Powered by Deep Web Technologies
Note: This page contains sample records for the topic "integration planning safety" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Integrated Safety Management (ISM) - Work Planning and Control  

NLE Websites -- All DOE Office Websites (Extended Search)

Work Planning and Control Integrated Safety Management (ISM) ism logo NNSA Activity Level Work Planning & Control Processes - January 2006...

2

Spent Nuclear Fuel project integrated safety management plan  

SciTech Connect

This document is being revised in its entirety and the document title is being revised to ``Spent Nuclear Fuel Project Integrated Safety Management Plan.

Daschke, K.D.

1996-09-17T23:59:59.000Z

3

AFRD EH&S: Integrated Safety Management Plan  

NLE Websites -- All DOE Office Websites (Extended Search)

Integrated Safety Management Integrated Safety Management The AFRD Integrated Safety Management or ISM Plan is the master document that guides AFRD policies and practices in environment, safety, and health. The guiding principles and core functions (below left) are the key to understanding ISM. Below, right are the topically arranged sections of the AFRD ISM Plan. Depending on your workplace and duties, more than one topic may apply to you. The ISM Plan is updated as of October 2013. Please contact us with any feedback. Guiding Principles Line-management responsibility for safety Clear roles and responsibilities Competence commensurate with responsibilities Balanced Priorities Identification of ES&H standards and requirements Hazard controls (including environmental controls) tailored to work being performed

4

Simplifying documentation while approaching site closure: integrated health & safety plans as documented safety analysis  

Science Conference Proceedings (OSTI)

At the Fernald Closure Project (FCP) near Cincinnati, Ohio, environmental restoration activities are supported by Documented Safety Analyses (DSAs) that combine the required project-specific Health and Safety Plans, Safety Basis Requirements (SBRs), and Process Requirements (PRs) into single Integrated Health and Safety Plans (I-HASPs). By isolating any remediation activities that deal with Enriched Restricted Materials, the SBRs and PRs assure that the hazard categories of former nuclear facilities undergoing remediation remain less than Nuclear. These integrated DSAs employ Integrated Safety Management methodology in support of simplified restoration and remediation activities that, so far, have resulted in the decontamination and demolition (D&D) of over 150 structures, including six major nuclear production plants. This paper presents the FCP method for maintaining safety basis documentation, using the D&D I-HASP as an example.

Brown, Tulanda

2003-06-01T23:59:59.000Z

5

Integrated Environment and Safety and Health Management System (ISMS) Implementation Project Plan  

SciTech Connect

The Integrated Environment, Safety and Health Management System (ISMS) Implementation Project Plan serves as the project document to guide the Fluor Hanford, Inc (FHI) and Major Subcontractor (MSC) participants through the steps necessary to complete the integration of environment, safety, and health into management and work practices at all levels.

MITCHELL, R.L.

2000-01-10T23:59:59.000Z

6

Integrated Safety Management (ISM)  

NLE Websites -- All DOE Office Websites (Extended Search)

Integrated Safety Management Integrated Safety Management Home ISM Policy ISM Champions ISM Workshops Resources Archives Contact Us Health and Safety HSS Logo Integrated Safety Management (ISM) ism logo Welcome to the Department of Energy's Office of Health, Safety and Security (HSS) Integrated Safety Management (ISM) Web Site. The Department and its contractors remain firmly committed to ISM as first defined in 1996. The objective of ISM is to perform work in a safe and environmentally sound manner. More specifically, as described in DOE P 450.4, Safety Management System Policy: "The Department and Contractors must systematically integrate safety into management and work practices at all levels so that missions are accomplished while protecting the public, the worker, and the environment. This is to be accomplished through effective integration of safety management into all facets of work planning and execution." "

7

River Protection Project Integrated safety management system phase II verification review plan - 7/29/99  

Science Conference Proceedings (OSTI)

The purpose of this review is to verify the implementation status of the Integrated Safety Management System (ISMS) for the River Protection Project (RPP) facilities managed by Fluor Daniel Hanford, Inc. (FDH) and operated by Lockheed Martin Hanford Company (LMHC). This review will also ascertain whether within RPP facilities and operations the work planning and execution processes are in place and functioning to effectively protect the health and safety of the workers, public, environment, and federal property over the RPP life cycle. The RPP ISMS should support the Hanford Strategic Plan (DOERL-96-92) to safely clean up and manage the site's legacy waste and deploy science and technology while incorporating the ISMS central theme to ''Do work safely'' and protect human health and the environment.

SHOOP, D.S.

1999-09-10T23:59:59.000Z

8

Environment, Safety, Health, and Quality Plan for the Buried Waste Integrated Demonstration Program  

SciTech Connect

The Buried Waste Integrated Demonstration (BWID) is a program funded by the US Department of Energy Office of Technology Development. BWID supports the applied research, development, demonstration, testing, and evaluation of a suite of advanced technologies that together form a comprehensive remediation system for the effective and efficient remediation of buried waste. This document describes the Environment, Safety, Health, and Quality requirements for conducting BWID activities at the Idaho National Engineering Laboratory. Topics discussed in this report, as they apply to BWID operations, include Federal, State of Idaho, and Environmental Protection Agency regulations, Health and Safety Plans, Quality Program Plans, Data Quality Objectives, and training and job hazard analysis. Finally, a discussion is given on CERCLA criteria and System and Performance audits as they apply to the BWID Program.

Walker, S.

1994-05-01T23:59:59.000Z

9

Spent Nuclear Fuel (SNF) project Integrated Safety Management System phase I and II Verification Review Plan  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy (DOE) commits to accomplishing its mission safely. To ensure this objective is met, DOE issued DOE P 450.4, Safety Management System Policy, and incorporated safety management into the DOE Acquisition Regulations ([DEAR] 48 CFR 970.5204-2 and 90.5204-78). Integrated Safety Management (ISM) requires contractors to integrate safety into management and work practices at all levels so that missions are achieved while protecting the public, the worker, and the environment. The contractor is required to describe the Integrated Safety Management System (ISMS) to be used to implement the safety performance objective.

CARTER, R.P.

1999-11-19T23:59:59.000Z

10

Integrated Safety Management Policy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

INTEGRATED SAFETY INTEGRATED SAFETY MANAGEMENT SYSTEM DESCRIPTION U.S. DEPARTMENT OF ENERGY Office of Environmental Management Headquarters May 2008 Preparation: Braj K. sin& Occupational Safety and Health Manager Office of Safety Management Concurrence: Chuan-Fu wu Director, Offlce of Safety Management Deputy Assistant Secretary for safe& Management andoperations Operations Officer for 1 Environmental Management Approval: Date p/-g Date Environmental Management TABLE OF CONTENTS ACRONYMS................................................................................................................................................................v EXECUTIVE SUMMARY .........................................................................................................................................1

11

DRAFT Bear Safety Plan  

NLE Websites -- All DOE Office Websites (Extended Search)

Bear Safety Plan June 2010 Bear Safety Plan June 2010 NSA_bsp_Rev9.doc 1 Atmospheric Radiation Measurement Climate Research Facility/ North Slope of Alaska/Adjacent Arctic Ocean (ACRF/NSA/AAO) Bear Safety Plan Background As a major part of DOE's participation in the US Global Change Research Program (USGCRP), the North Slope of Alaska (NSA) and Adjacent Arctic Ocean (AAO) Climate Research Facility (ACRF) exists on the North Slope of Alaska with its Central Facility near the town of Barrow. A secondary facility exists at Atqasuk, a town 100km inland from Barrow. Other instrumentation locations in more remote areas on the North Slope may be established in later stages of the project. Polar bears, and to a lesser extent, brown bears (barren ground grizzly) are significant hazards within the ACRF/NSA/AAO

12

Integrated Safety Management (ISM) - Safety Culture Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

Safety Culture Resources Integrated Safety Management (ISM) Safety from the Operator's Perspective: We are All in this Together (2005) - Jim Ellis, President and CEO, Institute of...

13

Chemical Hygiene and Safety Plan  

E-Print Network (OSTI)

Safety Plan m Chemical$torase Guidelines Chemical Is Incompatible llll i With ii Hydrocarbons (such as butane, propane,

Ricks Editor, R.

2009-01-01T23:59:59.000Z

14

SNAPSHOT Safety Program Plan  

SciTech Connect

The SNAPSHOT Safety Program, as described in this document, is therefore formulated to align safety studies performed by separate agencies and their contractors. At the present stage in program development, the plan is principally concerned with the initial SNAPSHOT flight (SNAP 10A). SNAPSHOT represents a special flight mode for the initial reactors operated in space. The flights are designed to permit early space reactor tests prior to resolving all the safety proglems that may be associated with more advanced programs. Of primary significance is that reactor operation will not be initiated until an orbit of satisfactory lifetime has been obtrained, thus ensuring the long-term decay of the fission products producted prior to re-entry.

1962-06-20T23:59:59.000Z

15

Office of River Protection Integrated Safety Management System Phase 1 Verification Corrective Action Plan  

SciTech Connect

The purpose of this Corrective Action Plan is to demonstrate the OW planned and/or completed actions to implement ISMS as well as prepare for the RPP ISMS Phase II Verification scheduled for August, 1999. This Plan collates implied or explicit ORP actions identified in several key ISMS documents and aligns those actions and responsibilities perceived necessary to appropriately disposition all ISM Phase II preparation activities specific to the ORP. The objective will be to complete or disposition the corrective actions prior to the commencement of the ISMS Phase II Verification. Improvement products/tasks not slated for completion prior to the RPP Phase II verification will be incorporated as corrective actions into the Strategic System Execution Plan (SSEP) Gap Analysis. Many of the business and management systems that were reviewed in the ISMS Phase I verification are being modified to support the ORP transition and are being assessed through the SSEP. The actions and processes identified in the SSEP will support the development of the ORP and continued ISMS implementation as committed to be complete by end of FY-2000.

CLARK, D.L.

1999-08-09T23:59:59.000Z

16

Integrated Safety Management Policy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Integrated Integrated Safety Management Policy Integrated Safety Management Policy This Integrated Safety Management (ISM) System Description (ISMSD) defines how the U.S. Department of Energy (DOE) Office of Environmental Management (EM) integrates environment, safety, and health requirements and controls into Federal work activities, and oversees implementation of ISM within EM federal and contractor activities. It explains our safety values, objectives and approach for ensuring protection to the public, worker and the environment, consistent with DOE Policy 450.4, Safety Management System Policy. The ISMSD describes how EM conducts work following the seven ISM Guiding Principles, the five ISM core functions, and also incorporates the four supplemental safety culture elements from DOE Implementation Plan to

17

Integrated Safety Management Workshop Registration, PIA, Idaho...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Integrated Safety Management Workshop Registration, PIA, Idaho National Laboratory Integrated Safety Management Workshop Registration, PIA, Idaho National Laboratory Integrated...

18

Security, Emergency Planning & Safety Records | Department of...  

NLE Websites -- All DOE Office Websites (Extended Search)

Security, Emergency Planning & Safety Records Security, Emergency Planning & Safety Records ADM 180.pdf More Documents & Publications ADMINISTRATIVE RECORDS SCHEDULE 18: SECURITY,...

19

Security, Emergency Planning & Safety Records | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Security, Emergency Planning & Safety Records Security, Emergency Planning & Safety Records Protection program records include the various files created by the Department to...

20

ORISE: Integrated Safety Management (ISM)  

NLE Websites -- All DOE Office Websites (Extended Search)

Integrated Safety Management (ISM) Integrated Safety Management (ISM) Oak Ridge Associated Universities (ORAU) is committed to performing work safely as it operates the Oak Ridge Institute for Science and Education (ORISE). ORAU supports the U.S. Department of Energy (DOE) policy of using management systems to integrate safety into work practices at all levels. ORAU defines "safety" as encompassing environment, safety and health, and also includes waste minimization and pollution prevention. All ORAU programs and departments actively pursue continuous improvement, and the addition of Integrated Safety Management (ISM) concepts further strengthens safety as a standard in ORISE's culture. ORAU has accepted the ISM concept by contract under DOE Acquisition Regulations Clause 970.5204-2 and DOE Policy 450.4, Safety Management System Policy.

Note: This page contains sample records for the topic "integration planning safety" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Integrated Safety Management (ISM) - Oversight  

NLE Websites -- All DOE Office Websites (Extended Search)

Oversight Integrated Safety Management (ISM) ism logo DOE Oversight Policy PDF (P 226.1B) DOE Oversight Order PDF (O 226.1B) Draft CRADs...

22

Integrated Safety Management  

NLE Websites -- All DOE Office Websites (Extended Search)

ISM Day: March 10, 2010 ISM Day: March 10, 2010 ISM Day: June 6, 2008 Integrated Safety Management (ISM) Seven Principles of ISM Five Functions of ISM "Define the Scope of Work" Is the work clearly defined? Authorized? Do I know how to do the job? Do I have the proper equipment? Support? Have there been problems with tasks like this? "Analyze the Hazards" What are the hazards of the job? What can go wrong? Has the job been reviewed by a qualified person? "Develop Hazard Controls" Are all the necessary controls in place? (LOTO, PPE, Procedures etc.) Do I know what the controls are, and how to use them? What if something unexpected goes wrong? "Perform Work" Has the system responded as expected? How do I know? When will I call for assistance or stop work?

23

Chemical Hygiene and Safety Plan  

SciTech Connect

The objective of this Chemical Hygiene and Safety Plan (CHSP) is to provide specific guidance to all LBL employees and contractors who use hazardous chemicals. This Plan, when implemented, fulfills the requirements of both the Federal OSHA Laboratory Standard (29 CFR 1910.1450) for laboratory workers, and the Federal OSHA Hazard Communication Standard (29 CFR 1910.1200) for non-laboratory operations (e.g., shops). It sets forth safety procedures and describes how LBL employees are informed about the potential chemical hazards in their work areas so they can avoid harmful exposures and safeguard their health. Generally, communication of this Plan will occur through training and the Plan will serve as a the framework and reference guide for that training.

Berkner, K.

1992-08-01T23:59:59.000Z

24

Integration of Nevada Test Site (NTS) Work Control Programs and Incorporating Integrated Safety Management (ISM) into Activity Level Work Planning and Control  

SciTech Connect

This session will examine a method developed by Federal and Contractor personnel at the Nevada Site Office (NSO) to improve the planning and execution of work activities utilizing an Activity Level Work Control process in response to Defense Nuclear Facilities Safety Board (DNFSB) Recommendation 2004-1, Oversight of Complex, High-Hazard Nuclear Operations. The process was initially developed during Fiscal Year (FY) 2007, and implementation is commencing during the fourth quarter of FY 2008. This process will significantly enhance the flexibility and the appropriate rigor in the performance of work activities.

Mike Kinney and Kevin Breen

2008-08-30T23:59:59.000Z

25

Wisconsin Strategic Highway Safety Plan 2011 2013  

E-Print Network (OSTI)

Wisconsin Strategic Highway Safety Plan 2011 ­ 2013 Published by the Wisconsin Department preventable traffic death is one too many Wisconsin Strategic Highway Safety Plan 2011 ­ 2013 Wisconsin Strategic Highway Safety Plan for 2011-2013. This document provides background and details about highway

Sheridan, Jennifer

26

Electrical Safety Assessment Plan--NNSA/NSO IOD Facility Representative,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electrical Safety Assessment Plan--NNSA/NSO IOD Facility Electrical Safety Assessment Plan--NNSA/NSO IOD Facility Representative, 12/03 Electrical Safety Assessment Plan--NNSA/NSO IOD Facility Representative, 12/03 An assessment of the Electrical Safety (ES) program at XXXX was conducted during the week of December XX-XX, 2003. The assessment team evaluated the program using the programmatic areas and specific Lines of Inquiry (LOI) contained in the approved Assessment plan provided. The team consisted of the Facility Representative from National Nuclear Security Administration, as well as ES, Subject Matter Expert support. The assessment plan identified 5 areas of review for Electrical Safety. An integrated process has been established to ensure electrical safety hazards are identified and that adequate controls are defined and

27

Nanomaterials Safety Implementation Plan, Ames Laboratory | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nanomaterials Safety Implementation Plan, Ames Laboratory Nanomaterials Safety Implementation Plan, Ames Laboratory Nanomaterials Safety Implementation Plan, Ames Laboratory Ames Laboratory has limited activities involving nanomaterials. Potential hazards associated with nanomaterials work are addressed through the Laboratory's Integrated Safety Management System (ISMS) and specifically the Readiness Review process. Readiness Review provides the identification and evaluation of potential hazards and establishes effective control mechanisms to ensure protection of the employee and the environment. To date, hazards associated with projects involving nanomaterials have been determined to be amenable to conventional controls such as ventilation and use of personal protective equipment. The Laboratory recognizes that nanotechnology is an emerging field and that

28

Office Safety System Oversight Staffing Plan - Filled  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Los Alamos Site Office Safety System Oversight Staffing Plan" Los Alamos Site Office Safety System Oversight Staffing Plan" "December 2008" "ACTIVITIES","Days for Activity in each Fiscal Year",,,,,,"Notes" ,"FY09","FY10","FY11","FY12","FY13","FY14" "Task Based",,,,,,,"Integrated Assessment Schedule items, SET lead, 15 days per assessment for team leader, based on 8 hour days, 7 days for team member (30 SC, 82 SS systems). Formal assessments can be reduced as CAS matures & Shadow assessments increased. (NA-1 SD 226.1A)" "7 SC Assessments",154,154,154,132,132,110 "10 SS System Assessments",220,220,220,198,198,176 "12 Shadow Assessments",48,48,48,68,68,92,"4 days per normal shadow assessment (NA-1 SD 226.1A)"

29

Integrated formal operations plan  

SciTech Connect

The concept of formal operations (that is, a collection of business practices to assure effective, accountable operations) has vexed the Laboratory for many years. To date most attempts at developing such programs have been based upon rigid, compliance-based interpretations of a veritable mountain of Department of Energy (DOE) orders, directives, notices, and standards. These DOE dictates seldom take the broad view but focus on highly specialized programs isolated from the overall context of formal operations. The result is a confusing array of specific, and often contradictory, requirements that produce a patchwork of overlapping niche programs. This unnecessary duplication wastes precious resources, dramatically increases the complexity of our work processes, and communicates a sense of confusion to our customers and regulators. Coupled with the artificial divisions that have historically existed among the Laboratory`s formal operations organizations (quality assurance, configuration management, records management, training, etc.), this approach has produced layers of increasingly vague and complex formal operations plans, each of which interprets its parent and adds additional requirements of its own. Organizational gridlock ensues whenever an activity attempts to implement these bureaucratic monstrosities. The integrated formal operations plan presented is to establish a set of requirements that must be met by an integrated formal operations program, assign responsibilities for implementation and operation of the program, and specify criteria against which the performance of the program will be measured. The accountable line manager specifies the items, processes, and information (the controlled elements) to which the formal operations program specified applies. The formal operations program is implemented using a graded approach based on the level of importance of the various controlled elements and the scope of the activities in which they are involved.

Cort, G.; Dearholt, W.; Donahue, S.; Frank, J.; Perkins, B.; Tyler, R.; Wrye, J.

1994-01-05T23:59:59.000Z

30

Nuclear Energy Advanced Modeling and Simulation Waste Integrated Performance and Safety Codes (NEAMS Waste IPSC) verification and validation plan. version 1.  

SciTech Connect

The objective of the U.S. Department of Energy Office of Nuclear Energy Advanced Modeling and Simulation Waste Integrated Performance and Safety Codes (NEAMS Waste IPSC) is to provide an integrated suite of computational modeling and simulation (M&S) capabilities to quantitatively assess the long-term performance of waste forms in the engineered and geologic environments of a radioactive-waste storage facility or disposal repository. To meet this objective, NEAMS Waste IPSC M&S capabilities will be applied to challenging spatial domains, temporal domains, multiphysics couplings, and multiscale couplings. A strategic verification and validation (V&V) goal is to establish evidence-based metrics for the level of confidence in M&S codes and capabilities. Because it is economically impractical to apply the maximum V&V rigor to each and every M&S capability, M&S capabilities will be ranked for their impact on the performance assessments of various components of the repository systems. Those M&S capabilities with greater impact will require a greater level of confidence and a correspondingly greater investment in V&V. This report includes five major components: (1) a background summary of the NEAMS Waste IPSC to emphasize M&S challenges; (2) the conceptual foundation for verification, validation, and confidence assessment of NEAMS Waste IPSC M&S capabilities; (3) specifications for the planned verification, validation, and confidence-assessment practices; (4) specifications for the planned evidence information management system; and (5) a path forward for the incremental implementation of this V&V plan.

Bartlett, Roscoe Ainsworth; Arguello, Jose Guadalupe, Jr.; Urbina, Angel; Bouchard, Julie F.; Edwards, Harold Carter; Freeze, Geoffrey A.; Knupp, Patrick Michael; Wang, Yifeng; Schultz, Peter Andrew; Howard, Robert (Oak Ridge National Laboratory, Oak Ridge, TN); McCornack, Marjorie Turner

2011-01-01T23:59:59.000Z

31

Integrated Safety & Environmental Management System | Stanford Synchrotron  

NLE Websites -- All DOE Office Websites (Extended Search)

Integrated Safety & Environmental Management System Integrated Safety & Environmental Management System How do you plan for SAFETY in your job? In an effort to provide a formal and organized process to manage all aspects of Environment, Safety and Health (ES&H) issues at its laboratories, the DOE developed the Integrated Safety and Environmental Management System (ISEMS). In short, it's a process that allows people (such as staff and Users) at all levels to plan, perform, assess and improve their implementation of ES&H at work. The system puts the responsibility for safety on each person. Fundamental to the process are the Guiding Principles that can be viewed as "best management practices" or "how we do business", which are the policies that integrate ISMS at all levels; the Core Functions, which provide the

32

Technical Plan --Safety 3.8. Hydrogen Safety  

E-Print Network (OSTI)

2007 Technical Plan -- Safety 3.8. Hydrogen Safety Safe practices in the production, storage buoyancy of the gas, hydrogen requires different storage, handling and use techniques. The Safety, develop and promote the practices that will ensure the safe handling, storage and use of hydrogen

33

Independent Oversight Review of Integrated Safety Management...  

NLE Websites -- All DOE Office Websites (Extended Search)

Enforcement and Oversight Independent Oversight Review of Integrated Safety Management System Effectiveness at the Livermore Site Office October 2011 Office of Safety and Emergency...

34

2007 Integrated Safety Management Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

ISM ISM Workshop 2007 a vision for Integrated Safety Management in the Department of Energy complex ISM Workshop 2007 ® Sample of how the graphic may be used on documents where the "Good to Great" verbiage is not includ "Good to Great" is a registered trademark of Jim Collins and is being used with permission. November 27-30, 2007 Hosted by Brookhaven National Laboratory "Good to Great" is a registered trademark of Jim Collins and is being used with permission. 2 Special Thanks Brookhaven National Laboratory Safety, Emergency and Traffic Information Safety, Health and Security Environment, Safety & Health Hotline: 631-344-8800 Occupational Medicine Clinic: 631-344-3670 Security Badging Office: 631-344-5149 Computer Security: 631-344-5522

35

Health & Safety Plan Last Updated  

E-Print Network (OSTI)

........................................ 4 Organizational Health and Safety Committees corrective measures, and obtain the participation of all personnel. a. Organizational Health and Safety Committees Department employees are represented on the University's Organizational Health and Safety

Anderson, Richard

36

ACTIVITY SPECIFIC FIREARMS SAFETY PLAN FOR  

NLE Websites -- All DOE Office Websites (Extended Search)

Atmospheric Radiation Measurement Climate Research Facility/ Atmospheric Radiation Measurement Climate Research Facility/ North Slope of Alaska/Adjacent Arctic Ocean (ACRF/NSA/AAO) Activity Specific Firearm Safety Plan for ACRF/North Slope of Alaska Sandia National Laboratories Department 6383, Energy, Climate & Atmospheric Management ACRF/NSA/AAO Revision 14 Activity Specific Firearm Safety Plan for June 2010 ACRF/North Slope of Alaska Signature Page This safety plan is approved by the undersigned and includes the firearm and ammunition storage practices described in this document. Mark D Ivey ACRF/NSA/AAO Site Manager _________________________________Date: ______ Mark D Ivey Department 06339 Manager _________________________________Date: _______ Michael L Heister SNL Safety Engineer _________________________________Date:________

37

Chemical Hygiene and Safety Plan  

E-Print Network (OSTI)

V. , Ed. , Safety in the Chemical Laboratory. J. Chem.d. Amer/can Chemical Society. Easlon. PA. 18042. Vol. Lof Laboratory Safety. the Chemical Rubber Company Cleveland.

Ricks Editor, R.

2009-01-01T23:59:59.000Z

38

Integrated Safety Management (ISM) Workshop - August 25-28, 2008  

NLE Websites -- All DOE Office Websites (Extended Search)

A - Work Planning and Control A - Work Planning and Control ISM Workshop Presentations August 25-28, 2008 Wednesday, August 27, 2008 1:00 - 2:30 Safety Directives: Providing a Systems-Based Approach to Directives Management, Steve Kirchoff, DOE-HSS New International Standards and Organizational Principles for Integrated Management Systems, Michael Penders, Esq, Environmental Security International Moving From The Integrated Safety Management System (ISMS) to Integrated Management (IM) to Build Mission Success, Cary Staffo, DOE-EERE 3:00 - 5:00 Integrating Safety and Security into the EMS Life Cycle: A Body Contact Sport, Dennis Hjeresen, Los Alamos A Team Approach to Making Safety Signs Effective, Lynne Coe-Leavitt/Charlene Johnson, INL Managing Chemicals Using an Integrated Lifecycle Strategy at Pacific Northwest National Laboratory, Cindy Caldwell, PNL

39

Integrated Safety Management- Building Mission Success  

NLE Websites -- All DOE Office Websites (Extended Search)

ISM Integrated Safety Management- Building Mission Success Approximately 500 federal and contractor employees will arrive in Idaho Falls to participate in the 2008 Integrated...

40

November 7, 2006, Department letter reporting completion of Commitment 22B in the 2004-1 implementation plan, with the issuance of DOE Manual 450-4.1, Integrated Safety Management System Manual  

NLE Websites -- All DOE Office Websites (Extended Search)

November 7,2006 November 7,2006 The Honorable A. J. Eggenberger Chairman Defense Nuclear Facilities Safety Board 625 Indiana Avenue, NW, Suite 700 Washington, D.C. 20004 Dear Mr. Chairman: As the responsible manager for the Department's 2004-1 implementation plan, I am notifying you that the Department has issued the attached Department Manual on Integrated Safety Management, completing commitment 22B in our 2004- 1 plan. The new Manual (DOE Manual 450-4.1, Integrated Su-rfety Management System Manual) identifies and institutionalizes DOE requirements and responsibilities regarding development and implementation of ISM systems within DOE. It also provides requirements and guidance for DOE and contractors to ensure development and implementation of an effective ISM system that is periodically reviewed and

Note: This page contains sample records for the topic "integration planning safety" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Annual Planning Summaries: Health, Safety, and Security (HSS...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Agencies You are here Home Annual Planning Summaries: Health, Safety, and Security (HSS) Annual Planning Summaries: Health, Safety, and Security (HSS) Document(s) Available...

42

Construction Project Safety and Health Plan RM  

Energy.gov (U.S. Department of Energy (DOE))

The Construction Project Safety and Health Plan (CPSHP) Review Module is a tool that assists DOE federal project review teams in evaluating the technical sufficiency of the project readiness in...

43

Integrating Infrastructure Planning: The Role of Schools  

E-Print Network (OSTI)

Integrating Infrastructure Planning: The Role of Schools B Ypolice protection, and infrastructure that makes citiesplan to upgrade critical infrastructure. The plan calls for

McKoy, Deborah; Vincent, Jeffrey M.; Makarewicz, Carrie

2008-01-01T23:59:59.000Z

44

Chemical Hygiene and Safety Plan  

E-Print Network (OSTI)

towards shop operations. H-1 Chemic_l Hygiene and Safety ,of this section, any chemic:ads per kflop'am of body welshtUNSUPPORTED CHEMIC. -M. VITON NITrlI.E NATI'R.4I. BUTYL

Ricks Editor, R.

2009-01-01T23:59:59.000Z

45

Construction Project Safety and Health Plan RM  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Construction Project Safety and Construction Project Safety and Health Plan Review Module March 2010 CD-0 Co 0 Le OFFICE O onstructi CD-1 This Review ssons learned f OF ENVIRO Standard ion Proje Rev Critical D CD-2 M w Module has b from the pilot h ONMENTA Review Pla ect Safety view Modul Decision (CD CD March 2010 been piloted at have been inco AL MANAG an (SRP) y and He le D) Applicabili D-3 the INL IWTU orporated in Re GEMENT alth Plan ity CD-4 U Project. eview Module. n Post Ope eration Standard Review Plan, 2 nd Edition, March 2010 i FOREWORD The Standard Review Plan (SRP) 1 provides a consistent, predictable corporate review framework to ensure that issues and risks that could challenge the success of Office of Environmental Management (EM) projects are identified early and addressed proactively. The internal EM

46

Lawrence Berkeley National Lab/ Site Specific Safety Plan  

NLE Websites -- All DOE Office Websites (Extended Search)

Lab/ Site Specific Safety Plan Lab/ Site Specific Safety Plan Site Specific Safety Plan Site Specific Safety Plan shall contain at a minimum: List by name & phone numbers the following person who will be on the project: Submit: Name of the On-site Superintendent & Phone. Submit: Name of the On-site Health and Safety Representative & Phone. Submit: Name of the person who is responsible for the implementation of safety plan. Submit: Resume & qualification of the person who is responsible for implantation of this projects safety plan. Include OSHA certifications. Submit: The companies' Policy statement on environment, safety and health. Submit: The companies' Policy on substance abuse and testing policy.

47

Integrated Safety Management (ISM) - System Descriptions  

NLE Websites -- All DOE Office Websites (Extended Search)

System Descriptions Integrated Safety Management (ISM) ism logo Sample DOE Contractor ISM System Descriptions Sample DOE Site Office ISM System Descriptions DOE HQ Program Office...

48

Integrated Planning and Performance Management  

NLE Websites -- All DOE Office Websites (Extended Search)

DOESC Scientific Facilities Strategic Plan (20 years, major capital projects) * DOE Strategic Plan (7-10 years) * DOE (HEP)Fermilab Strategic Plan (10 years) * FRAFNAL Plan for...

49

Integrated Safety Management Policy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Services » Program Management » Quality Assurance » Integrated Services » Program Management » Quality Assurance » Integrated Safety Management Policy Integrated Safety Management Policy This Integrated Safety Management (ISM) System Description (ISMSD) defines how the U.S. Department of Energy (DOE) Office of Environmental Management (EM) integrates environment, safety, and health requirements and controls into Federal work activities, and oversees implementation of ISM within EM federal and contractor activities. It explains our safety values, objectives and approach for ensuring protection to the public, worker and the environment, consistent with DOE Policy 450.4, Safety Management System Policy. The ISMSD describes how EM conducts work following the seven ISM Guiding Principles, the five ISM core functions, and also incorporates the

50

2012 Annual Planning Summary for Health, Safety and Security...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Impact Statements for 2012 and 2013 within Health, Safety and Security. APS-2012-HSS.pdf More Documents & Publications 2011 Annual Planning Summary for Health, Safety and...

51

Certification plan for safety and PRA codes  

Science Conference Proceedings (OSTI)

A certification plan for computer codes used in Safety Analyses and Probabilistic Risk Assessment (PRA) for the operation of the Savannah River Site (SRS) reactors has been prepared. An action matrix, checklists, and a time schedule have been included in the plan. These items identify what is required to achieve certification of the codes. A list of Safety Analysis and Probabilistic Risk Assessment (SA&PRA) computer codes covered by the certification plan has been assembled. A description of each of the codes was provided in Reference 4. The action matrix for the configuration control plan identifies code specific requirements that need to be met to achieve the certification plan`s objectives. The checklist covers the specific procedures that are required to support the configuration control effort and supplement the software life cycle procedures based on QAP 20-1 (Reference 7). A qualification checklist for users establishes the minimum prerequisites and training for achieving levels of proficiency in using configuration controlled codes for critical parameter calculations.

Toffer, H.; Crowe, R.D. [Westinghouse Hanford Co., Richland, WA (United States); Ades, M.J. [Westinghouse Savannah River Co., Aiken, SC (United States)

1990-05-01T23:59:59.000Z

52

Certification plan for safety and PRA codes  

Science Conference Proceedings (OSTI)

A certification plan for computer codes used in Safety Analyses and Probabilistic Risk Assessment (PRA) for the operation of the Savannah River Site (SRS) reactors has been prepared. An action matrix, checklists, and a time schedule have been included in the plan. These items identify what is required to achieve certification of the codes. A list of Safety Analysis and Probabilistic Risk Assessment (SA PRA) computer codes covered by the certification plan has been assembled. A description of each of the codes was provided in Reference 4. The action matrix for the configuration control plan identifies code specific requirements that need to be met to achieve the certification plan's objectives. The checklist covers the specific procedures that are required to support the configuration control effort and supplement the software life cycle procedures based on QAP 20-1 (Reference 7). A qualification checklist for users establishes the minimum prerequisites and training for achieving levels of proficiency in using configuration controlled codes for critical parameter calculations.

Toffer, H.; Crowe, R.D. (Westinghouse Hanford Co., Richland, WA (United States)); Ades, M.J. (Westinghouse Savannah River Co., Aiken, SC (United States))

1990-05-01T23:59:59.000Z

53

UMTRA Project: Environment, Safety, and Health Plan  

SciTech Connect

The US Department of Energy has prepared this UMTRA Project Environment, Safety, and Health (ES and H) Plan to establish the policy, implementing requirements, and guidance for the UMTRA Project. The requirements and guidance identified in this plan are designed to provide technical direction to UMTRA Project contractors to assist in the development and implementation of their ES and H plans and programs for UMTRA Project work activities. Specific requirements set forth in this UMTRA Project ES and H Plan are intended to provide uniformity to the UMTRA Project`s ES and H programs for processing sites, disposal sites, and vicinity properties. In all cases, this UMTRA Project ES and H Plan is intended to be consistent with applicable standards and regulations and to provide guidance that is generic in nature and will allow for contractors` evaluation of site or contract-specific ES and H conditions. This plan specifies the basic ES and H requirements applicable to UMTRA Project ES and H programs and delineates responsibilities for carrying out this plan. DOE and contractor ES and H personnel are expected to exercise professional judgment and apply a graded approach when interpreting these guidelines, based on the risk of operations.

Not Available

1995-02-01T23:59:59.000Z

54

Integrated Safety Management Workshop - Building Mission Success  

NLE Websites -- All DOE Office Websites (Extended Search)

Image layout spacer Integrated Safety Management Workshop - Building Mission Success Acting Deputy Secretary Jeff Kupfer addresses the audience at the 2008 ISM Workshop. Over 500 U.S. Department of Energy and contractor employees started the Labor Day weekend with safety in mind. Hosted by the U.S. Department of Energy's Idaho Operations Office, along with the prime contractors at the Idaho National Laboratory Site, the 2008 Integrated Safety Management Workshop, which was held in Idaho Falls, concluded Aug. 28. Acting Deputy Secretary for the Department of Energy, Jeff Kupfer described the workshop as "the Department of Energy's signature safety event," stating that safety enables the Department's mission success, and complacent work is safety's enemy. Kupfer also noted that workshop participation helps to

55

7.0 - Integrated Acquisition Planning Process  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0 (August 2006) 0 (August 2006) 1 INTEGRATING ACQUISITION PLANNING PROCESSES - AN OVERVIEW REFERENCES 1. FAR Part 7 Acquisition Planning 2. FAR Part 34 Major System Acquisition 3. Acquisition Letter 2005-08R, Small Business Programs 4. Acquisition Guide Chapter 7.1, Acquisition Planning 5. Acquisition Guide Chapter 42.5, Contract Management Planning 6. DOE O 580.1 Department of Energy Property Management Program 7. DOE O 413.3 Program and Project Management for the Acquisition of Capital Assets Guiding Principles n Acquisition planning benefits from integrating independent planning processes and a team approach that includes appropriate representation

56

Integrated Planning and Performance Management  

NLE Websites -- All DOE Office Websites (Extended Search)

Performance Management (IPPM) Head Program Administrator Planning Coordination Performance Analysis Chief Operating Officer Risk Analysis Lab PlanningGoal Setting Process ...

57

DOE Standard Integration Of Environment,Safety, and Health Into...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Standard Integration Of Environment,Safety, and Health Into Facility Disposition Activities DOE Standard Integration Of Environment,Safety, and Health Into Facility Disposition...

58

2013 Integreated Safety Management Champions Workshop - May 15...  

NLE Websites -- All DOE Office Websites (Extended Search)

Integreated Safety Management Champions Workshop May 15-16, 2013 DOE Forrestal Headquarters Auditorium and Web Conferencing Procedings of the "2013 Special Integrated Safety...

59

Integrated Safety Management (ISM) - Archives  

NLE Websites -- All DOE Office Websites (Extended Search)

The Office of Health, Safety and Security HSS Logo Department of Energy Seal Left Tab SEARCH Right Tab TOOLS Right Tab Left Tab HOME Right Tab Left Tab ABOUT US Right Tab Left Tab...

60

Integrated Safety Management (ISM) - Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

The Office of Health, Safety and Security HSS Logo Department of Energy Seal Left Tab SEARCH Right Tab TOOLS Right Tab Left Tab HOME Right Tab Left Tab ABOUT US Right Tab Left Tab...

Note: This page contains sample records for the topic "integration planning safety" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Integrated Safety Management (ISM) - Workshops  

NLE Websites -- All DOE Office Websites (Extended Search)

The Office of Health, Safety and Security HSS Logo Department of Energy Seal Left Tab SEARCH Right Tab TOOLS Right Tab Left Tab HOME Right Tab Left Tab ABOUT US Right Tab Left Tab...

62

INTEGRATED SAFETY MANAGEMENT SYSTEM SAFETY CULTURE IMPROVEMENT INITIATIVE  

SciTech Connect

In 2007, the Department of Energy (DOE) identified safety culture as one of their top Integrated Safety Management System (ISMS) related priorities. A team was formed to address this issue. The team identified a consensus set of safety culture principles, along with implementation practices that could be used by DOE, NNSA, and their contractors. Documented improvement tools were identified and communicated to contractors participating in a year long pilot project. After a year, lessons learned will be collected and a path forward determined. The goal of this effort was to achieve improved safety and mission performance through ISMS continuous improvement. The focus of ISMS improvement was safety culture improvement building on operating experience from similar industries such as the domestic and international commercial nuclear and chemical industry.

MCDONALD JA JR

2009-01-16T23:59:59.000Z

63

Primer on gas integrated resource planning  

Science Conference Proceedings (OSTI)

This report discusses the following topics: gas resource planning: need for IRP; gas integrated resource planning: methods and models; supply and capacity planning for gas utilities; methods for estimating gas avoided costs; economic analysis of gas utility DSM programs: benefit-cost tests; gas DSM technologies and programs; end-use fuel substitution; and financial aspects of gas demand-side management programs.

Goldman, C.; Comnes, G.A.; Busch, J.; Wiel, S. [Lawrence Berkeley Lab., CA (United States)

1993-12-01T23:59:59.000Z

64

Spent nuclear fuel project integrated schedule plan  

SciTech Connect

The Spent Nuclear Fuel Integrated Schedule Plan establishes the organizational responsibilities, rules for developing, maintain and status of the SNF integrated schedule, and an implementation plan for the integrated schedule. The mission of the SNFP on the Hanford site is to provide safe, economic, environmentally sound management of Hanford SNF in a manner which stages it to final disposition. This particularly involves K Basin fuel.

Squires, K.G.

1995-03-06T23:59:59.000Z

65

Safety plan for the cooperative telerobotic retrieval system equipment development area  

Science Conference Proceedings (OSTI)

This plan establishes guidelines to minimize safety risks for the cooperative telerobotic retrieval project at the North Boulevard Annex (NBA). This plan has the dual purpose of minimizing safety risks to workers and visitors and of securing sensitive equipment from inadvertent damage by nonqualified personnel. This goal will be accomplished through physical control of work zones and through assigned responsibilities for project personnel. The scope of this plan is limited to establishing the working zone boundaries and entry requirements, and assigning responsibilities for project personnel. This plan does not supersede current safety organization responsibilities for the Landfill Stabilization Focus Area Transuranic (LSFA TRU) Arid outlined in the Environment, Safety, Health, and Quality Plan for the Buried Waste Integrated Demonstration Program; Tenant Manual; Idaho Falls Building Emergency Control Plan;; applicable Company Procedures; the attached Interface Agreement (Appendix A).

Haney, T.J.; Jessmore, J.J.

1995-07-01T23:59:59.000Z

66

Integration Of Safety Into The Design Process  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

STD-1189-2008 STD-1189-2008 March 2008 DOE STANDARD INTEGRATION OF SAFETY INTO THE DESIGN PROCESS U.S. Department of Energy AREA SAFT Washington, DC 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. DOE-STD-1189-2008 Page ii This document is available on the Department of Energy Technical Standards Program Web Page at http://www.hss.energy.gov/nuclearsafety/techstds/ DOE-STD-1189-2008 Page iii PREFACE The U.S. Department of Energy (DOE) has approved this Standard for use by DOE and its contractors. In a memorandum to DOE elements, dated December 5, 2005, on integration of Safety-in- Design, the Deputy Secretary of Energy stated, "I expect safety to be fully integrated into design early in the project. Specifically, by the start of the preliminary design, I expect a hazard

67

CRAD, Safety Functions Assessment Plan | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Safety Functions Assessment Plan Safety Functions Assessment Plan CRAD, Safety Functions Assessment Plan Performance Objective: Management should be proactive in addressing safety-related issues. Management should have an established system to provide a ranking of safety considerations founded upon risk-based priorities. Criteria: A system is in place to provide a ranking of safety considerations founded upon risk-based priorities. (DOE/EH-0135) Procedures clearly define management's responsibility for safety-related decisions and provide for the escalation of matters in an appropriate time frame. (DOE/EH-0135) Management promotes safety programs and the organization's safety culture through sponsoring and attending safety meetings. (DOE/EH-0135) Management encourages and supports effective programs for reporting

68

Fermilab | Directorate | Office of Integrated Planning & Performance  

NLE Websites -- All DOE Office Websites (Extended Search)

Office of Integrated Planning & Performance Management (IPPM) Office of Integrated Planning & Performance Management (IPPM) Integrated Planning Diagram Integrated Planning Diagram [Download PPT] Mission: The Office of Integrated Planning and Performance Management (IPPM) within the Fermilab Directorate provides systems and management processes for institutional planning and performance assessment and evaluation. The office of IPPM leads multi-year, forward-looking planning and integration of institutional plans, programs, projects, operations and budgets. In addition it develops, implements and maintains integrated laboratory systems and management processes for strategic planning and goal setting, project and program oversight, enterprise risk management and performance planning and oversight. IPPM Facilitates:

69

Order Module--DOE G 450.4-1B, INTEGRATED SAFETY MANAGEMENT SYSTEM GUIDE |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

G 450.4-1B, INTEGRATED SAFETY MANAGEMENT SYSTEM G 450.4-1B, INTEGRATED SAFETY MANAGEMENT SYSTEM GUIDE Order Module--DOE G 450.4-1B, INTEGRATED SAFETY MANAGEMENT SYSTEM GUIDE This Guide has two purposes. One purpose is to assist DOE contractors in developing, describing, and implementing an ISMS to comply with DOE P 450.4, Safety Management system Policy; DOE P 450.5, Line Environment, Safety, and Health Oversight; DOE P 450.6, Secretarial Policy Statement Environment, Safety and Health; DOE P 411.1, Safety Management FRAM; and the following provisions of the DEAR: 48 CFR 970.5223-1, which requires integration of environment, safety, and health into work planning and execution; 48 CFR 970.5204-2, which deals with laws, regulations, and DOE directives; and 48 CFR 970.1100-1, which requires performance-based contracting.

70

Proactive Renewables Integration for Utility Distribution Planning...  

NLE Websites -- All DOE Office Websites (Extended Search)

Proactive Renewables Integration for Utility Distribution Planning and Operations Speaker(s): Emma Stewart Date: March 5, 2013 - 12:00pm Location: 90-1099 Seminar HostPoint of...

71

Nuclear Safety Reserch and Development Program Operating Plan  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Safety Research and Development Safety Research and Development Program Operating Plan Office of Nuclear Safety Office of Health, Safety and Security U.S. Department of Energy June 2012 INTENTIONALLY BLANK NSR&D Program Operating Plan June 2012 Table of Contents 1.0 INTRODUCTION................................................................................................................. 1 2.0 BACKGROUND ................................................................................................................... 1 3.0 OBJECTIVES ....................................................................................................................... 2 4.0 NSR&D PROGRAM PROCESSES .................................................................................... 3

72

Integrated safety management system verification: Volume 2  

Science Conference Proceedings (OSTI)

Department of Energy (DOE) Policy (P) 450.4, Safety Management System Policy, commits to institutionalization of an Integrated Safety Management System (ISMS) throughout the DOE complex. The DOE Acquisition Regulations (DEAR, 48 CFR 970) requires contractors to manage and perform work in accordance with a documented Integrated Safety Management System (ISMS). Guidance and expectations have been provided to PNNL by incorporation into the operating contract (Contract DE-ACM-76FL0 1830) and by letter. The contract requires that the contractor submit a description of their ISMS for approval by DOE. PNNL submitted their proposed Safety Management System Description for approval on November 25,1997. RL tentatively approved acceptance of the description pursuant to a favorable recommendation from this review. The Integrated Safety Management System Verification is a review of the adequacy of the ISMS description in fulfilling the requirements of the DEAR and the DOE Policy. The purpose of this review is to provide the Richland Operations Office Manager with a recommendation for approval of the ISMS description of the Pacific Northwest Laboratory based upon compliance with the requirements of 49 CFR 970.5204(-2 and -78); and to verify the extent and maturity of ISMS implementation within the Laboratory. Further the review will provide a model for other DOE laboratories managed by the Office of Assistant Secretary for Energy Research.

