National Library of Energy BETA

Sample records for integration planning safety

  1. Integration of Safety Culture Attributes into EFCOG Work Planning...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Planning and Control Guidance Document Integration of Safety Culture Attributes into EFCOG ... Topics Covered: Integration of Safety Culture (SC) Attributes into EFCOG Work Planning and ...

  2. Spent Nuclear Fuel project integrated safety management plan

    SciTech Connect (OSTI)

    Daschke, K.D.

    1996-09-17

    This document is being revised in its entirety and the document title is being revised to ``Spent Nuclear Fuel Project Integrated Safety Management Plan.

  3. Integrated Safety Management in QA Program Planning

    Broader source: Energy.gov [DOE]

    Presenter: Sonya Barnette, Office of Quality Assurance Policy and Assistance, Office of Nuclear Safety, Quality Assurance and Environment Track 9-8

  4. TWRS safety and technical integration risk management plan

    SciTech Connect (OSTI)

    Fordham, R.A.

    1996-03-12

    The objectives of the Tank Waste Remediation System (TWRS) Safety and Technical Integration (STI) programmatic risk management program are to assess, analyze, and handle risks associated with TWRS STI responsibilities and to communicate information about the actions being taken and the results to enable decision making. The objective of this TWRS STI Risk Management Plan is to communicate a consistent approach to risk management that will be used by the organization.

  5. EFCOG Integrated Safety Management Work Planning and Control

    Broader source: Energy.gov [DOE]

    Presenter: Matthew Moury, Deputy Assistant Secretary for Safety, Security and Quality Programs, Office of Environmental Management

  6. Integrated Safety Management System as the Basis for Work Planning and Control for Research and Development

    Broader source: Energy.gov [DOE]

    Slide Presentation by Rich Davies, Kami Lowry, Mike Schlender, Pacific Northwest National Laboratory (PNNL) and Ted Pietrok, Pacific Northwest Site Office (PNSO). Integrated Safety Management System as the Basis for Work Planning and Control for Research and Development. Work Planning and Control (WP&C) is essential to assuring the safety of workers and the public regardless of the scope of work Research and Development (R&D) activities are no exception.

  7. Integration of Safety Culture Attributes into EFCOG Work Planning and

    Energy Savers [EERE]

    Operations | Department of Energy Integration of Behind-the-Meter PV Fleet Forecasts into Utility Grid System Operations Integration of Behind-the-Meter PV Fleet Forecasts into Utility Grid System Operations Clean Power Research logo.jpg This project will address the need for a more accurate approach to forecasting net utility load by taking into consideration the contribution of customer-sited PV energy generation. Tasks within the project are designed to integrate novel PV power

  8. River Protection Project Integrated safety management system phase II verification review plan - 7/29/99

    SciTech Connect (OSTI)

    SHOOP, D.S.

    1999-09-10

    The purpose of this review is to verify the implementation status of the Integrated Safety Management System (ISMS) for the River Protection Project (RPP) facilities managed by Fluor Daniel Hanford, Inc. (FDH) and operated by Lockheed Martin Hanford Company (LMHC). This review will also ascertain whether within RPP facilities and operations the work planning and execution processes are in place and functioning to effectively protect the health and safety of the workers, public, environment, and federal property over the RPP life cycle. The RPP ISMS should support the Hanford Strategic Plan (DOERL-96-92) to safely clean up and manage the site's legacy waste and deploy science and technology while incorporating the ISMS central theme to ''Do work safely'' and protect human health and the environment.

  9. Integrated Safety Management Policy

    Broader source: Energy.gov [DOE]

    This Integrated Safety Management (ISM) System Description (ISMSD) defines how the U.S. Department of Energy (DOE) Office of Environmental Management (EM) integrates environment, safety, and health...

  10. TWRS safety management plan

    SciTech Connect (OSTI)

    Popielarczyk, R.S., Westinghouse Hanford

    1996-08-01

    The Tank Waste Remediation System (TWRS) Safety Management Program Plan for development, implementation and maintenance of the tank farm authorization basis is described. The plan includes activities and procedures for: (a) Updating the current Interim Safety Basis, (b) Development,implementation and maintenance of a Basis for Interim Operations, (c) Development, implementation and maintenance of the Final Safety Analyses Report, (d) Development and implementation of a TWRS information Management System for monitoring the authorization basis.

  11. TWRS safety program plan

    SciTech Connect (OSTI)

    Calderon, L.M., Westinghouse Hanford

    1996-08-01

    Management of Nuclear Safety, Industrial Safety, Industrial Hygiene, and Fire Protection programs, functions, and field support resources for Tank Waste Remediation Systems (TWRS) has, until recently, been centralized in TWRS Safety, under the Emergency, Safety, and Quality organization. Industrial hygiene technician services were also provided to support operational needs related to safety basis compliance. Due to WHC decentralization of safety and reengineering efforts in West Tank Farms, staffing and safety responsibilities have been transferred to the facilities. Under the new structure, safety personnel for TWRS are assigned directly to East Tank Farms, West Tank Farms, and a core Safety Group in TWRS Engineering. The Characterization Project Operations (CPO) safety organization will remain in tact as it currently exists. Personnel assigned to East Tank Farms, West Tank Farms, and CPO will perform facility-specific or project-specific duties and provide field implementation of programs. Those assigned to the core group will focus on activities having a TWRS-wide or programmatic focus. Hanford-wide activities will be the responsibility of the Safety Center of Expertise. In order to ensure an effective and consistent safety program for TWRS under the new organization program functions, goals, organizational structure, roles, responsibilities, and path forward must be clearly established. The purpose of the TWRS Safety Program Plan is to define the overall safety program, responsibilities, relationships, and communication linkages for safety personnel under the new structure. In addition, issues associated with reorganization transition are addressed, including training, project ownership, records management, and dissemination of equipment. For the purpose of this document ``TWRS Safety`` refers to all safety professionals and technicians (Industrial Safety, Industrial Hygiene, Fire Protection, and Nuclear Safety) within the TWRS organization, regardless of their location in the organization.

  12. Integrated Safety Management Policy

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-04-25

    The policy establishes DOE's expectation for safety, including integrated safety management that will enable the Department’s mission goals to be accomplished efficiently while ensuring safe operations at all departmental facilities and activities. Supersedes DOE P 450.4, DOE P 411.1, DOE P 441.1, DOE P 450.2A, and DOE P 450.7

  13. Integrated Safety Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-04-25

    The order ensures that DOE/NNSA, systematically integrates safety into management and work practices at all levels, so that missions are accomplished efficiently while protecting the workers, the public, and the environment. Supersedes DOE M 450.4-1 and DOE M 411.1-1C

  14. CRAD, Electrical Safety Assessment Plan

    Broader source: Energy.gov [DOE]

    An integrated process has been established to ensure electrical safety hazards are identified and that adequate controls are defined and implemented.

  15. IDC Integrated Master Plan.

    SciTech Connect (OSTI)

    Clifford, David J.; Harris, James M.

    2014-12-01

    This is the IDC Re-Engineering Phase 2 project Integrated Master Plan (IMP). The IMP presents the major accomplishments planned over time to re-engineer the IDC system. The IMP and the associate Integrated Master Schedule (IMS) are used for planning, scheduling, executing, and tracking the project technical work efforts. REVISIONS Version Date Author/Team Revision Description Authorized by V1.0 12/2014 IDC Re- engineering Project Team Initial delivery M. Harris

  16. Integrated Safety Management Policy - DOE Directives, Delegations...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    P 450.4A, Integrated Safety Management Policy by David Weitzman Functional areas: Integrated Safety Management, Safety The policy establishes DOE's expectation for safety,...

  17. Security, Emergency Planning & Safety Records | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Security, Emergency Planning & Safety Records Security, Emergency Planning & Safety Records PDF icon ADM 180.pdf More Documents & Publications ADMINISTRATIVE RECORDS SCHEDULE 18: ...

  18. Security, Emergency Planning & Safety Records | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Security, Emergency Planning & Safety Records Security, Emergency Planning & Safety Records Protection program records include the various files created by the Department to ...

  19. Integrated Waste Feed Delivery Plan - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Documents Integrated Waste Feed Delivery Plan Documents Documents Hanford Site Cleanup Completion Framework Tri-Party Agreement Freedom of Information and Privacy Act Hanford Site Budget Hanford Site Safety Standards DOE - ORP Contracts/Procurements DOE - RL Contracts/Procurements Integrated Waste Feed Delivery Plan Single-Shell Tank Evaluations Deep Vadose Zone 100-F RI/FS Sitewide Probabilistic Seismic Hazard Analysis Environmental Integrated Waste Feed Delivery Plan Email Email Page | Print

  20. Integrated rural energy planning

    SciTech Connect (OSTI)

    El Mahgary, Y.; Biswas, A.K.

    1985-01-01

    This book presents papers on integrated community energy systems in developing countries. Topics considered include an integrated rural energy system in Sri Lanka, rural energy systems in Indonesia, integrated rural food-energy systems and technology diffusion in India, bringing energy to the rural sector in the Philippines, the development of a new energy village in China, the Niaga Wolof experimental rural energy center, designing a model rural energy system for Nigeria, the Basaisa village integrated field project, a rural energy project in Tanzania, rural energy development in Columbia, and guidelines for the planning, development and operation of integrated rural energy projects.

  1. Analysis of Integrated Safety Management at the Activity Level: Work

    Energy Savers [EERE]

    Planning and Control, Final Report | Department of Energy Integrated Safety Management at the Activity Level: Work Planning and Control, Final Report Analysis of Integrated Safety Management at the Activity Level: Work Planning and Control, Final Report May 15, 2013 Presenter: Stephen L. Domotor, Director, Office of Analysis, Office of Health, Safety and Security Topic: On August 28, 2012, the Defense Nuclear Facilities Safety Board (DNFSB or "Board") wrote to the Department of

  2. ORISE: Integrated Safety Management (ISM)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    minimization and pollution prevention. All ORAU programs and departments actively pursue continuous improvement, and the addition of Integrated Safety Management (ISM) concepts...

  3. Chemical Hygiene and Safety Plan

    SciTech Connect (OSTI)

    Berkner, K.

    1992-08-01

    The objective of this Chemical Hygiene and Safety Plan (CHSP) is to provide specific guidance to all LBL employees and contractors who use hazardous chemicals. This Plan, when implemented, fulfills the requirements of both the Federal OSHA Laboratory Standard (29 CFR 1910.1450) for laboratory workers, and the Federal OSHA Hazard Communication Standard (29 CFR 1910.1200) for non-laboratory operations (e.g., shops). It sets forth safety procedures and describes how LBL employees are informed about the potential chemical hazards in their work areas so they can avoid harmful exposures and safeguard their health. Generally, communication of this Plan will occur through training and the Plan will serve as a the framework and reference guide for that training.

  4. Integrated Safety & Environmental Management System | Stanford Synchrotron

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiation Lightsource Integrated Safety & Environmental Management System How do you plan for SAFETY in your job? In an effort to provide a formal and organized process to manage all aspects of Environment, Safety and Health (ES&H) issues at its laboratories, the DOE developed the Integrated Safety and Environmental Management System (ISEMS). In short, it's a process that allows people (such as staff and Users) at all levels to plan, perform, assess and improve their implementation

  5. Integrated Safety Management System Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2006-11-01

    This manual provides requirements and guidance for DOE and contractors to ensure development and implementation of an effective Integrated Safety Management system that is periodically reviewed and continuously improved. Canceled by DOE O 450.2.

  6. Nuclear Energy Advanced Modeling and Simulation Waste Integrated Performance and Safety Codes (NEAMS Waste IPSC) verification and validation plan. version 1.

    SciTech Connect (OSTI)

    Bartlett, Roscoe Ainsworth; Arguello, Jose Guadalupe, Jr.; Urbina, Angel; Bouchard, Julie F.; Edwards, Harold Carter; Freeze, Geoffrey A.; Knupp, Patrick Michael; Wang, Yifeng; Schultz, Peter Andrew; Howard, Robert; McCornack, Marjorie Turner

    2011-01-01

    The objective of the U.S. Department of Energy Office of Nuclear Energy Advanced Modeling and Simulation Waste Integrated Performance and Safety Codes (NEAMS Waste IPSC) is to provide an integrated suite of computational modeling and simulation (M&S) capabilities to quantitatively assess the long-term performance of waste forms in the engineered and geologic environments of a radioactive-waste storage facility or disposal repository. To meet this objective, NEAMS Waste IPSC M&S capabilities will be applied to challenging spatial domains, temporal domains, multiphysics couplings, and multiscale couplings. A strategic verification and validation (V&V) goal is to establish evidence-based metrics for the level of confidence in M&S codes and capabilities. Because it is economically impractical to apply the maximum V&V rigor to each and every M&S capability, M&S capabilities will be ranked for their impact on the performance assessments of various components of the repository systems. Those M&S capabilities with greater impact will require a greater level of confidence and a correspondingly greater investment in V&V. This report includes five major components: (1) a background summary of the NEAMS Waste IPSC to emphasize M&S challenges; (2) the conceptual foundation for verification, validation, and confidence assessment of NEAMS Waste IPSC M&S capabilities; (3) specifications for the planned verification, validation, and confidence-assessment practices; (4) specifications for the planned evidence information management system; and (5) a path forward for the incremental implementation of this V&V plan.

  7. Draft HAB Advice on Integrated Safety Management ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Committee Draft Advice -Integrated Safety Management v.3 - Korenko, Smith Page 13 Draft ... Safety Management v.3 - Korenko, Smith Page 23 employees, and actively listening ...

  8. Spent Nuclear Fuel Project Safety Management Plan

    SciTech Connect (OSTI)

    Garvin, L.J.

    1996-02-01

    The Spent Nuclear Fuel Project Safety Management Plan describes the new nuclear facility regulatory requirements basis for the Spemt Nuclear Fuel (SNF) Project and establishes the plan to achieve compliance with this basis at the new SNF Project facilities.

  9. Safety Planning Guidance for Hydrogen and Fuel Cell Projects

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... of Safety Vulnerabilities (ISV) o Risk Reduction Plan o Operating Procedures - ... o Project Safety Documentation 4. Communication Plan o Employee Training o Safety ...

  10. Integrated Safety Management Safety Culture Resources | Department of

    Energy Savers [EERE]

    Energy Safety Culture Resources Integrated Safety Management Safety Culture Resources A collection of resources available in implementing ISM safety culture activities Safety from the Operator's Perspective: We are All in This Together (2005) Transcript, Keeping the Edge: Enhancing Performance Through Managing Culture (2003), Edgar H. Schein, Ph.D. Proceedings of the Advisory Committee on Reactor Safeguards Safety Culture Workshop (2003) Safety Culture in Nuclear Installations: Guidance for

  11. Energy Storage Safety Strategic Plan - December 2014 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Safety Strategic Plan - December 2014 Energy Storage Safety Strategic Plan - December 2014 Energy storage is emerging as an integral component to a resilient and efficient grid through a diverse array of potential application. The evolution of the grid that is currently underway will result in a greater need for services best provided by energy storage, including energy management, backup power, load leveling, frequency regulation, voltage support, and grid stabilization. The increase in demand

  12. Nuclear Safety Research and Development Program Operating Plan...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program Operating Plan Nuclear Safety Research and Development Program Operating Plan July 5, 2012 Nuclear Safety Research and Development Program Operating Plan This operating ...

  13. Track 6: Integrating Safety Into Security Operations

    Broader source: Energy.gov [DOE]

    ISM Workshop Presentations Knoxville Convention Center, Knoxville, TN August 2009 Track 6: Integrating Safety Into Security Operations

  14. Track 5: Integration of Safety Into Design

    Broader source: Energy.gov [DOE]

    ISM Workshop Presentations Knoxville Convention Center, Knoxville, TN August 2009 Track 5: Integration of Safety Into Design

  15. CRAD, Safety Functions Assessment Plan

    Broader source: Energy.gov [DOE]

    Management should be proactive in addressing safety-related issues. Management should have an established system to provide a ranking of safety considerations founded upon risk-based priorities.

  16. Integrated Safety Management (ISM) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Integrated Safety Management (ISM) Integrated Safety Management (ISM) The objective of ISM is to perform work in a safe and environmentally sound manner. More specifically, as described in DOE P 450.4, Safety Management System Policy: "The Department and Contractors must systematically integrate safety into management and work practices at all levels so that missions are accomplished while protecting the public, the worker, and the environment. This is to be accomplished through effective

  17. Construction Project Safety and Health Plan RM

    Broader source: Energy.gov [DOE]

    The Construction Project Safety and Health Plan (CPSHP) Review Module is a tool that assists DOE federal project review teams in evaluating the technical sufficiency of the project readiness in...

  18. Integrated Distribution Planning Concept Paper

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Distribution Planning Concept Paper www.irecusa.org A Proactive Approach for Accommodating High Penetrations of Distributed Generation Resources May 2013 Integrated Distribution Planning Concept Paper A Proactive Approach for Accommodating High Penetrations of Distributed Generation Resources Tim Lindl and Kevin Fox Interstate Renewable Energy Council, Inc. Abraham Ellis and Robert Broderick Sandia National Laboratories May 2013 IREC enables greater use of clean energy in a sustainable way by

  19. Integrated Resource Planning Model (IRPM)

    SciTech Connect (OSTI)

    Graham, T. B.

    2010-04-01

    The Integrated Resource Planning Model (IRPM) is a decision-support software product for resource-and-capacity planning. Users can evaluate changing constraints on schedule performance, projected cost, and resource use. IRPM is a unique software tool that can analyze complex business situations from a basic supply chain to an integrated production facility to a distributed manufacturing complex. IRPM can be efficiently configured through a user-friendly graphical interface to rapidly provide charts, graphs, tables, and/or written results to summarize postulated business scenarios. There is not a similar integrated resource planning software package presently available. Many different businesses (from government to large corporations as well as medium-to-small manufacturing concerns) could save thousands of dollars and hundreds of labor hours in resource and schedule planning costs. Those businesses also could avoid millions of dollars of revenue lost from fear of overcommitting or from penalties and lost future business for failing to meet promised delivery by using IRPM to perform what-if business-case evaluations. Tough production planning questions that previously were left unanswered can now be answered with a high degree of certainty. Businesses can anticipate production problems and have solutions in hand to deal with those problems. IRPM allows companies to make better plans, decisions, and investments.

  20. Integration of Safety Culture Attributes into the EFCOG WP&C Program Guideline Document

    Broader source: Energy.gov [DOE]

    Slide Presentation by Steele Coddington, NSTec, Las Vegas and John McDonald, WRPS, Hanford. Integration of Safety Culture Attributes into EFCOG Work Planning and Control Guidance Document.

  1. Integrated Safety Management Workshop - Building Mission Success

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and lessons learned, while emphasizing the importance of the use of the Integrated Safety Management System to safely accomplish the Department of Energy's mission. Shane Johnson,...

  2. Integrated Safety Management- Building Mission Success

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In 1996, the Department of Energy committed to the Integrated Safety Management System (ISMS) as a tool for DOE and ... maintenance around your home, YOU are ultimately ...

  3. Safety Planning Guidance for Hydrogen and Fuel Cell Projects...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Safety Planning Guidance for Hydrogen and Fuel Cell Projects Safety Planning Guidance for Hydrogen and Fuel Cell Projects Hydrogen and fuel cell project safety by U.S. Department...

  4. Energy Storage Safety Strategic Plan Now Available | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Storage Safety Strategic Plan Now Available Energy Storage Safety Strategic Plan Now Available December 23, 2014 - 10:25am Addthis The Office of Electricity Delivery and Energy Reliability (OE) has worked with industry and other stakeholders to develop the Energy Storage Safety Strategic Plan, a roadmap for grid energy storage safety that highlights safety validation techniques, incident preparedness, safety codes, standards, and regulations. The Plan, which is now available for downloading,

  5. 2011 Annual Planning Summary for Health, Safety and Security...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Health, Safety and Security (HSS) 2011 Annual Planning Summary for Health, Safety and Security (HSS) The ongoing and projected Environmental Assessments and Environmental Impact ...

  6. Vol 2, Integrated Safety Management System Guide

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-05-27

    This Department of Energy (DOE) Integrated Safety Management System (ISMS) Guide is approved for use by the Office of Environment, Safety and Health (EH) and is available for use by all DOE components and their contractors. This Guide is a consensus document coordinated by EH and prepared under the direction of the DOE Safety Management Implementation Team (SMIT). Canceled by DOE G 450.4-1B.

  7. Safety analysis report for packaging upgrade plan

    SciTech Connect (OSTI)

    KELLY, D.L.

    1998-11-18

    This Safety Analysis Report for Packaging (SARP) Upgrade Plan reflects a revised SARP upgrade schedule based on the most current program needs. A Project Hanford Management Contract (PHMC) Performance Expectation exists to update, revise, and/or cancel seven onsite SARPS during FY 1999. It is the U.S. Department of Energy's desire that 100% of the SARPs (which existed at the beginning of the PHMC Contract) be upgraded, revised, and/or canceled by the end of the five year contract. This plan is a ''living'' document and is used as a management tool.

  8. INTEGRATED SAFETY MANAGEMENT SYSTEM SAFETY CULTURE IMPROVEMENT INITIATIVE

    SciTech Connect (OSTI)

    MCDONALD JA JR

    2009-01-16

    In 2007, the Department of Energy (DOE) identified safety culture as one of their top Integrated Safety Management System (ISMS) related priorities. A team was formed to address this issue. The team identified a consensus set of safety culture principles, along with implementation practices that could be used by DOE, NNSA, and their contractors. Documented improvement tools were identified and communicated to contractors participating in a year long pilot project. After a year, lessons learned will be collected and a path forward determined. The goal of this effort was to achieve improved safety and mission performance through ISMS continuous improvement. The focus of ISMS improvement was safety culture improvement building on operating experience from similar industries such as the domestic and international commercial nuclear and chemical industry.

  9. Dual Integrated Appliances as an Energy and Safety Solution for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dual Integrated Appliances as an Energy and Safety Solution for Low Income Weatherization Webinar Dual Integrated Appliances as an Energy and Safety Solution for Low Income ...

  10. DOE Standard Integration Of Environment,Safety, and Health Into...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Standard Integration Of Environment,Safety, and Health Into Facility Disposition Activities DOE Standard Integration Of Environment,Safety, and Health Into Facility Disposition ...

  11. Safety analysis report for packaging upgrade plan

    SciTech Connect (OSTI)

    Kelly, D.L., Westinghouse Hanford

    1996-12-09

    This Safety Analysis Report for Packaging (SARP) Upgrade Plan reflects a SARP upgrade schedule based on the most current program needs. A performance agreement has been assigned, beginning in FY 1997, to update, revise, and/or cancel 20 percent of the existing onsite SARPS, so that 100 percent are reviewed and within current standards by the completion of the Project Hanford Management Contract (five-year period).

  12. Safety Planning Guidance for Hydrogen and Fuel Cell Projects | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Safety Planning Guidance for Hydrogen and Fuel Cell Projects Safety Planning Guidance for Hydrogen and Fuel Cell Projects Hydrogen and fuel cell project safety by U.S. Department of Energy, Fuel Cell Technologies Program PDF icon safety_guidance.pdf More Documents & Publications Safety Planning Guidance for Hydrogen and Fuel Cell Projects H2 Refuel H-Prize Safety Guidance Webinar H2 Refuel H-Prize Safety Guidance Webinar H2 Safety Snapshot - Vol. 2, Issue 2, July 2011

  13. Integrated Planning and Performance Management

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Annual Lab Plan - Other plans (SiteFacilities, WFD, etc) * Execute--perform technical & business functions - Management systems (CAS) * Check--measureanalyze & evaluate...

  14. EUCI 16th Annual Integrated Resource Planning

    Broader source: Energy.gov [DOE]

    EUCI is hosting an annual conference about integrated resource planning to showcase best practices that properly recognize and address changes in the grid. The program features leading utility, power resource planning professional and related industry experts addressing these key issues.

  15. Integrated Safety Management Workshop Registration, PIA, Idaho National

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Laboratory | Department of Energy Integrated Safety Management Workshop Registration, PIA, Idaho National Laboratory Integrated Safety Management Workshop Registration, PIA, Idaho National Laboratory Integrated Safety Management Workshop Registration, PIA, Idaho National Laboratory PDF icon Integrated Safety Management Workshop Registration, PIA, Idaho National Laboratory More Documents & Publications TRAIN-PIA.pdf Occupational Medicine - Assistant PIA, Idaho National Laboratory PIA -

  16. Guideline for the preparation of a contractor safety plan

    SciTech Connect (OSTI)

    Stinnett, L

    1982-04-01

    This document is only a guideline for contractors to use in formalizing a safety program or preparing a safety plan. It contains a format of a suggested safety plan as well as pertinent safety elements which should be considered for inclusion. However, consideration of only those items listed may not be sufficient. Each contractor should include in the safety plan particular reference to those elements peculiar to the inherent hazards of the contractor's specific type of construction services, whether the hazard is shown in the list of safety elements or not. Each safety plan should be reviewed annually by the contractor's management. Reissue of the safety plan is mandatory if safety requirements have changed, or if the contractor's address or management (approval signature) has changed.

  17. Fermilab | Directorate | Office of Integrated Planning & Performance...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In addition it develops, implements and maintains integrated laboratory systems and management processes for strategic planning and goal setting, project and program...

  18. Energy Department Releases Strategic Plan for Energy Storage Safety |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Strategic Plan for Energy Storage Safety Energy Department Releases Strategic Plan for Energy Storage Safety December 23, 2014 - 10:16am Addthis Dr. Imre Gyuk Dr. Imre Gyuk Energy Storage Program Manager, Office of Electricity Delivery and Energy Reliability I am pleased to announce that we have just released the Energy Storage Safety Strategic Plan, a roadmap for grid energy storage safety that addresses the range of grid-scale, utility, community, and residential

  19. Integrated Safety Management Champions | Department of Energy

    Energy Savers [EERE]

    Champions Integrated Safety Management Champions November 1, 2006 CHARTER FOR THE ISM CHAMPIONS COUNCIL 1. PURPOSE. The purpose of the ISM Champions Council (Council) is to support line management in developing and sustaining vital, mature ISM systems throughout the Department so that work is reliably accomplished in a safe manner. The Council will promote continuous learning and improvement of ISM effectiveness throughout the DOE complex. 2. BACKGROUND. The Department established the Integrated

  20. Integration of Safety into the Design Process

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2007-06-27

    The Standard provides guidance on a process of integration of Safety-in-Design intended to implement the applicable ISM core functions—define the work, analyze the hazards, establish the controls—necessary to provide protection of the public, workers, and the environment from harmful effects of radiation and other such toxic and hazardous aspects attendant to the work.

  1. Primer on gas integrated resource planning

    SciTech Connect (OSTI)

    Goldman, C.; Comnes, G.A.; Busch, J.; Wiel, S.

    1993-12-01

    This report discusses the following topics: gas resource planning: need for IRP; gas integrated resource planning: methods and models; supply and capacity planning for gas utilities; methods for estimating gas avoided costs; economic analysis of gas utility DSM programs: benefit-cost tests; gas DSM technologies and programs; end-use fuel substitution; and financial aspects of gas demand-side management programs.

  2. Brochure, A Basic Overview of the Integrated Safety Management...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    September 7, 2012 The Integrated Safety Management Brochure provides the overview, objective, guiding principles, core functions, safety culture elements, and points-of-contact for ...

  3. K West integrated water treatment system subproject safety analysis document

    SciTech Connect (OSTI)

    SEMMENS, L.S.

    1999-02-24

    This Accident Analysis evaluates unmitigated accident scenarios, and identifies Safety Significant and Safety Class structures, systems, and components for the K West Integrated Water Treatment System.

  4. Safety plan for the cooperative telerobotic retrieval system equipment development area

    SciTech Connect (OSTI)

    Haney, T.J.; Jessmore, J.J.

    1995-07-01

    This plan establishes guidelines to minimize safety risks for the cooperative telerobotic retrieval project at the North Boulevard Annex (NBA). This plan has the dual purpose of minimizing safety risks to workers and visitors and of securing sensitive equipment from inadvertent damage by nonqualified personnel. This goal will be accomplished through physical control of work zones and through assigned responsibilities for project personnel. The scope of this plan is limited to establishing the working zone boundaries and entry requirements, and assigning responsibilities for project personnel. This plan does not supersede current safety organization responsibilities for the Landfill Stabilization Focus Area Transuranic (LSFA TRU) Arid outlined in the Environment, Safety, Health, and Quality Plan for the Buried Waste Integrated Demonstration Program; Tenant Manual; Idaho Falls Building Emergency Control Plan;; applicable Company Procedures; the attached Interface Agreement (Appendix A).

  5. Integrated Planning and Performance Management

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Process Maintain Lab Agenda Prepare ALP Program Execution Plan PEMP PreparationApproval POG Support CAS M-3 Implementation FNAL Enterprise Risk Management...

  6. 7.0 - Integrated Acquisition Planning Process

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    .0 (August 2006) 1 INTEGRATING ACQUISITION PLANNING PROCESSES - AN OVERVIEW REFERENCES 1. FAR Part 7 Acquisition Planning 2. FAR Part 34 Major System Acquisition 3. Acquisition Letter 2005-08R, Small Business Programs 4. Acquisition Guide Chapter 7.1, Acquisition Planning 5. Acquisition Guide Chapter 42.5, Contract Management Planning 6. DOE O 580.1 Department of Energy Property Management Program 7. DOE O 413.3 Program and Project Management for the Acquisition of Capital Assets Guiding

  7. CRAD, Integrated Safety Basis and Engineering Design Review ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Integrated Safety Basis and Engineering Design Review - August 20, 2014 (EA CRAD 31-4, Rev. 0) CRAD, Integrated Safety Basis and Engineering Design Review - August 20, 2014 (EA...

  8. Integration Of Safety Into The Design Process

    Energy Savers [EERE]

    STD-1189-2008 March 2008 DOE STANDARD INTEGRATION OF SAFETY INTO THE DESIGN PROCESS U.S. Department of Energy AREA SAFT Washington, DC 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. DOE-STD-1189-2008 Page ii This document is available on the Department of Energy Technical Standards Program Web Page at http://www.hss.energy.gov/nuclearsafety/techstds/ DOE-STD-1189-2008 Page iii PREFACE The U.S. Department of Energy (DOE) has approved this Standard for use

  9. Planning integration FY 1996 program plan. Revision 1

    SciTech Connect (OSTI)

    1995-09-01

    This Multi-Year Program Plan (MAP) Planning Integration Program, Work Breakdown Structure (WBS) Element 1.8.2, is the primary management tool to document the technical, schedule, and cost baseline for work directed by the US Department of Energy (DOE), Richland Operations Office (RL). As an approved document, it establishes an agreement between RL and the performing contractors for the work to be performed. It was prepared by Westinghouse Hanford Company (WHC) and Pacific Northwest Laboratory (PNL). The MYPPs for the Hanford Site programs are to provide a picture from fiscal year (FY) 1996 through FY 2002. At RL Planning and Integration Division (PID) direction, only the FY 1996 Planning Integration Program work scope has been planned and presented in this MAP. Only those known significant activities which occur after FY 1996 are portrayed in this MAP. This is due to the uncertainty of who will be accomplishing what work scope when, following the award of the Management and Integration (M&I) contract.

  10. 3S (Safeguards, Security, Safety) based pyroprocessing facility safety evaluation plan

    SciTech Connect (OSTI)

    Ku, J.H.; Choung, W.M.; You, G.S.; Moon, S.I.; Park, S.H.; Kim, H.D.

    2013-07-01

    The big advantage of pyroprocessing for the management of spent fuels against the conventional reprocessing technologies lies in its proliferation resistance since the pure plutonium cannot be separated from the spent fuel. The extracted materials can be directly used as metal fuel in a fast reactor, and pyroprocessing reduces drastically the volume and heat load of the spent fuel. KAERI has implemented the SBD (Safeguards-By-Design) concept in nuclear fuel cycle facilities. The goal of SBD is to integrate international safeguards into the entire facility design process since the very beginning of the design phase. This paper presents a safety evaluation plan using a conceptual design of a reference pyroprocessing facility, in which 3S (Safeguards, Security, Safety)-By-Design (3SBD) concept is integrated from early conceptual design phase. The purpose of this paper is to establish an advanced pyroprocessing hot cell facility design concept based on 3SBD for the successful realization of pyroprocessing technology with enhanced safety and proliferation resistance.

  11. National conference on integrated resource planning: Proceedings

    SciTech Connect (OSTI)

    Not Available

    1991-12-31

    Until recently, state regulators have focused most of their attention on the development of least-cost or integrated resource planning (IRP) processes for electric utilities. A number of commissions are beginning to scrutinize the planning processes of local gas distribution companies (LDCs) because of the increased control that LDCs have over their purchased gas costs (as well as the associated risks) and because of questions surrounding the role and potential of gas end-use efficiency options. Traditionally, resource planning (LDCs) has concentrated on options for purchasing and storing gas. Integrated resource planning involves the creation of a process in which supply-side and demand-side options are integrated to create a resource mix that reliably satisfies customers` short-term and long-term energy service needs at the lowest cost. As applied to gas utilities, an integrated resource plan seeks to balance cost and reliability, and should not be interpreted simply as the search for lowest commodity costs. The National Association of Regulatory Utility Commissioners` (NARUC) Energy Conservation committee asked Lawrence Berkeley Laboratory (LBL) to survey state PUCs to determine the extent to which they have undertaken least cost planning for gas utilities. The survey included the following topics: status of state PUC least-cost planning regulations and practices for gas utilities; type and scope of natural gas DSM programs in effect, including fuel substitution; economic tests and analysis methods used to evaluate DSM programs; relationship between prudency reviews of gas utility purchasing practices and integrated resource planning; key regulatory issued facing gas utilities during the next five years.

  12. National conference on integrated resource planning: Proceedings

    SciTech Connect (OSTI)

    Not Available

    1991-01-01

    Until recently, state regulators have focused most of their attention on the development of least-cost or integrated resource planning (IRP) processes for electric utilities. A number of commissions are beginning to scrutinize the planning processes of local gas distribution companies (LDCs) because of the increased control that LDCs have over their purchased gas costs (as well as the associated risks) and because of questions surrounding the role and potential of gas end-use efficiency options. Traditionally, resource planning (LDCs) has concentrated on options for purchasing and storing gas. Integrated resource planning involves the creation of a process in which supply-side and demand-side options are integrated to create a resource mix that reliably satisfies customers' short-term and long-term energy service needs at the lowest cost. As applied to gas utilities, an integrated resource plan seeks to balance cost and reliability, and should not be interpreted simply as the search for lowest commodity costs. The National Association of Regulatory Utility Commissioners' (NARUC) Energy Conservation committee asked Lawrence Berkeley Laboratory (LBL) to survey state PUCs to determine the extent to which they have undertaken least cost planning for gas utilities. The survey included the following topics: status of state PUC least-cost planning regulations and practices for gas utilities; type and scope of natural gas DSM programs in effect, including fuel substitution; economic tests and analysis methods used to evaluate DSM programs; relationship between prudency reviews of gas utility purchasing practices and integrated resource planning; key regulatory issued facing gas utilities during the next five years.

  13. Reactor Safety Planning for Prometheus Project, for Naval Reactors Information

    SciTech Connect (OSTI)

    P. Delmolino

    2005-05-06

    The purpose of this letter is to submit to Naval Reactors the initial plan for the Prometheus project Reactor Safety work. The Prometheus project is currently developing plans for cold physics experiments and reactor prototype tests. These tests and facilities may require safety analysis and siting support. In addition to the ground facilities, the flight reactor units will require unique analyses to evaluate the risk to the public from normal operations and credible accident conditions. This letter outlines major safety documents that will be submitted with estimated deliverable dates. Included in this planning is the reactor servicing documentation and shipping analysis that will be submitted to Naval Reactors.

  14. Hanford site integrated pest management plan

    SciTech Connect (OSTI)

    Giddings, R.F.

    1996-04-09

    The Hanford Site Integrated Pest Management Plan (HSIPMP) defines the Integrated Pest Management (IPM) decision process and subsequent strategies by which pest problems are to be solved at all Hanford Site properties per DOE-RL Site Infrastructure Division memo (WHC 9505090). The HSIPMP defines the roles that contractor organizations play in supporting the IPM process. In short the IPM process anticipates and prevents pest activity and infestation by combining several strategies to achieve long-term pest control solutions.

  15. Departmental Integrated Safety Management System (9-23-10)

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2010-09-23

    This directive will convert and consolidate DOE M 450.4-1, Integrated Safety Management System Manual and DOE M 411.1-1C, Safety Management Functions, Responsibilities, and Authorities Manual into a single Order.

  16. "DOE O 450.2 INTEGRATED SAFETY MANAGEMENT AND DOE P 450.4A INTEGRATED...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    In the first section, we will discuss the additions to DOE M 450.4-1, Integrated Safety Management System Manual, which has been replaced by DOE O 450.2, Integrated Safety ...

  17. The Process, Methods and Tool Used To Integrate Safety During...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Process, Methods and Tool Used To Integrate Safety During Design of a Category 2 Nuclear Facility August 2009 Presenter: Lynn J. Harkey, SDIT Project Engineer, Uranium ...

  18. AN ADVANCED TOOL FOR APPLIED INTEGRATED SAFETY MANAGEMENT

    SciTech Connect (OSTI)

    Potts, T. Todd; Hylko, James M.; Douglas, Terence A.

    2003-02-27

    WESKEM, LLC's Environmental, Safety and Health (ES&H) Department had previously assessed that a lack of consistency, poor communication and using antiquated communication tools could result in varying operating practices, as well as a failure to capture and disseminate appropriate Integrated Safety Management (ISM) information. To address these issues, the ES&H Department established an Activity Hazard Review (AHR)/Activity Hazard Analysis (AHA) process for systematically identifying, assessing, and controlling hazards associated with project work activities during work planning and execution. Depending on the scope of a project, information from field walkdowns and table-top meetings are collected on an AHR form. The AHA then documents the potential failure and consequence scenarios for a particular hazard. Also, the AHA recommends whether the type of mitigation appears appropriate or whether additional controls should be implemented. Since the application is web based, the information is captured into a single system and organized according to the >200 work activities already recorded in the database. Using the streamlined AHA method improved cycle time from over four hours to an average of one hour, allowing more time to analyze unique hazards and develop appropriate controls. Also, the enhanced configuration control created a readily available AHA library to research and utilize along with standardizing hazard analysis and control selection across four separate work sites located in Kentucky and Tennessee. The AHR/AHA system provides an applied example of how the ISM concept evolved into a standardized field-deployed tool yielding considerable efficiency gains in project planning and resource utilization. Employee safety is preserved through detailed planning that now requires only a portion of the time previously necessary. The available resources can then be applied to implementing appropriate engineering, administrative and personal protective equipment controls in the field.

  19. An Integrated Safety Assessment Methodology for Generation IV Nuclear Systems

    SciTech Connect (OSTI)

    Timothy J. Leahy

    2010-06-01

    The Generation IV International Forum (GIF) Risk and Safety Working Group (RSWG) was created to develop an effective approach for the safety of Generation IV advanced nuclear energy systems. Early work of the RSWG focused on defining a safety philosophy founded on lessons learned from current and prior generations of nuclear technologies, and on identifying technology characteristics that may help achieve Generation IV safety goals. More recent RSWG work has focused on the definition of an integrated safety assessment methodology for evaluating the safety of Generation IV systems. The methodology, tentatively called ISAM, is an integrated toolkit consisting of analytical techniques that are available and matched to appropriate stages of Generation IV system concept development. The integrated methodology is intended to yield safety-related insights that help actively drive the evolving design throughout the technology development cycle, potentially resulting in enhanced safety, reduced costs, and shortened development time.

  20. K basins interim remedial action health and safety plan

    SciTech Connect (OSTI)

    DAY, P.T.

    1999-09-14

    The K Basins Interim Remedial Action Health and Safety Plan addresses the requirements of the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA), as they apply to the CERCLA work that will take place at the K East and K West Basins. The provisions of this plan become effective on the date the US Environmental Protection Agency issues the Record of Decision for the K Basins Interim Remedial Action, currently planned in late August 1999.

  1. Safety Design Strategy Standard Review Plan (SRP)

    Broader source: Energy.gov [DOE]

    This SRP on Safety Design Strategy (SDS) provides the starting point for a set of corporate Performance Objectives and Criteria contain in Appendix A. Review teams are expected to build on these and develop additional project-specific Lines of Inquiry, as needed. The criteria and the review process are intended to be used on an ongoing basis during the appropriate CD phase to ensure that issues are identified and resolved.

  2. Safety analysis report for packaging upgrade plan

    SciTech Connect (OSTI)

    Kelly, D.L.

    1998-03-12

    This SARP Upgrade Plan reflects a revised SARP upgrade schedule based on the most current program needs. A performance agreement has been assigned, beginning in FY 1997, to update, revise, and/or cancel 20 percent of the existing onsite SARPS, so that 100 percent are reviewed and within current standards by the completion of the Project Hanford Management Contract (five-year period).

  3. Jefferson Lab Project Management & Integrated Planning

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vision: Partnering with our customers, we provide support to further the laboratory's mission to operate a world class user facility for conducting nuclear physics research. Our focus is to provide project management and integrated planning support across the Lab that is aligned with Lab goals, objectives and guidance. Mission: To ensure, through partnership with the Lab Leadership/staff, the successful conduct of the mission of the laboratory. As such, we provide technical and administrative

  4. integrated-planning-and-operational-tools

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Announcement Presentation at Argonne TRACC March 29, 2011 11:00 AM(CST) Dr. Yue Liu Assistant Professor Department of Civil Engineering University of Wisconsin - Milwaukee Integrated planning and operational tools for emergency evacuation traffic management: case studies and system application in Washington DC Metropolitan Area ABSTRACT The evacuation of large municipal areas in an efficient manner during emergencies and disasters is one of the critical tasks faced by emergency management

  5. National integrated mitigation planning in agriculture: A review...

    Open Energy Info (EERE)

    National integrated mitigation planning in agriculture: A review paper This review of national greenhouse gas (GHG) mitigation planning in the agriculture sector has two...

  6. Automated radiotherapy treatment plan integrity verification

    SciTech Connect (OSTI)

    Yang Deshan; Moore, Kevin L.

    2012-03-15

    Purpose: In our clinic, physicists spend from 15 to 60 min to verify the physical and dosimetric integrity of radiotherapy plans before presentation to radiation oncology physicians for approval. The purpose of this study was to design and implement a framework to automate as many elements of this quality control (QC) step as possible. Methods: A comprehensive computer application was developed to carry out a majority of these verification tasks in the Philips PINNACLE treatment planning system (TPS). This QC tool functions based on both PINNACLE scripting elements and PERL sub-routines. The core of this technique is the method of dynamic scripting, which involves a PERL programming module that is flexible and powerful for treatment plan data handling. Run-time plan data are collected, saved into temporary files, and analyzed against standard values and predefined logical rules. The results were summarized in a hypertext markup language (HTML) report that is displayed to the user. Results: This tool has been in clinical use for over a year. The occurrence frequency of technical problems, which would cause delays and suboptimal plans, has been reduced since clinical implementation. Conclusions: In addition to drastically reducing the set of human-driven logical comparisons, this QC tool also accomplished some tasks that are otherwise either quite laborious or impractical for humans to verify, e.g., identifying conflicts amongst IMRT optimization objectives.

  7. Idaho National Laboratory Integrated Safety Management System 2010 Effectiveness Review and Declaration Report

    SciTech Connect (OSTI)

    Thomas J. Haney

    2010-12-01

    Idaho National Laboratory completes an annual Integrated Safety Management System effectiveness review per 48 CFR 970.5223-1 “Integration of Environment, Safety and Health into Work Planning and Execution.” The annual review assesses ISMS effectiveness, provides feedback to maintain system integrity, and helps identify target areas for focused improvements and assessments for the following year. Using one of the three Department of Energy (DOE) descriptors in DOE M 450.4-1 regarding the state of ISMS effectiveness during Fiscal Year (FY) 2010, the information presented in this review shows that INL achieved “Effective Performance.”

  8. Idaho National Laboratory Integrated Safety Management System FY 2013 Effectiveness Review and Declaration Report

    SciTech Connect (OSTI)

    Farren Hunt

    2013-12-01

    Idaho National Laboratory (INL) performed an Annual Effectiveness Review of the Integrated Safety Management System (ISMS), per 48 Code of Federal Regulations (CFR) 970.5223 1, “Integration of Environment, Safety and Health into Work Planning and Execution.” The annual review assessed Integrated Safety Management (ISM) effectiveness, provided feedback to maintain system integrity, and identified target areas for focused improvements and assessments for Fiscal Year (FY) 2014. Results of the FY 2013 annual effectiveness review demonstrate that the INL’s ISMS program is “Effective” and continually improving and shows signs of being significantly strengthened. Although there have been unacceptable serious events in the past, there has also been significant attention, dedication, and resources focused on improvement, lessons learned and future prevention. BEA’s strategy of focusing on these improvements includes extensive action and improvement plans that include PLN 4030, “INL Sustained Operational Improvement Plan, PLN 4058, “MFC Strategic Excellence Plan,” PLN 4141, “ATR Sustained Excellence Plan,” and PLN 4145, “Radiological Control Road to Excellence,” and the development of LWP 20000, “Conduct of Research.” As a result of these action plans, coupled with other assurance activities and metrics, significant improvement in operational performance, organizational competence, management oversight and a reduction in the number of operational events is being realized. In short, the realization of the fifth core function of ISMS (feedback and continuous improvement) and the associated benefits are apparent.

  9. Notice of Intent to Revise Department of Energy Integrated Safety...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Implementation, addressing the activity-level work planning and control and safety culture features of ISM. jmp450.4Ao450.2andg450.4-1C.pdf -- PDF Document, 132 KB Writer:...

