National Library of Energy BETA

Sample records for integrating module controls

  1. Module 7 - Integrated Baseline Review and Change Control | Department of

    Energy Savers [EERE]

    Energy 7 - Integrated Baseline Review and Change Control Module 7 - Integrated Baseline Review and Change Control This module focuses on integrated baseline reviews (IBR) and change control. This module outlines the objective and responsibility of an integrated baseline review. Additionally, this module will discuss the change control process required for implementing earned value

  2. Integrating Module - NEMS Documentation

    Reports and Publications (EIA)

    2014-01-01

    Provides an overview of the complete National Energy Modeling System (NEMS) model, and includes brief descriptions of the modules with which the Integrating Module interacts. The emphasis and focus, however, is on the structure and function of the Integrating Module of NEMS.

  3. Water heater control module

    DOE Patents [OSTI]

    Hammerstrom, Donald J

    2013-11-26

    An advanced electric water heater control system that interfaces with a high temperature cut-off thermostat and an upper regulating thermostat. The system includes a control module that is electrically connected to the high-temperature cut-off thermostat and the upper regulating thermostat. The control module includes a switch to open or close the high-temperature cut-off thermostat and the upper regulating thermostat. The control module further includes circuitry configured to control said switch in response to a signal selected from the group of an autonomous signal, a communicated signal, and combinations thereof.

  4. NEMS integrating module documentation report

    SciTech Connect (OSTI)

    Not Available

    1993-12-14

    The National Energy Modeling System (NEMS) is a computer modeling system that produces a general equilibrium solution for energy supply and demand in the US energy markets. The model achieves a supply and demand balance in the end-use demand regions, defined as the nine Census Divisions, by solving for the prices of each energy type such that the quantities producers are willing to supply equal the quantities consumers wish to consume. The system reflects market economics, industry structure, and energy policies and regulations that influence market behavior. The NEMS Integrating Module is the central integrating component of a complex modeling system. As such, a thorough understanding of its role in the modeling process can only be achieved by placing it in the proper context with respect to the other modules. To that end, this document provides an overview of the complete NEMS model, and includes brief descriptions of the modules with which the Integrating Module interacts. The emphasis and focus, however, is on the structure and function of the Integrating Module of NEMS.

  5. Thermal Control & System Integration

    Broader source: Energy.gov [DOE]

    The thermal control and system integration activity focuses on issues such as the integration of motor and power control technologies and the development of advanced thermal control technologies....

  6. Integrated Environmental Control Model

    Energy Science and Technology Software Center (OSTI)

    1999-09-03

    IECM is a powerful multimedia engineering software program for simulating an integrated coal-fired power plant. It provides a capability to model various conventional and advanced processes for controlling air pollutant emissions from coal-fired power plants before, during, or after combustion. The principal purpose of the model is to calculate the performance, emissions, and cost of power plant configurations employing alternative environmental control methods. The model consists of various control technology modules, which may be integratedmore » into a complete utility plant in any desired combination. In contrast to conventional deterministic models, the IECM offers the unique capability to assign probabilistic values to all model input parameters, and to obtain probabilistic outputs in the form of cumulative distribution functions indicating the likelihood of dofferent costs and performance results. A Graphical Use Interface (GUI) facilitates the configuration of the technologies, entry of data, and retrieval of results.« less

  7. Integrated Module Heat Exchanger | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Module Heat Exchanger Integrated Module Heat Exchanger 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon ape047_bennion_2012_p.pdf More Documents & Publications Integrated Power Module Cooling Vehicle Technologies Office: 2008 Advanced Power Electronics and Electric Machinery R&D Annual Progress Report Power Electronic Thermal System Performance and Integration

  8. Advanced Low Temperature Absorption Chiller Module Integrated...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Temperature Absorption Chiller Module Integrated with a CHP System at a Distributed Data Center - Presentation by Exergy Partners Corp., June 2011 Advanced Low Temperature ...

  9. Integrated Performance Testing Workshop, Modules 6 - 11

    SciTech Connect (OSTI)

    Leach, Janice; Torres, Teresa M.

    2012-10-01

    These modules cover performance testing of: Interior Detection Systems; Access Controls; Exterior Detection Systems; Video Assessment Systems; SNM / Contraband Detection Systems; Access Delay Elements

  10. Integrating preconcentrator heat controller

    DOE Patents [OSTI]

    Bouchier, Francis A. (Albuquerque, NM); Arakaki, Lester H. (Edgewood, NM); Varley, Eric S. (Albuquerque, NM)

    2007-10-16

    A method and apparatus for controlling the electric resistance heating of a metallic chemical preconcentrator screen, for example, used in portable trace explosives detectors. The length of the heating time-period is automatically adjusted to compensate for any changes in the voltage driving the heating current across the screen, for example, due to gradual discharge or aging of a battery. The total deposited energy in the screen is proportional to the integral over time of the square of the voltage drop across the screen. Since the net temperature rise, .DELTA.T.sub.s, of the screen, from beginning to end of the heating pulse, is proportional to the total amount of heat energy deposited in the screen during the heating pulse, then this integral can be calculated in real-time and used to terminate the heating current when a pre-set target value has been reached; thereby providing a consistent and reliable screen temperature rise, .DELTA.T.sub.s, from pulse-to-pulse.

  11. Integrated Modules for Bioassay (IMBA) | Department of Energy

    Office of Environmental Management (EM)

    Integrated Modules for Bioassay (IMBA) Integrated Modules for Bioassay (IMBA) Current Central Registry Toolbox Version(s): IMBA ExpertTM USDOE Edition version 4.0.28 Code Owner: UK Health Protection Agency (HPA) Description: IMBA ExpertTM (IX) software suite comprises a series of independent modules (referred to as sub-modules) that implement the International Commission on Radiological Protection (ICRP) Publication 66, Human Respiratory Tract Model (HRTM) and the ICRP Publications 30 (series),

  12. Integrated Microinverters for Enabling True ACPV Modules | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Integrated Microinverters for Enabling True ACPV Modules Integrated Microinverters for Enabling True ACPV Modules solarbridge logo2.jpg This project, led by SolarBridge Technologies, is developing an innovative alternating-current photovoltaic (ACPV) module that consists of an integrated "Universal PV-Dock" and a high-reliability, low-cost, high-efficiency microinverter to substantially reduce balance of system (BOS) costs in residential and commercial PV systems. In 2011,

  13. Integrated Biological Control

    SciTech Connect (OSTI)

    JOHNSON, A.R.

    2002-09-01

    Biological control is any activity taken to prevent, limit, clean up, or remediate potential environmental, health and safety, or workplace quality impacts from plants, animals, or microorganisms. At Hanford the principal emphasis of biological control is to prevent the transport of radioactive contamination by biological vectors (plants, animals, or microorganisms), and where necessary, control and clean up resulting contamination. Other aspects of biological control at Hanford include industrial weed control (e.g.; tumbleweeds), noxious weed control (invasive, non-native plant species), and pest control (undesirable animals such as rodents and stinging insects; and microorganisms such as molds that adversely affect the quality of the workplace environment). Biological control activities may be either preventive (apriori) or in response to existing contamination spread (aposteriori). Surveillance activities, including ground, vegetation, flying insect, and other surveys, and apriori control actions, such as herbicide spraying and placing biological barriers, are important in preventing radioactive contamination spread. If surveillance discovers that biological vectors have spread radioactive contamination, aposteriori control measures, such as fixing contamination, followed by cleanup and removal of the contamination to an approved disposal location are typical response functions. In some cases remediation following the contamination cleanup and removal is necessary. Biological control activities for industrial weeds, noxious weeds and pests have similar modes of prevention and response.

  14. Integrated Biological Control

    SciTech Connect (OSTI)

    JOHNSON, A.R.

    2003-10-09

    Biological control is any activity taken to prevent, limit, clean up, or remediate potential environmental, health and safety, or workplace quality impacts from plants, animals, or microorganisms. At Hanford the principal emphasis of biological control is to prevent the transport of radioactive contamination by biological vectors (plants, animals, or microorganisms), and where necessary, control and clean up resulting contamination. Other aspects of biological control at Hanford include industrial weed control (e.g.; tumbleweeds), noxious weed control (invasive, non-native plant species), and pest control (undesirable animals such as rodents and stinging insects, and microorganisms such as molds that adversely affect the quality of the workplace environment). Biological control activities may be either preventive (a priori) or in response to existing contamination spread (a posteriori). Surveillance activities, including ground, vegetation, flying insect, and other surveys, and a priori control actions, such as herbicide spraying and placing biological barriers, are important in preventing radioactive contamination spread. If surveillance discovers that biological vectors have spread radioactive contamination, a posteriori control measures, such as fixing contamination, followed by cleanup and removal of the contamination to an approved disposal location are typical response functions. In some cases remediation following the contamination cleanup and removal is necessary. Biological control activities for industrial weeds, noxious weeds and pests have similar modes of prevention and response.

  15. Integrated controls design optimization

    DOE Patents [OSTI]

    Lou, Xinsheng; Neuschaefer, Carl H.

    2015-09-01

    A control system (207) for optimizing a chemical looping process of a power plant includes an optimizer (420), an income algorithm (230) and a cost algorithm (225) and a chemical looping process models. The process models are used to predict the process outputs from process input variables. Some of the process in puts and output variables are related to the income of the plant; and some others are related to the cost of the plant operations. The income algorithm (230) provides an income input to the optimizer (420) based on a plurality of input parameters (215) of the power plant. The cost algorithm (225) provides a cost input to the optimizer (420) based on a plurality of output parameters (220) of the power plant. The optimizer (420) determines an optimized operating parameter solution based on at least one of the income input and the cost input, and supplies the optimized operating parameter solution to the power plant.

  16. Advanced Low Temperature Absorption Chiller Module Integrated with a CHP

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    System at a Distributed Data Center - Presentation by Exergy Partners Corp., June 2011 | Department of Energy Low Temperature Absorption Chiller Module Integrated with a CHP System at a Distributed Data Center - Presentation by Exergy Partners Corp., June 2011 Advanced Low Temperature Absorption Chiller Module Integrated with a CHP System at a Distributed Data Center - Presentation by Exergy Partners Corp., June 2011 Presentation on Develop & Demonstrate an Advanced Low Temp Heat

  17. Transparent building-integrated PV modules. Phase 1: Comprehensive report

    SciTech Connect (OSTI)

    NONE

    1998-09-28

    This Comprehensive Report encompasses the activities that have been undertaken by Kiss + Cathcart, Architects, in conjunction with Energy Photovoltaics, Incorporated (EPV), to develop a flexible patterning system for thin-film photovoltaic (PV) modules for building applications. There are two basic methods for increasing transparency/light transmission by means of patterning the PV film: widening existing scribe lines, or scribing a second series of lines perpendicular to the first. These methods can yield essentially any degree of light transmission, but both result in visible patterns of light and dark on the panel surface. A third proposed method is to burn a grid of dots through the films, independent of the normal cell scribing. This method has the potential to produce a light-transmitting panel with no visible pattern. Ornamental patterns at larger scales can be created using combinations of these techniques. Kiss + Cathcart, Architects, in conjunction with EPV are currently developing a complementary process for the large-scale lamination of thin-film PVs, which enables building integrated (BIPV) modules to be produced in sizes up to 48 in. x 96 in. Flexible laser patterning will be used for three main purposes, all intended to broaden the appeal of the product to the building sector: To create semitransparent thin-film modules for skylights, and in some applications, for vision glazing.; to create patterns for ornamental effects. This application is similar to fritted glass, which is used for shading, visual screening, graphics, and other purposes; and to allow BIPV modules to be fabricated in various sizes and shapes with maximum control over electrical characteristics.

  18. Integrated control system and method

    DOE Patents [OSTI]

    Wang, Paul Sai Keat; Baldwin, Darryl; Kim, Myoungjin

    2013-10-29

    An integrated control system for use with an engine connected to a generator providing electrical power to a switchgear is disclosed. The engine receives gas produced by a gasifier. The control system includes an electronic controller associated with the gasifier, engine, generator, and switchgear. A gas flow sensor monitors a gas flow from the gasifier to the engine through an engine gas control valve and provides a gas flow signal to the electronic controller. A gas oversupply sensor monitors a gas oversupply from the gasifier and provides an oversupply signal indicative of gas not provided to the engine. A power output sensor monitors a power output of the switchgear and provide a power output signal. The electronic controller changes gas production of the gasifier and the power output rating of the switchgear based on the gas flow signal, the oversupply signal, and the power output signal.

  19. Integrated Transmission and Distribution Control

    SciTech Connect (OSTI)

    Kalsi, Karanjit; Fuller, Jason C.; Tuffner, Francis K.; Lian, Jianming; Zhang, Wei; Marinovici, Laurentiu D.; Fisher, Andrew R.; Chassin, Forrest S.; Hauer, Matthew L.

    2013-01-16

    Distributed, generation, demand response, distributed storage, smart appliances, electric vehicles and renewable energy resources are expected to play a key part in the transformation of the American power system. Control, coordination and compensation of these smart grid assets are inherently interlinked. Advanced control strategies to warrant large-scale penetration of distributed smart grid assets do not currently exist. While many of the smart grid technologies proposed involve assets being deployed at the distribution level, most of the significant benefits accrue at the transmission level. The development of advanced smart grid simulation tools, such as GridLAB-D, has led to a dramatic improvement in the models of smart grid assets available for design and evaluation of smart grid technology. However, one of the main challenges to quantifying the benefits of smart grid assets at the transmission level is the lack of tools and framework for integrating transmission and distribution technologies into a single simulation environment. Furthermore, given the size and complexity of the distribution system, it is crucial to be able to represent the behavior of distributed smart grid assets using reduced-order controllable models and to analyze their impacts on the bulk power system in terms of stability and reliability. The objectives of the project were to: • Develop a simulation environment for integrating transmission and distribution control, • Construct reduced-order controllable models for smart grid assets at the distribution level, • Design and validate closed-loop control strategies for distributed smart grid assets, and • Demonstrate impact of integrating thousands of smart grid assets under closed-loop control demand response strategies on the transmission system. More specifically, GridLAB-D, a distribution system tool, and PowerWorld, a transmission planning tool, are integrated into a single simulation environment. The integrated environment allows the load flow interactions between the bulk power system and end-use loads to be explicitly modeled. Power system interactions are modeled down to time intervals as short as 1-second. Another practical issue is that the size and complexity of typical distribution systems makes direct integration with transmission models computationally intractable. Hence, the focus of the next main task is to develop reduced-order controllable models for some of the smart grid assets. In particular, HVAC units, which are a type of Thermostatically Controlled Loads (TCLs), are considered. The reduced-order modeling approach can be extended to other smart grid assets, like water heaters, PVs and PHEVs. Closed-loop control strategies are designed for a population of HVAC units under realistic conditions. The proposed load controller is fully responsive and achieves the control objective without sacrificing the end-use performance. Finally, using the T&D simulation platform, the benefits to the bulk power system are demonstrated by controlling smart grid assets under different demand response closed-loop control strategies.

  20. Module-Integrated Power Converters Based on Universal Dock

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PHOTOVOLTAICS Module-Integrated Power Converters Based on Universal Dock SolarBridge Technologies, Inc. SEGIS-AC DE-EE0005341 PI: Patrick Chapman, CTO and VP Advanced Development Primary Goals  ACPV module  Cost-reduced microinverter  HVM cost of $0.10/watt  Universal "dock" for PV modules  Industry standard for PV electronics Microinverter Challenges  Reliability  < 0.2% annual failure rate  No electrical wear-out mechanisms  Efficiency  Compete with

  1. Integrated Inverter Control for Multiple Electric Machines -...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Technologies Find More Like This Return to Search Integrated Inverter Control for Multiple Electric Machines Oak Ridge National Laboratory Contact ORNL About This...

  2. A fully integrated oven controlled microelectromechanical oscillator --

    Office of Scientific and Technical Information (OSTI)

    Part I. Design and fabrication (Journal Article) | DOE PAGES - Part I. Design and fabrication This content will become publicly available on June 24, 2016 Title: A fully integrated oven controlled microelectromechanical oscillator -- Part I. Design and fabrication Our paper reports the design and fabrication of a fully integrated oven controlled microelectromechanical oscillator (OCMO). This paper begins by describing the limits on oscillator frequency stability imposed by the thermal drift

  3. Module-Integrated Power Converters Based on Universal Dock

    SciTech Connect (OSTI)

    Chapman, Patrick; Rodriguez, Fernando

    2015-03-13

    Solar power installations using alternating current photovoltaic (ACPV) modules have significant cost and performance advantages over systems using conventional solar modules and string inverters. ACPV modules have improved energy harvest due to module-level power point tracking and redundancy. More importantly, ACPV modules are easier and cheaper to install, lowering the total installed cost, indirect costs, and barriers to market entry. Furthermore, ACPV modules have communications and data logging capability, yielding module-level telemetry data that is useful in site diagnostics and other data applications. The products of these efforts were threefold. First, an advanced microinverter power topology was developed, modeled, simulated, and tested. Second, new microinverter enclosure concepts were developed and tested. Third, a new ACPV module prototype was constructed, combining the power topology and the enclosure concepts. SolarBridge filed for patents in each of these areas and is transitioning the project from a concept phase to full development.

  4. OLED Luminaire with Panel Integrated Drivers and Advanced Controls...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    OLED Luminaire with Panel Integrated Drivers and Advanced Controls OLED Luminaire with Panel Integrated Drivers and Advanced Controls Lead Performer: Acuity Brands Lighting - ...

  5. Microsoft PowerPoint - FinalModule7.ppt

    Office of Environmental Management (EM)

    7: Integrated Baseline Review and Change Control Prepared by: Module 7 - Integrated Baseline Review and Change Control 1 Prepared by: Booz Allen Hamilton Module 7: Integrated Baseline Review and Change Control Welcome to Module 7. The objective of this module is to introduce you to the concepts of the Integrated Baseline Review Process and requirements for Change Control. The Topics that will be addressed in this Module include: * Definition of an Integrated Baseline Review (IBR) * Integrated

  6. Development of an Air-Source Heat Pump Integrated with a Water Heating / Dehumidification Module

    SciTech Connect (OSTI)

    Rice, C Keith; Uselton, Robert B.; Shen, Bo; Baxter, Van D; Shrestha, Som S

    2014-01-01

    A residential-sized dual air-source integrated heat pump (AS-IHP) concept is under development in partnership between ORNL and a manufacturer. The concept design consists of a two-stage air-source heat pump (ASHP) coupled on the air distribution side with a separate novel water heating/dehumidification (WH/DH) module. The motivation for this unusual equipment combination is the forecast trend for home sensible loads to be reduced more than latent loads. Integration of water heating with a space dehumidification cycle addresses humidity control while performing double-duty. This approach can be applied to retrofit/upgrade applications as well as new construction. A WH/DH module capable of ~1.47 L/h water removal and ~2 kW water heating capacity was assembled by the manufacturer. A heat pump system model was used to guide the controls design; lab testing was conducted and used to calibrate the models. Performance maps were generated and used in a TRNSYS sub-hourly simulation to predict annual performance in a well-insulated house. Annual HVAC/WH energy savings of ~35% are predicted in cold and hot-humid U.S. climates compared to a minimum efficiency baseline.

  7. Triggerable electro-optic amplitude modulator bias stabilizer for integrated optical devices

    DOE Patents [OSTI]

    Conder, A.D.; Haigh, R.E.; Hugenberg, K.F.

    1995-09-26

    An improved Mach-Zehnder integrated optical electro-optic modulator is achieved by application and incorporation of a DC bias box containing a laser synchronized trigger circuit, a DC ramp and hold circuit, a modulator transfer function negative peak detector circuit, and an adjustable delay circuit. The DC bias box ramps the DC bias along the transfer function curve to any desired phase or point of operation at which point the RF modulation takes place. 7 figs.

  8. Triggerable electro-optic amplitude modulator bias stabilizer for integrated optical devices

    DOE Patents [OSTI]

    Conder, Alan D. (Tracy, CA); Haigh, Ronald E. (Tracy, CA); Hugenberg, Keith F. (Livermore, CA)

    1995-01-01

    An improved Mach-Zehnder integrated optical electro-optic modulator is achieved by application and incorporation of a DC bias box containing a laser synchronized trigger circuit, a DC ramp and hold circuit, a modulator transfer function negative peak detector circuit, and an adjustable delay circuit. The DC bias box ramps the DC bias along the transfer function curve to any desired phase or point of operation at which point the RF modulation takes place.

  9. Evaluation of Maxim Module-Integrated Electronics at the DOE Regional Test Centers (Presentation)

    SciTech Connect (OSTI)

    Deline, C.; Sekulic, B.; Barkaszi, S.; Yang, J.; Kahn, S.

    2014-06-01

    Module-embedded power electronics developed by Maxim Integrated are under evaluation through a partnership with the Department of Energy's Regional Test Center (RTC) program. Field deployments of both conventional modules and electronics-enhanced modules are designed to quantify the performance advantage of Maxim's products under different amounts of interrow shading, and their ability to be deployed at a greater ground-coverage ratio than conventional modules. Simulations in PVSYST have quantified the predicted performance difference between conventional modules and Maxim's modules from interrow shading. Initial performance results have identified diffuse irradiance losses at tighter row spacing for both the Maxim and conventional modules. Comparisons with published models show good agreement with models predicting the greatest diffuse irradiance losses. At tighter row spacing, all of the strings equipped with embedded power electronics outperformed their conventional peers. An even greater performance advantage is predicted to occur in the winter months when the amount of interrow shading mismatch is at a maximum.

  10. Demonstrations of Integrated Advanced Rooftop Unit Controls and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demonstrations of Integrated Advanced Rooftop Unit Controls and Automated Fault Detection and Diagnostics - 2014 BTO Peer Review Demonstrations of Integrated Advanced Rooftop Unit...

  11. Development of a Residential Integrated Ventilation Controller

    SciTech Connect (OSTI)

    Staff Scientist; Walker, Iain; Sherman, Max; Dickerhoff, Darryl

    2011-12-01

    The goal of this study was to develop a Residential Integrated Ventilation Controller (RIVEC) to reduce the energy impact of required mechanical ventilation by 20percent, maintain or improve indoor air quality and provide demand response benefits. This represents potential energy savings of about 140 GWh of electricity and 83 million therms of natural gas as well as proportional peak savings in California. The RIVEC controller is intended to meet the 2008 Title 24 requirements for residential ventilation as well as taking into account the issues of outdoor conditions, other ventilation devices (including economizers), peak demand concerns and occupant preferences. The controller is designed to manage all the residential ventilation systems that are currently available. A key innovation in this controller is the ability to implement the concept of efficacy and intermittent ventilation which allows time shifting of ventilation. Using this approach ventilation can be shifted away from times of high cost or high outdoor pollution towards times when it is cheaper and more effective. Simulations, based on the ones used to develop the new residential ventilation requirements for the California Buildings Energy code, were used to further define the specific criteria and strategies needed for the controller. These simulations provide estimates of the energy, peak power and contaminant improvement possible for different California climates for the various ventilation systems. Results from a field test of the prototype controller corroborate the predicted performance.

  12. INTEGRATED CONTROL OF NEXT GENERATION POWER SYSTEM

    SciTech Connect (OSTI)

    2010-02-28

    Control methodologies provide the necessary data acquisition, analysis and corrective actions needed to maintain the state of an electric power system within acceptable operating limits. These methods are primarily software-based algorithms that are nonfunctional unless properly integrated with system data and the appropriate control devices. Components of the control of power systems today include protective relays, supervisory control and data acquisition (SCADA), distribution automation (DA), feeder automation, software agents, sensors, control devices and communications. Necessary corrective actions are still accomplished using large electromechanical devices such as vacuum, oil and gas-insulated breakers, capacitor banks, regulators, transformer tap changers, reclosers, generators, and more recently FACTS (flexible AC transmission system) devices. The recent evolution of multi-agent system (MAS) technologies has been reviewed and effort made to integrate MAS into next generation power systems. A MAS can be defined as â??â?¦a loosely-coupled network of problem solvers that work together to solve problems that are beyond their individual capabilitiesâ?¦â?. These problem solvers, often called agents, are autonomous and may be heterogeneous in nature. This project has shown that a MAS has significant advantages over a single, monolithic, centralized problem solver for next generation power systems. Various communication media are being used in the electric power system today, including copper, optical fiber and power line carrier (PLC) as well as wireless technologies. These technologies have enabled the deployment of substation automation (SA) at many facilities. Recently, carrier and wireless technologies have been developed and demonstrated on a pilot basis. Hence, efforts have been made by this project to penetrate these communication technologies as an infrastructure for next generation power systems. This project has thus pursued efforts to use specific MAS methods as well as pertinent communications protocols to imbed and assess such technologies in a real electric power distribution system, specifically the Circuit of the Future (CoF) developed by Southern California Edison (SCE). By modeling the behavior and communication for the components of a MAS, the operation and control of the power distribution circuit have been enhanced. The use of MAS to model and integrate a power distribution circuit offers a significantly different approach to the design of next generation power systems. For example, ways to control a power distribution circuit that includes a micro-grid while considering the impacts of thermal constraints, and integrating voltage control and renewable energy sources on the main power system have been pursued. Both computer simulations and laboratory testbeds have been used to demonstrate such technologies in electric power distribution systems. An economic assessment of MAS in electric power systems was also performed during this project. A report on the economic feasibility of MAS for electric power systems was prepared, and particularly discusses the feasibility of incorporating MAS in transmission and distribution (T&D) systems. Also, the commercial viability of deploying MAS in T&D systems has been assessed by developing an initial case study using utility input to estimate the benefits of deploying MAS. In summary, the MAS approach, which had previously been investigated with good success by APERC for naval shipboard applications, has now been applied with promising results for enhancing an electric power distribution circuit, such as the Circuit of the Future developed by Southern California Edison. The results for next generation power systems include better ability to reconfigure circuits, improve protection and enhance reliability.

  13. Coal gasification system with a modulated on/off control system

    DOE Patents [OSTI]

    Fasching, George E. (Morgantown, WV)

    1984-01-01

    A modulated control system is provided for improving regulation of the bed level in a fixed-bed coal gasifier into which coal is fed from a rotary coal feeder. A nuclear bed level gauge using a cobalt source and an ion chamber detector is used to detect the coal bed level in the gasifier. The detector signal is compared to a bed level set point signal in a primary controller which operates in proportional/integral modes to produce an error signal. The error signal is modulated by the injection of a triangular wave signal of a frequency of about 0.0004 Hz and an amplitude of about 80% of the primary deadband. The modulated error signal is fed to a triple-deadband secondary controller which jogs the coal feeder speed up or down by on/off control of a feeder speed change driver such that the gasifier bed level is driven toward the set point while preventing excessive cycling (oscillation) common in on/off mode automatic controllers of this type. Regulation of the bed level is achieved without excessive feeder speed control jogging.

  14. AN INTEGRATED BIOLOGICAL CONTROL SYSTEM AT HANFORD

    SciTech Connect (OSTI)

    JOHNSON AR; CAUDILL JG; GIDDINGS RF; RODRIGUEZ JM; ROOS RC; WILDE JW

    2010-02-11

    In 1999 an integrated biological control system was instituted at the U.S. Department of Energy's Hanford Site. Successes and changes to the program needed to be communicated to a large and diverse mix of organizations and individuals. Efforts at communication are directed toward the following: Hanford Contractors (Liquid or Tank Waste, Solid Waste, Environmental Restoration, Science and Technology, Site Infrastructure), General Hanford Employees, and Hanford Advisory Board (Native American Tribes, Environmental Groups, Local Citizens, Washington State and Oregon State regulatory agencies). Communication was done through direct interface meetings, individual communication, where appropriate, and broadly sharing program reports. The objectives of the communication efforts was to have the program well coordinated with Hanford contractors, and to have the program understood well enough that all stakeholders would have confidence in the work performed by the program to reduce or elimated spread of radioactive contamination by biotic vectors. Communication of successes and changes to an integrated biological control system instituted in 1999 at the Department of Energy's Hanford Site have required regular interfaces with not only a diverse group of Hanford contractors (i.e., those responsible for liquid or tank waste, solid wastes, environmental restoration, science and technology, and site infrastructure), and general Hanford employees, but also with a consortium of designated stake holders organized as the Hanford Advisory Board (i.e., Native American tribes, various environmental groups, local citizens, Washington state and Oregon regulatory agencies, etc.). Direct interface meetings, individual communication where appropriate, and transparency of the biological control program were the methods and outcome of this effort.

  15. NREL: Energy Systems Integration Facility - Supervisory Control and Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Acquisition System Supervisory Control and Data Acquisition System Integrated throughout the Energy Systems Integration Facility, a supervisory control and data acquisition (SCADA) system monitors and controls experimental operations and gathers real-time, time-synchronized, high-resolution data for collaboration and visualization. Photo of two men in a control room in front of a large computer screen. The Energy Systems Integration Facility's SCADA system supports a large visualization

  16. Solid-state energy storage module employing integrated interconnect board

    DOE Patents [OSTI]

    Rouillard, Jean; Comte, Christophe; Daigle, Dominik; Hagen, Ronald A.; Knudson, Orlin B.; Morin, Andre; Ranger, Michel; Ross, Guy; Rouillard, Roger; St-Germain, Philippe; Sudano, Anthony; Turgeon, Thomas A.

    2004-09-28

    An electrochemical energy storage device includes a number of solid-state thin-film electrochemical cells which are selectively interconnected in series or parallel through use of an integrated interconnect board. The interconnect board is typically disposed within a sealed housing which also houses the electrochemical cells, and includes a first contact and a second contact respectively coupled to first and second power terminals of the energy storage device. The interconnect board advantageously provides for selective series or parallel connectivity with the electrochemical cells, irrespective of electrochemical cell position within the housing. Fuses and various electrical and electro-mechanical devices, such as bypass, equalization, and communication devices for example, may also be mounted to the interconnect board and selectively connected to the electrochemical cells.

  17. Solid-state energy storage module employing integrated interconnect board

    DOE Patents [OSTI]

    Rouillard, Jean; Comte, Christophe; Daigle, Dominik; Hagen, Ronald A.; Knudson, Orlin B.; Morin, Andre; Ranger, Michel; Ross, Guy; Rouillard, Roger; St-Germain, Philippe; Sudano, Anthony; Turgeon, Thomas A.

    2003-11-04

    The present invention is directed to an improved electrochemical energy storage device. The electrochemical energy storage device includes a number of solid-state, thin-film electrochemical cells which are selectively interconnected in series or parallel through use of an integrated interconnect board. The interconnect board is typically disposed within a sealed housing which also houses the electrochemical cells, and includes a first contact and a second contact respectively coupled to first and second power terminals of the energy storage device. The interconnect board advantageously provides for selective series or parallel connectivity with the electrochemical cells, irrespective of electrochemical cell position within the housing. Fuses and various electrical and electromechanical devices, such as bypass, equalization, and communication devices for example, may also be mounted to the interconnect board and selectively connected to the electrochemical cells.

  18. Solid-state energy storage module employing integrated interconnect board

    DOE Patents [OSTI]

    Rouillard, Jean (Saint-Luc, CA); Comte, Christophe (Montreal, CA); Daigle, Dominik (St-Hyacinthe, CA); Hagen, Ronald A. (Stillwater, MN); Knudson, Orlin B. (Vadnais Heights, MN); Morin, Andre (Longueuil, CA); Ranger, Michel (Lachine, CA); Ross, Guy (Beloeil, CA); Rouillard, Roger (Beloeil, CA); St-Germain, Philippe (Outremont, CA); Sudano, Anthony (Laval, CA); Turgeon, Thomas A. (Fridley, MN)

    2000-01-01

    The present invention is directed to an improved electrochemical energy storage device. The electrochemical energy storage device includes a number of solid-state, thin-film electrochemical cells which are selectively interconnected in series or parallel through use of an integrated interconnect board. The interconnect board is typically disposed within a sealed housing which also houses the electrochemical cells, and includes a first contact and a second contact respectively coupled to first and second power terminals of the energy storage device. The interconnect board advantageously provides for selective series or parallel connectivity with the electrochemical cells, irrespective of electrochemical cell position within the housing. In one embodiment, a sheet of conductive material is processed by employing a known milling, stamping, or chemical etching technique to include a connection pattern which provides for flexible and selective interconnecting of individual electrochemical cells within the housing, which may be a hermetically sealed housing. Fuses and various electrical and electro-mechanical devices, such as bypass, equalization, and communication devices for example, may also be mounted to the interconnect board and selectively connected to the electrochemical cells.

  19. Evaluation of Maxim Module-Integrated Electronics at the DOE Regional Test Centers: Preprint

    SciTech Connect (OSTI)

    Deline, C.; Sekulic, B.; Stein, J.; Barkaszi, S.; Yang, J.; Kahn, S.

    2014-07-01

    Module-embedded power electronics developed by Maxim Integrated are under evaluation through a partnership with the Department of Energy's Regional Test Center (RTC) program. Field deployments of both conventional modules and electronics-enhanced modules are designed to quantify the performance advantage of Maxim's products under different amounts of inter-row shading, and their ability to be deployed at a greater ground-coverage-ratio than conventional modules. Simulations in PVSYST have quantified the predicted performance difference between conventional modules and Maxim's modules from inter-row shading. Initial performance results have identified diffuse irradiance losses at tighter row spacing for both the Maxim and conventional modules. Comparisons with published models show good agreement with models predicting the greatest diffuse irradiance losses. At tighter row spacing, all of the strings equipped with embedded power electronics outperformed their conventional peers. An even greater performance advantage is predicted to occur in the winter months when the amount of inter-row shading mismatch is at a maximum.

  20. Integrable perturbations of conformal field theories and Yetter-Drinfeld modules

    SciTech Connect (OSTI)

    Bücher, David; Runkel, Ingo

    2014-11-15

    In this paper we relate a problem in representation theory — the study of Yetter-Drinfeld modules over certain braided Hopf algebras — to a problem in two-dimensional quantum field theory, namely, the identification of integrable perturbations of a conformal field theory. A prescription that parallels Lusztig's construction allows one to read off the quantum group governing the integrable symmetry. As an example, we illustrate how the quantum group for the loop algebra of sl(2) appears in the integrable structure of the perturbed uncompactified and compactified free boson.

  1. Integrating Module

    Gasoline and Diesel Fuel Update (EIA)

    and wide-body aircraft Six advanced aircraft technologies Medium and heavy freight truck size classes Thirty-Seven advanced freight truck technologies Nine Census divisions...

  2. NREL: Transmission Grid Integration - Active Power Controls

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Active Power Controls NREL has teamed with a number of organizations, including the Electric Power Research Institute and the University of Colorado, to research the potential of wind power plants to provide active power control (also known as real power or frequency control) to the electric power system. Released January 2014 Active Power Controls from Wind Power: Bridging the Gaps Project study report explores how wind power can support power system reliability, and do so economically with

  3. Modules

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    it's recommended to use the full version number, i.e. instead of doing "module load python" do "module load python2.7.6". This will preserve a record of the software version...

  4. Protecting integrated circuits from excessive charge accumulation during plasma cleaning of multichip modules

    DOE Patents [OSTI]

    Rodenbeck, Christopher T; Girardi, Michael

    2015-04-21

    Internal nodes of a constituent integrated circuit (IC) package of a multichip module (MCM) are protected from excessive charge during plasma cleaning of the MCM. The protected nodes are coupled to an internal common node of the IC package by respectively associated discharge paths. The common node is connected to a bond pad of the IC package. During MCM assembly, and before plasma cleaning, this bond pad receives a wire bond to a ground bond pad on the MCM substrate.

  5. ADVANCED COMPRESSOR ENGINE CONTROLS TO ENHANCE OPERATION, RELIABILITY AND INTEGRITY

    SciTech Connect (OSTI)

    Gary D. Bourn; Jess W. Gingrich; Jack A. Smith

    2004-03-01

    This document is the final report for the ''Advanced Compressor Engine Controls to Enhance Operation, Reliability, and Integrity'' project. SwRI conducted this project for DOE in conjunction with Cooper Compression, under DOE contract number DE-FC26-03NT41859. This report addresses an investigation of engine controls for integral compressor engines and the development of control strategies that implement closed-loop NOX emissions feedback.

  6. Integrated Solar Power Converters: Wafer-Level Sub-Module Integrated DC/DC Converter

    SciTech Connect (OSTI)

    2012-02-09

    Solar ADEPT Project: CU-Boulder is developing advanced power conversion components that can be integrated into individual solar panels to improve energy yields. The solar energy that is absorbed and collected by a solar panel is converted into useable energy for the grid through an electronic component called an inverter. Many large, conventional solar energy systems use one, central inverter to convert energy. CU-Boulder is integrating smaller, microinverters into individual solar panels to improve the efficiency of energy collection. The Universitys microinverters rely on electrical components that direct energy at high speeds and ensure that minimal energy is lost during the conversion processimproving the overall efficiency of the power conversion process. CU-Boulder is designing its power conversion devices for use on any type of solar panel.

  7. Strategies for Integrated Emission Control | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Integrated Emission Control Strategies for Integrated Emission Control A new filter system technology significantly reduces harmful pollutants, uses less precious metals, and offers long-term durability. PDF icon deer08_copan.pdf More Documents & Publications Selective Catalytic Reduction and Exhaust Gas Recirculation Systems Optimization A Bimetmallic Fuel-Borne Catalyst for Reduce Precious Metal Use in Medium-Duty Diesel Engines Diesel Particulate Filters: Market Introducution in Europe

  8. Outdoor performance stability and controlled light-soak testing of amorphous silicon multijunction modules at NREL

    SciTech Connect (OSTI)

    Mrig, L.; Burdick, J.; Luft, W.; Kroposki, B.

    1994-12-31

    The National Renewable Energy Laboratory (NREL) has been testing amorphous silicon (a-Si) Photovoltaic (PV) modules for more than a decade. NREL has been conducting controlled light-soak testing of multijunction a-Si modules to characterize their performance for stability evaluation as well as to benchmark the technology status. Some of the test modules, after controlled light-soak testing, have been installed outdoors. The authors have observed that under outdoor exposure, the modules further degrade in performance, possibly due to lower outdoor temperatures and varying spectra. The paper presents data on the light-induced degradation for the third controlled light-soak test on multijunction a-Si modules as well as outdoor performance data on single- and multijunction modules under prevailing conditions.

  9. Outdoor performance stability and controlled light-soak testing of amorphous silicon multijunction modules at NREL

    SciTech Connect (OSTI)

    Mrig, L.; Burdick, J.; Luft, W.; Kroposki, B.

    1995-10-01

    The National Renewable Energy Laboratory (NREL) has been testing amorphous silicon (a-Si) Photovoltaic (PV) modules for more than a decade. NREL has been conducting controlled light-soak testing of multifunction a-Si modules to characterize their performance for stability evaluation as well as to benchmark the technology status. Some of the test modules, after controlled light-soak testing, have been installed outdoors. The authors have observed that under outdoor exposure, the modules further degrade in performance, possibly due to lower outdoor temperatures and varying spectra. The paper presents data on the light-induced degradation for the third controlled light-soak test on multijunction a-Si modules as well as outdoor performance data on single and multijunction modules under prevailing conditions.

  10. How Standards Control Module Design for Better or Worse (Presentation)

    SciTech Connect (OSTI)

    Wohlgemuth, J.

    2011-02-01

    One would hope that PV modules are designed for survival in the outdoors. However, it appears that some module types are really designed to pass the qualification (IEC 61216/61646) and safety (IEC 61730 and UL 1703) tests. While this has resulted in an overall increase in module reliability and a reduction in infant mortality, it may not result in the most cost-effective solution for long-term reliability and minimum power degradation. This paper will provide several examples of module types and even solar cells designed to pass the tests that do not result in good cost-effective long-term solutions for outdoor performance. This presentation is meant to stimulate a discussion about how to remedy this situation and improve the overall PV industry.

  11. Integration of access control and ancillary information systems

    SciTech Connect (OSTI)

    Rodriguez, J.R.; Ahrens, J.S.

    1995-07-01

    The DOE has identified the Lawrence Livermore National Laboratory ARGUS system as the standard entry control system for the DOE Complex. ARGUS integrates several key functions, specifically, badging, entry control, and verification of clearance status. Not all sites need or can afford an ARGUS system. Such sites are therefore limited to commercial equipment which provide ARGUS like features. In this project an alternative way to integrate commercial equipment into an integrated system to include badging, access control, property control, and automated verification of clearance status has been investigated. Such a system would provide smaller sites the same functionality as is provided by ARGUS. Further, it would allow sites to fully participate in the DOE`s concept of Complex wide access control. This multi-year task is comprised of three phases. Phase 1, system requirements and definitions, and phase 2, software and hardware development, were completed during fiscal year 1994. This report covers these two phases and the demonstration system which resulted. Phase three would employ the demonstration system to evaluate system performance, identify operational limits and to integrate additional features. The demonstration system includes a badging station, a database server, a managers workstation, an entry control system, and a property protection system. The functions have been integrated through the use of custom interfaces and operator screens which greatly increase ease of use.

  12. Development of the integrated environmental control model. Quarterly progress report, April 1995--June 1995

    SciTech Connect (OSTI)

    Kalagnanam, J.R.; Rubin, E.S.

    1995-06-01

    The purpose of this contract is to develop and refine the Integrated Environmental Control Model (IECM). In its current configuration, the IECM provides a capability to model various conventional and advanced processes for controlling air pollutant emissions from coal-fired power plants before, during, or after combustion. The principal purpose of the model is to calculate the performance, emissions, and cost of power plant configurations employing alternative environmental control methods. The model consists of various control technology modules, which may be integrated into a complete utility plant in any desired combination. In contrast to conventional deterministic models, the IECM offers the unique capability to assign probabilistic values to all model input parameters, and to obtain probabilistic outputs in the form of cumulative distribution functions indicating the likelihood of different costs and performance results. The work in this contract is divided into two phases. Phase I deals with further developing the existing version of the IECM and training PETC personnel on the effective use of the model. Phase H deals with creating new technology modules, linking the IECM with PETC databases, and training PETC personnel on the effective use of the updated model. The present report summarizes recent progress on the Phase I effort during the period April 1, 1995 through June 30, 1995. This report presents additional revisions to the new cost models of flue gas desulfurization (FGD) technology initially reported in our fourth quarterly report. For convenience, the complete description of the revised FGD models are presented here.

  13. Integrated, proportionally controlled, and naturally compliant universal joint actuator with controllable stiffness

    DOE Patents [OSTI]

    Borenstein, Johann; Granosik, Grzegorz

    2005-03-22

    An apparatus for traversing obstacles having an elongated, round, flexible body that includes a plurality of segments interconnected by an integrated joint actuator assembly. The integrated joint actuator assembly includes a plurality of bellows-type actuators individually coupling adjacent segments to permit pivotal actuation of the apparatus therebetween. A controller is employed to maintain proper positional control and stiffness control while minimize air flow.

  14. Hot surface ignition system control module with accelerated igniter warm-up test program

    SciTech Connect (OSTI)

    Brown, B.T.

    1986-10-07

    This patent describes a gas burner control system which consists of: a burner; an electrical resistance igniter for igniting the burner; valve means for controlling flow of gas to the burner; and a control module, including a microcomputer, for controlling operation of the igniter and the valve means, the microcomputer being programmed to provide a preselected igniter warm-up time period for enabling the igniter to attain a temperature sufficient to ignite gas, the microcomputer being further programmed to provide a test routine including a program for providing an accelerated igniter warm-up time period which is shorter than the preselected igniter warm-up time period but sufficiently long for enabling the igniter to attain at least the minimum temperature required to ignite gas, the program in the test routine being executed in response to a unique signal effected by the control module and a test device which is external from and detachably connected to the control module.

  15. Development of an integrated control and measurement system

    SciTech Connect (OSTI)

    Manges, W.W.

    1984-03-01

    This thesis presents a tutorial on the issues involved in the development of a minicomputer-based, distributed intelligence data acquisition and process control system to support complex experimental facilities. The particular system discussed in this thesis is under development for the Atomic Vapor Laser Isotope Separation (AVLIS) Program at the Oak Ridge Gaseous Diffusion Plant (ORGDP). In the AVLIS program, we were careful to integrate the computer sections of the implementation into the instrumentation system rather than adding them as an appendage. We then addressed the reliability and availability of the system as a separate concern. Thus, our concept of an integrated control and measurement (ICAM) system forms the basis for this thesis. This thesis details the logic and philosophy that went into the development of this system and explains why the commercially available turn-key systems generally are not suitable. Also, the issues involved in the specification of the components for such an integrated system are emphasized.

  16. Plutonium Immobilization Process: Puck Handling Module Supervisory Control System

    SciTech Connect (OSTI)

    Smail, T.R.

    2001-01-29

    This paper discusses the Supervisory Control and Data Acquisition for green puck handling. Also discussed is the overall control scheme implemented by the supervisory computer, the individual inspections completed on the puck, and the checks and balances between the computer, tray loading system and robot.

  17. Temperature control system for a J-module heat exchanger

    DOE Patents [OSTI]

    Basdekas, Demetrios L. (Rockville, PA); Macrae, George (Murrysville, PA); Walsh, Joseph M. (Pittsburgh, PA)

    1978-01-01

    The level of primary fluid is controlled to change the effective heat transfer area of a heat exchanger utilized in a liquid metal nuclear power plant to eliminate the need for liquid metal control valves to regulate the flow of primary fluid and the temperature of the effluent secondary fluid.

  18. Order Module--DOE STD-1098-2008, DOE STANDARD: RADIOLOGICAL CONTROL |

    Energy Savers [EERE]

    Department of Energy STD-1098-2008, DOE STANDARD: RADIOLOGICAL CONTROL Order Module--DOE STD-1098-2008, DOE STANDARD: RADIOLOGICAL CONTROL "The radiological control program discussed in DOE-STD-1098-2008 goes beyond the scope of, and includes more details than, the documented radiation protection program (RPP) required by 10 CFR 835, -Occupational Radiation Protection.‖ To ensure implementation of a comprehensive and coherent radiological control program that exceeds basic

  19. Periodic equivalence ratio modulation method and apparatus for controlling combustion instability

    DOE Patents [OSTI]

    Richards, George A. (Morgantown, WV); Janus, Michael C. (Baltimore, MD); Griffith, Richard A. (Morgantown, WV)

    2000-01-01

    The periodic equivalence ratio modulation (PERM) method and apparatus significantly reduces and/or eliminates unstable conditions within a combustion chamber. The method involves modulating the equivalence ratio for the combustion device, such that the combustion device periodically operates outside of an identified unstable oscillation region. The equivalence ratio is modulated between preselected reference points, according to the shape of the oscillation region and operating parameters of the system. Preferably, the equivalence ratio is modulated from a first stable condition to a second stable condition, and, alternatively, the equivalence ratio is modulated from a stable condition to an unstable condition. The method is further applicable to multi-nozzle combustor designs, whereby individual nozzles are alternately modulated from stable to unstable conditions. Periodic equivalence ratio modulation (PERM) is accomplished by active control involving periodic, low frequency fuel modulation, whereby low frequency fuel pulses are injected into the main fuel delivery. Importantly, the fuel pulses are injected at a rate so as not to affect the desired time-average equivalence ratio for the combustion device.

  20. Cable tensioned membrane solar collector module with variable tension control

    DOE Patents [OSTI]

    Murphy, Lawrence M. (Lakewood, CO)

    1985-01-01

    Disclosed is a solar collector comprising a membrane for concentrating sunlight, a plurality of elongated structural members for suspending the membrane member thereon, and a plurality of control members for adjustably tensioning the membrane member, as well as for controlling a focus produced by the membrane members. Each control member is disposed at a different corresponding one of the plurality of structural members. The collector also comprises an elongated flexible tensioning member, which serves to stretch the membrane member and to thereafter hold it in tension, and a plurality of sleeve members, which serve to provide the membrane member with a desired surface contour during tensioning of the membrane member. The tensioning member is coupled to the structural members such that the tensioning member is adjustably tensioned through the structural members. The tensioning member is also coupled to the membrane member through the sleeve members such that the sleeve members uniformly and symmetrically stretch the membrane member upon applying tension to the tensioning member with the control members.

  1. Cable tensioned membrane solar collector module with variable tension control

    DOE Patents [OSTI]

    Murphy, L.M.

    1984-01-09

    Disclosed is a solar collector comprising a membrane member for concentrating sunlight, a plurality of elongated structural members for suspending the membrane member thereon, and a plurality of control members for adjustably tensioning the membrane member, as well as for controlling a focus produced by the membrane members. Each control member is disposed at a different corresponding one of the plurality of structural members. The collector also comprises an elongated flexible tensioning member, which serves to stretch the membrane member and to thereafter hold it in tension, and a plurality of sleeve members which serve to provide the membrane member with a desired surface contour during tensioning of the membrane member. The tensioning member is coupled to the structural members such that the tensioning member is adjustably tensioned through the structural members. The tensioning member is also coupled to the membrane member through the sleeve members such that the sleeve members uniformly and symmetrically stretch the membrane member upon applying tension to the tensioning member with the control members.

  2. Focus control system for stretched-membrane mirror module

    DOE Patents [OSTI]

    Butler, B.L.; Beninga, K.J.

    1991-05-21

    A focus control system dynamically sets and controls the focal length of a reflective membrane supported between a perimeter frame. A rear membrane is also supported between the perimeter frame rearward and spaced apart from a back side of the reflective membrane. The space between the membranes defines a plenum space into which a mass of gas at a first pressure is inserted. The pressure differential between the first pressure and an external pressure, such as the atmospheric pressure, causes the reflective membrane to assume a first curvature relative to a reference plane associated with the perimeter frame. This curvature defines the focal length of the reflective membrane. The focal length is dynamically controlled by changing the volume of the plenum space, thereby changing the first pressure. The system can be used to change or maintain the pressure differential and hence the front membrane curvature. The plenum volume is changed by pushing or pulling on a central section of the rear membrane using a suitable actuator. Sensing means continuously sense the location of the reflective membrane relative to the reference plane. This sensed position is compared to a reference position, and a resulting error signal, comprising the difference between the sensed position and reference position, drives the actuator in a direction to minimize the difference. A vent value compensates for temperature changes or leaks in the closed volume by allowing the pressure differential to be adjusted as required to center the working range of the actuator about the desired focal length. 13 figures.

  3. Focus control system for stretched-membrane mirror module

    DOE Patents [OSTI]

    Butler, Barry L. (Solana Beach, CA); Beninga, Kelly J. (San Diego, CA)

    1991-01-01

    A focus control system dynamically sets and controls the focal length of a reflective membrane supported between a perimeter frame. A rear membrane is also supported between the perimeter frame rearward and spaced apart from a back side of the reflective membrane. The space between the membranes defines a plenum space into which a mass of gas at a first pressure is inserted. The pressure differential between the first pressure and an external pressure, such as the atmospheric pressure, causes the reflective membrane to assume a first curvature relative to a reference plane associated with the perimeter frame. This curvature defines the focal length of the reflective membrane. The focal length is dynamically controlled by changing the volume of the plenum space, thereby changing the first pressure. The system can be used to change or maintain the pressure differential and hence the front membrane curvature. The plenum volume is changed by pushing or pulling on a central section of the rear membrane using a suitable actuator. Sensing means continuously sense the location of the reflective membrane relative to the reference plane. This sensed position is compared to a reference position, and a resulting error signal, comprising the difference between the sensed position and reference position, drives the actuator in a direction to minimize the difference. A vent value compensates for temperature changes or leaks in the closed volume by allowing the pressure differential to be adjusted as required to center the working range of the actuator about the desired focal length.