Christensen, R.F.

1998-08-10T23:59:59.000Z

73

Integrated safety management system verification: Volume 1  

SciTech Connect

Department of Energy (DOE) Policy (P) 450.4, Safety Management System Policy, commits to institutionalizing an Integrated Safety Management System (ISMS) throughout the DOE complex. The DOE Acquisition Regulations (DEAR 48 CFR 970) requires contractors to manage and perform work in accordance with a documented Integrated Safety Management System. The Manager, Richland Operations Office (RL), initiated a combined Phase 1 and Phase 2 Integrated Safety Management Verification review to confirm that PNNL had successfully submitted a description of their ISMS and had implemented ISMS within the laboratory facilities and processes. A combined review was directed by the Manager, RL, based upon the progress PNNL had made in the implementation of ISM. This report documents the results of the review conducted to verify: (1) that the PNNL integrated safety management system description and enabling documents and processes conform to the guidance provided by the Manager, RL; (2) that corporate policy is implemented by line managers; (3) that PNNL has provided tailored direction to the facility management; and (4) the Manager, RL, has documented processes that integrate their safety activities and oversight with those of PNNL. The general conduct of the review was consistent with the direction provided by the Under Secretary`s Draft Safety Management System Review and Approval Protocol. The purpose of this review was to provide the Manager, RL, with a recommendation to the adequacy of the ISMS description of the Pacific Northwest Laboratory based upon compliance with the requirements of 49 CFR 970.5204(-2 and -78); and, to provide an evaluation of the extent and maturity of ISMS implementation within the Laboratory. Further, this review was intended to provide a model for other DOE Laboratories. In an effort to reduce the time and travel costs associated with ISM verification the team agreed to conduct preliminary training and orientation electronically and by phone. These activities are normally conducted during a pre-visit trip to the site. The Team recommends approval of the Integrated Safety Management System Description subject to the resolution of the Areas of Concerns noted here.

Christensen, R.F.

1998-08-12T23:59:59.000Z

74

DOE P 450.4A, Integrated Safety Management Policy  

Directives, Delegations, and Requirements

The policy establishes DOE's expectation for safety, including integrated safety management that will enable the Department??s mission goals to be accomplished ...

2011-04-25T23:59:59.000Z

75

K West integrated water treatment system subproject safety analysis document  

Science Conference Proceedings (OSTI)

This Accident Analysis evaluates unmitigated accident scenarios, and identifies Safety Significant and Safety Class structures, systems, and components for the K West Integrated Water Treatment System.

SEMMENS, L.S.

1999-02-24T23:59:59.000Z

76

PRIVACY IMPACT ASSESSMENT: Integrated Safety Management Workshop  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Integrated Integrated Safety Management Workshop Registration PIA Template Version 3 - May, 2009 Department of Energy Privacy Impact Assessment (PIA) Guidance is provided in the template. See DOE Order 206.1, Department of Energy Privacy Program, Appendix A, Privacy Impact Assessments, for requirements and additional guidance for conducting a PIA: http://www.directives.doe.gov/pdfs/doe/doetextlneword/206/o2061.pdf Please complete electronically: no hand-written submissions will be accepted. This template may not be modified. MODULE 1- PRIVACY NEEDS ASSESSMENT Date Departmental Element&·Slte 16/Jun/09 Idaho National Laboratory Engineering Research Office Building (EROB) Name of-Information System or IT Project Integrated Safety Management Workshop Registration Exhibit Project UID 207765 NewPIA D Update 0 DOE PIA - ISMS Workshop Finallxw.doc N T "tl I

77

NIF special equipment construction health and safety plan  

SciTech Connect

The purpose of this plan is to identify how the construction and deployment activities of the National Ignition Facility (NIF) Special Equipment (SE) will be safely executed. This plan includes an identification of (1) the safety-related responsibilities of the SE people and their interaction with other organizations involved; (2) safety related requirements, policies, and documentation; (3) a list of the potential hazards unique to SE systems and the mechanisms that will be implemented to control them to acceptable levels; (4) a summary of Environmental Safety and Health (ES&H) training requirements; and (5) requirements of contractor safety plans that will be developed and used by all SE contractors participating in site activities. This plan is a subsidiary document to the NIF Construction Safety Program (CSP) and is intended to compliment the requirements stated therein with additional details specific to the safety needs of the SE construction-related activities. If a conflict arises between these two documents, the CSP will supersede. It is important to note that this plan does not list all of the potential hazards and their controls because the design and safety analysis process is still ongoing. Additional safety issues win be addressed in the Final Safety Analysis Report, Operational Safety Procedures (OSPs), and other plans and procedures as described in Section 3.0 of this plan.

Sawicki, R.H.

1997-07-28T23:59:59.000Z

78

LNBL C-5 Electrical Safety Corrective Action Plan 2009  

E-Print Network (OSTI)

of 2 #12;LNBL C-5 Electrical Safety Corrective Action Plan 2009 Page 2 of 2 2. The Task Hazard Analysis exposure to hazardous electrical energy/ LOTO verification. 6. Energized Electrical Work Permit (EEWPLNBL C-5 Electrical Safety Corrective Action Plan 2009 Finding Statement : LBNL has not ensured

Knowles, David William

79

Integrated Safety Management (ISM) Workshop - August 25-28, 2008  

NLE Websites -- All DOE Office Websites (Extended Search)

C - Work Planning and Control C - Work Planning and Control ISM Workshop Presentations August 25-28, 2008 Wednesday, August 27, 2009 1:00 - 2:30 Role of ISM in Nano-Material Research at DOE Facilities, Marvin Mielke, DOE-HSS Y-12 Sitewide Risk Management Program, Abe Mathews, NNSA Y12 Applying Safe System Work Control Processes to Integrate Safety Management Achieve Target Zero, Mike Brooks/Adam Hotzel, Bechtel, BWXT Idaho 3:00 - 5:00 Utilizing ISM Core Functions to Control PNNL Contractor Activities, Todd Haynie, PNNL IMWOG Work Management Subgroup Peer Assist Visit Best Practice, Steve Little, B&W Y12 Lean/Six Sigma Approach to Work Control Process Improvements at the WVDP, Joe Jablonski, WVES Integrating Human Performance Improvement into ISMS, T. Shane Bush Thursday, August 28, 2008

80

National conference on integrated resource planning: Proceedings  

Science Conference Proceedings (OSTI)

Until recently, state regulators have focused most of their attention on the development of least-cost or integrated resource planning (IRP) processes for electric utilities. A number of commissions are beginning to scrutinize the planning processes of local gas distribution companies (LDCs) because of the increased control that LDCs have over their purchased gas costs (as well as the associated risks) and because of questions surrounding the role and potential of gas end-use efficiency options. Traditionally, resource planning (LDCs) has concentrated on options for purchasing and storing gas. Integrated resource planning involves the creation of a process in which supply-side and demand-side options are integrated to create a resource mix that reliably satisfies customers' short-term and long-term energy service needs at the lowest cost. As applied to gas utilities, an integrated resource plan seeks to balance cost and reliability, and should not be interpreted simply as the search for lowest commodity costs. The National Association of Regulatory Utility Commissioners' (NARUC) Energy Conservation committee asked Lawrence Berkeley Laboratory (LBL) to survey state PUCs to determine the extent to which they have undertaken least cost planning for gas utilities. The survey included the following topics: status of state PUC least-cost planning regulations and practices for gas utilities; type and scope of natural gas DSM programs in effect, including fuel substitution; economic tests and analysis methods used to evaluate DSM programs; relationship between prudency reviews of gas utility purchasing practices and integrated resource planning; key regulatory issued facing gas utilities during the next five years.

Not Available

1991-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "integration planning safety" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

National conference on integrated resource planning: Proceedings  

Science Conference Proceedings (OSTI)

Until recently, state regulators have focused most of their attention on the development of least-cost or integrated resource planning (IRP) processes for electric utilities. A number of commissions are beginning to scrutinize the planning processes of local gas distribution companies (LDCs) because of the increased control that LDCs have over their purchased gas costs (as well as the associated risks) and because of questions surrounding the role and potential of gas end-use efficiency options. Traditionally, resource planning (LDCs) has concentrated on options for purchasing and storing gas. Integrated resource planning involves the creation of a process in which supply-side and demand-side options are integrated to create a resource mix that reliably satisfies customers` short-term and long-term energy service needs at the lowest cost. As applied to gas utilities, an integrated resource plan seeks to balance cost and reliability, and should not be interpreted simply as the search for lowest commodity costs. The National Association of Regulatory Utility Commissioners` (NARUC) Energy Conservation committee asked Lawrence Berkeley Laboratory (LBL) to survey state PUCs to determine the extent to which they have undertaken least cost planning for gas utilities. The survey included the following topics: status of state PUC least-cost planning regulations and practices for gas utilities; type and scope of natural gas DSM programs in effect, including fuel substitution; economic tests and analysis methods used to evaluate DSM programs; relationship between prudency reviews of gas utility purchasing practices and integrated resource planning; key regulatory issued facing gas utilities during the next five years.

Not Available

1991-12-31T23:59:59.000Z

82

Nuclear Safety Research and Development Program Operating Plan | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Program Operating Plan Program Operating Plan Nuclear Safety Research and Development Program Operating Plan July 5, 2012 Nuclear Safety Research and Development Program Operating Plan This operating plan outlines the mission, goals, and processes for the Department of Energy's (DOE) Nuclear Safety Research & Development (NSR&D) Program. This first version of the operating plan also discusses the startup phase of the program. NSR&D involves a systematic search for knowledge to advance the fundamental understanding of nuclear safety science and technology through scientific study, analysis, modeling, and experiments. Maintaining an effective NSR&D program will support DOE and the National Nuclear Security Administration (NNSA) in standards development, validation of analytical models and

83

Integrated test vehicle program plan: revision C  

DOE Green Energy (OSTI)

This edition dated August 26, 1977, is Revision C of the Integrated Test Vehicle, Program Plan, Phase II - Deliverable Item 2-7-1. The original edition was issued on May 27, 1977. Corrections were made and issued as Proposed Modifications for Integrated Test Vehicle, Program Plan, dated July 8, 1977. For the purpose of documenting changes, the July 8, 1977, version is caled Revision A. The edition dated August 5, 1977, is called Revision B. Each paragraph in this edition is marked to indicate technical changes from previous editions.

Not Available

1977-08-26T23:59:59.000Z

84

Systems engineering applied to integrated safety management for high consequence facilities  

SciTech Connect

Integrated Safety Management is a concept that is being actively promoted by the U.S. Department of Energy as a means of assuring safe operation of its facilities. The concept involves the integration of safety precepts into work planning rather than adjusting for safe operations after defining the work activity. The system engineering techniques used to design an integrated safety management system for a high consequence research facility are described. An example is given to show how the concepts evolved with the system design.

Barter, R; Morais, B

1998-11-10T23:59:59.000Z

85

Buried waste integrated demonstration configuration management plan  

SciTech Connect

This document defines plans for the configuration management requirements for the Buried Waste Integrated Demonstration (BWID) Program. Since BWID is managed programmatically by the Waste Technology Development Department (WTDD), WTDD Program Directive (PD) 1.5 (Document Preparation, Review, Approval, Publication, Management and Change Control) is to be followed for all internal EG&G Idaho, Inc., BWID programmatic documentation. BWID documentation generated by organizations external to EG&G Idaho is not covered by this revision of the Configuration Management Plan (CMP), but will be addressed in subsequent revisions.

Cannon, P.G.

1992-02-01T23:59:59.000Z

86

Buried waste integrated demonstration configuration management plan  

SciTech Connect

This document defines plans for the configuration management requirements for the Buried Waste Integrated Demonstration (BWID) Program. Since BWID is managed programmatically by the Waste Technology Development Department (WTDD), WTDD Program Directive (PD) 1.5 (Document Preparation, Review, Approval, Publication, Management and Change Control) is to be followed for all internal EG G Idaho, Inc., BWID programmatic documentation. BWID documentation generated by organizations external to EG G Idaho is not covered by this revision of the Configuration Management Plan (CMP), but will be addressed in subsequent revisions.

Cannon, P.G.

1992-02-01T23:59:59.000Z

87

February 28, 2006, Department letter reporting completion of NNSA portion of Commitment 23 in the 2004-1 implementation plan, Oversight of Complex, High-Hazard Nuclear Operations, which requires the development of site office action plans to improve the consistency and reliability of work planning and work control at the activity level, including the incorporation of Integrated Safety Management core functions  

NLE Websites -- All DOE Office Websites (Extended Search)

Washington, DC 20585 Washington, DC 20585 February 28, 2006 OFFICE O F THE ADMINISTRATOR The Honorable A. J. Eggenberger Ch a i rm an Defensc Nuclear Facilities Safety Board 625 Indiana Avenue, NW., Suite 700 Washington, D.C. 20004-2901 Dear Mr. Chairman: On Julie 10, 2005, Secretary Bodnian submitted the Department's Iiizplenzentution Plun to Itizpt-ove Oversight qf'Nucleur Operutions in response to Defense Nuclear Facilities Safety Board (DNFSB) Recommendation 2004- I , Oversight qf Complex, High-Hrrzurd Nucleur Openrtiotzs. Section 5.3 of the Implementation Plan (IP) addresses Revitalizing Integruted SU/i-'ty Munagernent Implementution, and Subsection 5.3.2 addresses Work Plunning mil Work Control ut the Activity Level. Commitment 23 of the 1P requires development of site office action plans to improve the consistency and reliability of work

88

AN ADVANCED TOOL FOR APPLIED INTEGRATED SAFETY MANAGEMENT  

SciTech Connect

WESKEM, LLC's Environmental, Safety and Health (ES&H) Department had previously assessed that a lack of consistency, poor communication and using antiquated communication tools could result in varying operating practices, as well as a failure to capture and disseminate appropriate Integrated Safety Management (ISM) information. To address these issues, the ES&H Department established an Activity Hazard Review (AHR)/Activity Hazard Analysis (AHA) process for systematically identifying, assessing, and controlling hazards associated with project work activities during work planning and execution. Depending on the scope of a project, information from field walkdowns and table-top meetings are collected on an AHR form. The AHA then documents the potential failure and consequence scenarios for a particular hazard. Also, the AHA recommends whether the type of mitigation appears appropriate or whether additional controls should be implemented. Since the application is web based, the information is captured into a single system and organized according to the >200 work activities already recorded in the database. Using the streamlined AHA method improved cycle time from over four hours to an average of one hour, allowing more time to analyze unique hazards and develop appropriate controls. Also, the enhanced configuration control created a readily available AHA library to research and utilize along with standardizing hazard analysis and control selection across four separate work sites located in Kentucky and Tennessee. The AHR/AHA system provides an applied example of how the ISM concept evolved into a standardized field-deployed tool yielding considerable efficiency gains in project planning and resource utilization. Employee safety is preserved through detailed planning that now requires only a portion of the time previously necessary. The available resources can then be applied to implementing appropriate engineering, administrative and personal protective equipment controls in the field.

Potts, T. Todd; Hylko, James M.; Douglas, Terence A.

2003-02-27T23:59:59.000Z

89

Integrated Safety Management (ISM) Workshop - August 25-28, 2008  

NLE Websites -- All DOE Office Websites (Extended Search)

WSRC ISMS Implementation for Hanford River Corridor Contract, Ray Skwarek, WCH Integrated Safety Management Recertification at Lawrence Livermore National Laboratory, Frank...

90

Integrated Safety Management (ISM) Workshop - November 28-30...  

NLE Websites -- All DOE Office Websites (Extended Search)

- Integrating Management and Systems Track D - Developing an Effective Safety Culture Track E - Implementing DOE ISM Requirement This page was last updated on Tuesday, December 11...

91

DOE O 450.2, Integrated Safety Management  

Directives, Delegations, and Requirements

The order ensures that DOE/NNSA, systematically integrates safety into management and work practices at all levels, so that missions are accomplished ...

2011-04-25T23:59:59.000Z

92

Review of Commercial Grade Dedication Plans for the Safety Instrumente...  

NLE Websites -- All DOE Office Websites (Extended Search)

of Health, Safety and Security IO InputOutput LAW Low Activity Waste LED Light-Emitting Diode NA-262 NNSA Site Engineering and Project Integration Division NA-266 NNSA WSB...

93

An Integrated Safety Assessment Methodology for Generation IV Nuclear Systems  

SciTech Connect

The Generation IV International Forum (GIF) Risk and Safety Working Group (RSWG) was created to develop an effective approach for the safety of Generation IV advanced nuclear energy systems. Early work of the RSWG focused on defining a safety philosophy founded on lessons learned from current and prior generations of nuclear technologies, and on identifying technology characteristics that may help achieve Generation IV safety goals. More recent RSWG work has focused on the definition of an integrated safety assessment methodology for evaluating the safety of Generation IV systems. The methodology, tentatively called ISAM, is an integrated toolkit consisting of analytical techniques that are available and matched to appropriate stages of Generation IV system concept development. The integrated methodology is intended to yield safety-related insights that help actively drive the evolving design throughout the technology development cycle, potentially resulting in enhanced safety, reduced costs, and shortened development time.

Timothy J. Leahy

2010-06-01T23:59:59.000Z

94

1,200 To Attend DOE Safety Workshop - Integrated Safety Management (ISM)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1,200 To Attend DOE Safety Workshop - Integrated Safety Management 1,200 To Attend DOE Safety Workshop - Integrated Safety Management (ISM) Workshop Features Nationally Renowned Speakers 1,200 To Attend DOE Safety Workshop - Integrated Safety Management (ISM) Workshop Features Nationally Renowned Speakers September 9, 2011 - 12:00pm Addthis KENNEWICK, WASH. - The Department of Energy (DOE) offices at Hanford will host the 2011 Integrated Safety Management (ISM) Champions Workshop at the Three Rivers Convention Center in Kennewick for DOE and contractor employees from sites across the country on September 12-15. More than 1,200 people are expected to attend the workshop, which features nationally acclaimed keynote speakers and high-level DOE officials. The workshop agenda also includes tours of Hanford, a safety symposium,

95

Idaho National Laboratory Integrated Safety Management System 2010 Effectiveness Review and Declaration Report  

SciTech Connect

Idaho National Laboratory completes an annual Integrated Safety Management System effectiveness review per 48 CFR 970.5223-1 Integration of Environment, Safety and Health into Work Planning and Execution. The annual review assesses ISMS effectiveness, provides feedback to maintain system integrity, and helps identify target areas for focused improvements and assessments for the following year. Using one of the three Department of Energy (DOE) descriptors in DOE M 450.4-1 regarding the state of ISMS effectiveness during Fiscal Year (FY) 2010, the information presented in this review shows that INL achieved Effective Performance.

Thomas J. Haney

2010-12-01T23:59:59.000Z

96

Integrating Pollution Prevention with NEPA Planning Activities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DATE: REPLY TO ATTN OF: SUBJECT: TO: October 15, 1992 EH-25 Integrating Pollution Prevention with NEPA Planning Activities NEPA Compliance Officers The purpose of this memorandum is to advise you of the direction that the Environmental Protection Agency (EPA) and Council on Environmental Quality (CEQ) appear to be taking regarding pollution prevention and NEPA, and to encourage you to use the NEPA process to incorporate pollution prevention principles into the DOE planning and decisionmaking process. The Pollution Prevention Act of 1990 affirms Congressional commitment to a new approach in improving environmental quality. The Act establishes as national policy the following hierarchy of actions for environmental protection: 1. prevent or reduce pollution at the source wherever

97

Guide to Integrating Renewable Energy in Federal Construction: Planning,  

NLE Websites -- All DOE Office Websites (Extended Search)

Planning, Programming, and Budgeting to someone by E-mail Planning, Programming, and Budgeting to someone by E-mail Share Guide to Integrating Renewable Energy in Federal Construction: Planning, Programming, and Budgeting on Facebook Tweet about Guide to Integrating Renewable Energy in Federal Construction: Planning, Programming, and Budgeting on Twitter Bookmark Guide to Integrating Renewable Energy in Federal Construction: Planning, Programming, and Budgeting on Google Bookmark Guide to Integrating Renewable Energy in Federal Construction: Planning, Programming, and Budgeting on Delicious Rank Guide to Integrating Renewable Energy in Federal Construction: Planning, Programming, and Budgeting on Digg Find More places to share Guide to Integrating Renewable Energy in Federal Construction: Planning, Programming, and Budgeting on

98

Integrated Resource Planning: A Dialogue with ELCON  

E-Print Network (OSTI)

The oil price shocks of the 1970s were a precursor to some fundamental changes in the way the supply and demand for energy is viewed. One response to the events of that period is the application of integrated resource planning (IRP). IRP is, principally, a regulatory prerogative designed to promote a balance between supply and demand resources in electricity markets. In this paper we provide a definition of that concept and discuss two of its main features: Demand-side Management programs and environmental externalities. We also examine a number of positions taken by ELCON with respect to IRP and provide our responses.

Treadway, N.; Torrent, G.

1992-04-01T23:59:59.000Z

99

Mixed Waste Integrated Program Quality Assurance requirements plan  

SciTech Connect

Mixed Waste Integrated Program (MWIP) is sponsored by the US Department of Energy (DOE), Office of Technology Development, Waste Management Division. The strategic objectives of MWIP are defined in the Mixed Waste Integrated Program Strategic Plan, and expanded upon in the MWIP Program Management Plan. This MWIP Quality Assurance Requirement Plan (QARP) applies to mixed waste treatment technologies involving both hazardous and radioactive constituents. As a DOE organization, MWIP is required to develop, implement, and maintain a written Quality Assurance Program in accordance with DOE Order 4700.1 Project Management System, DOE Order 5700.6C, Quality Assurance, DOE Order 5820.2A Radioactive Waste Management, ASME NQA-1 Quality Assurance Program Requirements for Nuclear Facilities and ANSI/ASQC E4-19xx Specifications and Guidelines for Quality Systems for Environmental Data Collection and Environmental Technology Programs. The purpose of the MWIP QA program is to establish controls which address the requirements in 5700.6C, with the intent to minimize risks and potential environmental impacts; and to maximize environmental protection, health, safety, reliability, and performance in all program activities. QA program controls are established to assure that each participating organization conducts its activities in a manner consistent with risks posed by those activities.

1994-04-15T23:59:59.000Z

100

Multi-Modal Integrated Safety, Security & Environmental Program Strategy  

SciTech Connect

This paper describes an approach to assessing and protecting the surface transportation infrastructure from a network science viewpoint. We address transportation security from a human behavior-dynamics perspective under both normal and emergency conditions for the purpose of measuring, managing and mitigating risks. The key factor for the planning and design of a robust transportation network solution is to ensure accountability for safety, security and environmental risks. The Oak Ridge National Laboratory (ORNL) Multi-Modal Integrated Safety, Security and Environmental Program (M2IS2EP) evolved from a joint US Department of Energy (DOE) Oak Ridge Office (ORO) Assets Utilization Program and ORNL SensorNet Program initiative named the Identification and Monitoring of Radiation (in commerce) Shipments (IMRicS). In November of 2002 the first of six pilot demonstrations was constructed at the Tennessee I-40/75 Knox County Weigh Station outside of Knoxville. Over the life of the project four more installations were deployed with various levels of ORNL oversight. In October of 2004 the ORNL SensorNet Program commissioned a research team to develop a project plan and to identify/develop a strategic vision in support of the SensorNet Program, keeping in mind the needs of the various governmental constituencies (i.e., DOT/DHS/EPA) for improving the safety/security/environment of the highway transportation system. Ultimately a more comprehensive ORNL SensorNet Program entitled Trusted Corridors was established and presented to ORNL, DOE, DOT, DHS, EPA and State leaders. Several of these entities adopted their own versions of these programs and are at various stages of deployment. All of these initiatives and pilots make up the foundation of the concepts and ideas of M2IS2EP and will be discussed further on in this paper.

Walker, Randy M [ORNL; Omitaomu, Olufemi A [ORNL; Ganguly, Auroop R [ORNL; Abercrombie, Robert K [ORNL; Sheldon, Frederick T [ORNL

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "integration planning safety" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Site Office Safety System Oversight Staffing Plan - Blank  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Site Office Safety System Oversight Staffing Plan" Site Office Safety System Oversight Staffing Plan" "Date" "ACTIVITIES","Days for Activity in each Fiscal Year",,,,,,"Notes" ,"FY09","FY10","FY11","FY12","FY13","FY14" "Program Tasks" "Total Task Days",0,0,0,0,0,0,"Number of days required for activities that need to be completed regardless of number of staff" "Individual Tasks" "Qualification Training" "Continuing Training" "Collateral Duties" "Administrative" "Leave, Holidays" "Total Individual Days",0,0,0,0,0,0,"Number of days required for activities that need to be completed by each individual"

102

Tank farm health and safety plan. Revision 2  

SciTech Connect

This Tank Farm Health and Safety Plan (HASP) for the conduct of all operations and work activities at the Hanford Site 200 Area Tank Farms is provided in order to minimize health and safety risks to workers and other onsite personnel. The HASP accomplishes this objective by establishing requirements, providing general guidelines, and conveying farm and facility-specific hazard communication information. The HASP, in conjunction with the job-specific information required by the HASP, is provided also as a reference for use during the planning of work activities at the tank farms. This HASP applies to Westinghouse Hanford Company (WHC), other prime contractors to the U.S. Department of Energy (DOE), and subcontractors to WHC who may be involved in tank farm work activities. This plan is intended to be both a requirements document and a useful reference to aid tank farm workers in understanding the safety and health issues that are encountered in routine and nonroutine work activities. The HASP defines the health and safety responsibilities of personnel working at the tank farms. It has been prepared in recognition of and is consistent with National Institute of Safety and Health (NIOSH), and Occupational Safety and Health Administration (OSHA)/Unlimited State Coast Guard (USCG)/U.S. Environmental Protection Agency (EPA), Occupational Safety and Health Guidance Manual for Hazardous Waste Site Activities (NIOSH 1985); WHC-CM-4-3, Industrial Safety Manual, Volume 4, {open_quotes}Health and Safety Programs for Hazardous Waste Operations;{close_quotes} 29 CFR 1910.120, Hazardous Waste Operations and Emergency Response; WHC-CM-1-1, Management Policies; and WHC-CM-1-3, Management Requirements and Procedures. When differences in governing regulations or policies exist, the more stringent requirements shall apply until the discrepancy can be resolved.

Mickle, G.D.

1995-03-29T23:59:59.000Z

103

Selenide isotope generator for the Galileo Mission: safety test plan  

DOE Green Energy (OSTI)

The intent of this safety test plan is to outline particular kinds of safety tests designed to produce information which would be useful in the safety analysis process. The program deals primarily with the response of the RTG to accident environments; accordingly two criteria were established: (1) safety tests should be performed for environments which are the most critical in terms of risk contribution; and (2) tests should be formulated to determine failure conditions for critical heat source components rather than observe heat source response in reference accident environments. To satisfy criterion 1. results of a recent safety study were used to rank various accidents in terms of expected source terms. Six kinds of tests were then proposed which would provide information meeting the second criterion.

Not Available

1979-01-31T23:59:59.000Z

104

Integrating transportation conservation with regional conservation planning  

E-Print Network (OSTI)

Multiple Species Conservation Program (MSCP). 1998.Final Multiple Species Conservation Program: MSCP Plan. Sanand Resource Conservation Planning Conservation Banking I

DiGregoria, John; Luciani, Emilie; Wynn, Susan

2005-01-01T23:59:59.000Z

105

Idaho National Laboratory Integrated Safety Management System 2011 Effectiveness Review and Declaration Report  

SciTech Connect

Idaho National Laboratory (INL) performed an annual Integrated Safety Management System (ISMS) effectiveness review per 48 Code of Federal Regulations (CFR) 970.5223-1, 'Integration of Environment, Safety and Health into Work Planning and Execution.' The annual review assessed Integrated Safety Management (ISM) effectiveness, provided feedback to maintain system integrity, and helped identify target areas for focused improvements and assessments for fiscal year (FY) 2012. The information presented in this review of FY 2011 shows that the INL has performed many corrective actions and improvement activities, which are starting to show some of the desired results. These corrective actions and improvement activities will continue to help change culture that will lead to better implementation of defined programs, resulting in moving the Laboratory's performance from the categorization of 'Needs Improvement' to the desired results of 'Effective Performance.'

Farren Hunt

2011-12-01T23:59:59.000Z

106

Idaho National Laboratory Integrated Safety Management System 2011 Effectiveness Review and Declaration Report  

SciTech Connect

Idaho National Laboratory (INL) performed an annual Integrated Safety Management System (ISMS) effectiveness review per 48 Code of Federal Regulations (CFR) 970.5223-1, 'Integration of Environment, Safety and Health into Work Planning and Execution.' The annual review assessed Integrated Safety Management (ISM) effectiveness, provided feedback to maintain system integrity, and helped identify target areas for focused improvements and assessments for fiscal year (FY) 2012. The information presented in this review of FY 2011 shows that the INL has performed many corrective actions and improvement activities, which are starting to show some of the desired results. These corrective actions and improvement activities will continue to help change culture that will lead to better implementation of defined programs, resulting in moving the Laboratory's performance from the categorization of 'Needs Improvement' to the desired results of 'Effective Performance.'

Farren Hunt

2011-12-01T23:59:59.000Z

107

Electrical Safety Assessment Plan - Developed By NNSA/NSO IOD Facility Representative  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

December 2003 December 2003 An assessment of the Electrical Safety (ES) program at XXXX was conducted during the week of December XX-XX, 2003. The assessment team evaluated the program using the programmatic areas and specific Lines of Inquiry (LOI) contained in the approved Assessment plan provided. The team consisted of the Facility Representative from National Nuclear Security Administration, as well as ES, Subject Matter Expert support. The assessment plan identified 5 areas of review for Electrical Safety. An integrated process has been established to ensure electrical safety hazards are identified and that adequate controls are defined and implemented. The M&O contractor and other NTS Users management actively participate in the ES program. An implemented Work Control process is in place that ensures

108

Health and Safety Plan for NSTX Upgrade Project Tasks  

E-Print Network (OSTI)

and the DOE Hoisting and Rigging Manual. Herein is our site specific Health and Safety Plan for the work-vessel passive plates hardware. Rev 1 2 11/9111 #12;3.0 RESPONSmILITIES, AUTHORITIES, COMMUNICATIONS The Work

Princeton Plasma Physics Laboratory

109

Subject: Integrated Safety Analysis: Why It Is Appropriate for Fuel  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Subject: Integrated Safety Analysis: Why It Is Appropriate for Fuel Subject: Integrated Safety Analysis: Why It Is Appropriate for Fuel Recycling Facilities Project Number: 689Nuclear Energy Institute (NEI) Letter, 9/10/10 Subject: Integrated Safety Analysis: Why It Is Appropriate for Fuel Recycling Facilities Project Number: 689Nuclear Energy Institute (NEI) Letter, 9/10/10 Enclosed for your review is a Nuclear Energy Institute white paper on the use of Integrated Safety Analysis (ISA) at U.S. Nuclear Regulatory Commission-licensed recycling facilities. This paper is intended as an information source for the NRC and should serve as a foundation for discussion with industry representatives on the issue. This paper concludes that an ISA is a risk-informed, performance-based way of achieving and maintaining safety at fuel recycling facilities. As

110

Comparison of Integrated Safety Analysis (ISA) and Probabilistic Risk  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Comparison of Integrated Safety Analysis (ISA) and Probabilistic Comparison of Integrated Safety Analysis (ISA) and Probabilistic Risk Assessment (PRA) for Fuel Cycle Facilities, 2/17/11 Comparison of Integrated Safety Analysis (ISA) and Probabilistic Risk Assessment (PRA) for Fuel Cycle Facilities, 2/17/11 During the 580th meeting of the Advisory Committee on Reactor Safeguards (ACRS), February 10-12, 2011, we reviewed the staff's white paper, "A Comparison of Integrated Safety Analysis and Probabilistic Risk Assessment." Our Radiation Protection and Nuclear Materials Subcommittee also reviewed this matter during a meeting on January 11, 2011. During these meetings we met with representatives of the NRC staff and the Nuclear Energy Institute. We also had the benefit of the documents referenced. Comparison of Intergrated Safety Analysis (ISA) and Probabilistic Risk

111

RELAP-7 and PRONGHORN Initial Integration Plan  

SciTech Connect

Modern nuclear reactor safety codes require the ability to solve detailed coupled neutronicthermal fluids problems. For larger cores, this implies fully coupled 3-D spatial dynamics with appropriate feedback models that can provide enough resolution to accurately compute core heat generation and removal during steady and unsteady conditions. The reactor analyis code PRONGHORN is being coupled to RELAP-7 as a first step to extend RELAP's current capabilities. This report details the mathematical models, the type of coupling, and the testing that will be used to produce an integrated system. RELAP-7 is a MOOSE-based application that solves the continuity, momentum, and energy equations in 1-D for a compressible fluid. The pipe and joint capabilities enable it to model parts of the PCU system. The PRONGHORN application, also developed on the MOOSE infrastructure, solves the coupled equations that define the neutron diffusion, fluid flow, and heat transfer in a 3-D core model. Initially, the two systems will be loosely coupled to simplify the transition towards a more complex infrastructure. The integration will be tested with the OECD/NEA MHTGR-350 Coupled Neutronics-Thermal Fluids benchmark model.

J. Ortensi; D. Andrs; A.A. Bingham; R.C. Martineau; J.W. Peterson

2012-05-01T23:59:59.000Z

112

Integrated Safety Management (ISM) Workshop - August 2009  

NLE Websites -- All DOE Office Websites (Extended Search)

ISM Workshop Presentations Knoxville Convention Center, Knoxville, TN August 2009 ism logo Track 1: Safety Culture - Taking ISMS to the Next Level Track 2: Worker Engagement Track...

113

SCIPP Chemical Hygiene Plan 4/2012 page 1 SCIPP Lab Safety  

E-Print Network (OSTI)

SCIPP Chemical Hygiene Plan 4/2012 page 1 SCIPP Lab Safety and Chemical Hygiene Plan This version Institute for Particle Physics Last Revision Date: 4/19/2012 #12;SCIPP Chemical Hygiene Plan 04/2012 page 2 SCIPP Lab Safety and Chemical Hygiene Plan (Injury and Illness Prevention Plan Appendix J) SECTION 1

California at Santa Cruz, University of

114

DNFSB 2002-1 Software Quality Assurance Improvement Plan Commitment 4.2.1.2: Safety Quality Assurance Plan and Criteria for the Safety Analysis Toolbox Codes  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2-Criteria 2-Criteria Defense Nuclear Facilities Safety Board Recommendation 2002-1 Software Quality Assurance Improvement Plan Commitment 4.2.1.2: Software Quality Assurance Plan and Criteria for the Safety Analysis Toolbox Codes U.S. Department of Energy Office of Environment, Safety and Health 1000 Independence Ave., S.W. Washington, DC 20585-2040 November 2003 Software Quality Assurance Criteria for Safety Analysis Codes November 2003 INTENTIONALLY BLANK ii Software Quality Assurance Criteria for Safety Analysis Codes November 2003 FOREWORD This document discusses the Software Quality Assurance plan, and criteria and implementation procedures to be used to evaluate designated, safety-related computer software for the

115

Nuclear Safeguards Infrastructure Development and Integration with Safety and Security  

SciTech Connect

Faced with increasing global energy demands, many developing countries are considering building their first nuclear power plant. As a country embarks upon or expands its nuclear power program, it should consider how it will address the 19 issues laid out in the International Atomic Energy Agency (IAEA) document Milestones in Development of a National Infrastructure for Nuclear Power. One of those issues specifically addresses the international nonproliferation treaties and commitments and the implementation of safeguards to prevent diversion of nuclear material from peaceful purposes to nuclear weapons. Given the many legislative, economic, financial, environmental, operational, and other considerations preoccupying their planners, it is often difficult for countries to focus on developing the core strengths needed for effective safeguards implementation. Typically, these countries either have no nuclear experience or it is limited to the operation of research reactors used for radioisotope development and scientific research. As a result, their capacity to apply safeguards and manage fuel operations for a nuclear power program is limited. This paper argues that to address the safeguards issue effectively, a holistic approach must be taken to integrate safeguards with the other IAEA issues including safety and security - sometimes referred to as the '3S' concept. Taking a holistic approach means that a country must consider safeguards within the context of its entire nuclear power program, including operations best practices, safety, and security as well as integration with its larger nonproliferation commitments. The Department of Energy/National Nuclear Security Administration's International Nuclear Safeguards and Engagement Program (INSEP) has been involved in bilateral technical cooperation programs for over 20 years to promote nonproliferation and the peaceful uses of nuclear energy. INSEP is currently spearheading efforts to promote the development of nuclear safeguards infrastructure in countries with credible plans for nuclear energy as part of the Next Generation Safeguards Initiative. Developing an adequate safeguards infrastructure is critical to becoming a responsible 'owner' of nuclear power. The 3S concept is the optimal path forward to achieving this goal.

Kovacic, Donald N [ORNL; Raffo-Caiado, Ana Claudia [ORNL; McClelland-Kerr, John [U.S. Department of Energy; Van sickle, Matthew [U.S. National Nuclear Security Administration; Bissani, Mo [Lawrence Livermore National Laboratory (LLNL)

2009-01-01T23:59:59.000Z

116

Review of the Independent Integrated Safety Management/Integrated...  

NLE Websites -- All DOE Office Websites (Extended Search)

of Research and Development and Programmatic Work at the Los Alamos National Laboratory December 2011 Office of Safety and Emergency Management Evaluations Office of...

117

Health and safety plan for operations performed for the Environmental Restoration Program  

SciTech Connect

This document constitutes the generic health and safety plan for the Environmental Restoration Program (ERP). It addresses the health and safety requirements of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA); Occupational Safety and Health Administration (OSHA) 29 CFR 1910.120 standard; and EG G Idaho, Inc. This plan is a guide to individuals who must complete a health and safety plan for a task performed for the EPR. It contains a task specific addendum that, when completed, specifically addresses task specific health and safety issues. This health and safety plan reduces the time it takes to write a task specific health and safety plan by providing discussions of requirements, guidance on where specific information is located, and specific topics in the Addendum that must be discussed at a task level. This format encourages a complete task specific health and safety plan and a standard for all health and safety plans written for ERP.

Trippet, W.A. II (IT Corp., (United States)); Reneau, M.; Morton, S.L. (EG and G Idaho, Inc., Idaho Falls, ID (United States))

1992-04-01T23:59:59.000Z

118

Nuclear Energy Institute (NEI) Attachment, Integrated Safety Analysis |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Energy Institute (NEI) Attachment, Integrated Safety Nuclear Energy Institute (NEI) Attachment, Integrated Safety Analysis Nuclear Energy Institute (NEI) Attachment, Integrated Safety Analysis This paper addresses why the use of an Integrated Safety Analysis ("ISA") is appropriate for fuel recycling facilities1 which would be licensed under new regulations currently being considered by NRC. The use of the ISA for fuel facilities under Part 70 is described and compared to the use of a Probabilistic Risk Assessment ("PRA") for reactor facilities. A basis is provided for concluding that future recycling facilities - which will possess characteristics similar to today's fuel cycle facilities and distinct from reactors - can best be assessed using established qualitative or semi-quantitative ISA techniques to achieve and

119

2013 Integrated Safety Management Champions Workshop - Registration  

NLE Websites -- All DOE Office Websites (Extended Search)

The Office of Health, Safety and Security HSS Logo Department of Energy Seal Left Tab SEARCH Right Tab TOOLS Right Tab Left Tab HOME Right Tab Left Tab ABOUT US Right Tab Left Tab...

120

Integrated Safety Management (ISM) - ISM Champions  

NLE Websites -- All DOE Office Websites (Extended Search)

The Office of Health, Safety and Security HSS Logo Department of Energy Seal Left Tab SEARCH Right Tab TOOLS Right Tab Left Tab HOME Right Tab Left Tab ABOUT US Right Tab Left Tab...

Note: This page contains sample records for the topic "integration planning safety" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Integrated Safety Management (ISM) - Program Contacts  

NLE Websites -- All DOE Office Websites (Extended Search)

The Office of Health, Safety and Security HSS Logo Department of Energy Seal Left Tab SEARCH Right Tab TOOLS Right Tab Left Tab HOME Right Tab Left Tab ABOUT US Right Tab Left Tab...

122

Idaho National Laboratory Integrated Safety Management System FY 2012 Effectiveness Review and Declaration Report  

SciTech Connect

Idaho National Laboratory (INL) performed an Annual Effectiveness Review of the Integrated Safety Management System (ISMS), per 48 Code of Federal Regulations (CFR) 970.5223 1, Integration of Environment, Safety and Health into Work Planning and Execution. The annual review assessed Integrated Safety Management (ISM) effectiveness, provided feedback to maintain system integrity, and identified target areas for focused improvements and assessments for fiscal year (FY) 2013. Results of the FY 2012 annual effectiveness review demonstrated that the INLs ISMS program was significantly strengthened. Actions implemented by the INL demonstrate that the overall Integrated Safety Management System is sound and ensures safe and successful performance of work while protecting workers, the public, and environment. This report also provides several opportunities for improvement that will help further strengthen the ISM Program and the pursuit of safety excellence. Demonstrated leadership and commitment, continued surveillance, and dedicated resources have been instrumental in maturing a sound ISMS program. Based upon interviews with personnel, reviews of assurance activities, and analysis of ISMS process implementation, this effectiveness review concludes that ISM is institutionalized and is Effective.

Farren Hunt

2012-12-01T23:59:59.000Z

123

Integrating transportation conservation with regional conservation planning  

E-Print Network (OSTI)

and Wildlife Biologist/Transportation Liaison, U.S. Fish andChapter Integrating Transportation and Resource Conservationon the integration of transportation conservation with the

DiGregoria, John; Luciani, Emilie; Wynn, Susan

2005-01-01T23:59:59.000Z

124

Integrated Safety Management (ISM) Workshop - November 28-30, 2007  

NLE Websites -- All DOE Office Websites (Extended Search)

A - Work Planning and Control A - Work Planning and Control ISM Workshop Presentations November 28-30, 2007 Wednesday, November 28, 2007 11:00 - 12:30 Workplace Hazards Monitoring and Recent Oversight Results, Thomas Staker, DOE-HSS SAFER Dialogue as Pre-Job and Activity Review Tool, Brian Harkins, DOE-ORP Hazard Analysis Process, William Schleyer, DOE-AL 2:00 - 3:30 ISM Implementation at R&D User Facility, Allison Campbell, PNL Experimental Safety Review - SMBS Process, Rob Doty, BNL R&D Work Planning and Control at SRNL, John Miller, SRNL 4:00 - 5:30 A Three Tiered Work Planning Process, Steven Coleman, BNL WSRC Work Planning and Control for all Activity - Level of Work, Tim Flake, WSRC SWPF Construction Work Planning and Control Process, Stephen Lindamood, Persons Thursday, November 29, 2007

125

Integrating Pollution Prevention with NEPA Planning Activities | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Integrating Pollution Prevention with NEPA Planning Activities Integrating Pollution Prevention with NEPA Planning Activities Integrating Pollution Prevention with NEPA Planning Activities The purpose of this memorandum is to advise you of the direction that the Environmental Protection Agency (EPA) and Council on Environmental Quality (CEQ) appear to be taking regarding pollution prevention and NEPA, and to encourage the use of the NEPA process to incorporate pollution prevention principles into the DOE planning and decisionmaking process. Integrating Pollution Prevention with NEPA Planning Activities More Documents & Publications Memorandum to Heads of Federal Departments and Agencies Regarding Pollution Prevention and the National Environmental Policy Act Guidance Regarding NEPA Regulations DOE NEPA Guidance and Requirements - Search Index - Table of Contents

126

August 5, 2005, Board letter accepting the implementation plan...  

NLE Websites -- All DOE Office Websites (Extended Search)

important safety positions. In its Implementation Plan, DOE commits to Integrated Safety Management (ISM) as the foundation of its safety management system and process....

127

Integration of Biodiversity into National Forestry Planning:...  

Open Energy Info (EERE)

of Biodiversity into National Forestry Planning: An Annotated Bibliography of Web-Based Resources, Methods, Experiences, and Case Studies Jump to: navigation, search...

128

Fermilab | Directorate | Office of Integrated Planning (OIP)...  

NLE Websites -- All DOE Office Websites (Extended Search)

Roles Classifications and Definitions of Managers and Project Managers Realtionship - Job Titles and OHAP Functional Roles Ten Year Planning ExerciseNeeds Analysis FY2011...

129

Fluor Daniel Hanford Inc. integrated safety management system phase 1 verification final report  

SciTech Connect

The purpose of this review is to verify the adequacy of documentation as submitted to the Approval Authority by Fluor Daniel Hanford, Inc. (FDH). This review is not only a review of the Integrated Safety Management System (ISMS) System Description documentation, but is also a review of the procedures, policies, and manuals of practice used to implement safety management in an environment of organizational restructuring. The FDH ISMS should support the Hanford Strategic Plan (DOE-RL 1996) to safely clean up and manage the site's legacy waste; deploy science and technology while incorporating the ISMS theme to ''Do work safely''; and protect human health and the environment.

PARSONS, J.E.

