, we are interested

  20. High field gradient particle accelerator

    DOE Patents [OSTI]

    Nation, J.A.; Greenwald, S.

    1989-05-30T23:59:59.000Z

    A high electric field gradient electron accelerator utilizing short duration, microwave radiation, and capable of operating at high field gradients for high energy physics applications or at reduced electric field gradients for high average current intermediate energy accelerator applications is disclosed. Particles are accelerated in a smooth bore, periodic undulating waveguide, wherein the period is so selected that the particles slip an integral number of cycles of the r.f. wave every period of the structure. This phase step of the particles produces substantially continuous acceleration in a traveling wave without transverse magnetic or other guide means for the particle. 10 figs.

  1. High field gradient particle accelerator

    DOE Patents [OSTI]

    Nation, John A. (Ithaca, NY); Greenwald, Shlomo (Haifa, IL)

    1989-01-01T23:59:59.000Z

    A high electric field gradient electron accelerator utilizing short duration, microwave radiation, and capable of operating at high field gradients for high energy physics applications or at reduced electric field gradients for high average current intermediate energy accelerator applications. Particles are accelerated in a smooth bore, periodic undulating waveguide, wherein the period is so selected that the particles slip an integral number of cycles of the r.f. wave every period of the structure. This phase step of the particles produces substantially continuous acceleration in a traveling wave without transverse magnetic or other guide means for the particle.

  2. Short Gamma-Ray Bursts Are Different

    E-Print Network [OSTI]

    J. P. Norris; J. D. Scargle; J. T. Bonnell

    2001-05-07T23:59:59.000Z

    We analyze BATSE time-tagged event (TTE) data for short gamma-ray bursts (T90 duration burst. Performing the cross-correlation between two energy bands, we measure an average lag ~ 20-40 x shorter than for long bursts, and a lag distribution close to symmetric about zero - unlike long bursts. Using a "Bayesian Block" method to identify significantly distinct pulse peaks, we find an order of magnitude fewer pulses than found in studies of long bursts. The disparity in lag magnitude is discontinuous across the ~ 2-s valley between long and short bursts. Thus, short bursts do not appear to be representable as a continuation of long bursts' temporal characteristics.

  3. Formation of nanoparticles by short and ultra-short laser pulses K. Gouriet*a

    E-Print Network [OSTI]

    Zhigilei, Leonid V.

    Formation of nanoparticles by short and ultra-short laser pulses K. Gouriet*a , T. E. Itinaa , S. Noëla , J. Hermanna , M. Sentisa , and L. Zhigileib a Laboratory of Lasers, Plasmas and Photonics simulation Monte Carlo (DSMC) computational study of laser ablation plume evolution. The first process

  4. Mechanisms of small clusters production by short and ultra-short laser ablation

    E-Print Network [OSTI]

    Zhigilei, Leonid V.

    Mechanisms of small clusters production by short and ultra-short laser ablation Tatiana E. Itina a Lasers, Plasmas et Proce´de´s Photoniques (LP3 UMR 6182 CNRS), Faculte´ des Sciences de Luminy, Case 917 The mechanisms involved into the formation of clusters by pulsed laser ablation are studied both numerically

  5. Intense steady state electron beam generator

    DOE Patents [OSTI]

    Hershcovitch, A.; Kovarik, V.J.; Prelec, K.

    1990-07-17T23:59:59.000Z

    An intense, steady state, low emittance electron beam generator is formed by operating a hollow cathode discharge plasma source at critical levels in combination with an extraction electrode and a target electrode that are operable to extract a beam of fast primary electrons from the plasma source through a negatively biased grid that is critically operated to repel bulk electrons toward the plasma source while allowing the fast primary electrons to move toward the target in the desired beam that can be successfully transported for relatively large distances, such as one or more meters away from the plasma source. 2 figs.

  6. Measurements of magnetic field alignment

    SciTech Connect (OSTI)

    Kuchnir, M.; Schmidt, E.E.

    1987-11-06T23:59:59.000Z

    The procedure for installing Superconducting Super Collider (SSC) dipoles in their respective cryostats involves aligning the average direction of their field with the vertical to an accuracy of 0.5 mrad. The equipment developed for carrying on these measurements is described and the measurements performed on the first few prototypes SSC magnets are presented. The field angle as a function of position in these 16.6 m long magnets is a characteristic of the individual magnet with possible feedback information to its manufacturing procedure. A comparison of this vertical alignment characteristic with a magnetic field intensity (by NMR) characteristic for one of the prototypes is also presented. 5 refs., 7 figs.

  7. Catalysts for synthesizing various short chain hydrocarbons

    DOE Patents [OSTI]

    Colmenares, Carlos (Alamo, CA)

    1991-01-01T23:59:59.000Z

    Method and apparatus (10), including novel photocatalysts, are disclosed for the synthesis of various short chain hydrocarbons. Light-transparent SiO.sub.2 aerogels doped with photochemically active uranyl ions (18) are fluidized in a fluidized-bed reactor (12) having a transparent window (16), by hydrogen and CO, C.sub.2 H.sub.4 or C.sub.2 H.sub.6 gas mixtures (20), and exposed to radiation (34) from a light source (32) external to the reactor (12), to produce the short chain hydrocarbons (36).

  8. Gasoline prices up this week (short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin:DeploymentSite Name:24, 2014long version)short version)short

  9. High intensity discharge device containing oxytrihalides

    DOE Patents [OSTI]

    Lapatovich, W.P.; Keeffe, W.M.; Liebermann, R.W.; Maya, J.

    1987-06-09T23:59:59.000Z

    A fill composition for a high intensity discharge device including mercury, niobium oxytrihalide, and a molecular stabilization agent is provided. The molar ratio of niobium oxytrihalide to the molecular stabilization agent in the fill is in the range of from about 5:1 to about 7.5:1. Niobium oxytrihalide is present in the fill in sufficient amount to produce, by dissociation in the discharge, atomic niobium, niobium oxide, NbO, and niobium dioxide, NbO[sub 2], with the molar ratio of niobium-containing vapor species to mercury in the fill being in the range of from about 0.01:1 to about 0.50:1; and mercury pressure of about 1 to about 50 atmospheres at lamp operating temperature. There is also provided a high intensity discharge device comprising a sealed light-transmissive arc tube; the arc tube including the above-described fill; and an energizing means for producing an electric discharge within the arc tube. 7 figs.

  10. China's energy intensity and its determinants at the provincial level

    E-Print Network [OSTI]

    Zhang, Xin, S.M. Massachusetts Institute of Technology

    2009-01-01T23:59:59.000Z

    Energy intensity is defined as the amount of energy consumed per dollar of GDP (Gross Domestic Product). The People's Republic of China's (China's) energy intensity has been declining significantly since the late 1970s. ...

  11. INERTIAL FUSION DRIVEN BY INTENSE HEAVY-ION BEAMS

    E-Print Network [OSTI]

    Sharp, W. M.

    2011-01-01T23:59:59.000Z

    HIFAN 1830 INERTIAL FUSION DRIVEN BY INTENSE HEAVY-ION BEAMSAC02-05CH11231. INERTIAL FUSION DRIVEN BY INTENSE HEAVY-ION467 (1992). [38] R. W. Moir, Fusion Tech. 25, 5 (1994) [39

  12. Short Communication Application of bare gold nanoparticles

    E-Print Network [OSTI]

    Miksik, Ivan

    Short Communication Application of bare gold nanoparticles in open-tubular CEC separations of polyaromatic hydrocarbons and peptides In this study, bare gold nanoparticles (GNPs) immobilized in the sol capillary wall and improving their resolution. Keywords: CE / Gold nanoparticles / Peptides / Polyaromatic

  13. Short Communication Concurrent correction method for modeling

    E-Print Network [OSTI]

    Kirby, James T.

    Short Communication Concurrent correction method for modeling morphological response to dredging the morphological impact of an offshore dredging pit using a process-based model, the hydrodynamic conditions, often with the initial bathymetry profile before dredging. This lack of equilibrium causes a fast profile adjustment

  14. SHORT CONTRIBUTION J. Choi S. Y. Lee

    E-Print Network [OSTI]

    1990). To date, there have been several reports on the pro- cess analysis and economic evaluation and methods Process analysis and economic evaluation of P(3HB/V) production and recovery were carried outSHORT CONTRIBUTION J. Choi á S. Y. Lee Economic considerations in the production of poly(3

  15. Electricity and short wavelength radiation generator

    DOE Patents [OSTI]

    George, E.V.

    1985-08-26T23:59:59.000Z

    Methods and associated apparati for use of collisions of high energy atoms and ions of He, Ne, or Ar with themselves or with high energy neutrons to produce short wavelength radiation (lambda approx. = 840-1300 A) that may be utilized to produce cathode-anode currents or photovoltaic currents.

  16. Cosmological consequences of short distance physics

    E-Print Network [OSTI]

    Niemeyer, J C

    2002-01-01T23:59:59.000Z

    Inflation can act as a space-time microscope for Planck or string scale effects, leaving potentially observable traces in the primordial perturbation spectrum. I discuss two frameworks that were used recently to study this phenomenon: nonlinear dispersion and short distance uncertainty.

  17. Cosmological consequences of short distance physics

    E-Print Network [OSTI]

    Jens C. Niemeyer

    2002-01-30T23:59:59.000Z

    Inflation can act as a space-time microscope for Planck or string scale effects, leaving potentially observable traces in the primordial perturbation spectrum. I discuss two frameworks that were used recently to study this phenomenon: nonlinear dispersion and short distance uncertainty.

  18. Video Production For Short Educational Videos

    E-Print Network [OSTI]

    Video Production Handbook For Short Educational Videos Jennifer Cook Small Acreage Management page 6 Introduction page 3 Prepare for Video Shoot page 8 Video Shoot page 9 Editing Page 11 Draft Review page 12 Final Video page 13 Table of Contents Video Production Process #12;3 Equipment

  19. Short Specialist Review Gene structure prediction

    E-Print Network [OSTI]

    Brendel, Volker

    Short Specialist Review Gene structure prediction in plant genomes Volker Brendel Iowa State) within most genes makes the problem of computational gene structure prediction distinct from (and harder prediction in vertebrates. The second reason is pragmatic. Expressed Sequence Tag (EST) sequencing and whole

  20. SHORT COMMUNICATION Chiral Enrichment of Serine

    E-Print Network [OSTI]

    Clemmer, David E.

    SHORT COMMUNICATION Chiral Enrichment of Serine via Formation, Dissociation, and Soft University, Bloomington, Indiana, USA Chiral enrichment of serine is achieved in experiments that involve of chirally-enriched octameric cluster ions and their dissociation, viz. Ser1 3 Ser8 3 Ser1, allows serine

  1. Advanced Mitigating Measures for the Cell Internal Short Risk (Presentation)

    SciTech Connect (OSTI)

    Darcy, E.; Smith, K.

    2010-04-01T23:59:59.000Z

    This presentation describes mitigation measures for internal short circuits in lithium-ion battery cells.

  2. A Method to Search for Local Sources of Short Duration Bursts of Superhigh Energy Gamma Rays

    E-Print Network [OSTI]

    E. N. Alexeyev; D. D. Djappuev; A. U. Kudjaev; S. Kh. Ozrokov

    2001-04-09T23:59:59.000Z

    A method of a search for local sources of superhigh energy gamma rays is described in the paper.It is shown that the method is more effective then the usually used method extracting excess from total intensity if gamma ray burst durations are short.Using the suggested method,the information detected with the Baksan installation ``Carpet'' during 1992-1996 years was analyzed.An excess of event numbers was found at the confidence level of 6.5$\\sigma$ in the direction to Mrk 501.

  3. Lyapunov exponent of the random Schrödinger operator with short-range correlated noise potential

    E-Print Network [OSTI]

    Yuri Godin; Stanislav Molchanov; Boris Vainberg

    2013-06-04T23:59:59.000Z

    We study the influence of disorder on propagation of waves in one-dimensional structures. Transmission properties of the process governed by the Schr\\"{o}dinger equation with the white noise potential can be expressed through the Lyapunov exponent $\\gamma$ which we determine explicitly as a function of the noise intensity \\sigma and the frequency \\omega. We find uniform two-parameter asymptotic expressions for $\\gamma$ which allow us to evaluate $\\gamma$ for different relations between \\sigma and \\omega. The value of the Lyapunov exponent is also obtained in the case of a short-range correlated noise, which is shown to be less than its white noise counterpart.

  4. On the description of the GCR intensity in the last three solar minima

    E-Print Network [OSTI]

    Kalinin, M S; Krainev, M B; Svirzhevskaya, A K; Svirzhevsky, N S

    2014-01-01T23:59:59.000Z

    We discuss the main characteristic features in the heliospheric parameters important for the GCR intensity modulation for the last three solar minima (1986--1987, 1996--1997 and 2008--2009). The model for the GCR intensity modulation is considered and the set of the model parameters is chosen which allows the description of the observed GCR intensity distributions at the moments of the maximum GCR intensity in two solar minima (1987 and 1997) normal for the second half of the last century. Then we try to describe with the above model and set of parameters the unusually soft GCR energy spectra at the moments of the maximum GCR intensity in the last solar minimum between cycles 23 and 24 (2009). Our main conclusion is that the most simple way to do so is to reduce the size of the modulation region and, probably, change the rigidity dependence of the diffusion coefficient. The change of both parameters is substantiated by the observations of the solar wind and heliospheric magnetic field.

  5. Short-term exploitative competition can explain human foraging patterns

    E-Print Network [OSTI]

    Saavedra, Serguei; Switanek, Nicholas; Uzzi, Brian

    2012-01-01T23:59:59.000Z

    Theory purports that animal foraging choices evolve to maximize returns, such as net energy intake. Empirical research in both human and nonhuman animals reveals that many times foraging choices are context dependent and affected by the foraging choices of others. Yet, broad empirical facts on the link between optimal foraging patterns, competition and context-dependent information are only now emerging due to the complication of gathering field data or constructing experiments. Here, we analyze foraging choices by a cohort of professional day traders who face the trade-off of trading the same stock multiple times in a row---patch exploitation---or switching to a different stock---patch exploration---with potentially higher returns. Our findings indicate that traders' foraging patterns are characterized by short-term comparative returns that decrease in proportion to patch exploitation and exploration, a novel measure that captures the difference between a trader's resource intake and the competitors' expecte...

  6. Short-range atmospheric dispersion of carbon dioxide

    SciTech Connect (OSTI)

    Cortis, A.; Oldenburg, C.M.

    2009-11-01T23:59:59.000Z

    We present a numerical study aimed at quantifying the effects of concentration-dependent density on the spread of a seeping plume of CO{sub 2} into the atmosphere such as could arise from a leaking geologic carbon sequestration site. Results of numerical models can be used to supplement field monitoring estimates of CO{sub 2} seepage flux by modelling transport and dispersion between the source emission and concentration-measurement points. We focus on modelling CO{sub 2} seepage dispersion over relatively short distances where density effects are likely to be important. We model dense gas dispersion using the steady-state Reynolds-averaged Navier-Stokes equations with density dependence in the gravity term. Results for a two-dimensional system show that a density dependence emerges at higher fluxes than prior estimates. A universal scaling relation is derived that allows estimation of the flux from concentrations measured downwind and vice versa.

  7. Surfaces in the interaction of intense long wavelength laser light with plasmas

    SciTech Connect (OSTI)

    Jones, R.D.

    1985-01-01T23:59:59.000Z

    The role of surface in the interaction of intense CO/sub 2/ laser light with plasmas is reviewed. The collisionless absorption of long wavelength light is discussed. Specific comments on the role of ponderomotive forces and profile steepening on resonant absorption are made. It is shown that at intensities above 10/sup 15/W/cm/sup 2/ the absorption is determined by ion acoustic-like surface modes. It is demonstrated experimentally that harmonics up to the forty-sixth can be generated in steep density profiles. Computer simulations and theoretical mechanisms for this phenomena are presented. The self generation of magnetic fields on surfaces is discussed. The role these fields play in the lateral transport of energy, the insulation of the target from hot electrons, and the acceleration of fast ions is discussed.

  8. Physics of Neutralization of Intense High-Energy Ion Beam Pulses by Electrons

    SciTech Connect (OSTI)

    Kaganovich, I. D.; Davidson, R. C.; Dorf, M. A.; Startsev, E. A.; Sefkow, A. B.; Lee, E. P.; Friedman, A.

    2010-04-28T23:59:59.000Z

    Neutralization and focusing of intense charged particle beam pulses by electrons forms the basis for a wide range of applications to high energy accelerators and colliders, heavy ion fusion, and astrophysics. For example, for ballistic propagation of intense ion beam pulses, background plasma can be used to effectively neutralize the beam charge and current, so that the self-electric and self- magnetic fields do not affect the ballistic propagation of the beam. From the practical perspective of designing advanced plasma sources for beam neutralization, a robust theory should be able to predict the self-electric and self-magnetic fields during beam propagation through the background plasma. The major scaling relations for the self-electric and self-magnetic fields of intense ion charge bunches propagating through background plasma have been determined taking into account the effects of transients during beam entry into the plasma, the excitation of collective plasma waves, the effects of gas ionization, finite electron temperature, and applied solenoidal and dipole magnetic fields. Accounting for plasma production by gas ionization yields a larger self-magnetic field of the ion beam compared to the case without ionization, and a wake of current density and self-magnetic field perturbations is generated behind the beam pulse. A solenoidal magnetic field can be applied for controlling the beam propagation. Making use of theoretical models and advanced numerical simulations, it is shown that even a small applied magnetic field of about 100G can strongly affect the beam neutralization. It has also been demonstrated that in the presence of an applied magnetic field the ion beam pulse can excite large-amplitude whistler waves, thereby producing a complex structure of self-electric and self-magnetic fields. The presence of an applied solenoidal magnetic field may also cause a strong enhancement of the radial self-electric field of the beam pulse propagating through the background plasma. If controlled, this physical effect can be used for optimized beam transport over long distances.

  9. Physics of Neutralization of Intense Charged Particle Beam Pulses by a Background Plasma

    SciTech Connect (OSTI)

    Kaganovich, I.D.; Davidson, R.C.; Dorf, M.A.; Startsev, E.A.; Sefkow, A.B; Friedman, A.F.; Lee, E.P.

    2009-09-03T23:59:59.000Z

    Neutralization and focusing of intense charged particle beam pulses by a background plasma forms the basis for a wide range of applications to high energy accelerators and colliders, heavy ion fusion, and astrophysics. For example, for ballistic propagation of intense ion beam pulses, background plasma can be used to effectively neutralize the beam charge and current, so that the self-electric and self-magnetic fields do not affect the ballistic propagation of the beam. From the practical perspective of designing advanced plasma sources for beam neutralization, a robust theory should be able to predict the self-electric and self-magnetic fields during beam propagation through the background plasma. The major scaling relations for the self-electric and self-magnetic fields of intense ion charge bunches propagating through background plasma have been determined taking into account the effects of transients during beam entry into the plasma, the excitation of collective plasma waves, the effects of gas ionization, finite electron temperature, and applied solenoidal and dipole magnetic fields. Accounting for plasma production by gas ionization yields a larger self-magnetic field of the ion beam compared to the case without ionization, and a wake of current density and self-magnetic field perturbations is generated behind the beam pulse. A solenoidal magnetic field can be applied for controlling the beam propagation. Making use of theoretical models and advanced numerical simulations, it is shown that even a small applied magnetic field of about 100G can strongly affect the beam neutralization. It has also been demonstrated that in the presence of an applied magnetic field the ion beam pulse can excite large-amplitude whistler waves, thereby producing a complex structure of self-electric and self-magnetic fields. The presence of an applied solenoidal magnetic field may also cause a strong enhancement of the radial self-electric field of the beam pulse propagating through the background plasma. If controlled, this physical effect can be used for optimized beam transport over long distances.