  4. Oxy-fuel combustion with integrated pollution control

    DOE Patents [OSTI]

    Patrick, Brian R. (Chicago, IL); Ochs, Thomas Lilburn (Albany, OR); Summers, Cathy Ann (Albany, OR); Oryshchyn, Danylo B. (Philomath, OR); Turner, Paul Chandler (Independence, OR)

    2012-01-03

    An oxygen fueled integrated pollutant removal and combustion system includes a combustion system and an integrated pollutant removal system. The combustion system includes a furnace having at least one burner that is configured to substantially prevent the introduction of air. An oxygen supply supplies oxygen at a predetermine purity greater than 21 percent and a carbon based fuel supply supplies a carbon based fuel. Oxygen and fuel are fed into the furnace in controlled proportion to each other and combustion is controlled to produce a flame temperature in excess of 3000 degrees F. and a flue gas stream containing CO2 and other gases. The flue gas stream is substantially void of non-fuel borne nitrogen containing combustion produced gaseous compounds. The integrated pollutant removal system includes at least one direct contact heat exchanger for bringing the flue gas into intimated contact with a cooling liquid to produce a pollutant-laden liquid stream and a stripped flue gas stream and at least one compressor for receiving and compressing the stripped flue gas stream.

  5. Compact vehicle drive module having improved thermal control

    DOE Patents [OSTI]

    Meyer, Andreas A.; Radosevich, Lawrence D.; Beihoff, Bruce C.; Kehl, Dennis L.; Kannenberg, Daniel G.

    2006-01-03

    An electric vehicle drive includes a thermal support may receive one or more power electronic circuits. The support may aid in removing heat from the circuits through fluid circulating through the support, which may be controlled in a closed-loop manner. Interfacing between circuits, circuit mounting structure, and the support provide for greatly enhanced cooling. The support may form a shield from both external EMI/RFI and from interference generated by operation of the power electronic circuits. Features may be provided to permit and enhance connection of the circuitry to external circuitry, such as improved terminal configurations. Modular units may be assembled that may be coupled to electronic circuitry via plug-in arrangements or through interface with a backplane or similar mounting and interconnecting structures.

  6. Integrated safeguards & security for material protection, accounting, and control.

    SciTech Connect (OSTI)

    Duran, Felicia Angelica; Cipiti, Benjamin B.

    2009-10-01

    Traditional safeguards and security design for fuel cycle facilities is done separately and after the facility design is near completion. This can result in higher costs due to retrofits and redundant use of data. Future facilities will incorporate safeguards and security early in the design process and integrate the systems to make better use of plant data and strengthen both systems. The purpose of this project was to evaluate the integration of materials control and accounting (MC&A) measurements with physical security design for a nuclear reprocessing plant. Locations throughout the plant where data overlap occurs or where MC&A data could be a benefit were identified. This mapping is presented along with the methodology for including the additional data in existing probabilistic assessments to evaluate safeguards and security systems designs.

  7. Model Predictive Control of Integrated Gasification Combined Cycle Power Plants

    SciTech Connect (OSTI)

    B. Wayne Bequette; Priyadarshi Mahapatra

    2010-08-31

    The primary project objectives were to understand how the process design of an integrated gasification combined cycle (IGCC) power plant affects the dynamic operability and controllability of the process. Steady-state and dynamic simulation models were developed to predict the process behavior during typical transients that occur in plant operation. Advanced control strategies were developed to improve the ability of the process to follow changes in the power load demand, and to improve performance during transitions between power levels. Another objective of the proposed work was to educate graduate and undergraduate students in the application of process systems and control to coal technology. Educational materials were developed for use in engineering courses to further broaden this exposure to many students. ASPENTECH software was used to perform steady-state and dynamic simulations of an IGCC power plant. Linear systems analysis techniques were used to assess the steady-state and dynamic operability of the power plant under various plant operating conditions. Model predictive control (MPC) strategies were developed to improve the dynamic operation of the power plants. MATLAB and SIMULINK software were used for systems analysis and control system design, and the SIMULINK functionality in ASPEN DYNAMICS was used to test the control strategies on the simulated process. Project funds were used to support a Ph.D. student to receive education and training in coal technology and the application of modeling and simulation techniques.

  8. Integrated emissions control system for residential CWS furnace

    SciTech Connect (OSTI)

    Balsavich, J.C. Jr.

    1991-11-01

    To meet the emission goals set by the Pittsburgh Energy Technology Center (PETC), Tecogen Inc. is developing a novel, integrated emission control system to control NO{sub x}, SO{sub 2}, and particulate emissions. At the heart of this system is a unique emissions control reactor for the control of SO{sub 2}. This reactor provides high sorbent particle residence time within the reactor while doing so in a very compact geometry. In addition to controlling SO{sub 2} emissions, the reactor provides a means of extracting a substantial amount of the particulates present in the combustion gases. Final cleanup of any fine particulates exiting the reactor, including respirable-sized particulates, is completed with the use of high efficiency bag filters. With SO{sub 2} and particulate emissions being dealt with by an emissions control reactor and bag filters, the control of NO{sub x} emissions needs to be addressed. Under a previous contract with PETC (contract No. AC22-87PC79650), Tecogen developed a residential-scale Coal Water Slurry (CWS) combustor. This combustor makes use of centrifugal forces, set up by a predominantly tangential flow field, to separate and confine larger unburned coal particles in the furnace upper chamber. Various partitions are used to retard the axial, downward flow of these particles, and thus maximize their residence time in the hottest section of the combustor. By operating this combustor under staged conditions, the local stoichiometry in the primary zone can be controlled in such a manner as to minimize NO{sub x} emissions.

  9. DOE Order Self Study Modules - DOE G 450.4-1B Integrated Safety Management Systems Guide

    Office of Environmental Management (EM)

    G 450.4-1B INTEGRATED SAFETY MANAGEMENT SYSTEM GUIDE ALBUQUERQUE OPERATIONS OFFICE Change No: 0 DOE G 450.4-1B Level: Familiar Date: 6/15/01 1 DOE G 450.4-1B INTEGRATED SAFETY MANAGEMENT SYSTEM (ISMS) GUIDE FAMILIAR LEVEL _________________________________________________________________________ OBJECTIVES Given the familiar level of this module and the resources listed below, you will be able to: 1. State the purpose of DOE G 450.4, ISMS Guide. 2. State the objectives of DOE G 450.4, ISMS Guide.

  10. Method and apparatus for pulse width modulation control of an AC induction motor

    DOE Patents [OSTI]

    Geppert, Steven (Bloomfield Hills, MI); Slicker, James M. (Union Lake, MI)

    1984-01-01

    An inverter is connected between a source of DC power and a three-phase AC induction motor, and a micro-processor-based circuit controls the inverter using pulse width modulation techniques. In the disclosed method of pulse width modulation, both edges of each pulse of a carrier pulse train are equally modulated by a time proportional to sin .THETA., where .THETA. is the angular displacement of the pulse center at the motor stator frequency from a fixed reference point on the carrier waveform. The carrier waveform frequency is a multiple of the motor stator frequency. The modulated pulse train is then applied to each of the motor phase inputs with respective phase shifts of 120.degree. at the stator frequency. Switching control commands of electronic switches in the inverter are stored in a random access memory (RAM) and the locations of the RAM are successively read out in a cyclic manner, each bit of a given RAM location controlling a respective phase input of the motor. The DC power source preferably comprises rechargeable batteries and all but one of the electronic switches in the inverter can be disabled, the remaining electronic switch being part of a "flyback" DC-DC converter circuit for recharging the battery.

  11. Speed And Power Control Of An Engine By Modulation Of The Load Torque

    DOE Patents [OSTI]

    Ziph, Benjamin (Ann Arbor, MI); Strodtman, Scott (Ypsilanti, MI); Rose, Thomas K (Chelsea, MI)

    1999-01-26

    A system and method of speed and power control for an engine in which speed and power of the engine is controlled by modulation of the load torque. The load torque is manipulated in order to cause engine speed, and hence power to be changed. To accomplish such control, the load torque undergoes a temporary excursion in the opposite direction of the desired speed and power change. The engine and the driven equipment will accelerate or decelerate accordingly as the load torque is decreased or increased, relative to the essentially fixed or constant engine torque. As the engine accelerates or decelerates, its power increases or decreases in proportion.

  12. Test results of a Stirling engine utilizing heat exchanger modules with an integral heat pipe

    SciTech Connect (OSTI)

    Skupinski, R.C.; Tower, L.K.; Madi, F.J.; Brusk, K.D.

    1993-04-01

    The Heat Pipe Stirling Engine (HP-1000), a free-piston Stirling engine incorporating three heat exchanger modules, each having a sodium filled heat pipe, has been tested at the NASA-Lewis Research Center as part of the Civil Space Technology Initiative (CSTI). The heat exchanger modules were designed to reduce the number of potential flow leak paths in the heat exchanger assembly and incorporate a heat pipe as the link between the heat source and the engine. An existing RE-1000 free-piston Stirling engine was modified to operate using the heat exchanger modules. This paper describes heat exchanger module and engine performance during baseline testing. Condenser temperature profiles, brake power, and efficiency are presented and discussed.

  13. Control scheme for power modulation of a free piston Stirling engine

    DOE Patents [OSTI]

    Dhar, Manmohan (Schenectady, NY)

    1989-01-01

    The present invention relates to a control scheme for power modulation of a free-piston Stirling engine-linear alternator power generator system. The present invention includes connecting an autotransformer in series with a tuning capacitance between a linear alternator and a utility grid to maintain a constant displacement to piston stroke ratio and their relative phase angle over a wide range of operating conditions.

  14. Design and development of the Waukesha Custom Engine Control Air/Fuel Module

    SciTech Connect (OSTI)

    Moss, D.W.

    1996-12-31

    The Waukesha Custom Engine Control Air/Fuel Module (AFM) is designed to control the air-fuel ratio for all Waukesha carbureted, gaseous fueled, industrial engine. The AFM is programmed with a personal computer to run in one of four control modes: catalyst, best power, best economy, or lean-burn. One system can control naturally aspirated, turbocharged, in-line or vee engines. The basic system consists of an oxygen sensing system, intake manifold pressure transducer, electronic control module, actuator and exhaust thermocouple. The system permits correct operation of Waukesha engines in spite of changes in fuel pressure or temperature, engine load or speed, and fuel composition. The system utilizes closed loop control and is centered about oxygen sensing technology. An innovative approach to applying oxygen sensors to industrial engines provides very good performance, greatly prolongs sensor life, and maintains sensor accuracy. Design considerations and operating results are given for application of the system to stationary, industrial engines operating on fuel gases of greatly varying composition.

  15. Order Module--DOE G 450.4-1B, INTEGRATED SAFETY MANAGEMENT SYSTEM...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of the DEAR: 48 CFR 970.5223-1, which requires integration of environment, safety, and health into work planning and execution; 48 CFR 970.5204-2, which deals with laws, ...

  16. Producing thin film photovoltaic modules with high integrity interconnects and dual layer contacts

    DOE Patents [OSTI]

    Jansen, Kai W.; Maley, Nagi

    2001-01-01

    High performance photovoltaic modules are produced with improved interconnects by a special process. Advantageously, the photovoltaic modules have a dual layer back (rear) contact and a front contact with at least one layer. The front contact and the inner layer of the back contact can comprise a transparent conductive oxide. The outer layer of the back contact can comprise a metal or metal oxide. The front contact can also have a dielectric layer. In one form, the dual layer back contact comprises a zinc oxide inner layer and an aluminum outer layer and the front contact comprises a tin oxide inner layer and a silicon dioxide dielectric outer layer. One or more amorphous silicon-containing thin film semiconductors can be deposited between the front and back contacts. The contacts can be positioned between a substrate and an optional superstrate. During production, the transparent conductive oxide layer of the front contact is scribed by a laser, then the amorphous silicon-containing semiconductors and inner layer of the dual layer back contact are simultaneously scribed and trenched (drilled) by the laser and the trench is subsequently filled with the same metal as the outer layer of the dual layer back contact to provide a superb mechanical and electrical interconnect between the front contact and the outer layer of the dual layer back contact. The outer layer of the dual layer back contact can then be scribed by the laser. For enhanced environmental protection, the photovoltaic modules can be encapsulated.

  17. Producing thin film photovoltaic modules with high integrity interconnects and dual layer contacts

    DOE Patents [OSTI]

    Jansen, Kai W.; Maley, Nagi

    2000-01-01

    High performance photovoltaic modules are produced with improved interconnects by a special process. Advantageously, the photovoltaic modules have a dual layer back (rear) contact and a front contact with at least one layer. The front contact and the inner layer of the back contact can comprise a transparent conductive oxide. The outer layer of the back contact can comprise a metal or metal oxide. The front contact can also have a dielectric layer. In one form, the dual layer back contact comprises a zinc oxide inner layer and an aluminum outer layer and the front contact comprises a tin oxide inner layer and a silicon dioxide dielectric outer layer. One or more amorphous silicon-containing thin film semiconductors can be deposited between the front and back contacts. The contacts can be positioned between a substrate and an optional superstrate. During production, the transparent conductive oxide layer of the front contact is scribed by a laser, then the amorphous silicon-containing semiconductors and inner layer of the dual layer back contact are simultaneously scribed and trenched (drilled) by the laser and the trench is subsequently filled with the same metal as the outer layer of the dual layer back contact to provide a superb mechanical and electrical interconnect between the front contact and the outer layer of the dual layer back contact. The outer layer of the dual layer back contact can then be scribed by the laser. For enhanced environmental protection, the photovoltaic modules can be encapsulated.

  18. Demonstrations of Integrated Advanced Rooftop Unit Controls and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Unit Suite: RTU Challenge, RTU Advanced Controls and RTU Smart Monitoring and Diagnostic System - 2013 BTO Peer Review Rooftop Unit Network Project - 2013 BTO Peer Review...

  19. Transaction-Based Controls for Building-Grid Integration: VOLTTRON™

    SciTech Connect (OSTI)

    Akyol, Bora A.; Haack, Jereme N.; Hernandez, George; Katipamula, Srinivas; Widergren, Steven E.

    2015-07-01

    The U.S. Department of Energy’s (DOE’s) Building Technologies Office (BTO) is supporting the development of a “transactional network” concept that supports energy, operational, and financial transactions between building systems (e.g., rooftop units -- RTUs), and the electric power grid using applications, or 'agents', that reside either on the equipment, on local building controllers, or in the Cloud. The transactional network vision is delivered using a real-time, scalable reference platform called VOLTTRON that supports the needs of the changing energy system. VOLTTRON is an agent execution and an innovative distributed control and sensing software platform that supports modern control strategies, including agent-based and transaction-based controls. It enables mobile and stationary software agents to perform information gathering, processing, and control actions.

  20. INVESTIGATION OF PIPELINES INTEGRITY ASSOCIATED WITH PUMP MODULES VIBRATION FOR PUMPING STATION 9 OF ALYESKA PIPELINE SERVICE COMPANY

    SciTech Connect (OSTI)

    Wang, Jy-An John

    2009-09-01

    Since the operation of PS09 SR module in 2007, it has been observed that there is vibration in various parts of the structures, on various segments of piping, and on appurtenance items. At DOT Pipeline and Hazardous Materials Safety Administration (PHMSA) request, ORNL Subject Matter Experts support PHMSA in its review and analysis of the observed vibration phenomenon. The review and analysis consider possible effects of pipeline design features, vibration characteristics, machinery configuration, and operating practices on the structural capacity and leak tight integrity of the pipeline. Emphasis is placed on protection of welded joints and machinery against failure from cyclic loading. A series of vibration measurements were carried out by the author during the site visit to PS09, the power of the operating pump during the data collection is at about 2970KW, which is less than that of APSC's vibration data collected at 3900KW. Thus, a first order proportional factor of 4900/2970 was used to project the measured velocity data to that of APSC's measurement of the velocity data. It is also noted here that the average or the peak-hold value of the measured velocity data was used in the author's reported data, and only the maximum peak-hold data was used in APSC's reported data. Therefore, in some cases APSC's data is higher than the author's projective estimates that using the average data. In general the projected velocity data are consistent with APSC's measurements; the examples of comparison at various locations are illustrated in the Table 1. This exercise validates and confirms the report vibration data stated in APSC's summary report. After the reinforcement project for PS09 Station, a significant reduction of vibration intensity was observed for the associated pipelines at the SR Modules. EDI Co. provided a detailed vibration intensity investigation for the newly reinforced Pump Module structures and the associated pipelines. A follow-up review of EDI's report was carried out by the author. The comments and questions regarding the EDI report are categorized into four subjects, namely (1) piping vibration severity, (2) pulsation and its impact on the PS09 structure and piping, (3) strain-gage stress history profiles, and (4) the cavitation potential investigation, where the questions are stated at the end of the comments for further follow-on investigations.

  1. US India Joint Center for Building Energy Research and Development (CBERD) : Controls and Communications Integration

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    India Joint Center for Building Energy Research and Development (CBERD) : Controls and Communications Integration 2015 Building Technologies Office Peer Review Rich Brown, REBrown@lbl.gov Lawrence Berkeley National Laboratory (LBNL) 2 Project Summary Timeline: Start date: Oct 2012; Planned end date: Sep 2017 Key Milestones 1. Pilot lighting system deployment with open control interface (Fall 2014) 2. Transactional Network Volttron integration (Spring 2016) 3. Demonstrate transaction-based

  2. Method and apparatus for active control of combustion rate through modulation of heat transfer from the combustion chamber wall

    DOE Patents [OSTI]

    Roberts, Jr., Charles E.; Chadwell, Christopher J.

    2004-09-21

    The flame propagation rate resulting from a combustion event in the combustion chamber of an internal combustion engine is controlled by modulation of the heat transfer from the combustion flame to the combustion chamber walls. In one embodiment, heat transfer from the combustion flame to the combustion chamber walls is mechanically modulated by a movable member that is inserted into, or withdrawn from, the combustion chamber thereby changing the shape of the combustion chamber and the combustion chamber wall surface area. In another embodiment, heat transfer from the combustion flame to the combustion chamber walls is modulated by cooling the surface of a portion of the combustion chamber wall that is in close proximity to the area of the combustion chamber where flame speed control is desired.

  3. NOx Control Options and Integration for US Coal Fired Boilers

    SciTech Connect (OSTI)

    Mike Bockelie; Kevin Davis; Connie Senior; Darren Shino; Dave Swenson; Larry Baxter; Calvin Bartholomew; William Hecker; Stan Harding

    2004-12-31

    This is the eighteenth Quarterly Technical Report for DOE Cooperative Agreement No: DEFC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for boilers firing US coals. The Electric Power Research Institute (EPRI) is providing co-funding for this program. Safety equipment for ammonia for the SCR slipstream reactor at Plant Gadsden was installed. The slipstream reactor was started and operated for about 1400 hours during the last performance period. Laboratory analysis of exposed catalyst and investigations of the sulfation of fresh catalyst continued at BYU. Thicker end-caps for the ECN probes were designed and fabricated to prevent the warpage and failure that occurred at Gavin with the previous design. A refurbished ECN probe was successfully tested at the University of Utah combustion laboratory. Improvements were implemented to the software that controls the flow of cooling air to the ECN probes.

  4. Model predictive control system and method for integrated gasification combined cycle power generation

    DOE Patents [OSTI]

    Kumar, Aditya; Shi, Ruijie; Kumar, Rajeeva; Dokucu, Mustafa

    2013-04-09

    Control system and method for controlling an integrated gasification combined cycle (IGCC) plant are provided. The system may include a controller coupled to a dynamic model of the plant to process a prediction of plant performance and determine a control strategy for the IGCC plant over a time horizon subject to plant constraints. The control strategy may include control functionality to meet a tracking objective and control functionality to meet an optimization objective. The control strategy may be configured to prioritize the tracking objective over the optimization objective based on a coordinate transformation, such as an orthogonal or quasi-orthogonal projection. A plurality of plant control knobs may be set in accordance with the control strategy to generate a sequence of coordinated multivariable control inputs to meet the tracking objective and the optimization objective subject to the prioritization resulting from the coordinate transformation.

  5. NOx Control Options and Integration for US Coal Fired Boilers

    SciTech Connect (OSTI)

    Mike Bockelie; Kevin Davis; Connie Senior; Darren Shino; Dave Swenson; Larry Baxter; Calvin Bartholomew; William Hecker; Stan Harding

    2005-03-31

    This is the nineteenth Quarterly Technical Report for DOE Cooperative Agreement No: DEFC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NO{sub x} control strategies and their possible impact on boiler performance for boilers firing US coals. The Electric Power Research Institute (EPRI) is providing co-funding for this program. Refurbished corrosion probes were installed at Plant Gavin and operated for approximately 1,300 hours. This quarterly report includes further results from the BYU catalyst characterization lab and the in-situ lab, and includes the first results from a model suitable for comprehensive simulation codes for describing catalyst performance. The SCR slipstream reactor at Plant Gadsden operated for approximately 100 hours during the quarter because of ash blockage in the inlet probe.

  6. NOx CONTROL OPTIONS AND INTEGRATION FOR US COAL FIRED BOILERS

    SciTech Connect (OSTI)

    Mike Bockelie; Marc Cremer; Kevin Davis; Bob Hurt; Eric Eddings

    2001-01-31

    This is the second Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for firing US coals. The focus of our efforts during the last three months have been on: (1) Completion of a long term field test for Rich Reagent Injection (RRI) at the Conectiv BL England Station Unit No.1, a 130 MW Cyclone fired boiler; (2) Extending our Computational Fluid Dynamics (CFD) based NOx model to accommodate the chemistry for RRI in PC fired boilers; (3) Design improvements and calibration tests of the corrosion probe; and (4) Investigations on ammonia adsorption mechanisms and removal processes for Fly Ash.

  7. Advanced, Integrated Control for Building Operations to Achieve 40% Energy Saving

    SciTech Connect (OSTI)

    Lu, Yan; Song, Zhen; Loftness, Vivian; Ji, Kun; Zheng, Sam; Lasternas, Bertrand; Marion, Flore; Yuebin, Yu

    2012-10-15

    We developed and demonstrated a software based integrated advanced building control platform called Smart Energy Box (SEB), which can coordinate building subsystem controls, integrate variety of energy optimization algorithms and provide proactive and collaborative energy management and control for building operations using weather and occupancy information. The integrated control system is a low cost solution and also features: Scalable component based architecture allows to build a solution for different building control system configurations with needed components; Open Architecture with a central data repository for data exchange among runtime components; Extendible to accommodate variety of communication protocols. Optimal building control for central loads, distributed loads and onsite energy resource; uses web server as a loosely coupled way to engage both building operators and building occupants in collaboration for energy conservation. Based on the open platform of SEB, we have investigated and evaluated a variety of operation and energy saving control strategies on Carnegie Mellon University Intelligent Work place which is equipped with alternative cooling/heating/ventilation/lighting methods, including radiant mullions, radiant cooling/heating ceiling panels, cool waves, dedicated ventilation unit, motorized window and blinds, and external louvers. Based on the validation results of these control strategies, they were integrated in SEB in a collaborative and dynamic way. This advanced control system was programmed and computer tested with a model of the Intelligent Workplace's northern section (IWn). The advanced control program was then installed in the IWn control system; the performance was measured and compared with that of the state of the art control system to verify the overall energy savings great than 40%. In addition advanced human machine interfaces (HMI's) were developed to communicate both with building occupants and the building operator. Lifecycle cost analyses of the advanced building control were performed, and a Building Control System Guide was prepared and published to inform owners, architects, and engineers dealing with new construction or renovation of buildings.

  8. NOx Control Options and Integration for US Coal Fired Boilers

    SciTech Connect (OSTI)

    Mike Bockelie; Marc Cremer; Kevin Davis; Martin Denison; Adel Sarofim; Connie Senior; Hong-Shig Shim; Dave Swenson; Bob Hurt; Eric Suuberg; Eric Eddings; Kevin Whitty; Larry Baxter; Calvin Bartholomew; William Hecker

    2006-06-30

    This is the Final Report for DOE Cooperative Agreement No: DE-FC26-00NT40753. The goal of the project was to develop cost-effective analysis tools and techniques for demonstrating and evaluating low-NOx control strategies and their possible impact on boiler performance for boilers firing US coals. The Electric Power Research Institute (EPRI) provided co-funding for this program. This project included research on: (1) In furnace NOx control; (2) Impacts of combustion modifications on boiler operation; (3) Selective Catalytic Reduction (SCR) catalyst testing and (4) Ammonia adsorption/removal on fly ash. Important accomplishments were achieved in all aspects of the project. Rich Reagent Injection (RRI), an in-furnace NOx reduction strategy based on injecting urea or anhydrous ammonia into fuel rich regions in the lower furnace, was evaluated for cyclone-barrel and PC fired utility boilers. Field tests successfully demonstrated the ability of the RRI process to significantly reduce NOx emissions from a staged cyclone-fired furnace operating with overfire air. The field tests also verified the accuracy of the Computational Fluid Dynamic (CFD) modeling used to develop the RRI design and highlighted the importance of using CFD modeling to properly locate and configure the reagent injectors within the furnace. Low NOx firing conditions can adversely impact boiler operation due to increased waterwall wastage (corrosion) and increased soot production. A corrosion monitoring system that uses electrochemical noise (ECN) corrosion probes to monitor, on a real-time basis, high temperature corrosion events within the boiler was evaluated. Field tests were successfully conducted at two plants. The Ohio Coal Development Office provided financial assistance to perform the field tests. To investigate soot behavior, an advanced model to predict soot production and destruction was implemented into an existing reacting CFD modeling tool. Comparisons between experimental data collected in a pilot scale furnace and soot behavior predicted by the CFD model showed good agreement. Field and laboratory tests were performed for SCR catalysts used for coal and biomass co-firing applications. Fundamental laboratory studies were performed to better understand mechanisms involved with catalyst deactivation. Field tests with a slip stream reactor were used to create catalyst exposed to boiler flue gas for firing coal and for co-firing coal and biomass. The field data suggests the mechanisms leading to catalyst deactivation are, in order of importance, channel plugging, surface fouling, pore plugging and poisoning. Investigations were performed to better understand the mechanisms involved with catalyst regeneration through mechanical or chemical methods. A computer model was developed to predict NOx reduction across the catalyst in a SCR. Experiments were performed to investigate the fundamentals of ammonia/fly ash interactions with relevance to the operation of advanced NOx control technologies such as selective catalytic reduction. Measurements were performed for ammonia adsorption isotherms on commercial fly ash samples subjected to a variety of treatments and on the chemistry of dry and semi-dry ammonia removal processes. This work resulted in the first fundamental ammonia isotherms on carbon-containing fly ash samples. This work confirms industrial reports that aqueous solution chemistry takes place upon the introduction of even very small amounts of water, while the ash remains in a semi-dry state.

  9. Controlling Non-Covalent Interactions to Modulate the Dispersion of Fullerenes in Polymer Nanocomposites

    SciTech Connect (OSTI)

    Linton, Dias; Dadmun, Mark D; Sumpter, Bobby G; Teh, Say-Lee

    2011-01-01

    Polymer nanocomposites (PNCs) are materials based on a class of filled plastics that contain relatively small amounts of nanoparticles, which can impart improved structural, mechanical, and thermal properties relative to the neat polymer. However, the homogeneous dispersion of the nanoparticles into a polymer matrix is critical and an impeding factor for the controlled enhancement of PNC properties. In this work, we provide new insight into the importance of polymer chain connectivity and nanoparticle shape and curvature on the formation of noncovalent electron donoracceptor (EDA) interactions between polymers and nanoparticles. This is accomplished by experimentally monitoring the dispersion of nanoparticles in copolymers containing varying amounts of functional moieties that can form noncovalent interactions with carbon nanoparticles with corroboration through density functional calculations. The results show that the presence of a minority of interacting functional groups within a polymer chain leads to an optimum interaction between the polymer and fullerene. Density functional theory calculations that identify the binding energy and geometry of the interaction between the functional monomers and fullerenes correspond very well with the experimental results. Moreover, comparison of these results to similar studies with single-walled carbon nanotubes (SWNT) indicate a distinct difference in the ability of EDA interactions to improve the dispersion of fullerenes relative to their impact on SWNT. Thus, the polymer chain connectivity, the polymer chain conformation, and size and shape of the nanoparticle modulate the formation of intermolecular interactions and directly impact the dispersion of the resultant nanocomposite.

  10. Controlling Non-Covalent Interactions to Modulate the Dispersion of Fullerenes in Polymer Nanocomposites

    SciTech Connect (OSTI)

    Sumpter, Bobby G

    2011-01-01

    Polymer nanocomposites (PNCs) are materials based on a class of filled plastics that contain relatively small amounts of nanoparticles, which can impart improved structural, mechanical, and thermal properties relative to the neat polymer. However, the homogeneous dispersion of the nanoparticles into a polymer matrix is critical and an impeding factor for the controlled enhancement of PNC properties. In this work, we provide new insight into the importance of polymer chain connectivity and nanoparticle shape and curvature on the formation of noncovalent electron donor-acceptor (EDA) interactions between polymers and nanoparticles. This is accomplished by experimentally monitoring the dispersion of nanoparticles in copolymers containing varying amounts of functional moieties that can form noncovalent interactions with carbon nanoparticles with corroboration through density functional calculations. The results show that the presence of a minority of interacting functional groups within a polymer chain leads to an optimum interaction between the polymer and fullerene. Density functional theory calculations that identify the binding energy and geometry of the interaction between the functional monomers and fullerenes correspond very well with the experimental results. Moreover, comparison of these results to similar studies with single-walled carbon nanotubes (SWNT) indicate a distinct difference in the ability of EDA interactions to improve the dispersion of fullerenes relative to their impact on SWNT. Thus, the polymer chain connectivity, the polymer chain conformation, and size and shape of the nanoparticle modulate the formation of intermolecular interactions and directly impact the dispersion of the resultant nanocomposite.

  11. Module Embedded Microinverter Smart Grid Ready Residential Solar...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Module Embedded Microinverter Smart Grid Ready Residential Solar Electric System Module ... module integration and packaging, and integration with a new intelligent circuit breaker. ...

  12. NOx Control Options and Integration for US Coal Fired Boilers

    SciTech Connect (OSTI)

    Mike Bockelie; Kevin Davis; Connie Senior Darren Shino; Dave Swenson; Larry Baxter; Calvin Bartholomew; William Hecker; Stan Harding

    2004-09-30

    This is the seventeenth Quarterly Technical Report for DOE Cooperative Agreement No: DEFC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for boilers firing US coals. The Electric Power Research Institute (EPRI) is providing co-funding for this program. The SCR slipstream reactor was assembled and installed at Plant Gadsden this quarter. Safety equipment for ammonia had not been installed at the end of the quarter, but will be installed at the beginning of next quarter. The reactor will be started up next quarter. Four ECN corrosion probes were reinstalled at Gavin and collected corrosion data for approximately one month. Two additional probes were installed and removed after about 30 hours for future profilometry analysis. Preliminary analysis of the ECN probes, the KEMA coupons and the CFD modeling results all agree with the ultrasonic tube test measurements gathered by AEP personnel.

  13. Smart Integrated Power Module

    Broader source: Energy.gov [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  14. Integrated Power Module Cooling

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  15. DOE Order Self Study Modules - DOE O 450.2 and P 450.4A: Integrated...

    Office of Environmental Management (EM)

    50.2 INTEGRATED SAFETY MANAGEMENT DOE P 450.4A INTEGRATED SAFETY MANAGEMENT POLICY DOE O 450.2 and DOE P 450.4A Familiar Level September 2011 1 DOE O 450.2 INTEGRATED SAFETY ...

  16. Material protection, control and accounting cooperation at the Urals Electrochemical Integrated Plant (UEIP), Novouralsk, Russia

    SciTech Connect (OSTI)

    McAllister, S., LLNL

    1998-07-15

    The Urals Electrochemical Integrated Plant is one of the Russian Ministry of Atomic Energy`s nuclear material production sites participating in the US Department of Energy`s Material Protection, Control and Accounting (MPC&A) Program. The Urals Electrochemical Integrated Plant is Russia`s largest uranium enrichment facility and blends tons of high-enriched uranium into low enriched uranium each year as part of the US high-enriched uranium purchase. The Electrochemical Integrated Plant and six participating national laboratories are cooperating to implement a series of enhancements to the nuclear material protection, control, and accountability systems at the site This paper outlines the overall objectives of the MPC&A program at Urals Electrochemical Integrated Plant and the work completed as of the date of the presentation.

  17. Order Module--THE CONTROL OF HAZARDOUS ENERGY (LOCKOUT/TAGOUT) FAMILIAR LEVEL

    Broader source: Energy.gov [DOE]

    The familiar level of this module is divided into two sections. In the first section, we will discuss the purpose of 29 CFR 1910.147 and the terms associated with the standard. In the second...

  18. DOE Order Self Study Modules - 29 CFR 1910.147, The Control Of Hazardous Energy (Lockout/Tagout)

    Office of Environmental Management (EM)

    9 CFR 1910.147 Familiar Level June 2011 1 June 2011 29 CFR 1910.147 THE CONTROL OF HAZARDOUS ENERGY (LOCKOUT/TAGOUT) FAMILIAR LEVEL ___________________________________________________________________________ OBJECTIVES Given the familiar level of this module and the resources, you will be able to answer the following questions: 1. What is the purpose of implementing 29 CFR 1910.147? 2. What is the definition of the following terms?  authorized employee  hot tap  tagout  lockout 

  19. Integrated Safety Management System as the Basis for Work Planning and Control for Research and Development

    Broader source: Energy.gov [DOE]

    Slide Presentation by Rich Davies, Kami Lowry, Mike Schlender, Pacific Northwest National Laboratory (PNNL) and Ted Pietrok, Pacific Northwest Site Office (PNSO). Integrated Safety Management System as the Basis for Work Planning and Control for Research and Development. Work Planning and Control (WP&C) is essential to assuring the safety of workers and the public regardless of the scope of work Research and Development (R&D) activities are no exception.

  20. Integrated dry NO{sub x}/SO{sub 2} emissions control system: integrated system test report

    SciTech Connect (OSTI)

    Smith, R.A.; Muzio, L.J.; Hunt, T.

    1997-04-01

    The DOE sponsored Integrated Dry NO{sub x}/SO{sub 2} Emissions Control System Program, is a Clean Coal Technology III demonstration, being conducted by Public Service Company of Colorado. The test site is Arapahoe Generating Station Unit 4, a 100 MWe, down-fired utility boiler burning a low-sulfur Western coal. The project goal is to demonstrate up to 70 percent reductions in NO{sub x} and SO{sub 2} emissions through the integration of: (1) down-fired low NO{sub x} burners with overfire air; (2) Selective Non-Catalytic Reduction (SNCR) for additional NO{sub x} removal; and (3) Dry Sorbent Injection (DSI) and duct humidification for SO{sub 2} removal. This report documents the final phase of the test program, in which the overall performance of the integrated system was evaluated. Previous testing has shown that the goal of 70 percent NO{sub x} removal was easily achieved with the combination of low-NO{sub x} burners, overfire air, and urea-based SNCR. Similarly, the ability of the sodium-based DSI system to achieve 70 percent SO{sub 2} removal was also demonstrated previously. The integrated tests demonstrated the synergistic benefit of operating the SNCR and sodium-based DSI systems concurrently. With the automatic control system set to limit the NH{sub 3} emissions to less than 8 ppm, the NO{sub 2} emissions from the sodium-based DSI system were reduced by nominally 50 percent compared to operation with the DSI system alone. Comparably, the combined operation reduced NH{sub 3} emissions, as reflected by a higher urea injection rate for a fixed NH{sub 3} emission limit. With combined DSI and SNCR operation, an ammonia odor problem was encountered around the Unit 4 ash silo (this did not occur with the SNCR system operated alone at comparable NH{sub 3} slip levels). This odor problem is attributed to the sodium changing the rate at which NH{sub 3} is released from the ash when it is wetted for truck transport to the disposal site.

  1. Integrated Air Pollution Control System (IAPCS), Executable Model (Version 4. 0) (for microcomputers). Model-Simulation

    SciTech Connect (OSTI)

    Not Available

    1990-10-29

    The Integrated Air Pollution Control System (IAPCS) Cost Model is an IBM PC cost model that can be used to estimate the cost of installing SO2, NOx, and particulate matter control systems at coal-fired utility electric generating facilities. The model integrates various combinations of the following technologies: physical coal cleaning, coal switching, overfire air/low NOx burners, natural gas reburning, LIMB, ADVACATE, electrostatic precipitator, fabric filter, gas conditioning, wet lime or limestone FGD, lime spray drying/duct spray drying, dry sorbent injection, pressurized fluidized bed combustion, integrated gasification combined cycle, and pulverized coal burning boiler. The model generates capital, annualized, and unitized pollutant removal costs in either constant or current dollars for any year.

  2. Computer software design description for the integrated control and data acquisition system LDUA system

    SciTech Connect (OSTI)

    Aftanas, B.L.

    1998-08-12

    This Computer Software Design Description (CSDD) document provides the overview of the software design for all the software that is part of the integrated control and data acquisition system of the Light Duty Utility Arm System (LDUA). It describes the major software components and how they interface. It also references the documents that contain the detailed design description of the components.

  3. PhotoVoltaic distributed generation for Lanai power grid real-time simulation and control integration scenario.

    SciTech Connect (OSTI)

    Robinett, Rush D., III; Kukolich, Keith; Wilson, David Gerald; Schenkman, Benjamin L.

    2010-06-01

    This paper discusses the modeling, analysis, and testing in a real-time simulation environment of the Lanai power grid system for the integration and control of PhotoVoltaic (PV) distributed generation. The Lanai Island in Hawaii is part of the Hawaii Clean Energy Initiative (HCEI) to transition to 30% renewable green energy penetration by 2030. In Lanai the primary loads come from two Castle and Cook Resorts, in addition to residential needs. The total peak load profile is 12470 V, 5.5 MW. Currently there are several diesel generators that meet these loading requirements. As part of the HCEI, Lanai has initially installed 1.2 MW of PV generation. The goal of this study has been to evaluate the impact of the PV with respect to the conventional carbon-based diesel generation in real time simulation. For intermittent PV distributed generation, the overall stability and transient responses are investigated. A simple Lanai 'like' model has been developed in the Matlab/Simulink environment (see Fig. 1) and to accommodate real-time simulation of the hybrid power grid system the Opal-RT Technologies RT-Lab environment is used. The diesel generators have been modelled using the SimPowerSystems toolbox swing equations and a custom Simulink module has been developed for the High level PV generation. All of the loads have been characterized primarily as distribution lines with series resistive load banks with one VAR load bank. Three-phase faults are implemented for each bus. Both conventional and advanced control architectures will be used to evaluate the integration of the PV onto the current power grid system. The baseline numerical results include the stable performance of the power grid during varying cloud cover (PV generation ramping up/down) scenarios. The importance of assessing the real-time scenario is included.

  4. Modeling of integrated environmental control systems for coal-fired power plants

    SciTech Connect (OSTI)

    Rubin, E.S.; Salmento, J.S.; Frey, H.C.; Abu-Baker, A.; Berkenpas, M.

    1991-05-01

    The Integrated Environmental Control Model (IECM) was designed to permit the systematic evaluation of environmental control options for pulverized coal-fired (PC) power plants. Of special interest was the ability to compare the performance and cost of advanced pollution control systems to conventional'' technologies for the control of particulate, SO{sub 2} and NO{sub x}. Of importance also was the ability to consider pre-combustion, combustion and post-combustion control methods employed alone or in combination to meet tough air pollution emission standards. Finally, the ability to conduct probabilistic analyses is a unique capability of the IECM. Key results are characterized as distribution functions rather than as single deterministic values. (VC)

  5. Modeling of integrated environmental control systems for coal-fired power plants. Final report

    SciTech Connect (OSTI)

    Rubin, E.S.; Salmento, J.S.; Frey, H.C.; Abu-Baker, A.; Berkenpas, M.

    1991-05-01

    The Integrated Environmental Control Model (IECM) was designed to permit the systematic evaluation of environmental control options for pulverized coal-fired (PC) power plants. Of special interest was the ability to compare the performance and cost of advanced pollution control systems to ``conventional`` technologies for the control of particulate, SO{sub 2} and NO{sub x}. Of importance also was the ability to consider pre-combustion, combustion and post-combustion control methods employed alone or in combination to meet tough air pollution emission standards. Finally, the ability to conduct probabilistic analyses is a unique capability of the IECM. Key results are characterized as distribution functions rather than as single deterministic values. (VC)

  6. Electrical system for pulse-width modulated control of a power inverter using phase-shifted carrier signals and related operating methods

    DOE Patents [OSTI]

    Welchko, Brian A. (Torrance, CA)

    2012-02-14

    Systems and methods are provided for pulse-width modulated control of power inverter using phase-shifted carrier signals. An electrical system comprises an energy source and a motor. The motor has a first set of windings and a second set of windings, which are electrically isolated from each other. An inverter module is coupled between the energy source and the motor and comprises a first set of phase legs coupled to the first set of windings and a second set of phase legs coupled to the second set of windings. A controller is coupled to the inverter module and is configured to achieve a desired power flow between the energy source and the motor by modulating the first set of phase legs using a first carrier signal and modulating the second set of phase legs using a second carrier signal. The second carrier signal is phase-shifted relative to the first carrier signal.

  7. Energy-Efficient and Comfortable Buildings through Multivariate Integrated Control (ECoMIC)

    SciTech Connect (OSTI)

    Birru, Dagnachew; Wen, Yao-Jung; Rubinstein, Francis M.; Clear, Robert D.

    2013-10-28

    This project aims to develop an integrated control solution for enhanced energy efficiency and user comfort in commercial buildings. The developed technology is a zone-based control framework that minimizes energy usage while maintaining occupants visual and thermal comfort through control of electric lights, motorized venetian blinds and thermostats. The control framework is designed following a modular, scalable and flexible architecture to facilitate easy integration with exiting building management systems. The control framework contains two key algorithms: 1) the lighting load balancing algorithm and 2) the thermostat control algorithm. The lighting load balancing algorithm adopts a model-based closed-loop control approach to determine the optimal electric light and venetian blind settings. It is formulated into an optimization problem with minimizing lighting-related energy consumptions as the objective and delivering adequate task light and preventing daylight glare as the constraints. The thermostat control algorithm is based on a well-established thermal comfort model and formulated as a root-finding problem to dynamically determine the optimal thermostat setpoint for both energy savings and improved thermal comfort. To address building-wide scalability, a system architecture was developed for the zone-based control technology. Three levels of services are defined in the architecture: external services, facility level services and zone level services. The zone-level service includes the control algorithms described above as well as the corresponding interfaces, profiles, sensors and actuators to realize the zone controller. The facility level services connect to the zones through a backbone network, handle supervisory level information and controls, and thus facilitate building-wide scalability. The external services provide communication capability to entities outside of the building for grid interaction and remote access. Various aspects of the developed control technology were evaluated and verified through both simulations and testbed implementations. Simulations coupling a DOE medium office reference building in EnergyPlus building simulation software and a prototype controller in Matlab were performed. During summer time in a mixed-humid climate zone, the simulations revealed reductions of 27% and 42% in electric lighting load and cooling load, respectively, when compared to an advanced base case with daylight dimming and blinds automatically tilted to block direct sun. Two single-room testbeds were established. The testbed at Philips Lighting business building (Rosemont, IL) was designed for quantifying energy performance of integrated controls. This particular implementation achieved 40% and 79% savings on lighting and HVAC energy, respectively, compared to a relatively simple base case operated on predefined schedules. While the resulting energy savings was very encouraging, it should be noted that there may be several caveats associated with it. 1) The test was run during late spring and early summer, and the savings numbers might not be directly used to extrapolate the annual energy savings. 2) Due to the needs for separate control and metering of the small-scale demonstrator within a large building, the HVAC system, hence the corresponding savings, did not represent a typical energy code-compliant design. 3) The light level in the control case was regulated at a particular setpoint, which was lower than then the full-on light level in the base case, and the savings resulted from tuning down the light level to the setpoint was not attributable to the contribution of the developed technology. The testbed at the Lawrence Berkeley National Laboratory (Berkeley, CA) specifically focused on glare control integration, and has demonstrated the feasibility and capability of the glare detection and prevention technique. While the short one-month test in this testbed provided a functional indication of the developed technology, and it would require at least a full solstice-to-solstice cycle to ruinously quan

  8. Integrated Weed Control for Land Stewardship at Legacy Management's Rocky Flats Site in Colorado - 13086

    SciTech Connect (OSTI)

    Nelson, Jody K.

    2013-07-01

    Land stewardship is one of nine sustainability programs in the U.S. Department of Energy's Environmental Management System. Land stewardship includes maintaining and improving ecosystem health. At the Rocky Flats Site near Westminster, Colorado, land stewardship is an integral component of the Office of Legacy Management's post-closure monitoring and management at the site. Nearly 263 hectares (650 acres) were disturbed and re-vegetated during site cleanup and closure operations. Proactive management of revegetation areas is critical to the successful reestablishment of native grasslands, wetlands, and riparian communities. The undisturbed native plant communities that occur at the site also require active management to maintain the high-quality wetlands and other habitats that are home to numerous species of birds and other wildlife such as elk and deer, rare plant communities, and the federally listed threatened Preble's meadow jumping mouse. Over the past several decades, an increase of Noxious weeds has impacted much of Colorado's Front Range. As a result, weed control is a key component of the land stewardship program at Rocky Flats. Thirty-three species of state-listed Noxious weeds are known to occur in the Central and Peripheral Operable Units at Rocky Flats, along with another five species that are considered invasive at the site. Early detection and rapid response to control new invasive species is crucial to the program. An integrated weed control/vegetation management approach is key to maintaining healthy, sustainable plant communities that are able to resist Noxious weed invasions. Weed mapping, field surveys, and field-staff training sessions (to learn how to identify new potential problem species) are conducted to help detect and prevent new weed problems. The integrated approach at Rocky Flats includes administrative and cultural techniques (prevention), mechanical controls, biological controls, and chemical controls. Several species of biocontrol insects have been released to assist with control of different target weed species. Monitoring is conducted to evaluate the effectiveness of control efforts and to provide information for future control efforts. The effective implementation of this integrated approach has reduced the infestation levels of many species and has kept several newly discovered invasive species from spreading and becoming larger problems at the site. (authors)

  9. SCALE: A modular code system for performing standardized computer analyses for licensing evaluation. Control modules -- Volume 1, Revision 4

    SciTech Connect (OSTI)

    Landers, N.F.; Petrie, L.M.; Knight, J.R.

    1995-04-01

    SCALE--a modular code system for Standardized Computer Analyses Licensing Evaluation--has been developed by Oak Ridge National Laboratory at the request of the US Nuclear Regulatory Commission. The SCALE system utilizes well-established computer codes and methods within standard analysis sequences that (1) allow an input format designed for the occasional user and/or novice, (2) automate the data processing and coupling between modules, and (3) provide accurate and reliable results. System development has been directed at problem-dependent cross-section processing and analysis of criticality safety, shielding, heat transfer, and depletion/decay problems. Since the initial release of SCALE in 1980, the code system has been heavily used for evaluation of nuclear fuel facility and package designs. This revision documents Version 4.2 of the system. This manual is divided into three volumes: Volume 1--for the control module documentation, Volume 2--for the functional module documentation, and Volume 3 for the documentation of the data libraries and subroutine libraries.

  10. US India Joint Center for Building Energy Research and Development (CBERD) : Controls and Communications Integration

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    US India Joint Center for Building Energy Research and Development (CBERD) : Controls and Communications Integration 2014 Building Technologies Office Peer Review CBERD promotes innovation in energy efficiency through collaborative research, contributing to significant reduction in energy use in both nations. Rich Brown, REBrown@lbl.gov Lawrence Berkeley National Laboratory (LBNL) Project Summary Timeline: Start date: Oct 2012; Planned end date: Sep 2017 Key Milestones Key Partners:

  11. DEMONSTRATION OF AN ADVANCED INTEGRATED CONTROL SYSTEM FOR SIMULTANEOUS EMISSIONS REDUCTION

    SciTech Connect (OSTI)

    Suzanne Shea; Randhir Sehgal; Ilga Celmins; Andrew Maxson

    2002-02-01

    The primary objective of the project titled ''Demonstration of an Advanced Integrated Control System for Simultaneous Emissions Reduction'' was to demonstrate at proof-of-concept scale the use of an online software package, the ''Plant Environmental and Cost Optimization System'' (PECOS), to optimize the operation of coal-fired power plants by economically controlling all emissions simultaneously. It combines physical models, neural networks, and fuzzy logic control to provide both optimal least-cost boiler setpoints to the boiler operators in the control room, as well as optimal coal blending recommendations designed to reduce fuel costs and fuel-related derates. The goal of the project was to demonstrate that use of PECOS would enable coal-fired power plants to make more economic use of U.S. coals while reducing emissions.

  12. Integrated Sensing and Controls for Coal Gasification - Development of Model-Based Controls for GE's Gasifier and Syngas Cooler

    SciTech Connect (OSTI)

    Aditya Kumar

    2010-12-30

    This report summarizes the achievements and final results of this program. The objective of this program is to develop a comprehensive systems approach to integrated design of sensing and control systems for an Integrated Gasification Combined Cycle (IGCC) plant, using advanced model-based techniques. In particular, this program is focused on the model-based sensing and control system design for the core gasification section of an IGCC plant. The overall approach consists of (i) developing a first-principles physics-based dynamic model of the gasification section, (ii) performing model-reduction where needed to derive low-order models suitable for controls analysis and design, (iii) developing a sensing system solution combining online sensors with model-based estimation for important process variables not measured directly, and (iv) optimizing the steady-state and transient operation of the plant for normal operation as well as for startup using model predictive controls (MPC). Initially, available process unit models were implemented in a common platform using Matlab/Simulink{reg_sign}, and appropriate model reduction and model updates were performed to obtain the overall gasification section dynamic model. Also, a set of sensor packages were developed through extensive lab testing and implemented in the Tampa Electric Company IGCC plant at Polk power station in 2009, to measure temperature and strain in the radiant syngas cooler (RSC). Plant operation data was also used to validate the overall gasification section model. The overall dynamic model was then used to develop a sensing solution including a set of online sensors coupled with model-based estimation using nonlinear extended Kalman filter (EKF). Its performance in terms of estimating key unmeasured variables like gasifier temperature, carbon conversion, etc., was studied through extensive simulations in the presence sensing errors (noise and bias) and modeling errors (e.g. unknown gasifier kinetics, RSC fouling). In parallel, an MPC solution was initially developed using ideal sensing to optimize the plant operation during startup pre-heating as well as steady state and transient operation under normal high-pressure conditions, e.g. part-load, base-load, load transition and fuel changes. The MPC simulation studies showed significant improvements both for startup pre-heating and for normal operation. Finally, the EKF and MPC solutions were coupled to achieve the integrated sensing and control solution and its performance was studied through extensive steady state and transient simulations in the presence of sensor and modeling errors. The results of each task in the program and overall conclusions are summarized in this final report.