  10. Idaho National Laboratory Integrated Safety Management System 2011 Effectiveness Review and Declaration Report

    SciTech Connect (OSTI)

    Farren Hunt

    2011-12-01

    Idaho National Laboratory (INL) performed an annual Integrated Safety Management System (ISMS) effectiveness review per 48 Code of Federal Regulations (CFR) 970.5223-1, 'Integration of Environment, Safety and Health into Work Planning and Execution.' The annual review assessed Integrated Safety Management (ISM) effectiveness, provided feedback to maintain system integrity, and helped identify target areas for focused improvements and assessments for fiscal year (FY) 2012. The information presented in this review of FY 2011 shows that the INL has performed many corrective actions and improvement activities, which are starting to show some of the desired results. These corrective actions and improvement activities will continue to help change culture that will lead to better implementation of defined programs, resulting in moving the Laboratory's performance from the categorization of 'Needs Improvement' to the desired results of 'Effective Performance.'

  11. Mixed Waste Integrated Program Quality Assurance requirements plan

    SciTech Connect (OSTI)

    Not Available

    1994-04-15

    Mixed Waste Integrated Program (MWIP) is sponsored by the US Department of Energy (DOE), Office of Technology Development, Waste Management Division. The strategic objectives of MWIP are defined in the Mixed Waste Integrated Program Strategic Plan, and expanded upon in the MWIP Program Management Plan. This MWIP Quality Assurance Requirement Plan (QARP) applies to mixed waste treatment technologies involving both hazardous and radioactive constituents. As a DOE organization, MWIP is required to develop, implement, and maintain a written Quality Assurance Program in accordance with DOE Order 4700.1 Project Management System, DOE Order 5700.6C, Quality Assurance, DOE Order 5820.2A Radioactive Waste Management, ASME NQA-1 Quality Assurance Program Requirements for Nuclear Facilities and ANSI/ASQC E4-19xx Specifications and Guidelines for Quality Systems for Environmental Data Collection and Environmental Technology Programs. The purpose of the MWIP QA program is to establish controls which address the requirements in 5700.6C, with the intent to minimize risks and potential environmental impacts; and to maximize environmental protection, health, safety, reliability, and performance in all program activities. QA program controls are established to assure that each participating organization conducts its activities in a manner consistent with risks posed by those activities.

  12. Integration of Safety into the Design Process - DOE Directives...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    public, workers, and the environment from harmful effects of radiation and other such toxic and hazardous aspects attendant to the work. DOE-STD-1189-2008, Integration of Safety...

  13. Software for the occupational health and safety integrated management system

    SciTech Connect (OSTI)

    Vătăsescu, Mihaela

    2015-03-10

    This paper intends to present the design and the production of a software for the Occupational Health and Safety Integrated Management System with the view to a rapid drawing up of the system documents in the field of occupational health and safety.

  14. Integrated Safety Management at the Idaho National Laboratory

    Energy Savers [EERE]

    Integrated Safety Management at the Idaho National Laboratory OAS-L-14-10 August 2014 U.S. Department of Energy Office of Inspector General Office of Audits and Inspections Department of Energy Washington, DC 20585 August 18, 2014 MEMORANDUM FOR THE MANAGER, IDAHO OPERATIONS OFFICE FROM: David Sedillo Western Division Director Office of Inspector General SUBJECT: INFORMATION: Audit Report on "Integrated Safety Management at the Idaho National Laboratory" BACKGROUND The Department of

  15. DNFSB Recommendation 94-1 Hanford Site Integrated Stabilization Management Plan. Volume 1

    SciTech Connect (OSTI)

    Gerber, E.W.

    1995-10-01

    The US Department of Energy (DOE) has developed an Integrated Program Plan (IPP) to address concerns identified in Defense Nuclear Facilities Safety Board Recommendation 94-1. The IPP describes the actions that DOE plans to implement at its various sites to convert excess fissile materials to forms or conditions suitable for safe interim storage. The baseline IPP was issued as DOE`s Defense Nuclear Facilities Safety Board (DNFSB) Recommendation 94-1 Implementation Plan (IP), which was transmitted to the DNFSB on February 28, 1995. The IPP is being further developed to include complex-wide requirements for research and development and a long-range facility requirements section. The planned additions to the baseline IPP are being developed based on a systems engineering approach that integrates facilities and capabilities at the various DOE sites and focuses on attaining safe interim storage with minimum safety risks and environmental impacts. Each affected DOE site has developed a Site Integrated Stabilization Management Plan (SISMP) to identify individual site plans to implement the DNFSB Recommendation 94-1 and to provide a basis for formulating planned additions to the IPP. The SISMPs were developed based on the objectives, requirements, and commitments identified in the baseline DNFSB Recommendation 94-1 IPP. The SISMPs will be periodically updated to reflect improved integration between DOE sites as identified during the IPP systems engineering evaluations.

  16. Implementation Guide for Integrating Environmental Management Systems into Integrated Safety Management Systems

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2004-08-20

    This Guide provides guidance to assist DOE sites in identifying those missing environmental management systems elements and integrating them into the site's integrated safety management system. Canceled by DOE N 251.96.

  17. RELAP-7 and PRONGHORN Initial Integration Plan

    SciTech Connect (OSTI)

    J. Ortensi; D. Andrs; A.A. Bingham; R.C. Martineau; J.W. Peterson

    2012-05-01

    Modern nuclear reactor safety codes require the ability to solve detailed coupled neutronicthermal fluids problems. For larger cores, this implies fully coupled 3-D spatial dynamics with appropriate feedback models that can provide enough resolution to accurately compute core heat generation and removal during steady and unsteady conditions. The reactor analyis code PRONGHORN is being coupled to RELAP-7 as a first step to extend RELAP's current capabilities. This report details the mathematical models, the type of coupling, and the testing that will be used to produce an integrated system. RELAP-7 is a MOOSE-based application that solves the continuity, momentum, and energy equations in 1-D for a compressible fluid. The pipe and joint capabilities enable it to model parts of the PCU system. The PRONGHORN application, also developed on the MOOSE infrastructure, solves the coupled equations that define the neutron diffusion, fluid flow, and heat transfer in a 3-D core model. Initially, the two systems will be loosely coupled to simplify the transition towards a more complex infrastructure. The integration will be tested with the OECD/NEA MHTGR-350 Coupled Neutronics-Thermal Fluids benchmark model.

  18. Mechanical integrity implementation and related process safety management elements

    SciTech Connect (OSTI)

    Hudson, K.M. [General Physics Corp., San Diego, CA (United States)

    1995-12-31

    The OSHA Process Safety Management (PSM) rule requires covered facilities to establish a mechanical integrity (MI) program. The MI program must address an ongoing effort to maintain the integrity of process equipment and safety systems by providing written procedures, training, inspection and testing, and quality assurance. Development of an MI program requires information from other PSM elements such as equipment process safety information and employee participation as building blocks for the program. Information obtained from other elements of PSM can be used as the basis for inspection and testing, frequency of testing, written maintenance procedures, training of maintenance personnel, and quality assurance of spare parts and newly installed equipment. This paper presents highlights in the implementation of a mechanical integrity program. A description of the use of process safety information and baseline inspections is detailed with appropriate examples. The MI program stems from an initial documentation review, and culminates in a completely functional MI program in compliance with the regulation.

  19. Vol 2, Integrated Safety Management System Guide

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-12-26

    This Guide provides guidance for addressing the requirements of DOE P 450.4 and DEAR integrated SMS clauses promulgated in 48 CFR 970.5204-2, 48 CFR 970.5204-78, and 48 CFR 970.1001.

  20. Vol 1, Integrated Safety Management System Guide,

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-11-26

    This Guide provides guidance for addressing the requirements of DOE P 450.4 and DEAR integrated SMS clauses promulgated in 48 CFR 970.5204-2, 48 CFR 970.5204-78, and 48 CFR 970.1001.

  1. DNFSB recommendation 94-1 Hanford site integrated stabilization management plan - VOLUMES 1-3

    SciTech Connect (OSTI)

    Gerber, E.W.

    1996-09-23

    The US Department of Energy (DOE) has developed an Integrated Program Plan (IPP) to address concerns identified in Defense Nuclear Facilities Safety Board (DNFSB) Recommendation 94-1. The IPP describes the actions that DOE plans to implement at its various sites to convert excess fissile materials to forms or conditions suitable for safe interim storage. The baseline IPP was issued as DOE's DNFSB Recommendation 94-1 Implementation Plan (IP), which was transmitted to the DNFSB on February 28, 1995. The IPP was subsequently supplemented with an Integrated Facilities Plan and a Research and Development Plan, which further develop complex-wide research and development and long-range facility requirements and plans. These additions to the baseline IPP were developed based on a systems engineering approach that integrated facilities and capabilities at the various DOE sites and focused on attaining safe interim storage with minimum safety risks and environmental impacts. Each affected DOE site has developed a Site Integrated Stabilization Management Plan (SISMP) to identify individual site plans to implement the DNFSB Recommendation 94-1 IPP. The SISMPs were developed based on the objectives, requirements, and commitments identified in the DNFSB Recommendation 94-1 IP. The SISMPs supported formulation of the initial versions of the Integrated Facilities Plan and the Research and Development Plan. The SISMPs are periodically updated to reflect improved integration between DOE sites as identified during the IPP systems engineering evaluations. This document constitutes the Hanford SISMP. This document includes the planned work scope, costs and schedules for activities at the Hanford site to implement the DNFSB Recommendation 94-1 IPP.

  2. Health and safety plan for operations performed for the Environmental Restoration Program

    SciTech Connect (OSTI)

    Trippet, W.A. II ); Reneau, M.; Morton, S.L. )

    1992-04-01

    This document constitutes the generic health and safety plan for the Environmental Restoration Program (ERP). It addresses the health and safety requirements of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA); Occupational Safety and Health Administration (OSHA) 29 CFR 1910.120 standard; and EG G Idaho, Inc. This plan is a guide to individuals who must complete a health and safety plan for a task performed for the EPR. It contains a task specific addendum that, when completed, specifically addresses task specific health and safety issues. This health and safety plan reduces the time it takes to write a task specific health and safety plan by providing discussions of requirements, guidance on where specific information is located, and specific topics in the Addendum that must be discussed at a task level. This format encourages a complete task specific health and safety plan and a standard for all health and safety plans written for ERP.

  3. Integrated deterministic and probabilistic safety analysis for safety assessment of nuclear power plants

    SciTech Connect (OSTI)

    Di Maio, Francesco; Zio, Enrico; Smith, Curtis; Rychkov, Valentin

    2015-07-06

    The present special issue contains an overview of the research in the field of Integrated Deterministic and Probabilistic Safety Assessment (IDPSA) of Nuclear Power Plants (NPPs). Traditionally, safety regulation for NPPs design and operation has been based on Deterministic Safety Assessment (DSA) methods to verify criteria that assure plant safety in a number of postulated Design Basis Accident (DBA) scenarios. Referring to such criteria, it is also possible to identify those plant Structures, Systems, and Components (SSCs) and activities that are most important for safety within those postulated scenarios. Then, the design, operation, and maintenance of these “safety-related” SSCs and activities are controlled through regulatory requirements and supported by Probabilistic Safety Assessment (PSA).

  4. Integrated deterministic and probabilistic safety analysis for safety assessment of nuclear power plants

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Di Maio, Francesco; Zio, Enrico; Smith, Curtis; Rychkov, Valentin

    2015-07-06

    The present special issue contains an overview of the research in the field of Integrated Deterministic and Probabilistic Safety Assessment (IDPSA) of Nuclear Power Plants (NPPs). Traditionally, safety regulation for NPPs design and operation has been based on Deterministic Safety Assessment (DSA) methods to verify criteria that assure plant safety in a number of postulated Design Basis Accident (DBA) scenarios. Referring to such criteria, it is also possible to identify those plant Structures, Systems, and Components (SSCs) and activities that are most important for safety within those postulated scenarios. Then, the design, operation, and maintenance of these “safety-related” SSCs andmore » activities are controlled through regulatory requirements and supported by Probabilistic Safety Assessment (PSA).« less

  5. Hydrogen Posture Plan: An Integrated Research, Development and Demonstration Plan

    Broader source: Energy.gov [DOE]

    The 2006 Hydrogen Posture Plan satisfies Section 804 of the Energy Policy Act of 2005, which requires that the Secretary of Energy transmit to Congress a coordinated plan for the Department’s hydrogen and fuel cell programs.

  6. Light Water Reactor Sustainability Program - Integrated Program Plan |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Light Water Reactor Sustainability Program - Integrated Program Plan Light Water Reactor Sustainability Program - Integrated Program Plan The Light Water Reactor Sustainability (LWRS) Program is a research and development (R&D) program sponsored by the U. S. Department of Energy (DOE), performed in close collaboration and cooperation with related industry R&D programs. PDF icon Light Water Reactor Sustainability Program - Integrated Program Plan - Revision 3 More

  7. Idaho National Laboratory Integrated Safety Management System FY 2012 Effectiveness Review and Declaration Report

    SciTech Connect (OSTI)

    Farren Hunt

    2012-12-01

    Idaho National Laboratory (INL) performed an Annual Effectiveness Review of the Integrated Safety Management System (ISMS), per 48 Code of Federal Regulations (CFR) 970.5223 1, Integration of Environment, Safety and Health into Work Planning and Execution. The annual review assessed Integrated Safety Management (ISM) effectiveness, provided feedback to maintain system integrity, and identified target areas for focused improvements and assessments for fiscal year (FY) 2013. Results of the FY 2012 annual effectiveness review demonstrated that the INLs ISMS program was significantly strengthened. Actions implemented by the INL demonstrate that the overall Integrated Safety Management System is sound and ensures safe and successful performance of work while protecting workers, the public, and environment. This report also provides several opportunities for improvement that will help further strengthen the ISM Program and the pursuit of safety excellence. Demonstrated leadership and commitment, continued surveillance, and dedicated resources have been instrumental in maturing a sound ISMS program. Based upon interviews with personnel, reviews of assurance activities, and analysis of ISMS process implementation, this effectiveness review concludes that ISM is institutionalized and is Effective.

  8. Visual Sample Plan (VSP) - FIELDS Integration

    SciTech Connect (OSTI)

    Pulsipher, Brent A.; Wilson, John E.; Gilbert, Richard O.; Hassig, Nancy L.; Carlson, Deborah K.; Bing-Canar, John; Cooper, Brian; Roth, Chuck

    2003-04-19

    Two software packages, VSP 2.1 and FIELDS 3.5, are being used by environmental scientists to plan the number and type of samples required to meet project objectives, display those samples on maps, query a database of past sample results, produce spatial models of the data, and analyze the data in order to arrive at defensible decisions. VSP 2.0 is an interactive tool to calculate optimal sample size and optimal sample location based on user goals, risk tolerance, and variability in the environment and in lab methods. FIELDS 3.0 is a set of tools to explore the sample results in a variety of ways to make defensible decisions with quantified levels of risk and uncertainty. However, FIELDS 3.0 has a small sample design module. VSP 2.0, on the other hand, has over 20 sampling goals, allowing the user to input site-specific assumptions such as non-normality of sample results, separate variability between field and laboratory measurements, make two-sample comparisons, perform confidence interval estimation, use sequential search sampling methods, and much more. Over 1,000 copies of VSP are in use today. FIELDS is used in nine of the ten U.S. EPA regions, by state regulatory agencies, and most recently by several international countries. Both software packages have been peer-reviewed, enjoy broad usage, and have been accepted by regulatory agencies as well as site project managers as key tools to help collect data and make environmental cleanup decisions. Recently, the two software packages were integrated, allowing the user to take advantage of the many design options of VSP, and the analysis and modeling options of FIELDS. The transition between the two is simple for the user VSP can be called from within FIELDS, automatically passing a map to VSP and automatically retrieving sample locations and design information when the user returns to FIELDS. This paper will describe the integration, give a demonstration of the integrated package, and give users download instructions and software requirements for running the integrated package.

  9. IDC Integrated Master Plan. (Technical Report) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    IDC system. The IMP and the associate Integrated Master Schedule (IMS) are used for planning, scheduling, executing, and tracking the project technical work efforts. REVISIONS...

  10. IDC Integrated Master Plan. Clifford, David J.; Harris, James...

    Office of Scientific and Technical Information (OSTI)

    IDC system. The IMP and the associate Integrated Master Schedule (IMS) are used for planning, scheduling, executing, and tracking the project technical work efforts. REVISIONS...

  11. Integration of Environment, Safety, and Health into Facility Disposition Activities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1998-05-01

    Volume One of this Standard has been revised to provide a Department of Energy (DOE) approved methodology for preparing a Documented Safety Analysis (DSA) for decommissioning of nuclear facilities, as well as environmental restoration activities that involve work not done within a permanent structure. Methodologies provided in this Standard are intended to be compliant with Title 10 of the Code of Federal Regulations (CFR) Part 830, Nuclear Safety Management, Subpart B, Safety Basis Requirements. Volume Two contains the appendices that provide additional environment, safety and health (ES&H) information to complement Volume 1 of this Standard. Volume 2 of the Standard is much broader in scope than Volume 1 and satisfies several purposes. Integrated safety management expectations are provided in accordance with facility disposition requirements contained in DOE O 430.1B, Real Property Asset Management.

  12. "DOE O 450.2 INTEGRATED SAFETY MANAGEMENT AND DOE P 450.4A INTEGRATED

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SAFETY MANAGEMENT POLICY FAMILIAR LEVEL | Department of Energy "DOE O 450.2 INTEGRATED SAFETY MANAGEMENT AND DOE P 450.4A INTEGRATED SAFETY MANAGEMENT POLICY FAMILIAR LEVEL "DOE O 450.2 INTEGRATED SAFETY MANAGEMENT AND DOE P 450.4A INTEGRATED SAFETY MANAGEMENT POLICY FAMILIAR LEVEL "The familiar level of this module is divided into two sections. In the first section, we will discuss the additions to DOE M 450.4-1, Integrated Safety Management System Manual, which has been

  13. Integration of Biodiversity into National Forestry Planning:...

    Open Energy Info (EERE)

    Biodiversity into National Forestry Planning: An Annotated Bibliography of Web-Based Resources, Methods, Experiences, and Case Studies Jump to: navigation, search Tool Summary...

  14. Integrating Safety Into All Aspects of Work at Los Alamos Natonal...

    Broader source: Energy.gov (indexed) [DOE]

    Los Alamos National Laboratory Track 2-11 Topics Covered: VPP & Integrated Safety Management Systems Five VPP Elements Worker Safety and Security Teams (WSSTs) Addressing...

  15. DNFSB recommendation 94-1 Hanford site integrated stabilization management plan

    SciTech Connect (OSTI)

    McCormack, R.L.

    1997-05-07

    In May 1994, the Defense Nuclear Facilities Safety Board (DNFSB) issued DNFSB Recommendation 94-1 (Conway 1994), which identified concerns related to US Department of Energy (DOE) management of legacy fissile materials remaining from past defense production activities. The DNFSB expressed concern about the existing storage conditions for these materials and the slow pace at which the conditions were being remediated. The DNFSB also expressed its belief that additional delays in stabilizing these fissile materials would be accompanied by further deterioration of safety and unnecessary increased risks to workers and the public. In February 1995, DOE issued the DNFSB Recommendation 94-1 Implementation Plan (O`Leary 1995) to address the concerns identified in DNFSB Recommendation 94-1. The Implementation Plan (IP) identifies several DOE commitments to achieve safe interim storage for the legacy fissile materials, and constitutes DOE`s baseline DNFSB Recommendation 94-1 Integrated Program Plan (IPP). The IPP describes the actions DOE plans to implement within the DOE complex to convert its excess fissile materials to forms or conditions suitable for safe interim storage. The IPP was subsequently supplemented with an Integrated Facilities Plan and a Research and Development Plan, which further develop complex-wide research and development and long-range facility requirements and plans. The additions to the baseline IPP were developed based on a systems engineering approach that integrated facilities and capabilities at the various DOE sites and focused on attaining safe interim storage with minimum safety risks and environmental impacts. Each affected DOE site has developed a Site Integrated Stabilization Management Plan (SISMP) to identify individual site plans to implement the DNFSB Recommendation 94-1 IPP. The SISMPs were developed based on the objectives, requirements, and commitments identified in the DNFSB Recommendation 94-1 IP. The SISMPs also supported formulation of the initial versions of the Integrated Facilities Plan and the Research and Development Plan. The SISMPs are periodically updated to reflect improved integration between DOE sites as identified during the IPP systems engineering evaluations. This document is the fifth update of the Hanford SISMP.

  16. ITEP Developing Tribal Integrated Solid Waste Management Plans

    Broader source: Energy.gov [DOE]

    The Institute for Tribal Environmental Professionals (ITEP) is offering a two-day training course providing the tools tribes needs to develop and implement a successful tribal integrated solid waste management plan.

  17. Lessons in Nuclear Safety, Panel on Integration of People and Programs

    SciTech Connect (OSTI)

    Pinkston, David

    2015-02-24

    Four slides present a historical perspective on the evolution of nuclear safety, a description of systemic misalignment (available resources do not match expectations, demographic cliff developing, promulgation of increased expectations and new requirements proceeds unabated), and needs facing nuclear safety (financial stability, operational stability, and succession planning). The following conclusions are stated under the heading "Nuclear Safety - 'The System'": the current universe of requirements is too large for the resource pool available; the current universe of requirements has too many different sources of interpretation; there are so many indicators that it’s hard to know what is leading (or important); and the net result can come to defy integrated comprehension at the worker level.

  18. Light Water Reactor Sustainability Program - Integrated Program Plan |

    Energy Savers [EERE]

    Department of Energy Program - Integrated Program Plan Light Water Reactor Sustainability Program - Integrated Program Plan The Light Water Reactor Sustainability (LWRS) Program is a research and development (R&D) program sponsored by the U. S. Department of Energy (DOE), performed in close collaboration and cooperation with related industry R&D programs. The LWRS Program provides technical foundations for licensing and managing the long-term, safe, and economical operation of

  19. Light Water Reactor Sustainability Program: Integrated Program Plan |

    Energy Savers [EERE]

    Department of Energy Program: Integrated Program Plan Light Water Reactor Sustainability Program: Integrated Program Plan Nuclear power has safely, reliably, and economically contributed almost 20% of electrical generation in the United States over the past two decades. It remains the single largest contributor (more than 70%) of non-greenhouse-gas- emitting electric power generation in the United States. Domestic demand for electrical energy is expected to grow by more than 30% from 2009 to

  20. NREL: Transmission Grid Integration - Transmission Planning and Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transmission Planning and Analysis Thumbnail of map the United States that shows wind resources and transmission lines. Enlarge image This map shows the location of wind resources and transmission lines in the United States. See a larger image or state maps. NREL researchers are engaged in transmission planning and analysis to strengthen the electric power system through the integration of solar and wind power. As demand for electricity increases, electric power system operators must plan for

  1. Sodium fast reactor safety and licensing research plan. Volume II.

    SciTech Connect (OSTI)

    Ludewig, H.; Powers, D. A.; Hewson, John C.; LaChance, Jeffrey L.; Wright, A.; Phillips, J.; Zeyen, R.; Clement, B.; Garner, Frank; Walters, Leon; Wright, Steve; Ott, Larry J.; Suo-Anttila, Ahti Jorma; Denning, Richard; Ohshima, Hiroyuki; Ohno, S.; Miyhara, S.; Yacout, Abdellatif; Farmer, M.; Wade, D.; Grandy, C.; Schmidt, R.; Cahalen, J.; Olivier, Tara Jean; Budnitz, R.; Tobita, Yoshiharu; Serre, Frederic; Natesan, Ken; Carbajo, Juan J.; Jeong, Hae-Yong; Wigeland, Roald; Corradini, Michael; Thomas, Justin; Wei, Tom; Sofu, Tanju; Flanagan, George F.; Bari, R.; Porter D.; Lambert, J.; Hayes, S.; Sackett, J.; Denman, Matthew R.

    2012-05-01

    Expert panels comprised of subject matter experts identified at the U.S. National Laboratories (SNL, ANL, INL, ORNL, LBL, and BNL), universities (University of Wisconsin and Ohio State University), international agencies (IRSN, CEA, JAEA, KAERI, and JRC-IE) and private consultation companies (Radiation Effects Consulting) were assembled to perform a gap analysis for sodium fast reactor licensing. Expert-opinion elicitation was performed to qualitatively assess the current state of sodium fast reactor technologies. Five independent gap analyses were performed resulting in the following topical reports: (1) Accident Initiators and Sequences (i.e., Initiators/Sequences Technology Gap Analysis), (2) Sodium Technology Phenomena (i.e., Advanced Burner Reactor Sodium Technology Gap Analysis), (3) Fuels and Materials (i.e., Sodium Fast Reactor Fuels and Materials: Research Needs), (4) Source Term Characterization (i.e., Advanced Sodium Fast Reactor Accident Source Terms: Research Needs), and (5) Computer Codes and Models (i.e., Sodium Fast Reactor Gaps Analysis of Computer Codes and Models for Accident Analysis and Reactor Safety). Volume II of the Sodium Research Plan consolidates the five gap analysis reports produced by each expert panel, wherein the importance of the identified phenomena and necessities of further experimental research and code development were addressed. The findings from these five reports comprised the basis for the analysis in Sodium Fast Reactor Research Plan Volume I.

  2. Order Module--DOE G 450.4-1B, INTEGRATED SAFETY MANAGEMENT SYSTEM...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    G 450.4-1B, INTEGRATED SAFETY MANAGEMENT SYSTEM GUIDE Order Module--DOE G 450.4-1B, INTEGRATED SAFETY MANAGEMENT SYSTEM GUIDE This Guide has two purposes. One purpose is to assist ...

  3. Integrated Safety Management System Phase 1 and 2 Verification for the Environmental Restoration Contractor Volumes 1 and 2

    SciTech Connect (OSTI)

    CARTER, R.P.

    2000-04-04

    DOE Policy 450.4 mandates that safety be integrated into all aspects of the management and operations of its facilities. The goal of an institutionalized Integrated Safety Management System (ISMS) is to have a single integrated system that includes Environment, Safety, and Health requirements in the work planning and execution processes to ensure the protection of the worker, public, environment, and the federal property over the life cycle of the Environmental Restoration (ER) Project. The purpose of this Environmental Restoration Contractor (ERC) ISMS Phase MI Verification was to determine whether ISMS programs and processes were institutionalized within the ER Project, whether these programs and processes were implemented, and whether the system had promoted the development of a safety conscious work culture.

  4. Preparation plan, preliminary safety documentation, tank farm restoration and safe operations, Project W-314

    SciTech Connect (OSTI)

    Kidder, R.J.

    1994-10-20

    This preparation plan is developed to establish planning for the preliminary safety documentation for Project W-314, {open_quotes}Tank Farm Restoration and Safe Operations.{close_quotes}

  5. Jefferson Lab Project Management & Integrated Planning

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Kelly K. Krug, Project Management Office Manager (757) 269-6044, krug@jlab.org Christine Fragapane, Project Management Executive Assistant (757) 269-7502, chummel@jlab.org Matrixed: Claus H. Rode, 12 GeV Upgrade Project Manager (757) 269-7511, rode@jlab.org Program Development & Planning The Program Development function of Project Management Office serves three main purposes: 1. Monitor EVMS processes on Jefferson Lab projects and conducting an annual EVMS surveillance review to ensure the

  6. Planning Document for an NBSR Conversion Safety Analysis Report

    SciTech Connect (OSTI)

    Diamond D. J.; Baek J.; Hanson, A.L.; Cheng, L-Y.; Brown, N.; Cuadra, A.

    2013-09-25

    The NIST Center for Neutron Research (NCNR) is a reactor-laboratory complex providing the National Institute of Standards and Technology (NIST) and the nation with a world-class facility for the performance of neutron-based research. The heart of this facility is the National Bureau of Standards Reactor (NBSR). The NBSR is a heavy water moderated and cooled reactor operating at 20 MW. It is fueled with high-enriched uranium (HEU) fuel elements. A Global Threat Reduction Initiative (GTRI) program is underway to convert the reactor to low-enriched uranium (LEU) fuel. This program includes the qualification of the proposed fuel, uranium and molybdenum alloy foil clad in an aluminum alloy, and the development of the fabrication techniques. This report is a planning document for the conversion Safety Analysis Report (SAR) that would be submitted to, and approved by, the Nuclear Regulatory Commission (NRC) before the reactor could be converted.This report follows the recommended format and content from the NRC codified in NUREG-1537, “Guidelines for Preparing and Reviewing Applications for the Licensing of Non-power Reactors,” Chapter 18, “Highly Enriched to Low-Enriched Uranium Conversions.” The emphasis herein is on the SAR chapters that require significant changes as a result of conversion, primarily Chapter 4, Reactor Description, and Chapter 13, Safety Analysis. The document provides information on the proposed design for the LEU fuel elements and identifies what information is still missing. This document is intended to assist ongoing fuel development efforts, and to provide a platform for the development of the final conversion SAR. This report contributes directly to the reactor conversion pillar of the GTRI program, but also acts as a boundary condition for the fuel development and fuel fabrication pillars.

  7. Office of River Protection Integrated Safety Management System Description

    SciTech Connect (OSTI)

    CLARK, D.L.

    1999-08-09

    Revision O was never issued. Finding safe and environmentally sound methods of storage and disposal of 54 million gallons of highly radioactive waste contained in 177 underground tanks is the largest challenge of Hanford cleanup. TWRS was established in 1991 and continues to integrate all aspects of the treatment and management of the high-level radioactive waste tanks. In fiscal Year 1997, program objectives were advanced in a number of areas. RL TWRS refocused the program toward retrieving, treating, and immobilizing the tank wastes, while maintaining safety as first priority. Moving from a mode of storing the wastes to getting the waste out of the tanks will provide the greatest cleanup return on the investment and eliminate costly mortgage continuance. There were a number of safety-related achievements in FY1997. The first high priority safety issue was resolved with the removal of 16 tanks from the ''Wyden Watch List''. The list, brought forward by Senator Ron Wyden of Oregon, identified various Hanford safety issues needing attention. One of these issues was ferrocyanide, a chemical present in 24 tanks. Although ferrocyanide can ignite at high temperature, analysis found that the chemical has decomposed into harmless compounds and is no longer a concern.

  8. Nuclear Energy Advanced Modeling and Simulation (NEAMS) Waste Integrated Performance and Safety Codes (IPSC) : FY10 development and integration.

    SciTech Connect (OSTI)

    Criscenti, Louise Jacqueline; Sassani, David Carl; Arguello, Jose Guadalupe, Jr.; Dewers, Thomas A.; Bouchard, Julie F.; Edwards, Harold Carter; Freeze, Geoffrey A.; Wang, Yifeng; Schultz, Peter Andrew

    2011-02-01

    This report describes the progress in fiscal year 2010 in developing the Waste Integrated Performance and Safety Codes (IPSC) in support of the U.S. Department of Energy (DOE) Office of Nuclear Energy Advanced Modeling and Simulation (NEAMS) Campaign. The goal of the Waste IPSC is to develop an integrated suite of computational modeling and simulation capabilities to quantitatively assess the long-term performance of waste forms in the engineered and geologic environments of a radioactive waste storage or disposal system. The Waste IPSC will provide this simulation capability (1) for a range of disposal concepts, waste form types, engineered repository designs, and geologic settings, (2) for a range of time scales and distances, (3) with appropriate consideration of the inherent uncertainties, and (4) in accordance with robust verification, validation, and software quality requirements. Waste IPSC activities in fiscal year 2010 focused on specifying a challenge problem to demonstrate proof of concept, developing a verification and validation plan, and performing an initial gap analyses to identify candidate codes and tools to support the development and integration of the Waste IPSC. The current Waste IPSC strategy is to acquire and integrate the necessary Waste IPSC capabilities wherever feasible, and develop only those capabilities that cannot be acquired or suitably integrated, verified, or validated. This year-end progress report documents the FY10 status of acquisition, development, and integration of thermal-hydrologic-chemical-mechanical (THCM) code capabilities, frameworks, and enabling tools and infrastructure.

  9. Foundational development of an advanced nuclear reactor integrated safety code.

    SciTech Connect (OSTI)

    Clarno, Kevin; Lorber, Alfred Abraham; Pryor, Richard J.; Spotz, William F.; Schmidt, Rodney Cannon; Belcourt, Kenneth; Hooper, Russell Warren; Humphries, Larry LaRon

    2010-02-01

    This report describes the activities and results of a Sandia LDRD project whose objective was to develop and demonstrate foundational aspects of a next-generation nuclear reactor safety code that leverages advanced computational technology. The project scope was directed towards the systems-level modeling and simulation of an advanced, sodium cooled fast reactor, but the approach developed has a more general applicability. The major accomplishments of the LDRD are centered around the following two activities. (1) The development and testing of LIME, a Lightweight Integrating Multi-physics Environment for coupling codes that is designed to enable both 'legacy' and 'new' physics codes to be combined and strongly coupled using advanced nonlinear solution methods. (2) The development and initial demonstration of BRISC, a prototype next-generation nuclear reactor integrated safety code. BRISC leverages LIME to tightly couple the physics models in several different codes (written in a variety of languages) into one integrated package for simulating accident scenarios in a liquid sodium cooled 'burner' nuclear reactor. Other activities and accomplishments of the LDRD include (a) further development, application and demonstration of the 'non-linear elimination' strategy to enable physics codes that do not provide residuals to be incorporated into LIME, (b) significant extensions of the RIO CFD code capabilities, (c) complex 3D solid modeling and meshing of major fast reactor components and regions, and (d) an approach for multi-physics coupling across non-conformal mesh interfaces.

  10. Validation and verification plan for safety and PRA codes. Revision 1

    SciTech Connect (OSTI)

    Ades, M.J.; Crowe, R.D.; Toffer, H.

    1991-04-01

    This report discusses a verification and validation (V&V) plan for computer codes used for safety analysis and probabilistic risk assessment calculations. The present plan fulfills the commitments by Westinghouse Savannah River Company (WSRC) to the Department of Energy Savannah River Office (DOE-SRO) to bring the essential safety analysis and probabilistic risk assessment codes in compliance with verification and validation requirements.

  11. Generation and transmission expansion planning for renewable energy integration

    SciTech Connect (OSTI)

    Bent, Russell W; Berscheid, Alan; Toole, G. Loren

    2010-11-30

    In recent years the expansion planning problem has become increasingly complex. As expansion planning (sometimes called composite or integrated resource planning) is a non-linear and non-convex optimization problem, researchers have traditionally focused on approximate models of power flows to solve the problem. The problem has also been split into generation expansion planning (GEP) and transmission network expansion planning (TNEP) to improve computational tractability. Until recently these approximations have produced results that are straight-forward to combine and adapt to the more complex and complete problem. However, the power grid is evolving towards a state where the adaptations are no longer easy (e.g. large amounts of limited control, renewable generation, comparable generation and transmission construction costs) and necessitates new approaches. Recent work on deterministic Discrepancy Bounded Local Search (DBLS) has shown it to be quite effective in addressing the TNEP. In this paper, we propose a generalization of DBLS to handle simultaneous generation and transmission planning.

  12. Process safety management and interim or remedial action plans

    SciTech Connect (OSTI)

    Boss, M.J.; Henney, D.A.; Heitzman, V.K. [HWS Consulting Group, Inc., Omaha, NE (United States); Day, D.W. [Army Corps of Engineers, Omaha, NE (United States)

    1996-12-31

    Remedial Actions, including Interim Remedial Activities, often require the use of treatment facilities or stabilization techniques using on-site chemical processes. As such, the 29 CFR 1910.119 Process Safety Management (PSM) of Highly Hazardous Chemicals (PSM Standard) and the USEPA regulations for Risk Management Planning require that these chemicals and their attendant potential hazards be identified. A Hazard and Operation (HAZOP) study, Failure Mode and Effect Analysis (FMEA), Fault Tree Analysis, or equivalent graphic presentation of processes must be completed. These studies form a segment of the Process Hazard Analysis (PHA). HAZOP addresses each system and each element of a system that could deviate from normal operations and thus cause a hazard. A full assessment of each process is produced by looking at the hazards, consequences, causes and personnel protection needed. Many variables must be considered when choosing the appropriate PHA technique including the size of the plant, the number of processes, the types of processes, and the types of chemicals used. A mixture of these techniques may be required to adequately transmit information about the process being evaluated.

  13. January 14 ESTAP Webinar: DOE OE Energy Storage Safety Strategic Plan |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 14 ESTAP Webinar: DOE OE Energy Storage Safety Strategic Plan January 14 ESTAP Webinar: DOE OE Energy Storage Safety Strategic Plan January 8, 2015 - 11:40am Addthis On Wednesday, January 14, 2015 from 2:30 - 4 p.m. ET, Clean Energy States Alliance will host a webinar on the OE strategic plan, released in December 2014, which provides a roadmap for grid energy storage safety. OE's Imre Gyuk, Energy Storage Program Manager, will present an overview of the strategic plan.

  14. Nevada National Security Site Integrated Groundwater Sampling Plan, Revision 0

    SciTech Connect (OSTI)

    Marutzky, Sam; Farnham, Irene

    2014-10-01

    The purpose of the Nevada National Security Site (NNSS) Integrated Sampling Plan (referred to herein as the Plan) is to provide a comprehensive, integrated approach for collecting and analyzing groundwater samples to meet the needs and objectives of the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office (NNSA/NFO) Underground Test Area (UGTA) Activity. Implementation of this Plan will provide high-quality data required by the UGTA Activity for ensuring public protection in an efficient and cost-effective manner. The Plan is designed to ensure compliance with the UGTA Quality Assurance Plan (QAP). The Plan’s scope comprises sample collection and analysis requirements relevant to assessing the extent of groundwater contamination from underground nuclear testing. This Plan identifies locations to be sampled by corrective action unit (CAU) and location type, sampling frequencies, sample collection methodologies, and the constituents to be analyzed. In addition, the Plan defines data collection criteria such as well-purging requirements, detection levels, and accuracy requirements; identifies reporting and data management requirements; and provides a process to ensure coordination between NNSS groundwater sampling programs for sampling of interest to UGTA. This Plan does not address compliance with requirements for wells that supply the NNSS public water system or wells involved in a permitted activity.

  15. DOE-RL Integrated Safety Management System Program Description

    SciTech Connect (OSTI)

    SHOOP, D.S.

    2000-06-29

    The purpose of this Integrated Safety Management System (ISMS) Program Description (PD) is to describe the U.S. Department of Energy (DOE), Richland Operations Office (RL) ISMS as implemented through the RL Integrated Management System (RIMS). This PD does not impose additional requirements but rather provides an overview describing how various parts of the ISMS fit together. Specific requirements for each of the core functions and guiding principles are established in other implementing processes, procedures, and program descriptions that comprise RIMS. RL is organized to conduct work through operating contracts; therefore, it is extremely difficult to provide an adequate ISMS description that only addresses RL functions. Of necessity, this PD contains some information on contractor processes and procedures which then require RL approval or oversight.

  16. DOE-RL Integrated Safety Management System Description

    SciTech Connect (OSTI)

    SHOOP, D.S.

    2000-09-01

    The purpose of this Integrated Safety Management System Description (ISMSD) is to describe the U.S. Department of Energy (DOE), Richland Operations Office (RL) ISMS as implemented through the RL Integrated Management System (RIMS). This ISMSD does not impose additional requirements but rather provides an overview describing how various parts of the ISMS fit together. Specific requirements for each of the core functions and guiding principles are established in other implementing processes, procedures, and program descriptions that comprise RIMS. RL is organized to conduct work through operating contracts; therefore, it is extremely difficult to provide an adequate ISMS description that only addresses RL functions. Of necessity, this ISMSD contains some information on contractor processes and procedures which then require RL approval or oversight. This ISMSD does not purport to contain a full description of the contractors' ISM System Descriptions.

  17. 2012 Annual Planning Summary for Health, Safety and Security

    Broader source: Energy.gov [DOE]

    The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2012 and 2013 within Health, Safety and Security.

  18. Notice of Intent to Revise Department of Energy Integrated Safety Management Policy 450.4A, Order 450.2, and Guide 450.4-1C

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-11-05

    The proposed revisions will seamlessly integrate with the recently provided content in DOE G 226.1-2A, 2014, Federal Line Management Oversight of Department of Energy Nuclear Facilities, and HDBK 1211-2014,Activity-Level Work Planning and Control Implementation, addressing the activity-level work planning and control and safety culture features of ISM.

  19. Project plan for resolution of the organic waste tank safety issues at the Hanford Site

    SciTech Connect (OSTI)

    Meacham, J.E.

    1996-10-03

    A multi-year project plan for the Organic Safety Project has been developed with the objective of resolving the organic safety issues associated with the High Level Waste (HLW) in Hanford`s single-shell tanks (SSTS) and double-shell tanks (DSTs). The objective of the Organic Safety Project is to ensure safe interim storage until retrieval for pretreatment and disposal operations begins, and to resolve the organic safety issues by September 2001. Since the initial identification of organics as a tank waste safety issue, progress has been made in understanding the specific aspects of organic waste combustibility, and in developing and implementing activities to resolve the organic safety issues.

  20. Site safety plan for Lawrence Livermore National Laboratory CERCLA investigations at site 300. Revision 2

    SciTech Connect (OSTI)

    Kilmer, J.

    1997-08-01

    Various Department of Energy Orders incorporate by reference, health and safety regulations promulgated by the Occupational Safety and Health Administration (OSHA). One of the OSHA regulations, 29 CFR 1910.120, Hazardous Waste Operations and Emergency Response, requires that site safety plans are written for activities such as those covered by work plans for Site 300 environmental investigations. Based upon available data, this Site Safety Plan (Plan) for environmental restoration has been prepared specifically for the Lawrence Livermore National Laboratory Site 300, located approximately 15 miles east of Livermore, California. As additional facts, monitoring data, or analytical data on hazards are provided, this Plan may need to be modified. It is the responsibility of the Environmental Restoration Program and Division (ERD) Site Safety Officer (SSO), with the assistance of Hazards Control, to evaluate data which may impact health and safety during these activities and to modify the Plan as appropriate. This Plan is not `cast-in-concrete.` The SSO shall have the authority, with the concurrence of Hazards Control, to institute any change to maintain health and safety protection for workers at Site 300.

  1. Safety Planning Guidance for Hydrogen and Fuel Cell Projects

    Fuel Cell Technologies Publication and Product Library (EERE)

    This guidance document provides information on safety requirements for hydrogen and fuel cell projects funded by the U.S. Department of Energy Fuel Cell Technologies Program.

  2. Safety Planning Guidance for Hydrogen and Fuel Cell Projects

    SciTech Connect (OSTI)

    none,

    2010-04-01

    This guidance document provides information on safety requirements for hydrogen and fuel cell projects funded by the U.S. Department of Energy Fuel Cell Technologies Program.

  3. Resource Planning Model: An Integrated Resource Planning and Dispatch Tool for Regional Electric Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resource Planning Model: An Integrated Resource Planning and Dispatch Tool for Regional Electric Systems Trieu Mai, Easan Drury, Kelly Eurek, Natalie Bodington, Anthony Lopez, and Andrew Perry Technical Report NREL/TP-6A20- 56723 January 2013 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 15013 Denver West Parkway Golden, Colorado 80401

  4. Modeling renewable energy resources in integrated resource planning

    SciTech Connect (OSTI)

    Logan, D.; Neil, C.; Taylor, A.

    1994-06-01

    Including renewable energy resources in integrated resource planning (IRP) requires that utility planning models properly consider the relevant attributes of the different renewable resources in addition to conventional supply-side and demand-side options. Otherwise, a utility`s resource plan is unlikely to have an appropriate balance of the various resource options. The current trend toward regulatory set-asides for renewable resources is motivated in part by the perception that the capabilities of current utility planning models are inadequate with regard to renewable resources. Adequate modeling capabilities and utility planning practices are a necessary prerequisite to the long-term penetration of renewable resources into the electric utility industry`s resource mix. This report presents a review of utility planning models conducted for the National Renewable Energy Laboratory (NREL). The review examines the capabilities of utility planning models to address key issues in the choice between renewable resources and other options. The purpose of this review is to provide a basis for identifying high priority areas for advancing the state of the art.

  5. 1800 Engineered Safety Work Planning and Controls and HF Delivery System.

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Conference: 1800 Engineered Safety Work Planning and Controls and HF Delivery System. Citation Details In-Document Search Title: 1800 Engineered Safety Work Planning and Controls and HF Delivery System. Abstract not provided. Authors: Finnegan, Patrick Sean ; McElhanon, James R. Publication Date: 2014-11-01 OSTI Identifier: 1242707 Report Number(s): SAND2014-20029C 547378 DOE Contract Number: AC04-94AL85000 Resource Type: Conference Resource Relation:

  6. DOE-STD-1120-2005; Integration of Environment, Safety, and Health...

    Energy Savers [EERE]

    A-1 Appendix B Examples of Applying DOE-STD-1120 ... C-1 Appendix D Inactive Waste Site Criteria......Integrated safety management expectations are provided ...

  7. Tank waste remediation system nuclear criticality safety inspection and assessment plan

    SciTech Connect (OSTI)

    VAIL, T.S.

    1999-04-06

    This plan provides a management approved procedure for inspections and assessments of sufficient depth to validate that the Tank Waste Remediation System (TWRS) facility complies with the requirements of the Project Hanford criticality safety program, NHF-PRO-334, ''Criticality Safety General, Requirements''.

  8. Health and safety plan for characterization sampling of ETR and MTR facilities

    SciTech Connect (OSTI)

    Baxter, D.E.

    1994-10-01

    This health and safety plan establishes the procedures and requirements that will be used to minimize health and safety risks to persons performing Engineering Test Reactor and Materials Test Reactor characterization sampling activities, as required by the Occupational Safety and Health Administration standard, 29 CFR 1910.120. It contains information about the hazards involved in performing the tasks, and the specific actions and equipment that will be used to protect persons working at the site.

  9. Energy Storage Safety Strategic Plan U.S. Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Storage Safety Strategic Plan U.S. Department of Energy Office of Electricity Delivery and Energy Reliability December, 2014 2 Acknowledgements The Department of Energy Office of Electricity Delivery and Energy Reliability would like to acknowledge those who participated in the 2014 DOE OE Workshop for Grid Energy Storage Safety (Appendix A), as well as the core team dedicated to developing this report to address the safety of grid energy storage systems: Sean J. Hearne, Summer Ferreira,

  10. Integrated monitoring plan for the Hanford groundwater monitoring project

    SciTech Connect (OSTI)

    Hartman, M.J.; Dresel, P.E.; McDonald, J.P.; Mercer, R.B.; Newcomer, D.R.; Thornton, E.C.