1999-10-28T23:59:59.000Z

130

Web based integrated models for participatory planning  

Science Conference Proceedings (OSTI)

The present paper focuses on the development of an integrated assessment model that embeds the web dimension and aims at increasing awareness in society, especially on environmental issues. The model incorporates features that make it capable of promoting ... Keywords: greenhouse gas emissions, increasing awareness, integrated assessment models, web based participatory integrated assessment models

Grammatikogiannis Elias; Maria Giaoutzi

2011-06-01T23:59:59.000Z

131

March 7, 2012, USW Health Safety and Environment Conference Presentations - Integrated Approach to Health, Safety and Security  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Integrated Approach Integrated Approach to Health, Safety and Security Labor Union and Stakeholder Outreach and Collaboration William Eckroade Principal Deputy Chief for Mission Support Operations Office of Health, Safety and Security U.S. Department of Energy USW Health, Safety and Environment Conference HSS Workshop March 7, 2012 2  October 2006: Secretary created the Office of Health, Safety and Security (HSS) - To provide an integrated DOE-HQ-level function for health, safety and security - Establishes centralized corporate responsibility - Advises the Office of the Secretary on all matters related to health, safety and security across the complex - Serves as the Departmental Representative to the DNFSB Office of Health, Safety and Security

132

10 CFR 851, Security and Integrated Safety Management Presentation  

NLE Websites -- All DOE Office Websites (Extended Search)

, Security and , Security and Integrated Safety Management Bill McArthur, PhD, CIH Director, Office of Worker Safety and Health Policy (HS-11) Office of Health and Safety 10 CFR 851 * "Worker Safety and Health Program" Rule required final implementation May 25, 2007. * Applies to ALL contractors on DOE site and working in furtherance of DOE mission. * Contains S&H requirements Workplace Safety and Health * Security Force personnel have the same rights for a safe and healthful workplace as other contractor or federal workers * DOE and the Security Force contractor have spent considerable resources to hire and train personnel * Want to keep the Force accident free Recent Security Issues * Obscurant Smoke * Heat Stress * Noise * Carbon Monoxide - Meeting at OR this week

133

Integration of Biodiversity into National Forestry Planning: An Annotated  

Open Energy Info (EERE)

Integration of Biodiversity into National Forestry Planning: An Annotated Integration of Biodiversity into National Forestry Planning: An Annotated Bibliography of Web-Based Resources, Methods, Experiences, and Case Studies Jump to: navigation, search Tool Summary Name: Integration of Biodiversity into National Forestry Planning: An Annotated Bibliography of Web-Based Resources, Methods, Experiences, and Case Studies Agency/Company /Organization: Center for International Forestry Research Partner: United Nations Environment Programme, Global Environment Facility Sector: Land Focus Area: Forestry Resource Type: Lessons learned/best practices Website: www.unep.org/bpsp/forestry/forestry%20annotated%20bibliography/annotat References: Integration of Biodiversity into National Forestry Planning: An Annotated Bibliography of Web-Based Resources, Methods, Experiences, and Case Studies[1]

134

Integrating Infrastructure Planning: The Role of Schools  

E-Print Network (OSTI)

of these strategies for schools and communities. Californiainvestments in new public school facilities. Now is the timePlanning: The Role of Schools B Y D E B O R A H M C K O Y, J

McKoy, Deborah; Vincent, Jeffrey M.; Makarewicz, Carrie

2008-01-01T23:59:59.000Z

135

"DOE O 450.2 INTEGRATED SAFETY MANAGEMENT AND DOE P 450.4A INTEGRATED  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

"DOE O 450.2 INTEGRATED SAFETY MANAGEMENT AND DOE P 450.4A "DOE O 450.2 INTEGRATED SAFETY MANAGEMENT AND DOE P 450.4A INTEGRATED SAFETY MANAGEMENT POLICY FAMILIAR LEVEL "DOE O 450.2 INTEGRATED SAFETY MANAGEMENT AND DOE P 450.4A INTEGRATED SAFETY MANAGEMENT POLICY FAMILIAR LEVEL "The familiar level of this module is divided into two sections. In the first section, we will discuss the additions to DOE M 450.4-1, Integrated Safety Management System Manual, which has been replaced by DOE O 450.2, Integrated Safety Management. In the second section, we will discuss the additions to DOE P 450.4, Integrated Safety Management Policy. We have provided examples and a practice to help familiarize you with the material. The practice will also help prepare you for the criterion test. Before continuing, you should obtain a copy of all the resources listed for

136

Integrated Safety Management (ISM) Workshop - August 25-28, 2008  

NLE Websites -- All DOE Office Websites (Extended Search)

Panel Discussion Panel Discussion ISM Workshop Presentations August 25-28, 2008 Intergration of Management Systems, Mike Kirkpatrick The Need for Integration of All Functional Areas with Line Management into a Single Management System, Elizabeth Sellers, Idaho Operations Office The Role of Effective Integration in the Successful Startup of the Interim Savannah River Site High Level Waste Salt Processing Campaign, Frank McCoy, Washington Safety Management Solutions Integrating the Environmental and Occupational Safety & Health Management Systems, Jim Tarpinian, Battelle Memorial Institute Integration in Assuring the Successful Startup of the W80 Weapons System Campaign, Greg Meyer, B&W Pantex Resolution of the Hanford Tank Farm Vapor Issues, Mark Spears, CH2M Hill

137

Integrated Requirements Management System Operations and Maintenance Plan  

Science Conference Proceedings (OSTI)

This document provides a plan for the operations and maintenance of the Integrated Requirements Management Systems (IRMS) database. This document describes the roles and responsibilities for the users of the IRMS. Planning is provided for the configuration management of the DOORS software, hardware and data set. Training consideration for the various categories of users is provided.

ACREE, C.D.

2001-03-26T23:59:59.000Z

138

Integrative path planning and motion control for handling large components  

Science Conference Proceedings (OSTI)

For handling large components a large workspace and high precision are required. In order to simplify the path planning for automated handling systems, this task can be divided into global, regional and local motions. Accordingly, different types of ... Keywords: integrative production, motion control, path planning, robotic assembly application

Rainer Mller; Martin Esser; Markus Janssen

2011-12-01T23:59:59.000Z

139

Local Emergency Plans, Physics Department Safety & Training Office  

NLE Websites -- All DOE Office Websites (Extended Search)

Local Emergency Plans Building 510 Local Emergency Plan (pdf) Building 510 Abbreviated Local Emergency Plan (pdf) Building 355 Local Emergency Plan (pdf) Building 355 Abbreviated...

140

Integrating Safeguards and Security with Safety into Design  

Science Conference Proceedings (OSTI)

There is a need to minimize security risks, proliferation hazards, and safety risks in the design of new nuclear facilities in a global environment of nuclear power expansion, while improving the synergy of major design features and raising operational efficiency. In 2008, the U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA) launched the Next Generation Safeguards Initiative (NGSI) covering many safeguards areas. One of these, launched by NNSA with support of the DOE Office of Nuclear Energy, was a multi-laboratory project, led by the Idaho National Laboratory (INL), to develop safeguards by design. The proposed Safeguards-by-Design (SBD) process has been developed as a structured approach to ensure the timely, efficient, and cost effective integration of international safeguards and other nonproliferation barriers with national material control and accountability, physical security, and safety objectives into the overall design process for the nuclear facility lifecycle. A graded, iterative process was developed to integrate these areas throughout the project phases. It identified activities, deliverables, interfaces, and hold points covering both domestic regulatory requirements and international safeguards using the DOE regulatory environment as exemplar to provide a framework and guidance for project management and integration of safety with security during design. Further work, reported in this paper, created a generalized SBD process which could also be employed within the licensed nuclear industry and internationally for design of new facilities. Several tools for integrating safeguards, safety, and security into design are discussed here. SBD appears complementary to the EFCOG TROSSI process for security and safety integration created in 2006, which focuses on standardized upgrades to enable existing DOE facilities to meet a more severe design basis threat. A collaborative approach is suggested.

Robert S. Bean; John W. Hockert; David J. Hebditch

2009-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "integration planning safety" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

December 16, 2005, Board letter regarding the new DOE Manual on Integrated Safety Management  

NLE Websites -- All DOE Office Websites (Extended Search)

6,2005 6,2005 The Honorable Samuel W. Bodman Secretary of Energy 1000 Independence Avenue, S W Washington, DC 20585- 1000 Dear Secretary Bodman: The Department of Energy (DOE) submitted its implementation plan for Recommendation 2004- 1 , Oversight of Complex, High-Hazard Nuclear Operations, to the Defense Nuclear Facilities Safety Board (Board) on June 10,2005. Commitment 22 under that implementation plan deals with issuing and implementing expectations for DOE organizations regarding the implementation of Integrated Safety Management (ISM). In particular, Deliverable B is a new DOE Manual on ISM. The due date associated with the manual is December 2005. It is important to note that ISM has been one of the primary success stories of the defense nuclear complex. Your staff has been working with the Board's staff to achieve a satisfactory

142

Implementing 10 CFR 830 at the FEMP Silos: Nuclear Health and Safety Plans as Documented Safety Analysis  

SciTech Connect

The objective of the Silos Project at the Fernald Closure Project (FCP) is to safely remediate high-grade uranium ore residues (Silos 1 and 2) and metal oxide residues (Silo 3). The evolution of Documented Safety Analyses (DSAs) for these facilities has reflected the changes in remediation processes. The final stage in silos DSAs is an interpretation of 10 CFR 830 Safe Harbor Requirements that combines a Health and Safety Plan with nuclear safety requirements. This paper will address the development of a Nuclear Health and Safety Plan, or N-HASP.

Fisk, Patricia; Rutherford, Lavon

2003-06-01T23:59:59.000Z

143

Integrated Safety Management System Phase 1 and 2 Verification for the Environmental Restoration Contractor Volumes 1 and 2  

SciTech Connect

DOE Policy 450.4 mandates that safety be integrated into all aspects of the management and operations of its facilities. The goal of an institutionalized Integrated Safety Management System (ISMS) is to have a single integrated system that includes Environment, Safety, and Health requirements in the work planning and execution processes to ensure the protection of the worker, public, environment, and the federal property over the life cycle of the Environmental Restoration (ER) Project. The purpose of this Environmental Restoration Contractor (ERC) ISMS Phase MI Verification was to determine whether ISMS programs and processes were institutionalized within the ER Project, whether these programs and processes were implemented, and whether the system had promoted the development of a safety conscious work culture.

CARTER, R.P.

2000-04-04T23:59:59.000Z

144

Generation and transmission expansion planning for renewable energy integration  

SciTech Connect

In recent years the expansion planning problem has become increasingly complex. As expansion planning (sometimes called composite or integrated resource planning) is a non-linear and non-convex optimization problem, researchers have traditionally focused on approximate models of power flows to solve the problem. The problem has also been split into generation expansion planning (GEP) and transmission network expansion planning (TNEP) to improve computational tractability. Until recently these approximations have produced results that are straight-forward to combine and adapt to the more complex and complete problem. However, the power grid is evolving towards a state where the adaptations are no longer easy (e.g. large amounts of limited control, renewable generation, comparable generation and transmission construction costs) and necessitates new approaches. Recent work on deterministic Discrepancy Bounded Local Search (DBLS) has shown it to be quite effective in addressing the TNEP. In this paper, we propose a generalization of DBLS to handle simultaneous generation and transmission planning.

Bent, Russell W [Los Alamos National Laboratory; Berscheid, Alan [Los Alamos National Laboratory; Toole, G. Loren [Los Alamos National Laboratory

2010-11-30T23:59:59.000Z

145

NASA BENCHMARKS SAFETY FUNCTIONS Assessment Plan Developed By NNSA/Nevada  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NASA BENCHMARKS SAFETY FUNCTIONS Assessment Plan Developed By NASA BENCHMARKS SAFETY FUNCTIONS Assessment Plan Developed By NNSA/Nevada Site Office Facility Representative Division NASA BENCHMARKS SAFETY FUNCTIONS Assessment Plan Developed By NNSA/Nevada Site Office Facility Representative Division Management should be proactive in addressing safety-related issues. Management should have an established system to provide a ranking of safety considerations founded upon risk-based priorities. Criteria: A system is in place to provide a ranking of safety considerations founded upon risk-based priorities. (DOE/EH-0135) Procedures clearly define management's responsibility for safety-related decisions and provide for the escalation of matters in an appropriate time frame. (DOE/EH-0135)Management promotes safety programs and the organization's

146

Integrated Resource Planning Act (Georgia) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Integrated Resource Planning Act (Georgia) Integrated Resource Planning Act (Georgia) < Back Eligibility Commercial Construction Developer General Public/Consumer Industrial Installer/Contractor Investor-Owned Utility Municipal/Public Utility Retail Supplier Rural Electric Cooperative Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Georgia Program Type Industry Recruitment/Support Siting and Permitting Georgia's Integrated Resource Planning Act, which was passed in 1991 and is now Georgia Code § 46-3A, requires that any proposed new electric plant receive certification by the Georgia Public Service Commission (PSC) before construction begins. A utility is entitled to recover pre-approved costs

147

Light Water Reactor Sustainability Program: Integrated Program Plan |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Integrated Program Plan Integrated Program Plan Light Water Reactor Sustainability Program: Integrated Program Plan Nuclear power has safely, reliably, and economically contributed almost 20% of electrical generation in the United States over the past two decades. It remains the single largest contributor (more than 70%) of non-greenhouse-gas- emitting electric power generation in the United States. Domestic demand for electrical energy is expected to grow by more than 30% from 2009 to 2035. At the same time, most of the currently operating nuclear power plants will begin reaching the end of their initial 20-year extension to their original 40-year operating license, for a total of 60 years of operation. Figure E-1 shows projected nuclear energy contribution to the domestic generating capacity. If current operating nuclear power

148

Sodium fast reactor safety and licensing research plan. Volume II.  

SciTech Connect

Expert panels comprised of subject matter experts identified at the U.S. National Laboratories (SNL, ANL, INL, ORNL, LBL, and BNL), universities (University of Wisconsin and Ohio State University), international agencies (IRSN, CEA, JAEA, KAERI, and JRC-IE) and private consultation companies (Radiation Effects Consulting) were assembled to perform a gap analysis for sodium fast reactor licensing. Expert-opinion elicitation was performed to qualitatively assess the current state of sodium fast reactor technologies. Five independent gap analyses were performed resulting in the following topical reports: (1) Accident Initiators and Sequences (i.e., Initiators/Sequences Technology Gap Analysis), (2) Sodium Technology Phenomena (i.e., Advanced Burner Reactor Sodium Technology Gap Analysis), (3) Fuels and Materials (i.e., Sodium Fast Reactor Fuels and Materials: Research Needs), (4) Source Term Characterization (i.e., Advanced Sodium Fast Reactor Accident Source Terms: Research Needs), and (5) Computer Codes and Models (i.e., Sodium Fast Reactor Gaps Analysis of Computer Codes and Models for Accident Analysis and Reactor Safety). Volume II of the Sodium Research Plan consolidates the five gap analysis reports produced by each expert panel, wherein the importance of the identified phenomena and necessities of further experimental research and code development were addressed. The findings from these five reports comprised the basis for the analysis in Sodium Fast Reactor Research Plan Volume I.

Ludewig, H. (Brokhaven National Laboratory, Upton, NY); Powers, D. A.; Hewson, John C.; LaChance, Jeffrey L.; Wright, A. (Argonne National Laboratory, Argonne, IL); Phillips, J.; Zeyen, R. (Institute for Energy Petten, Saint-Paul-lez-Durance, France); Clement, B. (IRSN/DPAM.SEMIC Bt 702, Saint-Paul-lez-Durance, France); Garner, Frank (Radiation Effects Consulting, Richland, WA); Walters, Leon (Advanced Reactor Concepts, Los Alamos, NM); Wright, Steve; Ott, Larry J. (Oak Ridge National Laboratory, Oak Ridge, TN); Suo-Anttila, Ahti Jorma; Denning, Richard (Ohio State University, Columbus, OH); Ohshima, Hiroyuki (Japan Atomic Energy Agency, Ibaraki, Japan); Ohno, S. (Japan Atomic Energy Agency, Ibaraki, Japan); Miyhara, S. (Japan Atomic Energy Agency, Ibaraki, Japan); Yacout, Abdellatif (Argonne National Laboratory, Argonne, IL); Farmer, M. (Argonne National Laboratory, Argonne, IL); Wade, D. (Argonne National Laboratory, Argonne, IL); Grandy, C. (Argonne National Laboratory, Argonne, IL); Schmidt, R.; Cahalen, J. (Argonne National Laboratory, Argonne, IL); Olivier, Tara Jean; Budnitz, R. (Lawrence Berkeley National Laboratory, Berkeley, CA); Tobita, Yoshiharu (Japan Atomic Energy Agency, Ibaraki, Japan); Serre, Frederic (Centre d'%C3%94etudes nucl%C3%94eaires de Cadarache, Cea, France); Natesan, Ken (Argonne National Laboratory, Argonne, IL); Carbajo, Juan J. (Oak Ridge National Laboratory, Oak Ridge, TN); Jeong, Hae-Yong (Korea Atomic Energy Research Institute, Daejeon, Korea); Wigeland, Roald (Idaho National Laboratory, Idaho Falls, ID); Corradini, Michael (University of Wisconsin-Madison, Madison, WI); Thomas, Justin (Argonne National Laboratory, Argonne, IL); Wei, Tom (Argonne National Laboratory, Argonne, IL); Sofu, Tanju (Argonne National Laboratory, Argonne, IL); Flanagan, George F. (Oak Ridge National Laboratory, Oak Ridge, TN); Bari, R. (Brokhaven National Laboratory, Upton, NY); Porter D. (Idaho National Laboratory, Idaho Falls, ID); Lambert, J. (Argonne National Laboratory, Argonne, IL); Hayes, S. (Idaho National Laboratory, Idaho Falls, ID); Sackett, J. (Idaho National Laboratory, Idaho Falls, ID); Denman, Matthew R.

2012-05-01T23:59:59.000Z

149

Integrated safeguards and security management plan  

Science Conference Proceedings (OSTI)

Berkeley Lab is committed to scientific excellence and stewardship of its assets. While security principles apply to all work performed at the Laboratory, their implementation is flexible. Berkeley Lab adheres to the following principles: Line management owns security; Security roles and responsibilities are clearly defined and communicated; Security functions are integrated; An open environment supports the Laboratory's Mission; The security program must support the scientific and operational missions of the Laboratory and must be value added; and Security controls are tailored to individual and facility requirements.

Bowen, Sue, editor

2001-04-16T23:59:59.000Z

150

Surveillance Guide - MAS 10.1 Implementation of the Integrated Safety Management System Process in Maintenance Activities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Implementation of the Integrated Safety Management System (ISMS) Process in Implementation of the Integrated Safety Management System (ISMS) Process in Maintenance Activities 1.0 Objective The objective of this surveillance is to evaluate the effectiveness of the contractor's ISMS process with regard to maintenance activities. Surveillance activities encompass work planning and control, equipment status control, performance of maintenance, return to service, and closeout documentation. 2.0 References 2.1 DOE 4330.4B Maintenance Management Program 2.2 DOE 5480.19 Conduct of Operations for DOE Facilities 2.3 48 CFR 970.5204-2 Implementation of Environment, Safety, and Health into Work Planning and Execution 2.4 10 CFR 830.120 Quality Assurance 3.0 Requirements Implemented This surveillance is conducted to implement requirements of the

151

Nuclear Energy Advanced Modeling and Simulation (NEAMS) Waste Integrated Performance and Safety Codes (IPSC) : FY10 development and integration.  

SciTech Connect

This report describes the progress in fiscal year 2010 in developing the Waste Integrated Performance and Safety Codes (IPSC) in support of the U.S. Department of Energy (DOE) Office of Nuclear Energy Advanced Modeling and Simulation (NEAMS) Campaign. The goal of the Waste IPSC is to develop an integrated suite of computational modeling and simulation capabilities to quantitatively assess the long-term performance of waste forms in the engineered and geologic environments of a radioactive waste storage or disposal system. The Waste IPSC will provide this simulation capability (1) for a range of disposal concepts, waste form types, engineered repository designs, and geologic settings, (2) for a range of time scales and distances, (3) with appropriate consideration of the inherent uncertainties, and (4) in accordance with robust verification, validation, and software quality requirements. Waste IPSC activities in fiscal year 2010 focused on specifying a challenge problem to demonstrate proof of concept, developing a verification and validation plan, and performing an initial gap analyses to identify candidate codes and tools to support the development and integration of the Waste IPSC. The current Waste IPSC strategy is to acquire and integrate the necessary Waste IPSC capabilities wherever feasible, and develop only those capabilities that cannot be acquired or suitably integrated, verified, or validated. This year-end progress report documents the FY10 status of acquisition, development, and integration of thermal-hydrologic-chemical-mechanical (THCM) code capabilities, frameworks, and enabling tools and infrastructure.

Criscenti, Louise Jacqueline; Sassani, David Carl; Arguello, Jose Guadalupe, Jr.; Dewers, Thomas A.; Bouchard, Julie F.; Edwards, Harold Carter; Freeze, Geoffrey A.; Wang, Yifeng; Schultz, Peter Andrew

2011-02-01T23:59:59.000Z

152

Buried Waste Integrated Demonstration Strategy Plan  

SciTech Connect

The Buried Waste Integrated Demonstration (BWID) supports the applied research, development, demonstration, and evaluation of a suite of advanced technologies that form a comprehensive remediation system for the effective and efficient remediation of buried waste. These efforts are identified and coordinated in support of the US Department of Energy (DOE), Environmental Restoration and Waste Management (ERWM) needs and objectives. The present focus of BWID is to support retrieval and ex situ treatment configuration options. Future activities will explore and support containment and stabilization efforts in addition to the retrieval/ex situ treatment options. Long and short term strategies of the BWID are provided. Processes for identifying technological needs, screening candidate technologies for BWID applicability, researching technical issues, field demonstrating technologies, evaluating demonstration results to determine each technology`s threshold of capability, and commercializing successfully demonstrated technologies for implementation for environmental restoration also are presented in this report.

Kostelnik, K.M.

1993-02-01T23:59:59.000Z

153

Buried Waste Integrated Demonstration Strategy Plan  

SciTech Connect

The Buried Waste Integrated Demonstration (BWID) supports the applied research, development, demonstration, and evaluation of a suite of advanced technologies that form a comprehensive remediation system for the effective and efficient remediation of buried waste. These efforts are identified and coordinated in support of the US Department of Energy (DOE), Environmental Restoration and Waste Management (ERWM) needs and objectives. The present focus of BWID is to support retrieval and ex situ treatment configuration options. Future activities will explore and support containment and stabilization efforts in addition to the retrieval/ex situ treatment options. Long and short term strategies of the BWID are provided. Processes for identifying technological needs, screening candidate technologies for BWID applicability, researching technical issues, field demonstrating technologies, evaluating demonstration results to determine each technology's threshold of capability, and commercializing successfully demonstrated technologies for implementation for environmental restoration also are presented in this report.

Kostelnik, K.M.

1993-02-01T23:59:59.000Z

154

Review of the Nevada National Security Site Criticality Safety Program Corrective Action Plan Closure, May 2013  

NLE Websites -- All DOE Office Websites (Extended Search)

Nevada National Security Site Nevada National Security Site Criticality Safety Program Corrective Action Plan Closure May 2013 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy Table of Contents 1.0 Purpose................................................................................................................................................ 1 2.0 Scope.................................................................................................................................................. 1 3.0 Background ......................................................................................................................................... 1 4.0 Methodology ....................................................................................................................................... 2

155

Review of the Nevada National Security Site Criticality Safety Program Corrective Action Plan Closure, May 2013  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nevada National Security Site Nevada National Security Site Criticality Safety Program Corrective Action Plan Closure May 2013 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy Table of Contents 1.0 Purpose................................................................................................................................................ 1 2.0 Scope.................................................................................................................................................. 1 3.0 Background ......................................................................................................................................... 1 4.0 Methodology ....................................................................................................................................... 2

156

Planning Document for an NBSR Conversion Safety Analysis Report  

SciTech Connect

The NIST Center for Neutron Research (NCNR) is a reactor-laboratory complex providing the National Institute of Standards and Technology (NIST) and the nation with a world-class facility for the performance of neutron-based research. The heart of this facility is the National Bureau of Standards Reactor (NBSR). The NBSR is a heavy water moderated and cooled reactor operating at 20 MW. It is fueled with high-enriched uranium (HEU) fuel elements. A Global Threat Reduction Initiative (GTRI) program is underway to convert the reactor to low-enriched uranium (LEU) fuel. This program includes the qualification of the proposed fuel, uranium and molybdenum alloy foil clad in an aluminum alloy, and the development of the fabrication techniques. This report is a planning document for the conversion Safety Analysis Report (SAR) that would be submitted to, and approved by, the Nuclear Regulatory Commission (NRC) before the reactor could be converted.This report follows the recommended format and content from the NRC codified in NUREG-1537, Guidelines for Preparing and Reviewing Applications for the Licensing of Non-power Reactors, Chapter 18, Highly Enriched to Low-Enriched Uranium Conversions. The emphasis herein is on the SAR chapters that require significant changes as a result of conversion, primarily Chapter 4, Reactor Description, and Chapter 13, Safety Analysis. The document provides information on the proposed design for the LEU fuel elements and identifies what information is still missing. This document is intended to assist ongoing fuel development efforts, and to provide a platform for the development of the final conversion SAR. This report contributes directly to the reactor conversion pillar of the GTRI program, but also acts as a boundary condition for the fuel development and fuel fabrication pillars.

Diamond D. J.; Baek J.; Hanson, A.L.; Cheng, L-Y.; Brown, N.; Cuadra, A.

2013-09-25T23:59:59.000Z

157

Integration plan required by performance agreement SM 7.2.1  

SciTech Connect

Fluor Daniel Hanford, Inc. and its major subcontractors are in agreement that environmental monitoring performed under the Project Hanford Management Contract is to be done in accordance with a single, integrated program. The purpose of this Integration Plan for Environmental Monitoring is to document the policies, systems, and processes being put in place to meet one key objective: manage and integrate a technically competent, multi-media ambient environmental monitoring program, in an efficient, cost effective manner. Fluor Daniel Hanford, Inc. and its major subcontractors also commit to conducting business in a manner consistent with the International Standards Organization 14000 Environmental Management System concepts. Because the integration of sitewide groundwater monitoring activities is managed by the Environmental Restoration Contractor, groundwater monitoring it is outside the scope of this document. Therefore, for the purpose of this Integration Plan for Environmental Monitoring, the Integrated Environmental Monitoring Program is defined as applicable to all environmental media except groundwater. This document provides recommendations on future activities to better integrate the overall environmental monitoring program, with emphasis on the near-field program. In addition, included is the Fluor Daniel Hanford, Inc. team review of the environmental monitoring activities on the Hanford Site, with concurrence of Pacific Northwest National Laboratory and Bechtel Hanford, Inc. (The narrative provided later in the Discussion Section describes the review and consideration given to each topic.) This document was developed to meet the requirements of the Project Hanford Management Contract performance agreement (SM7.2) and the tenets of the U.S. Department of Energy's Effluent and Environmental Monitoring Planning Process. This Plan is prepared for the U.S. Department of Energy, Richland Operations Office, Environmental Assurance, Permits, and Policy Division to complete the requirements specified in the Performance Expectation 7.2.1, within the SM7 Environmental, Safety, and Health section of the Project Hanford Management Contract.

Diediker, L.P.

1997-03-28T23:59:59.000Z

158

Light Water Reactor Sustainability Program - Integrated Program Plan |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Light Water Reactor Sustainability Program - Integrated Program Light Water Reactor Sustainability Program - Integrated Program Plan Light Water Reactor Sustainability Program - Integrated Program Plan The Light Water Reactor Sustainability (LWRS) Program is a research and development (R&D) program sponsored by the U. S. Department of Energy (DOE), performed in close collaboration and cooperation with related industry R&D programs. The LWRS Program provides technical foundations for licensing and managing the long-term, safe, and economical operation of current nuclear power plants, utilizing the unique capabilities of the national laboratory system. Sustainability is defined as the ability to maintain safe and economic operation of the existing fleet of nuclear power plants for a longer than-initially-licensed lifetime. It has two facets

159

NREL: Transmission Grid Integration - Transmission Planning and Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

Transmission Planning and Analysis Transmission Planning and Analysis Thumbnail of map the United States that shows wind resources and transmission lines. Enlarge image This map shows the location of wind resources and transmission lines in the United States. See a larger image or state maps. NREL researchers are engaged in transmission planning and analysis to strengthen the electric power system through the integration of solar and wind power. As demand for electricity increases, electric power system operators must plan for and construct new generation and transmission lines. However, variable generation such as solar and wind power plants are often located far from the loads they serve. They depend on transmission lines to transport the electricity they produce to load centers. NREL is working with industry and utilities to address issues related to

160

Office of River Protection Integrated Safety Management System Description  

SciTech Connect

Revision O was never issued. Finding safe and environmentally sound methods of storage and disposal of 54 million gallons of highly radioactive waste contained in 177 underground tanks is the largest challenge of Hanford cleanup. TWRS was established in 1991 and continues to integrate all aspects of the treatment and management of the high-level radioactive waste tanks. In fiscal Year 1997, program objectives were advanced in a number of areas. RL TWRS refocused the program toward retrieving, treating, and immobilizing the tank wastes, while maintaining safety as first priority. Moving from a mode of storing the wastes to getting the waste out of the tanks will provide the greatest cleanup return on the investment and eliminate costly mortgage continuance. There were a number of safety-related achievements in FY1997. The first high priority safety issue was resolved with the removal of 16 tanks from the ''Wyden Watch List''. The list, brought forward by Senator Ron Wyden of Oregon, identified various Hanford safety issues needing attention. One of these issues was ferrocyanide, a chemical present in 24 tanks. Although ferrocyanide can ignite at high temperature, analysis found that the chemical has decomposed into harmless compounds and is no longer a concern.

CLARK, D.L.

1999-08-09T23:59:59.000Z

Note: This page contains sample records for the topic "integration planning safety" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Ames Laboratory integrated safety management self-assessment report  

SciTech Connect

The implementation of Integrated Safety Management (ISM) at Ames Laboratory began with the signing of the ISM Implementation Charter on February 24, 1997 (see Appendix A). The first step toward implementation of ISM at Ames Laboratory is the performance of a Self-Assessment (SA). In preparation for the SA, a workshop on ISM was provided to the Laboratory`s Environment, Safety, and Health (ES&H) Coordinators, Safety Review Committee members, and the Environment, Safety, Health and Assurance (ESH&A) staff. In addition, a briefing was given to the Laboratory`s Executive Council and Program Directors. Next, an SA Team was organized. The Team was composed of four Ames Laboratory and four Department of Energy-Chicago Operations Office (DOE-CH) staff members. The purpose of this SA was to determine the current status of ES&H management within Ames Laboratory, as well as to identify areas which need to be improved during ISM implementation. The SA was conducted by reviewing documents, interviewing Ames Laboratory management and staff, and performing walkthroughs of Laboratory areas. At the conclusion of this SA, Ames Laboratory management was briefed on the strengths, weaknesses, and the areas of improvement which will assist in the implementation of ISM.

NONE

1997-10-01T23:59:59.000Z

162

Oak Ridge National Laboratory Health and Safety Long-Range Plan: Fiscal years 1989--1995  

Science Conference Proceedings (OSTI)

The health and safety of its personnel is the first concern of ORNL and its management. The ORNL Health and Safety Program has the responsibility for ensuring the health and safety of all individuals assigned to ORNL activities. This document outlines the principal aspects of the ORNL Health and Safety Long-Range Plan and provides a framework for management use in the future development of the health and safety program. Each section of this document is dedicated to one of the health and safety functions (i.e., health physics, industrial hygiene, occupational medicine, industrial safety, nuclear criticality safety, nuclear facility safety, transportation safety, fire protection, and emergency preparedness). Each section includes functional mission and objectives, program requirements and status, a summary of program needs, and program data and funding summary. Highlights of FY 1988 are included.

Not Available

1989-06-01T23:59:59.000Z

163

Modeling renewable energy resources in integrated resource planning  

SciTech Connect

Including renewable energy resources in integrated resource planning (IRP) requires that utility planning models properly consider the relevant attributes of the different renewable resources in addition to conventional supply-side and demand-side options. Otherwise, a utility`s resource plan is unlikely to have an appropriate balance of the various resource options. The current trend toward regulatory set-asides for renewable resources is motivated in part by the perception that the capabilities of current utility planning models are inadequate with regard to renewable resources. Adequate modeling capabilities and utility planning practices are a necessary prerequisite to the long-term penetration of renewable resources into the electric utility industry`s resource mix. This report presents a review of utility planning models conducted for the National Renewable Energy Laboratory (NREL). The review examines the capabilities of utility planning models to address key issues in the choice between renewable resources and other options. The purpose of this review is to provide a basis for identifying high priority areas for advancing the state of the art.

Logan, D.; Neil, C.; Taylor, A. [RCG/Hagler, Bailly, Inc., Boulder, CO (United States)

1994-06-01T23:59:59.000Z

164

Foundational development of an advanced nuclear reactor integrated safety code.  

SciTech Connect

This report describes the activities and results of a Sandia LDRD project whose objective was to develop and demonstrate foundational aspects of a next-generation nuclear reactor safety code that leverages advanced computational technology. The project scope was directed towards the systems-level modeling and simulation of an advanced, sodium cooled fast reactor, but the approach developed has a more general applicability. The major accomplishments of the LDRD are centered around the following two activities. (1) The development and testing of LIME, a Lightweight Integrating Multi-physics Environment for coupling codes that is designed to enable both 'legacy' and 'new' physics codes to be combined and strongly coupled using advanced nonlinear solution methods. (2) The development and initial demonstration of BRISC, a prototype next-generation nuclear reactor integrated safety code. BRISC leverages LIME to tightly couple the physics models in several different codes (written in a variety of languages) into one integrated package for simulating accident scenarios in a liquid sodium cooled 'burner' nuclear reactor. Other activities and accomplishments of the LDRD include (a) further development, application and demonstration of the 'non-linear elimination' strategy to enable physics codes that do not provide residuals to be incorporated into LIME, (b) significant extensions of the RIO CFD code capabilities, (c) complex 3D solid modeling and meshing of major fast reactor components and regions, and (d) an approach for multi-physics coupling across non-conformal mesh interfaces.

Clarno, Kevin (Oak Ridge National Laboratory, Oak Ridge, TN); Lorber, Alfred Abraham; Pryor, Richard J.; Spotz, William F.; Schmidt, Rodney Cannon; Belcourt, Kenneth (Ktech Corporation, Albuquerque, NM); Hooper, Russell Warren; Humphries, Larry LaRon

2010-02-01T23:59:59.000Z

165

Site safety plan for Lawrence Livermore National Laboratory CERCLA investigations at site 300. Revision 2  

SciTech Connect

Various Department of Energy Orders incorporate by reference, health and safety regulations promulgated by the Occupational Safety and Health Administration (OSHA). One of the OSHA regulations, 29 CFR 1910.120, Hazardous Waste Operations and Emergency Response, requires that site safety plans are written for activities such as those covered by work plans for Site 300 environmental investigations. Based upon available data, this Site Safety Plan (Plan) for environmental restoration has been prepared specifically for the Lawrence Livermore National Laboratory Site 300, located approximately 15 miles east of Livermore, California. As additional facts, monitoring data, or analytical data on hazards are provided, this Plan may need to be modified. It is the responsibility of the Environmental Restoration Program and Division (ERD) Site Safety Officer (SSO), with the assistance of Hazards Control, to evaluate data which may impact health and safety during these activities and to modify the Plan as appropriate. This Plan is not `cast-in-concrete.` The SSO shall have the authority, with the concurrence of Hazards Control, to institute any change to maintain health and safety protection for workers at Site 300.

Kilmer, J.

1997-08-01T23:59:59.000Z

166

2011 Annual Planning Summary for Health, Safety and Security (HSS)  

Energy.gov (U.S. Department of Energy (DOE))

The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2011 and 2012 within Health, Safety and Security (HSS).

167

DOE-RL Integrated Safety Management System Program Description  

SciTech Connect

The purpose of this Integrated Safety Management System (ISMS) Program Description (PD) is to describe the U.S. Department of Energy (DOE), Richland Operations Office (RL) ISMS as implemented through the RL Integrated Management System (RIMS). This PD does not impose additional requirements but rather provides an overview describing how various parts of the ISMS fit together. Specific requirements for each of the core functions and guiding principles are established in other implementing processes, procedures, and program descriptions that comprise RIMS. RL is organized to conduct work through operating contracts; therefore, it is extremely difficult to provide an adequate ISMS description that only addresses RL functions. Of necessity, this PD contains some information on contractor processes and procedures which then require RL approval or oversight.

SHOOP, D.S.

2000-06-29T23:59:59.000Z

168

DOE-RL Integrated Safety Management System Description  

SciTech Connect

The purpose of this Integrated Safety Management System Description (ISMSD) is to describe the U.S. Department of Energy (DOE), Richland Operations Office (RL) ISMS as implemented through the RL Integrated Management System (RIMS). This ISMSD does not impose additional requirements but rather provides an overview describing how various parts of the ISMS fit together. Specific requirements for each of the core functions and guiding principles are established in other implementing processes, procedures, and program descriptions that comprise RIMS. RL is organized to conduct work through operating contracts; therefore, it is extremely difficult to provide an adequate ISMS description that only addresses RL functions. Of necessity, this ISMSD contains some information on contractor processes and procedures which then require RL approval or oversight. This ISMSD does not purport to contain a full description of the contractors' ISM System Descriptions.

SHOOP, D.S.

2000-09-01T23:59:59.000Z

169

Audit Report - Integrated Safety Management at Sandia National Laboratories, IG-0866  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Integrated Safety Management at Integrated Safety Management at Sandia National Laboratories DOE/IG-0866 May 2012 U.S. Department of Energy Office of Inspector General Office of Audits and Inspections Department of Energy Washington, DC 20585 May 31, 2012 MEMORANDUM FOR THE SECRETARY FROM: Gregory H. Friedman Inspector General SUBJECT: INFORMATION: Audit Report on "Integrated Safety Management at Sandia National Laboratories" INTRODUCTION AND OBJECTIVE Historically, safety has been one of the Department of Energy's top priorities. In 1996, the Department established an Integrated Safety Management (ISM) system intended to prevent or reduce occupational injuries, illnesses and accidents by providing safe and healthy workplaces.

170

NASA Benchmarks Safety Functions Assessment plan - Developed By NNSA/Nevada Site Office Facility Representative Division  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SAFETY FUNCTIONS SAFETY FUNCTIONS Assessment Plan Developed By NNSA/Nevada Site Office Facility Representative Division Performance Objective: Management should be proactive in addressing safety-related issues. Management should have an established system to provide a ranking of safety considerations founded upon risk-based priorities. Criteria: A system is in place to provide a ranking of safety considerations founded upon risk-based priorities. (DOE/EH-0135) Procedures clearly define management's responsibility for safety- related decisions and provide for the escalation of matters in an appropriate time frame. (DOE/EH-0135) Management promotes safety programs and the organization's safety culture through sponsoring and attending safety meetings. (DOE/EH- 0135) Management encourages and supports effective programs for reporting

171

Integrated Modeling, Mapping, and Simulation (IMMS) framework for planning exercises.  

SciTech Connect

The Integrated Modeling, Mapping, and Simulation (IMMS) program is designing and prototyping a simulation and collaboration environment for linking together existing and future modeling and simulation tools to enable analysts, emergency planners, and incident managers to more effectively, economically, and rapidly prepare, analyze, train, and respond to real or potential incidents. When complete, the IMMS program will demonstrate an integrated modeling and simulation capability that supports emergency managers and responders with (1) conducting 'what-if' analyses and exercises to address preparedness, analysis, training, operations, and lessons learned, and (2) effectively, economically, and rapidly verifying response tactics, plans and procedures.

Friedman-Hill, Ernest J.; Plantenga, Todd D.

2010-06-01T23:59:59.000Z

172

August 5, 2005, Board letter accepting the implementation plan...  

NLE Websites -- All DOE Office Websites (Extended Search)

Samuel W. Bodman Page 2 In its Implementation Plan, DOE commits to Integrated Safety Management (ISM) "as the foundation of its safety management system and process." The...

173

Proactive Renewables Integration for Utility Distribution Planning and  

NLE Websites -- All DOE Office Websites (Extended Search)

Proactive Renewables Integration for Utility Distribution Planning and Proactive Renewables Integration for Utility Distribution Planning and Operations Speaker(s): Emma Stewart Date: March 5, 2013 - 12:00pm Location: 90-1099 Seminar Host/Point of Contact: Sila Kiliccote The interconnection process can be a laborious and expensive process for both utilities and developers. High PV penetration levels create a number of challenges for the management and operation of the utility grid. This study presents work being completed in Hawaii to improve and innovate the interconnect process, separating perceived issues from real technical concerns. Existing interconnection methods and standards such as IEEE 1547, Hawaii Rule 14H and California Rule 21 are evaluated in emerging high penetration scenarios. These rules define a 15% DG penetration level as a

174

Integrating Safety Issues in Optimizing Solvent Selection and Process Design  

E-Print Network (OSTI)

Incorporating consideration for safety issues while designing solvent processes has become crucial in light of the chemical process incidents involving solvents that have taken place in recent years. The implementation of inherently safer design concepts is considered beneficial to avoid hazards during early stages of design. The application of existing process design and modeling techniques that aid the concepts of substitution, intensification and attenuation has been shown in this work. For substitution, computer aided molecular design (CAMD) technique has been applied to select inherently safer solvents for a solvent operation. For intensification and attenuation, consequence models and regulatory guidance from EPA RMP have been integrated into process simulation. Combining existing techniques provides a design team with a higher level of information to make decisions based on process safety. CAMD is a methodology used for designing compounds with desired target properties. An important aspect of this methodology concerns the prediction of properties given the structure of the molecule. This work also investigates the applicability of Quantitative Structure Property Relationship (QSPR) and topological indices to CAMD. The evaluation was based on models developed to predict flash point properties of different classes of solvents. Multiple linear regression and neural network analysis were used to develop QSPR models, but there are certain limitations associated with using QSPR in CAMD which have been discussed and need further work. Practical application of molecular design and process design techniques have been demonstrated in a case study on liquid-liquid extraction of acetic acid-water mixture. Suitable inherently safer solvents were identified using ICAS-ProCAMD, and consequence models were integrated into Aspen Plus simulator using a calculator sheet. Upon integrating flammable and toxic hazard modeling, solvents such as 5-nonanone, 2-nonanone and 5-methyl-2-hexanone provide inherently safer options, while conventionally-used solvent, ethyl acetate, provides higher degree of separation capability. A conclusive decision regarding feasible solvents and operating conditions would depend on design requirements, regulatory guidance, and safety criteria specified for the process. Inherent safety has always been an important consideration to be implemented during early design steps, and this research presents a methodology to incorporate the principles and obtain inherently safer alternatives.

Patel, Suhani Jitendra

2010-08-01T23:59:59.000Z

175

Integrating Energy Efficiency and Demand Response into Utility Resource Plans  

Science Conference Proceedings (OSTI)

This report investigates the methods in which utilities integrate their supply-side and demand-side resources to meet their generating resource requirements. The major steps in developing a resource plan are reviewed, including the alternative methods currently employed. Finally, the report presents the results of a short survey that was administered to the advisors in Energy Utilization. The results show that methods are more sophisticated than 20 years ago, but more could be accomplished in ...

2013-01-14T23:59:59.000Z

176

Integrated Renewable Hydrogen Utility System (IRHUS) business plan  

DOE Green Energy (OSTI)

This business plan is for a proposed legal entity named IRHUS, Inc. which is to be formed as a subsidiary of Energy Partners, L.C. (EP) of West Palm Beach, Florida. EP is a research and development company specializing in hydrogen proton exchange membrane (PEM) fuel cells and systems. A fuel cell is an engine with no moving parts that takes in hydrogen and produces electricity. The purpose of IRHUS, Inc. is to develop and manufacture a self-sufficient energy system based on the fuel cell and other new technology that produces hydrogen and electricity. The product is called the Integrated renewable Hydrogen utility System (IRHUS). IRHUS, Inc. plans to start limited production of the IRHUS in 2002. The IRHUS is a unique product with an innovative concept in that it provides continuous electrical power in places with no electrical infrastructure, i.e., in remote and island locations. The IRHUS is a zero emissions, self-sufficient, hydrogen fuel generation system that produces electricity on a continuous basis by combining any renewable power source with hydrogen technology. Current plans are to produce a 10 kilowatt IRHUS MP (medium power). Future plans are to design and manufacture IRHUS models to provide power for a variety of power ranges for identified attractive market segments. The technological components of the IRHUS include an electrolyzer, hydrogen and oxygen storage subsystems, fuel cell system, and power control system. The IRHUS product is to be integrated with a variety of renewable energy technologies. 5 figs., 10 tabs.

NONE

1999-03-01T23:59:59.000Z

177

Safety Planning Guidance for Hydrogen and Fuel Cell Projects  

Fuel Cell Technologies Publication and Product Library (EERE)

This guidance document provides information on safety requirements for hydrogen and fuel cell projects funded by the U.S. Department of Energy Fuel Cell Technologies Program.

178

Tank waste remediation system nuclear criticality safety inspection and assessment plan  

SciTech Connect

This plan provides a management approved procedure for inspections and assessments of sufficient depth to validate that the Tank Waste Remediation System (TWRS) facility complies with the requirements of the Project Hanford criticality safety program, NHF-PRO-334, ''Criticality Safety General, Requirements''.

VAIL, T.S.

1999-04-06T23:59:59.000Z

179

Health and safety plan for characterization sampling of ETR and MTR facilities  

SciTech Connect

This health and safety plan establishes the procedures and requirements that will be used to minimize health and safety risks to persons performing Engineering Test Reactor and Materials Test Reactor characterization sampling activities, as required by the Occupational Safety and Health Administration standard, 29 CFR 1910.120. It contains information about the hazards involved in performing the tasks, and the specific actions and equipment that will be used to protect persons working at the site.

Baxter, D.E.

1994-10-01T23:59:59.000Z

180

Requirements and concepts for future automotive electronic architectures from the view of integrated safety.  

E-Print Network (OSTI)

??In this dissertation, concepts of the electronic architecture of automotive Integrated Safety System are developed as a cooperative approach of engineering process, dependable hardware architecture (more)

Chen, Xi

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "integration planning safety" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Review of the Portsmouth Gaseous Diffusion Plant Integrated Safety...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Criteria, Review and Approach Document DNFSB Defense Nuclear Facilities Safety Board DOE U.S. Department of Energy ESH&Q Environment, Safety, Health, and Quality FBP...