  13. Integrated emissions control system for residential CWS furnace. Final report, September 20, 1989--March 20, 1993

    SciTech Connect (OSTI)

    Breault, R.W.; McLarnon, C.

    1993-03-01

    One of the major obstacles to the successful development and commercialization of a coal-fired residential furnace is the need for a reliable, cost-effective emission control system. Tecogen is developing a novel, integrated control system to control NO{sub x}SO{sub 2}, and particulate emissions. At the heart of this system is a unique emissions control reactor for the control of SO{sub 2}. This reactor provides high sorbent particle residence time within the reactor while doing so in a very compact geometry. Final cleanup of any fine particulates exiting the reactor including respirable-sized particulates, is completed with the use of high efficiency bag filters. Under a previous contract with PETC (Contract No. DE-AC22-87PC79650), Tecogen developed a residential-scale Coal Water Slurry (CWS) combustor to control NO{sub x}emission. This combustor makes use of centrifugal forces, set up by a predominantly tangential flow field, to separate and confine larger unburned coal particles in the furnace upper chamber. Various partitions are used to retard the axial, downward flow of these particles, and thus maximize their residence time in the hottest section of the combustor. By operating this combustor under staged conditions, the local stoichiometry in the primary zone can be controlled in such a manner as to minimize NO{sub x} emission.

  14. Demonstration of integrated optimization software

    SciTech Connect (OSTI)

    2008-01-01

    NeuCO has designed and demonstrated the integration of five system control modules using its proprietary ProcessLink{reg_sign} technology of neural networks, advanced algorithms and fuzzy logic to maximize performance of coal-fired plants. The separate modules control cyclone combustion, sootblowing, SCR operations, performance and equipment maintenance. ProcessLink{reg_sign} provides overall plant-level integration of controls responsive to plant operator and corporate criteria. Benefits of an integrated approach include NOx reduction improvement in heat rate, availability, efficiency and reliability; extension of SCR catalyst life; and reduced consumption of ammonia. All translate into cost savings. As plant complexity increases through retrofit, repowering or other plant modifications, this integrated process optimization approach will be an important tool for plant operators. 1 fig., 1 photo.

  15. Integration of Photovoltaics into Building Energy Usage through Advanced Control of Rooftop Unit

    SciTech Connect (OSTI)

    Starke, Michael R; Nutaro, James J; Irminger, Philip; Ollis, Benjamin; Kuruganti, Phani Teja; Fugate, David L

    2014-01-01

    This paper presents a computational approach to forecast photovoltaic (PV) power in kW based on a neural network linkage of publicly available cloud cover data and on-site solar irradiance sensor data. We also describe a control approach to utilize rooftop air conditioning units (RTUs) to support renewable integration. The PV forecasting method is validated using data from a rooftop PV panel installed on the Distributed Energy, Communications, and Controls (DECC) laboratory at Oak Ridge National Laboratory. The validation occurs in multiple phases to ensure that each component of the approach is the best representation of the actual expected output. The control of the RTU is based on model predictive methods.

  16. Material protection control and accounting program activities at the Urals electrochemical integrated plant

    SciTech Connect (OSTI)

    McAllister, S.

    1997-11-14

    The Urals Electrochemical Integrated Plant (UEIP) is the Russian Federation`s largest uranium enrichment plant and one of three sites in Russia blending high enriched uranium (HEU) into commercial grade low enriched uranium. UEIP is located approximately 70 km north of Yekaterinburg in the closed city of Novouralsk (formerly Sverdlovsk- 44). DOE`s MPC&A program first met with UEIP in June of 1996, however because of some contractual issues the work did not start until September of 1997. The six national laboratories participating in DOE`s Material Protection Control and Accounting program are cooperating with UEIP to enhance the capabilities of the physical protection, access control, and nuclear material control and accounting systems. The MPC&A work at UEIP is expected to be completed during fiscal year 2001.

  17. A fully integrated oven controlled microelectromechanical oscillator Part II. Characterization and measurement

    SciTech Connect (OSTI)

    Wojciechowski, Kenneth E.; Olsson, Roy H.

    2015-06-24

    Our paper reports the measurement and characterization of a fully integrated oven controlled microelectromechanical oscillator (OCMO). The OCMO takes advantage of high thermal isolation and monolithic integration of both aluminum nitride (AlN) micromechanical resonators and electronic circuitry to thermally stabilize or ovenize all the components that comprise an oscillator. Operation at microscale sizes allows implementation of high thermal resistance platform supports that enable thermal stabilization at very low-power levels when compared with the state-of-the-art oven controlled crystal oscillators. A prototype OCMO has been demonstrated with a measured temperature stability of -1.2 ppb/C, over the commercial temperature range while using tens of milliwatts of supply power and with a volume of 2.3 mm3 (not including the printed circuit board-based thermal control loop). Additionally, due to its small thermal time constant, the thermal compensation loop can maintain stability during fast thermal transients (>10 C/min). This new technology has resulted in a new paradigm in terms of power, size, and warm up time for high thermal stability oscillators.

  18. A Fully Integrated Oven Controlled Microelectromechanical OscillatorPart II. Characterization and Measurement

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wojciechowski, Kenneth E.; Olsson, Roy H.

    2015-06-24

    Our paper reports the measurement and characterization of a fully integrated oven controlled microelectromechanical oscillator (OCMO). The OCMO takes advantage of high thermal isolation and monolithic integration of both aluminum nitride (AlN) micromechanical resonators and electronic circuitry to thermally stabilize or ovenize all the components that comprise an oscillator. Operation at microscale sizes allows implementation of high thermal resistance platform supports that enable thermal stabilization at very low-power levels when compared with the state-of-the-art oven controlled crystal oscillators. A prototype OCMO has been demonstrated with a measured temperature stability of -1.2 ppb/C, over the commercial temperature range while using tensmoreof milliwatts of supply power and with a volume of 2.3 mm3 (not including the printed circuit board-based thermal control loop). Additionally, due to its small thermal time constant, the thermal compensation loop can maintain stability during fast thermal transients (>10 C/min). This new technology has resulted in a new paradigm in terms of power, size, and warm up time for high thermal stability oscillators.less

  19. A fully integrated oven controlled microelectromechanical oscillator – Part II. Characterization and measurement

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wojciechowski, Kenneth E.; Olsson, Roy H.

    2015-06-24

    Our paper reports the measurement and characterization of a fully integrated oven controlled microelectromechanical oscillator (OCMO). The OCMO takes advantage of high thermal isolation and monolithic integration of both aluminum nitride (AlN) micromechanical resonators and electronic circuitry to thermally stabilize or ovenize all the components that comprise an oscillator. Operation at microscale sizes allows implementation of high thermal resistance platform supports that enable thermal stabilization at very low-power levels when compared with the state-of-the-art oven controlled crystal oscillators. A prototype OCMO has been demonstrated with a measured temperature stability of -1.2 ppb/°C, over the commercial temperature range while using tensmore » of milliwatts of supply power and with a volume of 2.3 mm3 (not including the printed circuit board-based thermal control loop). Additionally, due to its small thermal time constant, the thermal compensation loop can maintain stability during fast thermal transients (>10 °C/min). This new technology has resulted in a new paradigm in terms of power, size, and warm up time for high thermal stability oscillators.« less

  20. Integrated dry NO{sub x}/SO{sub 2} emissions control system performance summary

    SciTech Connect (OSTI)

    Hunt, T.; Muzio, L.J.; Smith, R.; Jones, D.; Hebb, J.L.; Stallings, J.

    1997-12-31

    The Integrated Dry NO{sub x}/SO{sub 2} Emissions Control System was installed at Public Service Company of Colorado`s Arapahoe 4 generating station in 1992 in cooperation with the US Department of Energy (DOE) and the Electric Power Research Institute (EPRI). This full-scale 100 MWe demonstration combines low-NO{sub x} burners, overfire, air, and selective non-catalytic reduction (SNCR) for NO{sub x} control and dry sorbent injection (DSI) with or without humidification for SO{sub 2} control. Operation and testing of the Integrated Dry NO{sub x}/SO{sub 2} Emissions Control System began in August 1992 and will continue through 1996. Results of the NO{sub x} control technologies show that the original system goal of 70% NO{sub x} removal has been easily met and the combustion and SNCR systems can achieve NO{sub x} removals of up to 80% at full load. Duct injection of commercial calcium hydroxide has achieved a maximum SO{sub 2} removal of nearly 40% while humidifying the flue gas to a 20 F approach to saturation. Sodium-based dry sorbent injection has provided SO{sub 2} removal of over 70% without the occurrence of a visible NO{sub 2} plume. Recent test work has improved SNCR performance at low loads and has demonstrated that combined dry sodium injection and SNCR yields both lower NO{sub 2} levels and NH{sub 3} slip than either technology alone.

  1. Advanced Communication and Control for Distributed Energy Resource Integration: Phase 2 Scientific Report

    SciTech Connect (OSTI)

    BPL Global

    2008-09-30

    The objective of this research project is to demonstrate sensing, communication, information and control technologies to achieve a seamless integration of multivendor distributed energy resource (DER) units at aggregation levels that meet individual user requirements for facility operations (residential, commercial, industrial, manufacturing, etc.) and further serve as resource options for electric and natural gas utilities. The fully demonstrated DER aggregation system with embodiment of communication and control technologies will lead to real-time, interactive, customer-managed service networks to achieve greater customer value. Work on this Advanced Communication and Control Project (ACCP) consists of a two-phase approach for an integrated demonstration of communication and control technologies to achieve a seamless integration of DER units to reach progressive levels of aggregated power output. Phase I involved design and proof-of-design, and Phase II involves real-world demonstration of the Phase I design architecture. The scope of work for Phase II of this ACCP involves demonstrating the Phase I design architecture in large scale real-world settings while integrating with the operations of one or more electricity supplier feeder lines. The communication and control architectures for integrated demonstration shall encompass combinations of software and hardware components, including: sensors, data acquisition and communication systems, remote monitoring systems, metering (interval revenue, real-time), local and wide area networks, Web-based systems, smart controls, energy management/information systems with control and automation of building energy loads, and demand-response management with integration of real-time market pricing. For Phase II, BPL Global shall demonstrate the Phase I design for integrating and controlling the operation of more than 10 DER units, dispersed at various locations in one or more Independent System Operator (ISO) Control Areas, at an aggregated scale of more than 1 MW, to provide grid support. Actual performance data with respect to each specified function above is to be collected during the Phase II field demonstration. At a minimum, the Phase II demonstration shall span one year of field operations. The demonstration performance will need to be validated by the target customer(s) for acceptance and subsequent implementation. An ISO must be involved in demonstration planning and execution. As part of the Phase II work, BPL Global shall develop a roadmap to commercialization that identifies and quantifies the potential markets for the integrated, aggregated DER systems and for the communication and control technologies demonstrated in Phase I. In addition, the roadmap must identify strategies and actions, as well as the regional and national markets where the aggregated DER systems with communication and control solutions will be introduced, along with a timeline projected for introduction into each identified market. In Phase I of this project, we developed a proof-of-concept ACCP system and architecture and began to test its functionality at real-world sites. These sites had just over 10 MW of DERs and allowed us to identify what needed to be done to commercialize this concept. As a result, we started Phase II by looking at our existing platform and identified its strengths and weaknesses as well as how it would need to evolve for commercialization. During this process, we worked with different stakeholders in the market including: Independent System Operators, DER owners and operators, and electric utility companies to fully understand the issues from all of the different perspectives. Once we had an understanding of the commercialized ACCP system, we began to document and prepare detailed designs of the different system components. The components of the system with the most significant design improvements were: the on-site remote terminal unit, the communication technology between the remote site and the data center, and the scalability and reliability of the data center application. As we began to implement the Phase II ACCP system, we upgraded the real-world demonstration sites from Phase I of the project as well as added additional sites to broaden the types of DER the platform was tested with. We worked with the owners and operators of these sites to understand how the system was meeting their needs and made modifications throughout the project as needed. This also included an effort to continue to understand the barriers to commercial adoption of the ACCP architecture and standardized communication protocols. The final aspect of this phase of the project was to prepare resources to aid in the commercial adoption of the ACCP architecture and standardized communication protocols. This entailed: presentations at conferences, published articles and papers, and web-based technical resources to provide tools to aid in the design and implementation of ACCP systems.

  2. SCALE: A modular code system for performing standardized computer analyses for licensing evaluation: Control modules C4, C6

    SciTech Connect (OSTI)

    1997-03-01

    This Manual represents Revision 5 of the user documentation for the modular code system referred to as SCALE. The history of the SCALE code system dates back to 1969 when the current Computational Physics and Engineering Division at Oak Ridge National Laboratory (ORNL) began providing the transportation package certification staff at the U. S. Atomic Energy Commission with computational support in the use of the new KENO code for performing criticality safety assessments with the statistical Monte Carlo method. From 1969 to 1976 the certification staff relied on the ORNL staff to assist them in the correct use of codes and data for criticality, shielding, and heat transfer analyses of transportation packages. However, the certification staff learned that, with only occasional use of the codes, it was difficult to become proficient in performing the calculations often needed for an independent safety review. Thus, shortly after the move of the certification staff to the U.S. Nuclear Regulatory Commission (NRC), the NRC staff proposed the development of an easy-to-use analysis system that provided the technical capabilities of the individual modules with which they were familiar. With this proposal, the concept of the Standardized Computer Analyses for Licensing Evaluation (SCALE) code system was born. This volume is part of the manual related to the control modules for the newest updated version of this computational package.

  3. A fully integrated oven controlled microelectromechanical oscillator -- Part I. Design and fabrication

    SciTech Connect (OSTI)

    Wojciechowski, Kenneth E.; Baker, Michael S.; Clews, Peggy J.; Olsson, Roy H.

    2015-06-24

    Our paper reports the design and fabrication of a fully integrated oven controlled microelectromechanical oscillator (OCMO). This paper begins by describing the limits on oscillator frequency stability imposed by the thermal drift and electronic properties (Q, resistance) of both the resonant tank circuit and feedback electronics required to form an electronic oscillator. An OCMO is presented that takes advantage of high thermal isolation and monolithic integration of both micromechanical resonators and electronic circuitry to thermally stabilize or ovenize all the components that comprise an oscillator. This was achieved by developing a processing technique where both silicon-on-insulator complementary metal-oxide-semiconductor (CMOS) circuitry and piezoelectric aluminum nitride, AlN, micromechanical resonators are placed on a suspended platform within a standard CMOS integrated circuit. Operation at microscale sizes achieves high thermal resistances (~10 C/mW), and hence thermal stabilization of the oscillators at very low-power levels when compared with the state-of-the-art ovenized crystal oscillators, OCXO. This constant resistance feedback circuit is presented that incorporates on platform resistive heaters and temperature sensors to both measure and stabilize the platform temperature. Moreover, the limits on temperature stability of the OCMO platform and oscillator frequency imposed by the gain of the constant resistance feedback loop, placement of the heater and temperature sensing resistors, as well as platform radiative and convective heat losses are investigated.

  4. A fully integrated oven controlled microelectromechanical oscillatorPart I. Design and fabrication

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wojciechowski, Kenneth E.; Baker, Michael S.; Clews, Peggy J.; Olsson, Roy H.

    2015-06-24

    Our paper reports the design and fabrication of a fully integrated oven controlled microelectromechanical oscillator (OCMO). This paper begins by describing the limits on oscillator frequency stability imposed by the thermal drift and electronic properties (Q, resistance) of both the resonant tank circuit and feedback electronics required to form an electronic oscillator. An OCMO is presented that takes advantage of high thermal isolation and monolithic integration of both micromechanical resonators and electronic circuitry to thermally stabilize or ovenize all the components that comprise an oscillator. This was achieved by developing a processing technique where both silicon-on-insulator complementary metal-oxide-semiconductor (CMOS) circuitrymoreand piezoelectric aluminum nitride, AlN, micromechanical resonators are placed on a suspended platform within a standard CMOS integrated circuit. Operation at microscale sizes achieves high thermal resistances (~10 C/mW), and hence thermal stabilization of the oscillators at very low-power levels when compared with the state-of-the-art ovenized crystal oscillators, OCXO. This constant resistance feedback circuit is presented that incorporates on platform resistive heaters and temperature sensors to both measure and stabilize the platform temperature. Moreover, the limits on temperature stability of the OCMO platform and oscillator frequency imposed by the gain of the constant resistance feedback loop, placement of the heater and temperature sensing resistors, as well as platform radiative and convective heat losses are investigated.less

  5. Strategies and Decision Support Systems for Integrating Variable Energy Resources in Control Centers for Reliable Grid Operations

    SciTech Connect (OSTI)

    Jones, Lawrence E.

    2011-11-01

    This report provides findings from the field regarding the best ways in which to guide operational strategies, business processes and control room tools to support the integration of renewable energy into electrical grids.

  6. Strategies and Decision Support Systems for Integrating Variable Energy Resources in Control Centers for Reliable Grid Operations. Executive Summary

    SciTech Connect (OSTI)

    Jones, Lawrence E.

    2011-11-01

    This is the executive summary for a report that provides findings from the field regarding the best ways in which to guide operational strategies, business processes and control room tools to support the integration of renewable energy into electrical grids.

  7. Intensity-Modulated Radiotherapy as Primary Therapy for Prostate Cancer: Report on Acute Toxicity After Dose Escalation With Simultaneous Integrated Boost to Intraprostatic Lesion

    SciTech Connect (OSTI)

    Fonteyne, Valerie Villeirs, Geert; Speleers, Bruno; Neve, Wilfried de; Wagter, Carlos de; Lumen, Nicolas; Meerleer, Gert de

    2008-11-01

    Purpose: To report on the acute toxicity of a third escalation level using intensity-modulated radiotherapy for prostate cancer (PCa) and the acute toxicity resulting from delivery of a simultaneous integrated boost (SIB) to an intraprostatic lesion (IPL) detected on magnetic resonance imaging (MRI), with or without spectroscopy. Methods and Materials: Between January 2002 and March 2007, we treated 230 patients with intensity-modulated radiotherapy to a third escalation level as primary therapy for prostate cancer. If an IPL (defined by MRI or MRI plus spectroscopy) was present, a SIB was delivered to the IPL. To report on acute toxicity, patients were seen weekly during treatment and 1 and 3 months after treatment. Toxicity was scored using the Radiation Therapy Oncology Group toxicity scale, supplemented by an in-house-developed scoring system. Results: The median dose to the planning target volume was 78 Gy. An IPL was found in 118 patients. The median dose to the MRI-detected IPL and MRI plus spectroscopy-detected IPL was 81 Gy and 82 Gy, respectively. No Grade 3 or 4 acute gastrointestinal toxicity developed. Grade 2 acute gastrointestinal toxicity was present in 26 patients (11%). Grade 3 genitourinary toxicity was present in 15 patients (7%), and 95 patients developed Grade 2 acute genitourinary toxicity (41%). No statistically significant increase was found in Grade 2-3 acute gastrointestinal or genitourinary toxicity after a SIB to an IPL. Conclusion: The results of our study have shown that treatment-induced acute toxicity remains low when intensity-modulated radiotherapy to 80 Gy as primary therapy for prostate cancer is used. In addition, a SIB to an IPL did not increase the severity or incidence of acute toxicity.

  8. Demonstrations of Integrated Advanced RTU Controls and Automated Fault Detection and Diagnostics (BTO-2.2.2.26)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demonstrations of Integrated Advanced RTU Controls and Automated Fault Detection and Diagnostics (BTO-2.2.2.26) 2014 Building Technologies Office Peer Review 2103 Game-Changing Technology of the Year Srinivas Katipamula, Srinivas.Katipamula@pnnl.gov, Pacific Northwest National Laboratory Project Summary Timeline: Start date: 10/1/2010 Planned end date:1/31/2015 Key Milestones 1. Document successful integration of advanced controls and diagnostics and lessons learned in the field; 9/30/2014 2.

  9. Ion-beam apparatus and method for analyzing and controlling integrated circuits

    DOE Patents [OSTI]

    Campbell, A.N.; Soden, J.M.

    1998-12-01

    An ion-beam apparatus and method for analyzing and controlling integrated circuits are disclosed. The ion-beam apparatus comprises a stage for holding one or more integrated circuits (ICs); a source means for producing a focused ion beam; and a beam-directing means for directing the focused ion beam to irradiate a predetermined portion of the IC for sufficient time to provide an ion-beam-generated electrical input signal to a predetermined element of the IC. The apparatus and method have applications to failure analysis and developmental analysis of ICs and permit an alteration, control, or programming of logic states or device parameters within the IC either separate from or in combination with applied electrical stimulus to the IC for analysis thereof. Preferred embodiments of the present invention including a secondary particle detector and an electron floodgun further permit imaging of the IC by secondary ions or electrons, and allow at least a partial removal or erasure of the ion-beam-generated electrical input signal. 4 figs.

  10. Ion-beam apparatus and method for analyzing and controlling integrated circuits

    DOE Patents [OSTI]

    Campbell, Ann N. (Albuquerque, NM); Soden, Jerry M. (Placitas, NM)

    1998-01-01

    An ion-beam apparatus and method for analyzing and controlling integrated circuits. The ion-beam apparatus comprises a stage for holding one or more integrated circuits (ICs); a source means for producing a focused ion beam; and a beam-directing means for directing the focused ion beam to irradiate a predetermined portion of the IC for sufficient time to provide an ion-beam-generated electrical input signal to a predetermined element of the IC. The apparatus and method have applications to failure analysis and developmental analysis of ICs and permit an alteration, control, or programming of logic states or device parameters within the IC either separate from or in combination with applied electrical stimulus to the IC for analysis thereof. Preferred embodiments of the present invention including a secondary particle detector and an electron floodgun further permit imaging of the IC by secondary ions or electrons, and allow at least a partial removal or erasure of the ion-beam-generated electrical input signal.

  11. Status Of The National Ignition Campaign And National Ignition Facility Integrated Computer Control System

    SciTech Connect (OSTI)

    Lagin, L; Brunton, G; Carey, R; Demaret, R; Fisher, J; Fishler, B; Ludwigsen, P; Marshall, C; Reed, R; Shelton, R; Townsend, S

    2011-03-18

    The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory is a stadium-sized facility that will contains a 192-beam, 1.8-Megajoule, 500-Terawatt, ultraviolet laser system together with a 10-meter diameter target chamber with room for multiple experimental diagnostics. NIF is the world's largest and most energetic laser experimental system, providing a scientific center to study inertial confinement fusion (ICF) and matter at extreme energy densities and pressures. NIF's laser beams are designed to compress fusion targets to conditions required for thermonuclear burn. NIF is operated by the Integrated Computer Control System (ICCS) in an object-oriented, CORBA-based system distributed among over 1800 frontend processors, embedded controllers and supervisory servers. In the fall of 2010, a set of experiments began with deuterium and tritium filled targets as part of the National Ignition Campaign (NIC). At present, all 192 laser beams routinely fire to target chamber center to conduct fusion and high energy density experiments. During the past year, the control system was expanded to include automation of cryogenic target system and over 20 diagnostic systems to support fusion experiments were deployed and utilized in experiments in the past year. This talk discusses the current status of the NIC and the plan for controls and information systems to support these experiments on the path to ignition.

  12. Control of in vivo microvessel ingrowth by modulation of biomaterial local architecture and chemistry

    SciTech Connect (OSTI)

    Sanders, Joan E.; Baker, Aaron B.; Golledge, Stephen

    2002-04-01

    We developed a method for controlling local architecture and chemistry simultaneously in biomaterial implants to control microvessel ingrowth in vivo. Porous polypropylene disks (5 mm in diameter and 40 um thick) were plasma-coated with a fluoropolymer and then laser-drilled with 50-*m-diameter holes through their thickness. We then oxidized the disks to create hydroxyl functionality on the exposed polypropylene (inside the holes). Acrylamide was grafted to the hydroxyl groups through polymerization in the presence of activating ceric ions. Staining with toluidine blue O demonstrated that grafting occurred only inside the holes. We used the Hoffman degradation reaction to convert the amide groups of acrylamide to amine groups, and then we used ethylene glycol diglycidyl ether to attach biomolecules of interest inside the holes: secreted protein acidic and rich in cysteine (SPARC) peptide Lys-Gly-His-Lys (KGHK; angiogenic), thrombospondin-2 (TSP; antiangiogenic), or albumin (rat; neutral). In vivo testing in a rat subcutaneous dorsum model for a 3-week interval demonstrated a greater vessel surface area (p = 0.032) and a greater number of vessels (p = 0.043) in tissue local to the holes with KGHKimmobilized disks than with TSP-immobilized disks. However, differences between KGHK-immobilized and albuminimmobilized disks were less significant (p = 0.120 and p = 0.289 for the vessel surface area and number of vessels, respectively). The developed methods have potential applications in biomaterial design applications for which selective neovascularization is desired.

  13. Integration of adaptive process control with computational simulation for spin-forming

    SciTech Connect (OSTI)

    Raboin, P. J., LLNL

    1998-03-10

    Improvements in spin-forming capabilities through upgrades to a metrology and machine control system and advances in numerical simulation techniques were studied in a two year project funded by Laboratory Directed Research and Development (LDRD) at Lawrence Livermore National Laboratory. Numerical analyses were benchmarked with spin-forming experiments and computational speeds increased sufficiently to now permit actual part forming simulations. Extensive modeling activities examined the simulation speeds and capabilities of several metal forming computer codes for modeling flat plate and cylindrical spin-forming geometries. Shape memory research created the first numerical model to describe this highly unusual deformation behavior in Uranium alloys. A spin-forming metrology assessment led to sensor and data acquisition improvements that will facilitate future process accuracy enhancements, such as a metrology frame. Finally, software improvements (SmartCAM) to the manufacturing process numerically integrate the part models to the spin-forming process and to computational simulations.

  14. Photovoltaic module and module arrays

    DOE Patents [OSTI]

    Botkin, Jonathan; Graves, Simon; Lenox, Carl J. S.; Culligan, Matthew; Danning, Matt

    2013-08-27

    A photovoltaic (PV) module including a PV device and a frame, The PV device has a PV laminate defining a perimeter and a major plane. The frame is assembled to and encases the laminate perimeter, and includes leading, trailing, and side frame members, and an arm that forms a support face opposite the laminate. The support face is adapted for placement against a horizontal installation surface, to support and orient the laminate in a non-parallel or tilted arrangement. Upon final assembly, the laminate and the frame combine to define a unitary structure. The frame can orient the laminate at an angle in the range of 3.degree.-7.degree. from horizontal, and can be entirely formed of a polymeric material. Optionally, the arm incorporates integral feature(s) that facilitate interconnection with corresponding features of a second, identically formed PV module.

  15. Photovoltaic module and module arrays

    DOE Patents [OSTI]

    Botkin, Jonathan (El Cerrito, CA); Graves, Simon (Berkeley, CA); Lenox, Carl J. S. (Oakland, CA); Culligan, Matthew (Berkeley, CA); Danning, Matt (Oakland, CA)

    2012-07-17

    A photovoltaic (PV) module including a PV device and a frame. The PV device has a PV laminate defining a perimeter and a major plane. The frame is assembled to and encases the laminate perimeter, and includes leading, trailing, and side frame members, and an arm that forms a support face opposite the laminate. The support face is adapted for placement against a horizontal installation surface, to support and orient the laminate in a non-parallel or tilted arrangement. Upon final assembly, the laminate and the frame combine to define a unitary structure. The frame can orient the laminate at an angle in the range of 3.degree.-7.degree. from horizontal, and can be entirely formed of a polymeric material. Optionally, the arm incorporates integral feature(s) that facilitate interconnection with corresponding features of a second, identically formed PV module.

  16. International Energy Module

    Gasoline and Diesel Fuel Update (EIA)

    self-contained units which are linked by an integrating mechanism. The NEMS International Energy Module (IEM) computes world oil prices, provides a set of crude oil and refined...

  17. Recent Upgrade of the Klystron Modulator at SLAC

    SciTech Connect (OSTI)

    Nguyen, M.N.; Burkhart, C.P.; Lam, B.K.; Morris, B.; /SLAC

    2011-11-04

    The SLAC National Accelerator Laboratory employs 244 klystron modulators on its two-mile-long linear accelerator that has been operational since the early days of the SLAC establishment in the sixties. Each of these original modulators was designed to provide 250 kV, 262 A and 3.5 {mu}S at up to 360 pps using an inductance-capacitance resonant charging system, a modified type-E pulse-forming network (PFN), and a pulse transformer. The modulator internal control comprised of large step-start resistor-contactors, vacuum-tube amplifiers, and 120 Vac relays for logical signals. A major, power-component-only upgrade, which began in 1983 to accommodate the required beam energy of the SLAC Linear Collider (SLC) project, raised the modulator peak output capacity to 360 kV, 420 A and 5.0 {mu}S at a reduced pulse repetition rate of 120 pps. In an effort to improve safety, performance, reliability and maintainability of the modulator, this recent upgrade focuses on the remaining three-phase AC power input and modulator controls. The upgrade includes the utilization of primary SCR phase control rectifiers, integrated fault protection and voltage regulation circuitries, and programmable logic controllers (PLC) -- with an emphasis on component physical layouts for safety and maintainability concerns. In this paper, we will describe the design and implementation of each upgraded component in the modulator control system. We will also report the testing and present status of the modified modulators.

  18. ARRA-Multi-Level Energy Storage and Controls for Large-Scale Wind Energy Integration

    SciTech Connect (OSTI)

    David Wenzhong Gao

    2012-09-30

    The Project Objective is to design innovative energy storage architecture and associated controls for high wind penetration to increase reliability and market acceptance of wind power. The project goals are to facilitate wind energy integration at different levels by design and control of suitable energy storage systems. The three levels of wind power system are: Balancing Control Center level, Wind Power Plant level, and Wind Power Generator level. Our scopes are to smooth the wind power fluctuation and also ensure adequate battery life. In the new hybrid energy storage system (HESS) design for wind power generation application, the boundary levels of the state of charge of the battery and that of the supercapacitor are used in the control strategy. In the controller, some logic gates are also used to control the operating time durations of the battery. The sizing method is based on the average fluctuation of wind profiles of a specific wind station. The calculated battery size is dependent on the size of the supercapacitor, state of charge of the supercapacitor and battery wear. To accommodate the wind power fluctuation, a hybrid energy storage system (HESS) consisting of battery energy system (BESS) and super-capacitor is adopted in this project. A probability-based power capacity specification approach for the BESS and super-capacitors is proposed. Through this method the capacities of BESS and super-capacitor are properly designed to combine the characteristics of high energy density of BESS and the characteristics of high power density of super-capacitor. It turns out that the super-capacitor within HESS deals with the high power fluctuations, which contributes to the extension of BESS lifetime, and the super-capacitor can handle the peaks in wind power fluctuations without the severe penalty of round trip losses associated with a BESS. The proposed approach has been verified based on the real wind data from an existing wind power plant in Iowa. An intelligent controller that increases battery life within hybrid energy storage systems for wind application was developed. Comprehensive studies have been conducted and simulation results are analyzed. A permanent magnet synchronous generator, coupled with a variable speed wind turbine, is connected to a power grid (14-bus system). A rectifier, a DC-DC converter and an inverter are used to provide a complete model of the wind system. An Energy Storage System (ESS) is connected to a DC-link through a DC-DC converter. An intelligent controller is applied to the DC-DC converter to help the Voltage Source Inverter (VSI) to regulate output power and also to control the operation of the battery and supercapacitor. This ensures a longer life time for the batteries. The detailed model is simulated in PSCAD/EMTP. Additionally, economic analysis has been done for different methods that can reduce the wind power output fluctuation. These methods are, wind power curtailment, dumping loads, battery energy storage system and hybrid energy storage system. From the results, application of single advanced HESS can save more money for wind turbines owners. Generally the income would be the same for most of methods because the wind does not change and maximum power point tracking can be applied to most systems. On the other hand, the cost is the key point. For short term and small wind turbine, the BESS is the cheapest and applicable method while for large scale wind turbines and wind farms the application of advanced HESS would be the best method to reduce the power fluctuation. The key outcomes of this project include a new intelligent controller that can reduce energy exchanged between the battery and DC-link, reduce charging/discharging cycles, reduce depth of discharge and increase time interval between charge/discharge, and lower battery temperature. This improves the overall lifetime of battery energy storages. Additionally, a new design method based on probability help optimize the power capacity specification for BESS and super-capacitors. Recommendations include experimental implementation of the controller and energy storage systems in laboratory environment for further testing and verification, which will help commercialization of the proposed system design and controller.

  19. Integrated Air Pollution Control System (IAPCS), Executable Model and Source Model (version 4. 0) (for microcomputers). Model-Simulation

    SciTech Connect (OSTI)

    Not Available

    1990-10-29

    The Integrated Air Pollution Control System (IAPCS) Cost Model is an IBM PC cost model that can be used to estimate the cost of installing SO2, NOx, and particulate matter control systems at coal-fired utility electric generating facilities. The model integrates various combinations of the following technologies: physical coal cleaning, coal switching, overfire air/low NOx burners, natural gas reburning, LIMB, ADVACATE, electrostatic precipitator, fabric filter, gas conditioning, wet lime or limestone FGD, lime spray drying/duct spray drying, dry sorbent injection, pressurized fluidized bed combustion, integrated gasification combined cycle, and pulverized coal burning boiler. The model generates capital, annualized, and unitized pollutant removal costs in either constant or current dollars for any year.

  20. Fully Automated Simultaneous Integrated Boosted-Intensity Modulated Radiation Therapy Treatment Planning Is Feasible for Head-and-Neck Cancer: A Prospective Clinical Study

    SciTech Connect (OSTI)

    Wu Binbin; McNutt, Todd; Zahurak, Marianna; Simari, Patricio; Pang, Dalong; Taylor, Russell; Sanguineti, Giuseppe

    2012-12-01

    Purpose: To prospectively determine whether overlap volume histogram (OVH)-driven, automated simultaneous integrated boosted (SIB)-intensity-modulated radiation therapy (IMRT) treatment planning for head-and-neck cancer can be implemented in clinics. Methods and Materials: A prospective study was designed to compare fully automated plans (APs) created by an OVH-driven, automated planning application with clinical plans (CPs) created by dosimetrists in a 3-dose-level (70 Gy, 63 Gy, and 58.1 Gy), head-and-neck SIB-IMRT planning. Because primary organ sparing (cord, brain, brainstem, mandible, and optic nerve/chiasm) always received the highest priority in clinical planning, the study aimed to show the noninferiority of APs with respect to PTV coverage and secondary organ sparing (parotid, brachial plexus, esophagus, larynx, inner ear, and oral mucosa). The sample size was determined a priori by a superiority hypothesis test that had 85% power to detect a 4% dose decrease in secondary organ sparing with a 2-sided alpha level of 0.05. A generalized estimating equation (GEE) regression model was used for statistical comparison. Results: Forty consecutive patients were accrued from July to December 2010. GEE analysis indicated that in APs, overall average dose to the secondary organs was reduced by 1.16 (95% CI = 0.09-2.33) with P=.04, overall average PTV coverage was increased by 0.26% (95% CI = 0.06-0.47) with P=.02 and overall average dose to the primary organs was reduced by 1.14 Gy (95% CI = 0.45-1.8) with P=.004. A physician determined that all APs could be delivered to patients, and APs were clinically superior in 27 of 40 cases. Conclusions: The application can be implemented in clinics as a fast, reliable, and consistent way of generating plans that need only minor adjustments to meet specific clinical needs.

  1. Operating experience with the integrated dry NO{sub x}/SO{sub 2} emissions control system

    SciTech Connect (OSTI)

    Smith, R.A.; Muzio, L.J.; Shiomoto, G.H.

    1994-12-31

    This paper presents the results to date from the Public Service Company of Colorado (PSCC), U.S. Department of Energy (DOE), and Electric Power Research Institute (EPRI), sponsored Integrated Dry NO{sub x}/SO{sub 2} Emissions Control System project. This DOE Clean Coal Technology III demonstration project is being conducted at PSCC`s Arapahoe Generating Station Unit 4, located in Denver, Colorado. The Integrated Dry NO{sub x}/SO{sub 2} Emissions Control System consists of five major control technologies that are combined to form an integrated system to control both NO{sub x} and SO{sub 2} emissions. NO{sub x} reduction is obtained through the use of low-NO{sub x} burners, overfire air, and urea-based Selective Non-Catalytic Reduction (SNCR), while dry sorbent injection using either sodium- or calcium-based reagents with humidification is used to control SO{sub 2} emissions. The project goal is to provide up to a 70% reduction of both NO{sub x} and SO{sub 2} emissions. The combustion modifications were expected to reduce NO{sub x} by 50% with the expectation that the SNCR system would provide the remaining 20% reduction. Dry Sorbent Injection was expected to provide 50% removal of the SO{sub 2} emissions while using calcium-based reagents. As sodium is much more reactive than calcium, it was expected to provide SO{sub 2} removals of up to 70%.

  2. Decision-Support Software for Grid Operators: Transmission Topology Control for Infrastructure Resilience to the Integration of Renewable Generation

    SciTech Connect (OSTI)

    2012-03-16

    GENI Project: The CRA team is developing control technology to help grid operators more actively manage power flows and integrate renewables by optimally turning on and off entire power lines in coordination with traditional control of generation and load resources. The control technology being developed would provide grid operators with tools to help manage transmission congestion by identifying the facilities whose on/off status must change to lower generation costs, increase utilization of renewable resources and improve system reliability. The technology is based on fast optimization algorithms for the near to real-time change in the on/off status of transmission facilities and their software implementation.

  3. Investigation of a FAST-OrcaFlex Coupling Module for Integrating Turbine and Mooring Dynamics of Offshore Floating Wind Turbines: Preprint

    SciTech Connect (OSTI)

    Masciola, M.; Robertson, A.; Jonkman, J.; Driscoll, F.

    2011-10-01

    To enable offshore floating wind turbine design, the following are required: accurate modeling of the wind turbine structural dynamics, aerodynamics, platform hydrodynamics, a mooring system, and control algorithms. Mooring and anchor design can appreciably affect the dynamic response of offshore wind platforms that are subject to environmental loads. From an engineering perspective, system behavior and line loads must be studied well to ensure the overall design is fit for the intended purpose. FAST (Fatigue, Aerodynamics, Structures and Turbulence) is a comprehensive simulation tool used for modeling land-based and offshore wind turbines. In the case of a floating turbine, continuous cable theory is used to emulate mooring line dynamics. Higher modeling fidelity can be gained through the use of finite element mooring theory. This can be achieved through the FASTlink coupling module, which couples FAST with OrcaFlex, a commercial simulation tool used for modeling mooring line dynamics. In this application, FAST is responsible for capturing the aerodynamic loads and flexure of the wind turbine and its tower, and OrcaFlex models the mooring line and hydrodynamic effects below the water surface. This paper investigates the accuracy and stability of the FAST/OrcaFlex coupling operation.

  4. Whole breast and excision cavity radiotherapy plan comparison: Conformal radiotherapy with sequential boost versus intensity-modulated radiation therapy with a simultaneously integrated boost

    SciTech Connect (OSTI)

    Small, Katherine; Kelly, Chris; Beldham-Collins, Rachael; Gebski, Val

    2013-03-15

    A comparative study was conducted comparing the difference between (1) conformal radiotherapy (CRT) to the whole breast with sequential boost excision cavity plans and (2) intensity-modulated radiation therapy (IMRT) to the whole breast with simultaneously integrated boost to the excision cavity. The computed tomography (CT) data sets of 25 breast cancer patients were used and the results analysed to determine if either planning method produced superior plans. CT data sets from 25 past breast cancer patients were planned using (1) CRT prescribed to 50 Gy in 25 fractions (Fx) to the whole-breast planning target volume (PTV) and 10 Gy in 5Fx to the excision cavity and (2) IMRT prescribed to 60 Gy in 25Fx, with 60 Gy delivered to the excision cavity PTV and 50 Gy delivered to the whole-breast PTV, treated simultaneously. In total, 50 plans were created, with each plan evaluated by PTV coverage using conformity indices, plan maximum dose, lung dose, and heart maximum dose for patients with left-side lesions. CRT plans delivered the lowest plan maximum doses in 56% of cases (average CRT = 6314.34 cGy, IMRT = 6371.52 cGy). They also delivered the lowest mean lung dose in 68% of cases (average CRT = 1206.64 cGy, IMRT = 1288.37 cGy) and V20 in 88% of cases (average CRT = 20.03%, IMRT = 21.73%) and V30 doses in 92% of cases (average CRT = 16.82%, IMRT = 17.97%). IMRT created more conformal plans, using both conformity index and conformation number, in every instance, and lower heart maximum doses in 78.6% of cases (average CRT = 5295.26 cGy, IMRT = 5209.87 cGy). IMRT plans produced superior dose conformity and shorter treatment duration, but a slightly higher planning maximum and increased lung doses. IMRT plans are also faster to treat on a daily basis, with shorter fractionation.

  5. Atomic-scale evolution of modulated phases at the ferroelectric-antiferroelectric morphotropic phase boundary controlled by flexoelectric interaction

    SciTech Connect (OSTI)

    Borisevich, Albina Y; Eliseev, Eugene; Morozovska, A. N.; Cheng, Ching-Jung; Lin, Jiunn-Yuan; Chu, Ying-Hao; Kan, Daisuke; Takeuchi, Ichiro; Valanoor, Nagarajan V; Kalinin, Sergei V

    2012-01-01

    Physical and structural origins of morphotropic phase boundaries (MPBs) in ferroics remain elusive despite decades of studies. The leading competing theories employ either low symmetry bridging phases or adaptive phases with nanoscale textures to describe different subsets of the macroscopic data, while the decisive atomic-scale information has so far been missing. We report direct atomically-resolved mapping of polarization and structure order parameter fields in Sm-doped BiFeO3 system and their evolution as the system approaches MPB. We further show that both the experimental phase diagram and the phase evolution observed by STEM can be explained by taking into account flexoelectric interaction, which renders the effective domain wall energy negative, thus stabilizing modulated phases in the vicinity of the MPB. Our study highlights the importance of local order parameter mapping at the atomic scale and establishes a hitherto unobserved physical origin of spatially modulated phases existing in the vicinity of the MPB.

  6. Experimental Approach of a High Performance Control of Two PermanentMagnet Synchronous Machines in an Integrated Drive for Automotive Applications

    SciTech Connect (OSTI)

    Tang, Lixin; Su, Gui-Jia

    2006-01-01

    The close-loop digital signal processor (DSP) control of an integrated-dual inverter, which is able to drive two permanent magnet (PM) motors independently, is presented and evaluated experimentally. By utilizing the neutral point of the main traction motor, only two inverter poles are needed for the two-phase auxiliary motor. The modified field-oriented control scheme for this integrated inverter was introduced and employed in real-time control. The experimental results show the inverter is able to control two drives independently. An integrated, component count reduced drive is achieved.

  7. Demonstration of An Integrated Approach to Mercury Control at Lee Station

    SciTech Connect (OSTI)

    Vitali Lissianski; Pete Maly

    2007-12-31

    General Electric (GE) has developed an approach whereby native mercury reduction on fly ash can be improved by optimizing the combustion system. This approach eliminates carbon-rich areas in the combustion zone, making the combustion process more uniform, and allows increasing carbon content in fly ash without significant increase in CO emissions. Since boiler excess O{sub 2} can be also reduced as a result of optimized combustion, this process reduces NO{sub x} emissions. Because combustion optimization improves native mercury reduction on fly ash, it can reduce requirements for activated carbon injection (ACI) when integrated with sorbent injection for more efficient mercury control. The approach can be tailored to specific unit configurations and coal types for optimal performance. This report describes results of a U.S. DOE sponsored project designed to evaluate the effect of combustion conditions on 'native' mercury capture on fly ash and integrate combustion optimization for improved mercury and NO{sub x} reduction with ACI. The technology evaluation took place in Lee Station Unit 3 located in Goldsboro, NC and operated by Progress Energy. Unit 3 burns a low-sulfur Eastern bituminous coal and is a 250 MW opposed-wall fired unit equipped with an ESP with a specific collection area of 249 ft{sup 2}/kacfm. Unit 3 is equipped with SO{sub 3} injection for ESP conditioning. The technical goal of the project was to evaluate the technology's ability to achieve 70% mercury reduction below the baseline emission value of 2.9 lb/TBtu, which was equivalent to 80% mercury reduction relative to the mercury concentration in the coal. The strategy to achieve the 70% incremental improvement in mercury removal in Unit 3 was (1) to enhance 'naturally' occurring fly ash mercury capture by optimizing the combustion process and using duct humidification to reduce flue gas temperatures at the ESP inlet, and (2) to use ACI in front of the ESP to further reduce mercury emissions. The program was comprised of field and pilot-scale tests, engineering studies and consisted of eight tasks. As part of the program, GE conducted pilot-scale evaluation of sorbent effect on mercury reduction, supplied and installed adjustable riffle boxes to assist in combustion optimization, performed combustion optimization, supplied mobile sorbent injection and flue gas humidification systems, conducted CFD modeling of sorbent injection and flue gas humidification, and performed mercury testing including a continuous 30-day sorbent injection trial. Combustion optimization was the first step in reduction of mercury emissions. Goals of combustion optimization activities were to improve 'native' mercury capture on fly ash and reduce NO{sub x}. Combustion optimization included balancing of coal flow through individual burners to eliminate zones of carbon-rich combustion, air flow balancing, and burner adjustments. As part of the project, the original riffle boxes were replaced with Foster-Wheeler's adjustable riffle boxes to allow for biasing the coal flow between the coal pipes. A 10-point CO/O{sub 2}/NO{sub x} grid was installed in the primary superheater region of the back pass to assist in these activities. Testing of mercury emissions before and after combustion optimization demonstrated that mercury emissions were reduced from 2.9 lb/TBtu to 1.8 lb/TBtu due to boiler operation differences in conjunction with combustion optimization, a 38% improvement in 'native' mercury capture on fly ash. Native mercury reduction from coal was {approx}42% at baseline conditions and 64% at optimized combustion conditions. As a result of combustion optimization NO{sub x} emissions were reduced by 18%. A three-dimensional CFD model was developed to study the flow distribution and sorbent injection in the post air heater duct in Lee Station Unit 3. Modeling of the flow pattern exiting the air pre-heater demonstrated that because of the duct transition from a circular opening at the exit of air-pre-heater to a rectangular ESP inlet duct, flow separation occurred at the corners afte

  8. Mounting support for a photovoltaic module

    DOE Patents [OSTI]

    Brandt, Gregory Michael; Barsun, Stephan K.; Coleman, Nathaniel T.; Zhou, Yin

    2013-03-26

    A mounting support for a photovoltaic module is described. The mounting support includes a foundation having an integrated wire-way ledge portion. A photovoltaic module support mechanism is coupled with the foundation.

  9. Fabrication, Integration and Initial Testing of a SMART Rotor

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fabrication, Integration, and Initial Testing of a SMART Rotor * Jonathan Berg † , Dale Berg ‡ , and Jon White § Sandia National Laboratories ** , Albuquerque, NM, 87185-1124 Sandia National Laboratories has designed and built a full set of three 9-meter blades (based on the Sandia CX-100 blade design) equipped with active aerodynamic blade load control surfaces on the outboard trailing edges. The fabrication of the blades, modifications to allow integration of the active control modules,

  10. Sonication standard laboratory module

    DOE Patents [OSTI]

    Beugelsdijk, Tony (Los Alamos, NM); Hollen, Robert M. (Los Alamos, NM); Erkkila, Tracy H. (Los Alamos, NM); Bronisz, Lawrence E. (Los Alamos, NM); Roybal, Jeffrey E. (Santa Fe, NM); Clark, Michael Leon (Menan, ID)

    1999-01-01

    A standard laboratory module for automatically producing a solution of cominants from a soil sample. A sonication tip agitates a solution containing the soil sample in a beaker while a stepper motor rotates the sample. An aspirator tube, connected to a vacuum, draws the upper layer of solution from the beaker through a filter and into another beaker. This beaker can thereafter be removed for analysis of the solution. The standard laboratory module encloses an embedded controller providing process control, status feedback information and maintenance procedures for the equipment and operations within the standard laboratory module.

  11. Integrated emissions control system for residential CWS furnace. Annual status report No. 2, October 1, 1990--September 30, 1991

    SciTech Connect (OSTI)

    Balsavich, J.C. Jr.

    1991-11-01

    To meet the emission goals set by the Pittsburgh Energy Technology Center (PETC), Tecogen Inc. is developing a novel, integrated emission control system to control NO{sub x}, SO{sub 2}, and particulate emissions. At the heart of this system is a unique emissions control reactor for the control of SO{sub 2}. This reactor provides high sorbent particle residence time within the reactor while doing so in a very compact geometry. In addition to controlling SO{sub 2} emissions, the reactor provides a means of extracting a substantial amount of the particulates present in the combustion gases. Final cleanup of any fine particulates exiting the reactor, including respirable-sized particulates, is completed with the use of high efficiency bag filters. With SO{sub 2} and particulate emissions being dealt with by an emissions control reactor and bag filters, the control of NO{sub x} emissions needs to be addressed. Under a previous contract with PETC (contract No. AC22-87PC79650), Tecogen developed a residential-scale Coal Water Slurry (CWS) combustor. This combustor makes use of centrifugal forces, set up by a predominantly tangential flow field, to separate and confine larger unburned coal particles in the furnace upper chamber. Various partitions are used to retard the axial, downward flow of these particles, and thus maximize their residence time in the hottest section of the combustor. By operating this combustor under staged conditions, the local stoichiometry in the primary zone can be controlled in such a manner as to minimize NO{sub x} emissions.

  12. INTEGRATED SYSTEM TO CONTROL PRIMARY PM 2.5 FROM ELECTRIC POWER PLANTS

    SciTech Connect (OSTI)

    Unknown

    2001-01-01

    The fabrication drawings for the Advanced ElectroCore module and the water-cooled precharger were completed during this reporting period. The drawings were sent to four fabrication shops as part of a bid package. Of the three companies that chose to participate, the contract to fabricate the two components was awarded to Advanced Fabrication Services of Lemoyne, PA on 3 November 2000. Fabrication began the following week. The components are scheduled to be completed in mid to late January 2001. The design of the dry scrubber was delayed while the problem of low dew point spread in the exhaust stream was resolved. The temperature of the exhaust gas from the outlet of the existing ESP is only 260 F. Some of the sorbents to be tested are liquid and therefore, the amount of sorbent that can be added before the exhaust gas reaches the due point is limited. The solution was to use a combustor to burn LPG and mix the two exhaust streams to get the desired temperature. Calculations indicated that burning LPG at the rate of 500,000 Btu/hr would be sufficient to raise the gas temperature to 400 F.

  13. Modeling of integrated environmental control systems for coal-fired power plants

    SciTech Connect (OSTI)

    Rubin, E.S.