    1998-09-01

    Groundwater is monitored in hundreds of wells at the Hanford Site to fulfill a variety of requirements. Separate monitoring plans are prepared for various requirements, but sampling is coordinated and data are shared among users to avoid duplication of effort. The US Department of Energy (DOE) manages these activities through the Hanford Groundwater Monitoring Project (groundwater project), which is the responsibility of Pacific Northwest National Laboratory. The groundwater project does not include all of the monitoring to assess performance of groundwater remediation or all monitoring associated with active facilities. This document is the first integrated monitoring plan for the groundwater project and contains: well and constituent lists for monitoring required by the Atomic Energy Act of 1954 and its implementing orders; other, established monitoring plans by reference; and a master well/constituent/frequency matrix for the entire Hanford Site.

  11. Integrated Safety Management System Phase I Verification for the Plutonium Finishing Plant (PFP) [VOL 1 & 2

    SciTech Connect (OSTI)

    SETH, S.S.

    2000-01-10

    U.S. Department of Energy (DOE) Policy 450.4, Safety Management System Policy commits to institutionalizing an Integrated Safety Management System (ISMS) throughout the DOE complex as a means of accomplishing its missions safely. DOE Acquisition Regulation 970.5204-2 requires that contractors manage and perform work in accordance with a documented safety management system.

  12. Memorandum, FEOSH Program Plan for Office of Health, Safety and Security Employees- March 1, 2007

    Broader source: Energy.gov [DOE]

    The Office of Health, Safety and Security (HSS) is committed to providing safe and healthy working conditions for our employees. This commitment is implemented through an effective FEOSH program for HSS employees that builds upon the Department's Integrated Safety management (ISM) core functions and guiding principles

  13. 2016 Strategic Plan Chief of Nuclear Safety | Department of Energy

    Office of Environmental Management (EM)

    National Fall Prevention Campaign 2016 National Fall Prevention Campaign March 17, 2016 - 9:07am Addthis 2016 National Fall Prevention Campaign As part of a Fall Prevention event initiated by the Occupational Safety and Health Administration (OSHA), the 3rd Annual National Fall Prevention Campaign will take place on May 2-6. This event is a nationwide voluntary effort to remind and educate employers and workers in the construction industry of the serious dangers regarding falls from elevated

  14. Status of safety issues at licensed power plants: TMI Action Plan requirements; unresolved safety issues; generic safety issues; other multiplant action issues. Supplement 3

    SciTech Connect (OSTI)

    Not Available

    1993-12-01

    As part of ongoing US Nuclear Regulatory Commission (NRC) efforts to ensure the quality and accountability of safety issue information, the NRC established a program for publishing an annual report on the status of licensee implementation and NRC verification of safety issues in major NRC requirements areas. This information was initially compiled and reported in three NUREG-series volumes. Volume 1, published in March 1991, addressed the status of Three Mile Island (TMI) Action Plan Requirements. Volume 2, published in May 1991, addressed the status of unresolved safety issues (USIs). Volume 3, published in June 1991, addressed the implementation and verification status of generic safety issues (GSIs). The first annual supplement, which combined these volumes into a single report and presented updated information as of September 30, 1991, was published in December 1991. The second annual supplement, which provided updated information as of September 30, 1992, was published in December 1992. Supplement 2 also provided the status of licensee implementation and NRC verification of other multiplant action (MPA) issues not related to TMI Action Plan requirements, USIs, or GSIs. This third annual NUREG report, Supplement 3, presents updated information as of September 30, 1993. This report gives a comprehensive description of the implementation and verification status of TMI Action Plan requirements, safety issues designated as USIs, GSIs, and other MPAs that have been resolved and involve implementation of an action or actions by licensees. This report makes the information available to other interested parties, including the public. Additionally, this report serves as a follow-on to NUREG-0933, ``A Prioritization of Generic Safety Issues,`` which tracks safety issues until requirements are approved for imposition at licensed plants or until the NRC issues a request for action by licensees.

  15. Buried waste integrated demonstration FY 94 deployment plan

    SciTech Connect (OSTI)

    Hyde, R.A.; Walker, S.; Garcia, M.M.

    1994-05-01

    The Buried Waste Integrated Demonstration (BWID) is a program funded by the U.S. Department of Energy Office of Technology Development. BWID supports the applied research, development, demonstration, testing, and evaluation of a suite of advanced technologies that together form a comprehensive remediation system for the effective and efficient remediation of buried waste. The fiscal year (FY) 1994 effort will fund thirty-eight technologies in five areas of buried waste site remediation: site characterization, waste characterization, retrieval, treatment, and containment/stabilization. This document is the basic operational planning document for deployment of all BWID projects. Discussed in this document are the BWID preparations for INEL field demonstrations, INEL laboratory demonstrations, non-INEL demonstrations, and paper studies. Each technology performing tests will prepare a test plan to detail the specific procedures, objectives, and tasks of each test. Therefore, information specific to testing each technology is intentionally omitted from this document.

  16. DOE Handbook: Implementing Activity-level Work Planning & Control...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Lessons Learned Linking Safety Culture and the Effectiveness of WP&C Practices ... Small Beginnings Integration of Safety Culture Attributes into EFCOG Work Planning and ...

  17. River Protection Project Integrated safety management system phase II verification report, volumes I and II - 8/19/99

    SciTech Connect (OSTI)

    SHOOP, D.S.

    1999-09-10

    The Department of Energy policy (DOE P 450.4) is that safety is integrated into all aspects of the management and operations of its facilities. In simple and straightforward terms, the Department will ''Do work safely.'' The purpose of this River Protection Project (RPP) Integrated Safety Management System (ISMS) Phase II Verification was to determine whether ISMS programs and processes are implemented within RFP to accomplish the goal of ''Do work safely.'' The goal of an implemented ISMS is to have a single integrated system that includes Environment, Safety, and Health (ES&H) requirements in the work planning and execution processes to ensure the protection of the worker, public, environment, and federal property over the RPP life cycle. The ISMS is comprised of the (1) described functions, components, processes, and interfaces (system map or blueprint) and (2) personnel who are executing those assigned roles and responsibilities to manage and control the ISMS. Therefore, this review evaluated both the ''paper'' and ''people'' aspects of the ISMS to ensure that the system is implemented within RPP. Richland Operations Office (RL) conducted an ISMS Phase I Verification of the TWRS from September 28-October 9, 1998. The resulting verification report recommended that TWRS-RL and the contractor proceed with Phase II of ISMS verification given that the concerns identified from the Phase I verification review are incorporated into the Phase II implementation plan.

  18. Review of the Portsmouth Gaseous Diffusion Plant Integrated Safety...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Independent Oversight noted that the FBP ISMS description includes the three key safety culture focus areas - leadership, employeeworker engagement, and organizational learning - ...

  19. Health and safety plan for the Environmental Restoration Program at Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Clark, C. Jr.; Burman, S.N.; Cipriano, D.J. Jr.; Uziel, M.S.; Kleinhans, K.R.; Tiner, P.F.

    1994-08-01

    This Programmatic Health and Safety plan (PHASP) is prepared for the U.S. Department of Energy (DOE) Oak Ridge National Laboratory (ORNL) Environmental Restoration (ER) Program. This plan follows the format recommended by the U.S. Environmental Protection Agency (EPA) for remedial investigations and feasibility studies and that recommended by the EM40 Health and Safety Plan (HASP) Guidelines (DOE February 1994). This plan complies with the Occupational Safety and Health Administration (OSHA) requirements found in 29 CFR 1910.120 and EM-40 guidelines for any activities dealing with hazardous waste operations and emergency response efforts and with OSHA requirements found in 29 CFR 1926.65. The policies and procedures in this plan apply to all Environmental Restoration sites and activities including employees of Energy Systems, subcontractors, and prime contractors performing work for the DOE ORNL ER Program. The provisions of this plan are to be carried out whenever activities are initiated that could be a threat to human health or the environment. This plan implements a policy and establishes criteria for the development of procedures for day-to-day operations to prevent or minimize any adverse impact to the environment and personnel safety and health and to meet standards that define acceptable management of hazardous and radioactive materials and wastes. The plan is written to utilize past experience and best management practices to minimize hazards to human health and safety and to the environment from event such as fires, explosions, falls, mechanical hazards, or any unplanned release of hazardous or radioactive materials to air, soil, or surface water.

  20. DOE OE Energy Storage Safety Strategic Plan Webinar Wednesday, Jan. 14

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    OE Energy Storage Safety Strategic Plan Webinar Wednesday, Jan. 14 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle

  1. Transmission planning in the era of integrated resource planning: A survey of recent cases

    SciTech Connect (OSTI)

    Baldick, R.; Kahn, E.P.

    1992-09-01

    State action is critical to the expansion of the high-voltage transmission network, because regulated utilities must seek approval from utility commissions for proposals to site new lines. It is the purpose of this report to survey the regulatory treatment of issues that are unique to or ubiquitous in transmission planning and use. The authors review recent transmission siting cases to examine how the issues are presented to and resolved by state regulatory commissions and to provide a perspective for more general discussion of transmission policy. Their primary focus is on planning issues. Transmission capacity expansion is not typically treated in integrated resource planning. It is usually assumed that there is adequate transmission to achieve any particular plan. The authors believe that one important reason for this omission is the inherent complexity of transmission system expansion. Regulators and competitors may be at a serious disadvantage in negotiating or adjudicating specific transmission proposals with utilities, who generally have greater knowledge of both general technological considerations and case specifics. This problem of asymmetric information must be addressed at some level in planning or dispute resolution. However, they observe that explicit consideration of the information problem is absent from most regulatory and technical analysis of transmission. The goal of this survey is to share knowledge about the problems facing state regulators over the siting of new transmission facilities, and help to define constructive approaches to them.

  2. Integrated Waste Treatment Unit GFSI Risk Management Plan

    SciTech Connect (OSTI)

    W. A. Owca

    2007-06-21

    This GFSI Risk Management Plan (RMP) describes the strategy for assessing and managing project risks for the Integrated Waste Treatment Unit (IWTU) that are specifically within the control and purview of the U.S. Department of Energy (DOE), and identifies the risks that formed the basis for the DOE contingency included in the performance baseline. DOE-held contingency is required to cover cost and schedule impacts of DOE activities. Prior to approval of the performance baseline (Critical Decision-2) project cost contingency was evaluated during a joint meeting of the Contractor Management Team and the Integrated Project Team for both contractor and DOE risks to schedule and cost. At that time, the contractor cost and schedule risk value was $41.3M and the DOE cost and schedule risk contingency value is $39.0M. The contractor cost and schedule risk value of $41.3M was retained in the performance baseline as the contractor's management reserve for risk contingency. The DOE cost and schedule risk value of $39.0M has been retained in the performance baseline as the DOE Contingency. The performance baseline for the project was approved in December 2006 (Garman 2006). The project will continue to manage to the performance baseline and change control thresholds identified in PLN-1963, ''Idaho Cleanup Project Sodium-Bearing Waste Treatment Project Execution Plan'' (PEP).

  3. Integrated system dynamics toolbox for water resources planning.

    SciTech Connect (OSTI)

    Reno, Marissa Devan; Passell, Howard David; Malczynski, Leonard A.; Peplinski, William J.; Tidwell, Vincent Carroll; Coursey, Don; Hanson, Jason; Grimsrud, Kristine; Thacher, Jennifer; Broadbent, Craig; Brookshire, David; Chemak, Janie; Cockerill, Kristan; Aragon, Carlos , Socorro, NM); Hallett, Heather , Socorro, NM); Vivoni, Enrique , Socorro, NM); Roach, Jesse

    2006-12-01

    Public mediated resource planning is quickly becoming the norm rather than the exception. Unfortunately, supporting tools are lacking that interactively engage the public in the decision-making process and integrate over the myriad values that influence water policy. In the pages of this report we document the first steps toward developing a specialized decision framework to meet this need; specifically, a modular and generic resource-planning ''toolbox''. The technical challenge lies in the integration of the disparate systems of hydrology, ecology, climate, demographics, economics, policy and law, each of which influence the supply and demand for water. Specifically, these systems, their associated processes, and most importantly the constitutive relations that link them must be identified, abstracted, and quantified. For this reason, the toolbox forms a collection of process modules and constitutive relations that the analyst can ''swap'' in and out to model the physical and social systems unique to their problem. This toolbox with all of its modules is developed within the common computational platform of system dynamics linked to a Geographical Information System (GIS). Development of this resource-planning toolbox represents an important foundational element of the proposed interagency center for Computer Aided Dispute Resolution (CADRe). The Center's mission is to manage water conflict through the application of computer-aided collaborative decision-making methods. The Center will promote the use of decision-support technologies within collaborative stakeholder processes to help stakeholders find common ground and create mutually beneficial water management solutions. The Center will also serve to develop new methods and technologies to help federal, state and local water managers find innovative and balanced solutions to the nation's most vexing water problems. The toolbox is an important step toward achieving the technology development goals of this center.

  4. Phase II -- Photovoltaics for Utility Scale Applications (PVUSA): Safety and health action plan

    SciTech Connect (OSTI)

    Berg, K.

    1994-09-01

    To establish guidelines for the implementation and administration of an injury and illness prevention program for PVUSA and to assign specific responsibilities for the execution of the program. To provide a basic Safety and Health Action Plan (hereinafter referred to as Plan) that assists management, supervision, and project personnel in the recognition, evaluation, and control of hazardous activities and/or conditions within their respective areas of responsibility.

  5. Sodium fast reactor safety and licensing research plan. Volume I.

    SciTech Connect (OSTI)

    Sofu, Tanju; LaChance, Jeffrey L.; Bari, R.; Wigeland, Roald; Denman, Matthew R.; Flanagan, George F.

    2012-05-01

    This report proposes potential research priorities for the Department of Energy (DOE) with the intent of improving the licensability of the Sodium Fast Reactor (SFR). In support of this project, five panels were tasked with identifying potential safety-related gaps in available information, data, and models needed to support the licensing of a SFR. The areas examined were sodium technology, accident sequences and initiators, source term characterization, codes and methods, and fuels and materials. It is the intent of this report to utilize a structured and transparent process that incorporates feedback from all interested stakeholders to suggest future funding priorities for the SFR research and development. While numerous gaps were identified, two cross-cutting gaps related to knowledge preservation were agreed upon by all panels and should be addressed in the near future. The first gap is a need to re-evaluate the current procedures for removing the Applied Technology designation from old documents. The second cross-cutting gap is the need for a robust Knowledge Management and Preservation system in all SFR research areas. Closure of these and the other identified gaps will require both a reprioritization of funding within DOE as well as a re-evaluation of existing bureaucratic procedures within the DOE associated with Applied Technology and Knowledge Management.

  6. Integrated Safety Management Champions Workshop | Department of Energy

    Energy Savers [EERE]

    Technology Validation » Integrated Projects Integrated Projects To maximize overall system efficiencies, reduce costs, and optimize component development, optimized integrated hydrogen and fuel cell systems must be developed and validated. Novel new approaches such as Power Parks, which "marry" the transportation and electricity generation markets in synergistic ways, and integrated renewable hydrogen production systems, which combine electrolysis powered by wind, solar, and other

  7. 1,200 To Attend DOE Safety Workshop- Integrated Safety Management (ISM) Workshop Features Nationally Renowned Speakers

    Broader source: Energy.gov [DOE]

    KENNEWICK, WASH. — The Department of Energy (DOE) offices at Hanford will host the 2011 Integrated Safety Management (ISM) Champions Workshop at the Three Rivers Convention Center in Kennewick for DOE and contractor employees from sites across the country on September 12-15.

  8. Breckinridge Project, initial effort. Report VII, Volume 4. Safety and health plan

    SciTech Connect (OSTI)

    none,

    1982-01-01

    The Safety and Health Plan recognizes the potential hazards associated with the Project and has been developed specifically to respond to these risks in a positive manner. Prevention, the primary objective of the Plan, starts with building safety controls into the process design and continues through engineering, construction, start-up, and operation of the Project facilities and equipment. Compliance with applicable federal, state, and local health and safety laws, regulations, and codes throughout all Project phases is required and assured. The Plan requires that each major Project phase be thoroughly reviewed and analyzed to determine that those provisions required to assure the safety and health of all employees and the public, and to prevent property and equipment losses, have been provided. The Plan requires followup on those items or situations where corrective action needs were identified to assure that the action was taken and is effective. Emphasis is placed on loss prevention. Exhibit 1 provides a breakdown of Ashland Synthetic Fuels, Inc.'s (ASFI's) Loss Prevention Program. The Plan recognizes that the varied nature of the work is such as to require the services of skilled, trained, and responsible personnel who are aware of the hazards and know that the work can be done safely, if done correctly. Good operating practice is likewise safe operating practice. Training is provided to familiarize personnel with good operational practice, the general sequence of activities, reporting requirements, and above all, the concept that each step in the operating procedures must be successfully concluded before the following step can be safely initiated. The Plan provides for periodic review and evaluation of all safety and loss prevention activities at the plant and departmental levels.

  9. Memorandum, Implementation of Department of Energy Manual 450.4-1, Integrated Safety Management System Manual

    Broader source: Energy.gov [DOE]

    Memorandum, Implementation of Department of Energy Manual 450.401, "Integrated Safety Management System Manual". January 4, 2007. Identifies and institutionalizes requirements and responsibilities for the development and implementation of ISM systems throughout DOE.

  10. DOE Standard Integration Of Environment,Safety, and Health Into Facility Disposition Activities

    Broader source: Energy.gov [DOE]

    The original release of DOE-STD-1120-98 provided integrated safety management guidance for enhancing worker, public, and environmental protection during all facility disposition activities.

  11. K Basin sludge packaging design criteria (PDC) and safety analysis report for packaging (SARP) approval plan

    SciTech Connect (OSTI)

    Brisbin, S.A.

    1996-03-06

    This document delineates the plan for preparation, review, and approval of the Packaging Design Crieteria for the K Basin Sludge Transportation System and the Associated on-site Safety Analysis Report for Packaging. The transportation system addressed in the subject documents will be used to transport sludge from the K Basins using bulk packaging.

  12. Nuclear Energy Advanced Modeling and Simulation Waste Integrated Performance and Safety Codes (NEAMS Waste IPSC).

    SciTech Connect (OSTI)

    Schultz, Peter Andrew

    2011-12-01

    The objective of the U.S. Department of Energy Office of Nuclear Energy Advanced Modeling and Simulation Waste Integrated Performance and Safety Codes (NEAMS Waste IPSC) is to provide an integrated suite of computational modeling and simulation (M&S) capabilities to quantitatively assess the long-term performance of waste forms in the engineered and geologic environments of a radioactive-waste storage facility or disposal repository. Achieving the objective of modeling the performance of a disposal scenario requires describing processes involved in waste form degradation and radionuclide release at the subcontinuum scale, beginning with mechanistic descriptions of chemical reactions and chemical kinetics at the atomic scale, and upscaling into effective, validated constitutive models for input to high-fidelity continuum scale codes for coupled multiphysics simulations of release and transport. Verification and validation (V&V) is required throughout the system to establish evidence-based metrics for the level of confidence in M&S codes and capabilities, including at the subcontiunuum scale and the constitutive models they inform or generate. This Report outlines the nature of the V&V challenge at the subcontinuum scale, an approach to incorporate V&V concepts into subcontinuum scale modeling and simulation (M&S), and a plan to incrementally incorporate effective V&V into subcontinuum scale M&S destined for use in the NEAMS Waste IPSC work flow to meet requirements of quantitative confidence in the constitutive models informed by subcontinuum scale phenomena.

  13. Dual Integrated Appliances as an Energy and Safety Solution for Low Income

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Weatherization Webinar | Department of Energy Dual Integrated Appliances as an Energy and Safety Solution for Low Income Weatherization Webinar Dual Integrated Appliances as an Energy and Safety Solution for Low Income Weatherization Webinar Slides from the Building America webinar presented by the NorthernSTAR team. PDF icon webinar_northernstar_dual_appliances_20111019.pdf More Documents & Publications Building America Expert Meeting: Recommendations for Applying Water Heaters in

  14. Tank waste remediation system integrated technology plan. Revision 2

    SciTech Connect (OSTI)

    Eaton, B.; Ignatov, A.; Johnson, S.; Mann, M.; Morasch, L.; Ortiz, S.; Novak, P.

    1995-02-28

    The Hanford Site, located in southeastern Washington State, is operated by the US Department of Energy (DOE) and its contractors. Starting in 1943, Hanford supported fabrication of reactor fuel elements, operation of production reactors, processing of irradiated fuel to separate and extract plutonium and uranium, and preparation of plutonium metal. Processes used to recover plutonium and uranium from irradiated fuel and to recover radionuclides from tank waste, plus miscellaneous sources resulted in the legacy of approximately 227,000 m{sup 3} (60 million gallons) of high-level radioactive waste, currently in storage. This waste is currently stored in 177 large underground storage tanks, 28 of which have two steel walls and are called double-shell tanks (DSTs) an 149 of which are called single-shell tanks (SSTs). Much of the high-heat-emitting nuclides (strontium-90 and cesium-137) has been extracted from the tank waste, converted to solid, and placed in capsules, most of which are stored onsite in water-filled basins. DOE established the Tank Waste Remediation System (TWRS) program in 1991. The TWRS program mission is to store, treat, immobilize and dispose, or prepare for disposal, the Hanford tank waste in an environmentally sound, safe, and cost-effective manner. Technology will need to be developed or improved to meet the TWRS program mission. The Integrated Technology Plan (ITP) is the high-level consensus plan that documents all TWRS technology activities for the life of the program.

  15. Integrated Monitoring Plan for the Hanford Groundwater Monitoring Project

    SciTech Connect (OSTI)

    Hartman, Mary J.; Dresel, P Evan; Lindberg, Jonathan W.; Newcomer, Darrell R.; Thornton, Edward C.

    2000-10-18

    Groundwater is monitored at the Hanford Site to fulfill a variety of state and federal regulations, including the Atomic Energy Act of 1954; the Resource Conservation and Recovery Act of 1976; the Comprehensive Environmental Response, Compensation, and Liability Act of 1980; and Washington Administrative Code. Separate monitoring plans are prepared for various requirements, but sampling is coordinated and data are shared among users to avoid duplication of effort. The U.S. Department of Energy manages these activities through the Hanford Groundwater Monitoring Project. This document is an integrated monitoring plan for the groundwater project. It documents well and constituent lists for monitoring required by the Atomic Energy Act of 1954 and its implementing orders; includes other, established monitoring plans by reference; and appends a master well/constituent/ frequency matrix for the entire site. The objectives of monitoring fall into three general categories: plume and trend tracking, treatment/ storage/disposal unit monitoring, and remediation performance monitoring. Criteria for selecting Atomic Energy Act of 1954 monitoring networks include locations of wells in relation to known plumes or contaminant sources, well depth and construction, historical data, proximity to the Columbia River, water supplies, or other areas of special interest, and well use for other programs. Constituent lists were chosen based on known plumes and waste histories, historical groundwater data, and, in some cases, statistical modeling. Sampling frequencies were based on regulatory requirements, variability of historical data, and proximity to key areas. For sitewide plumes, most wells are sampled every 3 years. Wells monitoring specific waste sites or in areas of high variability will be sampled more frequently.

  16. Integrated Monitoring Plan for the Hanford Groundwater Monitoring Project

    SciTech Connect (OSTI)

    Newcomer, D.R.; Thornton, E.C.; Hartman, M.J.; Dresel, P.E.

    1999-10-06

    Groundwater is monitored at the Hanford Site to fulfill a variety of state and federal regulations, including the Atomic Energy Act of 1954 the Resource Conservation and Recovery Act of 1976 the Comprehensive Environmental Response, Compensation, and Liability Act of 1980; and Washington Administrative Code. Separate monitoring plans are prepared for various requirements, but sampling is coordinated and data are shared among users to avoid duplication of effort. The US Department of Energy manages these activities through the Hanford Groundwater Monitoring Project. This document is an integrated monitoring plan for the groundwater project. It documents well and constituent lists for monitoring required by the Atomic Energy Act of 1954 and its implementing orders; includes other, established monitoring plans by reference; and appends a master well/constituent/frequency matrix for the entire site. The objectives of monitoring fall into three general categories plume and trend tracking, treatment/storage/disposal unit monitoring, and remediation performance monitoring. Criteria for selecting Atomic Energy Act of 1954 monitoring networks include locations of wells in relation to known plumes or contaminant sources, well depth and construction, historical data, proximity to the Columbia River, water supplies, or other areas of special interest, and well use for other programs. Constituent lists were chosen based on known plumes and waste histories, historical groundwater data, and, in some cases, statistical modeling. Sampling frequencies were based on regulatory requirements, variability of historical data, and proximity to key areas. For sitewide plumes, most wells are sampled every 3 years. Wells monitoring specific waste sites or in areas of high variability will be sampled more frequently.

  17. Integrating Safety Assessment Methods using the Risk Informed Safety Margins Characterization (RISMC) Approach

    SciTech Connect (OSTI)

    Curtis Smith; Diego Mandelli

    2013-03-01

    Safety is central to the design, licensing, operation, and economics of nuclear power plants (NPPs). As the current light water reactor (LWR) NPPs age beyond 60 years, there are possibilities for increased frequency of systems, structures, and components (SSC) degradations or failures that initiate safety significant events, reduce existing accident mitigation capabilities, or create new failure modes. Plant designers commonly “over-design” portions of NPPs and provide robustness in the form of redundant and diverse engineered safety features to ensure that, even in the case of well-beyond design basis scenarios, public health and safety will be protected with a very high degree of assurance. This form of defense-in-depth is a reasoned response to uncertainties and is often referred to generically as “safety margin.” Historically, specific safety margin provisions have been formulated primarily based on engineering judgment backed by a set of conservative engineering calculations. The ability to better characterize and quantify safety margin is important to improved decision making about LWR design, operation, and plant life extension. A systematic approach to characterization of safety margins and the subsequent margin management options represents a vital input to the licensee and regulatory analysis and decision making that will be involved. In addition, as research and development (R&D) in the LWR Sustainability (LWRS) Program and other collaborative efforts yield new data, sensors, and improved scientific understanding of physical processes that govern the aging and degradation of plant SSCs needs and opportunities to better optimize plant safety and performance will become known. To support decision making related to economics, readability, and safety, the RISMC Pathway provides methods and tools that enable mitigation options known as margins management strategies. The purpose of the RISMC Pathway R&D is to support plant decisions for risk-informed margin management with the aim to improve economics, reliability, and sustain safety of current NPPs. As the lead Department of Energy (DOE) Laboratory for this Pathway, the Idaho National Laboratory (INL) is tasked with developing and deploying methods and tools that support the quantification and management of safety margin and uncertainty.

  18. Decision support for integrated water-energy planning.

    SciTech Connect (OSTI)

    Tidwell, Vincent Carroll; Malczynski, Leonard A.; Kobos, Peter Holmes; Castillo, Cesar; Hart, William Eugene; Klise, Geoffrey T.

    2009-10-01

    Currently, electrical power generation uses about 140 billion gallons of water per day accounting for over 39% of all freshwater withdrawals thus competing with irrigated agriculture as the leading user of water. Coupled to this water use is the required pumping, conveyance, treatment, storage and distribution of the water which requires on average 3% of all electric power generated. While water and energy use are tightly coupled, planning and management of these fundamental resources are rarely treated in an integrated fashion. Toward this need, a decision support framework has been developed that targets the shared needs of energy and water producers, resource managers, regulators, and decision makers at the federal, state and local levels. The framework integrates analysis and optimization capabilities to identify trade-offs, and 'best' alternatives among a broad list of energy/water options and objectives. The decision support framework is formulated in a modular architecture, facilitating tailored analyses over different geographical regions and scales (e.g., national, state, county, watershed, NERC region). An interactive interface allows direct control of the model and access to real-time results displayed as charts, graphs and maps. Ultimately, this open and interactive modeling framework provides a tool for evaluating competing policy and technical options relevant to the energy-water nexus.

  19. The Integrated Safety Management System Verification Enhancement Review of the Plutonium Finishing Plant (PFP)

    SciTech Connect (OSTI)

    BRIGGS, C.R.

    2000-02-09

    The primary purpose of the verification enhancement review was for the DOE Richland Operations Office (RL) to verify contractor readiness for the independent DOE Integrated Safety Management System Verification (ISMSV) on the Plutonium Finishing Plant (PFP). Secondary objectives included: (1) to reinforce the engagement of management and to gauge management commitment and accountability; (2) to evaluate the ''value added'' benefit of direct public involvement; (3) to evaluate the ''value added'' benefit of direct worker involvement; (4) to evaluate the ''value added'' benefit of the panel-to-panel review approach; and, (5) to evaluate the utility of the review's methodology/adaptability to periodic assessments of ISM status. The review was conducted on December 6-8, 1999, and involved the conduct of two-hour interviews with five separate panels of individuals with various management and operations responsibilities related to PFP. A semi-structured interview process was employed by a team of five ''reviewers'' who directed open-ended questions to the panels which focused on: (1) evidence of management commitment, accountability, and involvement; and, (2) consideration and demonstration of stakeholder (including worker) information and involvement opportunities. The purpose of a panel-to-panel dialogue approach was to better spotlight: (1) areas of mutual reinforcement and alignment that could serve as good examples of the management commitment and accountability aspects of ISMS implementation, and, (2) areas of potential discrepancy that could provide opportunities for improvement. In summary, the Review Team found major strengths to include: (1) the use of multi-disciplinary project work teams to plan and do work; (2) the availability and broad usage of multiple tools to help with planning and integrating work; (3) senior management presence and accessibility; (4) the institutionalization of worker involvement; (5) encouragement of self-reporting and self-assessment by management; (6) the availability of multiple internal communication mechanisms; and, (7) the existence of overall facility-wide safety management goals as well as individualized project work team goals. Major opportunities for improvement identified include: (1) the enhancement of external communications relative to ISM; (2) the institutionalization of ISM-related performance agreements/incentives; (3) the strengthening of feedback loops; (4) fine-tuning the use of tools; and, (5) the formalization of good practices.

  20. RECENT ADDITIONS OF CRITICALITY SAFETY RELATED INTEGRAL BENCHMARK DATA TO THE ICSBEP AND IRPHEP HANDBOOKS

    SciTech Connect (OSTI)

    J. Blair Briggs; Lori Scott; Yolanda Rugama; Enrico Sartori

    2009-09-01

    High-quality integral benchmark experiments have always been a priority for criticality safety. However, interest in integral benchmark data is increasing as efforts to quantify and reduce calculational uncertainties accelerate to meet the demands of future criticality safety needs to support next generation reactor and advanced fuel cycle concepts. The importance of drawing upon existing benchmark data is becoming more apparent because of dwindling availability of critical facilities worldwide and the high cost of performing new experiments. Integral benchmark data from the International Handbook of Evaluated Criticality Safety Benchmark Experiments and the International Handbook of Reactor Physics Benchmark Experiments are widely used. Benchmark data have been added to these two handbooks since the last Nuclear Criticality Safety Division Topical Meeting in Knoxville, Tennessee (September 2005). This paper highlights these additions.

  1. Light Water Reactor Sustainability Program Integrated Program Plan

    SciTech Connect (OSTI)

    McCarthy, Kathryn A.; Busby, Jeremy; Hallbert, Bruce; Bragg-Sitton, Shannon; Smith, Curtis; Barnard, Cathy

    2014-04-01

    Nuclear power has safely, reliably, and economically contributed almost 20% of electrical generation in the United States over the past two decades. It remains the single largest contributor (more than 70%) of non-greenhouse-gas-emitting electric power generation in the United States. Domestic demand for electrical energy is expected to experience a 31% growth from 2009 to 2035. At the same time, most of the currently operating nuclear power plants will begin reaching the end of their initial 20-year extension to their original 40-year operating license for a total of 60 years of operation. Figure E-1 shows projected nuclear energy contribution to the domestic generating capacity. If current operating nuclear power plants do not operate beyond 60 years, the total fraction of generated electrical energy from nuclear power will begin to decline—even with the expected addition of new nuclear generating capacity. The oldest commercial plants in the United States reached their 40th anniversary in 2009. The U.S. Department of Energy Office of Nuclear Energy’s Research and Development Roadmap (Nuclear Energy Roadmap) organizes its activities around four objectives that ensure nuclear energy remains a compelling and viable energy option for the United States. The four objectives are as follows: (1) develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of the current reactors; (2) develop improvements in the affordability of new reactors to enable nuclear energy to help meet the Administration’s energy security and climate change goals; (3) develop sustainable nuclear fuel cycles; and (4) understand and minimize the risks of nuclear proliferation and terrorism. The Light Water Reactor Sustainability (LWRS) Program is the primary programmatic activity that addresses Objective 1. This document summarizes the LWRS Program’s plans.

  2. Light Water Reactor Sustainability Program Integrated Program Plan

    SciTech Connect (OSTI)

    Kathryn McCarthy; Jeremy Busby; Bruce Hallbert; Shannon Bragg-Sitton; Curtis Smith; Cathy Barnard

    2013-04-01

    Nuclear power has safely, reliably, and economically contributed almost 20% of electrical generation in the United States over the past two decades. It remains the single largest contributor (more than 70%) of non-greenhouse-gas-emitting electric power generation in the United States. Domestic demand for electrical energy is expected to experience a 31% growth from 2009 to 2035. At the same time, most of the currently operating nuclear power plants will begin reaching the end of their initial 20-year extension to their original 40-year operating license for a total of 60 years of operation. Figure E-1 shows projected nuclear energy contribution to the domestic generating capacity. If current operating nuclear power plants do not operate beyond 60 years, the total fraction of generated electrical energy from nuclear power will begin to decline—even with the expected addition of new nuclear generating capacity. The oldest commercial plants in the United States reached their 40th anniversary in 2009. The U.S. Department of Energy Office of Nuclear Energy’s Research and Development Roadmap (Nuclear Energy Roadmap) organizes its activities around four objectives that ensure nuclear energy remains a compelling and viable energy option for the United States. The four objectives are as follows: (1) develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of the current reactors; (2) develop improvements in the affordability of new reactors to enable nuclear energy to help meet the Administration’s energy security and climate change goals; (3) develop sustainable nuclear fuel cycles; and (4) understand and minimize the risks of nuclear proliferation and terrorism. The Light Water Reactor Sustainability (LWRS) Program is the primary programmatic activity that addresses Objective 1. This document summarizes the LWRS Program’s plans.

  3. Light Water Reactor Sustainability Program Integrated Program Plan

    SciTech Connect (OSTI)

    George Griffith; Robert Youngblood; Jeremy Busby; Bruce Hallbert; Cathy Barnard; Kathryn McCarthy

    2012-01-01

    Nuclear power has safely, reliably, and economically contributed almost 20% of electrical generation in the United States over the past two decades. It remains the single largest contributor (more than 70%) of non-greenhouse-gas-emitting electric power generation in the United States. Domestic demand for electrical energy is expected to experience a 31% growth from 2009 to 2035. At the same time, most of the currently operating nuclear power plants will begin reaching the end of their initial 20-year extension to their original 40-year operating license for a total of 60 years of operation. Figure E-1 shows projected nuclear energy contribution to the domestic generating capacity. If current operating nuclear power plants do not operate beyond 60 years, the total fraction of generated electrical energy from nuclear power will begin to decline - even with the expected addition of new nuclear generating capacity. The oldest commercial plants in the United States reached their 40th anniversary in 2009. The U.S. Department of Energy Office of Nuclear Energy's Research and Development Roadmap (Nuclear Energy Roadmap) organizes its activities around four objectives that ensure nuclear energy remains a compelling and viable energy option for the United States. The four objectives are as follows: (1) develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of the current reactors; (2) develop improvements in the affordability of new reactors to enable nuclear energy to help meet the Administration's energy security and climate change goals; (3) develop sustainable nuclear fuel cycles; and (4) understand and minimize the risks of nuclear proliferation and terrorism. The Light Water Reactor Sustainability (LWRS) Program is the primary programmatic activity that addresses Objective 1. This document summarizes the LWRS Program's plans.

  4. Management response plan for the Chemical Safety Vulnerability Working Group report. Volume 2

    SciTech Connect (OSTI)

    Not Available

    1994-09-01

    The Chemical Safety Vulnerability (CSV) Working Group was established to identify adverse conditions involving hazardous chemicals at DOE facilities that might result in fires or explosions, release of hazardous chemicals to the environment, or exposure of workers or the public to chemicals. A CSV Review was conducted in 146 facilities at 29 sites. Eight generic vulnerabilities were documented related to: abandoned chemicals and chemical residuals; past chemical spills and ground releases; characterization of legacy chemicals and wastes; disposition of legacy chemicals; storage facilities and conditions; condition of facilities and support systems; unanalyzed and unaddressed hazards; and inventory control and tracking. Weaknesses in five programmatic areas were also identified related to: management commitment and planning; chemical safety management programs; aging facilities that continue to operate; nonoperating facilities awaiting deactivation; and resource allocations. To address the facility-specific and site-specific vulnerabilities, responsible DOE and site-contractor line organizations have developed initial site response plans. These plans, presented as Volume 2 of this Management Response Plan, describe the actions needed to mitigate or eliminate the facility- and site-specific vulnerabilities identified by the CSV Working Group field verification teams. Initial site response plans are described for: Brookhaven National Lab., Hanford Site, Idaho National Engineering Lab., Lawrence Livermore National Lab., Los Alamos National Lab., Oak Ridge Reservation, Rocky Flats Plant, Sandia National Laboratories, and Savannah River Site.

  5. Health and safety plan for operations performed for the Environmental Restoration Program. Task, OU 1-03 and OU 4-10 Track 2 investigations

    SciTech Connect (OSTI)

    Trippet, W.A. II; Reneau, M.; Morton, S.L.

    1992-04-01

    This document constitutes the generic health and safety plan for the Environmental Restoration Program (ERP). It addresses the health and safety requirements of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA); Occupational Safety and Health Administration (OSHA) 29 CFR 1910.120 standard; and EG&G Idaho, Inc. This plan is a guide to individuals who must complete a health and safety plan for a task performed for the EPR. It contains a task specific addendum that, when completed, specifically addresses task specific health and safety issues. This health and safety plan reduces the time it takes to write a task specific health and safety plan by providing discussions of requirements, guidance on where specific information is located, and specific topics in the Addendum that must be discussed at a task level. This format encourages a complete task specific health and safety plan and a standard for all health and safety plans written for ERP.

  6. Environmental Management Waste Management Facility (EMWMF) Site-Specific Health and Safety Plan, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Flynn, N.C. Bechtel Jacobs

    2008-04-21

    The Bechtel Jacobs Company LLC (BJC) policy is to provide a safe and healthy workplace for all employees and subcontractors. The implementation of this policy requires that operations of the Environmental Management Waste Management Facility (EMWMF), located one-half mile west of the U.S. Department of Energy (DOE) Y-12 National Security Complex, be guided by an overall plan and consistent proactive approach to environment, safety and health (ES&H) issues. The BJC governing document for worker safety and health, BJC/OR-1745, 'Worker Safety and Health Program', describes the key elements of the BJC Safety and Industrial Hygiene (IH) programs, which includes the requirement for development and implementation of a site-specific Health and Safety Plan (HASP) where required by regulation (refer also to BJC-EH-1012, 'Development and Approval of Safety and Health Plans'). BJC/OR-1745, 'Worker Safety and Health Program', implements the requirements for worker protection contained in Title 10 Code of Federal Regulations (CFR) Part 851. The EMWMF site-specific HASP requirements identifies safe operating procedures, work controls, personal protective equipment, roles and responsibilities, potential site hazards and control measures, site access requirements, frequency and types of monitoring, site work areas, decontamination procedures, and outlines emergency response actions. This HASP will be available on site for use by all workers, management and supervisors, oversight personnel and visitors. All EMWMF assigned personnel will be briefed on the contents of this HASP and will be required to follow the procedures and protocols as specified. The policies and procedures referenced in this HASP apply to all EMWMF operations activities. In addition the HASP establishes ES&H criteria for the day-to-day activities to prevent or minimize any adverse effect on the environment and personnel safety and health and to meet standards that define acceptable waste management practices. The HASP is written to make use of past experience and best management practices to eliminate or minimize hazards to workers or the environment from events such as fires, falls, mechanical hazards, or any unplanned release to the environment.

  7. RISMC advanced safety analysis working plan: FY2015 - FY2019. Light Water Reactor Sustainability Program

    SciTech Connect (OSTI)

    Szilard, Ronaldo H; Smith, Curtis L

    2014-09-01

    In this report, the Advanced Safety Analysis Program (ASAP) objectives and value proposition is described. ASAP focuses on modernization of nuclear power safety analysis (tools, methods and data); implementing state-of-the-art modeling techniques (which include, for example, enabling incorporation of more detailed physics as they become available); taking advantage of modern computing hardware; and combining probabilistic and mechanistic analyses to enable a risk informed safety analysis process. The modernized tools will maintain the current high level of safety in our nuclear power plant fleet, while providing an improved understanding of safety margins and the critical parameters that affect them. Thus, the set of tools will provide information to inform decisions on plant modifications, refurbishments, and surveillance programs, while improving economics. The set of tools will also benefit the design of new reactors, enhancing safety per unit cost of a nuclear plant. As part of the discussion, we have identified three sets of stakeholders, the nuclear industry, the Department of Energy (DOE), and associated oversight organizations. These three groups would benefit from ASAP in different ways. For example, within the DOE complex, the possible applications that are seen include the safety of experimental reactors, facility life extension, safety-by-design in future generation advanced reactors, and managing security for the storage of nuclear material. This report provides information in five areas: (1) A value proposition (“why is this important?”) that will make the case for stakeholder’s use of the ASAP research and development (R&D) products; (2) An identification of likely end users and pathway to adoption of enhanced tools by the end-users; (3) A proposed set of practical and achievable “use case” demonstrations; (4) A proposed plan to address ASAP verification and validation (V&V) needs; and (5) A proposed schedule for the multi-year ASAP.

  8. Hydrogen Posture Plan: An Integrated Research, Development and...

    Broader source: Energy.gov (indexed) [DOE]

    06 Hydrogen Posture Plan satisfies Section 804 of the Energy Policy Act of 2005, which requires that the Secretary of Energy transmit to Congress a coordinated plan for the...

  9. Hanford Integrated Planning Process: 1993 Hanford Site-specific science and technology plan

    SciTech Connect (OSTI)

    Not Available

    1993-12-01

    This document is the FY 1993 report on Hanford Site-specific science and technology (S&T) needs for cleanup of the Site as developed via the Hanford Integrated Planning Process (HIPP). It identifies cleanup problems that lack demonstrated technology solutions and technologies that require additional development. Recommendations are provided regarding allocation of funding to address Hanford`s highest-priority technology improvement needs, technology development needs, and scientific research needs, all compiled from a Sitewide perspective. In the past, the S&T agenda for Hanford Site cleanup was sometimes driven by scientists and technologists, with minimal input from the ``problem owners`` (i.e., Westinghouse Hanford Company [WHC] staff who are responsible for cleanup activities). At other times, the problem-owners made decisions to proceed with cleanup without adequate scientific and technological inputs. Under both of these scenarios, there was no significant stakeholder involvement in the decision-making process. One of the key objectives of HIPP is to develop an understanding of the integrated S&T requirements to support the cleanup mission, (a) as defined by the needs of the problem owners, the values of the stakeholders, and the technology development expertise that exists at Hanford and elsewhere. This requires a periodic, systematic assessment of these needs and values to appropriately define a comprehensive technology development program and a complementary scientific research program. Basic to our success is a methodology that is defensible from a technical perspective and acceptable to the stakeholders.

  10. Fluor Hanford Integrated Safety Management System Phase II Verification Vol 1 & Vol 2

    SciTech Connect (OSTI)

    PARSONS, J.E.

    2000-07-15

    The U.S. Department of Energy (DOE) is committed to conducting work efficiently and in a manner that ensures protection of the workers, public, and environment. DOE policy mandates that safety management systems be used to systematically integrate safety into management and work practices at all levels while accomplishing mission goals in an effective and efficient manner. The purpose of the Fluor Hanford (FH) Integrated Safety Management System (ISMS) verification was to determine whether FH's ISM system and processes are sufficiently implemented to accomplish the goal of ''Do work safely.'' The purpose of the DOE, Richland Operations Office (RL) verification was to determine whether RL has established processes that adequately describe RL's role in safety management and if those processes are sufficiently implemented.

  11. Integrating Safety, Operations, Security, and Safeguards (ISOSS) into the design of small modular reactors : a handbook.

    SciTech Connect (OSTI)

    Middleton, Bobby D.; Mendez, Carmen Margarita

    2013-10-01

    The existing regulatory environment for nuclear reactors impacts both the facility design and the cost of operations once the facility is built. Delaying the consideration of regulatory requirements until late in the facility design - or worse, until after construction has begun - can result in costly retrofitting as well as increased operational costs to fulfill safety, security, safeguards, and emergency readiness requirements. Considering the scale and scope, as well as the latest design trends in the next generation of nuclear facilities, there is an opportunity to evaluate the regulatory requirements and optimize the design process for Small Modular Reactors (SMRs), as compared to current Light Water Reactors (LWRs). To this end, Sandia has embarked on an initiative to evaluate the interactions of regulations and operations as an approach to optimizing the design of SMR facilities, supporting operational efficiencies, as well as regulatory requirements. The early stages of this initiative consider two focus areas. The first focus area, reported by LaChance, et al. (2007), identifies the regulatory requirements established for the current fleet of LWR facilities regarding Safety, Security, Operations, Safeguards, and Emergency Planning, and evaluates the technical bases for these requirements. The second focus area, developed in this report, documents the foundations for an innovative approach that supports a design framework for SMR facilities that incorporates the regulatory environment, as well as the continued operation of the facility, into the early design stages, eliminating the need for costly retrofitting and additional operating personnel to fulfill regulatory requirements. The work considers a technique known as Integrated Safety, Operations, Security and Safeguards (ISOSS) (Darby, et al., 2007). In coordination with the best practices of industrial operations, the goal of this effort is to develop a design framework that outlines how ISOSS requirements can be incorporated into the pre-conceptual through early facility design stages, seeking a cost-effective design that meets both operational efficiencies and the regulatory environment. The larger scope of the project, i.e., in future stages, includes the identification of potentially conflicting requirements identified by the ISOSS framework, including an analysis of how regulatory requirements may be changed to account for the intrinsic features of SMRs.