182

Buried waste integrated demonstration FY 94 deployment plan  

SciTech Connect

The Buried Waste Integrated Demonstration (BWID) is a program funded by the U.S. Department of Energy Office of Technology Development. BWID supports the applied research, development, demonstration, testing, and evaluation of a suite of advanced technologies that together form a comprehensive remediation system for the effective and efficient remediation of buried waste. The fiscal year (FY) 1994 effort will fund thirty-eight technologies in five areas of buried waste site remediation: site characterization, waste characterization, retrieval, treatment, and containment/stabilization. This document is the basic operational planning document for deployment of all BWID projects. Discussed in this document are the BWID preparations for INEL field demonstrations, INEL laboratory demonstrations, non-INEL demonstrations, and paper studies. Each technology performing tests will prepare a test plan to detail the specific procedures, objectives, and tasks of each test. Therefore, information specific to testing each technology is intentionally omitted from this document.

Hyde, R.A.; Walker, S.; Garcia, M.M.

1994-05-01T23:59:59.000Z

183

Transmission planning in the era of integrated resource planning: A survey of recent cases  

SciTech Connect

State action is critical to the expansion of the high-voltage transmission network, because regulated utilities must seek approval from utility commissions for proposals to site new lines. It is the purpose of this report to survey the regulatory treatment of issues that are unique to or ubiquitous in transmission planning and use. The authors review recent transmission siting cases to examine how the issues are presented to and resolved by state regulatory commissions and to provide a perspective for more general discussion of transmission policy. Their primary focus is on planning issues. Transmission capacity expansion is not typically treated in integrated resource planning. It is usually assumed that there is adequate transmission to achieve any particular plan. The authors believe that one important reason for this omission is the inherent complexity of transmission system expansion. Regulators and competitors may be at a serious disadvantage in negotiating or adjudicating specific transmission proposals with utilities, who generally have greater knowledge of both general technological considerations and case specifics. This problem of asymmetric information must be addressed at some level in planning or dispute resolution. However, they observe that explicit consideration of the information problem is absent from most regulatory and technical analysis of transmission. The goal of this survey is to share knowledge about the problems facing state regulators over the siting of new transmission facilities, and help to define constructive approaches to them.

Baldick, R.; Kahn, E.P.

1992-09-01T23:59:59.000Z

184

Independent Oversight Review of Integrated Safety Management System Effectiveness at the Livermore Site Office, October 2011  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Office of Enforcement and Oversight Office of Enforcement and Oversight Independent Oversight Review of Integrated Safety Management System Effectiveness at the Livermore Site Office October 2011 Office of Safety and Emergency Management Evaluations Office of Health, Safety and Security U.S. Department of Energy Table of Contents 1.0 Purpose ............................................................................................................................................. 1 2.0 Background ...................................................................................................................................... 1 3.0 Scope ................................................................................................................................................ 1

185

Review of Integrated Safety Management System Effectiveness at Lawrence Livermore National Laboratory, September 2011  

NLE Websites -- All DOE Office Websites (Extended Search)

Oversight Review of Oversight Review of Integrated Safety Management System Effectiveness at Lawrence Livermore National Laboratory September 2011 Office of Safety and Emergency Management Evaluations Office of Health, Safety and Security U.S. Department of Energy Table of Contents 1.0 Purpose ................................................................................................................................... 1 2.0 Introduction ............................................................................................................................ 1 3.0 Scope ...................................................................................................................................... 1 4.0 Summary of Results ............................................................................................................... 1

186

Review of Integrated Safety Management System Effectiveness at Lawrence Livermore National Laboratory, September 2011  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oversight Review of Oversight Review of Integrated Safety Management System Effectiveness at Lawrence Livermore National Laboratory September 2011 Office of Safety and Emergency Management Evaluations Office of Health, Safety and Security U.S. Department of Energy Table of Contents 1.0 Purpose ................................................................................................................................... 1 2.0 Introduction ............................................................................................................................ 1 3.0 Scope ...................................................................................................................................... 1 4.0 Summary of Results ............................................................................................................... 1

187

Integrated Safety Management System Phase I Verification for the Plutonium Finishing Plant (PFP) [VOL 1 & 2  

Science Conference Proceedings (OSTI)

U.S. Department of Energy (DOE) Policy 450.4, Safety Management System Policy commits to institutionalizing an Integrated Safety Management System (ISMS) throughout the DOE complex as a means of accomplishing its missions safely. DOE Acquisition Regulation 970.5204-2 requires that contractors manage and perform work in accordance with a documented safety management system.

SETH, S.S.

2000-01-10T23:59:59.000Z

188

Integrated Waste Treatment Unit GFSI Risk Management Plan  

SciTech Connect

This GFSI Risk Management Plan (RMP) describes the strategy for assessing and managing project risks for the Integrated Waste Treatment Unit (IWTU) that are specifically within the control and purview of the U.S. Department of Energy (DOE), and identifies the risks that formed the basis for the DOE contingency included in the performance baseline. DOE-held contingency is required to cover cost and schedule impacts of DOE activities. Prior to approval of the performance baseline (Critical Decision-2) project cost contingency was evaluated during a joint meeting of the Contractor Management Team and the Integrated Project Team for both contractor and DOE risks to schedule and cost. At that time, the contractor cost and schedule risk value was $41.3M and the DOE cost and schedule risk contingency value is $39.0M. The contractor cost and schedule risk value of $41.3M was retained in the performance baseline as the contractor's management reserve for risk contingency. The DOE cost and schedule risk value of $39.0M has been retained in the performance baseline as the DOE Contingency. The performance baseline for the project was approved in December 2006 (Garman 2006). The project will continue to manage to the performance baseline and change control thresholds identified in PLN-1963, ''Idaho Cleanup Project Sodium-Bearing Waste Treatment Project Execution Plan'' (PEP).

W. A. Owca

2007-06-21T23:59:59.000Z

189

Integrated Waste Treatment Unit GFSI Risk Management Plan  

SciTech Connect

This GFSI Risk Management Plan (RMP) describes the strategy for assessing and managing project risks for the Integrated Waste Treatment Unit (IWTU) that are specifically within the control and purview of the U.S. Department of Energy (DOE), and identifies the risks that formed the basis for the DOE contingency included in the performance baseline. DOE-held contingency is required to cover cost and schedule impacts of DOE activities. Prior to approval of the performance baseline (Critical Decision-2) project cost contingency was evaluated during a joint meeting of the Contractor Management Team and the Integrated Project Team for both contractor and DOE risks to schedule and cost. At that time, the contractor cost and schedule risk value was $41.3M and the DOE cost and schedule risk contingency value is $39.0M. The contractor cost and schedule risk value of $41.3M was retained in the performance baseline as the contractor's management reserve for risk contingency. The DOE cost and schedule risk value of $39.0M has been retained in the performance baseline as the DOE Contingency. The performance baseline for the project was approved in December 2006 (Garman 2006). The project will continue to manage to the performance baseline and change control thresholds identified in PLN-1963, ''Idaho Cleanup Project Sodium-Bearing Waste Treatment Project Execution Plan'' (PEP).

W. A. Owca

2007-06-21T23:59:59.000Z

190

River Protection Project Integrated safety management system phase II verification report, volumes I and II - 8/19/99  

Science Conference Proceedings (OSTI)

The Department of Energy policy (DOE P 450.4) is that safety is integrated into all aspects of the management and operations of its facilities. In simple and straightforward terms, the Department will ''Do work safely.'' The purpose of this River Protection Project (RPP) Integrated Safety Management System (ISMS) Phase II Verification was to determine whether ISMS programs and processes are implemented within RFP to accomplish the goal of ''Do work safely.'' The goal of an implemented ISMS is to have a single integrated system that includes Environment, Safety, and Health (ES&H) requirements in the work planning and execution processes to ensure the protection of the worker, public, environment, and federal property over the RPP life cycle. The ISMS is comprised of the (1) described functions, components, processes, and interfaces (system map or blueprint) and (2) personnel who are executing those assigned roles and responsibilities to manage and control the ISMS. Therefore, this review evaluated both the ''paper'' and ''people'' aspects of the ISMS to ensure that the system is implemented within RPP. Richland Operations Office (RL) conducted an ISMS Phase I Verification of the TWRS from September 28-October 9, 1998. The resulting verification report recommended that TWRS-RL and the contractor proceed with Phase II of ISMS verification given that the concerns identified from the Phase I verification review are incorporated into the Phase II implementation plan.

SHOOP, D.S.

1999-09-10T23:59:59.000Z

191

Integrated system dynamics toolbox for water resources planning.  

Science Conference Proceedings (OSTI)

Public mediated resource planning is quickly becoming the norm rather than the exception. Unfortunately, supporting tools are lacking that interactively engage the public in the decision-making process and integrate over the myriad values that influence water policy. In the pages of this report we document the first steps toward developing a specialized decision framework to meet this need; specifically, a modular and generic resource-planning ''toolbox''. The technical challenge lies in the integration of the disparate systems of hydrology, ecology, climate, demographics, economics, policy and law, each of which influence the supply and demand for water. Specifically, these systems, their associated processes, and most importantly the constitutive relations that link them must be identified, abstracted, and quantified. For this reason, the toolbox forms a collection of process modules and constitutive relations that the analyst can ''swap'' in and out to model the physical and social systems unique to their problem. This toolbox with all of its modules is developed within the common computational platform of system dynamics linked to a Geographical Information System (GIS). Development of this resource-planning toolbox represents an important foundational element of the proposed interagency center for Computer Aided Dispute Resolution (CADRe). The Center's mission is to manage water conflict through the application of computer-aided collaborative decision-making methods. The Center will promote the use of decision-support technologies within collaborative stakeholder processes to help stakeholders find common ground and create mutually beneficial water management solutions. The Center will also serve to develop new methods and technologies to help federal, state and local water managers find innovative and balanced solutions to the nation's most vexing water problems. The toolbox is an important step toward achieving the technology development goals of this center.

Reno, Marissa Devan; Passell, Howard David; Malczynski, Leonard A.; Peplinski, William J.; Tidwell, Vincent Carroll; Coursey, Don (University of Chicago, Chicago, IL); Hanson, Jason (University of New Mexico, Albuquerque, NM); Grimsrud, Kristine (University of New Mexico, Albuquerque, NM); Thacher, Jennifer (University of New Mexico, Albuquerque, NM); Broadbent, Craig (University of New Mexico, Albuquerque, NM); Brookshire, David (University of New Mexico, Albuquerque, NM); Chemak, Janie (University of New Mexico, Albuquerque, NM); Cockerill, Kristan (Cockeril Consulting, Boone, NC); Aragon, Carlos (New Mexico Univeristy of Technology and Mining (NM-TECH), Socorro, NM); Hallett, Heather (New Mexico Univeristy of Technology and Mining (NM-TECH), Socorro, NM); Vivoni, Enrique (New Mexico Univeristy of Technology and Mining (NM-TECH), Socorro, NM); Roach, Jesse

2006-12-01T23:59:59.000Z

192

Department of Energy Environment, Safety and Health Management Plan. Fiscal year 1996  

SciTech Connect

This report describes efforts by the Department of Energy (DOE) to effectively plan for environment, safety and health activities that protect the environment, workers and the public from harm. This document, which covers fiscal year 1996, reflects planning by operating contractors and Program Offices in early 1994, updated to be consistent with the President`s FY 1996 budget submittal to Congress, and subsequent Department of Energy Program refinements. Prior to 1992, only a small number of facilities had a structured process for identifying environment, safety and health (ES and H) needs, reporting the costs (in both direct and indirect budgets) of ES and H requirements, prioritizing and allocating available resources, and efficiently communicating this information to DOE. Planned costs for ES and H activities were usually developed as an afterthought to program budgets. There was no visible, consistently applied mechanism for determining the appropriate amount of resources that should be allocated to ES and H, or for assuring that significant ES and H vulnerabilities were planned to be funded. To address this issue, the Secretary (in November 1991) directed DOE to develop a Safety and Health Five-Year Plan to serve as a line management tool to delineate DOE-wide programs to reduce and manage safety and health risks, and to establish a consistent framework for risk-based resource planning and allocation.

1996-01-01T23:59:59.000Z

193

Health and safety plan for the Environmental Restoration Program at Oak Ridge National Laboratory  

SciTech Connect

This Programmatic Health and Safety plan (PHASP) is prepared for the U.S. Department of Energy (DOE) Oak Ridge National Laboratory (ORNL) Environmental Restoration (ER) Program. This plan follows the format recommended by the U.S. Environmental Protection Agency (EPA) for remedial investigations and feasibility studies and that recommended by the EM40 Health and Safety Plan (HASP) Guidelines (DOE February 1994). This plan complies with the Occupational Safety and Health Administration (OSHA) requirements found in 29 CFR 1910.120 and EM-40 guidelines for any activities dealing with hazardous waste operations and emergency response efforts and with OSHA requirements found in 29 CFR 1926.65. The policies and procedures in this plan apply to all Environmental Restoration sites and activities including employees of Energy Systems, subcontractors, and prime contractors performing work for the DOE ORNL ER Program. The provisions of this plan are to be carried out whenever activities are initiated that could be a threat to human health or the environment. This plan implements a policy and establishes criteria for the development of procedures for day-to-day operations to prevent or minimize any adverse impact to the environment and personnel safety and health and to meet standards that define acceptable management of hazardous and radioactive materials and wastes. The plan is written to utilize past experience and best management practices to minimize hazards to human health and safety and to the environment from event such as fires, explosions, falls, mechanical hazards, or any unplanned release of hazardous or radioactive materials to air, soil, or surface water.

Clark, C. Jr.; Burman, S.N.; Cipriano, D.J. Jr.; Uziel, M.S.; Kleinhans, K.R.; Tiner, P.F.

1994-08-01T23:59:59.000Z

194

Environment/Health/Safety (EHS)  

NLE Websites -- All DOE Office Websites (Extended Search)

I A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Integrated Safety Management (ISM) Plan Integrated Safety Management (ISM) Plan Archives Industrial Hygiene Injury and Illness...

195

Integrated Safety Management (ISM) Workshop - August 25-28, 2008  

NLE Websites -- All DOE Office Websites (Extended Search)

Miller Creating a Safety Culture in a High Reliability Organization, Greg Meyer, B&W Pantex Status of EFCOG-DOE ISMS Safety Culture Task, John McDonald, DOE-HSS 3:00 - 5:00...

196

Optimization planning systems and their implementation and application in vertically integrated oil companies  

Science Conference Proceedings (OSTI)

The approaches to planning of activities of a vertically integrated oil company by using optimization systems are considered. Development, implementation, and support of such systems are discussed. These problems fall under the APS (Advanced Planning ...

A. S. Khokhlov; A. I. Konnov; A. E. Zel'Din

2012-04-01T23:59:59.000Z

197

DOE Standard Integration Of Environment,Safety, and Health Into Facility  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Standard Integration Of Environment,Safety, and Health Into DOE Standard Integration Of Environment,Safety, and Health Into Facility Disposition Activities DOE Standard Integration Of Environment,Safety, and Health Into Facility Disposition Activities The original release of DOE-STD-1120-98 provided integrated safety management guidance for enhancing worker, public, and environmental protection during all facility disposition activities. Volume One of this Standard has been revised to provide a Department of Energy (DOE) approved methodology for preparing a Documented Safety Analysis (DSA) for decommissioning of nuclear facilities, as well as environmental restoration activities that involve work not done within a permanent structure. Methodologies provided in this Standard are intended to be compliant with Title 10 of the Code of Federal Regulations (CFR) Part

198

DOE Standard Integration Of Environment,Safety, and Health Into Facility  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Standard Integration Of Environment,Safety, and Health Into Standard Integration Of Environment,Safety, and Health Into Facility Disposition Activities DOE Standard Integration Of Environment,Safety, and Health Into Facility Disposition Activities The original release of DOE-STD-1120-98 provided integrated safety management guidance for enhancing worker, public, and environmental protection during all facility disposition activities. Volume One of this Standard has been revised to provide a Department of Energy (DOE) approved methodology for preparing a Documented Safety Analysis (DSA) for decommissioning of nuclear facilities, as well as environmental restoration activities that involve work not done within a permanent structure. Methodologies provided in this Standard are intended to be compliant with Title 10 of the Code of Federal Regulations (CFR) Part

199

Tank waste remediation system integrated technology plan. Revision 2  

SciTech Connect

The Hanford Site, located in southeastern Washington State, is operated by the US Department of Energy (DOE) and its contractors. Starting in 1943, Hanford supported fabrication of reactor fuel elements, operation of production reactors, processing of irradiated fuel to separate and extract plutonium and uranium, and preparation of plutonium metal. Processes used to recover plutonium and uranium from irradiated fuel and to recover radionuclides from tank waste, plus miscellaneous sources resulted in the legacy of approximately 227,000 m{sup 3} (60 million gallons) of high-level radioactive waste, currently in storage. This waste is currently stored in 177 large underground storage tanks, 28 of which have two steel walls and are called double-shell tanks (DSTs) an 149 of which are called single-shell tanks (SSTs). Much of the high-heat-emitting nuclides (strontium-90 and cesium-137) has been extracted from the tank waste, converted to solid, and placed in capsules, most of which are stored onsite in water-filled basins. DOE established the Tank Waste Remediation System (TWRS) program in 1991. The TWRS program mission is to store, treat, immobilize and dispose, or prepare for disposal, the Hanford tank waste in an environmentally sound, safe, and cost-effective manner. Technology will need to be developed or improved to meet the TWRS program mission. The Integrated Technology Plan (ITP) is the high-level consensus plan that documents all TWRS technology activities for the life of the program.

Eaton, B.; Ignatov, A.; Johnson, S.; Mann, M.; Morasch, L.; Ortiz, S.; Novak, P. [eds.] [Pacific Northwest Lab., Richland, WA (United States)

1995-02-28T23:59:59.000Z

200

Integrated Monitoring Plan for the Hanford Groundwater Monitoring Project  

SciTech Connect

Groundwater is monitored at the Hanford Site to fulfill a variety of state and federal regulations, including the Atomic Energy Act of 1954; the Resource Conservation and Recovery Act of 1976; the Comprehensive Environmental Response, Compensation, and Liability Act of 1980; and Washington Administrative Code. Separate monitoring plans are prepared for various requirements, but sampling is coordinated and data are shared among users to avoid duplication of effort. The U.S. Department of Energy manages these activities through the Hanford Groundwater Monitoring Project. This document is an integrated monitoring plan for the groundwater project. It documents well and constituent lists for monitoring required by the Atomic Energy Act of 1954 and its implementing orders; includes other, established monitoring plans by reference; and appends a master well/constituent/ frequency matrix for the entire site. The objectives of monitoring fall into three general categories: plume and trend tracking, treatment/ storage/disposal unit monitoring, and remediation performance monitoring. Criteria for selecting Atomic Energy Act of 1954 monitoring networks include locations of wells in relation to known plumes or contaminant sources, well depth and construction, historical data, proximity to the Columbia River, water supplies, or other areas of special interest, and well use for other programs. Constituent lists were chosen based on known plumes and waste histories, historical groundwater data, and, in some cases, statistical modeling. Sampling frequencies were based on regulatory requirements, variability of historical data, and proximity to key areas. For sitewide plumes, most wells are sampled every 3 years. Wells monitoring specific waste sites or in areas of high variability will be sampled more frequently.

MJ Hartman; PE Dresel; JW Lindberg; DR Newcomer; EC Thornton

2000-10-18T23:59:59.000Z

Note: This page contains sample records for the topic "integration planning safety" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Integrated Monitoring Plan for the Hanford Groundwater Monitoring Project  

SciTech Connect

Groundwater is monitored at the Hanford Site to fulfill a variety of state and federal regulations, including the Atomic Energy Act of 1954 the Resource Conservation and Recovery Act of 1976 the Comprehensive Environmental Response, Compensation, and Liability Act of 1980; and Washington Administrative Code. Separate monitoring plans are prepared for various requirements, but sampling is coordinated and data are shared among users to avoid duplication of effort. The US Department of Energy manages these activities through the Hanford Groundwater Monitoring Project. This document is an integrated monitoring plan for the groundwater project. It documents well and constituent lists for monitoring required by the Atomic Energy Act of 1954 and its implementing orders; includes other, established monitoring plans by reference; and appends a master well/constituent/frequency matrix for the entire site. The objectives of monitoring fall into three general categories plume and trend tracking, treatment/storage/disposal unit monitoring, and remediation performance monitoring. Criteria for selecting Atomic Energy Act of 1954 monitoring networks include locations of wells in relation to known plumes or contaminant sources, well depth and construction, historical data, proximity to the Columbia River, water supplies, or other areas of special interest, and well use for other programs. Constituent lists were chosen based on known plumes and waste histories, historical groundwater data, and, in some cases, statistical modeling. Sampling frequencies were based on regulatory requirements, variability of historical data, and proximity to key areas. For sitewide plumes, most wells are sampled every 3 years. Wells monitoring specific waste sites or in areas of high variability will be sampled more frequently.

Newcomer, D.R.; Thornton, E.C.; Hartman, M.J.; Dresel, P.E.

1999-10-06T23:59:59.000Z

202

Building system integration research: recommendations for a US Department of Energy multiyear program plan  

SciTech Connect

This plan describes the scope, technical content, and resources required to conduct the Building System Integration (BSI) research program during FY 1987 through 1991. System integration research is defined, the need for the research is discussed, its benefits are outlined, and the history of building system integration research is summarized. The program scope, the general approach taken in developing this program plan, and the plan's contents are also described.

1986-01-01T23:59:59.000Z

203

CY 2012 Annual Workforce Analysis and Staffing Plan - Chief of Nuclear Safety  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2 2 Reporting Office: Chief of Nuclear Safety . Section One: Current Mission(s) of the Organization and Potential Changes Revision 2 of U.S. Department of Energy Implementation Plan for DNFSB Recommendation 2004-1 established the seven core CTA responsibilities. The Office of the Chief of Nuclear Safety (CNS) performs to following functions in support of the CTA meeting these responsibilities: 1. Nuclear Safety Requirement Concurrence and Exemption * Concur with the determination of the applicability of DOE directives involving nuclear safety included in Energy and Science contracts pursuant to Department of Energy Acquisition Regulation (DEAR), 48 CFR 970.5204-2, Laws, regulations, and DOE directives, item (b). * Concur with nuclear safety requirements included in Energy and Science contracts pursuant to

204

CY 2011 Annual Workforce Analysis and Staffing Plan - Chief of Nuclear Safety  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1 1 Reporting Office: Chief of Nuclear Safety . Section One: Current Mission(s) of the Organization and Potential Changes Revision 2 of U.S. Department of Energy Implementation Plan for DNFSB Recommendation 2004-1 established the seven core CTA responsibilities. The Office of the Chief of Nuclear Safety (CNS) performs to following functions in support of the CTA meeting these responsibilities: 1. Nuclear Safety Requirement Concurrence and Exemption * Concur with the determination of the applicability of DOE directives involving nuclear safety included in Energy and Science contracts pursuant to Department of Energy Acquisition Regulation (DEAR), 48 CFR 970.5204-2, Laws, regulations, and DOE directives, item (b). * Concur with nuclear safety requirements included in Energy and Science contracts pursuant to

205

Safety research plan for gas-supply technologies. Final report, March 1982-February 1983  

SciTech Connect

The objective of this study was to develop a multiyear research plan addressing the safety issues of the following gas supply technologies: conventional natural gas, including deep and sour gas wells; unconventional natural gas (Devonian shale, tight gas sands, coalbed methane, and geopressured methane); SNG from coal (surface and in situ), and SNG from biomass. A total of 51 safety issues were identified in the initial review. These safety issues were screened to eliminate those hazards which appeared to be relatively insignificant in terms of accident severity or frequency, or because the potential for resolving the problem through research was considered very low. Twenty-six remaining safety issues were prioritized, and of these, 9 were selected as priority research projects: two under conventional gas; one under unconventional natural gas; and six under SNG from coal. No safety research issues in the biomass area appear to warrant priority consideration.

Tipton, L.M.; Junkin, P.D.

1983-06-01T23:59:59.000Z

206

Decision support for integrated water-energy planning.  

SciTech Connect

Currently, electrical power generation uses about 140 billion gallons of water per day accounting for over 39% of all freshwater withdrawals thus competing with irrigated agriculture as the leading user of water. Coupled to this water use is the required pumping, conveyance, treatment, storage and distribution of the water which requires on average 3% of all electric power generated. While water and energy use are tightly coupled, planning and management of these fundamental resources are rarely treated in an integrated fashion. Toward this need, a decision support framework has been developed that targets the shared needs of energy and water producers, resource managers, regulators, and decision makers at the federal, state and local levels. The framework integrates analysis and optimization capabilities to identify trade-offs, and 'best' alternatives among a broad list of energy/water options and objectives. The decision support framework is formulated in a modular architecture, facilitating tailored analyses over different geographical regions and scales (e.g., national, state, county, watershed, NERC region). An interactive interface allows direct control of the model and access to real-time results displayed as charts, graphs and maps. Ultimately, this open and interactive modeling framework provides a tool for evaluating competing policy and technical options relevant to the energy-water nexus.

Tidwell, Vincent Carroll; Malczynski, Leonard A.; Kobos, Peter Holmes; Castillo, Cesar; Hart, William Eugene; Klise, Geoffrey T.

2009-10-01T23:59:59.000Z

207

Hydrogen Posture Plan: An Integrated Research, Development and...  

NLE Websites -- All DOE Office Websites (Extended Search)

PLAN . . United States Department of Energy February 2004 ix DOE Hydrogen Posture Plan A National Commitment In his State of the Union address, President Bush announced a...

208

The Integrated Safety Management System (ISMS) of the US Department of Energy  

Science Conference Proceedings (OSTI)

While the Integrated Safety Management System (ISMS) program is a fairly rational approach to safety, it represents the culmination of several years of hard-earned lessons learned. Considering the size and the diversity of interrelated elements which make up the USDOE complex, this result shows the determination of both the USDOE and its contractors to bring safety hazards to heel. While these lessons learned were frustrating and expensive, the results were several key insights upon which the ISMS was built: (1) Ensure safety management is integral to the business. Safety management must become part of each work activity, rather that something in addition to or on top of. (2) Tailor the safety requirements to the work and its hazards. In order to be cost-effective and efficient, safety management should have flexibility in order to match safety requirements with the level of the hazards in a graded manner. (3) Safety management must be coherent and integrated. Large and complex organizations are no excuse for fragmented and overlapping safety initiatives and programs. Simple, from the ground up objectives and principles must be defined and used to guide a comprehensive safety management program. (4) A safety management system must balance resources and priorities. The system must provide the means to balance resources against the particular work hazards, recognizing that different degrees of hazards requires corresponding prevention measures. (5) Clear roles and responsibilities for safety management must be defined. Both the regulator and the contractor have specific responsibilities for safety which must be clearly articulated at all levels of the work processes. (6) Those responsible for safety must have the competence to carry it out. Those assigned responsibilities must have the experience, knowledge, skills, and authority to carry them out. As one can surmise, the ISMS is not a new program to be implemented, but rather a new attitude which must be adopted.

Linn, M.A.

1999-05-18T23:59:59.000Z

209

Concurrent consideration of evacuation safety and productivity in manufacturing facility planning using multi-paradigm simulations  

Science Conference Proceedings (OSTI)

Manufacturing facilities are expected to maintain a high level of production and at the same time, employ strict safety standards to ensure the safe evacuation of the people in the event of emergencies (fire is considered in this paper). These two goals ... Keywords: Agent based simulation, BDI, Emergency management, Layout planning

Karthik Vasudevan; Young-Jun Son

2011-11-01T23:59:59.000Z

210

Review of the Independent Integrated Safety Management/Integrated Work Management Assessment of Research and Develoopment and Programmatic Work at the Los Alamos National Laboratory, December 2011  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Independent Integrated Safety Independent Integrated Safety Management/Integrated Work Management Assessment of Research and Development and Programmatic Work at the Los Alamos National Laboratory December 2011 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy Table of Contents 1.0 Purpose ................................................................................................................................................... 1 2.0 Background ............................................................................................................................................ 1 3.0 Scope ...................................................................................................................................................... 1

211

Integrated Safety Management (ISM) Workshop - November 28-30, 2007  

NLE Websites -- All DOE Office Websites (Extended Search)

D - Developing Effective Safety Culture D - Developing Effective Safety Culture ISM Workshop Presentations November 28-30, 2007 Wednesday, November 28, 2007 11:00 - 12:30 Tank S-102 Waste Spill, Shirley Olinger, ORP and Jerry Long, CH2MHill Practices in Implementing Human Performance Initiative, Bill Hartley, BWXT Pantex 2:00 - 3:30 Safety Observation to Support Human Performance Improvement, Chris Contwell, Todd Conklin and John Tseng, LANL Human Performance Training and Job Aid for Nuclear Materials Applications, William Brown, BNL Developing Effective Safety Cultures, Dr. Isabel Perry 4:00 - 5:30 Commercial Nuclear Industry Progress on Safety Culture (Sensitive Material - Contact Presenter Directly), George Mortensen, INPO Communication with the Dead is only Slightly Harder than talking with an Engineer, William Rigot, WSRC

212

Nuclear Energy Advanced Modeling and Simulation Waste Integrated Performance and Safety Codes (NEAMS Waste IPSC).  

Science Conference Proceedings (OSTI)

The objective of the U.S. Department of Energy Office of Nuclear Energy Advanced Modeling and Simulation Waste Integrated Performance and Safety Codes (NEAMS Waste IPSC) is to provide an integrated suite of computational modeling and simulation (M&S) capabilities to quantitatively assess the long-term performance of waste forms in the engineered and geologic environments of a radioactive-waste storage facility or disposal repository. Achieving the objective of modeling the performance of a disposal scenario requires describing processes involved in waste form degradation and radionuclide release at the subcontinuum scale, beginning with mechanistic descriptions of chemical reactions and chemical kinetics at the atomic scale, and upscaling into effective, validated constitutive models for input to high-fidelity continuum scale codes for coupled multiphysics simulations of release and transport. Verification and validation (V&V) is required throughout the system to establish evidence-based metrics for the level of confidence in M&S codes and capabilities, including at the subcontiunuum scale and the constitutive models they inform or generate. This Report outlines the nature of the V&V challenge at the subcontinuum scale, an approach to incorporate V&V concepts into subcontinuum scale modeling and simulation (M&S), and a plan to incrementally incorporate effective V&V into subcontinuum scale M&S destined for use in the NEAMS Waste IPSC work flow to meet requirements of quantitative confidence in the constitutive models informed by subcontinuum scale phenomena.

Schultz, Peter Andrew

2011-12-01T23:59:59.000Z

213

Sodium fast reactor safety and licensing research plan. Volume I.  

SciTech Connect

This report proposes potential research priorities for the Department of Energy (DOE) with the intent of improving the licensability of the Sodium Fast Reactor (SFR). In support of this project, five panels were tasked with identifying potential safety-related gaps in available information, data, and models needed to support the licensing of a SFR. The areas examined were sodium technology, accident sequences and initiators, source term characterization, codes and methods, and fuels and materials. It is the intent of this report to utilize a structured and transparent process that incorporates feedback from all interested stakeholders to suggest future funding priorities for the SFR research and development. While numerous gaps were identified, two cross-cutting gaps related to knowledge preservation were agreed upon by all panels and should be addressed in the near future. The first gap is a need to re-evaluate the current procedures for removing the Applied Technology designation from old documents. The second cross-cutting gap is the need for a robust Knowledge Management and Preservation system in all SFR research areas. Closure of these and the other identified gaps will require both a reprioritization of funding within DOE as well as a re-evaluation of existing bureaucratic procedures within the DOE associated with Applied Technology and Knowledge Management.

Sofu, Tanju (Argonne National Laboratory, Argonne, IL); LaChance, Jeffrey L.; Bari, R. (Brokhaven National Laboratory Upton, NY); Wigeland, Roald (Idaho National Laboratory, Idaho Falls, ID); Denman, Matthew R.; Flanagan, George F. (Oak Ridge National Laboratory, Oak Ridge, TN)

2012-05-01T23:59:59.000Z

214

Integrating the principles of strategic environmental assessment into local comprehensive land use plans in California  

E-Print Network (OSTI)

The lack of early integration with the planning and decision-making process has been a major problem in environmental assessment. Traditional project-based environmental impact assessment has inadequate incentives and capacities to incorporate critical environmental impacts at a broader temporal or spatial scale. While many applications have been geared towards implementing project-level environmental assessments, comparatively little research has been done to determine how to incorporate strategically critical environmental impacts into local planning. Although the principles of strategic environmental assessment (SEA) are not yet required in local planning in the United States, these principles create a theoretical framework for local environmental assessment. The objective of this study is to examine the ability of local plans to integrate and implement the key SEA principles. This study focuses on increasing the understanding of how and where to integrate environmental impacts into the local planning and decision-making process by converting the principles of SEA into specific planning tools, policies, and implementation strategies. This study develops a protocol with 112 indicators to measure the strengths and weaknesses of integrating strategic environmental assessment into local comprehensive land use plans. A random sample of 40 California local comprehensive land use plans and associated planning processes is evaluated based on this plan quality evaluation protocol. Statistical analysis and multiple regression models identify the factors affecting the quality of plans with respect to their ability to assess environmental impacts. The results identify the relative strengths and weaknesses of the ability of local jurisdictions to integrate the SEA principles. The results show that many strategically important environmental issues and tools are rarely adopted by current local plans. The regression analysis results further identify the effects of planning capacity, environmental assessment capacity, public participation and contextual variables on environmental assessment plan quality. The findings extend established planning theory and practice by incorporating strategic environmental considerations into the existing framework of what constitutes a high quality local land use comprehensive plan and suggest ways to improve plan quality.

Tang, Zhenghong

2007-05-01T23:59:59.000Z

215

Integrated Safety Management (ISM) Workshop - August 25-28, 2008  

NLE Websites -- All DOE Office Websites (Extended Search)

The Office of Health, Safety and Security HSS Logo Department of Energy Seal Left Tab SEARCH Right Tab TOOLS Right Tab Left Tab HOME Right Tab Left Tab ABOUT US Right Tab Left Tab...

216

Light Water Reactor Sustainability Program Integrated Program Plan  

SciTech Connect

Nuclear power has safely, reliably, and economically contributed almost 20% of electrical generation in the United States over the past two decades. It remains the single largest contributor (more than 70%) of non-greenhouse-gas-emitting electric power generation in the United States. Domestic demand for electrical energy is expected to experience a 31% growth from 2009 to 2035. At the same time, most of the currently operating nuclear power plants will begin reaching the end of their initial 20-year extension to their original 40-year operating license for a total of 60 years of operation. Figure E-1 shows projected nuclear energy contribution to the domestic generating capacity. If current operating nuclear power plants do not operate beyond 60 years, the total fraction of generated electrical energy from nuclear power will begin to declineeven with the expected addition of new nuclear generating capacity. The oldest commercial plants in the United States reached their 40th anniversary in 2009. The U.S. Department of Energy Office of Nuclear Energys Research and Development Roadmap (Nuclear Energy Roadmap) organizes its activities around four objectives that ensure nuclear energy remains a compelling and viable energy option for the United States. The four objectives are as follows: (1) develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of the current reactors; (2) develop improvements in the affordability of new reactors to enable nuclear energy to help meet the Administrations energy security and climate change goals; (3) develop sustainable nuclear fuel cycles; and (4) understand and minimize the risks of nuclear proliferation and terrorism. The Light Water Reactor Sustainability (LWRS) Program is the primary programmatic activity that addresses Objective 1. This document summarizes the LWRS Programs plans.

Kathryn McCarthy; Jeremy Busby; Bruce Hallbert; Shannon Bragg-Sitton; Curtis Smith; Cathy Barnard

2013-04-01T23:59:59.000Z

217

Light Water Reactor Sustainability Program Integrated Program Plan  

Science Conference Proceedings (OSTI)

Nuclear power has safely, reliably, and economically contributed almost 20% of electrical generation in the United States over the past two decades. It remains the single largest contributor (more than 70%) of non-greenhouse-gas-emitting electric power generation in the United States. Domestic demand for electrical energy is expected to experience a 31% growth from 2009 to 2035. At the same time, most of the currently operating nuclear power plants will begin reaching the end of their initial 20-year extension to their original 40-year operating license for a total of 60 years of operation. Figure E-1 shows projected nuclear energy contribution to the domestic generating capacity. If current operating nuclear power plants do not operate beyond 60 years, the total fraction of generated electrical energy from nuclear power will begin to decline - even with the expected addition of new nuclear generating capacity. The oldest commercial plants in the United States reached their 40th anniversary in 2009. The U.S. Department of Energy Office of Nuclear Energy's Research and Development Roadmap (Nuclear Energy Roadmap) organizes its activities around four objectives that ensure nuclear energy remains a compelling and viable energy option for the United States. The four objectives are as follows: (1) develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of the current reactors; (2) develop improvements in the affordability of new reactors to enable nuclear energy to help meet the Administration's energy security and climate change goals; (3) develop sustainable nuclear fuel cycles; and (4) understand and minimize the risks of nuclear proliferation and terrorism. The Light Water Reactor Sustainability (LWRS) Program is the primary programmatic activity that addresses Objective 1. This document summarizes the LWRS Program's plans.

George Griffith; Robert Youngblood; Jeremy Busby; Bruce Hallbert; Cathy Barnard; Kathryn McCarthy

2012-01-01T23:59:59.000Z

218

SARNET: Integrating Severe Accident Research in Europe - Safety Issues in the Source Term Area  

SciTech Connect

SARNET (Severe Accident Research Network) is a Network of Excellence of the EU 6. Framework Programme that integrates in a sustainable manner the research capabilities of about fifty European organisations to resolve important remaining uncertainties and safety issues concerning existing and future nuclear plant, especially water-cooled reactors, under hypothetical severe accident conditions. It emphasises integrating activities, spreading of excellence (including knowledge transfer) and jointly-executed research. This paper summarises the main results obtained at the middle of the current 4-year term, highlighting those concerning radioactive release to the environment. Integration is pursued through different methods: the ASTEC integral computer code for severe accident modelling, development of PSA level 2 methods, a means for definition, updating and resolution of safety issues, and development of a web database for storing experimental results. These activities are helped by an evolving Advanced Communication Tool, easing communication amongst partners. Concerning spreading of excellence, educational courses covering severe accident analysis methodology and level 2 PSA have been organised for early 2006. A text book on Severe Accident Phenomenology is being written. A mobility programme for students and young researchers has started. Results are disseminated mainly through open conference proceedings, with journal publications planned. The 1. European Review Meeting on Severe Accidents in November 2005 covered SARNET activities during its first 18 months. Jointly executed research activities concern key issues grouped in the Corium, Containment and Source Term areas. In Source Term, behaviour of the highly radio-toxic ruthenium under oxidising conditions, including air ingress, is investigated. Models are proposed for fuel and ruthenium oxidation. Experiments on transport of oxide ruthenium species are performed. Reactor scenario studies assist in defining conditions for new experiments. Regarding predictability of iodine species exiting the Reactor Coolant System (RCS), which affects the amount entering the containment, iodine behaviour in the circuit and silver-indium-cadmium (SIC) release have been reviewed. New experiments are being discussed and performed, and SIC degradation and release models are being improved. For the radioactive aerosol source term, work is conducted in the risk-relevant areas of steam generator (SG) tube rupture, transport through cracks in containment walls and revaporization from previous deposits in the RCS that could lead to a delayed source term. Models for aerosol retention in containment cracks and interpretation of data on retention in the SG secondary side are proposed. For radioactive iodine release to the environment, many physical and chemical processes affect the iodine concentration in the containment atmosphere; of these effects, mass transfer phenomena and radiolytic oxidation are being investigated first. (authors)

Haste, T. [Paul Scherrer Institute, 5232 Villigen PSI (Switzerland); Giordano, P.; Micaelli, J.-C. [Institut de Radioprotection et de S et Nucl ire, IRSN, BP 3 13115 St Paul lez Durance Cedex (France); Herranz, L. [Centro de Investigaciones Energeticas Medio Ambientales y Tecnologica, CIEMAT, Avda. Complutense 22, 28040 Madrid (Spain)

2006-07-01T23:59:59.000Z

219

The role of competitive forces in integrated resource planning  

SciTech Connect

In this report, we study the potential for competitive forces to enhance the efficiency of integrated resource planning and produce consumer cost reductions. We examine the efficiency gains from competition in the private power market, and ask whether similar forces can be successful on the demand-side of the market. The goal of this analysis is to identify and elucidate options available to state Public Utility Commissions (PUCs) to support competition in utility demand-side management programs to achieve efficiencies similar to those being achieved through development of competitive forces on the supply-side of the industry. We consider the entire market structure from upstream suppliers to distribution intermediaries to ultimate consumers. The market structure differs substantially between the demand-side and the supply-side of the electricity market. Demand-site electricity markets have a longer distribution chain and more intermediaries than the supply-side, which is attributable in part to the ultimately retail nature of demand and the wholesale nature of supply, and in part indicates market failures.

Kahn, E.; Goldman, C.

1991-10-01T23:59:59.000Z

220

NETL: PPII - Integration of Low-NOx Burners with an Optimization Plan for  

NLE Websites -- All DOE Office Websites (Extended Search)

Integration of Low-NOx Burners with an Optimization Plan for Boiler Combustion Integration of Low-NOx Burners with an Optimization Plan for Boiler Combustion - Project Brief [PDF-72KB] Sunflower Electric Power Corp., Garden City, Finney County, KS PROJECT FACT SHEET Achieving New Source Performance Standards (NSPS) Through Integration of Low-NOx Burners with an Optimization Plan for Boiler Combustion [PDF-260KB] (Oct 2008) PROGRAM PUBLICATIONS Final Report Achieving NSPS Emission Standards Through Integration of Low NOx Burners with an Optimization Plan for Boiler Combustion [PDF-3.4MB] (June 2006) CCT Reports: Project Performance Summaries, Post-Project Assessments, & Topical Reports Achieving New Source Performance Standards (NSPS) Emission Standards through Integration of Low-NOx Burners with an Optimization Plan for Boiler Combustion: A DOE Assessment [PDF-1.4MB] (Nov 2006)

Note: This page contains sample records for the topic "integration planning safety" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Health and safety plan for operations performed for the Environmental Restoration Program. Task, OU 1-03 and OU 4-10 Track 2 investigations  

Science Conference Proceedings (OSTI)

This document constitutes the generic health and safety plan for the Environmental Restoration Program (ERP). It addresses the health and safety requirements of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA); Occupational Safety and Health Administration (OSHA) 29 CFR 1910.120 standard; and EG&G Idaho, Inc. This plan is a guide to individuals who must complete a health and safety plan for a task performed for the EPR. It contains a task specific addendum that, when completed, specifically addresses task specific health and safety issues. This health and safety plan reduces the time it takes to write a task specific health and safety plan by providing discussions of requirements, guidance on where specific information is located, and specific topics in the Addendum that must be discussed at a task level. This format encourages a complete task specific health and safety plan and a standard for all health and safety plans written for ERP.

Trippet, W.A. II [IT Corp., (United States); Reneau, M.; Morton, S.L. [EG and G Idaho, Inc., Idaho Falls, ID (United States)

1992-04-01T23:59:59.000Z

222

Mobility in environmental planning: an integrated multi-agent approach  

Science Conference Proceedings (OSTI)

Mobility infrastructure planning is an increasingly crucial aspect of environmental planning, essential to boost regional economies and social relations, as well as critical for environmental impacts involved. Structuring inherently complex issues and ...

D. Borri; D. Camarda; A. De Liddo

2005-09-01T23:59:59.000Z

223

The Integrated Safety Management System Verification Enhancement Review of the Plutonium Finishing Plant (PFP)  

SciTech Connect

The primary purpose of the verification enhancement review was for the DOE Richland Operations Office (RL) to verify contractor readiness for the independent DOE Integrated Safety Management System Verification (ISMSV) on the Plutonium Finishing Plant (PFP). Secondary objectives included: (1) to reinforce the engagement of management and to gauge management commitment and accountability; (2) to evaluate the ''value added'' benefit of direct public involvement; (3) to evaluate the ''value added'' benefit of direct worker involvement; (4) to evaluate the ''value added'' benefit of the panel-to-panel review approach; and, (5) to evaluate the utility of the review's methodology/adaptability to periodic assessments of ISM status. The review was conducted on December 6-8, 1999, and involved the conduct of two-hour interviews with five separate panels of individuals with various management and operations responsibilities related to PFP. A semi-structured interview process was employed by a team of five ''reviewers'' who directed open-ended questions to the panels which focused on: (1) evidence of management commitment, accountability, and involvement; and, (2) consideration and demonstration of stakeholder (including worker) information and involvement opportunities. The purpose of a panel-to-panel dialogue approach was to better spotlight: (1) areas of mutual reinforcement and alignment that could serve as good examples of the management commitment and accountability aspects of ISMS implementation, and, (2) areas of potential discrepancy that could provide opportunities for improvement. In summary, the Review Team found major strengths to include: (1) the use of multi-disciplinary project work teams to plan and do work; (2) the availability and broad usage of multiple tools to help with planning and integrating work; (3) senior management presence and accessibility; (4) the institutionalization of worker involvement; (5) encouragement of self-reporting and self-assessment by management; (6) the availability of multiple internal communication mechanisms; and, (7) the existence of overall facility-wide safety management goals as well as individualized project work team goals. Major opportunities for improvement identified include: (1) the enhancement of external communications relative to ISM; (2) the institutionalization of ISM-related performance agreements/incentives; (3) the strengthening of feedback loops; (4) fine-tuning the use of tools; and, (5) the formalization of good practices.

BRIGGS, C.R.