    1989-10-01

    The general goal of this research project is to enhance, and transfer to DOE, a new computer simulation model for analyzing the performance and cost of environmental control systems for coal-fired power plants. Systems utilizing pre-combustion, combustion, or post-combustion control methods, individually or in combination, may be considered. A unique capability of this model is the probabilistic representation of uncertainty in model input parameters. This stochastic simulation capability allows the performance and cost of environmental control systems to be quantified probabilistically, accounting for the interactions among all uncertain process and economic parameters. This method facilitates more rigorous comparisons between conventional and advanced clean coal technologies promising improved cost and/or effectiveness for SO{sub 2} and NO{sub x} removal. Detailed modeling of several pre-combustion and post-combustion processes of interest to DOE/PETC have been selected for analysis as part of this project.

  14. Monovalve with integrated fuel injector and port control valve, and engine using same

    DOE Patents [OSTI]

    Milam, David M. (Metamora, IL)

    2001-11-06

    An engine includes an engine casing that defines a hollow piston cavity separated from an exhaust passage and an intake passage by a valve seat. A gas exchange valve member is positioned adjacent the valve seat and is moveable between an open position and a closed position. The gas exchange valve member also defines an opening that opens into the hollow piston cavity. A needle valve member is positioned in the gas exchange valve member adjacent a nozzle outlet and is moveable between an inject position and a blocked position. A port control valve member, which has a hydraulic surface, is mounted around the gas exchange valve member and moveable between an intake position and an exhaust position. A pilot valve is moveable between a first position at which the port control hydraulic surface is exposed to a source of high pressure fluid, and a second position at which the port control hydraulic surface is exposed to a source of low pressure fluid.

  15. Integrated emissions control system for residential CWS furnace. Annual status report number 1, 20 September 1989--30 September 1990

    SciTech Connect (OSTI)

    Balsavich, J.C.; Breault, R.W.

    1990-10-01

    One of the major obstacles to the successful development and commercialization of a coal-fired residential furnace is the need for a reliable, cost-effective emission control system. Tecogen Inc. is developing a novel, integrated emission control system to control NO{sub x}, SO{sub 2}, and particulate emissions. A reactor provides high sorbent particle residence time within the reactor to control SO{sub 2} emissions, while providing a means of extracting a substantial amount of the particulates present in the combustion gases. Final cleanup of any flyash exiting the reactor is completed with the use of high-efficiency bag filters. Tecogen Inc. developed a residential-scale Coal Water Slurry (CWS) combustor which makes use of centrifugal forces to separate and confine larger unburned coal particles in the furnace upper chamber. Various partitions are used to retard the axial, downward flow of these particles, and thus maximize their residence time in the hottest section of the combustor. By operating this combustor under staged conditions, the local stoichiometry in the primary zone can be controlled to minimize NO{sub x} emissions. During the first year of the program, work encompassed a literature search, developing an analytical model of the SO{sub 2} reactor, fabricating and assembling the initial prototype components, testing the prototype component, and estimating the operating and manufacturing costs.

  16. Characteristics and development report for the SA3871 Intent Controller application specific integrated circuit (ASIC)

    SciTech Connect (OSTI)

    Simpson, R.L.; Meyer, B.T.

    1995-08-01

    This report describes the design and development activities that were involved in the SA3871 Intent Controller ASIC. The SA3871 is a digital gate array component developed for the MC4396 Trajectory Sensing Signal Generator for use in the B61-3/4/10 system as well as a possible future B61-MAST system.

  17. THE INTEGRATION OF ENGINEERED AND INSTITUTIONAL CONTROLS: A CASE STUDY APPROACH WITH LESSONS LEARNED FROM PREVIOUSLY CLOSED SITES

    SciTech Connect (OSTI)

    Kevin M. Kostelnik; James H. Clarke; Jerry L. Harbour

    2005-02-01

    Environmental remediation efforts that are underway at hundreds of contaminated sites in the United States will not be able to remediate large portions of those sites to conditions that would permit unrestricted access. Rather, large volumes of waste materials, contaminated soils and cleanup residuals will have to be isolated either in place or in new, often on-site, disposal cells with long term monitoring, maintenance and institutional control needs. The challenge continues to be to provide engineering systems and controls that can ensure the protection of public health and the environment over very long time horizons (hundreds to perhaps thousands of years) with minimal intervention. Effective long term management of legacy hazardous and nuclear waste requires an integrated approach that addresses both the engineered containment and control system itself and the institutional controls and other responsibilities that are needed. Decisions concerning system design, monitoring and maintenance, and the institutional controls that will be employed are best done through a "risk-nformed, performance-based" approach. Such an approach should incorporate an analysis of potential "failure" modes and consequences for all important system features, together with lessons learned from experience with systems already in place. The authors will present the preliminary results of a case study approach that included several sites where contamination isolation systems including institutional controls have been implemented. The results are being used together with failure trees and logic diagrams that have been developed for both the engineered barriers and the institutional controls. The use of these analytical tools to evaluate the potential for different levels of failure and associated consequences will be discussed. Of special interest is the robustness of different approaches to providing long-term protection through redundancy and defense in depth.

  18. Power Electronic Thermal System Performance and Integration ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power Electronic Thermal System Performance and Integration Integrated Power Module Cooling Vehicle Technologies Office: 2009 Advanced Power Electronics R&D Annual Progress Report

  19. Integrated dry NO{sub x}/SO{sub 2} emissions control system. Final report, Volume 1: Public design

    SciTech Connect (OSTI)

    Hunt, T.; Hanley, T.J.

    1997-11-01

    The U.S. Department of Energy (DOE)/Pittsburgh Energy Technology Center (PETC) and the Public Services Company of Colorado (PSCo) signed the cooperative agreement for the Integrated Dry NO{sub x}/SO{sub 2} Emissions Control System in March 1991. This project integrates various combinations of five existing and emerging technologies onto a 100 MWe, down-fired, load-following unit that burns pulverized coal. The project is expected to achieve up to 70% reductions in both oxides of nitrogen (NO{sub x}) and sulfur dioxide (SO{sub 2}) emissions. Various combinations of low-NO{sub x} burners (LNBs), overfire air (OFA) ports, selective non-catalytic reduction (SNCR), dry sorbent injection (DSI) using both calcium- and sodium-based reagents, and flue-gas humidification are expected to integrate synergistically and control both NO{sub x} and SO{sub 2} emissions better than if each technology were used alone. For instance, ammonia emissions from the SNCR system are expected to reduce NO{sub 2} emissions and allow the DSI system (sodium-based reagents) to achieve higher removals of SO{sub 2}. Unlike tangentially or wall-fired units, down-fired require substantial modification to their pressure parts to retrofit LNBs and OFA ports, substantially increasing the cost of retrofit. Conversely, the retrofitting of SNCR, DSI, or humidification systems does not require any major boiler modifications and are easily retrofitted to all boiler types. However, existing furnace geometry and flue-gas temperatures can limit their placement and effectiveness. In particular, SNCR requires injecting the SNCR chemicals into the furnace where the temperature is within a very narrow temperature range.

  20. Module Configuration

    DOE Patents [OSTI]

    Oweis, Salah (Ellicott City, MD); D'Ussel, Louis (Bordeaux, FR); Chagnon, Guy (Cockeysville, MD); Zuhowski, Michael (Annapolis, MD); Sack, Tim (Cockeysville, MD); Laucournet, Gaullume (Paris, FR); Jackson, Edward J. (Taneytown, MD)

    2002-06-04

    A stand alone battery module including: (a) a mechanical configuration; (b) a thermal management configuration; (c) an electrical connection configuration; and (d) an electronics configuration. Such a module is fully interchangeable in a battery pack assembly, mechanically, from the thermal management point of view, and electrically. With the same hardware, the module can accommodate different cell sizes and, therefore, can easily have different capacities. The module structure is designed to accommodate the electronics monitoring, protection, and printed wiring assembly boards (PWAs), as well as to allow airflow through the module. A plurality of modules may easily be connected together to form a battery pack. The parts of the module are designed to facilitate their manufacture and assembly.

  1. Module Safety Issues (Presentation)

    SciTech Connect (OSTI)

    Wohlgemuth, J.

    2012-02-01

    Description of how to make PV modules so that they are less likely to turn into safety hazards. Making modules inherently safer with minimum additional cost is the preferred approach for PV. Safety starts with module design to ensure redundancy within the electrical circuitry to minimize open circuits and proper mounting instructions to prevent installation related ground faults. Module manufacturers must control the raw materials and processes to ensure that that every module is built like those qualified through the safety tests. This is the reason behind the QA task force effort to develop a 'Guideline for PV Module Manufacturing QA'. Periodic accelerated stress testing of production products is critical to validate the safety of the product. Combining safer PV modules with better systems designs is the ultimate goal. This should be especially true for PV arrays on buildings. Use of lower voltage dc circuits - AC modules, DC-DC converters. Use of arc detectors and interrupters to detect arcs and open the circuits to extinguish the arcs.

  2. Development of large-area monolithically integrated silicon-film{trademark} photovoltaic modules. Final subcontract report, May 1, 1991--December 31, 1994

    SciTech Connect (OSTI)

    Hall, R.B.; Rand, J.A.; Cotter, J.E.

    1995-04-01

    The objective of this program is to develop Silicon Film{trademark} Product III into a low-cost, stable solar cell for large-scale terrestrial power applications. The Product III structure is a thin (<100 {mu}m) polycrystalline layer of silicon on a durable, insulating, ceramic substrate. The insulating substrate allows the silicon layer to be isolated and metallized to form a monolithically interconnected array of solar cells. High efficiency is achieved by the use of light trapping and passivated surfaces. This project focused on the development of five key technologies associated with the monolithic sub-module device structure: (1) development of the film deposition and growth processes; (2) development of the low-cost ceramic substrate; (3) development of a metallurgical barrier technology; (4) development of sub-element solar cell processing techniques; and (5) development of sub-module (isolation and interconnection) processes. This report covers the development approaches and results relating to these technologies. Significant progress has been made in the development of all of the related technologies. This is evidenced by the fabrication of a working 12.0 cm{sup 2} prototype sub-module consisting of 7 elements and testing with an open circuit voltage of 3.9 volts, a short circuit current of 35.2 mA and a fill factor of 63% and an overall efficiency of 7.3%. Another significant result achieved is a 13.4% (NREL verified), 1.0 cm{sup 2} solar cell fabricated from material deposited and grown on a graphite cloth substrate. The significant technological hurdle of the program was and remains the low quality of the photovoltaic layer which is caused by contamination of the photovoltaic layer from the low-cost ceramic substrate by trace impurities found in the substrate precursor materials. The ceramic substrate and metallurgical barrier are being developed specifically to solve this problem.

  3. Integrated Dry NO sub x /SO sub 2 Emissions Control System baseline test report, November 11--December 15, 1991

    SciTech Connect (OSTI)

    Shiomoto, G.H.; Smith, R.A.

    1992-03-01

    The DOE sponsored Integrated Dry NO{sub x}/SO{sub 2} Emissions Control System program, which is a Clean Coal Technology Ill demonstration, is being conducted by Public Service Company of Colorado. The test site is Arapahoe Generating Station Unit 4, which is a 100 MWe, down-fired utility boiler burning a low sulfur western coal. The project goal is to demonstrate 70 percent reductions in NO{sub x} and S0{sub 2} emissions through the integration of: (1) down-fired low-NO{sub x} burners with overfire air; (2) urea injection for additional NO{sub x} removal; and (3) dry sorbent injection and duct humidification for SO{sub 2} removal. The effectiveness of the integrated system on a high sulfur coal will also be tested. This report documents the first baseline test results conducted during the program. The baseline tests were conducted with the original burners and auxiliary equipment and represent the unmodified boiler emissions. The burner design of Arapahoe Unit 4 results in relatively high NO{sub x} levels ranging from 740 to 850 ppM (corrected to 3% O{sub 2}, dry) over the load range. Excess air level was the primary factor influencing NO{sub x} emissions. During normal boiler operations, there was a wide range in NO{sub x} emissions, due to the variations of excess air, boiler load and other, secondary parameters. SO{sub 2} emissions ranged from 350 to 600 ppM (corrected to 3% O{sub 2}, dry) and reflected variations in the coal sulfur content.

  4. PROTEIN QUALITY CONTROL IN BACTERIAL CELLS: INTEGRATED NETWORKS OF CHAPERONES AND ATP-DEPENDENT PROTEASES.

    SciTech Connect (OSTI)

    FLANAGAN,J.M.BEWLEY,M.C.

    2002-10-01

    It is generally accepted that the information necessary to specify the native, functional, three-dimensional structure of a protein is encoded entirely within its amino acid sequence; however, efficient reversible folding and unfolding is observed only with a subset of small single-domain proteins. Refolding experiments often lead to the formation of kinetically-trapped, misfolded species that aggregate, even in dilute solution. In the cellular environment, the barriers to efficient protein folding and maintenance of native structure are even larger due to the nature of this process. First, nascent polypeptides must fold in an extremely crowded environment where the concentration of macromolecules approaches 300-400 mg/mL and on average, each ribosome is within its own diameter of another ribosome (1-3). These conditions of severe molecular crowding, coupled with high concentrations of nascent polypeptide chains, favor nonspecific aggregation over productive folding (3). Second, folding of newly-translated polypeptides occurs in the context of their vehtorial synthesis process. Amino acids are added to a growing nascent chain at the rate of {approx}5 residues per set, which means that for a 300 residue protein its N-terminus will be exposed to the cytosol {approx}1 min before its C-terminus and be free to begin the folding process. However, because protein folding is highly cooperative, the nascent polypeptide cannot reach its native state until a complete folding domain (50-250 residues) has emerged from the ribosome. Thus, for a single-domain protein, the final steps in ffolding are only completed post-translationally since {approx}40 residues of a nascent chain are sequestered within the exit channel of the ribosome and are not available for folding (4). A direct consequence of this limitation in cellular folding is that during translation incomplete domains will exist in partially-folded states that tend to expose hydrophobic residues that are prone to aggregation and/or mislfolding. Thus it is not surprising that, in cells, the protein folding process is error prone and organisms have evolved ''editing'' or quality control (QC) systems to assist in the folding, maintenance and, when necessary, selective removal of damaged proteins. In fact, there is growing evidence that failure of these QC-systems contributes to a number of disease states (5-8). This chapter describes our current understanding of the nature and mechanisms of the protein quality control systems in the cytosol of bacteria. Parallel systems are exploited in the cytosol and mitochondria of eukaryotes to prevent the accumulation of misfolded proteins.

  5. PROTEIN QUALITY CONTROL IN BACTERIAL CELLS: INTEGRATED NETWORKS OF CHAPERONES AND ATP-DEPENDENT PROTEASES.

    SciTech Connect (OSTI)

    FLANAGAN,J.M.; BEWLEY,M.C.

    2001-12-03

    It is generally accepted that the information necessary to specify the native, functional, three-dimensional structure of a protein is encoded entirely within its amino acid sequence; however, efficient reversible folding and unfolding is observed only with a subset of small single-domain proteins. Refolding experiments often lead to the formation of kinetically-trapped, misfolded species that aggregate, even in dilute solution. In the cellular environment, the barriers to efficient protein folding and maintenance of native structure are even larger due to the nature of this process. First, nascent polypeptides must fold in an extremely crowded environment where the concentration of macromolecules approaches 300-400 mg/mL and on average, each ribosome is within its own diameter of another ribosome (1-3). These conditions of severe molecular crowding, coupled with high concentrations of nascent polypeptide chains, favor nonspecific aggregation over productive folding (3). Second, folding of newly-translated polypeptides occurs in the context of their vehtorial synthesis process. Amino acids are added to a growing nascent chain at the rate of -5 residues per set, which means that for a 300 residue protein its N-terminus will be exposed to the cytosol {approx}1 min before its C-terminus and be free to begin the folding process. However, because protein folding is highly cooperative, the nascent polypeptide cannot reach its native state until a complete folding domain (50-250 residues) has emerged from the ribosome. Thus, for a single-domain protein, the final steps in folding are only completed post-translationally since {approx}40 residues of a nascent chain are sequestered within the exit channel of the ribosome and are not available for folding (4). A direct consequence of this limitation in cellular folding is that during translation incomplete domains will exist in partially-folded states that tend to expose hydrophobic residues that are prone to aggregation and/or misfolding. Thus it is not surprising that, in cells, the protein folding process is error prone and organisms have evolved ''editing'' or quality control (QC) systems to assist in the folding, maintenance and, when necessary, selective removal of damaged proteins. In fact, there is growing evidence that failure of these QC-systems contributes to a number of disease states (5-8). This chapter describes our current understanding of the nature and mechanisms of the protein quality control systems in the cytosol of bacteria. Parallel systems are exploited in the cytosol and mitochondria of eukaryotes to prevent the accumulation of misfolded proteins.

  6. Multifunctional potentiometric gas sensor array with an integrated temperature control and temperature sensors

    DOE Patents [OSTI]

    Blackburn, Bryan M; Wachsman, Eric D

    2015-05-12

    Embodiments of the subject invention relate to a gas sensor and method for sensing one or more gases. An embodiment incorporates an array of sensing electrodes maintained at similar or different temperatures, such that the sensitivity and species selectivity of the device can be fine tuned between different pairs of sensing electrodes. A specific embodiment pertains to a gas sensor array for monitoring combustion exhausts and/or chemical reaction byproducts. An embodiment of the subject device related to this invention operates at high temperatures and can withstand harsh chemical environments. Embodiments of the device are made on a single substrate. The devices can also be made on individual substrates and monitored individually as if they were part of an array on a single substrate. The device can incorporate sensing electrodes in the same environment, which allows the electrodes to be coplanar and, thus, keep manufacturing costs low. Embodiments of the device can provide improvements to sensitivity, selectivity, and signal interference via surface temperature control.

  7. NO{sub x} CONTROL OPTIONS AND INTEGRATION FOR US COAL FIRED BOILERS

    SciTech Connect (OSTI)

    Mike Bockelie; Temi Linjewile; Connie Senior; Eric Eddings; Larry Baxter

    2003-04-29

    This is the eleventh Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NO{sub x} control strategies and their possible impact on boiler performance for boilers firing US coals. The Electric Power Research Institute (EPRI) is providing co-funding for this program. This program contains multiple tasks and good progress is being made on all fronts. During this quarter, FTIR experiments for SCR catalyst sulfation were finished at BYU and indicated no vanadium/vanadyl sulfate formation at reactor conditions. Poisoned catalysts were prepared and tested in the CCS. Poisoning with sodium produced a noticeable drop in activity, which was larger at higher space velocity. A computer code was written at BYU to predict conversion along a cylindrical monolithic reactor. This code may be useful for monolith samples that will be tested in the laboratory. Shakedown of the slipstream reactor was completed at AEP's Rockport plant. Ammonia was connected to the reactor. The measurement of O{sub 2} and NO{sub x} made by the CEMs corresponded to values measured by the plant at the economizer outlet. Excellent NO{sub x} reduction was observed in preliminary tests of the reactor. Some operational problems were noted and these will be addressed next quarter.

  8. Novel Imaging Techniques, Integrated with Mineralogical, Geochemical and Microbiological Characterization to Determine the Biogeochemical Controls....

    SciTech Connect (OSTI)

    Lloyd, Jonathan R.

    2005-06-01

    Tc(VII) will be reduced and precipitated in FRC sediments under anaerobic conditions in batch experiments (progressive microcosms). The complementary microcosm experiments using low pH/nigh nitrate sediments from 3 (near FW 009) are imminent, with the sediment cores already shipped to Manchester. HYPOTHESIS 2. Tc(VII) reduction and precipitation can be visualized in discrete biogeochemical zones in sediment columns using 99mTc and a gamma-camera. Preliminary experiments testing the use of 99mTc as a radiotracer to address hypotheses 2 and 3 have suggested that the 99mTc associates with Fe(II)-bearing sediments in microcosms and stratified columns containing FRC sediments. Initial proof of concept microcosms containing Fe(II)-bearing, microbially-reduced FRC sediments were spiked with 99mTc and imaged using a gamma-camera. In comparison with oxic controls, 99mTc was significantly partitioned in the solid phase in Fe(III)-reducing sediments in batch experiments. Column experiments using FRC background area soil with stratified biogeochemical zones after stimulation of anaerobic processes through nutrient supplementation, suggested that 99mTc transport was retarded through areas of Fe(III) reduction. HYPOTHESIS 3. Sediment-bound reduced 99mTc can be solubilized by perturbations including oxidation coupled to biological nitrate reduction, and mobilization visualized in real-time using a gamma-camera. Significant progress has been made focusing on the impact of nitrate on the biogeochemical behavior of technetium. Additions of 100 mM nitrate to FRC sediment microcosms, which could potentially compete for electrons during metal reduction, inhibited the reduction of both Fe(III) and Tc(VII) completely. Experiments have also addressed the impact of high nitrate concentrations on Fe(II) and Tc(IV) in pre-reduced sediments, showing no significant resolubilization of Tc with the addition of 25 mM nitrate. A parallel set of experiments addressing the impact of aerobic conditions on the stability/solubility of Fe(II) and Tc(IV), found 80 % resolubilization of the Tc. Column experiments exploring this behavior are being planned. HYPOTHESIS 4 The mobility of 99mTc in the sediment columns can be modeled using a coupled speciation and transport code. Microbiological and geochemical characterization of the column experiments is ongoing and transport and geochemical modeling experiments are being planned.

  9. Controls and Communications Integration

    Broader source: Energy.gov [DOE]

    Lead Performer: Lawrence Berkeley National Lab -- U.S. India Joint Center for Building Energy Research and Development (CBERD) Project Partners: -- University of California, Berkeley -- International Institute of Information Technology Hyderabad (IIIT-H) - Andhra Pradesh, India -- enLighted - Sunnyvale, California and Maharashtra, India -- Honeywell - Morristown, NJ -- Infosys - Bangalore, India -- Neosilica - Andhra Pradesh, India -- Philips - Amsterdam, Netherlands -- SynapSense - Folsom, CA -- Schenider Electric - India -- Wipro Eco-energy - India

  10. Fuel cell integral bundle assembly including ceramic open end seal and vertical and horizontal thermal expansion control

    DOE Patents [OSTI]

    Zafred, Paolo R. (Murrysville, PA); Gillett, James E. (Greensburg, PA)

    2012-04-24

    A plurality of integral bundle assemblies contain a top portion with an inlet fuel plenum and a bottom portion containing a base support, the base supports a dense, ceramic air exhaust manifold having four supporting legs, the manifold is below and connects to air feed tubes located in a recuperator zone, the air feed tubes passing into the center of inverted, tubular, elongated, hollow electrically connected solid oxide fuel cells having an open end above a combustion zone into which the air feed tubes pass and a closed end near the inlet fuel plenum, where the open end of the fuel cells rest upon and within a separate combination ceramic seal and bundle support contained in a ceramic support casting, where at least one flexible cushion ceramic band seal located between the recuperator and fuel cells protects and controls horizontal thermal expansion, and where the fuel cells operate in the fuel cell mode and where the base support and bottom ceramic air exhaust manifolds carry from 85% to all of the weight of the generator.

  11. Prospective Preference Assessment of Patients' Willingness to Participate in a Randomized Controlled Trial of Intensity-Modulated Radiotherapy Versus Proton Therapy for Localized Prostate Cancer

    SciTech Connect (OSTI)

    Shah, Anand; Efstathiou, Jason A.; Paly, Jonathan J.; Halpern, Scott D.; Bruner, Deborah W.; Christodouleas, John P.; Coen, John J.; Deville, Curtiland; Vapiwala, Neha; Shipley, William U.; Zietman, Anthony L.; Hahn, Stephen M.; Bekelman, Justin E.

    2012-05-01

    Purpose: To investigate patients' willingness to participate (WTP) in a randomized controlled trial (RCT) comparing intensity-modulated radiotherapy (IMRT) with proton beam therapy (PBT) for prostate cancer (PCa). Methods and Materials: We undertook a qualitative research study in which we prospectively enrolled patients with clinically localized PCa. We used purposive sampling to ensure a diverse sample based on age, race, travel distance, and physician. Patients participated in a semi-structured interview in which they reviewed a description of a hypothetical RCT, were asked open-ended and focused follow-up questions regarding their motivations for and concerns about enrollment, and completed a questionnaire assessing characteristics such as demographics and prior knowledge of IMRT or PBT. Patients' stated WTP was assessed using a 6-point Likert scale. Results: Forty-six eligible patients (33 white, 13 black) were enrolled from the practices of eight physicians. We identified 21 factors that impacted patients' WTP, which largely centered on five major themes: altruism/desire to compare treatments, randomization, deference to physician opinion, financial incentives, and time demands/scheduling. Most patients (27 of 46, 59%) stated they would either 'definitely' or 'probably' participate. Seventeen percent (8 of 46) stated they would 'definitely not' or 'probably not' enroll, most of whom (6 of 8) preferred PBT before their physician visit. Conclusions: A substantial proportion of patients indicated high WTP in a RCT comparing IMRT and PBT for PCa.

  12. Hybrid metasurface for ultra-broadband terahertz modulation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Heyes, Jane E.; Withayachumnankul, Withawat; Grady, Nathaniel K.; Chowdhury, Dibakar Roy; Azad, Abul K.; Chen, Hou-Tong

    2014-11-05

    We demonstrate an ultra-broadband free-space terahertz modulator based on a semiconductor-integrated metasurface. The modulator is made of a planar array of metal cut-wires on a silicon-on-sapphire substrate, where the silicon layer functions as photoconductive switches. Without external excitation, the cut-wire array exhibits a Lorentzian resonant response with a transmission passband spanning dc up to the fundamental dipole resonance above 2 THz. Under photoexcitation with 1.55 eV near-infrared light, the silicon regions in the cut-wire gaps become highly conductive, causing a transition of the resonant metasurface to a wire grating with a Drude response. In effect, the low-frequency passband below 2more »THz evolves into a stopband for the incident terahertz waves. Experimental validations confirm a bandwidth of at least 100%, spanning 0.5 to 1.5 THz with -10 dB modulation depth. This modulation depth is far superior to -5 dB achievable from a plain silicon-on-sapphire substrate with effectively 25 times higher pumping energy. The proposed concept of ultra-broadband metasurface modulator can be readily extended to electrically controlled terahertz wave modulation.« less

  13. Integrated Project Team RM

    Office of Environmental Management (EM)

    Integrated Project Team (IPT) Review Module March 2010 CD-0 This R O 0 Review Modul OFFICE OF Inte C CD-1 le was piloted F ENVIRO Standard R grated P Rev Critical Decis CD-2 M at the OR U 23 incorporated ONMENTAL Review Plan Project Te view Module sion (CD) Ap CD March 2010 33 Disposition in the Review L MANAGE n (SRP) eam (IPT e pplicability D-3 Project in 200 Module. EMENT T) CD-4 09. Lessons lea Post Ope arned have been eration n Standard Review Plan, 2 nd Edition, March 2010 i FOREWORD The

  14. Powerful, Efficient Electric Vehicle Chargers: Low-Cost, Highly-Integrated Silicon Carbide (SiC) Multichip Power Modules (MCPMs) for Plug-In Hybrid Electric

    SciTech Connect (OSTI)

    2010-09-14

    ADEPT Project: Currently, charging the battery of an electric vehicle (EV) is a time-consuming process because chargers can only draw about as much power from the grid as a hair dryer. APEI is developing an EV charger that can draw as much power as a clothes dryer, which would drastically speed up charging time. APEI's charger uses silicon carbide (SiC)-based power transistors. These transistors control the electrical energy flowing through the charger's circuits more effectively and efficiently than traditional transistors made of straight silicon. The SiC-based transistors also require less cooling, enabling APEI to create EV chargers that are 10 times smaller than existing chargers.

  15. Strategies and Decision Support Systems for Integrating Variable Energy Resources in Control Centers for Reliable Grid Operations

    SciTech Connect (OSTI)

    Jones, Lawrence E.

    2012-01-05

    A variety of studies have recently evaluated the opportunities for the large-scale integration of wind energy into the US power system. These studies have included, but are not limited to, "20 Percent Wind Energy by 2030: Increasing Wind Energy's Contribution to US Electricity Supply", the "Western Wind and Solar Integration Study", and the "Eastern Wind Integration and Transmission Study." Each of these US based studies have evaluated a variety of activities that can be undertaken by utilities to help integrate wind energy.

  16. Flexible programmable logic module

    DOE Patents [OSTI]

    Robertson, Perry J.; Hutchinson, Robert L.; Pierson, Lyndon G.

    2001-01-01

    The circuit module of this invention is a VME board containing a plurality of programmable logic devices (PLDs), a controlled impedance clock tree, and interconnecting buses. The PLDs are arranged to permit systolic processing of a problem by offering wide data buses and a plurality of processing nodes. The board contains a clock reference and clock distribution tree that can drive each of the PLDs with two critically timed clock references. External clock references can be used to drive additional circuit modules all operating from the same synchronous clock reference.

  17. Phase modulation in RF tag

    DOE Patents [OSTI]

    Carrender, Curtis Lee; Gilbert, Ronald W.

    2007-02-20

    A radio frequency (RF) communication system employs phase-modulated backscatter signals for RF communication from an RF tag to an interrogator. The interrogator transmits a continuous wave interrogation signal to the RF tag, which based on an information code stored in a memory, phase-modulates the interrogation signal to produce a backscatter response signal that is transmitted back to the interrogator. A phase modulator structure in the RF tag may include a switch coupled between an antenna and a quarter-wavelength stub; and a driver coupled between the memory and a control terminal of the switch. The driver is structured to produce a modulating signal corresponding to the information code, the modulating signal alternately opening and closing the switch to respectively decrease and increase the transmission path taken by the interrogation signal and thereby modulate the phase of the response signal. Alternatively, the phase modulator may include a diode coupled between the antenna and driver. The modulating signal from the driver modulates the capacitance of the diode, which modulates the phase of the response signal reflected by the diode and antenna.

  18. Thermionic modules

    DOE Patents [OSTI]

    King, Donald B. (Albuquerque, NM); Sadwick, Laurence P. (Salt Lake City, UT); Wernsman, Bernard R. (Clairton, PA)

    2002-06-18

    Modules of assembled microminiature thermionic converters (MTCs) having high energy-conversion efficiencies and variable operating temperatures manufactured using MEMS manufacturing techniques including chemical vapor deposition. The MTCs incorporate cathode to anode spacing of about 1 micron or less and use cathode and anode materials having work functions ranging from about 1 eV to about 3 eV. The MTCs also exhibit maximum efficiencies of just under 30%, and thousands of the devices and modules can be fabricated at modest costs.

  19. Five-year Local Control in a Phase II Study of Hypofractionated Intensity Modulated Radiation Therapy With an Incorporated Boost for Early Stage Breast Cancer

    SciTech Connect (OSTI)

    Freedman, Gary M.; Anderson, Penny R.; Bleicher, Richard J.; Litwin, Samuel; Li Tianyu; Swaby, Ramona F.; Ma, Chang-Ming Charlie; Li Jinsheng; Sigurdson, Elin R.; Watkins-Bruner, Deborah; Morrow, Monica; Goldstein, Lori J.

    2012-11-15

    Purpose: Conventional radiation fractionation of 1.8-2 Gy per day for early stage breast cancer requires daily treatment for 6-7 weeks. We report the 5-year results of a phase II study of intensity modulated radiation therapy (IMRT), hypofractionation, and incorporated boost that shortened treatment time to 4 weeks. Methods and Materials: The study design was phase II with a planned accrual of 75 patients. Eligibility included patients aged {>=}18 years, Tis-T2, stage 0-II, and breast conservation. Photon IMRT and an incorporated boost was used, and the whole breast received 2.25 Gy per fraction for a total of 45 Gy, and the tumor bed received 2.8 Gy per fraction for a total of 56 Gy in 20 treatments over 4 weeks. Patients were followed every 6 months for 5 years. Results: Seventy-five patients were treated from December 2003 to November 2005. The median follow-up was 69 months. Median age was 52 years (range, 31-81). Median tumor size was 1.4 cm (range, 0.1-3.5). Eighty percent of tumors were node negative; 93% of patients had negative margins, and 7% of patients had close (>0 and <2 mm) margins; 76% of cancers were invasive ductal type: 15% were ductal carcinoma in situ, 5% were lobular, and 4% were other histology types. Twenty-nine percent of patients 29% had grade 3 carcinoma, and 20% of patients had extensive in situ carcinoma; 11% of patients received chemotherapy, 36% received endocrine therapy, 33% received both, and 20% received neither. There were 3 instances of local recurrence for a 5-year actuarial rate of 2.7%. Conclusions: This 4-week course of hypofractionated radiation with incorporated boost was associated with excellent local control, comparable to historical results of 6-7 weeks of conventional whole-breast fractionation with sequential boost.

  20. Module Embedded Microinverter Smart Grid Ready Residential Solar Electric

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    System | Department of Energy Module Embedded Microinverter Smart Grid Ready Residential Solar Electric System Module Embedded Microinverter Smart Grid Ready Residential Solar Electric System GE logo.png This project is developing and demonstrating a cost-reduction approach for an alternating-current (AC) photovoltaic (PV) module that is driven by innovations in microinverter design, module integration and packaging, and integration with a new intelligent circuit breaker. GE Global Research

  1. High Temperature, High Voltage Fully Integrated Gate Driver Circuit...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    -- Washington D.C. PDF icon ape03marlino.pdf More Documents & Publications High Temperature, High Voltage Fully Integrated Gate Driver Circuit Smart Integrated Power Module ...

  2. Module 4 - Budgeting | Department of Energy

    Energy Savers [EERE]

    4 - Budgeting Module 4 - Budgeting This module focuses on developing the cost baseline. This module outlines basic costing concepts such as control accounts, work packages and planning packages. Additionally, elements of an earned value contract baseline and proposed cost and contract budget baseline are covered

  3. Compensator models for fluence field modulated computed tomography

    SciTech Connect (OSTI)

    Bartolac, Steven; Jaffray, David; Radiation Medicine Program, Princess Margaret Hospital Department of Radiation Oncology, University of Toronto, Toronto, Ontario M5G 2M9

    2013-12-15

    Purpose: Fluence field modulated computed tomography (FFMCT) presents a novel approach for acquiring CT images, whereby a patient model guides dynamically changing fluence patterns in an attempt to achieve task-based, user-prescribed, regional variations in image quality, while also controlling dose to the patient. This work aims to compare the relative effectiveness of FFMCT applied to different thoracic imaging tasks (routine diagnostic CT, lung cancer screening, and cardiac CT) when the modulator is subject to limiting constraints, such as might be present in realistic implementations.Methods: An image quality plan was defined for a simulated anthropomorphic chest slice, including regions of high and low image quality, for each of the thoracic imaging tasks. Modulated fluence patterns were generated using a simulated annealing optimization script, which attempts to achieve the image quality plan under a global dosimetric constraint. Optimization was repeated under different types of modulation constraints (e.g., fixed or gantry angle dependent patterns, continuous or comprised of discrete apertures) with the most limiting case being a fixed conventional bowtie filter. For each thoracic imaging task, an image quality map (IQM{sub sd}) representing the regionally varying standard deviation is predicted for each modulation method and compared to the prescribed image quality plan as well as against results from uniform fluence fields. Relative integral dose measures were also compared.Results: Each IQM{sub sd} resulting from FFMCT showed improved agreement with planned objectives compared to those from uniform fluence fields for all cases. Dynamically changing modulation patterns yielded better uniformity, improved image quality, and lower dose compared to fixed filter patterns with optimized tube current. For the latter fixed filter cases, the optimal choice of tube current modulation was found to depend heavily on the task. Average integral dose reduction compared to a uniform fluence field ranged from 10% using a bowtie filter to 40% or greater using an idealized modulator.Conclusions: The results support that FFMCT may achieve regionally varying image quality distributions in good agreement with user-prescribed values, while limiting dose. The imposition of constraints inhibits dose reduction capacity and agreement with image quality plans but still yields significant improvement over what is afforded by conventional dose minimization techniques. These results suggest that FFMCT can be implemented effectively even when the modulator has limited modulation capabilities.

  4. Thermoelectric module

    DOE Patents [OSTI]

    Kortier, William E. (Columbus, OH); Mueller, John J. (Columbus, OH); Eggers, Philip E. (Columbus, OH)

    1980-07-08

    A thermoelectric module containing lead telluride as the thermoelectric mrial is encapsulated as tightly as possible in a stainless steel canister to provide minimum void volume in the canister. The lead telluride thermoelectric elements are pressure-contacted to a tungsten hot strap and metallurgically bonded at the cold junction to iron shoes with a barrier layer of tin telluride between the iron shoe and the p-type lead telluride element.

  5. Modeling and Control System Design for an Integrated Solar Generation and Energy Storage System with a Ride-Through Capability: Preprint

    SciTech Connect (OSTI)

    Wang, X.; Yue, M.; Muljadi, E.

    2012-09-01

    This paper presents a generic approach for PV panel modeling. Data for this modeling can be easily obtained from manufacturer datasheet, which provides a convenient way for the researchers and engineers to investigate the PV integration issues. A two-stage power conversion system (PCS) is adopted in this paper for the PV generation system and a Battery Energy Storage System (BESS) can be connected to the dc-link through a bi-directional dc/dc converter. In this way, the BESS can provide some ancillary services which may be required in the high penetration PV generation scenario. In this paper, the fault ride-through (FRT) capability is specifically focused. The integrated BESS and PV generation system together with the associated control systems is modeled in PSCAD and Matlab platforms and the effectiveness of the controller is validated by the simulation results.

  6. TASMANIAN Sparse Grids Module

    Energy Science and Technology Software Center (OSTI)

    2013-09-20

    Sparse Grids are the family of methods of choice for multidimensional integration and interpolation in low to moderate number of dimensions. The method is to select extend a one dimensional set of abscissas, weights and basis functions by taking a subset of all possible tensor products. The module provides the ability to create global and local approximations based on polynomials and wavelets. The software has three components, a library, a wrapper for the library thatmore » provides a command line interface via text files ad a MATLAB interface via the command line tool.« less

  7. Integration of oxygen plants and gas turbines in IGCC facilities

    SciTech Connect (OSTI)

    Smith, A.R.; Sorensen, J.C.; Woodward, D.W.

    1996-10-01

    The commercialization of Integrated Gasification Combined-Cycle (IGCC) power has been aided by concepts involving the integration of a cryogenic air separation unit (ASU) with the gas turbine combined-cycle module. It is known and now widely accepted that an ASU designed for elevated pressure service and optimally integrated with the gas turbine can increase overall IGCC power output, increase overall efficiency, and decrease the net cost of power generation compared to non-integrated facilities employing low pressure ASU`s. Depending upon the specific gas turbine, gasification technology, NO{sub x} emission specification, and other site specific factors, various degrees of compressed air and nitrogen integration are optimal. Air Products has supplied ASU`s with no integration (Destec/Plaquemine IGCC), nitrogen-only integration (Tampa Electric/Polk County IGCC), and full air and nitrogen integration (Demkolec/Buggenum IGCC). Continuing advancements in both air separation and gas turbine technologies offer new integration opportunities to further improve performance and reduce costs. This paper reviews basic integration principles, highlights the integration scheme used at Polk County, and describes some advanced concepts based on emerging gas turbines. Operability issues associated with integration will be reviewed and control measures described for the safe, efficient, and reliable operation of these facilities.

  8. Photovoltaic module mounting clip with integral grounding

    DOE Patents [OSTI]

    Lenox, Carl J.

    2008-10-14

    An electrically conductive mounting/grounding clip, for use with a photovoltaic assembly of the type having an electrically conductive frame, comprises an electrically conductive body. The body has a central portion and first and second spaced-apart arms extending generally perpendicular to the central portion. Each arm has an outer portion with each outer portion having an outer end. At least one frame surface-disrupting element is at each outer end. The central portion defines a plane with the frame surface-disrupting elements pointing towards the plane. In some examples each arm extends from the central portion at an acute angle to the plane.

  9. Photovoltaic module mounting clip with integral grounding

    DOE Patents [OSTI]

    Lenox, Carl J.

    2010-08-24

    An electrically conductive mounting/grounding clip, usable with a photovoltaic (PV) assembly of the type having an electrically conductive frame, comprises an electrically conductive body. The body has a central portion and first and second spaced-apart arms extending from the central portion. Each arm has first and second outer portions with frame surface-disrupting element at the outer portions.

  10. Microsoft PowerPoint - FinalModule4.ppt

    Office of Environmental Management (EM)

    4: Budgeting Prepared by: Prepared by: Booz Allen Hamilton Module 4 - Budgeting 1 Module 4: Budgeting Welcome to Module 4. The objective of this module is to introduce you to Budgeting Concepts and Definitions. The Topics that will be addressed in this Module include: * Cost/Schedule Baselines * WBS Levels: Control Accounts, Work Packages, Planning Packages * Elements of an Earned Value Contract Baseline * Proposed Cost and the Contract Budget Baseline * Control Account Manager Roles and

  11. Microscale autonomous sensor and communications module

    DOE Patents [OSTI]

    Okandan, Murat; Nielson, Gregory N

    2014-03-25

    Various technologies pertaining to a microscale autonomous sensor and communications module are described herein. Such a module includes a sensor that generates a sensor signal that is indicative of an environmental parameter. An integrated circuit receives the sensor signal and generates an output signal based at least in part upon the sensor signal. An optical emitter receives the output signal and generates an optical signal as a function of the output signal. An energy storage device is configured to provide power to at least the integrated circuit and the optical emitter, and wherein the module has a relatively small diameter and thickness.

  12. Monolithic integration of silicon electronics and photonics.

    SciTech Connect (OSTI)

    Lentine, Anthony L.; Zortman, William A.; Trotter, Douglas Chandler; Watts, Michael R.

    2010-10-01

    A low power modulator is monolithically integrated with a radiation hardened CMOS driver. This integrated optoelectronic device demonstrates 1.68mW power consumption at 2Gbps.

  13. BEYOND INTEGRATED SYSTEM VALIDATION: USE OF A CONTROL ROOM TRAINING SIMULATOR FOR PROOF-OF-CONCEPT INTERFACE DEVELOPMENT

    SciTech Connect (OSTI)

    Ronald Boring; Vivek Agarwal

    2012-07-01

    This paper provides background on a reconfigurable control room simulator for nuclear power plants. The main control rooms in current nuclear power plants feature analog technology that is growing obsolete. The need to upgrade control rooms serves the practical need of maintainability as well as the opportunity to implement newer digital technologies with added functionality. There currently exists no dedicated research simulator for use in human factors design and evaluation activities for nuclear power plants in the US. The new research simulator discussed in this paper provides a test bed in which operator performance on new control room concepts can be benchmarked against existing control rooms and in which new technologies can be validated for safety and usability prior to deployment.

  14. Solid State Marx Modulators for Emerging Applications

    SciTech Connect (OSTI)

    Kemp, M.A.; /SLAC

    2012-09-14

    Emerging linear accelerator applications increasingly push the boundaries of RF system performance and economics. The power modulator is an integral part of RF systems whose characteristics play a key role in the determining parameters such as efficiency, footprint, cost, stability, and availability. Particularly within the past decade, solid-state switch based modulators have become the standard in high-performance, high power modulators. One topology, the Marx modulator, has characteristics which make it particularly attractive for several emerging applications. This paper is an overview of the Marx topology, some recent developments, and a case study of how this architecture can be applied to a few proposed linear accelerators.

  15. Concept, implementation and commissioning of the automation system for the accelerator module test facility AMTF

    SciTech Connect (OSTI)

    Bckmann, Torsten A.; Korth, Olaf; Clausen, Matthias; Schoeneburg, Bernd

    2014-01-29

    The European XFEL project launched on June 5, 2007 will require about 103 accelerator modules as a main part of the XFEL linear accelerator. All superconducting components constituting the accelerator module like cavities and magnets have to be tested before the assembly. For the tests of the individual cavities and the complete modules an XFEL Accelerator Module Test Facility (AMTF) has been erected at DESY. The process control system EPICS (Experimental Physics and Industrial Control System) is used to control and operate the cryogenic plant and all its subcomponents. A complementary component of EPICS is the Open Source software suit CSS (Control System Studio). CSS is an integrated engineering, maintenance and operating tool for EPICS. CSS enables local and remote operating and monitoring of the complete system and thus represents the human machine interface. More than 250 PROFIBUS nodes work at the accelerator module test facility. DESY installed an extensive diagnostic and condition monitoring system. With these diagnostic tools it is possible to examine the correct installation and configuration of all PROFIBUS nodes in real time. The condition monitoring system based on FDT/DTM technology shows the state of the PROFIBUS devices at a glance. This information can be used for preventive maintenance which is mandatory for continuous operation of the AMTF facility. The poster will describe all steps form engineering to implementation and commissioning.

  16. Supported PV module assembly

    DOE Patents [OSTI]

    Mascolo, Gianluigi; Taggart, David F.; Botkin, Jonathan D.; Edgett, Christopher S.

    2013-10-15

    A supported PV assembly may include a PV module comprising a PV panel and PV module supports including module supports having a support surface supporting the module, a module registration member engaging the PV module to properly position the PV module on the module support, and a mounting element. In some embodiments the PV module registration members engage only the external surfaces of the PV modules at the corners. In some embodiments the assembly includes a wind deflector with ballast secured to a least one of the PV module supports and the wind deflector. An array of the assemblies can be secured to one another at their corners to prevent horizontal separation of the adjacent corners while permitting the PV modules to flex relative to one another so to permit the array of PV modules to follow a contour of the support surface.

  17. Order Module--DOE O 414.1D, QUALITY ASSURANCE | Department of Energy

    Energy Savers [EERE]

    14.1D, QUALITY ASSURANCE Order Module--DOE O 414.1D, QUALITY ASSURANCE "To ensure that DOE, including NNSA, products and services meet or exceed customers' requirements and expectations. To achieve quality for all work based upon the following principles: All work, as defined in this Order, is conducted through an integrated and effective management system. Management support for planning, organization, resources, direction, and control is essential to quality assurance (QA). Performance

  18. Integration of the Uncertainties of Anion and TOC Measurements into the Flammability Control Strategy for Sludge Batch 8 at the DWPF

    SciTech Connect (OSTI)

    Edwards, T. B.

    2013-03-14

    The Savannah River National Laboratory (SRNL) has been working with the Savannah River Remediation (SRR) Defense Waste Processing Facility (DWPF) in the development and implementation of a flammability control strategy for DWPFs melter operation during the processing of Sludge Batch 8 (SB8). SRNLs support has been in response to technical task requests that have been made by SRRs Waste Solidification Engineering (WSE) organization. The flammability control strategy relies on measurements that are performed on Slurry Mix Evaporator (SME) samples by the DWPF Laboratory. Measurements of nitrate, oxalate, formate, and total organic carbon (TOC) standards generated by the DWPF Laboratory are presented in this report, and an evaluation of the uncertainties of these measurements is provided. The impact of the uncertainties of these measurements on DWPFs strategy for controlling melter flammability also is evaluated. The strategy includes monitoring each SME batch for its nitrate content and its TOC content relative to the nitrate content and relative to the antifoam additions made during the preparation of the SME batch. A linearized approach for monitoring the relationship between TOC and nitrate is developed, equations are provided that integrate the measurement uncertainties into the flammability control strategy, and sample calculations for these equations are shown to illustrate the impact of the uncertainties on the flammability control strategy.

  19. Integration of autonomous systems for remote control of data acquisition and diagnostics in the TJ-II device

    SciTech Connect (OSTI)

    Vega, J.; Mollinedo, A.; Lopez, A.; Pacios, L.

    1997-01-01

    The data acquisition system for TJ-II will consist of a central computer, containing the data base of the device, and a set of independent systems (personal computers, embedded ones, workstations, minicomputers, PLCs, and microprocessor systems among others), controlling data collection, and automated diagnostics. Each autonomous system can be used to isolate and manage specific problems in the most efficient manner. These problems are related to data acquisition, hard ({mu}s{endash}ms) real time requirements, soft (ms{endash}s) real time requirements, remote control of diagnostics, etc. In the operation of TJ-II, the programming of systems will be carried out from the central computer. Coordination and synchronization will be performed by linking systems to local area networks. Several Ethernet segments and FDDI rings will be used for these purposes. Programmable logic controller devices (PLCs) used for diagnostic low level control will be linked among them through a fast serial link, the RS485 Profibus standard. One VME crate, running on the OS-9 real time operating system, will be assigned as a gateway, so as to connect the PLCs based systems with an Ethernet segment. {copyright} {ital 1997 American Institute of Physics.}

  20. Demonstrations of Integrated Advanced Rooftop Unit Controls and Automated Fault Detection and Diagnostics- 2014 BTO Peer Review

    Broader source: Energy.gov [DOE]

    Presenter: Srinivas Katipamula, Pacific Northwest National Laboratory This multiyear research and development project aims to determine the magnitude of energy savings achievable by retrofitting existing packaged rooftop air conditioner units (RTUs) with advanced control strategies not ordinarily used for packaged units.

  1. NERSC Python Modules

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NERSC Python Modules NERSC Python Modules Python Interpreter Modules To use the NERSC-built installation, type: module load python This loads the default version of the following useful core modules: python_base: Python 2.7.x module. numpy: Defines the numerical array and matrix type and basic operations on them. scipy: Uses numpy to do advanced math, signal processing, optimization, statistics and much more. matplotlib: Plotting/visualization library. ipython: Interactive python shell offering

  2. SCALE: A modular code system for performing Standardized Computer Analyses for Licensing Evaluation. Volume 1, Part 2: Control modules S1--H1; Revision 5

    SciTech Connect (OSTI)

    1997-03-01

    SCALE--a modular code system for Standardized Computer Analyses Licensing Evaluation--has been developed by Oak Ridge National Laboratory at the request of the US Nuclear Regulatory Commission. The SCALE system utilizes well-established computer codes and methods within standard analysis sequences that (1) allow an input format designed for the occasional user and/or novice, (2) automated the data processing and coupling between modules, and (3) provide accurate and reliable results. System development has been directed at problem-dependent cross-section processing and analysis of criticality safety, shielding, heat transfer, and depletion/decay problems. Since the initial release of SCALE in 1980, the code system has been heavily used for evaluation of nuclear fuel facility and package designs. This revision documents Version 4.3 of the system.

  3. Ballasted photovoltaic module and module arrays

    DOE Patents [OSTI]

    Botkin, Jonathan (El Cerrito, CA); Graves, Simon (Berkeley, CA); Danning, Matt (Oakland, CA)

    2011-11-29

    A photovoltaic (PV) module assembly including a PV module and a ballast tray. The PV module includes a PV device and a frame. A PV laminate is assembled to the frame, and the frame includes an arm. The ballast tray is adapted for containing ballast and is removably associated with the PV module in a ballasting state where the tray is vertically under the PV laminate and vertically over the arm to impede overt displacement of the PV module. The PV module assembly can be installed to a flat commercial rooftop, with the PV module and the ballast tray both resting upon the rooftop. In some embodiments, the ballasting state includes corresponding surfaces of the arm and the tray being spaced from one another under normal (low or no wind) conditions, such that the frame is not continuously subjected to a weight of the tray.

  4. Integrated use of burden profile probe and in-burden probe for gas flow control in the blast furnace

    SciTech Connect (OSTI)

    Bordemann, F.; Hartig, W.H.; Grisse, H.J.; Speranza, B.E.