  10. An evaluation of reduced amounts of advance traffic control for short duration and stop-and-go maintenance operations

    E-Print Network [OSTI]

    Balke, Kevin Neil

    1987-01-01T23:59:59.000Z

    of driver information as the traffic control setup for a short-term, minor maintenance operation. Four field studies were performed on a total of six candidate signing treatments with the cone taper. An additional two field studies that studied a total... of five of the candidate signing treatments without the cone taper were performed. Both lane distribution and erratic maneuvers were used to measure the performance of the candidate treatments. The results of these field studies indicated...

  11. Ionization heating in rare-gas clusters under intense XUV laser pulses

    SciTech Connect (OSTI)

    Arbeiter, Mathias; Fennel, Thomas [Institute of Physics, University of Rostock, D-18051 Rostock (Germany)

    2010-07-15T23:59:59.000Z

    The interaction of intense extreme ultraviolet (XUV) laser pulses ({lambda}=32 nm, I=10{sup 11}-10{sup 14} W/cm{sup 2}) with small rare-gas clusters (Ar{sub 147}) is studied by quasiclassical molecular dynamics simulations. Our analysis supports a very general picture of the charging and heating dynamics in finite samples under short-wavelength radiation that is of relevance for several applications of free-electron lasers. First, up to a certain photon flux, ionization proceeds as a series of direct photoemission events producing a jellium-like cluster potential and a characteristic plateau in the photoelectron spectrum as observed in Bostedt et al. [Phys. Rev. Lett. 100, 133401 (2008)]. Second, beyond the onset of photoelectron trapping, nanoplasma formation leads to evaporative electron emission with a characteristic thermal tail in the electron spectrum. A detailed analysis of this transition is presented. Third, in contrast to the behavior in the infrared or low vacuum ultraviolet range, the nanoplasma energy capture proceeds via ionization heating, i.e., inner photoionization of localized electrons, whereas collisional heating of conduction electrons is negligible up to high laser intensities. A direct consequence of the latter is a surprising evolution of the mean energy of emitted electrons as function of laser intensity.

  12. Electromagnetic cascade in high energy electron, positron, and photon interactions with intense laser pulses

    E-Print Network [OSTI]

    S. S. Bulanov; C. B. Schroeder; E. Esarey; W. P. Leemans

    2013-06-05T23:59:59.000Z

    The interaction of high energy electrons, positrons, and photons with intense laser pulses is studied in head-on collision geometry. It is shown that electrons and/or positrons undergo a cascade-type process involving multiple emissions of photons. These photons can consequently convert into electron-positron pairs. As a result charged particles quickly lose their energy developing an exponentially decaying energy distribution, which suppresses the emission of high energy photons, thus reducing the number of electron-positron pairs being generated. Therefore, this type of interaction suppresses the development of the electromagnetic avalanche-type discharge, i.e., the exponential growth of the number of electrons, positrons, and photons does not occur in the course of interaction. The suppression will occur when 3D effects can be neglected in the transverse particle orbits, i.e., for sufficiently broad laser pulses with intensities that are not too extreme. The final distributions of electrons, positrons, and photons are calculated for the case of a high energy e-beam interacting with a counter-streaming, short intense laser pulse. The energy loss of the e-beam, which requires a self-consistent quantum description, plays an important role in this process, as well as provides a clear experimental observable for the transition from the classical to quantum regime of interaction.

  13. Numerical simulations of stripping effects in high-intensity hydrogen ion linacs

    SciTech Connect (OSTI)

    Carneiro, J.-P.; /Fermilab; Mustapha, B.; Ostroumov, P.N.; /Argonne

    2008-12-01T23:59:59.000Z

    Numerical simulations of H{sup -} stripping losses from blackbody radiation, electromagnetic fields, and residual gas have been implemented into the beam dynamics code TRACK. Estimates of the stripping losses along two high-intensity H{sup -} linacs are presented: the Spallation Neutron Source linac currently being operated at Oak Ridge National Laboratory and an 8 GeV superconducting linac currently being designed at Fermi National Accelerator Laboratory.

  14. Optical sensor of magnetic fields

    DOE Patents [OSTI]

    Butler, M.A.; Martin, S.J.

    1986-03-25T23:59:59.000Z

    An optical magnetic field strength sensor for measuring the field strength of a magnetic field comprising a dilute magnetic semi-conductor probe having first and second ends, longitudinally positioned in the magnetic field for providing Faraday polarization rotation of light passing therethrough relative to the strength of the magnetic field. Light provided by a remote light source is propagated through an optical fiber coupler and a single optical fiber strand between the probe and the light source for providing a light path therebetween. A polarizer and an apparatus for rotating the polarization of the light is provided in the light path and a reflector is carried by the second end of the probe for reflecting the light back through the probe and thence through the polarizer to the optical coupler. A photo detector apparatus is operably connected to the optical coupler for detecting and measuring the intensity of the reflected light and comparing same to the light source intensity whereby the magnetic field strength may be calculated.

  15. Short Time Cycles of Purely Quantum Refrigerators

    E-Print Network [OSTI]

    Tova Feldmann; Ronnie Kosloff

    2012-04-18T23:59:59.000Z

    Four stroke Otto refrigerator cycles with no classical analogue are studied. Extremely short cycle times with respect to the internal time scale of the working medium characterize these refrigerators. Therefore these cycles are termed sudden. The sudden cycles are characterized by the stable limit cycle which is the invariant of the global cycle propagator. During their operation the state of the working medium possesses significant coherence which is not erased in the equilibration segments due to the very short time allocated. This characteristic is reflected in a difference between the energy entropy and the Von Neumann entropy of the working medium. A classification scheme for sudden refrigerators is developed allowing simple approximations for the cooling power and coefficient of performance.

  16. Short pulse free electron laser amplifier

    DOE Patents [OSTI]

    Schlitt, Leland G. (Livermore, CA); Szoke, Abraham (Fremont, CA)

    1985-01-01T23:59:59.000Z

    Method and apparatus for amplification of a laser pulse in a free electron laser amplifier where the laser pulse duration may be a small fraction of the electron beam pulse duration used for amplification. An electron beam pulse is passed through a first wiggler magnet and a short laser pulse to be amplified is passed through the same wiggler so that only the energy of the last fraction, f, (f<1) of the electron beam pulse is consumed in amplifying the laser pulse. After suitable delay of the electron beam, the process is repeated in a second wiggler magnet, a third, . . . , where substantially the same fraction f of the remainder of the electron beam pulse is consumed in amplification of the given short laser pulse in each wiggler magnet region until the useful electron beam energy is substantially completely consumed by amplification of the laser pulse.

  17. Short-Range Nucleon-Nucleon Correlations

    SciTech Connect (OSTI)

    Douglas Higinbotham

    2011-10-01T23:59:59.000Z

    Valence-shell nucleon knock-out experiments, such as 12C(e,e'p)11B, measure less strength then is predicted by independent particle shell model calculations. The theoretical solution to this problem is to include the correlations between the nucleons in the nucleus in the calculations. Motivated by these results, many electron scattering experiments have tried to directly observe these correlations in order to gain new insight into the short-range part of the nucleon-nucleon potential. Unfortunately, many competing mechanisms can cause the same observable final-state as an initial-state correlation, making truly isolating the signal extremely challenging. This paper reviews the recent experimental evidence for short-range correlations, as well as explores the possibility that such correlations are responsible for the EMC effect in the 0.3 < xB < 0.7 deep inelastic scattering ratios.

  18. Short-Range Nucleon-Nucleon Correlations

    SciTech Connect (OSTI)

    Higinbotham, Douglas W. [Thomas Jefferson National Accelerator Facility, Newport News, VA 23601 (United States)

    2011-10-24T23:59:59.000Z

    Valence-shell nucleon knock-out experiments, such as {sup 12}C(e,e'p){sup 11}B, measure less strength then is predicted by independent particle shell model calculations. The theoretical solution to this problem is to include the correlations between the nucleons in the nucleus in the calculations. Motivated by these results, many electron scattering experiments have tried to isolate the signal from these correlations in order to gain new insight into the short-range part of the nucleon-nucleon potential. Unfortunately, many competing mechanisms can cause the same observable final-state as an initial-state correlation, making truly isolating the signal extremely challenging. This paper reviews the recent experimental evidence for short-range correlations, as well as explores the possibility that such correlations are responsible for the EMC effect in the 0.3

  19. Short distance physics with heavy quark potentials

    E-Print Network [OSTI]

    Zantow, F; Karsch, Frithjof; Petreczky, P

    2002-01-01T23:59:59.000Z

    We present lattice studies of heavy quark potentials in the quenched approximation of QCD at finite temperatures. Both, the color singlet and color averaged potentials are calculated. While the potentials are well known at large distances, we give a detailed analysis of their short distance behavior (from 0.015 fm to 1 fm) near the critical temperature. At these distances we expect that the T-dependent potentials go over into the zero temperature potential. Indeed, we find evidences that the temperature influence gets suppressed and the potentials starts to become a unique function of the underlying distance scale. We use this feature to normalize the heavy quark potentials at short distances and extract the free energy of the quark system in a gluonic heat bath.

  20. Noninvasive valve monitor using alternating electromagnetic field

    DOE Patents [OSTI]

    Eissenberg, David M. (Oak Ridge, TN); Haynes, Howard D. (Knoxville, TN); Casada, Donald A. (Knoxville, TN)

    1993-01-01T23:59:59.000Z

    One or more electrical coils are carefully located on the outside of a valve body. An alternating current passing through the coil(s) results in an alternating electromagnetic field being transmitted into the valve body and valve internals. The electromagnetic field varies in intensity and polarity in the valve. As the position of a valve internal part is changed, the electromagnetic field throughout the valve body and its internals is altered. A passive receiver coil carefully located on the outside of the valve body detects the intensity of the electromagnetic field at that location as an induced electrical voltage in the coil. With the change in position of the valve internal part, there is a corresponding change in the induced voltage as a result of the alteration in the alternating electromagnetic field at that location. Changes in the voltage provide an indication of the position and motion of valve internals.

  1. High intensity neutrino oscillation facilities in Europe

    E-Print Network [OSTI]

    Edgecock, T R; Davenne, T; Densham, C; Fitton, M; Kelliher, D; Loveridge, P; Machida, S; Prior, C; Rogers, C; Rooney, M; Thomason, J; Wilcox, D; Wildner, E; Efthymiopoulos, I; Garoby, R; Gilardoni, S; Hansen, C; Benedetto, E; Jensen, E; Kosmicki, A; Martini, M; Osborne, J; Prior, G; Stora, T; Melo-Mendonca, T; Vlachoudis, V; Waaijer, C; Cupial, P; Chancé, A; Longhin, A; Payet, J; Zito, M; Baussan, E; Bobeth, C; Bouquerel, E; Dracos, M; Gaudiot, G; Lepers, B; Osswald, F; Poussot, P; Vassilopoulos, N; Wurtz, J; Zeter, V; Bielski, J; Kozien, M; Lacny, L; Skoczen, B; Szybinski, B; Ustrycka, A; Wroblewski, A; Marie-Jeanne, M; Balint, P; Fourel, C; Giraud, J; Jacob, J; Lamy, T; Latrasse, L; Sortais, P; Thuillier, T; Mitrofanov, S; Loiselet, M; Keutgen, Th; Delbar, Th; Debray, F; Trophine, C; Veys, S; Daversin, C; Zorin, V; Izotov, I; Skalyga, V; Burt, G; Dexter, A C; Kravchuk, V L; Marchi, T; Cinausero, M; Gramegna, F; De Angelis, G; Prete, G; Collazuol, G; Laveder, M; Mazzocco, M; Mezzetto, M; Signorini, C; Vardaci, E; Di Nitto, A; Brondi, A; La Rana, G; Migliozzi, P; Moro, R; Palladino, V; Gelli, N; Berkovits, D; Hass, M; Hirsh, T Y; Schaumann, M; Stahl, A; Wehner, J; Bross, A; Kopp, J; Neuffer, D; Wands, R; Bayes, R; Laing, A; Soler, P; Agarwalla, S K; Villanueva, A Cervera; Donini, A; Ghosh, T; Cadenas, J J Gómez; Hernández, P; Martín-Albo, J; Mena, O; Burguet-Castell, J; Agostino, L; Buizza-Avanzini, M; Marafini, M; Patzak, T; Tonazzo, A; Duchesneau, D; Mosca, L; Bogomilov, M; Karadzhov, Y; Matev, R; Tsenov, R; Akhmedov, E; Blennow, M; Lindner, M; Schwetz, T; Martinez, E Fernández; Maltoni, M; Menéndez, J; Giunti, C; García, M C González; Salvado, J; Coloma, P; Huber, P; Li, T; López-Pavón, J; Orme, C; Pascoli, S; Meloni, D; Tang, J; Winter, W; Ohlsson, T; Zhang, H; Scotto-Lavina, L; Terranova, F; Bonesini, M; Tortora, L; Alekou, A; Aslaninejad, M; Bontoiu, C; Kurup, A; Jenner, L J; Long, K; Pasternak, J; Pozimski, J; Back, J J; Harrison, P; Beard, K; Bogacz, A; Berg, J S; Stratakis, D; Witte, H; Snopok, P; Bliss, N; Cordwell, M; Moss, A; Pattalwar, S; Apollonio, M

    2013-01-01T23:59:59.000Z

    The EUROnu project has studied three possible options for future, high intensity neutrino oscillation facilities in Europe. The first is a Super Beam, in which the neutrinos come from the decay of pions created by bombarding targets with a 4 MW proton beam from the CERN High Power Superconducting Proton Linac. The far detector for this facility is the 500 kt MEMPHYS water Cherenkov, located in the Fr\\'ejus tunnel. The second facility is the Neutrino Factory, in which the neutrinos come from the decay of {\\mu}+ and {\\mu}- beams in a storage ring. The far detector in this case is a 100 kt Magnetised Iron Neutrino Detector at a baseline of 2000 km. The third option is a Beta Beam, in which the neutrinos come from the decay of beta emitting isotopes, in particular 6He and 18Ne, also stored in a ring. The far detector is also the MEMPHYS detector in the Fr\\'ejus tunnel. EUROnu has undertaken conceptual designs of these facilities and studied the performance of the detectors. Based on this, it has determined the ph...

  2. Data Intensive Architecture for Scalable Cyber Analytics

    SciTech Connect (OSTI)

    Olsen, Bryan K.; Johnson, John R.; Critchlow, Terence J.

    2011-12-19T23:59:59.000Z

    Cyber analysts are tasked with the identification and mitigation of network exploits and threats. These compromises are difficult to identify due to the characteristics of cyber communication, the volume of traffic, and the duration of possible attack. In this paper, we describe a prototype implementation designed to provide cyber analysts an environment where they can interactively explore a month’s worth of cyber security data. This prototype utilized On-Line Analytical Processing (OLAP) techniques to present a data cube to the analysts. The cube provides a summary of the data, allowing trends to be easily identified as well as the ability to easily pull up the original records comprising an event of interest. The cube was built using SQL Server Analysis Services (SSAS), with the interface to the cube provided by Tableau. This software infrastructure was supported by a novel hardware architecture comprising a Netezza TwinFin® for the underlying data warehouse and a cube server with a FusionIO drive hosting the data cube. We evaluated this environment on a month’s worth of artificial, but realistic, data using multiple queries provided by our cyber analysts. As our results indicate, OLAP technology has progressed to the point where it is in a unique position to provide novel insights to cyber analysts, as long as it is supported by an appropriate data intensive architecture.

  3. On the relationship of the 27-day variations of the solar wind velocity and galactic cosmic ray intensity in minimum epoch of solar activity

    E-Print Network [OSTI]

    Alania, M V; Wawrzynczak, A

    2015-01-01T23:59:59.000Z

    We study the relationship of the 27-day variation of the galactic cosmic ray intensity with similar changes of the solar wind velocity and the interplanetary magnetic field based on the experimental data for the Bartels rotation period 2379 of 23 November 2007-19 December 2007. We develop a three dimensional (3-D) model of the 27-day variation of galactic cosmic ray intensity based on the heliolongitudinally dependent solar wind velocity. A consistent, divergence-free interplanetary magnetic field is derived by solving Maxwells equations with a heliolongitudinally dependent 27-day variation of the solar wind velocity reproducing in situ observations. We consider two types of 3-D models of the 27-day variation of galactic cosmic ray intensity - (1) with a plane heliospheric neutral sheet, and (2)- with the sector structure of the interplanetary magnetic field. The theoretical calculation shows that the sector structure does not influence significantly on the 27-day variation of galactic cosmic ray intensity as...

  4. RECORD-SETTING COSMIC-RAY INTENSITIES IN 2009 AND 2010

    SciTech Connect (OSTI)

    Mewaldt, R. A.; Davis, A. J.; Leske, R. A.; Stone, E. C.; Cummings, A. C.; Labrador, A. W. [California Institute of Technology, Pasadena, CA 91125 (United States); Lave, K. A.; Binns, W. R.; Israel, M. H. [Washington University, St. Louis, MO 63130 (United States); Wiedenbeck, M. E. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Christian, E. R.; De Nolfo, G. A.; Von Rosenvinge, T. T. [NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2010-11-01T23:59:59.000Z

    We report measurements of record-setting intensities of cosmic-ray nuclei from C to Fe, made with the Cosmic Ray Isotope Spectrometer carried on the Advanced Composition Explorer in orbit about the inner Sun-Earth Lagrangian point. In the energy interval from {approx}70 to {approx}450 MeV nucleon{sup -1}, near the peak in the near-Earth cosmic-ray spectrum, the measured intensities of major species from C to Fe were each 20%-26% greater in late 2009 than in the 1997-1998 minimum and previous solar minima of the space age (1957-1997). The elevated intensities reported here and also at neutron monitor energies were undoubtedly due to several unusual aspects of the solar cycle 23/24 minimum, including record-low interplanetary magnetic field (IMF) intensities, an extended period of reduced IMF turbulence, reduced solar-wind dynamic pressure, and extremely low solar activity during an extended solar minimum. The estimated parallel diffusion coefficient for cosmic-ray transport based on measured solar-wind properties was 44% greater in 2009 than in the 1997-1998 solar-minimum period. In addition, the weaker IMF should result in higher cosmic-ray drift velocities. Cosmic-ray intensity variations at 1 AU are found to lag IMF variations by 2-3 solar rotations, indicating that significant solar modulation occurs inside {approx}20 AU, consistent with earlier galactic cosmic-ray radial-gradient measurements. In 2010, the intensities suddenly decreased to 1997 levels following increases in solar activity and in the inclination of the heliospheric current sheet. We describe the conditions that gave cosmic rays greater access to the inner solar system and discuss some of their implications.

  5. PUBLISHED ONLINE: 22 DECEMBER 2013 | DOI: 10.1038/NPHYS2807 Ramsey-comb spectroscopy with intense

    E-Print Network [OSTI]

    Loss, Daniel

    in the following. Traditionally, excitation of atoms or molecules with two short and phase-coherent laser pulses combs based on mode-locked lasers have revolutionized the field of metrology and precision spec pulses could be amplified, and phase shift effects during the amplification process compromised

  6. Can short sellers predict accounting restatements and foresee their severity

    E-Print Network [OSTI]

    Efendi, Jap

    2005-11-01T23:59:59.000Z

    insiders. For example, Solomon Smith Barney?s Jack Grubman publicly attacked a short seller who criticized their banking client by stating that short sellers lack an understanding of the communication industry (Gasparino 2002). McGough (1991) describes...

  7. Naked Short Selling: Is it Information-Based Trading?

    E-Print Network [OSTI]

    Liu, Hu

    2012-10-19T23:59:59.000Z

    Naked short selling occurs when a short seller fails to deliver shares on the settlement day. The business press and many corporate managers characterize it as abusive price manipulation, alleging that selling nonexistent shares causes a price...