2000-02-09T23:59:59.000Z

224

Hanford Integrated Planning Process: 1993 Hanford Site-specific science and technology plan  

Science Conference Proceedings (OSTI)

This document is the FY 1993 report on Hanford Site-specific science and technology (S&T) needs for cleanup of the Site as developed via the Hanford Integrated Planning Process (HIPP). It identifies cleanup problems that lack demonstrated technology solutions and technologies that require additional development. Recommendations are provided regarding allocation of funding to address Hanford`s highest-priority technology improvement needs, technology development needs, and scientific research needs, all compiled from a Sitewide perspective. In the past, the S&T agenda for Hanford Site cleanup was sometimes driven by scientists and technologists, with minimal input from the ``problem owners`` (i.e., Westinghouse Hanford Company [WHC] staff who are responsible for cleanup activities). At other times, the problem-owners made decisions to proceed with cleanup without adequate scientific and technological inputs. Under both of these scenarios, there was no significant stakeholder involvement in the decision-making process. One of the key objectives of HIPP is to develop an understanding of the integrated S&T requirements to support the cleanup mission, (a) as defined by the needs of the problem owners, the values of the stakeholders, and the technology development expertise that exists at Hanford and elsewhere. This requires a periodic, systematic assessment of these needs and values to appropriately define a comprehensive technology development program and a complementary scientific research program. Basic to our success is a methodology that is defensible from a technical perspective and acceptable to the stakeholders.

Not Available

1993-12-01T23:59:59.000Z

225

A flexible IT infrastructure for integrated urban planning  

Science Conference Proceedings (OSTI)

This paper presents an IT infrastructure based on an event driven architecture with the objective to decrease the turnaround time for urban planning. Most urban planning takes a long time, not only to get all stakeholders involved, but also to assess ... Keywords: Urban planning, event driven architecture, flexibility, infrastructure, interoperability

Wout Hofman; Walter Lohman; Ab Schelling

2011-04-01T23:59:59.000Z

226

Integrated Safety Management (ISM) Workshop - August 25-28, 2008  

NLE Websites -- All DOE Office Websites (Extended Search)

Bertha CassinghamJoseph Drago, WIPPOffice of Science, Chicago Office 3:00 - 5:00 DOE EM Annual ISMS Review and Declaration, Braj Singh, DOE-EM KC Oversight Plan, Catherine...

227

Integrated Safety Management: New Requirements in DOE Order...  

NLE Websites -- All DOE Office Websites (Extended Search)

... must describe ...how EMS, QAP, and other management processes and systems are integrated into the ISM system" II.1.a.(1)(d) * "Secretarial office ISM system descriptions...

228

Industrial Fuel Gas Demonstration Plant Program. Task III, Demonstration plant safety, industrial hygiene, and major disaster plan (Deliverable No. 35)  

SciTech Connect

This Health and Safety Plan has been adopted by the IFG Demonstration Plant managed by Memphis Light, Gas and Water at Memphis, Tennessee. The plan encompasses the following areas of concern: Safety Plan Administration, Industrial Health, Industrial Safety, First Aid, Fire Protection (including fire prevention and control), and Control of Safety Related Losses. The primary objective of this plan is to achieve adequate control of all potentially hazardous activities to assure the health and safety of all employees and eliminate lost work time to both the employees and the company. The second objective is to achieve compliance with all Federal, state and local laws, regulations and codes. Some thirty specific safe practice instruction items are included.

None

1980-03-01T23:59:59.000Z

229

Fluor Hanford, Inc. Groundwater and Technical Integration Support (Master Project) Quality Assurance Management Plan  

SciTech Connect

The scope of the Fluor Hanford, Inc. Groundwater and Technical Integration Support (Master Project) is to provide technical and integration support to Fluor Hanford, Inc., including operable unit investigations at 300-FF-5 and other groundwater operable units, strategic integration, technical integration and assessments, remediation decision support, and science and technology. This Quality Assurance Management Plan provides the quality assurance requirements and processes that will be followed by the Fluor Hanford, Inc. Groundwater and Technical Integration Support (Master Project).

Fix, N. J.

2008-02-20T23:59:59.000Z

230

RECENT ADDITIONS OF CRITICALITY SAFETY RELATED INTEGRAL BENCHMARK DATA TO THE ICSBEP AND IRPHEP HANDBOOKS  

SciTech Connect

High-quality integral benchmark experiments have always been a priority for criticality safety. However, interest in integral benchmark data is increasing as efforts to quantify and reduce calculational uncertainties accelerate to meet the demands of future criticality safety needs to support next generation reactor and advanced fuel cycle concepts. The importance of drawing upon existing benchmark data is becoming more apparent because of dwindling availability of critical facilities worldwide and the high cost of performing new experiments. Integral benchmark data from the International Handbook of Evaluated Criticality Safety Benchmark Experiments and the International Handbook of Reactor Physics Benchmark Experiments are widely used. Benchmark data have been added to these two handbooks since the last Nuclear Criticality Safety Division Topical Meeting in Knoxville, Tennessee (September 2005). This paper highlights these additions.

J. Blair Briggs; Lori Scott; Yolanda Rugama; Enrico Sartori

2009-09-01T23:59:59.000Z

231

Management response plan for the Chemical Safety Vulnerability Working Group report. Volume 2  

SciTech Connect

The Chemical Safety Vulnerability (CSV) Working Group was established to identify adverse conditions involving hazardous chemicals at DOE facilities that might result in fires or explosions, release of hazardous chemicals to the environment, or exposure of workers or the public to chemicals. A CSV Review was conducted in 146 facilities at 29 sites. Eight generic vulnerabilities were documented related to: abandoned chemicals and chemical residuals; past chemical spills and ground releases; characterization of legacy chemicals and wastes; disposition of legacy chemicals; storage facilities and conditions; condition of facilities and support systems; unanalyzed and unaddressed hazards; and inventory control and tracking. Weaknesses in five programmatic areas were also identified related to: management commitment and planning; chemical safety management programs; aging facilities that continue to operate; nonoperating facilities awaiting deactivation; and resource allocations. To address the facility-specific and site-specific vulnerabilities, responsible DOE and site-contractor line organizations have developed initial site response plans. These plans, presented as Volume 2 of this Management Response Plan, describe the actions needed to mitigate or eliminate the facility- and site-specific vulnerabilities identified by the CSV Working Group field verification teams. Initial site response plans are described for: Brookhaven National Lab., Hanford Site, Idaho National Engineering Lab., Lawrence Livermore National Lab., Los Alamos National Lab., Oak Ridge Reservation, Rocky Flats Plant, Sandia National Laboratories, and Savannah River Site.

Not Available

1994-09-01T23:59:59.000Z

232

2011 Annual Workforce Analysis and Staffing Plan Report - NNSA for Safety and Health  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Annual Workforce Analysis and Staffing Plan Report Annual Workforce Analysis and Staffing Plan Report As of December 31, 2011 Reporting Office: NNSA NA-SH Section One: Current Mission(s) of the Organization and Potential Changes The Office of the Associate Administrator for Safety and Health (NA-SH) provides mission enabling support to the NNSA Administrator, Central Technical Authority (CTA), Acquisition Executives, senior NNSA officials, program officers and site offices. NA-SH enables other NNSA organizations to fulfill NNSA missions while protecting the environment and safeguarding the safety and health of the public and the workforce. Section Two: SITE CHARACTERISTICS TABLE 1 Number of Hazard Category 1, 2, or 3 Nuclear Facilities: HC 1: 0; HC 2: 0; HC 3: 0 Number of Radiological Facilities

233

Environmental Management Waste Management Facility (EMWMF) Site-Specific Health and Safety Plan, Oak Ridge, Tennessee  

SciTech Connect

The Bechtel Jacobs Company LLC (BJC) policy is to provide a safe and healthy workplace for all employees and subcontractors. The implementation of this policy requires that operations of the Environmental Management Waste Management Facility (EMWMF), located one-half mile west of the U.S. Department of Energy (DOE) Y-12 National Security Complex, be guided by an overall plan and consistent proactive approach to environment, safety and health (ES&H) issues. The BJC governing document for worker safety and health, BJC/OR-1745, 'Worker Safety and Health Program', describes the key elements of the BJC Safety and Industrial Hygiene (IH) programs, which includes the requirement for development and implementation of a site-specific Health and Safety Plan (HASP) where required by regulation (refer also to BJC-EH-1012, 'Development and Approval of Safety and Health Plans'). BJC/OR-1745, 'Worker Safety and Health Program', implements the requirements for worker protection contained in Title 10 Code of Federal Regulations (CFR) Part 851. The EMWMF site-specific HASP requirements identifies safe operating procedures, work controls, personal protective equipment, roles and responsibilities, potential site hazards and control measures, site access requirements, frequency and types of monitoring, site work areas, decontamination procedures, and outlines emergency response actions. This HASP will be available on site for use by all workers, management and supervisors, oversight personnel and visitors. All EMWMF assigned personnel will be briefed on the contents of this HASP and will be required to follow the procedures and protocols as specified. The policies and procedures referenced in this HASP apply to all EMWMF operations activities. In addition the HASP establishes ES&H criteria for the day-to-day activities to prevent or minimize any adverse effect on the environment and personnel safety and health and to meet standards that define acceptable waste management practices. The HASP is written to make use of past experience and best management practices to eliminate or minimize hazards to workers or the environment from events such as fires, falls, mechanical hazards, or any unplanned release to the environment.

Flynn, N.C. Bechtel Jacobs

2008-04-21T23:59:59.000Z

234

A good integrated resource plan: Guidelines for electric utilities and regulators  

SciTech Connect

Integrated resource planning helps utilities and state regulatory commissions consistently assess a broad range of demand and supply resources to meet customer energy-service needs cost-effectively. Key characteristics of this planning approach include: explicit consideration and fair treatment of a wide variety of demand and supply options, consideration of the environmental and other social costs of providing energy services, public participation in the development of the resource plan, and analysis of the uncertainties associated with different external factors and resource options. Integrated resource planning differs from traditional planning in the types and scope of resources considered, the owners of the resources, the organizations involved in resource planning, and the criteria for resource selection. This report presents suggestions to utilities on how to conduct such planning and what to include in their resource-planning reports. These suggestions are based on a review of about 50 resource plans as well as discussions with and presentations to regulators and utilities. The suggestions cover four broad topics; the technical competence with which the plan was developed; the adequacy, detail, and consistency (with the long-term plan) of the short-term action plan; the extent to which the interests of various stakeholders was considered, both in public participation in plan development and in the variety of resource plans developedand assessed; and the clarity and comprehensiveness of the utility`s report on its plan. Technical competence includes energy and demand forecasts, assessment of supply and demand resources, resource integration, and treatment of uncertainty. Issues associated with forecasts include forecasting approaches; links between the forecasts of energy use and peak demands; and links between the forecasts and the effects of past, present, and future demand-side management programs.

Hirst, E.

1992-12-01T23:59:59.000Z

235

A good integrated resource plan: Guidelines for electric utilities and regulators  

SciTech Connect

Integrated resource planning helps utilities and state regulatory commissions consistently assess a broad range of demand and supply resources to meet customer energy-service needs cost-effectively. Key characteristics of this planning approach include: explicit consideration and fair treatment of a wide variety of demand and supply options, consideration of the environmental and other social costs of providing energy services, public participation in the development of the resource plan, and analysis of the uncertainties associated with different external factors and resource options. Integrated resource planning differs from traditional planning in the types and scope of resources considered, the owners of the resources, the organizations involved in resource planning, and the criteria for resource selection. This report presents suggestions to utilities on how to conduct such planning and what to include in their resource-planning reports. These suggestions are based on a review of about 50 resource plans as well as discussions with and presentations to regulators and utilities. The suggestions cover four broad topics; the technical competence with which the plan was developed; the adequacy, detail, and consistency (with the long-term plan) of the short-term action plan; the extent to which the interests of various stakeholders was considered, both in public participation in plan development and in the variety of resource plans developedand assessed; and the clarity and comprehensiveness of the utility's report on its plan. Technical competence includes energy and demand forecasts, assessment of supply and demand resources, resource integration, and treatment of uncertainty. Issues associated with forecasts include forecasting approaches; links between the forecasts of energy use and peak demands; and links between the forecasts and the effects of past, present, and future demand-side management programs.

Hirst, E.

1992-12-01T23:59:59.000Z

236

Fluor Hanford Integrated Safety Management System Phase II Verification Vol 1 and Vol 2  

E-Print Network (OSTI)

The U.S. Department of Energy (DOE) is committed to conducting work efficiently and in a manner that ensures protection of the workers, public, and environment. DOE policy mandates that safety management systems be used to systematically integrate safety into management and work practices at all levels while accomplishing mission goals in an effective and efficient manner. The purpose of the Fluor Hanford (FH) Integrated Safety Management System (ISMS) verification was to determine whether FH's ISM system and processes are sufficiently implemented to accomplish the goal of ''Do work safely.'' The purpose of the DOE, Richland Operations Office (RL) verification was to determine whether RL has established processes that adequately describe RL's role in safety management and if those processes are sufficiently implemented.

Parsons, J E

2000-01-01T23:59:59.000Z

237

Fluor Hanford Integrated Safety Management System Phase II Verification Vol 1 & Vol 2  

SciTech Connect

The U.S. Department of Energy (DOE) is committed to conducting work efficiently and in a manner that ensures protection of the workers, public, and environment. DOE policy mandates that safety management systems be used to systematically integrate safety into management and work practices at all levels while accomplishing mission goals in an effective and efficient manner. The purpose of the Fluor Hanford (FH) Integrated Safety Management System (ISMS) verification was to determine whether FH's ISM system and processes are sufficiently implemented to accomplish the goal of ''Do work safely.'' The purpose of the DOE, Richland Operations Office (RL) verification was to determine whether RL has established processes that adequately describe RL's role in safety management and if those processes are sufficiently implemented.

PARSONS, J.E.

2000-07-15T23:59:59.000Z

238

The Zion integrated safety analysis for NUREG-1150  

SciTech Connect

The utility-funded Zion Probabilistic Safety Study provided not only a detailed and thorough assessment of the risk profile of Zion Unit 1, but also presented substantial advancement in the technology of probabilistic risk assessment (PRA). Since performance of that study, modifications of plant hardware, the introduction of new emergency procedures, operational experience gained, information generated by severe accident research programs and further evolution of PRA and uncertainty analysis methods have provided a basis for reevaluation of the Zion risk profile. This reevaluation is discussed in this report. 5 refs.

Unwin, S.D.; Park, C.K.

1988-01-01T23:59:59.000Z

239

Health and Safety Plan for Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Environmental Restoration Program  

Science Conference Proceedings (OSTI)

The Martin Marietta Energy Systems, Inc. (Energy Systems), policy is to provide a safe and healthful workplace for all employees and subcontractors. The accomplishment of this policy requires that operations at Waste Area Grouping (WAG) 6 at the Department of Energy (DOE) Oak Ridge National Laboratory are guided by an overall plan and consistent proactive approach to safety and health (S&H) issues. The plan is written to utilize past experience and best management practices to minimize hazards to human health or the environment from events such as fires, explosions, falls, mechanical hazards, or any unplanned release of hazardous or radioactive materials to air, soil, or surface water This plan explains additional site-specific health and safety requirements such as Site Specific Hazards Evaluation Addendums (SSHEAs) to the Site Safety and Health Plan which should be used in concert with this plan and existing established procedures.

Van Hoesen, S.D.; Clark, C. Jr.; Burman, S.N. [Oak Ridge National Lab., TN (United States); Manis, L.W.; Barre, W.L. [Analysas Corp., Oak Ridge, TN (United States)

1993-12-01T23:59:59.000Z

240

Fiscal Year 2003 Integrated Monitoring Plan for the Hanford Groundwater Monitoring Project  

SciTech Connect

This document is an integrated monitoring plan for the Groundwater Monitoring Project. It documents well and constituent lists for the monitoring required by the Atomic Energy Act of 1954 and its implementing orders.

Hartman, Mary J.; Dresel, P. EVAN; Lindberg, Jon W.; McDonald, John P.; Newcomer, Darrell R.; Thornton, Edward C.

2002-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "integration planning safety" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Vietnam-Integrated Action Plan to Reduce Vehicle Emissions | Open Energy  

Open Energy Info (EERE)

Vietnam-Integrated Action Plan to Reduce Vehicle Emissions Vietnam-Integrated Action Plan to Reduce Vehicle Emissions Jump to: navigation, search Name Vietnam-Integrated Action Plan to Reduce Vehicle Emissions Agency/Company /Organization Asian Development Bank Focus Area Transportation Topics Implementation, Policies/deployment programs, Background analysis Resource Type Guide/manual Website http://www.adb.org/documents/o Program Start 2002 Country Vietnam UN Region South-Eastern Asia References Vietnam-Integrated Action Plan to Reduce Vehicle Emissions[1] Background "A major goal of this strategy is to reduce mobile sources of air pollution in Viet Nam's largest cities. According to this strategy, industry, business units, management agencies and the transport sector must carefully control pollutant emissions such as carbon monoxide (CO), carbon dioxide

242

Hydrogen Posture Plan: An Integrated Research, Development and...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Policy, the Energy Policy Act of 2005, and the U.S. Department of Energy (DOE) Strategic Plan call for expanding the development of diverse domestic energy supplies. In...

243

DOE standard: Integration of environment, safety, and health into facility disposition activities. Volume 1: Technical standard  

Science Conference Proceedings (OSTI)

This Department of Energy (DOE) technical standard (referred to as the Standard) provides guidance for integrating and enhancing worker, public, and environmental protection during facility disposition activities. It provides environment, safety, and health (ES and H) guidance to supplement the project management requirements and associated guidelines contained within DOE O 430.1A, Life-Cycle Asset Management (LCAM), and amplified within the corresponding implementation guides. In addition, the Standard is designed to support an Integrated Safety Management System (ISMS), consistent with the guiding principles and core functions contained in DOE P 450.4, Safety Management System Policy, and discussed in DOE G 450.4-1, Integrated Safety Management System Guide. The ISMS guiding principles represent the fundamental policies that guide the safe accomplishment of work and include: (1) line management responsibility for safety; (2) clear roles and responsibilities; (3) competence commensurate with responsibilities; (4) balanced priorities; (5) identification of safety standards and requirements; (6) hazard controls tailored to work being performed; and (7) operations authorization. This Standard specifically addresses the implementation of the above ISMS principles four through seven, as applied to facility disposition activities.

NONE

1998-05-01T23:59:59.000Z

244

Integrating Safety with Science,Technology and Innovation at Los Alamos National Laboratory  

SciTech Connect

The mission of Los Alamos National Laboratory (LANL) is to develop and apply science, technology and engineering solutions to ensure the safety, security, and reliability of the U.S. nuclear deterrent; reduce global threats; and solve emerging national security challenges. The most important responsibility is to direct and conduct efforts to meet the mission with an emphasis on safety, security, and quality. In this article, LANL Environmental, Safety, and Health (ESH) trainers discuss how their application and use of a kinetic learning module (learn by doing) with a unique fall arrest system is helping to address one the most common industrial safety challenges: slips and falls. A unique integration of Human Performance Improvement (HPI), Behavior Based Safety (BBS) and elements of the Voluntary Protection Program (VPP) combined with an interactive simulator experience is being used to address slip and fall events at Los Alamos.

Rich, Bethany M [Los Alamos National Laboratory

2012-04-02T23:59:59.000Z

245

Comprehensive integrated planning: A process for the Oak Ridge Reservation, Oak Ridge, Tennessee  

Science Conference Proceedings (OSTI)

The Oak Ridge Comprehensive Integrated Plan is intended to assist the US Department of Energy (DOE) and contractor personnel in implementing a comprehensive integrated planning process consistent with DOE Order 430.1, Life Cycle Asset Management and Oak Ridge Operations Order 430. DOE contractors are charged with developing and producing the Comprehensive Integrated Plan, which serves as a summary document, providing information from other planning efforts regarding vision statements, missions, contextual conditions, resources and facilities, decision processes, and stakeholder involvement. The Comprehensive Integrated Plan is a planning reference that identifies primary issues regarding major changes in land and facility use and serves all programs and functions on-site as well as the Oak Ridge Operations Office and DOE Headquarters. The Oak Ridge Reservation is a valuable national resource and is managed on the basis of the principles of ecosystem management and sustainable development and how mission, economic, ecological, social, and cultural factors are used to guide land- and facility-use decisions. The long-term goals of the comprehensive integrated planning process, in priority order, are to support DOE critical missions and to stimulate the economy while maintaining a quality environment.

NONE

1998-05-01T23:59:59.000Z

246

Management response plan for the Chemical Safety Vulnerability Working Group report. Volume 1  

SciTech Connect

The Chemical Safety Vulnerability (CSV) Working Group was established to identify adverse conditions involving hazardous chemicals at DOE facilities that might result in fires or explosions, release of hazardous chemicals to the environment, or exposure of workers or the public to chemicals. A CSV Review was conducted in 146 facilities at 29 sites. Eight generic vulnerabilities were documented related to: abandoned chemicals and chemical residuals; past chemical spills and ground releases; characterization of legacy chemicals and wastes; disposition of legacy chemicals; storage facilities and conditions; condition of facilities and support systems; unanalyzed and unaddressed hazards; and inventory control and tracking. Weaknesses in five programmatic areas were also identified related to: management commitment and planning; chemical safety management programs; aging facilities that continue to operate; nonoperating facilities awaiting deactivation; and resource allocations. Volume 1 contains a discussion of the chemical safety improvements planned or already underway at DOE sites to correct facility or site-specific vulnerabilities. The main part of the report is a discussion of each of the programmatic deficiencies; a description of the tasks to be accomplished; the specific actions to be taken; and the organizational responsibilities for implementation.

Not Available

1994-09-01T23:59:59.000Z

247

FY 2002 Integrated Monitoring Plan for the Hanford Groundwater Monitoring Project  

SciTech Connect

This document is an integrated monitoring plan for the groundwater project and contains: well and constituent lists for monitoring required by the Atomic Energy Act of 1954 and its implementing orders (''surveillance monitoring''); other, established monitoring plans by reference; and a master well/ constituent/frequency matrix for the entire Hanford Site.

Hartman, Mary J; Dresel, P Evan; Lindberg, Jon W; Newcomer, Darrell R; Thornton, Edward C

2001-10-31T23:59:59.000Z

248

FY 2002 Integrated Monitoring Plan for the Hanford Groundwater Monitoring Project  

SciTech Connect

This document is an integrated monitoring plan for the groundwater project and contains: well and constituent lists for monitoring required by the Atomic Energy Act of 1954 and its implementing orders ("surveillance monitoring"); other, established monitoring plans by reference; and a master well/ constituent/frequency matrix for the entire Hanford Site.

Hartman, Mary J.; Dresel, P Evan; Lindberg, Jonathan W.; Newcomer, Darrell R.; Thornton, Edward C.

2001-10-31T23:59:59.000Z

249

The CHPRC Groundwater and Technical Integration Support (Master Project) Quality Assurance Management Plan  

SciTech Connect

The scope of the CH2M Hill Plateau Remediation Company, LLC (CHPRC) Groundwater and Technical Integration Support (Master Project) is for Pacific Northwest National Laboratory staff to provide technical and integration support to CHPRC. This work includes conducting investigations at the 300-FF-5 Operable Unit and other groundwater operable units, and providing strategic integration, technical integration and assessments, remediation decision support, and science and technology. The projects under this Master Project will be defined and included within the Master Project throughout the fiscal year, and will be incorporated into the Master Project Plan. This Quality Assurance Management Plan provides the quality assurance requirements and processes that will be followed by the CHPRC Groundwater and Technical Integration Support (Master Project) and all releases associated with the CHPRC Soil and Groundwater Remediation Project. The plan is designed to be used exclusively by project staff.

Fix, N. J.

2009-04-03T23:59:59.000Z

250

2012 Annual Workforce Analysis and Staffing Plan Report - NNSA for Safety and Health  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1 1 Annual Workforce Analysis and Staffing Plan Report as of December 31, 2012 Reporting Office: NNSA NA-SH Section 1: Current Mission(s) of the Organization and Potential Changes The Office of the Associate Administrator for Safety and Health (NA-SH) provides mission enabling support to the NNSA Administrator, Central Technical Authority (CTA), Acquisition Executives, senior NNSA officials, program officers and site offices. NA-SH enables other NNSA organizations to fulfill NNSA missions while protecting the environment and safeguarding the safety and health of the public and the workforce. Section 2: SITE CHARACTERISTICS TABLE 1 Number of Hazard Category 1, 2, or 3 Nuclear Facilities: HC 1:_0_; HC 2: _0_; HC 3: _0_. Number of Radiological Facilities

251

Integrated resource planning Electric and gas utilities in the USA  

E-Print Network (OSTI)

acquisitions will be the important criteria. Resource planning at gas utilities IRP is just beginning to be applied to the natural gas industry. At gas utilities, called local distribution companies (LDCs and regulated differently. Natural gas is produced, transported, and distributed by three different sets

252

The integral fast reactor (IFR) concept: Physics of operation and safety  

Science Conference Proceedings (OSTI)

The IFR concept employs a pool layout, a U/Pu/Zr metal alloy fuel and a closed fuel cycle based on pyrometallurgical reprocessing and injection casting refabrication. The reactor physics issues of designing for inherent safety and for a closed fissile self-sufficient integral fuel cycle with uranium startup and potential actinide transmutation are discussed.

Wade, D.C.; Chang, Y.I.

1987-01-01T23:59:59.000Z

253

Integrated Safety Analysis: Why It Is Appropriate for Fuel Recycling Facilities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Integrated Safety Analysis: Why It Is Appropriate for Fuel Recycling Facilities Executive Summary This paper addresses why the use of an Integrated Safety Analysis ("ISA") is appropriate for fuel recycling facilities 1 which would be licensed under new regulations currently being considered by NRC. The use of the ISA for fuel facilities under Part 70 is described and compared to the use of a Probabilistic Risk Assessment ("PRA") for reactor facilities. A basis is provided for concluding that future recycling facilities - which will possess characteristics similar to today's fuel cycle facilities and distinct from reactors - can best be assessed using established qualitative or semi-quantitative ISA techniques to achieve and demonstrate safety in an effective and efficient manner.

254

Defense Nuclear Facilitiets Safety Board Visit and Site Lead Planning Activities at the Los Alamos National Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

HSS Independent Activity Report - HSS Independent Activity Report - Rev. 1 Report Number: HIAR LANL-2012-08-16 Site: Los Alamos National Laboratory (LANL) Subject: Office of Enforcement and Oversight's Office of Safety and Emergency Management Evaluations Activity Report for the Defense Nuclear Facilities Safety Board Visit and Site Lead Planning Activities at the Los Alamos National Laboratory Dates of Activity : 08/14/2012 - 08/16/2012 Report Preparer: Robert Freeman Activity Description/Purpose: The purpose of this Office of Health, Safety and Security (HSS) activity was to maintain site operational awareness of key nuclear safety performance areas of interest to the Defense Nuclear Facilities Safety Board (DNFSB), monitor ongoing site oversight and planning activities for Los Alamos National Laboratory (LANL) nuclear facilities, and identify and initiate

255

Defense Nuclear Facilitiets Safety Board Visit and Site Lead Planning Activities at the Los Alamos National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

HSS Independent Activity Report - HSS Independent Activity Report - Rev. 1 Report Number: HIAR LANL-2012-08-16 Site: Los Alamos National Laboratory (LANL) Subject: Office of Enforcement and Oversight's Office of Safety and Emergency Management Evaluations Activity Report for the Defense Nuclear Facilities Safety Board Visit and Site Lead Planning Activities at the Los Alamos National Laboratory Dates of Activity : 08/14/2012 - 08/16/2012 Report Preparer: Robert Freeman Activity Description/Purpose: The purpose of this Office of Health, Safety and Security (HSS) activity was to maintain site operational awareness of key nuclear safety performance areas of interest to the Defense Nuclear Facilities Safety Board (DNFSB), monitor ongoing site oversight and planning activities for Los Alamos National Laboratory (LANL) nuclear facilities, and identify and initiate

256

MANAGEMENT ASSESSMENT AN INTEGRATED ENVIRONMENT SAFETY & HEALTH MANAGEMENT SYSTEM (ISMS) CORE FUNCTION FOR FEEDBACK & CONTINUOUS IMPROVEMENT  

Science Conference Proceedings (OSTI)

Management assessment is required of US Department of Energy contractors by 10 CFR 830.122 and DOE Order 414.1. The management assessment process is a rigorous, preplanned, forward-looking review. It is required to be performed by owners of the processes that are being assessed. Written from the perspective of the Assessment Program Director and an Assessment Specialist, this paper describes the evolution of the process used by CH2MHILL to implement its management assessment program over the past two years including: roles, responsibilities, and details about our program improvement project designed to produce a clear picture of management processes and to identify opportunities for improvement. The management assessment program is essential to successful implementation, maintenance, and improvement of the CH2MHILL Integrated Environment, Safety, and Health Management System (ISMS). The management assessment program implements, in part, ISMS Core Function No. 5. ''Feedback and Continuous Improvement''. Organizations use the management assessment process to assess ISMS implementation and effectiveness. Management assessments evaluate the total picture of how well management processes are meeting organizational objectives and the customer's requirements and expectations. The emphasis is on management issues affecting performance, systems, and processes such as: strategic planning, qualification, training, staffing, organizational interfaces, communication, cost and schedule control and mission objectives. Management assessments should identify any weaknesses in the management aspects of performance and make process improvements. All managers from first line supervisors to the president and general manager are involved in the management assessment process. More senior managers, in conducting their assessment, will use data from lower levels of management. This approach will facilitate the objective of having managers closer to the work under review focusing on more compliance- and process-oriented aspects of work performance, while senior managers will concentrate on more strategic issues, having more access to information generated from assessments by their subordinates.

VON WEBER, M.

2005-07-26T23:59:59.000Z

257

Standard Review Plan (SRP) Modules | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Quality Assurance » Standard Quality Assurance » Standard Review Plan (SRP) Modules Standard Review Plan (SRP) Modules Standard Review Plan - Critical Decision Handbook Overview Project Management Project Execution Plan Review Module (RM) Risk Management RM Integrated Project Team RM Earned Value Management System RM Acquisition Strategy RM Decommissioning Plan RM Site Transition Guidance Engineering and Design Conceptual Design RM Preliminary Design RM Final Design RM Construction Readiness RM Checkout, Testing, and Commissioning Plan RM Readiness Review RM Seismic Design Expectations Report Technology Readiness Assessment Report External Technical Review Report Preparation for Facility Operations RM Safety Safety Design Strategy RM Conceptual Safety Design RM Preliminary Safety Design RM Facility Disposition Safety Strategy RM

258

Advanced Planning Method for Integrating Large-Scale Variable Generation  

Science Conference Proceedings (OSTI)

As the penetration and size of renewable generation resources increase, the industry must expand transmission infrastructure to accommodate increasing renewable resource output. Conventional transmission expansion planning requires sufficient transmission capacities to transfer the full name plate capacity of all power plants to load centers at the same time. However, renewable resources, such as wind and solar, have highly variable output and are spatially diversified. Thus, transmission expansion plann...

2009-12-22T23:59:59.000Z

259

Planning for People: Integrating Social Issues and Processes into Planning Practice  

E-Print Network (OSTI)

CASE 2 Cumulative Social Impact of the Athabasca Oil Sandsmanagement of the social impacts of oil sands development onresulted in a host of social impacts, re- quiring a planning

Hoernig, Heidi; Leahy, Danielle; Zhuang, Zhi Xi; Early, Robert; Randall, Lynn; Whitelaw, Graham

2005-01-01T23:59:59.000Z

260

PROJECT MANGEMENT PLAN EXAMPLES Prepare Project Support Plans and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

H&S Plan Examples H&S Plan Examples Example 46 9.2 HEALTH AND SAFETY STRATEGY B Plant has integrated safety into its management, planning and work practices in order to protect the public, the environment and facility workers against nuclear and non-nuclear hazards associated with facility transition. Based upon the principles of DNFSB Recommendation 95-2, the Plant's approach to safety management includes:  Applicable. standards and requirements specifically identified and implemented  Safety integrated into baseline and detailed planning  Workers and trained safety professionals use a team approach in hazard identification, analysis and control  Graded approach used to tailor controls based upon hazard type and severity  Hazard control integrated into work processes

Note: This page contains sample records for the topic "integration planning safety" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

US Department of Energy Integrated Resource Planning Program: Accomplishments and opportunities  

SciTech Connect

The US Department of Energy Integrated Resource Planning Program supports many activities and projects that enhance the process by which utilities assess demand and supply options and, subsequently, evaluate and select resources. The US Department of Energy program coordinates integrated resource planning in risk and regulatory analysis; utility and regional planning; evaluation and verification; information transfer/technological assistance; and demand-side management. Professional staff from the National Renewable Energy Laboratory, Oak Ridge National Laboratory, Lawrence Berkeley Laboratory, and Pacific Northwest Laboratories collaborate with peers and stakeholders, in particular, the National Association of Regulatory Utility Commissioners, and conduct research and activities for the US Department of Energy. Twelve integrated resource planning activities and projects are summarized in this report. The summaries reflect the diversity of planning and research activities supported by the Department. The summaries also reflect the high levels of collaboration and teaming that are required by the Program and practiced by the researchers. It is concluded that the Program is achieving its objectives by encouraging innovation and improving planning and decision making. Furthermore, as the Department continues to implement planned improvements in the Program, the Department is effectively positioned to attain its ambitious goals.

White, D.L. [Oak Ridge National Lab., TN (United States); Mihlmester, P.E. [Aspen Systems Corp., Oak Ridge, TN (United States)

1993-12-17T23:59:59.000Z

262

Risk and Work Configuration Management as a Function of Integrated Safety Management  

Science Conference Proceedings (OSTI)

National Security Technologies, LLC (NSTec), has established a work management program and corresponding electronic Facilities and Operations Management Information System (e-FOM) to implement Integrated Safety Management (ISM). The management of work scopes, the identification of hazards, and the establishment of implementing controls are reviewed and approved through electronic signatures. Through the execution of the program and the implementation of the electronic system, NSTec staff work within controls and utilize feedback and improvement process. The Integrated Work Control Manual further implements the five functions of ISM at the Activity level. By adding the Risk and Work Configuration Management program, NSTec establishes risk acceptance (business and physical) for liabilities within the performance direction and work management processes. Requirements, roles, and responsibilities are specifically identified in the program while e-FOM provides the interface and establishes the flowdown from the Safety Chain to work and facilities management processes to company work-related directives, and finally to Subject Matter Expert concurrence. The Program establishes, within the defined management structure, management levels for risk identification, risk mitigation (controls), and risk acceptance (business and physical) within the Safety Chain of Responsibility. The Program also implements Integrated Safeguards and Security Management within the NSTec Safety Chain of Responsibility. Once all information has been entered into e-FOM, approved, and captured as data, the information becomes searchable and sortable by hazard, location, organization, mitigating controls, etc.

Lana Buehrer, Michele Kelly, Fran Lemieux, Fred Williams

2007-11-30T23:59:59.000Z

263

Integrated Program of Experimental Diagnostics at the NNSS: An Integrated, Prioritized Work Plan for Diagnostic Development and Maintenance and Supporting Capability  

SciTech Connect

This Integrated Program of Experimental Diagnostics at the NNSS is an integrated prioritized work plan for the Nevada National Security Site (NNSS), formerly the Nevada Test Site (NTS), program that is independent of individual National Security Enterprise Laboratories (Labs) requests or specific Subprograms being supported. This prioritized work plan is influenced by national priorities presented in the Predictive Capability Framework (PCF) and other strategy documents (Primary and Secondary Assessment Technologies Plans and the Plutonium Experiments Plan). This document satisfies completion criteria for FY 2010 MRT milestone #3496: Document an integrated, prioritized work plan for diagnostic development, maintenance, and supporting capability. This document is an update of the 3?year NNSS plan written a year ago, September 21, 2009, to define and understand Lab requests for diagnostic implementation. This plan is consistent with Lab interpretations of the PCF, Primary Assessment Technologies, and Plutonium Experiment plans.

NSTec Mission and Projects Division

2010-09-30T23:59:59.000Z

264

Resource Planning Model: An Integrated Resource Planning and Dispatch Tool for Regional Electric Systems  

Science Conference Proceedings (OSTI)

This report introduces a new capacity expansion model, the Resource Planning Model (RPM), with high spatial and temporal resolution that can be used for mid- and long-term scenario planning of regional power systems. Although RPM can be adapted to any geographic region, the report describes an initial version of the model adapted for the power system in Colorado. It presents examples of scenario results from the first version of the model, including an example of a 30%-by-2020 renewable electricity penetration scenario.

Mai, T.; Drury, E.; Eurek, K.; Bodington, N.; Lopez, A.; Perry, A.

2013-01-01T23:59:59.000Z

265

We have developed an integrated plan to guide implementation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Budget Overview Budget Overview 14 February, 2011 1 Winning the Future "We know what it takes to compete for the jobs and industries of our time. "We need to out-innovate, out-educate, and out-build the rest of the world. We have to make America the best place on Earth to do business. We need to take responsibility for our deficit and reform our government. "That's how our people will prosper. That's how we'll win the future." -- President Obama, 2011 State of the Union 2 Supporting the President's Plan to Win the Future 3 "Some of the most promising innovation is happening in the area of clean energy technology -- technology that is creating jobs, reducing

266

Valuation of Renewable and Distributed Resources: Implications for the Integrated Resource Planning  

Science Conference Proceedings (OSTI)

Over the last two decades, traditional integrated resource planning (IRP) has proven to be a valuable tool for evaluating the tradeoffs between supply-side generation and demand-side efficiency resources. However, there has been increasing focus on the incorporation of renewable, distributed, and demand-side resources into utility planning, which requires new methodologies to assess the value of these resources. Traditional IRP is generation-centric and typically fails to take into account the operationa...

2007-06-18T23:59:59.000Z

267

The integrated tank waste management plan at Oak Ridge National Laboratory  

SciTech Connect

DOE`s Environmental Management Program at Oak Ridge has developed an integrated tank waste management plan that combines the accelerated deployment of innovative technologies with an aggressive waste transfer schedule. Oak Ridge is cleaning out waste from aging underground storage tanks in preparation of waste processing, packaging and final safe disposal. During remediation this plan will reduce the risk of environmental, worker, and civilian exposure, save millions of dollars, and cut years off of tank remediation schedules at Oak Ridge.

Billingsley, K. [STEP, Inc., Oak Ridge, TN (United States); Mims, C. [Dept. of Energy, Oak Ridge, TN (United States). Oak Ridge Operations Office; Robinson, S. [Oak Ridge National Lab., TN (United States)

1998-06-01T23:59:59.000Z

268

Defense Nuclear Facilities Safety Board Public Meeting on the Status of Integration of Safety Into the Design of the Uranium Processing Facility, October 2012  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

HSS Independent Activity Report - HSS Independent Activity Report - Rev. 0 Report Number: HIAR-Y-12-2012-10-02 Site: Y-12 UPF Subject: Office of Enforcement and Oversight's Office of Safety and Emergency Management Evaluations Activity Report for the Defense Nuclear Facilities Safety Board (DNFSB) Public Meeting on the Status of Integration of Safety into the Design of the Uranium Processing Facility (UPF) Dates of Activity: October 2, 2012 Report Preparer: Timothy Mengers Activity Description/Purpose: The Office of Health, Safety and Security (HSS) observed the public hearing of the DNFSB review of the UPF project status for integrating safety into design. The meeting was broken into three parts: a panel discussion and questioning of National Nuclear Security Administration (NNSA) oversight and execution; a panel discussion and questioning of the B&W Y-12

269

Safeguard By Design Lessons Learned from DOE Experience Integrating Safety into Design  

SciTech Connect

This paper identifies the lessons to be learned for the institutionalization of Safeguards by Design (SBD) from the Department of Energy (DOE) experience developing and implementing DOE-STD-1189-2008, Integration of Safety into the Design Process. The experience is valuable because of the similarity of the challenges of integrating safety and safeguards into the design process. The paper reviews the content and development of DOE-STD-1189-2008 from its initial concept in January 2006 to its issuance in March 2008. Lessons learned are identified in the areas of the development and structure of requirements for the SBD process; the target audience for SBD requirements and guidance, the need for a graded approach to SBD, and a possible strategy for development and implementation of SBD within DOE.

Hockert, John; Burbank, Roberta L.

2010-04-13T23:59:59.000Z

270

Safety and Technical Services  

NLE Websites -- All DOE Office Websites (Extended Search)

Safety and Technical Services Safety and Technical Services Minimize The Safety and Technical Services (STS) organization is a component of the Office of Science's (SC's) Oak Ridge Integrated Support Center. The mission of STS is to provide excellent environmental, safety, health, quality, and engineering support to SC laboratories and other U.S. Department of Energy program offices. STS maintains a full range of technically qualified Subject Matter Experts, all of whom are associated with the Technical Qualifications Program. Examples of the services that we provide include: Integrated Safety Management Quality Assurance Planning and Metrics Document Review Tracking and trending analysis and reporting Assessments, Reviews, Surveillances and Inspections Safety Basis Support SharePoint/Dashboard Development for Safety Programs

271

DOE-STD-5503-94; EM Health and Safety Plan Guidelines  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5503-94 5503-94 December 1994 DOE STANDARD EM HEALTH AND SAFETY PLAN GUIDELINES U.S. Department of Energy AREA SAFT Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. This document has been reproduced directly from the best available copy. Available to DOE and DOE contractors from the Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831; (615) 576-8401. Available to the public from the U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161; (703) 487-4650. Order No. DE95004760 DOE-EM-STD-5503-94 i TABLE OF CONTENTS LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii LIST OF TABLES . . . . . . . . . . . . . . . . . . .

272

Demonstration testing and evaluation of in situ soil heating. Health and safety plan (Revision 2)  

SciTech Connect

This document is the Health and Safety Plan (HASP) for the demonstration of IITRI`s EM Treatment Technology. In this process, soil is heated in situ by means of electrical energy for the removal of hazardous organic contaminants. This process will be demonstrated on a small plot of contaminated soil located in the Pit Area of Classified Burial Ground K-1070-D, K-25 Site, Oak Ridge, TN. The purpose of the demonstration is to remove organic contaminants present in the soil by heating to a temperature range of 85{degrees} to 95{degrees}C. The soil will be heated in situ by applying 60-Hz AC power to an array of electrodes placed in boreholes drilled through the soil. In this section a brief description of the process is given along with a description of the site and a listing of the contaminants found in the area.

Dev, H.

1994-12-28T23:59:59.000Z

273

Integrated safety assessment of an oxygen reduction project at Connecticut Yankee Atomic Power's Haddam Neck plant  

SciTech Connect

Connecticut Yankee Atomic Power Company (CYAPCo) has implemented an Integrated Safety Assessment Program (ISAP) for the integrated evaluation and prioritization of plant-specific licensing issues, regulatory policy issues, and plant improvement projects. As part of the ISAP process, probabilistic risk assessment (PRA) is utilized to evaluate the net safety impact of plant modification projects. On a few occasions, implementation of this approach has resulted in the identification of projects with negative safety impacts that could not be quantified via the normal design review and 10CFR50.59 safety evaluation process. An example is a plant modification that was proposed to reduce the oxygen in the Haddam Neck plant's demineralized water storage tank (DWST). The project involved the design and installation of a nitrogen blanketing system on the DWST. The purpose of the project was to reduce the oxygen content on the secondary side, consistent with recommendations from the Electric Power Research Institute Steam Generator Owners Group. Oxygen is one of the contributors to the corrosion process in systems in contact with the feedwater and can cause damage to associated components if not controlled.

Aubrey, J.E.

1987-01-01T23:59:59.000Z

274

Integrating Energy Planning and Techno-Economic Development: A Solid Basis for the . . .  

E-Print Network (OSTI)

This paper started by explaining the major issues of energy system in developing countries and their constraints for energy planning and policy making. It then proceeded to introduce a comprehensive approach for integrating energy planning and techno-economic development which can provide a solid context for to energy technology transfer to under-developed countries. 16 Through the analysis was made in this paper it was highlighted that energy system development should consider four major components: energy policy, energy planning, energy pricing and energy technology. They are interrelated to facilitate energy system development depending upon the integration of energy management and development perspective. It also became clear that individual energy demand (or energy supply) planning in these countries, is not effective while an interrelated planning based on energy demand, energy supply and substitutability of energy seems to be more accurate. This view within an integrated energy planning and technoeconomic development approach will address an appropriate context in which energy technology transfer can be effectively analysed. In this context, the assessment of energy technology depending on country's technological capability and local dominant, qualitative, and quantitative factors can broadly implement. The paper described how we can integrate these different variables (qualitative, quantitative, and knowledge-based) through the Analytic Hierarchy Process with respect to energy policy and energy technology factors in the Third World. The Analytic Hierarchy Process as an appropriate technique can be applied to define the energy planning objectives and also to assess candidate energy technology(ies). As it was pointed out, through a proposed nine-step framework, ...

Goel Kahen

1995-01-01T23:59:59.000Z

275

Planning for Variable Generation Integration through Balancing Authorities Consolidation  

Science Conference Proceedings (OSTI)

As more and more variable generation is integrated into power grids, many challenges and concerns arise for an individual balancing authority (BA) to balance the system with limited resources. Consolidating balancing authorities provides a promising method to mitigate these problems by enabling the sharing of resources through operating different BAs as a single BA. The diversity in load and renewable generation over a wide area can be effectively leveraged, which makes it possible to achieve significant savings in balancing requirements. This paper develops a detailed procedure to compute savings in load following and regulation service requirements due to BAs consolidation. It proposes several evaluation metrics for demonstrating the benefits of BA consolidation. Several study scenarios are designed for a set of BAs in the western United States to test the proposed procedure. Results have shown significant savings in the capacity, ramp rate, and energy of balancing service requirements. Important factors affecting the savings, such as forecast accuracy and cross correlation between forecast errors, are also discussed.