    1995-12-01

    Gas flow in the blast furnace is one of the most important factors in controlling a furnace. It not only determines the production but also the fuel consumption and the campaign life. At Nos. 4 and 5 blast furnaces of ROGESA, probes are installed for detection of the burden profiles and of the gas flow distribution. For an optimum use of these probes a program system has been developed by ROGESA and Dango and Dienenthal. With this program system it is possible to analyze the operating condition of a blast furnace by means of a fuzzy logic analysis. In case of deviations from the defined desired condition, recommendations for corrective measures for the material distribution are made. Both furnaces are equipped with a bell-less top, a coal injection system, high-temperature hot blast stoves with heat recovery and a top gas pressure recovery turbine. Most of the time it is impossible to control all the required parameters. For this reason it is meaningful to measure the actual material distribution at the furnace top by means of a burden profile probe which permits quick and repeated measurements without any retroactive effects. The paper describes the instrumentation of the furnace, correlation of measuring methods, and a program system for analysis of measuring data.

  5. Assessing the feasibility of volumetric-modulated arc therapy using

    Office of Scientific and Technical Information (OSTI)

    simultaneous integrated boost (SIB-VMAT): An analysis for complex head-neck, high-risk prostate and rectal cancer cases (Journal Article) | SciTech Connect Assessing the feasibility of volumetric-modulated arc therapy using simultaneous integrated boost (SIB-VMAT): An analysis for complex head-neck, high-risk prostate and rectal cancer cases Citation Details In-Document Search Title: Assessing the feasibility of volumetric-modulated arc therapy using simultaneous integrated boost (SIB-VMAT):

  6. Energy Systems Integration

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems Integration Ben Kroposki, PhD, PE Director, Energy Systems Integration National Renewable Energy Laboratory 2 Reducing investment risk and optimizing systems in a rapidly changing energy world * Increasing penetration of variable RE in grid * Increasing ultra high energy efficiency buildings and controllable loads * New data, information, communications and controls * Electrification of transportation and alternative fuels * Integrating energy storage (stationary and mobile) and thermal

  7. RFID tag modification for full depth backscatter modulation

    DOE Patents [OSTI]

    Scott, Jeffrey Wayne [Pasco, WA; Pratt, Richard M [Richland, WA

    2010-07-20

    A modulated backscatter radio frequency identification device includes a diode detector configured to selectively modulate a reply signal onto an incoming continuous wave; communications circuitry configured to provide a modulation control signal to the diode detector, the diode detector being configured to modulate the reply signal in response to be modulation control signal; and circuitry configured to increase impedance change at the diode detector which would otherwise not occur because the diode detector rectifies the incoming continuous wave while modulating the reply signal, whereby reducing the rectified signal increases modulation depth by removing the reverse bias effects on impedance changes. Methods of improving depth of modulation in a modulated backscatter radio frequency identification device are also provided.

  8. Integrated dry NO{sub x}/SO{sub 2} emissions control system calcium-based dry sorbent injection. Test report, April 30--November 2, 1993

    SciTech Connect (OSTI)

    Shiomoto, G.H.; Smith, R.A.; Muzio, L.J.; Hunt, T.

    1994-12-01

    The DOE sponsored Integrated Dry NO{sub x}SO{sub 2} Emissions Control System program, which is a Clean Coal Technology III demonstration, is being conducted by Public Service Company of Colorado. The test site is Arapahoe Generating Station Unit 4, which is a 100 MWe, down-fired utility boiler burning a low sulfur Western coal. The project goal is to demonstrate up to 70 percent reductions in NO{sub x} and SO{sub 2} emissions through the integration of: (1) down-fired low-NO{sub x} burners with overfire air; (2) Selective Non-Catalytic Reduction (SNCR) for additional NO{sub x} removal; and (3) dry sorbent injection and duct humidification for SO{sub 2} removal. The effectiveness of the integrated system on a high-sulfur coal will also be investigated. This report documents the fifth phase of the test program, where the performance of the dry sorbent injection of calcium was evaluated as an SO{sub 2} removal technique. Dry sorbent injection with humidification was performed downstream of the air heater (in-duct). Calcium injection before the economizer was also investigated. The in-duct calcium sorbent and humidification retrofit resulted in SO{sub 2} reductions of 28 to 40 percent, with a Ca/S of 2, and a 25 to 30{degrees}F approach to adiabatic saturation temperature. The results of the economizer calcium injection tests were disappointing with less than 10 percent SO{sub 2} removal at a Ca/S of 2. Poor sorbent distribution due to limited access into the injection cavity was partially responsible for the low overall removals. However, even in areas of high sorbent concentration (local Ca/S ratios of approximately 6), SO{sub 2} removals were limited to 30 percent. It is suspected that other factors (sorbent properties and limited residence times) also contributed to the poor performance.

  9. Integrated Dry NO{sub x}/SO{sub 2} Emissions Control System baseline test report, November 11--December 15, 1991

    SciTech Connect (OSTI)

    Shiomoto, G.H.; Smith, R.A.

    1992-03-01

    The DOE sponsored Integrated Dry NO{sub x}/SO{sub 2} Emissions Control System program, which is a Clean Coal Technology Ill demonstration, is being conducted by Public Service Company of Colorado. The test site is Arapahoe Generating Station Unit 4, which is a 100 MWe, down-fired utility boiler burning a low sulfur western coal. The project goal is to demonstrate 70 percent reductions in NO{sub x} and S0{sub 2} emissions through the integration of: (1) down-fired low-NO{sub x} burners with overfire air; (2) urea injection for additional NO{sub x} removal; and (3) dry sorbent injection and duct humidification for SO{sub 2} removal. The effectiveness of the integrated system on a high sulfur coal will also be tested. This report documents the first baseline test results conducted during the program. The baseline tests were conducted with the original burners and auxiliary equipment and represent the unmodified boiler emissions. The burner design of Arapahoe Unit 4 results in relatively high NO{sub x} levels ranging from 740 to 850 ppM (corrected to 3% O{sub 2}, dry) over the load range. Excess air level was the primary factor influencing NO{sub x} emissions. During normal boiler operations, there was a wide range in NO{sub x} emissions, due to the variations of excess air, boiler load and other, secondary parameters. SO{sub 2} emissions ranged from 350 to 600 ppM (corrected to 3% O{sub 2}, dry) and reflected variations in the coal sulfur content.

  10. Thermoelectrics Partnership: Automotive Thermoelectric Modules...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Documents & Publications Novel Nanostructured Interface Solution for Automotive Thermoelectric Modules Application Thermoelectrics Partnership: Automotive Thermoelectric Modules...

  11. Controlling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Controlling chaos in low- and high-dimensional systems with periodic parametric perturbations K. A. Mirus and J. C. Sprott Department of Physics, University of Wisconsin, Madison, Wisconsin 53706 ͑Received 29 June 1998͒ The effect of applying a periodic perturbation to an accessible parameter of various chaotic systems is examined. Numerical results indicate that perturbation frequencies near the natural frequencies of the unstable periodic orbits of the chaotic systems can result in limit

  12. Tightly integrated single- and multi-crystal data collection strategy calculation and parallelized data processing in JBluIce beamline control system

    SciTech Connect (OSTI)

    Pothineni, Sudhir Babu; Venugopalan, Nagarajan; Ogata, Craig M.; Hilgart, Mark C.; Stepanov, Sergey; Sanishvili, Ruslan; Becker, Michael; Winter, Graeme; Sauter, Nicholas K.; Smith, Janet L.; Fischetti, Robert F.

    2014-11-18

    The calculation of single- and multi-crystal data collection strategies and a data processing pipeline have been tightly integrated into the macromolecular crystallographic data acquisition and beamline control software JBluIce. Both tasks employ wrapper scripts around existing crystallographic software. JBluIce executes scripts through a distributed resource management system to make efficient use of all available computing resources through parallel processing. The JBluIce single-crystal data collection strategy feature uses a choice of strategy programs to help users rank sample crystals and collect data. The strategy results can be conveniently exported to a data collection run. The JBluIce multi-crystal strategy feature calculates a collection strategy to optimize coverage of reciprocal space in cases where incomplete data are available from previous samples. The JBluIce data processing runs simultaneously with data collection using a choice of data reduction wrappers for integration and scaling of newly collected data, with an option for merging with pre-existing data. Data are processed separately if collected from multiple sites on a crystal or from multiple crystals, then scaled and merged. Results from all strategy and processing calculations are displayed in relevant tabs of JBluIce.

  13. Tightly integrated single- and multi-crystal data collection strategy calculation and parallelized data processing in JBluIce beamline control system

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Pothineni, Sudhir Babu; Venugopalan, Nagarajan; Ogata, Craig M.; Hilgart, Mark C.; Stepanov, Sergey; Sanishvili, Ruslan; Becker, Michael; Winter, Graeme; Sauter, Nicholas K.; Smith, Janet L.; et al

    2014-11-18

    The calculation of single- and multi-crystal data collection strategies and a data processing pipeline have been tightly integrated into the macromolecular crystallographic data acquisition and beamline control software JBluIce. Both tasks employ wrapper scripts around existing crystallographic software. JBluIce executes scripts through a distributed resource management system to make efficient use of all available computing resources through parallel processing. The JBluIce single-crystal data collection strategy feature uses a choice of strategy programs to help users rank sample crystals and collect data. The strategy results can be conveniently exported to a data collection run. The JBluIce multi-crystal strategy feature calculates amore » collection strategy to optimize coverage of reciprocal space in cases where incomplete data are available from previous samples. The JBluIce data processing runs simultaneously with data collection using a choice of data reduction wrappers for integration and scaling of newly collected data, with an option for merging with pre-existing data. Data are processed separately if collected from multiple sites on a crystal or from multiple crystals, then scaled and merged. Results from all strategy and processing calculations are displayed in relevant tabs of JBluIce.« less

  14. Advanced integration concepts for oxygen plants and gas turbines in gasification/IGCC facilities

    SciTech Connect (OSTI)

    Smith, A.R.; Klosek, J.; Woodward, D.W.

    1996-12-31

    The commercialization of Integrated Gasification Combined-Cycle (IGCC) power has been aided by concepts involving the integration of a cryogenic air separation unit (ASU) with the gas turbine combined-cycle module. Other processes, such as coal-based ironmaking and combined power and industrial gas production facilities, can benefit from the integration of these two units. It is known and now widely accepted that an ASU designed for elevated pressure service and optimally integrated with the gas turbine can increase overall IGCC power output, increase overall efficiency, and decrease the net cost of power generation compared to non-integrated facilities employing low pressure ASU`s. Depending upon the specific gas turbine, gasification technology, NOx emission specification, and other site specific factors, various degrees of compressed air and nitrogen integration are optimal. Air Products has supplied ASU`s with no integration (Destec/Plaquemine IGCC), nitrogen-only integration (Tampa Electric/Polk County IGCC), and full air and nitrogen integration (Demkolec/Buggenum IGCC). Continuing advancements in both air separation and gas turbine technologies offer new integration opportunities to further improve performance and reduce costs. This paper will review basic integration principles and describe advanced concepts based on emerging high compression ratio gas turbines. Humid Air Turbine (HAT) cycles, and integration of compression heat and refrigeration sources from the ASU. Operability issues associated with integration will be reviewed and control measures described for the safe, efficient, and reliable operation of these facilities.

  15. Microbiological, Geochemical and Hydrologic Processes Controlling Uranium Mobility: An Integrated Field-Scale Subsurface Research Challenge Site at Rifle, Colorado, Quality Assurance Project Plan

    SciTech Connect (OSTI)

    Fix, N. J.

    2008-01-07

    The U.S. Department of Energy (DOE) is cleaning up and/or monitoring large, dilute plumes contaminated by metals, such as uranium and chromium, whose mobility and solubility change with redox status. Field-scale experiments with acetate as the electron donor have stimulated metal-reducing bacteria to effectively remove uranium [U(VI)] from groundwater at the Uranium Mill Tailings Site in Rifle, Colorado. The Pacific Northwest National Laboratory and a multidisciplinary team of national laboratory and academic collaborators has embarked on a research proposed for the Rifle site, the object of which is to gain a comprehensive and mechanistic understanding of the microbial factors and associated geochemistry controlling uranium mobility so that DOE can confidently remediate uranium plumes as well as support stewardship of uranium-contaminated sites. This Quality Assurance Project Plan provides the quality assurance requirements and processes that will be followed by the Rifle Integrated Field-Scale Subsurface Research Challenge Project.

  16. Integrated Heat Pump (IHP) System Development - Air-Source IHP Control Strategy and Specifications and Ground-Source IHP Conceptual Design

    SciTech Connect (OSTI)

    Murphy, Richard W; Rice, C Keith; Baxter, Van D

    2007-05-01

    The integrated heat pump (IHP), as one appliance, can provide space cooling, heating, ventilation, and dehumidification while maintaining comfort and meeting domestic water heating needs in near-zero-energy home (NZEH) applications. In FY 2006 Oak Ridge National Laboratory (ORNL) completed development of a control strategy and system specification for an air-source IHP. The conceptual design of a ground-source IHP was also completed. Testing and analysis confirm the potential of both IHP concepts to meet NZEH energy services needs while consuming 50% less energy than a suite of equipment that meets current minimum efficiency requirements. This report is in fulfillment of an FY06 DOE Building Technologies (BT) Joule Milestone.

  17. Modules Software Environment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Environment » Modules Environment Modules Software Environment NERSC uses the module utility to manage nearly all software. There are two huge advantages of the module approach: NERSC can provide many different versions and/or installations of a single software package on a given machine, including a default version as well as several older and newer versions; and Users can easily switch to different versions or installations without having to explicitly specify different paths. With modules,

  18. Active combustion flow modulation valve

    DOE Patents [OSTI]

    Hensel, John Peter; Black, Nathaniel; Thorton, Jimmy Dean; Vipperman, Jeffrey Stuart; Lambeth, David N; Clark, William W

    2013-09-24

    A flow modulation valve has a slidably translating hollow armature with at least one energizable coil wound around and fixably attached to the hollow armature. The energizable coil or coils are influenced by at least one permanent magnet surrounding the hollow armature and supported by an outer casing. Lorentz forces on the energizable coils which are translated to the hollow armature, increase or decrease the flow area to provide flow throttling action. The extent of hollow armature translation depends on the value of current supplied and the direction of translation depends on the direction of current flow. The compact nature of the flow modulation valve combined with the high forces afforded by the actuator design provide a flow modulation valve which is highly responsive to high-rate input control signals.

  19. Reflective coherent spatial light modulator

    DOE Patents [OSTI]

    Simpson, John T. (Knoxville, TN); Richards, Roger K. (Knoxville, TN); Hutchinson, Donald P. (Knoxville, TN); Simpson, Marcus L. (Knoxville, TN)

    2003-04-22

    A reflective coherent spatial light modulator (RCSLM) includes a subwavelength resonant grating structure (SWS), the SWS including at least one subwavelength resonant grating layer (SWL) have a plurality of areas defining a plurality of pixels. Each pixel represents an area capable of individual control of its reflective response. A structure for modulating the resonant reflective response of at least one pixel is provided. The structure for modulating can include at least one electro-optic layer in optical contact with the SWS. The RCSLM is scalable in both pixel size and wavelength. A method for forming a RCSLM includes the steps of selecting a waveguide material and forming a SWS in the waveguide material, the SWS formed from at least one SWL, the SWL having a plurality of areas defining a plurality of pixels.

  20. Force Modulator System

    SciTech Connect (OSTI)

    Redmond Clark

    2009-04-30

    Many metal parts manufacturers use large metal presses to shape sheet metal into finished products like car body parts, jet wing and fuselage surfaces, etc. These metal presses take sheet metal and - with enormous force - reshape the metal into a fully formed part in a manner of seconds. Although highly efficient, the forces involved in forming metal parts also damage the press itself, limit the metals used in part production, slow press operations and, when not properly controlled, cause the manufacture of large volumes of defective metal parts. To date, the metal-forming industry has not been able to develop a metal-holding technology that allows full control of press forces during the part forming process. This is of particular importance in the automotive lightweighting efforts under way in the US automotive manufacturing marketplace. Metalforming Controls Technology Inc. (MC2) has developed a patented press control system called the Force Modulator that has the ability to control these press forces, allowing a breakthrough in stamping process control. The technology includes a series of hydraulic cylinders that provide controlled tonnage at all points in the forming process. At the same time, the unique cylinder design allows for the generation of very high levels of clamping forces (very high tonnages) in very small spaces; a requirement for forming medium and large panels out of HSS and AHSS. Successful production application of these systems testing at multiple stamping operations - including Ford and Chrysler - has validated the capabilities and economic benefits of the system. Although this technology has been adopted in a number of stamping operations, one of the primary barriers to faster adoption and application of this technology in HSS projects is system cost. The cost issue has surfaced because the systems currently in use are built for each individual die as a custom application, thus driving higher tooling costs. This project proposed to better marry the die-specific Force Modulator technology with stamping presses in the form of a press cushion. This system would be designed to operate the binder ring for multiple parts, thus cutting the per-die cost of the technology. This study reports the results of technology field application. This project produced the following conclusions: (1) The Force Modulator system is capable of operating at very high tempos in the stamping environment; (2) The company can generate substantial, controlled holding tonnage (binder ring pressure) necessary to hold high strength steel parts for proper formation during draw operations; (3) A single system can be designed to operate with a family of parts, thus significantly reducing the per-die cost of a FM system; (4) High strength steel parts made with these systems appear to show significant quality improvements; (5) The amounts of steel required to make these parts is typically less than the amounts required with traditional blank-holding technologies; and (6) This technology will aid in the use of higher strength steels in auto and truck production, thus reducing weight and improving fuel efficiency.

  1. Methods and devices for optimizing the operation of a semiconductor optical modulator

    DOE Patents [OSTI]

    Zortman, William A.

    2015-07-14

    A semiconductor-based optical modulator includes a control loop to control and optimize the modulator's operation for relatively high data rates (above 1 GHz) and/or relatively high voltage levels. Both the amplitude of the modulator's driving voltage and the bias of the driving voltage may be adjusted using the control loop. Such adjustments help to optimize the operation of the modulator by reducing the number of errors present in a modulated data stream.

  2. Light modulating device

    DOE Patents [OSTI]

    Rauh, R.D.; Goldner, R.B.

    1989-12-26

    In a device for transmitting light, means for controlling the transmissivity of the device, including a ceramic, reversibly electrochromic, crystalline element having a highly reflective state when injected with electrons and charge compensating ions and a highly transmissive state when the electrons and ions are removed, the crystalline element being characterized as having a reflectivity of at least 50% in the reflective state and not greater than 10% in the transmissive state, and means for modulating the crystalline element between the reflective and transmissive states by injecting ions into the crystalline element in response to an applied electrical current of a first polarity and removing the ions in response to an applied electrical current of a second polarity are disclosed. 1 fig.

  3. Waste receiving and processing facility module 1 auditable safetyanalysis

    SciTech Connect (OSTI)

    Bottenus, R.J.

    1997-02-01

    The Waste Receiving and Processing Facility Module 1 Auditable Safety Analysis analyzes postulated accidents and determines controls to prevent the accidents or mitigate the consequences.

  4. Integrated Dry NO{sub x}/SO{sub 2} Emissions Control System baseline SNCR test report, February 4--March 6, 1992

    SciTech Connect (OSTI)

    Smith, R.A.; Shiomoto, G.H.; Muzio, L.J.; Hunt, T.

    1993-09-01

    The DOE sponsored Integrated Dry NO{sub x}SO{sub 2} Emissions Control System program, which is a Clean Coal Technology III demonstration, is being conducted by Public Service Company of Colorado. The test site is Arapahoe Generating Station Unit 4, which is a 100 MWe, down-fired utility boiler burning a low sulfur western coal. The project goal is to demonstrate 70 percent reductions in NO{sub x} and SO{sub 2} emissions through the integration of: (1) down-fired low-NO{sub x} burners with overfire air; (2) selective Non-Catalytic Reduction (SNCR) for additional NO{sub x} removal; and (3) dry sorbent injection and duct humidification for SO{sub 2} removal. The effectiveness of the integrated system on a high-sulfur coal will also be tested. This report documents the second test phase of the program. This second test phase was comprised of the start up of the SNCR system followed by a brief parametric test series. Time constraints due to the retrofit schedule precluded optimizing the SNCR system. Testing investigated both urea and aqueous ammonia as SNCR chemicals. Other parameters investigated included boiler load, the amount of chemical injected, as well as injection parameters (injection location, amount of mixing air, dilution water flow, and injector orifice sizes). NO{sub x} removals of nominally 35 percent could be obtained with both chemicals while maintaining ammonia slip levels less than 10 ppM at full load. At higher chemical injection rates (nominal N/NO molar ratios of 1.5 to 2.0), NO{sub x} reductions in the range of 60 to 70 percent were achieved, but with unacceptable levels of NH{sub 3} slip. For a given level of NO{sub x} reduction, ammonia slip was lower with aqueous ammonia injection than with urea. The test program also confirmed prior observations that (1) the optimum temperature for NO{sub x} reduction with ammonia is lower than with urea, and (2) N{sub 2}O emissions as a by-product of the SNCR process are lower for ammonia compared to urea.

  5. Detailed Course Module Description

    Broader source: Energy.gov [DOE]

    This document lists the course modules for building science courses offered at Cornell's Collaborator Sustainable Buildingi Practice course.

  6. Modulating lignin in plants

    DOE Patents [OSTI]

    Apuya, Nestor; Bobzin, Steven Craig; Okamuro, Jack; Zhang, Ke

    2013-01-29

    Materials and methods for modulating (e.g., increasing or decreasing) lignin content in plants are disclosed. For example, nucleic acids encoding lignin-modulating polypeptides are disclosed as well as methods for using such nucleic acids to generate transgenic plants having a modulated lignin content.

  7. Standard Review Plan (SRP) Modules | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Quality Assurance » Standard Review Plan (SRP) Modules Standard Review Plan (SRP) Modules Standard Review Plan - Critical Decision Handbook Overview Project Management Project Execution Plan Review Module (RM) Risk Management RM Integrated Project Team RM Earned Value Management System RM Acquisition Strategy RM Decommissioning Plan RM Site Transition Guidance Standard Review Plan - Code of Record Engineering and Design Conceptual Design RM Preliminary Design RM Final Design RM Construction

  8. SunShot Presentation PV Module Reliabity Workshop Opening Session |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Presentation PV Module Reliabity Workshop Opening Session SunShot Presentation PV Module Reliabity Workshop Opening Session This PowerPoint slide deck was originally presented at the opening session of the 2013 NREL PV Module Reliability Workshop on Feb. 26-27, 2013 in Golden, CO. It provides an overview of the DOE SunShot initiative, discusses systems integration and technology validation activities, and highlighted the goals and key agenda items for the workshop. PDF

  9. Project Execution Plan Review Module (RM) | Department of Energy

    Energy Savers [EERE]

    Execution Plan Review Module (RM) Project Execution Plan Review Module (RM) The Project Execution Plan (PEP) Review Module (RM) is a tool that assists DOE federal project review teams in evaluating the adequacy of the PEP development and maintenance for projects of any size and complexity. PDF icon Project Execution Plan RM More Documents & Publications Integrated Project Team RM Risk Management RM Decommissioning Plan RM

  10. ZBB EnerStore(tm): Deep Discharge Zinc-Bromine Battery Module...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Long-Lasting Electrical Energy Storage Module Allows Off-Peak Power Generation Electricity consumption during ... use off-grid or during grid outages, by integrating renewable ...

  11. Integrated circuits, and design and manufacture thereof

    DOE Patents [OSTI]

    Auracher, Stefan; Pribbernow, Claus; Hils, Andreas

    2006-04-18

    A representation of a macro for an integrated circuit layout. The representation may define sub-circuit cells of a module. The module may have a predefined functionality. The sub-circuit cells may include at least one reusable circuit cell. The reusable circuit cell may be configured such that when the predefined functionality of the module is not used, the reusable circuit cell is available for re-use.

  12. Search for WW and WZ production in lepton, neutrino plus jets final states at CDF Run II and Silicon module production and detector control system for the ATLAS SemiConductor Tracker

    SciTech Connect (OSTI)

    Sfyrla, Anna; /Geneva U.

    2008-03-01

    In the first part of this work, we present a search for WW and WZ production in charged lepton, neutrino plus jets final states produced in p{bar p} collisions with {radical}s = 1.96 TeV at the Fermilab Tevatron, using 1.2 fb{sup -1} of data accumulated with the CDF II detector. This channel is yet to be observed in hadron colliders due to the large singleWplus jets background. However, this decay mode has a much larger branching fraction than the cleaner fully leptonic mode making it more sensitive to anomalous triple gauge couplings that manifest themselves at higher transverse W momentum. Because the final state is topologically similar to associated production of a Higgs boson with a W, the techniques developed in this analysis are also applicable in that search. An Artificial Neural Network has been used for the event selection optimization. The theoretical prediction for the cross section is {sigma}{sub WW/WZ}{sup theory} x Br(W {yields} {ell}{nu}; W/Z {yields} jj) = 2.09 {+-} 0.14 pb. They measured N{sub Signal} = 410 {+-} 212(stat) {+-} 102(sys) signal events that correspond to a cross section {sigma}{sub WW/WZ} x Br(W {yields} {ell}{nu}; W/Z {yields} jj) = 1.47 {+-} 0.77(stat) {+-} 0.38(sys) pb. The 95% CL upper limit to the cross section is estimated to be {sigma} x Br(W {yields} {ell}{nu}; W/Z {yields} jj) < 2.88 pb. The second part of the present work is technical and concerns the ATLAS SemiConductor Tracker (SCT) assembly phase. Although technical, the work in the SCT assembly phase is of prime importance for the good performance of the detector during data taking. The production at the University of Geneva of approximately one third of the silicon microstrip end-cap modules is presented. This collaborative effort of the university of Geneva group that lasted two years, resulted in 655 produced modules, 97% of which were good modules, constructed within the mechanical and electrical specifications and delivered in the SCT collaboration for assembly on the end-cap disks. The SCT end-caps and barrels consist of 4088 silicon modules, with a total of 6.3 million readout channels. The coherent and safe operation of the SCT during commissioning and subsequent operation is the essential task of the Detector Control System (DCS). The main building blocks of the DCS are the cooling system, the power supplies and the environmental system. The DCS has been initially developed for the SCT assembly phase and this system is described in the present work. Particular emphasis is given in the environmental hardware and software components, that were my major contributions. Results from the DCS testing during the assembly phase are also reported.

  13. Skew chicane based betatron eigenmode exchange module

    DOE Patents [OSTI]

    Douglas, David

    2010-12-28

    A skewed chicane eigenmode exchange module (SCEEM) that combines in a single beamline segment the separate functionalities of a skew quad eigenmode exchange module and a magnetic chicane. This module allows the exchange of independent betatron eigenmodes, alters electron beam orbit geometry, and provides longitudinal parameter control with dispersion management in a single beamline segment with stable betatron behavior. It thus reduces the spatial requirements for multiple beam dynamic functions, reduces required component counts and thus reduces costs, and allows the use of more compact accelerator configurations than prior art design methods.

  14. Cavity enhanced terahertz modulation

    SciTech Connect (OSTI)

    Born, N.; Scheller, M.; Moloney, J. V.; Koch, M.

    2014-03-10

    We present a versatile concept for all optical terahertz (THz) amplitude modulators based on a Fabry-Prot semiconductor cavity design. Employing the high reflectivity of two parallel meta-surfaces allows for trapping selected THz photons within the cavity and thus only a weak optical modulation of the semiconductor absorbance is required to significantly damp the field within the cavity. The optical switching yields to modulation depths of more than 90% with insertion efficiencies of 80%.

  15. Detailed Course Module Description

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Course Module Description Module/Learning Objectives Level of Detail in Module by Audience Consumers Gen Ed/ Community College Trades 1. Energy Issues and Building Solutions High High High Learning Objectives: * Define terms of building science, ecological systems, economics of consumption * Relate building science perspective, ecology, social science * Explain historical energy and environmental issues related to buildings * Compare Site and source energy * Examine the health, safety and

  16. Bracket for photovoltaic modules

    DOE Patents [OSTI]

    Ciasulli, John; Jones, Jason

    2014-06-24

    Brackets for photovoltaic ("PV") modules are described. In one embodiment, a saddle bracket has a mounting surface to support one or more PV modules over a tube, a gusset coupled to the mounting surface, and a mounting feature coupled to the gusset to couple to the tube. The gusset can have a first leg and a second leg extending at an angle relative to the mounting surface. Saddle brackets can be coupled to a torque tube at predetermined locations. PV modules can be coupled to the saddle brackets. The mounting feature can be coupled to the first gusset and configured to stand the one or more PV modules off the tube.

  17. Support arrangements for core modules of nuclear reactors. [PWR

    DOE Patents [OSTI]

    Bollinger, L.R.

    1983-11-03

    A support arrangement is provided for the core modules of a nuclear reactor which provides support access through the control drive mechanisms of the reactor. This arrangement provides axial support of individual reactor core modules from the pressure vessel head in a manner which permits attachment and detachment of the modules from the head to be accomplished through the control drive mechanisms after their leadscrews have been removed. The arrangement includes a module support nut which is suspended from the pressure vessel head and screw threaded to the shroud housing for the module. A spline lock prevents loosening of the screw connection. An installation tool assembly, including a cell lifting and preloading tool and a torquing tool, fits through the control drive mechanism and provides lifting of the shroud housing while disconnecting the spline lock, as well as application of torque to the module support nut.

  18. Support arrangement for core modules of nuclear reactors

    DOE Patents [OSTI]

    Bollinger, Lawrence R. (Schenectady, NY)

    1987-01-01

    A support arrangement is provided for the core modules of a nuclear reactor which provides support access through the control drive mechanisms of the reactor. This arrangement provides axial support of individual reactor core modules from the pressure vessel head in a manner which permits attachment and detachment of the modules from the head to be accomplished through the control drive mechanisms after their leadscrews have been removed. The arrangement includes a module support nut which is suspended from the pressure vessel head and screw threaded to the shroud housing for the module. A spline lock prevents loosening of the screw connection. An installation tool assembly, including a cell lifting and preloading tool and a torquing tool, fits through the control drive mechanism and provides lifting of the shroud housing while disconnecting the spline lock, as well as application of torque to the module support nut.

  19. Silicon photonic heater-modulator

    DOE Patents [OSTI]

    Zortman, William A.; Trotter, Douglas Chandler; Watts, Michael R.

    2015-07-14

    Photonic modulators, methods of forming photonic modulators and methods of modulating an input optical signal are provided. A photonic modulator includes a disk resonator having a central axis extending along a thickness direction of the disk resonator. The disk resonator includes a modulator portion and a heater portion. The modulator portion extends in an arc around the central axis. A PN junction of the modulator portion is substantially normal to the central axis.

  20. Membrane module assembly

    DOE Patents [OSTI]

    Kaschemekat, J.

    1994-03-15

    A membrane module assembly is described which is adapted to provide a flow path for the incoming feed stream that forces it into prolonged heat-exchanging contact with a heating or cooling mechanism. Membrane separation processes employing the module assembly are also disclosed. The assembly is particularly useful for gas separation or pervaporation. 2 figures.

  1. Membrane module assembly

    DOE Patents [OSTI]

    Kaschemekat, Jurgen (Palo Alto, CA)

    1994-01-01

    A membrane module assembly adapted to provide a flow path for the incoming feed stream that forces it into prolonged heat-exchanging contact with a heating or cooling mechanism. Membrane separation processes employing the module assembly are also disclosed. The assembly is particularly useful for gas separation or pervaporation.

  2. Logs Perl Module

    Energy Science and Technology Software Center (OSTI)

    2007-04-04

    A perl module designed to read and parse the voluminous set of event or accounting log files produced by a Portable Batch System (PBS) server. This module can filter on date-time and/or record type. The data can be returned in a variety of formats.

  3. Grid Integration

    SciTech Connect (OSTI)

    Not Available

    2008-09-01

    Summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its grid integration subprogram.

  4. Nuclear modules of ITER tokamak systems code

    SciTech Connect (OSTI)

    Gohar, Y.; Baker, C.; Brooks, J.; Finn, P.; Hassanein, A.; Willms, S.; Barr, W.; Bushigin, A.; Kalyanam, K.M.; Haines, J.

    1987-10-01

    Nuclear modules were developed to model various reactor components in the ITER systems code. Several design options and cost algorithms are included for each component. The first wall, blanket and shield modules calculate the beryllium zone thickness, the disruptions results, the nuclear responses in different components including the toroidal field coils. Tungsten shield/water coolant/steel structure and steel shield/water coolant are the shield options for the inboard and outboard sections of the reactor. Lithium nitrate dissolved in the water coolant with a variable beryllium zone thickness in the outboard section of the reactor provides the tritium breeding capability. The reactor vault module defines the thickness of the reactor wall and the roof based on the dose equivalent during operation including skyshine contribution. The impurity control module provides the design parameters for the divertor including plate design, heat load, erosion rate, tritium permeation through the plate material to the coolant, plasma contamination by sputtered impurities, and plate lifetime. Several materials: Be, C, V, Mo, and W can be used for the divertor plate to cover a range of plasma edge temperatures. The tritium module calculates tritium and deuterium flow rates for the reactor plant. The tritium inventory in the fuelers, neutral beams, vacuum pumps, impurity control, first wall, and blanket is calculated. Tritium requirements are provided for different operating conditions. The nuclear models are summarized in this paper including the different design options and key analyses of each module. 39 refs., 3 tabs.

  5. Photovoltaic module and interlocked stack of photovoltaic modules

    DOE Patents [OSTI]

    Wares, Brian S.

    2014-09-02

    One embodiment relates to an arrangement of photovoltaic modules configured for transportation. The arrangement includes a plurality of photovoltaic modules, each photovoltaic module including a frame. A plurality of individual male alignment features and a plurality of individual female alignment features are included on each frame. Adjacent photovoltaic modules are interlocked by multiple individual male alignment features on a first module of the adjacent photovoltaic modules fitting into and being surrounded by corresponding individual female alignment features on a second module of the adjacent photovoltaic modules. Other embodiments, features and aspects are also disclosed.

  6. Processing incommensurately modulated protein diffraction data with Eval15

    SciTech Connect (OSTI)

    Porta, Jason [Nebraska Medical Center, Omaha, NE 68198-7696 (United States); Nebraska Medical Center, Omaha, NE 68198-7696 (United States); Lovelace, Jeffrey J. [Nebraska Medical Center, Omaha, NE 68198-7696 (United States); Schreurs, Antoine M. M.; Kroon-Batenburg, Loes M. J. [Utrecht University, Padualaan 8, 3584 CH Utrecht (Netherlands); Borgstahl, Gloria E. O., E-mail: gborgstahl@unmc.edu [Nebraska Medical Center, Omaha, NE 68198-7696 (United States); Nebraska Medical Center, Omaha, NE 68198-7696 (United States)

    2011-07-01

    Data processing of an incommensurately modulated profilinactin crystal is described. Recent challenges in biological X-ray crystallography include the processing of modulated diffraction data. A modulated crystal has lost its three-dimensional translational symmetry but retains long-range order that can be restored by refining a periodic modulation function. The presence of a crystal modulation is indicated by an X-ray diffraction pattern with periodic main reflections flanked by off-lattice satellite reflections. While the periodic main reflections can easily be indexed using three reciprocal-lattice vectors a*, b*, c*, the satellite reflections have a non-integral relationship to the main lattice and require a q vector for indexing. While methods for the processing of diffraction intensities from modulated small-molecule crystals are well developed, they have not been applied in protein crystallography. A recipe is presented here for processing incommensurately modulated data from a macromolecular crystal using the Eval program suite. The diffraction data are from an incommensurately modulated crystal of profilinactin with single-order satellites parallel to b*. The steps taken in this report can be used as a guide for protein crystallographers when encountering crystal modulations. To our knowledge, this is the first report of the processing of data from an incommensurately modulated macromolecular crystal.

  7. Downhole drilling network using burst modulation techniques

    DOE Patents [OSTI]

    Hall; David R. (Provo, UT), Fox; Joe (Spanish Fork, UT)

    2007-04-03

    A downhole drilling system is disclosed in one aspect of the present invention as including a drill string and a transmission line integrated into the drill string. Multiple network nodes are installed at selected intervals along the drill string and are adapted to communicate with one another through the transmission line. In order to efficiently allocate the available bandwidth, the network nodes are configured to use any of numerous burst modulation techniques to transmit data.

  8. Advanced Integrated Traction System

    SciTech Connect (OSTI)

    Greg Smith; Charles Gough

    2011-08-31

    The United States Department of Energy elaborates the compelling need for a commercialized competitively priced electric traction drive system to proliferate the acceptance of HEVs, PHEVs, and FCVs in the market. The desired end result is a technically and commercially verified integrated ETS (Electric Traction System) product design that can be manufactured and distributed through a broad network of competitive suppliers to all auto manufacturers. The objectives of this FCVT program are to develop advanced technologies for an integrated ETS capable of 55kW peak power for 18 seconds and 30kW of continuous power. Additionally, to accommodate a variety of automotive platforms the ETS design should be scalable to 120kW peak power for 18 seconds and 65kW of continuous power. The ETS (exclusive of the DC/DC Converter) is to cost no more than $660 (55kW at $12/kW) to produce in quantities of 100,000 units per year, should have a total weight less than 46kg, and have a volume less than 16 liters. The cost target for the optional Bi-Directional DC/DC Converter is $375. The goal is to achieve these targets with the use of engine coolant at a nominal temperature of 105C. The system efficiency should exceed 90% at 20% of rated torque over 10% to 100% of maximum speed. The nominal operating system voltage is to be 325V, with consideration for higher voltages. This project investigated a wide range of technologies, including ETS topologies, components, and interconnects. Each technology and its validity for automotive use were verified and then these technologies were integrated into a high temperature ETS design that would support a wide variety of applications (fuel cell, hybrids, electrics, and plug-ins). This ETS met all the DOE 2010 objectives of cost, weight, volume and efficiency, and the specific power and power density 2015 objectives. Additionally a bi-directional converter was developed that provides charging and electric power take-off which is the first step towards enabling a smart-grid application. GM under this work assessed 29 technologies; investigated 36 configurations/types power electronics and electric machines, filed 41 invention disclosures; and ensured technology compatibility with vehicle production. Besides the development of a high temperature ETS the development of industrial suppliers took place because of this project. Suppliers of industrial power electronic components are numerous, but there are few that have traction drive knowledge. This makes it difficult to achieve component reliability, durability, and cost requirements necessary of high volume automotive production. The commercialization of electric traction systems for automotive industry requires a strong diverse supplier base. Developing this supplier base is dependent on a close working relationship between the OEM and supplier so that appropriate component requirements can be developed. GM has worked closely with suppliers to develop components for electric traction systems. Components that have been the focus of this project are power modules, capacitors, heavy copper boards, current sensors, and gate drive and controller chip sets. Working with suppliers, detailed component specifications have been developed. Current, voltage, and operation environment during the vehicle drive cycle were evaluated to develop higher resolution/accurate component specifications.

  9. Assembly of opto-electronic module with improved heat sink

    DOE Patents [OSTI]

    Chan, Benson; Fortier, Paul Francis; Freitag, Ladd William; Galli, Gary T.; Guindon, Francois; Johnson, Glen Walden; Letourneau, Martial; Sherman, John H.; Tetreault, Real

    2004-11-23

    A heat sink for a transceiver optoelectronic module including dual direct heat paths and a structure which encloses a number of chips having a central web which electrically isolates transmitter and receiver chips from each other. A retainer for an optical coupler having a port into which epoxy is poured. An overmolded base for an optoelectronic module having epoxy flow controller members built thereon. Assembly methods for an optoelectronic module including gap setting and variation of a TAB bonding process.

  10. Seeding Coherent Radiation Sources with Sawtooth Modulation (Conference) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Seeding Coherent Radiation Sources with Sawtooth Modulation Citation Details In-Document Search Title: Seeding Coherent Radiation Sources with Sawtooth Modulation Seed radiation sources have the ability to increase longitudinal coherence, decrease saturation lengths, and improve performance of tapering, polarization control and other FEL features. Typically, seeding schemes start with a simple sinusoidal modulation, which is manipulated to provide bunching at a high harmonic

  11. GREET Pretreatment Module

    SciTech Connect (OSTI)

    Adom, Felix K.; Dunn, Jennifer B.; Han, Jeongwoo

    2014-09-01

    A wide range of biofuels and biochemicals can be produced from biomass via different pretreatment technologies that yield sugars. This report documents the material and energy flows that occur when fermentable sugars from four lignocellulosic feedstocks (corn stover, miscanthus, switchgrass, and poplar) are produced via dilute acid pretreatment and ammonia fiber expansion. These flows are documented for inclusion in the pretreatment module of the Greenhouses Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model. Process simulations of each pretreatment technology were developed in Aspen Plus. Material and energy consumption data from Aspen Plus were then compiled in the GREET pretreatment module. The module estimates the cradle-to-gate fossil energy consumption (FEC) and greenhouse gas (GHG) emissions associated with producing fermentable sugars. This report documents the data and methodology used to develop this module and the cradle-to-gate FEC and GHG emissions that result from producing fermentable sugars.

  12. NEMS International Energy Module

    Gasoline and Diesel Fuel Update (EIA)

    EIA NEMS International Energy Module Model Documentation Report vii Mr. G. Daniel Butler U.S. Department of Energy EI-812 1000 Independence Ave., SW Washington, DC 20585 Tel:...

  13. International Energy Module

    Gasoline and Diesel Fuel Update (EIA)

    EIA NEMS International Energy Module Model Documentation Report vii Mr. G. Daniel Butler U.S. Department of Energy EI-812 1000 Independence Ave., SW Washington, DC 20585 Tel:...

  14. Digital optical conversion module

    DOE Patents [OSTI]

    Kotter, D.K.; Rankin, R.A.

    1988-07-19

    A digital optical conversion module used to convert an analog signal to a computer compatible digital signal including a voltage-to-frequency converter, frequency offset response circuitry, and an electrical-to-optical converter. Also used in conjunction with the digital optical conversion module is an optical link and an interface at the computer for converting the optical signal back to an electrical signal. Suitable for use in hostile environments having high levels of electromagnetic interference, the conversion module retains high resolution of the analog signal while eliminating the potential for errors due to noise and interference. The module can be used to link analog output scientific equipment such as an electrometer used with a mass spectrometer to a computer. 2 figs.

  15. Digital optical conversion module

    DOE Patents [OSTI]

    Kotter, Dale K. (North Shelley, ID); Rankin, Richard A. (Ammon, ID)

    1991-02-26

    A digital optical conversion module used to convert an analog signal to a computer compatible digital signal including a voltage-to-frequency converter, frequency offset response circuitry, and an electrical-to-optical converter. Also used in conjunction with the digital optical conversion module is an optical link and an interface at the computer for converting the optical signal back to an electrical signal. Suitable for use in hostile environments having high levels of electromagnetic interference, the conversion module retains high resolution of the analog signal while eliminating the potential for errors due to noise and interference. The module can be used to link analog output scientific equipment such as an electrometer used with a mass spectrometer to a computer.

  16. Three dimensional, multi-chip module

    DOE Patents [OSTI]

    Bernhardt, Anthony F. (Berkeley, CA); Petersen, Robert W. (Pleasanton, CA)

    1993-01-01

    A plurality of multi-chip modules are stacked and bonded around the perimeter by sold-bump bonds to adjacent modules on, for instance, three sides of the perimeter. The fourth side can be used for coolant distribution, for more interconnect structures, or other features, depending on particular design considerations of the chip set. The multi-chip modules comprise a circuit board, having a planarized interconnect structure formed on a first major surface, and integrated circuit chips bonded to the planarized interconnect surface. Around the periphery of each circuit board, long, narrow "dummy chips" are bonded to the finished circuit board to form a perimeter wall. The wall is higher than any of the chips on the circuit board, so that the flat back surface of the board above will only touch the perimeter wall. Module-to-module interconnect is laser-patterned o the sides of the boards and over the perimeter wall in the same way and at the same time that chip to board interconnect may be laser-patterned.

  17. Three dimensional, multi-chip module

    DOE Patents [OSTI]

    Bernhardt, A.F.; Petersen, R.W.

    1993-08-31

    A plurality of multi-chip modules are stacked and bonded around the perimeter by sold-bump bonds to adjacent modules on, for instance, three sides of the perimeter. The fourth side can be used for coolant distribution, for more interconnect structures, or other features, depending on particular design considerations of the chip set. The multi-chip modules comprise a circuit board, having a planarized interconnect structure formed on a first major surface, and integrated circuit chips bonded to the planarized interconnect surface. Around the periphery of each circuit board, long, narrow dummy chips'' are bonded to the finished circuit board to form a perimeter wall. The wall is higher than any of the chips on the circuit board, so that the flat back surface of the board above will only touch the perimeter wall. Module-to-module interconnect is laser-patterned on the sides of the boards and over the perimeter wall in the same way and at the same time that chip to board interconnect may be laser-patterned.

  18. Procurement Integrity

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ------------------------------Chapter 3.1 (Dec 2015) 1 Procurement Integrity [Reference: 41 U.S.C. 423, FAR 3.104, DEAR 903.104] Overview This section discusses the requirements of the Procurement Integrity Act and its impact on Federal employees. Background The Department of Energy (DOE), like most federal agencies, purchases many products and services from the private sector. To preserve the integrity of the Federal procurement process and assure fair treatment of bidders, offerors and

  19. Photovoltaic module reliability workshop

    SciTech Connect (OSTI)

    Mrig, L.

    1990-01-01

    The paper and presentations compiled in this volume form the Proceedings of the fourth in a series of Workshops sponsored by Solar Energy Research Institute (SERI/DOE) under the general theme of photovoltaic module reliability during the period 1986--1990. The reliability Photo Voltaic (PV) modules/systems is exceedingly important along with the initial cost and efficiency of modules if the PV technology has to make a major impact in the power generation market, and for it to compete with the conventional electricity producing technologies. The reliability of photovoltaic modules has progressed significantly in the last few years as evidenced by warranties available on commercial modules of as long as 12 years. However, there is still need for substantial research and testing required to improve module field reliability to levels of 30 years or more. Several small groups of researchers are involved in this research, development, and monitoring activity around the world. In the US, PV manufacturers, DOE laboratories, electric utilities and others are engaged in the photovoltaic reliability research and testing. This group of researchers and others interested in this field were brought together under SERI/DOE sponsorship to exchange the technical knowledge and field experience as related to current information in this important field. The papers presented here reflect this effort.

  20. Insolation integrator

    DOE Patents [OSTI]

    Dougherty, John J. (Norristown, PA); Rudge, George T. (Lansdale, PA)

    1980-01-01

    An electric signal representative of the rate of insolation is integrated to determine if it is adequate for operation of a solar energy collection system.

  1. Radiological Control Technician Training

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE-HDBK-1122-2009 (Revised 2013) Module 2.03 Counting Errors and Statistics Instructor's Material Course Title: Radiological Control Technician Module Title: Counting Errors and Statistics Module Number: 2.03 Objectives: (This document, Instructor's Material, is referred to as Instructor's Guide in the Program Management Guide) 2.03.01. Identify five general types of errors that can occur when analyzing radioactive samples, and describe the effect of each source of error on sample

  2. Generator module architecture for a large solid oxide fuel cell power plant

    DOE Patents [OSTI]

    Gillett, James E.; Zafred, Paolo R.; Riggle, Matthew W.; Litzinger, Kevin P.

    2013-06-11

    A solid oxide fuel cell module contains a plurality of integral bundle assemblies, the module containing a top portion with an inlet fuel plenum and a bottom portion receiving air inlet feed and containing a base support, the base supports dense, ceramic exhaust manifolds which are below and connect to air feed tubes located in a recuperator zone, the air feed tubes passing into the center of inverted, tubular, elongated, hollow electrically connected solid oxide fuel cells having an open end above a combustion zone into which the air feed tubes pass and a closed end near the inlet fuel plenum, where the fuel cells comprise a fuel cell stack bundle all surrounded within an outer module enclosure having top power leads to provide electrical output from the stack bundle, where the fuel cells operate in the fuel cell mode and where the base support and bottom ceramic air exhaust manifolds carry from 85% to all 100% of the weight of the stack, and each bundle assembly has its own control for vertical and horizontal thermal expansion control.

  3. Smart Fan Modules And System

    DOE Patents [OSTI]

    Cipolla, Thomas M. (Katonah, NY); Kaufman, Richard I. (Somers, NY); Mok, Lawrence S. (Brewster, NY)

    2003-07-15

    A fan module including: two or more individual fans, each fan having an air movement means and a motor engaged with the air movement means for accelerating air entering each of the two or more individual fans; a temperature sensor for sensing a temperature associated with the two or more fans and for outputting a first signal corresponding to the temperature; rotational speed sensor for outputting a second signal corresponding to a rotational speed of each of the two or more fans; and a processor for receiving the first and second signals and controlling the two or more individual fans based on the first and second signals. A fan module including: two or more individual fans, each fan having an air movement means and a motor engaged with the air movement means for accelerating air entering each of the two or more individual fans; a temperature sensor for sensing a temperature associated with the two or more fans and for outputting a first signal corresponding to the temperature; rotational speed sensor for outputting a second signal corresponding to a rotational speed of each of the two or more fans; and a processor for receiving the first and second signals and controlling the two or more individual fans based on the first and second signals.

  4. Method and apparatus for resonant frequency waveform modulation

    DOE Patents [OSTI]

    Taubman, Matthew S [Richland, WA

    2011-06-07

    A resonant modulator device and process are described that provide enhanced resonant frequency waveforms to electrical devices including, e.g., laser devices. Faster, larger, and more complex modulation waveforms are obtained than can be obtained by use of conventional current controllers alone.

  5. Microinverters for employment in connection with photovoltaic modules

    DOE Patents [OSTI]

    Lentine, Anthony L.; Nielson, Gregory N.; Okandan, Murat; Johnson, Brian Benjamin; Krein, Philip T.

    2015-09-22

    Microinverters useable in association with photovoltaic modules are described. A three phase-microinverter receives direct current output generated by a microsystems-enabled photovoltaic cell and converts such direct current output into three-phase alternating current out. The three-phase microinverter is interleaved with other three-phase-microinverters, wherein such microinverters are integrated in a photovoltaic module with the microsystems-enabled photovoltaic cell.

  6. Apparatus for controlling the scan width of a scanning laser beam

    DOE Patents [OSTI]

    Johnson, G.W.

    1996-10-22

    Swept-wavelength lasers are often used in absorption spectroscopy applications. In experiments where high accuracy is required, it is desirable to continuously monitor and control the range of wavelengths scanned (the scan width). A system has been demonstrated whereby the scan width of a swept ring-dye laser, or semiconductor diode laser, can be measured and controlled in real-time with a resolution better than 0.1%. Scan linearity, or conformity to a nonlinear scan waveform, can be measured and controlled. The system of the invention consists of a Fabry-Perot interferometer, three CAMAC interface modules, and a microcomputer running a simple analysis and proportional-integral control algorithm. With additional modules, multiple lasers can be simultaneously controlled. The invention also includes an embodiment implemented on an ordinary PC with a multifunction plug-in board. 8 figs.