  12. Integrating Safety with Science,Technology and Innovation at Los Alamos National Laboratory

    SciTech Connect (OSTI)

    Rich, Bethany M

    2012-04-02

    The mission of Los Alamos National Laboratory (LANL) is to develop and apply science, technology and engineering solutions to ensure the safety, security, and reliability of the U.S. nuclear deterrent; reduce global threats; and solve emerging national security challenges. The most important responsibility is to direct and conduct efforts to meet the mission with an emphasis on safety, security, and quality. In this article, LANL Environmental, Safety, and Health (ESH) trainers discuss how their application and use of a kinetic learning module (learn by doing) with a unique fall arrest system is helping to address one the most common industrial safety challenges: slips and falls. A unique integration of Human Performance Improvement (HPI), Behavior Based Safety (BBS) and elements of the Voluntary Protection Program (VPP) combined with an interactive simulator experience is being used to address slip and fall events at Los Alamos.

  13. DOE standard: Integration of environment, safety, and health into facility disposition activities. Volume 1: Technical standard

    SciTech Connect (OSTI)

    1998-05-01

    This Department of Energy (DOE) technical standard (referred to as the Standard) provides guidance for integrating and enhancing worker, public, and environmental protection during facility disposition activities. It provides environment, safety, and health (ES and H) guidance to supplement the project management requirements and associated guidelines contained within DOE O 430.1A, Life-Cycle Asset Management (LCAM), and amplified within the corresponding implementation guides. In addition, the Standard is designed to support an Integrated Safety Management System (ISMS), consistent with the guiding principles and core functions contained in DOE P 450.4, Safety Management System Policy, and discussed in DOE G 450.4-1, Integrated Safety Management System Guide. The ISMS guiding principles represent the fundamental policies that guide the safe accomplishment of work and include: (1) line management responsibility for safety; (2) clear roles and responsibilities; (3) competence commensurate with responsibilities; (4) balanced priorities; (5) identification of safety standards and requirements; (6) hazard controls tailored to work being performed; and (7) operations authorization. This Standard specifically addresses the implementation of the above ISMS principles four through seven, as applied to facility disposition activities.

  14. Background Information for the Nevada National Security Site Integrated Sampling Plan, Revision 0

    SciTech Connect (OSTI)

    Farnham, Irene; Marutzky, Sam

    2014-12-01

    This document describes the process followed to develop the Nevada National Security Site (NNSS) Integrated Sampling Plan (referred to herein as the Plan). It provides the Plan’s purpose and objectives, and briefly describes the Underground Test Area (UGTA) Activity, including the conceptual model and regulatory requirements as they pertain to groundwater sampling. Background information on other NNSS groundwater monitoring programs—the Routine Radiological Environmental Monitoring Plan (RREMP) and Community Environmental Monitoring Program (CEMP)—and their integration with the Plan are presented. Descriptions of the evaluations, comments, and responses of two Sampling Plan topical committees are also included.

  15. Preparing for CAAA risk management plans: The lessons of OSHA PSM process safety management

    SciTech Connect (OSTI)

    Gillespie, D.P. [Control Systems Consultants, Inc., Ashland, KY (United States)

    1994-12-31

    29 CFR 1910.119 OSHA Process Safety Management (PSM) became law in 1992, presenting covered facilities with extraordinarily comprehensive and demanding requirements for information management. This paper reports an approach adopted by petrochemical plants that have pioneered automated, integrated compliance with PSM information requirements. The approach is worthy of consideration by the many additional plants that will be covered by 40 CFR Part 67 Risk Management Programs for Chemical Accidental Release Prevention (RNT), which closely parallels PSM`s information requirements.

  16. Fluor Hanford, Inc. Groundwater and Technical Integration Support (Master Project) Quality Assurance Management Plan

    SciTech Connect (OSTI)

    Fix, N. J.

    2008-02-20

    The scope of the Fluor Hanford, Inc. Groundwater and Technical Integration Support (Master Project) is to provide technical and integration support to Fluor Hanford, Inc., including operable unit investigations at 300-FF-5 and other groundwater operable units, strategic integration, technical integration and assessments, remediation decision support, and science and technology. This Quality Assurance Management Plan provides the quality assurance requirements and processes that will be followed by the Fluor Hanford, Inc. Groundwater and Technical Integration Support (Master Project).

  17. Resource Planning for Power Systems: Integrating Renewables and New Technologies

    Broader source: Energy.gov [DOE]

    Become Kinetic is hosting a course to review resource planning issues and how they are being addressed to provide reliable and economic operation of the bulk power system.

  18. Re-engineering the Federal planning process: A total Federal planning strategy, integrating NEPA with modern management tools

    SciTech Connect (OSTI)

    Eccleston, C.H.

    1997-09-05

    The National Environmental Policy Act (NEPA) of 1969 was established by Congress more than a quarter of a century ago, yet there is a surprising lack of specific tools, techniques, and methodologies for effectively implementing these regulatory requirements. Lack of professionally accepted techniques is a principal factor responsible for many inefficiencies. Often, decision makers do not fully appreciate or capitalize on the true potential which NEPA provides as a platform for planning future actions. New approaches and modem management tools must be adopted to fully achieve NEPA`s mandate. A new strategy, referred to as Total Federal Planning, is proposed for unifying large-scale federal planning efforts under a single, systematic, structured, and holistic process. Under this approach, the NEPA planning process provides a unifying framework for integrating all early environmental and nonenvironmental decision-making factors into a single comprehensive planning process. To promote effectiveness and efficiency, modem tools and principles from the disciplines of Value Engineering, Systems Engineering, and Total Quality Management are incorporated. Properly integrated and implemented, these planning tools provide the rigorous, structured, and disciplined framework essential in achieving effective planning. Ultimately, the goal of a Total Federal Planning strategy is to construct a unified and interdisciplinary framework that substantially improves decision-making, while reducing the time, cost, redundancy, and effort necessary to comply with environmental and other planning requirements. At a time when Congress is striving to re-engineer the governmental framework, apparatus, and process, a Total Federal Planning philosophy offers a systematic approach for uniting the disjointed and often convoluted planning process currently used by most federal agencies. Potentially this approach has widespread implications in the way federal planning is approached.

  19. Management response plan for the Chemical Safety Vulnerability Working Group report. Volume 1

    SciTech Connect (OSTI)

    Not Available

    1994-09-01

    The Chemical Safety Vulnerability (CSV) Working Group was established to identify adverse conditions involving hazardous chemicals at DOE facilities that might result in fires or explosions, release of hazardous chemicals to the environment, or exposure of workers or the public to chemicals. A CSV Review was conducted in 146 facilities at 29 sites. Eight generic vulnerabilities were documented related to: abandoned chemicals and chemical residuals; past chemical spills and ground releases; characterization of legacy chemicals and wastes; disposition of legacy chemicals; storage facilities and conditions; condition of facilities and support systems; unanalyzed and unaddressed hazards; and inventory control and tracking. Weaknesses in five programmatic areas were also identified related to: management commitment and planning; chemical safety management programs; aging facilities that continue to operate; nonoperating facilities awaiting deactivation; and resource allocations. Volume 1 contains a discussion of the chemical safety improvements planned or already underway at DOE sites to correct facility or site-specific vulnerabilities. The main part of the report is a discussion of each of the programmatic deficiencies; a description of the tasks to be accomplished; the specific actions to be taken; and the organizational responsibilities for implementation.

  20. Framework for integration of urban planning, strategic environmental assessment and ecological planning for urban sustainability within the context of China

    SciTech Connect (OSTI)

    He Jia; Bao Cunkuan; Shu Tingfei; Yun Xiaoxue; Jiang Dahe; Brwon, Lex

    2011-11-15

    Sustainable development or sustainability has been highlighted as an essential principle in urban master planning, with increasing recognition that uncontrollable urbanization may well give rise to various issues such as overexploitation of natural resources, ecosystem destruction, environmental pollution and large-scale climate change. Thus, it is deemed necessary to modify the existing urban and regional administrative system so as to cope with the challenges urban planning is being confronted with and realize the purpose of urban sustainability. This paper contributed to proposing a mechanism which helps to make urban planning with full consideration of issues with respect to sustainable development. We suggested that the integration of urban planning, SEA and ecological planning be a multi-win strategy to offset deficiency of each mentioned political tool being individually applied. We also proposed a framework where SEA and ecological planning are fully incorporated into urban planning, which forms a two-way constraint mechanism to ascertain environmental quality of urban planning, although in practice, planning and SEA processes may conditionally be unified. Moreover, as shown in the case study, the integration of the three political tools may be constrained due to slow changes in the contextual factors, in particular the political and cultural dimensions. Currently within the context of China, there may be three major elements which facilitate integration of the three political tools, which are (1) regulatory requirement of PEIA on urban planning, (2) the promotion or strong administrative support from government on eco-district building, and (3) the willingness of urban planners to collaborate with SEA experts or ecologists.

  1. Safety and quality management and administration Fiscal Year 1995 site support program plan WBS 6.7.2.6

    SciTech Connect (OSTI)

    Hagan, J.W.

    1994-09-01

    The mission of the Emergency, Safety, and Quality Services (ESQ) management and Program Integration is to provide leadership for the ESQ Department, coordinate business management activities of the ESQ department, and the programs it supports, as well as to plan organize, direct, and control other activities that require department-wide coordination. Primary activities include providing strategic and business planning and reporting support to ESQ management; developing and documenting ESQ management systems and procedures; coordinating ESQ`s self-assessment and Award Fee self evaluation efforts; coordinating the ESQ departments`s communication, total quality, cost savings, and productivity efforts; and tracking ESQ commitments and staffing data. This program element also provides program direction and performance assessment for the ESH&Q division of ICF KH. The ESH&Q Division educates ICF KH management and employees to protect personnel and the environment; identifies, interprets and inspects to requirements; provides administrative and field support; performs final acceptance of construction; assesses effectiveness of ICF KH programs and processes, and performs baseline ESH&Q assessments.

  2. Risk and Work Configuration Management as a Function of Integrated Safety Management

    SciTech Connect (OSTI)

    Lana Buehrer, Michele Kelly, Fran Lemieux, Fred Williams

    2007-11-30

    National Security Technologies, LLC (NSTec), has established a work management program and corresponding electronic Facilities and Operations Management Information System (e-FOM) to implement Integrated Safety Management (ISM). The management of work scopes, the identification of hazards, and the establishment of implementing controls are reviewed and approved through electronic signatures. Through the execution of the program and the implementation of the electronic system, NSTec staff work within controls and utilize feedback and improvement process. The Integrated Work Control Manual further implements the five functions of ISM at the Activity level. By adding the Risk and Work Configuration Management program, NSTec establishes risk acceptance (business and physical) for liabilities within the performance direction and work management processes. Requirements, roles, and responsibilities are specifically identified in the program while e-FOM provides the interface and establishes the flowdown from the Safety Chain to work and facilities management processes to company work-related directives, and finally to Subject Matter Expert concurrence. The Program establishes, within the defined management structure, management levels for risk identification, risk mitigation (controls), and risk acceptance (business and physical) within the Safety Chain of Responsibility. The Program also implements Integrated Safeguards and Security Management within the NSTec Safety Chain of Responsibility. Once all information has been entered into e-FOM, approved, and captured as data, the information becomes searchable and sortable by hazard, location, organization, mitigating controls, etc.

  3. Should different impact assessment instruments be integrated? Evidence from English spatial planning

    SciTech Connect (OSTI)

    Tajima, Ryo; Fischer, Thomas B.

    2013-07-15

    This paper aims at providing empirical evidence to the question as to whether integration of different instruments is achieving its aim in supporting sustainable decision making, focusing on SEA inclusive sustainability appraisal (SA) and other impact assessments (IAs) currently used in English spatial planning. Usage of IAs in addition to SA is established and an analysis of the integration approach (in terms of process, output, and assessor) as well as its effectiveness is conducted. It is found that while integration enhances effectiveness to some extent, too much integration, especially in terms of the procedural element, appears to diminish the overall effectiveness of each IA in influencing decisions as they become captured by the balancing function of SA. -- Highlights: ? The usage of different impact assessments in English spatial planning is clarified. ? The relationship between integration approach and effectiveness is analyzed. ? Results suggest that integration does not necessarily lead to more sustainable decisions. ? Careful consideration is recommended upon process integration.

  4. PROJECT MANGEMENT PLAN EXAMPLES Prepare Project Support Plans and

    Office of Environmental Management (EM)

    H&S Plan Examples Example 46 9.2 HEALTH AND SAFETY STRATEGY B Plant has integrated safety into its management, planning and work practices in order to protect the public, the environment and facility workers against nuclear and non-nuclear hazards associated with facility transition. Based upon the principles of DNFSB Recommendation 95-2, the Plant's approach to safety management includes:  Applicable. standards and requirements specifically identified and implemented  Safety

  5. Cost estimating issues in the Russian integrated system planning context

    SciTech Connect (OSTI)

    Allentuck, J.

    1996-03-01

    An important factor in the credibility of an optimal capacity expansion plan is the accuracy of cost estimates given the uncertainty of future economic conditions. This paper examines the problems associated with estimating investment and operating costs in the Russian nuclear power context over the period 1994 to 2010.

  6. Comprehensive integrated planning: A process for the Oak Ridge Reservation, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    1998-05-01

    The Oak Ridge Comprehensive Integrated Plan is intended to assist the US Department of Energy (DOE) and contractor personnel in implementing a comprehensive integrated planning process consistent with DOE Order 430.1, Life Cycle Asset Management and Oak Ridge Operations Order 430. DOE contractors are charged with developing and producing the Comprehensive Integrated Plan, which serves as a summary document, providing information from other planning efforts regarding vision statements, missions, contextual conditions, resources and facilities, decision processes, and stakeholder involvement. The Comprehensive Integrated Plan is a planning reference that identifies primary issues regarding major changes in land and facility use and serves all programs and functions on-site as well as the Oak Ridge Operations Office and DOE Headquarters. The Oak Ridge Reservation is a valuable national resource and is managed on the basis of the principles of ecosystem management and sustainable development and how mission, economic, ecological, social, and cultural factors are used to guide land- and facility-use decisions. The long-term goals of the comprehensive integrated planning process, in priority order, are to support DOE critical missions and to stimulate the economy while maintaining a quality environment.

  7. The CHPRC Groundwater and Technical Integration Support (Master Project) Quality Assurance Management Plan

    SciTech Connect (OSTI)

    Fix, N. J.

    2009-04-03

    The scope of the CH2M Hill Plateau Remediation Company, LLC (CHPRC) Groundwater and Technical Integration Support (Master Project) is for Pacific Northwest National Laboratory staff to provide technical and integration support to CHPRC. This work includes conducting investigations at the 300-FF-5 Operable Unit and other groundwater operable units, and providing strategic integration, technical integration and assessments, remediation decision support, and science and technology. The projects under this Master Project will be defined and included within the Master Project throughout the fiscal year, and will be incorporated into the Master Project Plan. This Quality Assurance Management Plan provides the quality assurance requirements and processes that will be followed by the CHPRC Groundwater and Technical Integration Support (Master Project) and all releases associated with the CHPRC Soil and Groundwater Remediation Project. The plan is designed to be used exclusively by project staff.

  8. FY 2002 Integrated Monitoring Plan for the Hanford Groundwater Monitoring Project

    SciTech Connect (OSTI)

    Hartman, Mary J.; Dresel, P Evan; Lindberg, Jonathan W.; Newcomer, Darrell R.; Thornton, Edward C.

    2001-10-31

    This document is an integrated monitoring plan for the groundwater project and contains: well and constituent lists for monitoring required by the Atomic Energy Act of 1954 and its implementing orders ("surveillance monitoring"); other, established monitoring plans by reference; and a master well/ constituent/frequency matrix for the entire Hanford Site.

  9. Safety

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Safety All JLF participants must comply fully with all LLNL safety regulations and procedures by becoming a Registered User of the facility. All JLF participants must complete available LLNL safety training: HS5200-W Laser Safety HS4258-W Beryllium Awareness HS4261-W Lead Awareness HS5220-W Electrical Safety Awareness HS6001-W General Employee Radiological HS4240-W Chemical Safety HS4680-W PPE To access these training modules link here [LTRAIN] from inside LLNL, or here from anywhere. All JLF

  10. Safeguard By Design Lessons Learned from DOE Experience Integrating Safety into Design

    SciTech Connect (OSTI)

    Hockert, John; Burbank, Roberta L.

    2010-04-13

    This paper identifies the lessons to be learned for the institutionalization of Safeguards by Design (SBD) from the Department of Energy (DOE) experience developing and implementing DOE-STD-1189-2008, Integration of Safety into the Design Process. The experience is valuable because of the similarity of the challenges of integrating safety and safeguards into the design process. The paper reviews the content and development of DOE-STD-1189-2008 from its initial concept in January 2006 to its issuance in March 2008. Lessons learned are identified in the areas of the development and structure of requirements for the SBD process; the target audience for SBD requirements and guidance, the need for a graded approach to SBD, and a possible strategy for development and implementation of SBD within DOE.

  11. DOE-STD-1120-2005; Integration of Environment, Safety, and Health into Facility Disposition Activities

    Office of Environmental Management (EM)

    120-2005 Volume 2 of 2 DOE STANDARD INTEGRATION OF ENVIRONMENT, SAFETY, AND HEALTH INTO FACILITY DISPOSITION ACTIVITIES Volume 2 of 2: Appendices U.S. Department of Energy AREA SAFT Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. NOT MEASUREMENT SENSITIVE This document has been reproduced directly from the best available copy. Available to DOE and DOE contractors from the Office of Scientific and Technical Information, P.O. Box 62, Oak

  12. Demonstration testing and evaluation of in situ soil heating. Health and safety plan (Revision 2)

    SciTech Connect (OSTI)

    Dev, H.

    1994-12-28

    This document is the Health and Safety Plan (HASP) for the demonstration of IITRI`s EM Treatment Technology. In this process, soil is heated in situ by means of electrical energy for the removal of hazardous organic contaminants. This process will be demonstrated on a small plot of contaminated soil located in the Pit Area of Classified Burial Ground K-1070-D, K-25 Site, Oak Ridge, TN. The purpose of the demonstration is to remove organic contaminants present in the soil by heating to a temperature range of 85{degrees} to 95{degrees}C. The soil will be heated in situ by applying 60-Hz AC power to an array of electrodes placed in boreholes drilled through the soil. In this section a brief description of the process is given along with a description of the site and a listing of the contaminants found in the area.

  13. Remediation of DOE hazardous waste sites: Planning and integration requirements

    SciTech Connect (OSTI)

    Geffen, C.A.; Garrett, B.A.; Cowan, C.E.; Siegel, M.R.; Keller, J.F. )

    1989-09-01

    The US Department of Energy (DOE) is faced with a immense challenge in effectively implementing a program to mitigate and manage the environmental impacts created by current operations and from past activities at its facilities. The current regulatory framework and public interest in the environmental arena have made operating DOE facilities in an environmentally responsible manner a compelling priority. This paper provides information on the results of a project funded by DOE to obtain a better understanding of the regulatory and institutional drivers in the hazardous waste market and the costs and timeframes required for remediation activities. Few realize that before remediating a hazardous waste site, a comprehensive planning process must be conducted to characterize the nature and extent of site contamination, calculate the risk to the public, and assess the effectiveness of various remediation technologies. The US Environmental Protection Agency (EPA) and others have found that it may take up to 7 years to complete the planning process at an average cost of $1.0 million per site. While cost information is not yet available for DOE sites, discussions with hazardous waste consulting firms indicate that average characterization and assessment costs will be 5 to 10 times this amount for DOE sites. The higher costs are expected because of the additional administrative requirements placed on DOE sites, the need to handle mixed wastes, the amount and extent of contamination at many of these sites, and the visibility of the sites. 15 refs., 1 fig., 2 tabs.

  14. Resource Planning Model: An Integrated Resource Planning and Dispatch Tool for Regional Electric Systems

    SciTech Connect (OSTI)

    Mai, T.; Drury, E.; Eurek, K.; Bodington, N.; Lopez, A.; Perry, A.

    2013-01-01

    This report introduces a new capacity expansion model, the Resource Planning Model (RPM), with high spatial and temporal resolution that can be used for mid- and long-term scenario planning of regional power systems. Although RPM can be adapted to any geographic region, the report describes an initial version of the model adapted for the power system in Colorado. It presents examples of scenario results from the first version of the model, including an example of a 30%-by-2020 renewable electricity penetration scenario.

  15. Risk-Informed Safety Margin Characterization (RISMC): Integrated Treatment of Aleatory and Epistemic Uncertainty in Safety Analysis

    SciTech Connect (OSTI)

    R. W. Youngblood

    2010-10-01

    The concept of “margin” has a long history in nuclear licensing and in the codification of good engineering practices. However, some traditional applications of “margin” have been carried out for surrogate scenarios (such as design basis scenarios), without regard to the actual frequencies of those scenarios, and have been carried out with in a systematically conservative fashion. This means that the effectiveness of the application of the margin concept is determined in part by the original choice of surrogates, and is limited in any case by the degree of conservatism imposed on the evaluation. In the RISMC project, which is part of the Department of Energy’s “Light Water Reactor Sustainability Program” (LWRSP), we are developing a risk-informed characterization of safety margin. Beginning with the traditional discussion of “margin” in terms of a “load” (a physical challenge to system or component function) and a “capacity” (the capability of that system or component to accommodate the challenge), we are developing the capability to characterize probabilistic load and capacity spectra, reflecting both aleatory and epistemic uncertainty in system response. For example, the probabilistic load spectrum will reflect the frequency of challenges of a particular severity. Such a characterization is required if decision-making is to be informed optimally. However, in order to enable the quantification of probabilistic load spectra, existing analysis capability needs to be extended. Accordingly, the INL is working on a next-generation safety analysis capability whose design will allow for much more efficient parameter uncertainty analysis, and will enable a much better integration of reliability-related and phenomenology-related aspects of margin.

  16. safety

    National Nuclear Security Administration (NNSA)

    contractor at the Nevada National Security Site, has been recognized by the Department of Energy for excellence in occupational safety and health protection. National Nuclear...

  17. US Department of Energy Integrated Resource Planning Program: Accomplishments and opportunities

    SciTech Connect (OSTI)

    White, D.L.; Mihlmester, P.E.

    1993-12-17

    The US Department of Energy Integrated Resource Planning Program supports many activities and projects that enhance the process by which utilities assess demand and supply options and, subsequently, evaluate and select resources. The US Department of Energy program coordinates integrated resource planning in risk and regulatory analysis; utility and regional planning; evaluation and verification; information transfer/technological assistance; and demand-side management. Professional staff from the National Renewable Energy Laboratory, Oak Ridge National Laboratory, Lawrence Berkeley Laboratory, and Pacific Northwest Laboratories collaborate with peers and stakeholders, in particular, the National Association of Regulatory Utility Commissioners, and conduct research and activities for the US Department of Energy. Twelve integrated resource planning activities and projects are summarized in this report. The summaries reflect the diversity of planning and research activities supported by the Department. The summaries also reflect the high levels of collaboration and teaming that are required by the Program and practiced by the researchers. It is concluded that the Program is achieving its objectives by encouraging innovation and improving planning and decision making. Furthermore, as the Department continues to implement planned improvements in the Program, the Department is effectively positioned to attain its ambitious goals.

  18. Integrated High-Level Waste System Planning - Utilizing an Integrated Systems Planning Approach to Ensure End-State Definitions are Met and Executed - 13244

    SciTech Connect (OSTI)

    Ling, Lawrence T.; Chew, David P.

    2013-07-01

    The Savannah River Site (SRS) is a Department of Energy site which has produced nuclear materials for national defense, research, space, and medical programs since the 1950's. As a by-product of this activity, approximately 37 million gallons of high-level liquid waste containing approximately 292 million curies of radioactivity is stored on an interim basis in 45 underground storage tanks. Originally, 51 tanks were constructed and utilized to support the mission. Four tanks have been closed and taken out of service and two are currently undergoing the closure process. The Liquid Waste System is a highly integrated operation involving safely storing liquid waste in underground storage tanks; removing, treating, and dispositioning the low-level waste fraction in grout; vitrifying the higher activity waste at the Defense Waste Processing Facility; and storing the vitrified waste in stainless steel canisters until permanent disposition. After waste removal and processing, the storage and processing facilities are decontaminated and closed. A Liquid Waste System Plan (hereinafter referred to as the Plan) was developed to integrate and document the activities required to disposition legacy and future High-Level Waste and to remove from service radioactive liquid waste tanks and facilities. It establishes and records a planning basis for waste processing in the liquid waste system through the end of the program mission. The integrated Plan which recognizes the challenges of constrained funding provides a path forward to complete the liquid waste mission within all regulatory and legal requirements. The overarching objective of the Plan is to meet all Federal Facility Agreement and Site Treatment Plan regulatory commitments on or ahead of schedule while preserving as much life cycle acceleration as possible through incorporation of numerous cost savings initiatives, elimination of non-essential scope, and deferral of other scope not on the critical path to compliance. There is currently a premium on processing and storage space in the radioactive liquid waste tank system. To enable continuation of risk reduction initiatives, the Plan establishes a processing strategy that provides tank space required to meet, or minimizes the impacts to meeting, programmatic objectives. The Plan also addresses perturbations in funding and schedule impacts. (authors)

  19. Comparison of Integrated Safety Analysis (ISA) and Probabilistic Risk Assessment (PRA) for Fuel Cycle Facilities, 2/17/11

    Broader source: Energy.gov [DOE]

    During the 580th meeting of the Advisory Committee on Reactor Safeguards (ACRS), February10-12, 2011, we reviewed the staff’s white paper, “A Comparison of Integrated Safety Analysisand...

  20. Engineering task plan for the annual revision of the rotary mode core sampling system safety equipment list

    SciTech Connect (OSTI)

    BOGER, R.M.

    1999-05-13

    This Engineering Task Plan addresses an effort to provide an update to the RMCS Systems 3 and 4 SEL and DCM in order to incorporate the changes to the authorization basis implemented by HNF-SD-WM-BIO-001, Rev. 0 (Draft), Addendum 5 , Safety Analysis for Rotary Mode Core Sampling. Responsibilities, task description, cost estimate, and schedule are presented.

  1. Integrated Program of Experimental Diagnostics at the NNSS. An Integrated, Prioritized Work Plan for Diagnostic Development and Maintenance and Supporting Capability

    SciTech Connect (OSTI)

    None, None

    2010-09-01

    This Integrated Program of Experimental Diagnostics at the NNSS is an integrated prioritized work plan for the Nevada National Security Site (NNSS), formerly the Nevada Test Site (NTS), program that is independent of individual National Security Enterprise Laboratories’ (Labs) requests or specific Subprograms being supported. This prioritized work plan is influenced by national priorities presented in the Predictive Capability Framework (PCF) and other strategy documents (Primary and Secondary Assessment Technologies Plans and the Plutonium Experiments Plan). This document satisfies completion criteria for FY 2010 MRT milestone #3496: Document an integrated, prioritized work plan for diagnostic development, maintenance, and supporting capability. This document is an update of the 3-year NNSS plan written a year ago, September 21, 2009, to define and understand Lab requests for diagnostic implementation. This plan is consistent with Lab interpretations of the PCF, Primary Assessment Technologies, and Plutonium Experiment plans.

  2. Resource Planning Model: An Integrated Resource Planning and Dispatch Tool for Regional Electric Systems

    Broader source: Energy.gov [DOE]

    In this report, we introduce a new transparent regional capacity expansion model with high spatio-temporal resolution and detailed representation of dispatch. The development of this model, referred to as the Resource Planning Model (RPM), is motivated by the lack of a tool in the public domain that can be used to characterize optimal regional deployment of resources with detailed dispatch modeling. In particular, RPM is designed to evaluate scenarios of renewable technology deployment to meet renewable portfolio standard (RPS) and emission-reduction goals, and to project possible deployment levels for various projections of future technology and fuel prices.

  3. Improving the effectiveness of planning EIA (PEIA) in China: Integrating planning and assessment during the preparation of Shenzhen's Master Urban Plan

    SciTech Connect (OSTI)

    Che Xiuzhen; English, Alex; Lu Jia; Chen, Yongqin David

    2011-11-15

    The enactment and implementation of the 2003 EIA Law in China institutionalised the role of plan environmental impact assessment (PEIA). While the philosophy, methodology and mechanisms of PEIA have gradually permeated through the various levels of government with a positive effect on the process and outcome of urban planning, only a few cities in China have so far carried out PEIA as a Strategic Environmental Assessment (SEA)-type procedure. One such case is the southern city of Shenzhen. During the past three decades, Shenzhen has grown from a small town to a large and booming city as China has successfully and rapidly developed its economy by adopting the 'reform and open door' policy. In response to the challenges arising from the generally divergent processes of rapid urbanisation, economic transformation and environment protection, Shenzhen has incrementally adopted the SEA concept in developing the city's Master Urban Plan. As such, this paper reviews the effectiveness of PEIA in three ways: {center_dot}as a tool and process for achieving more sustainable and strategic planning; {center_dot}to determine the level of integration of SEA within the planning system; and, {center_dot}its effectiveness vis-a-vis implementation. The implementation of PEIA within Shenzhen's Master Urban Plan offers important insights into the emergence of innovative practices in undertaking PEIA as well as theoretical contributions to the field, especially in exploring the relationship between PEIA and SEA and highlighting the central role of local governing institutions in SEA development.

  4. Major results from safety-related integral effect tests with VISTA-ITL for the SMART design

    SciTech Connect (OSTI)

    Park, H. S.; Min, B. Y.; Shin, Y. C.; Yi, S. J.

    2012-07-01

    A series of integral effect tests (IETs) was performed by the Korea Atomic Energy Research Inst. (KAERI) using the VISTA integral test loop (VISTA-ITL) as a small-scale IET program. Among them this paper presents major results acquired from the safety-related IETs with the VISTA-ITL facility for the SMART design. Three small-break loss-of-coolant accident (SBLOCA) tests of safety injection system (SIS) line break, shutdown cooling system (SCS) line break and pressurizer safety valve (PSV) line break were successfully performed and the transient characteristics of a complete loss of flowrate (CLOF) was simulated properly with the VISTA-ITL facility. (authors)

  5. Site planning and integration fiscal year 1999 multi-year work plan (MYWP) update for WBS 1.8.2.1

    SciTech Connect (OSTI)

    SCHULTZ, E.A.

    1998-10-01

    The primary mission of the Site Planning and Integration (SP and I) project is to assist Fluor Daniel Project Direction to ensure that all work performed under the Project Hanford Management Contract (PHMC) is adequately planned, executed, controlled, and that performance is measured and reported in an integrated fashion. Furthermore, SP and I is responsible for the development, implementation, and management of systems and processes that integrate technical, schedule, and cost baselines for PHMC work.

  6. Site specific health and safety plan, 233-S decontamination and decommissioning

    SciTech Connect (OSTI)

    J. E. Fasso

    1997-12-31

    The deactivated 233-S Plutonium Concentration Facility, located in the 200 Area at the Hanford Site, is the subject of this Health and Safety Plan.The 233-S Facility operated from January 1952 until July 1967 at which time the building entered the U.S. Department of Energy`s Surplus Facility Management Program as a retired facility. The facility has since undergone severe degradation due to exposure to extreme weather conditions. Additionally, the weather caused existing cracks in concrete structures of the building to lengthen, thereby increasing the potential for failed confinement of the radioactive material in the building. Differential settlement has also occurred causing portions of the facility to separate from the main building structure, increasing the potential for release of radioactive material to the environment. An expedited response is proposed to remove this threat and ensure protection of human health and the environment. On this premise it is intended that the 233-S Facility removal action be performed as a Comprehensive Environmental Response, Compensation, and Liability Act of 1980 Time-Critical Project being conducted under the Pilot Hanford Environmental Restoration (ER) Initiative

  7. Office of Enterprise Assessments Targeted Review of Work Planning and Control and Biological Safety at the Los Alamos National Laboratory … December 2015

    Energy Savers [EERE]

    Targeted Review of Work Planning and Control and Biological Safety at the Los Alamos National Laboratory December 2015 Office of Worker Safety and Health Assessments Office of Environment, Safety and Health Assessments Office of Enterprise Assessments U.S. Department of Energy i Table of Contents Acronyms ...................................................................................................................................................... ii Executive Summary

  8. Integrated Assessment Plan Template and Operational Demonstration for SPIDERS Phase 2: Fort Carson

    SciTech Connect (OSTI)

    Barr, Jonathan L.; Tuffner, Francis K.; Hadley, Mark D.; Kreyling, Sean J.; Schneider, Kevin P.

    2013-09-01

    This document contains the Integrated Assessment Plan (IAP) for the Phase 2 Operational Demonstration (OD) of the Smart Power Infrastructure Demonstration for Energy Reliability (SPIDERS) Joint Capability Technology Demonstration (JCTD) project. SPIDERS will be conducted over a three year period with Phase 2 being conducted at Fort Carson, Colorado. This document includes the Operational Demonstration Execution Plan (ODEP) and the Operational Assessment Execution Plan (OAEP), as approved by the Operational Manager (OM) and the Integrated Management Team (IMT). The ODEP describes the process by which the OD is conducted and the OAEP describes the process by which the data collected from the OD is processed. The execution of the OD, in accordance with the ODEP and the subsequent execution of the OAEP, will generate the necessary data for the Quick Look Report (QLR) and the Utility Assessment Report (UAR). These reports will assess the ability of the SPIDERS JCTD to meet the four critical requirements listed in the Implementation Directive (ID).

  9. PROJECT MANGEMENT PLAN EXAMPLES

    Office of Environmental Management (EM)

    Approach to Meeting Requirements Examples Example 26 9.2 HEALTH AND SAFETY STRATEGY B Plant has integrated safety into its management, planning and work practices in order to protect the public, the environment and facility workers against nuclear and non-nuclear hazards associated with facility transition. Based upon the principles of DNFSB Recommendation 95-2, the Plant's approach to safety management includes:  Applicable. standards and requirements specifically identified and implemented

  10. Environmental implications associated with integrated resource planning by public utilities in the western United States

    SciTech Connect (OSTI)

    Baechler, M.C.; Haber, G.S.; Cothran, J.N.; Hand, M.M.

    1994-08-01

    The Western Area Power Administration is about to impose integrated resource planning requirements on its 612 public-power customers as part of its Energy Planning and Management Program (EPAM) and consistent with the Energy Policy Act of 1992. EPAM will affect public utilities over a 15-state region stretching from Minnesota to California, Montana to Texas. In this study, an assessment is made of the environmental impacts of the IRP requirements. Environmental impacts are calculated based on modeled changes in electric power generation and capacity additions.

  11. Safety

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  12. Nuclear Safety Basis Program Review Overview and Management Oversight Standard Review Plan

    Broader source: Energy.gov [DOE]

    This SRP, Nuclear Safety Basis Program Review, consists of five volumes. It provides information to help strengthen the technical rigor of line management oversight and federal monitoring of DOE nuclear facilities. It provides a primer on the safety basis development and documentation process used by the DOE. It also provides a set of LOIs for the review of safety basis programs and documents of nuclear facilities at various stages of the facility life cycle.

  13. Safety | Linac Coherent Light Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Safety Overview Each person who works at LCLS is required to be familiar with and identify in advance the hazards associated with his/her work, the hazards associated with work areas, and to properly implement all necessary procedures and protocols for mitigation of those hazards. Each person is required to observe all federal, state, local and SLAC/LCLS workplace safety regulations as well as Integrated Safety & Environmental Management System (ISEMS) and Work Planning and Control (WPC).

  14. Integrated Energy-Water Planning in the Western and Texas Interconnections

    SciTech Connect (OSTI)

    Vincent Tidwell; John Gasper; Robert Goldstein; Jordan Macknick; Gerald Sehlke; Michael Webber; Mark Wigmosta

    2013-07-01

    While long-term regional electricity transmission planning has traditionally focused on cost, infrastructure utilization, and reliability, issues concerning the availability of water represent an emerging issue. Thermoelectric expansion must be considered in the context of competing demands from other water use sectors balanced with fresh and non-fresh water supplies subject to climate variability. An integrated Energy-Water Decision Support System (DSS) is being developed that will enable planners in the Western and Texas Interconnections to analyze the potential implications of water availability and cost for long-range transmission planning. The project brings together electric transmission planners (Western Electricity Coordinating Council and Electric Reliability Council of Texas) with western water planners (Western Governors’ Association and the Western States Water Council). This paper lays out the basic framework for this integrated Energy-Water DSS.

  15. Landscape ecological planning: Integrating land use and wildlife conservation for biomass crops

    SciTech Connect (OSTI)

    Schiller, A.

    1995-12-31

    What do a mussel shoat, a zoo, and a biomass plantation have in common? Each can benefit from ecology-based landscape planning. This paper provides examples of landscape ecological planning from some diverse projects the author has worked on, and discusses how processes employed and lessons learned from these projects are being used to help answer questions about the effects of biomass plantings (hardwood tree crops and native grasses) on wildlife habitat. Biomass environmental research is being designed to assess how plantings of different acreage, composition and landscape context affect wildlife habitat value, and is addressing the cumulative effect on wildlife habitat of establishing multiple biomass plantations across the landscape. Through landscape ecological planning, answers gleaned from research can also help guide biomass planting site selection and harvest strategies to improve habitat for native wildlife species within the context of economically viable plantation management - thereby integrating the needs of people with those of the environment.

  16. Electric utility system planning studies for OTEC power integration. Final report

    SciTech Connect (OSTI)

    1980-11-30

    Florida Power Corporation (FPC) conducted an evaluation of the possible integration of OTEC into the FPC system. Existing system planning procedures, assumptions, and corporate financial criteria for planning new generating capacity were used without modification. A baseline configuration for an OTEC plant was developed for review with standard planning procedures. The OTEC plant characteristics and costs were incorporated in considerable detail. These basic inputs were examined using the FPC system planning methods. It was found that with the initial set of conditions, OTEC would not be economically viable. Using the same system planning procedures, a number of adjustments were made to the key study assumptions. It was found that two considerations dominate the analysis; the assumed rate of fuel cost escalation, and the projected capital cost of the OTEC plant. The analysis produced a parametric curve: on one hand, if fuel costs were to escalate at a rate greater than assumed (12% vs the assumed 5% for coal), and if no change were made to the OTEC input assumptions, the basic economic competitive criteria would be equivalent to the principal alternative, coal fueled plants. Conversely, if the projected cost of the OTEC plant were to be reduced from the assumed $2256/kW to $1450/kW, the economic competitiveness criterion would be satisfied. After corporate financial analysis, it was found that even if the cost competitive criterion were to be reached, the plan including OTEC could not be financed by Florida Power Corporation. Since, under the existing set of conditions for financing new plant capital requirements, FPC could not construct an OTEC plant, some other means of ownership would be necessary to integrate OTEC into the FPC system. An alternative such as a third party owning the plant and selling power to FPC, might prove attractive. (WHK)

  17. WAG 2 remedial investigation and site investigation site-specific work plan/health and safety checklist for the soil and sediment task. Environmental Restoration Program

    SciTech Connect (OSTI)

    Holt, V.L.; Burgoa, B.B.

    1993-12-01

    This document is a site-specific work plan/health and safety checklist (WP/HSC) for a task of the Waste Area Grouping 2 Remedial Investigation and Site Investigation (WAG 2 RI&SI). Title 29 CFR Part 1910.120 requires that a health and safety program plan that includes site- and task-specific information be completed to ensure conformance with health- and safety-related requirements. To meet this requirement, the health and safety program plan for each WAG 2 RI&SI field task must include (1) the general health and safety program plan for all WAG 2 RI&SI field activities and (2) a WP/HSC for that particular field task. These two components, along with all applicable referenced procedures, must be kept together at the work site and distributed to field personnel as required. The general health and safety program plan is the Health and Safety Plan for the Remedial Investigation and Site Investigation of Waste Area Grouping 2 at the Oak Ridge National Laboratory, Oak Ridge, Tennessee (ORNL/ER-169). The WP/HSCs are being issued as supplements to ORNL/ER-169.

  18. LCLS CDR Chapter 13 - Environment Safety and Health and QA

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 3 Environment, Safety and Health and Quality Assurance It is SLAC's policy and objective to integrate safety and environmental protection into its management and work practices at all levels, so that its mission is accomplished while protecting the worker, the public, and the environment. To achieve this objective, SLAC has developed and implemented an Integrated Safety Management System plan (ISMS), required by DOE P450.4, Safety Management System Policy, which encourages and supports the use

  19. Systems Engineering Management Plan for Tank Farm Restoration and Safety Operations Project W-314

    SciTech Connect (OSTI)

    MCGREW, D.L.

    2000-04-19

    The Systems Engineering Management Plan for Project W-314 has been prepared within the guidelines of HNF-SD-WM-SEMP-002, TWRS Systems Engineering Management Plan. The activities within this SEMP have been tailored, in accordance with the TWRS SEMP and DOE Order 430.1, Life Cycle Asset Management, to meet the needs of the project.

  20. Integrity assessment plan for PNL 300 area radioactive hazardous waste tank system. Final report

    SciTech Connect (OSTI)

    1996-03-01

    The Pacific Northwest Laboratory (PNL), operated by Battelle Memorial Institute under contract to the U.S. Department of Energy, operates tank systems for the U.S. Department of Energy, Richland Operations Office (DOE-RL), that contain dangerous waste constituents as defined by Washington State Department of Ecology (WDOE) Dangerous Waste Regulations, Washington Administrative Code (WAC) 173-303-040(18). Chapter 173-303-640(2) of the WAC requires the performance of integrity assessments for each existing tank system that treats or stores dangerous waste, except those operating under interim status with compliant secondary containment. This Integrity Assessment Plan (IAP) identifies all tasks that will be performed during the integrity assessment of the PNL-operated Radioactive Liquid Waste Systems (RLWS) associated with the 324 and 325 Buildings located in the 300 Area of the Hanford Site. It describes the inspections, tests, and analyses required to assess the integrity of the PNL RLWS (tanks, ancillary equipment, and secondary containment) and provides sufficient information for adequate budgeting and control of the assessment program. It also provides necessary information to permit the Independent, Qualified, Registered Professional Engineer (IQRPE) to approve the integrity assessment program.

  1. 300 Area Integrated Field-Scale Subsurface Research Challenge (IFRC) Field Site Management Plan

    SciTech Connect (OSTI)

    Freshley, Mark D.

    2008-12-31

    Pacific Northwest National Laboratory (PNNL) has established the 300 Area Integrated Field-Scale Subsurface Research Challenge (300 Area IFRC) on the Hanford Site in southeastern Washington State for the U.S. Department of Energys (DOE) Office of Biological and Environmental Research (BER) within the Office of Science. The project is funded by the Environmental Remediation Sciences Division (ERSD). The purpose of the project is to conduct research at the 300 IFRC to investigate multi-scale mass transfer processes associated with a subsurface uranium plume impacting both the vadose zone and groundwater. The management approach for the 300 Area IFRC requires that a Field Site Management Plan be developed. This is an update of the plan to reflect the installation of the well network and other changes.

  2. Integrated electric power and heat planning in Russia: The fossil-nuclear tradeoff

    SciTech Connect (OSTI)

    Shavel, I.H.; Blaney, J.C.

    1996-08-01

    For the Joint Energy Alternatives Study (JEAS), ICF Kaiser International was tasked to use its Integrated Planning Model (IPM{copyright}) to estimate the investment requirements for the Russian power sector. The IPM is a least-cost planning model that uses a linear programming algorithm to select investment options and to dispatch generating and load management resources to meet overall electricity demand. For the purpose, ICF was provided with input data by the five Working Groups established under the JEAS. Methodological approaches for processing and adjusting this data were specified by Working Group 5. In addition to the two Reference Cases, ICF used IPM to analyze over forty different Change Cases. For each of these cases, ICF generated summary reports on capacity additions, electric generation, and investment and system costs. These results, along with the parallel work undertaken by the Russian Energy Research Institute formed the analytical basis for the Joint Energy Alternatives Study.

  3. A planning study of simultaneous integrated boost with forward IMRT for multiple brain metastases

    SciTech Connect (OSTI)

    Liang, Xiaodong; Ni, Lingqin; Hu, Wei; Chen, Weijun; Ying, Shenpeng; Gong, Qiangjun; Liu, Yanmei

    2013-07-01

    The objective of this study was to evaluate the dose conformity and feasibility of whole-brain radiotherapy with a simultaneous integrated boost by forward intensity-modulated radiation therapy in patients with 1 to 3 brain metastases. Forward intensity-modulated radiation therapy plans were generated for 10 patients with 1 to 3 brain metastases on Pinnacle 6.2 Treatment Planning System. The prescribed dose was 30 Gy to the whole brain (planning target volume [PTV]{sub wbrt}) and 40 Gy to individual brain metastases (PTV{sub boost}) simultaneously, and both doses were given in 10 fractions. The maximum diameters of individual brain metastases ranged from 1.6 to 6 cm, and the summated PTVs per patient ranged from 1.62 to 69.81 cm{sup 3}. Conformity and feasibility were evaluated regarding conformation number and treatment delivery time. One hundred percent volume of the PTV{sub boost} received at least 95% of the prescribed dose in all cases. The maximum doses were less than 110% of the prescribed dose to the PTV{sub boost}, and all of the hot spots were within the PTV{sub boost}. The volume of the PTV{sub wbrt} that received at least 95% of the prescribed dose ranged from 99.2% to 100%. The mean values of conformation number were 0.682. The mean treatment delivery time was 2.79 minutes. Ten beams were used on an average in these plans. Whole-brain radiotherapy with a simultaneous integrated boost by forward intensity-modulated radiation therapy in 1 to 3 brain metastases is feasible, and treatment delivery time is short.