Diao, Ruisheng; Samaan, Nader A.; Makarov, Yuri V.; Hafen, Ryan P.; Ma, Jian

2012-11-10T23:59:59.000Z

276

Safety Management System Policy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Services » Program Management » Safety » Safety Management Services » Program Management » Safety » Safety Management System Policy Safety Management System Policy Safety Management Systems provide a formal, organized process whereby people plan, perform, assess, and improve the safe conduct of work. The Safety Management System is institutionalized through Department of Energy (DOE) directives and contracts to establish the Department-wide safety management objective, guiding principles, and functions. The DOE safety management system consists of six components: Objective Guiding principles Core functions Mechanisms Responsibilities Implementation Safety Management System Policy More Documents & Publications "DOE O 450.2 INTEGRATED SAFETY MANAGEMENT AND DOE P 450.4A INTEGRATED SAFETY MANAGEMENT POLICY FAMILIAR LEVEL

277

A long-term investment planning model for mixed energy infrastructure integrated with renewable  

E-Print Network (OSTI)

A long-term investment planning model for mixed energy infrastructure integrated with renewable- mental friendly. Compared with fossil energy, it is expensive to transport renewable energy for a long distance. Another problem of renewable energy is fluctuation and it is not so stable as fossil energy

278

Integrated Google Maps and Smooth Street View Videos for Route Planning National Taiwan University  

E-Print Network (OSTI)

Integrated Google Maps and Smooth Street View Videos for Route Planning Chi Peng National Taiwan that takes start and end points as the input, and will automatically connect to the Google Maps with Street a smooth scenic video from the starting point to the destination, which combines the Google Maps to provide

Ouhyoung, Ming

279

Integrated Assessment Plan Template and Operational Demonstration for SPIDERS Phase 2: Fort Carson  

Science Conference Proceedings (OSTI)

This document contains the Integrated Assessment Plan (IAP) for the Phase 2 Operational Demonstration (OD) of the Smart Power Infrastructure Demonstration for Energy Reliability (SPIDERS) Joint Capability Technology Demonstration (JCTD) project. SPIDERS will be conducted over a three year period with Phase 2 being conducted at Fort Carson, Colorado. This document includes the Operational Demonstration Execution Plan (ODEP) and the Operational Assessment Execution Plan (OAEP), as approved by the Operational Manager (OM) and the Integrated Management Team (IMT). The ODEP describes the process by which the OD is conducted and the OAEP describes the process by which the data collected from the OD is processed. The execution of the OD, in accordance with the ODEP and the subsequent execution of the OAEP, will generate the necessary data for the Quick Look Report (QLR) and the Utility Assessment Report (UAR). These reports will assess the ability of the SPIDERS JCTD to meet the four critical requirements listed in the Implementation Directive (ID).

Barr, Jonathan L.; Tuffner, Francis K.; Hadley, Mark D.; Kreyling, Sean J.; Schneider, Kevin P.

2013-09-01T23:59:59.000Z

280

Review of the Portsmouth Gaseous Diffusion Plant Integrated Safety Management System Phase I Verification Review, April 2013  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Portsmouth Gaseous Diffusion Plant Portsmouth Gaseous Diffusion Plant Integrated Safety Management System Phase I Verification Review April 2013 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy Table of Contents 1.0 Purpose ................................................................................................................................................. 1 2.0 Scope.................................................................................................................................................... 1 3.0 Background........................................................................................................................................... 1 4.0 Methodology......................................................................................................................................... 1

Note: This page contains sample records for the topic "integration planning safety" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Review of the Portsmouth Gaseous Diffusion Plant Integrated Safety Management System Phase I Verification Review, April 2013  

NLE Websites -- All DOE Office Websites (Extended Search)

Portsmouth Gaseous Diffusion Plant Portsmouth Gaseous Diffusion Plant Integrated Safety Management System Phase I Verification Review April 2013 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy Table of Contents 1.0 Purpose ................................................................................................................................................. 1 2.0 Scope.................................................................................................................................................... 1 3.0 Background........................................................................................................................................... 1 4.0 Methodology......................................................................................................................................... 1

282

Environment/Health/Safety (EHS)  

NLE Websites -- All DOE Office Websites (Extended Search)

P A B C D E F G H I J K L M N O P Q R S T U V W X Y Z PUB-3000 - Health & Safety Manual PUB-3092 - Waste Generator Guidelines PUB-3140 - Integrated Safety Management Plan (ISM)...

283

Review of Commercial Grade Dedication Plans for the Safety Instrumented System at the Savannah River Site Waste Solidification Building Project, August 2011  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Review of Review of Commercial Grade Dedication Plans for the Safety Instrumented System at the Savannah River Site Waste Solidification Building Project May 2011 August 2011 Office of Safety and Emergency Management Evaluations Office of Health, Safety and Security U.S. Department of Energy i Table of Contents 1.0 Purpose ................................................................................................................................................... 1 2.0 Scope ...................................................................................................................................................... 1 3.0 Background ............................................................................................................................................ 2

284

Review of Commercial Grade Dedication Plans for the Safety Instrumented System at the Savannah River Site Waste Solidification Building Project, August 2011  

NLE Websites -- All DOE Office Websites (Extended Search)

Review of Review of Commercial Grade Dedication Plans for the Safety Instrumented System at the Savannah River Site Waste Solidification Building Project May 2011 August 2011 Office of Safety and Emergency Management Evaluations Office of Health, Safety and Security U.S. Department of Energy i Table of Contents 1.0 Purpose ................................................................................................................................................... 1 2.0 Scope ...................................................................................................................................................... 1 3.0 Background ............................................................................................................................................ 2

285

DOE-STD-1120-2005; Integration of Environment Safety and Health into Facility Disposition Activities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

20-2005 20-2005 Volume 1 of 2 April 2005 DOE STANDARD INTEGRATION OF ENVIRONMENT, SAFETY, AND HEALTH INTO FACILITY DISPOSITION ACTIVITIES Volume 1 of 2: Documented Safety Analysis for Decommissioning and Environmental Restoration Projects U.S. Department of Energy AREA SAFT Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. NOT MEASUREMENT SENSITIVE TS i This document has been reproduced directly from the best available copy. Available to DOE and DOE contractors from the Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831; (423) 576-8401. Available to the public from the U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161; (703) 605-6000.

286

PROJECT MANGEMENT PLAN EXAMPLES  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Approach to Meeting Requirements Examples Approach to Meeting Requirements Examples Example 26 9.2 HEALTH AND SAFETY STRATEGY B Plant has integrated safety into its management, planning and work practices in order to protect the public, the environment and facility workers against nuclear and non-nuclear hazards associated with facility transition. Based upon the principles of DNFSB Recommendation 95-2, the Plant's approach to safety management includes:  Applicable. standards and requirements specifically identified and implemented  Safety integrated into baseline and detailed planning  Workers and trained safety professionals use a team approach in hazard identification, analysis and control  Graded approach used to tailor controls based upon hazard type and severity

287

Monitoring the Long-Term Effectiveness of Integrated Safety Management System (ISMS) Implementation Through Use of a Performance Dashboard Process  

SciTech Connect

This session will examine a method developed by Federal and Contractor personnel at the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) to examine long-term maintenance of DOE Integrated Safety Management System (ISMS) criteria, including safety culture attributes, as well as identification of process improvement opportunities. This process was initially developed in the summer of 2000 and has since been expanded to recognize the importance of safety culture attributes, and associated safety culture elements, as defined in DOE M 450.4-1, Integrated Safety Management System Manual. This process has proven to significantly enhance collective awareness of the importance of long-term ISMS implementation as well as support commitments by NNSA/NSO personnel to examine the continued effectiveness of ISMS processes.

Michael D. Kinney and William D. Barrick

2008-09-01T23:59:59.000Z

288

Site specific health and safety plan, 233-S decontamination and decommissioning  

DOE Green Energy (OSTI)

The deactivated 233-S Plutonium Concentration Facility, located in the 200 Area at the Hanford Site, is the subject of this Health and Safety Plan.The 233-S Facility operated from January 1952 until July 1967 at which time the building entered the U.S. Department of Energy`s Surplus Facility Management Program as a retired facility. The facility has since undergone severe degradation due to exposure to extreme weather conditions. Additionally, the weather caused existing cracks in concrete structures of the building to lengthen, thereby increasing the potential for failed confinement of the radioactive material in the building. Differential settlement has also occurred causing portions of the facility to separate from the main building structure, increasing the potential for release of radioactive material to the environment. An expedited response is proposed to remove this threat and ensure protection of human health and the environment. On this premise it is intended that the 233-S Facility removal action be performed as a Comprehensive Environmental Response, Compensation, and Liability Act of 1980 Time-Critical Project being conducted under the Pilot Hanford Environmental Restoration (ER) Initiative

J. E. Fasso

1997-12-31T23:59:59.000Z

289

The Optimized Integration of the Decontamination Plan and the Radwaste Management Plan into Decommissioning Plan to the VVR-S Research Reactor from Romania  

SciTech Connect

The paper presents the progress of the Decontamination Plan and Radioactive Waste Management Plan which accompanies the Decommissioning Plan for research reactor VVR-S located in Magurele, Ilfov, near Bucharest, Romania. The new variant of the Decommissioning Plan was elaborated taking into account the IAEA recommendation concerning radioactive waste management. A new feasibility study for VVR-S decommissioning was also elaborated. The preferred safe management strategy for radioactive wastes produced by reactor decommissioning is outlined. The strategy must account for reactor decommissioning, as well as rehabilitation of the existing Radioactive Waste Treatment Plant and the upgrade of the Radioactive Waste Disposal Facility at Baita-Bihor. Furthermore, the final rehabilitation of the laboratories and reusing of cleaned reactor building is envisaged. An inventory of each type of radioactive waste is presented. The proposed waste management strategy is selected in accordance with the IAEA assistance. Environmental concerns are a part of the radioactive waste management strategy. In conclusion: The current version 8 of the Draft Decommissioning Plan which include the Integrated concept of Decontamination and Decommissioning and Radwaste Management, reflects the substantial work that has been incorporated by IFIN-HH in collaboration with SITON, which has resulted in substantial improvement in document The decommissioning strategy must take into account costs for VVR-S Reactor decommissioning, as well as costs for much needed refurbishments to the radioactive waste treatment plant and the Baita-Bihor waste disposal repository. Several improvements to the Baita-Bihor repository and IFIN-HH waste treatment facility were proposed. The quantities and composition of the radioactive waste generated by VVR-S Reactor dismantling were again estimated by streams and the best demonstrated practicable processing solution was proposed. The estimated quantities of materials to be managed in the near future raise some issues that need to be solved swiftly, such as treatment of aluminum and lead and graphite management. It is envisaged that these materials to be treated to Subsidiary for Nuclear Research (SCN) Pitesti. (authors)

Barariu, G. [National Authority for Nuclear Activity-Subsidiary of Technology and Engineering for Nuclear Projects (Romania)

2008-07-01T23:59:59.000Z

290

Guidance for the design and management of a maintenance plan to assure safety and improve the predictability of a DOE nuclear irradiation facility. Final report  

SciTech Connect

A program is recommended for planning the maintenance of DOE nuclear facilities that will help safety and enhance availability throughout a facility`s life cycle. While investigating the requirements for maintenance activities, a major difference was identified between the strategy suitable for a conventional power reactor and one for a research reactor facility: the latter should provide a high degree of predicted availability (referred to hereafter as ``predictability``) to its users, whereas the former should maximize total energy production. These differing operating goals necessitate different maintenance strategies. A strategy for scheduling research reactor facility operation and shutdown for maintenance must balance safety, reliability,and predicted availability. The approach developed here is based on three major elements: (1) a probabilistic risk analysis of the balance between assured reliability and predictability (presented in Appendix C), (2) an assessment of the safety and operational impact of maintenance activities applied to various components of the facility, and (3) a data base of historical and operational information on the performance and requirements for maintenance of various components. These factors are integrated into a set of guidelines for designing a new highly maintainable facility, for preparing flexible schedules for improved maintenance of existing facilities, and for anticipating the maintenance required to extend the life of an aging facility. Although tailored to research reactor facilities, the methodology has broader applicability and may therefore be used to improved the maintenance of power reactors, particularly in anticipation of peak load demands.

Booth, R.S.; Kryter, R.C.; Shepard, R.L.; Smith, O.L. [Oak Ridge National Lab., TN (United States); Upadhyaya, B.R. [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Nuclear Engineering; Rowan, W.J.

1994-10-01T23:59:59.000Z

291

Landscape ecological planning: Integrating land use and wildlife conservation for biomass crops  

DOE Green Energy (OSTI)

What do a mussel shoat, a zoo, and a biomass plantation have in common? Each can benefit from ecology-based landscape planning. This paper provides examples of landscape ecological planning from some diverse projects the author has worked on, and discusses how processes employed and lessons learned from these projects are being used to help answer questions about the effects of biomass plantings (hardwood tree crops and native grasses) on wildlife habitat. Biomass environmental research is being designed to assess how plantings of different acreage, composition and landscape context affect wildlife habitat value, and is addressing the cumulative effect on wildlife habitat of establishing multiple biomass plantations across the landscape. Through landscape ecological planning, answers gleaned from research can also help guide biomass planting site selection and harvest strategies to improve habitat for native wildlife species within the context of economically viable plantation management - thereby integrating the needs of people with those of the environment.

Schiller, A.

1995-12-31T23:59:59.000Z

292

Electric utility system planning studies for OTEC power integration. Final report  

DOE Green Energy (OSTI)

Florida Power Corporation (FPC) conducted an evaluation of the possible integration of OTEC into the FPC system. Existing system planning procedures, assumptions, and corporate financial criteria for planning new generating capacity were used without modification. A baseline configuration for an OTEC plant was developed for review with standard planning procedures. The OTEC plant characteristics and costs were incorporated in considerable detail. These basic inputs were examined using the FPC system planning methods. It was found that with the initial set of conditions, OTEC would not be economically viable. Using the same system planning procedures, a number of adjustments were made to the key study assumptions. It was found that two considerations dominate the analysis; the assumed rate of fuel cost escalation, and the projected capital cost of the OTEC plant. The analysis produced a parametric curve: on one hand, if fuel costs were to escalate at a rate greater than assumed (12% vs the assumed 5% for coal), and if no change were made to the OTEC input assumptions, the basic economic competitive criteria would be equivalent to the principal alternative, coal fueled plants. Conversely, if the projected cost of the OTEC plant were to be reduced from the assumed $2256/kW to $1450/kW, the economic competitiveness criterion would be satisfied. After corporate financial analysis, it was found that even if the cost competitive criterion were to be reached, the plan including OTEC could not be financed by Florida Power Corporation. Since, under the existing set of conditions for financing new plant capital requirements, FPC could not construct an OTEC plant, some other means of ownership would be necessary to integrate OTEC into the FPC system. An alternative such as a third party owning the plant and selling power to FPC, might prove attractive. (WHK)

None

1980-11-30T23:59:59.000Z

293

Opportunities for integrating deliberate and time-sensitive joint depolyment planning in USTRANSCOM component commands  

Science Conference Proceedings (OSTI)

The Decision System Research Section of the Oak Ridge National Laboratory (ORNL) is assisting the Deployment Directorate (formerly the Joint Deployment Agency) of the US Transportation Command (USTRANSCOM) in identifying and evaluating opportunities for improving the automation support used in deliberate and time-critical deployment planning. USTRANSCOM, which is a unified command (i.e., personnel are drawn from all services), was created in the fall of 1987 to consolidate the functions of the former Military Transportation Operating Agencies (the Military Airlift Command, the Military Traffic Management Command, and the Military Sealift Command). An important factor justifying creation of USTRANSCOM, was the possibility of combining and improving coordination in deployment planning between the organizations responsible for strategic transportation activities during times of crisis. This report, the second in a series to be produced in the course of the ORNL study, presents three possibilities for integrating deliberate and time-sensitive planning. Two proposals recommended for use by MTMC and MSC build on cooperative planning initiatives already in progress in the two commands. A unique application of relative probabilistic measures is a key element in a proposal for improving MTMC/MAC airlift planning. 35 refs., 1 tab.

Edwards, R.

1988-05-02T23:59:59.000Z

294

September 26, 2011, Department letter transmitting the Implementation Plan for Board Recommendation 2010-1, Safety Analysis Requirements for Defining Adequate Protection for the Public and the Workers.  

NLE Websites -- All DOE Office Websites (Extended Search)

September 26, 2011 September 26, 2011 The Honorable Peter S. Winokur Chairman Defense Nuclear Facilities Safety Board 625 Indiana Avenue, NW, Suite 700 Washington, DC 20004-2941 Dear Mr. Chairman: Enclosed is the Department of Energy's Implementation Plan for Defense Nuclear Facilities Safety Board Recommendation 2010-1, Safety Analysis Requirements for Defining Adequate Protection for the Public and the Workers. This Plan provides the Department's approach for updating its Documented Safety Analysis Standards and requirements to clarify them in regards to performance of hazard and accident analysis and the identification of safety controls. I have assigned Dr. James B. O'Brien, Acting Director, Office of Nuclear Safety in the Office of Health, Safety and Security, as the Department's Responsible

295

WAG 2 remedial investigation and site investigation site-specific work plan/health and safety checklist for the soil and sediment task. Environmental Restoration Program  

SciTech Connect

This document is a site-specific work plan/health and safety checklist (WP/HSC) for a task of the Waste Area Grouping 2 Remedial Investigation and Site Investigation (WAG 2 RI&SI). Title 29 CFR Part 1910.120 requires that a health and safety program plan that includes site- and task-specific information be completed to ensure conformance with health- and safety-related requirements. To meet this requirement, the health and safety program plan for each WAG 2 RI&SI field task must include (1) the general health and safety program plan for all WAG 2 RI&SI field activities and (2) a WP/HSC for that particular field task. These two components, along with all applicable referenced procedures, must be kept together at the work site and distributed to field personnel as required. The general health and safety program plan is the Health and Safety Plan for the Remedial Investigation and Site Investigation of Waste Area Grouping 2 at the Oak Ridge National Laboratory, Oak Ridge, Tennessee (ORNL/ER-169). The WP/HSCs are being issued as supplements to ORNL/ER-169.

Holt, V.L.; Burgoa, B.B.

1993-12-01T23:59:59.000Z

296

Integration of the reliability of passive system in probabilistic safety assessment  

SciTech Connect

Probability Safety Assessment (PSA) of nuclear power plants has demonstrated its efficiency in decision-making process. But the treatment in PSA of safety passive systems, specially those implementing moving working fluid, is a difficult task because in addition to the mechanical failures of components, the failure of the physical process (e.g. natural circulation) has to be considered. The difficulty in the evaluation of the failure risk of the physical phenomenon lies in the great number of parameters that must be taken into account, in their associated uncertainties and in the limitations of physical modelling. We can note that in the existing PSA of future reactors equipped with passive systems, this risk of the physical process failure due to the uncertainties, is not at all taken into account. In this paper, we present a methodology to evaluate this risk of failure and to include it in a PSA. This evaluation is obtained by uncertainty analyses on thermalhydraulic calculations. As an example, a simplified PSA was carried out on a fictive reactor with two types of safety passive systems both in the primary circuit: Residual Passive heat Removal system (RP2) and a safety injection system consisting in accumulators and discharge lines equipped with check valves. An accidental scenario has been analysed, starting with loss of electrical supply when the reactor is at full power. The failure analyses performed on this reactor have allowed the characterisation of the technical failures (on RP2 valves, tubes in RP2 exchanger and safety injection check valves) and the ranges of variation of uncertain parameters which influence the physical process. The resulting accidental scenario is presented in the form of a simplified event tree. The majority of the sequences of this event tree have been analysed by deterministic evaluations with envelope values of the uncertain parameters. For some sequences where the definition of envelope cases was impossible, basic events corresponding to the failure of the physical process have been added and uncertainty analyses have been performed to evaluate the corresponding probability of failure. For this purpose the thermal-hydraulic CATHARE code has been coupled to a Monte-Carlo simulation modulus. The failure probabilities obtained by these reliability analyses have been integrated in the corresponding sequences. This methodology allows the probabilistic evaluation of the influence of the passive system on an accidental scenario and could be used to test the interest to replace an active system by a passive system on specific situations. (authors)

Marques, M. [Commissariat a l'Energie Atomique (CEA), Building 212, Centre de Cadarache, 13108 Saint-Paul-Les-Durance Cedex (France); Pignatel, J.F.; Saignes, P.; Devictor, N.; La Lumia, V.; Mercier, S

2004-07-01T23:59:59.000Z

297

Fuel Cell Technologies Program Multi-Year Research, Development and Demonstration Plan - Section 5.0 Systems Integration  

NLE Websites -- All DOE Office Websites (Extended Search)

Page 3.8 Page 3.8 2012 Systems Integration Multi-Year Research, Development and Demonstration Plan Page 5 - 1 5.0 Systems Integration The Systems Integration function of the DOE Hydrogen and Fuel Cells Program (the Program) provides independent, strategic, systems-level expertise and processes to enable system-level planning, data-driven decision-making, effective portfolio management, and program integration. System Integration ensures that system-level targets are developed, verified, and met and that the sub- programs are well-coordinated. Systems Integration provides tailored technical and programmatic support to ensure a disciplined approach to the research, design, development, and validation of complex systems. Systems Integration provides

298

300 Area Integrated Field-Scale Subsurface Research Challenge (IFRC) Field Site Management Plan  

Science Conference Proceedings (OSTI)

Pacific Northwest National Laboratory (PNNL) has established the 300 Area Integrated Field-Scale Subsurface Research Challenge (300 Area IFRC) on the Hanford Site in southeastern Washington State for the U.S. Department of Energys (DOE) Office of Biological and Environmental Research (BER) within the Office of Science. The project is funded by the Environmental Remediation Sciences Division (ERSD). The purpose of the project is to conduct research at the 300 IFRC to investigate multi-scale mass transfer processes associated with a subsurface uranium plume impacting both the vadose zone and groundwater. The management approach for the 300 Area IFRC requires that a Field Site Management Plan be developed. This is an update of the plan to reflect the installation of the well network and other changes.

Freshley, Mark D.

2008-12-31T23:59:59.000Z

299

Fiscal Year 2005 Integrated Monitoring Plan for the Hanford Groundwater Performance Assessment Project  

Science Conference Proceedings (OSTI)

Groundwater is monitored in hundreds of wells at the Hanford Site to fulfill a variety of requirements. Separate monitoring plans are prepared for various purposes, but sampling is coordinated and data are shared among users. DOE manages these activities through the Hanford Groundwater Performance Assessment Project, which is the responsibility of Pacific Northwest National Laboratory. The groundwater project integrates monitoring for various objectives into a single sampling schedule to avoid redundancy of effort and to improve efficiency of sample collection.This report documents the purposes and objectives of groundwater monitoring at the DOE Hanford Site in southeastern Washington State.

Rieger, JoAnne T.; Hartman, Mary J.

2005-06-16T23:59:59.000Z

300

Report of the Integrated Program Planning Activity for the DOE Fusion Energy Sciences Program  

SciTech Connect

This report of the Integrated Program Planning Activity (IPPA) has been prepared in response to a recommendation by the Secretary of Energy Advisory Board that, ''Given the complex nature of the fusion effort, an integrated program planning process is an absolute necessity.'' We, therefore, undertook this activity in order to integrate the various elements of the program, to improve communication and performance accountability across the program, and to show the inter-connectedness and inter-dependency of the diverse parts of the national fusion energy sciences program. This report is based on the September 1999 Fusion Energy Sciences Advisory Committee's (FESAC) report ''Priorities and Balance within the Fusion Energy Sciences Program''. In its December 5,2000, letter to the Director of the Office of Science, the FESAC has reaffirmed the validity of the September 1999 report and stated that the IPPA presents a framework and process to guide the achievement of the 5-year goals listed in the 1999 report. The National Research Council's (NRC) Fusion Assessment Committee draft final report ''An Assessment of the Department of Energy's Office of Fusion Energy Sciences Program'', reviewing the quality of the science in the program, was made available after the IPPA report had been completed. The IPPA report is, nevertheless, consistent with the recommendations in the NRC report. In addition to program goals and the related 5-year, 10-year, and 15-year objectives, this report elaborates on the scientific issues associated with each of these objectives. The report also makes clear the relationships among the various program elements, and cites these relationships as the reason why integrated program planning is essential. In particular, while focusing on the science conducted by the program, the report addresses the important balances between the science and energy goals of the program, between the MFE and IFE approaches, and between the domestic and international aspects of the program. The report also outlines a process for establishing a database for the fusion research program that will indicate how each research element fits into the overall program. This database will also include near-term milestones associated with each research element, and will facilitate assessments of the balance within the program at different levels. The Office of Fusion Energy Sciences plans to begin assembling and using the database in the Spring of 2001 as we receive proposals from our laboratories and begin to prepare our budget proposal for Fiscal Year 2003.

None

2000-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "integration planning safety" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Incorporating qualitative objectives in integrated resource planning: Application of analytic hierarchy process and compromise programming  

SciTech Connect

This article proposes a multiobjective methodology for the integrated resource planning (IRP) problem using a combined analytic hierarchy process (AHP)-compromise programming (CP) model. Six objectives, of which five are qualitative in nature, have been considered to select demand and supply-side resources for meeting future electricity demand. The quantitative objective (viz., cost) is employed directly in the CP model. AHP priorities are derived for the qualitative objectives (e.g., technological maturity) after eliciting expert judgments. These priorities are employed as coefficients of the decision variables in the objective functions corresponding to the qualitative objectives of the model. The two distinct advantages of this method are (1) explicit consideration of all important qualitative and quantitative aspects of demand-side management (DSM) and supply-side options, and (2) consideration of specific characteristics of various types of DSM options. An illustrative application is provided for an Indian utility (Maharashtra State Electricity System) for its integrated resource plan for the period 1990--2000. The results show that the AHP-CP model incorporating qualitative objectives selects a different portfolio of DSM and supply options, as compared with single-criterion solutions. Compromise among the conflicting objectives leads to significant cost savings as well as qualitative benefits like improved system reliability, reduced environmental impact, fewer problems related to fuel supply, and shorter project installation times.

Koundinya, S.; Chattopadhyay, D.; Ramanathan, R. [Indira Gandhi Inst. of Development Research, Bombay (India)

1995-09-01T23:59:59.000Z

302

DOE-STD-1082-94; DOE Standard Preparation, Review, and Approval of Implementaiton Plans For Nuclear Safety Requirements  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

82-94 82-94 October 1994 DOE STANDARD PREPARATION, REVIEW, AND APPROVAL OF IMPLEMENTATION PLANS FOR NUCLEAR SAFETY REQUIREMENTS U.S. Department of Energy AREA SAFT Washington D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. This document has been reproduced directly from the best available copy. Available to DOE and DOE contractors from the Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831; (615)576-8401. Available to the public from the U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161; (703) 487-4650. Order No. DE95001461 DOE-STD-1082-94 iii FOREWORD 1. This Department of Energy (DOE) technical standard has been prepared by the Office of Environment, Safety and Health with the assistance of Steve

303

Environment, safety, health, and quality plan for the TRU- Contaminated Arid Soils Project of the Landfill Stabilization Focus Area Program  

SciTech Connect

The Landfill Stabilization Focus Area (LSFA) is a program funded by the US Department of Energy Office of Technology Development. LSFA supports the applied research, development, demonstration, testing, and evaluation of a suite of advanced technologies that together form a comprehensive remediation system for the effective and efficient remediation of buried waste. The TRU-Contaminated Arid Soils project is being conducted under the auspices of the LSFA Program. This document describes the Environment, Safety, Health, and Quality requirements for conducting LSFA/Arid Soils activities at the Idaho National Engineering Laboratory. Topics discussed in this report, as they apply to LSFA/Arid Soils operations, include Federal, State of Idaho, and Environmental Protection Agency regulations, Health and Safety Plans, Quality Program, Data Quality Objectives, and training and job hazard analysis. Finally, a discussion is given on CERCLA criteria and system and performance audits as they apply to the LSFA Program.

Watson, L.R.

1995-06-01T23:59:59.000Z

304

Integrated plan for LArTPC neutrino detectors in the US  

SciTech Connect

We present an integrated R&D plan aimed at demonstrating the ability to build a very large Liquid Argon Time Projection Chamber (LArTPC), on a scale suitable for use as a Far Detector for the LBNE neutrino oscillation experiment. This plan adopts current LArTPC R&D-related activities and proposes new ones to address questions that go beyond those being answered by the current efforts. We have employed a risk evaluation strategy to identify questions that can be answered (or risks that can be mitigated) through one or more R&D steps. In summary form, the plan consists of the following pre-existing components: (1) The Materials Test Stand program, now in operation at Fermilab, addressing questions pertaining to maintenance of argon purity; (2) Existing electronics test stands at FNAL and BNL; (3) The Liquid Argon Purity Demonstrator (LAPD) now being assembled at Fermilab; (4) The ArgoNeuT prototype LArTPC, now running in the NuMI beam; (5) The MicroBooNE experiment, proposed as a physics experiment that will advance our understanding of the LArTPC technology, now completing its conceptual design phase; (6) A software development effort that is well integrated across present and planned LArTPC detectors. We are proposing to add to these efforts the following: (1) A membrane cryostat mechanical prototype to evaluate and gain expertise with this technology; (2) An installation and integration prototype, to understand issues pertaining to detector assembly, particularly in an underground environment; (3) A {approx} 5% scale electronics systems test to understand system-wide issues as well as individual component reliability. (4) A calibration test stand that would consist of a small TPC to be exposed to a test beam for calibration studies, relevant for evaluation of physics sensitivities. We have developed a timeline and milestones for achieving these goals as discussed in Section 4. The proposed activities necessary for the final design of LAr20 are complete by CD3 in 2014.

Baller, B.; Fleming, B.; /Fermilab

2009-11-01T23:59:59.000Z

305

Letter from Nuclear Energy Institute regarding Integrated Safety Analysis: Why it is Appropropriate for Fuel Recycling Facilities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

082 l F: 202.533.0166 l rxm@nei.org l www.nei.org 082 l F: 202.533.0166 l rxm@nei.org l www.nei.org Rod McCullum DIRECTOR FUEL CYCLE PROJECTS NUCLEAR GENERATION DIVISION September 10, 2010 Ms. Catherine Haney Director Office of Nuclear Material Safety and Safeguards U.S. Nuclear Regulatory Commission Washington, DC 20555-0001 Subject: Integrated Safety Analysis: Why It Is Appropriate for Fuel Recycling Facilities Project Number: 689 Dear Ms. Haney: Enclosed for your review is a Nuclear Energy Institute white paper on the use of Integrated Safety Analysis (ISA) at U.S. Nuclear Regulatory Commission-licensed recycling facilities. This paper is intended as an information source for the NRC and should serve as a foundation for discussion with industry representatives on the issue.

306

Integration of renewable energy sources: reliability-constrained power system planning and operations using computational intelligence  

E-Print Network (OSTI)

Renewable sources of energy such as wind turbine generators and solar panels have attracted much attention because they are environmentally friendly, do not consume fossil fuels, and can enhance a nations energy security. As a result, recently more significant amounts of renewable energy are being integrated into conventional power grids. The research reported in this dissertation primarily investigates the reliability-constrained planning and operations of electric power systems including renewable sources of energy by accounting for uncertainty. The major sources of uncertainty in these systems include equipment failures and stochastic variations in time-dependent power sources. Different energy sources have different characteristics in terms of cost, power dispatchability, and environmental impact. For instance, the intermittency of some renewable energy sources may compromise the system reliability when they are integrated into the traditional power grids. Thus, multiple issues should be considered in grid interconnection, including system cost, reliability, and pollutant emissions. Furthermore, due to the high complexity and high nonlinearity of such non-traditional power systems with multiple energy sources, computational intelligence based optimization methods are used to resolve several important and challenging problems in their operations and planning. Meanwhile, probabilistic methods are used for reliability evaluation in these reliability-constrained planning and design. The major problems studied in the dissertation include reliability evaluation of power systems with time-dependent energy sources, multi-objective design of hybrid generation systems, risk and cost tradeoff in economic dispatch with wind power penetration, optimal placement of distributed generators and protective devices in power distribution systems, and reliability-based estimation of wind power capacity credit. These case studies have demonstrated the viability and effectiveness of computational intelligence based methods in dealing with a set of important problems in this research arena.

Wang, Lingfeng

2008-12-01T23:59:59.000Z

307

Plan  

NLE Websites -- All DOE Office Websites (Extended Search)

Methane Hydrate Multi-Year R&D Program Plan NATIONAL METHANE HYDRATE MULTI-YEAR R&D PROGRAM PLAN U.S. Department of Energy Office of Fossil Energy Federal Energy Technology Center...

308

WAG 2 remedial investigation and site investigation site-specific work plan/health and safety checklist for the sediment transport modeling task  

SciTech Connect

This site-specific Work Plan/Health and Safety Checklist (WP/HSC) is a supplement to the general health and safety plan (HASP) for Waste Area Grouping (WAG) 2 remedial investigation and site investigation (WAG 2 RI&SI) activities [Health and Safety Plan for the Remedial Investigation and Site Investigation of Waste Area Grouping 2 at the Oak Ridge National Laboratory, Oak Ridge, Tennessee (ORNL/ER-169)] and provides specific details and requirements for the WAG 2 RI&SI Sediment Transport Modeling Task. This WP/HSC identifies specific site operations, site hazards, and any recommendations by Oak Ridge National Laboratory (ORNL) health and safety organizations [i.e., Industrial Hygiene (IH), Health Physics (HP), and/or Industrial Safety] that would contribute to the safe completion of the WAG 2 RI&SI. Together, the general HASP for the WAG 2 RI&SI (ORNL/ER-169) and the completed site-specific WP/HSC meet the health and safety planning requirements specified by 29 CFR 1910.120 and the ORNL Hazardous Waste Operations and Emergency Response (HAZWOPER) Program Manual. In addition to the health and safety information provided in the general HASP for the WAG 2 RI&SI, details concerning the site-specific task are elaborated in this site-specific WP/HSC, and both documents, as well as all pertinent procedures referenced therein, will be reviewed by all field personnel prior to beginning operations.

Holt, V.L.; Baron, L.A.

1994-05-01T23:59:59.000Z

309

The Mixed Waste Management Facility. Design basis integrated operations plan (Title I design)  

SciTech Connect

The Mixed Waste Management Facility (MWMF) will be a fully integrated, pilotscale facility for the demonstration of low-level, organic-matrix mixed waste treatment technologies. It will provide the bridge from bench-scale demonstrated technologies to the deployment and operation of full-scale treatment facilities. The MWMF is a key element in reducing the risk in deployment of effective and environmentally acceptable treatment processes for organic mixed-waste streams. The MWMF will provide the engineering test data, formal evaluation, and operating experience that will be required for these demonstration systems to become accepted by EPA and deployable in waste treatment facilities. The deployment will also demonstrate how to approach the permitting process with the regulatory agencies and how to operate and maintain the processes in a safe manner. This document describes, at a high level, how the facility will be designed and operated to achieve this mission. It frequently refers the reader to additional documentation that provides more detail in specific areas. Effective evaluation of a technology consists of a variety of informal and formal demonstrations involving individual technology systems or subsystems, integrated technology system combinations, or complete integrated treatment trains. Informal demonstrations will typically be used to gather general operating information and to establish a basis for development of formal demonstration plans. Formal demonstrations consist of a specific series of tests that are used to rigorously demonstrate the operation or performance of a specific system configuration.

NONE

1994-12-01T23:59:59.000Z

310

System theoretic framework for assuring safety and dependability of highly integrated aero engine control systems  

E-Print Network (OSTI)

The development of complex, safety-critical systems for aero-engine control is subject to the, often competing, demands for higher safety and reduced development cost. Although the commercial aerospace industry has a general ...

Atherton, Malvern J

2005-01-01T23:59:59.000Z

311

The 300 Area Integrated Field Research Challenge Quality Assurance Project Plan  

Science Conference Proceedings (OSTI)

Pacific Northwest National Laboratory and a group of expert collaborators are using the U.S. Department of Energy Hanford Site 300 Area uranium plume within the footprint of the 300-FF-5 groundwater operable unit as a site for an Integrated Field-Scale Subsurface Research Challenge (IFRC). The IFRC is entitled Multi-Scale Mass Transfer Processes Controlling Natural Attenuation and Engineered Remediation: An IFRC Focused on the Hanford Site 300 Area Uranium Plume Project. The theme is investigation of multi-scale mass transfer processes. A series of forefront science questions on mass transfer are posed for research that relate to the effect of spatial heterogeneities; the importance of scale; coupled interactions between biogeochemical, hydrologic, and mass transfer processes; and measurements/approaches needed to characterize and model a mass transfer-dominated system. This Quality Assurance Project Plan provides the quality assurance requirements and processes that will be followed by the 300 Area IFRC Project. This plan is designed to be used exclusively by project staff.

Fix, N. J.

2009-04-29T23:59:59.000Z

312

iCycle: Integrated, multicriterial beam angle, and profile optimization for generation of coplanar and noncoplanar IMRT plans  

SciTech Connect

Purpose: To introduce iCycle, a novel algorithm for integrated, multicriterial optimization of beam angles, and intensity modulated radiotherapy (IMRT) profiles. Methods: A multicriterial plan optimization with iCycle is based on a prescription called wish-list, containing hard constraints and objectives with ascribed priorities. Priorities are ordinal parameters used for relative importance ranking of the objectives. The higher an objective priority is, the higher the probability that the corresponding objective will be met. Beam directions are selected from an input set of candidate directions. Input sets can be restricted, e.g., to allow only generation of coplanar plans, or to avoid collisions between patient/couch and the gantry in a noncoplanar setup. Obtaining clinically feasible calculation times was an important design criterium for development of iCycle. This could be realized by sequentially adding beams to the treatment plan in an iterative procedure. Each iteration loop starts with selection of the optimal direction to be added. Then, a Pareto-optimal IMRT plan is generated for the (fixed) beam setup that includes all so far selected directions, using a previously published algorithm for multicriterial optimization of fluence profiles for a fixed beam arrangement Breedveld et al.[Phys. Med. Biol. 54, 7199-7209 (2009)]. To select the next direction, each not yet selected candidate direction is temporarily added to the plan and an optimization problem, derived from the Lagrangian obtained from the just performed optimization for establishing the Pareto-optimal plan, is solved. For each patient, a single one-beam, two-beam, three-beam, etc. Pareto-optimal plan is generated until addition of beams does no longer result in significant plan quality improvement. Plan generation with iCycle is fully automated. Results: Performance and characteristics of iCycle are demonstrated by generating plans for a maxillary sinus case, a cervical cancer patient, and a liver patient treated with SBRT. Plans generated with beam angle optimization did better meet the clinical goals than equiangular or manually selected configurations. For the maxillary sinus and liver cases, significant improvements for noncoplanar setups were seen. The cervix case showed that also in IMRT with coplanar setups, beam angle optimization with iCycle may improve plan quality. Computation times for coplanar plans were around 1-2 h and for noncoplanar plans 4-7 h, depending on the number of beams and the complexity of the site. Conclusions: Integrated beam angle and profile optimization with iCycle may result in significant improvements in treatment plan quality. Due to automation, the plan generation workload is minimal. Clinical application has started.

Breedveld, Sebastiaan; Storchi, Pascal R. M.; Voet, Peter W. J.; Heijmen, Ben J. M. [Department of Radiation Oncology, Erasmus MC Rotterdam, Groene Hilledijk 301, 3075 EA Rotterdam (Netherlands)

2012-02-15T23:59:59.000Z

313

10-MWe solar-thermal central-receiver pilot plant, solar-facilities design integration: system integration laboratory test plan (RADL item 6-4)  

DOE Green Energy (OSTI)

A general demonstration test plan is provided for the activities to be accomplished at the Systems Integration Laboratory. The Master Control System, Subsystem Distributed Process Control, Representative Signal Conditioning Units, and Redline Units from the Receiver Subsystem and the Thermal Storage Subsystem and other external interface operational functions will be integrated and functionally demonstrated. The Beckman Multivariable Control Unit will be tested for frequency response, static checks, configuration changes, switching transients, and input-output interfaces. Maximum System Integration Laboratory testing will demonstrate the operational readiness of Pilot Plant controls and external interfaces that are available. Minimum System Integration Laboratory testing will be accomplished with reduced set of hardware, which will provide capability for continued development and demonstration of Operational Control System plant control application software. Beam Control System Integration Laboratory testing will demonstrate the operational readiness of the Beam Control System equipment and software. (LEW)

Not Available

1980-10-01T23:59:59.000Z

314

Migrating data from TcSE to DOORS : an evaluation of the T-Plan Integrator software application.  

SciTech Connect

This report describes our evaluation of the T-Plan Integrator software application as it was used to transfer a real data set from the Teamcenter for Systems Engineering (TcSE) software application to the DOORS software application. The T-Plan Integrator was evaluated to determine if it would meet the needs of Sandia National Laboratories to migrate our existing data sets from TcSE to DOORS. This report presents the struggles of migrating data and focuses on how the Integrator can be used to map a data set and its data architecture from TcSE to DOORS. Finally, this report describes how the bulk of the migration can take place using the Integrator; however, about 20-30% of the data would need to be transferred from TcSE to DOORS manually. This report does not evaluate the transfer of data from DOORS to TcSE.

Post, Debra S. (Sandia National Laboratories, Livermore, CA); Manzanares, David A.; Taylor, Jeffrey L.

2011-02-01T23:59:59.000Z

315

The effect of an integrated catchment management plan on the greenhouse gas balance of the Mangaotama catchment of the Whatawhata Hill Country Research Station.  

E-Print Network (OSTI)

??An integrated catchment management plan implemented in the Mangaotama catchment of the Whatawhata Research Station in 2001 demonstrated that Pinus radiata forestry on marginal land, (more)

Smiley, Daniel

2012-01-01T23:59:59.000Z

316

CHEMICAL HYGIENE PLAN HAZARD COMMUNICATION PLAN  

E-Print Network (OSTI)

CHEMICAL HYGIENE PLAN AND HAZARD COMMUNICATION PLAN Occupational Exposures to Hazardous Chemicals and Safety Numbers Research Safety 2723 Environmental Health/Safety Chemical Hygiene Officer Radiation Safety Human Resources (Accident Reports) 4589 Bioengineering 2965 #12;TABLE OF CONTENTS CHEMICAL HYGIENE PLAN

Kim, Duck O.

317

Utility Integrated Resource Planning: An Emerging Driver of New Renewable Generation in the Western United States  

E-Print Network (OSTI)

understanding that wind integration costs are manageable,higher levels of wind integration is also critical if windanalysis of wind powers integration costs and capacity

Bolinger, Mark; Wiser, Ryan

2005-01-01T23:59:59.000Z

318

Tank waste remediation system environmental program plan  

SciTech Connect

This Environmental Program Plan has been developed in support of the Integrated Environmental, Safety and Health Management System and consistent with the goals of DOE/RL-96-50, Hanford Strategic Plan (RL 1996a), and the specifications and guidance for ANSI/ISO 14001-1996, Environmental Management Systems Specification with guidance for use (ANSI/ISO 1996).

Borneman, L.E.

1998-01-09T23:59:59.000Z

319

N Reactor standby program plan; Part 5: Safety and environment FY-90 update  

Science Conference Proceedings (OSTI)

N Reactor was shutdown by order of DOE in January 1987 to permit implementation of a series of hardware and software safety enhancements. These upgrades were designed to enhance the safe operation of N Reactor and provide comparability to commercial nuclear industry standards and requirements. The enhancements were identified by a series of external independent reviews and were managed under the N Reactor Safety Enhancement Program. In February 1988, DOE directed that N Reactor would be placed in standby. Additional guidance in FY-88 directed that the reactor would be placed in a dry layup status based on preceding Westinghouse Hanford Studies directed at defining a cost effective layup method which would preserve the ability to subsequently restart and operate N Reactor if required. The FY-88 directives also stipulated that the ability to restart N Reactor in a 2--3 year period from date of notification be preserved. 7 figs., 8 tabs.

NONE

1989-12-01T23:59:59.000Z

320

DOE-HDBK-3027-99; DOE Handbook Integrated Safety Management Systems (ISMS) Verification Team Leader's Handbook  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

27-99 27-99 June 1999 DOE HANDBOOK INTEGRATED SAFETY MANAGEMENT SYSTEMS (ISMS) VERIFICATION TEAM LEADER'S HANDBOOK U.S. Department of Energy AREA SAFT Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. This document has been reproduced from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax: (301) 903-9823. Available to the public from the U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161; (703) 605-6000. DOE-HDBK-3027-99 iii INTEGRATED SAFETY MANAGEMENT SYSTEMS (ISMS) VERIFICATION TEAM LEADER' S HANDBOOK FOREWORD This ISMS Verification Team Leader'

Note: This page contains sample records for the topic "integration planning safety" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

December 5, 2012, Deparment letter transmitting the Implementation Plan for Recommendation 2012-1, Savannah River Site Building 235-F Safety.  

NLE Websites -- All DOE Office Websites (Extended Search)

Washington, DC 20585 Washington, DC 20585 December 5, 2012 The Honorable Peter S. Winokur Chairman Defense Nuclear Facilities Safety Board 625 Indiana Avenue NW, Suite 700 Washington, DC 20004 Dear Mr. Chairman: Enclosed is the Department of Energy's (DOE) Implementation Plan (IP) for the Defense Nuclear Facilities Safety Board's (Board) Recommendation 2012-1, Savannah River Site Building 235-F Sq(et identifing the Depatiment's actions to reduce the hazards

322

DOE-STD-1120-2005; Integration of Environment Safety and Health...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

INTO FACILITY DISPOSITION ACTIVITIES Volume 1 of 2: Documented Safety Analysis for Decommissioning and Environmental Restoration Projects U.S. Department of Energy AREA SAFT...