  7. Apparatus for controlling the scan width of a scanning laser beam

    DOE Patents [OSTI]

    Johnson, Gary W. (Livermore, CA)

    1996-01-01

    Swept-wavelength lasers are often used in absorption spectroscopy applications. In experiments where high accuracy is required, it is desirable to continuously monitor and control the range of wavelengths scanned (the scan width). A system has been demonstrated whereby the scan width of a swept ring-dye laser, or semiconductor diode laser, can be measured and controlled in real-time with a resolution better than 0.1%. Scan linearity, or conformity to a nonlinear scan waveform, can be measured and controlled. The system of the invention consists of a Fabry-Perot interferometer, three CAMAC interface modules, and a microcomputer running a simple analysis and proportional-integral control algorithm. With additional modules, multiple lasers can be simultaneously controlled. The invention also includes an embodiment implemented on an ordinary PC with a multifunction plug-in board.

  8. Integrated optical sensor

    DOE Patents [OSTI]

    Watkins, A.D.; Smartt, H.B.; Taylor, P.L.

    1994-01-04

    An integrated optical sensor for arc welding having multifunction feedback control is described. The sensor, comprising generally a CCD camera and diode laser, is positioned behind the arc torch for measuring weld pool position and width, standoff distance, and post-weld centerline cooling rate. Computer process information from this sensor is passed to a controlling computer for use in feedback control loops to aid in the control of the welding process. Weld pool position and width are used in a feedback loop, by the weld controller, to track the weld pool relative to the weld joint. Sensor standoff distance is used in a feedback loop to control the contact tip to base metal distance during the welding process. Cooling rate information is used to determine the final metallurgical state of the weld bead and heat affected zone, thereby controlling post-weld mechanical properties. 6 figures.

  9. Integrated optical sensor

    DOE Patents [OSTI]

    Watkins, Arthur D. (Idaho Falls, ID); Smartt, Herschel B. (Idaho Falls, ID); Taylor, Paul L. (Idaho Falls, ID)

    1994-01-01

    An integrated optical sensor for arc welding having multifunction feedback control. The sensor, comprising generally a CCD camera and diode laser, is positioned behind the arc torch for measuring weld pool position and width, standoff distance, and post-weld centerline cooling rate. Computer process information from this sensor is passed to a controlling computer for use in feedback control loops to aid in the control of the welding process. Weld pool position and width are used in a feedback loop, by the weld controller, to track the weld pool relative to the weld joint. Sensor standoff distance is used in a feedback loop to control the contact tip to base metal distance during the welding process. Cooling rate information is used to determine the final metallurgical state of the weld bead and heat affected zone, thereby controlling post-weld mechanical properties.

  10. Generating nonlinear FM chirp radar signals by multiple integrations

    DOE Patents [OSTI]

    Doerry, Armin W. (Albuquerque, NM)

    2011-02-01

    A phase component of a nonlinear frequency modulated (NLFM) chirp radar pulse can be produced by performing digital integration operations over a time interval defined by the pulse width. Each digital integration operation includes applying to a respectively corresponding input parameter value a respectively corresponding number of instances of digital integration.

  11. Development of an AC Module System: Final Technical Report

    SciTech Connect (OSTI)

    Suparna Kadam; Miles Russell

    2012-06-15

    The GreenRay Inc. program focused on simplifying solar electricity and making it affordable and accessible to the mainstream population. This was accomplished by integrating a solar module, micro-inverter, mounting and monitoring into a reliable, 'plug and play' AC system for residential rooftops, offering the following advantages: (1) Reduced Cost: Reduction in installation labor with fewer components, faster mounting, faster wiring. (2) Maximized Energy Production: Each AC Module operates at its maximum, reducing overall losses from shading, mismatch, or module downtime. (3) Increased Safety. Electrical and fire safety experts agree that AC Modules have significant benefits, with no energized wiring or live connections during installation, maintenance or emergency conditions. (4) Simplified PV for a Broader Group of Installers. Dramatic simplification of design and installation of a solar power system, enabling faster and more efficient delivery of the product into the market through well-established, mainstream channels. This makes solar more accessible to the public. (5) Broadened the Rooftop Market: AC Modules enable solar for many homes that have shading, split roofs, or obstructions. In addition, due to the smaller building block size of 200W vs. 1000W, homeowners with budget limitations can start small and add to their systems over time. Through this DOE program GreenRay developed the all-in-one AC Module system with an integrated PV Module and microinverter, custom residential mounting and performance monitoring. Development efforts took the product from its initial concept, through prototypes, to a commercial product sold and deployed in the residential market. This pilot deployment has demonstrated the technical effectiveness of the AC Module system in meeting the needs and solving the problems of the residential market. While more expensive than the traditional central inverter systems at the pilot scale, the economics of AC Modules become more and more favorable as the product matures and is made in high volumes. GreenRay's early customers have been highly enthusiastic about the AC Module system benefits.

  12. Partially integrated exhaust manifold

    DOE Patents [OSTI]

    Hayman, Alan W; Baker, Rodney E

    2015-01-20

    A partially integrated manifold assembly is disclosed which improves performance, reduces cost and provides efficient packaging of engine components. The partially integrated manifold assembly includes a first leg extending from a first port and terminating at a mounting flange for an exhaust gas control valve. Multiple additional legs (depending on the total number of cylinders) are integrally formed with the cylinder head assembly and extend from the ports of the associated cylinder and terminate at an exit port flange. These additional legs are longer than the first leg such that the exit port flange is spaced apart from the mounting flange. This configuration provides increased packaging space adjacent the first leg for any valving that may be required to control the direction and destination of exhaust flow in recirculation to an EGR valve or downstream to a catalytic converter.

  13. Power module assembly

    DOE Patents [OSTI]

    Campbell, Jeremy B. (Torrance, CA); Newson, Steve (Redondo Beach, CA)

    2011-11-15

    A power module assembly of the type suitable for deployment in a vehicular power inverter, wherein the power inverter has a grounded chassis, is provided. The power module assembly comprises a conductive base layer electrically coupled to the chassis, an insulating layer disposed on the conductive base layer, a first conductive node disposed on the insulating layer, a second conductive node disposed on the insulating layer, wherein the first and second conductive nodes are electrically isolated from each other. The power module assembly also comprises a first capacitor having a first electrode electrically connected to the conductive base layer, and a second electrode electrically connected to the first conductive node, and further comprises a second capacitor having a first electrode electrically connected to the conductive base layer, and a second electrode electrically connected to the second conductive node.

  14. Control methods and valve arrangement for start-up and shutdown of pressurized combustion and gasification systems integrated with a gas turbine

    DOE Patents [OSTI]

    Provol, Steve J. (Carlsbad, CA); Russell, David B. (San Diego, CA); Isaksson, Matti J. (Karhula, FI)

    1994-01-01

    A power plant having a system for converting coal to power in a gas turbine comprises a coal fed pressurized circulating bed for converting coal to pressurized gases, a gas turbine having a compressor for pressurizing air for the pressurized circulating bed and expander for receiving and expanding hot combustion gases for powering a generator, a first fast acting valve for controlling the pressurized air, a second fast acting valve means for controlling pressurized gas from the compressor to the expander.

  15. Pulse width modulation inverter with battery charger

    DOE Patents [OSTI]

    Slicker, James M. (Union Lake, MI)

    1985-01-01

    An inverter is connected between a source of DC power and a three-phase AC induction motor, and a microprocessor-based circuit controls the inverter using pulse width modulation techniques. In the disclosed method of pulse width modulation, both edges of each pulse of a carrier pulse train are equally modulated by a time proportional to sin .theta., where .theta. is the angular displacement of the pulse center at the motor stator frequency from a fixed reference point on the carrier waveform. The carrier waveform frequency is a multiple of the motor stator frequency. The modulated pulse train is then applied to each of the motor phase inputs with respective phase shifts of 120.degree. at the stator frequency. Switching control commands for electronic switches in the inverter are stored in a random access memory (RAM) and the locations of the RAM are successively read out in a cyclic manner, each bit of a given RAM location controlling a respective phase input of the motor. The DC power source preferably comprises rechargeable batteries and all but one of the electronic switches in the inverter can be disabled, the remaining electronic switch being part of a "flyback" DC-DC converter circuit for recharging the battery.

  16. Bioluminescent bioreporter integrated circuit

    DOE Patents [OSTI]

    Simpson, Michael L. (Knoxville, TN); Sayler, Gary S. (Blaine, TN); Paulus, Michael J. (Knoxville, TN)

    2000-01-01

    Disclosed are monolithic bioelectronic devices comprising a bioreporter and an OASIC. These bioluminescent bioreporter integrated circuit are useful in detecting substances such as pollutants, explosives, and heavy-metals residing in inhospitable areas such as groundwater, industrial process vessels, and battlefields. Also disclosed are methods and apparatus for environmental pollutant detection, oil exploration, drug discovery, industrial process control, and hazardous chemical monitoring.

  17. Photovoltaic module and interlocked stack of photovoltaic modules

    DOE Patents [OSTI]

    Wares, Brian S.

    2012-09-04

    One embodiment relates to an arrangement of photovoltaic modules configured for transportation. The arrangement includes a plurality of photovoltaic modules, each photovoltaic module including a frame having at least a top member and a bottom member. A plurality of alignment features are included on the top member of each frame, and a plurality of alignment features are included on the bottom member of each frame. Adjacent photovoltaic modules are interlocked by the alignment features on the top member of a lower module fitting together with the alignment features on the bottom member of an upper module. Other embodiments, features and aspects are also disclosed.

  18. Degradation Analysis of Weathered Crystalline-Silicon PV Modules: Preprint

    SciTech Connect (OSTI)

    Osterwald, C. R.; Anderberg, A.; Rummel, S.; Ottoson, L.

    2002-05-01

    We present an analysis of the results of a solar weathering program that found a linear relationship between maximum power degradation and the total UV exposure dose for four different types of commercial crystalline Si modules. The average degradation rate for the four modules types was 0.71% per year. The analysis showed that losses of short-circuit current were responsible for the maximum power degradation. Judging by the appearance of the undegraded control modules, it is very doubtful that the short-circuit current losses were caused by encapsulation browning or obscuration. When we compared the quantum efficiency of a single cell in a degraded module to one from an unexposed control module, it appears that most of the degradation has occurred in the 800 - 1100 nm wave-length region, and not the short wavelength region.

  19. Thermal and Electrical Effects of Partial Shade in Monolithic Thin-Film Photovoltaic Modules: Preprint

    SciTech Connect (OSTI)

    Silverman, Timothy J.; Deceglie, Michael G.; Sun, Xingshu; Garris, Rebekah L.; Alam, Muhammad Ashraful; Deline, Chris; Kurtz, Sarah

    2015-09-02

    Photovoltaic cells can be damaged by reverse bias stress, which arises during service when a monolithically integrated thin-film module is partially shaded. We introduce a model for describing a module's internal thermal and electrical state, which cannot normally be measured. Using this model and experimental measurements, we present several results with relevance for reliability testing and module engineering: Modules with a small breakdown voltage experience less stress than those with a large breakdown voltage, with some exceptions for modules having light-enhanced reverse breakdown. Masks leaving a small part of the masked cells illuminated can lead to very high temperature and current density compared to masks covering entire cells.

  20. Combination & Integration of DPF-SCR Aftertreatment Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Integration of DPF-SCR Aftertreatment Technologies Work is undertaken to examine the feasibility of integrating SCR and DPF technologies for the next generation of emission control...

  1. Modeling of integrated environmental control systems for coal-fired power plants. Technical progress report, [June 1, 1989--September 30, 1989

    SciTech Connect (OSTI)

    Rubin, E.S.

    1989-10-01

    The general goal of this research project is to enhance, and transfer to DOE, a new computer simulation model for analyzing the performance and cost of environmental control systems for coal-fired power plants. Systems utilizing pre-combustion, combustion, or post-combustion control methods, individually or in combination, may be considered. A unique capability of this model is the probabilistic representation of uncertainty in model input parameters. This stochastic simulation capability allows the performance and cost of environmental control systems to be quantified probabilistically, accounting for the interactions among all uncertain process and economic parameters. This method facilitates more rigorous comparisons between conventional and advanced clean coal technologies promising improved cost and/or effectiveness for SO{sub 2} and NO{sub x} removal. Detailed modeling of several pre-combustion and post-combustion processes of interest to DOE/PETC have been selected for analysis as part of this project.

  2. Formed photovoltaic module busbars

    DOE Patents [OSTI]

    Rose, Douglas; Daroczi, Shan; Phu, Thomas

    2015-11-10

    A cell connection piece for a photovoltaic module is disclosed herein. The cell connection piece includes an interconnect bus, a plurality of bus tabs unitarily formed with the interconnect bus, and a terminal bus coupled with the interconnect bus. The plurality of bus tabs extend from the interconnect bus. The terminal bus includes a non-linear portion.

  3. System for fuel rod removal from a reactor module

    DOE Patents [OSTI]

    Matchett, Richard L. (Bethel Park, PA); Roof, David R. (North Huntingdon, PA); Kikta, Thomas J. (Pittsburgh, PA); Wilczynski, Rosemarie (McKees Rocks, PA); Nilsen, Roy J. (Pittsburgh, PA); Bacvinskas, William S. (Bethel Park, PA); Fodor, George (Pittsburgh, PA)

    1990-01-01

    A robotic system for remote underwater withdrawal of the fuel rods from fuel modules of a light water breeder reactor includes a collet/grapple assembly for gripping and removing fuel rods in each module, which is positioned by use of a winch and a radial support means attached to a vertical support tube which is mounted over the fuel module. A programmable logic controller in conjunction with a microcomputer, provides control for the accurate positioning and pulling force of the rod grapple assembly. Closed circuit television cameras are provided which aid in operator interface with the robotic system.

  4. System for fuel rod removal from a reactor module

    DOE Patents [OSTI]

    Matchett, R.L.; Fodor, G.; Kikta, T.J.; Bacvinsicas, W.S.; Roof, D.R.; Nilsen, R.J.; Wilczynski, R.

    1988-07-28

    A robotic system for remote underwater withdrawal of the fuel rods from fuel modules of a light water breeder reactor includes a collet/grapple assembly for gripping and removing fuel rods in each module, which is positioned by use of a winch and a radial support means attached to a vertical support tube which is mounted over the fuel module. A programmable logic controller in conjunction with a microcomputer, provides control for the accurate positioning and pulling force of the rod grapple assembly. Closed circuit television cameras are provided which aid in operator interface with the robotic system. 7 figs.

  5. High Efficiency Solar Integrated Roof Membrane Product

    SciTech Connect (OSTI)

    Partyka, Eric; Shenoy, Anil

    2013-05-15

    This project was designed to address the Solar Energy Technology Program objective, to develop new methods to integrate photovoltaic (PV) cells or modules within a building-integrated photovoltaic (BIPV) application that will result in lower installed cost as well as higher efficiencies of the encapsulated/embedded PV module. The technology assessment and development focused on the evaluation and identification of manufacturing technologies and equipment capable of producing such low-cost, high-efficiency, flexible BIPV solar cells on single-ply roofing membranes.

  6. Solar kinetics` photovoltaic concentrator module and tracker development

    SciTech Connect (OSTI)

    White, D.L.; Howell, B. [Solar Kinetics, Inc., Dallas, TX (United States)

    1995-11-01

    Solar Kinetics, Inc., has been developing a point-focus concentrating photovoltaic module and tracker system under contract to Sandia National Laboratories. The primary focus of the contract was to achieve a module design that was manufacturable and passed Sandia`s environmental testing. Nine modules of two variations were assembled, tested, and characterized in Phase 1, and results of these tests were promising, with module efficiency approaching the theoretical limit achievable with the components used. The module efficiency was 11.9% at a solar irradiance of 850 W/m{sup 2} and an extrapolated cell temperature of 25{degrees}C. Improvements in module performance are anticipated as cell efficiencies meet their expectations. A 2-kW tracker and controller accommodating 20 modules was designed, built, installed, and operated at Solar Kinetics` test site. The drive used many commercially available components in an innovative arrangement to reduce cost and increase reliability. Backlash and bearing play were controlled by use of preloaded, low slip-stick, synthetic slide bearings. The controller design used a standard industrial programmable logic controller to perform ephemeris calculations, operate the actuators, and monitor encoders.

  7. Method of monolithic module assembly

    DOE Patents [OSTI]

    Gee, James M. (Albuquerque, NM); Garrett, Stephen E. (Albuquerque, NM); Morgan, William P. (Albuquerque, NM); Worobey, Walter (Albuquerque, NM)

    1999-01-01

    Methods for "monolithic module assembly" which translate many of the advantages of monolithic module construction of thin-film PV modules to wafered c-Si PV modules. Methods employ using back-contact solar cells positioned atop electrically conductive circuit elements affixed to a planar support so that a circuit capable of generating electric power is created. The modules are encapsulated using encapsulant materials such as EVA which are commonly used in photovoltaic module manufacture. The methods of the invention allow multiple cells to be electrically connected in a single encapsulation step rather than by sequential soldering which characterizes the currently used commercial practices.

  8. Integrated dry NO{sub x}/SO{sub 2} emissions control system low-NO{sub x} combustion system SNCR test report. Test period, January 11--April 9, 1993

    SciTech Connect (OSTI)

    Smith, R.A.; Muzio, L.J.; Hunt, T.

    1994-06-01

    The DOE sponsored Integrated Dry NO{sub x}/SO{sub 2}, Emissions Control System program, which is a Clean Coal Technology III demonstration, is being conducted by Public Service Company of Colorado. The test site is Arapahoe Generating Station Unit 4, which is a 100 MWe, down-fired utility boiler burning a low-sulfur western coal. The project goal is to demonstrate up to 70 percent reductions in NO{sub x} and SO{sub 2} emissions through the integration of: (1) down-fired low-NO{sub x} burners with overfire air; (2) Selective Non-Catalytic Reduction (SNCR) for additional NO{sub x} removal; and (3) dry sorbent injection and duct humidification for SO{sub 2} removal. The effectiveness of the integrated system on a high-sulfur coal will also be tested. This report documents the fourth phase of the test program, where the performance of the SNCR system, after the low-NO{sub x} combustion system retrofit, was assessed. Previous to this phase of testing, a subsystem was added to the existing SNCR system which allowed on-line conversion of a urea solution to aqueous ammonium compounds. Both convened and unconverted urea were investigated as SNCR chemicals.

  9. Integrated Biorefineries | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research & Development » Integrated Biorefineries Integrated Biorefineries Conversion Technology Loading... Primary Feedstock Loading... Primary Product Loading... Project Scale Loading... Choose map view BETO Biorefinery Investments by State Display by Project Show Map Labels The interactive map above highlights biorefinery projects funded by the Bioenergy Technologies Office at pilot, demonstration, and pioneer scales. Adjust the map filters to control the information displayed.

  10. PROJECT PROFILE: Combined PV/Battery Grid Integration with High...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DC-DC integrated modules will be designed for series and parallel connection to a medium voltage DC-bus at the input of a high-power inverter for utility-scale grid ...

  11. Integrating Module of the National Energy Modeling System: Model...

    Gasoline and Diesel Fuel Update (EIA)

    biomass, conventional hydropower Fifteen electricity supply regions Oil supply Onshore Deep and shallow offshore Six lower 48 onshore regions Three lower 48 offshore regions...

  12. Integrating Module of the National Energy Modeling System

    Gasoline and Diesel Fuel Update (EIA)

    biomass, conventional hydropower Fifteen electricity supply regions Oil supply Onshore Deep and shallow offshore Six lower-48 onshore regions Three lower-48 offshore regions...

  13. Integrating Module of the National Energy Modeling System

    Gasoline and Diesel Fuel Update (EIA)

    biomass, conventional hydropower Fifteen electricity supply regions Oil supply Onshore Deep and shallow offshore Six lower 48 onshore regions Three lower 48 offshore regions...

  14. Integrating Module of the National Energy Modeling System: Model...

    Gasoline and Diesel Fuel Update (EIA)

    conventional hydropower Twenty-four electricity supply regions Oil supply Onshore Deep and shallow offshore Six lower-48 onshore regions Four lower-48 offshore regions...

  15. Integrated Three-Dimensional Module Heat Exchange for Power Electronic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    application of the technology is not limited. Other applications include variable speed motor drives for energy efficiency, solar power and micro-scale grid power electronics,...

  16. Photovoltaic Module Reliability Workshop 2013

    Broader source: Energy.gov [DOE]

    The Photovoltaic (PV) Module Reliability Workshop was held in Golden, Colorado, on Feb. 26–27, 2013. The objective was to share information to improve PV module reliability because such...

  17. Thermoelectrics Partnership: Automotive Thermoelectric Modules...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Thermoelectrics Partnership: Automotive Thermoelectric Modules with Scalable Thermo- and Electro-Mechanical Interfaces Novel...

  18. Detailed Course Module Description | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Detailed Course Module Description Detailed Course Module Description This document lists the course modules for building science courses offered at Cornell's Collaborator...

  19. SHARP Physics Modules Updated | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Physics Modules Updated SHARP Physics Modules Updated January 29, 2013 - 12:37pm Addthis PROTEUS Development The SHARP neutronics module, PROTEUS, includes neutron and gamma ...

  20. Module Solar AG | Open Energy Information

    Open Energy Info (EERE)

    Module Solar AG Jump to: navigation, search Name: Module Solar AG Place: Baar, Switzerland Product: A Swiss PV module and materials supplier and developer Coordinates: 40.808083,...

  1. Module isolation devices

    DOE Patents [OSTI]

    Carolan, Michael Francis; Cooke, John Albert; Buzinski, Michael David

    2010-04-27

    A gas flow isolation device includes a gas flow isolation valve movable from an opened condition to a closed condition. The module isolation valve in one embodiment includes a rupture disk in flow communication with a flow of gas when the module isolation valve is in an opened condition. The rupture disk ruptures when a predetermined pressure differential occurs across it causing the isolation valve to close. In one embodiment the valve is mechanically linked to the rupture disk to maintain the valve in an opened condition when the rupture disk is intact, and which permits the valve to move into a closed condition when the rupture disk ruptures. In another embodiment a crushable member maintains the valve in an open condition, and the flow of gas passed the valve upon rupturing of the rupture disk compresses the crushable member to close the isolation valve.

  2. VERDE Analytic Modules

    Energy Science and Technology Software Center (OSTI)

    2008-01-15

    The Verde Analytic Modules permit the user to ingest openly available data feeds about phenomenology (storm tracks, wind, precipitation, earthquake, wildfires, and similar natural and manmade power grid disruptions and forecast power outages, restoration times, customers outaged, and key facilities that will lose power. Damage areas are predicted using historic damage criteria of the affected area. The modules use a cellular automata approach to estimating the distribution circuits assigned to geo-located substations. Population estimates servedmore » within the service areas are located within 1 km grid cells and converted to customer counts by conversion through demographic estimation of households and commercial firms within the population cells. Restoration times are estimated by agent-based simulation of restoration crews working according to utility published prioritization calibrated by historic performance.« less

  3. Tandem resonator reflectance modulator

    DOE Patents [OSTI]

    Fritz, I.J.; Wendt, J.R.

    1994-09-06

    A wide band optical modulator is grown on a substrate as tandem Fabry-Perot resonators including three mirrors spaced by two cavities. The absorption of one cavity is changed relative to the absorption of the other cavity by an applied electric field, to cause a change in total reflected light, as light reflecting from the outer mirrors is in phase and light reflecting from the inner mirror is out of phase with light from the outer mirrors. 8 figs.

  4. PV modules modelling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of the Environmental Sciences / Group of Energy / PVsyst Modeling Systems Losses in PVsyst André Mermoud Institute of the Environmental Sciences Group of energy - PVsyst andre.mermoud@unige.ch Institute of the Environmental Sciences / Group of Energy / PVsyst Summary Losses in a PV system simulation may be: - Determined by specific models (shadings) - Interpretations of models (PV module behaviour) - User's parameter specifications (soiling, wiring, etc). PVsyst provides a detailed analysis of

  5. Tandem resonator reflectance modulator

    DOE Patents [OSTI]

    Fritz, Ian J. (Albuquerque, NM); Wendt, Joel R. (Albuquerque, NM)

    1994-01-01

    A wide band optical modulator is grown on a substrate as tandem Fabry-Perot resonators including three mirrors spaced by two cavities. The absorption of one cavity is changed relative to the absorption of the other cavity by an applied electric field, to cause a change in total reflected light, as light reflecting from the outer mirrors is in phase and light reflecting from the inner mirror is out of phase with light from the outer mirrors.

  6. Power Electronic Thermal System Performance and Integration ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Motor Thermal Control Thermal Stress and Reliability for Advanced Power Electronics and Electric Machines Integrated Vehicle Thermal Management

  7. Innovative Office Lighting System with Integrated Spectrally...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    an innovative LED office lighting system solution that integrates light delivery, optics, and controls for energy efficiency and occupant health and well-being. The office...

  8. Integrated Security System | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Integrated Security System A security platform providing multi-layer intrusion detection and security management for a networked energy control systems architecture PDF icon ...

  9. Novel imaging techniques, integrated with mineralogical, geochemical and microbiological characterizations to determine the biogeochemical controls on technetium mobility in FRC sediments

    SciTech Connect (OSTI)

    Jonathan R. Lloyd

    2009-02-03

    The objective of this research program was to take a highly multidisciplinary approach to define the biogeochemical factors that control technetium (Tc) mobility in FRC sediments. The aim was to use batch and column studies to probe the biogeochemical conditions that control the mobility of Tc at the FRC. Background sediment samples from Area 2 (pH 6.5, low nitrate, low {sup 99}Tc) and Area 3 (pH 3.5, high nitrate, relatively high {sup 99}Tc) of the FRC were selected (http://www.esd.ornl.gov/nabirfrc). For the batch experiments, sediments were mixed with simulated groundwater, modeled on chemical constituents of FRC waters and supplemented with {sup 99}Tc(VII), both with and without added electron donor (acetate). The solubility of the Tc was monitored, alongside other biogeochemical markers (nitrate, nitrite, Fe(II), sulfate, acetate, pH, Eh) as the 'microcosms' aged. At key points, the microbial communities were also profiled using both cultivation-dependent and molecular techniques, and results correlated with the geochemical conditions in the sediments. The mineral phases present in the sediments were also characterized, and the solid phase associations of the Tc determined using sequential extraction and synchrotron techniques. In addition to the batch sediment experiments, where discrete microbial communities with the potential to reduce and precipitate {sup 99}Tc will be separated in time, we also developed column experiments where biogeochemical processes were spatially separated. Experiments were conducted both with and without amendments proposed to stimulate radionuclide immobilization (e.g. the addition of acetate as an electron donor for metal reduction), and were also planned with and without competing anions at high concentration (e.g. nitrate, with columns containing Area 3 sediments). When the columns had stabilized, as determined by chemical analysis of the effluents, we used a spike of the short-lived gamma emitter {sup 99m}Tc (50-200 MBq; half life 6 hours) and its mobility was monitored using a {gamma}-camera. Incorporation of low concentrations of the long-lived 99Tc gave a tracer that can be followed by scintillation counting, should the metastable form of the radionuclide decay to below detection limits before the end of the experiment (complete immobilization or loss of the Tc from the column). After the Tc was reduced and immobilized, or passed through the system, the columns were dismantled carefully in an anaerobic cabinet and the pore water geochemistry and mineralogy of the columns profiled. Microbial community analysis was determined, again using molecular and culture-dependent techniques. Experimental results were also modeled using an established coupled speciation and transport code, to develop a predictive tool for the mobility of Tc in FRC sediments. From this multidisciplinary approach, we hoped to obtain detailed information on the microorganisms that control the biogeochemical cycling of key elements at the FRC, and we would also be able to determine the key factors that control the mobility of Tc at environmentally relevant concentrations at this site.

  10. Refinery Integration

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mary Biddy Sue Jones NREL PNNL This presentation does not contain any proprietary, confidential, or otherwise restricted information DOE Bioenergy Technologies Office (BETO) 2015 Project Peer Review Refinery Integration 4.1.1.31 NREL 4.1.1.51 PNNL Goal Statement GOALS: Model bio-intermediates insertion points to better define costs & ID opportunities, technical risks, information gaps, research needs Publish results Review with stakeholders 2 Leveraging existing refining infrastructure

  11. Integrated optic vector-matrix multiplier

    DOE Patents [OSTI]

    Watts, Michael R. (Albuquerque, NM)

    2011-09-27

    A vector-matrix multiplier is disclosed which uses N different wavelengths of light that are modulated with amplitudes representing elements of an N.times.1 vector and combined to form an input wavelength-division multiplexed (WDM) light stream. The input WDM light stream is split into N streamlets from which each wavelength of the light is individually coupled out and modulated for a second time using an input signal representing elements of an M.times.N matrix, and is then coupled into an output waveguide for each streamlet to form an output WDM light stream which is detected to generate a product of the vector and matrix. The vector-matrix multiplier can be formed as an integrated optical circuit using either waveguide amplitude modulators or ring resonator amplitude modulators.

  12. Processing module operating methods, processing modules, and communications systems

    DOE Patents [OSTI]

    McCown, Steven Harvey; Derr, Kurt W.; Moore, Troy

    2014-09-09

    A processing module operating method includes using a processing module physically connected to a wireless communications device, requesting that the wireless communications device retrieve encrypted code from a web site and receiving the encrypted code from the wireless communications device. The wireless communications device is unable to decrypt the encrypted code. The method further includes using the processing module, decrypting the encrypted code, executing the decrypted code, and preventing the wireless communications device from accessing the decrypted code. Another processing module operating method includes using a processing module physically connected to a host device, executing an application within the processing module, allowing the application to exchange user interaction data communicated using a user interface of the host device with the host device, and allowing the application to use the host device as a communications device for exchanging information with a remote device distinct from the host device.

  13. Smart Grid Integration Laboratory

    SciTech Connect (OSTI)

    Troxell, Wade

    2011-12-22

    The initial federal funding for the Colorado State University Smart Grid Integration Laboratory is through a Congressionally Directed Project (CDP), DE-OE0000070 Smart Grid Integration Laboratory. The original program requested in three one-year increments for staff acquisition, curriculum development, and instrumentation all which will benefit the Laboratory. This report focuses on the initial phase of staff acquisition which was directed and administered by DOE NETL/ West Virginia under Project Officer Tom George. Using this CDP funding, we have developed the leadership and intellectual capacity for the SGIC. This was accomplished by investing (hiring) a core team of Smart Grid Systems engineering faculty focused on education, research, and innovation of a secure and smart grid infrastructure. The Smart Grid Integration Laboratory will be housed with the separately funded Integrid Laboratory as part of CSU's overall Smart Grid Integration Center (SGIC). The period of performance of this grant was 10/1/2009 to 9/30/2011 which included one no cost extension due to time delays in faculty hiring. The Smart Grid Integration Laboratory's focus is to build foundations to help graduate and undergraduates acquire systems engineering knowledge; conduct innovative research; and team externally with grid smart organizations. Using the results of the separately funded Smart Grid Workforce Education Workshop (May 2009) sponsored by the City of Fort Collins, Northern Colorado Clean Energy Cluster, Colorado State University Continuing Education, Spirae, and Siemens has been used to guide the hiring of faculty, program curriculum and education plan. This project develops faculty leaders with the intellectual capacity to inspire its students to become leaders that substantially contribute to the development and maintenance of Smart Grid infrastructure through topics such as: (1) Distributed energy systems modeling and control; (2) Energy and power conversion; (3) Simulation of electrical power distribution system that integrates significant quantities of renewable and distributed energy resources; (4) System dynamic modeling that considers end-user behavior, economics, security and regulatory frameworks; (5) Best practices for energy management IT control solutions for effective distributed energy integration (including security with the underlying physical power systems); (6) Experimental verification of effects of various arrangements of renewable generation, distributed generation and user load types along with conventional generation and transmission. Understanding the core technologies for enabling them to be used in an integrated fashion within a distribution network remains is a benefit to the future energy paradigm and future and present energy engineers.

  14. Integrated Building Management System (IBMS)

    SciTech Connect (OSTI)

    Anita Lewis

    2012-07-01

    This project provides a combination of software and services that more easily and cost-effectively help to achieve optimized building performance and energy efficiency. Featuring an open-platform, cloud- hosted application suite and an intuitive user experience, this solution simplifies a traditionally very complex process by collecting data from disparate building systems and creating a single, integrated view of building and system performance. The Fault Detection and Diagnostics algorithms developed within the IBMS have been designed and tested as an integrated component of the control algorithms running the equipment being monitored. The algorithms identify the normal control behaviors of the equipment without interfering with the equipment control sequences. The algorithms also work without interfering with any cooperative control sequences operating between different pieces of equipment or building systems. In this manner the FDD algorithms create an integrated building management system.

  15. System and method for controlling engine knock using electro-hydraulic valve actuation

    DOE Patents [OSTI]

    Brennan, Daniel G

    2013-12-10

    A control system for an engine includes a knock control module and a valve control module. The knock control module adjusts a period that one or more of an intake valve and an exhaust valve of a cylinder are open based on engine knock corresponding to the cylinder. The valve control module, based on the adjusted period, controls the one or more of the intake valve and the exhaust valve using one or more hydraulic actuators.

  16. New nano-mechanical plasmonic phase modulator offers electronics potential

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | Argonne National Laboratory nano-mechanical plasmonic phase modulator offers electronics potential April 3, 2015 Tweet EmailPrint By using standard semiconductor manufacturing equipment, a team of scientists from the U.S. Department of Energy's Argonne National Laboratory, the National Institute of Standards and Technology (NIST), Rutgers University and the University of Colorado at Colorado Springs, has demonstrated a nano-mechanical plasmon phase modulator that can control and manipulate

  17. High Temperature, High Voltage Fully Integrated Gate Driver Circuit |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 10 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon ape003_tolbert_2010_p.pdf More Documents & Publications High Temperature, High Voltage Fully Integrated Gate Driver Circuit Wide Bandgap Materials Smart Integrated Power Module

  18. High Temperature, High Voltage Fully Integrated Gate Driver Circuit |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 09 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon ape_03_marlino.pdf More Documents & Publications High Temperature, High Voltage Fully Integrated Gate Driver Circuit Smart Integrated Power Module Wide Bandgap Materials

  19. Power Electronic Thermal System Performance and Integration | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 09 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon ape_13_bennion.pdf More Documents & Publications Power Electronic Thermal System Performance and Integration Integrated Power Module Cooling Vehicle Technologies Office: 2009 Advanced Power Electronics R&D Annual Progress Report

  20. Development of economically viable, highly integrated, highly modular SEGIS architecture.

    SciTech Connect (OSTI)

    Enslin, Johan; Hamaoui, Ronald; Gonzalez, Sigifredo; Haddad, Ghaith; Rustom, Khalid; Stuby, Rick; Kuran, Mohammad; Mark, Evlyn; Amarin, Ruba; Alatrash, Hussam; Bower, Ward Isaac; Kuszmaul, Scott S.; Sena-Henderson, Lisa; David, Carolyn; Akhil, Abbas Ali

    2012-03-01

    Initiated in 2008, the SEGIS initiative is a partnership involving the U.S. DOE, Sandia National Laboratories, private sector companies, electric utilities, and universities. Projects supported under the initiative have focused on the complete-system development of solar technologies, with the dual goal of expanding renewable PV applications and addressing new challenges of connecting large-scale solar installations in higher penetrations to the electric grid. Petra Solar, Inc., a New Jersey-based company, received SEGIS funds to develop solutions to two of these key challenges: integrating increasing quantities of solar resources into the grid without compromising (and likely improving) power quality and reliability, and moving the design from a concept of intelligent system controls to successful commercialization. The resulting state-of-the art technology now includes a distributed photovoltaic (PV) architecture comprising AC modules that not only feed directly into the electrical grid at distribution levels but are equipped with new functions that improve voltage stability and thus enhance overall grid stability. This integrated PV system technology, known as SunWave, has applications for 'Power on a Pole,' and comes with a suite of technical capabilities, including advanced inverter and system controls, micro-inverters (capable of operating at both the 120V and 240V levels), communication system, network management system, and semiconductor integration. Collectively, these components are poised to reduce total system cost, increase the system's overall value and help mitigate the challenges of solar intermittency. Designed to be strategically located near point of load, the new SunWave technology is suitable for integration directly into the electrical grid but is also suitable for emerging microgrid applications. SunWave was showcased as part of a SEGIS Demonstration Conference at Pepco Holdings, Inc., on September 29, 2011, and is presently undergoing further field testing as a prelude to improved and expanded commercialization.

  1. Radiological Control Technician Training

    Energy Savers [EERE]

    DOE-HDBK-1122-2009 (Revised 2013) Module 2.03 Counting Errors and Statistics Student's Material Course Title: Radiological Control Technician Module Title: Counting Errors and Statistics Module Number: 2.03 Objectives: (This document, Study Material, is referred to as Study Guide in the Program Management Guide) 2.03.01. Identify five general types of errors that can occur when analyzing radioactive samples, and describe the effect of each source of error on sample measurements. 2.03.02. State

  2. International Energy Module - NEMS Documentation

    Reports and Publications (EIA)

    2014-01-01

    Summarizes the overall structure of the International Energy Model and its interface with other NEMS modules, mathematical specifications of behavioral relationships, and data sources and estimation methods.

  3. Photovoltaic concentrator module improvements study

    SciTech Connect (OSTI)

    Levy, S.L.; Kerschen, K.A. ); Hutchison, G. ); Nowlan, M.J. )

    1991-08-01

    This report presents results of a project to design and fabricate an improved photovoltaic concentrator module. Using previous work as a baseline, this study conducted analyses and testing to select major module components and design features. The lens parquet and concentrator solar cell were selected from the highest performing, available components. A single 185X point-focus module was fabricated by the project team and tested at Sandia. Major module characteristics include a 6 by 4 compression-molded acrylic lens parquet (0.737 m{sup 2} area), twenty-four 0.2 ohms-cm, FZ, p-Si solar cells (1.56 cm{sup 2} area) soldered to ceramic substrates and copper heat spreaders, and an aluminized steel housing with corrugated bottom. This project marked the first attempt to use prismatic covers on solar cells in a high-concentration, point-focus application. Cells with 15 percent metallization were obtained, but problems with the fabrication and placement of prismatic covers on these cells lead to the decision not to use covers in the prototype module. Cell assembly fabrication, module fabrication, and module optical design activities are presented here. Test results are also presented for bare cells, cell assemblies, and module. At operating conditions of 981 watts/m{sup 2} DNI and an estimated cell temperature of 65{degrees}C, the module demonstrated an efficiency of 13.9 percent prior to stressed environmental exposure. 12 refs., 56 figs., 7 tabs.

  4. module 4 | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    HR5 TRANSITION BRIEFING PDF icon module 4 More Documents & Publications Microsoft Word - Rev5functionalaccountabilityimplementationplan..doc High Risk Plan Department of Energy (DOE) Acquisition Guide

  5. RAPID-L Highly Automated Fast Reactor Concept Without Any Control Rods (1) Reactor concept and plant dynamics analyses

    SciTech Connect (OSTI)

    Kambe, Mitsuru [Central Research Institute of Electric Power Industry (CRIEPI), 2-11-1, Iwado Kita, Komae-shi, Tokyo, 201-8511 (Japan); Tsunoda, Hirokazu [Mitsubishi Research Institute, Inc. 3-6, Otemachi 2-chome, Chiyoda-ku, Tokyo, 100-8141 (Japan); Mishima, Kaichiro [Research Reactor Institute, Kyoto University, Kumatori-cho, Sennan-gun, Osaka, 590-20494 (Japan); Iwamura, Takamichi [Japan Atomic Energy Research Institute, 2-4, Shirakata-shirane, Tokai-mura, Naka-gun, Ibaraki-ken, 319-1195 (Japan)

    2002-07-01

    The 200 kWe uranium-nitride fueled lithium cooled fast reactor concept 'RAPID-L' to achieve highly automated reactor operation has been demonstrated. RAPID-L is designed for Lunar base power system. It is one of the variants of RAPID (Refueling by All Pins Integrated Design), fast reactor concept, which enable quick and simplified refueling. The essential feature of RAPID concept is that the reactor core consists of an integrated fuel assembly instead of conventional fuel subassemblies. In this small size reactor core, 2700 fuel pins are integrated altogether and encased in a fuel cartridge. Refueling is conducted by replacing a fuel cartridge. The reactor can be operated without refueling for up to 10 years. Unique challenges in reactivity control systems design have been attempted in RAPID-L concept. The reactor has no control rod, but involves the following innovative reactivity control systems: Lithium Expansion Modules (LEM) for inherent reactivity feedback, Lithium Injection Modules (LIM) for inherent ultimate shutdown, and Lithium Release Modules (LRM) for automated reactor startup. All these systems adopt lithium-6 as a liquid poison instead of B{sub 4}C rods. In combination with LEMs, LIMs and LRMs, RAPID-L can be operated without operator. This is the first reactor concept ever established in the world. This reactor concept is also applicable to the terrestrial fast reactors. In this paper, RAPID-L reactor concept and its transient characteristics are presented. (authors)

  6. Photovoltaic module mounting system

    DOE Patents [OSTI]

    Miros, Robert H. J. (Fairfax, CA); Mittan, Margaret Birmingham (Oakland, CA); Seery, Martin N. (San Rafael, CA); Holland, Rodney H. (Novato, CA)

    2012-04-17

    A solar array mounting system having unique installation, load distribution, and grounding features, and which is adaptable for mounting solar panels having no external frame. The solar array mounting system includes flexible, pedestal-style feet and structural links connected in a grid formation on the mounting surface. The photovoltaic modules are secured in place via the use of attachment clamps that grip the edge of the typically glass substrate. The panel mounting clamps are then held in place by tilt brackets and/or mid-link brackets that provide fixation for the clamps and align the solar panels at a tilt to the horizontal mounting surface. The tilt brackets are held in place atop the flexible feet and connected link members thus creating a complete mounting structure.

  7. Fortran 90 Source Module

    Energy Science and Technology Software Center (OSTI)

    1998-01-13

    A major advance contained in the new Fortran 90 language standard is the ability to define new data types and the operators associated with them. Writing computer code to implement computations with real and complex three domensional vectors and dyadics is greatly simplified if the equations can be implemented directly, without the need to code the vector arithmetic explicitly. The Fortran 90 module VECTORS contains source code which defines new data types for real andmore » complex 3-dimensional vectors and dyadics, along with the common operations needed to work with these objects. Routines to allow convenient initalization and output of the new types are also included. in keeping with the philosophy of data abstraction, the details of the implementation of the data types are maintained private, and the functions and operators are made generic to simplify the combining of real, complex, single and double precision vectors and dyadics.« less

  8. Photovoltaic module mounting system

    DOE Patents [OSTI]

    Miros, Robert H. J.; Mittan, Margaret Birmingham; Seery, Martin N; Holland, Rodney H

    2012-09-18

    A solar array mounting system having unique installation, load distribution, and grounding features, and which is adaptable for mounting solar panels having no external frame. The solar array mounting system includes flexible, pedestal-style feet and structural links connected in a grid formation on the mounting surface. The photovoltaic modules are secured in place via the use of attachment clamps that grip the edge of the typically glass substrate. The panel mounting clamps are then held in place by tilt brackets and/or mid-link brackets that provide fixation for the clamps and align the solar panels at a tilt to the horizontal mounting surface. The tilt brackets are held in place atop the flexible feet and connected link members thus creating a complete mounting structure.

  9. NREL: Energy Systems Integration - Systems Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Systems Integration Systems Integration considers the relationships among electricity, thermal, and fuel systems and data and information networks to ensure optimal integration and interoperability across the entire energy system spectrum. Advanced R&D in systems integration ranges from technology innovation to electric, fuel, thermal, and water infrastructure deployment. System integration research areas include: Prototype testing through hardware-in-the-loop Energy system integration

  10. Low-voltage differentially-signaled modulators

    DOE Patents [OSTI]

    Zortman, William A.; Lentine, Anthony L.; Hsia, Alexander H.; Watts, Michael R.

    2015-09-08

    Photonic modulators and methods of modulating an input optical signal are provided. A photonic modulator includes at least one modulator section and differential drive circuitry. The at least one modulator section includes a P-type layer and an N-type layer forming a PN junction in the modulator section. The differential drive circuitry is electrically coupled to the P-type layer and the N-type layer of the at least one modulator section.

  11. Semiconductor diode with external field modulation

    DOE Patents [OSTI]

    Nasby, Robert D. (Albuquerque, NM)

    2000-01-01

    A non-destructive-readout nonvolatile semiconductor diode switching device that may be used as a memory element is disclosed. The diode switching device is formed with a ferroelectric material disposed above a rectifying junction to control the conduction characteristics therein by means of a remanent polarization. The invention may be used for the formation of integrated circuit memories for the storage of information.

  12. NREL: Distributed Grid Integration - Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Capabilities Photo of a man in safety glasses working with laboratory equipment. NREL's distributed grid integration researchers conduct testing and evaluation at the one-of-a-kind Energy Systems Integration Facility. NREL researchers work on advanced approaches to grid interconnection and control technologies, energy management, and grid support applications by performing testing, data visualization, modeling and analysis, and developing standards and codes. Through these efforts, NREL helps

  13. PSCAD Modules Representing PV Generator

    SciTech Connect (OSTI)

    Muljadi, E.; Singh, M.; Gevorgian, V.

    2013-08-01

    Photovoltaic power plants (PVPs) have been growing in size, and the installation time is very short. With the cost of photovoltaic (PV) panels dropping in recent years, it can be predicted that in the next 10 years the contribution of PVPs to the total number of renewable energy power plants will grow significantly. In this project, the National Renewable Energy Laboratory (NREL) developed a dynamic modeling of the modules to be used as building blocks to develop simulation models of single PV arrays, expanded to include Maximum Power Point Tracker (MPPT), expanded to include PV inverter, or expanded to cover an entire PVP. The focus of the investigation and complexity of the simulation determines the components that must be included in the simulation. The development of the PV inverter was covered in detail, including the control diagrams. Both the current-regulated voltage source inverter and the current-regulated current source inverter were developed in PSCAD. Various operations of the PV inverters were simulated under normal and abnormal conditions. Symmetrical and unsymmetrical faults were simulated, presented, and discussed. Both the three-phase analysis and the symmetrical component analysis were included to clarify the understanding of unsymmetrical faults. The dynamic model validation was based on the testing data provided by SCE. Testing was conducted at SCE with the focus on the grid interface behavior of the PV inverter under different faults and disturbances. The dynamic model validation covers both the symmetrical and unsymmetrical faults.

  14. Argonne's SpEC Module

    SciTech Connect (OSTI)

    Harper, Jason

    2014-05-05

    Jason Harper, an electrical engineer in Argonne National Laboratory's EV-Smart Grid Interoperability Center, discusses his SpEC Module invention that will enable fast charging of electric vehicles in under 15 minutes. The module has been licensed to BTCPower.

  15. Macroeconomic Activity Module - NEMS Documentation

    Reports and Publications (EIA)

    2014-01-01

    Documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Macroeconomic Activity Module (MAM) used to develop the Annual Energy Outlook for 2014 (AEO2014). The report catalogues and describes the module assumptions, computations, methodology, parameter estimation techniques, and mainframe source code

  16. Argonne's SpEC Module

    ScienceCinema (OSTI)

    Harper, Jason

    2014-06-05

    Jason Harper, an electrical engineer in Argonne National Laboratory's EV-Smart Grid Interoperability Center, discusses his SpEC Module invention that will enable fast charging of electric vehicles in under 15 minutes. The module has been licensed to BTCPower.

  17. Adapting Wireless Technology to Lighting Control and Environmental Sensing

    SciTech Connect (OSTI)

    Dana Teasdale; Francis Rubinstein; Dave Watson; Steve Purdy

    2005-10-01

    The high cost of retrofitting buildings with advanced lighting control systems is a barrier to adoption of this energy-saving technology. Wireless technology, however, offers a solution to mounting installation costs since it requires no additional wiring to implement. To demonstrate the feasibility of such a system, a prototype wirelessly-controlled advanced lighting system was designed and built. The system includes the following components: a wirelessly-controllable analog circuit module (ACM), a wirelessly-controllable electronic dimmable ballast, a T8 3-lamp fixture, an environmental multi-sensor, a current transducer, and control software. The ACM, dimmable ballast, multi-sensor, and current transducer were all integrated with SmartMesh{trademark} wireless mesh networking nodes, called motes, enabling wireless communication, sensor monitoring, and actuator control. Each mote-enabled device has a reliable communication path to the SmartMesh Manager, a single board computer that controls network functions and connects the wireless network to a PC running lighting control software. The ACM is capable of locally driving one or more standard 0-10 Volt electronic dimmable ballasts through relay control and a 0-10 Volt controllable output. The mote-integrated electronic dimmable ballast is designed to drive a standard 3-lamp T8 light fixture. The environmental multi-sensor measures occupancy, light level and temperature. The current transducer is used to measure the power consumed by the fixture. Control software was developed to implement advanced lighting algorithms, including daylight ramping, occupancy control, and demand response. Engineering prototypes of each component were fabricated and tested in a bench-scale system. Based on standard industry practices, a cost analysis was conducted. It is estimated that the installation cost of a wireless advanced lighting control system for a retrofit application is at least 30% lower than a comparable wired system for a typical 16,000 square-foot office building, with a payback period of less than 3 years.

  18. Integrated dry NO{sub x}/SO{sub 2} emissions control system low-NO{sub x} combustion system retrofit test report. Test report, August 6--October 29, 1992

    SciTech Connect (OSTI)

    Smith, R.A.; Muzio, L.J.; Hunt, T.

    1993-06-01

    The DOE sponsored Integrated Dry NO{sub x}/SO{sub 2} Emissions Control System program, which is a Clean Coal Technology M demonstration, is being conducted by Public Service Company of Colorado. The test site is Arapahoe Generating Station Unit 4, which is a 100 MWe, down-fired utility boiler burning a low-sulfur Western coal. The project goal is to demonstrate up to 70 percent reductions in NO{sub x} and SO{sub 2} emissions through the integration of: (1) down-fired low-NO{sub x} burners with overfire air; (2) Selective NonCatalytic Reduction (SNCR) for additional NO{sub x} removal; and (3) dry sorbent injection and duct humidification for SO{sub 2} removal. The effectiveness of the integrated system on a high-sulfur coal will also be investigated. This report documents the third phase of the test program, where the performance of the retrofit low-NO{sub x} combustion system is compared to that of the original combustion system. This third test phase was comprised of an optimization of the operating conditions and settings for the burners and overfire air ports, followed by an investigation of the performance of the low-NO{sub x} combustion system as a function of various operating parameters. These parameters included boiler load, excess air level, overfire air flow rate and number of mills in service. In addition, emissions under normal load following operation were compared to those collected during the optimization and parametric performance tests under baseloaded conditions. The low-NO{sub x} combustion system retrofit resulted in NO{sub x} reductions of 63 to 69 percent, depending on boiler load. The majority of the NO{sub x} reduction was obtained with the low-NO{sub x} burners, as it was shown that the overfire air system provided little additional NO{sub x} reduction for a fixed excess air level. CO emissions and flyash carbon levels did not increase as a result of the retrofit.