  8. Hopper compilers and DDT short outage next Wed, May 16

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    compilers and DDT short outage next Wed, May 16 Hopper compilers and DDT short outage next Wed, May 16 May 10, 2012 (0 Comments) Due to a scheduled maintenance for the License...

  9. An improved high intensity recycling helium-3 beam source

    SciTech Connect (OSTI)

    Hedgeland, H.; Kole, P. R.; Allison, W.; Ellis, J.; Jardine, A. P. [Cavendish Laboratory, JJ Thomson Ave., Cambridge CB3 0HE (United Kingdom)

    2009-07-15T23:59:59.000Z

    We describe an improved high intensity, recycling, supersonic atomic beam source. Changes address several issues previously limiting performance and reliability of the apparatus, including the use of newly available vacuum pumps and modifications to the recycling system. We achieve a source intensity of 2.5x10{sup 19} atoms/s/sr, almost twice that previously achievable during recycling. Current limits on intensity are discussed.

  10. Short wavelength ion temperature gradient turbulence

    SciTech Connect (OSTI)

    Chowdhury, J.; Ganesh, R. [Institute for Plasma Research, Bhat, Gandhinagar (India); Brunner, S.; Lapillonne, X.; Villard, L. [CRPP, Association EURATOM-Confederation Suisse, EPFL, 1015 Lausanne (Switzerland); Jenko, F. [Max-Planck-Institut fuer Plasmaphysik Boltzmannstr. 2, D-85748 Garching (Germany)

    2012-10-15T23:59:59.000Z

    The ion temperature gradient (ITG) mode in the high wavenumber regime (k{sub y}{rho}{sub s}>1), referred to as short wavelength ion temperature gradient mode (SWITG) is studied using the nonlinear gyrokinetic electromagnetic code GENE. It is shown that, although the SWITG mode may be linearly more unstable than the standard long wavelength (k{sub y}{rho}{sub s}<1) ITG mode, nonlinearly its contribution to the total thermal ion heat transport is found to be low. We interpret this as resulting from an increased zonal flow shearing effect on the SWITG mode suppression.

  11. Neutron scattering and extra short range interactions

    E-Print Network [OSTI]

    V. V. Nesvizhevsky; G. Pignol; K. V. Protasov

    2007-11-14T23:59:59.000Z

    The available data on neutron scattering were analyzed to constrain a hypothetical new short-range interaction. We show that these constraints are several orders of magnitude better than those usually cited in the range between 1 pm and 5 nm. This distance range occupies an intermediate space between collider searches for strongly coupled heavy bosons and searches for new weak macroscopic forces. We emphasise the reliability of the neutron constraints in so far as they provide several independent strategies. We have identified the most promising way to improve them.

  12. Short range correlations and the EMC effect

    SciTech Connect (OSTI)

    E. Piasetzky, L.B. Weinstein, D.W. Higinbotham, J. Gomez, O. Hen, R. Shneor

    2011-04-01T23:59:59.000Z

    The magnitude of the EMC effect measured in electron deep inelastic scattering (DIS) is linearly related to the Short Range Correlation (SRC) scaling factor obtained from electron inclusive scattering. We speculate that the observed correlation is due to the fact that both the EMC effect and SRC are dominated by high momentum nucleons in the nucleus. The observed phenomenological relationship can be used to extract the ratio of the deuteron to the free pn-pair cross sections, the DIS cross section for a free neutron, View the MathML source, the ratio of the free neutron to free proton structure functions, and the u/d ratio in a free proton.

  13. Gasoline price shows small increase (short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin:DeploymentSite Name: Email:UraniumNatural Gas SurveyshowsShort

  14. Gasoline prices continue to decrease (short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin:DeploymentSite Name: Email:UraniumNatural Gaslong(long19,short

  15. Gasoline prices continue to fall (short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin:DeploymentSite Name: Email:UraniumNaturallonglong version)short

  16. Gasoline prices show sharp increase (short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin:DeploymentSite Name:24, 2014long version) Theshort10,short

  17. Gasoline prices up this week (short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin:DeploymentSite Name:24, 2014long version)short version) The

  18. Gasoline prices up this week (short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin:DeploymentSite Name:24, 2014long version)short version)

  19. Short-Term Energy Outlook- May 2003

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz9 SeptemberSettingUncertainties in the3 1 Short-Term

  20. Laser-based proton acceleration on ultra-thin foil with a 100 TW class high intensity laser system

    E-Print Network [OSTI]

    Marjoribanks, Robin S.

    of electromagnetic fields in plasma, isotopes production or hadron therapy. The 100 TW class laser systemLaser-based proton acceleration on ultra-thin foil with a 100 TW class high intensity laser system. To characterize the plasma expansion, we monitor it with an imaging technique using a femtosecond laser probe

  1. Efficiency and Intensity in the AEO 2010

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEA :Work4/11ComputationalEdNERSC:EffectandSession 9 Energy

  2. Short-term energy outlook quarterly projections. Third quarter 1997

    SciTech Connect (OSTI)

    NONE

    1997-07-01T23:59:59.000Z

    This document presents the 1997 third quarter short term energy projections. Information is presented for fossil fuels and renewable energy.

  3. Search for Short Lived Particles in High Multiplicity Environment

    E-Print Network [OSTI]

    Marek Gazdzicki; Waldemar Retyk; Jan Pluta

    1999-04-14T23:59:59.000Z

    A method of statistical selection of short lived particles in high multiplicity nucleus-nucleus collisions is discussed.

  4. 4.0 SHORT FORM LOGO 4.01 OVERVIEW

    E-Print Network [OSTI]

    Lotze, Heike K.

    4.0 SHORT FORM LOGO 4.01 OVERVIEW 4.02 CLEAR SPACE AND MINIMUM SIZE 4.03 AS A WATERMARK 4.04 RETAIL PRODUCTS 4.05 APPLYING THE SHORT FORM LOGO PROPERLY 4.06 LINK TO DALHOUSIE AUTHORIZED SHORT FORM LOGO As part of the 2014 logo refresh, we introduced a short form logo for informal uses such as social media

  5. EIA Energy Efficiency-Residential Sector Energy Intensities,...

    U.S. Energy Information Administration (EIA) Indexed Site

    2009 These tables provide estimates of residential sector energy consumption and energy intensities for 1978 -1984, 1987, 1990, 1993, 1997, 2001 and 2005 based on the...

  6. ITP Energy Intensive Processes: Improved Heat Recovery in Biomass...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Improved Heat Recovery in Biomass-Fired Boilers ITP Energy Intensive Processes: Improved Heat Recovery in Biomass-Fired Boilers biomass-firedboilers.pdf More Documents &...

  7. Engineering Strength, Porosity, and Emission Intensity of Nanostructur...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the porosity, mechanical strength, and luminescence intensity of metal chalcogenide aerogels was probed by comparison of CdSe aerogels prepared from spherical and rod-shaped...

  8. Intense Ion Beam for Warm Dense Matter Physics

    SciTech Connect (OSTI)

    Coleman, Joshua Eugene

    2008-05-23T23:59:59.000Z

    The Neutralized Drift Compression Experiment (NDCX) at Lawrence Berkeley National Laboratory is exploring the physical limits of compression and focusing of ion beams for heating material to warm dense matter (WDM) and fusion ignition conditions. The NDCX is a beam transport experiment with several components at a scale comparable to an inertial fusion energy driver. The NDCX is an accelerator which consists of a low-emittance ion source, high-current injector, solenoid matching section, induction bunching module, beam neutralization section, and final focusing system. The principal objectives of the experiment are to control the beam envelope, demonstrate effective neutralization of the beam space-charge, control the velocity tilt on the beam, and understand defocusing effects, field imperfections, and limitations on peak intensity such as emittance and aberrations. Target heating experiments with space-charge dominated ion beams require simultaneous longitudinal bunching and transverse focusing. A four-solenoid lattice is used to tune the beam envelope to the necessary focusing conditions before entering the induction bunching module. The induction bunching module provides a head-to-tail velocity ramp necessary to achieve peak axial compression at the desired focal plane. Downstream of the induction gap a plasma column neutralizes the beam space charge so only emittance limits the focused beam intensity. We present results of beam transport through a solenoid matching section and simultaneous focusing of a singly charged K{sup +} ion bunch at an ion energy of 0.3 MeV. The results include a qualitative comparison of experimental and calculated results after the solenoid matching section, which include time resolved current density, transverse distributions, and phase-space of the beam at different diagnostic planes. Electron cloud and gas measurements in the solenoid lattice and in the vicinity of intercepting diagnostics are also presented. Finally, comparisons of improved experimental and calculated axial focus (> 100 x axial compression, < 2 ns pulses) and higher peak energy deposition on target are also presented. These achievements demonstrate the capabilities for near term target heating experiments to T{sub e} {approx} 0.1 eV and for future ion accelerators to heat targets to T{sub e} > 1 eV.

  9. Semester, Academic Year and Short Term SUNY Programs

    E-Print Network [OSTI]

    Suzuki, Masatsugu

    Semester, Academic Year and Short Term SUNY Programs: Asia #12;1 Table of Contents How to Use Year 10 Japan Short-term 12 Korea Semester & Academic Year 13 Korea Short-term 17 Programs in Other Contact Information 23 How to Use this Booklet This handout contains listings of all the programs offered

  10. Short-term energy outlook quarterly projections. First quarter 1994

    SciTech Connect (OSTI)

    Not Available

    1994-02-07T23:59:59.000Z

    The Energy Information Administration (EIA) prepares quarterly, short- term energy supply, demand, and price projections for publication in February, May, August, and November in the Short-Term Energy Outlook (Outlook). An annual supplement analyzes the performance of previous forecasts, compares recent cases with those of other forecasting services, and discusses current topics related to the short-term energy markets.

  11. ORIGINAL PAPER Introduction to the Special Issues: Short-term

    E-Print Network [OSTI]

    Olufsen, Mette Sofie

    in short-term cardiovascular­respiratory regulation, (ii) to develop mathematical models that can improve involved in short-term cardio- vascular­respiratory control include auto-regulation of vasculature, controlORIGINAL PAPER Introduction to the Special Issues: Short-term Cardiovascular­Respiratory Control

  12. Do short sale transactions precede bad news events?* Holger Daske

    E-Print Network [OSTI]

    Kearns, Michael

    , 2005 Current Draft: October 18, 2005 ABSTRACT: Do short sale transactions precede bad news eventsDo short sale transactions precede bad news events?* Holger Daske Scott A. Richardson rem Tuna? Not recently. This paper examines short sale transactions around significant news events. Using a novel

  13. Final Report 527 Economic Impact Analysis of Short Line Railroads

    E-Print Network [OSTI]

    Stephens, Jacqueline

    railroads. First described is the scope and presence of the eleven short line railroads currently operatingFinal Report 527 Economic Impact Analysis of Short Line Railroads by Jared J. Llorens, Ph.D. James's Catalog No. 4. Title and Subtitle Economic Impact Analysis of Short Line Railroads 5. Report Date October

  14. Intense Magnetized Plasma-Wall Interaction

    SciTech Connect (OSTI)

    Bauer, Bruno S. [UNR] [UNR; Fuelling, Stephan [UNR] [UNR

    2013-11-30T23:59:59.000Z

    This research project studied wall-plasma interactions relevant to fusion science. Such interactions are a critical aspect of Magneto-Inertial Fusion (MIF) because flux compression by a pusher material, in particular the metal for the liner approach to MIF, involves strong eddy current heating on the surface of the pusher, and probably interactions and mixing of the pusher with the interior fuel during the time when fusion fuel is being burned. When the pusher material is a metal liner, high-energy-density conditions result in fascinating behavior. For example, "warm dense matter" is produced, for which material properties such as resistivity and opacity are not well known. In this project, the transformation into plasma of metal walls subjected to pulsed megagauss magnetic fields was studied with an experiment driven by the UNR 1 MA Zebra generator. The experiment was numerically simulated with using the MHRDR code. This simple, fundamental high-energy-density physics experiment, in a regime appropriate to MIF, has stimulated an important and fascinating comparison of numerical modeling codes and tables with experiment. In addition, we participated in developing the FRCHX experiment to compress a field-reversed-configuration (FRC) plasma with a liner, in collaboration with researchers from Air Force Research Laboratory and Los Alamos National Lab, and we helped develop diagnostics for the Plasma Liner Experiment (PLX) at LANL. Last, but not least, this project served to train students in high-energy-density physics.

  15. MINERAL PROCESSING BY SHORT CIRCUITS IN PROTOPLANETARY DISKS

    SciTech Connect (OSTI)

    McNally, Colin P. [Niels Bohr International Academy, Niels Bohr Institute, DK-2100 Copenhagen (Denmark); Hubbard, Alexander; Mac Low, Mordecai-Mark [Department of Astrophysics, American Museum of Natural History, New York, NY 10024-5192 (United States); Ebel, Denton S. [Department of Earth and Planetary Sciences, American Museum of Natural History, New York, NY 10024-5192 (United States); D'Alessio, Paola, E-mail: cmcnally@nbi.dk, E-mail: ahubbard@amnh.org, E-mail: mordecai@amnh.org, E-mail: debel@amnh.org, E-mail: p.dalessio@crya.unam.mx [Centro de Radioastronomia y Astrofisica, Universidad Nacional Autonoma de Mexico, 58089 Morelia, MICH (Mexico)

    2013-04-10T23:59:59.000Z

    Meteoritic chondrules were formed in the early solar system by brief heating of silicate dust to melting temperatures. Some highly refractory grains (Type B calcium-aluminum-rich inclusions, CAIs) also show signs of transient heating. A similar process may occur in other protoplanetary disks, as evidenced by observations of spectra characteristic of crystalline silicates. One possible environment for this process is the turbulent magnetohydrodynamic flow thought to drive accretion in these disks. Such flows generally form thin current sheets, which are sites of magnetic reconnection, and dissipate the magnetic fields amplified by a disk dynamo. We suggest that it is possible to heat precursor grains for chondrules and other high-temperature minerals in current sheets that have been concentrated by our recently described short-circuit instability. We extend our work on this process by including the effects of radiative cooling, taking into account the temperature dependence of the opacity; and by examining current sheet geometry in three-dimensional, global models of magnetorotational instability. We find that temperatures above 1600 K can be reached for favorable parameters that match the ideal global models. This mechanism could provide an efficient means of tapping the gravitational potential energy of the protoplanetary disk to heat grains strongly enough to form high-temperature minerals. The volume-filling nature of turbulent magnetic reconnection is compatible with constraints from chondrule-matrix complementarity, chondrule-chondrule complementarity, the occurrence of igneous rims, and compound chondrules. The same short-circuit mechanism may perform other high-temperature mineral processing in protoplanetary disks such as the production of crystalline silicates and CAIs.

  16. Sensor for detecting changes in magnetic fields

    DOE Patents [OSTI]

    Praeg, W.F.

    1980-02-26T23:59:59.000Z

    A sensor is described for detecting changes in the magnetic field of the equilibrium-field coil of a Tokamak plasma device that comprises a pair of bifilar wires disposed circumferentially, one inside and one outside the equilibrium-field coil. Each is shorted at one end. The difference between the voltages detected at the other ends of the bifilar wires provides a measure of changing flux in the equilibrium-field coil. This difference can be used to detect faults in the coil in time to take action to protect the coil.

  17. Sensor for detecting changes in magnetic fields

    DOE Patents [OSTI]

    Praeg, Walter F. (Palos Park, IL)

    1981-01-01T23:59:59.000Z

    A sensor for detecting changes in the magnetic field of the equilibrium-field coil of a Tokamak plasma device comprises a pair of bifilar wires disposed circumferentially, one inside and one outside the equilibrium-field coil. Each is shorted at one end. The difference between the voltages detected at the other ends of the bifilar wires provides a measure of changing flux in the equilibrium-field coil. This difference can be used to detect faults in the coil in time to take action to protect the coil.

  18. Nonlinear excitation of photonikos and plasmons by high-power, short pulse lasers

    E-Print Network [OSTI]

    Levan N. Tsintsadze; Hitoshi Hojo

    2008-10-29T23:59:59.000Z

    Modulational excitation of longitudinal photons (photonikos) and electron Langmuir waves, as well as ion sound waves by an incoherent strong and superstrong radiation (high-power short pulse lasers, non-thermal equilibrium cosmic field radiation, etc.) in plasmas are investigated. A simultaneous generation of photonikos and plasmons are demonstrated. Furthermore, the kinetic instability is considered when a low frequency photonikos are generated alone. Growth rates of these new modes are obtained.

  19. Short communication Satellite-derived surface water pCO2 and airsea CO2 fluxes

    E-Print Network [OSTI]

    Short communication Satellite-derived surface water pCO2 and air­sea CO2 fluxes in the northern for the estimation of the partial pressure of carbon dioxide (pCO2) and air­sea CO2 fluxes in the northern South), respectively, the monthly pCO2 fields were computed. The derived pCO2 was compared with the shipboard pCO2

  20. Use of Dynamical Undulator Mechanism to Produce Short Wavelength Radiation in Volume FEL (VFEL)

    E-Print Network [OSTI]

    V. G. Baryshevsky; K. G. Batrakov

    2002-09-06T23:59:59.000Z

    VFEL lasing in system with dynamical undulator is described. In this system radiation of long wavelength creates the undulator for lasing on shorter wavelength. Two diffraction gratings with different spatial periods form VFEL resonator. The grating with longer period pumps the resonator with long wavelength radiation to provide necessary amplitude of undulator field. The grating with shorter period makes mode selection for short wavelength radiation. Lasing of such a system in terahertz frequency range is discussed.

  1. Modulation and kinematics of mechanically-generated short gravity waves riding on long waves

    E-Print Network [OSTI]

    Spell, Charles Anthony

    1992-01-01T23:59:59.000Z

    for the degree of MASTER OF SCIENCE December 1992 Major Subject: Ocean Engineering MODULATION AND KINEMATICS OF MECHANICALLY- GENERATED SHORT GRAVITY WAVES RIDING ON LONG WAVES A Thesis by C~S ANTHONY SPELL Approved as to style and content by: Jun Zhang... fundamental nonlinear wave interaction occurring in an irregular wave field. The objectives of the present study are now stated: ~ Generate a dual-component wave formed from the interaction of two inde- pendently propagating monochromatic wave trains in a...

  2. Short-term energy outlook, January 1999

    SciTech Connect (OSTI)

    NONE

    1999-01-01T23:59:59.000Z

    The Energy Information Administration (EIA) prepares the Short-Term Energy Outlook (energy supply, demand, and price projections) monthly. The forecast period for this issue of the Outlook extends from January 1999 through December 2000. Data values for the fourth quarter 1998, however, are preliminary EIA estimates (for example, some monthly values for petroleum supply and disposition are derived in part from weekly data reported in EIA`s Weekly Petroleum Status Report) or are calculated from model simulations that use the latest exogenous information available (for example, electricity sales and generation are simulated by using actual weather data). The historical energy data, compiled in the January 1999 version of the Short-Term Integrated Forecasting System (STIFS) database, are mostly EIA data regularly published in the Monthly Energy Review, Petroleum Supply Monthly, and other EIA publications. Minor discrepancies between the data in these publications and the historical data in this Outlook are due to independent rounding. The STIFS model is driven principally by three sets of assumptions or inputs: estimates of key macroeconomic variables, world oil price assumptions, and assumptions about the severity of weather. Macroeconomic estimates are produced by DRI/McGraw-Hill but are adjusted by EIA to reflect EIA assumptions about the world price of crude oil, energy product prices, and other assumptions which may affect the macroeconomic outlook. By varying the assumptions, alternative cases are produced by using the STIFS model. 28 figs., 19 tabs.