  4. 2015 Annual Workforce Analysis and Staffing Plan Report- Chief of Nuclear Safety

    Broader source: Energy.gov [DOE]

    Managers perform an annual workforce analysis of their organization and develop staffing plans that identify technical capabilities and positions they need to ensure safe operation of defense nuclear facilities.

  5. 2014 Annual Workforce Analysis and Staffing Plan Report- Chief of Nuclear Safety

    Broader source: Energy.gov [DOE]

    Managers perform an annual workforce analysis of their organization and develop staffing plans that identify technical capabilities and positions they need to ensure safe operation of defense nuclear facilities.

  6. 2014 Annual Workforce Analysis and Staffing Plan Report- Office of Environment, Health, Safety and Security

    Broader source: Energy.gov [DOE]

    Managers perform an annual workforce analysis of their organization and develop staffing plans that identify technical capabilities and positions they need to ensure safe operation of defense nuclear facilities.

  7. 2010 Annual Workforce Analysis and Staffing Plan Report- Office of Health, Safety and Security

    Broader source: Energy.gov [DOE]

    Managers perform an annual workforce analysis of their organization and develop staffing plans that identify technical capabilities and positions they need to ensure safe operation of defense nuclear facilities.

  8. 2013 Annual Workforce Analysis and Staffing Plan Report- Office of Health, Safety and Security

    Broader source: Energy.gov [DOE]

    Managers perform an annual workforce analysis of their organization and develop staffing plans that identify technical capabilities and positions they need to ensure safe operation of defense nuclear facilities.

  9. 2011 Annual Workforce Analysis and Staffing Plan Report- Office of Health, Safety and Security

    Broader source: Energy.gov [DOE]

    Managers perform an annual workforce analysis of their organization and develop staffing plans that identify technical capabilities and positions they need to ensure safe operation of defense nuclear facilities.

  10. 2012 Annual Workforce Analysis and Staffing Plan Report- Office of Health, Safety and Security

    Broader source: Energy.gov [DOE]

    Managers perform an annual workforce analysis of their organization and develop staffing plans that identify technical capabilities and positions they need to ensure safe operation of defense nuclear facilities.

  11. 2015 Annual Workforce Analysis and Staffing Plan Report- Office of Environment, Health, Safety and Security

    Broader source: Energy.gov [DOE]

    Managers perform an annual workforce analysis of their organization and develop staffing plans that identify technical capabilities and positions they need to ensure safe operation of defense nuclear facilities.

  12. 2012 Annual Workforce Analysis and Staffing Plan Report- Chief of Nuclear Safety

    Broader source: Energy.gov [DOE]

    Managers perform an annual workforce analysis of their organization and develop staffing plans that identify technical capabilities and positions they need to ensure safe operation of defense nuclear facilities.

  13. 2013 Annual Workforce Analysis and Staffing Plan Report- Chief of Nuclear Safety

    Broader source: Energy.gov [DOE]

    Managers perform an annual workforce analysis of their organization and develop staffing plans that identify technical capabilities and positions they need to ensure safe operation of defense nuclear facilities.

  14. 2010 Annual Workforce Analysis and Staffing Plan Report- Chief of Nuclear Safety

    Office of Energy Efficiency and Renewable Energy (EERE)

    Managers perform an annual workforce analysis of their organization and develop staffing plans that identify technical capabilities and positions they need to ensure safe operation of defense nuclear facilities.

  15. 2011 Annual Workforce Analysis and Staffing Plan Report- Chief of Nuclear Safety

    Office of Energy Efficiency and Renewable Energy (EERE)

    Managers perform an annual workforce analysis of their organization and develop staffing plans that identify technical capabilities and positions they need to ensure safe operation of defense nuclear facilities.

  16. Safety, Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Safety, Security Safety, Security The Lab's mission is to develop and apply science and technology to ensure the safety, security, and reliability of the U.S. nuclear deterrent; reduce global threats; and solve other emerging national security and energy challenges. Contact Operator Los Alamos National Laboratory (505) 667-5061 We do not compromise safety for personal, programmatic, or operational reasons. Safety: we integrate safety, security, and environmental concerns into every step of our

  17. Integrated Safety Management System as the Basis for Work Planning and Control for Research and Development

    Broader source: Energy.gov [DOE]

    Presenters: Rich Davies, Kami Lowry, Mike Schlender, Ted Pietrok, Pacific Northwest National Laboratory and Pacific Northwest Site Office

  18. Integrated plan for LArTPC neutrino detectors in the US

    SciTech Connect (OSTI)

    Baller, B.; Fleming, B.; /Fermilab

    2009-11-01

    We present an integrated R&D plan aimed at demonstrating the ability to build a very large Liquid Argon Time Projection Chamber (LArTPC), on a scale suitable for use as a Far Detector for the LBNE neutrino oscillation experiment. This plan adopts current LArTPC R&D-related activities and proposes new ones to address questions that go beyond those being answered by the current efforts. We have employed a risk evaluation strategy to identify questions that can be answered (or risks that can be mitigated) through one or more R&D steps. In summary form, the plan consists of the following pre-existing components: (1) The Materials Test Stand program, now in operation at Fermilab, addressing questions pertaining to maintenance of argon purity; (2) Existing electronics test stands at FNAL and BNL; (3) The Liquid Argon Purity Demonstrator (LAPD) now being assembled at Fermilab; (4) The ArgoNeuT prototype LArTPC, now running in the NuMI beam; (5) The MicroBooNE experiment, proposed as a physics experiment that will advance our understanding of the LArTPC technology, now completing its conceptual design phase; (6) A software development effort that is well integrated across present and planned LArTPC detectors. We are proposing to add to these efforts the following: (1) A membrane cryostat mechanical prototype to evaluate and gain expertise with this technology; (2) An installation and integration prototype, to understand issues pertaining to detector assembly, particularly in an underground environment; (3) A {approx} 5% scale electronics systems test to understand system-wide issues as well as individual component reliability. (4) A calibration test stand that would consist of a small TPC to be exposed to a test beam for calibration studies, relevant for evaluation of physics sensitivities. We have developed a timeline and milestones for achieving these goals as discussed in Section 4. The proposed activities necessary for the final design of LAr20 are complete by CD3 in 2014.

  19. Memorandum, NNSA Activity Level Work Planning & Control Processes, January

    Energy Savers [EERE]

    2006 | Department of Energy NNSA Activity Level Work Planning & Control Processes, January 2006 Memorandum, NNSA Activity Level Work Planning & Control Processes, January 2006 January 23, 2006 Memorandum from Thomas P. D'Agostino, Assistant Deputy Administrator for Program Integration: Action: Revitalizing Integrated Safety Management; Site Office Action Plans for Improving Activity Level Work Planning and Control Processes. PDF icon Memorandum, NNSA Activity Level Work Planning

  20. DOE-HDBK-3027-99; DOE Handbook Integrated Safety Management Systems...

    Energy Savers [EERE]

    ... X Appendix 3 contains a Criteria and Review Approach ... DOE M 411.1, MANUAL OF SAFETY MANAGEMENT FUNCTIONS (LEVEL I FRAM), is the ... pollution preventionwaste minimization) The ...

  1. Light Water Reactor Sustainability Program Reactor Safety Technologies Pathway Technical Program Plan

    SciTech Connect (OSTI)

    Corradini, M. L.

    2015-06-01

    In the aftermath of the March 2011 multi-unit accident at the Fukushima Daiichi nuclear power plant (Fukushima), the nuclear community has been reassessing certain safety assumptions about nuclear reactor plant design, operations and emergency actions, particularly with respect to extreme events that might occur and that are beyond each plant’s current design basis. Because of our significant domestic investment in nuclear reactor technology (99 operating reactors in the fleet of commercial LWRs with five under construction), the United States has been a major leader internationally in these activities. The U.S. nuclear industry is voluntarily pursuing a number of additional safety initiatives. The NRC continues to evaluate and, where deemed appropriate, establish new requirements for ensuring adequate protection of public health and safety in the occurrence of low probability events at nuclear plants; (e.g., mitigation strategies for beyond design basis events initiated by external events like seismic or flooding initiators). The DOE has also played a major role in the U.S. response to the Fukushima accident. Initially, DOE worked with the Japanese and the international community to help develop a more complete understanding of the Fukushima accident progression and its consequences, and to respond to various safety concerns emerging from uncertainties about the nature of and the effects from the accident. DOE R&D activities are focused on providing scientific and technical insights, data, analyses methods that ultimately support industry efforts to enhance safety. These activities are expected to further enhance the safety performance of currently operating U.S. nuclear power plants as well as better characterize the safety performance of future U.S. plants. In pursuing this area of R&D, DOE recognizes that the commercial nuclear industry is ultimately responsible for the safe operation of licensed nuclear facilities. As such, industry is considered the primary “end user” of the results from this DOE-sponsored work. The response to the Fukushima accident has been global, and there is a continuing multinational interest in collaborations to better quantify accident consequences and to incorporate lessons learned from the accident. DOE will continue to seek opportunities to facilitate collaborations that are of value to the U.S. industry, particularly where the collaboration provides access to vital data from the accident or otherwise supports or leverages other important R&D work. The purpose of the Reactor Safety Technology R&D is to improve understanding of beyond design basis events and reduce uncertainty in severe accident progression, phenomenology, and outcomes using existing analytical codes and information gleaned from severe accidents, in particular the Fukushima Daiichi events. This information will be used to aid in developing mitigating strategies and improving severe accident management guidelines for the current light water reactor fleet.

  2. Identification and Resolution of Safety Issues for the Advanced Integral Type PWR

    SciTech Connect (OSTI)

    Kim, Woong Sik; Jo, Jong Chull; Yune, Young Gill; Kim, Hho Jung

    2004-07-01

    This paper presents the interim results of a study on the identification and resolution of safety issues for the AIPWR licensing. The safety issues discussed in this paper include (1) policy issues for which decision-makings are needed for the procedural requirements of licensing system in the regulatory policy point of view, (2) technical issues for which either development of new requirements or amendment of some existing requirements is needed, or (3) other technical issues for which safety verifications are required. The study covers (a) the assessment of applicability of the issues identified from the previous studies to the case of the AIPWR, (b) identification of safety issues through analysis of the international experiences in the design and licensing of advanced reactors, and technical review of the AIPWR design, and (c) development of the resolutions of safety issues, and application of the resolutions to the amendment of regulatory requirements and the licensing review of the AIPWR. As the results of this study, a total of twenty eight safety issues was identified: fourteen issues from the previous studies, including the establishment of design safety goals; four issues from the foreign practices and experiences, including the risk-informed licensing; and ten issues by the AIPWR design review, including reliability of passive safety systems. Ten issues of them have been already resolved and the succeeding study is under way to resolve the remaining ones. (authors)

  3. The role of integrated resource planning, environmental externalities, and anticipation of future regulation in compliance planning under the Clean Air Act Amendments of 1990

    SciTech Connect (OSTI)

    Bernow, S.; Biewald, B.; Wulfsberg, K.

    1993-07-01

    Utilities are developing sulfur dioxide (SO{sub 2}) emission compliance plans to meet limitations of the Clean Air Act Amendments of 1990 (CAAA). Compliance plans will have long-term effects on resource selection, fuel choice, and system dispatch. Use of integrated resource planning (IRP) is necessary to ensure compliance plans are consistent with the overall societal goals. In particular, environmental externalities must be integrated with the compliance planning process. The focus of the CAAA is on air pollution reduction, specifically acid gases and toxics, and attainment of National Ambient Air Quality Standards (NAAQS) for criteria pollutants. Title IV specifically focuses on sulfur dioxide with a national allowance trading system, while further regulation of toxics and nitrogen oxides is slated for additional study. Yet, compliance planning based narrowly upon today`s environmental regulations could fail to meet the broad goals of IRP if a larger array of environmental externalities is excluded from the analysis. Compliance planning must consider a broad range of environmental effects from energy production and use to (1) protect society`s long-term stake in environmental quality, and (2) ensure that today`s plans are rich enough to accommodate potential changes in regulation and national environmental goals. The explicit recognition of environmental effects, such as those associated with CO{sub 2} release, will result in prudent compliance plans that take advantage of current opportunities for pollution avoidance and have long-term viability in the face of regulatory change. By including such considerations, the mix of resources acquired and operated (supply and demand, existing and new, conventional and renewable, fuel type and fuel quality, pollution control, and dispatch protocols) will be robust and truly least-cost.

  4. Integrated Safety Management System Guide (Volume 1) for use with Safety Management System Policies (DOE P 450.4, DOE P 450.5, and DOE P 450.6); The Functions, Responsibilities, and Authorities Manual; and DOE Acquisition Regulation

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-03-01

    This Department of Energy (DOE) Integrated Safety Management System (ISMS) Guide is approved for use by the Office of Environment, Safety and Health (EH) and the National Nuclear Security Administration (NNSA). This Guide is available for use by all DOE components and their contractors. This Guide is a consensus document coordinated by EH and prepared under the direction of the DOE Safety Management Implementation Team (SMIT). Canceled by DOE G 450.4-1C.

  5. Integrated Safety Management System Guide (Volume 1) for use with Safety Management System Policies (DOE P 450.4, DOE P 450.5, and DOE P 450.6); The Functions, Responsibilities, and Authorities Manual; and DOE Acquisition Regulation

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-03-01

    This Department of Energy (DOE) Integrated Safety Management System (ISMS) Guide is approved for use by the Office of Environment, Safety and Health (EH) and the National Nuclear Security Administration (NNSA). This Guide is available for use by all DOE components and their contractors. This Guide is a consensus document coordinated by EH and prepared under the direction of the DOE Safety Management Implementation Team (SMIT). Replaces DOE G 450.4-1A. Canceled by DOE G 450.4-1C.

  6. Integrated Project Teams - An Essential Element of Project Management during Project Planning and Execution - 12155

    SciTech Connect (OSTI)

    Burritt, James G.; Berkey, Edgar

    2012-07-01

    Managing complex projects requires a capable, effective project manager to be in place, who is assisted by a team of competent assistants in various relevant disciplines. This team of assistants is known as the Integrated Project Team (IPT). he IPT is composed of a multidisciplinary group of people who are collectively responsible for delivering a defined project outcome and who plan, execute, and implement over the entire life-cycle of a project, which can be a facility being constructed or a system being acquired. An ideal IPT includes empowered representatives from all functional areas involved with a project-such as engineering design, technology, manufacturing, test and evaluation, contracts, legal, logistics, and especially, the customer. Effective IPTs are an essential element of scope, cost, and schedule control for any complex, large construction project, whether funded by DOE or another organization. By recently assessing a number of major, on-going DOE waste management projects, the characteristics of high performing IPTs have been defined as well as the reasons for potential IPT failure. Project managers should use IPTs to plan and execute projects, but the IPTs must be properly constituted and the members capable and empowered. For them to be effective, the project manager must select the right team, and provide them with the training and guidance for them to be effective. IPT members must treat their IPT assignment as a primary duty, not some ancillary function. All team members must have an understanding of the factors associated with successful IPTs, and the reasons that some IPTs fail. Integrated Project Teams should be used by both government and industry. (authors)

  7. Electrical Safety

    Energy Savers [EERE]

    ... Electrical Design Criteria ... of High-Voltage and Low-Current ... as a higher level of authority. Per the Integrated Safety Management model, ...

  8. Comparative risk analysis for the Rocky Flats Plant Integrated Project Planning

    SciTech Connect (OSTI)

    Jones, M.E.; Shain, D.I.

    1994-12-31

    The Rocky Flats Plant is developing a comprehensive planning strategy that will support transition of the Rocky Flats Plant from a nuclear weapons production facility to site cleanup and final disposition. Final disposition of the Rocky Flats Plant materials and contaminants requires consideration of the interrelated nature of sitewide problems, such as material movement and disposition, facility and land use endstates, costs, relative risks to workers and the public, and waste disposition. Comparative Risk Analysis employs both incremental risk and cumulative risk evaluations to compare risk from postulated options or endstates. Comparative Risk Analysis is an analytical tool for the Rocky Flats Plant Integrated Project Planning which can assist a decision-maker in evaluating relative risks among proposed remedial options or future endstates. It addresses the cumulative risks imposed by the Rocky Flats Plant and provides risk information, both human health and ecological, to aid in reducing unnecessary resource and monetary expenditures. Currently, there is no approved methodology that aggregates various risk estimates. Along with academic and field expert review, the Comparative Risk Analysis methodology is being reviewed and refined. A Rocky Flats Plant Risk Assessment Focus Group was established. Stakeholder involvement in the development provides an opportunity to influence the information delivered to a decision-maker. This paper discusses development of the methodology.

  9. The 300 Area Integrated Field Research Challenge Quality Assurance Project Plan

    SciTech Connect (OSTI)

    Fix, N. J.

    2009-04-29

    Pacific Northwest National Laboratory and a group of expert collaborators are using the U.S. Department of Energy Hanford Site 300 Area uranium plume within the footprint of the 300-FF-5 groundwater operable unit as a site for an Integrated Field-Scale Subsurface Research Challenge (IFRC). The IFRC is entitled Multi-Scale Mass Transfer Processes Controlling Natural Attenuation and Engineered Remediation: An IFRC Focused on the Hanford Site 300 Area Uranium Plume Project. The theme is investigation of multi-scale mass transfer processes. A series of forefront science questions on mass transfer are posed for research that relate to the effect of spatial heterogeneities; the importance of scale; coupled interactions between biogeochemical, hydrologic, and mass transfer processes; and measurements/approaches needed to characterize and model a mass transfer-dominated system. This Quality Assurance Project Plan provides the quality assurance requirements and processes that will be followed by the 300 Area IFRC Project. This plan is designed to be used exclusively by project staff.

  10. TH-A-BRF-09: Integration of High-Resolution MRSI Into Glioblastoma Treatment Planning

    SciTech Connect (OSTI)

    Schreibmann, E; Cordova, J; Shu, H; Crocker, I; Curran, W; Holder, C; Shim, H

    2014-06-15

    Purpose: Identification of a metabolite signature that shows significant tumor cell infiltration into normal brain in regions that do not appear abnormal on standard MRI scans would be extremely useful for radiation oncologists to choose optimal regions of brain to treat, and to quantify response beyond the MacDonald criteria. We report on integration of high-resolution magnetic resonance spectroscopic imaging (HR-MRSI) with radiation dose escalation treatment planning to define and target regions at high risk for recurrence. Methods: We propose to supplement standard MRI with a special technique performed on an MRI scanner to measure the metabolite levels within defined volumes. Metabolite imaging was acquired using an advanced MRSI technique combining 3D echo-planar spectroscopic imaging (EPSI) with parallel acquisition (GRAPPA) using a multichannel head coil that allows acquisition of whole brain metabolite maps with 108 μl resolution in 12 minutes implemented on a 3T MR scanner. Elevation in the ratio of two metabolites, choline (Cho, elevated in proliferating high-grade gliomas) and N-acetyl aspartate (NAA, a normal neuronal metabolite), was used to image infiltrating high-grade glioma cells in vivo. Results: The metabolite images were co-registered with standard contrast-enhanced T1-weighted MR images using in-house registration software and imported into the treatment-planning system. Regions with tumor infiltration are identified on the metabolic images and used to create adaptive IMRT plans that deliver a standard dose of 60 Gy to the standard target volume and an escalated dose of 75 Gy (or higher) to the most suspicious regions, identified as areas with elevated Cho/NAA ratio. Conclusion: We have implemented a state-of-the-art HR-MRSI technology that can generate metabolite maps of the entire brain in a clinically acceptable scan time, coupled with introduction of an imaging co-registration/ analysis program that combines MRSI data with standard imaging studies in a clinically useful fashion.

  11. Subject: Integrated Safety Analysis: Why It Is Appropriate for Fuel Recycling Facilities Project Number: 689Nuclear Energy Institute (NEI) Letter, 9/10/10

    Broader source: Energy.gov [DOE]

    Enclosed for your review is a Nuclear Energy Institute white paper on the use of Integrated Safety Analysis (ISA) at U.S. Nuclear Regulatory Commission-licensed recycling facilities. This paper is...

  12. Vol 1, Integrated Safety Management System Guide (Volume 1), Chapter IV - Approved on March 28, 2000 and Added to the Guide

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2000-03-28

    This Department of Energy (DOE) Integrated Safety Management System (ISMS) Guide is approved for use by the Office of Environment, Safety and Health (EH) and is available for use by all DOE components and their contractors. This Guide is a consensus document coordinated by EH and prepared under the direction of the DOE Safety Management Implementation Team (SMIT). Canceled by DOE G 450.4-1B.

  13. Safety Management System Policy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program Management Safety Safety Management System Policy Safety Management System Policy Safety Management Systems provide a formal, organized process whereby people plan, ...

  14. Migrating data from TcSE to DOORS : an evaluation of the T-Plan Integrator software application.

    SciTech Connect (OSTI)

    Post, Debra S.; Manzanares, David A.; Taylor, Jeffrey L.

    2011-02-01

    This report describes our evaluation of the T-Plan Integrator software application as it was used to transfer a real data set from the Teamcenter for Systems Engineering (TcSE) software application to the DOORS software application. The T-Plan Integrator was evaluated to determine if it would meet the needs of Sandia National Laboratories to migrate our existing data sets from TcSE to DOORS. This report presents the struggles of migrating data and focuses on how the Integrator can be used to map a data set and its data architecture from TcSE to DOORS. Finally, this report describes how the bulk of the migration can take place using the Integrator; however, about 20-30% of the data would need to be transferred from TcSE to DOORS manually. This report does not evaluate the transfer of data from DOORS to TcSE.

  15. DOE-STD-1120-2005; Integration of Environment Safety and Health into Facility Disposition Activities

    Office of Environmental Management (EM)

    7-92 DOE-STD-1027-92 December 12, 1997 Hazard Categorization and Accident Analysis Techniques for Compliance with DOE Order 5480.23, Nuclear Safety Analysis Reports Change Notice No. 1 (September 1997) The purpose of this DOE Standard is to establish guidance for the preparation and review of hazard categorization and accident analyses techniques as required in DOE Order 5480.23, Nuclear Safety Analysis Reports. PDF icon DOE-STD-1027-92, Hazard Categorization and Accident Analysis Techniques For

  16. DOE-STD-1120-2005; Integration of Environment Safety and Health...

    Energy Savers [EERE]

    ... C 3.4.2, Appendix C Management Plans 2.2, Appendix C ... A-1 Appendix B Examples of Applying DOE-STD-1120-98 ... C-1 Appendix D Inactive Waste Site Criteria ......

  17. Integration of health into urban spatial planning through impact assessment: Identifying governance and policy barriers and facilitators

    SciTech Connect (OSTI)

    Carmichael, Laurence; Barton, Hugh; Gray, Selena; Lease, Helen; Pilkington, Paul

    2012-01-15

    This article presents the results of a review of literature examining the barriers and facilitators in integrating health in spatial planning at the local, mainly urban level, through appraisals. Our literature review covered the UK and non UK experiences of appraisals used to consider health issues in the planning process. We were able to identify four main categories of obstacles and facilitators including first the different knowledge and conceptual understanding of health by different actors/stakeholders, second the types of governance arrangements, in particular partnerships, in place and the political context, third the way institutions work, the responsibilities they have and their capacity and resources and fourth the timeliness, comprehensiveness and inclusiveness of the appraisal process. The findings allowed us to draw some lessons on the governance and policy framework regarding the integration of health impact into spatial planning, in particular considering the pros and cons of integrating health impact assessment (HIA) into other forms of impact assessment of spatial planning decisions such as environmental impact assessment (EIA) and strategic environment assessment (SEA). In addition, the research uncovered a gap in the literature that tends to focus on the mainly voluntary HIA to assess health outcomes of planning decisions and neglect the analysis of regulatory mechanisms such as EIA and SEA. - Highlights: Black-Right-Pointing-Pointer Governance and policy barriers and facilitators to the integration of health into urban planning. Black-Right-Pointing-Pointer Review of literature on impact assessment methods used across the world. Black-Right-Pointing-Pointer Knowledge, partnerships, management/resources and processes can impede integration. Black-Right-Pointing-Pointer HIA evaluations prevail uncovering research opportunities for evaluating other techniques.

  18. Integrated Closure and Monitoring Plan for the Area 3 and Area 5 Radioactive Waste Management Sites at the Nevada Test Site

    SciTech Connect (OSTI)

    Bechtel Nevada

    2005-06-01

    This document is an integrated plan for closing and monitoring two low-level radioactive waste disposal sites at the Nevada Test Site.

  19. CoalFleet RD&D augmentation plan for integrated gasification combined cycle (IGCC) power plants

    SciTech Connect (OSTI)

    2007-01-15

    To help accelerate the development, demonstration, and market introduction of integrated gasification combined cycle (IGCC) and other clean coal technologies, EPRI formed the CoalFleet for Tomorrow initiative, which facilitates collaborative research by more than 50 organizations from around the world representing power generators, equipment suppliers and engineering design and construction firms, the U.S. Department of Energy, and others. This group advised EPRI as it evaluated more than 120 coal-gasification-related research projects worldwide to identify gaps or critical-path activities where additional resources and expertise could hasten the market introduction of IGCC advances. The resulting 'IGCC RD&D Augmentation Plan' describes such opportunities and how they could be addressed, for both IGCC plants to be built in the near term (by 2012-15) and over the longer term (2015-25), when demand for new electric generating capacity is expected to soar. For the near term, EPRI recommends 19 projects that could reduce the levelized cost-of-electricity for IGCC to the level of today's conventional pulverized-coal power plants with supercritical steam conditions and state-of-the-art environmental controls. For the long term, EPRI's recommended projects could reduce the levelized cost of an IGCC plant capturing 90% of the CO{sub 2} produced from the carbon in coal (for safe storage away from the atmosphere) to the level of today's IGCC plants without CO{sub 2} capture. EPRI's CoalFleet for Tomorrow program is also preparing a companion RD&D augmentation plan for advanced-combustion-based (i.e., non-gasification) clean coal technologies (Report 1013221). 7 refs., 30 figs., 29 tabs., 4 apps.

  20. Integrating The Non-Electrical Worker Into The Electrical Safety Program

    SciTech Connect (OSTI)

    Mills, T. David; McAlhaney, John H.

    2012-08-17

    The intent of this paper is to demonstrate an electrical safety program that incorporates all workers into the program, not just the electrical workers. It is largely in response to a paper presented at the 2012 ESW by Lanny Floyd entitled "Facilitating Application of Electrical Safety Best Practices to "Other" Workers" which requested all attendees to review their electrical safety program to assure that non-electrical workers were protected as well as electrical workers. The referenced paper indicated that roughly 50% of electrical incidents involve workers whose primary function is not electrical in nature. It also encouraged all to "address electrical safety for all workers and not just workers whose job responsibilities involve working on or near energized electrical circuits." In this paper, a program which includes specific briefings to non-electrical workers as well as to workers who may need to perform their normal activities in proximity to energized electrical conductors is presented. The program uses a targeted approach to specific areas such as welding, excavating, rigging, chart reading, switching, cord and plug equipment and several other general areas to point out hazards that may exist and how to avoid them. NFPA 70E-2004 was incorporated into the program several years ago and with it the need to include the "other" workers became apparent. The site experience over the years supports the assertion that about half of the electrical incidents involve non-electrical workers and this prompted us to develop specific briefings to enhance the knowledge of the non-electrical worker regarding safe electrical practices. The promotion of "May is Electrical Safety Month" and the development of informative presentations which are delivered to the general site population as well as electrical workers have greatly improved the hazards awareness status of the general worker on site.

  1. Integrating Wind into Transmission Planning: The Rocky Mountain Area Transmission Study (RMATS): Preprint

    SciTech Connect (OSTI)

    Hamilton, R.; Lehr, R.; Olsen, D.; Nielsen, J.; Acker, T.; Milligan, M.; Geller, H.

    2004-03-01

    Plans to expand the western grid are now underway. Bringing power from low-cost remote resources--including wind--to load centers could reduce costs for all consumers. But many paths appear to be already congested. Locational marginal price-based modeling is designed to identify the most cost-effective paths to be upgraded. The ranking of such paths is intended as the start of a process of political and regulatory approvals that are expected to result in the eventual construction of new and upgraded lines. This paper reviews the necessary data and analytical tasks to accurately represent wind in such modeling, and addresses some policy and regulatory issues that can help with wind integration into the grid. Providing wind fair access to the grid also (and more immediately) depends on tariff and regulatory changes. Expansion of the Rocky Mountain Area Transmission Study (RMATS) study scope to address operational issues supports the development of transmission solutions that enable wind to connect and deliver power in the next few years--much sooner than upgrades can be completed.

  2. INTEGRAL BENCHMARKS AVAILABLE THROUGH THE INTERNATIONAL REACTOR PHYSICS EXPERIMENT EVALUATION PROJECT AND THE INTERNATIONAL CRITICALITY SAFETY BENCHMARK EVALUATION PROJECT

    SciTech Connect (OSTI)

    J. Blair Briggs; Lori Scott; Enrico Sartori; Yolanda Rugama

    2008-09-01

    Interest in high-quality integral benchmark data is increasing as efforts to quantify and reduce calculational uncertainties accelerate to meet the demands of next generation reactor and advanced fuel cycle concepts. The International Reactor Physics Experiment Evaluation Project (IRPhEP) and the International Criticality Safety Benchmark Evaluation Project (ICSBEP) continue to expand their efforts and broaden their scope to identify, evaluate, and provide integral benchmark data for method and data validation. Benchmark model specifications provided by these two projects are used heavily by the international reactor physics, nuclear data, and criticality safety communities. Thus far, 14 countries have contributed to the IRPhEP, and 20 have contributed to the ICSBEP. The status of the IRPhEP and ICSBEP is discussed in this paper, and the future of the two projects is outlined and discussed. Selected benchmarks that have been added to the IRPhEP and ICSBEP handbooks since PHYSOR’06 are highlighted, and the future of the two projects is discussed.

  3. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-12-22

    The order establishes facility and programmatic safety requirements for nuclear and explosives safety design criteria, fire protection, criticality safety, natural phenomena hazards (NPH) mitigation, and the System Engineer Program.Chg 1 incorporates the use of DOE-STD-1189-2008, Integration of Safety into the Design Process, mandatory for Hazard Category 1, 2 and 3 nuclear facilities. Cancels DOE O 420.1A.

  4. Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Systems Integration

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan presents the status of geothermal energy technologies and details program plans from 2009 through 2015, with program activities through 2025.

  5. Tank waste remediation system environmental program plan

    SciTech Connect (OSTI)

    Borneman, L.E.

    1998-01-09

    This Environmental Program Plan has been developed in support of the Integrated Environmental, Safety and Health Management System and consistent with the goals of DOE/RL-96-50, Hanford Strategic Plan (RL 1996a), and the specifications and guidance for ANSI/ISO 14001-1996, Environmental Management Systems Specification with guidance for use (ANSI/ISO 1996).

  6. Dam Safety 2015

    Broader source: Energy.gov [DOE]

    Make your plans now to attend Dam Safety 2015, in New Orleans! Dam Safety 2015 is one of the leading conferences in the United States dedicated to dam and levee safety engineering and technology...

  7. New York City Energy-Water Integrated Planning: A Pilot Study

    SciTech Connect (OSTI)

    Bhatt,V.; Crosson, K. M.; Horak, W.; Reisman, A.

    2008-12-16

    The New York City Energy-Water Integrated Planning Pilot Study is one of several projects funded by Sandia National Laboratories under the U.S. Department of Energy Energy-Water Nexus Program. These projects are intended to clarify some key issues and research needs identified during the Energy-Water Nexus Roadmapping activities. The objectives of the New York City Pilot Project are twofold: to identify energy-water nexus issues in an established urban area in conjunction with a group of key stakeholders and to define and apply an integrated energy and water decision support tool, as proof-of-concept, to one or more of these issues. During the course of this study, the Brookhaven National Laboratory project team worked very closely with members of a Pilot Project Steering Committee. The Steering Committee members brought a breadth of experience across the energy, water and climate disciplines, and all are well versed in the particular issues faced by an urban environment, and by New York City in particular. The first task was to identify energy-water issues of importance to New York City. This exercise was followed by discussion of the qualities and capabilities that an ideal decision support tool should display to address these issues. The decision was made to start with an existing energy model, the New York City version of the MARKAL model, developed originally at BNL and now used globally by many groups for energy analysis. MARKAL has the virtue of being well-vetted, transparent, and capable of calculating 'material' flows, such as water use by the energy system and energy requirements of water technology. The Steering Committee members defined five scenarios of interest, representing a broad spectrum of New York City energy-water issues. Brookhaven National Laboratory researchers developed a model framework (Water-MARKAL) at the desired level of detail to address the scenarios, and then attempted to gather the New York City-specific information required to analyze the scenarios using Water-MARKAL. This report describes the successes and challenges of defining and demonstrating the decision tool, Water-MARKAL. The issues that the stakeholders perceive for New York City are listed and the difficulties in gathering required information for Water-MARKAL to analyze these issues at the desired level of detail are described.

  8. DOE standard: Integration of environment, safety, and health into facility disposition activities. Volume 2: Appendices

    SciTech Connect (OSTI)

    1998-05-01

    This volume contains the appendices that provide additional environment, safety, and health (ES and H) information to complement Volume 1 of this Standard. Appendix A provides a set of candidate DOE ES and H directives and external regulations, organized by hazard types that may be used to identify potentially applicable directives to a specific facility disposition activity. Appendix B offers examples and lessons learned that illustrate implementation of ES and H approaches discussed in Section 3 of Volume 1. Appendix C contains ISMS performance expectations to guide a project team in developing and implementing an effective ISMS and in developing specific performance criteria for use in facility disposition. Appendix D provides guidance for identifying potential Applicable or Relevant and Appropriate Requirements (ARARs) when decommissioning facilities fall under the Comprehensive Environmental Response, Compensation, Liability Act (CERCLA) process. Appendix E discusses ES and H considerations for dispositioning facilities by privatization. Appendix F is an overview of the WSS process. Appendix G provides a copy of two DOE Office of Nuclear Safety Policy and Standards memoranda that form the bases for some of the guidance discussed within the Standard. Appendix H gives information on available hazard analysis techniques and references. Appendix I provides a supplemental discussion to Sections 3.3.4, Hazard Baseline Documentation, and 3.3.6, Environmental Permits. Appendix J presents a sample readiness evaluation checklist.

  9. Issues and methods in incorporating environmental externalities into the integrated resource planning process

    SciTech Connect (OSTI)

    Fang, J.M.; Galen, P.S.

    1994-11-01

    This report is a review of current practices and policies in considering environmental externalities in the integrated resource planning and performance based regulation (IRP/PBR) process. The following issues are presented and examined: What are the pros and cons of treating environmental externalities in the IRP process? How are potential future environmental regulations being treated? Are externalities being qualitatively or quantitatively considered, or monetized? Are offsets being allowed? How are externality policies being coordinated among different levels and branches of governments? Should environmental externalities be considered in dispatching a utility`s existing resources? What are the procedures for addressing uncertainty in incorporating environmental externalities into IRP? How are externalities valued? What are other approaches to addressing environmental externalities. This report describes seven major approaches for addressing environmental externalities in the IRP process: qualitative treatment, weighting and ranking, cost of control, damage function, percentage adders, monetization by emission, and multiattribute trade-off analysis. The discussion includes a taxonomy of the full range of alternative methods for addressing environmental externalities, a summary of state PUC actions, the role of state laws, the debate on environmental adders, and the choice of methodologies. In addition, this report characterizes the interests of stakeholders such as the electric industry, fuel suppliers, energy consumers, governmental agencies, public interest groups, consultants, and others. It appears that the views, positions, and interests of these stakeholders are affected by their perceptions of the potential impacts on their economic interests or the viability of their position on environmental policy, by the societal perspective they take, and by the orientation of the analysts toward market competition and their respective accumulated expertise.

  10. ADMINISTRATIVE RECORDS SCHEDULE 18: SECURITY, EMERGENCY PLANNING...

    Energy Savers [EERE]

    18: SECURITY, EMERGENCY PLANNING, AND SAFETY RECORDS More Documents & Publications ADM 18 PDF Security, Emergency Planning & Safety Records Security, Emergency Planning &...

  11. Status and Effectiveness of DOE Efforts to Learn from Internal and External Operating Experience in Accordance with Commitment #20 of the DOE Implementation Plan for Defense Nuclear Facilities Safety Board Recommendation 2004-1

    Energy Savers [EERE]

    Safety and Security Report to the Secretary on the Status and Effectiveness of DOE Efforts to Learn from Internal and External Operating Experience in Accordance with Commitment #20 of the DOE Implementation Plan for Defense Nuclear Facilities Safety Board Recommendation 2004-1 February 2011 Office of Health, Safety and Security U.S. Department of Energy Office of Health, Safety and Security HSS Table of Contents 1.0 Introduction

  12. DRAFT Bear Safety Plan

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    may be established in later stages of the project. Polar bears, and to a lesser extent, brown bears (barren ground grizzly) are significant hazards within the ACRFNSAAAO region....

  13. Environmental health and safety plan for the Molten Salt Reactor Experiment Remediation Project at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Burman, S.N.; Tiner, P.F.; Gosslee, R.C.

    1998-01-01

    The Lockheed Martin Energy Systems, Inc. (Energy Systems) policy is to provide a safe and healthful workplace for all employees and subcontractors. The accomplishment of this policy requires that operations at the Molten Salt Reactor Experiment (MSRE) facility at the Department of Energy (DOE) Oak Ridge National Laboratory (ORNL) are guided by an overall plan and consistent proactive approach to environmental protection and safety and health (S and H) issues. The policy and procedures in this plan apply to all MSRE operations. The provisions of this plan are to be carried out whenever activities are initiated at the MSRE that could be a threat to human health or the environment. This plan implements a policy and establishes criteria for the development of procedures for day-to-day operations to prevent or minimize any adverse impact to the environment and personnel safety and health and to meet standards that define acceptable management of hazardous and radioactive materials and wastes. The plan is written to utilize past experience and the best management practices to minimize hazards to human health or the environment from events such as fires, explosions, falls, mechanical hazards, or any unplanned release of hazardous or radioactive materials to the air.

  14. Using Integrated Resource Planning to Encourage Investment in Cost-Effective Energy Efficiency

    SciTech Connect (OSTI)

    Shenot, John

    2011-09-01

    Describes how utility planning processes that allow demand-side resources to compete with supply-side resources can promote cost-effective energy efficiency.

  15. Light Water Reactor Sustainability Program Risk-Informed Safety Margins Characterization (RISMC) PathwayTechnical Program Plan

    SciTech Connect (OSTI)

    Curtis Smith; Cristian Rabiti; Richard Martineau

    2012-11-01

    Safety is central to the design, licensing, operation, and economics of Nuclear Power Plants (NPPs). As the current Light Water Reactor (LWR) NPPs age beyond 60 years, there are possibilities for increased frequency of Systems, Structures, and Components (SSCs) degradations or failures that initiate safety-significant events, reduce existing accident mitigation capabilities, or create new failure modes. Plant designers commonly over-design portions of NPPs and provide robustness in the form of redundant and diverse engineered safety features to ensure that, even in the case of well-beyond design basis scenarios, public health and safety will be protected with a very high degree of assurance. This form of defense-in-depth is a reasoned response to uncertainties and is often referred to generically as safety margin. Historically, specific safety margin provisions have been formulated, primarily based on engineering judgment.

  16. River Protection Project (RPP) Environmental Program Plan

    SciTech Connect (OSTI)

    POWELL, P.A.

    2000-03-29

    This Environmental Program Plan was developed in support of the Integrated Environment, Safety, and Health Management System Plan (ISMS) (RPP-MP-003), which establishes a single, defined environmental, safety, and health management system that integrates requirements into the work planning and execution processes to protect workers, the public, and the environment. The ISMS also provides mechanisms for increasing worker involvement in work planning, including hazard and environmental impact identification, analysis, and control; work execution; and feedback/improvement processes. The ISMS plan consists of six core functions. Each section of this plan describes the activities of the River Protection Project (RPP) (formerly known as the Tank Waste Remediation System) Environmental organization according to the following core functions: Establish Environmental Policy; Define the Scope of Work; Identify Hazards, Environmental Impacts, and Requirements; Analyze Hazards and Environmental Impacts and Implement Controls; Perform Work within Controls; and Provide Feedback and Continuous Improvement.

  17. Exploratory Nuclear Reactor Safety Analysis and Visualization via Integrated Topological and Geometric Techniques

    SciTech Connect (OSTI)

    Dan Maljovec; Bei Wang; Valerio Pascucci; Peer-Timo Bremer; Diego Mandelli; Michael Pernice; Robert Nourgaliev

    2013-10-01

    A recent trend in the nuclear power engineering field is the implementation of heavily computational and time consuming algorithms and codes for both design and safety analysis. In particular, the new generation of system analysis codes aim to embrace several phenomena such as thermo-hydraulic, structural behavior, and system dynamics, as well as uncertainty quantification and sensitivity analyses. The use of dynamic probabilistic risk assessment (PRA) methodologies allows a systematic approach to uncertainty quantification. Dynamic methodologies in PRA account for possible coupling between triggered or stochastic events through explicit consideration of the time element in system evolution, often through the use of dynamic system models (simulators). They are usually needed when the system has more than one failure mode, control loops, and/or hardware/process/software/human interaction. Dynamic methodologies are also capable of modeling the consequences of epistemic and aleatory uncertainties. The Monte-Carlo (MC) and the Dynamic Event Tree (DET) approaches belong to this new class of dynamic PRA methodologies. The major challenges in using MC and DET methodologies (as well as other dynamic methodologies) are the heavier computational and memory requirements compared to the classical ET analysis. This is due to the fact that each branch generated can contain time evolutions of a large number of variables (about 50,000 data channels are typically present in RELAP) and a large number of scenarios can be generated from a single initiating event (possibly on the order of hundreds or even thousands). Such large amounts of information are usually very difficult to organize in order to identify the main trends in scenario evolutions and the main risk contributors for each initiating event. This report aims to improve Dynamic PRA methodologies by tackling the two challenges mentioned above using: 1) adaptive sampling techniques to reduce computational cost of the analysis and 2) topology-based methodologies to interactively visualize multidimensional data and extract risk-informed insights. Regarding item 1) we employ learning algorithms that aim to infer/predict simulation outcome and decide the coordinate in the input space of the next sample that maximize the amount of information that can be gained from it. Such methodologies can be used to both explore and exploit the input space. The later one is especially used for safety analysis scopes to focus samples along the limit surface, i.e. the boundaries in the input space between system failure and system success. Regarding item 2) we present a software tool that is designed to analyze multi-dimensional data. We model a large-scale nuclear simulation dataset as a high-dimensional scalar function defined over a discrete sample of the domain. First, we provide structural analysis of such a function at multiple scales and provide insight into the relationship between the input parameters and the output. Second, we enable exploratory analysis for users, where we help the users to differentiate features from noise through multi-scale analysis on an interactive platform, based on domain knowledge and data characterization. Our analysis is performed by exploiting the topological and geometric properties of the domain, building statistical models based on its topological segmentations and providing interactive visual interfaces to facilitate such explorations.

  18. Challenges to Integration of Safety and Reliability with Proliferation Resistance and Physical Protection for Generation IV Nuclear Energy Systems

    SciTech Connect (OSTI)

    H. Khalil; P. F. Peterson; R. Bari; G. -L. Fiorini; T. Leahy; R. Versluis

    2012-07-01

    The optimization of a nuclear energy system's performance requires an integrated consideration of multiple design goals - sustainability, safety and reliability (S&R), proliferation resistance and physical protection (PR&PP), and economics - as well as careful evaluation of trade-offs for different system design and operating parameters. Design approaches motivated by each of the goal areas (in isolation from the other goal areas) may be mutually compatible or in conflict. However, no systematic methodology approach has yet been developed to identify and maximize synergies and optimally balance conflicts across the possible design configurations and operating modes of a nuclear energy system. Because most Generation IV systems are at an early stage of development, design, and assessment, designers and analysts are only beginning to identify synergies and conflicts between PR&PP, S&R, and economics goals. The close coupling between PR&PP and S&R goals has motivated early attention within the Generation IV International Forum to their integrated consideration to facilitate the optimization of their effects and the minimization of potential conflicts. This paper discusses the status of this work.

  19. DNFSB Recommendation 94-1 Hanford Site Integrated Stabilization Management Plan. Volume 1

    SciTech Connect (OSTI)

    McCormack, R.L.

    1995-08-01

    This document describes the plans of the Hanford Site for the safe interim storage of fissile materials. Currently, spent nuclear fuels reside in storage basins that have leaked in the past and are projected to leak in the future. Other problems in the basins include; sludge from decomposition, degraded cladding of fuel elements, and construction defects which make the basins seismically unsafe. This management plan describes the time and cost that it will take to implement a safe interim storage plan for the fissile materials.

  20. Environment, Safety and Health | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    About / Environment, Safety and ... Environment, Safety and Health In performing Y-12's mission and in modernizing the Y-12 Complex, we are fully committed to ensuring the safety and health of our workers, the public, and the environment. Our commitment is described in our ES&H Policy Statement, which explains how Y-12's policy is integrated into our business processes and systems, day-to-day operations, modernization initiatives, and planning activities. Activities performed by Consolidated

  1. Integrating impact assessment and conflict management in urban planning: Experiences from Finland

    SciTech Connect (OSTI)

    Peltonen, Lasse; Sairinen, Rauno

    2010-09-15

    The article examines the interlinkages between recent developments in conflict management and impact assessment procedures in the context of urban planning in Finland. It sets out by introducing the fields of impact assessment and conflict mediation. It then proceeds to discuss the development of impact assessment practices and the status of conflict mediation in Finnish land use planning. The case of Korteniitty infill development plan in Jyvaeskylae is used to demonstrate how the Finnish planning system operates in conflict situations - and how social impact assessment can contribute to managing planning conflicts. The authors ask how the processes of impact assessment contribute to conflict management. Based on the Finnish experience, it is argued that social impact assessment of land use plans can contribute to conflict management, especially in the absence of institutionalised conflict mediation processes. In addition, SIA may acquire features of conflict mediation, depending on extent and intensity of stakeholder participation in the process, and the quality of linkages it between knowledge production and decision-making. Simultaneously, conflict mediation practices and theoretical insights can inform the application of SIA to help it address land use conflicts more consciously.