  19. Working with Modules within Perl and Python

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Working with Modules within Perl and Python Working with Modules within Perl and Python It can often be convenient to work with the modules system from within perl or python scripts. You can do this! Using Modules within Python The EnvironmentModules python package gives access to the module system from within python. The EnvironmentModules python package has a single function: module. Using this function you can provide the same arguments you would to "module" on the command line. The

  20. Multi-processor including data flow accelerator module

    DOE Patents [OSTI]

    Davidson, George S.; Pierce, Paul E.

    1990-01-01

    An accelerator module for a data flow computer includes an intelligent memory. The module is added to a multiprocessor arrangement and uses a shared tagged memory architecture in the data flow computer. The intelligent memory module assigns locations for holding data values in correspondence with arcs leading to a node in a data dependency graph. Each primitive computation is associated with a corresponding memory cell, including a number of slots for operands needed to execute a primitive computation, a primitive identifying pointer, and linking slots for distributing the result of the cell computation to other cells requiring that result as an operand. Circuitry is provided for utilizing tag bits to determine automatically when all operands required by a processor are available and for scheduling the primitive for execution in a queue. Each memory cell of the module may be associated with any of the primitives, and the particular primitive to be executed by the processor associated with the cell is identified by providing an index, such as the cell number for the primitive, to the primitive lookup table of starting addresses. The module thus serves to perform functions previously performed by a number of sections of data flow architectures and coexists with conventional shared memory therein. A multiprocessing system including the module operates in a hybrid mode, wherein the same processing modules are used to perform some processing in a sequential mode, under immediate control of an operating system, while performing other processing in a data flow mode.

  1. Integrated hydrocarbon reforming system and controls

    DOE Patents [OSTI]

    Clawson, Lawrence G.; Dorson, Matthew H.; Mitchell, William L.; Nowicki, Brian J.; Thijssen, Johannes; Davis, Robert; Papile, Christopher; Rumsey, Jennifer W.; Longo, Nathan; Cross, III, James C.; Rizzo, Vincent; Kleeburg, Gunther; Rindone, Michael; Block, Stephen G.; Sun, Maria; Morriseau, Brian D.; Hagan, Mark R.; Bowers, Brian

    2003-11-04

    A hydrocarbon reformer system including a first reactor configured to generate hydrogen-rich reformate by carrying out at least one of a non-catalytic thermal partial oxidation, a catalytic partial oxidation, a steam reforming, and any combinations thereof, a second reactor in fluid communication with the first reactor to receive the hydrogen-rich reformate, and having a catalyst for promoting a water gas shift reaction in the hydrogen-rich reformate, and a heat exchanger having a first mass of two-phase water therein and configured to exchange heat between the two-phase water and the hydrogen-rich reformate in the second reactor, the heat exchanger being in fluid communication with the first reactor so as to supply steam to the first reactor as a reactant is disclosed. The disclosed reformer includes an auxiliary reactor configured to generate heated water/steam and being in fluid communication with the heat exchanger of the second reactor to supply the heated water/steam to the heat exchanger.

  2. A fully integrated oven controlled microelectromechanical oscillator...

    Office of Scientific and Technical Information (OSTI)

    Authors: Wojciechowski, Kenneth E. 1 ; Baker, Michael S. 1 ; Clews, Peggy J. 1 ; Olsson, Roy H. 1 + Show Author Affiliations Sandia National Lab. (SNL-NM), Albuquerque, NM ...

  3. A fully integrated oven controlled microelectromechanical oscillator...

    Office of Scientific and Technical Information (OSTI)

    Additional Journal Information: Journal Volume: 24; Journal Issue: 6; Journal ID: ISSN 1057-7157 Publisher: IEEE Research Org: Sandia National Laboratories (SNL-NM), Albuquerque, ...

  4. ARM Data Integrator

    Energy Science and Technology Software Center (OSTI)

    2014-02-06

    The Atmospheric Radiation Measurement (ARM) Data Integrator (ADI) streamlines the development of scientific algorithms and analysis of time-series NetCDF data, and improves the content and consistency of the output data products produced by these algorithms. The framework automates the process of retrieving and preparing data for analysis, and allows users to design output data products through a graphical interface. It also provides a modular, flexible software development architecture that scientists can use to generate C,more » Python, and IDL source code templates that embed the pre and post processing logic allowing the scientist to focus on only their science. The input data, preprocessing, and output data specifications of algorithms are defined through a graphical interface and stored in a database. ADI implements workflow for data integration and supports user access to data through a library of software modules. Data preprocess capabilities supported include automated retrieval of data from input files, merging the retrieved data into appropriately sized chunks, and transformation of the data onto a common coordinate system grid. Through the graphical interface, users can view the details of both their data products and those in the ARM catalog and allows developers to use existing data product to build new data products. Views of the output data products include an overlay of how the design meets ARM archive’s data standards providing the user with a visual cue indicating where their output violates an archive standard. The ADI libraries access the information provided through the GUI via a Postgres database. The ADI framework and its supporting components can significantly decrease the time and cost of implementing scientific algorithms while improving the ability of scientists to disseminate their results.« less

  5. Common Geometry Module

    Energy Science and Technology Software Center (OSTI)

    2005-01-01

    The Common Geometry Module (CGM) is a code library which provides geometry functionality used for mesh generation and other applications. This functionality includes that commonly found in solid modeling engines, like geometry creation, query and modification; CGM also includes capabilities not commonly found in solid modeling engines, like geometry decomposition tools and support for shared material interfaces. CGM is built upon the ACIS solid modeling engine, but also includes geometry capability developed beside and onmore » top of ACIS. CGM can be used as-is to provide geometry functionality for codes needing this capability. However, CGM can also be extended using derived classes in C++, allowing the geometric model to serve as the basis for other applications, for example mesh generation. CGM is supported on Sun Solaris, SGI, HP, IBM, DEC, Linux and Windows NT platforms. CGM also indudes support for loading ACIS models on parallel computers, using MPI-based communication. Future plans for CGM are to port it to different solid modeling engines, including Pro/Engineer or SolidWorks. CGM is being released into the public domain under an LGPL license; the ACIS-based engine is available to ACIS licensees on request.« less

  6. OCGen Module Mooring Project

    SciTech Connect (OSTI)

    McEntee, Jarlath

    2015-02-06

    Ocean Renewable Power Company's OCGen Module Mooring Project provided an extensive research, design, development, testing and data collection effort and analysis conducted with respect to a positively buoyant, submerged MHK device secured to the seabed using a tensioned mooring system. Different analytic tools were evaluated for their utility in the design of submerged systems and their moorings. Deployment and testing of a prototype OCGen® system provided significant data related to mooring line loads and system attitude and station keeping. Mooring line loads were measured in situ and reported against flow speeds. The Project made a significant step in the development of designs, methodologies and practices related to floating and mooring of marine hydrokinetic (MHK) devices. Importantly for Ocean Renewable Power Company, the Project provided a sound basis for advancing a technically and commercially viable OCGen® Power System. The OCGen® Power System is unique in the MHK industry and, in itself, offers distinct advantages of MHK devices that are secured to the seabed using fixed structural frames. Foremost among these advantages are capital and operating cost reductions and increased power extraction by allowing the device to be placed at the most energetic level of the water column.

  7. Integrating Environmental Stewardship

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Integrating Environmental Stewardship Integrating Environmental Stewardship Integrating environmental stewardship to enable the national security mission August 1, 2013 graphic depicting the integration of programs that result in environmental stewardship Many Laboratory functions are integrated with environmental stewardship. This Strategy cannot be effective without systematic integration with other related Laboratory functions, such as site planning, project management, and facilities

  8. Highly efficient terahertz wave modulators by photo-excitation of organics/silicon bilayers

    SciTech Connect (OSTI)

    Yoo, Hyung Keun; Kang, Chul; Hwang, In-Wook; Yoon, Youngwoon; Lee, Kiejin; Kee, Chul-Sik; Lee, Joong Wook

    2014-07-07

    Using hybrid bilayer systems comprising a molecular organic semiconductor and silicon, we achieve optically controllable active terahertz (THz) modulators that exhibit extremely high modulation efficiencies. A modulation efficiency of 98% is achieved from thermally annealed C{sub 60}/silicon bilayers, due to the rapid photo-induced electron transfer from the excited states of the silicon onto the C{sub 60} layer. Furthermore, we demonstrate the broadband modulation of THz waves. The cut-off condition of the system that is determined by the formation of efficient charge separation by the photo-excitation is highly variable, changing the system from insulating to metallic. The phenomenon enables an extremely high modulation bandwidth and rates of electromagnetic waves of interest. The realization of near-perfect modulation efficiency in THz frequencies opens up the possibilities of utilizing active modulators for THz spectroscopy and communications.

  9. Module 3 - Project Scheduling | Department of Energy

    Energy Savers [EERE]

    3 - Project Scheduling Module 3 - Project Scheduling This module focuses on developing the project schedule. This module differentiates between planning and scheduling and outlines basic scheduling concepts, the logic relationships and critical path, and different schedule formats

  10. Module 8 - Reporting | Department of Energy

    Energy Savers [EERE]

    8 - Reporting Module 8 - Reporting This module focuses on the reporting options and requirement of earned value. This module illustrates and defines the different cost performance reports (CPR) available for reporting earned value information

  11. Working with Modules within Perl and Python

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Working with Modules within Perl and Python Working with Modules within Perl and Python It can often be convenient to work with the modules system from within perl or python...

  12. Photovoltaic module with adhesion promoter

    SciTech Connect (OSTI)

    2013-10-08

    Photovoltaic modules with adhesion promoters and methods for fabricating photovoltaic modules with adhesion promoters are described. A photovoltaic module includes a solar cell including a first surface and a second surface, the second surface including a plurality of interspaced back-side contacts. A first glass layer is coupled to the first surface by a first encapsulating layer. A second glass layer is coupled to the second surface by a second encapsulating layer. At least a portion of the second encapsulating layer is bonded directly to the plurality of interspaced back-side contacts by an adhesion promoter.

  13. Alternative Energy Sources - An Interdisciplinary Module for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    An Interdisciplinary Module for Energy Education Alternative Energy Sources - An Interdisciplinary Module for Energy Education Below is information about the student activity...

  14. Alternative Energy Sources -- An Interdisciplinary Module for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - An Interdisciplinary Module for Energy Education Alternative Energy Sources -- An Interdisciplinary Module for Energy Education Find activities focused on renewable energy ...

  15. Village Hydro Technology Module | Open Energy Information

    Open Energy Info (EERE)

    Hydro Technology Module Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Village Hydro Technology Module AgencyCompany Organization: World Bank Sector: Energy Focus...

  16. Biomass Energy Technology Module | Open Energy Information

    Open Energy Info (EERE)

    Technology Module Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Biomass Energy Technology Module AgencyCompany Organization: World Bank Sector: Energy Focus Area:...

  17. Module 6 - Metrics, Performance Measurements and Forecasting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This module focuses on the metrics and performance measurement tools used in Earned Value. This module reviews metrics such as cost and schedule variance along with cost and ...

  18. Ubbink Solar Modules BV | Open Energy Information

    Open Energy Info (EERE)

    Solar Modules BV Place: Cologne, North Rhine-Westphalia, Germany Zip: 50933 Product: German manufacturer of PV modules, main customer was Ecostream that has agreed to purchase...

  19. Module Encapsulation Materials, Processing and Testing (Presentation...

    Office of Scientific and Technical Information (OSTI)

    Module Encapsulation Materials, Processing and Testing (Presentation) Pern, J. 14 SOLAR ENERGY; 36 MATERIALS SCIENCE; ENCAPSULATION; PROCESSING; RELIABILITY; TESTING PV; MODULE...

  20. Photovoltaic Energy Technology Module | Open Energy Information

    Open Energy Info (EERE)

    Technology Module Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Photovoltaic Energy Technology Module AgencyCompany Organization: World Bank Sector: Energy Focus...

  1. Lateral electrodeposition of compositionally modulated metal layers

    DOE Patents [OSTI]

    Hearne, Sean J

    2014-03-25

    A method for making a laterally modulated metallic structure that is compositionally modulated in the lateral direction with respect to a substrate.

  2. Module Encapsulation Materials, Processing and Testing (Presentation)

    SciTech Connect (OSTI)

    Pern, J.

    2008-12-01

    Study of PV module encapsulation materials, processing, and testing shows that overall module reliability is determined by all component materials and processing factors.

  3. PROJECT PROFILE: Support of International Photovoltaic Module...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PROJECT PROFILE: Support of International Photovoltaic Module Quality Assurance Task Force (PVQAT) PROJECT PROFILE: Support of International Photovoltaic Module Quality Assurance ...

  4. Wind Energy Technology Module | Open Energy Information

    Open Energy Info (EERE)

    Technology Module Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Wind Energy Technology Module AgencyCompany Organization: World Bank Sector: Energy Focus Area:...

  5. EMBODY(Environmental Modules Build System Software)

    Energy Science and Technology Software Center (OSTI)

    2009-02-09

    Embody (Environment Modules Build) is a software build tool with integrated support for the environment-modules package. The tool eases and automates the task of building and installing software packages from source or binary distributions, as well as the management of associated modulefiles. An administrator or software pool maintainer has to write a brief script for the installation process. These steps are usually described for manual execution, in a package's README or INSTALL file. It wouldmore » be up to the site administrator to work out a procedure to capture the steps taken. This tool: streamlines and codifies the installation tasks in a common framework; it provides a self-documenting and unified way for maintaining package installations; uses bash shell variables and functions for portability; keeps log files of the proceedings. It is similar in intent and function to other existing tools, such as RPM, but has several novel features tailored for High Performance Computing (HPC) software deployments. The design goal is simplicity and decoupling from RPM's dependencies and its database, which enables coexistence of several builds. Useful on HPC systems, new builds can be deployed centrally to shared file systems and without affecting running jobs.« less

  6. "DOE O 450.2 INTEGRATED SAFETY MANAGEMENT AND DOE P 450.4A INTEGRATED SAFETY MANAGEMENT POLICY FAMILIAR LEVEL

    Broader source: Energy.gov [DOE]

    "The familiar level of this module is divided into two sections. In the first section, we will discuss the additions to DOE M 450.4-1, Integrated Safety Management System Manual, which has been...

  7. Photovoltaic Module Qualification Plus Testing

    SciTech Connect (OSTI)

    Kurtz, S.; Wohlgemuth, J.; Kempe, M.; Bosco, N.; Hacke, P.; Jordan, D.; Miller, D. C.; Silverman, T. J.; Phillips, N.; Earnest, T.; Romero, R.

    2013-12-01

    This report summarizes a set of test methods that are in the midst of being incorporated into IEC 61215 for certification of a module design or other tests that go beyond certification to establish bankability.

  8. Renewable Fuels Module - NEMS Documentation

    Reports and Publications (EIA)

    2014-01-01

    This report documents the objectives, analytical approach, and design of the National Energy Modeling System (NEMS) Renewable Fuels Module (RFM) as it relates to the production of the Annual Energy Outlook forecasts.

  9. Industrial Demand Module - NEMS Documentation

    Reports and Publications (EIA)

    2014-01-01

    Documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Industrial Demand Module. The report catalogues and describes model assumptions, computational methodology, parameter estimation techniques, and model source code.

  10. Residential Demand Module - NEMS Documentation

    Reports and Publications (EIA)

    2014-01-01

    Model Documentation - Documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Residential Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, and FORTRAN source code.

  11. Compact magnetic energy storage module

    DOE Patents [OSTI]

    Prueitt, M.L.

    1994-12-20

    A superconducting compact magnetic energy storage module in which a plurality of superconducting toroids, each having a toroidally wound superconducting winding inside a poloidally wound superconducting winding, are stacked so that the flow of electricity in each toroidally wound superconducting winding is in a direction opposite from the direction of electrical flow in other contiguous superconducting toroids. This allows for minimal magnetic pollution outside of the module. 4 figures.

  12. Solar cell module lamination process

    DOE Patents [OSTI]

    Carey, Paul G. (Mountain View, CA); Thompson, Jesse B. (Brentwood, CA); Aceves, Randy C. (Tracy, CA)

    2002-01-01

    A solar cell module lamination process using fluoropolymers to provide protection from adverse environmental conditions and thus enable more extended use of solar cells, particularly in space applications. A laminate of fluoropolymer material provides a hermetically sealed solar cell module structure that is flexible and very durable. The laminate is virtually chemically inert, highly transmissive in the visible spectrum, dimensionally stable at temperatures up to about 200.degree. C. highly abrasion resistant, and exhibits very little ultra-violet degradation.

  13. Compact magnetic energy storage module

    DOE Patents [OSTI]

    Prueitt, Melvin L.

    1994-01-01

    A superconducting compact magnetic energy storage module in which a plurality of superconducting toroids, each having a toroidally wound superconducting winding inside a poloidally wound superconducting winding, are stacked so that the flow of electricity in each toroidally wound superconducting winding is in a direction opposite from the direction of electrical flow in other contiguous superconducting toroids. This allows for minimal magnetic pollution outside of the module.

  14. Integration of Safety Culture Attributes into EFCOG Work Planning and

    Office of Environmental Management (EM)

    Control Guidance Document | Department of Energy Integration of Safety Culture Attributes into EFCOG Work Planning and Control Guidance Document Integration of Safety Culture Attributes into EFCOG Work Planning and Control Guidance Document May 15, 2013 Presenters: Steele Coddington, NSTec, Las Vegas, and John McDonald, WRPS, Hanford Topics Covered: Integration of Safety Culture (SC) Attributes into EFCOG Work Planning and Control Guidance Document Linking SC to WP&C CRADS EFCOG and DOE

  15. Wide-range voltage modulation

    SciTech Connect (OSTI)

    Rust, K.R.; Wilson, J.M.

    1992-06-01

    The Superconducting Super Collider`s Medium Energy Booster Abort (MEBA) kicker modulator will supply a current pulse to the abort magnets which deflect the proton beam from the MEB ring into a designated beam stop. The abort kicker will be used extensively during testing of the Low Energy Booster (LEB) and the MEB rings. When the Collider is in full operation, the MEBA kicker modulator will abort the MEB beam in the event of a malfunction during the filling process. The modulator must generate a 14-{mu}s wide pulse with a rise time of less than 1 {mu}s, including the delay and jitter times. It must also be able to deliver a current pulse to the magnet proportional to the beam energy at any time during ramp-up of the accelerator. Tracking the beam energy, which increases from 12 GeV at injection to 200 GeV at extraction, requires the modulator to operate over a wide range of voltages (4 kV to 80 kV). A vacuum spark gap and a thyratron have been chosen for test and evaluation as candidate switches for the abort modulator. Modulator design, switching time delay, jitter and pre-fire data are presented.

  16. Integrated resonant micro-optical gyroscope and method of fabrication

    DOE Patents [OSTI]

    Vawter, G. Allen (Albuquerque, NM); Zubrzycki, Walter J. (Sandia Park, NM); Guo, Junpeng (Albuquerque, NM); Sullivan, Charles T. (Albuquerque, NM)

    2006-09-12

    An integrated optic gyroscope is disclosed which is based on a photonic integrated circuit (PIC) having a bidirectional laser source, a pair of optical waveguide phase modulators and a pair of waveguide photodetectors. The PIC can be connected to a passive ring resonator formed either as a coil of optical fiber or as a coiled optical waveguide. The lasing output from each end of the bidirectional laser source is phase modulated and directed around the passive ring resonator in two counterpropagating directions, with a portion of the lasing output then being detected to determine a rotation rate for the integrated optical gyroscope. The coiled optical waveguide can be formed on a silicon, glass or quartz substrate with a silicon nitride core and a silica cladding, while the PIC includes a plurality of III V compound semiconductor layers including one or more quantum well layers which are disordered in the phase modulators and to form passive optical waveguides.

  17. Pressurized solid oxide fuel cell integral air accumular containment

    DOE Patents [OSTI]

    Gillett, James E.; Zafred, Paolo R.; Basel, Richard A.

    2004-02-10

    A fuel cell generator apparatus contains at least one fuel cell subassembly module in a module housing, where the housing is surrounded by a pressure vessel such that there is an air accumulator space, where the apparatus is associated with an air compressor of a turbine/generator/air compressor system, where pressurized air from the compressor passes into the space and occupies the space and then flows to the fuel cells in the subassembly module, where the air accumulation space provides an accumulator to control any unreacted fuel gas that might flow from the module.

  18. NREL: Energy Systems Integration Facility - Systems Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Systems Integration Systems integration considers the relationships among electricity, thermal, and fuel systems and data and information networks to ensure optimal interoperability across the energy spectrum. The Energy Systems Integration Facility's suite of systems integration laboratories provides advanced capabilities for research, development, and demonstration of key components of future energy systems. Photo of a man and a power quality meter system in a laboratory. The Energy Systems

  19. Degradation of Photovoltaic Modules Under High Voltage Stress in the Field: Preprint

    SciTech Connect (OSTI)

    del Cueto, J. A.; Rummel, S. R.

    2010-08-01

    The degradation in performance for eight photovoltaic (PV) modules stressed at high voltage (HV) is presented. Four types of modules--tandem-junction and triple-junction amorphous thin-film silicon, plus crystalline and polycrystalline silicon modules--were tested, with a pair of each biased at opposite polarities. They were deployed outdoors between 2001 and 2009 with their respective HV leakage currents through the module encapsulation continuously monitored with a data acquisition system, along with air temperature and relative humidity. For the first 5 years, all modules were biased continuously at fixed 600 VDC, day and night. In the last 2 years, the modules were step-bias stressed cyclically up and down in voltage between 10 and 600 VDC, in steps of tens to hundreds of volts. This allowed characterization of leakage current versus voltage under a large range of temperature and moisture conditions, facilitating determination of leakage paths. An analysis of the degradation is presented, along with integrated leakage charge. In HV operation: the bulk silicon modules degraded either insignificantly or at rates of 0.1%/yr higher than modules not biased at HV; for the thin-film silicon modules, the added loss rates are insignificant for one type, or 0.2%/yr-0.6%/yr larger for the other type.

  20. Laser frequency modulator for modulating a laser cavity

    DOE Patents [OSTI]

    Erbert, Gaylen V. (Livermore, CA)

    1992-01-01

    The present invention relates to a laser frequency modulator for modulating a laser cavity. It is known in the prior art to utilize a PZT (piezoelectric transducer) element in combination with a mirror to change the cavity length of a laser cavity (which changes the laser frequency). Using a PZT element to drive the mirror directly is adequate at frequencies below 10 kHz. However, in high frequency applications (100 kHz and higher) PZT elements alone do not provide a sufficient change in the cavity length. The present invention utilizes an ultrasonic concentrator with a PZT element and mirror to provide modulation of the laser cavity. With an ultrasonic concentrator, the mirror element at the end of a laser cavity can move at larger amplitudes and higher frequencies.

  1. Apparatus for encapsulating a photovoltaic module

    DOE Patents [OSTI]

    Albright, Scot P. (El Paso, TX); Dugan, Larry M. (Boulder, CO)

    1995-10-24

    The subject inventions concern various photovoltaic module designs to protect the module from horizontal and vertical impacts and degradation of solar cell efficiency caused by moisture. In one design, a plurality of panel supports that are positioned adjacent to the upper panel in a photovoltaic module absorb vertical forces exerted along an axis perpendicular to the upper panel. Other designs employ layers of glass and tempered glass, respectively, to protect the module from vertical impacts. A plurality of button-shaped channels is used around the edges of the photovoltaic module to absorb forces applied to the module along an axis parallel to the module and direct moisture away from the module that could otherwise penetrate the module and adversely affect the cells within the module. A spacer is employed between the upper and lower panels that has a coefficient of thermal expansion substantially equivalent to the coefficient of thermal expansion of at least one of the panels.

  2. Integrated Vehicle Thermal Management | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Management Integrated Vehicle Thermal Management 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon vss028_thornton_2010_o.pdf More Documents & Publications Motor Thermal Control Thermal Management of PHEV / EV Charging Systems Power Electronic Thermal System Performance and Integration

  3. Integrating Environmental Stewardship

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    stewardship Many Laboratory functions are integrated with environmental stewardship. This Strategy cannot be effective without systematic integration with other related Laboratory...

  4. Distribution Grid Integration

    Broader source: Energy.gov [DOE]

    The DOE Systems Integration team funds distribution grid integration research and development (R&D) activities to address the technical issues that surround distribution grid planning,...

  5. Integrated Microfluidics/Electrochemical Sensor System for Field-Monitoring of Toxic Metals

    SciTech Connect (OSTI)

    Lin, Yuehe; Matson, Dean W.; Bennett, Wendy D.; Thrall, K D.; Timchalk, Chuck; W. Ehrfeld

    2000-01-01

    Discusses a miniaturized analytical system based on a microfluidics/electrochemical detection scheme. Individual modules, such as microfabricated piezoelectrically actuated pumps, a micro-membrane separator and a microelectrochemical cell will be integrated onto a portable platform.

  6. Digitally Controlled High Availability Power Supply

    SciTech Connect (OSTI)

    MacNair, David; /SLAC

    2008-09-25

    This paper reports the design and test results on novel topology, high-efficiency, and low operating temperature, 1,320-watt power modules for high availability power supplies. The modules permit parallel operation for N+1 redundancy with hot swap capability. An embedded DSP provides intelligent start-up and shutdown, output regulation, general control and fault detection. PWM modules in the DSP drive the FET switches at 20 to 100 kHz. The DSP also ensures current sharing between modules, synchronized switching, and soft start up for hot swapping. The module voltage and current have dedicated ADCs (>200 kS/sec) to provide pulse-by-pulse output control. A Dual CAN bus interface provides for low cost redundant control paths. Over-rated module components provide high reliability and high efficiency at full load. Low on-resistance FETs replace conventional diodes in the buck regulator. Saturable inductors limit the FET reverse diode current during switching. The modules operate in a two-quadrant mode, allowing bipolar output from complimentary module groups. Controllable, low resistance FETs at the input and output provide fault isolation and allow module hot swapping.

  7. Integrated multiplexed capillary electrophoresis system

    DOE Patents [OSTI]

    Yeung, Edward S. (Ames, IA); Tan, Hongdong (Ames, IA)

    2002-05-14

    The present invention provides an integrated multiplexed capillary electrophoresis system for the analysis of sample analytes. The system integrates and automates multiple components, such as chromatographic columns and separation capillaries, and further provides a detector for the detection of analytes eluting from the separation capillaries. The system employs multiplexed freeze/thaw valves to manage fluid flow and sample movement. The system is computer controlled and is capable of processing samples through reaction, purification, denaturation, pre-concentration, injection, separation and detection in parallel fashion. Methods employing the system of the invention are also provided.

  8. Solid-state membrane module

    DOE Patents [OSTI]

    Gordon, John Howard (Salt Lake City, UT); Taylor, Dale M. (Murray, UT)

    2011-06-07

    Solid-state membrane modules comprising at least one membrane unit, where the membrane unit has a dense mixed conducting oxide layer, and at least one conduit or manifold wherein the conduit or manifold comprises a dense layer and at least one of a porous layer and a slotted layer contiguous with the dense layer. The solid-state membrane modules may be used to carry out a variety of processes including the separating of any ionizable component from a feedstream wherein such ionizable component is capable of being transported through a dense mixed conducting oxide layer of the membrane units making up the membrane modules. For ease of construction, the membrane units may be planar.

  9. FRAMES-2.0 Software System: Frames 2.0 Pest Integration (F2PEST)

    SciTech Connect (OSTI)

    Castleton, Karl J.; Meyer, Philip D.

    2009-06-17

    The implementation of the FRAMES 2.0 F2PEST module is described, including requirements, design, and specifications of the software. This module integrates the PEST parameter estimation software within the FRAMES 2.0 environmental modeling framework. A test case is presented.

  10. The nature and origin of lateral composition modulations in short-period strained-layer superlattices

    SciTech Connect (OSTI)

    NORMAN,A.G.; AHRENKIEL,S.P.; MOUTINHO,H.R.; BALLIF,C.; ALJASSIM,M.M.; MASCARENHAS,A.; FOLLSTAEDT,DAVID M.; LEE,STEPHEN R.; RENO,JOHN L.; JONES,ERIC D.; MIRECKI-MILLUNCHICK,J.; TWESTEN,R.D.

    2000-01-27

    The nature and origin of lateral composition modulations in (AlAs){sub m}(InAs){sub n} SPSs grown by MBE on InP substrates have been investigated by XRD, AFM, and TEM. Strong modulations were observed for growth temperatures between {approx} 540 and 560 C. The maximum strength of modulations was found for SPS samples with InAs mole fraction x (=n/(n+m)) close to {approx} 0.50 and when n {approx} m {approx} 2. The modulations were suppressed at both high and low values of x. For x >0.52 (global compression) the modulations were along the <100> directions in the (001) growth plane. For x < 0.52 (global tension) the modulations were along the two <310> directions rotated {approx} {+-} 27{degree} from [110] in the growth plane. The remarkably constant wavelength of the modulations, between {approx} 20--30 nm, and the different modulation directions observed, suggest that the origin of the modulations is due to surface roughening associated with the high misfit between the individual SPS layers and the InP substrate. Highly uniform unidirectional modulations have been grown, by control of the InAs mole fraction and growth on suitably offcut substrates, which show great promise for application in device structures.

  11. SiC Power Module

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    R&D 100 Entry SiC Power Module 2 R&D 100 Entry SiC Power Module Submitting OrganizatiOn Sandia National Laboratories PO Box 5800, MS 1033 Albuquerque, NM 87185-1033 USA Stanley Atcitty Phone: 505-284-2701 Fax: 505-844-2890 satcitt@sandia.gov AFFIRMATION: I affirm that all information submitted as a part of, or supplemental to, this entry is a fair and accurate representation of this product. _____________________________________ Stanley Atcitty JOint Entry Arkansas Power Electronics

  12. Programmable Multi-Chip Module

    DOE Patents [OSTI]

    Kautz, David (Lenexa, KS); Morgenstern, Howard (Lee's Summit, MO); Blazek, Roy J. (Overland Park, KS)

    2005-05-24

    A multi-chip module comprising a low-temperature co-fired ceramic substrate having a first side on which are mounted active components and a second side on which are mounted passive components, wherein this segregation of components allows for hermetically sealing the active components with a cover while leaving accessible the passive components, and wherein the passive components are secured using a reflow soldering technique and are removable and replaceable so as to make the multi-chip module substantially programmable with regard to the passive components.

  13. Programmable multi-chip module

    DOE Patents [OSTI]

    Kautz, David; Morgenstern, Howard; Blazek, Roy J.

    2004-03-02

    A multi-chip module comprising a low-temperature co-fired ceramic substrate having a first side on which are mounted active components and a second side on which are mounted passive components, wherein this segregation of components allows for hermetically sealing the active components with a cover while leaving accessible the passive components, and wherein the passive components are secured using a reflow soldering technique and are removable and replaceable so as to make the multi-chip module substantially programmable with regard to the passive components.

  14. Programmable Multi-Chip Module

    DOE Patents [OSTI]

    Kautz, David (Lenexa, KS); Morgenstern, Howard (Lee's Summit, MO); Blazek, Roy J. (Overland Park, KS)

    2004-11-16

    A multi-chip module comprising a low-temperature co-fired ceramic substrate having a first side on which are mounted active components and a second side on which are mounted passive components, wherein this segregation of components allows for hermetically sealing the active components with a cover while leaving accessible the passive components, and wherein the passive components are secured using a reflow soldering technique and are removable and replaceable so as to make the multi-chip module substantially programmable with regard to the passive components.

  15. Sandia Energy - Transmission Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transmission Grid Integration Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics Grid Integration Transmission Grid Integration Transmission Grid...

  16. Sandia Energy - Distribution Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Distribution Grid Integration Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics Grid Integration Distribution Grid Integration Distribution Grid...

  17. Transverse-longitudinal integrated resonator

    DOE Patents [OSTI]

    Hutchinson, Donald P. (Knoxville, TN); Simpson, Marcus L. (Knoxville, TN); Simpson, John T. (Knoxville, TN)

    2003-03-11

    A transverse-longitudinal integrated optical resonator (TLIR) is disclosed which includes a waveguide, a first and a second subwavelength resonant grating in the waveguide, and at least one photonic band gap resonant structure (PBG) in the waveguide. The PBG is positioned between the first and second subwavelength resonant gratings. An electro-optic waveguide material may be used to permit tuning the TLIR and to permit the TLIR to perform signal modulation and switching. The TLIR may be positioned on a bulk substrate die with one or more electronic and optical devices and may be communicably connected to the same. A method for fabricating a TLIR including fabricating a broadband reflective grating is disclosed. A method for tuning the TLIR's transmission resonance wavelength is also disclosed.

  18. Residential Buildings Integration Program

    Broader source: Energy.gov [DOE]

    Residential Buildings Integration Program Presentation for the 2013 Building Technologies Office's Program Peer Review

  19. NREL: Transmission Grid Integration - Wind Integration Datasets

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2005, and 2006. These datasets were designed to help energy professionals perform wind integration studies and estimate power production from hypothetical wind plants. For the...

  20. Integrated coherent matter wave circuits

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ryu, C.; Boshier, M. G.

    2015-09-21

    An integrated coherent matter wave circuit is a single device, analogous to an integrated optical circuit, in which coherent de Broglie waves are created and then launched into waveguides where they can be switched, divided, recombined, and detected as they propagate. Applications of such circuits include guided atom interferometers, atomtronic circuits, and precisely controlled delivery of atoms. We report experiments demonstrating integrated circuits for guided coherent matter waves. The circuit elements are created with the painted potential technique, a form of time-averaged optical dipole potential in which a rapidly moving, tightly focused laser beam exerts forces on atoms through theirmoreelectric polarizability. Moreover, the source of coherent matter waves is a BoseEinstein condensate (BEC). Finally, we launch BECs into painted waveguides that guide them around bends and form switches, phase coherent beamsplitters, and closed circuits. These are the basic elements that are needed to engineer arbitrarily complex matter wave circuitry.less

  1. A Comparison of Key PV Backsheet and Module Properties from Fielded Module

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exposures and Accelerated Test Conditions | Department of Energy A Comparison of Key PV Backsheet and Module Properties from Fielded Module Exposures and Accelerated Test Conditions A Comparison of Key PV Backsheet and Module Properties from Fielded Module Exposures and Accelerated Test Conditions Presented at the PV Module Reliability Workshop, February 26 - 27 2013, Golden, Colorado PDF icon pvmrw13_ps5_dupont_gambogi.pdf More Documents & Publications Agenda for the PV Module

  2. Coal Market Module - NEMS Documentation

    Reports and Publications (EIA)

    2014-01-01

    Documents the objectives and the conceptual and methodological approach used in the development of the National Energy Modeling System's (NEMS) Coal Market Module (CMM) used to develop the Annual Energy Outlook 2014 (AEO2014). This report catalogues and describes the assumptions, methodology, estimation techniques, and source code of CMM's two submodules. These are the Coal Production Submodule (CPS) and the Coal Distribution Submodule (CDS).

  3. Commercial Demand Module - NEMS Documentation

    Reports and Publications (EIA)

    2014-01-01

    Documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Commercial Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated through the synthesis and scenario development based on these components.

  4. WRAP module 1 treatment plan

    SciTech Connect (OSTI)

    Mayancsik, B.A.

    1995-05-01

    This document provides the methodology to treat waste in the Waste Receiving and Processing Module 1 facility to meet the Resource Conservation and Recovery Act (RCRA) land disposal restrictions or the Waste Isolation and Pilot Plant waste acceptance criteria. This includes Low-Level Mixed Waste, Transuranic Waste, and Transuranic Mixed Waste.

  5. Method of controlling coherent synchroton radiation-driven degradation of beam quality during bunch length compression

    DOE Patents [OSTI]

    Douglas, David R. (Newport News, VA); Tennant, Christopher D. (Williamsburg, VA)

    2012-07-10

    A method of avoiding CSR induced beam quality defects in free electron laser operation by a) controlling the rate of compression and b) using a novel means of integrating the compression with the remainder of the transport system: both are accomplished by means of dispersion modulation. A large dispersion is created in the penultimate dipole magnet of the compression region leading to rapid compression; this large dispersion is demagnified and dispersion suppression performed in a final small dipole. As a result, the bunch is short for only a small angular extent of the transport, and the resulting CSR excitation is small.

  6. Integrative Analysis of Transgenic Alfalfa (Medicago sativa L...

    Office of Scientific and Technical Information (OSTI)

    Integrative Analysis of Transgenic Alfalfa (Medicago sativa L.) Suggests New Metabolic ... (Medicago sativa L.) Suggests New Metabolic Control Mechanisms for Monolignol ...

  7. Standards for PV Modules and Components -- Recent Developments and Challenges: Preprint

    SciTech Connect (OSTI)

    Wohlgemuth, J. H.

    2012-10-01

    International standards play an important role in the Photovoltaic industry. Since PV is such a global industry it is critical that PV products be measured and qualified the same way everywhere in the world. IEC TC82 has developed and published a number of module and component measurement and qualification standards. These are continually being updated to take advantage of new techniques and equipment as well as better understanding of test requirements. Standards presently being updated include the third edition of IEC 61215, Crystalline Silicon Qualification and the second edition of IEC 61730, PV Module Safety Requirements. New standards under development include qualification of junction boxes, connectors, PV cables, and module integrated electronics as well as for testing the packaging used during transport of modules. After many years of effort, a draft standard on Module Energy Rating should be circulated for review soon. New activities have been undertaken to develop standards for the materials within a module and to develop tests that evaluate modules for wear-out in the field (International PV Module QA Task Force). This paper will discuss these efforts and indicate how the audience can participate in development of international standards.

  8. VHDL Control Routing Simulator

    Energy Science and Technology Software Center (OSTI)

    1995-07-10

    The control router simulates a backplane consisting of up to 16 slot. Slot 0, reserved for a control module (cr-ctrl), generates the system clocks and provides the serial interface to the Gating Logic. The remaining 15 slots (1-15) contain routing modules (cr mod), each having up to 64 serial inputs and outputs with FIFOs. Messages to be transmitted to the Control Router are taken from text files. There are currently 17 such source files. Inmore » the model, the serial output of each source is connected to multiple receivers, so that there are 8 identical messages transmitted to the router for each message file entry.« less

  9. Initial Business Case Analysis of Two Integrated Heat Pump HVAC Systems for Near-Zero-Energy Homes -- Update to Include Analyses of an Economizer Option and Alternative Winter Water Heating Control Option

    SciTech Connect (OSTI)

    Baxter, Van D

    2006-12-01

    The long range strategic goal of the Department of Energy's Building Technologies (DOE/BT) Program is to create, by 2020, technologies and design approaches that enable the construction of net-zero energy homes at low incremental cost (DOE/BT 2005). A net zero energy home (NZEH) is a residential building with greatly reduced needs for energy through efficiency gains, with the balance of energy needs supplied by renewable technologies. While initially focused on new construction, these technologies and design approaches are intended to have application to buildings constructed before 2020 as well resulting in substantial reduction in energy use for all building types and ages. DOE/BT's Emerging Technologies (ET) team is working to support this strategic goal by identifying and developing advanced heating, ventilating, air-conditioning, and water heating (HVAC/WH) technology options applicable to NZEHs. Although the energy efficiency of heating, ventilating, and air-conditioning (HVAC) equipment has increased substantially in recent years, new approaches are needed to continue this trend. Dramatic efficiency improvements are necessary to enable progress toward the NZEH goals, and will require a radical rethinking of opportunities to improve system performance. The large reductions in HVAC energy consumption necessary to support the NZEH goals require a systems-oriented analysis approach that characterizes each element of energy consumption, identifies alternatives, and determines the most cost-effective combination of options. In particular, HVAC equipment must be developed that addresses the range of special needs of NZEH applications in the areas of reduced HVAC and water heating energy use, humidity control, ventilation, uniform comfort, and ease of zoning. In FY05 ORNL conducted an initial Stage 1 (Applied Research) scoping assessment of HVAC/WH systems options for future NZEHs to help DOE/BT identify and prioritize alternative approaches for further development. Eleven system concepts with central air distribution ducting and nine multi-zone systems were selected and their annual and peak demand performance estimated for five locations: Atlanta (mixed-humid), Houston (hot-humid), Phoenix (hot-dry), San Francisco (marine), and Chicago (cold). Performance was estimated by simulating the systems using the TRNSYS simulation engine (Solar Energy Laboratory et al. 2006) in two 1800-ft{sup 2} houses--a Building America (BA) benchmark house and a prototype NZEH taken from BEopt results at the take-off (or crossover) point (i.e., a house incorporating those design features such that further progress towards ZEH is through the addition of photovoltaic power sources, as determined by current BEopt analyses conducted by NREL). Results were summarized in a project report, HVAC Equipment Design options for Near-Zero-Energy Homes--A Stage 2 Scoping Assessment, ORNL/TM-2005/194 (Baxter 2005). The 2005 study report describes the HVAC options considered, the ranking criteria used, and the system rankings by priority. In 2006, the two top-ranked options from the 2005 study, air-source and ground-source versions of an integrated heat pump (IHP) system, were subjected to an initial business case study. The IHPs were subjected to a more rigorous hourly-based assessment of their performance potential compared to a baseline suite of equipment of legally minimum efficiency that provided the same heating, cooling, water heating, demand dehumidification, and ventilation services as the IHPs. Results were summarized in a project report, Initial Business Case Analysis of Two Integrated Heat Pump HVAC Systems for Near-Zero-Energy Homes, ORNL/TM-2006/130 (Baxter 2006). The present report is an update to that document. Its primary purpose is to summarize results of an analysis of the potential of adding an outdoor air economizer operating mode to the IHPs to take advantage of free cooling (using outdoor air to cool the house) whenever possible. In addition it provides some additional detail for an alternative winter water heating/space heating (WH/SH) control strategy briefly described in the original report and corrects some minor errors.

  10. Microsystem enabled photovoltaic modules and systems

    DOE Patents [OSTI]

    Nielson, Gregory N; Sweatt, William C; Okandan, Murat

    2015-05-12

    A microsystem enabled photovoltaic (MEPV) module including: an absorber layer; a fixed optic layer coupled to the absorber layer; a translatable optic layer; a translation stage coupled between the fixed and translatable optic layers; and a motion processor electrically coupled to the translation stage to controls motion of the translatable optic layer relative to the fixed optic layer. The absorber layer includes an array of photovoltaic (PV) elements. The fixed optic layer includes an array of quasi-collimating (QC) micro-optical elements designed and arranged to couple incident radiation from an intermediate image formed by the translatable optic layer into one of the PV elements such that it is quasi-collimated. The translatable optic layer includes an array of focusing micro-optical elements corresponding to the QC micro-optical element array. Each focusing micro-optical element is designed to produce a quasi-telecentric intermediate image from substantially collimated radiation incident within a predetermined field of view.

  11. High power solid state laser modulator

    DOE Patents [OSTI]

    Birx, Daniel L.; Ball, Don G.; Cook, Edward G.

    2004-04-27

    A multi-stage magnetic modulator provides a pulse train of .+-.40 kV electrical pulses at a 5-7 kHz repetition rate to a metal vapor laser. A fractional turn transformer steps up the voltage by a factor of 80 to 1 and magnetic pulse compression is used to reduce the pulse width of the pulse train. The transformer is fabricated utilizing a rod and plate stack type of construction to achieve a high packing factor. The pulses are controlled by an SCR stack where a plurality of SCRs are electrically connected in parallel, each SCR electrically connected to a saturable inductor, all saturable inductors being wound on the same core of magnetic material for enhanced power handling characteristics.

  12. Portal dosimetry for VMAT using integrated images obtained during treatment

    SciTech Connect (OSTI)

    Bedford, James L. Hanson, Ian M.; Hansen, Vibeke Nordmark

    2014-02-15

    Purpose: Portal dosimetry provides an accurate and convenient means of verifying dose delivered to the patient. A simple method for carrying out portal dosimetry for volumetric modulated arc therapy (VMAT) is described, together with phantom measurements demonstrating the validity of the approach. Methods: Portal images were predicted by projecting dose in the isocentric plane through to the portal image plane, with exponential attenuation and convolution with a double-Gaussian scatter function. Appropriate parameters for the projection were selected by fitting the calculation model to portal images measured on an iViewGT portal imager (Elekta AB, Stockholm, Sweden) for a variety of phantom thicknesses and field sizes. This model was then used to predict the portal image resulting from each control point of a VMAT arc. Finally, all these control point images were summed to predict the overall integrated portal image for the whole arc. The calculated and measured integrated portal images were compared for three lung and three esophagus plans delivered to a thorax phantom, and three prostate plans delivered to a homogeneous phantom, using a gamma index for 3% and 3 mm. A 0.6 cm{sup 3} ionization chamber was used to verify the planned isocentric dose. The sensitivity of this method to errors in monitor units, field shaping, gantry angle, and phantom position was also evaluated by means of computer simulations. Results: The calculation model for portal dose prediction was able to accurately compute the portal images due to simple square fields delivered to solid water phantoms. The integrated images of VMAT treatments delivered to phantoms were also correctly predicted by the method. The proportion of the images with a gamma index of less than unity was 93.7% 3.0% (1SD) and the difference between isocenter dose calculated by the planning system and measured by the ionization chamber was 0.8% 1.0%. The method was highly sensitive to errors in monitor units and field shape, but less sensitive to errors in gantry angle or phantom position. Conclusions: This method of predicting integrated portal images provides a convenient means of verifying dose delivered using VMAT, with minimal image acquisition and data processing requirements.

  13. Microfluidic hubs, systems, and methods for interface fluidic modules

    SciTech Connect (OSTI)

    Bartsch, Michael S; Claudnic, Mark R; Kim, Hanyoup; Patel, Kamlesh D; Renzi, Ronald F; Van De Vreugde, James L

    2015-01-27

    Embodiments of microfluidic hubs and systems are described that may be used to connect fluidic modules. A space between surfaces may be set by fixtures described herein. In some examples a fixture may set substrate-to-substrate spacing based on a distance between registration surfaces on which the respective substrates rest. Fluidic interfaces are described, including examples where fluid conduits (e.g. capillaries) extend into the fixture to the space between surfaces. Droplets of fluid may be introduced to and/or removed from microfluidic hubs described herein, and fluid actuators may be used to move droplets within the space between surfaces. Continuous flow modules may be integrated with the hubs in some examples.

  14. Smart substrates: Making multi-chip modules smarter

    SciTech Connect (OSTI)

    Wunsch, T.F.; Treece, R.K.

    1995-05-01

    A novel multi-chip module (MCM) design and manufacturing methodology which utilizes active CMOS circuits in what is normally a passive substrate realizes the `smart substrate` for use in highly testable, high reliability MCMS. The active devices are used to test the bare substrate, diagnose assembly errors or integrated circuit (IC) failures that require rework, and improve the testability of the final MCM assembly. A static random access memory (SRAM) MCM has been designed and fabricated in Sandia Microelectronics Development Laboratory in order to demonstrate the technical feasibility of this concept and to examine design and manufacturing issues which will ultimately determine the economic viability of this approach. The smart substrate memory MCM represents a first in MCM packaging. At the time the first modules were fabricated, no other company or MCM vendor had incorporated active devices in the substrate to improve manufacturability and testability, and thereby improve MCM reliability and reduce cost.

  15. Integrated Biorefineries | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Conversion Technology Loading... Primary Feedstock Loading... Primary Product Loading... Project Scale Loading... Choose map view BETO Biorefinery Investments by State Display by Project Show Map Labels The interactive map above highlights biorefinery projects funded by the Bioenergy Technologies Office at pilot, demonstration, and pioneer scales. Adjust the map filters to control the information displayed. Integrated biorefineries use novel technologies and diverse biomass feedstocks-requiring

  16. Memorandum, NNSA Activity Level Work Planning & Control Processes...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    January 23, 2006 Memorandum from Thomas P. D'Agostino, Assistant Deputy Administrator for ... More Documents & Publications DOE-HDBK-1211-2014 Order Module--DOE G 450.4-1B, INTEGRATED ...

  17. Interface module for transverse energy input to dye laser modules

    DOE Patents [OSTI]

    English, R.E. Jr.; Johnson, S.A.

    1994-10-11

    An interface module for transverse energy input to dye laser modules is provided particularly for the purpose of delivering enhancing transverse energy beams in the form of illumination bar to the lasing zone of a dye laser device, in particular to a dye laser amplifier. The preferred interface module includes an optical fiber array having a plurality of optical fibers arrayed in a co-planar fashion with their distal ends receiving coherent laser energy from an enhancing laser source, and their proximal ends delivered into a relay structure. The proximal ends of the optical fibers are arrayed so as to be coplanar and to be aimed generally at a common point. The transverse energy beam array delivered from the optical fiber array is acted upon by an optical element array to produce an illumination bar which has a cross section in the form of a elongated rectangle at the position of the lasing window. The illumination bar is selected to have substantially uniform intensity throughout. 5 figs.

  18. Interface module for transverse energy input to dye laser modules

    DOE Patents [OSTI]

    English, Jr., Ronald E.; Johnson, Steve A.

    1994-01-01

    An interface module (10) for transverse energy input to dye laser modules is provided particularly for the purpose of delivering enhancing transverse energy beams (36) in the form of illumination bar (54) to the lasing zone (18) of a dye laser device, in particular to a dye laser amplifier (12). The preferred interface module (10) includes an optical fiber array (30) having a plurality of optical fibers (38) arrayed in a co-planar fashion with their distal ends (44) receiving coherent laser energy from an enhancing laser source (46), and their proximal ends (4) delivered into a relay structure (3). The proximal ends (42) of the optical fibers (38) are arrayed so as to be coplanar and to be aimed generally at a common point. The transverse energy beam array (36) delivered from the optical fiber array (30) is acted upon by an optical element array (34) to produce an illumination bar (54) which has a cross section in the form of a elongated rectangle at the position of the lasing window (18). The illumination bar (54) is selected to have substantially uniform intensity throughout.

  19. PV module mounting method and mounting assembly

    DOE Patents [OSTI]

    Lenox, Carl J.S.; Johnson, Kurt M.

    2013-04-23

    A method for mounting PV modules to a deck includes selecting PV module layout pattern so that adjacent PV module edges are spaced apart. PV mounting and support assemblies are secured to the deck according to the layout pattern using fasteners extending into the deck. The PV modules are placed on the PV mounting and support assemblies. Retaining elements are located over and secured against the upper peripheral edge surfaces of the PV modules so to secure them to the deck with the peripheral edges of the PV modules spaced apart from the deck. In some examples a PV module mounting assembly, for use on a shingled deck, comprises flashing, a base mountable on the flashing, a deck-penetrating fastener engageable with the base and securable to the deck so to secure the flashing and the base to the shingled deck, and PV module mounting hardware securable to the base.