323

2012 Annual Workforce Analysis and Staffing Plan Report - NNSA for Safety and Health - NA-26  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1 Annual Workforce Analysis and Staffing Plan Report Draft as of December 31, 2012 Reporting Office: _NA-26 Office of Fissile Material Disposition at SRS____ Section 1: Current Mission(s) of the Organization and Potential Changes 1. The Office of Fissile Material Disposition (NA-26) is part of the National Nuclear Security Administration (NNSA). NA-26 supports NNSA Strategic Plan Goal #2, "Provide technical leadership to limit or prevent the spread of materials, technology, and expertise relating to weapons of mass destruction; advance the technologies to detect the proliferation of weapons of mass destruction worldwide, and eliminate or secure inventories of surplus materials and infrastructure usable for nuclear weapons." The NA-26 organization focuses on the safe and secure disposition of

324

Integrating Wildlife Crossing into Transportation Plans and Projects in North America  

E-Print Network (OSTI)

Improvement Program (STIP) process? and 3. . . .duringbridges and the long range and STIP transportation plans can

Cramer, Patricia C.; Bissonette, John

2007-01-01T23:59:59.000Z

325

CoalFleet RD&D augmentation plan for integrated gasification combined cycle (IGCC) power plants  

SciTech Connect

To help accelerate the development, demonstration, and market introduction of integrated gasification combined cycle (IGCC) and other clean coal technologies, EPRI formed the CoalFleet for Tomorrow initiative, which facilitates collaborative research by more than 50 organizations from around the world representing power generators, equipment suppliers and engineering design and construction firms, the U.S. Department of Energy, and others. This group advised EPRI as it evaluated more than 120 coal-gasification-related research projects worldwide to identify gaps or critical-path activities where additional resources and expertise could hasten the market introduction of IGCC advances. The resulting 'IGCC RD&D Augmentation Plan' describes such opportunities and how they could be addressed, for both IGCC plants to be built in the near term (by 2012-15) and over the longer term (2015-25), when demand for new electric generating capacity is expected to soar. For the near term, EPRI recommends 19 projects that could reduce the levelized cost-of-electricity for IGCC to the level of today's conventional pulverized-coal power plants with supercritical steam conditions and state-of-the-art environmental controls. For the long term, EPRI's recommended projects could reduce the levelized cost of an IGCC plant capturing 90% of the CO{sub 2} produced from the carbon in coal (for safe storage away from the atmosphere) to the level of today's IGCC plants without CO{sub 2} capture. EPRI's CoalFleet for Tomorrow program is also preparing a companion RD&D augmentation plan for advanced-combustion-based (i.e., non-gasification) clean coal technologies (Report 1013221). 7 refs., 30 figs., 29 tabs., 4 apps.

2007-01-15T23:59:59.000Z

326

Computer integrated manufacturing implementation at the Oak Ridge Y-12 Plant: The sixth year of a ten-year plan  

SciTech Connect

The strategic and operational plans for the computer integrated manufacturing (CIM) program in the Y-12 Plant are providing for the evolution of the plant's CIM infrastructure from today's environment to the integrated, highly flexible, and more responsive manufacturing systems planned for the 1990s. The program is committed to meeting the CIM directives established by the US Department of Energy and providing the means by which operations can improve the manufacturing performance of the Y-12 Plant. The plant's CIM program charter is a commitment to coordinating efforts to implement and integrate CIM technologies to improve manufacturing performance and thus significantly enhance the plant's ability to meet current and future manufacturing objectives. To achieve these objectives, CIM technologies are being applied to automate manufacturing processes and information systems. 1 ref., 1 fig.

Bowers, G.L.; Harper, H.E.

1987-10-07T23:59:59.000Z

327

Computer integrated manufacturing implementation at the Oak Ridge Y-12 Plant: The sixth year of a ten-year plan  

SciTech Connect

The strategic and operational plans for the computer integrated manufacturing (CIM) program in the Y-12 Plant are providing for the evolution of the plant's CIM infrastructure from today's environment to the integrated, highly flexible, and more responsive manufacturing systems planned for the 1990s. The program is committed to meeting the CIM directives established by the US Department of Energy and providing the means by which operations can improve the manufacturing performance of the Y-12 Plant. The plant's CIM program charter is a commitment to coordinating efforts to implement and integrate CIM technologies to improve manufacturing performance and thus significantly enhance the plant's ability to meet current and future manufacturing objectives. To achieve these objectives, CIM technologies are being applied to automate manufacturing processes and informations systems.

Davenport, C.M.; Bowers, G.L.

1987-10-07T23:59:59.000Z

328

A hybrid electron and photon IMRT planning technique that lowers normal tissue integral patient dose using standard hardware  

SciTech Connect

Purpose: To present a mixed electron and photon IMRT planning technique using electron beams with an energy range of 6-22 MeV and standard hardware that minimizes integral dose to patients for targets as deep as 7.5 cm. Methods: Ten brain cases, two lung, a thyroid, an abdominal, and a parotid case were planned using two planning techniques: a photon-only IMRT (IMRT) versus a mixed modality treatment (E + IMRT) that includes an enface electron beam and a photon IMRT portion that ensures a uniform target coverage. The electron beam is delivered using a regular cutout placed in an electron cone. The electron energy was chosen to provide a good trade-off between minimizing integral dose and generating a uniform, deliverable plan. The authors choose electron energies that cover the deepest part of PTV with the 65%-70% isodose line. The normal tissue integral dose, the dose for ring structures around the PTV, and the volumes of the 75%, 50%, and 25% isosurfaces were used to compare the dose distributions generated by the two planning techniques. Results: The normal tissue integral dose was lowered by about 20% by the E + IMRT plans compared to the photon-only IMRT ones for most studied cases. With the exception of lungs, the dose reduction associated to the E + IMRT plans was more pronounced further away from the target. The average dose ratio delivered to the 0-2 cm and the 2-4 cm ring structures for brain patients for the two planning techniques were 89.6% and 70.8%, respectively. The enhanced dose sparing away from the target for the brain patients can also be observed in the ratio of the 75%, 50%, and 25% isodose line volumes for the two techniques, which decreases from 85.5% to 72.6% and further to 65.1%, respectively. For lungs, the lateral electron beams used in the E + IMRT plans were perpendicular to the mostly anterior/posterior photon beams, generating much more conformal plans. Conclusions: The authors proved that even using the existing electron delivery hardware, a mixed electron/photon planning technique (E + IMRT) can decrease the normal tissue integral dose compared to a photon-only IMRT plan. Different planning approaches can be enabled by the use of an electron beam directed toward organs at risk distal to the target, which are still spared due the rapid dose fall-off of the electron beam. Examples of such cases are the lateral electron beams in the thoracic region that do not irradiate the heart and contralateral lung, electron beams pointed toward kidneys in the abdominal region, or beams treating brain lesions pointed toward the brainstem or optical apparatus. For brain, electron vertex beams can also be used without irradiating the whole body. Since radiation retreatments become more and more common, minimizing the normal tissue integral dose and the dose delivered to tissues surrounding the target, as enabled by E + IMRT type techniques, should receive more attention.

Rosca, Florin [Department of Radiation Oncology, Massachusetts General Hospital, Danvers, Massachusetts 01923 (United States)

2012-06-15T23:59:59.000Z

329

Plans for an Integrated Front-End Test Stand at the Spallation Neutron Source  

SciTech Connect

A spare Radio-Frequency Quadrupole (RFQ) is presently being fabricated by industry with delivery to Oak Ridge National Laboratory planned in late 2012. The establishment of a test stand at the Spallation Neutron Source site is underway so that complete acceptance testing can be performed during the winter of 2012-2013. This activity is the first step in the establishment of an integrated front-end test stand that will include an ion source, low-energy beam transport (LEBT), RFQ, medium-energy beam transport, diagnostics, and a beam dump. The test stand will be capable of delivering an H- ion beam of up to 50 mA with a pulse length of 1 ms and a repetition rate of 60 Hz or a proton beam of up to 50 mA, 100us, 1Hz. The test stand will enable the following activities: complete ion source characterization; development of a magnetic LEBT chopper; development of a two-source layout; development of beam diagnostics; and study of beam dynamics of high intensity beam.

Champion, Mark S [ORNL; Aleksandrov, Alexander V [ORNL; Crofford, Mark T [ORNL; Heidenreich, Dale A [ORNL; Kang, Yoon W [ORNL; Moss, John [ORNL; Roseberry, Jr., R Tom [ORNL; Schubert, James Phillip [ORNL

2012-01-01T23:59:59.000Z

330

Integrating Wind into Transmission Planning: The Rocky Mountain Area Transmission Study (RMATS): Preprint  

DOE Green Energy (OSTI)

Plans to expand the western grid are now underway. Bringing power from low-cost remote resources--including wind--to load centers could reduce costs for all consumers. But many paths appear to be already congested. Locational marginal price-based modeling is designed to identify the most cost-effective paths to be upgraded. The ranking of such paths is intended as the start of a process of political and regulatory approvals that are expected to result in the eventual construction of new and upgraded lines. This paper reviews the necessary data and analytical tasks to accurately represent wind in such modeling, and addresses some policy and regulatory issues that can help with wind integration into the grid. Providing wind fair access to the grid also (and more immediately) depends on tariff and regulatory changes. Expansion of the Rocky Mountain Area Transmission Study (RMATS) study scope to address operational issues supports the development of transmission solutions that enable wind to connect and deliver power in the next few years--much sooner than upgrades can be completed.

Hamilton, R.; Lehr, R.; Olsen, D.; Nielsen, J.; Acker, T.; Milligan, M.; Geller, H.

2004-03-01T23:59:59.000Z

331

Integrated resource planning for local gas distribution companies: A critical review of regulatory policy issues  

SciTech Connect

According to the report, public utility commissions (PUCs) are increasingly adopting, or considering the adoption of integrated resource planning (IRP) for local gas distribution companies (LDCs). The Energy Policy Act of 1992 (EPAct) requires PUCs to consider IRP for gas LDCs. This study has two major objectives: (1) to help PUCs develop appropriate regulatory approaches with regard to IRP for gas LDCs; and (2) to help PUCs respond to the EPAct directive. The study finds that it is appropriate for PUCs to pursue energy efficiency within the traditional regulatory framework of minimizing private costs of energy production and delivery; and PUCs should play a limited role in addressing environmental externalities. The study also finds that in promoting energy efficiency, PUCs should pursue policies that are incentive-based, procompetitive, and sensitive to rate impacts. The study evaluates a number of traditional and nontraditional ratemaking mechanisms on the basis of cost minimization, energy efficiency, competitiveness, and other criteria. The mechanisms evaluated include direct recovery of DSM expenses, lost revenue adjustments for DSM options, revenue decoupling mechanisms, sharing of DSM cost savings, performance-based rate of return for DSM, provision of DSM as a separate service, deregulation of DSM service, price caps, and deregulation of the noncore gas market. The study concludes with general recommendations for regulatory approaches and ratemaking mechanisms that PUCs may wish to consider in advancing IRP objectives.

Harunuzzaman, M.; Islam, M.

1994-08-01T23:59:59.000Z

332

River Protection Project (RPP) Environmental Program Plan  

SciTech Connect

This Environmental Program Plan was developed in support of the Integrated Environment, Safety, and Health Management System Plan (ISMS) (RPP-MP-003), which establishes a single, defined environmental, safety, and health management system that integrates requirements into the work planning and execution processes to protect workers, the public, and the environment. The ISMS also provides mechanisms for increasing worker involvement in work planning, including hazard and environmental impact identification, analysis, and control; work execution; and feedback/improvement processes. The ISMS plan consists of six core functions. Each section of this plan describes the activities of the River Protection Project (RPP) (formerly known as the Tank Waste Remediation System) Environmental organization according to the following core functions: Establish Environmental Policy; Define the Scope of Work; Identify Hazards, Environmental Impacts, and Requirements; Analyze Hazards and Environmental Impacts and Implement Controls; Perform Work within Controls; and Provide Feedback and Continuous Improvement.

POWELL, P.A.

2000-03-29T23:59:59.000Z

333

Objective 1: Extend Life, Improve Performance, and Maintain Safety of the Current Fleet Implementation Plan  

Science Conference Proceedings (OSTI)

Nuclear power has reliably and economically contributed almost 20% of electrical generation in the United States over the past two decades. It remains the single largest contributor (more than 70%) of non-greenhouse-gas-emitting electric power generation in the United States. By the year 2030, domestic demand for electrical energy is expected to grow to levels of 16 to 36% higher than 2007 levels. At the same time, most currently operating nuclear power plants will begin reaching the end of their 60 year operating licenses. Figure E 1 shows projected nuclear energy contribution to the domestic generating capacity. If current operating nuclear power plants do not operate beyond 60 years, the total fraction of generated electrical energy from nuclear power will begin to declineeven with the expected addition of new nuclear generating capacity. The oldest commercial plants in the United States reached their 40th anniversary in 2009. The U.S. Department of Energy Office of Nuclear Energys Research and Development (R&D) Roadmap has organized its activities in accordance with four objectives that ensure nuclear energy remains a compelling and viable energy option for the United States. The objectives are as follows: (1) develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of the current reactors; (2) develop improvements in the affordability of new reactors to enable nuclear energy to help meet the Administrations energy security and climate change goals; (3) develop sustainable nuclear fuel cycles; and (4) understand and minimize risks of nuclear proliferation and terrorism. The Light Water Reactor Sustainability (LWRS) Program is the primary programmatic activity that addresses Objective 1. This document describes how Objective 1 and the LWRS Program will be implemented. The existing U.S. nuclear fleet has a remarkable safety and performance record and today accounts for 70% of the low greenhouse gas emitting domestic electricity production. Extending the operating lifetimes of current plants beyond 60 years and, where possible, making further improvements in their productivity will generate early benefits from research, development, and demonstration investments in nuclear power. DOEs role in Objective 1 is to partner with industry and the Nuclear Regulatory Commission in appropriate ways to support and conduct the long-term research needed to inform major component refurbishment and replacement strategies, performance enhancements, plant license extensions, and age-related regulatory oversight decisions. The DOE research, development, and demonstration role will focus on aging phenomena and issues that require long-term research and are generic to reactor type. Cost-shared demonstration activities will be conducted when appropriate.

Robert Youngblood

2011-01-01T23:59:59.000Z

334

Objective 1: Extend Life, Improve Performance, and Maintain Safety of the Current Fleet Implementation Plan  

Science Conference Proceedings (OSTI)

Nuclear power has reliably and economically contributed almost 20% of electrical generation in the United States over the past two decades. It remains the single largest contributor (more than 70%) of non-greenhouse-gas-emitting electric power generation in the United States. By the year 2030, domestic demand for electrical energy is expected to grow to levels of 16 to 36% higher than 2007 levels. At the same time, most currently operating nuclear power plants will begin reaching the end of their 60 year operating licenses. Figure E 1 shows projected nuclear energy contribution to the domestic generating capacity. If current operating nuclear power plants do not operate beyond 60 years, the total fraction of generated electrical energy from nuclear power will begin to declineeven with the expected addition of new nuclear generating capacity. The oldest commercial plants in the United States reached their 40th anniversary in 2009. The U.S. Department of Energy Office of Nuclear Energys Research and Development (R&D) Roadmap has organized its activities in accordance with four objectives that ensure nuclear energy remains a compelling and viable energy option for the United States. The objectives are as follows: (1) develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of the current reactors; (2) develop improvements in the affordability of new reactors to enable nuclear energy to help meet the Administrations energy security and climate change goals; (3) develop sustainable nuclear fuel cycles; and (4) understand and minimize risks of nuclear proliferation and terrorism. The Light Water Reactor Sustainability (LWRS) Program is the primary programmatic activity that addresses Objective 1. This document describes how Objective 1 and the LWRS Program will be implemented. The existing U.S. nuclear fleet has a remarkable safety and performance record and today accounts for 70% of the low greenhouse gas emitting domestic electricity production. Extending the operating lifetimes of current plants beyond 60 years and, where possible, making further improvements in their productivity will generate early benefits from research, development, and demonstration investments in nuclear power. DOEs role in Objective 1 is to partner with industry and the Nuclear Regulatory Commission in appropriate ways to support and conduct the long-term research needed to inform major component refurbishment and replacement strategies, performance enhancements, plant license extensions, and age-related regulatory oversight decisions. The DOE research, development, and demonstration role will focus on aging phenomena and issues that require long-term research and are generic to reactor type. Cost-shared demonstration activities will be conducted when appropriate.

Robert Youngblood

2011-02-01T23:59:59.000Z

335

Status and Effectiveness of DOE Efforts to Learn from Internal and External Operating Experience in Accordance with Commitment #20 of the DOE Implementation Plan for Defense Nuclear Facilities Safety Board Recommendation 2004-1  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Safety and Security Safety and Security Report to the Secretary on the Status and Effectiveness of DOE Efforts to Learn from Internal and External Operating Experience in Accordance with Commitment #20 of the DOE Implementation Plan for Defense Nuclear Facilities Safety Board Recommendation 2004-1 February 2011 Office of Health, Safety and Security U.S. Department of Energy Office of Health, Safety and Security HSS Table of Contents 1.0 Introduction ......................................................................................................................... 1 2.0 Department-wide Action Plan for the Columbia Accident and Davis-Besse Event ........... 3 3.0 Comprehensive Operating Experience Program ................................................................. 5

336

Status and Effectiveness of DOE Efforts to Learn from Internal and External Operating Experience in Accordance with Commitment #20 of the DOE Implementation Plan for Defense Nuclear Facilities Safety Board Recommendation 2004-1  

NLE Websites -- All DOE Office Websites (Extended Search)

Safety and Security Safety and Security Report to the Secretary on the Status and Effectiveness of DOE Efforts to Learn from Internal and External Operating Experience in Accordance with Commitment #20 of the DOE Implementation Plan for Defense Nuclear Facilities Safety Board Recommendation 2004-1 February 2011 Office of Health, Safety and Security U.S. Department of Energy Office of Health, Safety and Security HSS Table of Contents 1.0 Introduction ......................................................................................................................... 1 2.0 Department-wide Action Plan for the Columbia Accident and Davis-Besse Event ........... 3 3.0 Comprehensive Operating Experience Program ................................................................. 5

337

Sample Project Execution Plan | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sample Project Execution Plan Sample Project Execution Plan Sample Project Execution Plan The project execution plan (PEP) is the governing document that establishes the means to execute, monitor, and control projects. The plan serves as the main communication vehicle to ensure that everyone is aware and knowledgeable of project objectives and how they will be accomplished. The plan is the primary agreement between Headquarters and the federal project director and a preliminary plan should be developed and approved at Critical Decision-1. Project objectives are derived from the mission needs statement, and an integrated project team assists in development of the PEP. The plan is a living document and should be updated to describe current and future processes and procedures, such as integrating safety

338

New York City Energy-Water Integrated Planning: A Pilot Study  

Science Conference Proceedings (OSTI)

The New York City Energy-Water Integrated Planning Pilot Study is one of several projects funded by Sandia National Laboratories under the U.S. Department of Energy Energy-Water Nexus Program. These projects are intended to clarify some key issues and research needs identified during the Energy-Water Nexus Roadmapping activities. The objectives of the New York City Pilot Project are twofold: to identify energy-water nexus issues in an established urban area in conjunction with a group of key stakeholders and to define and apply an integrated energy and water decision support tool, as proof-of-concept, to one or more of these issues. During the course of this study, the Brookhaven National Laboratory project team worked very closely with members of a Pilot Project Steering Committee. The Steering Committee members brought a breadth of experience across the energy, water and climate disciplines, and all are well versed in the particular issues faced by an urban environment, and by New York City in particular. The first task was to identify energy-water issues of importance to New York City. This exercise was followed by discussion of the qualities and capabilities that an ideal decision support tool should display to address these issues. The decision was made to start with an existing energy model, the New York City version of the MARKAL model, developed originally at BNL and now used globally by many groups for energy analysis. MARKAL has the virtue of being well-vetted, transparent, and capable of calculating 'material' flows, such as water use by the energy system and energy requirements of water technology. The Steering Committee members defined five scenarios of interest, representing a broad spectrum of New York City energy-water issues. Brookhaven National Laboratory researchers developed a model framework (Water-MARKAL) at the desired level of detail to address the scenarios, and then attempted to gather the New York City-specific information required to analyze the scenarios using Water-MARKAL. This report describes the successes and challenges of defining and demonstrating the decision tool, Water-MARKAL. The issues that the stakeholders perceive for New York City are listed and the difficulties in gathering required information for Water-MARKAL to analyze these issues at the desired level of detail are described.

Bhatt,V.; Crosson, K. M.; Horak, W.; Reisman, A.

2008-12-16T23:59:59.000Z

339

Fuel Cell Technologies Program Multi-Year Research, Development and Demonstration Plan - Section 3.7 Hydrogen Safety, Codes and Standards  

NLE Websites -- All DOE Office Websites (Extended Search)

Safety, Codes and Standards Safety, Codes and Standards Multi-Year Research, Development and Demonstration Plan Page 3.7 - 1 3.7 Hydrogen Safety, Codes and Standards The United States and many other countries have established laws and regulations that require commercial products and infrastructure to meet all applicable codes and standards to demonstrate that they are safe, perform as designed and are compatible with the systems in which they are used. Hydrogen and fuel cell technologies have a history of safe use with market deployment and commercialization underway. The Safety, Codes and Standards sub-program (SCS) facilitates deployment and commercialization of fuel cell and hydrogen technologies by developing information resources for their safe use. SCS relies on extensive input from automobile

340

Issues and methods in incorporating environmental externalities into the integrated resource planning process  

Science Conference Proceedings (OSTI)

This report is a review of current practices and policies in considering environmental externalities in the integrated resource planning and performance based regulation (IRP/PBR) process. The following issues are presented and examined: What are the pros and cons of treating environmental externalities in the IRP process? How are potential future environmental regulations being treated? Are externalities being qualitatively or quantitatively considered, or monetized? Are offsets being allowed? How are externality policies being coordinated among different levels and branches of governments? Should environmental externalities be considered in dispatching a utility`s existing resources? What are the procedures for addressing uncertainty in incorporating environmental externalities into IRP? How are externalities valued? What are other approaches to addressing environmental externalities. This report describes seven major approaches for addressing environmental externalities in the IRP process: qualitative treatment, weighting and ranking, cost of control, damage function, percentage adders, monetization by emission, and multiattribute trade-off analysis. The discussion includes a taxonomy of the full range of alternative methods for addressing environmental externalities, a summary of state PUC actions, the role of state laws, the debate on environmental adders, and the choice of methodologies. In addition, this report characterizes the interests of stakeholders such as the electric industry, fuel suppliers, energy consumers, governmental agencies, public interest groups, consultants, and others. It appears that the views, positions, and interests of these stakeholders are affected by their perceptions of the potential impacts on their economic interests or the viability of their position on environmental policy, by the societal perspective they take, and by the orientation of the analysts toward market competition and their respective accumulated expertise.

Fang, J.M.; Galen, P.S.

1994-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "integration planning safety" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Achieving New Source Performance Standards (NSPS) Through Integration of Low-NOx Burners with an Optimization Plan for Boiler Combustion  

NLE Websites -- All DOE Office Websites (Extended Search)

Improvement Improvement Initiative (PPII) CONTACTS Brad Tomer Director Office of Major Demonstrations National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507-0880 304-285-4692 brad.tomer@netl.doe.gov PARTNER Sunflower Electric Power Corporation Garden City, KS Sunflower's 360 MWe Wall-fired Holcomb Station Achieving new Source PerformAnce StAndArdS (nSPS) through integrAtion of Low-no X BurnerS with An oPtimizAtion PLAn for BoiLer comBuStion (comPLeted) A unique combination of high-tech combustion modifications and sophisticated control systems was planned to be tested on a coal-fired boiler at Sunflower Electric's Holcomb Power Station in Finney County, Kansas, to demonstrate how new technology can reduce air emissions and save costs for ratepayers. However, due to larger than anticipated costs

342

CHEMICAL HYGIENE PLAN HAZARD COMMUNICATION PLAN  

E-Print Network (OSTI)

CHEMICAL HYGIENE PLAN AND HAZARD COMMUNICATION PLAN Occupational Exposures to Hazardous Chemicals Safety 2723 Environmental Health/Safety Chemical Hygiene Officer Radiation Safety Officer Biological (Accident Reports) 2204 Bioengineering 2965 #12;TABLE OF CONTENTS CHEMICAL HYGIENE PLAN (CHP) (4/2007) 1

Oliver, Douglas L.

343

CHEMICAL HYGIENE PLAN HAZARD COMMUNICATION PLAN  

E-Print Network (OSTI)

CHEMICAL HYGIENE PLAN AND HAZARD COMMUNICATION PLAN Occupational Exposures to Hazardous Chemicals and Safety Numbers Research Safety 2723 Environmental Health/Safety Chemical Hygiene Officer Radiation Safety Human Resources (Accident Reports) 4589 Clinical Engineering 2964 #12;TABLE OF CONTENTS CHEMICAL HYGIENE

Oliver, Douglas L.

344

Integrating Habitat Fragmentation Analysis into Transportation Planning Using the Effective Mesh Size Landscape Metric  

E-Print Network (OSTI)

due to planned future transportation projects (Thorne et al.impact of these future transportation projects on habitatthe effects of transportation infrastructure. In the future,

Girvetz, Evan H; Thorne, James H.; Berry, Alison M; Jaeger, Jochen A.G.

2007-01-01T23:59:59.000Z

345

Utility Integrated Resource Planning: An Emerging Driver of New Renewable Generation in the Western United States  

E-Print Network (OSTI)

Risk: The Treatment of Renewable Energy in Western UtilityEmerging Driver of New Renewable Generation in the WesternEnergy Efficiency and Renewable Energy (Office of Planning,

Bolinger, Mark; Wiser, Ryan

2005-01-01T23:59:59.000Z

346

Integrating The Non-Electrical Worker Into The Electrical Safety Program  

SciTech Connect

The intent of this paper is to demonstrate an electrical safety program that incorporates all workers into the program, not just the electrical workers. It is largely in response to a paper presented at the 2012 ESW by Lanny Floyd entitled "Facilitating Application of Electrical Safety Best Practices to "Other" Workers" which requested all attendees to review their electrical safety program to assure that non-electrical workers were protected as well as electrical workers. The referenced paper indicated that roughly 50% of electrical incidents involve workers whose primary function is not electrical in nature. It also encouraged all to "address electrical safety for all workers and not just workers whose job responsibilities involve working on or near energized electrical circuits." In this paper, a program which includes specific briefings to non-electrical workers as well as to workers who may need to perform their normal activities in proximity to energized electrical conductors is presented. The program uses a targeted approach to specific areas such as welding, excavating, rigging, chart reading, switching, cord and plug equipment and several other general areas to point out hazards that may exist and how to avoid them. NFPA 70E-2004 was incorporated into the program several years ago and with it the need to include the "other" workers became apparent. The site experience over the years supports the assertion that about half of the electrical incidents involve non-electrical workers and this prompted us to develop specific briefings to enhance the knowledge of the non-electrical worker regarding safe electrical practices. The promotion of "May is Electrical Safety Month" and the development of informative presentations which are delivered to the general site population as well as electrical workers have greatly improved the hazards awareness status of the general worker on site.

2012-08-17T23:59:59.000Z

347

Coordinating, integrating, and synchronizing disaster response : use of an emergency response synchronization matrix in emergency planning, exercises, and operations.  

SciTech Connect

The Chemical Stockpile Emergency Preparedness (CSEP) Program is a wide-ranging activity in support of a national initiative involving the U.S. Army Chemical Materiel Command (CMA), the Federal Emergency Management Agency (FEMA), 9 states, and 37 counties. Established in 1988, the CSEP Program enhances emergency planning for the unlikely event of a release of hazardous chemical weapons agent from one of the Army's chemical weapons storage installations currently storing chemical weapons. These obsolete weapons are scheduled to be destroyed; meanwhile, however, they pose a threat to installation workers and residents of the surrounding communities. Argonne's CSEP Program includes a variety of components that serve the needs of multiple program participants. Among the major activities are: (1) Development of the Emergency Planning Synchronization Matrix to facilitate integration of multi-jurisdictional emergency plans: (a) Coordinating, Integrating, and Synchronizing Disaster Response: Use of an Emergency Response Synchronization Matrix in Emergency Planning, Exercises, and Operations. A graphical depiction of the entire emergency response process via a synchronization matrix is an effective management tool for optimizing the design, exercise, and real-life implementation of emergency plans. This system-based approach to emergency planning depicts how a community organizes its response tasks across space and time. It gives responders the opportunity to make real-time adjustments to maximizing the often limited resources in protecting area residents. An effective response to any natural or technological hazard must involve the entire community and must not be limited by individual jurisdictions and organizations acting on their own without coordination, integration, and synchronization. An emergency response to an accidental release of chemical warfare agents from one of this nation's eight chemical weapons stockpile sites, like any other disaster response, is complex. It requires the rapid coordination, integration, and synchronization of multiple levels of governmental and nongovernmental organizations from numerous jurisdictions, each with varying response capabilities, into a unified community response. The community response actions occur in an area extending from an on-site storage location to points 25 or more miles away. Actions are directed and controlled by responding local governments and agencies situated within the response area, as well as by state and federal operations centers quite removed from the area of impact. Time is critical and the protection action decision-making process is greatly compressed. To ensure an effective response with minimal confusion, given the potential catastrophic nature of such releases, the response community must carefully synchronize response operations.

Hewett, P. L., Jr.; Mitrani, J. E.; Metz, W. C.; Vercellone, J. J.; Decision and Information Sciences

2001-11-01T23:59:59.000Z

348

INTEGRAL BENCHMARKS AVAILABLE THROUGH THE INTERNATIONAL REACTOR PHYSICS EXPERIMENT EVALUATION PROJECT AND THE INTERNATIONAL CRITICALITY SAFETY BENCHMARK EVALUATION PROJECT  

SciTech Connect

Interest in high-quality integral benchmark data is increasing as efforts to quantify and reduce calculational uncertainties accelerate to meet the demands of next generation reactor and advanced fuel cycle concepts. The International Reactor Physics Experiment Evaluation Project (IRPhEP) and the International Criticality Safety Benchmark Evaluation Project (ICSBEP) continue to expand their efforts and broaden their scope to identify, evaluate, and provide integral benchmark data for method and data validation. Benchmark model specifications provided by these two projects are used heavily by the international reactor physics, nuclear data, and criticality safety communities. Thus far, 14 countries have contributed to the IRPhEP, and 20 have contributed to the ICSBEP. The status of the IRPhEP and ICSBEP is discussed in this paper, and the future of the two projects is outlined and discussed. Selected benchmarks that have been added to the IRPhEP and ICSBEP handbooks since PHYSOR06 are highlighted, and the future of the two projects is discussed.

J. Blair Briggs; Lori Scott; Enrico Sartori; Yolanda Rugama

2008-09-01T23:59:59.000Z

349

Integrating preference analysis and balanced scorecard to product planning house of quality  

Science Conference Proceedings (OSTI)

Product planning house of quality (PPHOQ) is of fundamental and strategic importance in quality function deployment (QFD). Determining the aggregated priority ratings (PRs) of engineering characteristics (ECs) is a crucial step of constructing PPHOQ. ... Keywords: Balanced scorecard, Engineering characteristic, Priority rating, Product planning house of quality, Quality function deployment

Yan-Lai Li; Min Huang; Kwai-Sang Chin; Xing-Gang Luo; Yi Han

2011-03-01T23:59:59.000Z

350

Survey and analysis of multimodal sensor planning and integration for wide area surveillance  

Science Conference Proceedings (OSTI)

Although sensor planning in computer vision has been a subject of research for over two decades, a vast majority of the research seems to concentrate on two particular applications in a rather limited context of laboratory and industrial workbenches, ... Keywords: Sensor planning, cooperative sensing, multimodal sensing, persistent surveillance, threat object recognition, ubiquitous surveillance, wireless sensor network

Besma R. Abidi; Nash R. Aragam; Yi Yao; Mongi A. Abidi

2008-12-01T23:59:59.000Z

351

Hoisting & Rigging Assessment Plan  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

HOISTING & RIGGING HOISTING & RIGGING Assessment Plan NNSA/Nevada Site Office Facility Representative Division Performance Objective: To determine that hoisting and rigging operations are conducted according to "industry best standards" for increasing equipment reliability while assuring worker safety, and to verify issues being addressed in BN Hoisting assessment. Criteria: Lifts are identified and categorized appropriately for scheduled maintenance. DOE-STD-1090-2001 An integrated process ensures safety issues are identified and controls established. DOE-STD-1090-2001 Personnel operating and maintaining the hoisting equipment are trained; they understand their roles and responsibilities. DOE-STD-1090-2001 Maintenance conducts safety inspections of hoisting and rigging

352

Hoisting & Rigging Assessment Plan  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

HOISTING & RIGGING HOISTING & RIGGING Assessment Plan NNSA/Nevada Site Office Facility Representative Division Performance Objective: To determine that hoisting and rigging operations are conducted according to "industry best standards" for increasing equipment reliability while assuring worker safety, and to verify issues being addressed in BN Hoisting assessment. Criteria: Lifts are identified and categorized appropriately for scheduled maintenance. DOE-STD-1090-2001 An integrated process ensures safety issues are identified and controls established. DOE-STD-1090-2001 Personnel operating and maintaining the hoisting equipment are trained; they understand their roles and responsibilities. DOE-STD-1090-2001 Maintenance conducts safety inspections of hoisting and rigging

353

22.39 Integration of Reactor Design, Operations, and Safety, Fall 2005  

E-Print Network (OSTI)

This course integrates studies of reactor physics and engineering sciences into nuclear power plant design. Topics include materials issues in plant design and operations, aspects of thermal design, fuel depletion and ...

Todreas, Neil E.

354

Desired Characteristics for Next Generation Integrated Nuclear Safety Analysis Methods and Software  

Science Conference Proceedings (OSTI)

As a result of economic, environmental, and policy imperatives, it is envisioned that operation of the current fleet of commercial nuclear power plants NPPs will extend significantly beyond their original licensing periods. This objective can be achieved only if these plants continue to operate in a safe and cost-effective manner. The capability to perform detailed technical safety analyses of operational events either actual or postulated and desired operational enhancements such as power uprates will c...

2010-12-23T23:59:59.000Z

355

Introducing the use of integrated Decision Support System in Natural Resources Planning  

E-Print Network (OSTI)

The target subject of Natural Resources Planning (NRP) includes various systems and their elements, all of which are centered around the natural resource system. Given this characteristic complexity and a high degree of ...

Park, Hye Yeon, S.M. Massachusetts Institute of Technology

2008-01-01T23:59:59.000Z

356

Integrated method to create optimal dynamic strategic plans for corporate technology start-ups  

E-Print Network (OSTI)

This thesis presents an innovative method for evaluating and dynamically planning the development of uncertain technology investments. Its crux centers on a paradigm shift in the way managers assess investments, toward an ...

Mikati, Samir Omar

2009-01-01T23:59:59.000Z

357

Integrating regional strategic transportation planning and supply chain management : along the path to sustainability  

E-Print Network (OSTI)

A systems perspective for regional strategic transportation planning (RSTP) for freight movements involves an understanding of Supply Chain Management (SCM). This thesis argues that private sector freight shippers and ...

Sgouridis, Sgouris P

2005-01-01T23:59:59.000Z

358

Planning to learn: Integrating model learning into a trajectory planner for mobile robots  

E-Print Network (OSTI)

For a mobile robot that performs online model learning, the learning rate is a function of the robot's trajectory. The tracking errors that arise when the robot executes a motion plan depend on how well the robot has learned ...

Hover, Franz S.

359

December 27, 2011, Department letter transmitting the Implementation Plan for Board Recommendation 2011-1, Safety Culture at the Waste Treatment and Immobilization Plant.  

NLE Websites -- All DOE Office Websites (Extended Search)

December 27,2011 December 27,2011 The Honorable Peter S. Winokur Chairman Defense Nuclear Facilities Safety Board 625 Indiana Avenue, NW, Suite 700 Washington, DC 20004 Dear Mr. Chairman: Enclosed is the Depmiment of Energy's (DOE's) Implementation Plan (IP) for Defense Nuclear Facilities Safety Board (Board) Recommendation 2011-1, Safety Culture at the Waste Treatment and Immobilization Plant (WTP). On June 30, 20 II, the Department accepted Recommendation 20 Il-l in a letter to the Board, which was published in the Federal Register. On August 12,2011, the Board sought additional clarification about this acceptance, and on September 19,2011, I transmitted clarification to the Board, which was also published in the Federal Register. The IP provides DOE's approach to address the Board's three sub-recommendations

360

Safety, Security  

NLE Websites -- All DOE Office Websites (Extended Search)

Safety, Security Safety, Security Safety, Security LANL's mission is to develop and apply science and technology to ensure the safety, security, and reliability of the U.S. nuclear deterrent; reduce global threats; and solve other emerging national security and energy challenges. Contact Operator Los Alamos National Laboratory (505) 667-5061 We do not compromise safety for personal, programmatic, or operational reasons. Safety: we integrate safety, security, and environmental concerns into every step of our work Our commitments We conduct our work safely and responsibly to achieve our mission. We ensure a safe and healthful environment for workers, contractors, visitors, and other on-site personnel. We protect the health, safety, and welfare of the general public. We do not compromise safety for personal, programmatic, or

Note: This page contains sample records for the topic "integration planning safety" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Integrated Yucca Mountain Safety Case and Supporting Analysis: EPRI's Phase 7 Performance Assessment  

Science Conference Proceedings (OSTI)

After approval of the Yucca Mountain Site Recommendation by the President and Congress in 2001, the U.S. Department of Energy (DOE) entered the construction pre-license application phase with the U.S. Nuclear Regulatory Commission (NRC). A successful license application for the proposed spent fuel and high level waste repository at Yucca Mountain depends on a robust demonstration of long-term safety. It also depends on prioritizing the work left to do in a stepwise manner consistent with the particular p...

2002-12-29T23:59:59.000Z

362

DOE standard: Integration of environment, safety, and health into facility disposition activities. Volume 2: Appendices  

SciTech Connect

This volume contains the appendices that provide additional environment, safety, and health (ES and H) information to complement Volume 1 of this Standard. Appendix A provides a set of candidate DOE ES and H directives and external regulations, organized by hazard types that may be used to identify potentially applicable directives to a specific facility disposition activity. Appendix B offers examples and lessons learned that illustrate implementation of ES and H approaches discussed in Section 3 of Volume 1. Appendix C contains ISMS performance expectations to guide a project team in developing and implementing an effective ISMS and in developing specific performance criteria for use in facility disposition. Appendix D provides guidance for identifying potential Applicable or Relevant and Appropriate Requirements (ARARs) when decommissioning facilities fall under the Comprehensive Environmental Response, Compensation, Liability Act (CERCLA) process. Appendix E discusses ES and H considerations for dispositioning facilities by privatization. Appendix F is an overview of the WSS process. Appendix G provides a copy of two DOE Office of Nuclear Safety Policy and Standards memoranda that form the bases for some of the guidance discussed within the Standard. Appendix H gives information on available hazard analysis techniques and references. Appendix I provides a supplemental discussion to Sections 3.3.4, Hazard Baseline Documentation, and 3.3.6, Environmental Permits. Appendix J presents a sample readiness evaluation checklist.

NONE

1998-05-01T23:59:59.000Z

363

Planning the transition to the CIM (computer-integrated manufacturing) environment at the Oak Ridge Y-12 Plant  

SciTech Connect

Formalized efforts have been ongoing within the Oak Ridge Y-12 Plant since 1982 to plan and implement a computer-integrated manufacturing (CIM) environment. This presentation addresses activities past and present that are enabling the Y-12 facility to make the transition into the CIM environment. Specific issues addressed are: (1) present and future modeling for manufacturing process, business model, data architecture, and information systems architecture; (2) establishing a formal CIM organization to be responsible for CIM planning and implementation; (3) establishing specific Plant performance goals relating to CIM objectives; (4) conducting CIM needs analysis with the production organizations to foster a basic understanding of the CIM concept and to identify CIM opportunities; and (5) CIM Program status.

Bowers, G.L.; Murphy, S.M. Jr.

1987-03-24T23:59:59.000Z

364

Electrical Safety Management Plan  

E-Print Network (OSTI)

to an employer Application: Direct This course is for people who are employed as electrical apprentices. Students business. First-rate facilities As an apprentice studying at Swinburne, you will have access to the state that gives builders, plumbers and other construction apprentices the opportunity to receive training

Smith, Graeme

365

Integration of Formal Job Hazard Analysis & ALARA Work Practice  

Science Conference Proceedings (OSTI)

ALARA work practices have traditionally centered on reducing radiological exposure and controlling contamination. As such, ALARA policies and procedures are not well suited to a wide range of chemical and human health issues. Assessing relative risk, identifying appropriate engineering/administrative controls and selecting proper Personal Protective Equipment (PPE) for non nuclear work activities extends beyond the limitations of traditional ALARA programs. Forging a comprehensive safety management program in today's (2002) work environment requires a disciplined dialog between health and safety professionals (e.g. safety, engineering, environmental, quality assurance, industrial hygiene, ALARA, etc.) and personnel working in the field. Integrating organizational priorities, maintaining effective pre-planning of work and supporting a team-based approach to safety management represents today's hallmark of safety excellence. Relying on the mandates of any single safety program does not provide industrial hygiene with the tools necessary to implement an integrated safety program. The establishment of tools and processes capable of sustaining a comprehensive safety program represents a key responsibility of industrial hygiene. Fluor Hanford has built integrated safety management around three programmatic attributes: (1) Integration of radiological, chemical and ergonomic issues under a single program. (2) Continuous improvement in routine communications among work planning/scheduling, job execution and management. (3) Rapid response to changing work conditions, formalized work planning and integrated worker involvement.

NELSEN, D.P.

2002-09-01T23:59:59.000Z

366

Economic Rationale for Safety Investment in Integrated Gasification Combined-Cycle Gas Turbine Membrane Reactor Modules  

E-Print Network (OSTI)

utilized in the petrochemical,, chemical processing industries as well as natural gas?based power generation, However, their integration represents a fairly recently conceived technology option to produce commercial electricity... . Please notice that after the condensation of steam and given the fact that CO2 is at a high pressure (~25 atm), a significant reduction in the compression costs associated with the operation of the sequestration units downstream...

Koc, Reyyan; Kazantzis, Nikolaos K.; Nuttall, William J.; Ma, Yi Hua

2012-05-09T23:59:59.000Z

367

Light Water Reactor Sustainability Program Risk-Informed Safety Margins Characterization (RISMC) PathwayTechnical Program Plan  

SciTech Connect

Safety is central to the design, licensing, operation, and economics of Nuclear Power Plants (NPPs). As the current Light Water Reactor (LWR) NPPs age beyond 60 years, there are possibilities for increased frequency of Systems, Structures, and Components (SSCs) degradations or failures that initiate safety-significant events, reduce existing accident mitigation capabilities, or create new failure modes. Plant designers commonly over-design portions of NPPs and provide robustness in the form of redundant and diverse engineered safety features to ensure that, even in the case of well-beyond design basis scenarios, public health and safety will be protected with a very high degree of assurance. This form of defense-in-depth is a reasoned response to uncertainties and is often referred to generically as safety margin. Historically, specific safety margin provisions have been formulated, primarily based on engineering judgment.

Curtis Smith; Cristian Rabiti; Richard Martineau

2012-11-01T23:59:59.000Z

368

Performance Criteria and Test Plans for Grid Integration of Renewable Generation  

Science Conference Proceedings (OSTI)

Distribution utilities are expected to face challenges in the grid integration of renewable generation as relative numbers and penetration levels increase. This report describes the ongoing development of performance criteria, test protocols and facilities to support the smooth integration of distributed generation (DG). It is specifically aimed at requirements for relatively high penetration of distributed generation, with emphasis on inverters as the primary interfacing device. Brief discussions of exi...

2010-12-31T23:59:59.000Z

369

Sixth Northwest Conservation and Electric Power Plan Appendix M: Integrating Fish & Wildlife and  

E-Print Network (OSTI)

below Libby Dam. The reservoir operation in spring largely works toward project refill while otherwise operations in the mid-Columbia River to support fall Chinook spawning and rearing in the Hanford Reach to fish. Action item F&W-2 (see the Action Plan) calls for the Council to work with fish and wildlife

370

Integrating planning and control for single-bodied wheeled mobile robots  

Science Conference Proceedings (OSTI)

This paper presents an approach to couple path planning and control for mobile robot navigation in a hybrid control framework. We build upon an existing hybrid control approach called sequential composition, in which a set of feedback control ... Keywords: Hybrid controls, Mobile robots, Sequential composition

David C. Conner; Howie Choset; Alfred A. Rizzi

2011-04-01T23:59:59.000Z

371

Challenges to Integration of Safety and Reliability with Proliferation Resistance and Physical Protection for Generation IV Nuclear Energy Systems  

Science Conference Proceedings (OSTI)

The optimization of a nuclear energy system's performance requires an integrated consideration of multiple design goals - sustainability, safety and reliability (S&R), proliferation resistance and physical protection (PR&PP), and economics - as well as careful evaluation of trade-offs for different system design and operating parameters. Design approaches motivated by each of the goal areas (in isolation from the other goal areas) may be mutually compatible or in conflict. However, no systematic methodology approach has yet been developed to identify and maximize synergies and optimally balance conflicts across the possible design configurations and operating modes of a nuclear energy system. Because most Generation IV systems are at an early stage of development, design, and assessment, designers and analysts are only beginning to identify synergies and conflicts between PR&PP, S&R, and economics goals. The close coupling between PR&PP and S&R goals has motivated early attention within the Generation IV International Forum to their integrated consideration to facilitate the optimization of their effects and the minimization of potential conflicts. This paper discusses the status of this work.