  3. Short-term energy outlook, July 1998

    SciTech Connect (OSTI)

    NONE

    1998-07-01T23:59:59.000Z

    The Energy Information Administration (EIA) prepares The Short-Term Energy Outlook (energy supply, demand, and price projections) monthly for distribution on the internet at: www.eia.doe.gov/emeu/steo/pub/contents.html. In addition, printed versions of the report are available to subscribers in January, April, July and October. The forecast period for this issue of the Outlook extends from July 1998 through December 1999. Values for second quarter of 1998 data, however, are preliminary EIA estimates (for example, some monthly values for petroleum supply and disposition are derived in part from weekly data reported in EIA`s Weekly Petroleum Status Report) or are calculated from model simulations that use the latest exogenous information available (for example, electricity sales and generation are simulated by using actual weather data). The historical energy data, compiled in the July 1998 version of the Short-Term Integrated Forecasting System (STIFS) database, are mostly EIA data regularly published in the Monthly Energy Review, Petroleum Supply Monthly, and other EIA publications. Minor discrepancies between the data in these publications and the historical data in this Outlook are due to independent rounding. 28 figs., 19 tabs.

  4. Robust optimization of intensity modulated proton therapy

    SciTech Connect (OSTI)

    Liu Wei; Zhang Xiaodong; Li Yupeng; Mohan, Radhe [Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas 77030 (United States)

    2012-02-15T23:59:59.000Z

    Purpose: Intensity modulated proton therapy (IMPT) is highly sensitive to range uncertainties and uncertainties caused by setup variation. The conventional inverse treatment planning of IMPT optimized based on the planning target volume (PTV) is not often sufficient to ensure robustness of treatment plans. In this paper, a method that takes the uncertainties into account during plan optimization is used to mitigate the influence of uncertainties in IMPT. Methods: The authors use the so-called ''worst-case robust optimization'' to render IMPT plans robust in the face of uncertainties. For each iteration, nine different dose distributions are computed--one each for {+-} setup uncertainties along anteroposterior (A-P), lateral (R-L) and superior-inferior (S-I) directions, for {+-} range uncertainty, and the nominal dose distribution. The worst-case dose distribution is obtained by assigning the lowest dose among the nine doses to each voxel in the clinical target volume (CTV) and the highest dose to each voxel outside the CTV. Conceptually, the use of worst-case dose distribution is similar to the dose distribution achieved based on the use of PTV in traditional planning. The objective function value for a given iteration is computed using this worst-case dose distribution. The objective function used has been extended to further constrain the target dose inhomogeneity. Results: The worst-case robust optimization method is applied to a lung case, a skull base case, and a prostate case. Compared with IMPT plans optimized using conventional methods based on the PTV, our method yields plans that are considerably less sensitive to range and setup uncertainties. An interesting finding of the work presented here is that, in addition to reducing sensitivity to uncertainties, robust optimization also leads to improved optimality of treatment plans compared to the PTV-based optimization. This is reflected in reduction in plan scores and in the lower normal tissue doses for the same coverage of the target volume when subjected to uncertainties. Conclusions: The authors find that the worst-case robust optimization provides robust target coverage without sacrificing, and possibly even improving, the sparing of normal tissues. Our results demonstrate the importance of robust optimization. The authors assert that all IMPT plans should be robustly optimized.

  5. Rapid Proton Transfer Mediated by a Strong Laser Field

    SciTech Connect (OSTI)

    Markevitch, Alexei N.; Levis, Robert J. [Department of Chemistry, Center for Advanced Photonics Research, Temple University, Philadelphia, Pennsylvania 19122 (United States); Romanov, Dmitri A. [Department of Physics, Center for Advanced Photonics Research, Temple University, Philadelphia, Pennsylvania 19122 (United States); Smith, Stanley M. [Department of Chemistry, Wayne State University, Detroit, Michigan 48202 (United States)

    2006-04-28T23:59:59.000Z

    Kinetic energy distributions of H{sup +} ejected from a polyatomic molecule, anthraquinone, subjected to 60 fs, 800 nm laser pulses of intensity between 0.2 and 4.0x10{sup 14} W{center_dot}cm{sup -2}, reveal field-driven restructuring of the molecule prior to Coulomb explosion. Calculations demonstrate fast intramolecular proton migration into a field-dressed metastable potential energy minimum. The proton migration occurs in the direction perpendicular to the polarization of the laser field. Rapid field-mediated isomerization is an important new phenomenon in coupling of polyatomic molecules with intense lasers.

  6. Dominant deuteron acceleration with a high-intensity laser for isotope production and neutron generation

    SciTech Connect (OSTI)

    Maksimchuk, A.; Raymond, A.; Yu, F.; Dollar, F.; Willingale, L.; Zulick, C.; Krushelnick, K. [Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, Michigan 48109 (United States)] [Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, Michigan 48109 (United States); Petrov, G. M.; Davis, J. [Naval Research Laboratory, Plasma Physics Division, Washington, DC 20375 (United States)] [Naval Research Laboratory, Plasma Physics Division, Washington, DC 20375 (United States)

    2013-05-13T23:59:59.000Z

    Experiments on the interaction of an ultra-short pulse laser with heavy-water, ice-covered copper targets, at an intensity of 2 Multiplication-Sign 10{sup 19} W/cm{sup 2}, were performed demonstrating the generation of a 'pure' deuteron beam with a divergence of 20 Degree-Sign , maximum energy of 8 MeV, and a total of 3 Multiplication-Sign 10{sup 11} deuterons with energy above 1 MeV-equivalent to a conversion efficiency of 1.5%{+-} 0.2%. Subsequent experiments on irradiation of a {sup 10}B sample with deuterons and neutron generation from d-d reactions in a pitcher-catcher geometry, resulted in the production of {approx}10{sup 6} atoms of the positron emitter {sup 11}C and a neutron flux of (4{+-}1) Multiplication-Sign 10{sup 5} neutrons/sterad, respectively.

  7. Emittance growth of an nonequilibrium intense electron beam in a transport channel with discrete focusing

    SciTech Connect (OSTI)

    Carlsten, B.E.

    1997-02-01T23:59:59.000Z

    The author analyzes the emittance growth mechanisms for a continuous, intense electron beam in a focusing transport channel, over distances short enough that the beam does not reach equilibrium. The emittance grows from the effect of nonlinear forces arising from (1) current density nonuniformities, (2) energy variations leading to nonlinearities in the space-charge force even if the current density is uniform, (3) axial variations in the radial vector potential, (4) an axial velocity shear along the beam, and (5) an energy redistribution of the beam as the beam compresses or expands. The emittance growth is studied analytically and numerically for the cases of balanced flow, tight focusing, and slight beam scalloping, and is additionally studied numerically for an existing 6-MeV induction linear accelerator. Rules for minimizing the emittance along a beamline are established. Some emittance growth will always occur, both from current density nonuniformities that arise along the transport and from beam radius changes along the transport.

  8. System and method that suppresses intensity fluctuations for free space high-speed optical communication

    DOE Patents [OSTI]

    Berman, Gennady P. (Los Alamos, NM); Bishop, Alan R. (Los Alamos, NM); Nguyen, Dinh C. (Los Alamos, NM); Chernobrod, Boris M. (Santa Fe, NM); Gorshkov, Vacheslav N. (Kiev, UA)

    2009-10-13T23:59:59.000Z

    A high-speed (Gbps), free space optical communication system is based on spectral encoding of radiation from a wide band light source, such as a laser. By using partially coherent laser beams in combination with a relatively slow photosensor, scintillations can be suppressed by orders of magnitude for distances of more than 10 km. To suppress the intensity fluctuations due to atmospheric turbulence, a source with partial transverse coherence in combination with slow response time photodetector is used. Information is encoded in the spectral domain of a wideband optical source by modulation of spectral amplitudes. A non-coherent light source with wide spectrum (an LED, for example) may be used for high-speed communication over short (less than about a mile) distances.

  9. Thermal Casimir drag in fluctuating classical fields

    E-Print Network [OSTI]

    V. Démery; D. S. Dean

    2011-04-14T23:59:59.000Z

    A uniformly moving inclusion which locally suppresses the fluctuations of a classical thermally excited field is shown to experience a drag force which depends on the dynamics of the field. It is shown that in a number of cases the linear friction coefficient is dominated by short distance fluctuations and takes a very simple form. Examples where this drag can occur are for stiff objects, such as proteins, nonspecifically bound to more flexible ones such as polymers and membranes.

  10. Physical phenomena induced by passage of intense electromagnetic pulses (including CO/sub 2/ lasers) through the atmosphere

    SciTech Connect (OSTI)

    Yee, J.H.; Mayhall, D.J.; Alvarez, R.

    1985-10-23T23:59:59.000Z

    The electron fluid equations are combined with Maxwell's equations to investigate the physical phenomena that occurs when short, intense electromagnetic pulses (including the CO/sub 2/ laser pulse) interact with the atmosphere. The phenomena of ''tailed erosion'' occurs when the pulse intensity exceeds the air-breakdown threshold. In some cases, the erosion of the pulse occurs first in the middle of the pulse and then occurs in the tail of the pulse. In addition, we discovered that the amount of the energy that a pulse carries through the atmosphere is independent of whether it is propagating vertically upward from the Earth's surface or vertically downward toward the Earth's surface, provided the distance the pulse travels is the same for both directions of the propagation. 20 refs., 9 figs.

  11. Field Guide

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.New Mexico Feb. 13,Conservation BillingFieldField

  12. Effective Field Theory and Finite Density Systems

    E-Print Network [OSTI]

    R. J. Furnstahl; G. Rupak; T. Schaefer

    2008-01-04T23:59:59.000Z

    This review gives an overview of effective field theory (EFT) as applied at finite density, with a focus on nuclear many-body systems. Uniform systems with short-range interactions illustrate the ingredients and virtues of many-body EFT and then the varied frontiers of EFT for finite nuclei and nuclear matter are surveyed.

  13. UMass Lowell Intensive Spanish Language & Culture in Cdiz, Spain

    E-Print Network [OSTI]

    Massachusetts at Lowell, University of

    UMass Lowell Intensive Spanish Language & Culture in Cádiz, Spain Program Description Travel to Spain and study at the University of Cádiz in a specialized intensive language program established Lowell During the Summer in Cádiz, Spain! Complete Levels 1-4 (12 credit) of Spanish language in one

  14. A new acoustic three dimensional intensity and energy density probe

    E-Print Network [OSTI]

    Boyer, Edmond

    A new acoustic three dimensional intensity and energy density probe F. Aymea , C. Carioub , M is a great advantage. In this frame, a new intensity acoustic probe has been developed to compute acoustic quantities which can be input data for energetic identification methods. 1 Introduction Noise matters

  15. Intensive Summer Spanish Courses in Barcelona for Erasmus & University .

    E-Print Network [OSTI]

    Greifswald, Ernst-Moritz-Arndt-Universität

    Intensive Summer Spanish Courses in Barcelona for Erasmus & University . 2014 -AUGUST 11th -SEPTEMBER- OCTOBER SpainBcn-Programs in Barcelona, is the best place to learn Spanish fast, in a warm in Barcelona or elsewhere in Spain (many students attending Spanish Universities take a 2/3/4 weeks Intensive

  16. The investigation of high intensity laser driven micro neutron sources

    E-Print Network [OSTI]

    Ghoniem, Nasr M.

    , access to high temperature states of mat- ter capable of thermonuclear fusion and/or the effi- cientThe investigation of high intensity laser driven micro neutron sources for fusion materials. The application of fast pulse, high intensity lasers to drive low cost DT point neutron sources for fusion

  17. Laser Guiding at Relativistic Intensities and Wakefield Particle Acceleration

    E-Print Network [OSTI]

    Geddes, Cameron Guy Robinson

    Laser Guiding at Relativistic Intensities and Wakefield Particle Acceleration in Plasma Channels C for the first time in a high gradient laser wakefield accelerator by guiding the drive laser pulse. Channels formed by hydrodynamic shock were used to guide acceleration relevant laser intensities of at least 1E18

  18. Tachyonic field interacting with Scalar (Phantom) Field

    E-Print Network [OSTI]

    Surajit Chattopadhyay; Ujjal Debnath

    2009-01-29T23:59:59.000Z

    In this letter, we have considered the universe is filled with the mixture of tachyonic field and scalar or phantom field. If the tachyonic field interacts with scalar or phantom field, the interaction term decays with time and the energy for scalar field is transferred to tachyonic field or the energy for phantom field is transferred to tachyonic field. The tachyonic field and scalar field potentials always decrease, but phantom field potential always increases.

  19. Characterization of Molecular Breakup by Super-Intense, Femtosecond XUV Laser Pulses

    E-Print Network [OSTI]

    Yue, Lun

    2015-01-01T23:59:59.000Z

    We study the breakup of $\\text{H}_2^+$ exposed to super-intense, femtosecond laser pulses with frequencies greater than that corresponding to the ionization potential. By solving the time-dependent Schr\\"{o}dinger equation in an extensive field parameter range, it is revealed that highly nonresonant dissociation channels can dominate over ionization. By considering field-dressed Born-Oppenheimer potential energy curves in the reference frame following a free electron in the field, we propose a simple physical model that characterizes this dissociation mechanism. The model is used to predict control of vibrational excitation, magnitude of the dissociation yields, and nuclear kinetic energy release spectra. Finally, the joint energy spectrum for the ionization process illustrates the energy sharing between the electron and the nuclei and the correlation between ionization and dissociation processes.

  20. Monitoring changes in soil carbon resulting from intensive production, a non-traditional agricultural methodology.

    SciTech Connect (OSTI)

    Dwyer, Brian P.

    2013-03-01T23:59:59.000Z

    New Mexico State University and a group of New Mexico farmers are evaluating an innovative agricultural technique they call Intensive Production (IP). In contrast to conventional agricultural practice, IP uses intercropping, green fallowing, application of soil amendments and soil microbial inocula to sequester carbon as plant biomass, resulting in improved soil quality. Sandia National Laboratories role was to identify a non-invasive, cost effective technology to monitor soil carbon changes. A technological review indicated that Laser Induced Breakdown Spectroscopy (LIBS) best met the farmers' objectives. Sandia partnered with Los Alamos National Laboratory (LANL) to analyze farmers' test plots using a portable LIBS developed at LANL. Real-time LIBS field sample analysis was conducted and grab samples were collected for laboratory comparison. The field and laboratory results correlated well implying the strong potential for LIBS as an economical field scale analytical tool for analysis of elements such as carbon, nitrogen, and phosphate.

  1. Long pulse production from short pulses

    DOE Patents [OSTI]

    Toeppen, John S. (Livermore, CA)

    1994-01-01T23:59:59.000Z

    A method of producing a long output pulse (SA) from a short pump pulse (P), using an elongated amplified fiber (11) having a doped core (12) that provides an amplifying medium for light of one color when driven into an excited state by light of a shorter wavelength and a surrounding cladding 13. A seed beam (S) of the longer wavelength is injected into the core (12) at one end of the fiber (11) and a pump pulse (P) of the shorter wavelength is injected into the cladding (13) at the other end of the fiber (11). The counter-propagating seed beam (S) and pump pulse (P) will produce an amplified output pulse (SA) having a time duration equal to twice the transit time of the pump pulse (P) through the fiber (11) plus the length of the pump pulse (P).

  2. Long pulse production from short pulses

    DOE Patents [OSTI]

    Toeppen, J.S.

    1994-08-02T23:59:59.000Z

    A method of producing a long output pulse from a short pump pulse is disclosed, using an elongated amplified fiber having a doped core that provides an amplifying medium for light of one color when driven into an excited state by light of a shorter wavelength and a surrounding cladding. A seed beam of the longer wavelength is injected into the core at one end of the fiber and a pump pulse of the shorter wavelength is injected into the cladding at the other end of the fiber. The counter-propagating seed beam and pump pulse will produce an amplified output pulse having a time duration equal to twice the transit time of the pump pulse through the fiber plus the length of the pump pulse. 3 figs.

  3. Short Range Correlations and the EMC Effect

    SciTech Connect (OSTI)

    L.B. Weinstein, E. Piasetzky, D.W. Higinbotham, J. Gomez, O. Hen, R. Shneor

    2011-02-01T23:59:59.000Z

    This Letter shows quantitatively that the magnitude of the EMC effect measured in electron deep inelastic scattering at intermediate xB, 0.35?xB?0.7, is linearly related to the short range correlation (SRC) scale factor obtained from electron inclusive scattering at xB?1. The observed phenomenological relationship is used to extract the ratio of the deuteron to the free pn pair cross sections and F2n/F2p, the ratio of the free neutron to free proton structure functions. We speculate that the observed correlation is because both the EMC effect and SRC are dominated by the high virtuality (high momentum) nucleons in the nucleus.

  4. Short Range Correlations and the EMC Effect

    E-Print Network [OSTI]

    L. B. Weinstein; E. Piasetzky; D. W. Higinbotham; J. Gomez; O. Hen; R. Shneor

    2011-01-18T23:59:59.000Z

    This paper shows quantitatively that the magnitude of the EMC effect measured in electron deep inelastic scattering (DIS) at intermediate $x_B$, $0.35\\le x_B\\le 0.7$, is linearly related to the Short Range Correlation (SRC) scaling factor obtained from electron inclusive scattering at $x_B\\ge 1.$. The observed phenomenological relationship is used to extract the ratio of the deuteron to the free $pn$ pair cross sections, the DIS cross section for a free neutron, and $F_2^n/F_2^p$, the ratio of the free neutron to free proton structure functions. We speculate that the observed correlation is because both the EMC effect and SRC are dominated by the high virtuality (high momentum) nucleons in the nucleus.

  5. Short Range Correlations and the EMC Effect

    SciTech Connect (OSTI)

    Weinstein, L. B. [Old Dominion University, Norfolk, Virginia 23529 (United States); Piasetzky, E.; Hen, O.; Shneor, R. [Tel Aviv University, Tel Aviv 69978 (Israel); Higinbotham, D. W.; Gomez, J. [Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606 (United States)

    2011-02-04T23:59:59.000Z

    This Letter shows quantitatively that the magnitude of the EMC effect measured in electron deep inelastic scattering at intermediate x{sub B}, 0.35{<=}x{sub B{<=}}0.7, is linearly related to the short range correlation (SRC) scale factor obtained from electron inclusive scattering at x{sub B{>=}}1. The observed phenomenological relationship is used to extract the ratio of the deuteron to the free pn pair cross sections and F{sub 2}{sup n}/F{sub 2}{sup p}, the ratio of the free neutron to free proton structure functions. We speculate that the observed correlation is because both the EMC effect and SRC are dominated by the high virtuality (high momentum) nucleons in the nucleus.

  6. Insulation spacer eliminates electric shorts between lines

    SciTech Connect (OSTI)

    Colaizzi, J.F.; Rockafellow, G.B.

    1983-03-01T23:59:59.000Z

    The design criteria incorporated into the pipeline insulating spacer were: spacer material selected must have a very large compressive and tensile strength in order to withstand the weight and stress resulting on the pipelines; provide the necessary abrasive resistance, dielectric strength, and will not decay underground; must not soften with heat when used around or near stream lines or will not cold flow under pressure; minimum length and circumference to reduce ''Shielding Effects'' from any cathodic protection system; and provide a material that incorporates a maximum strength at a minimum thickness. Explains that electric shorts are caused by 2 or more metallic structures in contact with each other. Notes that the insulating spacer's use has been expanded to provide electrical and physical insulation between carrier pipe and casing, supports for piping in compressing stations, and for pipelines that are suspended on bridges.

  7. Gain-assisted superluminal light propagation via incoherent pump field

    E-Print Network [OSTI]

    M. Mahmoudi; S. Worya Rabiei; L. Safari; M. Sahrai

    2008-08-03T23:59:59.000Z

    We investigate the dispersion and the absorption properties of a weak probe field in a three-level Lambda-type atomic system. We use just an incoherent field for controlling the group velocity of light. It is shown that the slope of dispersion changes from positive to negative just with changing the intensity of the indirect incoherent pumping field. Gain-assisted superluminal light propagation appears in this system. No laser field is used in the pumping processes.