  2. DOE handbook: Integrated safety management systems (ISMS) verification team leader`s handbook

    SciTech Connect (OSTI)

    1999-06-01

    The primary purpose of this handbook is to provide guidance to the ISMS verification Team Leader and the verification team in conducting ISMS verifications. The handbook describes methods and approaches for the review of the ISMS documentation (Phase I) and ISMS implementation (Phase II) and provides information useful to the Team Leader in preparing the review plan, selecting and training the team, coordinating the conduct of the verification, and documenting the results. The process and techniques described are based on the results of several pilot ISMS verifications that have been conducted across the DOE complex. A secondary purpose of this handbook is to provide information useful in developing DOE personnel to conduct these reviews. Specifically, this handbook describes methods and approaches to: (1) Develop the scope of the Phase 1 and Phase 2 review processes to be consistent with the history, hazards, and complexity of the site, facility, or activity; (2) Develop procedures for the conduct of the Phase 1 review, validating that the ISMS documentation satisfies the DEAR clause as amplified in DOE Policies 450.4, 450.5, 450.6 and associated guidance and that DOE can effectively execute responsibilities as described in the Functions, Responsibilities, and Authorities Manual (FRAM); (3) Develop procedures for the conduct of the Phase 2 review, validating that the description approved by the Approval Authority, following or concurrent with the Phase 1 review, has been implemented; and (4) Describe a methodology by which the DOE ISMS verification teams will be advised, trained, and/or mentored to conduct subsequent ISMS verifications. The handbook provides proven methods and approaches for verifying that commitments related to the DEAR, the FRAM, and associated amplifying guidance are in place and implemented in nuclear and high risk facilities. This handbook also contains useful guidance to line managers when preparing for a review of ISMS for radiological facilities, non-nuclear, or non-Defense Programs facilities. DOE line managers are encouraged to tailor the procedures described in this handbook for ISMS verifications for low risk facilities.

  3. Technical Standards, Safety Analysis Toolbox Codes - November...

    Office of Environmental Management (EM)

    2003 Technical Standards, Safety Analysis Toolbox Codes - November 2003 November 2003 Software Quality Assurance Plan and Criteria for the Safety Analysis Toolbox Codes Safety...

  4. CRAD, Safety Systems Inspection Criteria- December 17, 2012

    Broader source: Energy.gov [DOE]

    Safety Systems Inspection Criteria in implementing Integrated Safety Management, (HSS CRAD 45-11, Rev. 3)

  5. NIF Title III engineering plan

    SciTech Connect (OSTI)

    Deis, G

    1998-06-01

    The purpose of this document is to define the work that must be accomplished by the NIF Project during Title III Engineering. This definition is intended to be sufficiently detailed to provide a framework for yearly planning, to clearly identify the specific deliverables so that the Project teams can focus on them, and to provide a common set of objectives and processes across the Project. This plan has been preceded by similar documents for Title I and Title II design and complements the Site Management Plan, the Project Control Manual, the Quality Assurance Program Plan, the RM Parsons NIF Title III Configuration Control Plan, the Integrated Project Schedule, the Preliminary Safety Analysis Report, the Configuration Management Plan, and the Transition Plan.

  6. Challenge problem and milestones for : Nuclear Energy Advanced Modeling and Simulation (NEAMS) waste Integrated Performance and Safety Codes (IPSC).

    SciTech Connect (OSTI)

    Freeze, Geoffrey A.; Wang, Yifeng; Howard, Robert; McNeish, Jerry A.; Schultz, Peter Andrew; Arguello, Jose Guadalupe, Jr.

    2010-09-01

    This report describes the specification of a challenge problem and associated challenge milestones for the Waste Integrated Performance and Safety Codes (IPSC) supporting the U.S. Department of Energy (DOE) Office of Nuclear Energy Advanced Modeling and Simulation (NEAMS) Campaign. The NEAMS challenge problems are designed to demonstrate proof of concept and progress towards IPSC goals. The goal of the Waste IPSC is to develop an integrated suite of modeling and simulation capabilities to quantitatively assess the long-term performance of waste forms in the engineered and geologic environments of a radioactive waste storage or disposal system. The Waste IPSC will provide this simulation capability (1) for a range of disposal concepts, waste form types, engineered repository designs, and geologic settings, (2) for a range of time scales and distances, (3) with appropriate consideration of the inherent uncertainties, and (4) in accordance with robust verification, validation, and software quality requirements. To demonstrate proof of concept and progress towards these goals and requirements, a Waste IPSC challenge problem is specified that includes coupled thermal-hydrologic-chemical-mechanical (THCM) processes that describe (1) the degradation of a borosilicate glass waste form and the corresponding mobilization of radionuclides (i.e., the processes that produce the radionuclide source term), (2) the associated near-field physical and chemical environment for waste emplacement within a salt formation, and (3) radionuclide transport in the near field (i.e., through the engineered components - waste form, waste package, and backfill - and the immediately adjacent salt). The initial details of a set of challenge milestones that collectively comprise the full challenge problem are also specified.

  7. Safety Management System Policy

    Energy Savers [EERE]

    Health, Safety and Security U.S. Department of Energy POLICY Washington, D.C. Approved: 4-25-11 SUBJECT: INTEGRATED SAFETY MANAGEMENT POLICY PURPOSE AND SCOPE To establish the Department of Energy's (DOE) expectation for safety, 1 including integrated safety management that will enable the Department's mission goals to be accomplished efficiently while ensuring safe operations at all departmental facilities and activities. This Policy cancels and supersedes DOE Policy (P) 411.1, Safety

  8. Integrated Safety Management Policy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Section 6.0 of this System Description shows how EM Headquarters (HQ) utilizes its management systems to leverage learning and knowledge throughout the entire EM complex. The EM HQ ...

  9. Integrated Safety Management

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

  10. Integrated Safety Management

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    improve work execution reaction to changed conditions LEVELS - INSTITUTIONAL - site wide programs - DOE directives & requirements, cultural values - DOEcontractor interface -...

  11. An integrated computer modeling environment for regional land use, air quality, and transportation planning

    SciTech Connect (OSTI)

    Hanley, C.J.; Marshall, N.L.

    1997-04-01

    The Land Use, Air Quality, and Transportation Integrated Modeling Environment (LATIME) represents an integrated approach to computer modeling and simulation of land use allocation, travel demand, and mobile source emissions for the Albuquerque, New Mexico, area. This environment provides predictive capability combined with a graphical and geographical interface. The graphical interface shows the causal relationships between data and policy scenarios and supports alternative model formulations. Scenarios are launched from within a Geographic Information System (GIS), and data produced by each model component at each time step within a simulation is stored in the GIS. A menu-driven query system is utilized to review link-based results and regional and area-wide results. These results can also be compared across time or between alternative land use scenarios. Using this environment, policies can be developed and implemented based on comparative analysis, rather than on single-step future projections. 16 refs., 3 figs., 2 tabs.

  12. Comparative risk analysis for the Rocky Flats Plant integrated project planning

    SciTech Connect (OSTI)

    Jones, M.E.; Shain, D.I.

    1994-05-01

    The Rocky Flats Plant is developing, with active stakeholder a comprehensive planning strategy that will support transition of the Rocky Flats Plant from a nuclear weapons production facility to site cleanup and final disposition. Final disposition of the Rocky Flats Plant materials and contaminants requires consideration of the interrelated nature of sitewide problems, such as material movement and disposition, facility and land use endstates, costs relative risks to workers and the public, and waste disposition. Comparative Risk Analysis employs both incremental risk and cumulative risk evaluations to compare risks from postulated options or endstates. These postulated options or endstates can be various remedial alternatives, or future endstate uses of federal agency land. Currently, there does not exist any approved methodology that aggregates various incremental risk estimates. Comparative Risk Analysis has been developed to aggregate various incremental risk estimates to develop a site cumulative risk estimate. This paper discusses development of the Comparative Risk Analysis methodology, stakeholder participation and lessons learned from these challenges.

  13. Comparative risk analysis for the Rocky Flats Plant integrated project planning

    SciTech Connect (OSTI)

    Jones, M.E.; Shain, D.I.

    1994-12-31

    The Rocky Flats Plant is developing, with active stakeholder participation, a comprehensive planning strategy that will support transition of the Rocky Flats Plant from a nuclear weapons production facility to site cleanup and final disposition. Final disposition of the Rocky Flats Plant materials and contaminants requires consideration of the interrelated nature of sitewide problems, such as material movement and disposition, facility and land use endstates, costs, relative risks to workers and the public, and waste disposition. Comparative risk analysis employs both incremental risk and cumulative risk evaluations to compare risks from postulated options or end states. These postulated options or end states can be various remedial alternatives, or future endstate uses of federal land.

  14. Prototype integration of the joint munitions assessment and planning model with the OSD threat methodology

    SciTech Connect (OSTI)

    Lynn, R.Y.S.; Bolmarcich, J.J.

    1994-06-01

    The purpose of this Memorandum is to propose a prototype procedure which the Office of Munitions might employ to exercise, in a supportive joint fashion, two of its High Level Conventional Munitions Models, namely, the OSD Threat Methodology and the Joint Munitions Assessment and Planning (JMAP) model. The joint application of JMAP and the OSD Threat Methodology provides a tool to optimize munitions stockpiles. The remainder of this Memorandum comprises five parts. The first is a description of the structure and use of the OSD Threat Methodology. The second is a description of JMAP and its use. The third discusses the concept of the joint application of JMAP and OSD Threat Methodology. The fourth displays sample output of the joint application. The fifth is a summary and epilogue. Finally, three appendices contain details of the formulation, data, and computer code.

  15. Standard Review Plan (SRP) Modules | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Design RM Preliminary Safety Design RM Facility Disposition Safety Strategy RM Construction Project Safety and Health Plan RM Review of SAR for Packaging Report Nuclear Safety ...

  16. STRATEGIC PLAN

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    STRATEGIC PLAN 2015 - 2018 Message from the Associate Under Secretary for Environment, Health, Safety and Security I am proud to introduce this strategic plan for the Office of Environment, Health, Safety and Security (AU). At the heart of this document lie our core values, vision and mission statements, 4 goals, and 11 key strategic objectives. It represents a truly collaborative effort. The values, vision, mission, goals and key strategies resulting from this process were shared and revised

  17. DOE In Situ Remediation Integrated Program. In situ manipulation technologies subprogram plan

    SciTech Connect (OSTI)

    Yow, J.L. Jr.

    1993-12-22

    The In Situ Remediation Integrated Program (ISRP) supports and manages a balanced portfolio of applied research and development activities in support of DOE environmental restoration and waste management needs. ISRP technologies are being developed in four areas: containment, chemical and physical treatment, in situ bioremediation, and in situ manipulation (including electrokinetics). the focus of containment is to provide mechanisms to stop contaminant migration through the subsurface. In situ bioremediation and chemical and physical treatment both aim to destroy or eliminate contaminants in groundwater and soils. In situ manipulation (ISM) provides mechanisms to access contaminants or introduce treatment agents into the soil, and includes other technologies necessary to support the implementation of ISR methods. Descriptions of each major program area are provided to set the technical context of the ISM subprogram. Typical ISM needs for major areas of in situ remediation research and development are identified.

  18. Site Safety and Health Plan (Phase 3) for the treatability study for in situ vitrification at Seepage Pit 1 in Waste Area Grouping 7, Oak Ridge National Laboratory, Oak Ridge, TN

    SciTech Connect (OSTI)

    Spalding, B.P.; Naney, M.T.

    1995-06-01

    This plan is to be implemented for Phase III ISV operations and post operations sampling. Two previous project phases involving site characterization have been completed and required their own site specific health and safety plans. Project activities will take place at Seepage Pit 1 in Waste Area Grouping 7 at ORNL, Oak Ridge, Tennessee. Purpose of this document is to establish standard health and safety procedures for ORNL project personnel and contractor employees in performance of this work. Site activities shall be performed in accordance with Energy Systems safety and health policies and procedures, DOE orders, Occupational Safety and Health Administration Standards 29 CFR Part 1910 and 1926; applicable United States Environmental Protection Agency requirements; and consensus standards. Where the word ``shall`` is used, the provisions of this plan are mandatory. Specific requirements of regulations and orders have been incorporated into this plan in accordance with applicability. Included from 29 CFR are 1910.120 Hazardous Waste Operations and Emergency Response; 1910.146, Permit Required - Confined Space; 1910.1200, Hazard Communication; DOE Orders requirements of 5480.4, Environmental Protection, Safety and Health Protection Standards; 5480.11, Radiation Protection; and N5480.6, Radiological Control Manual. In addition, guidance and policy will be followed as described in the Environmental Restoration Program Health and Safety Plan. The levels of personal protection and the procedures specified in this plan are based on the best information available from reference documents and site characterization data. Therefore, these recommendations represent the minimum health and safety requirements to be observed by all personnel engaged in this project.

  19. SOME CHEMICAL SAFETY ASPECTS AT LANL

    SciTech Connect (OSTI)

    J. LAUL

    2001-05-01

    Recently, the Department of Energy (DOE) and its contractors have begun activities to improve the quality and consistency of chemical safety programs throughout the DOE Complex. Several working groups have been formed to assemble a framework for systematically identifying and quantifying chemical hazards and managing chemical risks. At LANL, chemical safety program is implemented through Laboratory Implementation Requirements (LIRs), which are part of the Integrated Safety Management (ISM) plan that includes Safe Work Practices, emphasizing five core functions; define work, identify and analyze hazards, develop and implement controls, perform work safely, and ensure performance. Work is authorized in medium, low and minimal risk areas and not in high risk. Some chemical safety aspects are discussed in terms of chemical hazards and identification, screening, facility hazard categorization--Category A (high), Category B (moderate), and Category C (low), and their requirements in format and content in Authorization Safety Basis documents.

  20. Effective early planning and integration of NEPA into the decision-making process

    SciTech Connect (OSTI)

    Hannon, W.C.; Gensler, J.D. )

    1993-01-01

    This paper covers several key challenges and lessons learned in a federal agency assignment to educate the decision makers in NEPA and then to effectuate decisions early in the decision-making process based on the information derived from the NEPA process participants and documentation. Many of the key challenges faced by these federal decision makers stem, in part, from unfamiliarity with NEPA requirements and the benefits that can be derived by utilizing the process to support making an informed decision. Secondly, federal managers, at times believe that the process is a hindrance to accomplishing their mission. Lastly, there was a genuine belief that the public and other organizations within the agency should have no part in evaluating or commenting on the proposed action. Using the knowledge gained from drafting and reviewing EISs and EAs, Booz, Allen devised a systematic process that effectively: educated management on NEPA requirements; developed a management tool to guide and integrate the process; and encouraged the early and effective use of environmental and social information into all decision-making processes.

  1. MAS 10.1 Implementation of the Integrated Safety Management System (ISMS) Process in Maintenance Activities, 2/14/2000

    Broader source: Energy.gov [DOE]

    The objective of this surveillance is to evaluate the effectiveness of the contractor's ISMS process with regard to maintenance activities.  Surveillance activities encompass work planning and...

  2. Integrated Closure and Monitoring Plan for the Area 3 and Area 5 Radioactive Waste Management Sites at the Nevada Test Site

    SciTech Connect (OSTI)

    S. E. Rawlinson

    2001-09-01

    Bechtel Nevada (BN) manages two low-level Radioactive Waste Management Sites (RWMSs) (one site is in Area 3 and the other is in Area 5) at the Nevada Test Site (NTS) for the U.S. Department of Energy's (DOE's) National Nuclear Security Administration Nevada Operations Office (NNSA/NV). The current DOE Order governing management of radioactive waste is 435.1. Associated with DOE Order 435.1 is a Manual (DOE M 435.1-1) and Guidance (DOE G 435.1-1). The Manual and Guidance specify that preliminary closure and monitoring plans for a low-level waste (LLW) management facility be developed and initially submitted with the Performance Assessment (PA) and Composite Analysis (CA) for that facility. The Manual and Guidance, and the Disposal Authorization Statement (DAS) issued for the Area 3 RWMS further specify that the preliminary closure and monitoring plans be updated within one year following issuance of a DAS. This Integrated Closure and Monitoring Plan (ICMP) fulfills both requirements. Additional updates will be conducted every third year hereafter. This document is an integrated plan for closing and monitoring both RWMSs, and is based on guidance issued in 1999 by the DOE for developing closure plans. The plan does not follow the format suggested by the DOE guidance in order to better accommodate differences between the two RWMSs, especially in terms of operations and site characteristics. The modification reduces redundancy and provides a smoother progression of the discussion. The closure and monitoring plans were integrated because much of the information that would be included in individual plans is the same, and integration provides efficient presentation and program management. The ICMP identifies the regulatory requirements, describes the disposal sites and the physical environment where they are located, and defines the approach and schedule for both closing and monitoring the sites.

  3. Safety Cinema: Safety Videos: Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Safety CinemaTM VideosINDUSTRIAL HYGIENE AND SAFETY Safety Videos » Safety Cinema Safety Videos Home Safety Cinema Human Beings Beryllium Integrated Safety CONTACTS Occupational Safety and Health Division Office 505 606-0295 Video Contact Lorrie Bonds Lopez safetyvideos@lanl.gov 505 667-0216 Safety Cinema Play videos - download flyers and more Safety practices for work and home, supporting the well-being of every worker throughout each day. safety cinema logo "Let's take care of ourselves

  4. Jefferson Lab Environment, Safety, Health and Quality Division

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ESHQ Please upgrade your browser. This site's design is only visible in a graphical browser that supports web standards, but its content is accessible to any browser. Concerns? ESH&Q ESH&Q Home Contacts ES&H Manual JLab Work Planning Tools print version GROUPS ESH&Q Committees Emergency Management Environmental Occupational Medicine Quality Assurance & Continuous Improvement Radiation Control Health & Safety Programs Integrated Safety Management Site Associate Director's

  5. Generation IV Reactors Integrated Materials Technology Program Plan: Focus on Very High Temperature Reactor Materials

    SciTech Connect (OSTI)

    Corwin, William R; Burchell, Timothy D; Katoh, Yutai; McGreevy, Timothy E; Nanstad, Randy K; Ren, Weiju; Snead, Lance Lewis; Wilson, Dane F

    2008-08-01

    Since 2002, the Department of Energy's (DOE's) Generation IV Nuclear Energy Systems (Gen IV) Program has addressed the research and development (R&D) necessary to support next-generation nuclear energy systems. The six most promising systems identified for next-generation nuclear energy are described within this roadmap. Two employ a thermal neutron spectrum with coolants and temperatures that enable hydrogen or electricity production with high efficiency (the Supercritical Water Reactor-SCWR and the Very High Temperature Reactor-VHTR). Three employ a fast neutron spectrum to enable more effective management of actinides through recycling of most components in the discharged fuel (the Gas-cooled Fast Reactor-GFR, the Lead-cooled Fast Reactor-LFR, and the Sodium-cooled Fast Reactor-SFR). The Molten Salt Reactor (MSR) employs a circulating liquid fuel mixture that offers considerable flexibility for recycling actinides and may provide an alternative to accelerator-driven systems. At the inception of DOE's Gen IV program, it was decided to significantly pursue five of the six concepts identified in the Gen IV roadmap to determine which of them was most appropriate to meet the needs of future U.S. nuclear power generation. In particular, evaluation of the highly efficient thermal SCWR and VHTR reactors was initiated primarily for energy production, and evaluation of the three fast reactor concepts, SFR, LFR, and GFR, was begun to assess viability for both energy production and their potential contribution to closing the fuel cycle. Within the Gen IV Program itself, only the VHTR class of reactors was selected for continued development. Hence, this document will address the multiple activities under the Gen IV program that contribute to the development of the VHTR. A few major technologies have been recognized by DOE as necessary to enable the deployment of the next generation of advanced nuclear reactors, including the development and qualification of the structural materials needed to ensure their safe and reliable operation. The focus of this document will be the overall range of DOE's structural materials research activities being conducted to support VHTR development. By far, the largest portion of material's R&D supporting VHTR development is that being performed directly as part of the Next-Generation Nuclear Plant (NGNP) Project. Supplementary VHTR materials R&D being performed in the DOE program, including university and international research programs and that being performed under direct contracts with the American Society for Mechanical Engineers (ASME) Boiler and Pressure Vessel Code, will also be described. Specific areas of high-priority materials research that will be needed to deploy the NGNP and provide a basis for subsequent VHTRs are described, including the following: (1) Graphite: (a) Extensive unirradiated materials characterization and assessment of irradiation effects on properties must be performed to qualify new grades of graphite for nuclear service, including thermo-physical and mechanical properties and their changes, statistical variations from billot-to-billot and lot-to-lot, creep, and especially, irradiation creep. (b) Predictive models, as well as codification of the requirements and design methods for graphite core supports, must be developed to provide a basis for licensing. (2) Ceramics: Both fibrous and load-bearing ceramics must be qualified for environmental and radiation service as insulating materials. (3) Ceramic Composites: Carbon-carbon and SiC-SiC composites must be qualified for specialized usage in selected high-temperature components, such as core stabilizers, control rods, and insulating covers and ducting. This will require development of component-specific designs and fabrication processes, materials characterization, assessment of environmental and irradiation effects, and establishment of codes and standards for materials testing and design requirements. (4) Pressure Vessel Steels: (a) Qualification of short-term, high-temperature properties of light water reactor steels for anticipated VHTR off-normal conditions must be determined, as well as the effects of aging on tensile, creep, and toughness properties, and on thermal emissivity. (b) Large-scale fabrication process for higher temperature alloys, such as 9Cr-1MoV, including ensuring thick-section and weldment integrity must be developed, as well as improved definitions of creep-fatigue and negligible creep behavior. (5) High-Temperature Alloys: (a) Qualification and codification of materials for the intermediate heat exchanger, such as Alloys 617 or 230, for long-term very high-temperature creep, creep-fatigue, and environmental aging degradation must be done, especially in thin sections for compact designs, for both base metal and weldments. (b) Constitutive models and an improved methodology for high-temperature design must be developed.

  6. Institutional Plan FY 2003 - 2007

    SciTech Connect (OSTI)

    Chartock, Michael; Hansen, Todd

    2003-01-27

    The Fiscal Year (FY) 2003-2007 Institutional Plan describes the strategic directions and key issues that Lawrence Berkeley National Laboratory management must address with the Department of Energy (DOE) in charting its future as a multiprogram national laboratory. The Plan provides an overview of the Laboratory's mission, strategic plan, initiatives, and the resources required to fulfill its role in support of national needs in fundamental science and technology, energy resources, and environmental quality. The Plan facilitates the Department of Energy's ongoing efforts to strengthen the Integrated Laboratory System. Preparation and review of the Institutional Plan is one element of the Department of Energy's strategic management planning activities, implemented through an annual planning process. The Plan supports the President's Management Agenda and the Government Performance and Results Act of 1993. The Plan complements the current performance-based contract between the Department of Energy and the Regents of the University of California, and summarizes Best Management Practices for a potential future results-based contract as a basis for achieving DOE goals and the Laboratory's scientific and operations objectives. It identifies technical and administrative directions in the context of national energy policy and research needs and the Department of Energy's program planning initiatives. Preparation of the Plan is coordinated by the Planning and Strategic Development Office from information contributed by Berkeley Lab's scientific and support divisions and DOE comments on prior years' plans. The Laboratory Mission section identifies the specific strengths of Berkeley Lab that contribute to the mission in general and the Integrated Laboratory System in particular. The Laboratory Strategic Plan section identifies the existing activities in support of DOE Office of Science and other sponsors; support for DOE goals; and the Laboratory Scientific Vision and operations goals. The Initiatives section describes some of the specific new research programs representing major long-term opportunities for the Department of Energy and Berkeley Lab. The Operations Strategic Planning section describes our strategic thinking in the areas of human resources; site and cyber security; workforce diversity; communications and trust; integrated safety management; and technology transfer activities. The Infrastructure Strategic Planning section describes Berkeley Lab's facilities planning process and our site and facility needs. The Summary of Major Issues section provides context for discussions at the Institutional Planning On-Site Review. The Resource Projections are estimates of required budgetary authority for Berkeley Lab's research programs.

  7. Whole breast and excision cavity radiotherapy plan comparison: Conformal radiotherapy with sequential boost versus intensity-modulated radiation therapy with a simultaneously integrated boost

    SciTech Connect (OSTI)

    Small, Katherine; Kelly, Chris; Beldham-Collins, Rachael; Gebski, Val

    2013-03-15

    A comparative study was conducted comparing the difference between (1) conformal radiotherapy (CRT) to the whole breast with sequential boost excision cavity plans and (2) intensity-modulated radiation therapy (IMRT) to the whole breast with simultaneously integrated boost to the excision cavity. The computed tomography (CT) data sets of 25 breast cancer patients were used and the results analysed to determine if either planning method produced superior plans. CT data sets from 25 past breast cancer patients were planned using (1) CRT prescribed to 50 Gy in 25 fractions (Fx) to the whole-breast planning target volume (PTV) and 10 Gy in 5Fx to the excision cavity and (2) IMRT prescribed to 60 Gy in 25Fx, with 60 Gy delivered to the excision cavity PTV and 50 Gy delivered to the whole-breast PTV, treated simultaneously. In total, 50 plans were created, with each plan evaluated by PTV coverage using conformity indices, plan maximum dose, lung dose, and heart maximum dose for patients with left-side lesions. CRT plans delivered the lowest plan maximum doses in 56% of cases (average CRT = 6314.34 cGy, IMRT = 6371.52 cGy). They also delivered the lowest mean lung dose in 68% of cases (average CRT = 1206.64 cGy, IMRT = 1288.37 cGy) and V20 in 88% of cases (average CRT = 20.03%, IMRT = 21.73%) and V30 doses in 92% of cases (average CRT = 16.82%, IMRT = 17.97%). IMRT created more conformal plans, using both conformity index and conformation number, in every instance, and lower heart maximum doses in 78.6% of cases (average CRT = 5295.26 cGy, IMRT = 5209.87 cGy). IMRT plans produced superior dose conformity and shorter treatment duration, but a slightly higher planning maximum and increased lung doses. IMRT plans are also faster to treat on a daily basis, with shorter fractionation.

  8. Remedial action planning for Trench 1

    SciTech Connect (OSTI)

    Primrose, A.; Sproles, W.; Burmeister, M.; Wagner, R.; Law, J.; Greengard, T.

    1998-07-01

    The accelerated action to remove the depleted uranium chips and associated soils and wastes from Trench 1 at the Rocky Flats Environmental Technology Site (RFETS) will begin in June 1998. To ensure that the remedial action is conducted safely, a rigorous and disciplined planning process was followed that incorporates the principles of Integrated Safety Management and Enhanced Work Planning. Critical to the success of the planning was early involvement of project staff (salaried and hourly) and associated technical support groups and disciplines. Feedback was and will continue to be solicited, and lessons learned incorporated to ensure the safe remediation of this site.

  9. SU-E-J-88: Margin Reduction of Level II/III Planning Target Volume for Image-Guided Simultaneous Integrated Boost Head-And-Neck Treatment

    SciTech Connect (OSTI)

    Can, S; Neylon, J; Qi, S; Santhanam, A; Low, D

    2014-06-01

    Purpose: To investigate the feasibility of improved normal tissue sparing for head-and-neck (H'N) image-guided radiotherapy (IGRT) by employing tighter CTV-to-PTV margins for target level II/III though a GPU-based deformable image registration and dose accumulation framework. Methods: Ten H'N simultaneous integrated boost cases treated on TomoTherapy were retrospectively analyzed. Weekly kVCT scans in addition to daily MVCT scans were acquired for each patient. Reduced margin plans were generated with 0- mm margin for level II and III PTV (while 3-5 mm margin for PTV1) and compared with the standard margin plan using 3-5mm margin to all CTV1-3 (reference plan). An in-house developed GPU-based 3D image deformation tool was used to register and deform the weekly KVCTs with the planning CT and determine the delivered mean/minimum/maximum dose, dose volume histograms (DVHs), etc. Results: Compared with the reference plans, the averaged cord maximum, the right and left parotid doses reduced by 22.7 %, 16.5 %, and 9 % respectively in the reduced margin plans. The V95 for PTV2 and PTV3 were found within 2 and 5% between the reference and tighter margin plans. For the reduced margin plans, the averaged cumulative mean doses were consistent with the planned dose for PTV1, PTV2 and PTV3 within 1.5%, 1.7% and 1.4%. Similar dose variations of the delivered dose were seen for the reference and tighter margin plans. The delivered maximum and mean doses for the cord were 3.55 % and 2.37% higher than the planned doses; a 5 % higher cumulative mean dose for the parotids was also observed for the delivered dose than the planned doses in both plans. Conclusion: By imposing tighter CTV-to-PTV margins for level II and III targets for H'N irradiation, acceptable cumulative doses were achievable when coupled with weekly kVCT guidance while improving normal structure sparing.

  10. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1996-10-24

    Establishes facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation.

  11. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-11-16

    Establishes facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation.

  12. Transportation Safety Excellence in Operations Through Improved Transportation Safety Document

    SciTech Connect (OSTI)

    Dr. Michael A. Lehto; MAL

    2007-05-01

    A recent accomplishment of the Idaho National Laboratory (INL) Materials and Fuels Complex (MFC) Nuclear Safety analysis group was to obtain DOE-ID approval for the inter-facility transfer of greater-than-Hazard-Category-3 quantity radioactive/fissionable waste in Department of Transportation (DOT) Type A drums at MFC. This accomplishment supported excellence in operations through safety analysis by better integrating nuclear safety requirements with waste requirements in the Transportation Safety Document (TSD); reducing container and transport costs; and making facility operations more efficient. The MFC TSD governs and controls the inter-facility transfer of greater-than-Hazard-Category-3 radioactive and/or fissionable materials in non-DOT approved containers. Previously, the TSD did not include the capability to transfer payloads of greater-than-Hazard-Category-3 radioactive and/or fissionable materials using DOT Type A drums. Previous practice was to package the waste materials to less-than-Hazard-Category-3 quantities when loading DOT Type A drums for transfer out of facilities to reduce facility waste accumulations. This practice allowed operations to proceed, but resulted in drums being loaded to less than the Waste Isolation Pilot Plant (WIPP) waste acceptance criteria (WAC) waste limits, which was not cost effective or operations friendly. An improved and revised safety analysis was used to gain DOE-ID approval for adding this container configuration to the MFC TSD safety basis. In the process of obtaining approval of the revised safety basis, safety analysis practices were used effectively to directly support excellence in operations. Several factors contributed to the success of MFCs effort to obtain approval for the use of DOT Type A drums, including two practices that could help in future safety basis changes at other facilities. 1) The process of incorporating the DOT Type A drums into the TSD at MFC helped to better integrate nuclear safety requirements with waste requirements. MFCs efforts illustrate that utilizing the requirements of other disciplines, beyond nuclear safety, can provide an efficient process. Analyzing current processes to find better ways of meeting the requirements of multiple disciplines within a safety basis can lead to a more cost-effective, streamlined process. 2) Incorporating the DOT Type A drums into the MFC TSD was efficient because safety analysts utilized a transportation plan that provided analysis that could also be used for the change to the TSD addendum. In addition, because the plan they used had already been approved and was in use by the Idaho Cleanup Project (ICP) at the INL, justification for the change to the TSD was more compelling. MFC safety analysts proved that streamlining a process can be made more feasible by drawing from analysis that has already been completed.

  13. Safety | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News Careers Education Community Diversity Directory Argonne National Laboratory About Safety News Careers Education Community Diversity Directory Energy Environment Security User Facilities Science Work with Argonne Safety Biosafety Safety Safety is integral to Argonne's scientific research and engineering technology mission. As a leading U.S. Department of Energy multi-program research laboratory, our obligation to the American people demands that we conduct our research and operations safely

  14. ACQUISITION PLANNING

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    -----Chapter 7.1 (February 2015) ACQUISITION PLANNING Guiding Principles  Sound acquisition planning ensures that the contracting process is conducted in a timely manner, in accordance with statutory, regulatory, and policy requirements, and reflects the mission needs of the program.  An integrated team approach that includes appropriate representation from all organizations having an interest in the requirement will benefit the acquisition planning process.  Contracting professionals

  15. Safety and Health | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Safety and Health Safety and Health PPPO's Safety and Health (S&H) program integrates safety and health requirements and controls into all work activities. S&H oversees implementation of Integrated Safety Management (ISM) within contractor activities to ensure protection of workers, the public, and the environment. PPPO promotes a working environment where each worker feels responsible for safety and health. Decision-making reflects safety as an overriding priority for all PPPO and

  16. Safety posters | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Safety posters Think Twice about Cutting Cables 1 of 23 Think Twice about Cutting Cables Think Twice about Cutting Cables 1 of 23 Think Twice about Cutting Cables ESE Safety Poster 2 of 23 ESE Safety Poster Slips, Trips and Falls 3 of 23 Slips, Trips and Falls ISMposter1B 4 of 23 ISMposter1B Integrated Safety Management poster ISMposter8B 5 of 23 ISMposter8B Integrated Safety Management poster ISMposter1_3B 6 of 23 ISMposter1_3B Integrated Safety Management poster ISMposter1_2B 7 of 23

  17. Implementation of Recommendations from the One System Comparative Evaluation of the Hanford Tank Farms and Waste Treatment Plant Safety Bases

    SciTech Connect (OSTI)

    Garrett, Richard L.; Niemi, Belinda J.; Paik, Ingle K.; Buczek, Jeffrey A.; Lietzow, J.; McCoy, F.; Beranek, F.; Gupta, M.

    2013-11-07

    A Comparative Evaluation was conducted for One System Integrated Project Team to compare the safety bases for the Hanford Waste Treatment and Immobilization Plant Project (WTP) and Tank Operations Contract (TOC) (i.e., Tank Farms) by an Expert Review Team. The evaluation had an overarching purpose to facilitate effective integration between WTP and TOC safety bases. It was to provide One System management with an objective evaluation of identified differences in safety basis process requirements, guidance, direction, procedures, and products (including safety controls, key safety basis inputs and assumptions, and consequence calculation methodologies) between WTP and TOC. The evaluation identified 25 recommendations (Opportunities for Integration). The resolution of these recommendations resulted in 16 implementation plans. The completion of these implementation plans will help ensure consistent safety bases for WTP and TOC along with consistent safety basis processes. procedures, and analyses. and should increase the likelihood of a successful startup of the WTP. This early integration will result in long-term cost savings and significant operational improvements. In addition, the implementation plans lead to the development of eight new safety analysis methodologies that can be used at other U.S. Department of Energy (US DOE) complex sites where URS Corporation is involved.

  18. STANDARD REVIEW PLAN

    Office of Environmental Management (EM)

    DOE-STD-1189-2008, Integration of Safety into the Design Process, and EM's internal business management practices. The safety-in-design related SRPs follow the CD process and...

  19. February 2013 Electrical Safety Occurrences

    Broader source: Energy.gov (indexed) [DOE]

    not always equipped with automatic safety features or meets current standards due to its age. -- Inclusion of lessons learned applicable to the task being planned needs improved in...

  20. Review of Nevada Site Office Criticality Safety Assessments at the Criticality Experiments Facility and Training Assembly for Criticality Safety and Appraisal of the Criticality Experiments Facility Startup Plan, October 2011

    Broader source: Energy.gov [DOE]

    This report provides the results of an independent oversight review of criticality safety assessment activities conducted by the Department of Energy's (DOE) Nevada Site Office

  1. Washington: Integrated Transportation Programs & Coordinated...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Integrated Transportation Programs & Coordinated Regional Planning Washington: Integrated Transportation Programs & Coordinated Regional Planning November 6, 2013 - 5:42pm Addthis ...

  2. Nuclear Explosive Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2014-07-10

    The Order establishes requirements to implement the nuclear explosive safety (NES) elements of DOE O 452.1E, Nuclear Explosive and Weapon Surety Program, for routine and planned nuclear explosive operations (NEOs).

  3. Fully Automated Simultaneous Integrated Boosted-Intensity Modulated Radiation Therapy Treatment Planning Is Feasible for Head-and-Neck Cancer: A Prospective Clinical Study

    SciTech Connect (OSTI)

    Wu Binbin; McNutt, Todd; Zahurak, Marianna; Simari, Patricio; Pang, Dalong; Taylor, Russell; Sanguineti, Giuseppe

    2012-12-01

    Purpose: To prospectively determine whether overlap volume histogram (OVH)-driven, automated simultaneous integrated boosted (SIB)-intensity-modulated radiation therapy (IMRT) treatment planning for head-and-neck cancer can be implemented in clinics. Methods and Materials: A prospective study was designed to compare fully automated plans (APs) created by an OVH-driven, automated planning application with clinical plans (CPs) created by dosimetrists in a 3-dose-level (70 Gy, 63 Gy, and 58.1 Gy), head-and-neck SIB-IMRT planning. Because primary organ sparing (cord, brain, brainstem, mandible, and optic nerve/chiasm) always received the highest priority in clinical planning, the study aimed to show the noninferiority of APs with respect to PTV coverage and secondary organ sparing (parotid, brachial plexus, esophagus, larynx, inner ear, and oral mucosa). The sample size was determined a priori by a superiority hypothesis test that had 85% power to detect a 4% dose decrease in secondary organ sparing with a 2-sided alpha level of 0.05. A generalized estimating equation (GEE) regression model was used for statistical comparison. Results: Forty consecutive patients were accrued from July to December 2010. GEE analysis indicated that in APs, overall average dose to the secondary organs was reduced by 1.16 (95% CI = 0.09-2.33) with P=.04, overall average PTV coverage was increased by 0.26% (95% CI = 0.06-0.47) with P=.02 and overall average dose to the primary organs was reduced by 1.14 Gy (95% CI = 0.45-1.8) with P=.004. A physician determined that all APs could be delivered to patients, and APs were clinically superior in 27 of 40 cases. Conclusions: The application can be implemented in clinics as a fast, reliable, and consistent way of generating plans that need only minor adjustments to meet specific clinical needs.

  4. Radiation Safety

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Safety Home MSDS Search MSDS Help Safety Training and Tests Contact Links LSU Campus Safety Glossary Radiation Safety Manual Radiation Safety Test NOTE: All Training and Testing Material is for LSU CAMD Users ONLY! **Please allow two weeks for your badge to be processed.** Regulations and Hierarchy The CAMD Safety Officer reports to two separate individuals regarding safety. These are the Radiation Safety Officer for the University, and the Campus Safety Officer in all other matters. Thus safety

  5. Project Execution Plan RM

    Office of Environmental Management (EM)

    DOE-STD-1189-2008, Integration of Safety into the Design Process, and EM's internal business management practices. The SRP follows the Critical Decision (CD) process and...

  6. Commissioning Plan RM

    Office of Environmental Management (EM)

    DOE-STD-1189-2008, Integration of Safety into the Design Process, and EM's internal business management practices. The SRP follows the Critical Decision (CD) process and...

  7. Integrating spatial support tools into strategic planning-SEA of the GMS North-South Economic Corridor Strategy and Action Plan

    SciTech Connect (OSTI)

    Ramachandran, Pavit; Linde, Lothar

    2011-11-15

    The GMS countries, supported by the Asian Development Bank, have adopted a holistic, multidimensional approach to strengthen infrastructural linkages and facilitate cross border trade through (i) the establishment of a trans-boundary road connecting two economic nodes across marginalised areas, followed by 2) facilitation of environmentally and socially sound investments in these newly connected areas as a means to develop livelihoods. The North-South Economic Corridor is currently in its second phase of development, with investment opportunities to be laid out in the NSEC Strategy and Action Plan (SAP). It targets the ecologically and culturally sensitive border area between PR China's Yunnan Province, Northern Lao PDR, and Thailand. A trans-boundary, cross-sectoral Strategic Environmental Assessment was conducted to support the respective governments in assessing potential environmental and social impacts, developing alternatives and mitigation options, and feeding the findings back into the SAP writing process. Given the spatial dimension of corridor development-both with regard to opportunities and risks-particular emphasis was put in the application of spatial modelling tools to help geographically locate and quantify impacts as a means to guide interventions and set priorities.

  8. Project Safety Oversight Activities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Safety, Codes & Standards » DOE Activities » Project Safety Oversight Activities Project Safety Oversight Activities For all DOE-funded projects, the Fuel Cell Technologies Office implements procedures and practices to ensure safety in the operation, handling, and use of hydrogen systems. This is accomplished through a peer review process that requires participants to complete a detailed safety evaluation, implement safety procedures, and develop a communication plan. Safety aspects of

  9. Distribution Grid Integration

    Broader source: Energy.gov [DOE]

    The DOE Systems Integration team funds distribution grid integration research and development (R&D) activities to address the technical issues that surround distribution grid planning,...

  10. Nuclear Safety Basis Program Review Overview and Management Oversight...

    Office of Environmental Management (EM)

    Nuclear Safety Basis Program Review Overview and Management Oversight Standard Review Plan Nuclear Safety Basis Program Review Overview and Management Oversight Standard Review ...

  11. Nuclear Energy Advanced Modeling and Simulation (NEAMS) waste Integrated Performance and Safety Codes (IPSC) : gap analysis for high fidelity and performance assessment code development.

    SciTech Connect (OSTI)

    Lee, Joon H.; Siegel, Malcolm Dean; Arguello, Jose Guadalupe, Jr.; Webb, Stephen Walter; Dewers, Thomas A.; Mariner, Paul E.; Edwards, Harold Carter; Fuller, Timothy J.; Freeze, Geoffrey A.; Jove-Colon, Carlos F.; Wang, Yifeng

    2011-03-01

    This report describes a gap analysis performed in the process of developing the Waste Integrated Performance and Safety Codes (IPSC) in support of the U.S. Department of Energy (DOE) Office of Nuclear Energy Advanced Modeling and Simulation (NEAMS) Campaign. The goal of the Waste IPSC is to develop an integrated suite of computational modeling and simulation capabilities to quantitatively assess the long-term performance of waste forms in the engineered and geologic environments of a radioactive waste storage or disposal system. The Waste IPSC will provide this simulation capability (1) for a range of disposal concepts, waste form types, engineered repository designs, and geologic settings, (2) for a range of time scales and distances, (3) with appropriate consideration of the inherent uncertainties, and (4) in accordance with rigorous verification, validation, and software quality requirements. The gap analyses documented in this report were are performed during an initial gap analysis to identify candidate codes and tools to support the development and integration of the Waste IPSC, and during follow-on activities that delved into more detailed assessments of the various codes that were acquired, studied, and tested. The current Waste IPSC strategy is to acquire and integrate the necessary Waste IPSC capabilities wherever feasible, and develop only those capabilities that cannot be acquired or suitably integrated, verified, or validated. The gap analysis indicates that significant capabilities may already exist in the existing THC codes although there is no single code able to fully account for all physical and chemical processes involved in a waste disposal system. Large gaps exist in modeling chemical processes and their couplings with other processes. The coupling of chemical processes with flow transport and mechanical deformation remains challenging. The data for extreme environments (e.g., for elevated temperature and high ionic strength media) that are needed for repository modeling are severely lacking. In addition, most of existing reactive transport codes were developed for non-radioactive contaminants, and they need to be adapted to account for radionuclide decay and in-growth. The accessibility to the source codes is generally limited. Because the problems of interest for the Waste IPSC are likely to result in relatively large computational models, a compact memory-usage footprint and a fast/robust solution procedure will be needed. A robust massively parallel processing (MPP) capability will also be required to provide reasonable turnaround times on the analyses that will be performed with the code. A performance assessment (PA) calculation for a waste disposal system generally requires a large number (hundreds to thousands) of model simulations to quantify the effect of model parameter uncertainties on the predicted repository performance. A set of codes for a PA calculation must be sufficiently robust and fast in terms of code execution. A PA system as a whole must be able to provide multiple alternative models for a specific set of physical/chemical processes, so that the users can choose various levels of modeling complexity based on their modeling needs. This requires PA codes, preferably, to be highly modularized. Most of the existing codes have difficulties meeting these requirements. Based on the gap analysis results, we have made the following recommendations for the code selection and code development for the NEAMS waste IPSC: (1) build fully coupled high-fidelity THCMBR codes using the existing SIERRA codes (e.g., ARIA and ADAGIO) and platform, (2) use DAKOTA to build an enhanced performance assessment system (EPAS), and build a modular code architecture and key code modules for performance assessments. The key chemical calculation modules will be built by expanding the existing CANTERA capabilities as well as by extracting useful components from other existing codes.

  12. Achieving New Source Performance Standards (NSPS) Emission Standards Through Integration of Low-NOx Burners with an Optimization Plan for Boiler Combustion

    SciTech Connect (OSTI)

    Wayne Penrod

    2006-12-31

    The objective of this project was to demonstrate the use of an Integrated Combustion Optimization System to achieve NO{sub X} emission levels in the range of 0.15 to 0.22 lb/MMBtu while simultaneously enabling increased power output. The project plan consisted of the integration of low-NO{sub X} burners and advanced overfire air technology with various process measurement and control devices on the Holcomb Station Unit 1 boiler. The plan included the use of sophisticated neural networks or other artificial intelligence technologies and complex software to optimize several operating parameters, including NO{sub X} emissions, boiler efficiency, and CO emissions. The program was set up in three phases. In Phase I, the boiler was equipped with sensors that can be used to monitor furnace conditions and coal flow to permit improvements in boiler operation. In Phase II, the boiler was equipped with burner modifications designed to reduce NO{sub X} emissions and automated coal flow dampers to permit on-line fuel balancing. In Phase III, the boiler was to be equipped with an overfire air system to permit deep reductions in NO{sub X} emissions. Integration of the overfire air system with the improvements made in Phases I and II would permit optimization of boiler performance, output, and emissions. This report summarizes the overall results from Phases I and II of the project. A significant amount of data was collected from the combustion sensors, coal flow monitoring equipment, and other existing boiler instrumentation to monitor performance of the burner modifications and the coal flow balancing equipment.