H. Khalil; P. F. Peterson; R. Bari; G. -L. Fiorini; T. Leahy; R. Versluis

2012-07-01T23:59:59.000Z

372

Safety Communications  

NLE Websites -- All DOE Office Websites (Extended Search)

Communications Communications New Staff & Guests Safety Topics ISM Plan Safety Communications Questions about safety and environmental compliance should first be directed to your supervisor or work lead. The Life Sciences Division Safety Coordinator Scott Taylor at setaylor@lbl.gov , 486-6133 (office), or (925) 899-4355 (cell); and Facilities Manager Peter Marietta at PMarietta@lbl.gov, 486-6031 (office), or 967-6596 (cell), are also sources of information. Your work group has a representative to the Division Environment, Health, & Safety Committee. This representative can provide safety guidance and offer a conduit for you to pass on your concerns or ideas. A list of current representatives is provided below. Additional safety information can be obtained on-line from the Berkeley Lab

373

ENERGY EMERGENCY RESPONSE PLAN  

E-Print Network (OSTI)

CALIFORNIA ENERGY COMMISSION ENERGY EMERGENCY RESPONSE PLAN COMMISSIONREPORT October 2006 CEC-600 Deputy Director FUELS AND TRANSPORTATION DIVISION #12;The Energy Emergency Response Plan is prepared, safety, and welfare. #12;ACKNOWLEDGEMENTS The Energy Emergency Response Plan was prepared from

374

Safety Advisories  

NLE Websites -- All DOE Office Websites (Extended Search)

Safety Advisories Safety Advisories 2010 2010-08 Safety Advisory - Software Quality Assurance Firmware Defect in Programmable Logic Controller 2010-07 Safety Advisory - Revised Counterfeit Integrated Circuits Indictment 2010-06 Safety Advisory - Counterfeit Integrated Circuits Indictment 2010-05 Safety Advisory - Contact with Overhead Lines and Ground Step Potential 2010-04 Update - Leaking Acetylene Cylinder Shutoff Valves 2010-03 - Software Quality Assurance Microsoft Excel Software Issue 2010-02 - Leaking Acetylene Cylinder Shutoff Valves 2010-01 Update - Defective Frangible Ammunition 2009 2009-05 Software Quality Assurance - Errors in MACCS2 x/Q Calculations 2009-04 Update - SEELER Exothermic Torch 2009-03 - Defective Frangible Ammunition 2009-02 - Recall of Defense Technology Distraction Devices

375

Integrated project management plan for the Plutonium Finishing Plant stabilization and deactivation project  

Science Conference Proceedings (OSTI)

This document sets forth the plans, organization, and control systems for managing the PFP Stabilization and Deactivation Project, and includes the top level cost and schedule baselines. The project includes the stabilization of Pu-bearing materials, storage, packaging, and transport of these and other nuclear materials, surveillance and maintenance of facilities and systems relied upon for storage of the materials, and transition of the facilities in the PFP Complex.

SINCLAIR, J.C.

1999-05-03T23:59:59.000Z

376

Oak Ridge Y-12 Plant Computer Integrated Manufacturing Strategic Plan (FY 1986-1992): a working document  

SciTech Connect

The Y-12 Computer-Integrated Manufacturing (CIM) Program is managing the migration of the plant's CIM infrastructure from today's environment to an integrated, highly flexible, and more responsive manufacturing architecture planned for the 1990s. The program is committed to: (1) meeting DOE CIM directives, and (2) improving the manufacturing performance of the Y-12 Plant. The CIM Program charter in Y-12 is to improve manufacturing performance through integrated computer and communication technologies such that the plant's ability to meet its current and future manufacturing objectives is significantly enhanced. To achieve this goal, CIM technologies are being applied in two primary areas: (1) automation of manufacturing processes, and (2) automation of information of information systems. The objectives of the CIM Program are as follows: Meet DOE CIM directives; Reduce product cost; Meet production schedules with minimum contingency costs; Improve product quality via quality assurance at the point of origin; Minimize in-process inventory and improve inventory control; Reduce product lead time; Improve production flexibility.

Not Available

1985-09-01T23:59:59.000Z

377

DOE handbook: Integrated safety management systems (ISMS) verification team leader`s handbook  

SciTech Connect

The primary purpose of this handbook is to provide guidance to the ISMS verification Team Leader and the verification team in conducting ISMS verifications. The handbook describes methods and approaches for the review of the ISMS documentation (Phase I) and ISMS implementation (Phase II) and provides information useful to the Team Leader in preparing the review plan, selecting and training the team, coordinating the conduct of the verification, and documenting the results. The process and techniques described are based on the results of several pilot ISMS verifications that have been conducted across the DOE complex. A secondary purpose of this handbook is to provide information useful in developing DOE personnel to conduct these reviews. Specifically, this handbook describes methods and approaches to: (1) Develop the scope of the Phase 1 and Phase 2 review processes to be consistent with the history, hazards, and complexity of the site, facility, or activity; (2) Develop procedures for the conduct of the Phase 1 review, validating that the ISMS documentation satisfies the DEAR clause as amplified in DOE Policies 450.4, 450.5, 450.6 and associated guidance and that DOE can effectively execute responsibilities as described in the Functions, Responsibilities, and Authorities Manual (FRAM); (3) Develop procedures for the conduct of the Phase 2 review, validating that the description approved by the Approval Authority, following or concurrent with the Phase 1 review, has been implemented; and (4) Describe a methodology by which the DOE ISMS verification teams will be advised, trained, and/or mentored to conduct subsequent ISMS verifications. The handbook provides proven methods and approaches for verifying that commitments related to the DEAR, the FRAM, and associated amplifying guidance are in place and implemented in nuclear and high risk facilities. This handbook also contains useful guidance to line managers when preparing for a review of ISMS for radiological facilities, non-nuclear, or non-Defense Programs facilities. DOE line managers are encouraged to tailor the procedures described in this handbook for ISMS verifications for low risk facilities.

NONE

1999-06-01T23:59:59.000Z

378

Utility Integrated Resource Planning: An Emerging Driver of NewRenewable Generation in the Western United States  

DOE Green Energy (OSTI)

In the United States, markets for renewable generation--especially wind power--have grown substantially in recent years. This growth is typically attributed to technology improvements and resulting cost reductions, the availability of federal tax incentives, and aggressive state policy efforts. But another less widely recognized driver of new renewable generation is poised to play a major role in the coming years: utility integrated resource planning (IRP). Common in the late-1980s to mid-1990s, but relegated to lesser importance as many states took steps to restructure their electricity markets in the late-1990s, IRP has re-emerged in recent years as an important tool for utilities and regulators, particularly in regions such as the western United States, where retail competition has failed to take root. As practiced in the United States, IRP is a formal process by which utilities analyze the costs, benefits, and risks of all resources available to them--both supply- and demand-side--with the ultimate goal of identifying a portfolio of resources that meets their future needs at lowest cost and/or risk. Though the content of any specific utility IRP is unique, all are built on a common basic framework: (1) development of peak demand and load forecasts; (2) assessment of how these forecasts compare to existing and committed generation resources; (3) identification and characterization of various resource portfolios as candidates to fill a projected resource deficiency; (4) analysis of these different ''candidate'' resource portfolios under base-case and alternative future scenarios; and finally, (5) selection of a preferred portfolio, and creation of a near-term action plan to begin to move towards that portfolio. Renewable resources were once rarely considered seriously in utility IRP. In the western United States, however, the most recent resource plans call for a significant amount of new wind power capacity. These planned additions appear to be motivated by the improved economics of wind power, an emerging understanding that wind integration costs are manageable, and a growing acceptance of wind by electric utilities. Equally important, utility IRPs are increasingly recognizing the inherent risks in fossil-based generation portfolios--especially natural gas price risk and the financial risk of future carbon regulation--and the benefits of renewable energy in mitigating those risks. This article, which is based on a longer report from Berkeley Lab,i examines how twelve investor-owned utilities (IOUs) in the western United States--Avista, Idaho Power, NorthWestern Energy (NWE), Portland General Electric (PGE), Puget Sound Energy (PSE), PacifiCorp, Public Service Company of Colorado (PSCo), Nevada Power, Sierra Pacific, Pacific Gas & Electric (PG&E), Southern California Edison (SCE), and San Diego Gas & Electric (SDG&E)--treat renewable energy in their most recent resource plans (as of July 2005). In aggregate, these twelve utilities supply approximately half of all electricity demand in the western United States. In reviewing these plans, our purpose is twofold: (1) to highlight the growing importance of utility IRP as a current and future driver of renewable generation in the United States, and (2) to suggest possible improvements to the methods used to evaluate renewable generation as a resource option. As such, we begin by summarizing the amount and types of new renewable generation planned as a result of these twelve IRPs. We then offer observations about the IRP process, and how it might be improved to more objectively evaluate renewable resources.

Bolinger, Mark; Wiser, Ryan

2005-09-25T23:59:59.000Z

379

[Environmental investigation of ground water contamination at Wright- Patterson Air Force Base, Ohio]. Volume 4, Health and Safety Plan (HSP); Phase 1, Task 4 Field Investigation report: Draft  

SciTech Connect

This Health and Safety Plan (HSP) was developed for the Environmental Investigation of Ground-water Contamination Investigation at Wright-Patterson Air Force Base near Dayton, Ohio, based on the projected scope of work for the Phase 1, Task 4 Field Investigation. The HSP describes hazards that may be encountered during the investigation, assesses the hazards, and indicates what type of personal protective equipment is to be used for each task performed. The HSP also addresses the medical monitoring program, decontamination procedures, air monitoring, training, site control, accident prevention, and emergency response.

Not Available

1991-10-01T23:59:59.000Z

380

An Integrated Computer Modeling Environment For Regional Land Use, Air Quality, And Transportation Planning  

E-Print Network (OSTI)

The Land Use, Air Quality, and Transportation Integrated Modeling Environment (LATIME) represents an integrated approach to computer modeling and simulation of land use allocation, travel demand, and mobile source emissions for the Albuquerque, New Mexico, area. This environment provides predictive capability combined with a graphical and geographical interface. The graphical interface shows the causal relationships between data and policy scenarios and supports alternative model formulations. Scenarios are launched from within a Geographic Information System (GIS), and data produced by each model component at each time step within a simulation is stored in the GIS. A menudriven query system is utilized to review link-based results and regional and areawide results. These results can also be compared across time or between alternative land use scenarios. Using this environment, policies can be developed and implemented based on comparative analysis, rather than on single-step future pr...

Charles Hanley Renewable; Norman L. Marshall; Charles J. Hanley; Charles J. Hanley

1997-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "integration planning safety" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Status and integration of the gas generation studies performed for the Hydrogen Safety Program  

DOE Green Energy (OSTI)

Waste in Tank 241-SY-101 on the Hanford Site generates and periodically releases hydrogen, nitrous oxide, and nitrogen gases. Studies have been conducted at several laboratories to determine the chemical mechanisms for the gas generation and release. Results from these studies are presented and integrated in an attempt to describe current understanding of the physical properties of the waste and the mechanisms of gas generation and retention. Existing tank data are consistent with the interpretation that gases are uniformly generated in the tank, released continuously from the convecting layer, and stored in the nonconvecting layer. Tank temperature measurements suggest that the waste consists of gobs'' of material that reach neutral buoyancy at different times. The activation energy of the rate limiting step of the gas generating process was calculated to be about 7 kJ/mol but measured in the laboratory at 80 to 100 kJ/mol. Based on observed temperature changes in the tank the activation energy is probably not higher than about 20 kJ/mol. Several simulated waste compositions have been devised for use in laboratory studies in the place of actual waste from Tank 241-SY-101. Data from these studies can be used to predict how the actual waste might behave when heated or diluted. Density evaluations do not confirm that heating waste at the bottom of the tank would induce circulation within the waste; however, heating may release gas bubbles by dissolving the solids to which the bubbles adhere. Gas generation studies on simulated wastes indicated that nitrous oxide and hydrogen yields are not particularly coupled. Solubility studies of nitrous oxide, the most soluble of the principal gaseous products, indicate it is unlikely that dissolved gases contribute substantially to the quantity of gas released during periodic events.

Pederson, L.R.; Strachan, D.M.

1993-02-01T23:59:59.000Z

382

CoalFleet RD&D Augmentation Plan for Integrated Gasification Combined Cycle (IGCC) Power Plants  

Science Conference Proceedings (OSTI)

Advanced, clean coal technologies such as integrated gasification combined cycle (IGCC) offer societies around the world the promise of efficient, affordable power generation at markedly reduced levels of emissions8212including "greenhouse gases" linked to global climate change8212relative to today's current fleet of coal-fired power plants. To help accelerate the development, demonstration, and market introduction of IGCC and other clean coal technologies, EPRI formed the CoalFleet for Tomorrow initiati...

2007-01-24T23:59:59.000Z

383

Integrating short-term demand response into long-term investment planning  

E-Print Network (OSTI)

mentioned sources of flexibility are offered by the supply-side of the power system. However, integration of smart grid technologies in the electric power system [5], for example though smart meters, creates opportunities to more efficiently balance... Cedric.DeJonghe@esat.kuleuven.be, Tel. +32 16 32 17 22, Fax +32 16 32 19 85 - University of Leuven (K.U.Leuven) Energy Institute, ELECTA branch (Electric Energy and Computer Architectures), Kasteelpark Arenberg 10 box 2445 / B-3001 Heverlee / Belgium...

De Jonghe, Cedric; Hobbs, Benjamin F.; Belmans, Ronnie

2011-03-20T23:59:59.000Z

384

Challenge problem and milestones for : Nuclear Energy Advanced Modeling and Simulation (NEAMS) waste Integrated Performance and Safety Codes (IPSC).  

Science Conference Proceedings (OSTI)

This report describes the specification of a challenge problem and associated challenge milestones for the Waste Integrated Performance and Safety Codes (IPSC) supporting the U.S. Department of Energy (DOE) Office of Nuclear Energy Advanced Modeling and Simulation (NEAMS) Campaign. The NEAMS challenge problems are designed to demonstrate proof of concept and progress towards IPSC goals. The goal of the Waste IPSC is to develop an integrated suite of modeling and simulation capabilities to quantitatively assess the long-term performance of waste forms in the engineered and geologic environments of a radioactive waste storage or disposal system. The Waste IPSC will provide this simulation capability (1) for a range of disposal concepts, waste form types, engineered repository designs, and geologic settings, (2) for a range of time scales and distances, (3) with appropriate consideration of the inherent uncertainties, and (4) in accordance with robust verification, validation, and software quality requirements. To demonstrate proof of concept and progress towards these goals and requirements, a Waste IPSC challenge problem is specified that includes coupled thermal-hydrologic-chemical-mechanical (THCM) processes that describe (1) the degradation of a borosilicate glass waste form and the corresponding mobilization of radionuclides (i.e., the processes that produce the radionuclide source term), (2) the associated near-field physical and chemical environment for waste emplacement within a salt formation, and (3) radionuclide transport in the near field (i.e., through the engineered components - waste form, waste package, and backfill - and the immediately adjacent salt). The initial details of a set of challenge milestones that collectively comprise the full challenge problem are also specified.

Freeze, Geoffrey A.; Wang, Yifeng; Howard, Robert; McNeish, Jerry A.; Schultz, Peter Andrew; Arguello, Jose Guadalupe, Jr.

2010-09-01T23:59:59.000Z

385

DOE/EA-1371; Integrated Natural Resources Management Plan, Environmental Assessment, and Finding of No Significant Impacts for Rock Creek Reserve (5/2001)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

INTEGRATED NATURAL RESOURCES MANAGEMENT PLAN, ENVIRONMENTAL ASSESSMENT and Finding Of No Significant Impacts for ROCK CREEK RESERVE 2001-Closure DOE/EA - 1371 Department of Energy Rocky Flats Environmental Technology Site and The U.S. Fish & Wildlife Service May, 2001 Dear Stakeholder: Enclosed is the Final Rock Creek Reserve Integrated Natural Resources Management Plan (Plan), Environmental Assessment (EA), and Finding Of No Significant Impacts (FONSI). The Rock Creek Reserve was dedicated on May 17, 1999, to be jointly managed by the US Fish and Wildlife Service and US Department of Energy. This Plan/EA was developed in accordance with the National Environmental Policy Act (NEPA) process. Through cooperation with the U.S. Fish and Wildlife Service for joint

386

Comparative risk analysis for the Rocky Flats Plant integrated project planning  

Science Conference Proceedings (OSTI)

The Rocky Flats Plant is developing, with active stakeholder a comprehensive planning strategy that will support transition of the Rocky Flats Plant from a nuclear weapons production facility to site cleanup and final disposition. Final disposition of the Rocky Flats Plant materials and contaminants requires consideration of the interrelated nature of sitewide problems, such as material movement and disposition, facility and land use endstates, costs relative risks to workers and the public, and waste disposition. Comparative Risk Analysis employs both incremental risk and cumulative risk evaluations to compare risks from postulated options or endstates. These postulated options or endstates can be various remedial alternatives, or future endstate uses of federal agency land. Currently, there does not exist any approved methodology that aggregates various incremental risk estimates. Comparative Risk Analysis has been developed to aggregate various incremental risk estimates to develop a site cumulative risk estimate. This paper discusses development of the Comparative Risk Analysis methodology, stakeholder participation and lessons learned from these challenges.

Jones, M.E.; Shain, D.I.

1994-05-01T23:59:59.000Z

387

Integrating gray system theory and logistic regression into case-based reasoning for safety assessment of thermal power plants  

Science Conference Proceedings (OSTI)

Safety assessment of thermal power plants (TPPs) is one of the important means to guarantee the safety of production in thermal power production enterprises. Due to various technical limitations, existing assessment approaches, such as analytic hierarchy ... Keywords: Case-based reasoning, Gray system theory, Intelligent decision support system, Logistic regression, Management safety assessment, Thermal power plants

Changyong Liang; Dongxiao Gu; Isabelle Bichindaritz; Xingguo Li; Chunrong Zuo; Wenen Cheng

2012-04-01T23:59:59.000Z

388

DOE Hydrogen and Fuel Cells Program: Safety  

NLE Websites -- All DOE Office Websites (Extended Search)

First Responder Training First Responder Training Bibliographic Database Newsletter Codes and Standards Education Basic Research Systems Analysis Systems Integration U.S. Department of Energy Search help Home > Safety Printable Version Safety Safe practices in the production, storage, distribution, and use of hydrogen are an integral part of future plans. Like most fuels, hydrogen can be handled and used safely with appropriate sensing, handling, and engineering measures. The aim of this program activity is to verify the physical and chemical properties of hydrogen, outline the factors that must be considered to minimize the safety hazards related to the use of hydrogen as a fuel, and provide a comprehensive database on hydrogen and hydrogen safety. Photo of hydrogen fueling pump in Las Vegas, Nevada

389

Developing an integrated ecological resource management and monitoring plan as part of an environmental management system  

SciTech Connect

Recent interest in defining the appropriate content of an Environmental Management System (EMS) as specified by ISO 14001 prompted a study to determine how ecological concerns should be integrated into an EMS and subsequently implemented. This paper describes an approach for developing objectives, targets, and processes for ecological resource management at those Department of Energy (DOE) facilities where an ecological resource management approach that goes beyond simple regulatory compliance is warranted. A major goal of this approach is to position DOE facilities so that they can proactively address ecological concerns, rather than being forced to respond retroactively to damage claims, restoration requirements, and/or bad publicity. Although DOE is not requiring ISO 14001 implementation at its facilities, it is recommending ISO 14001 as a voluntary approach to encourage good environmental practices, such as pollution prevention and sustainable development, by adopting an integrated systems approach. The DOE position is that existing DOE orders and policy statements are consistent with, and have elements of, the ISO 14001 EMS approach.

Michael, D.; Hooten, M. [Neptune and Co., Inc., Los Alamos, NM (United States); Kelly, E. [Los Alamos National Lab., NM (United States); Roy-Harrison, W. [USDOE, Washington, DC (United States)

1997-04-01T23:59:59.000Z

390

Institutional Plan FY 2003 - 2007  

Science Conference Proceedings (OSTI)

The Fiscal Year (FY) 2003-2007 Institutional Plan describes the strategic directions and key issues that Lawrence Berkeley National Laboratory management must address with the Department of Energy (DOE) in charting its future as a multiprogram national laboratory. The Plan provides an overview of the Laboratory's mission, strategic plan, initiatives, and the resources required to fulfill its role in support of national needs in fundamental science and technology, energy resources, and environmental quality. The Plan facilitates the Department of Energy's ongoing efforts to strengthen the Integrated Laboratory System. Preparation and review of the Institutional Plan is one element of the Department of Energy's strategic management planning activities, implemented through an annual planning process. The Plan supports the President's Management Agenda and the Government Performance and Results Act of 1993. The Plan complements the current performance-based contract between the Department of Energy and the Regents of the University of California, and summarizes Best Management Practices for a potential future results-based contract as a basis for achieving DOE goals and the Laboratory's scientific and operations objectives. It identifies technical and administrative directions in the context of national energy policy and research needs and the Department of Energy's program planning initiatives. Preparation of the Plan is coordinated by the Planning and Strategic Development Office from information contributed by Berkeley Lab's scientific and support divisions and DOE comments on prior years' plans. The Laboratory Mission section identifies the specific strengths of Berkeley Lab that contribute to the mission in general and the Integrated Laboratory System in particular. The Laboratory Strategic Plan section identifies the existing activities in support of DOE Office of Science and other sponsors; support for DOE goals; and the Laboratory Scientific Vision and operations goals. The Initiatives section describes some of the specific new research programs representing major long-term opportunities for the Department of Energy and Berkeley Lab. The Operations Strategic Planning section describes our strategic thinking in the areas of human resources; site and cyber security; workforce diversity; communications and trust; integrated safety management; and technology transfer activities. The Infrastructure Strategic Planning section describes Berkeley Lab's facilities planning process and our site and facility needs. The Summary of Major Issues section provides context for discussions at the Institutional Planning On-Site Review. The Resource Projections are estimates of required budgetary authority for Berkeley Lab's research programs.

Chartock, Michael; Hansen, Todd

2003-01-27T23:59:59.000Z

391

Waste Minimization Plan Prepared by  

E-Print Network (OSTI)

Waste Minimization Plan Prepared by: Environmental Health and Safety Department Revised February 2012 #12;Waste Minimization Plan Table of Contents Policy Statement........................................................... 3 Centralized Waste Management Program

392

Site Safety and Health Plan (Phase 3) for the treatability study for in situ vitrification at Seepage Pit 1 in Waste Area Grouping 7, Oak Ridge National Laboratory, Oak Ridge, TN  

SciTech Connect

This plan is to be implemented for Phase III ISV operations and post operations sampling. Two previous project phases involving site characterization have been completed and required their own site specific health and safety plans. Project activities will take place at Seepage Pit 1 in Waste Area Grouping 7 at ORNL, Oak Ridge, Tennessee. Purpose of this document is to establish standard health and safety procedures for ORNL project personnel and contractor employees in performance of this work. Site activities shall be performed in accordance with Energy Systems safety and health policies and procedures, DOE orders, Occupational Safety and Health Administration Standards 29 CFR Part 1910 and 1926; applicable United States Environmental Protection Agency requirements; and consensus standards. Where the word ``shall`` is used, the provisions of this plan are mandatory. Specific requirements of regulations and orders have been incorporated into this plan in accordance with applicability. Included from 29 CFR are 1910.120 Hazardous Waste Operations and Emergency Response; 1910.146, Permit Required - Confined Space; 1910.1200, Hazard Communication; DOE Orders requirements of 5480.4, Environmental Protection, Safety and Health Protection Standards; 5480.11, Radiation Protection; and N5480.6, Radiological Control Manual. In addition, guidance and policy will be followed as described in the Environmental Restoration Program Health and Safety Plan. The levels of personal protection and the procedures specified in this plan are based on the best information available from reference documents and site characterization data. Therefore, these recommendations represent the minimum health and safety requirements to be observed by all personnel engaged in this project.

Spalding, B.P.; Naney, M.T.

1995-06-01T23:59:59.000Z

393

Cost-effective facility disposition planning with safety and health lessons learned and good practices from the Oak Ridge Decontamination and Decommissioning Program  

SciTech Connect

An emphasis on transition and safe disposition of DOE excess facilities has brought about significant challenges to managing worker, public, and environmental risks. The transition and disposition activities involve a diverse range of hazardous facilities that are old, poorly maintained, and contain radioactive and hazardous substances, the extent of which may be unknown. In addition, many excess facilities do not have historical facility documents such as operating records, plant and instrumentation diagrams, and incident records. The purpose of this report is to present an overview of the Oak Ridge Decontamination and Decommissioning (D and D) Program, its safety performance, and associated safety and health lessons learned and good practices. Illustrative examples of these lessons learned and good practices are also provided. The primary focus of this report is on the safety and health activities and implications associated with the planning phase of Oak Ridge facility disposition projects. Section 1.0 of this report provides the background and purpose of the report. Section 2.0 presents an overview of the facility disposition activities from which the lessons learned and good practices discussed in Section 3.0 were derived.

NONE

1998-05-01T23:59:59.000Z

394

California Energy Commission Public Interest Energy Research/Energy System Integration -- Transmission-Planning Research & Development Scoping Project  

E-Print Network (OSTI)

Energy Research/ Energy System Integration Transmission-Research Program Energy System Integration Public InterestCommissions PIER Energy Systems Integration program for

Eto, Joseph H.; Lesieutre, Bernard; Widergren, Steven

2004-01-01T23:59:59.000Z

395

Use of Frequency Response Metrics to Assess the Planning and Operating Requirements for Reliable Integration of Variable Renewable Generation  

E-Print Network (OSTI)

Report - 2006 Minnesota Wind Integration Study Volume I.NREL). 2010. Eastern Wind Integration and TransmissionAvista Corporation Wind Integration Study. March. http://

Eto, Joseph H.

2011-01-01T23:59:59.000Z

396

Use of Frequency Response Metrics to Assess the Planning and Operating Requirements for Reliable Integration of Variable Renewable Generation  

E-Print Network (OSTI)

Integration of Variable Renewable Generation The report isISO (CAISO). 2007. Integration of Renewable Resources.recommendations for integrating renewable resources on the

Eto, Joseph H.

2011-01-01T23:59:59.000Z

397

ORISE: Contact Environment, Safety & Health  

NLE Websites -- All DOE Office Websites (Extended Search)

Safety Integrated Safety Management Voluntary Protection Program VPP Star Status Environment Work Smart Standards Oak Ridge Institute for Science Education Contact Us Use the form...

398

Integrated DWPF Melter System (IDMS) campaign report: Hanford Waste Vitrification Plan (HWVP) process demonstration  

Science Conference Proceedings (OSTI)

Vitrification facilities are being developed worldwide to convert high-level nuclear waste to a durable glass form for permanent disposal. Facilities in the United States include the Department of Energy`s Defense Waste Processing Facility (DWPF) at the Savannah River Site, the Hanford Waste Vitrification Plant (HWVP) at the Hanford Site and the West Valley Demonstration Project (WVDP) at West Valley, NY. At each of these sites, highly radioactive defense waste will be vitrified to a stable borosilicate glass. The DWPF and WVDP are near physical completion while the HWVP is in the design phase. The Integrated DWPF Melter System (IDMS) is a vitrification test facility at the Savannah River Technology Center (SRTC). It was designed and constructed to provide an engineering-scale representation of the DWPF melter and its associated feed preparation and off-gas treatment systems. Because of the similarities of the DWPF and HWVP processes, the IDMS facility has also been used to characterize the processing behavior of a reference NCAW simulant. The demonstration was undertaken specifically to determine material balances, to characterize the evolution of offgas products (especially hydrogen), to determine the effects of noble metals, and to obtain general HWVP design data. The campaign was conducted from November, 1991 to February, 1992.

Hutson, N.D.

1992-08-10T23:59:59.000Z

399

Developing A Safety Culture In A Research And Development Environment: Air Traffic Management Domain  

E-Print Network (OSTI)

Measuring safety climate has been undertaken in many industries (e.g. oil, nuclear, aviation) over the past twenty years, as a proactive method of collecting safety information about the current level of safety in the organisation. However, there has been little work undertaken to develop the safety culture of the designers of these technological systems, to ensure that their designs are endeavouring to reach the highest levels of safety. A tool was developed to measure the current level of safety culture of designers in an air traffic navigation R&D organisation and contains 21 sub-sections under the following four main headings: i) Management Demonstration of Safety; ii) Planning and Organising for Safety; iii) Communication, Trust & Responsibility for Safety and iv) Measuring, Auditing and Reviewing. The findings indicated that the main areas for improvement are: i) the safety management system; ii) team integration; iii) responsibility for safety. Based on the survey findings some changes were undertaken in an attempt to improve the safety culture at the centre and a repeat survey is planned for April, 2005 to assess any improvements. This paper will describe the survey method and findings, the safety improvement plan, preliminary findings from the follow-up survey and lessons learnt during the change process. 1.

Rachael Gordon; Barry Kirwan

2005-01-01T23:59:59.000Z

400

Safety Standards  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

US DOE Workshop US DOE Workshop September 19-20, 2012 International perspective on Fukushima accident Miroslav Lipár Head, Operational Safety Section M.Lipar@iaea.org +43 1 2600 22691 2 Content * The IAEA before Fukushima -Severe accidents management * The IAEA actions after Fukushima * The IAEA Action plan on nuclear safety * Measures to improve operational safety * Conclusions THE IAEA BEFORE FUKUSHIMA 4 IAEA Safety Standards IAEA Safety Standards F undamental S afety Principles Safety Fundamentals f o r p ro te c ti n g p e o p l e a n d t h e e n v i ro n m e n t IAEA Safety Standards Regulations for the Safe Transport of Radioactive Material 2005 E dit ion Safety Requirements No. T S-R-1 f o r p ro te c ti n g p e o p l e a n d t h e e n v i ro n m e n t IAEA Safety Standards Design of the Reactor Core for Nuclear Power Plants

Note: This page contains sample records for the topic "integration planning safety" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

DOE/EA-1371; Integrated Natural Resources Management Plan, Environmental Assessment, and Finding of No Significant Impacts for Rock Creek Reserve (5/2001)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Finding of No Significant Impact Finding of No Significant Impact Integrated Natural Resources Management Plan and Environmental Assessment for Rock Creek Reserve Summary: The Department of Energy (DOE) with the assistance and cooperation of the US. Fish and Wildlife Service, prepared an Integrated Natural Resources Management Plan and Environmental Assessment (Plan)(DOE/EA-1371) for the Rock Creek Reserve at the Rocky Flats Environmental Technology Site (Site) located north of Golden, Colorado. The Rock Creek Reserve was established in May 1999 in recognition of the area's biological significance. Although still under the ownership of the DOE, the Rock Creek Reserve will be co- managed with the U. S. Fish and Wildlife Service as part of an interagency agreement signed by these two

402

Remedial action planning for Trench 1  

SciTech Connect

The accelerated action to remove the depleted uranium chips and associated soils and wastes from Trench 1 at the Rocky Flats Environmental Technology Site (RFETS) will begin in June 1998. To ensure that the remedial action is conducted safely, a rigorous and disciplined planning process was followed that incorporates the principles of Integrated Safety Management and Enhanced Work Planning. Critical to the success of the planning was early involvement of project staff (salaried and hourly) and associated technical support groups and disciplines. Feedback was and will continue to be solicited, and lessons learned incorporated to ensure the safe remediation of this site.

Primrose, A.; Sproles, W.; Burmeister, M.; Wagner, R.; Law, J. [Rocky Mountain Remediation Services, LLC, Golden, CO (United States). Rocky Flats Environmental Technology Site; Greengard, T. [Kaiser Hill/SAIC, Golden, CO (United States). Rocky Flats Environmental Technology Site; Castaneda, N. [Dept. of Energy, Golden, CO (United States). Rocky Flats Environmental Technology Site

1998-07-01T23:59:59.000Z

403

TEC/WG TRANSPORTATION SAFETY WIPP-PIG RAIL COMPARISON: A Framework...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

TRANSPORTATION SAFETY WIPP-PIG RAIL COMPARISON: A Framework for Comparing Rail Safety Issues to Safety Issues Outlined in the WIPP Transportation Safety Planning & Implementation...

404

Environmental, safety, and health plan for the remedial investigation of Waste Area Grouping 10, Operable Unit 3, at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Environmental Restoration Program  

Science Conference Proceedings (OSTI)

This document outlines the environmental, safety, and health (ES&H) approach to be followed for the remedial investigation of Waste Area Grouping (WAG) 10 at Oak at Ridge National Laboratory. This ES&H Plan addresses hazards associated with upcoming Operable Unit 3 field work activities and provides the program elements required to maintain minimal personnel exposures and to reduce the potential for environmental impacts during field operations. The hazards evaluation for WAG 10 is presented in Sect. 3. This section includes the potential radiological, chemical, and physical hazards that may be encountered. Previous sampling results suggest that the primary contaminants of concern will be radiological (cobalt-60, europium-154, americium-241, strontium-90, plutonium-238, plutonium-239, cesium-134, cesium-137, and curium-244). External and internal exposures to radioactive materials will be minimized through engineering controls (e.g., ventilation, containment, isolation) and administrative controls (e.g., procedures, training, postings, protective clothing).

Not Available

1993-10-01T23:59:59.000Z

405

On the safety implications of e-governance: assessing the hazards of enterprise information architectures in safety-critical applications  

Science Conference Proceedings (OSTI)

Governments across Europe and North America have recently reviewed the ways in which they provide both the public and their own departments with access to electronic data. Information service architectures have been proposed as one important component ... Keywords: data integrity, e-governance, emergency planning, safety information

Christopher W. Johnson; Stefan Raue

2010-09-01T23:59:59.000Z

406

MAS 10.1 Implementation of the Integrated Safety Management System (ISMS) Process in Maintenance Activities, 2/14/2000  

Energy.gov (U.S. Department of Energy (DOE))

The objective of this surveillance is to evaluate the effectiveness of the contractor's ISMS process with regard to maintenance activities. Surveillance activities encompass work planning and...

407

Operations Strategic Plan  

NLE Websites -- All DOE Office Websites (Extended Search)

Operations Strategic Plan Updated July 2009 Operations Organization Chief Operating Officer (COO) Deputy COO Environment, Health & Safety EH&S Facilities FAC Project Management...

408

Lawrence Livermore National Laborotory Safety Basis Assessment...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and implementation of safety basis documentation and execution of the unreviewed safety question (USQ) process. SCOPE The scope of this assessment includes the plans,...

409

Microsoft Word - Operationalizing Explosives Safety.docx  

NLE Websites -- All DOE Office Websites (Extended Search)

Operationalizing Explosives Safety Incorporating Explosives Safety and Munitions Risk Management into the Joint Operation Planning Process Department of Defense Issues and...

410

The Office of Health, Safety and Security  

NLE Websites -- All DOE Office Websites (Extended Search)

Safety Oversight Principles As described in the Board's Strategic Plan, the Board executes its safety oversight responsibility according to the following principles: The primary...

411

CFN Ops Plan | Work Planning  

NLE Websites -- All DOE Office Websites (Extended Search)

Operations Plan Operations Plan Work Planning & Control for Experiments and Operations All experimental work will be conducted in accordance with Work Planning and Control for Experiments and Operations, which ensures proper design and operation of all experiments prior to their commencement. CFN will use the SBMS provided standard form for the formal documentation. The Lead Experimenter/Responsible person will notify the Experimental Safety Review Committee of any new experiments or modifications to existing experiments. CFN will appoint an Experimental Safety Review Committee. This committee will consist of the Experiment Review Coordinator, CFN personnel, Facility Support Representative (FSR), Environmental Compliance Representative (ECR). Additional subject matter experts may be appointed on an ad-hoc

412

Energy Efficiency/Renewable Energy Impact in the Texas Emissions Reduction Plan (TERP) Preliminary Report: Integrated NOx Emissions Savings from EE/RE Programs Statewide  

E-Print Network (OSTI)

The Energy Systems Laboratory (Laboratory), at the Texas Engineering Experiment Station of the Texas A&M University System, in fulfillment of its responsibilities under Texas Health and Safety Code Ann. 388.003 (e), Vernon Supp. 2002, submits its eighth annual report, Energy Efficiency/Renewable Energy (EE/RE) Impact in the Texas Emissions Reduction Plan to the Texas Commission on Environmental Quality. The report is organized in three volumes: Volume I Summary Report provides an executive summary and overview; Volume II Technical Report provides a detailed report of activities, methodologies and findings; Volume III Technical Appendix contains detailed data from simulations for each of the counties included in the analysis.

Haberl, J.; Culp, C.; Yazdani, B.; Gilman, D.; Baltazar, J. C.; Lewis, C.; McKelvey, K.; Mukhopadhyay, J.; Degelman, L.; Liu, Z.

2010-07-01T23:59:59.000Z

413

An integrated safety prognosis model for complex system based on dynamic Bayesian network and ant colony algorithm  

Science Conference Proceedings (OSTI)

In complex industrial system, most of single faults have multiple propagation paths, so any local slight deviation is able to propagate, spread, accumulate and increase through system fault causal chains. It will finally result in unplanned outages and ... Keywords: Ant colony algorithm, Dynamic Bayesian networks, Fault propagation path, Proactive maintenance, Risk evaluation, Safety prognosis

Jinqiu Hu; Laibin Zhang; Lin Ma; Wei Liang

2011-03-01T23:59:59.000Z

414

General Electric Uses an Integrated Framework for Product Costing, Demand Forecasting, and Capacity Planning of New Photovoltaic Technology Products  

Science Conference Proceedings (OSTI)

General Electric (GE) Energy's nascent solar business has revenues of over $100 million, expects those revenues to grow to over $1 billion in the next three years, and has plans to rapidly grow the business beyond this period. GE Global Research (GEGR), ... Keywords: capital budgeting, cost analysis, facilities planning, forecasting, mathematical programming, risk

Bex George Thomas; Srinivas Bollapragada

2010-09-01T23:59:59.000Z

415

Cryogenics safety  

DOE Green Energy (OSTI)

The safety hazards associated with handling cryogenic fluids are discussed in detail. These hazards include pressure buildup when a cryogenic fluid is heated and becomes a gas, potential damage to body tissues due to surface contact, toxic risk from breathing air altered by cryogenic fluids, dangers of air solidification, and hazards of combustible cryogens such as liquified oxygen, hydrogen, or natural gas or of combustible mixtures. Safe operating procedures and emergency planning are described. (LCL)

Reider, R.

1977-01-01T23:59:59.000Z

416

Microsoft Word - Policy_Flash_ 09_01_L1_Safety_course.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Course Requirement Course Requirement The Project Management Career Development Program (PMCDP) Certification Review Board (CRB) notified all program elements on February 14, 2008 of a clarification of the requirement to successfully complete the PMCDP level 1 core course, Integrating Safety into Project Management. On February 13, 2009 the CRB has further clarified this requirement. * All current federal project directors are required to complete the PMCDP Level 1 core course, Planning Safety into Project Management (formerly titled Integrating Safety into Project Management), no later than January 3, 2010, or one of the following equivalencies. o Successfully complete the DOE course, SAF 220, Senior Technical Safety Manager Overview. o Hold a Senior Technical Safety Manager or Certified Safety Professional

417

Standard Review Plan - Overview | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Review Plan Overview More Documents & Publications Preliminary Safety Design RM Quality Assurance for Critical Decision Reviews RM Checkout, Testing, and Commissioning Plan RM...

418

Transportation Safety Excellence in Operations Through Improved Transportation Safety Document  

Science Conference Proceedings (OSTI)

A recent accomplishment of the Idaho National Laboratory (INL) Materials and Fuels Complex (MFC) Nuclear Safety analysis group was to obtain DOE-ID approval for the inter-facility transfer of greater-than-Hazard-Category-3 quantity radioactive/fissionable waste in Department of Transportation (DOT) Type A drums at MFC. This accomplishment supported excellence in operations through safety analysis by better integrating nuclear safety requirements with waste requirements in the Transportation Safety Document (TSD); reducing container and transport costs; and making facility operations more efficient. The MFC TSD governs and controls the inter-facility transfer of greater-than-Hazard-Category-3 radioactive and/or fissionable materials in non-DOT approved containers. Previously, the TSD did not include the capability to transfer payloads of greater-than-Hazard-Category-3 radioactive and/or fissionable materials using DOT Type A drums. Previous practice was to package the waste materials to less-than-Hazard-Category-3 quantities when loading DOT Type A drums for transfer out of facilities to reduce facility waste accumulations. This practice allowed operations to proceed, but resulted in drums being loaded to less than the Waste Isolation Pilot Plant (WIPP) waste acceptance criteria (WAC) waste limits, which was not cost effective or operations friendly. An improved and revised safety analysis was used to gain DOE-ID approval for adding this container configuration to the MFC TSD safety basis. In the process of obtaining approval of the revised safety basis, safety analysis practices were used effectively to directly support excellence in operations. Several factors contributed to the success of MFCs effort to obtain approval for the use of DOT Type A drums, including two practices that could help in future safety basis changes at other facilities. 1) The process of incorporating the DOT Type A drums into the TSD at MFC helped to better integrate nuclear safety requirements with waste requirements. MFCs efforts illustrate that utilizing the requirements of other disciplines, beyond nuclear safety, can provide an efficient process. Analyzing current processes to find better ways of meeting the requirements of multiple disciplines within a safety basis can lead to a more cost-effective, streamlined process. 2) Incorporating the DOT Type A drums into the MFC TSD was efficient because safety analysts utilized a transportation plan that provided analysis that could also be used for the change to the TSD addendum. In addition, because the plan they used had already been approved and was in use by the Idaho Cleanup Project (ICP) at the INL, justification for the change to the TSD was more compelling. MFC safety analysts proved that streamlining a process can be made more feasible by drawing from analysis that has already been completed.

Dr. Michael A. Lehto; MAL

2007-05-01T23:59:59.000Z

419

10 CFR 851 Worker Safety and Health Program (WSHP) Description...  

NLE Websites -- All DOE Office Websites (Extended Search)

the following facilities: o 701 Scarboro Road o ORAU Main Campus Integrated Safety Management System A major concept of ISMS is the integration of safety awareness and good...

420

CRAD, Configuration Management Assessment Plan | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Configuration Management Assessment Plan Configuration Management Assessment Plan CRAD, Configuration Management Assessment Plan Performance Objective: The objective of this assessment is to determine whether a Configuration Management Program (CM) is in place which allows for the availability and retrievability of accurate information, improves response to design and operational decisions, enhances worker safety, increases facility safety and reliability, increases efficiency of work efforts, and helps maintain integrity of interfacing orders. Criteria: The CM program supports DOE program implementation through the following: It provides the mechanisms for identifying, cataloging, and maintaining the design requirements and design basis (established to satisfy DOE O 420.1 Facility Safety). It carries forward the technical baseline established in the design

Note: This page contains sample records for the topic "integration planning safety" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

CRAD, Hoisting & Rigging Assessment Plan | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hoisting & Rigging Assessment Plan Hoisting & Rigging Assessment Plan CRAD, Hoisting & Rigging Assessment Plan Performance Objective: To determine that hoisting and rigging operations are conducted according to "industry best standards" for increasing equipment reliability while assuring worker safety, and to verify issues being addressed in BN Hoisting assessment. Criteria: Lifts are identified and categorized appropriately for scheduled maintenance. DOE-STD-1090-2001 An integrated process ensures safety issues are identified and controls established. DOE-STD-1090-2001 Personnel operating and maintaining the hoisting equipment are trained; they understand their roles and responsibilities. DOE-STD-1090-2001 Maintenance conducts safety inspections of hoisting and rigging equipment on a scheduled basis, certifying that safe operations are in

422

BWRVIP-86, Revision 1-A: BWR Vessel and Internals Project, Updated BWR Integrated Surveillance Program (ISP) Implementation Plan  

Science Conference Proceedings (OSTI)

This report describes the boiling water reactor (BWR) Integrated Surveillance Program (ISP). Based on recommendations from BWR Vessel and Internals Project (BWRVIP) utilities, it was concluded that combining all separate BWR surveillance programs into a single integrated program would be beneficial. In the integrated program, representative materials chosen for a specific reactor pressure vessel (RPV) can be materials from another plant surveillance program or other source that better represents the ...

2012-10-01T23:59:59.000Z

423

California Energy Commission Public Interest Energy Research/Energy System Integration -- Transmission-Planning Research & Development Scoping Project  

E-Print Network (OSTI)

Case Selection Natural Gas Prices Demand Hydrology Natural gas price forecast - Near-term new generation - DemandDemand-side alternatives to transmission Integration of natural gas

Eto, Joseph H.; Lesieutre, Bernard; Widergren, Steven

2004-01-01T23:59:59.000Z

424

PROJECT MANGEMENT PLAN EXAMPLES  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Integrated Safety Management Examples Integrated Safety Management Examples Example 10 8.2 PFP INTEGRATED SAFETY STRATEGY The following discussion identifies the process that will be used by the PFP Stabilization and Deactivation Project to ensure that the safety of the worker, public, and the environment are adequately addressed during the project. The primary activities involved in the process include the following:  Implementation of the Integrated Safety Management System (ISMS),  Identification, control, or mitigation of worker safety-related issues for stabilization and deactivation/dismantlement activities,  Facility/chemical vulnerability assessment and management,  Use of the DOE-approved authorization basis and the Unreviewed Safety Question (USQ) process to determine if the PFP

425

Evolution of Safety Basis Documentation for the Fernald Site  

SciTech Connect

The objective of the Department of Energy's (DOE) Fernald Closure Project (FCP), in suburban Cincinnati, Ohio, is to safely complete the environmental restoration of the Fernald site by 2006. Over 200 out of 220 total structures, at this DOE plant site which processed uranium ore concentrates into high-purity uranium metal products, have been safely demolished, including eight of the nine major production plants. Documented Safety Analyses (DSAs) for these facilities have gone through a process of simplification, from individual operating Safety Analysis Reports (SARs) to a single site-wide Authorization Basis containing nuclear facility Bases for Interim Operations (BIOs) to individual project Auditable Safety Records (ASRs). The final stage in DSA simplification consists of project-specific Integrated Health and Safety Plans (I-HASPs) and Nuclear Health and Safety Plans (N-HASPs) that address all aspects of safety, from the worker in the field to the safety basis requirements preserving the facility/activity hazard categorization. This paper addresses the evolution of Safety Basis Documentation (SBD), as DSAs, from production through site closure.

Brown, T.; Kohler, S.; Fisk, P.; Krach, F.; Klein, B.

2004-03-01T23:59:59.000Z

426

December 20, 2005, Department letter forwarding the revised version of the Department's draft Manual DOE M 450.4-X, Integrated Safety Management System Manual  

NLE Websites -- All DOE Office Websites (Extended Search)

20, 2005 20, 2005 The Honorable A. J. Eggenberger Chairman, Defense Nuclear Facilities Safety Board 625 Indiana Ave, Suite 700 Washington, D.C. 20004 Dear Mr. Chairman: This letter transmits to you a revised version of the Department of Energy's draft Manual DOE M 450.4-X, integrated Scffety Manugeinent System Manual. This revised version represents a significant improvement over the November 2,2005 version previously provided to your staff. This improvement occurred by addressing internal DOE comments on the Manual. The Department has also addressed various informal comments provided by your staff. The Department remains interested in the Board's comments on this Manual. Please forward any comments regarding this draft document by January 18, 2006. If you have any