  8. An investigation of how researchers in data intensive scientific fields use, process and curate data

    E-Print Network [OSTI]

    Nobis, Yvonne

    of transistors on an integrated circuit double approximately every two years) gives surprising results: that the per capita capacity of the world’s general purpose computers has doubled every 18 months, however comparable storage capacity per capita has... . These may, or may not have benefits within communities or across domains. As one physicist reported : “It was very obvious that there were PhD students, sitting in little cupboards tapping away at their terminals reinventing the wheel, reinventing...

  9. Atmospheric Radiation Measurement (ARM) Data from Field Campaigns or Intensive Operational Periods (IOP)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Office of Biological and Environmental Research in DOE's Office of Science is responsible for the ARM Program. The ARM Archive physically resides at the Oak Ridge National Laboratory.

  10. Threshold shift and above-threshold multiphoton ionization of atomic hydrogen in intense laser fields

    E-Print Network [OSTI]

    Chu, Shih-I; Cooper, J.

    1985-11-01T23:59:59.000Z

    , while hE, =e F /4m co~ = e F s/2m' is the continuum threshold upshift. 1 e 2@2 4 Itt CO and the threshold shift as (3) 0.28 0.01 0.025 0.05 0.075 —1.185(—2) —6.732( —2) —2.036( —1) —3.306( —1) 1.735{—2) 1.085( —1) 4.339(—1) 9.762( —1) 2.92( —2) 1.76( —1...

  11. Nonadiabatic approach for resonant molecular multiphoton absorption processes in intense infrared laser fields

    E-Print Network [OSTI]

    Ho, Tak-San; Chu, Shih-I

    1983-07-14T23:59:59.000Z

    -vibrational-rotational state of a fixed total quasi­ energy E:/J, the exact total quasienergy state wave func­ tion may be expanded as (24) Again, we have assumed that the system embodies a well-defined quantum number mJ' Substituting Eq. (24) into Eq. (1), and projecting..., 25 Nov 2014 17:02:27 4712 T-S. Ho and S-1. Chu: Nonadiabatic approach for resonant molecular MPA Where [G]= and .... P=2 P=1 P=O P=-1 P=-2 IG+2wl G+wl v=O v=1 (Goo) (Go,) (G,,)-wl j=O j=1 00 0' gvv, gvv' " g ••, G G-wl v=2 (GQ2) (G'2...

  12. Time of flight emission spectroscopy of laser produced nickel plasma: Short-pulse and ultrafast excitations

    SciTech Connect (OSTI)

    Smijesh, N.; Chandrasekharan, K. [Laser and Nonlinear Optics Laboratory, Department of Physics, National Institute of Technology Calicut, Calicut 673601 (India); Joshi, Jagdish C.; Philip, Reji, E-mail: reji@rri.res.in [Ultrafast and Nonlinear Optics Lab, Light and Matter Physics Group, Raman Research Institute, Bangalore 560080 (India)

    2014-07-07T23:59:59.000Z

    We report the experimental investigation and comparison of the temporal features of short-pulse (7?ns) and ultrafast (100 fs) laser produced plasmas generated from a solid nickel target, expanding into a nitrogen background. When the ambient pressure is varied in a large range of 10{sup ?6?}Torr to 10{sup 2?}Torr, the plume intensity is found to increase rapidly as the pressure crosses 1?Torr. Time of flight (TOF) spectroscopy of emission from neutral nickel (Ni I) at 361.9?nm (3d{sup 9}({sup 2}D) 4p ? 3d{sup 9}({sup 2}D) 4s transition) reveals two peaks (fast and slow species) in short-pulse excitation and a single peak in ultrafast excitation. The fast and slow peaks represent recombined neutrals and un-ionized neutrals, respectively. TOF emission from singly ionized nickel (Ni II) studied using the 428.5?nm (3p{sup 6}3d{sup 8}({sup 3}P) 4s? 3p{sup 6}3d{sup 9} 4s) transition shows only a single peak for either excitation. Velocities of the neutral and ionic species are determined from TOF measurements carried out at different positions (i.e., at distances of 2?mm and 4?mm, respectively, from the target surface) on the plume axis. Measured velocities indicate acceleration of neutrals and ions, which is caused by the Coulomb pull of the electrons enveloping the plume front in the case of ultrafast excitation. Both Coulomb pull and laser-plasma interaction contribute to the acceleration in the case of short-pulse excitation. These investigations provide new information on the pressure dependent temporal behavior of nickel plasmas produced by short-pulse and ultrafast laser pulses, which have potential uses in applications such as pulsed laser deposition and laser-induced nanoparticle generation.

  13. Earth Planets Space, 57, 895902, 2005 Short time-scale heating of the Earth's mantle by ice-sheet dynamics

    E-Print Network [OSTI]

    Hanyk, Ladislav

    by modeling the linear response of a self-gravitating viscoelastic planet, the gravity field anoma- lies haveEarth Planets Space, 57, 895­902, 2005 Short time-scale heating of the Earth's mantle by ice-scale energy transfer from the ice sheet loading and unloading processes to the Earth's interior via viscous

  14. Computation of mode II linear elastic stress intensity factor using the p-version of the finite element method

    SciTech Connect (OSTI)

    Orth, N.J.; Sansguiri, A.M. [Lamar Univ., Beaumont, TX (United States). Dept. of Mechanical Engineering; Orth, F.J. [Edison Welding Inst., Columbus, OH (United States). Structural Integrity Section

    1995-08-01T23:59:59.000Z

    It has been proven that the p-version of the finite element method results in a higher accuracy for a given mesh compared to the h-version of the finite element method. This investigation demonstrates the accuracy of the displacement and stress field methods in the vicinity of the crack tip using the p-version of the finite element method to compute the linear elastic stress intensity factor. The stress intensity factor for mode II is computed for an edge crack panel using stress and displacement methods and is compared to the analytical solution.

  15. Physics Today October 2004-Intense X-Shaped Pulses of Light Propaga... http://www.physicstoday.org/vol-57/iss-10/p25.shtml 2 of 6 4/14/2005 7:30 PM

    E-Print Network [OSTI]

    Lu, Jian-yu

    Propagate Without Spreading in Water and Other Dispersive Media The nonlinear interaction of light with matter can imbue optical pulses with surprising and potentially useful properties. It seems inevitable discovered they could send short, intense laser pulses through a transparent crystal of lithium triborate

  16. Upcoversion performance improvement of NaYF{sub 4}:Yb, Er by Sn codoping: Enhanced emission intensity and reduced decay time

    SciTech Connect (OSTI)

    Yu, Han, E-mail: fjfzyh@fzu.edu.cn [College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108 (China); Cao, Wenbing [College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108 (China); Huang, Qingming [Instrumentation Analysis and Research Center, Fuzhou University, Fuzhou, Fujian 350002 (China); Ma, En [Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002 (China); Zhang, Xinqi [Instrumentation Analysis and Research Center, Fuzhou University, Fuzhou, Fujian 350002 (China); Yu, Jianchang [College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108 (China)

    2013-11-15T23:59:59.000Z

    In this manuscript we report a phenomenon that upconversion emission intensity of Er{sup 3+} was enhanced while decay time constant was decreased obviously by Sn codoping with Yb/Er into hexagonal NaYF{sub 4} synchronously. X-ray powder diffiraction, field emission scanning electron microscope, transmission electron microscopy, X-ray photoelectron spectroscopy, electron spin-resonance spectroscopy and upconversion emission spectra were employed to explore the relation of crystal structure and properties. From these characterizations we found that symmetry of the rare earth ion local crystal field could be tuned by different Sn codoping concentration. For the variable valence property of Sn the local crystal field asymmetry and emission intensity of NaYF{sub 4}:Yb, Er arrived to the maximum when 3 mol% Sn was codoped, while decay time was reduced. The study of this changing tends of upconversion emission intensity and decay time constant may be helpful for design and fabrication of high performance upconversion materials. - Graphical abstract: Variable-valenced Sn is introduced with Yb/Er into NaFY{sub 4} to tune structure and local crystal field. Upconversion emission intensity of Er{sup 3+} was enhanced while decay time constant was decreased. Display Omitted - Highlights: • NaYF{sub 4}: Yb, Er was codoped with different concentration Sn. • Upconversion emission intensity was enhanced while decay time constant was decreased. • Introduction of variable-valenced Sn is effective to tune structure and crystal field of NaFY{sub 4}.

  17. Production of high intensity electron bunches for the SLAC Linear Collider

    SciTech Connect (OSTI)

    James, M.B.

    1987-08-01T23:59:59.000Z

    This thesis describes the design and performance of a high intensity electron injecfor for the SLAC Linear Collider. Motivation for the collider and the specifications for the injector are discussed. An analytic theory of the bunching and capture of electrons by rf fields is discussed in the limit of low space charge and small signal. The design and performance of SLAC's main injector are described to illustrate a successful application of this theory. The bunching and capture of electrons by rf fields are then discussed in the limit of high space charge and large signal, and a description of the design of the collider injector follows. In the limit of high space charge forces and large rf signals, the beam dynamics are considerably more complex and numerical simulations are required to predict particle motion. A computer code which models the longitudinal dynamics of electrons in the presence of space charge and rf fields is described. The results of the simulations, the resulting collider injector design and the various components which make up the collider injector are described. These include the gun, subharmonic bunchers, traveling-wave buncher and velocity-of-light accelerator section. Finally, the performance of the injector is described including the beam intensity, bunch length, transverse emittance and energy spectrum. While the final operating conditions differ somewaht from the design, the performance of the collider injector is in good agreement with the numerical simulations and meets all of the collider specifications. 28 refs.

  18. Production of intense negative hydrogen beams with polarized nuclei by selective neutralization of negative ions

    DOE Patents [OSTI]

    Hershcovitch, Ady (Mount Sinai, NY)

    1987-01-01T23:59:59.000Z

    A process for selectively neutralizing H.sup.- ions in a magnetic field to produce an intense negative hydrogen ion beam with spin polarized protons. Characteristic features of the process include providing a multi-ampere beam of H.sup.- ions that are intersected by a beam of laser light. Photodetachment is effected in a uniform magnetic field that is provided around the beam of H.sup.- ions to spin polarize the H.sup.- ions and produce first and second populations or groups of ions, having their respective proton spin aligned either with the magnetic field or opposite to it. The intersecting beam of laser light is directed to selectively neutralize a majority of the ions in only one population, or given spin polarized group of H.sup.- ions, without neutralizing the ions in the other group thereby forming a population of H.sup.- ions each of which has its proton spin down, and a second group or population of H.sup.o atoms having proton spin up. Finally, the two groups of ions are separated from each other by magnetically bending the group of H.sup.- ions away from the group of neutralized ions, thereby to form an intense H.sup.- ion beam that is directed toward a predetermined objective.

  19. Does Intensity Modulation Improve Healthy Tissue Sparing in Stereotactic Radiosurgery of Complex Arteriovenous Malformations?

    SciTech Connect (OSTI)

    Clark, Brenda [Department of Radiation Oncology, British Columbia Cancer Agency, Vancouver, BC (Canada)], E-mail: brclark@ottawahospital.on.ca; McKenzie, Michael; Robar, James; Vollans, Emily; Candish, Charlie [Department of Radiation Oncology, British Columbia Cancer Agency, Vancouver, BC (Canada); Toyota, Brian; Lee, Andrew [Department of Neurosurgery, Vancouver General Hospital, Vancouver, BC (Canada); Ma, Roy; Goddard, Karen; Erridge, Sara [Department of Radiation Oncology, British Columbia Cancer Agency, Vancouver, BC (Canada)

    2007-10-01T23:59:59.000Z

    This planning study evaluates the potential of intensity modulated treatment fields and inverse planning techniques in stereotactic radiosurgery to reduce healthy tissue dose. Twenty patients previously treated with stereotactic radiosurgery for arteriovenous malformation (AVM) were replanned with each of 4 techniques: circular non-coplanar arcs, dynamic arcs, static conformal fields, and intensity modulated radiosurgery (IMRS). Patients were selected having a maximum AVM dimension at least 20 mm, or volume greater than 10 cm{sup 3}. Target volumes ranged from 2.12 cm{sup 3} to 13.87 cm{sup 3} with a median of 6.03 cm{sup 3}. Resulting dose distributions show a statistically significant improvement in target conformality between circular arcs and all other techniques (p {<=} 0.001), between conformal and both dynamic arcs and IMRS (p {<=} 0.03) and with no difference between dynamic arcs and IMRS. However, for AVMs of volume greater than 5.5 cm{sup 3}, IMRS gives better conformality than dynamic arcs (p = 0.04). IMRS showed consistently lower dose inhomogeneity compared to both dynamic arcs and conformal fields (p < 0.001). At low dose levels, the dynamic arc technique irradiates less healthy tissue than the other techniques (p {<=} 0.001). Both dynamic arcs and IMRS provide increased ability to conform to the AVM, with IMRS showing greater ability to control dose at the periphery.

  20. The EMC Effect and Short-Range Correlations

    E-Print Network [OSTI]

    Misak M Sargsian

    2012-09-12T23:59:59.000Z

    We overview the progress made in studies of EMC and short range correlation (SRC) effects with the special emphasis given to the recent observation of the correlation between the slope of the EMC ratio at Bjorken x1 that measures the strength of the SRCs in nuclei. This correlation may indicate the larger modification of nucleons with higher momentum thus making the nucleon virtuality as the most relevant parameter of medium modifications. To check this conjecture we study the implication of several properties of high momentum component of the nuclear wave function on the characteristics of EMC effect. We observe two main reasons for the EMC-SRC correlation: first, the decrease of the contribution from the nuclear mean field due to the increase, with A, the fraction of the high momentum component of nuclear wave function. Second, the increase of the medium modification of nucleons in SRC. Our main prediction however is the increase of the proton contribution to the EMC effect for large A asymmetric nuclei. This prediction is based on the recent observation of the strong dominance of pn SRCs in the high momentum component of nuclear wave function. Our preliminary calculation based on this prediction of the excess of energetic and modified protons in large A nuclei describes reasonably well the main features of the observed EMC-SRC correlation.

  1. The EMC Effect and Short-Range Correlations

    E-Print Network [OSTI]

    Sargsian, Misak M

    2012-01-01T23:59:59.000Z

    We overview the progress made in studies of EMC and short range correlation (SRC) effects with the special emphasis given to the recent observation of the correlation between the slope of the EMC ratio at Bjorken x1 that measures the strength of the SRCs in nuclei. This correlation may indicate the larger modification of nucleons with higher momentum thus making the nucleon virtuality as the most relevant parameter of medium modifications. To check this conjecture we study the implication of several properties of high momentum component of the nuclear wave function on the characteristics of EMC effect. We observe two main reasons for the EMC-SRC correlation: first, the decrease of the contribution from the nuclear mean field due to the increase, with A, the fraction of the high momentum component of nuclear wave function. Second, the increase of the medium modification of nucleons in SRC. Our main prediction however is the increase of the proton contribution to the EMC effect for large A asymmetric nuclei. Th...

  2. Demographics of the Galaxies Hosting Short-duration Gamma-Ray Bursts

    E-Print Network [OSTI]

    Fong, Wen-fai; Chornock, Ryan; Margutti, Raffaella; Levan, Andrew J; Tanvir, Nial R; Tunnicliffe, Rachel L; Czekala, Ian; Fox, Derek B; Perley, Daniel A; Cenko, S Bradley; Zauderer, B Ashley; Laskar, Tanmoy; Persson, S Eric; Monson, Andrew J; Kelson, Daniel D; Birk, Christoph; Murphy, David; Servillat, Mathieu; Anglada, Guillem

    2013-01-01T23:59:59.000Z

    We present observations of the afterglows and host galaxies of three short-duration gamma-ray bursts (GRBs): 100625A, 101219A and 110112A. We find that GRB 100625A occurred in a z=0.452 early-type galaxy with a stellar mass of 4.6e9 M_Sun and a stellar population age of 0.7 Gyr, and GRB 101219A originated in a star-forming galaxy at z=0.718 with a stellar mass of 1.4e9 M_Sun, a star formation rate of 16 M_Sun yr^-1, and a stellar population age of 50 Myr. We also report the discovery of the optical afterglow of GRB 110112A, which lacks a coincident host galaxy to i>26 mag and we cannot conclusively identify any field galaxy as a possible host. The bursts have inferred circumburst densities of ~1e-4-1 cm^-3, and isotropic-equivalent gamma-ray and kinetic energies of 1e50-1e51 erg. These events highlight the diversity of galaxies that host short GRBs. To quantify this diversity, we use the sample of 36 Swift short GRBs with robust associations to an environment (~1/2 of 68 short bursts detected by Swift to May ...

  3. Relation between photospheric flow fields and the magnetic field distribution on the solar surface

    SciTech Connect (OSTI)

    Simon, G.W.; Title, A.M.; Topka, K.P.; Tarbell, T.D.; Shine, R.A.

    1988-04-01T23:59:59.000Z

    Using the technique of local correlation tracking on a 28 minute time sequence of white-light images of solar granulation, the horizontal flow field on the solar surface is measured. The time series was obtained by the Solar Optical Universal Polarimeter (SOUP) on Spacelab 2 (Space Shuttle flight 51-F) and is free from atmospheric blurring and distortion. The SOUP flow fields have been compared with carefully aligned magnetograms taken over a nine hour period at the Big Bear Solar Observatory before, during, and after the SOUP images. The flow field and the magnetic field agree in considerable detail: vectors which define the flow of the white-light intensity pattern (granulation) point toward magnetic field regions, magnetic fields surround flow cells, and magnetic features move along the flow arrows. The projected locations of free particles (corks) in the measured flow field congregate at the same locations where the magnetic field is observed. 31 references.

  4. Shifted-elementary-mode representation for partially coherent vectorial fields

    E-Print Network [OSTI]

    Tervo, Jani; Vahimaa, Pasi; Wyrowski, Frank

    2010-01-01T23:59:59.000Z

    A representation of partially spatially coherent and partially polarized stationary electromagnetic fields is given in terms of mutually uncorrelated, transversely shifted, fully coherent and polarized elementary electric-field modes. This representation allows one to propagate non-paraxial partially coherent vector fields using techniques for spatially fully coherent fields, which are numerically far more efficient than methods for propagating correlation functions. A procedure is given to determine the elementary modes from the radiant intensity and the far-zone polarization properties of the entire field. The method is applied to quasihomogeneous fields with rotationally symmetric cosine-modulated radiant intensity distributions. This is an adequate model for fields emitted by, e.g., many light-emitting diodes.

  5. Cosmic-Ray Acceleration at Ultrarelativistic Shock Waves: Effects of Downstream Short-Wave Turbulence

    E-Print Network [OSTI]

    Jacek Niemiec; Michal Ostrowski; Martin Pohl

    2006-03-14T23:59:59.000Z

    The present paper is the last of a series studying the first-order Fermi acceleration processes at relativistic shock waves with the method of Monte Carlo simulations applied to shocks propagating in realistically modeled turbulent magnetic fields. The model of the background magnetic field structure of Niemiec & Ostrowski (2004, 2006) has been augmented here by a large-amplitude short-wave downstream component, imitating that generated by plasma instabilities at the shock front. Following Niemiec & Ostrowski (2006), we have considered ultrarelativistic shocks with the mean magnetic field oriented both oblique and parallel to the shock normal. For both cases simulations have been performed for different choices of magnetic field perturbations, represented by various wave power spectra within a wide wavevector range. The results show that the introduction of the short-wave component downstream of the shock is not sufficient to produce power-law particle spectra with the "universal" spectral index 4.2. On the contrary, concave spectra with cutoffs are preferentially formed, the curvature and cutoff energy being dependent on the properties of turbulence. Our results suggest that the electromagnetic emission observed from astrophysical sites with relativistic jets, e.g. AGN and GRBs, is likely generated by particles accelerated in processes other than the widely invoked first-order Fermi mechanism.