  20. Extension Modules for the Python Interpretive language

    Energy Science and Technology Software Center (OSTI)

    2006-12-29

    Python is an interpreted computer language, freely available to all, which may be extended by user developed "modules". These modules ay be written in a complied language such as 'C', and then linked into the Python program

  1. Control the Present

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Control the Present Image of water sampling trip embarking downstream from Otowi Bridge onto the Rio Grande with text overlay of 'How does LANL minimize the impacts from ongoing activities?' Control the Present Home Integrating Environmental Stewardship Something in the air? Protections: Sediment Protections: Sampling

  2. Evaluation of Manufacturability of Embedded Sensors and Controls with Canned Rotor Pump System

    SciTech Connect (OSTI)

    Kisner, Roger A; Fugate, David L; Melin, Alexander M; Holcomb, David Eugene; Wilson, Dane F; Silva, Pamela C; Cruz Molina, Carola

    2013-07-01

    This report documents the current status of fabrication and assembly planning for the magnetic bearing, canned rotor pump being used as a demonstration platform for deeply integrating I&C into nuclear power plant components. The report identifies material choices and fabrication sequences for all of the required parts and the issues that need to be either resolved or accommodated during the manufacturing process. Down selection between material options has not yet been performed. Potential suppliers for all of the necessary materials have also been identified. The assembly evaluation begins by logically subdividing the pump into modules, which are themselves decomposed into individual parts. Potential materials and fabrication processes for each part in turn are then evaluated. The evaluation process includes assessment of the environmental compatibility requirements and the tolerances available for the selected fabrication processes. A description of the pump power/control electronics is also provided. The report also includes exploded views of the modules that show the integration of the various parts into modules that are then assembled to form the pump. Emphasis has been placed on thermal environment compatibility and the part dimensional changes during heat-up. No insurmountable fabrication or assembly challenges have been identified.

  3. Tunable Surface Plasmon Infrared Modulator - Energy Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Industries Infrared Modulator IR Counter Measures Photonic Circuitry Metamaterials Chemical Sensing Variable Attenuation Patents and Patent Applications ID Number...

  4. Module: Estimating Historical Emissions from Deforestation |...

    Open Energy Info (EERE)

    Website: www.leafasia.orgtoolstechnical-guidance-series-estimating-historical Cost: Free Language: English Module: Estimating Historical Emissions from Deforestation Screenshot...

  5. High Heat Flux Thermoelectric Module Using Standard Bulk Material...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heat Flux Thermoelectric Module Using Standard Bulk Material High Heat Flux Thermoelectric Module Using Standard Bulk Material Presents high heat flux thermoelectric module design...

  6. Project Execution Plan Review Module (RM) | Department of Energy

    Office of Environmental Management (EM)

    Review Module (RM) Project Execution Plan Review Module (RM) The Project Execution Plan (PEP) Review Module (RM) is a tool that assists DOE federal project review teams in...

  7. Automated Controlled-Potential Coulometer for the IAEA

    SciTech Connect (OSTI)

    Cordaro, J.V.; Holland, M.K.; Fields, T.

    1998-01-29

    An automated controlled-potential coulometer has been developed at the Savannah River Site (SRS) for the determination of plutonium for use at the International Atomic Energy Agency`s (IAEA) Safeguards Analytical Laboratory in Siebersdorf, Austria. The system is functionally the same as earlier systems built for use at the Savannah River Site`s Analytical Laboratory. All electronic circuits and printed circuits boards have been upgraded with state-of-the-art components. A higher amperage potentiostat with improved control stability has been developed. The system achieves electronic calibration accuracy and linearity of better than 0.01 percent, with a precision and accuracy better than 0.1 percent has been demonstrated. This coulometer features electrical calibration of the integration system, electrolysis current background corrections, and control-potential adjustment capabilities. These capabilities allow application of the system to plutonium measurements without chemical standards, achieving traceability to the international measurement system through electrical standards and Faraday`s constant. the chemist is provided with the capability to perform measurements without depending upon chemical standards, which is a significant advantage for applications such as characterization of primary and secondary standards. Additional benefits include reducing operating cost to procure, prepare and measure calibration standards and the corresponding decrease in radioactive waste generation. The design and documentation of the automated instrument are provided herein. Each individual module`s operation, wiring, layout, and alignment are described. Interconnection of the modules and system calibration are discussed. A complete set of prints and a list of associated parts are included.

  8. A Stability of LCLS Linac Modulators

    SciTech Connect (OSTI)

    Decker, F.-J.; Krasnykh, A.; Morris, B.; Nguyen, M.; /SLAC

    2012-06-13

    Information concerning to a stability of LCLS RF linac modulators is allocated in this paper. In general a 'pulse-to-pulse' modulator stability (and RF phase as well) is acceptable for the LCLS commission and FEL programs. Further modulator stability improvements are possible and approaches are discussed based on our experimental results.

  9. Development of GREET Catalyst Module

    SciTech Connect (OSTI)

    Wang, Zhichao; Benavides, Pahola T.; Dunn, Jennifer B.; Cronauer, Donald C.

    2015-09-01

    In this report, we develop energy and material flows for the production of five different catalysts (tar reforming, alcohol synthesis, Zeolite Socony Mobil-5 [ZSM-5], Mo/Co/ ?-Al2O3, and Pt/ ?-Al2O3) and two chemicals (olivine, dimethyl ether of polyethylene glycol [DEPG]). These compounds and catalysts are now included in the Greenhouse Gases, Regulated Emissions and Energy Use in Transportation (GREET) catalyst module.

  10. Pulse amplitude modulated chlorophyll fluorometer

    DOE Patents [OSTI]

    Greenbaum, Elias; Wu, Jie

    2015-12-29

    Chlorophyll fluorometry may be used for detecting toxins in a sample because of changes in micro algae. A portable lab on a chip ("LOAC") based chlorophyll fluorometer may be used for toxin detection and environmental monitoring. In particular, the system may include a microfluidic pulse amplitude modulated ("PAM") chlorophyll fluorometer. The LOAC PAM chlorophyll fluorometer may analyze microalgae and cyanobacteria that grow naturally in source drinking water.

  11. Gas separation membrane module assembly

    DOE Patents [OSTI]

    Wynn, Nicholas P (Palo Alto, CA); Fulton, Donald A. (Fairfield, CA)

    2009-03-31

    A gas-separation membrane module assembly and a gas-separation process using the assembly. The assembly includes a set of tubes, each containing gas-separation membranes, arranged within a housing. The housing contains a tube sheet that divides the space within the housing into two gas-tight spaces. A permeate collection system within the housing gathers permeate gas from the tubes for discharge from the housing.

  12. Solid-state membrane module

    DOE Patents [OSTI]

    Hinklin, Thomas Ray; Lewinsohn, Charles Arthur

    2015-06-30

    A module for separating oxygen from an oxygen-containing gaseous mixture comprising planar solid-state membrane units, each membrane unit comprising planar dense mixed conducting oxides layers, planar channel-free porous support layers, and one or more planar intermediate support layers comprising at least one channeled porous support layer. The porosity of the planar channeled porous support layers is less than the porosity of the planar channel-free porous support layers.

  13. Method for pressure modulation of turbine sidewall cavities

    DOE Patents [OSTI]

    Leone, Sal Albert (Scotia, NY); Book, Matthew David (Altamont, NY); Banares, Christopher R. (Schenectady, NY)

    2002-01-01

    A method is provided for controlling cooling air flow for pressure modulation of turbine components, such as the turbine outer sidewall cavities. The pressure at which cooling and purge air is supplied to the turbine outer side wall cavities is modulated, based on compressor discharge pressure (Pcd), thereby to generally maintain the back flow margin (BFM) so as to minimize excessive leakage and the consequent performance deterioration. In an exemplary embodiment, the air pressure within the third stage outer side wall cavity and the air pressure within the fourth stage outer side wall cavity are each controlled to a respective value that is a respective prescribed percentage of the concurrent compressor discharge pressure. The prescribed percentage may be determined from a ratio of the respective outer side wall pressure to compressor discharge pressure at Cold Day Turn Down (CDTD) required to provide a prescribed back flow margin.

  14. System for pressure modulation of turbine sidewall cavities

    DOE Patents [OSTI]

    Leone, Sal Albert (Scotia, NY); Book, Matthew David (Altamont, NY); Banares, Christopher R. (Schenectady, NY)

    2002-01-01

    A system and method are provided for controlling cooling air flow for pressure modulation of turbine components, such as the turbine outer sidewall cavities. The pressure at which cooling and purge air is supplied to the turbine outer side wall cavities is modulated, based on compressor discharge pressure (Pcd), thereby to generally maintain the back flow margin (BFM) so as to minimize excessive leakage and the consequent performance deterioration. In an exemplary embodiment, the air pressure within the third stage outer side wall cavity and the air pressure within the fourth stage outer side wall cavity are each controlled to a respective value that is a respective prescribed percentage of the concurrent compressor discharge pressure. The prescribed percentage may be determined from a ratio of the respective outer side wall pressure to compressor discharge pressure at Cold Day Turn Down (CDTD) required to provide a prescribed back flow margin.

  15. NREL: Transmission Grid Integration - Solar Integration National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    solar generation integration studies by providing modeled, coherent sub-hour solar power data, information, and tools. Sub-hour solar power data are used in the Western Wind...

  16. Cyber Securing Control Systems

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industrial Control Systems Integration into the DoD Networks A Briefing in Response to House Report 113-102, Accompanying the FY14 National Defense Authorization Act Unclassified - Distribution Statement A August, 2015 Cyber Securing Control Systems Acquisition, Technology and Logistics 2 DoD Scope of Platform IT & Control Systems * Acquisitions / Weapon Systems - H,M & E (ships / subs, missiles, UVs, etc.) - Training Simulators, 3D printing, etc. * EI&E - Buildings & linear

  17. Method and split cavity oscillator/modulator to generate pulsed particle beams and electromagnetic fields

    DOE Patents [OSTI]

    Clark, M. Collins (Albuquerque, NM); Coleman, P. Dale (Albuquerque, NM); Marder, Barry M. (Albuquerque, NM)

    1993-01-01

    A compact device called the split cavity modulator whose self-generated oscillating electromagnetic field converts a steady particle beam into a modulated particle beam. The particle beam experiences both signs of the oscillating electric field during the transit through the split cavity modulator. The modulated particle beam can then be used to generate microwaves at that frequency and through the use of extractors, high efficiency extraction of microwave power is enabled. The modulated beam and the microwave frequency can be varied by the placement of resistive wires at nodes of oscillation within the cavity. The short beam travel length through the cavity permit higher currents because both space charge and pinching limitations are reduced. The need for an applied magnetic field to control the beam has been eliminated.

  18. Temperature-Dependent Light-Stabilized States in Thin-Film PV Modules: Preprint

    SciTech Connect (OSTI)

    Deceglie, Michael G.; Silverman, Timothy J.; Marion, Bill; Kurtz, Sarah R.

    2015-09-17

    Thin-film photovoltaic modules are known to exhibit light-induced transient behavior which interferes with accurate and repeatable measurements of power. Typically power measurements are made after a light exposure in order to target a 'light state' of the module that is representative of outdoor performance. Here we show that the concept of a unique light state is poorly defined for both CIGS and CdTe modules. Instead we find that their metastable state after a light exposure can depend on the temperature of the module during the exposure. We observe changes in power as large as 5.8% for a 20 degrees C difference in light exposure temperature. These results lead us to conclude that for applications in which reproducibility and repeatability are critical, module temperature should be tightly controlled during light exposure.

  19. Method and split cavity oscillator/modulator to generate pulsed particle beams and electromagnetic fields

    DOE Patents [OSTI]

    Clark, M.C.; Coleman, P.D.; Marder, B.M.

    1993-08-10

    A compact device called the split cavity modulator whose self-generated oscillating electromagnetic field converts a steady particle beam into a modulated particle beam. The particle beam experiences both signs of the oscillating electric field during the transit through the split cavity modulator. The modulated particle beam can then be used to generate microwaves at that frequency and through the use of extractors, high efficiency extraction of microwave power is enabled. The modulated beam and the microwave frequency can be varied by the placement of resistive wires at nodes of oscillation within the cavity. The short beam travel length through the cavity permit higher currents because both space charge and pinching limitations are reduced. The need for an applied magnetic field to control the beam has been eliminated.

  20. Integrated rural energy planning

    SciTech Connect (OSTI)

    El Mahgary, Y.; Biswas, A.K.

    1985-01-01

    This book presents papers on integrated community energy systems in developing countries. Topics considered include an integrated rural energy system in Sri Lanka, rural energy systems in Indonesia, integrated rural food-energy systems and technology diffusion in India, bringing energy to the rural sector in the Philippines, the development of a new energy village in China, the Niaga Wolof experimental rural energy center, designing a model rural energy system for Nigeria, the Basaisa village integrated field project, a rural energy project in Tanzania, rural energy development in Columbia, and guidelines for the planning, development and operation of integrated rural energy projects.

  1. Argonne's SpEC Module | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SpEC Module Share Topic Energy Energy efficiency Vehicles

  2. Integral Fast Reactor fuel pin processor

    SciTech Connect (OSTI)

    Levinskas, D.

    1993-03-01

    This report discusses the pin processor which receives metal alloy pins cast from recycled Integral Fast Reactor (IFR) fuel and prepares them for assembly into new IFR fuel elements. Either full length as-cast or precut pins are fed to the machine from a magazine, cut if necessary, and measured for length, weight, diameter and deviation from straightness. Accepted pins are loaded into cladding jackets located in a magazine, while rejects and cutting scraps are separated into trays. The magazines, trays, and the individual modules that perform the different machine functions are assembled and removed using remote manipulators and master-slaves.

  3. Integral Fast Reactor fuel pin processor

    SciTech Connect (OSTI)

    Levinskas, D.

    1993-01-01

    This report discusses the pin processor which receives metal alloy pins cast from recycled Integral Fast Reactor (IFR) fuel and prepares them for assembly into new IFR fuel elements. Either full length as-cast or precut pins are fed to the machine from a magazine, cut if necessary, and measured for length, weight, diameter and deviation from straightness. Accepted pins are loaded into cladding jackets located in a magazine, while rejects and cutting scraps are separated into trays. The magazines, trays, and the individual modules that perform the different machine functions are assembled and removed using remote manipulators and master-slaves.

  4. Combination & Integration of DPF-SCR Aftertreatment Technologies |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Aftertreatment Technologies Combination & Integration of DPF-SCR Aftertreatment Technologies Work is undertaken to examine the feasibility of integrating SCR and DPF technologies for the next generation of emission control systems for on-road heavy-truck application PDF icon deer11_rappe.pdf More Documents & Publications Combination and Integration of DPF-SCR Aftertreatment Technologies Combination & Integration of DPF-SCR Aftertreatment

  5. MHD Integrated Topping Cycle Project

    SciTech Connect (OSTI)

    Not Available

    1992-01-01

    The overall objective of the project is to design and construct prototypical hardware for an integrated MHD topping cycle, and conduct long duration proof-of-concept tests of integrated system at the US DOE Component Development and Integration Facility in Butte, Montana. The results of the long duration tests will augment the existing engineering design data base on MHD power train reliability, availability, maintainability, and performance, and will serve as a basis for scaling up the topping cycle design to the next level of development, an early commercial scale power plant retrofit. The components of the MHD power train to be designed, fabricated, and tested include: A slagging coal combustor with a rated capacity of 50 MW thermal input, capable of operation with an Eastern (Illinois {number sign}6) or Western (Montana Rosebud) coal, a segmented supersonic nozzle, a supersonic MHD channel capable of generating at least 1.5 MW of electrical power, a segmented supersonic diffuser section to interface the channel with existing facility quench and exhaust systems, a complete set of current control circuits for local diagonal current control along the channel, and a set of current consolidation circuits to interface the channel with the existing facility inverter.

  6. Energy Efficiency at Home - An Interdisciplinary Module for Energy...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Alternative Energy Sources - An Interdisciplinary Module for Energy Education Alternative Energy Sources - An Interdisciplinary Module for Energy ...

  7. Microsoft PowerPoint - FinalModule8.ppt

    Office of Environmental Management (EM)

    8: Reporting Prepared by: Module 8 - Reporting 1 Prepared by: Booz Allen Hamilton Module 8: Government Required Reports Welcome to Module 8. The objective of this module is to introduce you to Government required reports. The Topics that will be addressed in this Module include: * Define Cost Performance Report (CPR) * Define Cost/Schedule Status Report (C/SSR) Module 8 - Reporting 2 Prepared by: Booz Allen Hamilton Review of Previous Modules In the previous seven modules, we discussed the

  8. Role of soil microbial processes in integrated pest management

    SciTech Connect (OSTI)

    Francis, A.J.

    1987-01-01

    Soil microorganisms play a significant role in the carbon, nitrogen, phosphorus, and sulfur cycles in nature and are critical to the functioning of ecosystems. Microorganisms affect plant growth directly by regulating the availability of plant nutrients in soil, or indirectly by affecting the population dynamics of plant pathogens in soil. Any adverse effect on soil microorganisms or on the microbial processes will affect the soil fertility, availability of plant nutrients and the overall biogeochemical cycling of elements in nature. Soil microorganisms are responsible for the degradation and detoxification of pesticides; they control many insect pests, nematodes, and other plant pathogenic microorganisms by parasitism, competition, production of antibiotics and other toxic substances. Also, they regulate the availability of major and minor nutrients as well as essential elements. The long-term effects of continuous and, in some instances, excessive application of pesticides on soil fertility is not fully understood. Although much information is available on the integrated pest management (IPM) system, we have very little understanding of the extent of soil microbial processes which modulate the overall effectiveness of various strategies employed in IPM. The purpose of this paper is to review briefly the key microbial processes and their relationship to the IPM system.

  9. Tank Waste Remediation System Projects Document Control Plan

    SciTech Connect (OSTI)

    Slater, G.D.; Halverson, T.G.

    1994-09-30

    The purpose of this Tank Waste Remediation System Projects Document Control Plan is to provide requirements and responsibilities for document control for the Hanford Waste Vitrification Plant (HWVP) Project and the Initial Pretreatment Module (IPM) Project.

  10. Hanford site integrated pest management plan

    SciTech Connect (OSTI)

    Giddings, R.F.

    1996-04-09

    The Hanford Site Integrated Pest Management Plan (HSIPMP) defines the Integrated Pest Management (IPM) decision process and subsequent strategies by which pest problems are to be solved at all Hanford Site properties per DOE-RL Site Infrastructure Division memo (WHC 9505090). The HSIPMP defines the roles that contractor organizations play in supporting the IPM process. In short the IPM process anticipates and prevents pest activity and infestation by combining several strategies to achieve long-term pest control solutions.

  11. EERE & Buildings to Grid Integration

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EERE & Buildings to Grid Integration Joe Hagerman, Senior Advisor DOE Building Technologies Office July 22, 2015 EERE: Office of Energy Efficiency and Renewable Energy BTO: Building Technologies Office (Portfolio - RD&D, Deployment, Regulatory) Opportunity to Control Building Loads is Key to Integrating EE & RE effectively with the GRID! Buildings consume 74% electricity produced in the US (CBECS 2009) Buildings have the potential to reduce their consumption by 20%- 30% (18 quads or

  12. Electrostatically actuatable light modulating device

    DOE Patents [OSTI]

    Koehler, Dale R. (1332 Wagontrain Dr., Albuquerque, NM 87123)

    1991-01-01

    The electrostatically actuatable light modulator utilizes an opaque substrate plate patterned with an array of aperture cells, the cells comprised of physically positionable dielectric shutters and electrostatic actuators. With incorporation of a light source and a viewing screen, a projection display system is effected. Inclusion of a color filter array aligned with the aperture cells accomplishes a color display. The system is realized in terms of a silicon based manufacturing technology allowing fabrication of a high resolution capability in a physically small device which with the utilization of included magnification optics allows both large and small projection displays.

  13. Using Accelerated Testing To Predict Module Reliability: Preprint

    SciTech Connect (OSTI)

    Wohlgemuth, J. H.; Kurtz, S.

    2011-07-01

    Long-term reliability is critical to the cost effectiveness and commercial success of photovoltaic (PV) products. Today most PV modules are warranted for 25 years, but there is no accepted test protocol to validate a 25-year lifetime. The qualification tests do an excellent job of identifying design, materials, and process flaws that are likely to lead to premature failure (infant mortality), but they are not designed to test for wear-out mechanisms that limit lifetime. This paper presents a method for evaluating the ability of a new PV module technology to survive long-term exposure to specific stresses. The authors propose the use of baseline technologies with proven long-term field performance as controls in the accelerated stress tests. The performance of new-technology modules can then be evaluated versus that of proven-technology modules. If the new-technology demonstrates equivalent or superior performance to the proven one, there is a high likelihood that they will survive versus the tested stress in the real world.

  14. Radiological Control Technician Training

    Energy Savers [EERE]

    Documentation ............................................................................2.01-1 Module 2.02 Communication Systems ..................................................................................2.02-1 Module 2.03 Counting Errors and Statistics ..........................................................................2.03-1 Module 2.04 Dosimetry .........................................................................................................2.04-1 Module 2.05

  15. Radiological Control Technician Training

    Energy Savers [EERE]

    Documentation ............................................................................2.01-1 Module 2.02 Communication Systems ..................................................................................2.02-1 Module 2.03 Counting Errors and Statistics ..........................................................................2.03-1 Module 2.04 Dosimetry .........................................................................................................2.04-1 Module 2.05

  16. Electrically tunable terahertz wave modulator based on complementary metamaterial and graphene

    SciTech Connect (OSTI)

    He, Xun-jun, E-mail: hexunjun@hrbust.edu.cn; Li, Teng-yue; Wang, Lei; Wang, Jian-min; Jiang, Jiu-xing [Department of Electronic Science and technology, School of Applied Sciences, Harbin University of Science and Technology, Harbin 150080 (China); Yang, Guo-hui; Meng, Fan-yi; Wu, Qun [Department of Electronic and Communications Engineering, School of Electronic Information Engineering, Harbin Institute of Technology, Harbin 150001 (China)

    2014-05-07

    In this paper, we design and numerically demonstrate an electrically controllable light-matter interaction in a hybrid material/metamaterial system consisting of an artificially constructed cross cut-wire complementary metamaterial and an atomically thin graphene layer to realize terahertz (THz) wave modulator. By applying a bias voltage between the metamaterial and the graphene layer, this modulator can dynamically control the amplitude and phase of the transmitted wave near 1.43 THz. Moreover, the distributions of current density show that this large modulation depth can be attributed to the resonant electric field parallel to the graphene sheet. Therefore, the modulator performance indicates the enormous potential of graphene for developing sophisticated THz communication systems.

  17. New Energy Systems Integration Facility (ESIF) to Help Modernize the Grid |

    Office of Environmental Management (EM)

    Department of Energy Systems Integration Facility (ESIF) to Help Modernize the Grid New Energy Systems Integration Facility (ESIF) to Help Modernize the Grid September 11, 2013 - 11:09am Addthis The new Energy Systems Integration Facility is the nation's first facility to help both public and private sector researchers scale-up promising clean energy technologies -- from solar modules and wind turbines to electric vehicles and efficient, interactive home appliances -- and test how they

  18. In-line thermoelectric module

    DOE Patents [OSTI]

    Pento, Robert (Algonquin, IL); Marks, James E. (Glenville, NY); Staffanson, Clifford D. (S. Glens Falls, NY)

    2000-01-01

    A thermoelectric module with a plurality of electricity generating units each having a first end and a second end, the units being arranged first end to second end along an in-line axis. Each unit includes first and second elements each made of a thermoelectric material, an electrically conductive hot member arranged to heat one side of the first element, and an electrically conductive cold member arranged to cool another side of the first element and to cool one side of the second element. The hot member, the first element, the cold member and the second element are supported in a fixture, are electrically connected respectively to provide an electricity generating unit, and are arranged respectively in positions along the in-line axis. The individual components of each generating unit and the respective generating units are clamped in their in-line positions by a loading bolt at one end of the fixture and a stop wall at the other end of the fixture. The hot members may have a T-shape and the cold members an hourglass shape to facilitate heat transfer. The direction of heat transfer through the hot members may be perpendicular to the direction of heat transfer through the cold members, and both of these heat transfer directions may be perpendicular to the direction of current flow through the module.

  19. Binary module test. Final report

    SciTech Connect (OSTI)

    Schilling, J.R.; Colley, T.C.; Pundyk, J.

    1980-12-01

    The objective of this project was to design and test a binary loop module representative of and scaleable to commercial size units. The design was based on state-of-the-art heat exchanger technology, and the purpose of the tests was to confirm performance of a supercritical boiling cycle using isobutane and a mixture of isobutane and isopentane as the secondary working fluid. The module was designed as one percent of a 50 MW unit. It was installed at Magma Power's East Mesa geothermal field and tested over a period of approximately 4 months. Most of the test runs were with isobutane but some data were collected for hydrocarbon mixtures. The results of the field tests are reported. In general these results indicate reasonably good heat balances and agreement with overall heat transfer coefficients calculated by current stream analysis methods and available fluid property data; however, measured pressure drops across the heat exchangers were 20 percent higher than estimated. System operation was stable under all conditions tested.

  20. Electrical power inverter having a phase modulated, twin-inverter, high frequency link and an energy storage module

    DOE Patents [OSTI]

    Pitel, Ira J. (Whippany, NJ)

    1987-02-03

    The present invention provides an electrical power inverter method and apparatus, which includes a high frequency link, for converting DC power into AC power. Generally stated, the apparatus includes a first high frequency module which produces an AC voltage at a first output frequency, and a second high frequency inverter module which produces an AC voltage at a second output frequency that is substantially the same as the first output frequency. The second AC voltage is out of phase with the first AC voltage by a selected angular phase displacement. A mixer mixes the first and second output voltages to produce a high frequency carrier which has a selected base frequency impressed on the sidebands thereof. A rectifier rectifies the carrier, and a filter filters the rectified carrier. An output inverter inverts the filtered carrier to produce an AC line voltage at the selected base frequency. A phase modulator adjusts the relative angular phase displacement between the outputs of the first and second high frequency modules to control the base frequency and magnitude of the AC line voltage.

  1. Electrical power inverter having a phase modulated, twin-inverter, high frequency link and an energy storage module

    DOE Patents [OSTI]

    Pitel, I.J.

    1987-02-03

    The present invention provides an electrical power inverter method and apparatus, which includes a high frequency link, for converting DC power into AC power. Generally stated, the apparatus includes a first high frequency module which produces an AC voltage at a first output frequency, and a second high frequency inverter module which produces an AC voltage at a second output frequency that is substantially the same as the first output frequency. The second AC voltage is out of phase with the first AC voltage by a selected angular phase displacement. A mixer mixes the first and second output voltages to produce a high frequency carrier which has a selected base frequency impressed on the sidebands thereof. A rectifier rectifies the carrier, and a filter filters the rectified carrier. An output inverter inverts the filtered carrier to produce an AC line voltage at the selected base frequency. A phase modulator adjusts the relative angular phase displacement between the outputs of the first and second high frequency modules to control the base frequency and magnitude of the AC line voltage. 19 figs.

  2. Wind Energy Integration: Slides

    Wind Powering America (EERE)

    provide information about integrating wind energy into the electricity grid. Wind Energy Integration Photo by Dennis Schroeder, NREL 25907 Wind energy currently contributes significant power to energy portfolios around the world. *U.S. Department of Energy. (August 2015). 2014 Wind Technologies Market Report. Wind Energy Integration In 2014, Denmark led the way with wind power supplying roughly 39% of the country's electricity demand. Ireland, Portugal, and Spain provided more than 20% of their

  3. Residential Buildings Integration (RBI)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Energy Efficiency and Renewable Energy eere.energy.gov David Lee Program Manager Residential Buildings Integration (RBI) April 22, 2014 Residential Buildings Integration (RBI) Mission/Vision The Residential Buildings Integration (RBI) program's mission: To accelerate energy performance improvements in residential buildings by developing, demonstrating, and deploying a suite of cost-effective technologies, tools, and solutions to achieve peak performance in new and existing homes. RBI Vision,

  4. Commercial Buildings Integration (CBI)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 | Energy Efficiency and Renewable Energy eere.energy.gov Arah Schuur Program Manager Commercial Buildings Integration (CBI) April 22, 2014 Commercial Buildings Integration (CBI) 2 Commercial Buildings Integration (CBI) Mission/Vision CBI Mission Accelerate voluntary uptake of significant energy performance improvements in existing and new commercial buildings. CBI Vision: A commercial buildings market where energy performance is a key consideration during construction, operation, renovation,

  5. Power module assemblies with staggered coolant channels

    DOE Patents [OSTI]

    Herron, Nicholas Hayden; Mann, Brooks S; Korich, Mark D

    2013-07-16

    A manifold is provided for supporting a power module assembly with a plurality of power modules. The manifold includes a first manifold section. The first face of the first manifold section is configured to receive the first power module, and the second face of the first manifold section defines a first cavity with a first baseplate thermally coupled to the first power module. The first face of the second manifold section is configured to receive the second power module, and the second face of the second manifold section defines a second cavity with a second baseplate thermally coupled to the second power module. The second face of the first manifold section and the second face of the second manifold section are coupled together such that the first cavity and the second cavity form a coolant channel. The first cavity is at least partially staggered with respect to second cavity.

  6. Sandia Energy - Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Sandia's larger portfolio of renewable energy technology programs (Wind, Solar Power, Geothermal, and Energy Systems Analysis). Transmission Grid Integration The goal of...

  7. Commercial Buildings Integration

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Buildings Integration Images courtesy CREE, True Manufacturing, A.O. Smith, Bernstein Associates, Cambridge Engineering, Alliance Laundry Systems, NREL 2 Strategic Fit within ...

  8. Integrating Electricity Subsector

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Integrating Electricity Subsector Failure Scenarios into a Risk Assessment Methodology ... Executive, Cyber Security Electric Power Research Institute (EPRI) For more information on ...

  9. Distribution Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Carbide Thyristors Read More Permalink ECIS-Princeton Power Systems, Inc.: Demand Response Inverter DETL, Distribution Grid Integration, Energy, Energy Surety, Facilities, ...

  10. Energy Systems Integration: A Convergence of Ideas

    SciTech Connect (OSTI)

    Kroposki, B.; Garrett, B.; MacMillan, S.; Rice, B.; Komomua, C.; O'Malley, M.; Zimmerle, D.

    2012-07-01

    Energy systems integration (ESI) enables the effective analysis, design, and control of these interactions and interdependencies along technical, economic, regulatory, and social dimensions. By focusing on the optimization of energy from all systems, across all pathways, and at all scales, we can better understand and make use of the co-benefits that result to increase reliability and performance, reduce cost, and minimize environmental impacts. This white paper discusses systems integration and the research in new control architectures that are optimized at smaller scales but can be aggregated to optimize energy systems at any scale and would allow replicable energy solutions across boundaries of existing and new energy pathways.

  11. Integrated exhaust and electrically heated particulate filter regeneration systems

    DOE Patents [OSTI]

    Gonze, Eugene V.; Paratore, Jr., Michael J.

    2013-01-08

    A system includes a particulate matter (PM) filter that includes multiple zones. An electrical heater includes heater segments that are associated with respective ones of the zones. The electrical heater is arranged upstream from and proximate with the PM filter. A post-fuel injection system injects fuel into at least one of a cylinder of an engine and an exhaust system. A control module is configured to operate in a first mode that includes activating the electrical heater to heat exhaust of the engine. The control module is also configured to operate in a second mode that includes activating the post-injection system to heat the exhaust. The control module selectively operates in at least one of the first mode and the second mode.

  12. NREL: Energy Systems Integration - Events

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    archive. Printable Version Energy Systems Integration Home Capabilities Research & Development Facilities Working with Us Publications News Events Energy Systems Integration...

  13. System and method for controlling hydraulic pressure in electro-hydraulic valve actuation systems

    DOE Patents [OSTI]

    Brennan, Daniel G; Marriott, Craig D; Cowgill, Joel; Wiles, Matthew A; Patton, Kenneth James

    2014-09-23

    A control system for an engine includes a first lift control module and a second lift control module. The first lift control module increases lift of M valves of the engine to a predetermined valve lift during a period before disabling or re-enabling N valves of the engine. The second lift control module decreases the lift of the M valves to a desired valve lift during a period after enabling or re-enabling the N valves of the engine, wherein N and M are integers greater than or equal to one.

  14. PV Cell and Module Calibrations at NREL

    SciTech Connect (OSTI)

    Emery, Keith

    2012-10-22

    NREL has equipment to measure any conceivable cell or module technology. The lack of standards for low concentration modules complicates matters. Spectrally adjustable simulators are critical for more than three junctions. NREL's 10-channel fiber optic simulator has shown that the light can be set for each junction within 1% of what it would be under the reference spectrum for up to a five-junction cell. Uncertainty in module simulators dominated by spatial nonuniformity for calibration labs. Manufacturers can mitigate this error by using matched reference modules instead of cells.

  15. Optical sensing based on wavelength modulation spectroscopy

    DOE Patents [OSTI]

    Buckley, Steven G. (Redmond, WA); Gharavi, Mohammadreza (Tehran, IR); Borchers; Marco (Berlin, DE)

    2011-06-28

    Techniques, apparatus and systems for using Wavelength Modulation Spectroscopy measurements to optically monitor gas media such as gases in gas combustion chambers.

  16. NREL: Measurements and Characterization - Outdoor Module Current...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of prototype concentrator modules and cells mounted in a 2-axis tracker; translation equations, stability and performance of concentrator Up to 10 samples at a time;...

  17. NREL: Transmission Grid Integration - Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Publications Want updates about future transmission grid integration webinars and publications? Join our mailing list. NREL has an extensive collection of publications related to transmission integration research. Explore the resources below to learn more. Selected Project Publications Read selected publications related to these transmission integration projects: Western Wind and Solar Integration Study Eastern Renewable Generation Integration Study Oahu Wind Integration and Transmission Study

  18. Building Technologies Office Load Control Strategies

    Broader source: Energy.gov [DOE]

    BTO researches and implements load control strategies, which support the Sustainable and Holistic IntegratioN of Energy storage and Solar PV (SHINES) FOA.

  19. Integrative Analysis of Transgenic Alfalfa (Medicago sativa L.) Suggests

    Office of Scientific and Technical Information (OSTI)

    New Metabolic Control Mechanisms for Monolignol Biosynthesis (Journal Article) | SciTech Connect Integrative Analysis of Transgenic Alfalfa (Medicago sativa L.) Suggests New Metabolic Control Mechanisms for Monolignol Biosynthesis Citation Details In-Document Search Title: Integrative Analysis of Transgenic Alfalfa (Medicago sativa L.) Suggests New Metabolic Control Mechanisms for Monolignol Biosynthesis Authors: Yun,Lee ; Fang,Chen ; Lina,Gallego-Giraldo ; Richard A.,Dixon ; Eberhard

  20. Analysis of Integrated Safety Management at the Activity Level: Work

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Planning and Control, Final Report | Department of Energy Integrated Safety Management at the Activity Level: Work Planning and Control, Final Report Analysis of Integrated Safety Management at the Activity Level: Work Planning and Control, Final Report May 15, 2013 Presenter: Stephen L. Domotor, Director, Office of Analysis, Office of Health, Safety and Security Topic: On August 28, 2012, the Defense Nuclear Facilities Safety Board (DNFSB or "Board") wrote to the Department of

  1. Innovative Office Lighting System with Integrated Spectrally Adaptive

    Energy Savers [EERE]

    Control | Department of Energy Office Lighting System with Integrated Spectrally Adaptive Control Innovative Office Lighting System with Integrated Spectrally Adaptive Control Lead Performer: Philips Research North America, LLC - Briarcliff Manor, NY DOE Total Funding: $499,131 Cost Share: $166,377 Project Term: 10/1/15 - 3/31/17 Funding Opportunity: SSL R&D Funding Opportunity Announcement (FOA) (DE-FOA-0001171) Project Objective This project will develop an innovative LED office

  2. Systems Integration (Fact Sheet)

    SciTech Connect (OSTI)

    DOE Solar Energy Technologies Program

    2011-10-13

    The Systems Integration (SI) subprogram works closely with industry, universities, and the national laboratories to overcome technical barriers to the large-scale deployment of solar technologies. To support these goals, the subprogram invests primarily in four areas: grid integration, technology validation, solar resource assessment, and balance of system development.

  3. Systems Integration (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    The Systems Integration (SI) subprogram works closely with industry, universities, and the national laboratories to overcome technical barriers to the large-scale deployment of solar technologies. To support these goals, the subprogram invests primarily in four areas: grid integration, technology validation, solar resource assessment, and balance of system development.

  4. Development of an Integrated Distribution Management System

    SciTech Connect (OSTI)

    Schatz, Joe E.

    2010-10-20

    This final report details the components, functionality, costs, schedule and benefits of developing an Integrated Distribution Management System (IDMS) for power distribution system operation. The Distribution Automation (DA) and Supervisory Control and Data Acquisition (SCADA) systems used by electric power companies to manage the distribution of electric power to retail energy consumers are vital components of the Nations critical infrastructure. Providing electricity is an essential public service and a disruption in that service, if not quickly restored, could threaten the public safety and the Nations economic security. Our Nations economic prosperity and quality of life have long depended on the essential services that utilities provide; therefore, it is necessary to ensure that electric utilities are able to conduct their operations safely and efficiently. A fully integrated technology of applications is needed to link various remote sensing, communications and control devices with other information tools that help guide Power Distribution Operations personnel. A fully implemented IDMS will provide this, a seamlessly integrated set of applications to raise electric system operating intelligence. IDMS will enhance DA and SCADA through integration of applications such as Geographic Information Systems, Outage Management Systems, Switching Management and Analysis, Operator Training Simulator, and other Advanced Applications, including unbalanced load flow and fault isolation/service restoration. These apps are capable of utilizing and obtaining information from appropriately installed DER, and by integrating disparate systems, the Distribution Operators will benefit from advanced capabilities when analyzing, controlling and operating the electric system.

  5. Design structure for in-system redundant array repair in integrated circuits

    DOE Patents [OSTI]

    Bright, Arthur A.; Crumley, Paul G.; Dombrowa, Marc; Douskey, Steven M.; Haring, Rudolf A.; Oakland, Steven F.; Quellette, Michael R.; Strissel, Scott A.

    2008-11-25

    A design structure for repairing an integrated circuit during operation of the integrated circuit. The integrated circuit comprising of a multitude of memory arrays and a fuse box holding control data for controlling redundancy logic of the arrays. The design structure provides the integrated circuit with a control data selector for passing the control data from the fuse box to the memory arrays; providing a source of alternate control data, external of the integrated circuit; and connecting the source of alternate control data to the control data selector. The design structure further passes the alternate control data from the source thereof, through the control data selector and to the memory arrays to control the redundancy logic of the memory arrays.

  6. Testing Protocol for Module Encapsulant Creep (Presentation)

    SciTech Connect (OSTI)

    Kempe, M. D.; Miller, D. C.; Wohlgemuth, J. H.; Kurtz, S. R.; Moseley, J. M.; Shah, Q.; Tamizhmani, G.; Sakurai, K.; Inoue, M.; Doi, T.; Masuda, A.

    2012-02-01

    Recently there has been an interest in the use of thermoplastic encapsulant materials in photovoltaic modules to replace chemically crosslinked materials, e.g., ethylene-vinyl acetate. The related motivations include the desire to: reduce lamination time or temperature; use less moisture-permeable materials; or use materials with better corrosion characteristics. However, the use of any thermoplastic material in a high-temperature environment raises safety and performance concerns, as the standardized tests currently do not expose the modules to temperatures in excess of 85C, yet modules may experience temperatures above 100C in operation. Here we constructed eight pairs of crystalline-silicon modules and eight pairs of glass/encapsulation/glass mock modules using different encapsulation materials of which only two were designed to chemically crosslink. One module set was exposed outdoors with insulation on the back side in Arizona in the summer, and an identical set was exposed in environmental chambers. High precision creep measurements and performance measurements indicate that despite many of these polymeric materials being in the melt state at some of the highest outdoor temperatures achievable, very little creep was seen because of their high viscosity, temperature heterogeneity across the modules, and in the case of the crystalline-silicon modules, the physical restraint of the backsheet. These findings have very important implications for the development of IEC and UL qualification and safety standards, and in regards to the necessary level of cure during the processing of crosslinking encapsulants.

  7. Thermoelectrics Partnership: Automotive Thermoelectric Modules with

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Scalable Thermo- and Electro-Mechanical Interfaces | Department of Energy 1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon ace067_goodson_2011_o.pdf More Documents & Publications Thermoelectrics Partnership: Automotive Thermoelectric Modules with Scalable Thermo- and Electro-Mechanical Interfaces Novel Nanostructured Interface Solution for Automotive Thermoelectric Modules Application

  8. Identification coding schemes for modulated reflectance systems

    DOE Patents [OSTI]

    Coates, Don M. (Santa Fe, NM); Briles, Scott D. (Los Alamos, NM); Neagley, Daniel L. (Albuquerque, NM); Platts, David (Santa Fe, NM); Clark, David D. (Santa Fe, NM)

    2006-08-22

    An identifying coding apparatus employing modulated reflectance technology involving a base station emitting a RF signal, with a tag, located remotely from the base station, and containing at least one antenna and predetermined other passive circuit components, receiving the RF signal and reflecting back to the base station a modulated signal indicative of characteristics related to the tag.

  9. Reciprocal-Space Analysis of Compositional Modulation in Short-Period Superlattices Using Position-Sensitive X-Ray Detection

    SciTech Connect (OSTI)

    Ahrenkiel, S.P.; Follstaedt, D.M.; Lee, S.R.; Millunchick, J.M.; Norman, A.G.; Reno, J.L.; Twesten, R.D.

    1998-11-10

    Epitaxial growth of AlAs-InAs short-period superlattices on (001) InP can lead to heterostructures exhibiting strong, quasi-periodic, lateral modulation of the alloy composition; transverse satellites arise in reciprocal space as a signature of the compositional modulation. Using an x-ray diffractometer equipped with a position-sensitive x-ray detector, we demonstrate reciprocal-space mapping of these satellites as an efficient, nondestructive means for detecting and characterizing the occurrence of compositional modulation. Systematic variations in the compositional modulation due to the structural design and the growth conditions of the short-period superlattice are characterized by routine mapping of the lateral satellites. Spontaneous compositional modulation occurs along the growth front during molecular-beam epitaxy of (AlAs) (InAs)n short-period superlattices. The modulation is quasi-periodic and forms a lateral superlattice superimposed on the intended SPS structure. Corresponding transverse satellites arise about each reciprocal lattice point, and x-ray diffraction can be routinely used to map their local reciprocal-space structure. The integrated intensity, spacing, orientation, and shape of these satellites provide a reliable means for nondestructively detecting and characterizing the compositional modulation in short-period superlattices. The analytical efficiency afforded by the use of a PSD has enabled detailed study of systematic vacations in compositional modulation as a function of the average composition, the period, and the growth rate of the short- period superlattice

  10. System design document U-AVLIS control system architecture

    SciTech Connect (OSTI)

    Viebeck, P.G.

    1994-02-16

    This document describes the architecture of the integrated control system for the U-AVLIS process. It includes an overview of the major control system components and their interfaces to one another. Separate documents are utilized to fully describe each component mentioned herein. The purpose of this document is to introduce the reader to the integrated U-AVLIS control system. It describes the philosophy of the control system architecture and how all of the control system components are integrated. While the other System Design Documents describe in detail the design of individual control system components, this document puts those components into their correct context within the entire integrated control system.

  11. Integrated assessment briefs

    SciTech Connect (OSTI)

    1995-04-01

    Integrated assessment can be used to evaluate and clarify resource management policy options and outcomes for decision makers. The defining characteristics of integrated assessment are (1) focus on providing information and analysis that can be understood and used by decision makers rather than for merely advancing understanding and (2) its multidisciplinary approach, using methods, styles of study, and considerations from a broader variety of technical areas than would typically characterize studies produced from a single disciplinary standpoint. Integrated assessment may combine scientific, social, economic, health, and environmental data and models. Integrated assessment requires bridging the gap between science and policy considerations. Because not everything can be valued using a single metric, such as a dollar value, the integrated assessment process also involves evaluating trade-offs among dissimilar attributes. Scientists at Oak Ridge National Laboratory (ORNL) recognized the importance and value of multidisciplinary approaches to solving environmental problems early on and have pioneered the development of tools and methods for integrated assessment over the past three decades. Major examples of ORNL`s experience in the development of its capabilities for integrated assessment are given.

  12. Ion transport membrane module and vessel system

    DOE Patents [OSTI]

    Stein, VanEric Edward; Carolan, Michael Francis; Chen, Christopher M.; Armstrong, Phillip Andrew; Wahle, Harold W.; Ohrn, Theodore R.; Kneidel, Kurt E.; Rackers, Keith Gerard; Blake, James Erik; Nataraj, Shankar; van Doorn, Rene Hendrik Elias; Wilson, Merrill Anderson

    2007-02-20

    An ion transport membrane system comprising (a) a pressure vessel having an interior, an exterior, an inlet, and an outlet; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region, wherein any inlet and any outlet of the pressure vessel are in flow communication with exterior regions of the membrane modules; and (c) one or more gas manifolds in flow communication with interior regions of the membrane modules and with the exterior of the pressure vessel. The ion transport membrane system may be utilized in a gas separation device to recover oxygen from an oxygen-containing gas or as an oxidation reactor to oxidize compounds in a feed gas stream by oxygen permeated through the mixed metal oxide ceramic material of the membrane modules.

  13. Ion transport membrane module and vessel system

    DOE Patents [OSTI]

    Stein, VanEric Edward (Allentown, PA); Carolan, Michael Francis (Allentown, PA); Chen, Christopher M. (Allentown, PA); Armstrong, Phillip Andrew (Orefield, PA); Wahle, Harold W. (North Canton, OH); Ohrn, Theodore R. (Alliance, OH); Kneidel, Kurt E. (Alliance, OH); Rackers, Keith Gerard (Louisville, OH); Blake, James Erik (Uniontown, OH); Nataraj, Shankar (Allentown, PA); Van Doorn, Rene Hendrik Elias (Obersulm-Willsbach, DE); Wilson, Merrill Anderson (West Jordan, UT)

    2012-02-14

    An ion transport membrane system comprising (a) a pressure vessel having an interior, an exterior, an inlet, and an outlet; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region, wherein any inlet and any outlet of the pressure vessel are in flow communication with exterior regions of the membrane modules; and (c) one or more gas manifolds in flow communication with interior regions of the membrane modules and with the exterior of the pressure vessel. The ion transport membrane system may be utilized in a gas separation device to recover oxygen from an oxygen-containing gas or as an oxidation reactor to oxidize compounds in a feed gas stream by oxygen permeated through the mixed metal oxide ceramic material of the membrane modules.

  14. Comparison of Module Performance Characterization Methods

    SciTech Connect (OSTI)

    KROPOSKI,B.; MARION,W.; KING,DAVID L.; BOYSON,WILLIAM EARL; KRATOCHVIL,JAY A.

    2000-10-03

    The rating and modeling of photovoltaic PW module performance has been of concern to manufacturers and system designers for over 20 years. Both the National Renewable Energy Laboratory (NREL) and Sandia National Laboratories (SNL) have developed methodologies to predict module and array performance under actual operating conditions. This paper compares the two methods of determining the performance of PV modules, The methods translate module performance to actual or reference conditions using slightly different approaches. The accuracy of both methods is compared for both hourly, daily, and annual energy production over a year of data recorded at NREL in Golden, CO. The comparison of the two methods will be presented for five different PV module technologies.

  15. Ion transport membrane module and vessel system

    DOE Patents [OSTI]

    Stein, VanEric Edward (Allentown, PA); Carolan, Michael Francis (Allentown, PA); Chen, Christopher M. (Allentown, PA); Armstrong, Phillip Andrew (Orefield, PA); Wahle, Harold W. (North Canton, OH); Ohrn, Theodore R. (Alliance, OH); Kneidel, Kurt E. (Alliance, OH); Rackers, Keith Gerard (Louisville, OH); Blake, James Erik (Uniontown, OH); Nataraj, Shankar (Allentown, PA); van Doorn, Rene Hendrik Elias (Obersulm-Willsbach, DE); Wilson, Merrill Anderson (West Jordan, UT)

    2008-02-26

    An ion transport membrane system comprising (a) a pressure vessel having an interior, an exterior, an inlet, and an outlet; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region, wherein any inlet and any outlet of the pressure vessel are in flow communication with exterior regions of the membrane modules; and (c) one or more gas manifolds in flow communication with interior regions of the membrane modules and with the exterior of the pressure vessel.The ion transport membrane system may be utilized in a gas separation device to recover oxygen from an oxygen-containing gas or as an oxidation reactor to oxidize compounds in a feed gas stream by oxygen permeated through the mixed metal oxide ceramic material of the membrane modules.

  16. Internal Control Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2008-10-28

    To ensure sound internal controls and overall consistency in exercising the statutory authorities that vest in the Secretary, the Administrator, National Nuclear Security Administration (NNSA), and Department's Chief Financial Officer (CFO), and to implement the Federal Managers' Financial Integrity Act of 1982 and related central agency guidance. Supersedes DOE O 413.1A.

  17. Integration of Safety into the Design Process

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2007-06-27

    The Standard provides guidance on a process of integration of Safety-in-Design intended to implement the applicable ISM core functionsdefine the work, analyze the hazards, establish the controlsnecessary to provide protection of the public, workers, and the environment from harmful effects of radiation and other such toxic and hazardous aspects attendant to the work.

  18. Integrated dry NO{sub x}/SO{sub 2} emissions control system sodium-based dry sorbent injection test report. Test period: August 4, 1993--July 29, 1995

    SciTech Connect (OSTI)

    Smith, R.A.; Shimoto, G.H.; Muzio, L.J.; Hunt, T.

    1997-04-01

    The project goal is to demonstrate up to 70% reductions in NOx and SO{sub 2} emissions through the integration of: (1) down-fired low-NOx burners with overfire air; (2) Selective Non-Catalytic Reduction (SNCR) for additional NOx removal; and (3) dry sorbent injection and duct humidification for SO{sub 2} removal. This report documents the sixth phase of the test program, where the performance of dry sorbent injection with sodium compounds was evaluated as a SO{sub 2} removal technique. Dry sorbent injection was performed in-duct downstream of the air heater (ahead of the fabric filter), as well as at a higher temperature location between the economizer and air heater. Two sodium compounds were evaluated during this phase of testing: sodium sesquicarbonate and sodium bicarbonate. In-duct sodium injection with low levels of humidification was also investigated. This sixth test phase was primarily focused on a parametric investigation of sorbent type and feed rate, although boiler load and sorbent preparation parameters were also varied.

  19. DOE-HDBK-1122-99; Radiological Control Technician Training

    Office of Environmental Management (EM)

    Radiological Protection Standards Instructor's Guide 1.09-1 Course Title: Radiological Control Technician Module Title: Radiological Protection Standards Module Number: 1.09 Objectives: 1.09.01 Identify the role of advisory agencies in the development of recommendations for radiological control. 1.09.02 Identify the role of regulatory agencies in the development of standards and regulations for radiological control. 1.09.03 Identify the scope of the 10 CFR Part 835. References: 1. ANL-88-26

  20. DOE-HDBK-1122-99; Radiological Control Technician Training

    Office of Environmental Management (EM)

    External Exposure Control Instructor's Guide 1.11-1 Course Title: Radiological Control Technician Module Title: External Exposure Control Module Number: 1.11 Objectives: 1.11.01 Identify the four basic methods for minimizing personnel external exposure. 1.11.02 Using the Exposure Rate = 6CEN equation, calculate the gamma exposure rate for specific radionuclides. 1.11.03 Identify "source reduction" techniques for minimizing personnel external exposures. 1.11.04 Identify