  13. Low-level waste feed staging plan

    SciTech Connect (OSTI)

    Certa, P.J.; Grams, W.H.; McConville, C.M.; L. W. Shelton, L.W.; Slaathaug, E.J., Westinghouse Hanford

    1996-08-12

    The `Preliminary Low-Level Waste Feed Staging Plan` was updated to reflect the latest requirement in the Tank Waste Remediation Privatization Request for Proposals (RFP) and amendments. The updated plan develops the sequence and transfer schedule for retrieval of DST supernate by the management and integration contractor and delivery of the staged supernate to the private low-activity waste contractors for treatment. Two DSTs are allocated as intermediate staging tanks. A transfer system conflict analysis provides part of the basis for determining transfer system upgrade requirements to support both low-activity and high-level waste feed delivery. The intermediate staging tank architecture and retrieval system equipment are provided as a planning basis until design requirements documents are prepared. The actions needed to successfully implement the plan are identified. These include resolution of safety issues and changes to the feed envelope limits, minimum order quantities, and desired batch sizes.

  14. Facility effluent monitoring plan for the Plutonium Uranium Extraction Facility

    SciTech Connect (OSTI)

    Greager, E.M.

    1997-12-11

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438-01. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether these systems are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan will ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated, at a minimum, every 3 years.

  15. Facility effluent monitoring plan for the plutonium uranium extraction facility

    SciTech Connect (OSTI)

    Wiegand, D.L.

    1994-09-01

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438-01. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan shall ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated at a minimum of every three years.

  16. Integrated Safety Management System Guide

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-09-29

    The guide provide DOE line management information useful for implementing the provisions of DOE P 450.4A and the requirements and responsibilities of DOE O 450.2. Supersedes DOE G 450.4-1B and DOE G 450.3-3.

  17. Environmental Management System Plan

    SciTech Connect (OSTI)

    Fox, Robert; Thorson, Patrick; Horst, Blair; Speros, John; Rothermich, Nancy; Hatayama, Howard

    2009-03-24

    Executive Order 13423, Strengthening Federal Environmental, Energy, and Transportation Management establishes the policy that Federal agencies conduct their environmental, transportation, and energy-related activities in a manner that is environmentally, economically and fiscally sound, integrated, continually improving, efficient, and sustainable. The Department of Energy (DOE) has approved DOE Order 450.1A, Environmental Protection Program and DOE Order 430.2B, Departmental Energy, Renewable Energy and Transportation Management as the means of achieving the provisions of this Executive Order. DOE Order 450.1A mandates the development of Environmental Management Systems (EMS) to implement sustainable environmental stewardship practices that: (1) Protect the air, water, land, and other natural and cultural resources potentially impacted by facility operations; (2) Meet or exceed applicable environmental, public health, and resource protection laws and regulations; and (3) Implement cost-effective business practices. In addition, the DOE Order 450.1A mandates that the EMS must be integrated with a facility's Integrated Safety Management System (ISMS) established pursuant to DOE P 450.4, 'Safety Management System Policy'. DOE Order 430.2B mandates an energy management program that considers energy use and renewable energy, water, new and renovated buildings, and vehicle fleet activities. The Order incorporates the provisions of the Energy Policy Act of 2005 and Energy Independence and Security Act of 2007. The Order also includes the DOE's Transformational Energy Action Management initiative, which assures compliance is achieved through an Executable Plan that is prepared and updated annually by Lawrence Berkeley National Laboratory (LBNL, Berkeley Lab, or the Laboratory) and then approved by the DOE Berkeley Site Office. At the time of this revision to the EMS plan, the 'FY2009 LBNL Sustainability Executable Plan' represented the most current Executable Plan. These DOE Orders and associated policies establish goals and sustainable stewardship practices that are protective of environmental, natural, and cultural resources, and take a life cycle approach that considers aspects such as: (1) Acquisition and use of environmentally preferable products; (2) Electronics stewardship; (3) Energy conservation, energy efficiency, and renewable energy; (4) Pollution prevention, with emphasis on toxic and hazardous chemical and material reduction; (5) Procurement of efficient energy and water consuming materials and equipment; (6) Recycling and reuse; (7) Sustainable and high-performance building design; (8) Transportation and fleet management; and (9) Water conservation. LBNL's approach to sustainable environmental stewardship required under Order 450.1A poses the challenge of implementing its EMS in a compliance-based, performance-based, and cost-effective manner. In other words, the EMS must deliver real and tangible business value at a minimal cost. The purpose of this plan is to describe Berkeley Lab's approach for achieving such an EMS, including an overview of the roles and responsibilities of key Laboratory parties. This approach begins with a broad-based environmental policy consistent with that stated in Chapter 11 of the LBNL Health and Safety Manual (PUB-3000). This policy states that Berkeley Lab is committed to the following: (1) Complying with applicable environmental, public health, and resource conservation laws and regulations. (2) Preventing pollution, minimizing waste, and conserving natural resources. (3) Correcting environmental hazards and cleaning up existing environmental problems, and (4) Continually improving the Laboratory's environmental performance while maintaining operational capability and sustaining the overall mission of the Laboratory. A continual cycle of planning, implementing, evaluating, and improving processes will be performed to achieve goals, objectives, and targets that will help LBNL carry out this policy. Each year, environmental aspects will be identified and their impacts to the environm

  18. Microbiological, Geochemical and Hydrologic Processes Controlling Uranium Mobility: An Integrated Field-Scale Subsurface Research Challenge Site at Rifle, Colorado, Quality Assurance Project Plan

    SciTech Connect (OSTI)

    Fix, N. J.

    2008-01-07

    The U.S. Department of Energy (DOE) is cleaning up and/or monitoring large, dilute plumes contaminated by metals, such as uranium and chromium, whose mobility and solubility change with redox status. Field-scale experiments with acetate as the electron donor have stimulated metal-reducing bacteria to effectively remove uranium [U(VI)] from groundwater at the Uranium Mill Tailings Site in Rifle, Colorado. The Pacific Northwest National Laboratory and a multidisciplinary team of national laboratory and academic collaborators has embarked on a research proposed for the Rifle site, the object of which is to gain a comprehensive and mechanistic understanding of the microbial factors and associated geochemistry controlling uranium mobility so that DOE can confidently remediate uranium plumes as well as support stewardship of uranium-contaminated sites. This Quality Assurance Project Plan provides the quality assurance requirements and processes that will be followed by the Rifle Integrated Field-Scale Subsurface Research Challenge Project.

  19. Fluor Hanford Integrated Safety Management System Phase 1 Verification 04/12/2000 Thru 04/28/2000 Volume 1 and 2

    SciTech Connect (OSTI)

    PARSONS, J.E.

    2000-03-01

    The U.S. Department of Energy (DOE) commits to accomplishing its mission safely. To ensure this objective is met, DOE issued DOE P 450.4, Safety Management System Policy, and incorporated safety management into the DOE Acquisition Regulations ([DEAR] 48 CFR 970.5204-2 and 90.5204-78).

  20. CITSS Project Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CITSS Project Plan CITSS Project Plan The Customer Information Technology Support System (CITSS) Training Plan, from an actual DOE Commercial Off-The-Shelf (COTS) software integration project, can be used as a template to facilitate the creation of the training plan for your particular project. PDF icon CITSS Project Plan More Documents & Publications CITSS Project Plan Software Configuration Management Plan Training Plan

  1. Environmental planning and categorical exclusions: Making the categorical exclusion an integral part of your NEPA tool kit

    SciTech Connect (OSTI)

    Holthoff, M.G.; Hanrahan, T.P.

    1994-06-01

    As contained in the Regulations for Implementing the Procedural Provisions of the National Environmental Policy Act, 40 CFR 1500--1508, the Council on Environmental Quality (CEQ) directs federal agencies to adopt their own procedures for implementing the Act. The US Department of Energy (DOE) and the US Department of Agriculture Forest Service (USFS) are two examples of federal agencies with dissimilar but functionally equivalent CX processes. The DOE and USFS were selected as subjects for this study because of their distinctly different missions and as a results of the author`s familiarity with the policies of both agencies. The objectives of this study are to: (1) describe the CX policies and processes of the two agencies, (2) identify the similarities and differences between the two processes, and (3) suggest ways for improving these processes. In performing this evaluation, the authors will identify the components of each agency`s CX process that clearly contributes qualitative information for the purpose of making environmental planning decisions. Drawing from the best elements of each process, the authors will provide some general recommendations that should enable the agencies to fulfill their various obligations to the CX process while concurrently performing early, thorough, and expeditious environmental reviews under NEPA.

  2. Health & Safety

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Health & Safety Health & Safety1354608000000Health & SafetySome of these resources are LANL-only and will require Remote Access.NoQuestions? 667-5809library@lanl.gov Health &...

  3. Seismic Safety Guide

    SciTech Connect (OSTI)

    Eagling, D.G.

    1983-09-01

    This guide provides managers with practical guidelines for administering a comprehensive earthquake safety program. The Guide is comprehensive with respect to earthquakes in that it covers the most important aspects of natural hazards, site planning, evaluation and rehabilitation of existing buildings, design of new facilities, operational safety, emergency planning, special considerations related to shielding blocks, non-structural elements, lifelines, fire protection and emergency facilities. Management of risk and liabilities is also covered. Nuclear facilities per se are not dealt with specifically. The principles covered also apply generally to nuclear facilities but the design and construction of such structures are subject to special regulations and legal controls.

  4. Site Sustainability Plan

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 DOE ORDER 436.1 SITE SUSTAINABILITY PLAN Princeton Plasma Physics Laboratory PPPL is operated by Princeton University for the U.S. Department of Energy under contract DE-AC02-09CH1 PLAN APPROVAL Robert S. Sheneman Deputy Head Environment, Safety, Health & Security Department Michael Viola Head, Facilities & Site Services Division Jerry D. Levine Head, Environment, Safety, Health & Security Department William B. Davis Head, Information Technology Department, CIO Michael D. Williams

  5. Integrated Project Team RM

    Office of Environmental Management (EM)

    DOE-STD-1189-2008, Integration of Safety into the Design Process, and EM's internal business management practices. The SRP follows the Critical Decision (CD) process and...

  6. Use of Frequency Response Metrics to Assess the Planning and Operating Requirements for Reliable Integration of Variable Renewable Generation

    SciTech Connect (OSTI)

    Eto, Joseph H.; Undrill, John; Mackin, Peter; Daschmans, Ron; Williams, Ben; Haney, Brian; Hunt, Randall; Ellis, Jeff; Illian, Howard; Martinez, Carlos; O'Malley, Mark; Coughlin, Katie; LaCommare, Kristina Hamachi

    2010-12-20

    An interconnected electric power system is a complex system that must be operated within a safe frequency range in order to reliably maintain the instantaneous balance between generation and load. This is accomplished by ensuring that adequate resources are available to respond to expected and unexpected imbalances and restoring frequency to its scheduled value in order to ensure uninterrupted electric service to customers. Electrical systems must be flexible enough to reliably operate under a variety of"change" scenarios. System planners and operators must understand how other parts of the system change in response to the initial change, and need tools to manage such changes to ensure reliable operation within the scheduled frequency range. This report presents a systematic approach to identifying metrics that are useful for operating and planning a reliable system with increased amounts of variable renewable generation which builds on existing industry practices for frequency control after unexpected loss of a large amount of generation. The report introduces a set of metrics or tools for measuring the adequacy of frequency response within an interconnection. Based on the concept of the frequency nadir, these metrics take advantage of new information gathering and processing capabilities that system operators are developing for wide-area situational awareness. Primary frequency response is the leading metric that will be used by this report to assess the adequacy of primary frequency control reserves necessary to ensure reliable operation. It measures what is needed to arrest frequency decline (i.e., to establish frequency nadir) at a frequency higher than the highest set point for under-frequency load shedding within an interconnection. These metrics can be used to guide the reliable operation of an interconnection under changing circumstances.

  7. Safety Software Quality Assurance Functional Area Qualification Standard

    Energy Savers [EERE]

    of Energy Safety Planning Guidance for Hydrogen and Fuel Cell Projects Safety Planning Guidance for Hydrogen and Fuel Cell Projects Hydrogen and fuel cell project safety by U.S. Department of Energy, Fuel Cell Technologies Program PDF icon safety_guidance.pdf More Documents & Publications Safety Planning Guidance for Hydrogen and Fuel Cell Projects H2 Refuel H-Prize Safety Guidance Webinar H2 Refuel H-Prize Safety Guidance Webinar H2 Safety Snapshot - Vol. 2, Issue 2, July 2011

    2-2011

  8. SINGLE-SHELL TANK INTEGRITY PROJECT ANALYSIS OF RECORD-PRELIMINARY MODELING PLAN FOR THERMAL AND OPERATING LOADS

    SciTech Connect (OSTI)

    RAST RS; RINKER MW; BAPANAALLI SK; DEIBLER JE; GUZMAN-LEONG CE; JOHNSON KI; KARRI NK; PILLI SP; SANBORN SE

    2010-10-22

    This document is a Phase I deliverable for the Single-Shell Tank Analysis of Record effort. This document is not the Analysis of Record. The intent of this document is to guide the Phase II detailed modeling effort. Preliminary finite element models for each of the tank types were developed and different case studies were performed on one or more of these tank types. Case studies evaluated include thermal loading, waste level variation, the sensitivity of boundary effects (soil radial extent), excavation slope or run to rise ratio, soil stratigraphic (property and layer thickness) variation at different farm locations, and concrete material property variation and their degradation under thermal loads. The preliminary analysis document reviews and preliminary modeling analysis results are reported herein. In addition, this report provides recommendations for the next phase of the SST AOR project, SST detailed modeling. Efforts and results discussed in this report do not include seismic modeling as seismic modeling is covered by a separate report. The combined results of both static and seismic models are required to complete this effort. The SST AOR project supports the US Department of Energy's (DOE) Office of River Protection (ORP) mission for obtaining a better understanding of the structural integrity of Hanford's SSTs. The 149 SSTs, with six different geometries, have experienced a range of operating histories which would require a large number of unique analyses to fully characterize their individual structural integrity. Preliminary modeling evaluations were conducted to determine the number of analyses required for adequate bounding of each of the SST tank types in the Detailed Modeling Phase of the SST AOR Project. The preliminary modeling was conducted in conjunction with the Evaluation Criteria report, Johnson et al. (2010). Reviews of existing documents were conducted at the initial stage of preliminary modeling. These reviews guided the topics that were explored in the SST preliminary modeling. The reviews determined the level of detail necessary to perform the analyses of the SSTs. To guide the Phase II detailed modeling effort, preliminary finite element models for each of the tank types were developed and different case studies were performed on one or more of these tank types. Case studies evaluated include thermal loading, waste level variation, the sensitivity of boundary effects (soil radial extent), excavation slope or run to rise ratio, soil stratigraphic (property and layer thickness) variation at different farm locations, and concrete material property variation and their degradation under thermal loads. Conclusions were derived from case studies on one of the tank types when no additional runs of similar cases on other types of tanks were found necessary to derive those conclusions. The document reviews provided relatively complete temperature histories for Type IV tanks. The temperature history data for Type I, II, and III tanks was almost nonexistent for years prior to 1975. Document reviews indicate that there might be additional useful data in the US Department of Energy, Richland Operations Office (DOE-RL) records in Seattle, WA, and these records need to be reviewed to extract data that might have been disregarded during previous reviews. Thermal stress analyses were conducted using different temperature distribution scenarios on Type IV tanks. Such studies could not be carried out for other tank types due to lack of temperature history data. The results from Type IV tank analyses indicate that factors such as temperature distribution in the tank waste and rate of rise in waste temperature have a significant impact on the thermal stresses in the tank structures. Overall, the conclusion that can drawn from the thermal stress analyses is that these studies should be carried out for all tank types during the detailed analysis phase with temperature values that are reasonably close to the typical temperature histories of the respective tank types. If and/or when additional waste temperature data is acquired for tank Type I, II, and III tanks, additional cases need to be considered as tank structural integrity is sensitive to thermal loads. A few case studies were also performed using Type IV-b models to comprehend the effects of excavation boundaries, change in soil stratigraphy (layer thickness and properties), and radial extent of soil in the finite element models. The result from the case studies indicates that the slight variation in soil stratigraphy has little effects on the tank sections force and moment demands under mechanical loads. The case study for excavation slope or backfill transition boundary indicated that inclusion of such boundary yields conservative demands in the wall region while demands at other locations remain unaffected. Hence this excavation slope will be modeled in the detailed analysis of SSTs.

  9. Environment, Safety, and Health Special Review, Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Centers Approach to Nanoscale Environment, Safety, and Health, and other applicable requirements including 10 C.F.R. Part 851 and DOE's integrated safety management policy. ...

  10. Hanford Site Safety Standards - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (DOE) Office of Health, Safety and Security (HSS) Corrective Action Plan Hanford Site Chronic Beryllium Disease Prevention Program (CBDPP) DOE-0342, Hanford Site Chronic Beryllium...

  11. Nanomaterial Laboratory Safety, Boise State University | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A nanomaterial, as defined by The ASTM Committee on Nanotechnology, is a particle ... Safety Implementation Plan, Ames Laboratory Approaches to Safe Nanotechnology

  12. Safety | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Safety Argonne National Laboratory and the U.S. Department of Energy (DOE) are very concerned about the well-being of all employees. Students at the undergraduate and graduate level as well as postdoctoral appointees form an essential component of the research endeavor at the laboratory. However, research does not stand alone but must be integrated into a program of environment, safety, and security. From time to time, incidents regarding students and postdocs occur across the DOE complex. It is

  13. Technical Planning Basis - DOE Directives, Delegations, and Requiremen...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2, Technical Planning Basis by David Freshwater Functional areas: Defense Nuclear Facility Safety and Health Requirement, Safety and Security, The Guide assists DOENNSA field...

  14. Energy Planning

    Energy Savers [EERE]

    Energy Planning Agenda * What is energy planning? * The process * The plan * Strategic Energy Planning (SEP) Workbook * Other resources 2 What is Energy Planning? * Brings desired ...

  15. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2000-11-20

    The objective of this Order is to establish facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation. The Order has Change 1 dated 11-16-95, Change 2 dated 10-24-96, and the latest Change 3 dated 11-22-00 incorporated. The latest change satisfies a commitment made to the Defense Nuclear Facilities Safety Board (DNFSB) in response to DNFSB recommendation 97-2, Criticality Safety.

  16. Facility Effluent Monitoring Plan for the Plutonium Finishing Plant (PFP)

    SciTech Connect (OSTI)

    FRAZIER, T.P.

    1999-10-01

    A facility effluent monitoring plan is required by the U. S. Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether these systems are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. To ensure the long-range integrity of the effluent monitoring systems, an update to this facility effluent monitoring plan is required whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document is reviewed annually even if there are no operational changes, and is updated, at a minimum, every 3 years.

  17. BIGHORN SHEEP: SUPPLEMENTAL ANALYSIS TO THE FOREST PLAN ENVIRONMENTAL IMPACT STATEMENT„INTERDISCIPLINARY TEAM MEETING

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4/10/13 Page 1 of 2 TANK WASTE COMMITTEE - 3 MONTH WORK PLAN (SUBJECT TO REVISION) May Committee meeting placeholder: Wednesday, May 8 Committee call placeholder: Tuesday, May 14 @ 3:00 p.m. * Advice responses - Advice #263 Double-Shell Tank Integrity * Advice development regarding DST AY-102 * Budget outcomes - impacts to work due to budget (including impacts to integrity programs) * Committee Business HSEP's agenda topics, joint with TWC: * Follow up on safety culture progress (DOE-ORP - Steve

  18. Nuclear Explosive Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-01-26

    This Department of Energy (DOE) Order establishes requirements to implement the nuclear explosive safety (NES) elements of DOE O 452.1E, Nuclear Explosive and Weapon Surety Program, or successor directive, for routine and planned nuclear explosive operations (NEOs). Supersedes DOE O 452.2D and DOE M 452.2-1A.

  19. Nuclear Explosive Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2006-06-12

    The directive establishes specific nuclear explosive safety (NES) program requirements to implement the DOE NES standards and other NES criteria for routine and planned nuclear explosive operations. Cancels DOE O 452.2B. Canceled by DOE O 452.2D.

  20. Nuclear Explosive Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-04-14

    This Department of Energy (DOE) Order establishes requirements to implement the nuclear explosive safety (NES) elements of DOE O 452.1D, Nuclear Explosive and Weapon Surety Program, for routine and planned nuclear explosive operations (NEOs). Cancels DOE O 452.2C. Admin Chg 1, dated 7-10-13, cancels DOE O 452.2D.

  1. Nuclear Explosive Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-04-14

    This Order establishes requirements to implement the nuclear explosive safety elements of DOE O 452.1D, Nuclear Explosive and Weapon Surety Program, for routine and planned nuclear explosive operations. Cancels DOE O 452.2C. Admin Chg 1, 7-10-13

  2. Used Nuclear Fuel Loading and Structural Performance Under Normal Conditions of Transport - Modeling, Simulation and Experimental Integration RD&D Plan

    SciTech Connect (OSTI)

    Adkins, Harold E.

    2013-04-01

    Under current U.S. Nuclear Regulatory Commission regulation, it is not sufficient for used nuclear fuel (UNF) to simply maintain its integrity during the storage period, it must maintain its integrity in such a way that it can withstand the physical forces of handling and transportation associated with restaging the fuel and moving it to treatment or recycling facilities, or a geologic repository. Hence it is necessary to understand the performance characteristics of aged UNF cladding and ancillary components under loadings stemming from transport initiatives. Researchers would like to demonstrate that enough information, including experimental support and modeling and simulation capabilities, exists to establish a preliminary determination of UNF structural performance under normal conditions of transport (NCT). This research, development and demonstration (RD&D) plan describes a methodology, including development and use of analytical models, to evaluate loading and associated mechanical responses of UNF rods and key structural components. This methodology will be used to provide a preliminary assessment of the performance characteristics of UNF cladding and ancillary components under rail-related NCT loading. The methodology couples modeling and simulation and experimental efforts currently under way within the Used Fuel Disposition Campaign (UFDC). The methodology will involve limited uncertainty quantification in the form of sensitivity evaluations focused around available fuel and ancillary fuel structure properties exclusively. The work includes collecting information via literature review, soliciting input/guidance from subject matter experts, performing computational analyses, planning experimental measurement and possible execution (depending on timing), and preparing a variety of supporting documents that will feed into and provide the basis for future initiatives. The methodology demonstration will focus on structural performance evaluation of Westinghouse WE 17×17 pressurized water reactor fuel assemblies with a discharge burnup range of 30-58 GWd/MTU (assembly average), loaded in a representative high-capacity (≥32 fuel rod assemblies) transportation package. Evaluations will be performed for representative normal conditions of rail transport involving a rail conveyance capable of meeting the Association of American Railroads (AAR) S-2043 specification. UNF modeling is anticipated to be defined to the pellet-cladding level and take in to account influences associated with spacer grids, intermediate fluid mixers, and control components. The influence of common degradation issues such as ductile-to-brittle-transition will also be accounted for. All model development and analysis will be performed with commercially available software packages exclusively. Inputs and analyses will be completely documented, all supporting information will be traceable, and bases will be defendable so as to be most useful to the U.S. Department of Energy community and mission. The expected completion date is the end of fiscal year (FY) 2013.

  3. Safety and emergency preparedness considerations for geotechnical field operations

    SciTech Connect (OSTI)

    Wemple, R.P.

    1989-04-01

    The GEO Energy Technology Department at Sandia National Laboratories is involved in several remote-site drilling and/or experimental operations each year. In 1987, the Geothermal Research Division of the Department developed a general set of Safe Operating Procedures (SOPs) that could be applied to a variety of projects. This general set is supplemented by site-specific SOPs as needed. Effective field operations require: integration of safety and emergency preparedness planning with overall project planning, training of field personnel and inventorying of local emergency support resources, and, developing a clear line of responsibility and authority to enforce the safety requirements. Copies of SOPs used in recent operations are included as examples of working documents for the reader.

  4. Electronic Safety Resource Tools -- Supporting Hydrogen and Fuel Cell Commercialization

    SciTech Connect (OSTI)

    Barilo, Nick F.

    2014-09-29

    The Pacific Northwest National Laboratory (PNNL) Hydrogen Safety Program conducted a planning session in Los Angeles, CA on April 1, 2014 to consider what electronic safety tools would benefit the next phase of hydrogen and fuel cell commercialization. A diverse, 20-person team led by an experienced facilitator considered the question as it applied to the eight most relevant user groups. The results and subsequent evaluation activities revealed several possible resource tools that could greatly benefit users. The tool identified as having the greatest potential for impact is a hydrogen safety portal, which can be the central location for integrating and disseminating safety information (including most of the tools identified in this report). Such a tool can provide credible and reliable information from a trustworthy source. Other impactful tools identified include a codes and standards wizard to guide users through a series of questions relating to application and specific features of the requirements; a scenario-based virtual reality training for first responders; peer networking tools to bring users from focused groups together to discuss and collaborate on hydrogen safety issues; and a focused tool for training inspectors. Table ES.1 provides results of the planning session, including proposed new tools and changes to existing tools.

  5. Safety and Security Interface Technology Initiative

    SciTech Connect (OSTI)

    Dr. Michael A. Lehto; Kevin J. Carroll; Dr. Robert Lowrie

    2007-05-01

    Safety and Security Interface Technology Initiative Mr. Kevin J. Carroll Dr. Robert Lowrie, Dr. Micheal Lehto BWXT Y12 NSC Oak Ridge, TN 37831 865-576-2289/865-241-2772 carrollkj@y12.doe.gov Work Objective. Earlier this year, the Energy Facility Contractors Group (EFCOG) was asked to assist in developing options related to acceleration deployment of new security-related technologies to assist meeting design base threat (DBT) needs while also addressing the requirements of 10 CFR 830. NNSA NA-70, one of the working group participants, designated this effort the Safety and Security Interface Technology Initiative (SSIT). Relationship to Workshop Theme. Supporting Excellence in Operations Through Safety Analysis, (workshop theme) includes security and safety personnel working together to ensure effective and efficient operations. One of the specific workshop elements listed in the call for papers is Safeguards/Security Integration with Safety. This paper speaks directly to this theme. Description of Work. The EFCOG Safety Analysis Working Group (SAWG) and the EFCOG Security Working Group formed a core team to develop an integrated process involving both safety basis and security needs allowing achievement of the DBT objectives while ensuring safety is appropriately considered. This effort garnered significant interest, starting with a two day breakout session of 30 experts at the 2006 Safety Basis Workshop. A core team was formed, and a series of meetings were held to develop that process, including safety and security professionals, both contractor and federal personnel. A pilot exercise held at Idaho National Laboratory (INL) in mid-July 2006 was conducted as a feasibility of concept review. Work Results. The SSIT efforts resulted in a topical report transmitted from EFCOG to DOE/NNSA in August 2006. Elements of the report included: Drivers and Endstate, Control Selections Alternative Analysis Process, Terminology Crosswalk, Safety Basis/Security Documentation Integration, Configuration Control, and development of a shared tool box of information/successes. Specific Benefits. The expectation or end state resulting from the topical report and associated implementation plan includes: (1) A recommended process for handling the documentation of the security and safety disciplines, including an appropriate change control process and participation by all stakeholders. (2) A means to package security systems with sufficient information to help expedite the flow of that system through the process. In addition, a means to share successes among sites, to include information and safety basis to the extent such information is transportable. (3) Identification of key security systems and associated essential security elements being installed and an arrangement for the sites installing these systems to host an appropriate team to review a specific system and determine what information is exportable. (4) Identification of the security systems essential elements and appropriate controls required for testing of these essential elements in the facility. (5) The ability to help refine and improve an agreed to control set at the manufacture stage.

  6. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2012-12-04

    The Order establishes facility and programmatic safety requirements for DOE and NNSA for nuclear safety design criteria, fire protection, criticality safety, natural phenomena hazards (NPH) mitigation, and System Engineer Program. This Page Change is limited in scope to changes necessary to invoke DOE-STD-1104, Review and Approval of Nuclear Facility Safety Basis and Safety Design Basis Document, and revised DOE-STD-3009-2014, Preparation of Nonreactor Nuclear Facility Documented Safety Analysis as required methods. DOE O 420.1C Chg 1, dated 2-27-15, supersedes DOE O 420.1C.

  7. 2011 Annual Workforce Analysis and Staffing Plan Report - Oak...

    Energy Savers [EERE]

    safety assurance. PDF icon 2011 Annual Workforce Analysis and Staffing Plan Report - ORO More Documents & Publications 2010 Annual Workforce Analysis and Staffing Plan Report -...

  8. Safety Issues

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Site Safety Orientation April, 2015 Atmospheric Radiation Measurement Climate Research ... with operations at the Atmospheric Radiation Measurement Climate Research Facility...

  9. Biological Safety

    Broader source: Energy.gov [DOE]

    The DOE's Biological Safety Program provides a forum for the exchange of best practices, lessons learned, and guidance in the area of biological safety. This content is supported by the Biosurety Executive Team. The Biosurety Executive Team is a DOE-chartered group. The DOE Office of Worker Safety and Health Policy provides administrative support for this group. The group identifies biological safety-related issues of concern to the DOE and pursues solutions to issues identified.

  10. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2012-12-04

    The Order establishes facility and programmatic safety requirements for DOE and NNSA for nuclear safety design criteria, fire protection, criticality safety, natural phenomena hazards (NPH) mitigation, and System Engineer Program. Cancels DOE O 420.1B, DOE G 420.1-2 and DOE G 420.1-3.

  11. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-12-22

    This Order establishes facility and programmatic safety requirements for Department of Energy facilities, which includes nuclear and explosives safety design criteria, fire protection, criticality safety, natural phenomena hazards mitigation, and the System Engineer Program. Cancels DOE O 420.1A. DOE O 420.1B Chg 1 issued 4-19-10.

  12. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-10-13

    Establishes facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation. Cancels DOE 5480.7A, DOE 5480.24, DOE 5480.28 and Division 13 of DOE 6430.1A. Canceled by DOE O 420.1A.

  13. Sandia National Laboratories: News: Publications: Strategic Plan

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Strategic Plan Sandia's FY16-FY20 Strategic Plan both reflects our continued dedication to the work we do and reinforces the importance of the integrated Laboratories'...

  14. ORISE: Safety is our top priority

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Safety Integrated Safety Management Voluntary Protection Program VPP Star Status Environment Work Smart Standards Oak Ridge Institute for Science Education Safety at ORISE At the Oak Ridge Institute for Science and Education (ORISE) safety is our number one priority. We not only have a tradition of safety at work, but strongly encourage our employees to carry this mindset beyond the workplace and into their homes and communities. Employees are trained in how to work safely and are required to

  15. Independent Oversight Focused Safety Management Evaluation, Idaho...

    Broader source: Energy.gov (indexed) [DOE]

    January 2001 Focused Safety Management Evaluation of the Idaho National Engineering and Environmental Laboratory This report provides the results of an evaluation of the integrated...

  16. Environmental Monitoring Plan, Revision 6

    SciTech Connect (OSTI)

    Gallegos, G M; Bertoldo, N A; Blake, R G; Campbell, C G; Grayson, A R; Nelson, J C; Revelli, M A; Rosene, C A; Wegrecki, T; Williams, R A; Wilson, K R; Jones, H E

    2012-03-02

    The purpose of environmental monitoring is to promote the early identification of, and response to, potential adverse environmental impacts associated with Lawrence Livermore National Laboratory (LLNL) operations. Environmental monitoring supports the Integrated Safety Management System (ISMS), International Organization for Standardization (ISO) 14001 Environmental Management Systems standard, and U. S. Department of Energy (DOE) Order 458.1, Radiation Protection of the Public and the Environment. Specifically, environmental monitoring enables LLNL to detect, characterize, and respond to releases from LLNL activities; assess impacts; estimate dispersal patterns in the environment; characterize the pathways of exposure to members of the public; characterize the exposures and doses to individuals and to the population; and to evaluate the potential impacts to the biota in the vicinity of LLNL. Environmental monitoring is also a major component of compliance demonstration for permits and other regulatory requirements. The Environmental Monitoring Plan (EMP) addresses the sample collection and analytical work supporting environmental monitoring to ensure the following: (1) A consistent system for collecting, assessing, and documenting environmental data of known and documented quality; (2) A validated and consistent approach for sampling and analysis of samples to ensure laboratory data meets program-specific needs and requirements within the framework of a performance-based approach for analytical laboratory work; and (3) An integrated sampling approach to avoid duplicative data collection. LLNL prepares the EMP because it provides an organizational framework for ensuring that environmental monitoring work, which is integral to the implementation of LLNL's Environmental Management System, is conducted appropriately. Furthermore, the Environmental Monitoring Plan helps LLNL ensure compliance with DOE Order 231.1 Change 2, Environment, Safety and Health Reporting, which require the publication of an annual report that characterizes the site's environmental management performance. To summarize, the general regulatory drivers for this environmental monitoring plan are ISO 14001, DOE Order 458.1, and DOE Order 231.1. The environmental monitoring addressed by this plan includes preoperational characterization and assessment, effluent and surveillance monitoring, and permit and regulatory compliance monitoring. Additional environmental monitoring is conducted at LLNL as part of compliance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA, also known as Superfund). LLNL coordinates its ground water surveillance monitoring program with the CERCLA monitoring program to gain sampling efficiencies.

  17. Carlsbad Industrial Safety and Health PIA, Carlsbad Field Offce...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Integrated Safety Management Workshop Registration, PIA, Idaho National Laboratory Occupational Medicine - Assistant PIA, Idaho National Laboratory Occupational Injury & Illness ...

  18. Distribution Integrity Management Plant (DIMP)

    SciTech Connect (OSTI)

    Gonzales, Jerome F.

    2012-05-07

    This document is the distribution integrity management plan (Plan) for the Los Alamos National Laboratory (LANL) Natural Gas Distribution System. This Plan meets the requirements of 49 CFR Part 192, Subpart P Distribution Integrity Management Programs (DIMP) for the LANL Natural Gas Distribution System. This Plan was developed by reviewing records and interviewing LANL personnel. The records consist of the design, construction, operation and maintenance for the LANL Natural Gas Distribution System. The records system for the LANL Natural Gas Distribution System is limited, so the majority of information is based on the judgment of LANL employees; the maintenance crew, the Corrosion Specialist and the Utilities and Infrastructure (UI) Civil Team Leader. The records used in this report are: Pipeline and Hazardous Materials Safety Administration (PHMSA) 7100.1-1, Report of Main and Service Line Inspection, Natural Gas Leak Survey, Gas Leak Response Report, Gas Leak and Repair Report, and Pipe-to-Soil Recordings. The specific elements of knowledge of the infrastructure used to evaluate each threat and prioritize risks are listed in Sections 6 and 7, Threat Evaluation and Risk Prioritization respectively. This Plan addresses additional information needed and a method for gaining that data over time through normal activities. The processes used for the initial assessment of Threat Evaluation and Risk Prioritization are the methods found in the Simple, Handy Risk-based Integrity Management Plan (SHRIMP{trademark}) software package developed by the American Pipeline and Gas Agency (APGA) Security and Integrity Foundation (SIF). SHRIMP{trademark} uses an index model developed by the consultants and advisors of the SIF. Threat assessment is performed using questions developed by the Gas Piping Technology Company (GPTC) as modified and added to by the SHRIMP{trademark} advisors. This Plan is required to be reviewed every 5 years to be continually refined and improved. Records for all piping system installed after the effective date of this Plan will be captured and retained in the UI records documentation system. Primary Utility Asbuilts are maintained by Utilities Mapping (UMAP) and additional records are maintained on the N drive. Engineering Change Notices (ECNs) are stored on the N drive under configuration management and kept up by Utilities and Infrastructure Division Office (UI-DO). Records include, at a minimum, the location where new piping and appurtenances are installed and the material of which they are constructed.

  19. Annual report to Congress. Department of Energy activities relating to the Defense Nuclear Facilities Safety Board, calendar year 2000

    SciTech Connect (OSTI)

    2001-03-01

    This Annual Report to the Congress describes the Department of Energy's activities in response to formal recommendations and other interactions with the Defense Nuclear Facilities Safety Board. During 2000, the Department completed its implementation and proposed closure of one Board recommendation and completed all implementation plan milestones associated with two additional Board recommendations. Also in 2000, the Department formally accepted two new Board recommendations and developed implementation plans in response to those recommendations. The Department also made significant progress with a number of broad-based safety initiatives. These include initial implementation of integrated safety management at field sites and within headquarters program offices, issuance of a nuclear safety rule, and continued progress on stabilizing excess nuclear materials to achieve significant risk reduction.

  20. Review and Approval of Nuclear Facility Safety Basis and Safety Design Basis Documents

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2014-12-19

    This Standard describes a framework and the criteria to be used for approval of (1) safety basis documents, as required by 10 Code of Federal Regulation (C.F.R.) 830, Nuclear Safety Management, and (2) safety design basis documents, as required by Department of Energy (DOE) Standard (STD)-1189-2008, Integration of Safety into the Design Process.

  1. Twenty-First Water Reactor Safety Information Meeting. Volume 3, Primary system integrity; Aging research, products and applications; Structural and seismic engineering; Seismology and geology: Proceedings

    SciTech Connect (OSTI)

    Monteleone, S.

    1994-04-01

    This three-volume report contains 90 papers out of the 102 that were presented at the Twenty-First Water Reactor Safety Information Meeting held at the Bethesda Marriott Hotel, Bethesda, Maryland, during the week of October 25-27, 1993. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included papers presented by researchers from France, Germany, Japan, Russia, Switzerland, Taiwan, and United Kingdom. The titles of the papers and the names of the authors have been updated and may differ from those that appeared in the final program of the meeting. Selected papers were indexed separately for inclusion in the Energy Science and Technology Database.

  2. Workforce Plans | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Workforce Plans Workforce Plans Workforce Planning is an integral part of the human capital planning process. The intent of every workforce planning effort is to ensure that organizations have the resources necessary to meet mission requirements and program priorities. To achieve this intent, organizations must first identify and understand those mission requirements and program priorities; typically through Strategic Planning. These goals and objectives not only provide the basis for

  3. ARM - ARM Safety Policy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Safety Policy About Become a User Recovery Act Mission FAQ Outreach Displays History Organization Participants Facility Statistics Forms Contacts Facility Documents ARM Management Plan (PDF, 1.3MB) Field Campaign Guidelines (PDF, 574KB) ARM Climate Research Facility Expansion Workshop (PDF, 1.46MB) Facility Activities ARM and the Recovery Act Contributions to International Polar Year Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send ARM Safety

  4. Oak Ridge National Laboratory Corrective Action Plan in response to Tiger Team assessment

    SciTech Connect (OSTI)

    Kuliasha, Michael A.

    1991-08-23

    This report presents a complete response to the Tiger Team assessment that was conducted to Oak Ridge National Laboratory (ORNL) and at the US Department of Energy (DOE) Oak Ridge Operations Office (ORO) from October 2, 1990, through November 30, 1990. The action plans have undergone both a discipline review and a cross-cutting review with respect to root cause. In addition, the action plans have been integrated with initiatives being pursued across Martin Marietta Energy Systems, Inc., in response to Tiger Team findings at other DOE facilities operated by Energy Systems. The root cause section is complete and describes how ORNL intends to address the root cause of the findings identified during the assessment. This report is concerned with reactors safety and health findings, responses, and planned actions. Specific areas include: organization and administration; quality verification; operations; maintenance; training and certification; auxiliary systems; emergency preparedness; technical support; nuclear criticality safety; security/safety interface; experimental activities; site/facility safety review; radiological protection; personnel protection; fire protection; management findings, responses, and planned actions; self-assessment findings, responses, and planned actions; and summary of planned actions, schedules, and costs.

  5. Facility effluent monitoring plan for the Waste Receiving and Processing Facility Module 1

    SciTech Connect (OSTI)

    Lewis, C.J.

    1995-10-01

    A facility effluent monitoring plan is required by the US Department of Energy in Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal state, and local requirements. This facility effluent monitoring plan shall ensure lonq-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated as a minimum every three years.

  6. Facility effluent monitoring plan for the plutonium-uranium extraction facility

    SciTech Connect (OSTI)

    Lohrasbi, J.; Johnson, D.L.; De Lorenzo, D.S.

    1993-12-01

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438-01. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan shall ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated at a minimum of every three years.

  7. Environment, Safety, Health, and Assurance | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Environment, Safety, Health, and Assurance ESH&A is responsible for health and safety issues at Ames Laboratory and addresses those issues through training, integrated safety management, and oversight in compliance with appropriate federal and state safety requirements. Frequently Used Links: Readiness Review Chemical Inventory Waste Pick-up Guide Former Worker and EEOICP Beryllium Nanomaterial Safety Emergency Preparedness

  8. Validation Data Plan Implementation: Subcooled Flow Boiling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Validation Data Plan," Idaho National Laboratory, Tech. rep. ... in nuclear reactor safety," in NURETH-15, 2013; Also, ... and V.K. Dhir, Eds., Handbook of phase change - Boiling ...

  9. Facility effluent monitoring plan for the 222-S Laboratory

    SciTech Connect (OSTI)

    Nickels, J.M.; Warwick, G.J.

    1992-11-01

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. A facility effluent monitoring plan determination was performed during Calendar Year 1991 and the evaluation requires the need for a facility effluent monitoring plan. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438-1. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable Federal, State, and local requirements. This facility effluent monitoring plan shall ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated, as a minimum, every three years.

  10. Lawrence Berkeley Laboratory, Institutional Plan FY 1994--1999

    SciTech Connect (OSTI)

    Not Available

    1993-09-01

    The Institutional Plan provides an overview of the Lawrence Berkeley Laboratory mission, strategic plan, scientific initiatives, research programs, environment and safety program plans, educational and technology transfer efforts, human resources, and facilities needs. For FY 1994-1999 the Institutional Plan reflects significant revisions based on the Laboratory`s strategic planning process. The Strategic Plan section identifies long-range conditions that will influence the Laboratory, as well as potential research trends and management implications. The Initiatives section identifies potential new research programs that represent major long-term opportunities for the Laboratory, and the resources required for their implementation. The Scientific and Technical Programs section summarizes current programs and potential changes in research program activity. The Environment, Safety, and Health section describes the management systems and programs underway at the Laboratory to protect the environment, the public, and the employees. The Technology Transfer and Education programs section describes current and planned programs to enhance the nation`s scientific literacy and human infrastructure and to improve economic competitiveness. The Human Resources section identifies LBL staff diversity and development program. The section on Site and Facilities discusses resources required to sustain and improve the physical plant and its equipment. The new section on Information Resources reflects the importance of computing and communication resources to the Laboratory. The Resource Projections are estimates of required budgetary authority for the Laboratory`s ongoing research programs. The Institutional Plan is a management report for integration with the Department of Energy`s strategic planning activities, developed through an annual planning process.

  11. Safety Engineer

    Broader source: Energy.gov [DOE]

    A successful candidate in this position will ensure DOE Federal personnel and contractors develop effective safety programs and continuously evaluates those activities to ensure compliance with DOE...

  12. Explosives Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2012-06-27

    The Standard provides the basic technical requirements for an explosives safety program necessary for operations involving explosives, explosives assemblies, pyrotechnics and propellants, and assemblies containing these materials.

  13. Storm Water Pollution Prevention Plan

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ANL-15/20 Storm Water Pollution Prevention Plan Argonne National Laboratory FY 2015 Revised September 10, 2015 Approved by the Environment, Safety, and Health Core Process Owner SWPPP CERTIFICATION AND REVISION HISTORY NPDES Permit Special Condition 9 requires that the plan shall include the signature and title of the person responsible for preparation of the plan and the date of initial preparation and of each amendment. This information is presented below: Current Plan Rewritten by:

  14. Planning for the future

    SciTech Connect (OSTI)

    Lesh, Pamela

    2009-06-15

    Four changes to integrated resource planning could significantly improve alignment between future utility spending and the forces and changes that are upending past preconceptions of how to predict future load. (author)

  15. ISTStrategicPlanFinal.indd

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science at Matters: Integrating Information, Science, and Technology for Prediction Strategic Plan December 2010 Predicting Materials Behavior Situational Awareness Energy Climate...

  16. High-Level Liquid Waste Tank Integrity Workshop - 2008

    Office of Environmental Management (EM)

    techniques for primarysecondary tank wall and concrete * * Develop tank integrity roadmap and execution plan Develop tank integrity roadmap and execution plan including...

  17. Integrated system checkout report

    SciTech Connect (OSTI)

    Not Available

    1991-08-14

    The planning and preparation phase of the Integrated Systems Checkout Program (ISCP) was conducted from October 1989 to July 1991. A copy of the ISCP, DOE-WIPP 90--002, is included in this report as an appendix. The final phase of the Checkout was conducted from July 10, 1991, to July 23, 1991. This phase exercised all the procedures and equipment required to receive, emplace, and retrieve contact handled transuranium (CH TRU) waste filled dry bins. In addition, abnormal events were introduced to simulate various equipment failures, loose surface radioactive contamination events, and personnel injury. This report provides a detailed summary of each days activities during this period. Qualification of personnel to safely conduct the tasks identified in the procedures and the abnormal events were verified by observers familiar with the Bin-Scale CH TRU Waste Test requirements. These observers were members of the staffs of Westinghouse WID Engineering, QA, Training, Health Physics, Safety, and SNL. Observers representing a number of DOE departments, the state of new Mexico, and the Defense Nuclear Facilities Safety Board observed those Checkout activities conducted during the period from July 17, 1991, to July 23, 1991. Observer comments described in this report are those obtained from the staff member observers. 1 figs., 1 tab.