  6. A covariantly foliated higher dimensional space-time: Implications for short distance gravity and BSM physics

    E-Print Network [OSTI]

    Cao H. Nam

    2014-11-10T23:59:59.000Z

    We consider the space-time at short distances in which it is described by a $D$-dimensional manifold (bulk) carrying out the principal bundle structure. As a result, this space-time manifold is foliated in the covariant way by the $(D-4)$-dimensional submanifolds, realized as the space-like internal spaces, that are smooth copies of the Lie group $G$ considered in this paper as the special unitary group. The submanifolds being transversal to the internal spaces are realized as the external spaces and in fact identified as the usual $4$-dimensional world. The fundamental degrees of freedom determining the geometrical dynamics of the bulk corresponding with short distance gravity are given by the gauge fields, the external metric field and the modulus fields setting dynamically the volume of the internal spaces. These gauge fields laying the bulk is to point precisely out the local directions of the external spaces which depend on the topological non-triviality of the space-time principal bundle. The physical size of the internal spaces is fixed dynamically by the moduli stabilization potential which completely arise from the intrinsic geometry of the bulk. A detail description of the low energy bulk gravity in the weak field limit is given around the classical ground state of the bulk. Additionally, we investigate the dynamics of the fundamentally $4$-dimensional Weyl spinor fields and the fields of carrying out the non-trivial representations of the Lie group $G$ propagating in the bulk in a detail study. These results suggest naturally the possible solutions to some the experimental problems of Standard Model, the smallness of the observed neutrino masses and a dark matter candidate.

  7. Short GRBs: Rates and luminosity function implications

    E-Print Network [OSTI]

    Dafne Guetta

    2006-10-13T23:59:59.000Z

    We compare the luminosity function and rate inferred from the BATSE short hard bursts (SHBs) peak flux distribution with the redshift and luminosity distributions of SHBs observed by Swift/HETE II. The Swift/HETE II SHB sample is incompatible with SHB population that follows the star formation rate. However, it is compatible with a distribution of delay times after the SFR. This would be the case if SHBs are associated with the mergers of double neutron star (DNS) systems. DNS may be ``primordial'' or can form dynamically by binary exchange interaction in globular clusters during core collapse. The implied SHB rates that we find range from \\sim 8 to \\sim 30h_(70)^3 Gpc^(-3)yr^(-1). This rate is a much higher than what was previously estimated and, when beaming is taken into account, it is comparable to the rate of neutron star mergers estimated from statistics of binary pulsars. If GRBs are produced in mergers the implied rate practically guarantees detection by LIGO II and possibly even by LIGO I.

  8. Short-term energy outlook, April 1999

    SciTech Connect (OSTI)

    NONE

    1999-04-01T23:59:59.000Z

    The forecast period for this issue of the Outlook extends from April 1999 through December 2000. Data values for the first quarter 1999, however, are preliminary EIA estimates (for example, some monthly values for petroleum supply and disposition are derived in part from weekly data reported in EIA`s Weekly Petroleum Status Report) or are calculated from model simulations that use the latest exogenous information available (for example, electricity sales and generation are simulated by using actual weather data). The historical energy data, compiled in the April 1999 version of the Short-Term Integrated forecasting system (STIFS) database, are mostly EIA data regularly published in the Monthly Energy Review, Petroleum Supply Monthly, and other EIA publications. Minor discrepancies between the data in these publications and the historical data in this Outlook are due to independent rounding. The STIFS model is driven principally by three sets of assumptions or inputs: estimates of key macroeconomic variables, world oil price assumptions, and assumptions about the severity of weather. Macroeconomic estimates are produced by DRI/McGraw-Hill but are adjusted by EIA to reflect EIA assumptions about the world price of crude oil, energy product prices, and other assumptions which may affect the macroeconomic outlook. By varying the assumptions, alternative cases are produced by using the STIFS model. 25 figs., 19 tabs.

  9. Capacity planning and admission control policies for intensive care units

    E-Print Network [OSTI]

    Chaiwanon, Wongsakorn

    2010-01-01T23:59:59.000Z

    Poor management of the patient flow in intensive care units (ICUs) causes service rejections and presents significant challenges from the standpoint of capacity planning and management in ICUs. This thesis reports on the ...

  10. Intense ion beam propagation in a reactor sized chamber

    E-Print Network [OSTI]

    Vay, J.L.; Deutsch, C.

    2000-01-01T23:59:59.000Z

    beams in a heavy ion fusion reactor chamber filled with lowIon Fusion, Intense Ion Beams, Reaction Chamber. P.A.C.S.heavy ion beam propagation in the reaction chamber, Fus.

  11. The Gamma Intensity Monitor at the Crystal-Barrel-Experiment

    E-Print Network [OSTI]

    McGehee, William R

    2008-01-01T23:59:59.000Z

    This thesis details the motivation, design, construction, and testing of the Gamma Intensity Monitor (GIM) for the Crystal-Barrel-Experiment at the Universität Bonn. The CB-ELSA collaboration studies the baryon excitation ...

  12. China energy issues : energy intensity, coal liquefaction, and carbon pricing

    E-Print Network [OSTI]

    Wu, Ning, Ph. D. Massachusetts Institute of Technology

    2011-01-01T23:59:59.000Z

    In my dissertation I explore three independent, but related, topics on China's energy issues. First, I examine the drivers for provincial energy-intensity trends in China, and finds that technology innovation is the key ...

  13. abscess requiring intensive: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the journey of conserving energy at our facility. We?ll discuss a basic layout of our energy intensity plan... 75846 Ph 903 626-6242 Fax 903 626-6293 Dick.rappolee@nstexas.com...

  14. Energy intensity in China's iron and steel sector

    E-Print Network [OSTI]

    Xu, Jingsi, M.C.P. Massachusetts Institute of Technology

    2011-01-01T23:59:59.000Z

    In this study, I examine the spatial and economic factors that influence energy intensity in China's iron and steel sector, namely industrial value added, renovation investment, coke consumption, and local coke supply. ...

  15. Thesis Oral Energy-efficient Data-intensive

    E-Print Network [OSTI]

    Thesis Oral Energy-efficient Data-intensive Computing with a Fast Array of Wimpy Nodes Vijay classification and workload analysis showing when FAWN can be more energyefficient and under what workload

  16. Estimating material and energy intensities of urban areas

    E-Print Network [OSTI]

    Quinn, David James, Ph. D. Massachusetts Institute of Technology

    2012-01-01T23:59:59.000Z

    The objective of this thesis is to develop methods to estimate, analyze and visualize the resource intensity of urban areas. Understanding the resource consumption of the built environment is particularly relevant in cities ...

  17. abdominal intensity modulated: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Optics, John Wiley, New York, NY, USA. ... Webb, S.: 2001a, Intensity-Modulated Radiation Therapy, Institute of Physics ... Ying X 2004-05-25 2 Trellis coded modulation and...

  18. accelerated hypofractionated intensity-modulated: Topics by E...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Optics, John Wiley, New York, NY, USA. ... Webb, S.: 2001a, Intensity-Modulated Radiation Therapy, Institute of Physics ... Ying X 2004-05-25 2 High Datarate in Multimode...

  19. Raman Scattering at Plasmonic Junctions Shorted by Conductive...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    between line spectra and band spectra, can be assigned to shorting the junction plasmon through molecular conductive bridges. This is demonstrated through Raman trajectories...

  20. Development and Deployment of a Short Rotation Woody Crops Harvesting...

    Office of Scientific and Technical Information (OSTI)

    SRC Woody Crop Header Re-direct Destination: Demand for bioenergy sourced from woody biomass is projected to increase; however, the expansion and rapid deployment of short...

  1. Short-term energy outlook. Quarterly projections, Third quarter 1994

    SciTech Connect (OSTI)

    Not Available

    1994-08-02T23:59:59.000Z

    The Energy Information Administration (EIA) prepares quarterly, short-term energy supply, demand, and price projections for publication in February, May, August, and November in the Short-Term Energy Outlook (Outlook). An annual supplement analyzes the performance of previous forecasts, compares recent cases with those of other forecasting services, and discusses current topics related to the short-term energy markets. (See Short-Term Energy Outlook Annual Supplement, DOE/EIA-0202). The feature article for this issue is Demand, Supply and Price Outlook for Reformulated Gasoline, 1995.

  2. Short Paper: PEPSI: Privacy-Enhanced Participatory Sensing Infrastructure

    E-Print Network [OSTI]

    Politécnica de Madrid, Universidad

    Short Paper: PEPSI: Privacy-Enhanced Participatory Sensing Infrastructure Emiliano De Cristofaro-secure guarantees. In this paper, we introduce PEPSI: Privacy- Enhanced Participatory Sensing Infrastructure. We

  3. Electric field controlled emulsion phase contactor

    DOE Patents [OSTI]

    Scott, T.C.

    1995-01-31T23:59:59.000Z

    A system is described for contacting liquid phases comprising a column for transporting a liquid phase contacting system, the column having upper and lower regions. The upper region has a nozzle for introducing a dispersed phase and means for applying thereto a vertically oriented high intensity pulsed electric field. This electric field allows improved flow rates while shattering the dispersed phase into many micro-droplets upon exiting the nozzle to form a dispersion within a continuous phase. The lower region employs means for applying to the dispersed phase a horizontally oriented high intensity pulsed electric field so that the dispersed phase undergoes continuous coalescence and redispersion while being urged from side to side as it progresses through the system, increasing greatly the mass transfer opportunity. 5 figs.

  4. VACUUM PRESSURE RISE WITH INTENSE ION BEAMS IN RHIC.

    SciTech Connect (OSTI)

    FISCHER,W.; BAI,M.; BRENNAN,J.M.; BLASKIEWICZ,M.; CAMERON,P.; HSEUH,H.C.; HUANG,H.; MACKAY,W.; ROSER,T.; SATOGATA,T.; SMART,L.A.; TRBOJEVIC,D.; ZHANG,S.Y.

    2002-06-02T23:59:59.000Z

    When RHIC is filled with bunches of intense ion beams a pressure rise is observed. The pressure rise exceeds the acceptable limit for operation with the design intensities. Observations of events leading to a pressure rise are summarized. Relevant parameters include ion species, charge per bunch, bunch spacing, and the location in the ring. Effects that contribute to a pressure rise are discussed, including beam gas ionization and ion desorption, loss-induced gas desorption, and electron desorption from electron clouds.

  5. Complementary bowtie aperture for localizing and enhancing optical magnetic field

    E-Print Network [OSTI]

    Xu, Xianfan

    Complementary bowtie aperture for localizing and enhancing optical magnetic field Nan Zhou, Edward, 2011 Nanoscale bowtie antenna and bowtie aperture antenna have been shown to generate strongly enhanced. In this Letter, we discuss the enhancement of magnetic field intensity of nanoscale complementary bowtie aperture

  6. Isolated attosecond pulses using a detuned second-harmonic field

    E-Print Network [OSTI]

    Neumark, Daniel M.

    Isolated attosecond pulses using a detuned second-harmonic field Hamed Merdji,1,2, * Thierry 2 . The slight detuning of the second harmonic is used to break the symmetry of the electric field-order harmonics generation (HHG) of intense laser pulses in gases is attracting much attention due to both

  7. Smooth Field Theories and Homotopy Field Theories

    E-Print Network [OSTI]

    Wilder, Alan Cameron

    2011-01-01T23:59:59.000Z

    1 . . . . . . . . 4 Categories of Field Theories 4.1 Functorto super symmetric field theories. CRM Proceedings and0-dimensional super symmetric field theories. preprint 2008.

  8. EUVE Observations of Her X-1 at the End of the Short High State

    E-Print Network [OSTI]

    D. A. Leahy; H. Marshall

    1999-03-09T23:59:59.000Z

    Observations of Her X-1 by the Extreme Ultraviolet Explorer (EUVE) at the end of the x-ray Short High state are reported here. Her X-1 is found to exhibit a strong orbital modulation of the EUV flux, with a large dip superposed on a broad peak around orbital phase 0.5 when the neutron star is closest the observer. Alternate mechanisms for producing the observed EUV lightcurve are modeled. We conclude that: i) the x-ray heated surface of the companion is too cool to produce enough emission; ii) the accretion disk can produce enough emission but does not explain the orbital modulation; iii) reflection of x-rays off of the companion can produce the shape and intensity of the observed lightcurve. The only viable cause for the large dip at orbital phase 0.5 is shadowing of the companion by the accretion disk.

  9. High-intensity positron microprobe at the Thomas Jefferson National Accelerator Facility

    SciTech Connect (OSTI)

    Golge, S., E-mail: serkan.golge@nasa.gov; Vlahovic, B. [North Carolina Central University, Durham, North Carolina 27707 (United States); Wojtsekhowski, B. [Jefferson Laboratory, 12000 Jefferson Ave., Newport News, Virginia 23606 (United States)

    2014-06-21T23:59:59.000Z

    We present a conceptual design for a novel continuous wave electron-linac based high-intensity high-brightness slow-positron production source with a projected intensity on the order of 10{sup 10?}e{sup +}/s. Reaching this intensity in our design relies on the transport of positrons (T{sub +} below 600?keV) from the electron-positron pair production converter target to a low-radiation and low-temperature area for moderation in a high-efficiency cryogenic rare gas moderator, solid Ne. This design progressed through Monte Carlo optimizations of: electron/positron beam energies and converter target thickness, transport of the e{sup +} beam from the converter to the moderator, extraction of the e{sup +} beam from the magnetic channel, a synchronized raster system, and moderator efficiency calculations. For the extraction of e{sup +} from the magnetic channel, a magnetic field terminator plug prototype has been built and experimental results on the effectiveness of the prototype are presented. The dissipation of the heat away from the converter target and radiation protection measures are also discussed.

  10. On the 27-day Variations of Cosmic Ray Intensity in Recent Solar Minimum 23/24

    E-Print Network [OSTI]

    Modzelewska, R

    2015-01-01T23:59:59.000Z

    We have studied the 27-day variations and their harmonics of the galactic cosmic ray (GCR) intensity, solar wind velocity, and interplanetary magnetic field (IMF) components in the recent prolonged solar minimum 23 24. The time evolution of the quasi-periodicity in these parameters connected with the Suns rotation reveals that their synodic period is stable and is aprox 26-27 days. This means that the changes in the solar wind speed and IMF are related to the Suns near equatorial regions in considering the differential rotation of the Sun. However, the solar wind parameters observed near the Earths orbit provide only the conditions in the limited local vicinity of the equatorial region in the heliosphere (within in latitude). We also demonstrate that the observed period of the GCR intensity connected with the Suns rotation increased up to aprox 33-36 days in 2009. This means that the process driving the 27-day variations of the GCR intensity takes place not only in the limited local surroundings of the equato...

  11. Method and apparatus for measuring the intensity and phase of an ultrashort light pulse

    DOE Patents [OSTI]

    Kane, Daniel J. (Santa Fe, NM); Trebino, Rick P. (Livermore, CA)

    1998-01-01T23:59:59.000Z

    The pulse shape I(t) and phase evolution x(t) of ultrashort light pulses are obtained using an instantaneously responding nonlinear optical medium to form a signal pulse. A light pulse, such a laser pulse, is split into a gate pulse and a probe pulse, where the gate pulse is delayed relative to the probe pulse. The gate pulse and the probe pulse are combined within an instantaneously responding optical medium to form a signal pulse functionally related to a temporal slice of the gate pulse corresponding to the time delay of the probe pulse. The signal pulse is then input to a wavelength-selective device to output pulse field information comprising intensity vs. frequency for a first value of the time delay. The time delay is varied over a range of values effective to yield an intensity plot of signal intensity vs. wavelength and delay. In one embodiment, the beams are overlapped at an angle so that a selected range of delay times is within the intersection to produce a simultaneous output over the time delays of interest.

  12. The Effect of Tidal Inflation Instability on the Mass and Dynamical Evolution of Extrasolar Planets with Ultra-Short Periods

    E-Print Network [OSTI]

    Pin-Gao Gu; Doug Lin; Peter Bodenheimer

    2003-03-17T23:59:59.000Z

    We investigate the possibility of substantial inflation of short-period Jupiter-mass planets, as a result of their internal tidal dissipation associated with the synchronization and circularization of their orbits. We employ the simplest prescription based on an equilibrium model with a constant lag angle for all components of the tide. We show that for young Jupiter-mass planets, with a period less than 3 days, an initial radius about 2 Jupiter radii, and an orbital eccentricity greater than 0.2, the energy dissipated during the circularization of their orbits is sufficiently intense and protracted to inflate their sizes up to their Roche radii.

  13. CFD Simulations of Joint Urban Atmospheric Dispersion Field Study

    SciTech Connect (OSTI)

    Lee, R; Humphreys III, T; Chan, S

    2004-06-17T23:59:59.000Z

    The application of Computational Fluid Dynamics (CFD) to the understanding of urban wind flow and dispersion processes has gained increasing attention over recent years. While many of the simpler dispersion models are based on a set of prescribed meteorology to calculate dispersion, the CFD approach has the ability of coupling the wind field to dispersion processes. This has distinct advantages when very detailed results are required, such as for the case where the releases occur around buildings and within urban areas. CFD also has great flexibility as a testbed for turbulence models, which has important implications for atmospheric dispersion problems. In the spring of 2003, a series of dispersion field experiments (Joint Urban 2003) were conducted at Oklahoma City (Allwine, et. al, 2004). These experiments were complimentary to the URBAN 2000 field studies at Salt Lake City (Shinn, et. al, 2000) in that they will provide a second set of comprehensive field data for evaluation of CFD as well as for other dispersion models. In contrast to the URBAN 2000 experiments that were conducted entirely at night, these new field studies took place during both daytime and nighttime thus including the possibility of convective as well as stable atmospheric conditions. Initially several CFD modeling studies were performed to provide guidance for the experimental team in the selection of release sites and in the deployment of wind and concentration sensors. Also, while meteorological and concentration measurements were taken over the greater Oklahoma City urban area, our CFD calculations were focused on the near field of the release point. The proximity of the source to a large commercial building and to the neighboring buildings several of which have multistories, present a significant challenge even for CFD calculations involving grid resolutions as fine as 1 meter. A total of 10 Intensive Observations Periods (IOP's) were conducted within the 2003 field experiments. SF6 releases in the form of puffs or continuous sources were disseminated over 6 daytime and 4 nighttime episodes. Many wind and concentration sensors were used to provide wind and SF6 data over both long and short time-averaging periods. In addition to the usual near surface measurements, data depicting vertical profiles of wind and concentrations adjacent to the outside walls of several buildings were also taken. Also of interest were observations of the trajectory of balloons that were deployed close to the tracer release area. Many of the balloons released exhibit extremely quick ascents up from ground level to the top of buildings, thus implying highly convective conditions. In this paper we will present some simulations that were performed during the planning of the field experiments. The calculations were based on two possible release sites at the intersections of Sheridan and Robinson, and Broadway and Sheridan. These results provided initial information on flow and dispersion patterns, which could be used to guide optimal placement of sensors at appropriate locations. We will also discuss results of more recent simulations for several releases in which reliable data is available. These simulations will be compared with the near field data taken from the wind sensors as well as the time-averaged data from the concentration sensors. Among the other topics discussed are initial and boundary conditions used in the simulations, adaptation of building GIS data for CFD modeling and analysis of field data.

  14. New analysis of the common nuclear dependence of the EMC effect and short-range correlations

    E-Print Network [OSTI]

    Fomin, Nadia

    2012-01-01T23:59:59.000Z

    The strong repulsive core of the nucleon-nucleon (NN) interaction at short distances prevents nucleons from becoming close to each other. This gives rise to high-momentum nucleons in the nucleus that cannot be explained in the context of the mean field and are commonly called short-range correlations (SRCs). They are responsible for the strength seen in momentum distribution tails seen in all nuclei, and we can obtain a relative measure of SRCs via cross section ratios to light nuclei. Recent inclusive scattering data from Jefferson Lab have allowed a precise determination of the A-dependence of SRCs in nuclei and suggests that, like the EMC effect, it is especially sensitive to the nuclear local density. These new results, as well as a new analysis of the relationship between SRCs and the EMC effect, will be presented and discussed.

  15. New analysis of the common nuclear dependence of the EMC effect and short-range correlations

    E-Print Network [OSTI]

    Nadia Fomin

    2012-09-07T23:59:59.000Z

    The strong repulsive core of the nucleon-nucleon (NN) interaction at short distances prevents nucleons from becoming close to each other. This gives rise to high-momentum nucleons in the nucleus that cannot be explained in the context of the mean field and are commonly called short-range correlations (SRCs). They are responsible for the strength seen in momentum distribution tails seen in all nuclei, and we can obtain a relative measure of SRCs via cross section ratios to light nuclei. Recent inclusive scattering data from Jefferson Lab have allowed a precise determination of the A-dependence of SRCs in nuclei and suggests that, like the EMC effect, it is especially sensitive to the nuclear local density. These new results, as well as a new analysis of the relationship between SRCs and the EMC effect, will be presented and discussed.

  16. Short-term Variations in the Galactic Environment of the Sun

    E-Print Network [OSTI]

    Priscilla C. Frisch; Jonathan D. Slavin

    2006-01-17T23:59:59.000Z

    The galactic environment of the Sun varies over short timescales as the Sun and interstellar clouds travel through space. Small variations in the dynamics, ionization, density, and magnetic field strength of the interstellar medium (ISM) surrounding the Sun yield pronounced changes in the heliosphere. We discuss essential information required to understand short-term variations in the galactic environment of the Sun, including the distribution and radiative transfer properties of nearby ISM, and variations in the boundary conditions of the heliosphere as the Sun traverses clouds. The most predictable transitions are when the Sun emerged from the Local Bubble interior and entered the cluster of local interstellar clouds flowing past the Sun, within the past 140,000 years, and again when the Sun entered the local interstellar cloud now surrounding and inside of the solar system, sometime during the past 44,000 years.

  17. Modal shifts in short-haul passenger travel and the consequent energy impacts. [Intercity travel under 500 miles

    SciTech Connect (OSTI)

    Not Available

    1980-03-01T23:59:59.000Z

    A study was performed to evaluate the impacts of strategies to effect modal shifts in short-haul passenger travel (defined herein as intercity travel under 500 miles) from energy-intensive modes to those modes that are less energy-intensive. A series of individual strategies, ranging from incentives to the less energy-intensive modes (bus, rail) to penalties to the more energy-intensive modes (auto, air) was examined to determine energy saved and policy implications relative to strategy implementation. The most effective of the individual strategies were then combined in all permutations, and the analysis was repeated. As part of the analytical process, effects of factors other than energy (user cost and time, emissions, government subsidy, and travel fatailities) were examined in a benefit/cost analysis. Finally, energy savings, benefit/cost impacts, implementation considerations, and policy implications were evaluated to arrive at conclusions as to the effectiveness of the more-influential strategies and to the overall effectiveness of induced modal shifts. The principal conclusion of the study is that the maximum 1980 energy saving that might be realized by modal shifts, discounting the concurrent effects of demand suppression and improvement of mode efficiency, is approximately 83 x 10/sup 12/ Btu (46,500 bbl gasoline per day), 3.8% of the total projected 1980 energy consumption in the short-haul transportation sector and 0.23% of the total US petroleum use. It was also concluded that strategies to achieve these small savings by modal shifts would result in significant economic, social, and business disruptions.

  18. The X-ray afterglow flat segment in short GRB 051221A: Energy injection from a millisecond magnetar?

    E-Print Network [OSTI]

    Yizhong Fan; Dong Xu

    2006-07-12T23:59:59.000Z

    The flat segment lasting $\\sim 10^4$ seconds in the X-ray afterglow of GRB051221A represents the first clear case of strong energy injection in the external shock of a short GRB afterglow. In this work, we show that a millisecond pulsar with dipole magnetic field $\\sim 10^{14}$ Gauss could well account for that energy injection. The good quality X-ray flat segment thus suggests that the central engine of this short burst may be a millisecond magnetar.

  19. SUNY Programs: Semester, Academic Year and Short Term

    E-Print Network [OSTI]

    Suzuki, Masatsugu

    SUNY Programs: Italy Semester, Academic Year and Short Term #12;1 Table of Contents How to Use This Booklet 1 A Brief Overview 2 Semester and Academic Year Programs 3 Short Term Programs 8 Contact of programs offered in Italy by SUNY campuses. These listings provide a summary about the basic

  20. SUNY Programs: Semester, Academic Year and Short Term

    E-Print Network [OSTI]

    Suzuki, Masatsugu

    SUNY Programs: France Semester, Academic Year and Short Term #12;1 Table of Contents How to Use This Booklet 1 A Brief Overview 2 Semester and Academic Year Programs 3 Short Term Programs 6 SUNY Programs in Canada and other Francophone Locations 9 Recommended non-SUNY Program 11 Contact Information for all SUNY

  1. Short-term energy outlook, annual supplement 1994

    SciTech Connect (OSTI)

    Not Available

    1994-08-01T23:59:59.000Z

    The Short-Term Energy Outlook Annual Supplement (Supplement) is published once a year as a complement to the Short-Term Energy Outlook (Outlook), Quarterly Projections. The purpose of the Supplement is to review the accuracy of the forecasts published in the Outlook, make comparisons with other independent energy forecasts, and examine current energy topics that affect the forecasts.

  2. Short-term energy outlook annual supplement, 1993

    SciTech Connect (OSTI)

    NONE

    1993-08-06T23:59:59.000Z

    The Short-Term Energy Outlook Annual Supplement (supplement) is published once a year as a complement to the Short-Term Energy Outlook (Outlook), Quarterly Projections. The purpose of the Supplement is to review the accuracy of the forecasts published in the Outlook, make comparisons with other independent energy forecasts, and examine current energy topics that affect the forecasts.

  3. ORIGINAL CONTRIBUTION Ozone and Short-term Mortality

    E-Print Network [OSTI]

    Dominici, Francesca

    ORIGINAL CONTRIBUTION Ozone and Short-term Mortality in 95 US Urban Communities, 1987-2000 MichelleD E XPOSURE TO TROPOSPHERIC OZONE is widespread in the United States,1,2 occurring also outside southernCalifornia,whereozone formation was first recognized.3 Short- term exposure to ozone has been

  4. Mutually injecting semiconductor lasers: simulations for short and zero delay

    E-Print Network [OSTI]

    Wünsche, Hans-Jürgen "Ede"

    Mutually injecting semiconductor lasers: simulations for short and zero delay Nikolay Korneyev a und Stochastik, Mohrenstr. 39, 10117 Berlin, Germany ABSTRACT Distant lasers with mutual optical the relaxation oscillation period. In order to illuminate the role of these short delays, the ultimate zero

  5. ROBERT B. SHORT SCHOLARSHIP IN ZOOLOGY Department of Biological Science

    E-Print Network [OSTI]

    Ronquist, Fredrik

    The Robert B. Short Scholarship in Zoology provides an award of up to $1,000 to a currently enrolled graduateROBERT B. SHORT SCHOLARSHIP IN ZOOLOGY Department of Biological Science Florida State University of the proposed off-campus experience to the applicant's biological and career interests. ELIGIBILITY Currently

  6. Journal of Power Sources 153 (2006) 345349 Short communication

    E-Print Network [OSTI]

    Cho, Jaephil

    2006-01-01T23:59:59.000Z

    fire as a result of an internal short circuit. Therefore, the guidelines recommend that a cellJournal of Power Sources 153 (2006) 345­349 Short communication Improvement of 12 V overcharge that block the high temperature, high current, overcharging and a have safety pressure-release rupture vent

  7. Type Inference Builds a Short Cut to Deforestation Olaf Chitil

    E-Print Network [OSTI]

    Kent, University of

    Type Inference Builds a Short Cut to Deforestation Olaf Chitil Lehrstuhl f¨ur Informatik II, RWTH Aachen, 52056 Aachen, Germany chitil@informatik.rwth-aachen.de Abstract Deforestation optimises structures. Short cut deforestation is a de- forestation method which is based on a single, local trans

  8. Optimal Short-Range Routing of Vessels in a Seaway

    E-Print Network [OSTI]

    Smith, Robert L.

    Optimal Short-Range Routing of Vessels in a Seaway Irina S. Dolinskaya¹ Miltiadis Kotinis² Michael Industrial and Operations Engineering 1205 Beal Avenue Ann Arbor, Michigan 48109 ²Old Dominion University Short-Range Routing of Vessels in a Seaway Dolinskaya, I. S.1 , Kotinis, M.2 , Parsons, M. G.3

  9. Short-Circuit Modeling of a Wind Power Plant: Preprint

    SciTech Connect (OSTI)

    Muljadi, E.; Gevorgian, V.

    2011-03-01T23:59:59.000Z

    This paper investigates the short-circuit behavior of a WPP for different types of wind turbines. The short-circuit behavior will be presented. Both the simplified models and detailed models are used in the simulations and both symmetrical faults and unsymmetrical faults are discussed.

  10. Entomology 489 Field Entomology Field Project Guide

    E-Print Network [OSTI]

    Behmer, Spencer T.

    with information, people, materials). Field Projects (your project should...) FEntomology 489 ­ Field Entomology Field Project Guide A small-group field project is required for ENTO 489 ­ Field Entomology. This guide provides general information about the field-project

  11. Propagation of ultra-short solitons in stochastic Maxwell's equations

    SciTech Connect (OSTI)

    Kurt, Levent, E-mail: LKurt@gc.cuny.edu [Department of Science, Borough of Manhattan Community College, City University of New York, New York, New York 10007 (United States)] [Department of Science, Borough of Manhattan Community College, City University of New York, New York, New York 10007 (United States); Schäfer, Tobias [Department of Mathematics, College of Staten Island, City University of New York, Staten Island, New York 10314 (United States)] [Department of Mathematics, College of Staten Island, City University of New York, Staten Island, New York 10314 (United States)

    2014-01-15T23:59:59.000Z

    We study the propagation of ultra-short short solitons in a cubic nonlinear medium modeled by nonlinear Maxwell's equations with stochastic variations of media. We consider three cases: variations of (a) the dispersion, (b) the phase velocity, (c) the nonlinear coefficient. Using a modified multi-scale expansion for stochastic systems, we derive new stochastic generalizations of the short pulse equation that approximate the solutions of stochastic nonlinear Maxwell's equations. Numerical simulations show that soliton solutions of the short pulse equation propagate stably in stochastic nonlinear Maxwell's equations and that the generalized stochastic short pulse equations approximate the solutions to the stochastic Maxwell's equations over the distances under consideration. This holds for both a pathwise comparison of the stochastic equations as well as for a comparison of the resulting probability densities.

  12. Clouds of short-circuited thermionic nanobatteries and promising prospects for development of nanobattery-based aerosol fusion reactors. The preliminary report

    E-Print Network [OSTI]

    Meshcheryakov, Oleg

    2012-01-01T23:59:59.000Z

    The physical mechanisms of periodic separation and relaxation of electric charges within aerosol particles possessing the properties the short-circuited batteries can be extremely diverse. With use of appropriate materials and dispersing methods, the electrochemical, thermoelectric, thermionic, pyroelectric, photoelectric, photo electronic emission, or even radionuclide-based emission micro and nano-batteries can be synthesized and be dispersed in the air as clouds self-assembed of the short-circuited aerosol batteries due to the inter-particle electromagnetic dipole-dipole attraction. Intense thermionic emission from ionized hot spots migrating on the relatively cold surface of charged explosive particles, can convert these particles into short-circuited thermionic batteries, turning an aerosol cloud consisting of such unipolar charged, gradually decomposing explosive particles into ball lightning. The slow exothermic decomposition of the highly sensitive explosive aerosol particles, catalyzed by excess ions...

  13. Long-Lasting Black-Hole Jets in Short Gamma-Ray Bursts

    E-Print Network [OSTI]

    Kisaka, Shota

    2015-01-01T23:59:59.000Z

    Whether a short gamma-ray burst (GRB) is caused by a black hole (BH) or a neutron star (NS) after the merger of a NS binary is a crucial problem. We propose a BH model that explains short GRBs with long-lasting activities such as extended emission and plateau emission up to $\\sim10000$ s. To extract the BH rotational energy, the topological evolution of the magnetic field should accompany the mass ejection, mass fallback, and magnetic field reconnection. The observations suggest the magnetic field decay from $\\sim10^{14}$ G to $\\sim10^{13} - 10^{11}$ G at the BH, bounded below by the pre-merger strength and kept constant while the luminosity is constant, and the fallback mass of $\\sim10^{-4} - 10^{-2} M_{\\odot}$, comparable to the ejecta mass implied by the macronova in GRB 130603B. The BH model has implications for gravitational waves and the equation of state of NS matter.

  14. Numerical solution of transient eddy current problems with input current intensities as boundary data

    E-Print Network [OSTI]

    Rodríguez, Rodolfo

    Numerical solution of transient eddy current problems with input current intensities as boundary to solve transient eddy current problems with input current intensities as data, formulated in terms: Eddy current problems, time-dependent electromagnetic problems, input current intensities, finite

  15. Spicules Intensity Oscillations in SOT/HINODE Observations

    E-Print Network [OSTI]

    Tavabi, E; Maralani, A R Ahangarzadeh; Zeighami, S

    2015-01-01T23:59:59.000Z

    Aims. We study the coherency of solar spicules intensity oscillations with increasing height above the solar limb in quiet Sun, active Sun and active region using observations from HINODE/SOT. Existence of coherency up to transition region strengthens the theory of the coronal heating and solar wind through energy transport and photospheric oscillations. Methods. Using time sequences from the HINODE/SOT in Ca II H line, we investigate oscillations found in intensity profiles at different heights above the solar limb. We use the Fourier and wavelet analysis to measure dominant frequency peaks of intensity at the heights, and phase difference between oscillations at two certain heights, to find evidence for the coherency of the oscillations. Finally, we can calculate the energy and the mass transported by spicules providing energy equilibrium, according to density values of spicules at different heights. To extend this work, we can also consider coherent oscillations at different latitudes and suggest to study ...

  16. Measurement of Dynamic Light Scattering Intensity in Gels

    E-Print Network [OSTI]

    Rochas, Cyrille

    2015-01-01T23:59:59.000Z

    In the scientific literature little attention has been given to the use of dynamic light scattering (DLS) as a tool for extracting the thermodynamic information contained in the absolute intensity of light scattered by gels. In this article we show that DLS yields reliable measurements of the intensity of light scattered by the thermodynamic fluctuations, not only in aqueous polymer solutions, but also in hydrogels. In hydrogels, light scattered by osmotic fluctuations is heterodyned by that from static or slowly varying inhomogeneities. The two components are separable owing to their different time scales, giving good experimental agreement with macroscopic measurements of the osmotic pressure. DLS measurements in gels are, however, tributary to depolarised light scattering from the network as well as to multiple light scattering. The paper examines these effects, as well as the instrumental corrections required to determine the osmotic modulus. For guest polymers trapped in a hydrogel the measured intensity...

  17. Interpreting the unresolved intensity of cosmologically redshifted line radiation

    E-Print Network [OSTI]

    Switzer, Eric R; Masui, Kiyoshi W; Pen, Ue-Li; Voytek, Tabitha C

    2015-01-01T23:59:59.000Z

    Intensity mapping experiments survey the spectrum of diffuse line radiation rather than detect individual objects at high signal-to-noise. Spectral maps of unresolved atomic and molecular line radiation contain three-dimensional information about the density and environments of emitting gas, and efficiently probe cosmological volumes out to high redshift. Intensity mapping survey volumes also contain all other sources of radiation at the frequencies of interest. Continuum foregrounds are typically ~10^2-10^3 times brighter than the cosmological signal. The instrumental response to bright foregrounds will produce new spectral degrees of freedom that are not known in advance, nor necessarily spectrally smooth. The intrinsic spectra of foregrounds may also not be well-known in advance. We describe a general class of quadratic estimators to analyze data from single-dish intensity mapping experiments, and determine contaminated spectral modes from the data itself. The key attribute of foregrounds is not that they ...

  18. Energy Intensity Trends in AEO2010 (released in AEO2010)

    Reports and Publications (EIA)

    2010-01-01T23:59:59.000Z

    Energy intensity (energy consumption per dollar of real GDP) indicates how much energy a country uses to produce its goods and services. From the early 1950s to the early 1970s, U.S. total primary energy consumption and real GDP increased at nearly the same annual rate. During that period, real oil prices remained virtually flat. In contrast, from the mid-1970s to 2008, the relationship between energy consumption and real GDP growth changed, with primary energy consumption growing at less than one-third the previous average rate and real GDP growth continuing to grow at its historical rate. The decoupling of real GDP growth from energy consumption growth led to a decline in energy intensity that averaged 2.8% per year from 1973 to 2008. In the Annual Energy Outlook 2010 Reference case, energy intensity continues to decline, at an average annual rate of 1.9% from 2008 to 2035.

  19. Nanosecond pulsed electric fields (nsPEFs) low cost generator design using power MOSFET and Cockcroft-Walton multiplier circuit as high voltage DC source

    SciTech Connect (OSTI)

    Sulaeman, M. Y.; Widita, R. [Department of Physics, Nuclear Physics and Biophysics Research Division, Faculty of Mathematics and Natural Science, Institut Teknologi Bandung, Bandung (Indonesia)

    2014-09-30T23:59:59.000Z

    Purpose: Non-ionizing radiation therapy for cancer using pulsed electric field with high intensity field has become an interesting field new research topic. A new method using nanosecond pulsed electric fields (nsPEFs) offers a novel means to treat cancer. Not like the conventional electroporation, nsPEFs able to create nanopores in all membranes of the cell, including membrane in cell organelles, like mitochondria and nucleus. NsPEFs will promote cell death in several cell types, including cancer cell by apoptosis mechanism. NsPEFs will use pulse with intensity of electric field higher than conventional electroporation, between 20–100 kV/cm and with shorter duration of pulse than conventional electroporation. NsPEFs requires a generator to produce high voltage pulse and to achieve high intensity electric field with proper pulse width. However, manufacturing cost for creating generator that generates a high voltage with short duration for nsPEFs purposes is highly expensive. Hence, the aim of this research is to obtain the low cost generator design that is able to produce a high voltage pulse with nanosecond width and will be used for nsPEFs purposes. Method: Cockcroft-Walton multiplier circuit will boost the input of 220 volt AC into high voltage DC around 1500 volt and it will be combined by a series of power MOSFET as a fast switch to obtain a high voltage with nanosecond pulse width. The motivation using Cockcroft-Walton multiplier is to acquire a low-cost high voltage DC generator; it will use capacitors and diodes arranged like a step. Power MOSFET connected in series is used as voltage divider to share the high voltage in order not to damage them. Results: This design is expected to acquire a low-cost generator that can achieve the high voltage pulse in amount of ?1.5 kV with falltime 3 ns and risetime 15 ns into a 50? load that will be used for nsPEFs purposes. Further detailed on the circuit design will be explained at presentation.