  18. Safety Basis Report

    SciTech Connect (OSTI)

    R.J. Garrett

    2002-01-14

    As part of the internal Integrated Safety Management Assessment verification process, it was determined that there was a lack of documentation that summarizes the safety basis of the current Yucca Mountain Project (YMP) site characterization activities. It was noted that a safety basis would make it possible to establish a technically justifiable graded approach to the implementation of the requirements identified in the Standards/Requirements Identification Document. The Standards/Requirements Identification Documents commit a facility to compliance with specific requirements and, together with the hazard baseline documentation, provide a technical basis for ensuring that the public and workers are protected. This Safety Basis Report has been developed to establish and document the safety basis of the current site characterization activities, establish and document the hazard baseline, and provide the technical basis for identifying structures, systems, and components (SSCs) that perform functions necessary to protect the public, the worker, and the environment from hazards unique to the YMP site characterization activities. This technical basis for identifying SSCs serves as a grading process for the implementation of programs such as Conduct of Operations (DOE Order 5480.19) and the Suspect/Counterfeit Items Program. In addition, this report provides a consolidated summary of the hazards analyses processes developed to support the design, construction, and operation of the YMP site characterization facilities and, therefore, provides a tool for evaluating the safety impacts of changes to the design and operation of the YMP site characterization activities.

  19. Chemical Safety Vulnerability Working Group Report

    SciTech Connect (OSTI)

    Not Available

    1994-09-01

    This report marks the culmination of a 4-month review conducted to identify chemical safety vulnerabilities existing at DOE facilities. This review is an integral part of DOE's efforts to raise its commitment to chemical safety to the same level as that for nuclear safety.

  20. DISPELLING MYTHS AND MISCONCEPTIONS TO IMPLEMENT A SAFETY CULTURE

    SciTech Connect (OSTI)

    Potts, T. Todd; Smith, Ken; Hylko, James M.

    2003-02-27

    Industrial accidents are typically reported in terms of technological malfunctions, ignoring the human element in accident causation. However, over two-thirds of all accidents are attributable to human and organizational factors (e.g., planning, written procedures, job factors, training, communication, and teamwork), thereby affecting risk perception, behavior and attitudes. This paper reviews the development of WESKEM, LLC's Environmental, Safety, and Health (ES&H) Program that addresses human and organizational factors from a top-down, bottom-up approach. This approach is derived from the Department of Energy's Integrated Safety Management System. As a result, dispelling common myths and misconceptions about safety, while empowering employees to ''STOP work'' if necessary, have contributed to reducing an unusually high number of vehicle, ergonomic and slip/trip/fall incidents successfully. Furthermore, the safety culture that has developed within WESKEM, LLC's workforce consists of three common characteristics: (1) all employees hold safety as a value; (2) each individual feels responsible for the safety of their co-workers as well as themselves; and (3) each individual is willing and able to ''go beyond the call of duty'' on behalf of the safety of others. WESKEM, LLC as a company, upholds the safety culture and continues to enhance its existing ES&H program by incorporating employee feedback and lessons learned collected from other high-stress industries, thereby protecting its most vital resource - the employees. The success of this program is evident by reduced accident and injury rates, as well as the number of safe work hours accrued while performing hands-on field activities. WESKEM, LLC (Paducah + Oak Ridge) achieved over 800,000 safe work hours through August 2002. WESKEM-Paducah has achieved over 665,000 safe work hours without a recordable injury or lost workday case since it started operations on February 28, 2000.

  1. Integration of health physics, safety and operational processes for management and disposition of recycled uranium wastes at the Fernald Environmental Management Project (FEMP)

    SciTech Connect (OSTI)

    Barber, James; Buckley, James

    2003-02-23

    Fluor Fernald, Inc. (Fluor Fernald), the contractor for the U. S. Department of Energy (DOE) Fernald Environmental Management Project (FEMP), recently submitted a new baseline plan for achieving site closure by the end of calendar year 2006. This plan was submitted at DOE's request, as the FEMP was selected as one of the sites for their accelerated closure initiative. In accordance with the accelerated baseline, the FEMP Waste Management Project (WMP) is actively evaluating innovative processes for the management and disposition of low-level uranium, fissile material, and thorium, all of which have been classified as waste. These activities are being conducted by the Low Level Waste (LLW) and Uranium Waste Disposition (UWD) projects. Alternatives associated with operational processing of individual waste streams, each of which poses potentially unique health physics, industrial hygiene and industrial hazards, are being evaluated for determination of the most cost effective and safe met hod for handling and disposition. Low-level Mixed Waste (LLMW) projects are not addressed in this paper. This paper summarizes historical uranium recycling programs and resultant trace quantity contamination of uranium waste streams with radionuclides, other than uranium. The presentation then describes how waste characterization data is reviewed for radiological and/or chemical hazards and exposure mitigation techniques, in conjunction with proposed operations for handling and disposition. The final part of the presentation consists of an overview of recent operations within LLW and UWD project dispositions, which have been safely completed, and a description of several current operations.

  2. Reactor operation safety information document

    SciTech Connect (OSTI)

    Not Available

    1990-01-01

    The report contains a reactor facility description which includes K, P, and L reactor sites, structures, operating systems, engineered safety systems, support systems, and process and effluent monitoring systems; an accident analysis section which includes cooling system anomalies, radioactive materials releases, and anticipated transients without scram; a summary of onsite doses from design basis accidents; severe accident analysis (reactor core disruption); a description of operating contractor organization and emergency planning; and a summary of reactor safety evolution. (MB)

  3. Strategic Plan

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Strategic Plan Print ALS Strategic Plan Update: September 2015 The Advanced Light Source Strategic Plan, originally published in 2009, has been revised to reflect completed...

  4. PROJECT MANGEMENT PLAN EXAMPLES

    Office of Environmental Management (EM)

    Safety Integration - Implementation of Controls Examples Example 24 5 Health & Safety This section describes the work controls associated with the 771/774 Closure Project. As prescribed in DOE Order 440.1, Worker Protection Management for DOE Federal and Contractor Employees, the project must comply with the OSHA construction standards for Hazardous Waste Operations and Emergency Response, 29 CFR 1910.120 and 1926. Under these standards, a Building 771/774 Closure Project-Specific HASP has

  5. LNG Safety Assessment Evaluation Methods

    SciTech Connect (OSTI)

    Muna, Alice Baca; LaFleur, Angela Christine

    2015-05-01

    Sandia National Laboratories evaluated published safety assessment methods across a variety of industries including Liquefied Natural Gas (LNG), hydrogen, land and marine transportation, as well as the US Department of Defense (DOD). All the methods were evaluated for their potential applicability for use in the LNG railroad application. After reviewing the documents included in this report, as well as others not included because of repetition, the Department of Energy (DOE) Hydrogen Safety Plan Checklist is most suitable to be adapted to the LNG railroad application. This report was developed to survey industries related to rail transportation for methodologies and tools that can be used by the FRA to review and evaluate safety assessments submitted by the railroad industry as a part of their implementation plans for liquefied or compressed natural gas storage ( on-board or tender) and engine fueling delivery systems. The main sections of this report provide an overview of various methods found during this survey. In most cases, the reference document is quoted directly. The final section provides discussion and a recommendation for the most appropriate methodology that will allow efficient and consistent evaluations to be made. The DOE Hydrogen Safety Plan Checklist was then revised to adapt it as a methodology for the Federal Railroad Administration’s use in evaluating safety plans submitted by the railroad industry.

  6. Office of Enterprise Assessments Targeted Review of Work Planning and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Control and Biological Safety at the Los Alamos National Laboratory - December 2015 | Department of Energy Enterprise Assessments Targeted Review of Work Planning and Control and Biological Safety at the Los Alamos National Laboratory - December 2015 Office of Enterprise Assessments Targeted Review of Work Planning and Control and Biological Safety at the Los Alamos National Laboratory - December 2015 December 2015 Review of Work Planning and Control and Biological Safety at the Los Alamos

  7. Integrating Safeguards, Security, & Emergency Services at CNS...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    manager with developing an integration plan for his or her group then guided and assisted them in surmounting obstacles as they worked through their plans. Brian Deorocki...

  8. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2002-05-20

    To establish facility safety requirements for the Department of Energy, including National Nuclear Security Administration. Cancels DOE O 420.1. Canceled by DOE O 420.1B.

  9. SEP Program Planning Template ("Program Planning Template") ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SEP Program Planning Template ("Program Planning Template") SEP Program Planning Template ("Program Planning Template") Program Planning Template More Documents & Publications...

  10. Transportation Safety

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Safety - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy

  11. DOE Order Self Study Modules - DOE O 450.2 and P 450.4A: Integrated...

    Office of Environmental Management (EM)

    50.2 INTEGRATED SAFETY MANAGEMENT DOE P 450.4A INTEGRATED SAFETY MANAGEMENT POLICY DOE O 450.2 and DOE P 450.4A Familiar Level September 2011 1 DOE O 450.2 INTEGRATED SAFETY ...

  12. Construction Project Safety and Health Plan RM

    Office of Environmental Management (EM)

    ... NIOSH National Institute for Occupational ... is given at the Critical Decision (CD)-3 phase of the project ... SH Functional Areas FA Training and Information ...

  13. Nanomaterials Safety Implementation Plan, Ames Laboratory | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Laboratory recognizes that nanotechnology is an emerging field and that many of the associated ES&H concerns related to work with these materials are still being investigated. ...

  14. ACTIVITY SPECIFIC FIREARMS SAFETY PLAN FOR

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Knowledge 14 Session 4: Firing Fundamentals 14 Session 5: Live-Fire on the Range ... Session 4: Firing Fundamentals Duration: 1 hour Session Objective As a result of this ...

  15. Oak Ridge National Laboratory Corrective Action Plan in response to Tiger Team assessment. Volume 2, Revision 5

    SciTech Connect (OSTI)

    Kuliasha, Michael A.

    1991-08-23

    This report presents a complete response to the Tiger Team assessment that was conducted to Oak Ridge National Laboratory (ORNL) and at the US Department of Energy (DOE) Oak Ridge Operations Office (ORO) from October 2, 1990, through November 30, 1990. The action plans have undergone both a discipline review and a cross-cutting review with respect to root cause. In addition, the action plans have been integrated with initiatives being pursued across Martin Marietta Energy Systems, Inc., in response to Tiger Team findings at other DOE facilities operated by Energy Systems. The root cause section is complete and describes how ORNL intends to address the root cause of the findings identified during the assessment. This report is concerned with reactors safety and health findings, responses, and planned actions. Specific areas include: organization and administration; quality verification; operations; maintenance; training and certification; auxiliary systems; emergency preparedness; technical support; nuclear criticality safety; security/safety interface; experimental activities; site/facility safety review; radiological protection; personnel protection; fire protection; management findings, responses, and planned actions; self-assessment findings, responses, and planned actions; and summary of planned actions, schedules, and costs.

  16. ISM Workshop on Work Planning and Controls

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... ISM Champions Workshop 2013 14 play video Integrated Safety Management 15 ISM Champions ... Controls and Work Within Controls: * Feedback and Improvement: Ensure lessons ...

  17. WPN 02-5: Health and Safety Guidance

    Broader source: Energy.gov [DOE]

    To provide grantees with guidance in addressing hazards and remediation they should consider, at a minimum, when developing their health and safety plans and procedures.

  18. Enterprise Assessments Targeted Review, Management of the Safety...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... performance, and 3 reviewed the maintenance history for the selected safety systems. ... planning, onsite data collection activities, and report writing, validation, and review. ...

  19. Facility Effluent Monitoring Plan for the Waste Receiving and Processing (WRAP) Facility

    SciTech Connect (OSTI)

    DAVIS, W.E.

    2000-03-08

    A facility effluent monitoring plan is required by the U.S. Department of Energy in Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee public safety, or the environment. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether these systems are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan ensures long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and must be updated, as a minimum, every 3 years.

  20. Memo Issuance of EM Capital and Major Operating Project Standard Review Plan Edition Two

    Office of Environmental Management (EM)

    2 4 201011 MEMORANDUM FOR DISTRIBUTION FROM: DR. STEVEN L. KRAHN DEPUTY ASSISTANT SAFETY AND SECU EIVVIROIVMENTAL MANAGEMENT SUBJECT: Issuance of Environmental Management Capital and Major Operating Project Standard Review Plan Edition Two The Office of Environmental Management (EM) is responsible for managing the design, construction, operation, and eventual disposition of mission critical projects/facilities. Effective management of these projects requires multiple disciplines to be integrated

  1. CITSS Project Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Project Plan CITSS Project Plan The Customer Information Technology Support System (CITSS) Project Plan, from an actual DOE Commercial Off-The-Shelf (COTS) software integration project, can be used as a template to facilitate the creation of the project plan for your particular proje PDF icon CITSS Project Plan More Documents & Publications Software Configuration Management Plan CITSS Project Plan CITSS Configurable Item List: COTS Software

  2. Path to development of quantitative safety goals

    SciTech Connect (OSTI)

    Joksimovic, V.; Houghton, W.J.

    1980-04-01

    There is a growing interest in defining numerical safety goals for nuclear power plants as exemplified by an ACRS recommendation. This paper proposes a lower frequency limit of approximately 10/sup -4//reactor-year for design basis events. Below this frequency, down, to a small frequency such as 10/sup -5//reactor-year, safety margin can be provided by, say, site emergency plans. Accident sequences below 10/sup -5/ should not impact public safety, but it is prudent that safety research programs examine sequences with significant consequences. Once tentatively agreed upon, quantitative safety goals together with associated implementation tools would be factored into regulatory and design processes.

  3. Hanford Generic Interim Safety Basis

    SciTech Connect (OSTI)

    Lavender, J.C.

    1994-09-09

    The purpose of this document is to identify WHC programs and requirements that are an integral part of the authorization basis for nuclear facilities that are generic to all WHC-managed facilities. The purpose of these programs is to implement the DOE Orders, as WHC becomes contractually obligated to implement them. The Hanford Generic ISB focuses on the institutional controls and safety requirements identified in DOE Order 5480.23, Nuclear Safety Analysis Reports.

  4. A Blueprint for Urban Sustainability: Integrating Sustainable...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A Blueprint for Urban Sustainability: Integrating Sustainable Energy Practices into Metropolitan Planning, May 2004 A Blueprint for Urban Sustainability: Integrating Sustainable ...

  5. Institutional plan FY 1998--FY 2003

    SciTech Connect (OSTI)

    1997-10-01

    The Institutional Plan has been rearranged this year as a reflection of new Department of Energy (DOE) guidelines and to better illustrate the Laboratory`s mission-oriented focus. In Section 1 of this plan, the authors set forth their vision, mission, core competencies, strategic view, and related material. This section illustrates integration with the vision, mission, priorities, and core businesses of DOE. They define strategies, tactics, and guidelines and describe how they measure progress. In Section 2, they have elaborated on how they plan to address the Laboratory`s mission, describing programs and activities in the context of their role in this mission. Section 3 contains information on their approach to managing their business and operations. First they address the most critical issue safety. In this section, they confirm that Los Alamos is addressing the DOE critical success factors and describe the initiatives and plans that make their mission successful and leads them toward their vision. Section 4 contains details of their resources. 44 figs., 56 tabs.

  6. Medical Plans

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Medical Plans Medical Plans A comprehensive benefits package with plan options for health care and retirement to take care of our employees today and tomorrow. Contact Benefits Office (505) 667-1806 Email Medical Plans The Lab offers employees the choice between two medical plans through Blue Cross Blue Shield of New Mexico (BCBS). Both medical plans offer free preventive care and in and out of network coverage from the same network of BCBS providers. High Deductible Health Plan (HDHP) - A more

  7. CRAD, Configuration Management Assessment Plan

    Broader source: Energy.gov [DOE]

    The objective of this assessment is to determine whether a Configuration Management Program (CM) is in place which allows for the availability and retrievability of accurate information, improves response to design and operational decisions, enhances worker safety, increases facility safety and reliability, increases efficiency of work efforts, and helps maintain integrity of interfacing orders.

  8. Safety of Nuclear Explosive Operations

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-08-07

    This directive establishes responsibilities and requirements to ensure the safety of routine and planned nuclear explosive operations and associated activities and facilities. Cancels DOE O 452.2A and DOE G 452.2A-1A. Canceled by DOE O 452.2C.

  9. Management and Independent Assessments Guide for Use with 10 CFR, Part 830, Subpart A, and DOE O 414.1C, Quality Assurance; DOE M 450.4-1, Integrated Safety Management System Manual; and DOE O 226.1A

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2013-04-18

    Management and Independent Assessments Guide for Use with 10 CFR, Part 830, Subpart A, and DOE O 414.1C, Quality Assurance; DOE M 450.4-1, Integrated Safety Management System Manual; and DOE O 226.1A

  10. Notice of Intent to Revise DOE G 414.1-1B, Management and Independent Assessments Guide for Use with 10 CFR, Part 830, Subpart A, and DOE O 414.1C, Quality Assurance; DOE M 450.4-1, Integrated Safety Management System Manual; and DOE O 226.1A

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2013-04-18

    This memorandum provides justification for revising DOE G 414.1-1B, Management and Independent Assessments Guide for Use With 10 CFR, Part 830, Subpart A, and DOE O 414.1C, Quality Assurance; DOE M 450.4-1, Integrated Safety Management System Manual; and DOE O 226.1A, Implementation of Department of Energy Oversight Policy.

  11. Environmental Monitoring Plan, Revision 5

    SciTech Connect (OSTI)

    Gallegos, G M; Blake, R G; Bertoldo, N A; Campbell, C G; Coty, J; Folks, K; Grayson, A R; Jones, H E; Nelson, J C; Revelli, M A; Wegrecki, T; Williams, R A; Wilson, K

    2010-01-27

    The purpose of environmental monitoring is to promote the early identification of, and response to, potential adverse environmental impacts associated with Lawrence Livermore National Laboratory (LLNL) operations. Environmental monitoring supports the Integrated Safety Management System (ISMS), International Organization for Standardization (ISO) 14001 Environmental Management Systems standard, and U. S. Department of Energy (DOE) Order 450.1A, Environmental Protection Program. Specifically, in conformance with DOE Order 450.1A, Attachment 1, paragraph 1(b)(5), environmental monitoring enables LLNL to detect, characterize, and respond to releases from LLNL activities; assess impacts; estimate dispersal patterns in the environment; characterize the pathways of exposure to members of the public; characterize the exposures and doses to individuals and to the population; and to evaluate the potential impacts to the biota in the vicinity of LLNL. Environmental monitoring also serves to demonstrate compliance with permits and other regulatory requirements. The Environmental Monitoring Plan (EMP) addresses the sample collection and analytical work supporting environmental monitoring to ensure the following: (1) A consistent system for collecting, assessing, and documenting environmental data of known and documented quality. (2) A validated and consistent approach for sampling and analysis of samples to ensure laboratory data meets program-specific needs and requirements within the framework of a performance-based approach for analytical laboratory work. (3) An integrated sampling approach to avoid duplicative data collection. Until its cancellation in January 2003, DOE Order 5400.1 required the preparation of an environmental monitoring plan. Neither DOE Order 450.1A nor the ISO 14001 standard are as prescriptive as DOE Order 5400.1, in that neither expressly requires an EMP. However, LLNL continues to prepare the EMP because it provides an organizational framework for ensuring that this work, which is integral to the implementation of LLNL's Environmental Management System, is conducted appropriately. Furthermore, the Environmental Monitoring Plan helps LLNL ensure compliance with DOE Order 5400.5, Radiation Protection of the Public and the Environment, and DOE Order 231.1 Change 2, Environment, Safety and Health Reporting, which require the publication of an annual report that characterizes the site's environmental management performance. To summarize, the general regulatory drivers for this environmental monitoring plan are ISO 14001, DOE Order 450.1A, DOE Order 5400.5, and DOE Order 231.1. The environmental monitoring addressed by this plan includes preoperational characterization and assessment, effluent and surveillance monitoring, and permit and regulatory compliance monitoring. Additional environmental monitoring is conducted at LLNL as part of compliance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA, also known as Superfund). LLNL coordinates its ground water surveillance monitoring program with the CERCLA monitoring program to gain sampling efficiencies. (See LLNL [1992] and LLNL [2008] for information about LLNL's CERCLA activities).

  12. Introduction to LNG vehicle safety. Topical report

    SciTech Connect (OSTI)

    Bratvold, D.; Friedman, D.; Chernoff, H.; Farkhondehpay, D.; Comay, C.

    1994-03-01

    Basic information on the characteristics of liquefied natural gas (LNG) is assembled in this report to provide an overview of safety issues and practices for the use of LNG vehicles. This document is intended for those planning or considering the use of LNG vehicles, including vehicle fleet owners and operators, public transit officials and boards, local fire and safety officials, manufacturers and distributors, and gas industry officials. Safety issues and mitigation measures that should be considered for candidate LNG vehicle projects are addressed.

  13. Safety Staff Contact Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Safety Staff Contact Information Print Contact Extension Location CONTROL ROOM (24/7) 4969 80-140 Floor Operations Floor Operators 7464 (RING) 80-159 Building Manager Jeff Troutman 7358 80-151 Building Emergency Team (BET) This e-mail address is being protected from spambots. You need JavaScript enabled to view it (Leader) Karen Nunez (Deputy) 8658 6535 7-210H 80-160 Work Planning, Facility Specialists This e-mail address is being protected from spambots. You need JavaScript enabled to view it

  14. Safety Staff Contact Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Safety Staff Contact Information Print Contact Extension Location CONTROL ROOM (24/7) 4969 80-140 Floor Operations Floor Operators 7464 (RING) 80-159 Building Manager Jeff Troutman 7358 80-151 Building Emergency Team (BET) This e-mail address is being protected from spambots. You need JavaScript enabled to view it (Leader) Karen Nunez (Deputy) 8658 6535 7-210H 80-160 Work Planning, Facility Specialists This e-mail address is being protected from spambots. You need JavaScript enabled to view it

  15. Critical success factors in implementing process safety management

    SciTech Connect (OSTI)

    Wilson, D.J. [Chevron USA, Inc., New Orleans, LA (United States)

    1996-08-01

    This paper focuses on several {open_quotes}Critical Success Factors {close_quotes} which will determine how well employees will embrace and utilize the changes being asked of them to implement Process Safety Management (PSM). These success factors are applicable to any change which involves asking employees to perform activities differently than they are currently performing them. This includes changes in work processes (the way we arrange and conduct a set of tasks) or changes in work activities (how we perform individual tasks). Simply developing new work processes and explaining them to employees is not enough to ensure that employees will actually utilize them -- no matter how good these processes are. To ensure successful, complete implementation of Process Safety Management, we must manage the transition from how we perform our work now to how we will perform it after PSM is implemented. Environmental and safety performance improvements, facility reliability and operability increases, and employee effectiveness and productivity gains CAN NOT be achieved until Process Safety Management processes are fully implemented. To successfully implement management of change, mechanical integrity, or any of the other processes in PSM, each of the following critical success factors must be carefully considered and utilized as appropriate. They are: (1) Vision of a Future State, Current State Assessment, and a Detailed Plan to Achieve the Future State, (2) Management Commitment, (3) Ownership by Key Individuals, (4) Justification for Actions, (5) Autonomy to Customize the Process, (6) Feedback Mechanism to Adjust Activities, and (7) Process to Refocus & Redirect Efforts.

  16. Los Alamos Field Office Safety Systems expert earns DOE award...

    National Nuclear Security Administration (NNSA)

    Examples of his oversight activities in 2013 were four vital safety systems assessments that led to safety improvements; input to a federal-integrated project team that led to ...

  17. Used Nuclear Fuel Loading and Structural Performance Under Normal Conditions of Transport- Modeling, Simulation and Experimental Integration RD&D Plan

    Broader source: Energy.gov [DOE]

    Used nuclear fuel (UNF) must maintain its integrity during the storage period in such a way that it can withstand the physical forces of handling and transportation associated with restaging the fuel and transporting it to treatment or recycling facilities, or to a geologic repository.

  18. System Plan Revision 5 + 6

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plan Revision 7 General Overview DaBrisha Smith (DOE/ORP) April 10, 2013 System Plan 101 * What is System Planning - A process used by organizations to design, analyze and define future operations possible outcomes. * What is the RRP System Plan - A summary-level document that describes how the technical, cost, and schedule operating scenario (Baseline Case) is integrated to meet the mission demands. - Describes how the RPP mission could be achieved based on a set of assumptions for each

  19. UMTRA technical assistance contractor quality assurance program plan

    SciTech Connect (OSTI)

    Not Available

    1994-10-01

    This Quality Assurance Program Plan (QAPP) provides the primary requirements for the integration of quality functions into all Technical Assistance Contractor (TAC) Project organization activities. The QAPP is the written directive authorized by the TAc Program Manager to accomplish this task and to implement procedures that provide the controls and sound management practices needed to ensure TAC contractual obligations are met. The QA program is designed to use monitoring, audit, and surveillance functions as management tools to ensure that all Project organization functions are executed in a manner that will protect public health and safety, promote the success of the Project, and meet or exceed contract requirements.

  20. Annual report to Congress: Department of Energy activities relating to the Defense Nuclear Facilities Safety Board, calendar year 1998

    SciTech Connect (OSTI)

    1999-02-01

    This is the ninth Annual Report to the Congress describing Department of Energy (Department) activities in response to formal recommendations and other interactions with the Defense Nuclear Facilities Safety Board (Board). The Board, an independent executive-branch agency established in 1988, provides advice and recommendations to the Secretary of energy regarding public health and safety issues at the Department`s defense nuclear facilities. The Board also reviews and evaluates the content and implementation of health and safety standards, as well as other requirements, relating to the design, construction, operation, and decommissioning of the Department`s defense nuclear facilities. The locations of the major Department facilities are provided. During 1998, Departmental activities resulted in the proposed closure of one Board recommendation. In addition, the Department has completed all implementation plan milestones associated with four other Board recommendations. Two new Board recommendations were received and accepted by the Department in 1998, and two new implementation plans are being developed to address these recommendations. The Department has also made significant progress with a number of broad-based initiatives to improve safety. These include expanded implementation of integrated safety management at field sites, a renewed effort to increase the technical capabilities of the federal workforce, and a revised plan for stabilizing excess nuclear materials to achieve significant risk reduction.

  1. Vision Plan

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vision Plan Vision Plan A comprehensive benefits package with plan options for health care and retirement to take care of our employees today and tomorrow. Contact Benefits Office (505) 667-1806 Email Vision Plan The Lab offers employees and their eligible dependents free vision coverage through Vision Service Plan (VSP). The plan covers exams, contact lenses, eyeglass lenses and frames. Participants can use any provider but VSP network providers offer the best value and will file the claim

  2. Strategic Plan

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Strategic Plan Strategic Plan Print ALS Strategic Plan Update: September 2015 The Advanced Light Source Strategic Plan, originally published in 2009, has been revised to reflect completed projects, new scientific directions, and changing priorities. This most recent revision, Advanced Light Source Strategic Plan: 2015-19 (1.2 MB), was completed in September 2015. The plan encompasses the needs of the scientific community as well as our responses to meeting those needs through development of our

  3. Integrated Approach to Documenting Readiness for a Potential Criticality Incident

    SciTech Connect (OSTI)

    Carlisle, Bruce S.; Prichard, Andrew W.; Jones, Robert A.

    2013-11-11

    There have been 60 highly publicized criticality accidents1 over the last 60 years and the nature of the hazard is unique. Recent studies2 discuss the benefits of knowing what to expect during and immediately following these events. Emergency planning and response standards2 provide an effective tool for establishing an adequate level of readiness to a criticality accident. While these planning requirements cover a broad spectrum of activities to establish readiness, a concise and routinely reviewed criticality accident scenario may be the most valuable tool in developing a cohesive understanding and response to these challenging events. Using a guideline3 for criticality safety evaluations the analytical work and emergency planning to mitigate a criticality accident at the Radiochemical Processing Laboratory at the Pacific Northwest National Laboratory, was developed. Using a single document the analysis that established the accident characteristics, response scenario based on emergency staffing and planning, and anticipated dose consequences were integrated. This single document approach provides a useful platform to integrate the initial planning and guide the review of proposed changes to emergency response plans.

  4. Enterprise Assessments Targeted Review of Work Planning and Control...

    Office of Environmental Management (EM)

    ... Inventory Checklist AIP Assessment Implementation Plan ALARA As Low As ... Control ALWD Activity-Level Work Document AMSO ... IMIP Integrated Management Improvement Plan ...

  5. The Department of Energy Hydrogen and Fuel Cells Program Plan

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen and Fuel Cells Program Plan An Integrated Strategic Plan for the Research, Development, and Demonstration of Hydrogen and Fuel Cell Technologies September 2011 The...

  6. ACTION PLAN

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    plan is to establish the overall plan for hazardous waste permitting, meeting closure and postclosure requirements, and remedial action under the Federal Resource Conservation ...

  7. Integrity Biofuels | Open Energy Information

    Open Energy Info (EERE)

    Biofuels Jump to: navigation, search Name: Integrity Biofuels Place: Grammer, Indiana Product: Planning a 38m litre (10m gallon) per year biodiesel plant in Indiana. Coordinates:...

  8. PRELIMINARY ENVIRONMENTAL, HEALTH AND SAFETY RISK ASSESSMENT ON THE INTEGRATION OF A PROCESS UTILIZING LOW-ENERGY SOLVENTS FOR CARBON DIOXIDE CAPTURE ENABLED BY A COMBINATION OF ENZYMES AND VACUUM REGENERATION WITH A SUBCRITICAL PC POWER PLANT

    SciTech Connect (OSTI)

    Fitzgerald, David; Vidal, Rafael; Russell, Tania; Babcock, Doosan; Freeman, Charles; Bearden, Mark; Whyatt, Greg; Liu, Kun; Frimpong, Reynolds; Lu, Kunlei; Salmon, Sonja; House, Alan; Yarborough, Erin

    2014-12-31

    The results of the preliminary environmental, health and safety (EH&S) risk assessment for an enzyme-activated potassium carbonate (K2CO3) solution post-combustion CO2 capture (PCC) plant, integrated with a subcritical pulverized coal (PC) power plant, are presented. The expected emissions during normal steady-state operation have been estimated utilizing models of the PCC plant developed in AspenTech’s AspenPlus® software, bench scale test results from the University of Kentucky, and industrial experience of emission results from a slipstream PCC plant utilizing amine based solvents. A review of all potential emission species and their sources was undertaken that identified two credible emission sources, the absorber off-gas that is vented to atmosphere via a stack and the waste removed from the PCC plant in the centrifuge used to reclaim enzyme and solvent. The conditions and compositions of the emissions were calculated and the potential EH&S effects were considered as well as legislative compliance requirements. Potential mitigation methods for emissions during normal operation have been proposed and solutions to mitigate uncontrolled releases of species have been considered. The potential emissions were found to pose no significant EH&S concerns and were compliant with the Federal legislation reviewed. The limitations in predicting full scale plant performance from bench scale tests have been noted and further work on a larger scale test unit is recommended to reduce the level of uncertainty.

  9. Implementation Guide for Integrating Pollution Prevention into Environmental Management Systems

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-05-27

    This Guide suggests approaches to integrating pollution prevention into Integrated Safety Management/Environmental Management Systems. Canceled by DOE N 251.82.

  10. Safety harness

    DOE Patents [OSTI]

    Gunter, Larry W.

    1993-01-01

    A safety harness to be worn by a worker, especially a worker wearing a plastic suit thereunder for protection in a radioactive or chemically hostile environment, which safety harness comprises a torso surrounding portion with at least one horizontal strap for adjustably securing the harness about the torso, two vertical shoulder straps with rings just forward of the of the peak of the shoulders for attaching a life-line and a pair of adjustable leg supporting straps releasibly attachable to the torso surrounding portion. In the event of a fall, the weight of the worker, when his fall is broken and he is suspended from the rings with his body angled slightly back and chest up, will be borne by the portion of the leg straps behind his buttocks rather than between his legs. Furthermore, the supporting straps do not restrict the air supplied through hoses into his suit when so suspended.

  11. Safety valve

    DOE Patents [OSTI]

    Bergman, Ulf C.

    1984-01-01

    The safety valve contains a resilient gland to be held between a valve seat and a valve member and is secured to the valve member by a sleeve surrounding the end of the valve member adjacent to the valve seat. The sleeve is movable relative to the valve member through a limited axial distance and a gap exists between said valve member and said sleeve.

  12. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2013-06-21

    DOE-STD-1104 contains the Department's method and criteria for reviewing and approving nuclear facility's documented safety analysis (DSA). This review and approval formally document the basis for DOE, concluding that a facility can be operated safely in a manner that adequately protects workers, the public, and the environment. Therefore, it is appropriate to formally require implementation of the review methodology and criteria contained in DOE-STD-1104.

  13. Plutonium Vulnerability Management Plan

    SciTech Connect (OSTI)

    1995-03-01

    This Plutonium Vulnerability Management Plan describes the Department of Energy`s response to the vulnerabilities identified in the Plutonium Working Group Report which are a result of the cessation of nuclear weapons production. The responses contained in this document are only part of an overall, coordinated approach designed to enable the Department to accelerate conversion of all nuclear materials, including plutonium, to forms suitable for safe, interim storage. The overall actions being taken are discussed in detail in the Department`s Implementation Plan in response to the Defense Nuclear Facilities Safety Board (DNFSB) Recommendation 94-1. This is included as Attachment B.

  14. Idaho National Laboratory Site Pollution Prevention Plan

    SciTech Connect (OSTI)

    E. D. Sellers

    2007-03-01

    It is the policy of the Department of Energy (DOE) that pollution prevention and sustainable environmental stewardship will be integrated into DOE operations as a good business practice to reduce environmental hazards, protect environmental resources, avoid pollution control costs, and improve operational efficiency and mission sustainability. In furtherance of this policy, DOE established five strategic, performance-based Pollution Prevention (P2) and Sustainable Environmental Stewardship goals and included them as an attachment to DOE O 450.1, Environmental Protection Program. These goals and accompanying strategies are to be implemented by DOE sites through the integration of Pollution Prevention into each site's Environmental Management System (EMS). This document presents a P2 and Sustainability Program and corresponding plan pursuant to DOE Order 450.1 and DOE O 435.1, Radioactive Waste Management. This plan is also required by the state of Idaho, pursuant to the Resource Conservation and Recovery Act (RCRA) partial permit. The objective of this document is to describe the Idaho National Laboratory (INL) Site P2 and Sustainability Program. The purpose of the program is to decrease the environmental footprint of the INL Site while providing enhanced support of its mission. The success of the program is dependent on financial and management support. The signatures on the previous page indicate INL, ICP, and AMWTP Contractor management support and dedication to the program. P2 requirements have been integrated into working procedures to ensure an effective EMS as part of an Integrated Safety Management System (ISMS). This plan focuses on programmatic functions which include environmentally preferable procurement, sustainable design, P2 and Sustainability awareness, waste generation and reduction, source reduction and recycling, energy management, and pollution prevention opportunity assessments. The INL Site P2 and Sustainability Program is administratively managed by the INL Site P2 Coordinator. Development and maintenance of this overall INL Site plan is ultimately the responsibility of DOE-ID. This plan is applicable to all INL Site contractors except those at the Naval Reactors Facility.

  15. IT Capital Planning | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    IT Capital Planning IT Capital Planning IT7 (003).jpg What is Capital Planning? The Office of Management and Budget (OMB) Circular A-11, defines capital planning as "a decision-making process for ensuring IT investments integrate strategic planning, budgeting, procurement, and IT management in support of agency missions and business needs." Who's Responsible for DOE Capital Planning? The Office of the Chief Information Officer (OCIO) oversees the DOE IT portfolio, while the Information

  16. Carlsbad Industrial Safety and Health PIA, Carlsbad Field Offce |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Carlsbad Industrial Safety and Health PIA, Carlsbad Field Offce Carlsbad Industrial Safety and Health PIA, Carlsbad Field Offce Carlsbad Industrial Safety and Health PIA, Carlsbad Field Offce PDF icon Carlsbad Industrial Safety and Health PIA, Carlsbad Field Offce More Documents & Publications Integrated Safety Management Workshop Registration, PIA, Idaho National Laboratory Occupational Medicine - Assistant PIA, Idaho National Laboratory Occupational Injury &

  17. Office of Health and Safety | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    elements in implementation of policy and resolving worker safety and health issues. Functions Assures that the Office implements an integrated approach to customer and stakeholder ...

  18. March 7, 2012, USW Health Safety and Environment Conference Presentati...

    Office of Environmental Management (EM)

    Integrated Approach to Health, Safety and Security Labor Union and Stakeholder Outreach and Collaboration William Eckroade Principal Deputy Chief for Mission Support Operations...

  19. ES H action plan

    SciTech Connect (OSTI)

    Not Available

    1991-01-01

    This document contains planned actions to correct the deficiencies identified in the Pre-Tiger Team Self-Assessment (PTTSA), January 1991, of Sandia National Laboratories (SNL -- Albuquerque, New Mexico; Tonopah, Nevada; and Kauai, Hawaii). The Self-Assessment was conducted by a Self-Assessment Working Group consisting of 19 department managers, with support from Environment, Safety, and Health (ES H) professionals, from October through December 1990. Findings from other past audits, dating back to 1985, were reviewed and compared with the PTTSA findings to determine if additional findings, key findings, or root causes were warranted. The resulting ES H Action Plan and individual planned actions were prepared by the ES H Action Plan Project Group with assistance from the Program owners/authors during February and March 1991. The plan was reviewed by SNL Management in April 1991. This document serves as a planning instrument for the Laboratories to aid in the scoping and sizing of activities related to ES H compliance for the coming five years. It will be modified as required to ensure a workload/funding balance and to address the findings resulting from the Tiger Team assessment at SNL, Albuquerque. The process of producing this document has served well to prepare SNL, Albuquerque, for the coming task of producing the required post-Tiger Team action plan document. 8 tabs.

  20. Work Plan

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Work Plan NSSAB Members Vote on Work Plan Tasks; The Nevada Site Specific Advisory Board operates on a fiscal year basis and conducts work according to a NSSAB generated and U.S. Department of Energy (DOE) approved work plan. FY 2016 Work Plan Work plan items focus on providing recommendations to the DOE regarding the following subjects: soil contamination from historic atmospheric nuclear testing, remediation of contaminated facilities used to support historic testing, groundwater studies

  1. Dental Plan

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dental Plan Dental Plan A comprehensive benefits package with plan options for health care and retirement to take care of our employees today and tomorrow. Contact Benefits Office (505) 667-1806 Email Dental Plan Proper dental care plays an important role in your overall health. That's why the Lab offers employees and their eligible dependents free dental coverage through Delta Dental of California. In addition to free preventive care, the plan offers both in and out of network coverage. The

  2. Legal Plan

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Legal Plan Legal Plan A comprehensive benefits package with plan options for health care and retirement to take care of our employees today and tomorrow. Contact Benefits Office (505) 667-1806 Email Legal Plan Most people need legal advice at one time or another but high legal fees may prevent you from getting the necessary assistance. For a small monthly premium, employees can enroll in legal coverage through ARAG. The plan provides assistance with routine preventive or defensive matters and

  3. Strategic Plan

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Strategic Plan Print ALS Strategic Plan Update: September 2015 The Advanced Light Source Strategic Plan, originally published in 2009, has been revised to reflect completed projects, new scientific directions, and changing priorities. This most recent revision, Advanced Light Source Strategic Plan: 2015-19 (1.2 MB), was completed in September 2015. The plan encompasses the needs of the scientific community as well as our responses to meeting those needs through development of our synchrotron,

  4. Safety at Work | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In case of emergency If you need help or assistance dial 911 (from Argonne phones) or (630) 252-1911 (from cell phones) Safety at Work As a staff member or user at the Center for Nanoscale Materials (CNM), you need to be aware of safety regulations at Argonne National Laboratory. You are also required to have taken any safety, orientation, and training classes or courses specified by your User Work Approval(s) and/or work planning and control documents prior to beginning your work. For safety

  5. Integrated Safety Management and Environmental Management

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    12 6-3 dated 011110 6-4 dated 121312 6-5 dated 092909 6-1-(112013), Page 1 of 2 Policy In support of NREL's mission and values, the Laboratory commits to: * Conducting...

  6. Integrated Safety Management Workshop - Building Mission Success

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    No. 08-164 September 8, 2008 NRC DOCKETS YUCCA MOUNTAIN APPLICATION, ADOPTS DOE'S ENVIRONMENTAL IMPACT STATEMENT The Nuclear Regulatory Commission has formally docketed the Department of Energy's license application for the proposed high-level nuclear waste repository at Yucca Mountain, Nev. The agency staff has also recommended that the Commission adopt, with further supplementation, DOE's Environmental Impact Statement for the repository project. The decision to docket the application follows

  7. PRIVACY IMPACT ASSESSMENT: Integrated Safety Management Workshop

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Idaho National Laboratory Engineering Research Office ... but not limited to, education, financial transactions, ... be written in plain language and at a high level so ...

  8. Nuclear Energy Institute (NEI) Attachment, Integrated Safety...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ("ISA") is appropriate for fuel recycling facilities1 which would be licensed ... A basis is provided for concluding that future recycling facilities - which will possess ...

  9. Integrated Safety Management System (ISMS) program description

    SciTech Connect (OSTI)

    BUMP, S.L.

    1999-09-30

    This document the ISMS Program for the 300 Area and lists the procedures necessary to implement the program.

  10. Integrated Safety Management Workshop Registration, PIA, Idaho...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Idaho National Laboratory More Documents & Publications TRAIN-PIA.pdf Occupational Medicine - Assistant PIA, Idaho National Laboratory PIA - INL Education Programs Business ...

  11. Independent Oversight Review of Integrated Safety Management...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... on LSO's most recent assessment of LLNL's contractor ... and the request for peer reviews and independent HSS reviews, show that LSO is a learning organization and that ...

  12. Integrated Safety Management Workshop Registration, PIA, Idaho...

    Energy Savers [EERE]

    Idaho National Laboratory More Documents & Publications TRAIN-PIA.pdf Occupational Medicine - Assistant PIA, Idaho National Laboratory PIA - INL Education Programs Business...

  13. TWRS systems engineering software configuration management plan

    SciTech Connect (OSTI)

    Porter, P.E.

    1996-10-09

    This plan delineates the requirements for control of software developed and supported by the Tank Waste Remediation System (TWRS) Technical Integration organization. The information contained in this plan shall assist employees involved with software modification and configuration control.

  14. Delivering safety

    SciTech Connect (OSTI)

    Baldwin, N.D.; Spooner, K.G.; Walkden, P.

    2007-07-01

    In the United Kingdom there have been significant recent changes to the management of civil nuclear liabilities. With the formation in April 2005 of the Nuclear Decommissioning Authority (NDA), ownership of the civil nuclear licensed sites in the UK, including the Magnox Reactor Stations, passed to this new organisation. The NDAs mission is to seek acceleration of the nuclear clean up programme and deliver increased value for money and, consequently, are driving their contractors to seek more innovative ways of performing work. British Nuclear Group manages the UK Magnox stations under contract to the NDA. This paper summarises the approach being taken within its Reactor Sites business to work with suppliers to enhance working arrangements at sites, improve the delivery of decommissioning programmes and deliver improvements in safety and environmental performance. The UK Magnox stations are 1. generation gas-graphite reactors, constructed in the 1950's and 1960's. Two stations are currently still operating, three are shut-down undergoing defueling and the other five are being decommissioned. Despite the distractions of industry restructuring, an uncompromising policy of demanding improved performance in conjunction with improved safety and environmental standards has been adopted. Over the past 5 years, this policy has resulted in step-changes in performance at Reactor Sites, with increased electrical output and accelerated defueling and decommissioning. The improvements in performance have been mirrored by improvements in safety (DACR of 0 at 5 sites); environmental standards (reductions in energy and water consumption, increased waste recycling) and the overall health of the workforce (20% reduction in sickness absence). These achievements have, in turn, been recognised by external bodies, resulting in several awards, including: the world's first ISRS and IERS level 10 awards (Sizewell, 2006), the NUMEX plant maintenance award (Bradwell, 2006), numerous RoSPA awards at site and sector level and nomination, at Company level, for the RoSPA George Earle trophy for outstanding performance in Health and Safety (Reactor Sites, 2006). After 'setting the scene' and describing the challenges that the company has had to respond to, the paper explains how these improvements have been delivered. Specifically it explains the process that has been followed and the parts played by sites and suppliers to deliver improved performance. With the experience of already having transitioned several Magnox stations from operations to defueling and then to decommissioning, the paper describes the valuable experience that has been gained in achieving an optimum change process and maintaining momentum. (authors)

  15. Office of Enterprise Assessments Targeted Review of Work Planning...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Control and Biological Safety at the Los Alamos National Laboratory - December 2015 Office of Enterprise Assessments Targeted Review of Work Planning and Control and ...

  16. Overview of Integrated Waste Treatment Unit

    Office of Environmental Management (EM)

    Integrated Waste Treatment Unit Overview Overview for the DOE High Level Waste Corporate Board March 5, 2009 safety performance cleanup closure M E Environmental ...

  17. Light duty utility arm startup plan

    SciTech Connect (OSTI)

    Barnes, G.A.

    1998-03-11

    This Startup Plan encompasses activities necessary to perform startup and operation of the LDUA in Facility Group 3 tanks and complete turnover to CPO. The activities discussed in this plan will occur prior to, and following the US Department Energy, Richland Operations Office Operational Readiness Review. This startup plan does not authorize or direct any specific field activities or authorize a change of configuration. As such, this startup plan need not be Unresolved Safety Question (USQ) screened.

  18. Text of Plan

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 April 2000 An Integrated System at the Savannah River Site Converting Waste to Glass Converting Waste to Glass HLW-2000-00019 HLW-2000-00019 High Level Waste System Plan Revision 11 Page i Table of Contents TABLE OF CONTENTS ............................................................................................................... I EXECUTIVE SUMMARY............................................................................................................ 1 COMPARISON: REQUIREMENTS CASE

  19. Safety Share from National Safety Council

    Broader source: Energy.gov [DOE]

    Slide Presentation by Joe Yanek, Fluor Government Group. National Safety Council Safety Share. The Campbell Institute is the “Environmental, Health and Safety (EHS) Center of Excellence” at the National Safety Council and provides a Forum for Leaders in EHS to exchange ideas and collaborate across industry sectors and organizational types.

  20. Guide to Resource Planning with Energy Efficiency

    SciTech Connect (OSTI)

    none,

    2007-11-01

    Describes the key issues, best practices, and main process steps for integrating energy efficiency into resource planning on an equal basis with other resources.