  20. A short model excitation of an asymmetric force free superconducting transmission line magnet

    SciTech Connect (OSTI)

    Wake, M.; Sato, H.; /KEK, Tsukuba; Carcagno, R.; Foster, W.; Hays, S.; Kashikhin, V.; Oleck, A.; Piekarz, H.; Rabehl, R,; /Fermilab

    2005-09-01T23:59:59.000Z

    A short model of asymmetric force free magnet with single beam aperture was tested at Fermilab together with the excitation test of VLHC transmission line magnet. The design concept of asymmetric force free superconducting magnet was verified by the test. The testing reached up to 104 kA current and no indication of force imbalance was observed. Since the model magnet length was only 10cm, A 0.75m model was constructed and tested at KEK with low current to ensure the validity of the design. The cool down and the excitation at KEK were also successful finding very small thermal contraction of the conductor and reasonable field homogeneity.

  1. Short Range Correlations in Nuclei at Large xbj through Inclusive Quasi-Elastic Electron Scattering

    SciTech Connect (OSTI)

    Ye, Zhihong [UVA

    2013-12-01T23:59:59.000Z

    The experiment, E08-014, in Hall-A at Jefferson Lab aims to study the short-range correlations (SRC) which are necessary to explain the nuclear strength absent in the mean field theory. The cross sections for 2H, 3He, 4He, 12C, 40Ca and 48Ca, were measured via inclusive quasi-elastic electron scattering from these nuclei in a Q2 range between 0.8 and 2.8 (GeV/c)^2 for x>1. The cross section ratios of heavy nuclei to 2H were extracted to study two-nucleon SRC for 1

  2. Quantum statistics effect in Schwinger pair production in short laser pulses

    E-Print Network [OSTI]

    Florian Hebenstreit; Reinhard Alkofer; Gerald V. Dunne; Holger Gies

    2009-10-23T23:59:59.000Z

    We investigate non-perturbative pair production from vacuum (the Schwinger effect) in the focal region of two counter-propagating, ultra-short laser pulses with sub-cycle structure. We use the quantum kinetic formulation to calculate the momentum spectrum of created particles and show the extreme sensitivity to the laser frequency $\\omega$, the pulse length $\\tau$ and the carrier-envelope absolute phase $\\phi$. We apply this formalism to both fermions and bosons to illustrate the influence of quantum statistics in this type of electric background field.

  3. Plasmonic Meta-Surface for Efficient Ultra-Short Pulse Laser-Driven Particle Acceleration

    E-Print Network [OSTI]

    Bar-Lev, Doron

    2014-01-01T23:59:59.000Z

    A laser-driven particle accelerator based on plasmonic nano-antennas is proposed and analyzed. The concept utilizes the enhancement and localization of the electric field by nano-antennas to maximize the acceleration gradient and to overcome potential metallic losses. The structure is optimized for accelerating relativistic particles using a femto-second laser source operating at 800nm, and is shown to support the bandwidth of ultra-short laser pulses (up to 16fsec) while providing a high acceleration gradient potentially reaching 11.6GV/m.

  4. The Millisecond Magnetar Central Engine in short GRBs

    E-Print Network [OSTI]

    Lü, Hou-Jun; Lei, Wei-Hua; Li, Ye; Lasky, Paul D

    2015-01-01T23:59:59.000Z

    One favored progenitor model for short duration gamma-ray bursts (SGRBs) is the coalescence of two neutron stars (NS-NS). One possible outcome of such a merger would be a rapidly spinning, strongly magnetized neutron star (known as a millisecond magnetar). These magnetars may be "supra-massive", implying they would collapse to black holes after losing centrifugal support due to magnetic dipole spindown. By systematically analyzing the BAT-XRT light curves of all short GRBs detected by {\\em swift}, we test how well the data are consistent with this central engine model of short GRBs. We find that the so-called "extended emission" observed with BAT in some short GRBs are fundamentally the same component as the "internal X-ray plateau" as observed in many short GRBs, which is defined as a plateau in the lightcurve followed by a very rapid drop. Based on how likely a short GRB hosts a magnetar, we characterize the entire {\\em Swift} short GRB sample into three categories: the "internal plateau" sample, the "exter...

  5. FY06 LDRD Final Report Data Intensive Computing

    SciTech Connect (OSTI)

    Abdulla, G M

    2007-02-13T23:59:59.000Z

    The goal of the data intensive LDRD was to investigate the fundamental research issues underlying the application of High Performance Computing (HPC) resources to the challenges of data intensive computing. We explored these issues through four targeted case studies derived from growing LLNL programs: high speed text processing, massive semantic graph analysis, streaming image feature extraction, and processing of streaming sensor data. The ultimate goal of this analysis was to provide scalable data management algorithms to support the development of a predictive knowledge capability consistent with the direction of Aurora.

  6. On the high intensity aspects of AGS Booster proton operation

    SciTech Connect (OSTI)

    Reece, R.K.; Ahrens, L.A.; Bleser, E.J.; Brennan, J.M.; Gardner, C.; Glenn, J.W.; Roser, T.; Shoji, Y.; van Asselt, W.; Weng, W.T.

    1993-01-01T23:59:59.000Z

    Observations of high intensity effects on the proton performance of the AGS Booster are presented, including present operational limits and correction methods. The transverse emittances, optimum tune working points, damping of coherent transverse oscillations and correction of stopband resonances through third-order are discussed in addition to the observed tune spread due to space charge forces. The initial longitudinal phase space distribution, capture and acceleration parameters and measurements are also given. Operational tools and strategies relevant to the high intensity setup are mentioned.

  7. On the high intensity aspects of AGS Booster proton operation

    SciTech Connect (OSTI)

    Reece, R.K.; Ahrens, L.A.; Bleser, E.J.; Brennan, J.M.; Gardner, C.; Glenn, J.W.; Roser, T.; Shoji, Y.; van Asselt, W.; Weng, W.T.

    1993-06-01T23:59:59.000Z

    Observations of high intensity effects on the proton performance of the AGS Booster are presented, including present operational limits and correction methods. The transverse emittances, optimum tune working points, damping of coherent transverse oscillations and correction of stopband resonances through third-order are discussed in addition to the observed tune spread due to space charge forces. The initial longitudinal phase space distribution, capture and acceleration parameters and measurements are also given. Operational tools and strategies relevant to the high intensity setup are mentioned.

  8. Data-intensive computing laying foundation for biological breakthroughs

    SciTech Connect (OSTI)

    Hachigian, David J.

    2007-06-18T23:59:59.000Z

    Finding a different way is the goal of the Data-Intensive Computing for Complex Biological Systems (Biopilot) project—a joint research effort between the Pacific Northwest National Laboratory (PNNL) and Oak Ridge National Laboratory funded by the U.S. Department of Energy’s Office of Advanced Scientific Computing Research. The two national laboratories, both of whom are world leaders in computing and computational sciences, are teaming to support areas of biological research in urgent need of data-intensive computing capabilities.

  9. PLANETARY AND OTHER SHORT BINARY MICROLENSING EVENTS FROM THE MOA SHORT-EVENT ANALYSIS

    SciTech Connect (OSTI)

    Bennett, D. P. [Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Sumi, T. [Department of Earth and Space Science, Osaka University, Osaka 560-0043 (Japan); Bond, I. A.; Ling, C. H. [Institute for Information and Mathematical Sciences, Massey University, Auckland 1330 (New Zealand); Kamiya, K.; Abe, F.; Fukui, A.; Furusawa, K.; Itow, Y.; Masuda, K.; Matsubara, Y.; Miyake, N.; Muraki, Y. [Solar-Terrestrial Environment Laboratory, Nagoya University, Nagoya 464-8601 (Japan); Botzler, C. S.; Rattenbury, N. J. [Department of Physics, University of Auckland, Private Bag 92-019, Auckland 1001 (New Zealand); Korpela, A. V.; Sullivan, D. J. [School of Chemical and Physical Sciences, Victoria University, Wellington (New Zealand); Kilmartin, P. M. [Mt. John Observatory, P.O. Box 56, Lake Tekapo 8770 (New Zealand); Ohnishi, K. [Nagano National College of Technology, Nagano 381-8550 (Japan); Saito, To., E-mail: bennett@nd.edu [Tokyo Metropolitan College of Aeronautics, Tokyo 116-8523 (Japan); Collaboration: MOA Collaboration; and others

    2012-10-01T23:59:59.000Z

    We present the analysis of four candidate short-duration binary microlensing events from the 2006-2007 MOA Project short-event analysis. These events were discovered as a by-product of an analysis designed to find short-timescale single-lens events that may be due to free-floating planets. Three of these events are determined to be microlensing events, while the fourth is most likely caused by stellar variability. For each of the three microlensing events, the signal is almost entirely due to a brief caustic feature with little or no lensing attributable mainly to the lens primary. One of these events, MOA-bin-1, is due to a planet, and it is the first example of a planetary event in which the stellar host is only detected through binary microlensing effects. The mass ratio and separation are q (4.9 {+-} 1.4) Multiplication-Sign 10{sup -3} and s = 2.10 {+-} 0.05, respectively. A Bayesian analysis based on a standard Galactic model indicates that the planet, MOA-bin-1Lb, has a mass of m{sub p} = 3.7 {+-} 2.1 M{sub Jup} and orbits a star of M{sub *} = 0.75{sub -0.41}{sup +}0{sup .33} M{sub Sun} at a semimajor axis of a = 8.3{sub -2.7}{sup +4.5} AU. This is one of the most massive and widest separation planets found by microlensing. The scarcity of such wide-separation planets also has implications for interpretation of the isolated planetary mass objects found by this analysis. If we assume that we have been able to detect wide-separation planets with an efficiency at least as high as that for isolated planets, then we can set limits on the distribution of planets in wide orbits. In particular, if the entire isolated planet sample found by Sumi et al. consists of planets bound in wide orbits around stars, we find that it is likely that the median orbital semimajor axis is >30 AU.

  10. On Field Constraint Analysis

    E-Print Network [OSTI]

    Wies, Thomas

    2005-11-03T23:59:59.000Z

    We introduce field constraint analysis, a new technique for verifying data structure invariants. A field constraint for a field is a formula specifying a set of objects to which the field can point. Field constraints ...

  11. Short-term energy outlook. Quarterly projections, Third quarter 1995

    SciTech Connect (OSTI)

    NONE

    1995-08-02T23:59:59.000Z

    The Energy Information Administration (EIA) prepares quarterly, short-term energy supply, demand, and price projections for publication in February, May, August, and November in the Short-Term Energy Outlook (Outlook). An annual supplement analyzes the performance of previous forecasts, compares recent projections with those of other forecasting services, and discusses current topics related to the short-term energy markets. The forecast period for this issue of the Outlook extends from the third quarter of 1995 through the fourth quarter of 1996. Values for the second quarter of 1995, however, are preliminary EIA estimates.

  12. INTERPLANETARY NETWORK LOCALIZATIONS OF KONUS SHORT GAMMA-RAY BURSTS

    SciTech Connect (OSTI)

    Pal'shin, V. D.; Svinkin, D. S.; Aptekar, R. L.; Golenetskii, S. V.; Frederiks, D. D.; Mazets, E. P.; Oleynik, P. P.; Ulanov, M. V. [Ioffe Physical Technical Institute, St. Petersburg, 194021 (Russian Federation); Hurley, K. [Space Sciences Laboratory, University of California, 7 Gauss Way, Berkeley, CA 94720-7450 (United States); Cline, T.; Trombka, J.; McClanahan, T. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Mitrofanov, I. G.; Golovin, D. V.; Kozyrev, A. S.; Litvak, M. L.; Sanin, A. B. [Space Research Institute, 84/32, Profsoyuznaya, Moscow 117997 (Russian Federation); Boynton, W.; Fellows, C.; Harshman, K., E-mail: val@mail.ioffe.ru [Department of Planetary Sciences, University of Arizona, Tucson, AZ 85721 (United States); and others

    2013-08-15T23:59:59.000Z

    Between the launch of the Global Geospace Science Wind spacecraft in 1994 November and the end of 2010, the Konus-Wind experiment detected 296 short-duration gamma-ray bursts (including 23 bursts which can be classified as short bursts with extended emission). During this period, the Interplanetary Network (IPN) consisted of up to 11 spacecraft, and using triangulation, the localizations of 271 bursts were obtained. We present the most comprehensive IPN localization data on these events. The short burst detection rate, {approx}18 yr{sup -1}, exceeds that of many individual experiments.

  13. Electron generation and transport in intense relativistic laser-plasma interactions relevant to fast ignition ICF

    E-Print Network [OSTI]

    Ma, Tammy Yee Wing

    2010-01-01T23:59:59.000Z

    Transport of Energy by Ultra-Intense Laser-Generated tronsof Energy by Ultra-Intense Laser-Generated Electrons inUltra-High In- tensity Lasers . . . . . . . . . . . . . . . . . . . . . . . .

  14. Investigation of stimulated raman scattering using short-pulse diffraction limited laser beam near the instability threshold

    SciTech Connect (OSTI)

    Kline, John L [Los Alamos National Laboratory; Montgomery, David S [Los Alamos National Laboratory; Flippo, Kirk A [Los Alamos National Laboratory; Rose, Harvey A [Los Alamos National Laboratory; Yin, L [Los Alamos National Laboratory; Albright, B J [Los Alamos National Laboratory; Johnson, R P [Los Alamos National Laboratory; Shimada, T [Los Alamos National Laboratory; Bowers, K [Los Alamos National Laboratory; Rousseaux, C [CEA; Tassin, V [CEA; Baton, S D [FRANCE; Amiranoff, F [FRANCE; Hardin, R A [WEST VIRGINIA UNIV

    2008-01-01T23:59:59.000Z

    Short pulse laser plasma interaction experiments using diffraction limited beams provide an excellent platform to investigate the fundamental physics of Stimulated Raman Scattering. Detailed understanding of these laser plasma instabilities impacts the current inertial confinement fusion ignition designs and could potentially impact fast ignition when higher energy lasers are used with longer pulse durations ( > 1 kJ and> 1 ps). Using short laser pulses, experiments can be modeled over the entire interaction time of the laser using particle-in-cell codes to validate our understanding quantitatively. Experiments have been conducted at the Trident laser facility and the LULI (Laboratoire pour l'Utilisation des Lasers Intenses) to investigate stimulated Raman scattering near the threshold of the instability using 527 nm and 1059 nm laser light respectively with 1.5-3.0 ps pulses. In both experiments, the interaction beam was focused into a pre-ionized He gas-jet plasma. Measurements of the reflectivity as a function of intensity and k{lambda}{sub D} were completed at the Trident laser facility. At LULI, a 300 fs Thomson scattering probe is used to directly measure the density fluctuations of the driven electron plasma and ion acoustic waves. Work is currently underway comparing the results of the experiments with simulations using the VPIC [K. J. Bowers, et at., Phys. Plasmas, 15 055703 (2008)] particle-in-cell code. Details of the experimental results are presented in this manuscript.

  15. Sub-wavelength position measurements with running wave driving fields

    E-Print Network [OSTI]

    J. Evers; S. Qamar

    2009-01-29T23:59:59.000Z

    A scheme for sub-wavelength position measurements of quantum particles is discussed, which operates with running-wave laser fields as opposed to standing wave fields proposed in previous setups. The position is encoded in the phase of the applied fields rather than in the spatially modulated intensity of a standing wave. Therefore, disadvantages of standing wave schemes such as cases where the atom remains undetected since it is at a node of the standing wave field are avoided. Reversing the directions of parts of the driving laser fields allows to switch between different magnification levels, and thus to optimize the localization.

  16. Substrate dielectric effects on graphene field effect transistors

    SciTech Connect (OSTI)

    Hu, Zhaoying; Prasad Sinha, Dhiraj; Ung Lee, Ji, E-mail: jlee1@albany.edu; Liehr, Michael [College of Nanoscale Science and Engineering, The State University of New York at Albany, Albany, New York 12203 (United States)

    2014-05-21T23:59:59.000Z

    Graphene is emerging as a promising material for future electronics and optoelectronics applications due to its unique electronic structure. Understanding the graphene-dielectric interaction is of vital importance for the development of graphene field effect transistors (FETs) and other novel graphene devices. Here, we extend the exploration of substrate dielectrics from conventionally used thermally grown SiO{sub 2} and hexagonal boron nitride films to technologically relevant deposited dielectrics used in semiconductor industry. A systematic analysis of morphology and optical and electrical properties was performed to study the effects of different substrates (SiO{sub 2}, HfO{sub 2}, Al{sub 2}O{sub 3}, tetraethyl orthosilicate (TEOS)-oxide, and Si{sub 3}N{sub 4}) on the carrier transport of chemical vapor deposition-derived graphene FET devices. As baseline, we use graphene FETs fabricated on thermal SiO{sub 2} with a relatively high carrier mobility of 10?000 cm{sup 2}/(V s). Among the deposited dielectrics studied, silicon nitride showed the highest mobility, comparable to the properties of graphene fabricated on thermal SiO{sub 2}. We conclude that this result comes from lower long range scattering and short range scattering rates in the nitride compared those in the other deposited films. The carrier fluctuation caused by substrates, however, seems to be the main contributing factor for mobility degradation, as a universal mobility-disorder density product is observed for all the dielectrics examined. The extrinsic doping trend is further confirmed by Raman spectra. We also provide, for the first time, correlation between the intensity ratio of G peak and 2D peak in the Raman spectra to the carrier mobility of graphene for different substrates.

  17. Exact theory and numeric results for short pulse ionization of simple model atom in one dimension

    E-Print Network [OSTI]

    Rokhlenko, Alexander

    2015-01-01T23:59:59.000Z

    Our exact theory for continuous harmonic perturbation of a one dimensional model atom by parametric variations of its potential is generalized for the cases when a) the atom is exposed to short pulses of an external harmonic electric field and b) the forcing is represented by short bursts of different shape changing the strength of the binding potential. This work is motivated not only by the wide use of laser pulses for atomic ionization, but also by our earlier study of the same model which successfully described the ionization dynamics in all orders, i.e. the multi-photon processes, though being treated by the non-relativistic Schr\\"odinger equation. In particular, it was shown that the bound atom cannot survive the excitation of its potential caused by any non-zero frequency and amplitude of the continuous harmonic forcing. Our present analysis found important laws of the atomic ionization by short pulses, in particular the efficiency of ionizing this model system and presumably real ones as well.

  18. Gamma Ray Bursts Sudden, intense flashes of gamma rays

    E-Print Network [OSTI]

    Washington at Seattle, University of - Department of Physics, Electroweak Interaction Research Group

    Gamma Ray Bursts #12;The Case Sudden, intense flashes of gamma rays come from nowhere and disappear with out a trace. Incredibly powerful: A single gamma ray burst is hundreds of times brighter a supernova #12;Who Vela (1960's) Looking for arms testing, found gamma ray bursts Compton Gamma Ray Observatory

  19. Title of Dissertation: CONTROL AND TRANSPORT OF INTENSE ELECTRON BEAMS

    E-Print Network [OSTI]

    Anlage, Steven

    ABSTRACT Title of Dissertation: CONTROL AND TRANSPORT OF INTENSE ELECTRON BEAMS Hui Li, Doctor of Philosophy, 2004 Dissertation Directed By: Professor, Patrick G. O'Shea Department of Electrical and Computer throughout the strong focusing lattice. We describe in this dissertation the main beam control techniques

  20. PNNL Data-Intensive Computing for a Smarter Energy Grid

    ScienceCinema (OSTI)

    Carol Imhoff; Zhenyu (Henry) Huang; Daniel Chavarria

    2012-12-31T23:59:59.000Z

    The Middleware for Data-Intensive Computing (MeDICi) Integration Framework, an integrated platform to solve data analysis and processing needs, supports PNNL research on the U.S. electric power grid. MeDICi is enabling development of visualizations of grid operations and vulnerabilities, with goal of near real-time analysis to aid operators in preventing and mitigating grid failures.